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Preface

We are pleased to present the proceedings of the 5th Workshop on Algorithms
in Bioinformatics (WABI 2005) which took place in Mallorca, Spain, October
3–6, 2005. The WABI 2005 workshop was part of the five ALGO 2005 confer-
ence meetings, which, in addition to WABI, included ESA, WAOA, IWPEC,
and ATMOS. WABI 2005 was sponsored by EATCS (the European Associa-
tion for Theoretical Computer Science), the ISCB (the International Society
for Computational Biology), the Universitat Politècnica de Catalunya, the Uni-
versitat de les Illes Balears, and the Ministerio de Educación y Ciencia. See
http://www.lsi.upc.edu/˜wabi05/ for more details.

The Workshop on Algorithms in Bioinformatics highlights research work
specifically developed to address algorithmic problems in biosequence analysis.
The emphasis is therefore on statistical and probabilistic algorithms that address
important problems in the field of molecular and structural biology. At present,
given the enormous scientific and technical efforts in functional and structural
genomics, the relevance of the problem is therefore constrained by the need for
sound, efficient and specialized algorithms, capable of achieving solutions that
can be tested by the biological community. Indeed the ultimate goal is to im-
plement algorithms capable of extracting real features from real biological data
sets. Therefore the workshop aims to present recent research results, including
significant work in progress, and to identify and explore directions of future
research.

Original research papers (including significant work in progress) or state-
of-the-art surveys were solicited on all aspects of algorithms in bioinformatics,
including, but not limited to: exact and approximate algorithms for genomics,
genetics, sequence analysis, gene and signal recognition, alignment, molecular
evolution, phylogenetics, structure determination or prediction, gene expression
and gene networks, proteomics, functional genomics, and drug design. We re-
ceived 94 submissions in response to our call for papers, and were able to accept
35 of these. In addition, WABI 2005 hosted a distinguished lecture by Dr. Marino
Zerial of the Max Planck Institute for Molecular Cell Biology and Genetics in
Dresden, given to the entire ALGO 2005 conference.

We would like to sincerely thank all the authors of submitted papers, and the
participants of the workshop. We also thank the Program Committee and their
sub-referees for their hard work in reviewing and selecting the papers for the
workshop. The Program Committee consisted of the following 40 distinguished
researchers:

Pankaj Kumar Agarwal (Duke University)
Tatsuya Akutsu (Kyoto University)
Amir Amihood (Bar-Ilan University)
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Alberto Apostolico (Purdue University)
Craig Benham (University of California, Davis)
Gary Benson (MSSN, New York)
Mathieu Blanchette (McGill University)
Nadia El-Mabrouk (University of Montreal)
Olivier Gascuel (LIRMM, Montpelier)
Raffaele Giancarlo (University of Palermo)
Roderic Guigo (IMIM, Barcelona)
Michael Hallet (McGill University)
Daniel Huson (University of Tuebingen)
Gregory Kucherov (INRIA Nancy)
Michelle Lacey (Tulane University)
Jens Lagergren (KTH Stockholm)
Giuseppe Lancia (Univeristy of Udine)
Gad M. Landau (University of Haifa)
Thierry Lecroq (Université de Rouen)
Bernard Moret (University of New Mexico)
Shinichi Morishita (University of Tokyo)
Elchanan Mossel (Univeristy of California, Berkeley)
Vincent Moulton (University of Uppsala)
Lior Pachter (University of California, Berkeley)
Knut Reinert (Free University of Berlin)
Isidore Rigoutsos (IBM Watson)
Marie-France Sagot (INRIA Rhône-Alpes)
David Sankoff (University of Ottawa)
Sophie Schbath (INRIA Jouv-en-Josas)
Eran Segal (Rockefeller University)
Charles Semple (University of Canterbury)
Joao Carlos Setubal (Virginia Polytechnic Institute)
Roded Sharan (Tel Aviv Univeristy)
Steven Skiena (University of New York, Stony Brook)
Jens Stoye (University of Bielefeld)
Esko Ukkonen (University of Helsinki)
Lisa Vawter (Aventis Inc., USA)
Alfonso Valencia (CNB-CSIC, Spain)
Tandy Warnow (University of Texas)
Lusheng Wang (City Univeristy of Hong Kong)

Finally we would like to especially thank Bernard Moret, the de facto steering
committee, for answering questions on history and precedence, for his advice on
difficult protocol issues, and for setting up and hosting the EasyChair refereeing
system used by the Program Committee.

July 2005 Rita Casadio and Gene Myers
WABI 2005 Program Co-chairs
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Sèverine Bérard, Anne Bergeron, Cedric Chauve,
Christophe Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Minimum Recombination Histories by Branch and Bound
Rune B. Lyngsø, Yun S. Song, Jotun Hein . . . . . . . . . . . . . . . . . . . . . . . . 239

Sequences

1. Strings

A Unifying Framework for Seed Sensitivity and Its Application to
Subset Seeds
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Spectral Clustering Gene Ontology Terms to
Group Genes by Function

Nora Speer, Christian Spieth, and Andreas Zell

University of Tübingen, Centre for Bioinformatics Tübingen (ZBIT),
Sand 1, D-72076 Tübingen, Germany

nspeer@informatik.uni-tuebingen.de

Abstract. With the invention of biotechnological high throughput me-
thods like DNA microarrays, biologists are capable of producing huge
amounts of data. During the analysis of such data the need for a group-
ing of the genes according to their biological function arises. In this pa-
per, we propose a method that provides such a grouping. As functional
information, we use Gene Ontology terms. Our method clusters all GO
terms present in a data set using a Spectral Clustering method. Then,
mapping the genes back to their annotation, genes can be associated to
one or more clusters of defined biological processes. We show that our
Spectral Clustering method is capable of finding clusters with high inner
cluster similarity.

1 Introduction

In the past few years, high-throughput techniques like microarrays have be-
come major tools in the field of genomics. In contrast to traditional methods,
these technologies enable researchers to collect tremendous amounts of data,
whose analysis itself constitutes a challenge. Since these techniques provide a
global view on the cellular processes as well as on their underlying regulatory
mechanisms, they are quite popular among biologists. After the analysis of such
data, using filtering methods, clustering techniques or statistical approaches, re-
searchers often end up with long lists of interesting candidate genes that need
further examination. Then, in a second step, they categorize these genes by
known biological functions.

In this paper, we address the problem of finding functional clusters of genes
by clustering Gene Ontology terms. Based on methods originally developed for
semantic similarity, we are able to compute a functional similarity between GO
terms [13]. This information is fed into a spectral clustering algorithm [15]. This
has the advantage, that after mapping the genes back to the GO terms, a gene
with more than one associated term (function) can be present in more than one
cluster which seems biologically plausible.

The organization of this paper is as follows: a brief introduction to the Gene
Ontology is given in section 2. Related Work is discussed in section 3. Section
4 explains our method in detail. The experimental setup and the results on real
world data sets are shown in section 5. Finally, in section 6, we conclude.

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Relations in the Gene Ontology. Each node is annotated with a unique accession
number.

2 The Gene Ontology

The Gene Ontology (GO) is one of the most important ontologies within the
bioinformatics community and is developed by the Gene Ontology Consortium
[21]. It is specifically intended for annotating gene products with a consistent,
controlled and structured vocabulary. Gene products are for instance sequences
in databases as well as measured expression profiles. The GO is independent from
any biological species. It represents terms in a Directed Acyclic Graph (DAG),
covering three orthogonal taxonomies or ”aspects”: molecular function, biological
process and cellular component. The GO-graph consists of over 18.000 terms,
represented as nodes within the DAG, connected by relationships, represented
as edges. Terms are allowed to have multiple parents as well as multiple children.
Two different kinds of relationship exist: the ”is-a” relationship (photoreceptor
cell differentiation is, for example, a child of cell differentiation) and the ”part-
of” relationship that describes, for instance, that regulation of cell differentiation
is part of cell differentiation.

Providing a standard vocabulary across any biological resources, the GO
enables researchers to use this information for automatic data analysis done by
computers and not by humans.

3 Related Work

While GO analysis is an increasingly important field, existing techniques suffer
from some weaknesses: Many methods consider the GO simply as a list of terms,
ignoring any structural relationships [2,7,17,23]. Others regard the GO primar-
ily as a tree and convert the GO graph into a tree structure for determining
distances between nodes [11]. Again others use a pseudo-distance that does not
fulfill all metric conditions and relies on counting path lengths [3]. This is a deli-
cate approach in unbalanced graphs like the GO those subgraphs have different
degrees of detail.

Besides, the aim of some methods is primary either to use the GO as prepro-
cessing [1] or as visualization tool [6]. Only few approaches utilize its structure
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for computation. Many methods are scoring techniques describing a list of genes
annotated with GO terms [2,6,7,11,17,23]. But to our knowledge and apart from
our earlier publications [20,19], there exists no automatic functional GO-based
clustering method. One method is related to clustering and can be used to in-
dicate which clusters are present in the data [3]. However, it suffers from the
weaknesses that come along with using pseudo-distances as mentioned earlier.

4 Methodology

Our method consists of different steps that will be explained separately in this
section: the mapping of the genes to the Gene Ontology, the calculation of func-
tional similarities on GO terms, the spectral clustering algorithm and finally how
the appropriate number of clusters is determined.

4.1 Mapping the Genes to the Gene Ontology

The functional similarity measure operates on pairs of GO nodes in a DAG,
whereas in general, researchers are dealing with database ids of genes or probes.
Therefore, a mapping M that relates the genes of a microarray experiment
to nodes in the GO graph is required. Many databases (e.g. TrEMBL (GOA-
project)) provide GO annotation for their entries and companies like Affymetrix
provide GO mappings to their probe set ids as well. We used GeneLynx [8] to
map the genes of dataset I. Hvidsten et al. [9] provide a mapping for dataset II.

4.2 Similarities Within the Gene Ontology

To calculate functional similarities between GO nodes, we rely on a technique
that was originally developed for other taxonomies like WordNet to measure
semantic similarities between words [12].

Following the notation in information theory, the information content (IC)
of a term t can be quantified as follows [13]:

IC(t) = − lnP (t) (1)

where P (t) is the probability of encountering an instance of term t in the data.
In the case of a hierarchical structure, such as the GO, where a term in the

hierarchy subsumes those lower in the hierarchy, this implies that P (t) is mono-
tonic as one moves towards the root node. As the node’s probability increases,
its information content or its informativeness decreases. The root node has a
probability of 1, hence its information content is 0. As the three aspects of the
GO are disconnected subgraphs, this is still true if we ignore the root node ”Gene
Ontology” and take, for example, ”biological process” as our root node instead.

To compute a similarity between two terms, one can use the IC of their
common ancestor. As the GO allows multiple parents for each term, two terms
can share ancestors by multiple paths. We take the minimum P (t), if there
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is more than one ancestor. This is called Pms, for probability of the minimum
subsumer [13]. Thereby, it is guaranteed, that the most specific parent term is
selected:

Pms(ti, tj) = min
t∈S(ti,tj)

P (t) (2)

where S(ti, tj) is the set of parental terms shared by both ti and tj . Based on
Eq. 1 and 2, Lin extended the similarity measure, so that the IC of each single
node was also taken into account [12,13]:

s(ti, tj) =
2 ln Pms(ti, tj)

lnP (ti) + lnP (tj)
. (3)

Since Pms(ti, tj) ≥ P (ti) and Pms(ti, tj) ≥ P (tj), its value varies between 1 (for
similar terms) and 0.

One should note, that the probability of a term as well as the resulting
similarity between two terms differs from data set to data set, depending on the
distribution of terms. Therefore, our clustering differs from a general clustering
of the GO and a subsequent mapping of the genes to such a general clustering.
Due to our approach, we are able to arrange the resulting cluster boundaries
depending on the distribution of the GO terms either more specific (if the terms
concentrate on a specific part of the GO) or more general (if the terms are widely
spread).

4.3 Spectral Clustering

We decided to cluster GO terms, not genes, because of two reasons: first, we do
not face the problem of combining different similarities per gene like in earlier
publications [19,20] and second, after mapping the genes back to the GO, they
can be present in more than one functional cluster which is biologically plausible,
since they can also fulfill more than one biological function.

Recently, Spectral Clustering methods haven been growing in popularity.
Several new algorithms have been published [22,18,14,15]. A set of objects (in
our case GO terms) to be clustered will be denoted by T , with |T | = n. Given an
affinity measure Aij = Aji ≥ 0 for two objects i, j, the affinities Aij can be seen
as weights on the undirected edges ij of a graph G over T . Then, the matrix
A = [Aij ] is the real-valued adjacency matrix for G. Let di =

∑
j∈T Aij be called

the degree of node i, and D be the diagonal matrix with di as its diagonal.
A clustering C = {C1, C2, . . . , CK} is a partitioning of T into the nonempty
mutually disjoint subsets C1, C2, . . . , CK . In the graph theoretical paradigm a
clustering represents a multiway cut in the graph G.

In general, all Spectral Clustering algorithms use Eigenvectors of a ma-
trix (derived from the affinity matrix A) to map the original data to the K-
dimensional vectors {γ1, γ2, . . . , γn} of the spectral domain �K . Then, in a sec-
ond step, these vectors are clustered with standard clustering algorithms. Here,
we use K-means. We chose the newest Spectral Clustering algorithm by Ng et
al. [15] and we will now review it briefly:
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1. From the affinity matrix A and its derived diagonal matrix D, compute the
Laplacian matrix L = D−1/2AD−1/2.

2. Find v1, v2, . . . , vK , the Eigenvectors of L, corresponding to the K largest
Eigenvalues.

3. Form the matrix Vn×k =
[
v1, v2, . . ., vK

]
with these Eigenvectors as columns.

4. Form the matrix Y from V by renormalizing each of X ’s rows to have unit
norm.

5. Cluster the rows of Y = [γ1, γ2, . . . , γn] as points in a K-dimensional space.
6. Finally assign the original object i to cluster j if and only if row γi of the

matrix Y was assigned to j.

Since Spectral Clustering relies on the affinity matrix A, it is easy to apply
it to any kind of data, where affinities can be computed. For numerical data,
affinities are usually computed with a kernel function, e.g. Aij = exp(−d(i,j)2

2σ2 ),
with d(i, j) denoting the Euclidean distance between point i and j and σ denoting
the kernel width. For non-numerical data, like GO terms, affinity can either be
defined in the same way, given a distance measure d. This approach has the
advantage of non-linearity, controlled by the kernel width σ, which allows for
sharper separation between clusters. But it has also disadvantages: the question
of how to deduce σ in a meaningful way arises and additionally, for many data
types, especially the GO, similarity is much easier to define since it does not need
to fulfill any metric conditions. As noted in [16], there is nothing magical about
the definition of affinity. Therefore, we directly apply our similarity matrix as
affinity matrix.

4.4 Cluster Validity

We selected the number of clusters K in our data according to the Davies-Bouldin
index [5]. Given a clustering C = {C1, C2, . . . , CK}, it is defined as:

DB(C) =
1
K

K∑
i=1

max
{

Δ(Ci) + Δ(Cj)
δ(Ci, Cj)

}
(4)

where Δ(Ci) represents the inner cluster distance of cluster Ci and δ(Ci, Cj)
denotes the inter cluster distance between cluster Ci and Cj . K is the number
of clusters. Small values of DB(C) indicate a good clustering.

Δ(Ci) and δ(Ci, Cj) are calculated as the sum of distances to the respective
cluster mean and the distance between the centers of two clusters, respectively.
Since we use similarities, not distances, and cannot compute means in the GO,
we apply the DB-Index in the spectral domain �K (after the Eigenvector de-
composition) where we are dealing with simple numerical data.

5 Computational Experiments

5.1 Data Sets

One possible scenario where researchers would like to group a list of genes ac-
cording to their function is when they received lists of up- or down-regulated
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genes from the analysis of an DNA microarray experiment. Thus, we chose
two publicly available microarray data sets, annotated the genes with the GO
and used them for functional clustering. We only use the taxonomy biological
process, because we are mainly interested in gene function in a more general
sense. However, our method can be applied in the same way for the other two
taxonomies.

The authors of the first data set examined the response of human fibrob-
lasts to serum on cDNA microarrays in order to study growth control and cell
cycle progression. They found 517 genes whose expression levels varied signifi-
cantly, for details see [10]. We used these 517 genes for which the authors pro-
vide NCBI accession numbers. The GO mapping was done using GeneLynx [8].
After mapping to the GO, 238 genes showed one or more mappings to biologi-
cal process or a child term of biological process. These 238 genes were used for
the clustering.

In order to study gene regulation during eukaryotic mitosis, the authors of
the second data set examined the transcriptional profiling of human fibroblasts
during cell cycle using microarrays [4]. Duplicate experiments were carried out
at 13 different time points ranging from 0 to 24 hours. Cho et al. [4] found
388 genes whose expression levels varied significantly. Hvidsten et al. [9] pro-
vide a mapping of the data set to GO. 233 of the 388 genes showed at least
one mapping to the GO biological process taxonomy and were thus used for
clustering.

5.2 Experimental Design

In the experiments, we had the problem of how to compare our method to
other known clustering algorithms, because to our best knowledge, there is no
clustering method that does a clustering only due to a similarity matrix. Instead,
most algorithms need distances. Beside that, most clustering techniques were
originally developed for numerical data and therefore utilize means during the
clustering process which we cannot compute in the GO. Only linkage methods
work on a proximity matrix, although this is also usually a distance matrix.
Average Linkage clustering is known to be its most robust, non-means based
representative. Therefore, we compare our approach to a modified version of
an Average Linkage algorithm that joins the most similar clusters, instead of
joining those with the smallest distance. Inner cluster similarity of cluster Ci is
computed as follows:

s(Ci) =
1

|Ci|(|Ci − 1|)
∑

ti,tj∈Ci,ti �=tj

s(ti, tj) (5)

with s(ti, tj) denoting the similarity between term ti and tj and |Ci| denoting
the number of terms in cluster Ci.

For Spectral Clustering, K-means was carried out 25 times and the solution
with the minimum distortion was taken as proposed in [15]. For both algorithms,
we performed runs for different values of K, ranging from K = 5, 6, . . . , 25.
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5.3 Results

Fig. 2 shows the average inner cluster similarity for Average Linkage and Spectral
Clustering for both data sets and different numbers of K. It is clearly visible that
except for one exception (K = 5, data set I), Spectral clustering always shows a
much higher inner cluster similarity than Average Linkage clustering.

Additionally, we wanted to evaluate the best solutions generated by Spectral
Clustering in more detail. Since inner cluster similarity is not independent from
the number of clusters K, we chose the best solution according to the Davies-
Bouldin index (Eq. 4) that was calculated after the Eigenvalue decomposition in
the spectral domain �K . Fig. 3 shows the Davies-Bouldin index for the cluster
numbers K = 5, ..., 25 for data set I and II, respectively. For data set I, the
best clustering was achieved with 10 clusters and for data set II with 9 clusters.
These two solutions (indicated by an arrow in Fig. 3) were then used for further
examination.

Figure 4 shows the Euclidean distance matrix calculated after the Eigenvec-
tor decomposition for data set I (left) and II (right). Higher values are indicated

Table 1. Cluster 5 of dataset I. This cluster contains mainly GO terms associated with
mitosis

Term Acc. GO Term Name
GO:0007050 cell cycle arrest
GO:0000074 regulation of cell cycle
GO:0008151 cell growth and/or maintenance
GO:0007049 cell cycle
GO:0007095 mitotic G2 checkpoint
GO:0000079 regulation of CDK activity
GO:0008284 positive regulation of cell proliferation
GO:0008283 cell proliferation
GO:0006878 copper ion homeostasis
GO:0008285 negative regulation of cell proliferation
GO:0006260 DNA replication
GO:0006874 calcium ion homeostasis
GO:0008156 negative regulation of DNA replication
GO:0006269 DNA replication, priming
GO:0007093 mitotic checkpoint
GO:0007096 regulation of exit from mitosis
GO:0006298 mismatch repair
GO:0000080 G1 phase of mitotic cell cycle
GO:0007088 regulation of mitosis
GO:0000067 DNA replication and chromosome cycle
GO:0007089 start control point of mitotic cell cycle
GO:0000085 G2 phase of mitotic cell cycle
GO:0007079 mitotic chromosome movement
GO:0000089 mitotic metaphase
GO:0007080 mitotic metaphase plate congression
GO:0006261 DNA dependent DNA replication
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Table 2. Cluster 8 of dataset I: this cluster contains mainly GO terms associated with
signal transduction

Term Acc. GO Term Name
GO:0000188 inactivation of MAPK
GO:0008277 regulation of G-protein coupled receptor protein signaling pathway
GO:0007165 signal transduction
GO:0007267 cell-cell signaling
GO:0007166 cell surface receptor linked signal transduction
GO:0007200 G-protein signaling, coupled to IP3 second messenger (phospholi-

pase C activating)
GO:0007186 G-protein coupled receptor protein signaling pathway
GO:0007181 TGFbeta receptor complex assembly
GO:0007155 cell adhesion
GO:0008038 neuronal cell recognition
GO:0007179 TGFbeta receptor signaling pathway
GO:0007156 homophilic cell adhesion
GO:0007229 integrin-mediated signaling pathway
GO:0007178 transmembrane receptor protein serine/threonine kinase signaling

pathway
GO:0007160 cell-matrix adhesion
GO:0007268 synaptic transmission
GO:0007173 EGF receptor signaling pathway
GO:0000165 MAPKKK cascade
GO:0000187 activation of MAPK
GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway
GO:0007243 protein kinase cascade

by a light color and lower values by a dark color. Thus, the 10 squares (left)
and the 9 squares (right) indicate regions of small distances corresponding to
the 10 and clusters, respectively. Figure 4 demonstrates that the clusters in the
spectral domain �K have small inner cluster distances and high distances be-
tween them. The original affinity (or similarity) matrices for both data sets are
visualized in Fig. 5. Again, light colors indicate higher values, thus, in this case
a higher similarity. The 10 (left) and 9 (right) clusters are still clearly visible as
regions of high inner cluster similarity compared to the similarity between the
clusters.

Additionally, we examined clusters of a solution in more detail, but due to
space limitations, we cannot show all clusters of both data sets. Therefore, we
confine ourselves to show three selected clusters of data set I: cluster 5, 8 and
9. Tab. 1 - Tab. 3 show the GO terms of each of these clusters, respectively.
A closer study of the GO term names reveals that our method produces from
each other distinct functional clusters each containing GO terms that belong
to a defined biological process. The GO terms of cluster 5 (Tab. 1) are mainly
related to mitosis like cell cycle regulation or CDK activity regulation and DNA
replication. In Tab. 2, the GO terms of cluster 8 are listed. They are mostly
related to processes associated with signal transduction pathways like the TGF-
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Table 3. Cluster 9 of dataset I: this cluster contains mainly GO terms associated with
metabolism

Term Acc. GO Term Name
GO:0006101 citrate metabolism
GO:0015936 coenzyme A metabolism
GO:0006629 lipid metabolism
GO:0006768 biotin metabolism
GO:0006633 fatty acid biosynthesis
GO:0006564 L-serine biosynthesis
GO:0006729 tetrahydrobiopterin biosynthesis
GO:0006048 UDP-N-acetylglucosamine biosynthesis
GO:0006631 fatty acid metabolism
GO:0016042 lipid catabolism
GO:0005989 lactose biosynthesis
GO:0006096 glycolysis
GO:0006700 C21-steroid hormone biosynthesis
GO:0008203 cholesterol metabolism
GO:0008202 steroid metabolism
GO:0006695 cholesterol biosynthesis
GO:0008299 isoprenoid biosynthesis
GO:0006694 steroid biosynthesis
GO:0006529 asparagine biosynthesis
GO:0006541 glutamine metabolism
GO:0006635 fatty acid beta-oxidation
GO:0006809 nitric oxide biosynthesis
GO:0006559 phenylalanine catabolism
GO:0006520 amino acid metabolism
GO:0006563 L-serine metabolism
GO:0006636 fatty acid desaturation
GO:0006004 fucose metabolism
GO:0006099 tricarboxylic acid cycle
GO:0006693 prostaglandin metabolism
GO:0006207 ’de novo’ pyrimidine base biosynthesis
GO:0006780 uroporphyrinogen III biosynthesis

β pathway or G-protein coupled signaling and these GO terms form cluster 8.
Finally, cluster 9 (Tab. 3) contains GO terms associated with metabolic processes
like amino acid synthesis, lipid metabolism or fatty acid biosynthesis, just to
name a few.

6 Discussion

In this paper, we presented a clustering method for GO terms that can be used
to cluster genes or any other gene products that can be annotated with the
Gene Ontology. We showed that the clusters produced by our method have
a higher average inner cluster similarity than those produced by a similarity-
based variant of Average Linkage Clustering. Beside that, we showed for the
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best two solutions in detail that their GO terms have a much higher simi-
larity to each other than to those in the other clusters. This is not only true
for the data in the spectral domain �K , but also for the original affinity ma-
trix. Furthermore, we evaluated three clusters in more detail and could show
that the GO terms in each cluster belong to a defined and separated biological
process.

The Spectral Clustering technique enables us to cluster those objects, like
GO terms, where it is easy to calculate similarities but more difficult to calculate
distances or even means, that are needed by many popular clustering methods.
In contrast to these methods, Spectral Clustering is able to produce a clustering
only due to an affinity matrix. To be suitable for clustering, the affinity matrix
only needs to reflect the natural relationships of the data.

Additionally, the fact that we are using GO terms for clustering and not
genes like in our previous publications has the advantage that now, one gene
can belong to more than one cluster. This makes also biologically sense, since
one gene can also have more than one function. Thus, our method facilitates the
functional analysis of high throughput data.
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Abstract
Biological background: Plant microRNAs (miRNAs) are short RNA sequences
that bind to target genes (mRNAs) and change their expression levels by redi-
recting their stabilities and marking them for cleavage. In Arabidopsis thaliana,
microRNAs have been shown to regulate development and are believed to impact
expression both under many conditions, such as stress and stimuli, as well as in
various tissue types.
Methods: mirXdeNovo is a novel prototype tool for the de-novo prediction of
microRNAs associated with a given cell condition. The work of mirXdeNovo is
composed of two off-line preprocessing stages, which are executed only once
per genome in the database, and a dynamic online main stage, which is executed
again and again for each newly obtained expression profile. During the prepro-
cessing stages, a set of candidate microRNAs is computed for the genome of
interest and then each microRNA is associated with a set of mRNAs which are
its predicted targets.

Then, during the main stage, given a newly obtained cell condition represented
by a vector describing the expression level of each of the genes under this condi-
tion, the tool will efficiently compute the subset of microRNA candidates which
are predicted to be active under this condition. The efficiency of the main stage
is based in a novel branch-and-bound search of a tree constructed over the mi-
croRNA candidates and annotated with the corresponding predicted targets. This
search exploits the monotonicity of the target prediction decision with respect to
microRNA prefix size in order to apply an efficient yet admissible pruning. Our
testing indicates that this pruning results in a substantial speed up over the naive
search.
Biological Results: We employed mirXdeNovo to conduct a study, using the plant
Arabidopsis thaliana as our model organism and the subject of our ”hunt for
microRNAs”. During the preprocessing stage, 2000 microRNA precursor candi-
dates were extracted from the genome. Our study included the 3’UTRs of 5800
mRNAs. 380 different conditions were analyzed including various tissues and
hormonal treatments. This led to the discovery of some interesting and statisti-
cally significant newly predicted microRNAs, annotated with their potential con-
dition of activity.

1 Introduction

The DNA of an organism determines all the RNA and protein molecules constituing
its cells. The DNA sequence by itself, however, can not explain the whole picture of
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how the organism functions and survives. In order to understand that, we need to know
how the various genes are used. The cellular expression levels of genes typically vary
according to cell conditions. A condition can be, for example, a specific tissue in which
the gene is expressed or an exposure to certain environmental stress such as bacterial
pathogens, heat, etc. The cellular expression levels of genes are largely influenced by
their transcription rates, as well as by the degradation rates of their mRNAs. The degra-
dation rates of mRNA molecules can vary by 100-fold or more between different cell
conditions [3, 24]. These rates are affected by a wide variety of stimuli and cellular sig-
nals, including: specific hormones [24, 25], iron [4, 27], cell cycle progression [12], cell
differentiation [13, 15], and viral infection [26]. In this paper we focus on specific regu-
latory signals denoted microRNAs which, in plants, are known to induce quick mRNA
degradations. These microRNAs can change their activity with varying conditions and,
thus, contribute to the differential expression of the genes at the post transcriptional
level. Note that there are other factors that influence gene expression, including tran-
scription factors which regulate the transcription rates of the RNA molecules, and pro-
teins which mediate mRNA degradations as well, however, in this paper we will focus
on microRNAs.

MicroRNAs are endogenous ∼ 20 nucleotide RNAs, which are initially transcribed
as much longer RNA precursors that contain imperfect hairpins from which the mature
microRNAs are excised by Dicer-like enzymes. Each mature microRNA derives from
the double-stranded portion of the hairpin and is initially excised as a duplex comprising
two RNAs of size ∼ 20nt each, one of which is the mature microRNA. MicroRNAs rec-
ognize their targets through base pairing and bind to them to form a microRNA:mRNA
duplex. In animals, microRNAs often display limited complementarity to multiple sites
in the 3’UTR of the target mRNA and act to repress its productive translation. In plants,
microRNAs generally display near-perfect complementarity to a single site within the
target mRNA and can direct the cleavage at this site [8, 19, 23, 9, 7].

To date, cloning has identified over 200 microRNAs from diverse eukaryotic organ-
isms. Despite their success such biochemical approaches are skewed towards identify-
ing abundant microRNAs. In order to identify microRNA candidates, bioinformatics
methods take advantage of the properties of known microRNA precursors, including
their hairpin structure (typically ∼ 70 nt), the length of their hairpin stem (typically
∼ 20nt), and their tendency to be found in intergenic regions [1, 16]. Some improved
predictions can be achieved by focusing on microRNA precursors that appear conserved
across species or within a species [2, 11, 18]. However, none of these computational ap-
proaches provide rigorous statistics to evaluate the real functionality of their predictions
in vivo. In this paper we provide a framework which allows the statistical evaluation of
some of these predictions.

Here we propose a practical bioinformatic approach for discovering new and un-
known microRNAs active in down-regulation of mRNA levels, by marking the mR-
NAs for cleavage and degradation, under a specific condition of interest. We focus on
plant microRNAs. However, since recent evidence indicates that microRNAs may cause
mRNA cleavage in animals too [10], our approach holds the potential to be expanded
to these cases as well.
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Let us first explain how we predict whether a previously known microRNA with
known mRNA targets could induce quick mRNA degradations under a specific condi-
tion, given the expression profile of that condition, i.e. a vector describing the expres-
sion level of each gene under this condition. Later, we will show how this approach is
extended to address new microRNA candidates with unknown targets. The following
notation will be used.

– S denotes a set of microRNA candidates.
– P ∈ S denotes a microRNA.
– Q denotes an expression condition.
– Z is a statistical score for associating P with Q, to be formulated below.
– θ denotes a user-specified threshold on Z .
– δ denotes a user pre-defined threshold on the free energy of a potential duplex to be

formed between a microRNA and its predicted mRNA target.

Associating a known microRNA with a given condition: suppose that mRNAs t1,
t2 . . . , tn are targets of microRNA P , yet other mRNAs x1, x2, . . . , xm clearly do not
bind to P . Then if there is evidence that x1, x2, . . . , xm are highly expressed under
some given condition Q, yet t1, t2 . . . , tn are expressed in low levels under the very
same condition, then it may be possible to statistically assert that microRNA P is active
under condition Q, contributing to the degradation of mRNAs t1, t2 . . . , tn. In practice,
we use the full set of the mRNAs of the studied species as a background set, instead
of using the specific subset x1, x2, . . . , xm. We compute μ the mean, and σ2 the vari-
ance, of the expression levels of that population. Then we calculate t the mean of the
expression levels of t1, t2 . . . , tn and conduct a statistical test to assess whether t is sig-
nificantly lower than μ. To do that we compute the following statistic to which we can
associate a significance p-value, as will be explained in section 4.1.

Theorem 1. Let x be a vector of observations of size n and let x denote the mean of
x. If x was sampled from a normal population with a mean μ and a variance σ2 then Z
has an approximate standard normal distribution.

Z =
x − μ

σ/
√

n
(1)

Clearly, the lower the statistical score Z , the higher the probability that microRNA P
is active, inducing mRNA cleavage and quick degradations under the given condition.
Note that this approach was introduced in [29] where it was applied to a study associ-
ating known microRNAs with various expression conditions.

Associating new microRNA candidates with unknown targets in the context of ac-
tivity conditions: here, the above approach is expanded as we spring forward in a hunt
for new, previously undiscovered (de-novo) microRNAs. Our microRNA candidates are
∼ 20nt-sized sequences comprising the duplexes of the hairpin structures of the poten-
tial precursors discovered by any of the above informatics approaches. One can predict
the potential targets of each of these candidates, by identifying mRNAs which have the
potential to form a stable duplex with this candidate. This potential is assessed based
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on the analysis of the sequences only, as explicitly described in section 3.2. Note that,
in order to discover new microRNAs which are active under one or more conditions
of interest, one could use the following naive three-stage search. An important input
of this search are the expression profiles covering various cell conditions, where each
expression profile is usually genome-wide measured using microarray techniques. The
objective is to find pairs (P, Q) such that the corresponding score Z < θ. Such a pairing
would indicate that P is a predicted microRNA which is potentially active under cell
condition Q.

1. Use the whole genome sequence of the organism of interest to collect a set S of
microRNA candidates. This is done by scanning the genome for stretches which
can be folded into stable hairpin structures with features similar to know microRNA
precursors, and extracting the two ∼ 20nt sequences from their double-stranded
portion, as described in section 3.1.

2. For each string P ∈ S: Predict the set of P ’s potential mRNA targets, by looking
for mRNAs with potential to form a stable duplex with P . This potential is evalu-
ated based on sequence analysis (local hybridization with score bounded by δ), as
described in section 3.2.

3. For each condition Q under consideration and for each string P ∈ S: Examine the
set of expression levels associated with P ’s set of predicted targets under Q, using
the input expression profile for condition Q, and compute the corresponding score
Z .
If, for a given condition/microRNA pair (P, Q), the computed Z < θ for some
user-specified θ: Report P as a potentially active microRNA under condition Q.

In the context of an effort to make our prototype tool available online to the bioin-
formatics community, we note that the relevant genomic sequences are pretty much
static (we are, after all, in the midst of the ”post genomic” era). Expression data, on
the other hand, is quite dynamic, and new expression matrices are constantly discov-
ered and made available to the public. We also observed that in order for our tool to be
useful to the bioinformatic user, the statistical threshold θ often needs to be iteratively
”fine tuned” to the subject organism as part of the set-up process. Clearly, the lower the
predefined threshold θ, the more statistically significant the results reported to the user.
On the other hand, using too low a θ should be avoided as it could result in the ”loss”
of active microRNAs.

Practically this means that for each genome which participates in our database the
hunt for precursors which are potential microRNAs (step 1) only needs to be applied
once per genome. Similarly, the computation of the set of mRNAs which are putative
targets of each microRNA candidate (step 2) can also be computed once during a pre-
processing stage. The need arises, however, for an efficient statistical computation to
associate a dynamically changing expression data (and perhaps a dynamically chang-
ing θ), collected for specific conditions, with a set of correlated microRNAs (step 3).
Therefore, we re-formalize the work described in step 3 of our framework as the fol-
lowing search problem.
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Definition 1. The ”one (condition) against all (microRNA candidates)” association
search problem is, given a cell condition Q and its expression profile, as well as an
expression threshold θ: to find all microRNA candidate strings P such that the Z score
computed for P and Q is upper bounded by θ.

The challenge of speeding up the computation of the ”one against all” association
search is met in this paper by an online search engine that applies a simple yet powerful
admissible pruning in order to speed up the statistical computations without loss of
output optimality.

1.1 Our Results

In this paper we describe a novel framework for the de-novo discovery of new microR-
NAs which are predicted as regulators of gene expression levels (via mRNA degrada-
tions) under dynamically specified conditions of interest.

mirXdeNovo is a novel prototype tool for the de-novo prediction of microRNAs
associated with a given cell condition. The work of mirXdeNovo is composed of two
offline preprocessing stages and a dynamic online main stage. During the preprocessing
stages, first a set of candidate microRNAs is computed for the genome of interest and
then each microRNA is associated with a set of genes which are its predicted targets.
Note that the preprocessing stages are executed only once per each genome which is to
be included in the database, as the genomic sequences are quite static by now.

The main stage, on the other hand, is dynamically executed again and again for
each newly obtained expression profile for a given condition. During this stage, given
a newly obtained cell condition plus a vector describing the expression level of each
of the genes under this condition, our tool will efficiently compute the subset of mi-
croRNA candidates which are predicted to be active under this condition. The efficiency
of the main stage is based on a branch-and-bound search on a tree constructed from the
microRNA candidates and annotated with the corresponding microRNA targets. The
search is strongly yet admissibly pruned by exploiting the monotonicity of the target
prediction decision with respect to microRNA prefix size.

When comparing the time invested in the ”one against all condition association”
stage (step 3) by the two methods, mirXdeNovo seems to be substantially faster than the
naive search (see section 5.1 and Figure 2) on a wide range of practical testing setups.
Thus, the contribution of this paper, in addition to its interesting biological results, is
in suggesting a simple yet efficient ”pruning by expression” method to accelerate this
heavy computation.

Note that our tool can be used to further assert the relevance of microRNA candi-
dates which were previously discovered by other methods, this by ”plugging in” the
output of these engines as a replacement to our first preprocessing stage. Discovering
conditions in which a previously predicted candidate microRNA gets a significant Z
score is a further validation to the function of this candidate as a microRNA in vivo.
Furthermore, this enables us to associate p-values to such previously predicted mi-
croRNAs.

Also note that, even though we focus on plants here, our approach holds the poten-
tial to be used for a wide variety of organisms including animals.
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Fig. 1. An example of a trie τS and an expression profile corresponding to a given condition

We employed mirXdeNovo to conduct a study, using the A. thaliana plant as our
study subject. Our study included 2000 microRNA candidates and the 3’UTRs of 5800
mRNAs. 380 different conditions were analyzed including various tissues and hormonal
treatments. Section 5.2 depicts some of the newly discovered microRNAs predicted by
our engine, annotated with their potential condition of activity.

2 Search Tree Preliminaries and Formalism

We refer the reader to Figure 1 for an exemplification of the following definitions. We
point out in advance that this example is only for demonstration purposes and that in
practice the length of the strings corresponding to the leaves should be 20.

– Let τS denote a prefix trie over the set of microRNA candidates with each leaf
corresponding to one candidate P ∈ S.

– Let v denote any vertex in τS .
– Let τ v

S denote the subtree of τS rooted at v.
– Let L(v) denote the set of leaves in τ v

S .
– Let T (v) denote a set of mRNAs predicted to be targets of the string corresponding

to the path from the root of τS to v. These targets are predicted according to Defi-
nition 2 and have the potential to form a stable duplex, i.e. a hybridization duplex
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with energy score < δ, with with this string. (In the example of Figure 1, T [v4], the
targets predicted for the potential microRNA prefix ”AU” are {3, 53}.)

– Let E(T (v)) denote the set of expression levels corresponding to T (v) under the
input condition Q as reflected by the corresponding expression profile. (According
to the expression profile at the bottom of Figure 1, E(T (v4)) = {−70,−10}, since
these are the expression levels which correspond to T [v4] = {3, 53}.)

– T̂ (v) = (
⋃

x∈L(v) T (x)) \ T (v) denotes the set of mRNAs which are targets of at
least one of the leaves of the subtree rooted in v, but not of v itself. (In the example
of Figure 1, T̂ (v1) = {2, 3, 53, 18} since these target numbers occur either in T (v3)
or T (v4) but not in T (v1) and L(v1) = {v3, v4}.)

– Let diff(x, v) = (|T (x) \ T (v)|) where v is a node in τS and x ∈ L(v).
– Let headi(T̂ (v)) represent the i first members of the sorted-by-increasing-

expression-value T̂ (v).
– Let s = |S| denote the number of microRNA candidates under consideration.
– Let g denote the number of genes (mRNA sequences) in the database for the organ-

ism under consideration.

Since τS is constructed over the set S of microRNA strings of size 20nt each,
the number of nodes in τS is O(s). Since each node of τS contains O(g) information,
|τS | = O(s g).

Note that, in contrast to the rest of the information which is associated with the
nodes of τS , both E(T (v)) and head(T̂ (v)) are only available dynamically online and
can not be computed via off-line pre-processing.

3 The Preprocessing Stage

3.1 Extracting Precursors

To extract candidate microRNAs, we scanned the genome of A. Thaliana for potential
precursors: stretches of length 70 − 100nt, which can be folded into a stable hairpin
structure with a stem of length 20nt. In this paper, we only considered cases with almost
perfect stems, having at most 3 mismatches with no loops or bulges allowed. However,
note that our tool is modular and that the set of candidate microRNAs is supplied to the
main stage engine as the input computed during a pre-processing stage. Therefore, one
could alternatively ”plug in” any of the existing microRNA precursor hunters (see for
example [1, 14, 16, 17, 2, 28]) by supplying our engine with an input file of candidate
microRNAs generated by these alternative tools.

3.2 Predicting the microRNA Targets

An important basic module of mirXdeNovo is the microRNA target prediction engine.
Work to date on microRNA target prediction consists of methods that either rely solely
on edit distance [9], or combine sequence similarity information (such as measured by
Smith-Waterman alignment) with secondary structure prediction by energy minimiza-
tion [5, 6, 21]. In this paper we predict microRNA targets similarly to [22], using the
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nearest-neighbor thermodynamics approach developed for predicting RNA secondary
structure, by Zuker et al. [20, 30]. Thus, we use dynamic programming to find the ener-
getically most favorable duplex between a small microRNA and a large mRNA. Since
microRNAs in plants are known to have almost perfect complementarity to their targets,
we restrict the size of the allowed gap both in the microRNA and in the target to 3.

Note that the target prediction score reflects, in essence, the existence of a local
alignment between a microRNA P and a target mRNA T with a score bounded by δ.

Definition 2. An mRNA sequence T = t1, t2, . . . , tn is a target of a microRNA can-
didate P = p1, p2, . . . , pm iff min0≤i≤n;0≤j≤mDP [i, j] ≤ δ, where DP denotes the
dynamic programming table for computing the existence, bounded by δ, of a local align-
ment between P and T .

Observation 1. Note that Definition 2 is monotone with respect to an increase in the
prefix size of P . In other words, assume that Y is a prefix of P , and Y σ is an extension
of Y by some symbol. Then, the set of targets computed for Y σ will always contain the
subset computed for Y . Thus, if vi is a parent of vj in τS , T (vi) ⊆ T (vj).

3.3 Constructing the microRNA Candidate Tree τS

The search tree τS is constructed during the preprocessing stage in time and space
O(s g).

4 The Online Main Stage

In this section we will describe a practical solution to the ”one (condition) against all
(microRNA candidates)” association search problem (see Definition 1). We will address
this problem equipped with the tree τS which was constructed off-line. Given as input
the new expression profile which corresponds to the specific condition Q and a prede-
fined threshold θ, we will search τS to find all leaves v ∈ L(root(τS)) such that the Z
score for microRNA P represented by leaf v under condition Q is smaller than θ.

Suppose we were to naively compute the set of expression levels associated with
each of the leaves of τS in order to find the leaves whose associated Z score is below
θ. The time complexity of such a task would be O(s g) (this is the time complexity of
naively solving the ”all against one” problem without constructing τS ). Note that the
number of nodes in τS is 20 × s. Therefore, constructing the tree τS scales the size of
the problem input up only by a constant factor as each node contains O(g) information.
We will show in section 5.1 that this initial investment will pay off later during the
online computations, since using τS to represent the search space will allow us to apply
a very strong pruning which will pretty much confine the search to the top of τS so
that only a subset of the leaves which are likely candidates will actually be reached. In
section 4.2 we will assert that this pruning is admissible, i.e. it can be proven than none
of the leaves with a Z ≤ θ will be missed.

The search itself is quite simple and is implemented as a pruned pre-order traversal
of τS . At each traversed internal node v we compute a score Zmin(v) which is a lower
bound to the Z scores of all the leaves in the sub-tree rooted by v. Recall, that the
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lower the Z-score, the more significant a candidate is. Thus, two cases can occur when
reaching an inner node v in τS :

– if Zmin(v) > θ we abandon i.e. prune, the sub-tree rooted by v, knowing that no
appropriate candidate resides in its leaves.

– otherwise, we recursively continue the pre-order traversal on the sub-tree rooted at
v. The method for computing Zmin(v) is explicitly described in section 4.2.

Due to this simple yet powerful pruning, for each condition, only a small subset r
of the nodes of τS is explored. In section 4.2 we will show that the work invested by
the search engine in computing the pruning decision for each traversed node is O(g).
Therefore, the total work invested by the search engine is O(r g). In comparison to
the O(s g) complexity of the naive algorithm we get an O(r/s) speedup potential.
Theoretically, s could reach 420. The expected number of traversed nodes r, on the
other hand, remains small since the search is statistically confined to the top (near the
root) of τS . We refer the reader to Section 5.1 and Figure 2 for a demonstration of the
pruning power of our search engine in practice.

4.1 Computing the Z-Score of a Leaf

Let v be a microRNA candidate i.e. a leaf of τS , let T (v) be its set of predicted mRNA
targets and E(T (v)) the set of expression levels corresponding to T (v) under the in-
put condition (see Figure 1). In order to check whether v induces mRNA cleavage and
quick degradation, we want to reject the hypothesis that E(T (v)) was sampled from
the population of all mRNAs and, therefore, accept the hypothesis that the binding of
v to its target induces cleavage and reduces the corresponding mRNA levels, making
E(T (v)) a population of lower expression levels. Thus, we use the mean and variance
of the expression levels of the entire mRNA population as μ and σ2 and calculate Φ(Z),

the corresponding level of significance i.e. p-value, associated with Z = E(T (v))−μ

σ/
√

|T (v)| . If

Φ(Z) is significantly small and E(T (v)) ≤ μ, we predict that v is active under
the given input condition. Note that if one wishes to use a threshold over Φ(Z), one
can use a threshold over Z instead. Thus, by applying a low negative θ to mirXdeN-
ovo we achieve two goals: first, we upper bound Φ(Z), and second, we ensure that
E(T (v)) ≤ μ.

4.2 An Admissible Pruning Based on Zmin(v)

In this section we describe the work associated with each node v traversed by the search,
and show how to admissibly compute Zmin(v), the lower bound to the Zs of all the
leaves in the sub-tree rooted by v. We show that the work per node is O(g) and assert
that the search is indeed admissible.

Note that, by Observation 1, any target which appears in the set T (v) will also par-
ticipate in the set of targets T (x) for any node x ∈ L(v). This allows us to incrementally
compute the bound on the Z-potential of L(v), as follows.

When computing the potential of L(v) we aim to exploit all the information which
is available at this point in order to efficiently (in O(g)) compute a lower bound on
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E(T (x)) for any x ∈ L(v) (see Section 4.1). We know, by Observation 1, that all
members of T (v) participate in E(T (x)) for any x ∈ L(v). Furthermore, at this point
we can consider the targets of v in O(g) but do not wish to consider the targets of all
the leaves x ∈ L(v) as this may sum up to O(s g).

Therefore, the potential score for E(T (x)) could be lower bounded by consider-
ing a best-case scenario in which the additional targets of x which are not included
in T (v) are the lowest-scoring members of E(T̂ (v)). In the best-case scenario, the
diff(x, v) targets in T (x) which are not included in T (v) are the lowest-scoring mem-
bers of E(T̂ (v)). Therefore, for each leaf x ∈ L(v) we can compute the lowest possible
score obtained by adding to T (v) the diff(x, v) lowest-valued members of E(T̂ (v)).
Note, however, that when using this approach there is no need to consider all O(s)
leaves in L(v), as diff(x, v) can only assume up to g distinct values. Thus, the binding-
scenario described above need only be computed for each of the O(g) possible distinct
diff(x, v) values among all x ∈ L(v). Based on Equation 1, Zmin(v) will thus be
computed as follows.

Zmin(v) = min(i|∃x∈L(v) : diff(x,v)=i)〈
E(T (v)) ∪ E(headi(T̂ (v))) − μ

σ/
√

i + |T (v)|
〉 (2)

Example: consider node v1 in the example presented in Figure 1. When considering
whether it is safe to prune τ v1

S we wish to assess whether any of the leaves in L(v1)
may yield a Z < θ. Note that v3 ∈ L(v1) and that diff(v3, v1) = 2, since v3 has
four targets while v1 has two targets. Therefore, when computing the pruning deci-
sion for v1, the term contributed by v3 to the pruning decision minimization, which

should be a lower bound on E(v3), will be based on E(T (v1)) ∪ E(head2(T̂ (v1)) =
E({1, 6} ∪ {3, 53}) = {−1000,−100,−70,−10} = −295. The real E(T (v3)), on the
other hand, is E({1, 2, 6, 18}) = {−1000,−100, 20, 30} = −262.5, which is indeed
above the −295 lower bound computed by the pruning decision.

Lemma 1. Zmin(v), as computed in equation 2, is a lower bound to the Z-scores of
any of the leaves in L(v).

Computing the Pruning Decision Per Node in O(g) time. In order to efficiently
compute equation 2, the dynamic set E(T̂ (v)) must be ordered by increasing expression
value for each traversed node v (this will allow efficient headi queries). Therefore,
the work per node v consists of updating the sorted list E(T̂ (v)) and then computing
Zmin(v). Each of the two tasks can be done in O(g) time, as follows.

1. By Observation 1 it is clear that the sorted E(T̂ (v)) can be incrementally obtained
from the sorted list of its parent in O(g) time by removing one or more of its items.
Thus, the set of expression values needs only be sorted once at the root and then
incrementally updated by inheritance in O(g) time.

2. Computing Zmin(v) in O(g) time: this is achieved by incrementally computing
weighted averages.
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Fig. 2. The running time of mirXdeNovo compared to that of the naive search for δ = −19, −20
and θ = −9 . . . − 1

5 Experimental Results

5.1 Benchmarking mirXdeNovo

We used the sequences of the 3’UTRs of 5800 A. thaliana mRNAs with 2000 mi-
croRNA candidates to assemble τS . Then, we ran mirXdeNovo and the naive search
each over 380 different conditions and recorded the run-times 1.

The results, which are summarized in Figure 2, indicate the advantage of mirXdeN-
ovo over the naive search in a wide range of practical setups. We hypothesize that the
speed of mirXdeNovo results from the strong pruning which occurs at high (i.e. close
to the root) levels of τS . This pruning clearly become stronger as θ (see the x-axis)
decreases and δ increases.

5.2 Associating New Potential A. Thaliana microRNAs with Various Activity
Conditions

Different expression patterns are part of how a plant grows, develops, and adapts to
environmental changes. In this section we use our approach to shed light on the con-
tributions of various new microRNAs to these expression patterns in A. thaliana. We
assembled τS over the 3’UTRs of 5800 mRNAs and 3000 microRNA candidates and
used it to analyze the expression profiles corresponding to 380 different conditions. We
used the same data as described before, setting δ = −19 and θ = −3.

Table 1 depicts some significant relations discovered in our study. Our approach
enables us to discover interesting relationships, e.g.:

1 The microarray data describing the genome-wide expression profile for each of the condi-
tions, as well as the 3’UTRs of the mRNA sequences were both retrieved from the TAIR
database http://www.Arabidopsis.org/. The microRNA candidate were discovered
as described in section 3.1.
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Table 1. Newly discovered microRNAs and their hypothesized condition of activity.
E(T (microRNA)) represents the mean of the expression levels corresponding to the set of
the mRNA predicted targets of the candidate.

microRNA Sequence Condition Φ(Z) E(T (microRNA)) μ Target
Number

microRNA-1 GGAGAGAGAGAGAUGAAAAA Iron 10−7 -0.02 0.11 389
deficiency

microRNA-2 GGGAGUUUAUUUAUAUAUAU Flowers 10−6 -2.7 -0. 008 3

microRNA-3 GGGAGAGAGAGAGAUGAAAA Zinc 10−6 0.03 0.13 460
deficiency

microRNA-4 AUUUUUAAUUUUGGUUAAACC Auxin Response 0.005 -0.23 0 9

microRNA-5 CUUAUCAUUCUUCUUCCACU Chlorophyll 0.0005 -0.2 0.13 61
Starvation

microRNA-6 UAACAAUACCAGUUGUUUAA Inhibition of the 10−5 -0.04 0.02 7
mitochondrial electron

transport chain

microRNA-7 AGAAGAAUGAUAAGAAGACG Infection 0.00052 -0.18 0.05 18
response

microRNA-8 UUUAAAAAUUUAACACUUAUC Mechano Stimulation 10−12 -2 0 2

microRNA-9 AAAUUAUAUUUAGUUAUAAAU Cell Death 0.0004 -0.7 -0.003 2

microRNA-10 GAUUUAUUUUAUUGUAUUUUU Shade Avoidance 0.005 -0.5 0.03 3

microRNA-11 UAGGAACUAAAAAGAUAAUUA Potassium Nitrate 0.001 -0.34 -0.03 12
Excess

1. MicroRNA-4 was found to be active in response to Auxin. Auxin is a plant hormone
involved in growth and development. It is well known that the response of cells
to hormones usually involves global transcriptional changes. Correspondingly, we
found that four out of the nine (44%) of the predicted targets of MicroRNA-4 are
transcription factor genes. The significance of this observation is highlighted by
the fact that, according to the data in the TAIR database, only about 2% of the
Arabidopsis genes are indeed transcription factors.

2. MicroRNA-11 was found to be active under Potassium-Nitrate excess. Concur-
rently, two out of 12 (16%) of the predicted targets of microRNA-11 are involved
in transport (compared to ∼ 4.8% of the general Arabidopsis gene population). We
speculate that microRNA-11 destroys the mRNAs of these targets in order to limit
the entrance of Potassium-Nitrate into the cell under excess condition.
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Abstract. Microarrays allow monitoring of thousands of genes over
time periods. Recently, gene clustering approaches specially adapted to
deal with the time dependences of these data have been proposed. Ac-
cording to these methods, we investigate here how to use prior knowledge
about the approximate profile of some classes to improve the classifica-
tion result. We propose a Bayesian approach to this problem. A mixture
model is used to describe and classify the data. The parameters of this
model are constrained by a prior distribution defined with a new type
of model that can express both our prior knowledge about the profile of
classes of interest and the temporal nature of the data. Then, an EM
algorithm estimates the parameters of the mixture model by maximizing
its posterior probability.
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1 Introduction

Technological advances such as microarrays allow us to simultaneously measure
the level of expression of thousands of genes in a given tissue over time —for
example along the cell cycle [1]. In the following, such a series of gene expression
measurements is called an expression series. One common problem of gene ex-
pression data analysis is the identification of co-regulated genes. This problem
naturally turns into a gene clustering problem. Until recently, expression series
have been analyzed with methods that do not take the time dependences into ac-
count. Such methods include hierarchical clustering with Euclidean distance [2],
k-means approaches [3,4] and the Self Organizing Maps [5,6]. Since these meth-
ods are unable to explicitly deal with the data order, permuting two or more
time points in all series does not change the clustering result. A few methods
specially adapted to expression series have recently been proposed. These meth-
ods involve probabilistic modeling of the data. For example, [7] use autoregres-
sive models of order p. [8] use cubic splines with a probabilistic component to
model the classes, while [9] model each class of gene with Hidden Markov Models
(HMMs) [10].
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Our aim here is to investigate how to explicitly use rough prior knowledge
about the general shape of interesting classes. By general shape, we mean ele-
mentary and potentially incomplete information about the evolution of the mean
expression level of the classes over time. This can, for example, be knowledge
like: “Classes with increasing expression level”, “Classes with bell curve shapes”,
“Classes with high expression level in the beginning of the series”, etc. Of course
we do not know the profile of all the gene classes, but sometimes we are more
concerned with one or more classes. For example, in the study of [1] on the
Yeast cell cycle, the authors are interested in finding the cycle-regulated genes,
and thus look for sinusoidal shape classes. In a similar way, we sometimes search
for genes which tend to be quickly over- (or under-) expressed at the beginning
of the series —in response to a given treatment, for example. A problem of im-
portance that arises when the awaited classes are sparse —i.e., there are few
interesting genes with regards to all the other ones— is that standard methods
can completely omit these classes. This results in a final clustering where the
interesting genes are lost among many other genes, in one or more classes that
do not show the desired profile.

The approach we propose here tackles this problem. When information about
one or several class shapes are available, these are directly integrated into the
model, thus favoring classes with the desired profiles, and putting the other genes
in separate classes. On the other hand, when no a priori information is avail-
able, the method allows a classical clustering of the series that deals with the
temporal nature of the data in a very intuitive way.We use a Bayesian approach
for this purpose. The approach involves two types of models. The first one is a
probabilistic mixture model used to describe and classify the expression series.
Parameters of this model are unknown and have to be estimated for the cluster-
ing. A second model, close to the HMMs and called HPM —for Hidden Phase
Model—, is used to express our a priori knowledge (or simply the temporal fea-
ture of the data). We define two types of HPMs which can be used according to
the situation: probabilistic and non-probabilistic HPMs. These models are com-
pletely specified by the user, and their parameters do not have to be estimated.
They are used to define a prior probability distribution over the parameters of
the mixture model. These parameters are estimated by maximizing the posterior
probability of the model through an EM algorithm [11].

The next section presents our method, the mixture model, the two types of
HPMs and the learning algorithm. In Section 3 we evaluate our method. We
conclude in Section 4.

2 Method

2.1 Principle

Let X be a set of N expression series of length T . We assume that the data
arise from a mixture model [12] with C components. We denote πc as the prior
probability of component c, and we have

∑C
c=1 πc = 1. We assume that con-
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ditionally to component c, expression values at each time t ∈ [1, T ] are in-
dependent and follow a Gaussian distribution of mean μct and variance σ2

ct.
The shape of component c is defined by the sequence of means μc1 . . . μcT .
We then have a probabilistic model of parameters Θ = (π1, . . . , πC , θ1, . . . , θC)
with θc = (μc1, . . . , μcT , σ2

c1, . . . , σ
2
cT ). The probability of an expression series

X = x1 . . . xT in this model is

P (X |Θ) =
C∑

c=1

πc

T∏
t=1

P (xt|μct, σ
2
ct),

with P (xt|μct, σ
2
ct) = N (xt; μct, σ

2
ct). Under the assumption that series of X are

independent, the likelihood of Θ is given by

L(Θ|X ) = P (X|Θ) =
∏

X∈X
P (X |Θ). (1)

In a clustering task, the standard approach to classify a set of expression se-
ries X involves estimating parameters Θ that maximize Formula (1) (Maximum
Likelihood Principle), and then assigning the most probable component cMAP
(MAP stands for maximum a posteriori) to each series X ∈ X :

cMAP = argmax
c=1...C

P (c|X, Θ) = argmax
c=1...C

πcP (X |c, Θ) (2)

Note that finding parameters Θ that maximize (1) is a difficult task. However,
approximate solutions can be inferred with EM algorithms [11].

The above mixture model does not explicitly take into account the potential
dependences between times, nor any prior knowledge about the profile of the
most interesting classes. Our aim is to constraint one or some components to
follow a given profile, while leaving the other components free of constraints so
that they can “collect” the expression series that do not have the desired profile.
For example, if we are looking for classes with bell curves, we would build a 10
component model, with 5 bell-constrained and 5 unconstrained components. We
thus propose to use a Bayesian approach, which introduces knowledge by way
of a prior distribution of Θ —see for example [13] for a general introduction
to Bayesian theory. Simply speaking, our idea is to define a prior distribution
P (Θ) which is merely the product of the prior probability of the sequences of
means μc1 . . . μcT associated with each component. Moreover, we want the prior
probability of a given mean sequence for component c as follows: (i) the more
the sequence agrees with the constraints associated with c, the higher its prior
probability; (ii) sequences that disagree with the constraints have probability
zero.

With a prior, we can write the posterior probability of Θ as

P (Θ|X ) =
P (X|Θ)P (Θ)

P (X)
∝ P (X|Θ)P (Θ). (3)

In this Bayesian framework, parameters Θ are estimated by maximizing the pos-
terior probability —Equation (3)— instead of the likelihood —Expression (1).
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However, maximizing the posterior probability is generally more difficult than
maximizing the likelihood. For example, the classical re-estimation formulae of
the EM algorithm do not directly apply and, depending on the form of the chosen
prior distribution, it may be hard to perform the task in reasonable time.

In our case, we first discretize the space of the means μct in order to be able to
introduce various bits of knowledge and constraints about the profiles, as well as
to efficiently estimate the parameters of the model. Since we know the maximal
and minimal expression values taken by the series in X (say xmax and xmin),
we already know an upper and lower bound of the space of the means. Now
we discretize this space in M equidistant steps, so that the lower and higher
steps are equal to xmin and xmax, respectively. Of course M is chosen to be
sufficiently large (e.g. M = 30) to allow accurate representation of the data.
Steps are named by their number, so M is the highest step. In this discretized
mean space, our probabilistic model is re-defined as Θ = (π1, . . . , πC , θ1, . . . , θC)
with θc = (lc1, . . . , lcT , σ2

c1, . . . , σ
2
cT ), with lct ∈ {1, . . . , M}. We denote m :

{1, . . . , M} → [xmin, xmax] as the map function that associates step l with its
expression level. The probability of an expression series X ∈ X is rewritten as

P (X |Θ) =
C∑

c=1

πc

T∏
t=1

P (xt|lct, σ
2
ct),

with P (xt|lct, σ
2
ct) = N (xt; m(lct), σ2

ct) that follows a Gaussian distribution of
mean equal to the level of expression associated with step lct, and variance σ2

ct.
In the following, the step sequence lc1 . . . lcT associated with class c —and which
defines its shape— is denoted as Lc. Note finally that the discretization only
involves the means of the model, and not the space of the expression levels of
the data. These, as well as the model variances σ2

ct, remain in a continuous space.

2.2 Defining the Prior Distribution

Fist we define a new type of model called Hidden Phase Models (or HPMs),
close to models like HMMs and finite automata [14]. These HPMs are used to
express the desired profiles of the components, and each component c is then
associated with a given HPM Hc. We define two types of HPMs: probabilistic
and non-probabilistic HPMs. We next show how to derive the prior distribution
of Θ from the HPMs.

Hidden Phase Models. The general assumption behind HPMs is that the
genes of a given component pass through phases or biological states over the
time. This means that, for a given component, we assume that some ranges
of consecutive times actually correspond to the same biological state. These
phases are hidden, but they affect the mean expression level evolution of the
component. For example, some phases induce an increase in the mean level ex-
pression level while others tend to decrease or stabilize the level. In the same
manner, the increase (or decrease) can be high for some phases and low for
others, etc.
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start end

A S D

[+1, +M ]
[1, 7]

[0, 0]
[4, 7]

[−M, −1]
[4, 9]

Fig. 1. An HPM for clustering 9-time expression series. In each state, upper and lower
intervals represent the step-difference and time intervals associated with the state,
respectively. This HPM induces bell curve shapes.

A (non-probabilistic) HPM is defined by a quadruplet (S, δ, ε, τ), where

– S is a set of states representing the different phases; S contains two special
states, start and end, which are used to initiate and conclude a sequence,
respectively.

– δ : S×S → {0, 1} is a function describing the authorized transitions between
states. We denote Out(s) as the set of states that can be reached from s.

– ε is a function that associates each state s ∈ S with an interval of integers
defining the minimal and maximal differences of steps that can be observed
between times t and t − 1 when genes are in state s at time t. For example,
if ε(s) = [1, 3], this means that if the genes of the component are in phase s
at time t then the step difference (lt − lt−1) is between 1 and 3 (so phase s
increases the expression level).

– τ is a function that associates each state s ∈ S with the interval of time the
state can be reached. For example, if τ(s) = [3, 5] then the genes can be in
state s between times 3 and 5 included.

An HPM example is depicted in Figure 1.
Now we can see how to express our prior knowledge with an HPM. Actually

an HPM defines a set of compatible step sequences. We say that a step sequence
L = l1 . . . lT is compatible with an HPM H if there is a state sequence s0 . . . sT+1
—with s0 = start and sT+1 = end— in H , which is compatible with L. And
we say that a state sequence s0 . . . sT+1 is compatible with L iff for each time
1 ≤ t ≤ T we have: i) t included in the time interval τ(st); ii) ∀t ≥ 2, (lt − lt−1)
included in ε(st) —for t = 1, as we do not know l0, the genes can be in any phase
so s1 can be any state. Considering the step sequence on the top of Figure 2, a
compatible phase sequence in the HPM of Figure 1 is, for example, start−A−
A − A − A − S − D − D − D − D − end. For the step sequence on the right,
there is no compatible phase sequence in this HPM. In brief, building an HPM
involves designing an HPM such that the compatible sequences have the desired
profile. For example, the HPM of Figure 1 is well suited for the discovery of bell
curve classes.

Probabilistic HPMs. Non probabilistic HPMs can be used to express strong
constraints. They are generally sufficient to express knowledge about simple or
well defined profiles. For more complex knowledge, or when we do not have any
information about profiles and just want to express the fact that we are dealing
with series data, these models can be unsuitable. Then probabilistic HPMs can
be more suitable.
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Fig. 2. Left, a probabilistic HPM for clustering expression series without prior knowl-
edge about the form of the profiles. Right, two examples of step sequences.

A probabilistic HPM is defined by a quintuplet (S, δ, ε, τ, w), where S, δ, ε,
and τ are the same as for non-probabilistic HPMs, and w : S × S → R+ is
a function associating a weight with each authorized transition. These weights
are used to compute the transition probabilities from state to state. Due to the
time constraints associated with the states by way of the τ function, transition
probabilities are time dependent, so we cannot simply label transitions with a
probability as is done for classical HMMs. In contrast, the probability, denoted
as P (s|s′, t), to reach state s from state s′ at time t is computed as follows:

P (s|s′, t) =

{
0 if t /∈ τ(s);
w(s)/

(∑
s′′∈Out(s′) | t∈τ(s′′) w(s′′)

)
else. (4)

One example of probabilistic HPM is depicted in Figure 2.
Probabilistic HPMs also define compatible step sequences. Moreover, all com-

patible sequences do not have the same probability. Let H be a probabilistic
HPM and S = s0, s1 . . . sT , sT+1 a state sequence in this HPM. The probability
of this sequence given H is defined by

P (S|H) =
T+1∏
t=1

P (st|st−1, t). (5)

This model enables us to introduce more knowledge about the desired classes.
For example, when we do not have any information about interesting profiles,
the only thing we know is that we have to classify expression series. This means
that we are seeking relatively “regular” profiles, in contrast to chaotic spiky
profiles as that depicted on the bottom of Figure 2. This knowledge can be
easily expressed with the probabilistic three-states HPM of Figure 2: one state
(I) induces increasing steps, one (D) induces a decrease, and the last (S) induces
stability. Moreover, it is assumed that, at each time, the probability of staying
in the same state is higher than the probability of departure from it (weights
on loops are higher than on other transitions). This HPM is compatible with
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any step sequence of length 9. However all sequences do not have the same
probability, and spiky sequences involving many state changes are not favored.

Note that given a step sequence L, there are potentially many state sequences
compatible with L. In reference to the HMM literature, the sequence of phases
compatible with L which has the highest probability is called the Viterbi sequence
of L [10], and is denoted as V L = vL

0 . . . vL
T+1. For example, the Viterbi sequences

of the two step sequences of Figure 2 in the HPM of Figure 2, are start− I − I−
I−I−S−D−D−D−D−end and start−I−I−D−I−D−S−I−D−I−end,
respectively.

Defining prior with HPMs. First we assume that prior probabilities of pa-
rameters πc, Lc and σ2

ct are independent, as well as the C sets of parameters Lc

and (σ2
c1, . . . , σ

2
cT ), i.e., the probability distribution can be written as:

P (Θ) = P (π1, . . . , πC)
C∏

c=1

P (Lc)
C∏

c=1

P (σ2
c1, . . . , σ

2
cT ).

Next we assume that distributions P (π1, . . . , πC) and P (σ2
c1, . . . , σ

2
cT ) are un-

informative and that probabilities P (Lc) are the only ones that express our
knowledge.

Let c be a component and Hc a non probabilistic HPM associated with
this class. A prior distribution of parameters Lc can be defined with Hc by
assuming that the step sequences incompatible with Hc have probability zero
while compatible sequences have all the same probability, i.e.,

P (L|Hc) =
{

0 if L is incompatible with Hc;
Kc else, (6)

with Kc such that
∑

L∈LT
P (L) = 1, with LT being the set of length T sequences.

For probabilistic HPM, we want the prior probability of a step sequence L
to be proportional to the Viterbi sequence of L in Hc. Then, we set

P (L|Hc) =
{

0 if L is incompatible with Hc;
K ′

c · P (V L|Hc) else, (7)

with K ′
c such that

∑
L∈LT

P (L) = 1. For example, for the HPM of Figure 2, the
prior probabilities of the two step sequences are proportional to 1/3 · .7 · .7 · .7 ·
.1 · .1 · .7 · .7 · .7 · .1∼ 3.9 · 10−5 and 1/3 · .7 · .1 · .1 · .1 · .1 · .1 · .1 · .1 · .1 ∼ 2.3 · 10−10,
respectively. The spiky sequence is then less likely than the other one, which
agrees with our prior intuition.

A prior distribution of the step sequences of length T can then be defined with
a probabilistic or a non-probabilistic HPM. In practice, one or more components
can be associated with a given HPM (e.g. that of Figure 1), and the other ones
with a less informative HPM like that of Figure 2. We then have

P (Θ) ∝
C∏

c=1

P (Lc|Hc). (8)



34 L. Bréhélin

2.3 Learning

Here we briefly describe the learning algorithm used to estimate parameters Θ
of the mixture model. A more detailed version can be found in the supplemen-
tary information material1. It is an EM algorithm that searches for parameters
that maximize Expression (3). We only give the algorithm used for probabilistic
HPMs, since that for non-probabilistic ones can be easily adapted.

Let us first define the complete-data likelihood. Likelihood of Expression (1)
is actually the incomplete-data likelihood, since the real components of series
X ∈ X are unknown. Under the assumption that this set of components C =
{cX ∈ {1, . . . , C}, ∀X ∈ X} is known, the complete-data likelihood can be
written as

L(Θ|X , C) = P (X , C|Θ) =
∏

X∈X
πcX

T∏
t=1

P (xt; lcXt, σ
2
cXt).

The EM algorithm is an iterative algorithm that starts from an initial set of
parameters Θ(0), and iteratively reestimates the parameters at each step of the
process. Let Q(Θ, Θ(i)) denote the expectation, on the space of the hidden vari-
ables C, of the logarithm of the complete-data likelihood, given the observed
data X and parameters Θ(i) at step i:

Q(Θ, Θ(i)) =
∑
C∈C

log P (X , C|Θ)P (C|X , Θ(i)),

with C being the space of values C can take. From [11], one can maximize
Expression (3) by searching at each step of the algorithm for parameters π∗

c , L∗
c

and σ2
ct

∗ that maximize the quantity

Q(Θ, Θ(i)) + log P (Θ). (9)

Since P (Θ) is not related to the parameters πc, after some calculus, an expression
can be derived for π∗

c that maximizes Expression (9):

π∗
c =

1
|X |

∑
X∈X

P (c|X, Θ(i)). (10)

Now, due to our independence assumptions, one can estimate the Lc and σ2
ct

that maximize Expression (9) for each component c independently. As for pa-
rameters πc, σ2

ct are not involved in the expression of P (Θ). Moreover, since the
σ2

ct associated with time t is independent of all the other times, the expression
of σ2

ct
∗ that maximizes (9) depends solely on the step l∗ct in L∗

c :

σ2
ct

∗
=
∑

X∈X (xt − m(l∗ct))
2P (c|X, Θ(i))∑

X∈X P (c|X, Θ(i))
. (11)

1 http://www.lirmm.fr/∼brehelin/WABI05.pdf
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For Lc the situation is quite different since it is involved in the expression of
P (Θ). The Lc that maximizes Expression (9) depends both on the data and
on its Viterbi path in Hc and hence the different steps l∗ct of L∗

c cannot be
estimated independently. However, the step space is of finite size, so the space
of the step sequences of length T is also finite. One way to compute the new Lc

would be to enumerate all possible step sequences and then select the one that
maximizes Expression (9). However, as the total number of length T sequences
is equal to MT , enumerating them all is clearly not suitable. Instead, we use
a dynamic programming approach that iteratively computes the best sequence
without enumerating all the solutions. Briefly, for each step l and each time t,
we compute iteratively, from t = 1 to T , the best sequence —with regard to
Expression(9)— that ends on step l at time t. At each iteration and for each
step l, this best sequence is computed using the results of the previous iteration,
and at the end of the process the best sequence L∗

c has thus been computed in
polynomial time.

The learning algorithm is depicted in Figure 3. When no better solution
is available, the initial parameter values can be set randomly. Thanks to the
EM properties, the posterior probability P (Θ|X ) —and hence P (X|Θ)P (Θ)—
increases at each loop of the algorithm, until a local optimum is reach. Then it
continues to increase but to a much lesser extent. A practical way to detect the
convergence is to check the increase at each loop and to stop the algorithm when
this value goes under a given boundary.

Set parameters to initial values1

repeat2

for c = 1 to C do3

compute π∗
c with Formula (10)4

Find the optimal step sequence L∗
c = l∗c1 . . . l∗cT with the dynamic5

programming algorithm
foreach time t do compute σ2

ct
∗ from l∗ct with Formula (11)6

Compute P (X|Θ)P (Θ)7

until convergence8

Fig. 3. Learning algorithm

The total time complexity of the learning algorithm is O(BCTM2R2N) —see
supplementary information for details—, with B, C, T , M , R and N the maximal
number of loops of the EM algorithm, the number of components of the mixture
model, the number of time points of the data, the size of the step space, the
maximal number of states of the HPMs, and the number of expression series to
classify, respectively. In practice, N is potentially high (some thousands), T and
R are relatively low (ten or less), M is around thirty, and less than one hundred
loops are generally sufficient to ensure convergence. For the experiments in the
next section for example, computing times on a 2 GHz Pentium 4, range from
20 seconds to 3 minutes according to the dataset, the type of HPMs and the
number of components.
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3 Experiments

In order to quantify the advantages of using prior knowledge to recover a partic-
ular class of genes, we first conducted some experiments on a dataset made up of
the original Fibroblast dataset of [15] (see Supplementary Information for more
details), along with some additional synthetic series that form a new artificial
class. Briefly, we use a probabilistic model involving two Gaussian distributions
to generate the expression levels of the artificial expression series: one Gaussian
distribution is used to independently generate the gene expression levels of the
first three times, while the other is used for the last nine times of the series.
The mean of the first one is higher than the second, so the shape of the artifi-
cial class looks like a descending step. Figure 4 shows an example of synthetic
series generated with this model. We conducted several experiments to recover
the synthetic class among all other series, with the proportion of synthetic data
ranging from 2% to 16% of the total data.

We use two quantities to measure the ability to recover the artificial class in
the final clustering: Recall is the highest proportion of this class that can be found
in a single cluster —so a recall of 100% is achieved when all the artificial series are
in the same cluster—, and precision represents the proportion of artificial series
in this cluster —so a precision of 100% indicates that all the series in the cluster
containing most artificial series are actually artificial. For each proportion of

 2  4  6  8  10  12

start end
[−0, +0]

[1, 3]
[−M, −10]

[4, 4]
[−0, +0]
[5, 12]

Fig. 4. Left, examples of synthetic expression series added to the fibroblast dataset.
Right, the HPM designed to find the synthetic class among the ”real” biological classes
in the fibroblast dataset.
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Fig. 5. Recall (left) and precision (middle) achieved with (solid lines) and without
(dashed lines) prior knowledge about the class of interest. The x-axes denote the propor-
tion (in percent) of this class among all the expression series. Right, precision achieved
using different number of components.
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synthetic data, we run a clustering of 11 components with two different methods.
The first one does not use any prior knowledge about the class of interest, i.e.,
its components are completely unconstrained —this method can be viewed as
a kind of k-means clustering. The second method makes use of the HPM of
Figure 4 to constrain the first class, leaving the 10 others unconstrained. The
experiments were repeated 100 times for each proportion of synthetic data and
the results are reported in Figure 5.

Both methods achieve quite good recall, even when the proportion of the
class of interest is low. Using prior knowledge gives only slightly better results.
Concerning the precision, however, there is a clear difference between the two
methods, and we can see that the lower the proportion of interesting class, the
higher the benefit of our method. When the proportion is 2%, for example, the
precision achieved with no prior knowledge is only about 21% —vs. 65% when
using prior knowledge—, so the interesting series are lost among many other
series, leading to a class that does not show the desired profile.

Next we investigated the sensitivity of the method to the number of com-
ponents. Determining the number of clusters is a difficult task for all clustering
methods. However, when the aim is to recover a particular class of genes rather
than to infer a global clustering of the data, the problem is less acute. To il-
lustrate this, we computed, in 100 runs, the precision and recall achieved with
various numbers of constrained and unconstrained components, with the pro-
portion of synthetic data ranging from 2% to 16% of the total data. We tried 1
constrained with 8, 10, 12 and 15 unconstrained components, and 2 constrained
with 10 unconstrained components. All trials gave recall of up to 80% for all
proportions of synthetic data (data not shown), and quite good precision —see
the right hand curves in Figure 4. Actually the best results are achieved with the
highest numbers of components, so giving a sufficiently high number of compo-
nents seems to be a good strategy to efficiently recover the clusters of interest.

Experiments to find ”real” classes have also been carried out. We used the
datasets of [15] and [1] with the aim to uncover classes that show a quick over-
expression at the beginning of the series and classes with sinusoidal shape, re-
spectively. Due to space limitations, these experiments have been included in
Supplementary Material.

4 Conclusions

We proposed a Bayesian approach for the clustering of gene expression series.
This approach allows the user to easily integrate prior knowledge about the
general profile of the classes of interest.

We experimentally observed on a mixture of natural and synthetic data that
the benefit of the method increases when the number of expression series com-
posing the classes of interest decreases with regard to the total number of series,
and that it can be really interesting when this number is very low.

Many improvements seem possible on this basis. Indeed, other knowledge
can be integrated in the HPMs. For example, knowledge about the desired
mean expression level —and not about the evolution of the expression has it is
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done— could be easily added. Another improvement would be to introduce long-
range dependences, i.e., to constrain differences of expression not only between
consecutive times but also between separate times. For example, this would al-
low us to stipulate that the profiles should achieve their maximum at a specific
time t.
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Abstract. Several non-supervised machine learning methods have been
used in the analysis of gene expression data obtained from microarray
experiments. Recently, biclustering, a non-supervised approach that per-
forms simultaneous clustering on the row and column dimensions of the
data matrix, has been shown to be remarkably effective in a variety of
applications. The goal of biclustering is to find subgroups of genes and
subgroups of conditions, where the genes exhibit highly correlated be-
haviors. In the most common settings, biclustering is an NP-complete
problem, and heuristic approaches are used to obtain sub-optimal solu-
tions using reasonable computational resources.

In this work, we examine a particular setting of the problem, where
we are concerned with finding biclusters in time series expression data.
In this context, we are interested in finding biclusters with consecutive
columns. For this particular version of the problem, we propose an al-
gorithm that finds and reports all relevant biclusters in time linear on
the size of the data matrix. This complexity is obtained by manipulating
a discretized version of the matrix and by using string processing tech-
niques based on suffix trees. We report results in both synthetic and real
data that show the effectiveness of the approach.

1 Introduction

Recent developments in DNA chips enabled the simultaneous measure of the ex-
pression level of a large number of genes (sometimes all the genes of an organism)
for a given experimental condition (sample) [11]. The samples may correspond
to different time points, different environmental conditions, different organs or
even different individuals. Extracting biologically relevant information from this
kind of data, widely called (gene) expression data, is a challenging and very
important task.

Most commonly, gene expression data is arranged in a data matrix, where
each gene corresponds to one row and each condition to one column, as in
Fig. 1(a). Each element of this matrix represents the expression level of a gene
under a specific condition, and is represented by a real number, which is usu-
ally the logarithm of the relative abundance of the mRNA of the gene under
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the specific condition. Gene expression matrices have been extensively analyzed
in both the gene dimension and the condition dimension. These analyses cor-
respond, respectively, to the analysis of the expression patterns of genes and
to the analysis of the expression patterns of samples. A number of different
objectives are pursued when this type of analysis is undertaken. Among these,
relevant examples are the classification of genes, the classification of conditions
and the identification of regulatory processes. Clustering techniques have been
extensively applied towards these objectives. However, applying clustering algo-
rithms to gene expression data runs into a significant difficulty: many activation
patterns are common to a group of genes only under specific experimental condi-
tions. In fact, our general understanding of cellular processes leads us to expect
subsets of genes to be co-regulated and co-expressed only under certain experi-
mental conditions, but to behave almost independently under other conditions.
Discovering such local expression patterns may be the key to uncovering many
genetic mechanisms that are not apparent otherwise [1]. Researchers have there-
fore moved past this simple idea of row or column clustering and have turned
to biclustering [2], a technique that when applied to gene expression matrices
identifies subgroups of genes that show similar activity patterns under a specific
subset of the experimental conditions.

Many approaches to biclustering in expression data have been proposed to
date [9]. In its general form, this problem is known to be NP-complete [14],
and almost all the approaches presented to date are heuristic and obtain only
approximate results. In a few cases, exhaustive search methods have been used,
but limits are imposed on the size of the biclusters that can be found, in order
to obtain reasonable runtimes. There exists, however, a particular restriction
to the problem that is very important but has not been extensively explored
before, and that leads to a tractable problem. This restriction is applicable when
the gene expression data corresponds to snapshots in time of the expression
level of the genes. Under this experimental setup, the researcher is particularly
interested in biclusters with contiguous columns, that correspond to samples
taken in consecutive instants of time. In this context, we show that there exists
a linear time algorithm that finds all maximal contiguous column biclusters.

2 Definitions and Related Work

2.1 Biclusters in Gene Expression Data

Let A′ be an n row by m column matrix, where A′
ij represents the expression level

of gene i under condition j. In this work, we are interested in the case where the
gene expression levels can be discretized to a set of symbols of interest, Σ, that
represent distinctive activation levels. In the simpler case, Σ may contain only
three symbols, {D, U, N} meaning DownRegulated, UpRegulated or NoChange.
However,in other applications, the values in matrix A′ may be discretized to a
larger set of values.

After the discretization process, matrix A′ is transformed in matrix A and
Aij ∈ Σ represents the discretized value of the expression level of gene i under
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condition j. Figure 1(b) represents a possible discretization of the gene expres-
sion values in Fig. 1(a). In this example, an expression level was considered as
NoChange if it falls in the range [−0.3 : 0.3]. The matrix A is defined by its set
of rows, R, and its set of columns, C. Let I ⊆ R and J ⊆ C be subsets of the
rows and columns, respectively. Then, AIJ = (I, J) denotes the sub-matrix of
A that contains only the elements Aij belonging to the sub-matrix with set of
rows I and set of columns J . We will use AiC to denote row i of matrix A and
ARj to denote column j of matrix A.

Definition 1. A bicluster is a subset of rows that exhibit similar behavior across
a subset of columns, and vice-versa. The bicluster AIJ = (I, J) is thus a subset
of rows and a subset of columns where I = {i1, ..., ik} is a subset of rows (I ⊆ R
and k ≤ n), and J = {j1, ..., js} is a subset of columns (J ⊆ C and s ≤ m), and
can be defined as a k by s submatrix of the matrix A.

The specific problem addressed by biclustering algorithms can now be de-
fined. Given a data matrix, A′, or its discretized version, A, the goal is to iden-
tify a set of biclusters Bk = (Ik, Jk) such that each bicluster Bk satisfies some
specific characteristics of homogeneity. The exact characteristics of homogeneity
vary from approach to approach, and will be studied in Section 2.2.

2.2 Bicluster Types and Merit Functions

Biclustering approaches may identify many types of biclusters by analyzing di-
rectly the values in matrix A or using its discretized version [9]. However, in this
paper we will deal with biclusters that exhibit coherent evolutions, character-
ized by a specific property of the symbols present in the discretized matrix. In
particular, we are interested in finding column coherent biclusters satisfying the
following definition:

Definition 2. A column coherent bicluster (cc-bicluster), AIJ = (I, J), is a
subset of rows I = {i1, . . . , ik} and a subset of columns J = {j1, . . . , js} from
the matrix A such that Aij = Alj for all i, l ∈ I and j ∈ J .

Although interesting biclusters can be identified in the discretized matrix
A, they are usually ranked using merit functions computed over the original,

C1 C2 C3 C4 C5
G1 0.07 0.73 -0.54 0.45 0.25
G2 -0.34 0.46 -0.38 0.76 -0.44
G3 0.22 0.17 -0.11 0.44 -0.11
G4 0.70 0.71 -0.41 0.33 0.35

(a)

C1 C2 C3 C4 C5
G1 N U D U N
G2 D U D U D
G3 N N N U N
G4 U U D U U

(b)

C1 C2 C3 C4 C5
G1 N1 U2 D3 U4 N5
G2 D1 U2 D3 U4 D5
G3 N1 N2 N3 U4 N5
G4 U1 U2 D3 U4 U5

(c)

Fig. 1. Toy example. (a) represents the original expression matrix, (b) the discretized
matrix and (c) the discretized matrix after alphabet transformation (section 3.1).
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non-discretized version of the matrix, A′. To understand these metrics, consider
a bicluster AIJ = (I, J) and let a′

iJ represent the mean of the ith row in the
bicluster, a′

Ij the mean of the jth column in the bicluster and a′
IJ the mean of

all elements in the bicluster.
Depending upon the application, it may be helpful to characterize biclusters

by the degree of fluctuation in gene expression level as well as the similarity in be-
havior. For example, a bicluster with a low mean squared residue (1), MSR(I, J),
where r(A′

ij) are the residues (2), indicates that the expression levels fluctuate
in unison [2]. This includes, however, flat biclusters with no fluctuation. In order
to remove flat biclusters or identify biclusters with high degree of fluctuation
in expression levels is beneficial to use the bicluster variance (3), V AR(I, J),
the average row variance (4), ARV (I, J), and the average column variance (5),
ACV (I, J). A low V AR(I, J) identifies a constant bicluster. A bicluster with
high ARV (I, J) and low ACV (I, J) has high fluctuation on the rows and co-
herent columns while a bicluster with low ARV (I, J) and high ACV (I, J) is a
bicluster with high fluctuation on the columns and coherent rows. Since a low
value of MSR(I, J) identifies a bicluster with coherent values [2], if the value
of ARV (I, J) is high and the value of MSR(I, J) is low we can also identify a
bicluster with high fluctuation on the rows and coherent columns.

MSR(I, J) = 1
|I||J|

∑
i∈I,j∈J r(A′

ij)
2 (1)

r(A′
ij) = A′

ij − a′
iJ − a′

Ij + a′
IJ (2)

V AR(I, J) = 1
|I||J|

∑
i∈I,j∈J (A′

ij − a′
IJ)2 (3)

ARV (I, J) = 1
|I||J|

∑
i∈I,j∈J (A′

ij − a′
iJ )2 (4)

ACV (I, J) = 1
|I||J|

∑
i∈I,j∈J (A′

ij − a′
Ij)

2 (5)

Many heuristic approaches have been proposed for the selection of biclusters
that minimize directly this type of merit functions [9]. However, the inherent
difficulty of this problem when dealing with the non-discretized matrix A′ and
the great interest in finding coherent behaviors regardless of the exact numeric
values in the data matrix, has led many authors to a formulation based on a
discretized version of the gene expression matrix. Since most versions of the
problem addressed by these authors are NP-complete [1,5,6,7,13,15,16] the solu-
tions proposed are heuristic and are not guaranteed to find optimal solutions.

A different approach, from Ji and Tan [4], aims at finding time-lagged bi-
clusters in time series expression data. As in the present work, they are also in-
terested in identifying biclusters formed by consecutive columns. They propose
to use a naive algorithm that has a complexity O(|R||C|3), if all consecutive
column biclusters are to be found. With an appropriate implementation (not
described in the paper) their sliding window approach can have its complexity
reduced to O((|R||C|2), a complexity that is still of the order of |C| higher than
our proposed approach.
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2.3 Biclusters in Time Series Expression Data

Finding a set of maximal biclusters that satisfy the coherence property defined in
Def. 2 remains an NP-complete problem. As such, most biclustering algorithms
use heuristic approaches that are not guaranteed to find optimal solutions. How-
ever, we are interested in the analysis of time series expression data, and this
leads to an important restriction, on which relies the linear time algorithm we
propose.

When analyzing time series expression data, with the objective of isolating
coherent activity between genes in a subset of conditions, we want to restrict
the attention to biclusters with contiguous columns. Other authors have already
pointed out the importance of biclusters that span consecutive columns [4], and
their importance in the identification of gene regulatory processes. In fact, the
activation of a set of genes under specific conditions corresponds, in many cases,
to the activation of a particular biological process. As time goes on, biological
processes start and finish, leading to increased (or decreased) activity of sets
of genes that can be identified because they form biclusters with contiguous
columns, as illustrated in Fig. 2(a). In this figure, the existence of three processes
(P1, P2 and P3) leads to increased activity of different sets of genes, represented
by three biclusters. Note that, although the columns of each of the biclusters are
contiguous, the rows are in arbitrary positions, and are represented as contiguous
for P1 and P2 only for convenience. Overlapping is also allowed.

Time series expression data are often used to study dynamic biological sys-
tems and gene regulatory networks since their analysis can potentially provide
more insights about biological systems [8]. In this context, the identification of
biological processes that lead to the creation of biclusters, together with their
relationship, is crucial for the identification of gene regulatory networks and for
the classification of genes. This leads us to the definition of the type of biclusters
that are of interest in this work.

Definition 3. A contiguous column coherent bicluster (ccc-bicluster), AIJ =
(I, J), is a subset of rows I = {i1, . . . , ik} and a contiguous subset of columns
J = {r, r+1, . . . , s−1, s} from matrix A such that Aij = Alj , ∀i, l ∈ I and j ∈ J .

For the remainder of this work, we will refer to a contiguous column coherent
bicluster simply as a ccc-bicluster. By definition, each row in matrix A is a ccc-
bicluster. These are trivial biclusters and will not be of interest, in general.
The biclusters with only one row or only one column will also be considered as
trivial.

In this settings, each ccc-bicluster defines a string S that is common to every
row in the ccc-bicluster, between columns r and s of matrix A. Figure 2(b)
illustrates two ccc-biclusters that appear in the expression matrix in Fig. 1(a).
These two ccc-biclusters are maximal, in the sense that they are not properly
contained in any other ccc-biclusters. This notion will be defined more clearly
later on.
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(a) Three biological processes.

N U D U N

D U D U D

N N N U N

U U D U U

G1

G2

G3

G4

C1 C2 C3 C4 C5

N1 U2 D3 U4 N5

D1 U2 D3 U4 D5

N1 N2 N3 U4 N5

U1 U2 D3 U4 U5

G1

G2

G3

G4

C1 C3 C4 C5C2

Bicluster 1: ({G1,G2,G4),(C2,C3,C4)}

Bicluster 2: ({G1,G3),(C4,C5)}

(b) Two ccc-biclusters in the toy ex-
ample.

Fig. 2. Biclusters in time series gene expression data

2.4 Suffix Trees

A string S is an ordered list of characters written contiguously from left to
right [3]. For any string S, S[i..j] is the (contiguous) subtring of S that starts at
position i and ends at position j. In particular, S[1..i] is the prefix of S that ends
at position i and S[i..|S|] is the suffix of S that starts at position i, where |S| is
the number of characters in S. A suffix tree is a data structure built over all the
suffixes of a string S that exposes its internal structure. This data structure has
been extensively used to solve a large number of string processing problems.

Definition 4. A suffix tree of a |S|-character string S is a rooted directed tree
with exactly |S| leaves, numbered 1 to |S|. Each internal node, other than the root,
has at least two children and each edge is labeled with a nonempty substring of S.
No two edges out of a node have edge-labels beginning with the same character.
The key feature of the suffix tree is that for any leaf i, the label of the path from
the root to the leaf i exactly spells out the suffix of S that starts at position i.

In order to enable the construction of a suffix tree obeying this definition
when one suffix of S matches a prefix of another suffix of S, a character ter-
minator, that does not appear nowhere else in the string, is added to its end.
For example, the suffix tree for the string S=TACTAG is presented in Fig. 3(a).
The suffix tree construction for a set of strings, called a generalized suffix tree,
can be easily obtained by consecutively building the suffix tree for each string
of the set. The leaf number of the single string suffix tree is now converted to
two numbers: one identifying the string and other the starting position (suffix)
in that string.

Suffix trees can be built in time that is linear on the size of the string, using
several algorithms. Generalized suffix trees can be built in time linear on the
sum of the sizes of the strings. Ukkonen’s algorithm [18], used in this work, uses
suffix links to achieve a linear time construction.
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(b) Generalized suffix tree for
S1=TACTAG and S2=CACT.

Fig. 3. Example of a suffix tree for the string S=TACTAG and a generalized suffix
tree for the strings S1=TACTAG and S2=CACT

Definition 5. There is a suffix link from node v to node u, (v, u), if the path-
label of node u represents a suffix of the path-label of node v and the length of
the path-label of u is exactly equal to the length of the path-label of v minus 1.

3 Biclustering Time Series Expression Data

3.1 Biclusters and Suffix Trees

We can now introduce the major results of this work, that lead to the linear time
biclustering algorithm. We first introduce the concept of maximal ccc-bicluster.

Definition 6. A ccc-bicluster AIJ = (I, J) is maximal if no other ccc-bicluster
exists that properly contains AIJ , that is, if for all other ccc-biclusters ALM =
(L, M), I ⊆ L and J ⊆ M ⇒ I = L ∧ J = M .

We will also call a ccc-bicluster right-maximal if it cannot be extended to
the right by adding one more column at the end, and left-maximal if it cannot
be extended to the left by adding one more column at the beginning. Stated
more plainly, a ccc-bicluster is maximal if no more rows nor contiguous columns
(either at the right or at the left) can be added to it while maintaining the
coherence property in Def. 3.

We will now consider a new alphabet Σ′ = Σ×{1 . . .m}, where each element
Σ′ is obtained by concatenating one symbol in Σ and one number in the range
{1 . . .m}. In order to do this alphabet transformation we use a function f :
Σ × {1 . . .m} defined by f(a, k) = a|k where a|k represents the character in
Σ′ obtained by concatenating the symbol a with the number k. For example, if
Σ = {U, D, N} and m = 3, then Σ′ = {U1, U2, U3, D1, D2, D3, N1, N2, N3}.
For this case, f(U, 2) = U2 and f(D, 1) = D1.

Consider now the set of strings S = {S1, . . . , Sn} obtained by mapping each
row AiC in matrix A to string Si such that Si(j) = f(Aij , j). Each of these
strings has m characters and corresponds to the symbols in a row of matrix A
after the above alphabet transformation. After this transformation, the matrix
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in Fig. 1(a) corresponding to the discretized matrix in Fig. 1(b), becomes the
matrix in Fig. 1(c).

Let T be the generalized suffix tree obtained from the set of strings S. Let
v be a node of T and let P (v) be the path-length of v, that is, the number of
characters in the string that labels the path from the root to node v. Additionally,
let B(v) be the branch-length of v and let L(v) denote the number of leaves in the
sub-tree rooted at v, in case v is an internal node. It is easy to verify that every
internal node of the generalized suffix tree T corresponds to one ccc-bicluster of
the matrix A. This is so because an internal node v in T corresponds to a given
substring that is common to every row that has a leaf rooted in v. Therefore,
node v defines a ccc-bicluster that has P (v) columns and a number of rows equal
to L(v). It is also true that all the leaves except the ones whose path label is
simply a terminator also identify ccc-biclusters.

Since these ccc-biclusters may not be maximal, we will now present with only
sketches of proofs the two lemmas that lead to our the main theorem.

Lemma 1. Every right-maximal ccc-bicluster corresponds to one node in T .

Proof. Let B be a ccc-bicluster that cannot be extended to the right by adding
a column at the right, that is, a right-maximal ccc-bicluster. Since B is a ccc-
bicluster, every row in B shares the substring that defines B. Since B is right
maximal, at least one of the rows in B must have a character that differs from
the character in the other rows, in the first column to the right that is not in B.
Therefore, there is a node in T that matches B and the path-label of that node
is the string that defines B. �

Lemma 2. Let node v1 correspond to a ccc-bicluster B1 and node v2 correspond
to a ccc-bicluster B2. Then, if there is a suffix link from node v1 to node v2,
bicluster B2 contains one less column than bicluster B1.

Proof. Follows directly from the definition of suffix links. �

From these lemmas, we can now derive the theorem that is our main result.

Theorem 1. Let v be a node in the generalized suffix tree T . If v is an internal
node, then v corresponds to a maximal ccc-bicluster iff L(v) > L(u) for every
node u such that there is a suffix link from u to v. If v is a leaf node, then
v corresponds to a maximal bicluster iff the path-length of v, P (v), is equal to
|Si| and the label of the branch that leads to v has characters other than the
terminator, that is, B(v) is greater than one. Furthermore, every maximal ccc-
bicluster in the matrix corresponds to a node v satisfying one of these conditions.

Proof. Let B be a maximal ccc-bicluster and S the string that defines B. Now,
S must lead to a node v (by Lemma 1). If node v is an internal node and does
not have an incoming suffix link, the conditions of the theorem are met. Since
B is also left-maximal, every node u that defines a bicluster B′ with one more
column than B (by Lemma 2) must have L(v) > L(u), since B′ cannot contain
all the rows in B (otherwise, B would not be left-maximal). Therefore, it is
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sufficient to check that every internal node u that has a suffix link directed at v
has L(u) < L(v) to ensure that node v corresponds to a maximal ccc-bicluster.

If node v is a leaf node the conditions of the theorem are met. In fact, if B
is maximal the path-length of v must be equal to |S|, otherwise, B would not
be left-maximal since it could be extended to the left until all the characters at
its left in S had been added. Furthermore, the path-label of v cannot be only
a string terminator, that is, B(v) must be greater than one, otherwise B would
also not be maximal. In one hand, if the parent of v was the root, then B would
not be left maximal since it could be extended to the left by adding at least the
last character of S. On the other hand, if the parent of v was an internal node,
then B would not be maximal either since it could be extended by adding to it
the rows that correspond to the remaining leaves of the sub-tree rooted at the
internal node that is the parent of v. �

Figure 4 illustrates the generalized suffix tree obtained from the strings that corre-
spond to the rows of the matrix in Fig. 1(c). For clarity, this figure does not contain
the leaves that represent string terminators that are direct daughters of the root.
Each non-terminal node, other than the root, is labeled with the value of L(v), the
number of leaves in its subtree. Also shown in this tree are the suffix links between
nodes. For clarity, the suffix links that end at the root are not shown.

This figure also shows that there are six internal nodes, other than the root.
Each one of these nodes corresponds to one ccc-bicluster. Furthermore, each leaf
node with branch-length greater than one is also a ccc-bicluster. However, some
of these ccc-biclusters are trivial, since they represent biclusters with only one
column (nodes with branch-labels N1, U4 and N5, since they have branch-labels
with only one character), or are represented by leaves (trivial ccc-biclusters with
only one row even when they are maximal). Others are non-maximal (nodes with
branch-labels D3U4 and N5), since they have an incoming suffix link from a node
with the same number of leaves. As such, only the internal nodes with branch-
labels U2D3U4 and U4N5 identify maximal, non-trivial ccc-biclusters. These
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Fig. 4. Generalized suffix tree for the matrix in Fig. 1(c)
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nodes correspond to the maximal ccc-biclusters ({G1, G2, G4}, {C2, C3, C4})
and ({G1, G3}, {C4, C5}) in Fig. 2(b).

Note that the rows in each ccc-bicluster are obtained from the terminators in
the leaves in the subtree of each node v, while the columns in each ccc-bicluster
are obtained from the value of P (v) and the information on the branch-label
that connects v to its parent. In fact, the value of P (v) and the first character
of the path label of v is needed to identify the set of columns that belong to the
bicluster.

3.2 A Linear Time Algorithm for Finding and Reporting
ccc-Biclusters

Theorem 1 directly implies that there is an algorithm that finds and reports all
maximal ccc-biclusters in a discretized and transformed gene expression matrix
A in time linear on the size of the matrix (see Alg. 1). With appropriate data
structures at the nodes, the suffix tree construction is linear on the size of the
input matrix, using Ukkonen’ algorithm [18]. The remaining steps of our algo-
rithm are also linear since they are performed using depth first searches (dfs) on
the suffix tree. A more detailed analysis shows that the increase in the alphabet
size does not have an impact on this linear time complexity. In fact, only two
types of nodes have more than |Σ| children: the root node and nodes that have
as children only leaf nodes. In both cases, it is easy to devise a data structure
that enables constant time manipulation of these nodes.

Algorithm 1. Algorithm for finding and reporting all maximal ccc-biclusters
1: procedure find and report all maximal ccc-biclusters(A)
2: Map each row i in matrix A, AiC , to a string Si using function f : Si ← f(AiC).
3: Build a generalized suffix tree, T , for the set of strings S.
4: for all nodes v ∈ T do
5: Compute the path-length and the branch-length of v: P (v) and B(v).
6: Mark v as “Valid”.
7: end for
8: for all internal nodes v ∈ T do
9: Compute the number of leaves in the sub-tree rooted at v: L(v).

10: end for
11: for all nodes v ∈ T do
12: if (v is an internal node and there is a suffix link (v, u) and L(v) >= L(u))

or (v is a leaf node and (P (v)! = |Si| or B(v) = 1)) then
13: Mark u as “Invalid”.
14: end if
15: end for
16: for all nodes v ∈ T do
17: if v is “Valid” then
18: Report the ccc-bicluster that corresponds to v.
19: end if
20: end for
21: end procedure
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Fig. 5. CPU time versus size of the synthetic input data

4 Experimental Results

In order to validate the approach, we performed experiments with both synthetic
and real data, using a prototype implementation of the algorithm, coded in Java,
and a 3GHz Pentium-4 machine, running Linux with 1GB of memory.

To evaluate the efficiency of the algorithm, and validate experimentally the
predicted linear time complexity, we generated matrices with random values, on
which 10 biclusters were hidden, with dimensions ranging from 15−25 rows and
8− 12 columns. The size of the matrices varied from 250× 50 (rows × columns)
up to 1000 × 250. We used a three character alphabet, Σ = {U, D, N}. In all
cases, we recovered the planted ccc-biclusters, together with a large number of
artifacts that result from random coincidences in the data matrix. Figure 5 shows
a plot of the variation of the CPU time with the size of the input data matrix. A
clear linear relationship over several orders of magnitude is apparent from this
plot. It is also clear that the algorithm runs in less than 15 seconds even in the
larger synthetic matrices used.

To validate the approach with real data, we used time-series from the yeast
cell-cycle dataset described by Tavazoie et al. [17] which contains the expression
profiles of more than 6000 yeast genes measured at 17 time points over two
complete cell cycles. We used 2884 genes selected by Cheng and Church [2] as in
[17] and removed the genes with missing values. The matrix with the remaining
2268 genes was discretized by gene to an alphabet Σ = {D, U, N} using an equal
bin frequency discretization.

The resulting matrix was then processed by our algorithm and 14728 maximal
non-trivial ccc-biclusters were reported in 13.5 seconds. From these 825 had
more than 4 conditions and at least 25 genes. Since we were interested in ccc-
biclusters with high values of ARV (I, J) and low values of MSR(I, J), this last
set was then ordered in descending order according to the value of (ARV (I, J)−
MSR(I, J)) (see Sec. 2.2). The computation of the values of the metrics and the
ordering of the biclusters cannot be done, in general, in time linear on the size of
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Fig. 6. Expression level of genes in the top three ccc-biclusters

Table 1. Biological relevance of the top three ccc-biclusters

Bicluster ID Genes Conditions GO-Category GO-Level P-Value
12735 41 5 (8-12) Cell Cycle 4 2.9E-05
12736 26 6 (8-13) DNA replication 6,7 9.2E-03
5872 33 6 (3-8) DNA metabolism 6,5 2.0E-05

DNA replication 7,6 2.5E-05
DNA repair 6,7 9.1E-05

response to DNA damage stimulus 9 2.4E-04
response to endogenous stimulus 9 2.7E-04

biopolymer metabolism 4 4.3E-03
negative regulation of DNA transposition 9,10 8.0E-03

regulation of DNA transposition 8,9 8.0E-03
lagging strand elongation 9,10 8.8E-03

the matrix. In practice, we observed that in real data these steps take less time
than the bicluster generation steps.

We present some preliminary evidence of the biological significance of these
results by analyzing (for lack of space) only the top three ccc-biclusters according
to this criterion. To access the biological relevance of the biclusters we used the
Gene Ontology (GO) and the p-values obtained from the hypergeometric distri-
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bution to model the probability of observing at least k genes, from a bicluster
with |I| genes, by chance in a category containing c genes from the 2268 genes
in the dataset. For this, we used the functions from the three GO categories,
biological process, molecular function and cell component at level higher than
3. Table 1 shows p-values computed using the GOToolBox [10] and the utilities
from the YEASTRACT database [12].

In order to show that the generated ccc-biclusters have biological significance,
shown by statistically significant enrichment in one or more GO categories, we
report the categories in which the (Bonferroni corrected [11]) p-values are be-
low 0.01. Figure 6 presents the expression levels of these ccc-biclusters and shows
how biclustering is able to identify highly correlated expression patterns of genes,
under a given subset of conditions. Note that the highly correlated activity un-
der this subset of columns does not necessarily translate into highly correlated
activity under all conditions.

5 Conclusions

In this work, we presented a linear time algorithm for the identification of all
maximal contiguous column biclusters in time series expression data. By dis-
cretizing the gene expression values, and manipulating the strings that corre-
spond to each row using string processing techniques, we have been able to
demonstrate that there is a correspondence between the maximal ccc-biclusters
and the nodes of the generalized suffix tree that represents the rows (genes) in
the matrix. This simple correspondence lead to a very efficient algorithm for
the extraction of ccc-biclusters, that runs in a few seconds even for matrices
with thousands of genes and hundreds of conditions. We have demonstrated
the correctness of the algorithm and sketched the complexity analysis. We have
also presented experimental results with synthetic data and preliminary results
with real data from yeast. This work opened several promising directions for
future research. Among these are the discovery of imperfect ccc-biclusters (ccc-
biclusters allowing a given number of errors) and the development of methods
for the identification of regulatory networks.
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Abstract. We study gene expression data, derived from developing tis-
sues, under multiple genetic backgrounds (mutations). Motivated by the
perceived behavior under these background, our main goals are to explore
time windows questions:

1. Find a large set of genes that have a similar behavior in two different
genetic backgrounds, under an appropriate time shift.

2. Find a model that approximates the dynamics of a gene network in
developing tissues at different continuous time windows.

We first explain the biological significance of these problems, and then
explore their computational complexity, which ranges from polynomial
to NP-hard. We developed algorithms and heuristics for the different
problems, and ran those on synthetic and biological data, with very en-
couraging results.

1 Introduction

A major goal of systems biology is to infer the relationships among genes and
proteins in the cell and organism. A large number of works have tried to identify
genes that appear to be coexpressed, in an approach known as ”guilt by associ-
ation”. These works come in roughly three major flavors - clustering (e.g. [3]),
biclustering (e.g. [6]), and methods for model inferring (e.g. [7,9]). The problems
we deal with in this paper include ingredients from all three. The inputs to our
problem include gene expression datasets from two genetic backgrounds. In the
first set of problems, the goal is to identify sets of genes with a similar behavior
in two equisize subsets of the conditions in the two datasets. Biologically, we are
interested in the case where one dataset was generated when a component of the
system underwent mutation, while the other dataset represents the wildtype. We
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focus on developmental gene expression datasets [2], where the conditions are
ordered in time, and the subset of conditions of interest are continuous time win-
dows. This natural restriction makes some variants of our problems polynomial.
In our experiments, a few key mutations were induced (separately) in a com-
ponent of a central protein complex. These mutations caused various changes
in the behavior of many genes. Some of these changes are best described across
contiguous time intervals. This motivates us to define and explore such time
interval questions to better understand the functional relations among partici-
pating genes. We call these problems “time windows problems”, since we want
to find a set of genes and a time window such that the genes’ behavior during
this time window in the wildtype is similar to their behavior in the mutant in a
different second time window, namely each mutation causes a “time shift” in the
expression levels when compared to wildtype. For example, suppose a mutation
inhibits the expression of a set of genes, such that it remains 0 in all time points.
This phenomenon can cause time shift in the expression level of another gene
set. Figure 1 illustrates such a hypothetical example, where a mutation in one
gene causes a shift in the expression level of another gene. Gene g is regulated by
genes pg1 and pg2 according to the table in figure 1A. A mutation causes gene
pg1 to stay at level 0. According to the regulation table, the expression level of
gene g at later developmental stages in the mutation (figure 1C) is similar to its
expression level in earlier developmental stages in the wildtype (figure 1B). By
grouping together genes which exhibit similar shifts in the mutant gene expres-
sion compared to the wildtype gene expression, and by combining information
about the functionality of some of these genes, one can conclude about the func-
tionality of a mutated gene network (or a mutated protein complex), and the
way such a network may regulate directly or indirectly these shifted genes. Thus
part of our goals is to find subsets of genes with the same GO annotations [1]
and a similar shift.

The second problem of interest is finding a model approximating the dynam-
ics of a gene network in certain continuous time windows. We want to find the
regulatory rules of genes by other genes in these time windows. For example, in
this work, for the mutant dataset we have the expression levels of several thou-
sand genes at just three time points, while for the wildtype dataset, we have
the expression levels of several thousand genes at a few dozen time points. We
want to understand the dynamics of the genes in continuous time windows in
the wildtype around the time points sampled in the mutant. We employ linear
models, and develop heuristic for solving this problem, while being careful to
avoid over-fitting.

A number of works have examined analyzing developmental gene expres-
sion datasets and comparing gene expression in multiple genetic backgrounds.
Arbeitman et al. [2] report the gene expression patterns for nearly one-third
of all Drosophila genes during a complete time course of development. We
use this dataset here. Chang et al. [5] performed a quantitative inference of
dynamic regulatory pathways via microarray data. They used a second order
model of differential equations with many parameters, combined with maximum
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Fig. 1. Illustration of a gene which was shifted by a mutation. A. The expression level
of gene g as a function of its regulators, the genes pg1 and pg2, where −1 denote
under-expression, 0 denote normal expression, and 1 denote over-expression. B. Hy-
pothetical developmental expression level of gene g in the wildtype. C. Hypothetical
developmental expression level of gene g when a mutation causes gene pg1 to be stuck in
level ′0′.

likelihood methods for inferring a regulatory pathways. McDonal and Rosbash
[10], developed methods for identification of genes with cyclic behavior while
studying circadian rhythms. D’haeseleer and Fuhrman [8] suggested modelling
a gene network by a linear model. We note that the main drawback in their ap-
proach is the large number of parameters (compared to the size of the dataset)
they used, which may lead to over-fitting.

2 Time-Windows Problems: Definition and Mathematical
Properties

In this section we present the time shift problems, and deal with their mathe-
matical properties. For lack of space, the proofs are deferred to the full version
of this paper. Let S be a set of genes. Let M1 and M2 be two gene expression
datasets for S, and m1 and m2 denote the number of conditions in M1 and M2,
respectively. Let dS : M×M → R≥0, where M is the space of datasets over S,
denote a measure for the dissimilarity of the expression pattern of the gene set
S in M1 vs. M2. The problems in this work have the following general structure:
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Problem 1. Input: Two gene expression datasets, M1 and M2, over a gene set
S; a positive number, δ, and a dissimilarity measure dS(M2, M1).

Task: Find a maximum subset of genes, S′ ⊆ S, such that dS′(M2, M1) < δ.

For a specific example, suppose M1 and M2 have the same number of conditions.
For every gene g, M1(g) and M2(g) are real vectors of the same length. Let ‖ ‖p

denote the �p norm. Then dS,p(M1, M2) =
∑

g∈S ‖M1(g) − M2(g)‖p is such a
dissimilarity measure. A second example is parameterized by an integer k. For
every choice of k conditions C1, C2 from M1 and M2, respectively, we look at
M1,|C1, M2,|C2 (the restriction of each dataset to the respective k conditions).
Then dS,k,p(M1, M2) = min|C1|=|C2|=k

∑
g∈S ‖M1,|C1(g) − M2,|C2(g)‖p is a dis-

similarity measure. In this paper, we deal with problems where the conditions
are ordered, usually by time, so that this order has a biological meaning. One
example of such order is developmental gene expression dataset, where the i-th
condition (column) refers to time ti, and i > j ⇐⇒ ti > tj . We emphasize
that ti in the two dataset need not be the same. In the first problem we use
dS,k,2(M1, M2) as the dissimilarity measure. We further restrict here C1 and C2
to be continuous time windows in M1 and M2, respectively, and k = m2 is the
total number of the conditions in the smaller dataset ( say M2 ). We denote this
dissimilarity measure D1

S(M1, M2). For S = ∅ we define D1
S(M1, M2) = 0.

Problem 2. Time shift.
Input: Two ordered gene expression datasets, M1 and M2, where the num-
ber of conditions in M1 is larger than in M2 (m1 ≥ m2 = k), and a positive
number, δ.
Task: Find a maximum set of genes S′ and a continues time window in M1,
W1 = i1, .., ik, such that the expression of the gene in this window is similar (error
less than δ) to their expression level in all the conditions of M2. Quantitatively
D1

S′(M2, M1) < δ .

A generalization of problem 2 with allows k (the size of the windows) to be
smaller than both m1 and m2. The windows should still be continuous. In this
case, we denote the dissimilarity measure D2

S,k(M2, M1) . In the second problem
we want to infer models, which describe the behavior of the genes in M1 (the
larger dataset). We allow different models for different time windows in M1,
while we focus on ”interesting” time windows, that contain the time points in
M2 (each time window in M1 is around different time point in M2). The simplest
such model is a linear model.

D’haeseleer and Fuhrman [8] were the first to suggest the use of linear models
for analyzing gene networks. Regulation of genes can be described as a function
of the expression levels of other genes by a differential equations. These equa-
tions can be approximated by difference equations which can be described by an
equivalent set of linear equations. More generally, the behavior of many dynamic
models at time t + Δt can be approximated by a linear function of the model’s
parameters at time t. The relative error is the ratio between the error and the
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average gene expression level. In our model we got better results in terms of rel-
ative error when we worked with the logarithm of the expression value. Taking
logarithms when working with gene expression level is justified for example in
[12]. So we aimed to express the log of the expression level of a gene at time
point i by a linear combination of the log expression levels of a subset of the
genes at time i− 1 (the “parents” of the gene), such that the expression level of
gene gn at time i equals approximately: gn(t) ≈

∑
gj∈pa(gn) wn,j ·gj(t−1), where

pa(gn) denotes the set of “parents” of gene gn, and wn,j are constants. For each
gene we need to find a different set of parents and weights, wn,j but these are
fixed for all the conditions. The error of a gene according to such model is the
Euclidean distance between the predicted vector and the actual vector across
the window, W : Let ĝn(t) =

∑
gj∈pa(gn) wn,j · gj(t− 1) be the “predicted” value,

then the error for gene gn in window W is: egn,W =
√∑

i∈W (gn(t) − ĝn(t))2.
This roughly describes the model of [8]. We deal here with a more general model:
First, we want to find different linear models for different continuous time win-
dows of development, in that we are looking for a phase, or window, dependent
network. We define the error of a set of genes in a time window to be the error
(egn) of the gene with the largest error in this set in the time window. As defined,
this problem has too many degrees of freedom in choosing the parents’ sets of
each genes, resulting in models that are often meaningless [13]. Thus we want
to bound the maximum in-degree in the linear network. The bound should be
smaller than the number of conditions in that window.

Thus by [13] if we want to describe an � dimensional vector by a linear model
where its parent set are of � or more vectors in the �-dimensional space we can get
zero error by using random vectors with probability approaching 1 as k → ∞. If
the number of parents is smaller than �, this phenomenon does not occur. Thus
if our vector describes a gene expressions, such model may reveal a true relation
between a gene and its parents. This motivates us to restrict the number of
parents of each gene in the model to be smaller than the number of time points
in the window. By using this upper bound, we prevent over-fitting a model to a
window. Thus, we are interested in the following problem:

Problem 3. Linear approximation with bounded in-degree.

Input: Two ordered gene expression datasets M1 and M2, a positive number,
ε, two positive integer h and W .

Task: For every point in M2 find a linear model with in-degree less than h for
the set of genes in M1, and for the window of size W around the point. When the
expression level of the set in M1 is described by this model, its error is required
to be smaller than ε for the window.

The restriction of bounded in degree makes the problem computationally hard.
In the decision version of problem 3 we have the same inputs, and have to decide
if there is a model with in degree less than h that approximate the genes in M1
in windows around the points of M2 with error less than ε.
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Lemma 1. The decision version of problem 3 is NP-hard.

For a given h (if h is not an input of the problem) problem 3 is practical only
for h ≤ 3 (by exhaustive search in complexity O(nh)).

The following lemma indicates that if our dataset was sampled from a linear
model, when using this dataset for inferring a linear model in a time window
where many genes change slowly, we should expect that the parents’ set of a gene
will contain genes which are not directly connected to the gene in the real model
(but are close to it in the real model). It is known that other model inferring
methods suffer from similar problems. However, when our method missed edges
of a gene’s ”real parents”, it often replaces them by edges from the “grandparents
generation”. This phenomenon is tolerable since we get sets of genes that are
relatively close to a gene’s parental set. Let gp(gn) denote the set of grandparents
of the gene gn in a linear model. We say that a gene gk changes slowly if (1 −
ε) · gk(t − 1) ≤ gk(t) ≤ (1 + ε) · gk(t − 1), where 0 < ε << 1. The following
lemma explains this phenomena. By recursively using the arguments of lemma
2 we can get similar results for the connection between the expression level of
a gene and its ancestral of depth d. In this case we will get the approximating
factors (1 − ε)d and (1 + ε)d instead of (1 − ε) and (1 + ε), which increase the
error exponentially (with d). It easy to see that when the average in-degree in
the net is larger than 1, replacing the real parents of a gene by its ancestors
implies an increase of its in-degree.

Lemma 2. For the linear model with bounded degree, if the gene’s grandparents
change slowly, the optimal set of parents for a gene can be well approximated by
the set of its grandparents.

3 Algorithms and Heuristics

The time shift problems have two stages: Finding a set of shifted genes, and
identifying a subset with functional enrichment (GO annotation) in each such
a set. Let Mr,|Cj,i

(g) denote the i-th sample of gene g in time window Cj of
dataset Mr. A direct calculation of the cost function for the two variants of the
time shift problems for a gene g, when comparing the time windows C2 and C1
(of size k) in M1 and M2 respectively, is:

‖M2,|C2(g)−M1,|C1(g)‖2 =
√∑k

i=1(M2,|C2,i
(g) − M1,|C1,i

(g))2. Subtraction and
addition are much cheaper processor operations, compared to squaring and
square root operations. This calculation involve performing k squaring and one
square root operations, namely k+1 ”expensive” operations. In the naive way of
finding solutions to the time shift problem, we separately calculate for each gene
the cost function using the above equation, and attribute it to the pair of win-
dows C1, C2 if this function is less than δ. In other words, for each gene we need
to calculate the cost function (m1−k−1)·(m2−k−1) times, for each pair of time
windows C1 ⊆ M1 and C2 ⊆ M2. In total we have (m1−k−1)·(m2−k−1)·(k+1)
expensive operations for just one gene.
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Let Mr,i(g) denote the expression level of gene g in dataset r in time point
i. In order to speed up the process, we do the following: For each gene, we first
calculate a table of size m1 ·m2, where the (i, j) entry in the table contains the
value (M2,i(g) − M1,j(g))2. We use the fact that each entry in the table is used
for many pairs of windows, and use the values in the table for calculating the cost
function for different pair of windows for g. Since calculating the table costs us
m1 ·m2 expensive operations and by using the table we only need to perform one
expensive operation (square root operation) for the calculation of the cost for a
pair of windows, we now perform a total of m1 ·m2 +(m1 − k− 1) · (m2 − k− 1)
expensive operations. Asymptotically (for large m1 and m2) this is Θ(k) faster.

In the next stage we searched for functional enrichment in the solution set,
to better understand possible biological meanings of our results. We used GO
annotations [1] which attribute genes to cellular functions. We are interested in
sets of genes that have both a similar time shift and a common function, as
determined by GO annotation. Let G denote a bound for the maximum number
of GO annotations for a gene. We calculated the number of genes with each GO
annotation in our dataset by one pass over all the genes, and for each gene we
checked at most G annotations (a gene may have more than one annotation, and
we assume no more than G). We generated a table with the number of genes
with each GO annotations. The overall complexity of this stage n ·G. Given a set
of size |S| of shifted genes, we generated a similar ”small” table only for the set,
in time complexity G · |S|. These tables enable us to calculate the enrichment’s
p-values, using the standard formula of hypergeometric distribution.

We now turn to the linear model problem. Since the bounded linear model
problem is NP-hard, we used variations of the following heuristic. Let m1 denote
the number of time samples in M1. Check all the m1−k−1 continuous windows
of size k, the specified window size. For each such window, perform the following
greedy heuristic for each gene gn:

1. Start with an empty set of “parents” for gn.
2. At step r, by exhaustive search, find the gene that causes the largest decrease

in the prediction error of gene gn when adding it to the r−1 current parents
of the gene gn, add it to the parents set of the gene.

3. Stop if the decrease is less than α · ε̂r,n or the number of parent is larger
than m1.

The number α is a parameter to our algorithm, and εr,n denotes the average
decrease in the error of gene gn with r− 1 parent that were found by the greedy
algorithm, when adding a random r-th parents to the gene. Let ε̂r,n denote an
estimation of εr,n. For each r (1 ≤ r < k) and gene, gn, in the dataset M1, εr,n

is estimated empirically during the above exhaustive search, by averaging the
decrease in the error in r-th step. I. e. when adding a gene to the parent set of
size r − 1 of gn. In multiple regression we fit the coefficient wn,j , of the gene’s
“parents” in the linear model. This is done by finding wn,j , which minimize
the error egn (by differentiating and comparing it to zero). In stage 2 of the
algorithm, we perform multiple regression for each candidate set of parents. Let
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k (the size of the window) denote an upper bound on the number of parents for
each gene in the model. Let Cmk(k) denote the time complexity for calculating
multiple regression with k variables. In our case this equals the complexity of
inverting a k × k matrix, which is O(k3) practically. Let n denote the number
of genes in the dataset. The overall time complexity of the algorithm for a given
time window is O(k ·Cmk(k) ·n2) = O(k4 ·n2). As in the previous problems, here
we also used the fact that models of close windows are similar. For each gene we
kept the parents set which our algorithm found for the closest previous window
and tried to find a better one. To avoid local maxima, for each gene we tried to
optimize its parents set by checking different subsets from the set of genes which
give large decrease in the error in the initial stages of the algorithm.

4 Results

Our data consist of developmental gene expression datasets of the fruit fly
Drosophila melanogaster. One was wildtype dataset and others were from differ-
ent mutants in the Cop9 signalosome. The Cop9 signalosome (CSN) is a highly
conserved protein complex, conserved across different organisms and known to be
essential for development of plants and animals. CSN has eight subunits that reg-
ulate multiple signal transduction pathways [4]. These subunits are inter-related,
and some are found in multiple configurations [11]. Consequently, the biological
roles of the complex as a whole, and of individual subunits, are not completely
understood. To clarify this situation, we are employing transcriptional profiling
on Drosophila csn mutants. Four mutants in different CSN subunits were ana-
lyzed at three developmental time points: 60, 72, and 96 hours after egg deposit
(AED). This is the first global comparison between multiple CSN mutants in
animals, and as such we expect it to shed light on CSN involvement in unknown
processes, and lead to new and improved models for the role of CSN and its sub-
units. We analyzed our data together with publicly available wildtype samples
of Arbeitman et. al [2], containing 80 time points.

4.1 Detecting Putative Time-Shifted and Partially Time-Shifted
Genes

Some of the results for putative time-shifted genes compared to all the three
time points in the mutants (problem 2) are summarized in table 4.1. In table 4.1
a gene is attributed to a shift bin [A, B] if it there is at least one A ≤ Δ ≤ B
such the gene exhibits at time t in the mutant expression pattern as in time
t − Δ in the wildtype. For the four mutants analyzed, 120 sets of genes with
suspected time shifts were identified. In a global look at the data, we fist notice
that while in mutants 3 and 4 the number of negative and positive shifts was
equal (14 : 16 and 16 : 14 respectively), in mutant 2, and especially mutant
1, most of the shifts were negative (21 : 9 and 25 : 4, respectively). This may
suggest that mutations 1 and 2 caused late-acting genes to be induced earlier.
Table 4.1 shows a sample of these sets with their predicted shifts and accom-
panying P-value. The functional analysis of these genes indicates that most of
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these sets are involved in various aspects of development and cellular regulation,
such as regulation of DNA structure and integrity (rows 3, 5, 6, 8) and signal
transduction (rows 1, 2, 9, 12, 14). Only a few sets are obviously involved in
”house keeping” functions. For example, three genes, whose gene products are
all involved in glycolysis, were found to have a bin shift of [−4, 4] (line 4). These
genes comprise 1/3 of the genes with a similar bin shift, but only 0.49% of total
genes used in the analysis. The [−4, 4] bin basically represents genes for whom
no significant shift is found. Glycolysis, the breakdown of glucose to usable en-
ergy forms, is the one metabolic pathway that occurs in all living cells and is
the starting point for aerobic respiration and fermentation. As such, no effect
of the CSN on glycolysis was expected a priori, and indeed, this is illustrated
in this example. Interestingly, mutants 3 and 4 both show bin shifts with genes
encoding subunits of the proteasome (lines 11, 15, 17), and the proteasome regu-
latory lid in particular (lines 11 and 17). The proteasome is a large multiprotein
complex that degrades proteins in regulated fashion. That these genes are reg-
ulated by the CSN is interesting as the proteasome lid is evolutionarily related
to CSN, and the lid and CSN interact physically to regulate similar processes.
As yet, there is no in depth understanding on the cross-talk between these two
complexes, nor is the regulation on the lid clearly understood. However, finding
that the regulated expression of these genes is shifted in a COP9 signalosome
mutant provides further evidence for the mutual dependence of these complexes.

In the next stage we deal with windows of size 1. We observed that in all
mutants at time 60 AED, more genes were up- than down regulated in relation
to the wild type. This expression pattern may be explained by the corresponding
mutations causing loss of function of transcriptional repressors. We hypothesized
that these genes are either up regulated in the mutant before they would nor-
mally be so in the wildtype (that is in the wildtype they should be up regulated
at t = 60+ shift), or alternatively that these genes are normally upregulated
early in development, but then not repressed in the mutant (that is in the will
type they should be upregulated at t = 60− shift). Our results for putative time-
shifted genes compared to only one time point 60 in the mutants (problem 2,
where the conditions of the mutants include only time point 60 ) are summarized
in table 2. Table 2 shows that both types of behaviors were identified. The first
two rows of Table 2 show genes that are up regulated in two CSN mutants at
60 hours, while in wildtype these genes peak during early or late embryogenesis
(0 − 24 hrs AED). At the other extreme, the last two rows in Table 2 show sets
of genes that are induced in a CSN mutant at 60 hours, while in the wildtype,
these genes normally peak either during metamorphosis (149− 161 hrs AED) or
in old adults (527− 827 hours from hatching).

4.2 Intermittent Linear Model: Synthetical and Biological Inputs

To evaluate our method, we first checked our algorithm on small nets (contain-
ing a few dozen genes and conditions). We sampled known nets and tried to
reconstruct them by our and by D’haeseleer’s algorithms. We counted the num-
ber of real edges each algorithm missed, and the number of of edges that do
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Table 1. Representative results from time-shift analysis where the threshold = 0.1.
Bin Shift Range shows range of the shift in hours - the difference between the original
time point and the shifted time point, for example if the shift is −100 the shifted time
point are 100 hours after the original ones, i.e. the mutation caused the gene expression
of time T + 100 hours to be expressed in time T . Shift Bin Size: Number of genes in
this shift. Func Bin Size: Number of genes with this GO-ID in this shift. Genes with
this GO-ID: Total no of genes with this GO-ID on the chip, out of 2869 genes with
GO-ID. P-value.

No mutant GO-ID Bin Shift Func Genes with P-value
Shift Range Bin Size Bin Size this Func

1 1 7274 [-16 -8] 29 2 3 2.933 · 10−4

2 1 19221 [-68 -64] 14 2 11 0.0012
3 1 6333 [20 28] 23 2 13 0.0044
4 1 6096 [-4 -4] 33 3 14 4.499 · 10−4

5 2 6398 [-12 -8] 26 2 6 0.0011
6 2 5730 [-104 -100] 40 3 10 2.73 · 10−4

7 2 3779 [52 56] 7 2 49 0.0056
8 2 6281 [-64 -48] 16 2 25 0.0078
9 3 8523 [8 16] 30 2 2 1.057 · 10−4

10 3 15144 [-96 -92] 28 2 5 8.94 · 10−4

11 3 5838 [52 60] 17 2 9 0.0011
12 3 5099 [-104 -100] 82 2 2 8.07 · 10−4

13 4 4559 [52 56] 27 2 2 8.53 · 10−5

14 4 8195 [24 32] 56 2 2 3.74 · 10−4

15 4 8540 [12 20] 48 3 5 4.26 · 10−5

16 4 9993 [-16 -12] 14 2 15 0.0022
17 4 5838 [12 16] 53 4 9 1.2 · 10−5

Table 2. Representative results from partial time-shift analysis. Bin Shift Range shows
the wildtype expression I nduction range (in hours) for the genes upregulated at 60
hrs AED in the mutants. Shift Bin Size: Number of genes in this shift. Func Bin Size:
Number of genes with this GO-ID in this shift. Genes with this GO-ID: Total no of
genes with this GO-ID among the 242 genes up-regulated at 60 hrs AED that have a
GO-ID and are also present in the wildtype data set.

No Bin Shift GO-ID Shift Func Genes P-value
Range Bin Size Bin Size with Func

1 [8 9] 6139 60 5 7/242 0.0102
2 [19 20] 4702 32 5 9/242 0.0024
3 [149 161] 4674 37 4 6/242 0.0053
2 [527 827] 8248 50 3 3/242 0.0084

not exist in the real model and each algorithm adds The simple least square fit
method was substantially worse than our method, it missed 42% more real edges
than our method, and it add 425% more false edges compared to our method.
We then ran our procedure on real dataset of Arbeitman et al. [2] with 4000
genes, and generated linear models for three time windows as output. The first
window was for the times window 24 − 105, the second for times 19 − 57, and
the third was for times 67 − 113 (around the time points in the datasets of our
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Fig. 2. Description of the dynamics of a gene set at three time windows around time
60 - 96. The figure describes only the sub-model for this set, edges from/to other genes
were omitted.

mutants). Each window contained ten samples. For lack of space, we describe
here the results for only one sub graph constructed model. Further analysis is
deferred to the full version of this paper. Figure 2 describes the sub graph of the
constructed models for a small set of chosen genes. Figure 2 shows an analysis
of a small gene network, where gene 1 encodes a transcription factor known to
be involved in a developmental process, gene 4 encodes a hormone receptor in-
volved in this process, and genes 2, 3, 5, and 7 are known to be regulated in this
process, though their connection to 1 and 4 is unknown. Our linear modeling
correctly identifies gene 1 as a key node in this network, where it regulates the
other members of this network, with the exception of gene 7, which appears as
an ”orphan”. Interestingly, early in development we identify a putative feedback
inhibition loop between the transcription factor (1) and the activating receptor
(4). In late development, gene 2, whose biochemical and developmental function
are unknown, has an inhibitory effect on the network, negatively affecting both
the transcription factor (1) and another gene (3).

5 Conclusions and Further Research

In this work we investigated problems originating from developmental gene ex-
pression datasets of multiple genetic backgrounds. We defined two major ques-
tions, explained their biological significance, and their mathematical properties.
One of the problems is polynomial, while the other is NP-hard. We developed
algorithms for solving two variants of first one, and a heuristic for the other.
We implemented and ran them on synthetic and biological inputs. Our methods
generated many interesting biological results, some exhibiting agreement with
the acceptable biological knowledge. This supports the underlying reasoning of
our approach. There are many open questions and directions we are considering.
Here we describe two of them. First, more biological experiments are underway,
in order to achieve a richer dataset for our mutants (a dataset with more time
points). Such datasets will enable us to infer linear models for the mutants and
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compare these models to the one inferred for the wildtype. This way, we could
explore a new time window problem, where we compare models from different
genetic backgrounds in different time windows. Another direction involves infer-
ring linear models from datasets of multiple species, an approach that may help
filtering noise and avoid over-fitting.
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Abstract. A lookahead branch-and-bound algorithm (LBnB) is pro-
posed for solving the Maximum Quartet Consistency (MQC) Problem
where the input is a complete set of quartets on the taxa and the goal
is to construct a phylogeny that satisfies the maximum number of given
quartets. It integrates a number of previous efforts on exact algorithms,
heuristics, and approximation algorithms for the NP-hard MQC problem,
and a few improved search techniques, especially a lookahead scheme,
to solve the problem optimally. The theoretical running time analysis
of the LBnB algorithm is provided, and an extensive simulation study
has been well designed to compare the algorithm to previous existing
exact algorithms and a best heuristic Hypercleaning. The experimental
results on both synthetic and real datasets show that LBnB outper-
formed other exact algorithms, and it was competitive to Hypercleaning
on many datasets.

1 Introduction

With the availability of more and more genomic data, there are more needs in
fast phylogenetic analysis to facilitate biological applications. As a concrete ex-
ample, the Influenza Sequence Database (http://www.flu.lanl.gov/) has a
deposit of about 5318 whole genomes for Avian Influenza viruses as of January
16, 2005. The phylogenetic analysis on these viruses, at both the chronologi-
cal level and the territorial level, to carry out the evolutionary relationships is
crucial to fast understanding of the emergence of new variants and fast vac-
cination strategy design. There are a number of models as well as algorithms
that have been proposed for the phylogenetic analysis, each assumes the same
amount of biological data associated with every taxon under investigation. In
practice, however, the data disparity problem exists which means the availability
of biological data for analysis is different for every taxon. This data disparity
problem either forces the phylogenetic analysis to use a much less amount of
(but common) data for all taxa or limits the phylogenetic analysis to consider a
smaller number of taxa. Subsequently, it raises the question of how confident we
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should trust the analytical results that might be obtained using different data for
different subsets of taxa. One way of resolving this issue is to use different phylo-
genetic analysis methods to handle different subsets of taxa where the methods
find most applicable, and then to assemble a global phylogenetic pattern out of
the achieved sub-patterns for the subsets. The promise of this approach is that,
since every piece of phylogenetic analysis on subsets is of high confidence, the
global analytical results must also be of high confidence, though there might be
needs to resolve potential conflicts among the sub-patterns. The quartet-based
phylogeny construction methods can be classified into such efforts to construct
a (global) phylogeny for a set of taxa associated with different biological data.

1.1 Quartet-Based Phylogeny Construction

In our discussion of phylogeny construction for a set of taxa, the phylogeny is an
unrooted binary tree whose leaves bijectively map to the set of taxa and every
internal node in the tree has degree 3. In quartet-based phylogeny construction
methods, researchers try to build a phylogeny for every (or most) quartet, which
is a subset of 4 taxa, called a quartet topology, and then assemble a global
phylogeny for the whole set of taxa to satisfy all the quartet topologies that
have been built, or if not at all possible, to satisfy as many of them as possible.
For a quartet, there are 3 possible phylogenies associated with it. For example,
Figure 1 shows the 3 topologies for a quartet {s1, s2, s3, s4}. For simplicity, we
use [s1, s2|s3, s4] to denote the topology in which the path connecting s1 and s2
doesn’t intersect the path connecting s3 and s4, as shown in Figure 1(a).

Given a phylogeny T for a set of taxa S, for every quartet X , we can derive
a topology for X by computing the induced subtree of T on X . Such a set of(
n
4

)
induced quartet topologies is denoted as QT . Conversely, given a set Q of

quartet topologies (which can be built by various quartet inference approaches),
for every quartet, Q contains at most one topology for it (i.e. no ambiguity). If
there exists one global phylogeny T for S such that a quartet topology q ∈ Q
for a quartet is the same as the one derived from T , then T satisfies q or q is
consistent with T . If there exists one global phylogeny T satisfying all quartet
topologies in Q, i.e. Q = QT , then Q is compatible and T is the phylogeny
associated with Q.

The recognition problem, called the Quartet Compatibility Problem (QCP),
is to determine whether a given set Q of quartet topologies on a set of taxa S
is compatible or not, or equivalently if there is a phylogeny T on S satisfying
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Fig. 1. Three possible topologies for quartet {s1, s2, s3, s4}: (a) [s1, s2|s3, s4], (b)
[s1, s3|s2, s4], and (c) [s1, s4|s2, s3].
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all the quartet topologies in Q. If Q contains exactly one topology for every
quartet, then Q is complete; Otherwise, Q is incomplete. It has been known that
when Q is complete, the QCP problem can be solved in O(n4) time, where n
is the size of taxa set S; furthermore, if Q is compatible, then the associated
phylogeny T is unique and can be constructed within the same time [7]. The
situation changes when Q is incomplete, where the recognition problem becomes
NP-complete [14].

The more interesting computational problem is the optimization problem
where Q (either complete or incomplete, but in this paper we only consider the
complete case) is not compatible and the goal is to construct a phylogeny to
satisfy as many quartet topologies as possible. This is the so-called Maximum
Quartet Consistency Problem (MQC). A dual minimization problem to the MQC
problem, the Minimum Quartet Inconsistency Problem (MQI) with the same
input, is to construct a phylogeny to minimize the number of inconsistent quartet
topologies. Despite the fact that the MQC and the MQI problems have the same
optimal solution(s), their approximabilities differ a lot. The MQC problem is NP-
hard [4] and it admits a Polynomial Time Approximation Scheme (PTAS) [12];
The MQI problem is NP-hard [4] too but the best approximation ratio so far is
O(n2) where n is the size of taxa set [11].

A few attempts have been made to solve the MQC (or MQI) problem opti-
mally. Ben-Dor et al. [2] presents a dynamic programming algorithm that evalu-
ates the number of quartet topologies that are consistent with a bipartition of the
taxa set and thereby determines a phylogeny to satisfy the maximum number of
quartet topologies. The running time of the algorithm is O(3nn4). The inconsis-
tent quartet topologies with a bipartition are referred to as quartet errors (across
the bipartition), which are subject to be determined and changed in order to be
compatible to other quartets. If the number of quartet errors is known ahead of
time, then the fixed-parameter algorithm proposed by Gramm and Niedermeier
[9], which for simplicity is referred to as the GN algorithm subsequently, would
be able to detect and correct them and return an associated phylogeny. The GN
algorithm has a running time O(4kn + n4), where k is the number of quartet
errors. We note that the algorithm could be modified to solve the general MQC
problem with unknown number of quartet errors. In fact, the branch-and-bound
algorithm we developed in this paper takes advantage of many technical steps
in the GN algorithm, and many technical steps in another exact algorithm for
solving the MQC problem through Constraint Programming, which we devel-
oped in a previous work [15]. It also extends some ideas embedded in a class
of heuristics and approximation algorithms called quartet cleaning for the MQC
and/or MQI problems [3,4,6,10,12] on identifying those edges that must be in
the optimal phylogeny, among which hypercleaning performs the best with its
running time complexity O(n5f(2m) + n7f(m)), where f(m) = 4m2(1 + 2m)4m

and m denotes the greatest value that the set Best(Q, m) has to be computed
during the execution.



68 G. Wu, J.-H. You, and G. Lin

1.2 The Organization

In the next section, we present a number of facts associated with the quartet
topologies to provide the theoretical foundations for the design of our branch-
and-bound algorithm. Some of these facts might be attached to existing algo-
rithms such as the GN algorithm and the hypercleaning algorithm, others might
be independent on any algorithm. We present the lookahead branch-and-bound
algorithm in Section 3 where the meaning of “lookahead” would become clear.
We have implemented our algorithm, as well as some other algorithms men-
tioned above, and tested them on various synthetic and real datasets. Section
4 summarizes the experimental results and the comparisons we have made. We
conclude the paper in Section 5 with some remarks.

2 Theoretical Foundations for the BnB Algorithm

Our branch-and-bound algorithm takes advantage of many technical steps of the
GN algorithm [9], which is designed for the MQC problem where the number
of quartet errors is known to be exactly k. In the following we include some
propositions from [9] that are found useful for the design of our algorithm. The
interested readers should refer to [9] for more details. The most important idea
in the GN algorithm is to resolve global quartet conflicts through resolving local
quartet conflicts [5,1], referred to as local conflicts. A local conflict is a set of
3 incompatible quartet topologies on a subset of exactly 5 taxa. For example,
{[a, b|c, d], [a, c|b, e], [a, c|d, e]} is a local conflict.

Theorem 1. [9] Given a complete set of quartets Q over a set of taxa S and
some taxon e ∈ S, Q is compatible iff there exists no local conflict whose taxa
set includes e.

Notice that with a fixed taxon e, there are
(
n−1

4

)
subsets of 5 taxa containing e

and for each such subset there are
(5
3

)
= 10 potential local conflicts. Therefore,

Theorem 1 tells us that testing if Q is compatible can be reduced to testing
if none of the O(n4) subsets of 3 quartet topologies is a local conflict. Since
testing the compatibility of each subset of 3 quartet topologies takes constant
time, this implies an O(n4) algorithm for the QCP problem. With a fixed quartet
topology q, a similar argument gives that there are at most 6(n−4) local conflicts
containing q. Subsequently, if we decide to change the topology for a quartet,
then at most 6(n−4) new local conflicts would be generated and at most 6(n−4)
previous local conflicts would be resolved.

Theorem 2. Given a complete set of quartets Q over a set of taxa S and some
taxon e ∈ S, let m denote the number of local conflicts whose taxa set includes
e. Then there are at least m

6(n−4) quartet errors in Q.

The GN algorithm begins with building a conflict list that contains all the local
conflicts (involving a fixed taxon). At each step, it randomly chooses one local
conflict and tries to resolve it through changing some quartet topology in the
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local conflict. It is proven in [9] that it is sufficient to consider at most four ways
of resolving a local conflict and the GN algorithm picks one in some order. The
new topology becomes fixed for that specific quartet in the rest of the algorithm
execution unless there is no solution along the way and the algorithm goes back to
undo the changing. The algorithm subsequently updates the conflict list. When
there is no further local conflict left, the algorithm terminates and assembles a
phylogeny in another O(n4) time. It is proven that the main effort at every node
in the search tree associated with the GN algorithm is the conflict list updating,
which takes O(n) time. Therefore, the overall running time of the algorithm is
O(4kn+n4). In [9], some efforts have been made to improve the running time in
practice through determining the quartet topologies that must be changed, as
stated in the following Theorem 3; some other efforts have been made to improve
the running time in practice but potentially dropping the optimality, through
fixing some quartet topologies (and bipartitions) along the computation.

Theorem 3. [9] For a quartet topology q ∈ Q, if there are more than 3k distinct
local conflicts that contain q, then q must be changed in the optimal solution.

We remark that the GN algorithm is designed for a special case of the MQC
problem where the number of quartet errors is known to be exactly k. It there-
fore terminates when it finds the first solution. The algorithm can be modified to
return all solutions in O(4kn + n4) time. Such a modification would also be able
to solve the MQC problem when the number of quartet errors is only known to
be not exceeding some constant. Our branch-and-bound algorithm is designed
to solve the general MQC problem where the number of quartet errors is un-
known ahead of time. The rest of this section is devoted to some propositions
which can fast determine (more) quartet topologies that need to be fixed and
(more) quartet topologies that need to be changed. Some of these speedups are
novel and make the branch-and-bound algorithm significantly outperform the
existing exact algorithms. The readers might find the technical proofs of these
propositions in [16].

Let (X, Y ) be a bipartition of the taxa set S and |X | = � and |Y | = n − �.
It follows that |Q(X,Y )| =

(
�
2

)(
n−�
2

)
. Let p1 = |Q(X,Y ) − Q|. Fixing three taxa

from Y , a subset of � quartet topologies from Q, where each quartet contains
these three taxa and one taxon from X , is called an �-subset with respect to
(X, Y ). There are in total

(
n−�
3

)
such �-subsets. For an �-subset, if ignoring the

difference of the taxa from X gives rise to one unique quartet topology, then the
�-subset is exchangeable on X ; Otherwise, it is nonexchangeable on X . Let p2
and p3 denote the number of nonexchangeable �-subsets on X and the number
of nonexchangeable (n − �)-subsets on Y , respectively.

Theorem 4. [16] Let Q be a complete set of quartets on S of n taxa. For a
bipartition (X, Y ) of S where |X | = �, let p1 be the number of quartet errors in Q
across (X, Y ), p2 be the number of nonexchangeable �-subsets on X, and p3 be the
number of nonexchangeable (n−�)-subsets on Y . If 2p1+(�−1)p2+(n−�−1)p3 ≤
(� − 1)(n − � − 1), then bipartition (X, Y ) must be in the optimal phylogeny.
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Our extensive experimental results show that around 5 edges out of 100 can be
discovered by Theorem 4, which consequently reduces the overall running time
several orders of magnitude.

In [15], we have developed a scheme that transforms the computing of a phy-
logeny to satisfy the maximum number of quartet topologies to the computing
of an ultrametric matrix, which essentially is about the computing of the least
common ancestor for every pair of taxa such that a maximum number of quartet
topologies are satisfied. The computing of a desired ultrametric matrix is then
formulated into a constraint programming that can be readily solved by calling
to Smodels (http://www.tcs.hut.fi/Software/smodels/). Though the work
is mainly regarded as a reformulation of an old problem, we have imposed in the
Smodels a number of deduction rules which speed up the computation. These
deduction rules are also found useful in determining the quartet topologies that
must be fixed according to a set of already fixed quartet topologies. Subsequently,
at every node in the branch-and-bound search tree we might be able to shorten
the conflict list and identify the illegal ways of resolving a local conflict. The
following Theorem 5 lists some of the rules that have been implemented into our
algorithm, which help reduce the overall running time significantly.

Theorem 5. [8,15] For a set of 5 taxa {a, b, c, d, e}, if [a, b|c, d] and [a, b|c, e] are
fixed, then [a, b|d, e] must be fixed too; if [a, b|c, d] and [a, c|d, e] are fixed, then
[a, b|c, e], [a, b|d, e], and [b, c|d, e] must be fixed too.

3 A Lookahead Branch-and-Bound Algorithm

Our branch-and-bound algorithm (LBnB) is designed to solve the MQC prob-
lem optimally regardless whether or not the number of quartet errors is known
ahead of time. Typically, in the unknown case, we can use some other phy-
logeny construction method(s) to infer a phylogeny and determine subsequently
its associated quartet topology set. This provides us a first upper bound on the
number of quartet errors, denoted as k.

LBnB might also be regarded as an improvement over the GN algorithm,
with several newly designed speedup techniques. In fact, most of the basic oper-
ations in the GN algorithm have been adopted into LBnB, though they are put
together in different places and rearranged in different orders. Some significant
differences between the two algorithms are detailed in the following: In LBnB,
at the root node of the search tree, a global search is performed to identify
quartet topologies need to be fixed using Theorem 4 (in O(n4) time). It then
applies Theorem 5 to deduce more quartet topologies need to be fixed (in O(n4)
time). Another global search is performed to identify need-to-be-changed quartet
topologies according to Theorem 3 (in O(nk) time). Subsequently, and similarly
as in the GN algorithm, it then builds a conflict list (in O(n4) time). In LBnB,
besides this list, two other lists, one contains the fixed quartet topologies and the
other contains the need-to-be-changed quartet topologies, are also maintained.
In fact, every node in the search tree is associated with these three lists. At every
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node, the conflict list is further partitioned into two parts, one consists of lo-
cal conflicts each contains a need-to-be-changed quartet topology and the other
consists of local conflicts each contains no need-to-be-changed quartet topology.
The LBnB algorithm puts priorities on need-to-be-changed quartets. For every
need-to-be-changed quartet topology, it 1) changes the topology to resolve some
(at least one) local conflict; 2) updates the the conflict list; 3) updates the fixed
quartet topology list; and 4) updates the need-to-be-changed quartet topology
list. The difference between the size of the new conflict list and the size of the
conflict list before quartet topology changing is defined to be the contribution of
this need-to-be-changed quartet topology. The LBnB algorithm picks the need-
to-be-changed quartet topology achieving the largest contribution to proceed
the search. In this sense, the LBnB algorithm uses the contribution to guide
its search. In the case that there is no need-to-be-changed quartet topology, a
similar treatment is done for every way of resolving a local conflict, and then
the algorithm picks the way achieving the largest contribution to proceed. The
algorithm updates the upper bound k if a solution is found and in the solution
a less number of quartet errors were found.

At every search node, the LBnB algorithm also checks the lower bound on
the number of quartet errors using Theorem 2. If adding this lower bound to the
number of already determined quartet errors is greater than the upper bound
k, then the search node is cut off from further consideration. Notice that our
algorithm LBnB has the mechanism to look one step forward to identify the best
way to resolve a local conflict, through examining the contributions of all possible
branches. For this reason, we call it the lookahead branch-and-bound algorithm.
It should be noted that although it appears that at every node LBnB spends more
time than the GN algorithm (O(n2k) vs. O(n)), LBnB does not do any extra
computation compared to the GN algorithm. Therefore, the overall running time

1. At every node in the search tree,
1.1. Use Theorem 2 to decide to cut the node or not;
1.2. Use Theorem 4 to determine need-to-be-fixed quartets;
1.3. Use Theorem 5 to deduce need-to-be-fixed quartets;
1.4. Use Theorem 3 to determine need-to-be-changed quartets;
1.5. Build a conflict list and partition it into two parts;
1.6. If there are need-to-be-changed quartets,
1.6.1. For a need-to-be-changed quartet, calculate its contribution;
1.6.2. Pick the need-to-be-changed quartet achieving the largest contribution;
1.7. Else,
1.7.1. For every way of resolving a local conflict, calculate its contribution;
1.7.2. Pick the resolvement way achieving the largest contribution;
1.8. If k quartets have been changed but the conflict list is nonempty,
1.8.1. Kill the node and return to the parent node;
1.9. If the conflict list is empty,
1.9.1. Update k, update the best solution, and return to the parent node;
1.10. Continue on search at the picked node;

Fig. 2. A high-level description of the LBnB algorithm for the MQC problem
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of LBnB is also O(4kn+n4). Nonetheless, with the embedded greedy lookahead,
LBnB runs much faster in practice, mostly because the depth of its search tree
is much smaller than that for the GN algorithm. This is demonstrated true by
the experimental results in Section 4. One high-level description of the LBnB
algorithm at every search node is depicted in Figure 2.

Theorem 6. The lookahead branch-and-bound algorithm solves the MQC prob-
lem and runs in O(4kn + n4) time, where n is the size of the taxa set and k is
an upper bound on the number of quartet errors.

4 Experimental Results

We have designed four experiments to compare the performance of LBnB to
existing algorithms, among which three are on synthetic datasets and the last
one is on a real dataset of 30 taxa with about 8.3% quartet errors (i.e. k = 2272).
Note that the algorithms tested are all quartet-based phylogeny construction
algorithms. Therefore, the comparisons were for the purpose of showing the speed
of LBnB (except the comparison made to the hypercleaning algorithm). In all
experiments, we said an algorithm could not solve an instance if the algorithm
does not terminate in 48 hours. We chose to implement all the algorithms in
C/C++ (either by ourselves or courtesy to the original authors). All experiments
were done on an IBM P690 computer with a 1.7 GHz processor and 32 GB main
memory (shared by 16 CPUs).

Similar to [9], to provide a common test bench for all the algorithms, we
generated artificial datasets. Again we want to emphasis that such datasets were
for the purpose of testing the computing power of the algorithms. Therefore,
some of our datasets were very hard for all algorithms. For every pair of (n, k),
where n refers to the number of taxa and k refers to the upper bound of the
quartet errors, we generated a random phylogeny by recursively inserting one
taxon onto an arbitrary edge in the existing sub-phylogeny. After all taxa have
been added to the phylogeny, which is an unrooted binary tree, we derived
the set of quartets induced by the phylogeny. We then arbitrarily picked k out
of the

(
n
4

)
quartets and altered the topologies. We remark that this process

only guarantees the number of quartet errors is upper bounded by k, but not
necessarily equal to k since some combinations of quartet altering might give
rise to a new compatible set of quartets. For every pair of (n, k) we generated
10 datasets, and the following reported results are the average of test run on
them. Different algorithms have their own computing limits and we have different
datasets for them, to be detailed in the following sections.

4.1 Experiment 1

This experiment was intended to make comparisons among the exact algorithms
proposed for the general MQC problem, including the dynamic programming
algorithm by Ben-Dor et al. [2] (denoted as DP), the constraint programming
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Table 1. The running times for four exact algorithms: DP, CP, GN-opt, and LBnB-opt

Problem Size DP CP GN-Opt LBnB-Opt
n = 10 p = 1% 2 secs 1 sec 5 secs 1 sec

p = 5% 2 secs 1 sec 6 secs 1 sec
p = 10% 2 secs 1 sec 15 secs 1 sec
p = 15% 2 secs 1 sec 30 secs 1 sec
p = 20% 2 secs 1 sec 35 secs 1 sec
p = 30% 2 secs 1 sec 2 mins 1 sec

n = 15 p = 1% 2 mins 1 sec 20 secs 1 sec
p = 5% 2 mins 1 sec 10 mins 1 sec
p = 10% 2 mins 1 sec 5 hrs 10 secs
p = 15% 2 mins 1 sec − 30 secs
p = 20% 2 mins 1 sec − 1 min
p = 30% 2 mins 1 sec − 2 mins

n = 20 p = 1% 40 hrs 10 mins 20 mins 1 sec
p = 5% 40 hrs 40 mins − 2 mins
p = 10% 40 hrs 6 hrs − 10 mins
p = 15% 40 hrs 6 hrs − 40 mins
p = 20% 40 hrs 8 hrs − 3 hrs
p = 30% 40 hrs 10 hrs − 10 hrs

n = 25 p = 1% − 20 mins 9 hrs 5 secs
p = 5% − 10 hrs − 10 mins
p = 10% − − − 1 hr
p = 15% − − − 3 hrs
p = 20% − − − 18 hrs
p = 30% − − − 52 hrs

approach in our previous work [15] (denoted as CP), the modified GN algo-
rithm (denoted as GN-Opt), and our LBnB algorithm (denoted as LBnB-Opt).
Since DP and CP do not take k as an input and in fact their running times
are independent on k, we generated datasets defined by a pair (n, p) where for
each dataset p records the percentage of quartet errors in the given complete
quartet set. For GN-Opt and LBnB-Opt, we used k =

(
n
4

)
× p as the first up-

per bound on the number of quartet errors. We used quartet error percentage
p = 1%, 5%, 10%, 15%, 20%, 30%. The largest value set for n was 25, since LBnB-
Opt, which appeared to run the fastest, failed to terminate in 100 hours for pair
(30, 30%). Some of the running time results for these four algorithms are summa-
rized in Table 1, where a ‘−’ indicates that an algorithm didn’t terminate in 48
hours. It is surprising to see that GN-Opt performed inferior to DP and CP on
most of the datasets. It is very encouraging to see that LBnB-Opt outperformed
the other three algorithms on all datasets.

4.2 Experiment 2

This experiment was designed to make sole comparison between the GN algo-
rithm and our LBnB algorithm. As we have seen in Experiment 1 that in terms
of finding the optimal solution, LBnB-Opt outperformed GN-Opt significantly.
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Table 2. The running time comparison between GN-1st and LBnB-1st

Problem Size GN-1st LBnB-1st
n = 10 k = 40 1 sec 1 sec

k = 50 15 secs 1 sec
n = 20 k = 40 3 secs 1 sec n = 40 k = 40 1 sec 1 sec

k = 50 10 secs 1 sec k = 50 2 secs 2 secs
k = 100 35 mins 20 secs k = 100 15 mins 1 min
k = 200 − 2 mins k = 200 − 10 mins

n = 30 k = 40 1 sec 1 sec n = 50 k = 40 1 sec 1 sec
k = 50 6 secs 2 secs k = 50 3 secs 3 secs
k = 100 21 mins 35 secs k = 100 6 mins 2 mins
k = 200 − 5 mins k = 200 − 20 mins

Therefore, in this experiment we only compared them in finding the first solu-
tion, in which the number of quartet errors is at most k. We denote these two
algorithms as GN-1st and LBnB-1st, respectively. We generated 10 datasets for
each pair (n, k), where n = 10, 20, 30, 40, 50 and k = 5, 10, 20, 30, 40, 50, 100, 200.
For every value of n, we found both GN-1st and LBnB-1st terminated within a
second on the datasets corresponding to some small values of k; and only when
k ≥ 40 their running times start to depart. Another observation is that for each
dataset in the experiment, surprisingly, the number of quartet errors in the so-
lution by GN-1st is equal to the number of quartet errors in the solution by
LBnB-1st, and is equal to k. For these reasons, we chose to report their running
times only, and only for datasets with k ≥ 40, in Table 2. We set the time limit
to be 24 hours in this experiment because of time constraint. From the table, we
see that LBnB-1st outperformed GN-1st on all datasets, slightly for small values
of k but significantly for large values of k.

4.3 Experiment 3

The hypercleaning algorithm is known as a best heuristic for the MQC problem
(at the writing of this paper). The largest instance reported in [3] contains 18
taxa. This third experiment was designed to compare the performances of our
algorithm and the hypercleaning algorithm in terms of both running time and
the quality of the returned solution. For this purpose, we generated datasets
for n = 30, 40, 50 with various bounds on the number of quartet errors k =
100, 200, 300. Note that smaller values of n and larger values of k do not make
sense since they correspond to either too easy datasets or too difficult datasets.
Our algorithm was run to return both the first solution and the optimal solution
(that is, by LBnB-1st and LBnB-Opt, respectively). It is again interesting to
note that all three solutions for a dataset contain a same number of quartet
errors. (The value of m in Hypercleaning on these datasets was set 3 in order to
output solution phylogenies.) Subsequently, we chose to report the running time
only in Table 3. From the statistics, it is not surprising to see that LBnB-Opt
required much more time to search a whole tree than LBnB-1st which terminated
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Table 3. The running time comparison among three algorithms: Hypercleaning, LBnB-
1st, and LBnB-opt

Problem Size Hypercleaning LBnB-1st LBnB-Opt
n = 30 k = 100 40 secs 35 secs 6 mins

k = 200 55 secs 5 mins 36 mins
k = 300 80 secs 45 mins 2 hrs

n = 40 k = 100 10 mins 1 min 20 mins
k = 200 12 mins 10 mins 3 hrs
k = 300 18 mins 135 mins 18 hrs

n = 50 k = 100 50 mins 2 mins 2 hrs
k = 200 55 mins 20 mins 12 hrs
k = 300 62 mins 3 hrs −

at the time one solution was found. Nonetheless, it is encouraging to see that
LBnB-1st beats hypercleaning in some “easy” datasets. We set the time limit to
be 24 hours in this experiment.

4.4 A Real Dataset

We have obtained a real dataset which contains 30 Avian Influenza viruses with
their pairwise evolutionary distances measured by the Complete Composition
Vector defined on the whole set of proteins for the viruses [17]. We applied
the Four-Point Method [7] on this 30 × 30 distance matrix to infer a topology
for every quartet. We ran the Neighbor-Joining algorithm [13] on the distance
matrix to produce a phylogeny on these 30 taxa and use the set of induced
quartet topologies to estimate an upper bound on the quartet errors, which
was 2272. Unfortunately GN-1st did not terminate in 100 hours. Hypercleaning
finished in 62 minutes and the returned phylogeny resolves 1922 quartet errors.
Our algorithms LBnB-1st and LBnB-Opt finished in 21 hours and 29 hours,
respectively, and the returned phylogenies both resolve 1871 quartet errors.

5 Concluding Remarks

Among the exact algorithms for solving the MQC problem, we found the dynamic
programming (DP) the least efficient and our lookahead branch-and-bound algo-
rithm (LBnB-Opt) seemingly the most powerful. Nonetheless, the performance
of DP (and CP) is not affected by the number of quartet errors and thus DP
might be superior for datasets containing a small number of taxa.

The fixed-parameter algorithm solves the MQC problem in the special case
where the number of quartet errors is known exactly. This special case is unlikely
to happen, rather than that, the more often we find it easy to obtain an upper
bound on the number of quartet errors. The fixed-parameter algorithm can be
modified to solve the general problem, however, our experiments showed that
the running time grows too fast to be feasible. Our LBnB algorithm might be
regarded as an improvement over the fixed-parameter algorithm. It outperforms
in general significantly in both finding the first solution and in finding the optimal
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solution. One of our future work is to design more techniques to speedup the
search, including faster determination of need-to-be-changed quartets and need-
to-be-fixed quartets. Our expectation is that the algorithm has a competitive
running time to hypercleaning on datasets of modest size, say 50 taxa, and thus
to prepare us to construct a global phylogenetic pattern for the 5318 Avian
Influenza viruses.

Lastly, we remark that all experiments were done for the purpose of testing
the power of the LBnB algorithm. Though on all the synthetic datasets every
algorithm found the optimal solution, we haven’t compare the quality of the
phylogenies for the real dataset (but both LBnB-1st and LBnB-opt solve the
instance optimally).
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Abstract. We present two algorithms for computing the quartet dis-
tance between trees of arbitrary degree. The quartet distance between
two unrooted evolutionary trees is the number of quartets—sub-trees in-
duced by four leaves—that differs between the trees. Previous algorithms
focus on computing the quartet distance between binary trees. In this
paper, we present two algorithms for computing the quartet distance be-
tween trees of arbitrary degrees. One in time O(n3) and space O(n2) and
one in time O(n2d2) and space O(n2), where n is the number of species
and d is the maximal degree of the internal nodes of the trees. We ex-
perimentally compare the two algorithms and discuss possible directions
for improving the running time further.

1 Introduction

The evolutionary relationship for a set of species is conveniently described by
a tree in which the leaves correspond to the species, and the internal nodes
correspond to speciation events. The true evolutionary tree for a set of species
is rarely known, so inferring it from obtainable information is of great interest.
Many different methods have been developed for this, see e.g. [8] for an overview.

Some methods infer rooted trees, where the most recent common ancestor
of the set of species is represented by a root, and the direction of evolution is
from the root to the leaves, while other methods infer unrooted trees, relying on
an out group for inferring the direction of evolution. Most methods aim at fully
resolving the evolutionary tree into a binary tree, while other methods, e.g. the
Buneman [6,2] and refined Buneman [9,4], construct fully resolved binary trees
only if this is well supported by the input data. Different methods often yield
different inferred trees for the same set of species, and even the same method
can give rise to different evolutionary trees for the same set of species when
applied to different information about the species, e.g. different genes. To study
such differences in a systematic manner, one must be able to quantify differences
between evolutionary trees using well-defined and efficient methods.

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 77–88, 2005.
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Fig. 1. The four possible quartet topologies of species a, b, c, and d. Topologies (a):
ab|cd, (b): ac|bd, and (c): ad|bc are butterfly quartets, while topology (d): a

b × c
d, is a

star quartet.

One approach for comparing evolutionary trees is to define a distance mea-
sure between trees and compare two trees by computing this distance. Several
distance measures have been proposed, e.g. the symmetric difference metric [10],
the nearest-neighbour interchange metric [13], the subtree transfer distance [1],
the Robinson and Foulds distance [11], and the quartet distance [7]. Each dis-
tance measure has different properties and reflects different aspects of biology.

This paper is concerned with calculating the quartet distance. For an evolu-
tionary tree, the quartet topology of four species is determined by the minimal
topological subtree containing the four species. The four possible quartet topolo-
gies of four species are shown in Fig. 1. Given two evolutionary trees on the same
set of n species, the quartet distance between them is the number of sets of four
species for which the quartet topologies differ in the two trees.

Previous algorithms for computing the quartet distance all focus on compar-
ing binary trees and therefore avoid star quartets. Steel and Penny in [12] present
an algorithm for computing the quartet distance in time O(n3). Bryant et al.
in [5] present an algorithm that computes the quartet distance in time O(n2).
Brodal et al. in [3] present an algorithm that computes the quartet distance
in time O(n log n). In this paper, we present two algorithms that compute the
quartet distance between two trees of arbitrary degrees, i.e. trees that can con-
tain star quartets. The first algorithm runs in time O(n3) and space O(n2), the
second in time O(n2d2) and space O(n2), where d is the maximal degree of inner
nodes in the trees.

The rest of the paper is organised as follows. In Sect. 2, we present our algo-
rithms for computing the quartet distance between two unrooted evolutionary
trees of arbitrary degree. In Sect. 3 we experimentally compare the running time
of the algorithms and confirm that the actual running times concur with the
theoretical results. In Sect. 4 we draw our conclusions.

2 Algorithms

In this section we present three algorithms for counting the quartet distance
between two non-rooted trees of arbitrary degrees over the same set of n species.

Comparing two quartets means comparing the topology of these two quartets
in the two input trees. We say that a quartet is shared if it has the same topology
in both trees. Two star quartets always have the same topology, but butterfly
quartets can have three different topologies as shown in Fig. 1.
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Taa

Tb

b

Tc

c

C

Fig. 3. The three subtrees containing the leaves a, b and c are called Ta, Tb and Tc,
respectively. Any remaining trees (shown in lighter grey) are collectedly called Trest.

The most obvious way to compute the quartet distance between two non-
rooted trees over the same set of n species would be to explicitly compare each of
the

(
n
4

)
pairs of quartets. With only the input trees available, the straightforward

approach for finding the topology of one quartet takes linear time, which leads
to a total time usage of O(n5).

We first present an algorithm that runs in time O(n4) and space O(n), which
we modify to run in time O(n3) but space O(n2). Then we establish some ter-
minology and present a third algoritm, using O(n2d2) time and O(n2) space.

2.1 General Quartet Distance in Time O(n4) and Space O(n)

a

b

c

C

Fig. 2. The center,
C, of a, b and c

Given two input trees T and T ′ over the same set of
n species, we can compute the quartet distance in time
O(n4), if the quartet topology for each set can be found
in constant time in both input trees. We will show how
to achieve this by focusing on the centers between triplets
of leaves: Given leaves a, b, and c, there is a unique inner
node C, the center of a, b and c, in which the paths from
a to b, a to c and b to c are joined, see Fig. 2.

Given leaves a, b, c ∈ T with center C, let the subtree containing a be de-
noted Ta, similarly for leaves b and c. Any remaining subtrees of C are collectedly
denoted Trest, see Fig. 3. For each leaf x different from a, b and c, a quartet is
defined, and its topology in T can be easily determined from the center: if x ∈ Ta

then the topology of the quartet is ax|bc, and if x ∈ Tb, the quartet is bx|ac and
if x ∈ Tc the quartet is ab|cx. If x ∈ Trest, then the topology is a

b × c
x. Similarly,

the quartet topologies for a, b, c and x can be determined in T ′ given the center
of a, b, and c in T ′.

To determine the quartet distance between two trees, each of the
(
n
3

)
∈ O(n3)

triplets of leaves is processed sequentially in both trees: The centers can be found,
and the leaves in the different subtrees accumulated, in linear time. Assuming
leaves are numbered 0, . . . , n − 1, the topology of each of the n − 3 quartets
containing a, b and c can be stored in an array for each tree, where entry i

contains the topology of the quartet a, b, c and the ith leaf. In this way, the
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topology of the quartets can be compared directly. Each of the O(n3) triplets
can be processed in linear time, making the algorithm run in time O(n4) and
space O(n). Since each quartet is processed four times—once for each triplet it
contains, the number of quartets that have different topologies must be divided
by four to get the correct quartet distance.

The algorithm uses no data structures other than the trees and arrays, little
memory and no complex methods, so it is very easy to implement. It is also very
easy to extend it to count the number of shared quartet topologies between k

trees over the same set of n species in time O(kn4) and space O(kn).

2.2 General Quartet Distance in Time O(n3) and Space O(n2)

Instead of counting quartets with different topologies in the input trees, we now
count the number of shared quartets and then subtract this number from the
total number of quartets,

(
n
4

)
, to get the quartet distance.

Given rooted subtrees Tx and T ′
x of T and T ′ respectively, we can pre-compute

the size of the intersection of leaf sets, denoted |Tx ∩ T ′
x|. There are O(n2) pairs

of such subtrees, and all intersection sizes can be computed and stored in time
and space O(n2), see e.g. [5]. Using these precomputed sizes, we can improve the
running time of the above algorithm to O(n3).

Consider leaves a, b and c. Let centers and subtrees in T and T ′ be defined
as above. Use prime (′) to denote the center and subtrees in T ′, and no prime
for the center and subtrees in T . Any leaf, x, in Ta gives a butterfly quartet of
the form ax|bc in T , and any leaf x′ in T ′

a gives a butterfly quartet of the form
ax′|bc in T ′. Therefore, any leaf x, x �= a, in both Ta and T ′

a, represents a shared
butterfly quartet in the two trees. The same applies for b and c. The number
of shared butterfly quartets containing a, b and c can therefore be computed by
the expression:

|Ta ∩ T ′
a| + |Tb ∩ T ′

b| + |Tc ∩ T ′
c| − 3 .

This number can be computed in constant time, since the sizes of the intersec-
tions are precomputed. Any leaf x in Trest gives a star quartet in T , and any leaf
x′ in T ′

rest gives a star quartet in T ′. It follows that the number of shared star
quartets containing a, b and c can be computed by the expression:

|Trest ∩ T ′
rest| .

Since Trest and T ′
rest potentially consist of a large number of subtrees, it is not

clear how to compute |Trest ∩ T ′
rest| in constant time. However, |Trest ∩ T ′

rest| can
be expressed in terms of Ta, Tb, Tc, T ′

a, T ′
b and T ′

c. Any leaf in T ′
rest is either in

Ta, Tb, Tc or Trest, and never in two of those at the same time, since they are
disjoint. Thus:

|Trest ∩ T ′
rest| = |T ′

rest| − (|T ′
rest ∩ Ta| + |T ′

rest ∩ Tb| + |T ′
rest ∩ Tc|) .
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Any element in Ta that is not in T ′
a, T ′

b or T ′
c is in T ′

rest. The same applies for
elements in Tb and Tc. This gives the equations:

|Ta ∩ T ′
rest| = |Ta| − (|Ta ∩ T ′

a| + |Ta ∩ T ′
b| + |Ta ∩ T ′

c|) ,

|Tb ∩ T ′
rest| = |Tb| − (|Tb ∩ T ′

a| + |Tb ∩ T ′
b| + |Tb ∩ T ′

c|) ,

|Tc ∩ T ′
rest| = |Tc| − (|Tc ∩ T ′

a| + |Tc ∩ T ′
b| + |Tc ∩ T ′

c|) .

Since there are n leaves in the trees, it follows directly that:

|T ′
rest| = n − (|T ′

a| + |T ′
b| + |T ′

c|) .

Combining all these equations give an expression for |Trest ∩ T ′
rest| that can be

computed in constant time. So given a center of three leaves in each tree, the
number of shared topologies of quartets containing these leaves can be found in
constant time. Assuming the centers can be found in constant time, the algorithm
will run in time O(n3), since there are O(n3) different triplets of leaves.

a

b
C

TC

Fig. 4. For node C on the
path from a to b, any sub-
tree TC , rooted in C and not
on the path, defines a set of
leaves, c, for which C is the
center of a, b, and c

Finding the centers in constant time is done by
finding a linear number of centers in linear time:
For each pair of leaves, a and b, the path from a to
b can be found in linear time by a single traversal
of the tree. Each inner node in the path is the
center of all triplets a, b, c where c can be reached
from the node via an edge not in the the path, see
Fig. 4 for an illustration.

Assuming leaves are numbered 0, . . . , n−1, the
center of each of the n−2 triples containing a and
b can be put in an array, where entry i contains the
center of a, b and the ith leaf. All internal nodes on
the path from a to b is a covering and disjoint set
of centers for all triplets containing a and b. Therefore, filling all array entries can
be done by a single traversal of the tree. Using these arrays, and the equations
above, the number of shared quartets containing a fixed pair of leaves can be
found in linear time. Since there are O(n2) pairs of leaves, the algorithm runs in
time O(n3). The space consumption is O(n2), since all the intersection sizes of
induced subtrees must be stored. As before, all quartets are counted four times,
so the final count must be divided by four.

2.3 General Quartet Distance in Time O(n2d2) and Space O(n2)

Given four leaves and their quartet topology in T and T ′, there are four possible
cases: Case 1: The quartet has a star topology in both trees (shared quartet).
Case 2: The quartet has an equal butterfly topology in both trees (shared quar-
tet). Case 3: The quartet has a different butterfly topology in the trees. Case 4:
The quartet has a butterfly topology in one tree, and a star topology in the
other tree. For i = 1, 2, 3, 4, let Qi be the number of quartets in case i above.
The quartet distance qdist(T , T ′) between T and T ′ is Q3+Q4. Let BQ and BQ′
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be the number quartets that have butterfly topologies in T and T ′, respectively.
The main observation of our approach is that Q4 = BQ + BQ′ − 2(Q2 + Q3),
which gives the following expression:

qdist(T , T ′) = Q3 + Q4 = BQ + BQ′ − 2Q2 − Q3

Surprisingly, this means that the general quartet distance can be calculated
without directly considering the star quartets. What we need are three algo-
rithms: one that can count the number of quartets with butterfly topology in a
single general tree (for computing BQ and BQ′), one that can count the number
of quartets that share the same butterfly topology in two general trees (for com-
puting Q2), and one that can count the number of quartets that have different
butterfly topologies in two general trees (for computing Q3).

The first algorithm can be implemented using the second: The number of
quartets with the same butterfly topology in two instances of the same tree is
the total number of butterfly quartets in that tree. Therefore we only need to
consider the second and third algorithm. Both can be made by extending the
algorithm described in [5].

The algorithm for counting butterfly quartets with the same topology uses
the concepts of directed edges, directed quartets, and claims, that we define below:

T2 T1

e1

e2

e

Fig. 5. Edge e defines rooted
trees T1 and T2 and directed
edges e1 and e2

A butterfly quartet ab|cd is induced by edges
which separate a, b from c, d, note that the in-
ducing edge implies the topology of the quartet.
Since several edges may induce the same butter-
fly quartet, it is convenient to look at directed
edges: every edge e defines two rooted subtrees
T1 and T2; instead of viewing e as a single undi-
rected edge, we can view it as two directed edges
e1 and e2, and we say that T1 is in front of e1
and T2 is behind e1 and similarly for e2: T2 is in front of e2 and T1 is behind e2,
see Fig. 5.

e1
T1

T2

T3

a

b

c

d

Fig. 6. The directed edge e1

claims all directed quartets
ab → cd where a, b ∈ T1, c ∈ T2

and d ∈ T3

A butterfly quartet ab|cd defines two directed
quartets: ab → cd and ab ← cd; for undirected
edge e, inducing quartet ab|cd, the correspond-
ing directed edges e1 and e2 induces the directed
quartets ab → cd and ab ← cd.

To each directed quartet, ab → cd, we can
uniquely associate a directed edge, e1 such that
a and b are leaves in the tree behind e1, and
such that c and d are leaves in different subtrees
of the root of the tree in front of e1, see Fig. 6.
We call such a tree substructure a claim, written
T1

e1→ (T2, T3), and say that the edge e1 claims
the directed quartet ab → cd and we also say
that an edge e1 claims an undirected quartet ab|cd if it claims one of its directed
quartets.
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Since each (undirected) butterfly quartet defines exactly two directed quar-
tets, and each directed quartet is claimed by exactly one directed edge, each
butterfly quartet is claimed by exactly two directed edges.

Now, consider a pair of claims, cl = T1
e→ (T2, T3) and cl′ = T ′

1
e′
→ (T ′

2, T
′
3)

in T and T ′, respectively. The number of oriented butterfly quartets shared by
the claims can be computed by the expression:

count(cl, cl′) =
(
|T1 ∩ T ′

1|
2

)
· (|T2 ∩ T ′

2| · |T3 ∩ T ′
3| + |T2 ∩ T ′

3| · |T3 ∩ T ′
2|) (1)

and the total number of shared oriented butterfly quartets between T and T ′ is
obtained by summing over all pairs of claims from the two trees:

2Q2 =
∑

cl ∈ T

∑
cl′ ∈ T ′

count(cl, cl′) (2)

Since each butterfly quartet corresponds to exactly two oriented butterfly
quartets, the number of shared butterfly quartets is obtained by dividing the
sum with two. Since the size of the intersection of subtrees is precomputed,
count(cl, cl′) can be computed in constant time, and the sum can thus be com-
puted in time proportional to the number of claims in T times the number of
claims in T ′.

T1

T2

T3

T4

T5

e

Fig. 7. The edge e is not part of
a unique claim, but part of all
claims T1

e→ (Ti, Tj) for i, j =
2, 3, 4, 5, i �= j

For binary trees, there is a 1 − 1 correspon-
dence between claims and directed edges point-
ing to internal nodes, and therefore O(n) claims
per tree, resulting in a O(n2) time algorithm.
For general trees, a directed edge e pointing to
a node of degree d will be part of

(
d−1
2

)
claims,

see Fig. 7. Thus, the straightforward application
of the sum in (2) result in an O(n2d4) time algo-
rithm for d−airy trees, since each edge in each
tree can lead to O(d2) claims.

The reduction in time to O(n2d2) is achieved
by a transformation of the input trees T and
T ′ into binary trees, annotated with information
about the original trees, from which the butter-
fly quartets shared in the original trees can be
calculated.

Expanding two trees of arbitrary degree is done by expanding every node with
degree higher than three to a number of binary nodes. This adds a linear number
of edges and nodes to the trees, so it does not change their sizes asymptotically.
The two expanded trees induce all the butterfly quartets in the two original non-
expanded input trees, but they also induce additional butterfly quartets due to
the newly added nodes and edges: each star quartet in the original trees will be
translated into butterfly quartets by the introduction of new edges, when resolving
high-degree nodes, see Fig. 8. Thus, summing the contribution of all pairs of claims
using (2) on the expanded trees will count too many butterfly quartets.
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a

b

c

d

e

f

(a) Original tree with high-degree
node.

a

b

c

d

e

f

(b) Expanded tree, new edges
shown dashed in grey.

Fig. 8. A tree with a high-degree node (a), and an expanded tree for this tree (b). The
star quartets in the tree on the left becomes butterfly quartets on the right, due to the
newly introduced edges, e.g. a

b × c
e becomes ab|ce.

Consider an edge, e1, present in the original tree, and any edge e2 resulting
from the expansion of the tree, where e2 is reachable from e1 through newly
introduced edges exclusively, see Fig. 9. These two edges, together, claim a set
of butterfly quartets found in both the extended and the original tree: for leaves
a, b ∈ T1 behind e1 and c ∈ T2 and d ∈ T3 in front of e2 have, by construction,
quartet topology ab|cd in the extended tree, but also in the original tree since
e1 separates a and b from c and d in the original tree.

T1

T2

T3

e1 e2

Fig. 9. An extended claim from
original edge e1 through newly
introduced edge e2

Formally, we let ���∗ denote the reflexive
and transitive closure of newly introduced edges,
that is, for e1 ���∗ e2, e2 is either e1 or e2 is
reachable from e1 following only newly intro-
duced edges. If e2 form a claim in the extended
tree, we say that e1 ���∗ e2 is an extended claim.
For extended claims ecl ∈ T and ecl′ ∈ T ′ we
can calculate the number of shared quartets us-
ing (1), but with the sub-trees from the extended
tree, defined by the extended claims.

The following propositions establish that we
can count the ordered butterfly quartets shared in the original trees using the
extended claims in the extended trees, ET and ET ′, which gives us.

2Q2 =
∑

ecl ∈ ET

∑
ecl′ ∈ ET ′

count(ecl, ecl′) (3)

Proposition 1. Each directed butterfly quartet, ab → cd in the original tree
corresponds to exactly one extended claim in the extended tree.

Proof. Consider the quartet ab → cd in the original tree, and corresponding
claim Tab

e→ (Tc, Td) in the original tree. The node separating trees Tab, Tc, and
Td is either a binary node (degree 3) or a node of higher degree.

In the first case, where the node has degree 3, it will not have been expanded
in ET and the claim will also be an extended claim in ET , and the only extended
claim in ET that claims ab → cd.
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In the second case, where the node has degree higher than 3, it will be
expanded into a sub-tree of newly introduced nodes and edges. Among the newly
introduced nodes, there is a node that separates the subtrees containing c and
d, since they were separated by the high degree node that was expanded. Let e′

denote the edge pointing to this node, not from the trees containing c and d; the
situation is then as this:

a

b

e e′

c

d

This is an extended claim, claiming the oriented quartet ab → cd in ET . Any
other extended claim, claiming ab → cd, must contain e′, by definition, and an
original edge e′′ such that a and b are found in the tree behind e′′ and such that
e′′ ���∗ e′. Assume that such an e′′ exist, and that e′′ �= e. Since e separates a
and b from the expanded node that originally separated ab from c and d, any
edge separating ab from cd must either be on the path from e to e′, or be behind
e. Assume e′′ is on the path. Since e ���∗ e′ the path only contain new edges,
which contradicts that e′′ is an original edge. Assume that e′′ is behind e, which
means that e is on the path from e′′ to e′. Since e′′ ���∗ e′ by assumption,
this path consist of new edges, which contradicts that e is an original edge. The
conclusion is the edge e′′ cannot exist, thus the extended claim is unique. ��

Proposition 2. All directed quartets ab → cd claimed by extended claims in the
extended tree correspond to directed quartets in the original tree.

Proof. If ab → cd is claimed by an extended claim, through original edge e1
and new edge e2, in ET , then, by the construction of ET , the original edge e1
separates ab from cd in T . Thus e1 induces, but does not necessarily claim, the
quartet ab → cd in T . ��

Using precomputed sizes of intersecting subtrees, as before, we can calculate
count(ecl, ecl′) in constant time, so to achieve the desired complexity for com-
puting (3) we need to shown that we can calculate all pairs of extended claims in
time O(n2d2); we do this by showing how we can calculate all extended claims
for a single tree in time O(nd).

When building the extended tree, we can tag each edge with a flag specifying
if it is an edge in the original tree or if it is a newly introduced edge. With
these tags, we can iterate through all original edges in the extended tree by a
simple tree traversal in linear time. For each original edge, e1, we can find all
e2 such that e1 ���∗ e2 by a simple traversal starting at e1 following only newly
introduced edges. Since the newly introduced edges reachable from e1 found in
this way are all edges in a tree expanded from a node of degree at most d, this
search can be done in time O(d) giving a total time for finding all extended
claims in a single tree of O(nd).
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For counting butterfly quartets with different topologies we use an algorithm
that works almost in the same way as the one just described, but it uses an
alternative version of (1), which counts the number of butterfly quartets that
have different topologies instead of the ones with the same topology. Similar to
(1), it can be calculated in constant time.

Observe that when comparing two extended claims ecl and ecl′, butterfly
quartets associated to these claims, that have different topologies, are those
quartets where exactly one leaf is in T1 ∩ T ′

1. The number of such quartets can
be counted using the following expression:

dcount(ecl, ecl′) = |T1 ∩ T ′
1| · |T1 ∩ T ′

3| · |T2 ∩ T ′
2| · |T3 ∩ T ′

1| +
|T1 ∩ T ′

1| · |T1 ∩ T ′
2| · |T2 ∩ T ′

3| · |T3 ∩ T ′
1| +

|T1 ∩ T ′
1| · |T1 ∩ T ′

2| · |T2 ∩ T ′
1| · |T3 ∩ T ′

3| +
|T1 ∩ T ′

1| · |T1 ∩ T ′
3| · |T2 ∩ T ′

1| · |T3 ∩ T ′
2|

Counting the total number of butterfly quartets with different topologies in
the two trees is done by comparing all pairs of extended claims.

4Q3 =
∑

ecl ∈ ET

∑
ecl′ ∈ ET ′

dcount(ecl, ecl′) (4)

Since each undirected butterfly quartet is claimed twice in each tree, the ones
with different topologies are counted four times—once for each combination of
claims. Therefore, the number of butterfly quartets with different topology is
obtained by dividing the sum with four.

3 Experiments

We have implemented the above algorithms in Java (the implementation is avail-
able upon request) and performed a set of experiments to validate the theoretical
time complexities of our algorithms. The performance of the O(n2d2) time algo-
rithm has been verified by running the algorithm on trees where all nodes have
the same degree d. To verify the running time with respect to d, we have run
the algorithm for various degrees d but fixed numbers of leaves n, . Similarly,
to verify the running time with respect to n, we have kept d constant while
changing n.

Fig. 10 shows the running time of the O(n2d2) time algorithm as a function
of d. For fixed n, the running time evolves as O(d2), which verifies the theoret-
ical time complexity with respect to d. Fig. 11 shows the running time of the
algorithms as a function of the number of leaves n. For fixed d the running time
evolves as O(n2) and O(n3) respectively, which agrees with the theoretical time
complexities. As expected the O(n3) does not depend on d, however for d = 3 the
algorithm is slightly slower than for larger values of d. This can be explained by
the longer paths between every pair of leaves in such trees, since the algorithm
is based on processing paths between pairs of leaves.
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Fig. 10. Running time of the O(n2d2) algorithm as a function of the degree d of the
internal nodes for three fixed numbers of leaves n
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(a) O(n2d2) algorithm.
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(b) O(n3) algorithm.

Fig. 11. Running time of the O(n2d2) and O(n3) algorithms as a function of the
number of leaves n for six fixed internal node degrees d. For every d it is verified that
the running time as a function of n is O(n2) and O(n3) respectively.

Fig. 11 also show that the choice of algorithm for computing the quartet
distance should depend on both n and d as expected. Note that all trees in
our testing scenario have many internal nodes with a high degree, whereas trees
generated using e.g. the Buneman [6, 2] and refined Buneman [9, 4] methods
(which might reconstruct non-binary trees) usually contain only a few nodes
of high degree. On such trees, the O(n2d2) time algorithm can be expected to
run faster than in our tests. More experiments are needed to investigate the
performance of the algorithms on such trees. One can view the graphs in Fig. 11
as a worst case guideline of when to use the O(n3) time algorithm. Fig. 12 shows
a direct comparison of the running times of the two algorithms. Since Fig. 11(b)
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shows no significant variance in the running time for d ≥ 20, Fig. 12 includes
only two different plots for the O(n3) algorithm.

4 Conclusions

The contributions of this paper are two algorithms for computing the quartet
distance between trees of arbitrary degrees. Earlier algorithms focus on binary
trees and does not work on general trees. In this paper we have also shown
that the quartet distance between two general trees can be expressed in terms
not involving star quartets. The use of leaf intersection sizes in our algorithms
prevents them from having a running time faster than O(n2). Consequently work
on improving the O(n2d2) time algorithm should be directed at removing one or
both factors of d. Another approach for reducing the time complexity is to try
to adapt the ideas from the O(n log n) time algorithm in [3] to trees of arbitrary
degree.
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Abstract. Supertree methods are used to construct a large tree over a
large set of taxa, from a set of small trees over overlapping subsets of the
complete taxa set. Since accurate reconstruction methods are currently
limited to a maximum of few dozens of taxa, the use of a supertree
method in order to construct the tree of life is inevitable.

Supertree methods are broadly divided according to the input trees:
When the input trees are unrooted, the basic reconstruction unit is a
quartet tree. In this case, the basic decision problem of whether there
exists a tree that agrees with all quartets is NP-complete. On the other
hand, when the input trees are rooted, the basic reconstruction unit is
a rooted triplet, and the above decision problem has a polynomial time
algorithm. However, when there is no tree which agrees with all triplets, it
would be desirable to find the tree that agrees with the maximum number
of triplets. However, this optimization problem was shown to be NP-hard.
Current heuristic approaches perform mincut on a graph representing the
triplets inconsistency and return a tree that is guaranteed to satisfy some
required properties.

In this work we present a different heuristic approach that guarantees
the properties provided by the current methods and give experimental
evidence that it significantly outperforms currently used methods. This
method is based on divide and conquer where we use a semi-definite
programming approach in the divide step.

1 Introduction

The study of evolution and the construction of phylogenetic (evolutionary) trees
are classical subjects in biology. DNA sequences from a variety of organisms are
rapidly accumulating, providing large amounts of data to a number of sequence
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based approaches for phylogenetic trees reconstruction. The goal behind the
“tree of life” project is to construct the tree representing the evolutionary history
of over a million and a half different species. This task cannot be achieved by
today’s substitution based phylogenetic reconstruction methods. Therefore, the
need to design methods capable to amalgamate data taken from different sources
is emerging.

Phylogeny reconstruction methods are broadly divided into character-based
and distance-based methods. Distance based methods start by computing “evolu-
tionary distances” between pairs of taxa. Then a tree with weighted edges whose
pairwise tree distances approximate the evolutionary distances is sought, typi-
cally by some version of the neighbor joining clustering paradigm [SN87]. In con-
trast, character based methods work directly on character data. The best known
and most widely used character-based methods are maximum parsimony [Fit81]
and maximum likelihood [Fel81]. Maximum parsimony (MP) is a non-parametric
combinatorial method, while maximum likelihood (ML) is a parametric statisti-
cal method. In MP, the tree sought is such that minimizes the total number of
state changes on all edges for all the characters. MP was proved to be NP-hard
already at 1982 by [FG82] while ML only recently by [CT05]. Nevertheless, for
data comprise of up to few dozens of taxa, there exist good heuristics that are
heavily used in practice.

The supertree reconstruction problem (or for short, the supertree problem)
(to be defined rigorously later) is as follows: given a set of phylogenetic trees
over overlapping non identical sets of taxa, find a tree over the union of the
given taxa sets that represents the best the input subtrees. This output tree is
denoted as the supertree. There are few criteria of how to measure the quality
of the supertree. These criteria differ by the type of the input trees.

Phylogenetic trees are divided into rooted and unrooted trees. In unrooted
trees, the decision problem of whether there exists a supertree that resolves
all the input subtrees was shown to NP-hard by [Ste92]. However, in the same
paper, it is shown that if the trees are rooted then this problem is solvable
in polynomial time by a simple divide and conquer algorithm of Aho et. al. ,
devised originally in the setting of relational data bases. Rooted trees have other
attractive properties. In [SDB00] three required basic properties from a supertree
method are listed:

– The method can be applied to any unordered set of input trees.
– if we rename all the species and then apply the method to the new input

trees, we get the same old output tree under the renaming performed.
– if the input trees are consistent, the supertree returned should resolve all the

input trees.

In the same work, it is shown that if the input tree are unrooted, there is
no supertree method that can satisfy these three requirements simultaneously.
However, when the setting is changed to a rooted setting, these requirements
are achievable, in addition to polynomial running time of the method. They
suggested that the rooted setting was perhaps superior to the unrooted one
in the context of supertree construction. Based on these requirements, [SS00]



Using Semi-definite Programming to Enhance Supertree Resolvability 91

devised the min cut (MC) supertree method and showed it satisfies all of them.
A later modification by [Pag02] to the (MC) algorithm, denoted the modified
min cut (MMC) algorithm, guaranteed that the resulting supertree satisfied
additional desirable properties. Page has made code available that implements
this algorithm and maintains a server where one can run the MMC algorithm
(at http://darwin.zoology.gla.ac.uk/ rpage/supertree/).

Briefly, both MC and MMC proceed recursively by finding a minimum cut
in a graph built from the current set of triplets. The triplets in this minimum
cut will then be discarded so that the remaining triplets can be partitioned into
subtrees that are combined. The discarded triplets correspond to the unsatisfied
ones. The algorithms are a bit narrow in their view in that they proceed cau-
tiously in order to violate a minimum number of triplets at each step. At each
step there are also triplets that are satisfied. They do not include this phenomena
in their divide step.

In this paper, we extend the above approach and apply a more inclusive
and less greedy criterion in the divide step. In short, instead of minimizing the
number of triplets that are violated at every step, we aim at maximizing the
ratio between satisfied to violated triplets. Unfortunately, maximizing this ratio
is, itself, an NP-complete problem (by reduction from the sparsest cut prob-
lem for general demands). Thus, we develop a very fast heuristic that is moti-
vated by semi-definite programming (inspired in part by work of Goemans and
Williamson [GW95]) that works quite well for this application. This approach
leads to practically much better results in terms of violated triplets without in-
terfering with any of the properties guaranteed by these algorithms. Indeed, our
methods are significantly better and significantly faster than implementations of
MMC. Moreover, the implementation effort was quite modest.

We also compare our performance to a supertree method that is far slower
but has significantly better performance for the triplet problem. This method
proceeds by reducing an instance of a triplet problem to an instance of the
matrix representation parsimony problem ( MRP), and then using state of the
art parsimony engines to solve the parsimony problem. This method previously
produced far better results than the triplet based methods at the cost of much
larger running times [ECB+04]. Our methods also outperform these methods in
terms of satisfying triplets. On one of our input distributions, MRP appears to
do better on a fit measure involving the model tree, called maximum agreement
subtree (MAST). On the other, we appear to do better. Also significantly, while
for small sets of taxa we improve only modestly, as the number of taxa grows
our advantage increases a bit. The computational requirements of the MRP
approach, do not allow us to obtain performance numbers for MRP for very
large number of taxa. We do report on results with our algorithms, however
without comparing to other methods.

The use of semi-definite programming in the context of phylogenetic recon-
struction is not new. Ben-Dor et. al. [BDCG+98] have used semi-definite pro-
gramming to construct a tree over a given set of quartets. However, we stress
that our method and the one of [BDCG+98] resemble only in the use of the
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semi-definite programming technique. While [BDCG+98] use the embedding on
the sphere once to resolve the whole tree and then use a neighbor joining type
algorithm to reconstruct a complete tree, we use it at every step in the recursion
only as an intermediate step to obtain an optimal partition of the taxa while the
main algorithm is the divide and conquer Aho et. al. algorithm.

The remainder of this paper is organized as follows. In the next section we
present the notations used and define the maximum triplet consistency method.
In Section 3 we survey some existing methods for rooted supertrees and discuss
some of their properties. Section 4 describes the pitfalls of current triplet based
supertree methods, outlines our contribution, the algorithmic challenges involved
and their resolutions. Section 5 describes experimental results comparing our
method with two other representative methods on two types of synthetic data
and also results on one instance of real data. We conclude in Section 6 with
discussion and future research directions.

2 Preliminaries

For a tree T = (V, E), we denote by L(T ) the set of leaves of T . A phylogenetic
tree T over a set of taxa X is a tree for which there is a bijection between X and
L(T ). Henceforth, we will identify the taxa set with the leaves they are mapped
to. A tree T is said to be rooted if the set of edges E is directed and there is
a single distinguished internal vertex r with in-degree 0. Let u and v be two
vertices in a rooted tree T . We say that u is a descendant of v and v an ancestor
of u, if there is a (directed) path from v to u. For u, v ∈ V , the least common
ancestor of u and v, or lca(u, v), is a vertex w that is an ancestor of both u and
v and there is no descendant of w, w′ that is also an ancestor of both u and
v. From now on, we will restrict our attention to phylogenetic trees solely. Let
T be a tree and A ⊆ L(T ). We denote by T |A the tree induced by the sub set
of leaves A where all internal vertices with degree two contracted. When T is
rooted, the contraction is done at vertices with out-degree one. For two trees
T and T ′, we say that T satisfies T ′, and T ′ is satisfied by T , if L(T ′) ⊆ L(T )
and T |L(T ′) = T ′. Otherwise, T ′ is violated by T . In [BS00] it is shown that
this requirement is equivalent to the condition that for every u, v, w ∈ L(T ′),
LCA(u, v) is a descendant of LCA(u, w) in T if and only if LCA(u, v) is a
descendant of LCA(u, w) in T ′. This observation forms the basis to the triplet
approach in supertree construction. For a set of trees T = {T1, . . . , Tk} with
possibly overlapping leaves, we say that T is consistent if there exists a tree
T ∗ over the set of leaves

⋃
i L(Ti) that satisfies every tree Ti ∈ T . Otherwise,

T is inconsistent. When T is inconsistent, it is desirable to find a tree T ∗ over⋃
i L(Ti) that minimizes some objective function. T ∗ is denoted a supertree and

the problem of finding T ∗ is the supertree problem.
A rooted triplet, or for short a triplet, is a rooted tree over three leaves u, v, w.

We write a rooted triplet over u, v, w as u, v|w if LCA(u, v) is a descendant of
LCA(u, w). The triplet score between a tree Ti and T ∗ is the sum of u, v, w ∈
L(Ti) such that Ti|{u,v,w} = T ∗|{u,v,w}. The triplet score between T and T ∗ is
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the sum of the triplet scores between T ∗ and every Ti ∈ T . When T is a set of
rooted triplets, this score is just the number of triplets satisfied by T ∗. We refer
to this problem as the maximum triplet consistency (MTC) problem.

Another score between a set of trees is the maximum agreement sub tree
(MAST). This is defined as the largest set of leaves A common to all Ti ∈ T
such that Ti|A = Tj|A for every Ti, Tj ∈ T .

3 Supertree Methods

In this section we discuss competitive procedures for the supertree problem; the
minimum cut methods and maximum parsimony and related methods.

3.1 Triplets Methods

We now describe minimum cut algorithms for triplet based reconstruction. The
first algorithm solves the problem when all the triples are consistent and was
developed in the context of relational databases by Aho et. al. [ASSU81]. Steel
presented the algorithm for use in phylogenetics in [Ste92]. The algorithm uses
two generic partitioning rules, of which only one is used in our case. It proceeds
recursively on the set of taxa by applying the partitioning rule to produce a tree.
The algorithm is described below:

Aho et. al. (V, T )

1. Let V be the set of taxa.
2. If T = ∅ return a tree of depth 1 with all V as sister taxa.
3. Build the connectivity graph GC = (V ′, E′) as follows:

– V ′ ← V ,
– for every triplet i, j|k ∈ T : (i, j) ∈ E′

4. Let c be the number of connected components in GC .
5. If c = 1, return NULL, no tree is consistent with all triplets.
6. else

– create an internal vertex u in T .
– For every connected component Ci in G,

• Ti ← Aho et. al. (V (Ci), {(i, j|k) ∈ T : i, j, k ∈ V (Ci)}).
• make Ti a child of u.

7. return Tu.

It is clear that the algorithm finds a tree T over X that satisfies all the input
triplets if such a tree exists. The algorithm runs in time O(|T | · n) and a later
improvement by Henziger et. al. [HKW96] reduced it to min

{
O(|T | · n0.5),

O(|T | + n2 log n)
}
.

As biological data suffers from noise it is very likely that T will be incon-
sistent, i.e. there will be no tree T that satisfies all the triplets in T . Therefore
it is desirable to find a tree that maximizes (minimizes) the number of satisfied
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(violated) triplets. The Aho et. al. algorithm above will, thus, typically fail upon
encountering such an inconsistency. Still, one can easily prove that it does not
hurt to run it up to this point. That is, the following lemma can be proved.

Lemma 1. Given an inconsistent set of triplets T , but the connectivity graph
GC (constructed at step 3 of Aho et. al. algorithm) induced by T is not con-
nected. Then, any optimal tree T ∗ for T , will have a different subtree for every
component in the connectivity graph.

The min-cut algorithm of Semple an Steel [SS00] was the first to cope with
this problem of inconsistent input triplets. Their algorithm handles rooted sub
trees of arbitrary size and is centered around the following idea: Apply Aho et.
al. algorithm as long as possible. if at a certain stage in the recursion of the
algorithm, step 3 yields a connected graph (i.e a single connected component),
perform the following modification to the algorithm:

– convert the connectivity graph G of step 3 into an edge weighted graph
G′ = (V, E, w) where for e = (i, j), w(e) = |{(i, j|k) ∈ T : k ∈ X}|.

– Compute min-cut on the graph G′.
– Apply the Aho et.al. algorithm on the two subproblems induced by the two

resulted components.

Although [SS00] did not prove any bound for the quality of their solution, they
did claim that subtrees that are shared by all input subtrees, are resolved by
the output supertree. An elegant extension of this idea was presented by Page
[Pag02] to maintain all sub trees that are not in disagreement by any input
subtree. The algorithm, denoted modified min cut (MMC) applies the min cut
criterion but on a somewhat different graph that of [SS00].

3.2 Character Based Supertree Methods

We now describe a family of supertree methods that is based on solving a more
general problem. The family of character based supertree methods contains these
two methods: Matrix Representation using Parsimony (MRP) and Matrix Rep-
resentation using Flipping (MRF). MRP [Bau92, Rag92] is the most widely used
supertree method by practitioners. It has been found to have good performance
[ECB+04]. In this method, the input subtrees are encoded in a {0, 1} matrix in
the following way: As every edge e in an input subtree Ti induces a partition on
L(Ti), (A, B), e is encoded as binary character C where for each s ∈ A, C(s) = 0
and for s ∈ B, C(s) = 1. For s ∈ X \(A∪B), C(s) =? indicating a missing state.
The method tries to find the maximum parsimonious tree w.r.t that matrix. It is
not confined to a rooted setting and hence loses some amount of its power when
the input trees are rooted. However, to code for rooted trees, the following idea
is employed: augment the taxa set with an artificial species sr. Now let Ti be
some input sub tree with root ri and let e be an edge in Ti inducing the partition
(A, B) over L(Ti). w.l.o.g assume that T |A contains ri. Then C(ri) = 0 and for
all s ∈ A, C(s) = 0 and for s ∈ B, C(s) = 1. This is a reduction from the MTC
problem to the MRP problem in the following sense.
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Observation 1. Let T be a tree over X and M an n × m matrix as defined
above. Then for every character C in M , the parsimony score of C w.r.t. T is 1
if the triplet coded for C is satisfied by T . Otherwise it is 2.

Corollary 1. The parsimony score of M (or alternatively, the MRP score) is
m plus the number of triplets violated by T .

Since the MTC is NP-complete, Corollary 1 implies that solving the MRP
problem even for rooted triplets is NP-hard and therefore, some heuristics need
to be employed. In practice, this leads to the somewhat confounding results
that even when given a consistent set of triples MRP methods do not obtain a
consistent solution as do the triplet methods.

The other character based supertree method is the Matrix Representation
using Flipping (MRF)[CEFBS02, ECB+04]. MRF starts with the same matrix
as MRP however, its objective function is somewhat different: It seeks for the
minimum number of states flipping at the characters in order to make all char-
acters compatible. In that case, the supertree is convex on all characters. This
problem is somewhat a restricted version of the “big convex recoloring” problem
introduced at [MS04], as the characters are restricted to two states only. By
similar lines to Observation 1 the following observation is derived:

Observation 2. Given a set of triplets T and let M be the partial matrix rep-
resenting T , the MRF score for M is exactly the MTC score for T .

It was found that MRP and MRF perform similarly in experiments
[ECB+04]. Since MRF runs much slower, we compare our method just to MRP.

4 MAX Cut Tree Construction

In this section we describe our algorithm, MAX CUT triplets. Next we show
by an example how it improves over the local algorithms MC and MMC. Our
algorithm proceeds along the divide and conquer strategy of Aho et. al. algorithm
identically to MC and MMC. However, it differs from MC and MMC by the
action performed when a set of inconsistent triplets is encountered.

We first observe that the algorithm terminates since at any divide step, a
nontrivial cut is produced, identically to the other algorithms. It is easy to verify
the following observation:

Observation 3. For every triplet u, v|w such that a good edge (u, w) or (v, w)
is in the cut but (u, v) is not, the triplet u, v|w is satisfied by the algorithm.

Therefore, it is plausible that the algorithm should maximize the ratio between
good to bad edges in every divide step of the algorithm. We remark here that
all triplet based algorithms do that maximization implicitly in cases when the
triplets are consistent. At that time, the ratio is infinity.
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MAX CUT triplets (V, T )

1. Let V be the set of taxa.
2. If T = ∅ return a tree of depth 1 with all V sister taxa.
3. For every triplet i, j|k ∈ T : (i, j) ∈ E
4. Let c be the number of connected components in G = (V, E).
5. If c = 1

– Denote the edges created in step 3 as bad edges
– For every triplet i, j|k ∈ T , augment two good edges (i, k) and (j, k) to E.
– Find a cut (C, C̄) in G such that the ratio of good edges versus bad edges

in the cut is maximized.
6. create an internal vertex u.
7. For every connected component Ci in G,

– Ti ← MAX CUT triplets (V (Ci), {(i, j|k) ∈ T : i, j, k ∈ V (Ci)}).
– make Ti a child of u.

8. return Tu.

Heuristic for Optimizing the Ratio. Unfortunately, in general, finding
a cut that maximizes the ratio of good edges to bad edges (that we use in
step 5 of the algorithm) is NP-complete as well (for example, one can reduce
from the max cut or sparsest cut problems.) Several semi-definite programming
based approximation algorithms, however, have been suggested for related prob-
lems [GW95, ARV04]. Based on these approaches we developed the following
heurstic.

The heuristic proceeds embedded vertices of the graph onto the surface of a
3 dimensional sphere by locally moving vertices to minimize the function

∑
good edgese=(i,j)

w(e)d(i, j) − α
∑

bad edgese=(i,j)

w(e)d(i, j), (1)

for various values of the parameter α. Essentially, we search for an α where the
value is less than 0. The intuition is that for a good cut, (C, C) where the ratio
of good edges to bad is at most α, mapping all the points in C to a vector v
and all the points in C to −v, yields a negative value for the function 1. Finding
the minimal such value, makes it where other higher ratio cuts don’t have good
embeddings. Thus, the minimal value of α where the embedding problem has a
nontrivial solution is a lower bound on the cut ratio for all cuts. The embedding
can be computed with semidefinite programming packages for embedding into
n dimensinos. We, however, found that a local heuristic that embedded onto a
3 dimensional sphere sufficed for the results we present here. It is very fast, and
it appears to be effective.

Once, we obtain the embedding, we produce a cut as follows, partitioned the
vertices into two sets by selecting a random hyperplane to partition the points
and producing the corresponding cut.

Finally, we used a version of the Fiduccia-Matheyes bisection improvement
algorithm [KL70, FM82] to improve the resulting cut.
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We remark that with a provably accurate optimization procedure that we
could binary search for an optimal value of α will yield an optimal ratio cut. For
our inputs, our heuristic worked quite well with only a few values of α.

We also remark that with a semi-definite solution, one could could actually
get a bound on how far from optimal the cut procedure is from optimal. Since
this is a side issue, we leave that for the future.

4.1 Example

We now illustrate our algorithm on an example and compare it to the local
algorithms MC and MMC. Consider the set of triplets {(1, 2|4), (2, 3|5), (2, 5|3),
(4, 5|2), (5, 6|3)}. It can easily be shown that their connectivity graph contains
a single component (depicted in Figure 1). Moreover, as every subset of leaves
appears in at most one input tree, the weight of every edge in the connectivity
graph is one. In this case, the local algorithms will apply the min cut criterion
in order to partition the taxa and continue in the divide and conquer approach.
However, a naive application of the min cut criterion is indifferent of where to
partition the graph and pathological example is the removal of the edge (1, 2)
violating the triplet (1, 2|4), then the edge (4, 5) violating the triplet (4, 5|2),
then (5, 6) violating (5, 6|3) and eventually (3, 2) violating (2, 3|5). This gives a
total of three violated triplets.

1

54

2 3

6

Fig. 1. A connectivity graph induced by the set of triplets {(1, 2|4),(2, 3|5),(2, 5|3),
(4, 5|2),(5, 6|3)}
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Fig. 2. The graph created by MAXCUT triplets algorithm for the set of triplets
{(1, 2|4),(2, 3|5),(2, 5|3),(4, 5|2),(5, 6|3)}. Good edges are drawn by dashed line.

In contrast, our algorithm constructs the graph depicted in Figure 2. It can
easily be seen that the cut maximizing the ratio between good and bad edges is
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the cut ({1, 2, 3}, {4, 5, 6}). This cut violates the triplet 2, 5|3 but the rest of the
triplets would be satisfied recursively by the algorithm.

5 Experiments and Discussion

In order to test our method, we conducted experiments that compared our
method versus two previously mentioned methods. As we mentioned before,
further results on these are reported on in [ECB+04]. Again, it appears that
MRP is substantially more accurate than both MC and MMC but in the cost
of a much longer running time. They also study a heuristic based on MRF as
we previously mentioned. Here, we only test MRP and MMC versus our method
since MRF was reported to have similar behavior to MRP with much longer
running times.

We generated our triplets from some model tree. In particular, we generate
triplets from a given model tree and output some percentage of incorrect triplets.
The properties we wanted to measure are the accuracy of the supertree returned
in terms of the number of triplets satisfied and the resemblance of that tree to
the model tree.

We conducted two types of experiments differing by the way the species of
any triplet were chosen.

1. uniform: The species are chosen according to a uniform distribution from
the the species set.

2. geometric: Triplets over species with distance d were chosen with proba-
bility 1

d . This introduces locality into the process of triplet generation.

5.1 Uniform Distribution Results

Our results in terms of triplet score, MAST score, and running times are reported
in Table 1. We note that the gap in performances and running time between
MMC and MRP in these experiments, is as reported in [ECB+04], while MRP
and our procedure perform in a similar fashion. Indeed, the latter methods typ-
ically output a tree that is better than the model tree. We also observe our
method is usually a bit better than MRP, and as the problem size grows our
advantage increases. For example, for the largest problem where we could get
scores for both, we obtain a score of 75.7 while MRP achieves 67.3. Moreover,
the running of MRP (and even MMC) became prohibitive far before the lim-
its of our methods. It appears that MRP outperforms our method in terms of
MAST fit, however, as an evidence of the orthogonality of the two measures, it
can be noted that even when the triplets were consistent (100% triplet fit for
our method and MMC), still a higher MAST fit was obtained by MRP, although
the tree it returned did not satisfy all the triplets.

Moreover, MXC is much faster than MRP and a fair bit faster than MMC.
For example, MRP takes more than two hours and a half to solve a problem with
four hundred triplets where MXC took 9 seconds. This is a factor of a thousand
better. MMC also took more than twenty five minutes to solve a problem with
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Table 1. Data from experiments of uniform distribution of triplet selection. “-” denotes
that the problem took too long.

#taxa #triplets %correct % Triplet fit MAST fit Running Time
MRP MXC MMC MRP MXC MMC MRP MXC MMC

50 400 80 81 81.5 40 17 14 8 13 1 4
50 1000 80 79 80.9 38.4 18 22 7 18 2 14
50 1000 100 99 100 100 27 26 26 12 1 6
100 100 50 96 100 100 11 8 8 74 1 1
100 400 70 70 77.7 52.7 14 12 8 152 3 17
100 1000 70 72.3 73.1 33.6 23 18 8 642 4 16
100 2000 50 49.6 54.5 34.1 19 18 8 402 7 63
150 100 70 96 100 100 14 6 6 290 1 1
150 1000 70 70 73.7 43.7 16 17 8 1712 4 35
150 1000 90 89.2 90.7 42.3 25 16 8 2628 5 29
150 2000 90 87.9 90.3 34.8 31 24 8 4790 17 108
200 400 70 81.2 81.5 65.7 17 10 9 9047 9 25
200 1000 70 67.3 75.7 44.1 15 17 9 8581 23 200
200 4000 50 - 54.2 34.5 - 25 200 - 53 546
400 10000 50 - 53.5 36.1 - 31 10 - 80 1603
400 50000 50 - 50.6 - - 55 - - 320 -
600 4000 50 - 62.4 - - 17 - - 38 -
600 50000 50 - 51 - - 56 - - 961 -
800 20000 50 - 53.5 - - 34 - - 132 -
1000 50000 50 - 51.4 - - 49 - - 339 -
2000 50000 50 - 53.5 - - - - - 383 -

ten thousand triplets and four hundred taxa where MXC took eighty seconds. It
appears that MMC has some implementation problems as it crashed on twenty
thousand triplets. The largest experiment we performed in this distribution was
with fifty thousand triplets on two thousand taxa. The running time on this data
was a bit more than six minutes (383 seconds). 1

5.2 Geometric Distribution Results

In this type of experiment, we gave preferences to “close” over “far” triplets. That
means that a triplet whose species are of distance d was chosen with probability
1
d . We denote that as the geometric distribution. The reasoning for using that
distribution is that, in general, we are less certain about the order of speciation
of distantly related species, than of more closely related species, and therefore we
“weigh” these distant triplets less. We believe this type of distribution is more
realistic than the uniform distribution.

Table 2 depicts a sample of our experiments under the geometric distribution.
It can be seen that both MRP and our method maintain the same superiority
1 We note further that our code is hardly optimized in that while the divide step (the

max ratio cut) is implemented in C, the recursive algorithm is written in perl with
system calls to the max cut code. Thus, we are hopeful that this approach can work
with even much larger datasets.
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Table 2. Statistics on experiments of geometric distribution of triplet selection

#taxa #triplets %correct % Triplet fit MAST fit Running Time
MRP MXC MMC MRP MXC MMC MRP MXC MMC

50 400 50 65.7 62 50.2 11 14 9 25 58 12
50 1000 70 65.3 70.3 43 21 29 13 44 7 26
50 2000 90 88.2 89.3 65.6 34 36 26 46 22 48
100 400 50 74.2 74 53 15 21 9 499 45 30
100 1000 50 62 63.4 38.1 17 24 12 806 30 78
100 1000 70 66.6 69.8 46.5 29 28 12 775 18 111
100 1000 90 82.7 85.5 0.49 39 45 15 411 10 53
150 1000 50 64.8 66.9 41.5 16 33 15 2564 65 43
150 2000 50 61.6 60 35 21 22 13 7553 1596 243
150 400 90 80.5 83.5 71.75 24 20 18 1114 4 13
200 1000 70 68.3 71.3 44.1 22 25 13 6317 11 66
200 400 90 83 86 73 19 19 15 3053 3 13
200 2000 90 83.9 86.35 38.65 84 93 15 10980 17 76
250 100 70 98 100 100 17 6 6 2036 2 3
250 2000 70 66.1 71.7 42 33 52 18 25114 29 92
250 1000 90 75.8 77.4 57.6 30 24 19 13626 38 217
300 2000 70 65 67.3 44.8 32 29 16 40176 38 302
300 400 90 88.5 97.2 91.7 25 22 20 27183 2 14
300 2000 90 71 74.9 49.8 37 46 19 35555 18 153

in terms of triplet fit score over MMC with average of 2% advantage to MXC
over MRP. MXC is still much faster than MRP although in this distribution
we needed to check for more values of α what increased the running time in
some cases (e.g. the line with 150 species, 2000 triplets and 50% correctness).
A somewhat interesting phenomenon, is that with this distribution, our method
strictly outperforms MRP in terms of MAST score, in contrast to the uniform
distribution where it appears MRP has some advantage. It is notable that even
under this distribution MRP has better MAST score when the triplets are sparse,
so MXC and MMC satisfy all the triplets but leave an unresolved tree, as implied
by Aho et. al. algorithm (e.g. the line with 250 species, 100 triplets and 70%
correctness). Perhaps this distribution of triplets along with the MXC algorithm
is better for learning the true tree as compared to the uniform distribution of
triplets.

5.3 Experiment on Real Data

Although our method was designed to handle input in a form of triplet trees,
we wanted to test its behavior on real data. Real data comes normally in a form
of trees over more than three species. When coming to apply a triplet based
method, a separate task is to generate a “representative set” of triplets that will
lead to the best construction of a tree. Since this task is beyond the scope of
this paper, we used a rather naive way and generated all the triplets induced by
any subtree. Of course this approach is biased and gives more representation to
higher ancestral vertices over more recent ancestral vertices.
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The real data we used for our experiment is composed of 158 source trees
with 267 marsupial species from 107 published studies [CBEBP04]. The source
trees were based on a wide range of data types, including molecular sequences,
DNA hybridization, karyotypes, and immunological, morphological and behav-
ioral data. The average number of species per tree is about 16.4. The number of
triplets generated is 2,380,724. Although the true tree is assumed to be known
and is found in TREEBASE [PSDW], we compared the results we obtained to
either the set of triplets (triplet fit) or to the input subtrees (Robinson-Foulds).

In this experiment we used the Robinson-Foulds (RF) topological distance
between two trees [RF81]. This distance equals the number of splits existing at
exactly one tree. In addition, since MRP returns a fully resolved tree, whereas a
triplet based method (seeks to) return the minimally resolved tree that satisfies
most of the triplets, we measured a more MRP-favorable measure which is the
number of common edges between the two trees. This is simply derived from the
latter by E1+E2−RF

2 , where Ei is the number of edges in tree i and RF is the
Robinson-Foulds distance.

The results on this data using this method of triplets generation show strict
advantage to MRP. The triplet fit achieved by MRP was 98.2% versus 96% by
MXC. Both the RF distance and the number of common edges between the
supertree and each of the subtrees were normalized by the number of species
in the subtree. The final scores are the sum of the latter over all subtrees. For
these measures, MRP achieved an average of 0.49 different edges per species and
average of 0.95 common edges per species. MXC in turn, achieved inferior results
of 0.65 different edges per species and 0.78 common edges per species.

6 Conclusion and Further Work

In this work we described a novel idea of using the semi-definite technique for
the purpose of constructing triplet based supertrees. We introduced a less greedy
partition criterion for the cases where the triplets are inconsistent. Moreover, we
showed experimentally that although optimizing this criterion implies solving a
NP-hard problem, a simple heuristic suffices to provide good performance. This
in turn yields a very fast algorithm that outperforms in terms of running time
even the theoretically efficient algorithms of mincut. Moreover, we showed that
for the type of inputs we studied here, the performance of triplet based methods
can exceed those of the heavier character based methods. These results pose
semi-definite programming as a promising direction in the supertree field.

We want to emphasize that there are few major questions to be answered in
this direction:

– While triplet based method try to maximize the number of satisfied triplets,
this does not necessarily goes along with optimizing the other measures such
as MAST or RF distance. It will be valuable to study the difference between
these measures and to try to come with some conclusions for which really
measures trees similarity.
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– We saw that on real data, MRP is still superior over naively taking all
triplets and trying to solve this problem. Moreover, MRP outperforms MXC
even on that criterion, (although it solves an apparently different problem).
Therefore, a more insightful approach for selecting which triplets to include
is requested.

– Our experiments showed that actually, an optimal solution to the ratio cut
problem is unnecessary. It would be of interest to explore the influence of
using different ratios on the quality of the trees inferred by the method.
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Abstract. We propose and study the Maximum Constrained Agree-
ment Subtree (MCAST) problem, which is a variant of the classical
Maximum Agreement Subtree (MAST) problem. Our problem allows
users to apply their domain knowledge to control the construction of
the agreement subtrees in order to get better results. We show that the
MCAST problem can be reduced to the MAST problem efficiently and
thus we have algorithms for MCAST with running times matching the
fastest known algorithms for MAST.

1 Introduction

Evolutionary trees, which are rooted trees with their leaves labeled by some
unique species, are commonly used to capture the evolutionary relationship of
the species in nature. Different theories capture different kinds of evolutionary
relationships and induce different evolutionary trees. To find out how much these
theories are in common, we compare the corresponding evolutionary trees and
find some consensus of these trees.

One successful approach for finding consensus of different evolutionary trees
is to construct their maximum agreement subtree (MAST), which is the largest
evolutionary tree that is a topology subtree of the given trees. There are many
algorithms proposed for constructing MAST; for example, [6,7,9,10,12,13,17], or
more recently, [1,2,5,14].

A major problem of these algorithms is that it does not allow biologists
to apply their knowledge to control the construction for getting better results.
For example, the evolutionary relationship of many species is well understood.
Any evolutionary tree including these species should be consistent with this
commonly accepted relationship. With this additional constraint, MAST is not
a good measure for comparing evolutionary trees. Let us consider the trees S and
T in Fig. 1. Note that the maximum agreement subtree of S and T is large, and
one would consider that the two trees are similar. However, the two trees agree
on almost nothing if we insist that the agreement subtree must be consistent
with the evolutionary relationship of e, f, h, which is given by the tree P . In
fact, if P is a correct relationship, then S and T infer different evolutionary
relationship for many other species. For example, for the species a, S suggests

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 104–115, 2005.
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Fig. 1. Maximum agreement and maximum constrained agreement subtrees

that the least common ancestor of a and e is different from the least common
ancestor of a and f , while T suggests they are the same.

To allow biologists to enforce such predefined relationship in the agreement
subtree, we propose and study the maximum constrained agreement subtree
(MCAST) problem, which is defined as follows:

Let S and T be two evolutionary trees, and P be an agreement subtree
of S and T . Find the largest agreement subtree of S of T that contains
P as a subtree. We say that this agreement subtree is the maximum
constrained agreement subtree of S and T with respect to P .
In [15], we gave an O(n log n) time recursive algorithm for this problem when

the input trees are binary. However, it is difficult to generalize the algorithm for
general trees. In this paper, we give a deeper analysis of the structure of the
constrained agreement subtrees and show that the MCAST problem can be
indeed reduced to the classical Maximum Agreement Subtree (MAST) problem.
Note that this reduction is not surprising when P is empty or has only one leaf.

If P is the empty tree, our MCAST problem is just the MAST problem. If
P has only one leaf κ, the problem is equivalent to finding a largest agreement
subtree A of S and T that contains κ. By a simple trick, we can reduce the
problem to the MAST problem as follows. Let |S| and |T | be the number of
leaves in S and T , respectively. To find A, we simply replace the leaf κ in S and
T by some large tree X of size at least |S|+ |T |. Then, any maximum agreement
subtree A′ of the resulting trees must contain X . In other words, the role of X
is the same as the role of κ in S and T . By replacing X in A′ by κ, we get A.

The major contribution of this paper is to show that we have this reduction
even for general P . To be more precise, let n = |S| + |T | and |P | = k. In
Theorem 3, we prove that given S, T and P , we can find in O(n + k log k) time
subtrees S1, S2, . . . , Sm of S, T1, T2, . . . , Tm of T , and P1, . . . , Pm such that
–
∑

1≤i≤m |Si| ≤ 2|S| and
∑

1≤i≤m |Ti| ≤ 2|T |;
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Table 1. Time complexity of MAST and MCAST

MAST MCAST

Binary trees O(n log n) [4] O(n log n)

Trees with constant degree d O(
√

dn log n)[16] O(
√

dn log n)

General trees O(n1.5) [11] O(n1.5)

– each Pi has only one leaf; and
– to find a maximum constrained agreement subtree of S and T with respect

to P , it suffices to find maximum constrained agreement subtrees of Si and
Ti with respect to Pi for 1 ≤ i ≤ m.

Hence, our MCAST problem is reduced to a number of subproblems with input
Si, Ti and Pi where each Pi has one leaf. As mentioned above, these subproblems
can be further reduced to the MAST problem with double input size (because of
the subtree X). Therefore, if φ(h) is the worst case running time of an algorithm
for finding a maximum agreement subtree of two trees with totally h leaves, then
T (n, k), the time complexity of the problem of finding a maximum constrained
agreement subtree of S and T with respect to P , can be bounded as follows:

T (n, k) ≤
∑

1≤i≤m φ(2(|Si| + |Ti|)) + O(n + k log k). (1)

We note that for all existing algorithms for MAST, their running times are upper
bounded by some convex functions φ(m), and by Jensen’s inequality [8], we have∑

1≤i≤m φ(2(|Si|+ |Ti|)) ≤ φ(
∑

1≤i≤m(2(|Si|+ |Ti|)) = φ(4(|S|+ |T |)) = φ(4n).
(2)

From (1) and (2), we can use an existing algorithm for MAST to solve
MCAST without increasing the running time asymptotically. For a summary,
Table 1 lists the running time of the MCAST problem by our reduction using
the fastest known MAST algorithms for different kinds of input trees.

Remarks: Note that when P is large, i.e., when k = Ω(n), our reduction takes
O(n log n) time. Recently, Berry [3] has shown that the time complexity can be
reduced to O(n) by devising an interesting algorithm to sort all nodes of a tree
in linear time.

Our paper is organized as follows. In Section 2, we give the necessary definitions
and notations for our discussion. We also prove some properties on agreement sub-
trees that help simplify our analysis. In Section 3 and 4, we analyze the structure
of the agreement subtrees, and in Section 5, we give formally the reduction.

2 Preliminaries

A labeled tree S is a rooted tree with every leaf being labeled with a unique
species. In this paper, we use the label of the leaf as its name. Let L(S) denote the
set of leaves of S. For any two leaves a, b, let lcaS(a, b) denote the least common
ancestor of a, b in S. Given any subset H ⊆ L(S) of leaves, the restricted subtree
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of S on H , denoted as S‖H , is the subtree of S whose nodes includes the set of
leaves in H as well as the least common ancestors of any two leaves, and whose
edges preserve the ancestor-descendent relationship of S. Intuitively, S‖H can
be constructed as follows: Discard those leaves of S not in H , as well as those
internal nodes whose degrees eventually become one; then contract every path
whose intermediate nodes are each of degree two into an edge. The following fact
comes directly from the definition.

Fact 1. Suppose that H ⊆ L ⊆ L(S). Then, we have (i) for any two leaves
a, b ∈ H, lcaS‖H

(a, b) = lcaS‖L
(a, b), and (ii) (S‖L)‖H = S‖H.

Let T be another labeled tree. We say that S and T are leaf-label preserving
isomorphic if (i) they have the same set of leaves (i.e., L(S) = L(T )) and (ii)
there exits a bijection f from the nodes of S to the nodes of T such that for
any pair of leaves a, b of S, f(lcaS(a, b)) = lcaT (a, b). Note that for any leaf a,
f(a) = f(lcaS(a, a)) = lcaT (a, a) = a; f maps every leaf in S to the leaf in T
with the same label. We write S = T if the two trees are leaf-label preserving
isomorphic.

Observe that given any two trees S and T with the same set of leaves, we can
always define a mapping f such that for any pair of leaves a, b, f(lcaS(a, b)) =
lcaT (a, b). However, the necessary and sufficient condition for f being bijective,
and hence S = T , is that for any two pairs of leaves a, b and c, d (not necessarily
distinct), we have

lcaS(a, b) = lcaS(c, d) if and only if lcaT (a, b) = lcaT (c, d). (3)

The following lemma gives a somewhat simpler condition; it helps simplify our
analysis given in the rest of this paper.

Lemma 1. Following is a necessary and sufficient condition for S = T : for any
three leaves a, b, c, we have

lcaS(a, b) = lcaS(a, c) ⇐⇒ lcaT (a, b) = lcaT (a, c). (4)

Proof. It suffices to prove that (3) is equivalent to (4). Obviously, (3) implies
(4). To prove the other direction, suppose that (3) does not hold. In other words,
there are four leaves a, b, c, d such that in one tree, say S, we have lcaS(a, b) =
lcaS(c, d), but lcaT (a, b) �= lcaT (c, d). Below, we identify three leaves from
a, b, c, d that violate (4).

In T , since lcaT (a, b) �= lcaT (c, d), the two nodes cannot be descendent of
each other at the same time. Thus, one of them, say lcaT (a, b) is not a descendent
of lcaT (c, d), and this further implies either a or b, say a, is not a descendent
of lcaT (c, d). In other words, all of the ancestors of a are not lcaT (c, d), and it
follows that

lcaT (a, c) �= lcaT (c, d) and lcaT (a, d) �= lcaT (c, d). (5)

In S, since lcaS(a, b) = lcaS(c, d), a is a descendent of lcaS(c, d). Let w be the
least common ancestor of lcaS(a, c) and lcaS(a, d). Note that
− lcaS(c, d) is the ancestor of a, c, d and hence it is an ancestor of w, and
− w is an ancestor of c and d, and hence is an ancestor of lcaS(c, d).
It follows that w = lcaS(c, d). Finally, since lcaS(a, c) and lcaS(a, d) are on the
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path from a to the root, their least common ancestor w must be one of them,
i.e., w = lcaS(a, c) or w = lcaS(a, d), or equivalently,

lcaS(a, c) = lcaS(c, d) or lcaS(a, d) = lcaS(c, d). (6)

Taking (5) and(6) together, we conclude that (4) does not hold; the lemma
follows. ��

We say that a subset K ⊆ L(S) ∩ L(T ) of leaves is an agreement leaf subset
of S and T if S‖K = T ‖K ; the two restricted subtrees are called agreement
subtrees of S and T . Suppose that K is an agreement leaf subset of S and T .
A leaf subset L ⊆ L(S) ∩ L(T ) is called a constrained agreement leaf subset of
S and T with respect to K if (i) K ⊆ L and (ii) L is an agreement leaf subset
of S and T . The classical maximum agreement subtree problem asks to find the
largest agreement leaf subset of S and T . In this paper, we study the maximum
constrained agreement subtree, which asks for finding the maximum constrained
agreement leaf subset of S and T with respect to K.1 As shown in Fig. 1, the
output of the two problems can be very different.

In the rest of the paper, we assume that K �= ∅ and S‖K = T ‖K. We define
Cast(S, T, K) to be the set of all agreement leaf subsets of S and T with respect
to K, and define Mcast(S, T, K) ⊆ Cast(S, T, K) to be the subset of those with
maximum size. In the next two sections, we describe some structural properties
on S, T and K, which help us design efficient algorithms for solving the maximum
constrained agreement subtree problem, or equivalently, finding an element in
Mcast(S, T, K). Our analysis is divided into two cases. Let κ be a leaf in K. In
the following section, we focus on the case when κ is a child of the root of both
S and T ; we call such leaf a shallow leaf. The existence of a shallow leaf in K
greatly simplifies our analysis. We handle the other case when κ is not a shallow
leaf in Section 4.

3 The Case When κ is a Shallow Leaf

In this section, we show that the existence of a shallow leaf imposes great restric-
tions on how a constrained agreement leaf subset can be formed. The following
lemma describes one such restriction. We call the whole subtree rooted at some
child of the root a rooted subtree.

Lemma 2. Suppose that L ∈ Cast(S, T, K). For any rooted subtrees S′ of S
and T ′ of T , if S′ and T ′ have a common leaf in L (i.e., L∩L(S′)∩L(T ′) �= ∅),
then L ∩ L(S′) = L ∩ L(T ′)

Proof. It suffices to prove that for any leaves a, b ∈ L, a, b are in different rooted
subtrees of S if and only if a, b are in different rooted subtrees of T , or equiva-
lently, lcaS(a, b) is the root of S if and only if lcaT (a, b) is the root of T .

1 Note that our problem is somewhat different from the one we mentioned in Section 1;
however, it should be clear that we can solve the problem of finding a MCAST of S
and T with respect to P by solving our problem with K = L(P ).
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From Fact 1, lcaS(a, b) = lcaS‖L(S)
(a, b) = lcaS‖L

(a, b), and lcaT (a, b) =
lcaT‖L(S)

(a, b) = lcaT‖L
(a, b). Since κ ∈ K ⊆ L, a, b ∈ L, and S‖L = T ‖L, by

Lemma 1, lcaS‖L
(a, b) = lcaS‖L

(a, κ) ⇐⇒ lcaT‖L
(a, b) = lcaT‖L

(a, κ). The
lemma follows immediately because κ is a shallow leaf, and lcaS‖L

(a, κ) and
lcaT‖L

(a, κ) are the root of S and T , respectively. ��

Note that K ∈ Cast(S, T, K). Lemma 2 asserts that for any rooted subtree S′ of S,
if S′ have a leaf in K, then there is a rooted subtree T ′ of T such that K∩L(S′) =
K ∩ L(T ′). Let S1, S2, . . . , Sm be all the rooted subtrees of S that contain some
leaf in K, and T1, T2, . . . , Tm be the rooted subtrees of T where K ∩L(Si) = K ∩
L(Ti). Suppose that Sm and Tm are the subtrees that contain the single shallow
leaf κ. Define S0 to be the tree obtained by removing S1, S2, . . . , Sm−1 from S.
Note that only Sm remains in S0 and thus S0 has a single leaf in K, namely κ.
Define T0 similarly. It should be clear that K ∩ L(S0) = K ∩ L(T0) = {κ}. We
call 〈(S0, S1, . . . , Sm−1), (T0, T1, . . . , Tm−1)〉 the κ-decomposition of S and T with
respect to K. The following lemma shows that κ-decomposition imposes some nice
structure on any constrained agreement leaf subset.

Lemma 3. Suppose that L ∈ Cast(S, T, K). Then,
Li = L ∩ L(Si) ∈ Cast(Si, Ti, K ∩ L(Si)) for 0 ≤ i ≤ m − 1.

Proof. Recall that for each 1 ≤ i ≤ m − 1, K ∩ L(Si) = K ∩ L(Ti) �= ∅, and
since K ⊆ L, Si and Ti have a common leaf in L and thus L∩L(Si) = L∩L(Ti)
(Lemma 2). It follows that the remaining leaves of L in S and T are the same;
in other words, L ∩ L(S0) = L ∩ L(T0). Therefore, for each 0 ≤ i ≤ m − 1,
Li = L ∩ L(Si) = L ∩ L(Ti). Since Li ⊆ L(Si) and Li ⊆ L(Ti), we have
Si‖Li = S‖Li and Ti‖Li = T ‖Li. We use this fact to prove that Si‖Li = Ti‖Li ,
and hence Li = L ∩ L(Si) ∈ Cast(Si, Ti, K ∩ L(Si)) as follows.

Consider any leaves a, b, c ∈ Li. We have
lcaSi‖Li

(a, b) = lcaSi‖Li
(a, c) ⇐⇒ lcaS‖Li

(a, b) = lcaS‖Li
(a, c)

⇐⇒ lcaS‖L
(a, b) = lcaS‖L

(a, c) (as Li ⊆ L)
⇐⇒ lcaT‖L

(a, b) = lcaT‖L
(a, c)

(as S‖L = T ‖L)
⇐⇒ lcaT‖Li

(a, b) = lcaT‖Li
(a, c)

⇐⇒ lcaTi‖Li
(a, b) = lcaTi‖Li

(a, c).

By Lemma 1, we conclude that Si‖Li = Ti‖Li. ��

The following theorem shows that we can construct a maximum constrained
agreement leaf set by combining some smaller ones constructed according to the
κ-decomposition.

Theorem 1. Let H0, H1, . . . , Hm−1 be leaf sets such that Hi ∈ Mcast(Si, Ti,
K ∩ L(Si)) for 0 ≤ i ≤ m − 1. Then, H = ∪0≤i≤m−1Hi ∈ Mcast(S, T, K).

Proof. Note that K =
⋃

0≤i≤m−1(K ∩ L(Si)) ⊆
⋃

0≤i≤m−1 Hi = H . Below, we
prove that S‖H = T ‖H and hence H ∈ Cast(S, T, K). By Lemma 1, it suffices
to prove that for any three leaves a, b, c ∈ H , we have



110 Z.S. Peng and H.F. Ting

lcaS‖H
(a, b) = lcaS‖H

(a, c) ⇐⇒ lcaT‖H
(a, b) = lcaT‖H

(a, c). (7)

Note that if a, b, c are all in the same leaf set Hi, then
lcaS‖H

(a, b) = lcaS‖H
(a, c) ⇐⇒ lcaS‖Hi

(a, b) = lcaS‖Hi
(a, c)

⇐⇒ lcaT‖Hi
(a, b) = lcaT‖Hi

(a, c) ⇐⇒ lcaT‖H
(a, b) = lcaT‖H

(a, c),
and we have (7). Suppose that a, b, c are not in the same leaf set. Either a, b or
a, c must be in different sets. Assume that a and c are in different sets Hi and
Hj . Then, lcaS‖H

(a, c) and lcaT‖H
(a, c) are the root of S and T , respectively.

Therefore, to prove (7), it suffices to prove that
lcaS‖H

(a, b) is the root of S ⇐⇒ lcaT‖H
(a, b) is the root of T. (8)

Note that if a, b are in different leaf sets, lcaS‖H
(a, b) and lcaT‖H

(a, b) are the
roots of S and T , respectively. If a, b are in the same set Hi where i �= 0, a, b
are within the rooted subtrees Si in S and subtree Ti in T ; hence, lcaS‖H

(a, b)
and lcaT‖H

(a, b) are not the root of S and T . For the case when a, b ∈ H0,
recall that κ ∈ K ∩ L(S0) ⊆ H0 and S0‖H0 = T0‖H0 . Thus, for the three leaves
a, b, κ ∈ H0, we have

lcaS0‖H0
(a, b) = lcaS0‖H0

(a, κ) ⇐⇒ lcaT0‖H0
(a, b) = lcaT0‖H0

(a, κ). (9)
Note that (9) is equivalent to (8) because (i) lcaS0‖H0

(a, b)=lcaS‖H0
(a, b)=

lcaS‖H
(a, b), lcaT0‖H0

(a, b)=lcaT‖H0
(a, b)=lcaT‖H

(a, b), and (ii) lcaS0‖H0
(a, κ)

and lcaT0‖H0
(a, κ) are the root of S and T , respectively. Hence, in all possible

cases, we have (8), and hence (7). Therefore S‖H = T ‖H and H ∈ Cast(S, T, K).
To see that H ∈ Mcast(S, T, K), i.e., H is a largest element in Cast(S, T, K),

let us consider any L ∈ Cast(S, T, K). Lemma 2 asserts that for 0 ≤ i ≤ m − 1,
Li = L ∩ L(Si) ∈ Cast(Si, Ti, K ∩ L(Si)). Since Hi ∈ Mcast(Si, Ti, K ∩ L(Si),
we have |Li| ≤ |Hi|. Then, |L| =

∑
0≤i≤m−1 |Li| ≤

∑
0≤i≤m−1 |Hi| = |H |. ��

4 The Case When κ is Not a Shallow Leaf

In this section, we analyze the structure of the maximum agreement leaf subsets
of S and T with respect to K under the assumption that κ is not a shallow leaf.

Consider the unique path from the root of S to κ. We call the nodes on this
path κ-nodes of S. Given any two different κ-nodes u, u′, we say that u is higher
than u′, denoted as u � u′, if u is nearer the root. We say u � u′ if either u = u′

or u � u′. Note that κ itself is the lowest κ-node in S. For any leaf a of S, define
κ-parent of a, denoted as κS(a), to be the least ancestor of a that is κ-node. Let
Lκ(u) = {a | κS(a) = u} be the set of leaves whose κ-parents are u. (Note that
Lκ(κ) = {κ}, and for other u, Lκ(u) includes all the leaf descendents of u except
those that are in the subtree rooted at the unique κ-node child of u.) For any
set I of κ-nodes, define Lκ(I) =

⋃
u∈I Lκ(u). For any κ-node u, we say that u is

precious if Lκ(u) has at least one leaf in K, i.e., K ∩ Lκ(u) �= ∅. Otherwise, we
say that u is ordinary. We have similar definitions for T . The following lemma
gives some structural property related to κ-nodes.

Lemma 4. Suppose that L ∈ Cast(S, T, K). For any two leaves a, b ∈ L, we
have (i) κS(a) � κS(b) ⇐⇒ κT (a) � κT (b); and (ii) κS(a) �= κS(b) ⇐⇒
κT (a) �= κT (b).
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Proof. To prove (i), suppose that κS(a) � κS(b). Since κ ∈ L and S‖L = T ‖L,
the three leaves in L are related as follows:

lcaS‖L
(a, b) = lcaS‖L

(a, κ) ⇐⇒ lcaT‖L
(a, b) = lcaT‖L

(a, κ). (10)

Note that among the ancestors of b that are on the path from b to κS(a), there
is only one node, namely κS(a) that is an ancestor of a; hence lcaS‖L

(a, b) =
κS(a) = lcaS‖L

(a, κ) (because κ is the lowest κ-node and all κ-nodes are its
ancestors). Together with (10), lcaT‖L

(a, b) = lcaT‖L
(a, κ) = κT (a), or equiv-

alently, we have κT (a) � κT (b). The other direction of (i) can be proved sym-
metrically.

Note that (ii) follows from (i) directly. ��
Let u1 � u2 � · · · � um be the sequence of precious κ-nodes on S. We define

the κ-decomposition of S to be the sequence of sets (I1, I2, . . . , I2m) where
− I2� is a singleton containing the �th precious κ-node u�,
− I1 contains all the κ-nodes higher than u1, and
− for 2 ≤ � ≤ m, I2�−1 contains those κ-nodes between u�−1 and u�.
Note that I2m = {κ}. Since κ is a leaf, the κ-decomposition covers all the κ-
nodes. (See Fig. 2 for an example.) We define the κ-decomposition (J1, J2, . . . ,
J2n) for T similarly.

I1

I2

I3

I4

I5

u1

u2

κ

I6

Fig. 2. The κ-decomposition of S

Recall that we assume S‖K = T ‖K and hence Cast(S, T, K) is not empty.
In the rest of the section, we study the structure of any L ∈ Cast(S, T, K)
according the κ-decompositions (I1, I2, . . . , I2m) and (J1, J2, . . . , J2n) of S and
T , respectively. The following lemma shows that the two lists have the same
length, i.e., m = n, and there is a one-one correspondence between the sets in
the lists.
Lemma 5. Given any L ∈ Cast(S, T, K), L ∩ Lκ(I�) = L ∩ Lκ(J�) for 1 ≤ � ≤
2m. Furthermore, we have m = n.
Proof. We claim that for every 1 ≤ � ≤ min{m, n}, a leaf a ∈ L is in Lκ(I�) if and
only if a is in Lκ(J�). This implies L∩Lκ(I�) = L∩Lκ(J�) for 1 ≤ � ≤ min{m, n}.
Together with the fact that Lκ(I2m) = Lκ(J2n) = {κ}, we conclude m = n and
the lemma follows.

We prove our claim by induction. Note that by symmetry, we only need to
prove that if a leaf a ∈ L is in Lκ(I�), then a is in Lκ(J�). For the base case,
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suppose to the contrary that L has a leaf a in Lκ(I1) but not in Lκ(J1). Recall
that J2 has only one element, which is a precious κ-node v. It follows that Lκ(J2)
has a leaf b ∈ K ⊆ L, and κT (b) = v � κT (a) (because a �∈ Lκ(J1)). On the
other hand, by definition, Lκ(I1) contains no leaf in K and thus b �∈ Lκ(I1) and
κS(a) � κS(b). Note that the κ-parent of the two leaves a, b ∈ L have different
relationships in S and T . By Lemma 4, S‖L �= T ‖L, a contradiction. Thus, the
claim is true for � = 1.

Suppose that the claim is true for 1, 2, . . . , � − 1 and we consider �. Assume
that L has a leaf a in Lκ(I�) but not in Lκ(J�). Note that if � is odd, the
assumption will lead us to the contradictory conclusion that S‖L �= T ‖L as in
the base case � = 1. Suppose that � is even. Then, J� has a single precious κ-
node v, and there is a leaf b ∈ K ⊆ L that is in Lκ(J�). Together with induction
hypothesis that L ∩ Lκ(Ik) = L ∩ L(Jk) for 1 ≤ k ≤ � − 1, we conclude that (i)
a ∈ Lκ(I�) and a ∈ Lκ(Jp) for some p > �, and (ii) b ∈ Lκ(J�) and b ∈ Lκ(Iq)
for some q ≥ �. Therefore, κS(a) � κS(b) and κT (b) � κT (a), and by Lemma 4,
S‖L �= T ‖L, a contradiction. Thus the claim is also true for �. ��
Corollary 1. Suppose that L ∈ Cast(S, T, K). For any two leaves a, b ∈ L, if
a ∈ Lκ(Ip) and b ∈ Lκ(Iq) where p < q then
(i) κS(a) � κS(b) and lcaS(a, b) = κS(a), and
(ii) κT (a) � κT (b) and lcaT (a, b) = κT (a).

Proof. (i) follows directly from definition. From Lemma 5, we have L∩Lκ(Ip) =
L∩Lκ(Jp) and L∩Lκ(Iq) = L∩Lκ(Jq). Hence, a ∈ Lκ(Jp) and b ∈ Lκ(Jq) and
we have (ii). ��

We want to have lemmas like Lemma 3 and Theorem 1 that allow us to find
the maximum agreement leaf subset by finding those for some partition of the
leaves. However, in this case, every set in the partition needs to have some leaf
in K. Thus, we extend the leaf set as follows: for 1 ≤ � ≤ 2m, let Lκ

′(I�) =
Lκ(I�) ∪ {κ} and Lκ

′(J�) = Lκ(J�) ∪ {κ}. Note that K ∈ Cast(S, T, K) and by
Lemma 5, we have K∩Lκ(I�) = K∩Lκ(J�), and hence K∩Lκ

′(I�) = K∩Lκ
′(J�)

for 1≤�≤ 2m. It follows that Cast(S‖Lκ
′(I�), T ‖Lκ

′(J�), K∩Lκ
′(I�)) is not empty.

Lemma 6. Suppose that L ∈ Cast(S, T, K). For 1 ≤ � ≤ 2m, the leaf set
L� = L ∩ Lκ

′(I�) is in Cast(S‖Lκ
′(I�), T ‖Lκ

′(J�), K ∩ Lκ
′(I�)).

Proof. Obviously K ∩ Lκ
′(I�) ⊆ L�. Below, we show that (S‖Lκ

′(I�))‖L�
=

(T ‖Lκ
′(J�))‖L�

and the lemma follows.
By Lemma 5, we have L ∩ Lκ(I�) = L ∩ Lκ(J�) and hence L ∩ Lκ

′(I�) =
L∩Lκ

′(J�). Therefore, L� = L∩Lκ
′(I�) = L∩Lκ

′(J�) and (S‖Lκ
′(I�))‖L�

= S‖L�

and (T ‖Lκ
′(J�))‖L�

= T ‖L�
. As in the proof of Lemma 3, we have, for any three

leaves a, b, c ∈ L�,

lca(S‖Lκ′(I�))‖L�
(a, b) = lca(S‖Lκ′(I�))‖L�

(a, c) ⇐⇒ lcaS‖L�
(a, b) = lcaS‖L�

(a, c)

⇐⇒ lcaS‖L
(a, b) = lcaS‖L

(a, c) ⇐⇒ lcaT‖L
(a, b) = lcaT‖L

(a, c) ⇐⇒
lcaT‖L�

(a, b)=lcaT‖L�
(a, c) ⇐⇒ lca(T‖Lκ

′(J�))‖L�
(a, b)=lca(T‖Lκ

′(J�
)‖L�

(a, c),

and by Lemma 1, (S‖Lκ
′(I�))‖L�

= (T ‖Lκ
′(J�))‖L�

. ��
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The next theorem is similar to Theorem 1; it suggests a divide-and-conquer
approach to find the maximum agreement leaf subset.

Theorem 2. Let H1, . . . , H2m be leaf sets where H�∈Mcast(S‖Lκ
′(I�), T ‖Lκ

′(J�),
K ∩ Lκ

′(I�)) for 1 ≤ � ≤ 2m. Then, H =
⋃

1≤�≤2m Hi ∈ Mcast(S, T, K).

Proof. Note that K =
⋃

1≤�≤2m K ∩ Lκ
′(I�) ⊆

⋃
1≤�≤2m H� = H. Below, we

show that S‖H = T ‖H , and hence H ∈ Cast(S, T, K). By Lemma 1, it suffices
to prove that for any three leaves a, b, c ∈ H , we have

lcaS‖H
(a, b) = lcaS‖H

(a, c) ⇐⇒ lcaT‖H
(a, b) = lcaT‖H

(a, c) (11)

Note that if a, b, c are all in the same leaf set H�, then,
lcaS‖H

(a, b) = lcaS‖H
(a, c) ⇐⇒ lcaS‖H�

(a, b) = lcaS‖H�
(a, c)

⇐⇒ lcaT‖H�
(a, b) = lcaT‖H�

(a, c) ⇐⇒ lcaT‖H
(a, b) = lcaT‖H

(a, c),
and we have (11). Suppose that a, b, c are not in the same leaf set. Then, either
a, b or a, c, say a, b are in different leaf sets. Suppose a ∈ Hp and b ∈ Hq. Note
that κ is in all the leaf sets because κ ∈ K ∩Lκ

′(I�) ⊆ H� for 1 ≤ � ≤ 2m; hence
a and b cannot be κ. We consider two cases.

Case 1: p < q. Since a ∈ Hp ⊆ Lκ
′(Ip), b ∈ Hq ⊆ Lκ

′(Iq) and a, b are not
κ, we conclude that a ∈ Lκ(Ip) and b ∈ Lκ(Iq). Together with p < q, we have
lcaS‖H

(a, b) = κS(a) and lcaT‖H
(a, b) = κT (a) (Corollary 1). To prove (11), it

suffices to show that

lcaS‖H
(a, c) = κS(a) ⇐⇒ lcaT‖H

(a, c) = κT (a). (12)

Suppose that a, c are in the same leaf set, i.e., a, c ∈ Hp. Since κ ∈ Hp and
S‖Hp = T ‖Hp , the three leaves a, c, κ are related by lcaS‖Hp

(a, c)=lcaS‖Hp
(a, κ)

=κS(a) ⇐⇒ lcaT‖Hp
(a, c)=lcaT‖Hp

(a, κ)=κT (a). Then, we have (12) because
lcaS‖H

(a, c) = lcaS‖Hp
(a, c) and lcaT‖H

(a, c) = lcaT‖Hp
(a, c).

Suppose that a, c are in the different leaf sets and let c ∈ Hg ⊆ Lκ
′(Ig).

Again, c cannot be κ and thus c ∈ Lκ(Ig). ¿From Corollary 1, if g > p, then
lcaS‖H

(a, c) = κS(a) and lcaT‖H
(a, c) = κT (a); and if g < p, then lcaS‖H

(a, c)
= κS(c) �= κS(a) and lcaT‖H

(a, c) = κT (c) �= κT (a). Therefore, regardless of
where c is, we have (12), and hence (11).

Case 2: p > q. Similar to Case 1, we have lcaS‖H
(a, b)=κS(b) and lcaT‖H

(a, b)
=κT (b). To prove (11), it suffices to prove that

lcaS‖H
(a, c) = κS(b) ⇐⇒ lcaT‖H

(a, c) = κT (b). (13)

Suppose c �∈ Hq. Then neither a nor c are in Lκ(Iq) and thus their least
common ancestor in S and T are not in Iq and Jq, respectively. Since b ∈ Lκ(Iq),
κS(b) and κT (b) are in Iq and Jq respectively. Hence, lcaS‖H

(a, c) �= κS(b) and
lcaT‖H

(a, c) �= κT (b) and we have (13).
Suppose c ∈ Hq. Since b, c, κ ∈ Hq and S‖Hq = T ‖Hq , the three leaves are

related by lcaS‖H
(c, κ) = lcaS‖H

(b, κ) ⇐⇒ lcaT‖H
(c, κ) = lcaT‖H

(b, κ), or
equivalently,

κS(c) = κS(b) ⇐⇒ κT (c) = κT (b). (14)
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Since p > q, we have lcaS‖H
(a, c) = κS(c) and lcaT‖H

(a, c) = κT (c). To-
gether with (14), we have (13) and hence (11).

In both cases, we have (11) and hence S‖H = T ‖H and H ∈ Cast(S, T, K).
Together with Lemma 6, we can prove easily that H ∈ Mcast(S, T, K) as in the
proof of Theorem 1. ��

5 The Reduction

In this section, we describe a reduction for finding a maximum constrained agree-
ment subtree of S and T with respect to K. To ease our discussion, we assume
that the set of all possible leaves are totally ordered.

Let n be the total number of leaves in S and T . For every internal node u,
we define the classifying leaf of u to be the smallest leaf descendent of u that is
in K; if u has no such leaf, we define the classifying leaf of u to be −∞. Let C(u)
be the set of classifying leaves of its children. Note that by performing a depth
first search on S and T , we can decide the classifying leaves and hence C(u) for
every internal node in S or T . Then, taking another O(

∑
u∈S |C(u)| log |C(u)|+∑

u∈T |C(u)| log |C(u)|) = O(n log n) time, we can sort the classifying leaves in
every C(u). Note that be a little bit more careful, all the sortings can actually
be done in O(n + |K| log |K|) time.

Below, we explain how to use these sorted C(u)’s and apply the results of
the previous sections to solve our problem. We pick a leaf κ in K.
– If κ is a shallow leaf, then by Theorem 1, we can reduce Mcast(S, T, K)

to the subproblems of Mcast(S0, T0, K∩L(S0)), . . . , Mcast(Sm−1, Tm−1, K∩
L(Sm−1)). Note that by comparing the sorted C(rS) and C(rT ) of the roots
rS and rT , we can identify the Si’s and Ti’s.

– If κ is not a shallow leaf, then by Theorem 2, we can reduce the problem
to the subproblems Mcast(S‖Lκ

′(I�), T ‖Lκ
′(J�), K ∩ Lκ

′(I�)) (1 ≤ � ≤ 2m).
Note that by comparing the sorted C(u) of those nodes along the paths
from κ to the root of S and T , we can identify the S‖Lκ

′(I�) and T ‖Lκ
′(J�)

for 1 ≤ � ≤ 2m.
Observe that any two of the above subproblems share only one leaf, namely
κ. For those subproblems with more than one leaf in K, we can recursively
apply Theorems 1 and 2 to further divide them until we come up with only
subproblems with only one leaf in K. It should be clear that the whole process
takes O(n+ |K| log |K|) time. The following theorem summarizes our discussion.

Theorem 3. Consider any labeled trees S, T and a leaf subset K. Suppose that
S‖K = T ‖K. Let n be the total number of leaves of S and T . Then, using
O(n + |K| log |K|) time, we can find subtrees S1, S2, . . . , Sm of S, T1, T2, . . . , Tm

of T such that
1. given any Hi ∈ Mcast(Si, Ti, K ∩L(Si)) for 1≤i≤m, we have

(⋃
1≤i≤m Hi

)
∈ Mcast(S, T, K);

2. Pi = K ∩ L(Si) has only one leaf; and
3. all the Si’s, as well as all the Ti’s, have at most one leaf in common and

hence
∑

1≤i≤m |Si| ≤ 2|S| and
∑

1≤i≤m |Ti| ≤ 2|T |.



An Efficient Reduction from Constrained to Unconstrained 115

References

1. K. Amenta and F. Clarke. A linear-time majority tree algorithm. In Proceedings of
the 3rd International Workshop on Algorithms in Bioinformatics, pages 216–227,
2003.

2. T.Y. Berger-Wolf. Online consensus and agreement of phylogenetic trees. In Pro-
ceedings of the 4th International Workshop on Algorithms in Bioinformatics, pages
350–361, 2004.

3. V. BERRY. Improving the reduction from the constrained to the unconstrained
MAST. Technical Report 05041, LIRMM, 2005.

4. R. Cole, M. Farach, R. Hariharan, T. Przytycka, and M. Thorup. An O(n log n)
algorithm for the maximum agreement subtree problem for binary trees. SIAM
Journal on Computing, 30(5):1385–1404, 2000.

5. S. Dong and E. Kraemer. Calculation, visualization and manipulation of masts
(maximum agreement subtrees. In Proceedings of the IEEE Computational Systems
Bioinformatics Conference, pages 1–10, 2004.

6. M. Farach and M. Thorup. Optimal evolutionary tree comparison by sparse dy-
namic programming. In Proceedings of the 35th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 770–779, 1994.

7. M. Farach and M. Thorup. Fast comparison of evolutionary trees. In Proceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 481–488,
1995.

8. G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge, 1952.
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Abstract. We develop and study two distance metrics for area cladograms (leaf-
labeled trees where many leaves can share the same label): the edge contract-
and-refine metric and the MAAC distance metric. We demonstrate that in contrast
to phylogenies, the contract-and-refine distance between two area cladograms is
not identical to the character encoding distance, and the latter is not a metric. We
present a polynomial time algorithm to compute the MAAC distance, based on a
polynomial-time algorithm for computing the largest common pruned subtree of
two area cladograms. We also describe a linear time algorithm to decide if two
area cladograms are identical.

1 Introduction

Biogeography is the study of the spatial and temporal distributions of organisms
([BL98, CKP03]). Biogeographers seek not only to understand ecological processes
that influence the distribution of living organism over short periods of time (e.g., cli-
matic stability, effect of area) but also to uncover events occurring in the distant past
(e.g., continental drift, glaciation, evolution) which have resulted in the geographic dis-
tribution observed today.

Biogeography and Phylogeny. One of the ways of understanding the geographic dis-
tribution of species is by studying the evolutionary history of the species (see [CLW95,
EO05, Jac04b] for instances of this approach). The evolutionary relationships are typi-
cally represented as branching tree structures called phylogenetic trees, or simply phy-
logenies. The branching structure of the phylogeny of a set of taxa can be used to
differentiate between competing hypotheses concerning the observed geographic dis-
tribution of the set of taxa. Moreover, a consistent pattern observed in the phylogenies
of species from different genera in the same geographic area will imply a stronger ev-
idence for the particular hypotheses suggested by the pattern. As an example of this
approach, consider a group of islands, each containing multiple ecological zones (for
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a1 b1 c1 d1 a2 b2 c2 d2 a1 a2

b1 b2 c1 c2

d2d1

T T’

Fig. 1. Two hypothetical phylogenies on eight taxa on four islands (a, b, c,d) with two ecological
zones each (1 and 2). T suggests dispersal, and T’ suggests adaptive radiation.

example, each island can contain coastal and mountain ecological zones). Suppose our
goal is to understand the observed geographic distribution of species on the islands.
One hypothesis about the distribution could be that species dispersed from each eco-
logical zone in each island to similar zones in other islands and then differentiated. This
process is called inter-island colonization. Another hypothesis could be that dispersal
between islands happened first followed by dispersal to the different ecological zones
and differentiation into many species. This process is called adaptive radiation (see
[JEOH00] for a discussion). The crucial idea is that we might be able to infer which of
the above two hypotheses is responsible for the observed distribution: inter-island colo-
nization is suggested by taxa on different islands but the same ecological zone forming
a monophyletic group (rooted subtree), and adaptive radiation is suggested if species on
the same island in different ecological zones form a monophyletic group (that is, form
a rooted subtree in the phylogeny).

a d d a b
1 2 3 4 5 6

S T

c

Fig. 2. A phylogeny S and its associated area cladogram T, assuming taxon 1 appears in area c; 2
appears in area a; 3 appears in area d; 4 appears in area d; 5 appears in area a; and 6 appears in
area b.

Area Cladograms. Before looking for common patterns in the phylogenies of differ-
ent sets of species in the same geographic area, the phylogeny for each set of species
is converted to an area cladogram. Area cladograms are rooted or unrooted trees (as
are phylogenies) whose leaves are labeled with geographic areas instead of taxa (see
[Ros78, NP81]). To obtain the area cladogram for a set of species local to a set of areas,
we start with the phylogeny for the set of species and, for each leaf, replace the taxon
label with the label of the area in which the taxon is found. This process is illustrated in
Figure 2. More formally, we define:



118 G. Ganapathy et al.

Definition 1. Area Cladogram
An area cladogram is an unrooted or rooted leaf-labeled tree T . The leaves are

labeled with areas, and many leaves may share the same label.

In general, it might happen that a single taxon resides in more than one area (such taxa
are called widespread taxa), and this would result in area cladograms with
multiply-labeled leaves. We will develop our metrics and algorithms for area clado-
grams as in Definition 1, but we will show how to apply our results to more general
cladograms where leaves can have multiple labels.

It should be noted that several methods have been proposed for obtaining area clado-
grams from phylogenetic trees (see [NP81, Pag88, Bro81, Pag94]). The methods “re-
solve” the issues of widespread taxa (single leaf being labeled by many areas), redun-
dant taxa (many leaves being labeled by the same area), and missing areas to obtain a
resolved area cladogram where the mapping between leaves and areas is one-one. Un-
resolved area cladograms are sometimes called taxon area cladograms in the literature.

Much of the prior work on area cladograms has focussed on suitable transforma-
tion that will result in resolved area cladograms, for which algorithms and metrics for
phylogenetic trees apply.

In this paper, we address the problem of directly comparing two area cladograms.
We develop distance metrics between area cladograms, and describe algorithms for
computing a largest common pruned subtree of two area cladograms and for deciding
if two given area cladograms are identical.

Prior Work. Inferring biogeographical history with species and areas is just one in-
stance of the problem of inferring histories of two associated entities: the associated
entities may be hosts and parasites, or genes and organisms [Pag94, PC98] (areas are
analogous to hosts and organisms, and taxa in biogeography are analogous to parasites
and genes). Hence, comparing area cladograms has a long history and a wide variety
of applications (see [Jac04a, Jac04b, CLW95, GvVB02, Pag88] for example). Earlier
work on comparing area cladograms has included pruning the cladograms until the two
cladograms agree on the remaining leaves (see [Ros78, Pag88]), and using similarity
metrics such as the bipartition metric (also called the component metric or the charac-
ter encoding metric in the literature) and the triplets metric (see [Pag88]) between area
cladograms (the triplets metric only applies when the area cladograms are rooted.)

All such methods apply only to resolved area cladograms. The methods of resolu-
tion differ in their interpretation of widespread taxa, redundant taxa and missing areas,
and have been called assumptions 0, 1 and 2 in the literature (see [Pag88, vVZK99]).
We will take a different approach to comparing area cladograms: we will compare them
without first resolving them so that the mapping between the leaves and labels is one-
one. This avoids the contentious issues ([Pag90]) surrounding the process of resolution.

Our Contributions. Our contributions are two-fold: we develop both metrics and al-
gorithms for comparing area cladograms. More specifically,

– We show that the equivalence between the edge contract-and-refine metric (“RF-
distance”) and the bipartition metric (“character-encoding” metric) that holds for
phylogenies does not hold for area cladograms. More specifically, we show that
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the bipartition metric, when extended to area cladograms, is not a metric. For the
edge contract-and-refine edit distance between two area cladograms we present a
simple, but worst-case exponential-time algorithm. This edit distance can compare
only area cladograms that are on the same number of leaves, and when each area
labels the same number of leaves in both area cladograms (Section 3).

– We define another metric, the MAAC distance metric, for comparing two rooted
area cladograms, which is based on the size of the largest common pruned sub-
tree between the two area cladograms. The MAAC distance metric can compare
two arbitrary trees that are not necessarily on the same number of leaves, which is
particularly useful when comparing area cladograms (Section 3).

– We present a polynomial time algorithm for computing the MAAC distance be-
tween two rooted area cladograms. This algorithm is based on an algorithm we
present for computing the largest common pruned subtree, the maximum agree-
ment area cladogram (MAAC), of two area cladograms. We also describe a faster,
linear-time algorithm to decide if two area cladograms are identical (Section 4).

2 Phylogenies: Distance Metrics and Agreement Subsets

Character Encoding of Phylogenies. Tests for equality between phylogenies are based
on the notion of the character encoding of phylogenies. Another notion crucial to the
study of phylogenies is that of a bipartition: removing an edge e from a leaf-labeled
tree T induces a bipartition πe on its set of leaves.

Definition 2. Character Encoding of a Phylogeny
The character encoding of a phylogeny T is the set C(T ) = {πe : e ∈ E(T )}, which

represents the set of bipartitions induced by the edges of T .

Theorem 1. Character-Encoding Metric [Bun71]
Let T and T ′ be two phylogenies on the same set of taxa. Then |C(T )�C(T ′)| =

|(C(T )−C(T ′))∪ (C(T ′)−C(T ))| defines a distance metric.

By Theorem 1, two phylogenies T and T ′ are isomorphic (with the isomorphism
preserving the leaf labels) if and only if |C(T )�C(T ′)| = 0.

A contraction operation applied on an edge in a tree collapses that edge and iden-
tifies its two end points; a refinement operation applied at an unresolved node (i.e., an
internal node with degree greater than three) expands that unresolved node into two
nodes connected by an edge.

Definition 3. Robinson-Foulds (RF) Distance
The Robinson-Foulds distance between two phylogenies T1 and T2 is defined as the

number of contractions and refinements necessary to transform T1 into T2 (or vice-
versa), and is denoted RF(T1,T2).

The RF distance naturally defines a metric since it is an edit distance.

Theorem 2. [RF81] Let T1 and T2 be two phylogenies on the same set of taxa. Then
RF(T1,T2) = |C(T1)�C(T2)|.
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Finally, we define the maximum agreement subtree problem for phylogenies. The
analogue of this problem for area cladograms is crucial to addressing the problems
outlined in Section 1.

Definition 4. Maximum Agreement Subset (MAST)
Let {T1, T2, . . . ,Tk} be a set of phylogenetic trees, on a set L of leaves. A maximum

agreement subset (MAST) of trees T1 through Tk is a set of leaves L′ ⊆ L of maximum
cardinality such that the restrictions of the trees T1, . . . ,Tk to the set L′ are all isomor-
phic, with the isomorphism preserving leaf labels.

The maximum agreement subset problem was introduced in [FG85], and has been
studied thoroughly since then. The rooted and unrooted versions of MAST are polyno-
mially related since the unrooted MAST problem can be solved by solving a polynomial
number of rooted MAST problems. Computing a MAST is NP-hard for three or more
trees [AK97]. A O(n2+o(1)) time algorithm for the case of two trees on n leaves is given
in [FCT94]. For two rooted binary trees, the best known algorithm takes O(n log3 n)
time ([FCPT95b, FCPT95a]); for two rooted trees which may not be binary, the best
known algorithm takes O(n1.5c

√
logn) time where c is a constant ([FCT94]). For com-

puting a MAST of k rooted trees, an O(kn3 +nd) algorithm (with d the maximum degree
of a node in any tree) was presented in [FCPT95a].

3 Distance Measures Between Area Cladograms

In this section, we will develop distance metrics for the set of area cladograms. We will
first show that the character encoding distance between two different area cladograms
can be zero, and hence the character-encoding “distance” is not a metric on area clado-
grams, and in particular cannot be used as a test of isomorphism. We then propose a
metric for comparing area cladograms that is based on computing the size of the largest
common pruned subtree of the two area cladograms. We call this the MAAC metric, and
show how to compute it in Section 4.

While the character-encoding metric for phylogenies does not extend to area clado-
grams, the contract-and-refine edit distance still defines a metric (because it is an edit
distance). We present an algorithm to compute the edge contract-and-refine edit dis-
tance between area cladograms. This algorithm is efficient if there are few occurrences
of widespread taxa, but it is exponential-time in general. For phylogenies this edit dis-
tance which is called the Robinson-Foulds distance, can be computed efficiently since
it equals the character-encoding distance.

3.1 The Character Encoding Cannot Distinguish Between Area Cladograms

We first define the extended character encoding of an area cladogram.

Definition 5. Let T be an area cladogram. The multi-set {πe : e ∈ E(T )} is called the
extended character encoding of T , and will be denoted by C(T ). Here πe denotes the
bipartition of the multi-set of leaf labels induced by the edge e.

Contrary to our experience with phylogenetic trees where the mapping between
leaves and labels is 1-1, with two area cladograms T1 and T2, C(T1) = C(T2) does not
imply that T1 and T2 are isomorphic. We exhibit a pair of such of trees in Figure 3.
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Fig. 3. Two different binary area cladograms that induce the same multi-set of partitions

3.2 The MAAC Distance Metric Between Area Cladograms

In this section we define the problem of computing the largest common pruned subtree
of two rooted area cladograms and describe a distance metric based on the size of a
largest common pruned subtree. We call a largest common pruned subtree a Maximum
Agreement Area Cladogram (MAAC) (thus the MAAC is analogous to the maximum
agreement subtree of two phylogenies).

Let T be an area cladogram on a set of leaves L. The restriction of T to a set of
leaves L′ is the cladogram obtained by deleting leaves in the set L−L′ from T and then
suppressing internal nodes of degree two (except the root, if there is one).

We now define a maximum agreement area cladogram (MAAC) for a set of rooted
area cladograms, and a distance measure between two rooted area cladograms that is
based on the size of a MAAC of the two area cladograms.

Definition 6. Maximum Agreement Area Cladogram (MAAC) and MAAC distance
Let {T1, T2, . . . ,Tk} be a set of rooted area cladograms, with Li the leaf set of tree Ti,

for i = 1,2, . . . ,k. Let λ1 ⊆ L1 through λk ⊆ Lk be sets of leaves of maximum cardinality
such that the respective restrictions of the trees T1, . . . ,Tk to the sets λ1 . . .λk are all
isomorphic, with the isomorphisms preserving leaf labels. A restriction of any tree Ti

to such a subset of leaves λi is a maximum agreement area cladogram (MAAC) for the
cladograms T1 through Tk. The size of the MAAC is defined to be the number of leaves
in the maximum agreement area cladogram, and is denoted by sizemaac(T1,T2, . . . ,Tk).

The MAAC distance between two trees T1 and T2 is dM(T1,T2) = max(n1, n2)−
sizemaac(T,T ′), where n1 and n2 are the number of leaves in T1 and T2 respectively.

Note that in the above definition we do not require that all the given set of trees con-
tain the same number of leaves, or that they be labeled with the same set of areas, or
even that they be consistent. The MAAC distance can be viewed as a generalization of
the maximum agreement subtree metric for phylogenies [GKK94], which for two phy-
logenies on the same set of n labeled leaves was defined as n− sizemast where sizemast

is the size of a maximum agreement subset of the two phylogenies.

Handling Widespread Taxa. For comparing cladograms using maximum agreement
area cladograms, leaves labeled by more than one area can be treated thus: each leaf
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MAAC(T1, T2)

Fig. 4. Two area cladograms T1 and T2, and their MAAC

labeled by a group of areas can be split into many separate leaves (all having the same
parent), each of which is labeled by a single unique area from the group of areas.

Due to space constraints, we state the following theorem without proof:

Theorem 3. The MAAC distance dM is a metric on the set of all area cladograms.

Note that twice the MAAC distance between two cladograms is an upper bound
on the number of insertions and deletions of leaves necessary to transform one of the
cladograms to the other.

In Section 4, we present a polynomial-time algorithm for computing a maximum
agreement area cladogram for two area cladograms.

3.3 Contract-and-Refine Distance Metric for Area Cladograms

Though the character-encoding distance fails to extend to area cladograms, the RF dis-
tance, being an edit distance, can be extended to unrooted area cladograms to provide a
distance metric.

Definition 7. Robinson-Foulds Distance Between Unrooted Area Cladograms
The Robinson-Foulds distance between two unrooted area cladograms T1 and T2 is

defined to be the number of contractions and refinements necessary to transform T1 to
T2 (or equivalently, T2 to T1).

Note that if the number of leaves labeled l is different in T1 and T2 for some label l,
then RF(T1,T2) is undefined (i.e., there is no sequence of contractions and refinements
that can transform T1 into T2). In such cases we define RF(T1,T2) to be ∞.

Handling Widespread Taxa. Taxa endemic (resident) to more than one area would
result in cladograms with leaves labeled by many areas. Our definition of the Robinson-
Foulds distance applies to such cladograms as well: if a leaf is labeled with a set of areas,
we can consider that set of areas to be the unique label for that leaf.
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As shown in Section 3.1, for area cladograms, the RF distance will not be equal
to the extended character-encoding distance. However, we can relate the RF distance
between two area cladograms to the RF distance between two associated phylogenies,
as we will show. We begin with some definitions.

Definition 8. Full Differentiation of an Area Cladogram
Let T = (t,M) be an unrooted area cladogram, where t is an unlabeled tree and M

is the mapping assigning labels to the leaves of t. Then, a full differentiation of T is a
leaf-labeled tree T ∗ = (t,M∗) such that M∗ is one-one. In other words, T ∗ has the same
topology as T , but has its leaves labeled uniquely.

Definition 9. Consistent Full Differentiations
Let T1 = (t1,M1) and T2 = (t2,M2) be two unrooted area cladograms with the same

set L of leaf labels, and let T ∗
1 = (t1,M∗

1) and T ∗
2 = (t2,M∗

2) be full differentiations of
T1 and T2 respectively. T ∗

1 and T ∗
2 are consistent full differentiations if, for each label

l ∈ L, the set of labels in assigned to leaves in T ∗
1 that were labelled l in T1 is identical

to the set of labels assigned to leaves in T ∗
2 that were labelled l in T2. Mathematically,

this is: ∀l ∈ L,{M∗
1(x) : M1(x) = l} = {M∗

2(x) : M2(x) = l}.

Due to space constraints, we state the following theorem without proof:

Theorem 4. Let T1 and T2 be two unrooted area cladograms. Then RF(T1,T2) is equal
to max{RF(T ∗

1 ,T ∗
2 ) : T ∗

1 and T ∗
2 are mutually consistent full differentiations of T1 and

T2, respectively}.

Note that the RF distance between two cladograms T1 and T2 is at most the RF
distance between any consistent full differentiations of T1 and T2. Hence this provides
a linear-time method for getting an upper bound on the RF distance between two area
cladograms T1 and T2: we first compute two mutually consistent full differentiations,
and then compute their RF distance.

Theorem 4 suggests the following trivial (but expensive) algorithm for computing
the RF distance between two area cladograms T1 and T2: we simply compute the RF
distance between all the possible consistent full differentiations of T1 and T2 (in Θ(n)
time per pair, see [Day85]) and choose the minimum. Thus, we have the following
theorem:

Theorem 5. Let T1 and T2 be two unrooted area cladograms on n leaves on the same set
of areas. For each area ai appearing at the leaves of T1 and T2, let ni be the number of
leaves labeled with area ai. Then, the RF distance between T1 and T2 can be calculated
in Θ(nΠk

i=1(ni)!) time.

4 An Algorithm for the Maximum Agreement Area Cladogram
Problem

In this section we describe an algorithm for computing maximum agreement area clado-
gram (MAAC) of two given rooted area cladograms. The algorithm is based on a dy-
namic programming algorithm for the phylogenetic rooted maximum agreement subtree
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algorithm from [SW93]. We will first present the maximum agreement subtree algo-
rithm. We will then observe that the basic recursion underlying the dynamic-
programming algorithm will hold for the maximum agreement area cladogram algo-
rithm as well though the mapping between leaves and their labels may not be one-one
in area cladograms.

The MAST Algorithm from [SW93]. We now give a brief summary of the algorithm
in [SW93] for computing the MAST of two rooted binary trees. In our description, the
expression MAST (T,T ′) denotes a maximum agreement subset of two given (rooted
binary) phylogenies T and T ′.

Let T and T ′ be two given binary phylogenies on n leaves. Let v be a node in T ,
and denote by Tv the subtree of T rooted at v. Similarly denote by T ′

w the subtree of
T ′ rooted at a node w in T ′. The dynamic programming algorithm for MAST operates
by computing MAST (Tv,T ′

w) for all pairs of nodes (v,w) in V (T )×V (T ′) “bottom-up”.
We now show how to reduce computing MAST (Tv,T ′

w) to computing a small number
of smaller MAST computations MAST (S,S′) where S and S′ are subtrees of Tv and T ′

w
respectively, with at least one of them being a proper subtree.

To begin with, the MAST (Tv,T ′
w) is easy to compute when either v or w are leaves.

So in the following discussion assume neither v nor w is a leaf.
Let L∗ be a MAST of Tv and T ′

w, and let T ∗ be the corresponding MAST tree. Then
there exist homeomorphisms mapping T ∗ to a rooted subtree of Tv and to a rooted
subtree of T ′

w. Let p be the (not necessarily proper) descendant of v such that the root of
T ∗ is mapped to p. Similarly let q be the descendant of w in T ′ such that that the root
of T ∗ is mapped to w. Then, MAST (Tv,T ′

w) is in fact equal to MAST (Tp,T ′
q).

The vertex p may be actually v or it might be a vertex below v. Similarly q may be w
or some vertex below w. Based on the location of p and q, we have the following cases.

– Vertex p is a proper descendent of v. In this case, Tp is a proper subtree of Tv, and
MAST (Tv,T ′

w) equals MAST (Tp,T ′
w).

– Vertex q is a proper descendent of w. In this case, MAST (Tv,T ′
w) equals

MAST (Tv,T ′
q).

– Vertex p equals v and vertex q equals w.

In the first two cases, we have reduced the computation of MAST (Tv,T ′
w) to a MAST

computation on a subproblem. In the last case, let v1 and v2 be the children of v, and let
w1 and w2 be the children of w. Let T ∗

1 and T ∗
2 be the subtrees of the root of the MAST

tree T ∗. Then, T ∗
1 is homeomorphic to a subtree of Tv1 (or to a subtree of Tv2 ; there is no

loss of generality in assuming that it is homeomorphic to a subtree of Tv1 ). Similarly,
T ∗

2 is homeomorphic to a subtree of Tv2 . It cannot be homeomorphic to a subtree of Tv1 ,
since then T ∗ would be homeomorphic to a subtree of Tv1 , contradicting the assumption
that there is no proper descendent p of v such that root of T ∗ is mapped p. Arguing
similarly, we can conclude that T ∗

1 and T ∗
2 are homeomorphic to subtrees of T ′

w1
and T ′

w2
respectively. Now, since T ∗ is a MAST tree, we can conclude that T ∗

1 is a MAST tree of
Tv1 and T ′

w2
, and that T ∗

2 is a MAST tree of Tv2 and T ′
w2

. So in this case we have reduced
computing MAST (Tv,T ′

w) to computing MAST (Tv1 ,T
′

w1
) and MAST (Tv2 ,T

′
w2

) and then
taking their union.
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The above discussion suggests a straightforward dynamic programming algorithm
which involves computing O(n2) subproblems each of which can be solved in O(1)
time (for binary trees).

The running time of the above algorithm is O(n2) for trees of bounded degree. For
general rooted phylogenetic trees the running time is O(n2.5 logn).

4.1 The Maximum Agreement Area Cladogram Algorithm

The difference between the maximum agreement area cladogram and the maximum
agreement subset problems is that the former problem takes as input leaf-labeled trees
where the mapping between leaves and labels is not one-one. Recall that in the descrip-
tion of the maximum agreement subtree dynamic programming recursion above, p is
the unique descendant of v such that the homeomorphism mapping T ∗ to a subtree of
Tv maps the root of T ∗ to p, and q is the unique descendant of w such that the home-
omorphism mapping T ∗ to a subtree of Tw maps the root of T ∗ to q. However, when
the map between leaves and labels is not one-one, nodes p and q may not be unique.
However, we can remedy this situation by modifying our description thus: in tree Tv,
let p be a vertex farthest from v such that the root of T ∗ is mapped to p, and in T ′

w,
and let q be a vertex farthest from w such that the root of T ∗ is mapped to q (note that
this modification will not affect the actual algorithm at all, only the proof that the algo-
rithm is correct). The rest of dynamic programming recursion uses only the properties
of homeomorphisms, and these properties hold true for homeomorphisms between area
cladograms as well. Hence, the maximum agreement subtree algorithm from [SW93]
works without change as a maximum agreement area cladogram algorithm.

The Running Time of the MAAC Algorithm. The algorithm is same as the maximum
agreement subtree algorithm, and hence the running time of the maximum agreement
area cladogram algorithm is O(n2) for trees of bounded degree and O(n2.5 logn) for
trees of unbounded degree.

4.2 Testing Isomorphism Between Two Rooted Area Cladograms

The MAAC distance metric between area cladograms gives us a polynomial-time al-
gorithm for testing isomorphism: we apply the maximum agreement area cladogram
algorithm from the previous section to compute the MAAC distance between the two
area cladograms, and we conclude that the two cladograms are isomorphic if and only
if the distance is zero. The algorithm is adapted from the algorithm for testing rooted
tree isomorphism from [AHU74].

The input to the algorithm consists of two rooted area cladograms T1 and T2 on n
leaves (if the number of leaves is different, then clearly they are not isomorphic). We
assume that the leaves are labeled with integers from 1 through n, not all distinct. The
algorithm is based on assigning to each node u in the tree, an integer, which we call
index(u). For leaves, the index is just their labels. The algorithm is as follows:

1. Compute the height, the maximum distance between the root and a leaf, of the two
trees. If the heights are not the same, then the trees are not isomorphic, otherwise,
let the height be h.
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2. Based on the height, assign level numbers to the nodes of the trees. The level num-
ber of a node at a distance of d from the root is set to be h−d.

3. For each leaf u at level 0, set index[u] to be the leaf-label.
4. Assuming that index has been set for each node at level i−1, calculate the indices

at level i thus: for each node v at level i, form a tuple (an ordered list) consisting
of the indices of its children sorted in ascending order. If v is a leaf, then its tuple
consists of just its label. Let Li be the list of tuples of nodes at level i in T1. Let L′

i
be the corresponding list for T2. Now lexicographically sort Li and L′

i to obtain Si

and S′i respectively.
5. If Si and S′i are not identical, then declare T1 and T2 to be non-isomorphic and quit.

Else, assign index[v] for each node v at level i in T1 thus: index[v] is the rank of v’s
tuple in the sorted list Si. The ranks start from 1, and all identical tuples receive the
same rank. Indices for vertices in T2 are assigned similarly. The level-i indices can
now be used to calculate the indices for level i+ 1.

6. If the roots of T1 and T2 are assigned the same index, then the trees are isomorphic,
otherwise not.

Proof of Correctness and Running Time: We omit the proof due to space constraints.
The running time of the above algorithm for testing isomorphism is O(n), where n is
the number of leaves in the input trees (see [AHU74]).
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Abstract. We present several new results pertaining to haplotyping.
The first set of results concerns the combinatorial problem of reconstruct-
ing haplotypes from incomplete and/or imperfectly sequenced haplotype
data. More specifically, we show that an interesting, restricted case of
Minimum Error Correction (MEC) is NP-hard, question earlier claims
about a related problem, and present a polynomial-time algorithm for the
ungapped case of Longest Haplotype Reconstruction (LHR). Secondly, we
present a polynomial time algorithm for the problem of resolving geno-
type data using as few haplotypes as possible (the Pure Parsimony Hap-
lotyping Problem, PPH) where each genotype has at most two ambiguous
positions, thus solving an open problem posed by Lancia et al in [15].

1 Introduction

If we abstractly consider the human genome as a string over the nucleotide al-
phabet {A, C, G, T}, it is widely known that the genomes of any two humans are
more than 99% similar. In other words, it is known that, at most sites along the
genome, humans all have the same nucleotide. At certain specific sites along the
genome, however, variability is observed across the human population. These
sites are known as Single Nucleotide Polymorphisms (SNPs) and are formally
defined as the sites on the human genome where, across the human population,
two or more nucleotides are observed and each such nucleotide occurs in at least
5% of the population. It turns out that these sites, which occur (on average)
approximately once per thousand bases, capture the bulk of human genetic vari-
ability; the string of nucleotides found at the SNP sites of a human - the haplotype
of that individual - can thus be thought of as a “fingerprint” for that individual.
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It is further apparent that, for most SNP sites, only two nucleotides are seen;
sites where three or four nucleotides are possible are comparatively rare. Thus,
from a combinatorial perspective, a haplotype can be abstractly expressed as a
string over the alphabet {0, 1}. Indeed, the biologically-motivated field of SNP
and haplotype analysis - which is at the forefront of “real-world” bioinformat-
ics - has spawned an impressively rich and varied assortment of combinatorial
problems, which are well described in surveys such as [4] and [8]. In this paper
we focus on three such combinatorial problems; the first two are related to the
problem of haplotyping a single individual, and the third is related to the prob-
lem of explaining the genetic variability of a population using as few haplotypes
as possible.

The first two problems are both variants of the Single Individual Haplotyp-
ing Problem (SIH), introduced in [14]. The SIH problem amounts to determining
the haplotype of an individual using (potentially) incomplete and/or imperfect
fragments of sequencing data. The situation is further complicated by the fact
that, being a diploid organism, a human has two versions of each chromosome;
one each from the individual’s mother and father. Hence, for a given interval
of the genome, a human actually has two haplotypes. Thus, the SIH problem
can be more accurately described as finding the two haplotypes of an individual
given fragments of sequencing data where the fragments potentially have read
errors and, crucially, where it is not known which of the two chromosomes each
fragment was read from. There are four well-known variants of the problem:
Minimum Fragment Removal (MFR), Minimum SNP Removal (MSR), Mini-
mum Error Correction (MEC), and Longest Haplotype Reconstruction (LHR).
In this paper we give results for MEC and LHR and refer the reader to [3] for
information about MFR and MSR.

1.1 Minimum Error Correction (MEC)

This is the problem where the input is a matrix M of SNP fragments. Each
column of M represents an SNP site and thus each element of the matrix denotes
the (binary) choice of nucleotide seen at that SNP location on that fragment.
An element of the matrix can thus either be ‘0’, ‘1’ or a hole, represented by
‘-’, which denotes lack of knowledge or uncertainty about the nucleotide at that
site. We use M [i, j] to refer to the value found at row i, column j of M , and
use M [i] to refer to the ith row. We say that two rows r1, r2 of the matrix
are in conflict if there exists a column j such that M [r1, j] �= M [r2, j] and
M [r1, j], M [r2, j] ∈ {0, 1}. We say that a matrix is feasible if the rows of the
matrix can be partitioned into two sets such that all rows within each set are
pairwise non-conflicting. The goal with MEC is thus to “correct” (or “flip”) as
few entries of the input matrix as possible (i.e. convert 0 to 1 or vice-versa)
to make the resulting matrix feasible. The motivation behind this is that all
rows of the input matrix were sequenced from one haplotype or the other, and
that any deviation from that haplotype occurred because of read-errors during
sequencing.
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In the context of haplotyping, MEC has been discussed - sometimes under a
different name - in papers such as [4], [18], [7] and (implicitly) [14]. One question
arising from this discussion is how the distribution of holes in the input data
affects computational complexity. To explain, let us first define a gap (in a string
over the alphabet {0, 1,−}) as a maximal contiguous block of holes that is flanked
on both sides by non-hole values. For example, the string ---0010--- has no
gaps, -0--10-111 has two gaps, and -0-----1-- has one gap.1 The problem
variant Ungapped-MEC is where every row of the input matrix is ungapped i.e.
all holes appear at the start or end.

In this paper we offer what we believe is the first concrete proof that
Ungapped-MEC (and hence the more general MEC) is NP-hard. We do so by
reduction from the optimisation version of MAX-CUT. As far as we are aware,
other claims of this result are based explicitly or implicitly on results found in
[11]; as we discuss in Section 2, we conclude that the results in [11] cannot be used
for this purpose. Directly related to this, we define the problem Binary-MEC,
where the input matrix contains no holes; as far as we know the complexity of
this problem is still - intriguingly - open.

1.2 Longest Haplotype Reconstruction (LHR)

In this variant of the SIH problem, the input is again an SNP matrix M with
elements drawn from {0, 1,−}. Recall that the rows of a feasible matrix M can
be partitioned into two sets such that all rows within each set are pairwise non-
conflicting. Having obtained such a partition, we can reconstruct a haplotype
from each set by merging all the rows in that set together. (We define this for-
mally later in Section 3.) With LHR the goal is to remove rows such that the
resulting matrix is feasible and such that the sum of the lengths of the two
resulting haplotypes is maximised. In this paper we show that Ungapped-LHR
(where ungapped is defined as before) is polynomial-time solvable and give a
dynamic programming algorithm for this which runs in time O(n2m + n3) for
an n×m input matrix. This improves upon the result of [14] which also showed
a polynomial-time algorithm for Ungapped-LHR but under the restricting as-
sumption of non-nested input rows.

1.3 Pure Parsimony Haplotyping Problem (PPH)

As mentioned earlier, there are actually two haplotypes for any given inter-
val of an individual’s genome. With current sequencing techniques it is still
considered impractical to read the two haplotypes separately; instead, a single
string is returned - the genotype - which combines the data from the two haplo-
types but, in doing so, loses some information. Thus, whereas a haplotype is a
string over the {0, 1} alphabet, a genotype is a string over the {0, 1, 2} alphabet.

1 The case where each row of the input matrix has at most 1 gap is considered bio-
logically relevant because double-barreled shotgun sequencing produces two disjoint
intervals of sequencing data.
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A ‘0’ (respectively, ‘1’) entry in the genotype means that both chromosomes
have a ‘0’ (respectively, ‘1’) at that position. In contrast, a ‘2’ entry means
that the two haplotypes differ at that location: one has a ‘0’ while the other
has a ‘1’ but we don’t know which goes where. Thus, a ‘2’-site of a genotype
is called an ambiguous position. We say that two haplotypes resolve a given
genotype if that genotype is the result of combining the two haplotypes in the
above manner. For example, the pair of haplotypes 0110 and 0011 resolve the
genotype 0212.

It follows that a genotype with a ≥ 1 ambiguous positions can be resolved
in 2a−1 ways. Now, suppose we have a population of individuals and we obtain
(without errors) the genotype of each individual. The Pure Parsimony Haplotyp-
ing Problem (PPH) is as follows:- given a set of genotypes, what is the smallest
number of haplotypes such that each genotype is resolved by some pair of the
haplotypes? In [15] it is shown that PPH is hard (i.e. NP-hard and APX-hard)
even in the restricted case where no genotype has more than 3 ambiguous posi-
tions. The case of 2 ambiguous positions per genotype is left as an open question
in [15]. In this paper we resolve this question by providing a polynomial-time
algorithm for this problem that has a running time of O(mn log(n) + n3/2) for
n genotypes each of length m.

Since writing the original version of this paper we have learned that, inde-
pendently, Lancia and Rizzi have come up with a similar result [16] that was
submitted for publication at the end of 2004.

2 Minimum Error Correction (MEC)

For a length-m string X ∈ {0, 1,−}m, and a length-m string Y ∈ {0, 1}m, we
define d(X, Y ) as being equal to the number of mismatches between the strings
i.e. positions where X is 0 and Y is 1, or vice-versa; holes do not contribute
to the mismatch count. An n × m SNP matrix M is feasible iff there exist two
strings (haplotypes) H1, H2 ∈ {0, 1}m, such that for all rows r ∈ M , d(r, H1) = 0
or d(r, H2) = 0. A flip is where a 0 entry is converted to a 1, or vice-versa. Note
that, in our formulation of the problem, we do not allow flipping to or from
holes, and the haplotypes H1 and H2 may not contain holes.

Problem: Ungapped-MEC
Input: An ungapped SNP matrix M
Output: The smallest number of flips needed to make M feasible.

Note that Ungapped-MEC is an optimisation problem, not a decision problem,
hence the use of “NP-hard” in the following lemma rather than “NP-complete”.
A decision version may be obtained by adding a flip upperbound in the range
[0, nm].

Lemma 1. Ungapped-MEC is NP-hard.

Proof. We give a polynomial-time reduction from the optimisation version of
MAX-CUT, which is the problem of computing the size of a maximum cut in
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a graph.2 Let G = (V, E) be the input to MAX-CUT, where E is undirected.
(Without loss of generality we identify V with the natural numbers 1, 2, ..., |V |.)
We construct an instance M of Ungapped-MEC as follows. M has 2k + |E| rows
and 2|V | columns where k = 2|E||V |2. We use M0 to refer to the first k rows of
M , M1 to refer to the second k rows of M , and MG to refer to the remaining |E|
rows. The first k/|V | rows of M0 all have the following pattern: a 0 in the first
column, a 0 in the second column, and the rest of the row is holes. The second
k/|V | rows of M0 all have a 0 in the third column, a 0 in the fourth column, and
the rest holes; we continue this pattern i.e. each row in the jth block of k/|V |
rows in M0 (1 ≤ j ≤ |V |) has a 0 in column 2j−1, a 0 in column 2j, and the rest
holes. M1 is defined identically except that 1s are used instead of 0s. Each row
of MG encodes an edge from E:- for an edge (i, j) (where i is the numerically
lower endpoint) we specify that columns 2i−1 and 2i contain 0s, columns 2j−1
and 2j contain 1s, and for all c �= i, j, column 2c − 1 contains 0 and column 2c
contains 1.

Suppose t is the largest cut possible in G. We claim that:

Ungapped-MEC(M) = |E|(|V | − 2) + 2(|E| − t) (1)

From this t (i.e. MAX-CUT(G)) can easily be computed. First, note that the
solution to Ungapped-MEC(M) is trivially upperbounded by |V ||E|. This follows
because we could simply flip every 1 entry in MG to 0; the resulting overall matrix
would be feasible because we could just take H0 as the all-0 string and H1 as
the all-1 string. Now, we say a haplotype H has the double-entry property if,
for all odd-indexed positions (i.e. columns) j in H , the entry at position j of
H is the same as the entry at position j + 1. We argue that a minimal number
of feasibility-inducing flips will always lead to two haplotypes H1, H2 such that
both haplotypes have the double-entry property and, further, H1 is the bitwise
complement of H2. (We describe such a pair of haplotypes as partition-encoding.)
This is because, if H1, H2 are not partition-encoding, then at least k/|V | > |V ||E|
(in contrast with zero) entries in M0 and/or M1 will have to be flipped, meaning
this strategy is doomed to begin with.

Now, for a given partition-encoding pair of haplotypes, it follows that - for
each row in MG - we will have to flip either |V | − 2 or |V | entries to reach its
nearest haplotype. This is because, irrespective of which haplotype we move a
row to, the |V | − 2 pairs of columns not encoding end-points (for a given row)
will always cost 1 flip each to fix. Then either 2 or 0 of the 4 “endpoint-encoding”
entries will also need to be flipped; 4 flips will never be necessary because then
the row could move to the other haplotype, requiring no extra flips. Ungapped-
MEC thus maximises the number of rows which require |V | − 2 rather than |V |
flips. If we think of H1 and H2 as encoding a partition of the vertices of V (i.e.
a vertex i is on one side of the partition if H1 has 1s in columns 2i − 1 and 2i,
and on the other side if H2 has 1s in those columns), it follows that each row

2 The reduction given here can easily be converted into a Karp reduction from the
decision version of MAX-CUT to the decision version of Ungapped-MEC.
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requiring |V | − 2 flips corresponds to a cut-edge in the vertex partition defined
by H1 and H2. Equation 1 follows. �

Comment - a rediscovered open problem?

The MEC problem, as defined earlier, is technically speaking the evaluation
variant3 of the MEC problem. Consider the closely-related constructive version:

Problem: Constructive-MEC
Input: An SNP matrix M .
Output: For an input matrix M of size n×m, two haplotypes H1, H2 ∈ {0, 1}m

minimising:

D(H1, H2) =
∑

rows r∈M

min(d(r, H1), d(r, H2)) (2)

Owing to space restraints we omit the proof4 but we can prove that Constructive-
MEC is polynomial-time Turing interreducible with its evaluation counterpart,
MEC. We mention this correspondence because, when expressed as a construc-
tive problem, it can be seen that MEC is in fact a specific type of clustering
problem, a topic of intensive study in the literature. More specifically, we are
trying to find two representative “median” (or “consensus”) strings such that
the sum, over all input strings, of the distance between each input string and
its nearest median, is minimised. Related to this, let us define a further problem:

Problem: Binary-Constructive-MEC
Input: An SNP matrix M that does not contain any holes
Output: As for Constructive-MEC

Our deferred proof of interreducibility between Constructive-MEC and MEC also
holds for this restricted version of the problem, proving that Binary-
Constructive-MEC is solvable in polynomial time iff Binary-MEC is solvable
in polynomial time. This interreducibility is potentially useful because we now
argue, in contrast to claims in the existing literature, that the complexity of
Binary-MEC / Binary-Constructive-MEC is actually still open.

To elaborate, it is claimed in several papers (such as [1]) that a problem
essentially equivalent to Binary-Constructive-MEC is NP-hard. Such claims in-
evitably refer to the seminal paper Segmentation Problems by Kleinberg, Pa-
padimitriou, and Raghavan (KPR), which has appeared in multiple different
forms since 1998 (e.g. [11], [12] and [13].) Close examination of the KPR paper(s),
and personal communication with the authors [19], has confirmed that the KPR
papers actually discuss two superficially similar, but essentially different, prob-
lems. One problem is essentially equivalent to Binary-Constructive-MEC, and

3 See [2] for a more detailed explanation of terminology in this area.
4 The proof will appear in a forthcoming journal version of this paper. Most of the work

is reducing the constructive version to the evaluation version; the other direction is
trivial and uses only one oracle call.
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the other is a more general (and thus, potentially, a more difficult) problem.5 In
the same communication the authors have admitted that they have no proof of
hardness for the former problem i.e. the problem that is isomorphic to Binary-
Constructive-MEC.

Thus we conclude that the complexity of Binary-Constructive-MEC / Binary-
MEC is still open. From an approximation viewpoint the problem has been
quite well-studied; the problem has a Polynomial Time Approximation Scheme
(PTAS) because it is a special form of the Hamming 2-Median Clustering Prob-
lem, for which a PTAS is demonstrated in [10]. Other approximation results
appear in [11], [1], [13], [17] and a heuristic for a similar (but not identical)
problem appears in [18]. We also know that, if the number of haplotypes to be
found is specified as part of the input (and not fixed as 2), the problem becomes
NP-hard; we again defer this proof to a forthcoming, longer version of this pa-
per. Finally, it may also be relevant that the “geometric” version of the problem
(where rows of the input matrix are not drawn from {0, 1}m but from Rm, and
Euclidean distance is used instead of Hamming distance) is also open from a com-
plexity viewpoint [17]. (However, the version using Euclidean-distance-squared
is known to be NP-hard [5].)

3 Longest Haplotype Reconstruction (LHR)

Suppose an SNP matrix M is feasible. Then we can partition the rows of M
into two sets, Ml and Mr, such that the rows within each set are pairwise non-
conflicting. (The partition might not be unique.) From Mi (i ∈ {l, r}) we can
then build a haplotype Hi by combining the rows of Mi as follows: The jth
column of Hi is set to 1 if at least one row from Mi has a 1 in column j,
is set to 0 if at least one row from Mi has a 0 in column j, and is set to
a hole if all rows in Mi have a hole in column j. Note that, in contrast to
MEC, this leads to haplotypes that potentially contain holes. For example, sup-
pose one side of the partition contains rows 10--, -0-- and ---1; then the
haplotype we get from this is 10-1. We define the length of a haplotype as
the number of positions where it does not contain a hole; the haplotype 10-1
thus has length 3, for example. Now, the goal with LHR is to remove rows
from M to make it feasible but also such that the sum of the lengths of the
two resulting haplotypes is maximised. We define the function LHR(M) (which
gives a natural number as output) as being the largest value this sum-of-lengths
value can take, ranging over all feasibility-inducing row-removals and subsequent
partitions.

5 In this more general problem, rows and haplotypes are viewed as vectors and the
distance between a row and a haplotype is their dot product. Further, unlike Binary-
Constructive-MEC, this problem allows elements of the input matrix to be drawn
arbitrarily from R. This extra degree of freedom - particularly the ability to simul-
taneously use positive, negative and zero values in the input matrix - is what (when
coupled with a dot product distance measure) provides the ability to encode NP-hard
problems.
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We provide a polynomial-time algorithm for the following variant of LHR:

Problem: Ungapped-LHR
Input: An ungapped SNP matrix M
Output: The value LHR(M), as defined above.

The LHR problem for ungapped matrices was proved to be polynomial time
solvable by Lancia et. al in [14], but only with the genuine restriction that no
fragments are included in other fragments. Our algorithm improves this in the
sense that it works for all ungapped input matrices; our algorithm is similar in
style to the algorithm that solves MFR in the ungapped case by Bafna et. al. in
[3]. The complexity of LHR with gaps is still an open problem. Note that our
dynamic-programming algorithm computes Ungapped-LHR(M) but it can easily
be adapted to generate the rows that must be removed (and subsequently, the
partition that must be made) to achieve this maximum.

Lemma 2. Ungapped-LHR can be solved in time O(n2m + n3)

Proof. Let M be the input to Ungapped-LHR, and assume the matrix has size
n×m. For row i define l(i) as the leftmost column that is not a hole and define
r (i) as the rightmost column that is not a hole. The rows of M are ordered such
that l(i) ≤ l(j) if i < j. Define the matrix Mi as the matrix consisting of the first
i rows of M and two extra rows at the top: row 0 and row −1, both consisting
of all holes. Define OK(i) as the set of rows j < i that are not in conflict with
row i.

For h, k ≤ i and h, k ≥ −1 and r(h) ≤ r(k) define D[h, k; i] as the maximum
sum of lengths of two haplotypes such that:-

– each haplotype is a combination of rows from Mi

– each row from Mi can be used to build at most one haplotype (i.e. it cannot
be used for both haplotypes)

– row k is one of the rows used to build a haplotype and among such rows
maximizes r(·)

– row h is one of the rows used to build the other haplotype (than k) and
among such rows maximizes r(·)

The solution of the problem LHR(M) is given by

max
h,k|r(h)≤r(k)

D[h, k; n] (1)

We distinguish three different cases in the calculation of the D[h, k; i]. The
first case is when h, k < i. Under these circumstances,

D[h, k; i] = D[h, k; i − 1] (2)
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This is because:-

– If r(i) > r(k): row i cannot be used for the haplotype that row k is used for,
because row k has maximal r(·) among all rows that are used for a haplotype

– If r(i) ≤ r(k): row i cannot increase the length of the haplotype that row k
is used for (because also l(i) ≥ l(k))

– the same arguments hold for h

The second case is when h = i. In this case:

D[i, k; i] = max
j∈OK(i), j �=k

r(j)≤r(i)

D[j, k; i − 1] + r(i) − max{r(j), l(i) − 1} (3)

This results from the following. The definition of D[i, k; i] says that row i has
to be used for the other haplotype than k and amongst such rows maximizes
r(·). Therefore the maximum sum of lengths is achieved by adding row i to the
optimal solution with the restriction that row j is the most-right-ending row,
for some j that agrees with i, is not equal to k and ends before i. The term
r(i) − max{r(j), l(i) − 1} is the increase in length of the haplotype if row i is
added.

The last case is when k = i:

D[h, i; i]= max
j∈OK(i), j �=h

r(j)≤r(i)

{
D[j, h; i − 1] + r(i)−max{r(j), l(i) − 1} if r(h) ≥ r(j)
D[h, j; i − 1] + r(i)−max{r(j), l(i) − 1} if r(h) < r(j)

(4)
The time for calculating all the OK(i) is O(n2m). When all the OK(i) are

known, it takes O(n3) time to calculate all the D[h, k; i]. This is because we
need to calculate O(n3) values D[h, k; i] (h, k < i) that take O(1) time each and
O(n2) values D[i, k; i] and also O(n2) values D[h, i; i] that take O(n) time each.
This leads to an overall time complexity of O(n2m + n3). �

4 The Pure Parsimony Haplotyping Problem (PPH)

We refer the reader to Section 1.3 for definitions, and note once again the similar,
independently-discovered result in [16].

Problem: 2-ambiguous Pure Parsimony Haplotyping Problem
Input: A set G of genotypes such that no genotype has more than 2 ambiguous
positions
Output: PPH(G), which is the smallest number of haplotypes that can be
used to resolve G.

Lemma 3. The 2-ambiguous Pure Parsimony Haplotyping Problem can be
solved in polynomial-time.

Proof. We let n = |G| denote the number of genotypes in G and let m denote
the length of each genotype in G. We will compute the solution, PPH(G), by
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reduction to the polynomial-time solvable problem MaxBIS, which is the prob-
lem of computing the cardinality of the maximum independent set in a bipartite
graph. First, some notation. A genotype is i-ambiguous if it contains i ambigu-
ous positions. Each genotype in G is thus either 0-ambiguous, 1-ambiguous, or
2-ambiguous. For a 0-ambiguous genotype g, we define hg as the string g. For
a 1-ambiguous genotype g we let hg:0 (respectively, hg:1) be the haplotype ob-
tained by replacing the ambiguous position in g with 0 (respectively, 1). For
a 2-ambiguous genotype g we let hg:i,j - where i, j ∈ {0, 1} - be the haplotype
obtained by replacing the first (i.e. leftmost) ambiguous position in g with i, and
the second ambiguous position with j. A haplotype is said to have even (odd)
parity iff it contains an even (odd) number of 1s. Now, observe that there are
two ways to resolve a 2-ambiguous genotype g: (1) with haplotypes hg:0,0 and
hg:1,1 and (2) with hg:0,1 and hg:1,0. Note that - depending on g - one of the ways
uses two even parity haplotypes, and the other uses two odd parity haplotypes.

We build a set H of haplotypes by stepping through the list of genotypes
and, for each genotype, adding the 1, 2 or 4 corresponding haplotypes to the set
H . (Note that, because H is a set, we discard duplicate haplotypes.) That is, for
a 0-ambiguous genotype g add hg, for a 1-ambiguous genotype g add hg:0 and
hg:1, and for a 2-ambiguous genotype g add hg:0,0, hg:0,1, hg:1,0 and hg:1,1.

We are now ready to build a bipartite graph B = (V, E) as follows, where
V has bipartition V + ∪ V −. For each h ∈ H we introduce a vertex, which we
also refer to as h; all h with even parity are put into V + and all h with odd
parity are put into V −. For each 0-ambiguous genotype g ∈ G we introduce a
set I0(g) of four vertices and we connect each vertex in I0(g) to hg. For each
1-ambiguous genotype g ∈ G we introduce two sets of vertices I1(g, 0) and
I1(g, 1), both containing two vertices. Each vertex in I1(g, 0) is connected to hg:0
and each vertex in I1(g, 1) is connected to hg:1. Finally, for each 2-ambiguous
g ∈ G we introduce (to V + and V − respectively) two sets of vertices I2(g, +)
and I2(g,−), each containing 4 vertices. We connect every vertex in I2(g, +) to
every vertex in I2(g,−), connect every vertex in I2(g, +) to the two odd parity
haplotypes resolving g, and connect every vertex in I2(g,−) to the two even
parity haplotypes resolving g. This completes the construction of B.

A maximum-size independent set (MIS) of B is a largest set of mutually
non-adjacent vertices of B. Observe that, in a MIS of B, all the vertices of I0(g)
must be in the MIS, for all 0-ambiguous g. To see this, note firstly that, if at
least one vertex of I0(g) is in the MIS, we should put all of I0(g) in the MIS.
Secondly, suppose all the vertices in I0(g) are out of the MIS, but hg is in the
MIS. Then we could simply remove hg from the MIS and add in all the vertices
of I0(g), leading to a larger MIS:- contradiction! By a similar argument we see
that, for all 1-ambiguous g ∈ G, all of I1(g, 0) and I1(g, 1) must be in the MIS.
Now, consider I2(g, +) and I2(g,−), for all 2-ambiguous g ∈ G. We argue that
either I2(g, +) is wholly in the MIS, or I2(g,−) is wholly in the MIS. Suppose,
by way of argument, that there exists a g such that both I2(g, +) and I2(g,−)
are completely out of the MIS. If we are (wlog) free to add all the vertices in
I2(g, +) to the MIS we have an immediate contradiction. So I2(g, +) is prevented
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from being in the MIS by the fact that one or two of the haplotypes to which
it is connected are already in the MIS. But we could then build a bigger MIS
by removing those (at most) two haplotypes from the MIS and adding the four
vertices I2(g, +); contradiction!

We can think of the presence of an I set in the MIS as denoting that the
genotype it represents is resolved using the haplotypes to which it is attached.
Hence, every haplotype that is used for at least one resolution will not be in
the MIS, and unused haplotypes will be in the MIS. Hence, a MIS will try and
minimise the number of haplotypes used to resolve the given genotypes. Indeed,

MaxBIS(B) = 4n + (|H | − PPH(G)) (1)

So we can use a polynomial-time algorithm for MaxBIS to compute PPH(G). �

Running time
The above algorithm can be implemented in time O(mn log(n) + n3/2). First
we build the graph B. We can without too much trouble build a graph repre-
sentation of B - that combines adjacency-matrix and adjacency-list features -
in O(mn log(n)) time. For each g ∈ G, add its corresponding I set(s) and add
the (at most) 4 haplotypes corresponding to g, without eliminating duplicates,
and at all times efficiently maintaining adjacency information. Then sort the list
of haplotypes and eliminate duplicate haplotypes (by merging their adjacency
information into one single haplotype.) It is not too difficult to do this in such a
way that, in the final data structure representing the graph, adjacency queries
can be answered, and adjacency-lists returned, in O(1) time. This whole graph
construction process takes O(mn log(n)) time.

A maximum independent set in a bipartite graph can be constructed from a
maximum matching. A maximum matching in B can be found in time O(n3/2)
because, in our case, |V | = O(n) and |E| = O(n) [9]. Once the maximum match-
ing is found, it needs O(|E| + |V |) time to find a maximum independent set [6].
Thus finding a maximum independent set takes O(n3/2) time overall.
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Abstract. We give a new algorithm for the genotype phasing problem.
Our solution is based on a hidden Markov model for haplotypes. The
model has a uniform structure, unlike most solutions proposed so far
that model recombinations using haplotype blocks. In our model, the
haplotypes can be seen as a result of iterated recombinations applied on
a few founder haplotypes. We find maximum likelihood model of this
type by using the EM algorithm. We show how to solve the subtleties
of the EM algorithm that arise when genotypes are generated using a
haplotype model. We compare our method to the well-known currently
available algorithms (phase, hap, gerbil) using some standard and new
datasets. Our algorithm is relatively fast and gives results that are always
best or second best among the methods compared.

1 Introduction

The DNA differences between individuals of the same species are typically on
single nucleotide locations in which more than only one nucleotide (allele) occurs
in the population. Such differences, due to point mutations, and their sites are
called single nucleotide polymorphisms (SNPs). SNPs can be used as genetic
markers that can be utilized, for example, in finding disease causing mutations.
For a diploid species, when an SNP is typed (observed) for an individual, the
following problem arises: There are two near-identical copies of each chromosome
of a diploid organism, but the common techniques for SNP typing do not provide
the allele information separately for each of the two copies. Instead, they just
give genotype information, i.e., for each SNP an unordered pair of allele readings
is found, one from each copy. The alleles coming from the same chromosome copy
are called a haplotype, while a genotype combines alleles from the two copies.
So a genotype {A, C}, {T, T}, {G, T} could result from two haplotype pairs:
(ATG, CTT) and (ATT, CTG).

A genotype with two identical alleles in a site is called homozygote, while a
genotype with two different alleles is called heterozygote in that site. Given a
set of genotypes, the problem of finding the corresponding two haplotypes for
each genotype is called phasing or resolving the genotypes. Resolving is done
simultaneously for all genotypes, based on some assumptions on how the haplo-
types have evolved. The first approach to resolve haplotypes was Clark’s method
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[1] based on a greedy resolution rule. Clark’s method is sometimes referred to
as parsimony-based, but pure parsimony was investigated later in [2]. In pure
parsimony one asks for finding a smallest set of haplotypes able to resolve all the
genotypes. Different probabilistic approaches, still without recombination, have
been proposed by e.g. [3,4,5,6]. Yet another combinatorial method was proposed
by Gusfield [7], aiming at finding a set of resolving haplotypes that admits a
perfect phylogeny. Gusfield’s method works on genotype blocks within which no
recombination is allowed; the block structure has to be uncovered separately.
Greenspan and Geiger [8] were able to combine block finding and haplotype res-
olution by using a Bayesian network model. Very recently, Kimmel and Shamir
[9,10] gave another such method, with improved phasing results.

In this paper we describe an approach to the phasing problem based on
looking at the haplotypes as a result of recombinations applied on some small
number of underlying founder haplotypes. This can be formalized as a simple
hidden Markov model. The model has transitions along each founder and be-
tween the founders. A haplotype is generated along the transition paths: at each
state of the model some allele is emitted, according to the emission probability
distribution of the state. Transitions are taken according to the associated dis-
tributions, the transitions between different founders (i.e., transitions with low
probability) indicating recombination events.

To solve the phasing problem for a given set of genotypes, we learn a maxi-
mum likelihood hidden Markov model from the genotype data, and then for each
genotype in the data we find a resolving pair of haplotypes that has the highest
probability in this model. In practice we use the EM algorithm for estimating
the parameters of the model and the Viterbi algorithm for finding the resolving
haplotype pairs. We need to modify the standard versions of these algorithms
[11], as the data does not contain haplotypes but unphased genotypes.

We have tested the method on some real datasets and compared its per-
formance to the state-of-art phasing softwares phase [5] (version 2.1.1), hap
[12] (version 3.0), and gerbil [10]. A prototype implementation of our method,
called hit (a Haplotype Inference Technique), gives results that are always best
or second best among the methods compared, when the phasing accuracy is
measured by using the switch distance [13]. phase is the strongest competitor
but it is clearly slower than our method.

2 A Hidden Markov Model for Recombinant Haplotypes

We consider m SNP markers from the same chromosome, numbered 1, . . . , m
from left to right in the physical order of appearance along the chromosome.
Let Aj be the set of possible alleles (values) of marker j. Then a haplotype is a
sequence in A1× . . .×Am. A genotype is an unphased haplotype pair and can be
defined as a sequence in A′

1 × . . .×A′
m, where each A′

j = Aj ×Aj . A genotype g
is homozygous at marker j, if gj = (x, y) and x = y, and heterozygous if x �= y.
We use the encoding Aj = {1, 2} where 1 and 2 refer, respectively, to the most
frequent and the second frequent allele of the SNP j.
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Fig. 1. An example HMM for m = 8 markers and K = 4 founders. The states are
represented as boxes, the jth column of four states corresponding to the jth marker.
The black area within each state encodes the emission probability of allele 1 from that
state (each marker has only two alleles). The thickness of each transition line encodes
the corresponding transition probability.

Our hidden Markov model (HMM) model is a pair M = (S, θ) where S is
the set of states and θ = (τ, ε) consists of the state transition probabilities τ ,
and the allele emission probabilities ε. The set of states S = {s0}∪S1∪ . . .∪Sm

consists of disjoint sets Sj, the states at marker j. The transition probabilities
τ(sj−1, sj) are defined for all sj−1 ∈ Sj−1 and sj ∈ Sj , i.e., only transitions from
states in Sj−1 to states in Sj are allowed for all j = 1, . . . , m. The transition
probabilities from each fixed sj form a probability distribution, i.e., their sum
equals 1. Each state sj ∈ Sj has a probability distribution emitting the alleles in
Aj , i.e., probability ε(sj , a) of emitting a ∈ Ai. We restrict our consideration to
the case that all sets Sj contain the same number K of states. The parameter
K, called the number of the founders of M and the number m of the markers
determine the topology of the HMM. The initial state s0 is a dummy state from
which the HMM does not emit any letter. Any path from the dummy state to a
state in Sm generates a haplotype in A1×. . .×Am, with a probability determined
as the product of the transition and emission probabilities along the path.

Our HMM can also handle missing data. We assume that the unobserved
values are missing at random, i.e., the fact that a value is unobserved provides no
information about the underlying allele; if a data point is missing, the probability
of emitting is considered to be 1.

The connection to the idea of the founder sequences is as follows: The cur-
rent haplotype sequences are seen as results of iterated recombinations on the
haplotypes of some ancient founder population whose offspring the observed pop-
ulation is. The current sequences should therefore be built of fragments of the
founder sequences, and some such preserved fragments should be seen in several
current sequences. Our model M represents the current sequences, based on K
founders. A high transition probability τ(sj−1, sj) suggests that states sj−1 and
sj refer to the same haplotype, i.e., there is a conserved piece of some founder.
A low transition probability suggests a cross-over (recombination) between the
two states.

A HMM with similar topology appears in [14,15]. Our HMM can also be seen
as a probabilistic generalization of the combinatorial approach of [16] to parse
haplotypes with respect An example of our model is given in Figure 1.



A Hidden Markov Technique for Haplotype Reconstruction 143

3 HMM Estimation and Haplotype Reconstruction

In this section we show how, given a set of unphased genotypes, the pop-
ular expectation-maximization algorithm can be efficiently applied to maxi-
mum likelihood estimation of the parameters of the hidden Markov model.
We also show how the estimated HMM can be used for haplotype
reconstruction.

3.1 The EM Algorithm for Maximum Likelihood Estimation

We use the maximum likelihood principle to fit our hidden Markov model to
the observed genotype data G we want to phase. That is, for a fixed number of
founders, we search for the parameters θ = (τ, ε) so as to maximize the likelihood
P (G | θ). This estimation problem is known to be hard in general HMMs, and
this seems to be the case also in our application. Therefore we resort to the
commonly adopted family of expectation-maximization (EM) algorithms, which
are guaranteed to converge to a local optimum [17].

The generic EM algorithm approaches an intractable optimization problem
by completing the original data with auxiliary hidden data. Then the expected
log-likelihood of the complete data – where the expectation is with respect to the
distribution of the hidden data given the current parameter values – is maximized
in an iterative fashion. Usually the choice of the hidden data is natural and
direct from the problem. For the standard HMMs the hidden data contains the
unobserved hidden states.

In our case it is natural to treat the hidden state sequences, two per geno-
type, as the hidden data. This is, in essence, the choice that has been made in a
number of related applications of EM to the haplotype reconstruction problem;
e.g., [8,9,10]. While this approach works nicely when a state is deterministically
related to an allele, computational problems will arise as soon as emission pa-
rameters are included in the model [9]. In such a case Kimmel and Shamir [9,10]
use a (multivariate) numerical maximization routine within each EM iteration.

We propose an alternative instantiation of the EM algorithm that yields ef-
ficient closed-form expressions for the maximizing parameter values within each
EM iteration. The idea is simple: in the hidden data we include not only the hid-
den states but also indicators which for any pair of states and the corresponding
observed pair of alleles determine which one of the two states emitted the first
allele in the pair, the second allele being emitted by the other state. We next
provide some technical details.

3.2 Hidden Data and the Maximization Step

Let G = {g1, . . . , gn} be a set of n genotypes over m markers. We suppose the
topology (the state space S) of our HMM M = (S, θ) is fixed and we wish to
find parameter values θ = (τ, ε) that maximize the probability of the genotype
data, P (G |θ).
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In this setting, the EM algorithm is as follows. Starting from some initial
values θ(0) the algorithm iteratively improves the current values θ(r) by setting

θ(r+1) := argmax
θ

∑
Z

P (Z |G, θ(r)) lnP (G, Z |θ) , (1)

where Z runs through a chosen set of additional (hidden) data. In words, the
new parameter values are obtained by maximizing the expected log-likelihood of
the complete data. For a large enough r the increment in the likelihood becomes
negligible and the algorithm terminates.

We choose the hidden data Z such that the complete likelihood P (G, Z | θ)
factorizes into a product of individual transition and emission probabilities, as
described below. This is the key to obtain a computationally efficient evaluation
of (1). Recall that our HMM M = (S, θ) defines a probability distribution over
singleton haplotypes. A genotype is obtained as a pair of two independent hap-
lotypes, each generated by M along a path through some m states of M . From
this generative model we extract the hidden data Z as the the combination of
(a) the two state sequences per observed genotype and (b) the alleles emitted
from the states.

The paths are given by an n × m × 2 matrix T = (tijk) of states of M . The
entry tijk ∈ Sj gives the state from which the jth allele for the first (k = 1)
or the second (k = 2) haplotype for building gi is to be emitted. The emitted
allele from the possible alternatives that are consistent with gi is indicated by
an n × m × 2 matrix U = (uijk). The entries of U are selector variables that
take values in {1, 2}. Recall that gi consists of observed genotypes gi1, . . . , gim

over the m markers, each genotype being a pair gij = (gij1, gij2) of alleles; note
that we do not know which of the two alleles comes from which of the two
underlying haplotypes. Here we only have arbitrarily fixed the order of the two
observations. Element uijk of U specifies the jth allele of the first (k = 1) or of
the second (k = 2) haplotype for building gi: if uijk = 1 then the allele is gij1
and if uijk = 2 then the allele is gij2. Both alleles must always be used, so we
require that {uij1, uij2} = {1, 2}.

The point in introducing the hidden data Z = (T, U) is that the complete
likelihood factorizes into

P (G, T, U |θ) =
(1

2

)n n∏
i=1

m∏
j=1

∏
k=1,2

τ(ti(j−1)k , tijk)ε(tijk , gijuijk
) .

Here the coefficient (1/2)n appears, since all the 2n values for U are a priori
equally likely (independently of θ). Thus, the expected log-likelihood is∑

T,U

P (T, U |G, θ(r)) lnP (G, T, U |θ) =
m∑

j=1

Aj(τ) +
m∑

j=1

Bj(ε) − n ln 2 ,

where

Aj(τ) =
n∑

i=1

∑
k=1,2

∑
T,U

P (T, U |G, θ(r)) ln τ(ti(j−1)k , tijk) ,
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Bj(ε) =
n∑

i=1

∑
k=1,2

∑
T,U

P (T, U |G, θ(r)) ln ε(tij , gijuijk
) .

Furthermore, each Aj only depends on the transition probability parameters for
transitions from a state in Sj−1 to a state in Sj . Similarly Bj only depends
on the emission probability parameters for states in Sj . Thus, the maximizing
parameter values can be found separately for each Aj and Bj .

Standard techniques of constrained optimization (e.g., the general Lagrange
multiplier method [18] or the more special Kullback–Leibler divergence mini-
mization approach [17]) now apply. For the transition probabilities τ(a, b), with
a ∈ Sj−1, b ∈ Sj , we obtain the update equation

τ (r+1)(a, b) = c

n∑
i=1

∑
k=1,2

P (ti(j−1)k = a, tijk = b |G, θ(r)) , (2)

where c is the normalization constant of the distribution τ (r+1)(a, ·). That is,
τ (r+1)(a, b) is proportional to the expected number of transitions from a to b.
Note that the hidden data U plays no role in this expression. Similarly, for the
emission probabilities ε(b, y), with b ∈ Sj , y ∈ Aj , we obtain

ε(r+1)(b, y) = c

n∑
i=1

∑
k=1,2

P (tijk = b, gijuijk
= y |G, θ(r)) , (3)

where c is the normalization constant of the distribution ε(r+1)(b, ·). That is,
ε(r+1)(b, y) is proportional to the expected number of emissions from b to y.
Note that the variable uijk is free meaning that the expectation is over both its
possible values.

3.3 Computation of the Maximization Step

We next show how the well-known forward–backward algorithm of hidden
Markov Models [11] can be adapted to evaluation of the update formulas (2)
and (3).

Let aj and bj be states in Sj. For a genotype gi ∈ G, let L(aj , bj) denote the
(left or backward) probability of emitting the initial segment gi1 . . . gi(j−1) and
ending at (aj , bj) along the pairs of paths of M that start from s0. It can be
shown that

L(a0, b0) = 1 and

L(aj+1, bj+1) =
∑
aj ,bj

P (gij |aj , bj , ε)L(aj, bj)τ(aj , aj+1)τ(bj , bj+1) (4)

where

P (gij |aj , bj , ε) =
1
2
ε(aj , gij1)ε(bj , gij2) +

1
2
ε(aj , gij2)ε(bj , gij1) .
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(Recall that here we treat gi as an ordered pair, though the ordering of the alleles
is arbitrary.) Then the probability of the genotype gi is obtained as P (gi | θ) =∑

am,bm
L(am, bm)P (gim |am, bm, ε) and the probability of the entire data set is

P (G |θ) =
∏

gi∈G P (gi |θ). Note that for each gi we have its own L(·, ·).
Direct evaluation of (4) would use O(|G|

∑
j |Sj |4) = O(nmK4) time in total.

By noting that

L(aj+1, bj+1) =
∑
aj

τ(aj , aj+1)
∑
bj

L(aj , bj)P (gij |aj , bj , ε)τ(bj , bj+1)

and by storing the sum
∑

bj
L(aj , bj)τ(bj , bj+1) for each aj and bj+1 the running

time reduces to O(nmK3). The space requirement is O(mK2).
We call L(·, ·) the forward (or left) table. Similarly, we define the backward

(or right) table R(·, ·). For a genotype gi ∈ G, let L(aj , bj) denote the probability
of emitting the end segment gi(j+1) . . . gim along the pairs of paths of M that
visit (aj , bj).

We are now ready to show how formulas (2) and (3) can be evaluated. We
consider the latter formula; the former is handled similarly. First notice that it
is sufficient to consider evaluation of

P (tijk = b, gijuijk
= y |G, θ(r)) = P (tijk = b, gijuijk

= y, gi |θ(r))
/

P (gi | θ(r)) .

We already described a way to compute the denominator. The numerator can
be written as∑

aj

∑
uijk=1,2

I(gijuijk
= y)

1
2
L(aj , b)ε(aj, gijuijk

)ε(b, gij(3−uijk))R(aj , b) ,

where I(·) is the 0, 1-valued indicator function. Note that both uijk and 3−uijk

take values in {1, 2}. For update (3) a similar forward–backward expression is
found. Thus, the total time complexity of an EM iteration is the above given
O(nmK3).

3.4 Initialization and Model Training

As the EM algorithm is guaranteed to find only a local optimum, it is important
to find a good initial configuration of the model parameters. Our initialization
routine greedily finds a promising region in the parameter space. It consists of
three steps.

First, we fix the transition probabilities and emission probabilities without
looking at the data, as follows. Let sj1, . . . , sjK be the states in Sj . For the first
transition we set τ(s0, s1l) = 1/K for l = 1, . . . , K. Then for each j = 1, . . . , m,
we set τ(s(j−1)l, s1l′) to 1−ρ, if l = l′, and to ρ/(K−1) otherwise. The emission
probabilities for sj ∈ Sj are initialized by setting ε(sj, b) = 1 − ν for a selected
major allele b specific to sj , and ε(sj , a) = ν/(|Aj |−1) for the other alleles a �= b.

Second, we select the major alleles in a greedy manner based on the observed
data. We traverse the sets Sj from left to right and assign to the states in Sj the
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major alleles that locally maximize the likelihood of the initial segments of G
up to marker j. This is done by simply trying all |Aj |K possible choices. Using
dynamic programming the pass takes time O(nmK32K) for SNP markers. We
then make another pass from left to right and again choose the locally optimal
major alleles but now in the context of the current solution on both sides of Sj .

Finally, the probability distributions are perturbed a bit by multiplying each
parameter value by eX , where X is drawn uniformly from [−η, η], independently
for each parameter, and η is a noise parameter. The perturbed distributions
are obtained by normalizing the perturbed values. The constants ρ, ν, and η
are specified by the user. In our tests, reported in Section 4, we used ρ = 0.1,
ν = 0.01, and η = 0.8.

Starting from the perturbed initial model, we then apply the EM algorithm
to find a maximum likelihood HMM for the genotype data G. In practice, we
repeat this training scheme several times, and then pick the highest likelihood
HMM as the final model from which the haplotypes for G are read, as will be
described in Section 3.5.

Another parameter to be fixed is the number of founders, K. Our experiments
show that too small a K gives poor results, but as long as K is sufficiently large
(for our test data typically K should be at least 5) varying K has a rather small
effect on the quality of haplotyping result.

3.5 Reading the Haplotypes from a HMM

We reconstruct from a trained HMM M = (S, θ) the haplotypes of each g ∈ G
as follows. First we find for g the Viterbi path from M , that is, a pair (p, p′) of
paths through M such that emitting g from (p, p′) has the highest probability
among all path pairs (q, q′), i.e.,

P (g, p, p′ |θ) = max
(q,q′)

P (g, q, q′ |θ) .

This can be done by a variant of (4) followed by standard trace-back. Then
generate from p a haplotype h and from p′ a haplotype h′ such that they together
give genotype g and P (h | p, θ)P (h′ | p′, θ) is largest possible. This is simple
local maximization at heterozygous markers of g. Haplotypes {h, h′} are the
reconstructed haplotypes for g according to our method.

4 Test Results

We have implemented the presented phasing method in a prototype program hit
(Haplotype Inference Technique). In this section, we report the results we have
obtained on a few real datasets. We compare the performance of hit against
hap version 3.0 [12], phase version 2.1.1[5], and gerbil [10].

4.1 Datasets

We tested our method on five real datasets. Daly’s et al. [19] commonly used
benchmark dataset is a sample from a European-derived population and spans
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a 500-kb region on human chromosome 5q31 which contains a genetic risk factor
for Crohn disease. From that area there are genotypes for 103 SNP markers,
collected from 129 trios (of mother, father, and child). The trios were used to
infer the true haplotypes for the 129 genotypes of the children.

The second dataset is a fragment of the data provided recently by Hinds et
al. [20]. This data consists of 71 haplotype pairs over 1,586,383 SNPs that cover
the entire human genome. We took the haplotypes for the SNPs 1,000–1,199 of
chromosome 2. We notice that these haplotypes were inferred from genotypes
with some version of hap [12].

The rest three datasets are genotype samples over 68 SNP markers from three
datasets from Finland [21]. We call these datasets Population1 (32 haplotypes),
Population2 (108 haplotypes), and Population3 (108 haplotypes).

The latter four datasets were available in a haplotyped form. For our tests
we constructed the input genotypes simply by merging the two haplotypes of
each individual.

4.2 Switch Distance

We measure the quality of haplotyping results using the commonly adopted
switch distance [13]. Switch distance between two pairs of haplotypes {h, h′}
and {f, f ′} is the minimum number of phase shifts needed to turn {h, h′} into
{f, f ′}. For example if the true haplotypes for a genotype are {111111, 222222},
then the switch distance is 1 to {111222, 222111} and 5 to {121212, 212121}.

Unfortunately, the basic switch distance is undefined when no phase shifts
can transform a haplotype pair into another pair. This may happen when the
data has missing values or genotyping errors. For example, suppose the observed
genotype is {1, 2}{1, 2}{−,−}{1, 2}{1, 2}, where a “−” stands for a missing al-
lele. Then it is possible that our model gives haplotypes {112111, 222222}, thus
imputing the missing values. However, if the underlying true pair of haplotypes
is {111111, 222222}, the distance between these haplotype pairs is not defined.

In such a situation one needs a generalized switch distance. Define
errors({h, h′}, {f, f ′}) as the minimum number of allele substitutions to {f, f ′}
that are needed to make the switch distance defined, and let J be the markers
where no changes are needed. Then our generalized switch distance is defined as
sd′({h, h′}, {f, f ′}) = errors({h, h′}, {f, f ′}) + sdJ(({h, h′}, {f, f ′}) where sdJ

is switch distance restricted on J .
Another possibility, used by some authors [13,22], is just to ignore inconsis-

tent markers and report the basic switch distance on the remaining markers;
denote this distance by sd′′. In our tests, we needed sd′ and sd′′ only for the
Daly et al. dataset [19].

The relative versions of these distances are obtained by dividing by the total
number of heterozygote sites of the genotypes minus the number of genotypes.

4.3 Comparison Results

Figure 2 shows how the performance of hit depends on the number of founders.
We see that increasing the number of founders consistently increases the good-
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Fig. 2. The phasing accuracy (vertical axis) as a function of the number of founders
(horizontal axis) for five real data sets. Shown the achieved total switch distance for 25
random restarts of hit (in increasing order of likelihood), for 2 to 9 founders. For the
Daly et al. data also shown the growth of likelihood (top left); for the other datasets the
curves behave similarly (not shown). The results for phase [5,22], gerbil [9,10], and
hap [12], shown as vertical lines, were obtained with their default parameter values.

ness of fit to the data, as expected. However, overfitting does not seem to impede
the performance of hit in phasing. For example, for the Daly et al. data hit gives
the best result consistently for K ≥ 4.

The effect of starting the EM algorithm from slightly different initial settings
is also shown in Figure 2, indicating a fairly robust behaviour. We note that the
correlation of the achieved data likelihood and switch distance is surprisingly
small. Thus the plain likelihood is perhaps not the best criterion for choosing
the model for haplotyping.

Table 1 summarizes the phasing accuracy of hit when we set the
number of founders K to 7, performed 25 restarts of the EM algorithm, and
used the highest likelihood HMM for haplotyping. We note that in the Daly
et al. dataset the handling of the missing data (sd′ or sd′′) has a clear effect
on the results, yet the relative differences are about the same for both mea-
sures. The fact that gerbil treats an allele pair where one allele is missing as
completely missing data, explains its relatively poor performance w.r.t. sd′′ on
the Daly et al. dataset. We note that hit always gives the best or second best
result.

Table 2 displays the running times of the compared methods. Clearly, ger-
bil and hap are very fast, whereas phase becomes rather slow for the largest
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Table 1. Phasing accuracy of hit (K = 7 founders), phase [5,22], gerbil [9,10], and
hap [12] on five real data sets, measured using switch distance. For the Daly et al.
dataset the first and the second line show switch distance sd′′ and sd′, respectively; for
the other cases all variants coincide. The relative distances are given in parentheses

Dataset hit phase gerbil hap

Daly et al. 80 (0.021) 86 (0.023) 86 (0.023) 89 (0.024)
Daly et al. 185 (0.049) 195 (0.052) 296 (0.079) 210 (0.056)

Hinds et al. 329 (0.093) 343 (0.097) 373 (0.11) 319 (0.090)
Population1 82 (0.24) 73 (0.21) 86 (0.25) 90 (0.26)
Population2 219 (0.17) 202 (0.15) 262 (0.20) 234 (0.18)
Population3 194 (0.16) 194 (0.16) 257 (0.22) 225 (0.19)

Table 2. The running time in seconds for hit (K = 7 founders, median over 25 EM
restarts), phase [5,22], gerbil [9,10], and hap [12] on five real data sets. hap was run
on its own server, the other programs on a Pentium IV 3.0 GHz with 1 GB of RAM.

Dataset hit phase gerbil hap

Daly et al. 126 9290 45 25
Hinds et al. 88 71100 52 29
Population1 9 773 19 2
Population2 28 5180 89 7
Population3 29 4520 10 7

datasets. The speed of hit (Java implementation) per EM restart is comparable
to the speed of gerbil and hap, but slower when tens of restarts are used. Yet,
hit scales nicely to large datasets, opposite to phase.
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Abstract. The haplotype inference (HI) problem is the problem of in-
ferring 2n haplotype pairs from n observed genotype vectors. This is a
key problem that arises in studying genetic variation in populations, for
example in the ongoing HapMap project [5]. In order to have a hope of
finding the haplotypes that actually generated the observed genotypes,
we must use some (implicit or explicit) genetic model of the evolution of
the underlying haplotypes. The Perfect Phylogeny Haplotyping (PPH)
model was introduced in 2002 [9] to reflect the “neutral coalescent” or
“perfect phylogeny” model of haplotype evolution. The PPH problem
(which can be solved in polynomial time) is to determine whether there
is an HI solution where the inferred haplotypes can be derived on a
perfect phylogeny (tree).

Since the introduction of the PPH model, several extensions and mod-
ifications of the PPH model have been examined. The most important
modification, to model biological reality better, is to allow a limited
number of biological events that violate the perfect phylogeny model.
This was accomplished implicitly in [7,12] with the inclusion of several
heuristics into an algorithm for the PPH problem [8]. Those heuristics
are invoked when the genotype data cannot be explained with haplo-
types that fit the perfect phylogeny model. In this paper, we address
the issue explicitly, by allowing one recombination or homoplasy event in
the model of haplotype evolution. We formalize the problems and pro-
vide a polynomial time solution for one problem, using an additional,
empirically-supported assumption. We present a related framework for
the second problem which gives a practical algorithm. We believe the
second problem can be solved in polynomial time.

1 Introduction

In diploid organisms (such as humans) there are two (not completely identical)
“copies” of each chromosome, and hence of each region of interest. A description
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of the data from a single copy is called a haplotype, while a description of the
conflated (mixed) data on the two copies is called a genotype. In complex diseases
(those affected by more than a single gene) it is often much more informative to
have haplotype data (identifying a set of gene alleles inherited together) than to
have only genotype data.

Today, the underlying data that forms a haplotype is usually a vector of val-
ues of m single nucleotide polymorphisms (SNP’s). A SNP is a single nucleotide
site where exactly two (of four) different nucleotides occur in a large percentage
of the population. Genotype data is represented as an n by m 0-1-2 (ternary)
matrix G. Each row is a genotype. A pair of binary vectors of length m (haplo-
types) generate a row i of G if for every position c both entries in the haplotypes
are 0 (or 1) if and only if G(i, c) is 0 (or 1) respectively, and exactly one entry
is 1 and one is 0 if and only if G(i, c) = 2. The international Haplotype Map
Project [5] is focused on determining the common SNP haplotypes in several
diverse human populations.

Given an input set of n genotype vectors of length m, the Haplotype Inference
(HI) Problem is to find a set of n pairs of binary vectors (with values 0 and 1),
one pair for each genotype vector, such that each genotype vector is generated by
the associated pair of haplotypes. The ultimate goal is to computationally infer
the true haplotype pairs that generated the genotypes. This would be impossible
without the implicit or explicit use of some genetic model to guide the algorithm
in constructing a solution. A powerful genetic model that has been used in the
HI problem is the population-genetic concept of a coalescent [14,21].

The coalescent model of SNP haplotype evolution implies that the evolution-
ary history of 2n haplotypes, one from each of 2n individuals, can be displayed
as a rooted tree T with 2n leaves, where some ancestral sequence labels the root
of the tree, and where each of the m sites labels exactly one edge of the tree.
A label i on an edge indicates the (unique) point in history where a mutation
at site i occurred. Sequences evolve down the tree, starting from the ancestral
sequence, changing along a branch e = (u, v) by changing the state of any site
that labels edge e. The state changes from what it is at u to the opposite state,
recorded at v. The tree “generates” the resulting sequences that appear at its
leaves. In more computer science terminology, the coalescent model says that 2n
haplotype (binary) sequences that appear at the leaves of T are generated on a
perfect phylogeny. See [9] for further explanation and justification of the perfect
phylogeny haplotype model.

Generally, most solutions to the HI problem will not fit a perfect phylogeny,
and this leads to The Perfect Phylogeny Haplotyping (PPH) Problem:
Given an n by m matrix M that holds n genotypes from m sites, find n pairs of
haplotypes that generate M on a perfect phylogeny.

It is the requirement that the haplotypes fit a perfect phylogeny, and the
fact that most solutions to the HI problem will not, that enforce the coalescent
model of haplotype evolution, and make it plausible that a solution to the PPH
problem (when there is one) is biologically meaningful.
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There are several polynomial-time solutions to the PPH problem [2,4,8,9] and
a linear-time algorithm [6]. An additional empirical result that will be exploited
in this paper is that when there is a PPH solution, it is highly likely that there is
only a single, unique, PPH solution [3,4]. The frequency of uniqueness increases
with the number of genotypes, and a surprisingly small number of genotypes is
needed before the solution is highly likely to be unique.

Since the introduction of the PPH model, a central goal has been to extend
the range of applicability of model by incorporating more biological complexity,
yet preserving polynomial-time solvability. Biologically, the most important ex-
tension is to allow a limited amount of recombination or homoplasy (recurrent
or back mutation) in the model of haplotype evolution. Homoplasy allows a site
to mutate more than once, and hence allows a site to label more than one edge
in the tree. As before, if a site i labels the directed edge (u, v), then the state of
site i at u mutates to the opposite state, which is the state of i at v. If the two
occurrences of site i are on the same path from the root of T , then the second
occurrence is a “back mutation”, otherwise it is a “recurrent mutation”.

An H-1 Phylogenetic Tree T is derived from a perfect phylogeny by allow-
ing exactly one site to label two distinct edges of T . An H-1 phylogenetic tree
generates M if the sequences in M label the leaves of T .

A single-crossover recombination between two equal-length sequences P and
S creates a third “recombinant” sequence of the same length consisting of a prefix
of P followed by a suffix of S. The point where the recombinant sequence changes
from P to S is called the “crossover” or “break” point. Recombination occurs
during meiosis (and in other contexts) and is a primary mechanism creating
genomic diversity in a population.

An R-1 Phylogenetic Network N is derived from a perfect phylogeny by al-
lowing one recombination event, represented at a node v of N by two edges
entering v, one from the node labeled by sequence P , and one labeled by se-
quence S. The crossover point is also noted at v. a recombination node (e.g.,
to have two incoming edges), where a single-crossover recombination occurs. An
R-1 phylogenetic network generates M if the sequences of M label the terminal
nodes (nodes with no descendants) of N . An R-1 phylogenetic network can also
be described as a galled-tree with exactly one gall [11].

Given an input set of genotypes M , we define two problems.

1. The H-1 Imperfect Phylogeny Haplotyping (IPPH) Problem: Find an H-1
Phylogenetic Tree generating haplotypes that solve the HI problem for M .

2. The R-1 Imperfect Phylogeny Haplotyping (IPPH) Problem: Find an R-
1 phylogenetic Network generating haplotypes that solve the HI problem
for M .

In this paper, we develop algorithms for both problems. Both solutions first
solve a PPH problem for a subset of the data, and we will assume (following
the observations in [3,4]) that those solutions are unique. Given that assump-
tion, our solution to the H-1 IPPH problem runs in polynomial time. We have
implemented our H-1 IPPH algorithm in C++ and evaluated its performance
using simulated data. As we elaborate later, our study shows that our method is
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both practical and highly accurate. We are currently working on extending our
method to IPPH with multiple homoplasy events. Our present solution for the
R-1 IPPH problem takes exponential time, but a polynomial-time algorithm for
that approach looks promising, and we believe a related, more complex, method
runs in polynomial time.

In what follows, we use M to denote an n×m genotype matrix. Its haplotype
matrix, of size 2n×m, is denoted by M ′. Following [2], we say that two rows in
M ′ are mates if they come from a single row in M .

2 IPPH with a Single Homoplasy Event

In this section, we construct an IPPH method that allows for exactly one back or
recurrent mutation. Suppose that a genotype matrix M does not admit a PPH
solution. If that is due to a single homoplasy event at a particular site, then
removing the column in M corresponding to that site will render the remaining
data Mr compatible with a perfect phylogeny, and therefore there will be a PPH
solution for Mr. In our work, we consider partitioning M column-wise into two
parts, one (denoted Ms) containing exactly one column of M and the other
(denoted Mr) the rest. We denote this partitioning by M −→ Mr ⊕ Ms. Our
algorithm proceeds by trying all such partitions of M and checking whether Mr

admits a PPH solution (i.e. a perfect phylogeny T ), and, if so, whether the single
column in Ms can be explained by a single homoplasy event in T , possibly after
some refinement. If these conditions are satisfied by at least one partition of M ,
then we say that there exists a solution to IPPH with a single homoplasy event.

2.1 H-1 IPPH When There Exists a Unique PPH Solution for Mr

In what follows, we describe our main ideas through an explicit example. Con-
sider the genotype matrix M shown on the left hand side of Figure 1. The only
partition of that genotype matrix that leads to a PPH solution for Mr is the
one shown on the right hand side of Figure 1. In fact, that Mr admits a unique
PPH solution M ′

r, shown on the left hand side of Figure 2; a PPH solution M ′
s

for Ms is shown there as well. The question that remains is whether we can
appropriately combine M ′

r with M ′
s to create an H-1 IPPH solution M ′ for the

entire genotype matrix M ; i.e., for each 1 ≤ i ≤ n, we want to ask whether we

M

i1 i2 i3 i4 i5 i6 i7

g1 1 2 1 2 1 2 2
g2 2 2 2 0 1 0 0
g3 2 2 2 2 1 2 2
g4 1 1 0 1 0 0 0
g5 1 1 1 1 2 2 0

	−→

Mr

i1 i2 i4 i5 i6 i7

g1 1 2 2 1 2 2
g2 2 2 0 1 0 0
g3 2 2 2 1 2 2
g4 1 1 1 0 0 0
g5 1 1 1 2 2 0

⊕
Ms

i3

g1 1
g2 2
g3 2
g4 0
g5 1

Fig. 1. Partition of M into Mr and Ms, where Ms contains column i3
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M ′
r

i1 i2 i4 i5 i6 i7

r1 1 0 0 1 0 0
r′
1 1 1 1 1 1 1

r2 1 1 0 1 0 0
r′
2 0 0 0 1 0 0

r3 0 0 0 1 0 0
r′
3 1 1 1 1 1 1

r4 1 1 1 0 0 0
r′
4 1 1 1 0 0 0

r5 1 1 1 0 0 0
r′
5 1 1 1 1 1 0

M ′
s

i3

s1 1
s′
1 1

s2 0
s′
2 1

s3 0
s′
3 1

s4 0
s′
4 0

s5 1
s′
5 1

s1

s′
1

s′
2

s′
5

s5

s′
3

s3

s2

s4

s′
4

r4 r′
4 r5

r′
5

r′
1

r′
3r3

r′
2

r2r1

Tr

Ts

Fig. 2. Separate PPH solutions and perfect phylogenies for Mr and Ms in Figure 1

can appropriately order the rows si, s
′
i in M ′

s with respect to the rows ri, r
′
i in

M ′
r, such that the combined matrix is an H-1 IPPH solution for M . For each

1 ≤ i ≤ n, row ri can get paired with either si or s′i. Therefore, if ri and r′i are
distinct, and so are si and s′i, for all 1 ≤ i ≤ n, then there are 2n possible ways of
pairing the rows. Hence, checking whether there exists an H-1 IPPH solution for
each way of pairing would be impractical when n is large. The approach we take
is to work not with haplotype matrices directly but with perfect phylogenies.
The problem of finding an H-1 IPPH solution therefore translates to a graph
theoretical problem.

Returning to our example, consider the perfect phylogenies shown on the
right hand side of Figure 2. Trees Tr and Ts correspond to the PPH solutions
M ′

r and M ′
s, respectively. To create an H-1 IPPH solution for the entire genotype

matrix M , we need to combine the information contained in Tr with that in Ts,
but, before we can do that, we first need to identify the leaf labels ri, r

′
i in Tr

with the leaf labels si, s
′
i in Ts. There are O(2n) ways to do this in general.

But, an important observation allows us to avoid considering all O(2n) pairings
of leaf labels explicitly. Because we do not know a priori how the leaf labels
ri, r

′
i in Tr should be paired up with the leaf labels si, s

′
i in Ts, we can actually

use that freedom to set ri, r
′
i, si, s

′
i equal to a new label, say xi, and study the

re-labeled trees T̃r and T̃s to see whether there exists an H-1 IPPH solution; an
H-1 IPPH solution exists if having two mutation events in T̃r can induce the
same bipartition of the multiset {x1, x1, x2, x2, . . . , xn, xn} as that captured by
the tree topology of T̃s. Once the location of the two mutation events in T̃r is
determined, we can go back to Tr and determine the phase of the entire data
M ; i.e., the location of the two mutation events in Tr determines the order of
si, s

′
i in Ms with respect to ri, r

′
i in Mr.

Equivalently, if T̃r is a binary tree, an H-1 IPPH solution exists if there exist
two edges e1 and e2 in T̃r that are not incident with a common vertex, such
that removing those edges partitions T̃r into three subtrees, of which two are
non-adjacent, with the following properties:
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(i) The multiset union of leaf labels for the two non-adjacent subtrees—i.e.,
those subtrees not joined by e1 or e2 in T̃r—is equal to the multiset of leaf
labels on one side of the unique interior edge eI in T̃s, and

(ii) the multiset of leaf labels for the remaining subtree is equal to that on the
other side of eI in T̃s.

Whether there exists such a pair of edges can easily be answered in polynomial
time. If the answer is affirmative, then the phasing of the single column in Ms

can be determined, up to exchange of 0s with 1s in the entire column, by looking
at the topology of Tr and the position of the two mutation events in Tr.

If T̃r is not binary, things are more complicated. For ease of discussion, we
introduce the following definition (see [17] for graph theoretical terminology):

Definition 1 (Cut-subtree). By a cut-subtree τ of a leaf-labeled unrooted tree
T , we mean a subtree of T that can be obtained by removing an edge e in T ,
or by first refining a vertex of degree ≥ 4 and then removing the newly created
edge e. The remaining part of T , after deleting any degree-2 vertex created by
removing e, is denoted T \ τ .

If T̃r is not binary, we need to ask whether there exist two disjoint cut-subtrees
τ1 and τ2 of T̃r, such that

(i′) the multiset union of leaf labels for τ1 and τ2 is equal to that for one side of
eI in T̃s, and

(ii′) the remaining part of Tr has a label multiset equal to that for the other side
of eI in T̃s.

A polynomial-time algorithm for finding such cut-subtrees, if they exist, is
described in Section 2.2. For now, we return to the simple example in Figure 2. It

h1 h2

h′
5

h′
3

h′
1

i3

h4

h5

x4 x4 x5

x1

x3

x2
x2x1

x3
x5

h′
2

h3

i3

(a)

(b)

h′
4 (c)

M ′

i1 i2 i3 i4 i5 i6 i7

h1 1 0 1 0 1 0 0
h′

1 1 1 1 1 1 1 1
h2 1 1 1 0 1 0 0
h′

2 0 0 0 0 1 0 0
h3 0 0 0 0 1 0 0
h′

3 1 1 1 1 1 1 1
h4 1 1 0 1 0 0 0
h′

4 1 1 0 1 0 0 0
h5 1 1 1 1 0 0 0
h′

5 1 1 1 1 1 1 0

Fig. 3. (a) Cut-subtrees, denoted by dashed lines, in T̃r that satisfy properties (i′)
and (ii′). (b) Imperfect phylogenetic tree with two mutations for column i3. The two
edges on which mutations for column i3 occur are labeled i3. (c) The corresponding
H-1 IPPH solution for the entire genotype matrix M .
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is easy to see that there does not exist a pair of edges in T̃r such that properties
(i) and (ii) shown above are both satisfied. However, there exist two cut-subtrees,
shown in Figure 3a, that satisfy properties (i′) and (ii′). Having identified the
appropriate cut-subtrees, we can now go back to the original tree Tr and deter-
mine the phase of Ms. An imperfect phylogenetic tree with two mutations for
column i3 and the corresponding H-1 IPPH solution are shown in Figures 3b and
3c, respectively, where haplotype mates are now labeled hi and h′

i. Note that
the H-1 IPPH solution is unique. In terms of pairing the rows in M ′

r and M ′
s,

the H-1 IPPH solution corresponds to pairing s2 with r′2 (and hence s′2 with r2)
and s3 with r3 (and hence s′3 with r′3). In this example, the imperfect phylogeny
for M ′ is binary. In general, an imperfect phylogeny for M ′ may still contain
vertices of degree greater than 3.

2.2 Algorithm for Finding Appropriate Cut-Subtrees in Non-binary
Trees for a Single Homoplasy Event

Suppose that T̃r is non-binary. In what follows, the reader should refer to Figure 4
for illustration of notation. If we remove two existing edges E1 and E2 from T̃r,
then that defines two non-adjacent subtrees T1 and T2. Our goal is to check
whether we can choose a set of edges from e1, . . . , ep to create a cut-subtree τ1
and, similarly, choose a set of edges from ep+1, . . . , eq to create a cut-subtree τ2,
such that properties (i′) and (ii′) in Section 2.1 are satisfied. Below we provide
a polynomial-time algorithm for finding all possible such pairs of disjoint cut-
subtrees, when they exist.

Our algorithm is based on coloring a graph G whose q vertices v1, . . . , vq

are in one-to-one correspondence with e1, . . . , eq; vi in G is related to ei in T̃r.
Edges in G will be defined shortly. A coloring procedure may terminate before
reaching the end, if inconsistency is encountered; i.e., if a vertex is assigned more
than one color. If G is colored consistently, the final coloring of the vertices in
G determines which of e1, . . . , eq should be chosen to construct the desired cut-
subtrees τ1 and τ2. In our convention, if vertex vi is colored “red,” then it means
we should “take” ei. If it is colored “black,” then we should “not take” ei.

We use L(T ) to denote the set of leaf labels in T . More generally, L(T ) is a
multiset when we consider trees with duplicate labels. Let X |Y be the bipartition
of L(T̃s) defined by the single interior edge in T̃s, and recall that T̃r and T̃s carry
duplicate leaf labels. Our algorithm is as follows.

1. Choose a pair of existing edges E1, E2 in T̃r that has not been tried so far.
If no such choice remains, terminate the algorithm.

2. Remove E1, E2 to partition T̃r into three subtrees. Let T1, T2 be the two non-
adjacent subtrees as depicted in Figure 4. If L(T1) ∪ L(T2) contains either
X or Y , or both, create q vertices v1, . . . , vq, and go to next step. If not, go
back to step 1; no solution is possible for the current choice of E1, E2.

3. For each Z ∈ {X, Y } satisfying Z ⊂ L(T1) ∪ L(T2), check whether the
following conditions hold:



Algorithms for Imperfect Phylogeny Haplotyping (IPPH) 159

E1 E2

tp+1

tp+2

tq

t1
t2

tp

e1

ep

e2

ep+1

eq

ep+2

T1
T̃r

T2

Fig. 4. Schematic depiction of T̃r. Here, ti denote subtrees and the big circle in the
center schematically represents the rest of T̃r.

(a) If x appears only once in Z, then there does not exist a tk in T1 or T2
such that L(tk) contains two xs.

(b) For every x that appears exactly once in Z, create an edge between vi

and vj if x ∈ L(ti) and x ∈ L(tj). Let GZ denote the resulting graph.
Then, every non-trivial connected component of GZ is bipartite1.

If no Z satisfies the above conditions, go back to step 1; there is no solution
for the current choice of E1, E2. Otherwise, pass GZ to the next step.

4. For each GZ passed, check whether it is possible to color the vertices in GZ

as describe below without encountering inconsistency.
(a) If x /∈ Z, find all tk such that x ∈ L(tk) and color vk black.
(b) If x occurs twice in Z, find all tk such that x ∈ L(tk) and color vk red.
(c) If x occurs only once in Z and there exists exactly one tk such that L(tk)

contains a single x, color vk red.
If no GZ admits consistent coloring, go back to step 1. Otherwise, pass
consistently colored GZ to the next step.

5. For each non-trivial connected component of GZ , see whether any of the
vertices has been colored. If so, color the remaining uncolored vertices, if
there are any, in that connected component to respect the bipartite structure
(i.e. red on one side and black on the other). If this is not possible, return
to step 1.

6. If there are k totally-uncolored non-trivial connected components of GZ ,
then there are 2k ways to color them consistently, and hence there are 2k

solutions for the current choice of E1, E2. Go back to step 1.

The above algorithm can be implemented to run in O(n4) time, where 2n is the
number of leaves.

2.3 Empirical Results

We implemented our H-1 IPPH algorithm in C++ and compared its performance
on simulated data with that of PHASE [20]. The input datasets were generated
as follows. We first used Hudson’s program MS [15] to generate homoplasy-
free haplotype datasets satisfying the 5% rule2 described in [4]. To introduce
1 If a non-trivial connected component is not bipartite, then it has an odd-length

cycle, which leads to inconsistent coloring.
2 The 5% rule is a biologically relevant restriction that every column in the haplotype

matrix has minor allele frequency ≥ 5%.
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Table 1. Comparison of our H-1 IPPH method with PHASE for genotype matrices of
size n × m. Shown here are average accuracy measures and average running time (on
a 2.8 GHz Pentium PC) per dataset, based on 100 datasets of each size. Our method
seems comparable to PHASE in accuracy, while being significantly faster than PHASE.

Our H-1 IPPH method PHASE
50×50 100×50 50×100 100×100 50×50 100×50 50×100 100×100

Standard error 0.005 0.005 0.006 0.003 0.006 0.002 0.007 0.001
Switch accuracy 0.999 0.999 1.000 1.000 0.998 0.999 0.999 1.000
% of misphased 2s 0.03% 0.03% 0.02% 0.01% 0.07% 0.02% 0.03% 0.01%
Running time 0.22s 0.41s 1.52s 3.09s 14.2s 27.7s 43.6s 85.8s

Table 2. Performance of our H-1 IPPH method in more detail. The number of datasets
shown is out of 100.

50×50 100×50 50×100 100×100
# of datasets admitting PPH solutions 20 19 16 15
# of datasets admitting H-1 IPPH solutions 80 81 84 85
(with a unique PPH solution for Mr) (80) (81) (84) (85)
Frequency of correctly identifying the homoplasy 95% 98% 96% 98%
column when M admits no PPH solution

a homoplasy event, we randomly chose two distinct edges (on which mutations
occur) in the underlying rooted genealogical tree of each haplotype dataset, with
the probability of choosing an edge being proportional to its length. This process
was repeated for each dataset until a homoplasy site satisfying the 5% rule got
generated. We then randomly inserted the so obtained homoplasy column into
the original haplotype matrix. Finally, a genotype matrix was created by pairing
row 2i with row 2i − 1 in the modified haplotype matrix.

Let GM denote the set of genotypes in dataset M with more than one het-
erozygous site. We used the following three measures of haplotype reconstruction
accuracy: (a) The standard error [20] is the ratio of the number of genotypes in
GM whose haplotypes are incorrectly inferred to the total number of genotypes
in GM . (b) For a genotype g in GM , the switch accuracy [16] of its inferred hap-
lotypes is defined as (h−w− 1)/(h− 1), where h is the number of heterozygous
sites in g and w is the number of switches between neighboring heterozygous sites
needed to transform the inferred haplotypes to the true haplotypes. The switch
accuracy averaged over the genotypes in GM defines the switch accuracy of the
entire inferred haplotype matrix M ′. (c) The last measure is the percentage of
misphased 2s with respect to the total number of 2s in GM .

Our simulation results are summarized in Table 1. For each size n×m, we used
100 simulated genotype matrices. As the table shows, our method is comparable
to PHASE in terms of accuracy, while being tens of times faster than PHASE.
As shown in Table 2, for each combination of n and m used, more than 80
out of 100 datasets did not admit PPH solutions. Every such a dataset had an
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H-1 IPPH solution with a unique PPH solution for the genotype matrix Mr,
in agreement with our assumption. Also, note that, for datasets with no PPH
solutions, our H-1 IPPH method correctly identified the homoplasy column (a
feature that PHASE does not have) with very high accuracy. This study shows
that our method is both practical and highly accurate.

3 IPPH with a Single Recombination Event

The case with exactly one single-crossover recombination event is similar in spirit
to the case of a single homoplasy event. Suppose that an n×m genotype matrix
M does not admit a PPH solution. If that is due to a single recombination event
with a breakpoint3 b somewhere between 1 and m, then the part to the left of b
and that to the right of b should each admit a PPH solution. In our approach, we
choose a recombination breakpoint b somewhere between 1 and m, and consider
partitioning M column-wise into two parts, one containing the columns to the
left of b and the other the columns to the right of b. We denote a partitioning
by M −→ ML ⊕MR, with L (resp. R) denoting left (resp. right). Our algorithm
proceeds by trying all such partitions of M and checking whether each of ML

and MR admits a PPH solution, and, if so, whether the PPH solutions from
the two parts can be combined in a way consistent with there being a single
recombination event, i.e. a galled tree with one gall [11,10]. If these conditions
are satisfied by at least one partition of M , then we say that there exists a
solution to IPPH with a single recombination event.

3.1 R-1 IPPH When There Exist Unique PPH Solutions for Each
Side

Given PPH solutions M ′
L and M ′

R for ML and MR, respectively, the main ques-
tion that we need to ask is whether we can appropriately pair up the mates Li, L

′
i

in M ′
L with the mates Ri, R

′
i in M ′

R, such that there is a galled tree with one gall
for the combined data. If there are n genotypes in M , then in the worst case there
are 2n ways of doing the pairing. Similar to what we discussed in Section 2.1 for
the case of a single homoplasy event, we propose to solve this problem in the
following way: First, for all 1 ≤ i ≤ n, we set Li = L′

i = Ri = R′
i = xi, where xi

is a new leaf label. Then, we work with perfect phylogenies, not with haplotype
matrices, as described below.

Let T̃L and T̃R denote the re-labeled perfect phylogenies corresponding to
M ′

L and M ′
R, respectively. Then, what properties of T̃L and T̃R would imply

that there exists an R-1 IPPH solution? In a galled tree with exactly one gall,
whose recombination breakpoint is denoted b, the rooted tree τL to the left of
b and the rooted tree τR to the right of b are closely related. More precisely,
there exists a single tree rearrangement operation, called the subtree-prune-and-
regraft (SPR) operation, that one can perform on τL to transform it into τR,
or vice versa [1,13,18,19]. This implies that T̃L and T̃R cannot be two arbitrary
3 A breakpoint occurs between two sites.
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trees for there to be an R-1 IPPH solution. Rather, they, too, should be related
by an SPR-like operation. There is an important point that we should highlight
here. For SPR operations to be biologically meaningful, certain restrictions must
be imposed to avoid possible contradictions [18,19]. For example, time-ordering
of certain associated biological events must be obeyed. The reader should be
warned that, as there exists no fixed sense of time direction in unrooted trees,
performing SPR operations on them and drawing conclusions about evolutionary
histories, of which time is an essential component, may not be the right thing
to do. However, because we are working with the case of a single recombination
event, which involves a single SPR operation, it is always possible to root the
two unrooted trees involved to construct a consistent evolutionary history. To
recapitulate, there exists an R-1 IPPH solution if T̃L and T̃R are related by a
single SPR operation.

Determining whether two binary trees T̃L and T̃R are exactly one SPR oper-
ation away is equivalent to checking whether there exists a common cut-subtree
t in T̃L and T̃R such that T̃L \ t is identical to T̃R \ t. It is straightforward to
do this in polynomial time. It is important to note that, in general, perfect phy-
logenies that we need to compare may not be binary. When either one or both
of T̃L and T̃R are non-binary, to determine whether they are exactly one SPR
operation way, we need to check whether there exist a cut-subtree tL of T̃L and
a compatible4 cut-subtree tR of T̃R, such that T̃L \ tL is compatible with T̃R \ tR.
A brute-force way of checking the 1-SPR condition is as follows. As shown in
Figure 4, remove two edges E1 and E2 from T̃L to obtain two subtrees T1 and
T2. We need to find two cut-subtrees τ1 ⊆ T1 and τ2 ⊆ T2 so that we can prune
τ1 and regraft it next to τ2, or vice versa, and check whether the resulting tree
T̃ ′

L is compatible with T̃R. To do this, simply enumerate all possible ways of
generating cut-subtrees τ1 and τ2. After pruning and regrafting, test for com-
patibility. This simple method is feasible when there are not too many unrefined
vertices of large degree. We believe that there is a polynomial-time algorithm
for checking the 1-SPR condition, as well as a related, more complex, method
for solving the R-1 IPPH problem that runs in polynomial time.

3.2 An Example

Consider the genotype matrix shown on the left hand side of Figure 5. For every
partition M → ML ⊕ MR, we first need to check whether there exist PPH
solutions for ML and MR. For the particular partition shown on the right hand
side of Figure 5, there exists a unique PPH solution for each of ML and MR.
These PPH solutions M ′

L and M ′
R, and the corresponding the perfect phylogenies

TL and TR, respectively, are shown in Figure 6. After redefining Li = L′
i = Ri =

R′
i = xi, we obtain the trees T̃L and T̃R shown in Figure 7. Now, note that, T̃L

and T̃R contain a common cut-subtree t such that T̃L \ t is identical to T̃R \ t.
Hence, T̃L and T̃R can be related by a single SPR operation in which t gets

4 Two trees T1, T2 are said to be compatible if there exists a third tree that is a
refinement of both T1 and T2.
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M

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

g1 0 2 1 2 1 1 1 2 2 2
g2 2 2 1 1 2 1 2 2 1 1
g3 1 1 2 1 2 2 2 1 2 2
g4 2 1 2 2 1 2 1 1 2 0

	−→

ML

i1 i2 i3 i4 i5

g1 0 2 1 2 1
g2 2 2 1 1 2
g3 1 1 2 1 2
g4 2 1 2 2 1

⊕
MR

i6 i7 i8 i9 i10

g1 1 1 2 2 2
g2 1 2 2 1 1
g3 2 2 1 2 2
g4 2 1 1 2 0

Fig. 5. A partition of M into ML and MR

M ′
L

i1 i2 i3 i4 i5

L1 0 1 1 0 1
L′

1 0 0 1 1 1
L2 0 0 1 1 1
L′

2 1 1 1 1 0
L3 1 1 0 1 1
L′

3 1 1 1 1 0
L4 0 1 1 0 1
L′

4 1 1 0 1 1

M ′
R

i6 i7 i8 i9 i10

R1 1 1 0 1 1
R′

1 1 1 1 0 0
R2 1 1 0 1 1
R′

2 1 0 1 1 1
R3 1 0 1 1 1
R′

3 0 1 1 0 0
R4 1 1 1 1 0
R′

4 0 1 1 0 0
R3

R2

R4R′
1

R′
3

R′
4

L3

L′
3L′

1

L4

L2

L′
4

L′
2

L1

R1

R′
2

TR

TL

Fig. 6. Separate PPH solutions for ML and MR in Figure 5, and their corresponding
perfect phylogenies

T̃R

T̃L

x3

x2

x4x1

x3

x4

x3

x3x1

x4

x2

x4

x2

x1

x2

x1

M ′

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

h1 0 1 1 0 1 1 1 1 0 0
h′

1 0 0 1 1 1 1 1 0 1 1
h2 0 0 1 1 1 1 1 0 1 1
h′

2 1 1 1 1 0 1 0 1 1 1
h3 1 1 0 1 1 0 1 1 0 0
h′

3 1 1 1 1 0 1 0 1 1 1
h4 0 1 1 0 1 1 1 1 1 0
h′

4 1 1 0 1 1 0 1 1 0 0

Fig. 7. Re-labeled perfect phylogenies and an R-1 IPPH solution for the entire geno-
type matrix M in Figure 5. If the edges denoted by dashed lines are removed, then a
common 2-leaved subtree t labeled by x3 and x4 gets pruned, and T̃L \ t and T̃R \ t
become identical.

pruned and regrafted to transform T̃L into T̃R, or vice versa. Going back to TL

and TR with original leaf labels, it is then possible to conclude that L1 should
get paired with R′

1, L2 with R2, L3 with R′
3, and L4 with R4. The R-1 IPPH

solution just described is shown on the right hand side of Figure 7, where hi and
h′

i denote haplotype mates for genotype gi.
The partition shown in Figure 5 led to two binary trees. Other partitions do

not have this nice property, however. For instance, the partition that divides M
between columns 4 and 5 leads to a non-binary tree T̃L for the left part and
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a binary tree T̃R for the right part. There are several other possible partitions
such that each part admits a PPH solution; but, in fact, all such partitions lead
to the same R-1 IPPH solution shown in Figure 7.

References

1. B. L. Allen and M. Steel. Subtree transfer operations and their induced metrics
on evolutionary trees. Ann. Combin., 5:1–13, 2001.

2. V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phy-
logeny: A direct approach. J. Comput. Biol., 10:323–340, 2003.

3. T. Barzuza, J.S. Beckman, R. Shamir, and I. Pe’er. Computational problems in
perfect phylogeny haplotyping: XOR genotypes and tag SNPs. In Proc. of CPM,
pages 14–31, 2004.

4. R.H. Chung and D. Gusfield. Empirical exploration of perfect phylogeny haplo-
typing and haplotypers. In Proc. of COCOON, pages 5–19, 2003.

5. International HapMap Consortium. The HapMap project. Nature, 426:789–796,
2003.

6. Z. Ding, V. Filkov, and D. Gusfield. A linear-time algorithm for the perfect phy-
logeny haplotyping problem. In Proc. of RECOMB, pages 585–600, 2005.

7. E. Eskin, E. Halperin, and R. Karp. Large scale reconstruction of haplotypes from
genotype data. In Proc. of RECOMB, pages 104–113, 2003.

8. E. Eskin, E. Halperin, and R.M. Karp. Efficient reconstruction of haplotype struc-
ture via perfect phylogeny. J. Bioinf. Comput. Biol., 1:1–20, 2003.

9. D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient
solutions (Extended Abstract). In Proc. of RECOMB, pages 166–175, 2002.

10. D. Gusfield. Optimal, efficient reconstruction of Root-Unknown phylogenetic net-
works with constrained recombination. J. Comput. Sys. Sci., 70:381–398, 2005.

11. D. Gusfield, S. Eddhu, and C. Langley. Optimal, efficient reconstruction of phyloge-
netic networks with constrained recombination. J. Bioinf. Comput. Biol., 2(1):173–
213, 2004.

12. E. Halperin and E. Eskin. Haplotype reconstruction from genotype data using
Imperfect Phylogeny. Bioinformatics, 20:1842–1849, 2004.

13. J. Hein. Reconstructing evolution of sequences subject to recombination using
parsimony. Math. Biosci., 98:185–200, 1990.

14. R. Hudson. Gene genealogies and the coalescent process. Oxford Survey of Evolu-
tionary Biology, 7:1–44, 1990.

15. R. Hudson. Generating samples under the Wright-Fisher neutral model of genetic
variation. Bioinformatics, 18:337–338, 2002.

16. S. Lin, D.J. Cutler, M.E. Zwick, and A. Chakravarti. Haplotype inference in ran-
dom population samples. Am. J. Hum. Genet., 71:1129-1137, 2002.

17. C. Semple and M. Steel. Phylogenetics. Oxford University Press, UK, 2003.
18. Y. S. Song. On the combinatorics of rooted binary phylogenetic trees. Ann.

Combin., 7:365–379, 2003.
19. Y. S. Song and J. Hein. Constructing minimal ancestral recombination graphs. J.

Comput. Biol., 12:147–169, 2005.
20. M. Stephens, N.J. Smith, and P. Donnelly. A new statistical method for haplotype

reconstruction from population data. Am. J. Hum. Genet. 68:978–989, 2001.
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Abstract. Motifs in a network are small connected subnetworks that
occur in significantly higher frequencies than in random networks. They
have recently gathered much attention as a useful concept to uncover
structural design principles of complex networks. Kashtan et al. [Bioin-
formatics, 2004] proposed a sampling algorithm for efficiently performing
the computationally challenging task of detecting network motifs. How-
ever, among other drawbacks, this algorithm suffers from sampling bias
and is only efficient when the motifs are small (3 or 4 nodes). Based
on a detailed analysis of the previous algorithm, we present a new al-
gorithm for network motif detection which overcomes these drawbacks.
Experiments on a testbed of biological networks show our algorithm to
be orders of magnitude faster than previous approaches. This allows for
the detection of larger motifs in bigger networks than was previously
possible, facilitating deeper insight into the field.

1 Introduction

Motivation. Based on the idea that “evolution preserves modules that define
specific [...] functions” [20], Milo et al. [14,15] propose to uncover the struc-
tural design principles of biological networks1 by detecting small subnetworks
which occur in significantly higher frequencies than in random networks. These
“topological modules” [20] are called network motifs.2

Some excitement has surrounded the network motif approach with the origi-
nal paper by Milo et al. [15] being cited well over 40 times in some major scientific
journals as of June 2005. The analysis of network motifs has led to interesting
results (of which we only name a few here), e.g., in the areas of protein-protein
interaction prediction [1] and hierarchical network decomposition [7]. The tran-
scriptional network of Escherichia Coli displays motifs to which specific function-
alities such as the generation of temporal expression programs or the response to
� Supported by Deutsche Telekom Stiftung and Studienstiftung des deutschen Volkes.
1 We use the terms “network” and “node” for fields outside mathematics and computer

science. The terms “graph” and “vertex” are used for discussing algorithmic aspects.
2 Note that the term “network motif” has been used in other contexts as well and,

e.g., may also refer to a common subnetwork in a set of given networks [17] or to
any small labeled subnetwork (without considering connectivity or isomorphy) [5].

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 165–177, 2005.
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fluctuating external signals can be attributed [15,18], suggesting that network
motifs play key information processing roles in this type of network [9]. The
same motifs as in the transcriptional interaction network of E. Coli were also
identified for the yeast Saccharomyces Cerevisiae, possibly hinting that common
network function implies the sharing of common motifs [11].

To put motif research in proper perspective, it should be noted that it has
also been met with some criticism. Artzy-Randrup et al. [2] found that certain
random network models lead to a display of motifs although there is no explicit
selection mechanism for local structures (Milo et al. answer this criticism in [13]).
Vázquez et al. [19] demonstrated that global network features such as the clus-
tering coefficient also influence local features such as the abundance of certain
subgraphs.

Previous Work. Much work related to network motifs has been spent on inter-
preting and applying the general concept, but considerably less on the involved
algorithmics. Finding network motifs consists of three subtasks:

1. Find which subgraphs occur in the input graph (and in which number).
2. Determine which of these subgraphs are topologically equivalent (i.e., iso-

morphic) and group them into subgraph classes accordingly.
3. Determine which subgraph classes are displayed at a much higher frequency

than in random graphs (under a specified random graph model).

Performing the first subtask by explicitly enumerating all subgraphs of a certain
size can be time consuming due to their potentially large number even in small,
sparse networks. For this reason, Kashtan et al. [9] propose an algorithm that
estimates subgraph occurrences from a randomly sampled set of subgraphs. We
discuss this algorithm in full detail in Section 2, mentioning only in passing
here that it provides only biased sampling. This leads to considerable drawbacks
such as an inconsistent sampling quality and the need for a computationally
expensive bias correction. Besides [9], we are only aware of the work by Duke et
al. [6] on approximating the number of size-k subgraphs in a given graph. Their
algorithm, however, has no practical relevance since the input graph has to be
astronomically large (as compared to k) in order to ensure a reasonable quality
of approximation.

Much work has already been done concerning the second subtask and we rely
on the nauty algorithm [12] for performing it in practice.

As to the third subtask, the standard approach for determining subgraph sig-
nificance so far has been to explicitly generate an ensemble of random graphs un-
der a given random graph model. One popular of these random graph models—
which we also focus on in this work—is that of random graphs which preserve
the degree sequence of the original graph. (Alternative choices, e.g., additionally
preserve the number of bidirectional edges.) While there has been some research
concerning the properties of graphs with prescribed degree sequence (such as
the average path length [16]), the problem of subgraph distribution within such
graphs has only been studied for directed sparse random graphs with expected
degree sequences [8].
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Contribution and Structure of this Work. We give significant improvements for
the first and third subtask of motif detection. Based on a comprehensive anal-
ysis of the drawbacks encountered when using the subgraph sampling approach
proposed by Kashtan et al. [9], Section 2 presents a new algorithm for sub-
graph sampling which does not suffer from these drawbacks (and has some ad-
ditional useful features). While this comes at the price of only being able to
control the expected number of samples, our proposed algorithm is much easier
to implement and experiments in Section 4 reveal it to be orders of magnitude
faster than the algorithm of Kashtan et al. As to the task of determining sub-
graph significance, Section 3 proposes a new approach that does not require the
explicit generation of random graphs with a prescribed degree sequence. This
approach leads to a faster algortithm that is moreover able to focus on deter-
mining the significance of specific subgraphs (which is not possible with previous
approaches).

The proposed new algorithms have been implemented in C++, the source code
is freely available online at http://www.minet.uni-jena.de/˜wernicke/motifs/.
We show in Section 4 that in a testbed of biological networks, our algorithm
detects network motifs significantly faster than the implementation of Kashtan
et al. This enables the analysis of larger networks and more complex motifs than
previously possible.

2 A Faster Algorithm for Subgraph Sampling

Introduction. The algorithm for subgraph sampling suggested by Kashtan et
al. [9] is based on the idea that we start by selecting a random edge in the
input graph and then randomly extend this subgraph until we obtain a con-
nected subgraph with the desired number of vertices. Subsection 2.1 discusses
this approach and its main drawbacks. We present a new approach to subgraph
sampling (which is based on randomized enumeration) in Subsection 2.2. Note
that, due to lack of space, we omit the proofs of the theorems and lemmas
presented in this section.

Notation. Basic familiarity with graph-theoretic terminology is assumed. Given
a graph G = (V, E) (which can be directed), we let n := |V | and assume that
all vertices in V are uniquely labeled by the integers 1, . . . , n. We write “u > v”
to abbreviate “label(u) > label(v).” For a set V ′ ⊆ V of vertices, its neighbor-
hood N(V ′) is the set of all vertices from V \ V ′ which are adjacent to at least
one vertex in V ′.

A connected subgraph that is induced by a vertex set of cardinality k is
called size-k subgraph. For a given integer k, the set of all size-k subgraphs
in G can be partitioned into sets Si

k(G) called subgraph classes where two
size-k subgraphs belong to the same subgraph class if and only if they are
isomorphic. The concentration Ci

k(G) of a subgraph class Si
k(G) is defined as

Ci
k(G) := |Si

k(G)| · (
∑

j |S
j
k(G)|)−1. For a graph G, an integer k, and a set R of
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size-k subgraphs that were randomly sampled in G by an algorithm A, a map-
ping Ĉi

k : (R, G) → [0, 1] is called an estimator for Ci
k(G). We say that Ĉi

k(R, G)
is unbiased (with respect to A) if the expected value of Ĉi

k(R, G) equals Ci
k(G)

and biased otherwise.

2.1 The Previous Approach: Edge Sampling

For a given graph G = (V, E) and an integer k ≥ 3, Kashtan et al. [9] suggest to
sample a random subgraph by starting with a randomly chosen edge and then
adding neighboring vertices until a subgraph of the desired size k is obtained:

Algorithm: Edge Sampling(G, k) (esa)
Input: A graph G = (V, E) and an integer 2 ≤ k ≤ |V |.
Output: Vertices of a randomly chosen size-k subgraph in G.

01 {u, v} ← random edge from E
02 V ′ ← {u, v}
03 while |V ′| �= k do
04 {u, v} ← random edge from V ′ × N(V ′)
05 V ′ ← V ′ ∪ {u} ∪ {v}
06 return V ′

As already noted in [9], esa has a bias for sampling certain subgraphs more
often than others. Figure 1 shows a concrete example we have constructed to
illustrate this. The total number of connected size-3 subgraphs both in G1 and G2

G1 G2

Fig. 1. Graphs G1 and G2 have an equal number of (connected) size-3 subgraphs.
The subgraph occurs exactly once in each of them. As outlined in the text, esa
oversamples the subgraph in both G1 and G2. The oversampling is worse for G1.

is 28. Since the subgraph occurs exactly once each in G1 and G2, we should
expect that esa samples with probability 1

28 within both graphs. However,
Pr[esa samples in G1] = 1

9 · 1 + 2
9 · 2

8 = 1
6 and Pr[esa samples in G2] =

3
12 · 2

8 = 1
16 . This illustrates some crucial problems of esa: The subgraph

is oversampled and—as a direct consequence—the only other occurring size-3
subgraph is undersampled. The oversampling of is worse for G1 than it
is for G2 and it is possible to show (using an adaption of the above example)
that the magnitude of the oversampling cannot be estimated simply from the
number of edges neighboring the oversampled subgraph. Given a set R of size-k
subgraphs that were randomly sampled using esa, the demonstrated bias can
be overcome by using the following (unbiased) estimator [9]:

Ĉi
k(R, G) :=

∑
{G′∈R | G′∈Si

k(G)}(Pr[G′ is sampled by esa])−1∑
G′∈R(Pr[G′ is sampled by esa])−1 . (1)
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The main idea here is that each subgraph is (ex post facto) scored inversely pro-
portional to the probability that esa samples it. While it is possible to correctly
estimate Ci

k(G) in this way, several disadvantages remain:

– The bias itself remains. E.g., subgraphs which appear in low concentration
and are at the same time undersampled by esa are hardly ever found.3

– Computing (1) is expensive since the calculation of each single probability
can require as much as O(kk) time [9].

– We have no estimate as to what fraction of subgraphs has been sampled.
– esa can sample the same subgraph multiple times.

In the next subsection we suggest a new approach to subgraph sampling that
overcomes these problems.

2.2 The New Approach: Randomized Enumeration

The idea here is to start with an algorithm that efficiently enumerates all size-k
subgraphs. This algorithm is then modified to randomly “skip” some of these
subgraphs during its execution, yielding an unbiased subgraph sampling
algorithm.

Enumerating all size-k subgraphs. Given a graph G = (V, E), the following algo-
rithm enumerates all of its size-k subgraphs (with Nexcl(v, V ′) := N({v})\N(V ′)
being the exclusive neighborhood of v with respect to V ′ ⊆ V ):

Algorithm: EnumerateSubgraphs(G, k) (esu)
Input: A graph G = (V, E) and an integer 1 ≤ k ≤ |V |.
Output: All size-k subgraphs in G.

01 for each vertex v ∈ V do
02 VExtension ← {u ∈ N({v}) | u > v}
03 call ExtendSubgraph({v}, VExtension, v)
04 endfor

ExtendSubgraph(VSubgraph, VExtension, v)
E1 if |VSubgraph| = k then output G[VSubgraph] and return
E2 while VExtension �= ∅ do
E3 Remove an arbitrarily chosen vertex w from VExtension

E4 V ′
Extension ← VExtension ∪ {u ∈ Nexcl(w, VSubgraph) | u > v}

E5 call ExtendSubgraph(VSubgraph ∪ {w}, V ′
Extension, v)

E6 return

The basic idea of esu is that—starting with a vertex v from the input graph—
we add only those vertices to the VExtension set that have two properties: Their
3 Kashtan et al. [9] observe that esa can accurately estimate the concentra-

tion of Si
k(G) with less than (Ci

k(G))−1 samples for subgraphs which are
oversampled. In return however, other subgraphs might be missed completely for
far more than (Ci

k(G))−1 samples and would consistently be overlooked as motif
candidates.
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({1}, {2, 3, 4, 5}) ({2}, {3, 6, 7}) ({3}, {8, 9})
({4}, ∅) ({6}, ∅)

({7}, ∅)

({8}, ∅)

({9}, ∅)

({2, 3}, {6, 7, 8, 9})

({2, 6}, {7})

({2, 7}, ∅)

({3, 8}, {9})

({3, 9}, ∅)

({1, 2}, {3, 4, 5, 6, 7})

({1, 3}, {4, 5, 8, 9})

({1, 4}, {5})

({1, 5}, ∅)

({5}, ∅)

Root

1 2

3

1 4

2

1 5

2

1 6

2

1 7

2

3 4

1

3 5

1

3 8

1

3 9

1

1 5

4

2 6

3

2 7

3

2 8

3

2 9

3

2 7

6

3 8

9

1 2

3

4

5 6

7

8 9

G

Fig. 2. The above esu-tree corresponds to calling EnumerateSubgraphs(G, 3). The
tree has 16 leafs which correspond to the 16 size-3 subgraphs in G.

label must be larger than that of v and they must not be neighbor to a vertex
in VSubgraph (other than the newly added vertex w). Some more insight into the
structure of esu can be gained by the following visualization.

Definition 1. With a call to EnumerateSubgraphs(G, k), we associate a
tree-graph called esu-tree which represents the recursive function calls. The root
at depth 0 represents the call of EnumerateSubgraphs(G, k). Each call of
ExtendSubgraph(VSubgraph, VExtension, v) is represented by an edge from the
vertex representing the caller function to a vertex representing the callee. The
callee vertex is labeled (VSubgraph, VExtension) and located at depth |VSubgraph|.

The structure of the tree is illustrated in an example in Figure 2. Omitting the
proof here, it is also the basis to establish the correctness of the esu algorithm.

Theorem 2. Given a graph G and k ≥ 2, esu enumerates all size-k subgraphs
in G (each size-k subgraph is output exactly once). ��

The tree structure to represent esu exposes some useful properties. E.g.,
using a technique by Knuth [10], we can randomly explore paths in the tree
in order to quickly estimate the total number of size-k subgraphs in the input
graph. Probably the most important feature of the esu-tree, however, is that we
can use it to efficiently sample subgraphs uniform at random (i.e., without bias).

Uniformly sampling size-k subgraphs. The esu algorithm completely traverses
its corresponding esu-tree. Where complete traversal is too time-expensive, we
can explore only parts of the esu-tree such that each leaf is reached with equal
probability. For this purpose, a probability 0 < pd ≤ 1 is introduced for each
depth 1 ≤ d ≤ k in the tree. With pd, we determine for each child vertex
at depth d whether we traverse the subtree rooted at it. This is implemented
by replacing line 03 of the esu algorithm with “With probability p1, call Ex-
tendSubgraph(. . . )” and line E5 with “With probability pd, call ExtendSub-
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graph(. . . )” (where d := |VSubgraph|+1).4 We call this new algorithm rand-esu.
(To simplify the discussion, we will also use this name when all pd are set to 1,
in which case rand-esu is equivalent to esu.) rand-esu visits each leaf of the
esu-tree with equal probability and hence estimating subgraph concentrations
from its output is straightforward (the proofs are omitted).

Lemma 3. rand-esu visits each leaf in the esu-tree with probability
∏

d pd. ��

Theorem 4. Given a graph G, an integer k, and 0 < pd ≤ 1 for 1 ≤ d ≤ k.
Let R be a set of size-k subgraphs obtained by running rand-esu on G using
the probabilities pd. Then, Ĉi

k(R, G) := |{G′ ∈ R | G′ ∈ Si
k(G)}| / |R| is an

unbiased estimator for Ci
k(G). ��

It remains to discuss how the values pd should be chosen. If we wish to
sample an expected fraction 0 < q < 1 of all size-k subgraphs using rand-esu,
we have to ensure that

∏
1≤d≤k pd = q (we omit a rigorous proof of this here).

However, this still leaves us to choose the individual values, i.e., do we uniformly
set every pd equal to k

√
q or are there better choices? Some observations are:

– Choosing whether or not to explore a subtree whose root is close to the
root of the esu-tree generally has a higher influence on the total number of
explored leafs than for a subtree whose root is farther from it.

– The parameters pd influence the distribution of the sampling, i.e., if pd is
small for small d, some local neighborhoods in the input graph are likely not
to be explored at all while others will be explored extensively.

– The running time is influenced from an amortized point of view: If the pd

values are large for small values of d (and hence small for larger d), much of
the esu-tree is explored but only comparably few leafs are reached.

As a general rule from these observations, the parameters pd should be larger for
small d and become smaller as d increases—as long as the sacrifice made with
respect to the amortized running time per sample is acceptable. This ensures a
lower variance for the number of samples and the exploration of many different
regions in the input graph.

Concluding this section, while rand-esu—as compared to esa—requires a
choice of sampling parameters and only allows for controlling the expected num-
ber of samples, it has a lot to offer in return. Most importantly it is unbiased,
which rules out the respective disadvantages of esa. Also, it is much faster (see
Section 4) and easier to implement since we do not require any bias-correcting
parts. Contrary to esa, our new algorithm never samples more subgraphs than
the input graph contains and results become exact as the number of samples
reaches the total number of size-k subgraphs in the input graph.
4 In order to reduce the sampling variance, the following more sophisticated method

may be used: For a tree vertex at depth d with x children, randomly choose x′

of the x children (where x′ = �x · pd� with probability 1 − (x · pd − �x · pd�) and
x′ = x · pd� otherwise) and explore exactly these. It can be shown that this does
not change the probability of a leaf being explored.
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3 Direct Calculation of Motif Significance

The Previous Approach. As already mentioned in the introduction, motif detec-
tion includes the subtask of determining subgraph significance. In this work, we
consider the case where the significance of a subgraph is determined by compar-
ing its concentration in the given graph G to its mean concentration 〈Ci

k(G)〉 in
random graphs with the same degree sequence [15,9]. It is suggested in [15,9] to
estimate

〈
Ci

k(G)
〉

by generating a large ensemble of random graphs (typically
at least 1000) with the same degree sequence as the original graph and then
sampling subgraphs in these random graphs. The random graphs are generated
from the original graph by randomly switching edges between vertices, which
requires a lot of switching operations while at the same time it is never certain
when proper randomization has been reached. Also with this method, we are
likely to spend lots of excess computational efforts estimating the concentra-
tions of subgraph classes we are not interested in.5 In this section we propose
an algorithm for determining subgraph significance without the need to explic-
itly generate random graphs (assuming the background model of random graphs
with the same degree sequence). We also gain the ability to focus our estimation
of significance on specific subgraphs.

Direct Calculation of Subgraph Significance. Milo et al. observe that the total
number of size-k subgraphs within an ensemble of large graphs with the same
degree sequence does not vary much (see supplementary online material to [14]
for details). This allows us to estimate

〈
Ci

k(G)
〉

by

〈Ci
k(G)〉 ≈ 〈Ĉi

k(G)〉 :=

∑
G′∈DegSeq(G) |Si

k(G′)|∑
G′∈DegSeq(G)

∑
i |Si

k(G′)| (2)

where DegSeq(G) is the set of all graphs G′ that have the same degree sequence
as G. Since all graphs G′ can be viewed as graphs over the same set of vertices
(because they differ only in their edge sets), Equation (2) can also be written as

〈Ĉi
k(G)〉=

∑
{v1,...,vk}⊆V |{G′ ∈ DegSeq(G) | G′[{v1, . . . , vk}] ∈ Si

k}|∑
{v1,...,vk}⊆V |{G′ ∈ DegSeq(G) | G′[{v1, . . . , vk}] connected}| .

(3)
Both the nominator and denominator of this equation can be estimated in a
Monte Carlo approach—i.e., by randomly sampling size-k subsets of the vertices
in the input graph—as long as we are able to perform the following calculation:
Given G and {v1, . . . , vk}, find |{G′ ∈ DegSeq(G) | G′[{v1, . . . , vk}] ∈ Si

k}|. As
it turns out, this number is indeed possible to calculate using two theorems
(one for undirected graphs and one for the directed case) due to Bender and
Canfield [3,4]. Without going into technical details here, these theorems allow us

5 This is especially important for sparse networks where a randomly sampled sub-
graph is likely to be a tree. Trees, however, are often considered to be uninteresting
motifs [5].
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Table 1. Number of size-k subgraphs and the number of respective subgraph classes
that occur in our test instances for 3 ≤ k ≤ 6. (All instances are directed graphs).

nodes edges subgraphs subgraph classes
size-3 size-4 size-5 size-6 size-3 size-4 size-5 size-6

coli 423 519 5 206 83 893 1 433 502 22 532 584 4 17 83 390
yeast 688 1 079 13 150 183 174 2 508 149 32 883 898 7 33 173 888

elegans 306 2 345 47 322 1 394 259 43 256 069 1 309 307 357 13 197 7 071 286 375
ythan 135 597 9 487 169 733 2 908 118 45 889 039 8 57 629 9 339

to calculate for a given degree sequence how many graphs there are which realize
exactly this degree sequence under the constraint that a certain subgraph is fixed.
Given a subgraph class Si

k and k vertices {v1, . . . , vk}, we can thus consider all
(at most k!) ways in which {v1, . . . , vk} can induce a subgraph from Si

k and
hence estimate the nominator in Equation (3).

An analogous approach (considering all ways in which the given vertices can
be connected) can be used to estimate the denominator in Equation (3). Omit-
ting the details here, it is possible to show that this does not require the explicit
consideration of every connected size-k subgraph but only of kk−2 subgraphs for
undirected graphs and 2 · (2k)k−2 in the directed case. At first glance it might
seem as if this is prohibitively expensive to calculate, but for two reasons it actu-
ally promises a gain in efficiency: Firstly, the denominator in Equation (3) is the
same for all subgraph classes and hence has to be calculated only once. Secondly,
the number of occurring subgraph classes is often far less than the total number
of subgraphs (see Table 1). Experiments which are discussed in the next section
confirm this expected performance gain.

4 Experimental Studies

Method and Results. We have implemented our algorithms from Sections 2 and 3
in C++. The source code is freely obtainable online at http://www.minet.uni-
jena.de/˜wernicke/motifs/. As a comparison, we used the mfinder 1.1 tool6 by
Kashtan et al. which implements the esa algorithm. All tests were performed
on an AMD Athlon 64 3400+ with 2.4GHz, 512KB cache, and 1GB main mem-
ory running under the Debian GNU/Linux 3.1 operating system. Sources were
compiled with the GNU gcc/g++ 3.4.3 compiler using the option “-O3.”
The network instances for testing the algorithms were up-to-date versions of
the motif detection testbed used by Kashtan et al. [9]. The testbed consists
of the instances coli (transcriptional network of Escherichia Coli [18]), yeast
(transcriptional network of Saccharomyces Cerevisiae [15]), elegans (neuronal
network of Caenorhabditis Elegans [9]), and ythan (food web of the Ythan es-
tuary [21]). Some properties of these networks are summarized in Table 1. The
algorithms were compared both for their speed and quality; results and some
details as to the experimental setting are shown in Figure 3 and Table 2.

6 Source at http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html
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Fig. 3. (a) Sampling speed for different subgraph sizes on a semi-log scale (time mea-
surement does not include the grouping of sampled subgraphs into classes). For esu,
the curve shows the mean speed for three different settings of (p1, . . . , pk) that lead
to sampling of an expected 10% of all subgraphs: (1, . . . , 1, .316, .316), (1, . . . , 1, .5, .2),
and (1, . . . , 1, .1). (The speed of the deterministic esu algorithm—not shown here—
is slightly faster than that of rand-esu.) (b) Sampling quality for size-5 subgraphs
(size-4 for ythan) versus the percentage p of sampled subgraphs (semi-log scale). We
define the sampling quality as the percentage of subgraph classes Sk

i for which Ck
i is

estimated with at most 20% relative error (considering only those subgraph classes for
a given p that we would expect to sample at least 10 times on average). rand-esu was
run with two different settings of the pd values we refer to as “coarse” (1, . . . , 1,

√
p,

√
p)

and “fine” (1, . . . , 1, p). For our ythan instance, the mfinder tool reproducibly failed
to report results for more than 100 samples, hence this curve is not shown.

Discussion. Most notable in Figure 3a, rand-esu is much faster than the esa
sampling in mfinder. This amounts to several orders of magnitude for larger
subgraphs (k ≥ 5). For small sampling quantities, the “coarse” variant of rand-
esu proved to be faster than the “fine” variant (not explicitly shown in Fig-
ure 3a). However, Figure 3b shows that the resulting sampling quality from
using “coarse” settings for the pd values is relatively low when compared to that
of esa. The qualities are roughly equal for the “fine” variant with esa hav-
ing a slight advantage for sampling sizes above 1% and close to 100%. (Note
that for 100%, rand-esu is equivalent to esu and the results are exact.) Two
things are to be noted in this respect, though: Firstly, rand-esu is much faster
and can, e.g., fully enumerate all size-5 subgraphs in roughly the same time
that esa needs to sample 1% of them. Secondly, the sampling quality of the
“fine” variant appears to be more consistent for different networks, e.g., in some
percentage ranges esa has a very good sampling quality for elegans and a
comparably fair one for coli whereas the “fine” rand-esu remains much more
consistent here. Also note that—contrary to esa—statistical estimates about
the achieved sampling quality can be made with rand-esu because of its un-
biasedness and the ability to estimate the total number of subgraphs (espe-
cially with the “fine” variant where individual samples are fully independent of
each other).
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Table 2. For directed size-3 subgraphs, the table shows the approximate subgraph
concentrations in random graphs based on the methods discussed in Section 3. For
estimating 〈Ci

k(G)〉, 10 000 random graphs were generated. The 〈Ĉi
k(G)〉 values are

based on 100 000 samples. Compared to the 〈Ci
k(G)〉 values, their calculation was a

few hundred times faster on our machine. For most subgraphs with 〈Ci
k(G)〉 > 10−5,

〈Ĉi
k(G)〉 appears to be a good approximation for 〈Ci

k(G)〉 (since often here, the ratio
〈Ci

k(G)〉/〈Ĉi
k(G)〉 is close to one).

coli 〈Ci
k〉 9.1e-1 3.7e-2 1.9e-4 5.0e-2 1.4e-3 2.1e-6 7.6e-8 3.4e-7 2.9e-6 2.9e-5 8.0e-7 – –

〈Ĉi
k〉 9.0e-1 4.2e-2 2.6e-4 5.5e-2 1.4e-3 2.1e-6 1.3e-7 8.7e-8 2.3e-6 4.4e-5 1.1e-7 8e-12 6e-15

〈Ci
k〉/〈Ĉi

k〉 1.0 0.9 0.7 0.9 1.0 1.0 0.6 3.9 1.3 0.7 7.4 – –
yeast 〈Ci

k〉 9.1e-1 3.7e-2 1.8e-4 5.0e-2 1.4e-3 9.5e-7 – 2.6e-7 2.3e-6 2.9e-5 3.4e-7 – –
〈Ĉi

k〉 8.9e-1 3.0e-2 1.2e-4 7.6e-2 1.2e-3 1.5e-6 2.8e-8 4.4e-8 5.4e-7 1.0e-5 1.0e-7 1e-14 1e-15
〈Ci

k〉/〈Ĉi
k〉 1.0 1.2 1.5 0.6 1.2 0.7 – 6.1 4.3 2.9 3.3 – –

eleg. 〈Ci
k〉 2.0e-1 3.3e-1 2.7e-2 3.7e-1 3.3e-2 1.7e-3 1.5e-3 2.0e-3 4.4e-3 2.9e-2 1.4e-3 3.8e-4 1.5e-5

〈Ĉi
k〉 2.0e-1 3.3e-1 2.9e-2 3.6e-1 3.6e-2 2.0e-3 1.9e-3 2.3e-3 4.7e-3 3.0e-2 1.5e-3 4.0e-4 1.5e-5

〈Ci
k〉/〈Ĉi

k〉 1.0 1.0 0.9 1.0 0.9 0.9 0.8 0.9 0.9 1.0 0.9 0.9 1.0
ythan 〈Ci

k〉 4.1e-1 2.3e-1 3.3e-2 2.2e-1 5.1e-2 3.0e-3 2.7e-3 2.8e-3 2.0e-3 3.6e-2 5.3e-3 1.1e-3 5.8e-5
〈Ĉi

k〉 3.7e-1 2.4e-1 3.9e-2 2.2e-1 5.6e-2 3.5e-3 4.8e-3 5.0e-3 3.0e-3 5.2e-2 8.1e-3 2.7e-3 7.5e-4
〈Ci

k〉/〈Ĉi
k〉 1.1 1.0 0.9 1.0 0.9 0.8 0.6 0.6 0.6 0.7 0.6 0.4 0.1

As to the estimation of subgraph significance, Table 2 shows that for most
subgraphs with 〈Ci

k(G)〉 > 10−5, 〈Ĉi
k(G)〉 is a good approximation in our exper-

imental setting. Further research should investigate the few exceptions, which
might hint that for some subgraphs a larger number of samples is needed. Given
that direct calculation with our tool was much faster than the explicit gener-
ation of random networks, further investigation in this respect appears to be
worthwhile. Also, note that with our new approach, the frequency of some sub-
graphs could be estimated for which the explicit generation of subgraphs did not
give any results due to an extremely low average concentration in the explicitly
generated random graphs.

5 Conclusion

Based on a detailed analysis of previous approaches we have presented new al-
gorithmic techniques which allow for a faster detection of network motifs and
offer useful additional features such as unbiased subgraph sampling and a specif-
ically targeted detection of subgraph significance. This enables motif detection
for larger motifs and larger networks than was previously possible and hopefully
facilitates future research in the field.

Further research could improve the presented sampling technique, e.g., by
examining how the labeling of the vertices in the input graph affects the sampling
quality or seeing if rand-esu can be tweaked to selectively sample “interesting”
parts of the input graph. For subgraph significance, we have shown that a direct
calculation scheme may serve as a fast and accurate alternative to the explicit
generation of random networks. It would be interesting to further explore this
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path by extending the scheme to classes of random background models other
than those that solely preserve the degree sequence.

Acknowledgments. The author is grateful to Jens Gramm (Tübingen), Falk
Hüffner (Jena), and Rolf Niedermeier (Jena) for helpful discussions and com-
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Abstract. The classic view of metabolism as a collection of metabolic pathways
is being questioned with the currently available possibility of studying whole net-
works. Novel ways of decomposing the network into modules and motifs that
could be considered as the building blocks of a network are being suggested. In
this work, we introduce a new definition of motif in the context of metabolic net-
works. Unlike in previous works on (other) biochemical networks, this definition
is not based only on topological features. We propose instead to use an alternative
definition based on the functional nature of the components that form the motif.
After introducing a formal framework motivated by biological considerations, we
present complexity results on the problem of searching for all occurrences of a re-
action motif in a network, and introduce an algorithm that is fast in practice in most
situations. We then show an initial application to the study of pathway evolution.

1 Introduction

Network biology is a general term for an emerging field that concerns the study of in-
teractions between biological elements [2]. The term molecular interaction networks
may designate several types of networks depending on the kind of molecules involved.
Classically, one distinguishes between gene regulatory networks, signal transduction
networks and metabolic networks. Protein-protein interaction networks represent yet
another type of network, but this term is rather linked to the techniques (such as Yeast-
2-hybrid) used to produce the data and covers possibly several biological processes (in-
cluding, for example, the formation of complexes and phosphorylation cascades) [16].

One of the declared objectives of network biology (or systems biology in general) is
whole cell simulation [9]. However, dynamic simulation requires knowledge on reaction
mechanisms such as the kinetic parameters describing a Michaelis-Menten equation.
Besides the fact that such knowledge is often unavailable or unreliable, the study of
the static set of reactions that constitute metabolism is equally important, both as a
first step towards introducing dynamics, and in itself. Indeed, such static set represents
not what is happening at a given time in a given cell but instead the capabilities of
the cell, including capabilities the cell does not use. A careful analysis of this set of
reactions for a given organism, alone or in comparison with the set of other organisms,
may also help to arrive at a better understanding on how metabolism evolves. It is this
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R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 178–191, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Reaction Motifs in Metabolic Networks 179

set we propose to study in this paper. More precisely, in the following sections, the
term “metabolism” should be understood as the static set of reactions involved in the
synthesis and degradation of small molecules. Regulation information is not taken into
consideration for now. It may be added in a later step, as the “software” running on the
“hardware” of a metabolic network [15].

A major issue concerning the study of biochemical networks is the problem of their
organisation. Several attempts have been made to decompose complex networks into
parts. These “parts” have been called modules or motifs, but no definition of such terms
seems to be completely satisfying.

Modules have first been mentioned by Hartwell et al. [6] who outline the general
features a module should have but provide no clear definition for it. In the context of
metabolic networks, a natural definition of modules could be based on the partition
of a metabolic network into the metabolic pathways one can find in databases: mod-
ules would thus be the pathways as those have been established. The advantage of
this partition, and thus of modules representing pathways, is that it reflects the way
metabolism has been discovered experimentally (starting from key metabolites and
studying the ability of an organism to synthesize or degrade them). The drawback is
that it is not based on objective criteria and therefore is not universal (indeed, the num-
ber of metabolic pathways and the frontiers between them vary from one database to
the other).

Several attempts to give systematic and practical definitions have been made using
graph formalisms [14,10,5] and constraint-based approaches [11]. Graph-based meth-
ods range from a simple study of the local connectivity of metabolites in the network
[14] to the maximisation of a criterion expressing modularity (number of links within
modules) [5]. The only information used in these methods is the topology of the net-
work. In the case of constraint-based approaches, the idea is quite different. First, a
decomposition of the network into functional sets of reactions is performed (by analy-
sis of the stoichiometric matrix [12]) and then modules are defined from the analysis of
these functional states. The result is not a partition in the sense that all reactions might
not be covered and a single reaction might belong to several modules.

Unlike the definition of module, the notion of motif has not been studied in the
context of metabolic networks. In general, depending on what definition is adopted
for modules and motifs, there is no clear limit between the two notions besides the
difference in size. In the context of regulatory networks, motifs have been defined as
small, repeated and perhaps evolutionary conserved subnetworks. In contrast with mod-
ules, motifs do not function in isolation. Furthermore, they may be nested and overlap-
ping [22]. This definition refers to general features that regulatory motifs are believed
to share but it provides no practical way to find them. A more practical definition has
been proposed, still in the context of gene regulatory networks (and other types of non-
biological networks such as the web or social networks). These are “network motifs”
and represent patterns of interconnections that recur in many different parts of a net-
work at frequencies much higher than those found in randomized networks [17]. This
definition is purely topological and disregards the nature of the components in a motif.
It assumes that the local topology of the network is sufficient to model function (which
is understood here as the dynamic behaviour of the motif). This assumption seems ac-
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ceptable when studying the topology of the internet and may also hold when analysing
gene regulatory networks, but it appears not adapted to metabolic networks. In a static
context, a topological definition of motif seems indeed inappropriate as similar topolo-
gies can give rise to very different functions.

In the definition of motif we introduce, the components of the network play the
central part and the topology can be added as a further constraint only. This is the main
biological contribution of this paper.

Its main algorithmical contribution comes from the fact that the definition of motif
we adopt leads to new questions. Indeed, if searching for “purely” topological motifs
may be formally modelled as a subgraph isomorphism problem, this no longer applies
when searching for motifs where the features describing the components are the im-
portant elements and topology is initially indifferent (connectivity only is taken into
account). Observe that the problem we address is different from pathway alignment be-
cause we wish to go beyond the notion of pathway in order to study the network as a
whole. Moreover, in [19] and [13], the pathways are modelled as, respectively, chains
and trees to simplify the problem. This simplification may seem reasonable in the case
of a pathway alignment, it is no longer so in the case of general networks.

The paper addresses complexity issues related to this new definition of a graph
motif, providing hardness results on the problem, and then presents an exact algorithm
that is fast in practice for searching for such motifs in networks representing the whole
metabolism of an organism. The paper ends with an initial application of the algorithm
to the formulation of hypotheses on the evolution of pathways.

2 Preliminaries

2.1 Data

The metabolic network analysed in this work was obtained from the PATHWAY
database from KEGG [8]. Data describing reactions, compounds and enzymes were
downloaded and stored locally using a relational database management system (post-
greSQL). The KEGG database contains metabolic data concerning 209 sequenced or-
ganisms. The network we built from such data is therefore a consensus of our current
knowledge on the metabolisms of all those organisms. As a consequence, sequences
of reactions present in the network may have been observed in no organism. To avoid
this configuration, one can “filter” the consensus network by an organism of interest,
keeping only in the dataset reactions catalysed by enzymes the organism is considered
to be able to synthetize. We adopt a different strategy by choosing to perform our mo-
tif search on the consensus network and to possibly filter the results in a second step,
allowing for easier comparative analysis between organisms.

Moreover, we use an additional information present in KEGG: the notion of pri-
mary/secondary metabolites. Indeed, in the KEGG reference pathway diagrams (maps),
only primary metabolites are represented and connect reactions together, whereas sec-
ondary metabolites are not drawn (even though they participate in the reaction). A typ-
ical example of a secondary metabolite is the ATP molecule in an ATP-consuming
reaction. (Observe that, unlike the notion of ubiquitous compound [14], the notion of
primary/secondary metabolite is relative to a reaction.) Keeping all metabolites in the
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network leads to the creation of artefactual links between reactions and the bias intro-
duced can lead to inaccurate results such as considering metabolic networks as small-
world networks as shown in [3]. Withdrawing secondary metabolites may not be the
best strategy to adopt, but it represents a simple way of avoiding this bias.

2.2 Graph Models

Several formal models have been in use to study metabolic networks. The choice of a
formal model seems to depend mainly on the nature of the hypotheses one wishes to
test (qualitative or quantitative, static or dynamic) and on the size of the network under
study. Differential equations seem well adapted to study the dynamic aspects of very
small networks whereas graphs enable the static study of very large networks.

Between these two ends of the spectrum, semi-quantitative models have been pro-
posed. For example, Petri nets allow for the simulation and dynamical analysis of small
networks [21], while constraint-based models provide a mathematical framework en-
abling to decompose the network into functional states starting only from information
on stoichiometry and making the assumption that the network is at steady-state [12].

As our goal is to deal with large networks and work with the least possible a pri-
ori, graph models seem appropriate. In previous genome-scale studies [7], graphs have
been used mainly for topological analyses regardless of the nature of their components
(reactions, compounds and enzymes). We propose to enrich the graph models and take
into consideration some of the features of such components.

Formally, a graph G is defined as a pair (V, E), with V a set of vertices and E ⊆
V × V a set of edges. The edges represent the relations between the vertices and may
be directed or undirected. The vertices and edges of the graph can be labelled.

The most intuitive graph representation of a metabolic network is provided by a
bipartite graph. A bipartite graph has two types of vertices which in the context of
metabolic networks represent, respectively, reactions and chemical compounds. The
compound graph is a compact version of the bipartite graph where only compound ver-
tices are kept and information on the reactions is stored as edge labels. The reaction
graph is the symmetric representation of a compound graph (i.e., reaction vertices are
kept and information on the compounds is stored as edge labels). Directed versions of
these graphs can be drawn expressing the irreversibility of some reactions. The infor-
mation concerning the reversibility of reactions is generally not well-known. Indeed,
contradictions may be found within a same database. We therefore consider this in-
formation as uncertain and, in an initial step, assume that all reactions are reversible.
This apparently strong hypothesis seems preferable than considering a reaction as irre-
versible when it actually is reversible (leading to a loss of information).

In the following sections, we denote by C a finite set of labels, which we refer as
colours, that correspond to reaction labels. Also, we assume the graph G = (V, E) is
undirected and that we are given, for each vertex, a set of colours from C. Reversibility
and edge labels will not be used. If needed, one can use them in a later step.

2.3 Motif Definition

We define a motif using the nature of the components it contains.
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Definition 1. A motif is a multiset of elements from the set C of colours.

As mentioned earlier, we choose in this definition not to introduce any constraint on
the order of the reactions nor on topology. This choice is motivated by the wish to ex-
plore the network with the least possible a priori information on what we are searching
for. Topology and order of the reactions can be used later as further constraints. The
advantage of this strategy is that the impact of each additional constraint can then be
measured.

2.4 Occurrence Definition

Intuitively, an occurrence is a connected set of vertices labelled by the colours of the
motif. For a precise definition, let R be a set of vertices of G and let M be a motif of
the same size as R. Let H(R, M) denote the bipartite graph whose set of vertices is
R ∪ M and where there is an edge between a vertex v of R and a vertex c of M if and
only if v has c as one of its colours.

Definition 2. Definition of an exact occurrence of a motif
An exact occurrence of a motif M is a set R of vertices of G such that H(R, M) has a
perfect matching and R induces a connected subgraph of G.

If one is strict on the relation of similarity between colours (colours are considered
the same only if they are identical), the risk is to find a single occurrence, or none,
of any given motif in the network [3]. Moreover, since studying the evolution of what
the graph G represents is one of our main objectives, it seems relevant to allow for
flexibility in the search for occurrences of a motif.

With this in mind, we introduce a function S (detailed later) that assigns, to each
pair ci, cj in C × C, a score which measures the similarity between ci and cj . Two
colours are considered similar if this score is superior to a threshold s. We then adapt
our definition of exact occurrence by modifying H(R, M) in the following way. There
will be an edge between a vertex v in R and a colour c in M if and only if there exists a
colour c′ of v such that the value of S(c′, c) ≥ s. Further, we generalise this to the case
where the threshold s is different for every element c in M . The latter is motivated by
the idea that some elements in the motif we are searching for may be more crucial than
others. Observe that these considerations are independent of the definition of S that is
discussed in the next section.

Another type of flexibility can then be added, that allows for gaps in the occurrences.
By this we mean, roughly, allowing the occurrence to have more vertices just to achieve
the connectivity requirement. These extra vertices are not matched to the elements of
the motif. Two types of control on the number of gaps are considered: local and global.
Intuitively, a local gap control policy bounds the maximum number of consecutive gaps
allowed between a pair of matched vertices of R. A global control policy bounds the
total number of gaps in an occurrence.

This leads to the following definition of an approximate occurrence of a motif,
where we denote by GR the subgraph of G induced by a set R of vertices of G.
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lb = 0 lb = 1lb = 1
gb = 0 gb = 2gb = 3

Fig. 1. Subgraphs induced by occurrences for the motif {black, black, dark grey, light grey}.

Definition 3. Definition of an approximate occurrence of a motif

Let lb and gb be the local and global gap control bounds and let M be a motif. For
each c in M , let sc be a number. An approximate occurrence of M (with respect to lb,
gb and the thresholds sc) is any minimal set R of vertices of G that has a subset R′ that
satisfies the following conditions:

1. the bipartite graph H(M ∪ R′, EH) with EH = {{c, v} ∈ M × R′| there exists a
colour c′ of v such that S(c′, c) ≥ sc} contains a perfect matching;

2. for each subset B of R′ such that B �= ∅ and R′ \ B �= ∅, the length of a shortest
path in GR between B and R′ \ B is at most lb;

3. |R| − |R′| ≤ gb.

The minimality requirement on the set R avoids uninteresting approximate occur-
rences that are simple copies of other occurrences with extra vertices connected to them.

Observe that when no gaps are allowed then R = R′ and condition 2 means simply
that GR is connected. An example is given in Figure 1.

2.5 Reaction Similarity

We now discuss function S for the problem of metabolic networks and reaction motifs
in such networks. Various functions of different nature may be used. We present here
two possible ways to define S.

The first one is based on alignment. Indeed, in order to compare reactions, which is
what function S is used for, one can compare the enzymes that catalyse these reactions
by performing an alignment of their sequences (or structures). An element of C would
then be a protein sequence (or structure). The function S assigns a sequence (or struc-
ture) alignment score and s is a user-defined threshold that has to be met to consider the
sequences (structures) similar. In the case of whole networks, sequences are preferable
since many structures are not known.

The second example is the one we adopt in this paper. It is based on a hierarchical
classification of enzymes developed by the International Union of Biochemistry and
Molecular Biology (IUBMB) [1]. It consists in assigning to each enzyme a code with 4
numbers expressing the chemistry of the reaction it catalyses. This code is known as the
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enzyme’s EC number (for Enzyme Commission Number). The first number of the EC
number can take values in [1 . . 6], each number symbolizing the 6 broad classes of enzy-
matic activity. (1. Oxidoreductase, 2. Transferase, 3. Hydrolase, 4. Lyase, 5. Isomerase,
6. Ligase.) Then each of the three remaining numbers of the EC number provides ad-
ditional levels of detail. For example, the EC number 1.1.1.1 refers to an oxidoreduc-
tase (1) with CH-OH as donor group and NAD+ as acceptor group.

An element of C is in this case an EC number. The function S then assigns a simi-
larity score between two EC numbers that corresponds to the index of the deepest level
down to which they remain identical. For example, S(1.1.1.2, 1.1.1.3) = 3. Two EC
numbers are considered similar if their similarity score is above a user-defined cut-off
value s in [0 . . 4]. The advantage of this definition of similarity between colours, i.e.,
reactions, is that it is more directly linked to the notion of function. Reactions compared
with this measure are likely to be functionally related (and possibly evolutionarily re-
lated also).

3 Algorithmics

3.1 Hardness Results

The formal problem we address is the following:

Search Problem. Given a motif M and a labelled undirected graph G, find all occur-
rences of M in G.

As mentioned earlier, this problem is different from subgraph isomorphism because
the topology is not specified for the motif.

For this problem, we may assume the graph is connected and all vertices have
colours that appear in the motif. Otherwise, we preprocess the graph throwing away
all the vertices having no colour appearing in the motif and solve the problem in each
component of the resulting graph.

A natural variant of the Search Problem consists in, given a motif and a labelled
graph, deciding whether the motif occurs in the graph or not. As before, we may assume
the graph is connected, all vertices are labelled with colours and all colours appear in
the motif. It is easy to see this decision version of the Search Problem is in NP. We show
next that it is NP-complete even if G is a tree, which implies that the Search Problem is
NP-complete for trees. For the following proof, we consider the version where no gaps
are allowed.

NP-Complete for Trees. We have the following proposition.

Proposition 1. The Search Problem is NP-complete even if G is a tree.

Proof. We present a reduction from EXACT COVER BY 3-SETS (X3C):

INSTANCE: Set X with |X | = 3q and a collection C of 3-element subsets of X .

QUESTION: Does C contain an exact cover for X , i.e., a subcollection C′ ⊆ C such
that every element of X occurs in exactly one member of C′ ?
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Fig. 2. Tree T and its labels for X = {1, . . . , 9} and C = {{1, 3, 4}, {2, 4, 6}, {2, 8, 9},
{7, 8, 9}, {1, 5, 6}, {5, 6, 7}}. The motif M in this case is {Y, B, B, B, 1, . . . , 9}.

Let X = {1, . . . , 3q} and C = {C1, . . . , Cn} be an instance of X3C. The instance
for the decision version of the Search Problem consists of a motif M = {Y, B, . . . , B,
1, . . . , 3q}, where B appears q times in M , and a tree T as follows. (See Figure 2 for an
example.) There are four vertices in T for each i, 1 ≤ i ≤ n, three of them are leaves
in T , each one labelled by one of the elements of Ci. The fourth vertex, named ri, is
adjacent to the three leaves and has colour B. Besides these 4n vertices, there is only
one more vertex in T , which is labelled Y and is adjacent to each ri. This completes
the description of the instance. Clearly it has size polynomial in the size of X and C.

To complete the reduction, we need to argue that the motif M occurs in T if and
only if there is a subcollection C′ of C such that each element of X occurs exacly in one
member of C′.

Suppose there is such a C′. Clearly |C′| = q. Let R be the set of vertices of T
consisting of the vertex labelled Y and the four vertices of each C in C′. The subgraph
of T induced by R is connected. Also, in R, there is a vertex labelled Y , q vertices
labelled B (one for each C in C′) and one labelled by each element in X (because of
the property of C′). That is, R is an occurrence of M in T .

Now, suppose there is an occurrence of M in T , that is, there is a set R of 1 + 4q
vertices of T that induces a connected subgraph of T and has a vertex labelled by each
of the colours in M . Let C′ consist of the sets Ci in C whose vertex ri in T is in R. Let
us prove that each element of X appears in exactly one of the sets in C′. First, note that
the vertex labelled Y is necessarily in R, because it is the only one labelled Y and there
is a Y in M . Then, as R induces a connected graph, a leaf from a set Ci is in R if and
only if ri is also in R. But R must contain exactly q vertices labelled B. Consequently,
|C′| = q and, as R must contain 1 + 4q vertices, all three leaves of each C in C′ must
be in R, and these are all vertices in R. As R must contain a vertex labelled after each
element in X , there must be exactly one set in C′ containing each element in X . ��

Fixed Parameter Tractability. This problem is fixed-parameter tractable with param-
eter k. Indeed, a naive fixed-parameter algorithm consists in generating all possible
topologies for the input motif M , and then searching for each topology by using a sub-
tree isomorphism algorithm. Since it is enough to generate all possible tree topologies
for M , the number of topologies to consider depends (exponentially) on k only, and sub-
tree isomorphism is polynomial in the size of both the motif M and the tree T where
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M is sought. This reasoning is not valid anymore when the motif must be searched in
a general graph G as subgraph isomorphism is NP-complete even when the motif is a
tree [4].

General Complexity Results. Table 1 summarizes the complexity of the Search Prob-
lem for various types of motifs and graphs. As mentioned, it is enough to consider that
our motifs are trees (or paths). This is because topology is indifferent (only connectivity
matters).

By fixed in the Table, we mean that the colours of the vertices in a path (respectively
tree) are fixed, otherwise (i.e. path/tree not fixed) we mean that we are searching for a
path (respectively tree) with the given vertex colours but do not care in what order they
appear, provided they all appear.

Motifs that are paths are already hard problems for general graphs G. This can be
shown by a reduction from the Hamiltonian path problem.

Table 1. Complexity results for the motif Search Problem

��������������MOTIF
TYPE OF GRAPH

path tree graph

fixed polynomial polynomial NP-completepath
not fixed polynomial polynomial NP-complete

fixed — polynomial NP-completetree
not fixed — NP-complete, FPT in k NP-complete

Since the instances we have to consider in the case of metabolic networks are rel-
atively small (3184 vertices and 35284 edges for the network built from the KEGG
Pathway database), it is possible to solve the problem exactly, provided some efficient
pruning is applied. This is described in the next section.

3.2 Exact Algorithm

Version with no Gaps. We now present an exact algorithm which solves the Search
Problem. We first explain it for the simple case where the gap parameters lb and gb are
set to 0 and then we show how it can be extended to the general case.

Let M be the motif we want to search for. A very naive algorithm would consist
in systematically testing all sets R of k vertices as candidates for being an occurrence,
where k = |M |. For R to be considered an occurrence of M , the subgraph induced
by R must be connected and there must be a perfect matching in the bipartite graph
H(R, M) that has an edge between r ∈ R and c ∈ M if and only if c is similar to one
of the colours at vertex r. The search space of all combinations of k vertices among the
n vertices in G is huge. We therefore show two major pruning ideas arising from the
two conditions that R has to fulfill to be validated as an occurrence of M .

The connectivity condition can be checked by using a standard method for graph
traversal, such as breadth first search (BFS). In our case, a BFS mixed with a back-
tracking strategy is performed starting from each vertex in the graph. At each step of
the search, a subset of the vertices in the BFS queue is marked as part of the candidate
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set R. The queue, at each step, contains only marked vertices and neighbours in G of
marked vertices. Also, there is a pointer p to the last marked vertex in the queue. At
each step, there are two cases to be analysed: either there are k vertices marked or not.
If there are k vertices marked, we have a candidate set R at hand. We submit R to the
test of the colouring condition, described below, and we backtrack to find the next can-
didate set. If there are less than k vertices marked, then there are two possible cases to
be analysed: either p is pointing to the last vertex in the queue or not. If p is not pointing
to the last vertex in the queue, we move p one position ahead in the queue, mark the
next vertex and queue its neighbours that are not in the queue already (checking the
latter can be done in constant time by adding a flag to each vertex in the original graph).
Then we repeat, that is, start a new step. If, on the other hand, p is pointing to the last
vertex in the queue, then we backtrack. The backtracking consists of unmarking the
vertex pointed to by p, unqueueing its neighbours that were added when it was marked,
moving p to the previous marked vertex in the queue and starting a new step. (If no
such vertex exists, the search is finished.) Next we describe the test of the colouring
condition.

Given a candidate set R, one can verify the colouring condition by building the
graph H and checking whether it has a perfect matching or not. In fact, we can apply
a variation of this checking to a partial set R, that is, we can, while constructing a
candidate set R, be checking whether the corresponding graph H has or not a complete
matching. The latter is a matching that completely covers the partial candidate set R.
If there is no such matching, we can move the search ahead to the next candidate set.
This verification can be done in constant time using additional data structures that are a
constant time the size of the motif.

Extra optimisations can also be added. For instance, instead of using every vertex
as a seed for the BFS, we can use only a subset of the vertices: those coloured by one
of the colours from the motif, preferably the less frequent in the graph.

Allowing for Gaps. Allowing for local but not global gaps (i.e., setting lb > 0 and
gb = ∞) can easily be done by performing the lb−transitive closure of the initial graph
G and applying the same algorithm as before to the graph with augmented edge set. The
p−transitive closure of a graph G for p a positive integer is the graph obtained from G
by adding an edge between any two vertices u and v such that the length l of a shortest
path from u to v in the original graph satisfies 1 < l ≤ p. The p−transitive closure
can be done at the beginning of the algorithm or on the fly. In the latter case, when a
next vertex is added to the queue, instead of queueing its neighbours only, all vertices
at distance at most p from it are queued (if they are not already in the queue) where by
distance between any two vertices we mean the number of vertices other than these two
in a shortest path between them.

Allowing for global gaps as well as local ones is more tricky. The reason is that an
unmarked vertex can be put in the queue because of many different marked vertices.
When backtracking in the queue at any step in the algorithm, unmarked vertices that
have been queued only because of the marked vertex v that is being dequeued can be
safely eliminated from the queue. Unmarked vertices {vi} that were queued because of
the vertex being dequeued and of at least one other marked vertex will remain (some-
where) in the queue. Therefore, in order to correctly account for the global number of
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gaps introduced so far in the current occurrence, one must consider all the remaining
marked vertices that implied the queuing of {vi}. Extra information must be kept to
locate in constant time the unmarked vertices {vi} and to update the global count of
gaps. This information can be kept in a balanced tree of size proportional to k = |M |
associated with each queued unmarked vertex u′. Each node in the tree corresponds to a
marked vertex u that could have led to the queuing of u′ and is labelled by the distance
from u′ to u (this distance is at most lb). Keeping, updating and using the extra infor-
mation adds a multiplicative term in O(k log k) to the time complexity of the algorithm,
which seems reasonable.

On average, searching for all occurrences of a motif of size 4 with no gaps and
threshold s = 3 takes 8 microseconds of CPU time on a Pentium 4 (CPU 1.70 GHz)
with 512 Mb of memory.

4 Application

The approach we propose, and have described in the previous sections, should enable
both to generate some hypotheses on the evolution of metabolic pathways, and to anal-
yse global features of the whole network.

We start by presenting a case study motivated by trying to understand how metabolic
pathways evolve. We do not directly answer this question, which is complex and would
be out of the scope of this paper. Instead, we give a first example of the type of evolu-
tionary question people have been asking already and have addressed in different, often
semi-manual ways in the past [20], and that the algorithm we propose in this paper
might help treat in a more systematic fashion.

As in [20], one is often interested in a specific pathway, and, for instance, in find-
ing whether this pathway can be considered similar to other pathways in the whole
metabolic network thus suggesting a common evolutionary history. The metabolic path-
way we chose as example is valine biosynthesis. Focusing on the last five steps of the
pathway, we derived a motif M = {1.1.1.86, 1.1.1.86, 4.2.1.9, 2.6.1.42, 6.1.1.9} and
performed the search for this motif using initially a cut-off value s of 4 for the similarity
score between two EC numbers (that is, between two reaction labels). With this cut-off
value, the motif was found to occur only once. (see Figure 3).

From this strictly defined motif, we then relaxed constraints by first lowering the
cut-off value s from 4 to 3 and then setting the gap parameters to 1 (motif denoted by
M ′). Additional occurrences were found. Three of them particularly drew our attention
(see Figure 3).

The first one corresponds to the five last steps of the isoleucine biosynthesis. The
second one corresponds to the five last steps of the leucine biosynthesis. Together, they
suggest a common evolutionary history for the biosynthesis pathways of valine, leucine
and isoleucine.

An interesting point concerning the second occurrence is the fact that the order of
the reactions is not the same as in the other pathways. This occurrence would not have
been found if we had used a definition of motif where the order was specified.

Finally, the third occurrence that drew our attention was formed by reactions from
both the biosynthesis of valine and a distinct metabolic pathway, namely the biosynthe-
sis of Panthotenate and CoA. This latter case illustrates a limit of our current general
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L−Ile−tRNA(Ile)

L−Isoleucine

(R)−2−Oxo−3−methyl−pentanoate

(R)−2,3−Dihydroxy−3−methylpentanoate

(S)−2−Hydroxy−3−methyl−3−oxopentanoate

1.1.1.86

2.6.1.42

6.1.1.5

Isoleucine Biosynthesis

1.1.1.86

4.2.1.9

(S)−2−Aceto−2−hydroxybutanoate

Pantothenate
and CoA biosynthesis

L−Val−tRNA(Val)

L−Valine

2−Oxoisovalerate

(R)−2,3−Dihydroxy−3−methylbutanoate

(R)−3−Hydroxy−3−methyl−2−oxobutanoate1.1.1.86

1.1.1.86

4.2.1.9

2.6.1.42

Valine Biosynthesis

6.1.1.9

1.1.1.86

(S)−2−Acetolactate

4.2.1.9

2,3−Dihydroxy−3−methylbutanoate

2−Acetolactate

L−Leu−tRNA(Leu)

1.1.1.85

2.6.1.42

6.1.1.4

Leucine Biosynthesis

4.2.1.33

4−Methyl−2oxopentanoate

2−Isopropyl−maleate

3−Isopropylmalate

2−Oxo−4−methyl−3−carboxypentanoate

L−Leucine

Fig. 3. Bipartite representation of the results obtained when searching for the following motif :
M ′ = {1.1.1, 4.2.1, 2.6.1.42, 6.1.1} with local and global gap bounds set to 1. The empty box
in the leucine biosynthesis represents a spontaneous reaction.

way of thinking about metabolism: frontiers between metabolic pathways as defined
in databases are not tight. If we had taken such frontiers into account, we would not
have found this occurrence that overlaps two different pathways. Yet such occurrence
can be given a biological meaning: it can be seen as a putative alternative path for the
biosynthesis of valine.

To complement this analysis, one should add that the results presented in this section
hold for 125 organisms in KEGG among which S. cerevisiae and E. coli.

Intrigued by the potential importance of inter-pathway occurrences, we computed
their proportion in the general case of a randomly chosen motif. By systematically test-
ing all motifs of size 3 and 4 (with cut-off values set to 3), we found that, on average,
a motif of size 3 (respectively 4) has 74% (respectively 92%) of its occurrences that
are inter-pathway occurrences. All inter-pathway occurrences may not represent bio-
logically meaningful chemical paths but the proportions above suggest that a lot of
information may be lost when studying pathways and not networks.

5 Conclusion

In this paper, we presented a novel definition of motif, called a “reaction motif”, in
the context of metabolic networks. Unlike previous works, the definition of motif is
focused on reaction labels while the topology is not specified. Such novel definition
raises original algorithmic issues of which we discuss the complexity in the case of the
problem of searching for such motifs in a network. To demonstrate the utility of our
definition, we show an example of application to the comparative analysis of different
amino-acid biosynthesis pathways. This work represents a first step in the process of
exploring the building blocks of metabolic networks. It seems promising in the sense
that, with a simple definition of motif, biologically meaningful results are found.

We are currently working on an enriched definition of motif that will take into ac-
count information on input and output compounds. The current definition already en-
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ables to discover regularities in the network. Enriched definitions should enable to test
more precise hypotheses.

In this paper, we used a particular formalism for analysing a metabolic network
through the identification of motifs. Other formalisms have been employed or could be
considered. As J. Stelling indicated in his review of 2004 [18], each formalism gives a
different perspective and confronting them seems to be a promising way of getting at a
deeper understanding of such complex networks.
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5. R. Guimerà and LA. Nunes Amaral. Functional cartography of complex metabolic networks.
Nature, 433(7028):895–900, 2005.

6. L. Hartwell, J. Hopfield, A. Leibler, and A. Murray. From molecular to modular cell biology.
Nature, 402:c47–c52, 1999.

7. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and AL. Barabasi. The large-scale organization
of metabolic networks. Nature, 407:651–654, 2000.

8. M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. The KEGG resource for
deciphering the genome. Nucleic Acids Research, 32:277–280, 2004.

9. H. Kitano. Systems biology: A brief overview. Science, 295:1662–1664, 2002.
10. HW. Ma, XM. Zhao, YJ. Yuan, and AP Zeng. Decomposition of metabolic network into

functional modules based on the global connectivity structure of reaction graph. Bioinfor-
matics, 20(12):1870–1876, 2004.

11. JA. Papin, JL. Reed, and BO. Palsson. Hierarchical thinking in network biology: the unbiased
modularization of biochemical networks. Trends Biochem Sci., 29(12):641–7, 2004.

12. JA. Papin, J. Stelling, ND. Price, S. Klamt, S. Schuster, and BO. Palsson. Comparison of
network-based pathway analysis methods. Trends Biotechnol., 22(8):400–5, 2004.

13. RY. Pinter, O. Rokhlenko, D. Tsur, and M. Ziv-Ukelson. Approximate labelled subtree home-
omorphism. In Proceedings of the 15th Annual Symposium on Combinatorial Pattern Match-
ing (CPM), volume 3109 of LNCS, pages 59–73, 2004.

14. S. Schuster, T. Pfeiffer, F. Moldenhauer, I. Koch, and T. Dandekar. Exploring the pathway
structure of metabolism: decomposition into subnetworks and application to Mycoplasma
pneumoniae. Bioinformatics, 18(2):351–361, 2002.
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Abstract. Recently, there has been growing interest in the modelling
and simulation of biological systems. Such systems are often modelled in
terms of coupled ordinary differential equations that involve parameters
whose (often unknown) values correspond to certain fundamental prop-
erties of the system. For example, in metabolic modelling, concentrations
of metabolites can be described by such equations, where parameters cor-
respond to the kinetic rates of the underlying chemical reactions. Within
this framework, the increasing availability of time series data opens up
the attractive possibility of reconstructing approximate parameter val-
ues, thus enabling the in silico exploration of the behaviour of complex
dynamical systems. The parameter reconstruction problem, however, is
very challenging – a fact that has resulted in a plethora of heuristics
methods designed to fit parameters to the given data.

In this paper we propose a completely deterministic method for pa-
rameter reconstruction that is based on interval analysis. We illustrate its
utility by applying it to reconstruct metabolic networks using S-systems.
Our method not only estimates the parameters very precisely, it also
determines the appropriate network topologies. A major strength of the
proposed method is that it proves that large portions of parameter space
can be disregarded, thereby avoiding spurious solutions.

1 Introduction

A well-known and difficult problem in metabolic modeling is that of parameter
reconstruction. A metabolic model is often given in terms of a system of ordinary
differential equations ẋ = f(x; p), where the right-hand side (the vector field)
depends on a (multi-dimensional) parameter p. The problem is then to search for
a particular p� within a parameter space P such that the solutions of the system
ẋ = f(x; p�) match a given data set, in some pre-specified manner. Typically, the
data set is a time series, that is, samples taken along one or several trajectories
of the target system.
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As in many other settings, parameter reconstruction in metabolic modelling
is often recast as a global optimization problem. Due to the high dimension-
ality of the problem, however, straight-forward optimization strategies rarely
produce accurate parameter values. Today, most methods used for parameter
reconstruction are thus based on heuristic algorithms such as, for example, ma-
chine learning, genetic algorithms and PL-models – see [9] for a recent overview.
In this paper, we describe a very general and completely deterministic approach
to solving the parameter reconstruction problem, which is based on interval anal-
ysis. This allows us to examine entire sets of parameters, and thus to exhaust
the global search within a finite number of steps.

Although our new approach is very general, we will focus on a particular class
of differential equations commonly used to model biochemical networks, known
as S-systems [17]. These have been extensively studied (see e.g. [5,3,10,7,18]),
and have the appealing feature that the underlying metabolic network topol-
ogy can be estimated along with the other parameters. In addition, several
methods have been recently described for parameter reconstruction in S-systems
(e.g. [10,18,16]).

2 Methods

2.1 Component-Wise Reconstruction via Slopes

Suppose that we are given a d-dimensional system of ordinary differential equa-
tions ẋ = f(x; p), sampled at N distinct times (excluding the initial point, which
is assumed to be known at time t0), producing the data set {x(tj)}N

j=0, where
each sample x(tj) = (x1(tj), . . . , xd(tj)) has d components. Rather than attempt-
ing to reconstruct parameters by solving the entire system ẋ = f(x; p), it can be
more helpful to obtain more detailed information localized at individual sample
points. One way to do this is to use the samples to reconstruct the trajectories
(e.g. via piece-wise splines) with some degree of smoothness. This enables the
computation of an approximation of the vector field at each sample point:

si,j ≈ fi(x(tj); p�), i = 1, . . . , d; j = 0, . . . , N.

The number si,j corresponds to the slope of the trajectory’s i:th component at
time tj , see Figure 1.

Fig. 1. (a) One component of a trajectory. (b) Sample data with slopes.
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Equipped with this enhanced sample data, we can try to locate a point in P
that minimizes the defect :

Δ(p) =
d∑

i=1

Δi(p) def=
d∑

i=1

N∑
j=0

‖fi(x(tj); p) − si,j‖,

for some convenient norm ‖ · ‖. Using the defect as a measurement of quality is
not new, see e.g. [6] or, in the context of S-systems, [18]. The major advantage of
this approach is that the system decouples, i.e., the computation of each Δi(p)
depends only on a fraction of the total number of parameters: Δi(p) = Δi(pi),
where pi ∈ Pi, and P = P1 ⊕ · · · ⊕ Pd.

Assuming that each pi has k (potential) components, the total dimension of
the entire search space P is dk. Rather than searching through a dk-dimensional
space, access to the enhanced sample data allows us to perform d independent
searches in k-dimensions. The gain is immediate: introducing M grid-points in
each parameter domain produces Mdk points in the first case, but only dMk

points in the latter. This gives a speed-up factor of Md/d.
We point out that, at present, our proposed computation of the slopes is not

very noise-tolerant. There are, however, several possible remedies that we aim to
explore in the future. One possibility is to use piece-wise splines with set-valued
coefficients. This approach fits well into the framework that we present below.
Another option is to simply smooth the data (via e.g. least-squares) before fitting
the splines.

2.2 Interval-Valued Slopes

Our approach is a modification of the enhanced data method, and therefore
shares the same attractive decomposition property of the global parameter space
P. The major improvement is that we now compute ranges of slopes for entire
domains of parameters. In essence, we extend the vector field f to a set-valued
function F , accepting solid blocks in parameter space as input. The theoretical
justification for this type of extension is given shortly. Let [pi] denote a box in
Pi, i.e., each component of [pi] is an interval. Then, for any point pi ∈ [pi], we
have

fi(x(tj); pi) ∈ Fi(x(tj); [pi]),

i.e., the set Fi(x(tj); [pi]) contains all possible slopes corresponding to parameters
taken from the box [pi]. This fact gives us a simple criterion for discarding
portions of the search space Pi: if a box [pi], at a sample point x(tj), produces a
range of slopes such that si,j /∈ Fi(x(tj); [pi]), then no parameter in [pi] can have
generated the sample data. If this situation occurs, we say that the parameter
box [pi] violates the cone condition at time tj , see Figure 2.

Our strategy in reconstructing the target parameter p� is to adaptively parti-
tion each space Pi into successively smaller sub-boxes, retaining only those that
satisfy the cone condition at all times. At some pre-selected level of coarseness,
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Fig. 2. (a) Cone condition satisfied at t0, t1, t2, and t3. (b) Violated at time t2.

we terminate the process, and are left with a collection of boxes [p(1)
i ], . . . , [p(n)

i ],
each of which satisfies I([p(j)

i ]) = true, where

I([pi]) =
N∧

j=0

(
si,j ∈ Fi(x(tj); [pi])

)
(1)

is a boolean function that returns true if [p] satisfies the cone condition at all
sample times, and false otherwise.

2.3 Interval Analysis

Here, we will briefly describe the fundamentals of interval analysis. For a concise
reference on this topic, see e.g. [12].

Let IR denote the set of closed intervals. For any element [a] ∈ IR, we adapt
the notation [a] = [a, ā]. Thus “x ∈ [x]” means “the point x belongs to the
interval [x]”. If � is one of the operators +,−,×,÷, we define the arithmetic on
elements of IR by

[a] � [b] = {a � b : a ∈ [a], b ∈ [b]},
except that [a] ÷ [b] is undefined if 0 ∈ [b]. Working exclusively with closed
intervals, we can describe the resulting interval in terms of the endpoints of the
operands:

[a] + [b] = [a + b, ā + b̄]
[a] − [b] = [a − b̄, ā − b] (2)
[a] × [b] = [min(ab, ab̄, āb, āb̄), max(ab, ab̄, āb, āb̄)]
[a] ÷ [b] = [a] × [1/b̄, 1/b], if 0 /∈ [b].

When computing with finite precision, directed rounding must also be taken into
account (see e.g. [11,13]).

A key feature of interval arithmetic is that it is inclusion monotonic, i.e., if
[a] ⊆ [A], and [b] ⊆ [B], then

[a] � [b] ⊆ [A] � [B], (3)

where we demand that 0 /∈ [B] for division.
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One of the main reasons for passing to the interval realm is that we want
a simple way of enclosing the range R(f ; D) = {f(x) : x ∈ D} of a real-valued
function f : D → R. Except for the most trivial cases, mathematics provides few
tools to describe this set.

We begin by extending the real functions to interval functions. By this, we
mean functions that take and return intervals rather than real numbers. Interval
arithmetic (2) provides the theory of extending rational functions, i.e., functions
on the form f(x) = p(x)/q(x), where p and q are polynomials. Simply substitut-
ing all occurrences of the real variable x with the interval variable [x] (and the
real arithmetic operators with their interval counterparts) produces a rational
interval function F ([x]), called the natural interval extension of f . As long as no
singularities are encountered, we have the inclusion R(f ; [x]) ⊆ F ([x]), by prop-
erty (3). In fact, this type of range enclosure can be achieved for any reasonable
function [12].

Higher-dimensional functions f : Rn → R can be extended to an interval
function F : IRn → IR in a similar manner. The function argument is then an
interval-vector [x] = ([x1], . . . , [xn]), which we also refer to as a box.

There exist several open source programming packages for interval analysis
[4,8,14].

2.4 S-Systems

An S-system is a system of ordinary differential equations on the form:

ẋi = αi

d∏
j=1

x
gij

j − βi

d∏
j=1

x
hij

j (i = 1, . . . , d). (4)

Each variable xi represents the concentration of some reactant, and ẋi denotes
the time derivative of xi. In a biochemical context, the non-negative param-
eters αi and βi are called rate constants. The real-valued parameters gij and
hij are referred to as the kinetic orders. Each component of an S-system is
made up of one positive and one negative term, corresponding to the production
and consumption of the substance xi, respectively. In essence, an S-system is
a condensed version of a more general GMA – General Mass Action – model,
obtained by aggregating individual reactions into the net processes of synthesis
and degradation, see [15].

Using the following short-hand notation for the parameters

pi = (αi, gi1, . . . , gid, βi, hi1, . . . , hid) (i = 1, . . . , d),

we can express (4) more compactly as ẋi = fi(x; pi). The entire S-system then
becomes ẋ = f(x; p). A d-dimensional S-system has 2d(d + 1) parameters, so
already for small systems the number of parameters becomes unwieldy. We re-
duce the number of parameters by assuming that no reactant xj influences both
the rate of production and the rate of degradation of another reactant xi (see
[1,18]). This assumption can be reformulated more succinctly as:
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0 1 1
1 0 0
0 1 0

synthesis

1 0 0
0 1 0
0 0 1

degradation

x1

x2

x3

α1 0 g12 g13

α2 g21 0 0
α3 0 g32 0

β1 h11 0 0
β2 0 h22 0
β3 0 0 h33

Parameter configuration

Fig. 3. A boolean topology encodes a metabolic network, and determines the parameter
configuration of the S-system in (6)

gij �= 0 ⇒ hij = 0, (5)

and reduces the total number of non-zero parameters to d(d + 2), although we
now must consider 2d different parameter configurations for each component of
the vector field fi. Nevertheless, this is a good trade: filling each of the 2(d + 1)
parameter domains of fi with M grid-points produces M2(d+1) points, compared
to 2dMd+2 points when using (5). This gives a speed-up factor of (M/2)d.

A simple example of an S-system (appearing in [17] pp. 179-184) is given by:

ẋ1 = 7.5x−0.1
2 x−0.05

3 − 5x0.5
1

ẋ2 = 2x0.5
1 − 1.44x0.5

2 (6)
ẋ3 = 3x0.5

2 − 7.2x0.5
3 .

The corresponding metabolic network is illustrated in Figure 3. This is an ex-
ample of a cascade mechanism, which commonly appear in the context of gene
regulation and immunology.

2.5 Set-Valued S-Systems

Extending the right-hand side of (4) to accept parameter boxes as input is a
simple matter, and produces a vector field F : IRd → IRd whose components are
interval-valued:

ẋi ∈ Fi(x; [pi]) = [αi]
d∏

j=1

x
[gij ]
j − [βi]

d∏
j=1

x
[hij ]
j . (7)

It is easy to show ([2], p. 23) that this extension is sharp, i.e.,

R(fi(x; ·); [pi]) = Fi(x; [pi]).

This sharpness property is not necessary for our method to work, but it does
make it more efficient.

We briefly comment that it is possible to allow for uncertain data in the
sense that the exact measurements xj appearing the right-hand side of (7) be
replaced by intervals [xj ]. This option will be explored in conjunction with the
interval-based slope construction, mentioned in section 2.1.
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2.6 The Main Algorithm

Given a collection of enhanced sample data {xi,j ; si,j}i,j generated from some
target S-system with parameter p� = (p�

1, . . . , p
�
d), the search is divided into d

independent component-wise searches for p�
1, . . . , p

�
d. These (d + 2)-dimensional

searches can be performed as d parallel processes, seeing that they are completely
independent. In what follows we fill focus on a single such search. For clarity, we
will suppress the component index i.

Each search takes place within a global parameter region P, which is initial-
ized as a box P = ([P1], . . . , [P2(d+1)]). The bounds for this box are determined
by biochemical knowledge (e.g. [17]). Utilizing the constraints (5), we initialize
all 2d possible different parameter configurations P̃1, . . . , P̃2d , each having d + 2
non-zero parameters, and corresponding to different network topologies. Having
done this, we examine each P̃i separately (or all P̃i in parallel). As a first step,
we initialize a list parameterList with the unique element P̃i. This list is then
passed on to the main loop of our search algorithm.

while( isEmpty(parameterList) == false ) {
parameter = getCurrent(parameterList);
if ( coneCondition(parameter) == true ) {
if ( diameter(parameter) > Tol )

splitAndStore(parameter, parameterList);
else

store(parameter, resultList);
}

}

Within this loop, each member of parameterList is tested via the cone
condition (1). If the condition is satisfied, there are two possibilities: either the
diameter of the parameter box is smaller than some pre-assigned tolerance Tol, in
which case the box is stored in a second list resultList; otherwise it is bisected
along its widest component, and the two resulting sub-boxes are returned to
parameterList for further investigation. If, however, the cone condition is not
satisfied, the current parameter box is excluded from the remaining search. When
the search terminates, resultList contains all sub-boxes of size ≈ Tol satisfying
the cone condition. If this list is empty, we have established that this particular
network topology does not match our data.

Often, we have have access to sample data from several trajectories, that
is, trajectories emanating from different initial points x(1)(t0), . . . , x(M)(t0). We
can then modify the cone condition (1) to take this additional information into
account:

I([pi]) =
N∧

j=0

M∧
k=1

(
s
(k)
i,j ∈ Fi(x(k)(tj); [pi])

)
This additional data improves our method, seeing that it becomes easier to
discard parameter regions.
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3 Computational Results

Starting with sample data {tj; xi,j}i,j generated from some target S-system with
parameter p�, we first generate the slope data {si,j}i,j , as described earlier.
These computations are performed by a collection of Matlab scripts, using its
built-in spline functionality. This allows us to differentiate the reconstructed
trajectories, and recover the slopes. It should be pointed out that the data itself is
generated within Matlab, and that the sample times t0, . . . , tN are non-uniformly
distributed. We choose a logarithmic distribution of the sample times, in order
to capture the more vivid motion occurring for small times. In the examples
presented below we use noise-free sample data {xi,j}i,j, as discussed earlier.

The actual parameter reconstruction is carried out by a prototype C++ pro-
gram, utilizing a modified version of the PROFIL/BIAS interval package [14].
The computations were performed on a single 1200MHz Intel Pentium M pro-
cessor using 384MB of RAM.

3.1 A Fixed-Topology Cascade

Our first example is the S-system (6) corresponding to the network presented
in Figure 3. Note that, since we are given the network topology a priori, the
computational complexity of parameter reconstruction is significantly reduced.

For the computations, we used five sets of initial conditions, and each trajec-
tory was sampled at 20 points in time. Following [17], the search region for each
of the kinetic orders gij , and hij was set to contain [−1, +1], whereas the rate
orders αi and βi were sought for within [0, 15]. The stopping tolerance (i.e., the
diameters of the final parameter intervals) was set to 1 × 10−3. In Table 1, we
present the target parameters together with the final result of our reconstruc-
tion. We use the notation “—” to indicate the, a priori, non-present parameters.
The agreement is seen to be almost perfect. The entire search took 1 minute and
6 seconds.

The reconstructed parameters appearing in Table 1 were obtained as follows:
when the global search has terminated, we are left with a collection of parameter

Table 1. The original parameter values (A) and their reconstructions (B) for the
S-system (6)

i αi gi1 gi2 gi3 βi hi1 hi2 hi3

A
1 7.5 — −0.1 −0.05 5.0 0.5 — —
2 2.0 0.5 — — 1.44 — 0.5 —
3 3.0 — 0.5 — 7.2 — — 0.5
B
1 7.49 — −0.100 −0.0503 4.99 0.501 — —
2 2.00 0.501 — — 1.44 — 0.502 —
3 3.00 — 0.500 — 7.20 — — 0.500



200 W. Tucker and V. Moulton

boxes [p1], . . . , [pK ], all satisfying the cone condition. We reduce these boxes to
one single box [P�] by forming their hull – the smallest box containing all pa-
rameter boxes [p1], . . . , [pK ]. We then have an enclosure of the target parameter
p� ∈ [P�]. Of course, taking the hull of all parameter boxes is a rather crude
measure. We get a better feeling for where the center of mass of the boxes is
located by computing the average of the collection of parameter boxes. In order
to get a single point in parameter space as our “best guess”, we simply take the
midpoint of the average:

P̄� = Mid

(
1
K

K∑
i=1

[pi]
)

.

It is the components of the resulting P̄� that are presented in Table 1. Note, how-
ever, that any choice of parameters from one of the resulting boxes [p1], . . . , [pK ]
is consistent with our sample data.

Also note that our computations prove that parameters outside the produced
ranges do not match the sample data. Considering e.g. the h33-parameter of (6),
we found that h33 ∈ [0.496, 0.503]. The remaining parameters were enclosed as
follows:

(α1, α2, α3) ∈ ([7.34, 7.62], [1.96, 2.03], [2.98, 3.03])
(g12, g13) ∈ ([−0.103,−0.0982], [−0.0527,−0.0486])
(g21, g32) ∈ ([0.492, 0.509], [0.493, 0.506])

(β1, β2, β3) ∈ ([4.84, 5.13], [1.40, 1.46], [7.18, 7.23])
(h11, h22) ∈ ([0.485, 0.519], [0.489, 0.517]).

Interestingly, some of the parameters reconstructed in [17] did not fall in
the parameter intervals that we computed. For example, even when starting the
search with initial guesses close to the true values, the “quasi-Newton” algorithm
used in [17] produced e.g. α1 = 9.237, β3 = 3.236, h22 = 0.0397, all of which
our algorithm has proved to be unsuitable. This example was also studied in
[16] using four different methods. The outcomes for e.g. α3 were 1.25, 7.70, 7.3,
and 1.45, respectively. Note that none of these values belong to the parameter
enclosure α3 ∈ [2.98, 3.03] produced by our method.

3.2 A 4-Dimensional S-System

Our second example appears in [18]:

ẋ1 = 12x−0.8
3 − 10x0.5

1

ẋ2 = 8x0.5
1 − 3x0.75

2 (8)
ẋ3 = 3x0.75

2 − 5x0.5
3 x0.2

4

ẋ4 = 2x0.5
1 − 6x0.8

4 .

In this example we are not given the network topology, which makes the parame-
ter reconstruction significantly more demanding. For the computations, we used
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five sets of initial conditions, and each trajectory was sampled at 20 points in
time. Following [18], the search region for each of the kinetic orders gij , and hij

was set to contain [−1, +1], whereas the rate orders αi and βi were sought for
within [0, 20]. The stopping tolerance was set to 2 × 10−3. Note that, although
each component of the vector field has 10 parameters to be determined, we use
the constraints (5) to bring the number of non-zero parameter values down to
six, which can be arranged in 16 different network topologies.

Table 2. The parameter values (and their reconstructions) of the S-system (8)

i αi gi1 gi2 gi3 gi4 βi hi1 hi2 hi3 hi4

Original
1 12 0.0 0.0 −0.8 0.0 10 0.5 0.0 0.0 0.0
2 8 0.5 0.0 0.0 0.0 3 0.0 0.75 0.0 0.0
3 3 0.0 0.75 0.0 0.0 5 0.0 0.0 0.5 0.2
4 2 0.5 0.0 0.0 0.0 6 0.0 0.0 0.0 0.8

Reconstructed
1 12.00 0.0 0.0 −0.802 0.0 9.98 0.501 0.0 0.0 0.0
2 7.96 0.502 0.0 0.0 0.0 2.96 0.0 0.757 0.0 0.0
3 2.95 0.0 0.759 0.0 0.0 4.95 0.0 0.0 0.504 0.202
4 2.00 0.501 0.0 0.0 0.0 6.00 0.0 0.0 0.0 0.800

In Table 2, we present the target parameters together with the final result of
our reconstruction. Once again, the agreement is seen to be almost perfect. The
entire search took 3 hours, 29 minutes, and 27 seconds. This great increase in
time, compared to the three-dimensional example, appears to indicate that the
method scales very badly. Note, however, that this increase is mostly due to the
fact that we were not given the topology of the four-dimensional system.

The reconstructed parameters appearing in Table 2 were obtained as in the
previous example, but with one additional twist: after having computed the
midpoint of the average, we set any parameter with value less than 5 × 10−4 to
zero:

P̄� = cutOff

(
Mid

(
1
K

K∑
i=1

[pi]
)

; 5 × 10−4
)

.

This skeletalizing procedure promotes sparse network topologies; in [18], the
cut-off level is set to 1 × 10−1.

4 Discussion

We have presented a novel method for reconstructing parameters using inter-
val analysis. In particular, we have applied it to reconstruct metabolic networks
using S-systems, and obtained very encouraging results. We stress that the pro-
posed method is very general, and can be applied to any system of finitely
parameterized differential equations.
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Our method differs in a fundamental way from the main-stream reconstruc-
tion methods in that we solve the problem by a pruning scheme based on a
boolean function (the cone condition), rather than recasting the parameter re-
construction as a global minimization problem. This has several advantages:
First, it is well-known that global minimization is an intractable problem, in the
sense that numerical solutions often converge to a local, rather than a global,
minimum, and there is no way of telling the two cases apart. Second, the quantity
to be minimized is often chosen to be a (weighted) least-square error. This im-
plicitly pre-assumes rather strong statistical properties of the underlying data,
assumptions that can not easily be verified. Our method simply retains the
parameters that are consistent with the underlying data, avoiding both above-
mentioned problems.

The transition to set-valued vector fields also allows us to dismiss, with a
mathematical certainty, unrealistic network topologies. In particular, this allows
us to detect when the model we are trying to fit to the provided data is not
appropriate. At a sufficiently low tolerance, our method would then discard all
parameter values.

In future work, we will refine the process of parameter exclusion, and exploit
the problem’s great potential for parallelization. This is an essential step towards
exploring the scalability of our proposed method. We will also allow for noisy
sample data, using interval-valued cubic splines in the generation of the slopes.
We also plan to put our method to test on a larger class of problems (including
generalized mass action models).
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Abstract. Sorting permutations by transpositions is an important prob-
lem in genome rearrangements. A transposition is a rearrangement opera-
tion in which a segment is cut out of the permutation and pasted in a differ-
ent location. The complexity of this problem is still open and it has been a
ten-year-old open problem to improve the best known 1.5-approximation
algorithm. In this paper we provide a 1.375-approximation algorithm for
sorting by transpositions. The algorithm is based on a new upper bound
on the diameter of 3-permutations. In addition, we present some new re-
sults regarding the transposition diameter: We improve the lower bound
for the transposition diameter of the symmetric group, and determine the
exact transposition diameter of 2-permutations and simple permutations.

1 Introduction

When estimating the evolutionary distance between two organisms using ge-
nomic data one wishes to reconstruct the sequence of evolutionary events that
transformed one genome into the other. In the 1980’s, evidence was found that
some species have essentially the same set of genes, but that their gene order
differs [17,13]. This suggests that global rearrangement events, such as reversals
and transpositions of genome segments, can be used to trace the evolutionary
path between genomes. As opposed to local point mutations (i.e., insertions,
deletions, and substitutions of nucleotides) global rearrangements are rare and
may therefore provide more accurate and robust clues to the evolution.

In the last decade, a large body of work was devoted to genome rearrangement
problems. Genomes are represented by permutations, with the genes appearing
as elements. Circular genomes (such as bacterial and mitochondrial genomes) are
represented by circular permutations. The basic task is, given two permutations,
to find a shortest sequence of rearrangement operations that transforms one
permutation into the other. Assuming that one of the permutations is the identity
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permutation, the problem is to find the shortest way of sorting a permutation
using a given rearrangement operation, or set of operations. For more background
on genome rearrangements the reader is referred to [18,19,20].

The problem of sorting permutations by reversals has been studied exten-
sively. It was shown to be NP-hard [8], and several approximation algorithms
have been suggested [4,7,9]. On the other hand, for signed permutations (every
element of the permutation has a sign, + or -, which represents the direction
of the gene) a polynomial algorithm for sorting by reversals was first given by
Hannenhalli and Pevzner [11]. Subsequent work improved the running time of
the algorithm, and simplified the underlying theory [14,6,3,21].

There has been significantly less progress on the problem of sorting by trans-
positions. A transposition is a rearrangement operation, in which a segment is
cut out of the permutation, and pasted in a different location. The complexity of
sorting by transpositions is still open. It was first studied by Bafna and Pevzner
[5], who devised a 1.5-approximation algorithm, which runs in quadratic time.
The algorithm was simplified by Christie [9] and further by Hartman [12], which
also proved that the analogous problem for circular permutations is equivalent.
Eriksson et al. [10] provided an algorithm that sorts any given permutation on n
elements by at most 2n/3 transpositions, but has no approximation guarantee.

The transposition diameter of the symmetric group Sn is unknown. Bafna
and Pevzner [5] proved an upper bound of 3

4n, which was improved to 2
3n by the

algorithm of Eriksson et al. [10]. A lower bound of #n−1
2 $ + 1 (for circular per-

mutations) is given in [9,10,16], where it was conjectured to be the transposition
diameter, except for n = 14 and n = 16.

In this paper we study the problem of sorting permutations by transposi-
tions. We begin with some results regarding the transposition diameter. We
prove a lower bound of #n

2 $ + 1 on the transposition diameter of the symmetric
group of circular permutations, which shows that the conjecture of [9,10,16] is
not accurate. Next, we deal with three subsets of the symmetric group (that
have been considered in the genome rearrangement literature): simple permu-
tations, 2-permutations, and 3-permutations. We show that the diameter for
2-permutations is n

2 (for circular permutations of size n), and for simple per-

mutations is #n
2 $. We prove an upper bound of 11

⌊
n
24

⌋
+
⌊
3 (n/3 mod 8)

2

⌋
+ 1

on the diameter of 3-permutations. Then we derive our main result: A 1.375-
approximation algorithm for sorting by transpositions, improving on the ten-
year-old 1.5 ratio.

Our main result, like many other results in genome rearrangements, is based
on a rigorous case analysis. However, since the number of cases is huge, we
developed a computer program that systematically generates the proof. Each
case in the proof is discrete and consists of a few elementary steps that can
be verified by hand and thus it is a proof in the conventional mathematical
sense. Since it is not practical to manually verify the proof as a whole, we have
written a verification program, which takes the proof as an input and verifies
that each elementary step in the proof is correct. The proof, along with the
program, is presented in a user-friendly web interface [1]. A well-known example
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of a computer assisted proof is that of the Four Color Theorem [2] (see [22] for
a list of other proofs).

2 Preliminaries

Let π = (π1 . . . πn) be a permutation on n elements. Define a segment A
in π as a sequence of consecutive elements πi, . . . , πk (k ≥ i). Two segments
A = πi, . . . , πk and B = πj , . . . , πl are contiguous if j = k + 1 or i = l + 1. A
transposition τ on π is an exchange of two disjoint contiguous segments. If the
segments are A = πi, . . . , πj−1 and B = πj , . . . , πk−1, then the result of applying
τ on π, denoted τ · π, is (π1 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn) (note
that the end segments can be empty if i = 1 or k − 1 = n).

The problem of finding a shortest sequence of transpositions, which trans-
forms a permutation into the identity permutation, is called sorting by transpo-
sitions. The transposition distance of a permutation π, denoted by d(π), is the
length of the shortest sorting sequence.

The problem of sorting linear permutations of size n is equivalent to sorting
circular permutations of size n + 1 [12]. Many of the following definitions, as
well as the presentation of the algorithm, are more clear for circular permuta-
tions. Therefore we present our results for circular permutations and, due to the
equivalence, they are true also for linear ones. In a circular permutation there is
an element 0, and the equivalent linear permutation can be obtained by simply
removing this element.

Breakpoint Graph. The breakpoint graph [5] is a graph representation of a per-
mutation, which is classical in the genome rearrangements literature. In this
graph every element of the permutation is represented by a left and a right ver-
tex. As defined below, every vertex is connected to one black and one gray edge.
The intuitive idea is that the black edges describe the order in the permutation
and the gray edges describe the order in the identity permutation. Through-
out the paper all permutations are circular and therefore, for both indices and
elements, we identify n and 0.

Definition 1. Let π = (π0 . . . πn−1) be a permutation. The breakpoint graph
G(π) is a edge-colored graph on 2n vertices {l0, r0, l1, r1, . . . , ln−1, rn−1}. For
every 0 ≤ i ≤ n − 1, connect ri and li+1 by a gray edge, and for every πi,
connect lπi and rπi−1 by a black edge, denoted by bi.

It is convenient to draw the breakpoint graph on a circle, such that black edges
are on the circumference and gray edges are chords (see Figure 1(a)).

Cycles. Since the degree of each vertex is exactly 2, the graph uniquely decom-
poses into cycles. Denote the number of cycles in G(π) by c(π). The length of a
cycle is the number of black edges it contains. A k-cycle is a cycle of length k,
and it is odd if k is odd. The number of odd cycles is denoted by codd(π), and
let Δcodd(π, τ) = codd(τ · π) − codd(π). Bafna and Pevzner proved the following
useful lemma:
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Fig. 1. (a) The circular breakpoint graph of the permutation π = (0 5 4 3 6 2 1). Black
edges are represented as thick lines on the circumference, and gray edges are chords.
The three cycles are (b1 b3 b6), (b2 b4), and (b5 b0). (b) The circular breakpoint graph
of π after applying a transposition on black edges b0, b2 and b5.

Lemma 1. (Bafna and Pevzner [5]) For all permutations π and transpositions
τ , Δcodd(π, τ) ∈ {−2, 0, 2}.

Let n(π) denote the number of black edges in G(π). The maximum number
of cycles is obtained iff π is the identity permutation. In that case, there are n(π)
cycles, and all of them are odd (in particular, they are all of length 1). Starting
with π with codd odd cycles, Lemma 1 implies the following lower bound on d(π):

Theorem 2. (Bafna and Pevzner [5]) For all permutations π, d(π) ≥ (n(π) −
codd(π))/2.

By definition, every transposition must cut three black edges. The transpo-
sition that cuts black edges bi, bj and bk is said to apply on these edges (see
Figure 1). If these black edges are in cycle C, then the transposition is said to
apply on C. A transposition τ is a k-move if Δcodd(π, τ) = k. A cycle is called
oriented if there is a 2-move that is applied on three of its black edges; otherwise,
it is unoriented.

Throughout the paper, we use the term permutation also when referring to
the breakpoint graph of the permutation (as will be clear from the context). For
example, when we say that π contains an oriented cycle, we mean that G(π)
contains an oriented cycle.

Simple Permutations. A k-cycle in the breakpoint graph is called short if k ≤ 3;
otherwise, it is called long. A breakpoint graph is simple if it contains only short
cycles. A permutation π is simple if G(π) is simple, and is a 2-permutation (resp.
3-permutation) if G(π) contains only 2-cycles (3-cycles).

A common technique in genome rearrangement literature is to transform
permutations with long cycles into simple permutations. This transformation
consists of inserting new elements into the permutations and thereby splitting
the long cycles. The reader is referred to [12] for a thorough description. If π̂ is
the permutation attained by inserting elements into π then d(π) ≤ d(π̂), since



208 I. Elias and T. Hartman

inserting new elements only can result in a permutation that requires more moves
to be sorted. Such a transformation is called safe if it maintains the lower bound
of Theorem 2, i.e., if n(π) − codd(π) = n(π̂) − codd(π̂).

Lemma 3. (Lin and Xue [15]) Every permutation can be transformed safely
into a simple one.

Note that the transformation only maintains the lower bound, not the exact
distance1. We say that permutation π is equivalent to permutation π̂ if n(π) −
codd(π) = n(π̂) − codd(π̂).

Lemma 4. (Hannenhalli and Pevzner [11]) Let π̂ be a simple permutation that
is equivalent to π, then every sorting of π̂ mimics a sorting of π with the same
number of operations.

The 1.375-approximation given in this paper first transforms the given per-
mutation π into an equivalent simple permutation π̂, then it finds a sorting se-
quence for π̂, and, finally, the sorting of π̂ is mimicked on π. Therefore, through-
out most of the paper we will be concerned with simple permutations and short
cycles.

Configurations and Components. Given a cyclic sequence of elements i1, . . . , ik,
an arc is an interval in the cyclic order, i.e., a set of contiguous elements in
the sequence. The pair (ij , il) (j �= l) defines two disjoint arcs: ij, . . . , il−1 and
il, . . . , ij−1. Similarly, a triplet defines a partition of the cyclic sequence into
three disjoint arcs. We say that two pairs of black edges (a, b) and (c, d) are
intersecting if a and b belong to different arcs defined by the pair (c, d). A pair
of black edges intersects with cycle C, if it intersects with a pair of black edges
that belong to C. Cycles C and D intersect if there is a pair of black edges in C
that intersect with D (see Figure 2c). Two triplets of black edges are interleaving
if each of the edges of one triple belongs to a different arc of the second triple.
Two 3-cycles are interleaving if their edges interleave (see Figure 2e).

A configuration of cycles is a subgraph of the breakpoint graph that is induced
by one or more cycles. There are only two possible configurations of a 3-cycle in
a breakpoint graph, which are shown in Figure 2 (a and b). It is easy to verify
that the 3-cycle in (a) is oriented, and (b) is unoriented. A configuration A is
a sub-configuration of a configuration B if the cycles in A form a subset of the
cycles in B. A configuration A is connected if for any two cycles c1 and ck of A
there are cycles c2, . . . , ck−1 such that, for each i ∈ [1, k − 1], ci intersects with
ci+1. A component is a maximal connected configuration in a breakpoint graph.
The size of configurations and components is the number of cycles they contain,
and are said to be unoriented if all their cycles are unoriented. They are called
small if their size is at most 8; otherwise they are big.

In a configuration, an open gate is a pair of black edges of a 2-cycle or an
unoriented 3-cycle that does not intersect with another cycle. The following is
an important lemma by Bafna and Pevzner.
1 Unlike in the problem of sorting by reversals [11], in which the analogous transfor-

mation maintains the exact distance.
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Fig. 2. Configurations of 3-cycles. (a) An oriented 3-cycle. (b) An unoriented 3-cycle.
(c) Intersecting 3-cycles. (d) Non-intersecting 3-cycles. (e) Interleaving 3-cycles.

Lemma 5. (Bafna and Pevzner [5]) Every open gate intersects with some other
cycle in the breakpoint graph.

A configuration not containing open gates is referred to as a full configuration.
For example, the configuration in 2(e) is full, whereas 2(c) has two open gates.

Sequence of Transpositions. An (x, y)-sequence of transpositions on a simple
permutation (for x ≥ y) is a sequence of x transpositions, such that at least y of
them are 2-moves and that leaves a simple permutation at the end. For example,
a 0-move followed by two consecutive 2-moves (which is called a (0, 2, 2)-sequence
in previous papers [9,12]) is a (3, 2)-sequence. A configuration (or component or
permutation) has a (x, y)-sequence, if it is possible to apply such a sequence on
its cycles.

The following result is the basis of the previous 1.5-approximation algorithms
and will be used throughout the paper.

Lemma 6. (Christie [9] and Hartman [12]) For every permutation (except for
the identity permutation) there exists either a 2-move or a (3, 2)-sequence.

Corollary 7. For every permutation that has an oriented cycle and contains at
least three 3-cycles there exists a (4, 3)-sequence.

Transposition Diameter. The transposition diameter, TD(n), of the symmetric
group is the maximum value of d(π) taken over all permutations of n elements,
i.e., TD(n) � maxπ d(π) . Similarly, the transposition diameter of simple per-
mutations TDS, 2-permutations TD2, and 3-permutations TD3, is the longest
distance for any such permutation to the identity. 2

3 Transposition Diameter Results

In this section, we first provide a lower bound on the transposition diameter.
Then, we determine the exact transposition diameter of 2-permutations and sim-
ple permutations, and find an upper bound for the diameter of 3-permutations.
2 The term diameter is somehow misleading for subsets of the symmetric group which

are not a sub-group. However, we will stick to this term for the sake of consistency.
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Recall that throughout the paper by permutations we mean circular permuta-
tions. However, sorting linear permutations of size n is equivalent to sorting
circular permutations of size n + 1 [12]. Therefore all bounds can be applied
directly to linear permutations by replacing n with n + 1.

Previous works [10,9,16] on the transposition diameter have conjectured3

that the most distant permutation is the reversed permutation (0 n − 1 . . . 1).
That is, it was believed that the transposition diameter is #n−1

2 $ + 1. However,
the theorem below, which is proved in the full version of the paper, disproves
this conjecture. Although the improvement of the bound is minor, we believe
that this result is important since lower bounds on transposition problems are
quite rare and hard to obtain.

The proofs of the following theorems are given in the full version of the paper.

Theorem 8. TD(n) ≥ #n
2 $ + 1.

For linear permutations of size n the lower bound is given by #n+1
2 $ + 1.

Theorem 9. TD2(n) = n
2 .

Theorem 10. TDS(n) = #n
2 $.

3.1 Diameter for 3-Permutations

The main result given in this section is an upper bound for the diameter of 3-
permutations, which is the basis of the 1.375-approximation algorithm for sorting
by transpositions (Section 4). This result, like many other results in genome
rearrangements, is based on a rigorous case analysis. However, since the number
of cases is huge, we developed a computer program that systematically analyzes
all the cases. Below we describe the case analysis.

Our goal is to show that every 3-permutation with at least 8 cycles has an
(x, y)-sequence such that x ≤ 11 and x

y ≤ 11
8 . Such a sequence is referred to as an

11
8 -sequence. By Corollary 7, we need only consider unoriented configurations,
since a (4, 3)-sequence is an 11

8 -sequences. Thus, in the sequel, when we say
configurations we refer to unoriented configurations. The case analysis is done
in two steps. In the first step, below, all big components are shown to have an
11
8 -sequence. In the second step, which is described ion the full version of the
paper, we consider permutations with at least 8 cycles such that all components
are small and prove that also these permutations have an 11

8 -sequence.

Analysis of Unoriented Configurations. The enumeration over all compo-
nents starts from the basic building blocks: connected configurations consisting
of two unoriented cycles. There are only two such configurations, the unori-
ented interleaving pair (Figure 2e) and the unoriented intersecting pair (Figure
2c). From these two configurations it is possible to build any other unoriented
connected configuration by successively adding new unoriented cycles to the con-
figuration. Adding a cycle to a configuration is done by inserting its black edges
3 [10] conjectured that this was the case with exceptions for n = 14 and n = 16.
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somewhere in the configuration. If it is possible to create a configuration B by
adding a cycle to a configuration A, then B is said to be an extension of A. For
example, both the unoriented interleaving and intersecting pair are extensions
of the configuration of only one unoriented 3-cycle.

Consider a full configuration C and let A be a sub-configuration of C. Then
C can be constructed by a series of extensions of A. In particular, this means
that A can be extended into configuration B, that also is a sub-configuration
of C. If A has an open gate then there is such extension B that is closing the
open gate (since by definition, C has no open gates), i.e., the pair of black
edges constituting the open gate in A intersects with a pair of black edges in
B. Otherwise, there is an extension B with at most one open gate that is also a
sub-configuration of C.

From the discussion above it follows that there are two types of extensions
that are sufficient for building any component. These sufficient extensions are
(1) extensions closing open gates and (2) extensions of full configurations, such
that the extended configuration has at most one open gate. We refer to config-
urations that are realizable through a series of sufficient extensions from either
the unoriented interleaving pair or the unoriented intersecting pair as sufficient
configurations. Note that in particular, this means that every sufficient configu-
ration has at most two open gates.

The following lemma is proved by our computerized case analysis:

Lemma 11. Every unoriented sufficient configuration of 9 cycles has an 11
8 -

sequence.

By definition every big component has a sufficient configuration of size 9. There-
fore the above lemma states that if a permutation contains a big component
then there is an 11

8 -sequence.
One way of proving Lemma 11 would be to give a sorting for each of the

sufficient configurations of 9 cycles. Such a case analysis would be too time
consuming even for a computer. Instead, we utilize the notion of sufficiency and
the fact that a sorting sequence for a configuration is also a sub-sorting for every
extension of it. In Figure 3 we describe the case analysis which intuitively can
be thought of as a breadth first search. When performing the analysis it turns
out that no configuration of 10 cycles is added to the queue. This means that
all sufficient configurations of 9 cycles have an 11

8 -sequence.

1. Initiate a queue of configurations to contain the unoriented interleaving pair
and the unoriented intersecting pair.

2. While the queue is non-empty do:
(a) Remove the first configuration, A, from the queue.
(b) For each sufficient extension B of A do:

i. If B does not have an 11
8 -sequence add it to the queue.

ii. Otherwise give the sorting sequence for B.

Fig. 3. A brief description of the case analysis
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It should be stressed that the program itself is not a proof of the lemma. The
proof is the case analysis which is the output of the program. Although each
separate case can be verified by hand it is not an appealing thought to verify
80.000 such cases. To remedy this, the case analysis is presented in a user-friendly
web interface [1] facilitating a general understanding of its correctness. Moreover,
to affirm the correctness we have written a small verification program. This
program verifies the proof by verifying (1) that every given sorting is a correct
sorting and (2) that all sufficient extensions are considered. Thus the proof as a
whole can be checked by verifying the correctness of this small program.

To complete the analysis we now consider small components. Small compo-
nents that do not have an 11

8 -sequence are called bad small components. Our
computerized enumeration found that there are only five such components. The
second step of the case analysis, which is described in the full version of the
paper, is to show that permutations with at least 8 cycles that contain only bad
small components have an 11

8 -sequence.

Lemma 12. Let π be a permutation with at least 8 cycles that contains only bad
small components. Then, π has an 11

8 -sequence.

The conclusion of the case analysis in this section is the corollary below. It
follows from Lemmas 11 and 12 and is the basis of the 11

8 = 1.375 approximation
algorithm.

Corollary 13. Every 3-permutation with at least 8 cycles has an 11
8 -sequence.

The Diameter for 3-Permutations. Here we present an upper bound on
the diameter for 3-permutations (the proof is given in the full version). In 3-
permutations of size n the number of cycles is c = n/3. Let g(c) � 11#c/8$+#3(c
mod 8)/2$ and define f as follows:

f(c) �
{

g(c) + 1 if c mod 8 = 1
g(c) otherwise (1)

Note that f(8l + r) = 11l + f(r). This function gives the upper bound on the
diameter for 3-permutations.

Theorem 14. TD3(n) ≤ f(n
3 ) ≤ 11

⌊
n
24

⌋
+
⌊
3 (n/3 mod 8)

2

⌋
+ 1.

4 The Approximation Algorithm

Now we are ready to present our main result: Algorithm Sort, which is a 1.375-
approximation algorithm for sorting by transpositions (Figure 4). Intuitively,
the algorithm sorts the permutation by repeatedly applying (11, 8)-sequences
and since 11

8 = 1.375 we get the desired approximation ratio (based on the lower
bound of Theorem 2). The following lemma, whose proof is deferred to the full
version of the paper, analyzes the time complexity of the algorithm.
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Algorithm Sort (π)

1. Transform permutation π into a simple permutation π̂ (Lemma 3).
2. Check if there is a (2, 2)-sequence. If so, apply it.
3. While G(π̂) contains a 2-cycle, apply a 2-move (Christie [9]).
4. While G(π̂) contains at least 8 cycles apply an 11

8 -sequence (Corollary 13).
5. While G(π̂) contains a 3-cycle, apply a (3, 2)-sequence (Lemma 6).
6. Mimic the sorting of π using the sorting of π̂ (Lemma 4).

Fig. 4. A high-level description of the approximation algorithm Sort.

Lemma 15. The time complexity of Algorithm Sort is O(n2).

Theorem 16. Algorithm Sort is a 1.375-approximation algorithm for sorting
permutations by transpositions, and it runs in quadratic time.

Proof. The running time is shown in Lemma 15. We now prove the approxi-
mation ratio. Depending on Step 2, there are two cases: either there is a (2, 2)-
sequence or not. Let c3 (resp. c2) represent the number of 3-cycles (2-cycles) in
G(π̂) after Step 2.

Case 1 In Step 2 if a (2, 2)-sequence exists. According to the lower bound in
Theorem 2 the best possible sorting is that using only 2-moves. Specifically this
means that π̂ can not be sorted better than first applying two 2-moves and
then another c3 + c2 2-moves to sort the remaining cycles. Therefore a lower
bound for any sorting of π̂ is c3 + c2 + 2. The algorithm gives a sorting using
2+ c2

2 + f(c3 + c2
2 ) moves; 2 moves in Step 2, c2/2 moves in Step 3 creating c2/2

3-cycles, and by the proof of Theorem 14 at most f(c3 + c2
2 ) moves in Steps 4

and 5. Thus the approximation ratio of the algorithm is

2 + c2
2 + f(c3 + c2

2 )
c3 + c2 + 2

=
2 + y + f(x)

x + y + 2
≤ f(x) + 2

x + 2
, (2)

where x = c3 + c2
2 and y = c2

2 . In Table 1 the last expression of Equation 2 is
shown to be bounded from above by 11

8 .

Case 2 In Step 2 if a (2, 2)-sequence does not exist then there are c2 + c3 cycles
in G(π̂) and at least c3 + c2 + 1 moves are required to sort π̂; at least one 0-
move and by Theorem 2 at least c3 + c2 2-moves are required. The algorithm
gives a sorting using c2

2 + f(c3 + c2
2 ) moves. Thus the approximation ratio of the

algorithm is
c2
2 + f(c3 + c2

2 )
c3 + c2 + 1

=
f(x) + y

x + y + 1
≤ f(x)

x + 1
, (3)

where again x = c3 + c2
2 and y = c2

2 . In Table 1 the last expression of Equation 3
is shown to be bounded from above by 11

8 . ��
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Table 1. Function table showing that the approximation ratio of the algorithm is
11
8 = 1.375. In the table x = 8l + r and thus f(x) = 11l + f(r).

r 0 1 2 3 4 5 6 7

f(r) 0 2 3 4 6 7 9 10
f(x)+2
x+2

11l+2
8l+2

11l+4
8l+3

11l+5
8l+4

11l+6
8l+5

11l+8
8l+6

11l+9
8l+7

11l+11
8l+8

11l+12
8l+9

f(x)
x+1

11l
8l+1

11l+2
8l+2

11l+3
8l+3

11l+4
8l+4

11l+6
8l+5

11l+7
8l+6

11l+9
8l+7

11l+10
8l+8

5 Discussion and Open Problems

The main result of this paper is a 1.375-approximation algorithm for sorting by
transpositions. In addition, there are some new advances regarding the trans-
position diameter. The main open problems are to determine the complexity
of sorting by transpositions, and to find the transposition diameter. We believe
that our results give new insights for further investigation of these problems. In
particular, our characterization of components which are ”hard-to-sort” may be
a key to better lower bounds and approximation algorithms.

Empirical evidence indicate that the upper bound given for the diameter of
3-permutations is very close to the true diameter. If this is correct, then there
are permutations at distance 1.375 times the lower bound of Theorem 2. That is,
finding a better lower bound is essential for improving the approximation ratio.
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Abstract. We study the problem of computing the minimal number
of adjacent, non-intersecting block interchanges required to transform
a permutation into the identity permutation. In particular, we use the
graph of a permutation to compute that number for a particular class
of permutations in linear time and space, and derive a new tight upper
bound on the so-called transposition distance.

1 Introduction

The problem we study is a particular case of a problem called genome rear-
rangement [1,2], which is motivated by applications in biology. The genome
rearrangement problem can be formulated as follows: given two genomes, find
the minimum number of evolutionary events transforming one into the other.
This number is defined as the distance between the two genomes.

The model we are interested in applies to the case where the order of genes is
known and where all genomes share the same set and number of genes (without
duplications), which allows us to represent them by permutations. It is easy to
show that what we have defined as a distance is indeed a distance on the set of
all permutations (i.e. it satisfies the three usual axioms).

We will consider only one operation on permutations: biological transposi-
tions, which consist in moving a block of contiguous elements from one place to
another one. This problem was first introduced in 1995 by Bafna and Pevzner [3],
and is generally considered harder than similar problems. In particular, neither
its complexity, nor even the diameter of the transposition distance (i.e. the
maximal value it can reach), is known, which has led several authors to design
polynomial-time approximation algorithms (whose best known ratio1 is 3

2 [3,5,6])
as well as using and comparing heuristics [5,7,8,9]. An interesting property of
this distance is that the transposition distance between any two permutations
π, σ is the same as the distance between σ−1 ◦ π and the identity permutation
� Funded by the “Fonds pour la Formation à la Recherche dans l’Industrie et dans

l’Agriculture” (F.R.I.A.).
1 A 1.375−approximation has recently been proposed in [4].
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ι = (1 2 · · · n). Therefore, the problem of transforming a permutation into an-
other one using as few transpositions as possible is the same as that of sorting a
permutation using the minimum number of transpositions. In what follows, we
refer to the latter number as the distance of π, noted d(π). While other authors
have tried to find the shortest possible sequences of transpositions that sort a
permutation, we have chosen to focus on computing their length.

In this paper, we make use of the common graph of a permutation rather than
of the “cycle graph” introduced in [3]. A step in this direction was mentioned
in [10] and successfully used to compute another rearrangement distance in [11].
As we suspected, it proved fruitful for our problem too: we were able to show that
the distance of some nicely characterized permutations, namely those who fix
even or odd elements and another class derived from those two, can be computed
in linear time, using a formula that completely bypasses any graph structure used
so far. Furthermore, we use those permutations to derive a tight upper bound
on the transposition distance of every permutation.

This paper is organized as follows. In Section 2, we review previous results
and typical notations. In Section 3, we introduce a graph that we use in Section 4
to provide a formula for computing the distance of some special permutations
in linear time. In Section 5, we use those to derive an upper bound on the
transposition distance of every permutation. Finally, we discuss our results in
Section 6 and suggest some open questions of interest.

2 Notations and Preliminaries

Permutations are denoted by lower case Greek letters, typically π, and Sn is
the set of all permutations of {1, 2, ..., n}. For any permutation π in Sn, the
transposition τ(i, j, k) with 1 ≤ i < j < k ≤ n + 1 applied to π exchanges
the closed intervals determined respectively by i and j − 1 and by j and k − 1,
transforming π into π ◦ τ(i, j, k). So τ(i, j, k) is the following permutation:(

1 · · · i − 1 i i + 1 · · · j − 2 j − 1 j j + 1 · · · k − 1 k · · · n

1 · · · i − 1 j j + 1 · · · k − 1 i i + 1 · · · j − 2 j − 1 k · · · n

)
.

The usual notation is shorter than the one we have just used to describe
transpositions, i.e. we write a permutation π in Sn as (π1 π2 · · · πn). Bafna and
Pevzner [3] define the cycle graph of π as the bicoloured directed graph G(π),
whose vertex set consists of the elements of π plus two new elements π0 = 0 and
πn+1 = n + 1, and whose edge set consists of:

– black edges (πi, πi−1) for 1 ≤ i ≤ n + 1 ;
– gray edges (i, i + 1) for 0 ≤ i ≤ n .

The set of black and gray edges decomposes in a single way into alternate
cycles, i.e. cycles which alternate black and gray edges, and we note the number
of such cycles c(G(π)). An alternate cycle of G(π) is odd (resp. even) if it con-
tains an odd (resp. even) number of black edges, and we note codd(G(π)) (resp.
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ceven(G(π))) the number of odd (resp. even) alternate cycles of G(π). Bafna and
Pevzner proved the following lower bound on the transposition distance.

Theorem 1. [3] ∀ π ∈ Sn : d(π) ≥ n+1−codd(G(π))
2 .

For a permutation π, define an ordered pair (πi, πi+1) as a breakpoint if
πi+1 �= πi + 1. The number of breakpoints of π is denoted by b(π). Christie [5]
decomposes permutations into strips, which he defines as maximal intervals con-
taining no breakpoint. He denotes gl(π) the reduced version of π, obtained as
follows: assuming π has r strips, remove strip 1 if it begins with 1, strip r if
it ends with n, replace every other strip with its minimal element and finally,
renumber the resulting sequence so as to obtain a permutation of Sr (r ≤ n).

Theorem 2. [5] ∀ π ∈ Sn : d(π) = d(gl(π)).

We say that π and σ are equivalent by reduction if gl(π) = gl(σ), which
we also write as π ≡r σ. Since we are presenting a new upper bound on the
transposition distance of every permutation, it is only fair that we conclude this
section with the ones that were previously shown.

Theorem 3. [3] ∀ π ∈ Sn :

d(π) ≤ 3(n + 1 − codd(G(π)))
4

. (1)

Theorem 4. [12] ∀ π ∈ Sn :

d(π) ≤ 3
4

b(π) . (2)

Theorem 5. [13] ∀ π ∈ Sn :

d(π) ≤
{ ⌈2n

3

⌉
if n < 9 ;⌊ 2n−2

3

⌋
if n ≥ 9 .

(3)

3 Another Useful Graph

We will make use of a variant of the well-known graph of a permutation. The
Γ−graph of a permutation π in Sn is the directed graph Γ (π) with vertex set
{(1, π1), (2, π2), ..., (n, πn)} and edge set {((i, πi), (j, πj)) | j = πi}.

If C = (i1, i2, ..., ik) is a cycle of π (i.e. π maps il onto il+1 for 1 ≤ l ≤ k−1 and
ik onto i1), we obtain a cycle (i1, πi1), (i2, πi2), ..., (ik, πik

), which we also denote
C, in Γ (π), and call it a k−cycle. We say that such a cycle is positively oriented if
k ≥ 3 and its elements can be written as a strictly increasing sequence, negatively
oriented if k ≥ 3 and its elements can be written as a strictly decreasing sequence,
and unoriented otherwise.

For instance, in Fig. 1, cycle (4, 2, 1) is negatively oriented, cycle (5) is
unoriented, and cycle (3, 6, 7) is positively oriented. Note that every 1−cycle
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• ��•�� • ��•�� •�� • ��•��

(1, 4) (2, 1) (3, 6) (4, 2) (5, 5) (6, 7) (7, 3)

Fig. 1. The Γ−graph of the permutation (4 1 6 2 5 7 3)

and every 2−cycle is unoriented. In a quite similar fashion to the parity of cycles
defined in the context of G(π), we say that a k−cycle of Γ (π) is odd (resp.
even) if k is odd (resp. even). Likewise, we note c(Γ (π)) the number of cycles of
Γ (π), and codd(Γ (π)) (resp. ceven(Γ (π))) the number of odd (resp. even) cycles
of Γ (π).

4 An Explicit Formula for Some Permutations

We define a γ−permutation as a reduced permutation that fixes even elements
(thus n must be odd), and show (Theorem 6) that the distance of such a per-
mutation, and several others, can be computed quickly, without the need of the
cycle graph.

Proposition 1. For every γ−permutation π in Sn:{
ceven(G(π)) = 2 ceven(Γ (π)) ;
codd(G(π)) = 2

(
codd(Γ (π)) − n−1

2

)
.

Proof. Each vertex (i, πi) of Γ (π) corresponding to an odd element πi is both
the starting point of an edge ((i, πi), (πi, πj1 )) and the ending point of an edge
((j2, i), (i, πi)). Since πi is odd and π is a γ−permutation, πi +1 is mapped onto
itself, and πj1 precedes πi + 1 in π. In G(π), those edges are each transformed
into one sequence of two edges (gray-black for the first one, black-gray for the
second one):{

((i, πi), (πi, πj1)) becomes (πi, πi + 1), (πi + 1, πj1) ;
((j2, i), (i, πi)) becomes (πi, πi−1), (πi−1, πj2 ) .

I.e. the outgoing edge of (i, πi) in Γ (π) is transformed in one of the following
ways (according to the relative positions of πi and πj1):

a) •
��

· · · • • 		 −→ • 

· · · • •��

(i, πi) (πi, πj1 ) (πi + 1, πi + 1) πi πj1 πi + 1

b) • • 		 · · · •�� −→ • •�� · · · •


(πi, πj1 ) (πi + 1, πi + 1) (i, πi) πj1 πi + 1 πi
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Similarly, the incoming edge of (i, πi) in Γ (π) is transformed in one of the fol-
lowing ways (according to the relative positions of πi and πj2 ):

a) • 		 • · · · •
��

−→ • ��•�� · · · •
(πi−1, πi−1) (i, πi) (j2, i) πi−1 πi πj2

b) • ��· · · • 		 • −→ • · · · •


•��

(j2, i) (πi−1, πi−1) (i, πi) πj2 πi−1 πi

Each k−cycle (k ≥ 2) of Γ (π) provides an alternate cycle with k black edges
in G(π); moreover, for every such cycle of Γ (π), a new cycle is created in G(π),
which actually corresponds to the cycle of Γ (π) followed in the opposite direction.
Parity of cycles of Γ (π) is obviously preserved in G(π), since to each vertex of a
k−cycle (k ≥ 2) of Γ (π) corresponds a black edge in G(π). Finally, 1−cycles of
Γ (π) are not preserved in G(π), and there are n−1

2 of them. ��

We derive the following lower bound from Proposition 1 and Theorem 1.

Lemma 1. For every γ−permutation π in Sn, we have d(π) ≥ n − codd(Γ (π)).

Proof. Straightforward. ��

We will first study permutations such that odd elements form only one cycle
in Γ (π), distinguishing the case of oriented cycles and that of unoriented ones.

4.1 Oriented Cycles

We define an α−permutation as a reduced permutation that fixes even elements
and whose odd elements form one oriented cycle in the graph Γ , and refer to
the long cycle formed by the n+1

2 odd elements as its main cycle.

Proposition 2. For every α−permutation π in Sn, we have d(π) = n+1
2 −(

n+1
2 mod 2

)
.

Proof. Since every α−permutation is a γ−permutation, Lemma 1 yields d(π) ≥
n+1

2 −
(

n+1
2 mod 2

)
. We assume that the main cycle of Γ (π) is positively oriented

(a similar proof is easily obtained in the negative case).

1. if n+1
2 is odd, consider transpositions τ1(2, 4, n + 1), τ2(1, 3, n); then an op-

timal sequence of n+1
2 − 1 transpositions that sorts π is

(τ1 ◦ τ2)
n+1
2 −1
2 .
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a1 a2 a1 a2

• ��• ��• • • ��• • •��

(i1, πi1) (i2, πi2) (j1, πj1) (j2, πj2) (i1, πi1) (j2, πj2) (j1, πj1) (i2, πi2)
(a) (b)

a1 a2 a1 a2

• • •�� •�� • • ��•�� •
(j1, πj1) (j2, πj2) (i1, πi1) (i2, πi2) (j1, πj1) (i2, πi2) (i1, πi1) (j2, πj2)

(c) (d)

Fig. 2. The four possible configurations for crossing edges in Γ (π)

2. if n+1
2 is even, consider again transpositions τ1, τ2 defined above, and also

transpositions τ3(2, 3, n+1), τ4(1, 2, n+1); then an optimal sequence of n+1
2

transpositions that sorts π is

(τ1 ◦ τ2)
n+1
2 −2
2 ◦ τ3 ◦ τ4 .

Short of space, we omit the proof that those sequences indeed sort our permu-
tations, but this can be easily shown by induction. ��

4.2 Unoriented Cycles

We now show that the orientation of a cycle does not matter, i.e. Proposition 2
still holds if the main cycle of Γ (π) is unoriented. We will make use of so-called
exchanges to simplify the proofs, namely bypassing the construction of optimal
sequences. An exchange exc(i, j) is the permutation that exchanges elements in
positions i and j, thus transforming every permutation π into the permutation
π ◦ exc(i, j).

exc(i, j) =

(
1 · · · i − 1 i i + 1 · · · j − 1 j j + 1 · · · n

1 · · · i − 1 j i + 1 · · · j − 1 i j + 1 · · · n

)
.

We will only use exchanges of the form exc(i, i+ 2k) with k ≥ 1; such an ex-
change can be simulated by two transpositions, but the correspondence between
those two types of operations is not that straightforward when exchanges are
composed.

We say that two edges a1 = ((i1, πi1), (j1, πj1 )) and a2 = ((i2, πi2), (j2, πj2))
of Γ (π) cross if intervals [i1, j1] and [i2, j2] do not contain each other and have a
non-empty intersection. The four possible configurations for crossing edges are
shown in Fig. 2.

We define a β−permutation as a reduced permutation that fixes even el-
ements and whose odd elements form one unoriented cycle in the graph Γ .
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Fig. 3. Two possible ways of contracting paths in a β−permutation (1−cycles and
indices omitted for clarity)

Clearly, the main cycle of the Γ−graph of every β−permutation π (except (3
2 1)) contains crossing edges. We are going to transform π into a permutation
σ that reduces to an α−permutation, and this will be achieved through the re-
moval of crossing edges using a certain sequence E of exchanges. We thus get
the following upper bound on the distance of a β−permutation π:

d(π) ≤ f(E ) + d(σ)

where f(E ) gives the minimum number of transpositions having the same effect
on π as E does. Finding σ is not difficult, but we have to find a σ such that our
upper bound is minimized.

To eliminate a crossing, we just have to make the ending point of one edge
become the starting point of the one it crosses, and this will be achieved using
a sequence of exchanges of the form described in the following proposition. By
a path, we mean the sequence of edges joining the extremities of the crossing
edges as mentioned above, and we will refer to the elimination of this path as
the contraction of it. The following proposition will be useful.

Proposition 3. For both sequences E = exc(i, i+2)◦exc(i, i+4)◦· · ·◦exc(i, i+
2t) and F = exc(i, i + 2t) ◦ · · · ◦ exc(i, i + 4) ◦ exc(i, i + 2) of t exchanges:

f(E ) = f(F ) = t + (t mod 2) .

Proof. For any valid i, t, E and F reduce to an α−permutation π whose main
cycle is a (t + 1)−cycle, and by Proposition 2:

d(π) = t + 1 − ((t + 1) mod 2) = t + (t mod 2) . ��



A New Tight Upper Bound on the Transposition Distance 223

Proposition 4. For every β−permutation π in Sn, we have d(π) = n+1
2 −(

n+1
2 mod 2

)
.

Proof. Since every β−permutation is a γ−permutation, Lemma 1 yields d(π) ≥
n+1

2 −
(

n+1
2 mod 2

)
. If π = (3 2 1), the thesis is easily verified; else the main

cycle of Γ (π) contains at least one crossing.
If the main cycle of Γ (π) contains only one crossing, then there is a path of t

edges joining the two crossing edges; this path can be contracted by a sequence
of t exchanges, sorting the elements belonging to that part of the cycle. For
instance, in case (a) of Fig. 2, it suffices to apply the sequence exc(i2, j1) ◦
· · · ◦ exc(i2, i2 + 4) ◦ exc(i2, i2 + 2), and those t exchanges correspond to exactly
t + (t mod 2) transpositions (Proposition 3).

Once this path has been contracted, t vertices have been removed from
the main cycle of Γ (π) and this results in a permutation σ reducible to an
α−permutation. We have:

d(π) ≤ d(π, σ) + d(σ) = t + (t mod 2) +
n + 1

2
− t −

((
n + 1

2
− t

)
mod 2

)
=

n + 1
2

−
(

n + 1
2

mod 2
)

which verifies our thesis.
In the case where several crossings exist, one must be careful not to contract

paths “individually”. Indeed, if we were to contract p such paths of tg edges
(1 ≤ g ≤ p) in that way, we would have to use

∑p
g=1 tg exchanges to contract

them all, which would correspond to
∑p

g=1(tg +(tg mod 2)) transpositions. This
can actually be improved by exchanging the last exchanged element in the first
contracted path with the first element of the next path to contract, then continue
the contraction of the latter with dependent exchanges as before, and repeating
the same process whenever need be. For instance, Fig. 3 shows the transforma-
tion of a β−permutation into a permutation reducible to an α−permutation in
two different ways. Scenario (a) uses 3+3 exchanges = 8 transpositions (Propo-
sition 3), whereas scenario (b) uses the same number of exchanges, but requiring
this time only 6 transpositions.

Every β−permutation π containing p paths of tg edges to contract (1 ≤ g ≤
p) can thus be transformed into a permutation σ reducible to an α−permutation
such that d(π, σ) = T + T mod 2, where T =

∑p
g=1 tg. The transpositions rep-

resenting those exchanges will eliminate T vertices from the main cycle of Γ (π),
which yields the following upper bound:

d(π) ≤ d(π, σ) + d(σ)

= T + (T mod 2) +
(

n + 1
2

− T −
((

n + 1
2

− T

)
mod 2

))
=

n + 1
2

−
(

n + 1
2

mod 2
)

which equals the lower bound given above. ��
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4.3 Distance of γ−Permutations

Every permutation π can be sorted by eliminating each cycle of Γ (π) individually
using exchanges (and therefore also using only transpositions), so that each
elimination does not modify other cycles. This strategy yields the following upper
bound on d(π).

Lemma 2. For every permutation π, consider its disjoint cycle decomposition
Γ (π) = C1 ∪ C2 ∪ · · · ∪ Cc(Γ (π)). Denote d(C) the minimum number
of transpositions required to transform C = (i1, i2, ..., ik) into (i1), (i2), ..., (ik);
then:

d(π) ≤
c(Γ (π))∑

i=1

d(Ci) .

We now show that the lower bound of Lemma 1 is reached.

Proposition 5. For every γ−permutation π in Sn :

d(π) = n − codd(Γ (π)) . (4)

Proof. Each cycle of Γ (π) is either oriented or unoriented, and the distance of
both kinds of cycles is known (Propositions 2 and 4). Denote odd(Γ (π)) (resp.
even(Γ (π))) the set of odd (resp. even) cycles of Γ (π); by Lemma 2, we have:

d(π) ≤
c(Γ (π))∑

i=1

|Ci| − (|Ci| mod 2)

=
∑

Ci1∈ odd(Γ (π))

(|Ci1 | − 1) +
∑

Ci2∈ even(Γ (π))

|Ci2 |

=
c(Γ (π))∑

i=1

|Ci| − codd(Γ (π)) .

And since every element belongs to exactly one cycle, the last sum equals n and
Lemma 1 verifies the thesis. ��

Note that Proposition 5 can be expressed in a more general way: by Theo-
rem 2, we know that π needs not be reduced, and adding k 1−cycles to Γ (π)
at any position increases both n and codd(Γ (π)) by k, so Equation 4 still holds.
The same Theorem allows us to ask for odd elements to be fixed, instead of
even ones; we then have π1 = 1, and we can reduce π to a γ−permutation (e.g.
(1 4 3 6 5 8 7 2) ≡r (3 2 5 4 7 6 1)). This result can also be extended using
toric permutations, introduced in [13] and further studied in [14]. We borrow the
latter author’s notations; let us note, for x ∈ {0, 1, 2, ..., n}:

1. xm = (x + m) (mod n + 1);
2. xm = (x − m) (mod n + 1).
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Define a circular permutation obtained from a permutation π in Sn as π◦ =
0 π1 π2 · · · πn, where 0 = π◦

0 = π◦
n+1. This circular permutation can be read

starting from any position, and the original linear permutation is reconstructed
by taking the element following 0 as π1 and removing 0. Define the following
operation on circular permutations:

m + π◦ = 0m
π1

m π2
m · · · πn

m .

Then for π in Sn, the corresponding toric permutation is π◦
◦ , which is the set

of permutations obtained from m + π◦ with 0 ≤ m ≤ n.

Lemma 3. [13] ∀ π, σ ∈ Sn : σ ∈ π◦
◦ ⇒ d(σ) = d(π) .

Therefore, if n is odd and all odd elements of π in Sn occupy odd positions
and form an increasing subsequence modulo n+1, then π ∈ σ◦

◦ where σ satisfies
the conditions described right after Proposition 5. Indeed, if n is odd, adding 1
(mod n+1) to each element of π◦ transforms n into 0, i.e. the new starting point
of the resulting permutation, and all odd elements into even ones; therefore π is
transformed into a permutation whose even elements are all fixed, and we have
the following.

Theorem 6. For every π in Sn that fixes even or odd elements:

d(π) = n − codd(Γ (π)) .

Moreover, every permutation σ with n odd and whose odd elements occupy odd
positions and form an increasing subsequence modulo n + 1 can be transformed
in linear time into a permutation π such that d(σ) = d(π) = n − codd(Γ (π)) .

5 A New Upper Bound

We now show that the right-hand side of Equation 5 is an upper bound on the
transposition distance. First we show why γ−permutations are so important.

Theorem 7. Every permutation π in Sn, except ι, can be obtained from a
γ−permutation σ in Sn+k by removing k even elements in σ.

Proof. If π �= ι is no γ−permutation, just add a 1−cycle to Γ (π) between every
ordered pair (πi, πi+1) (1 ≤ i ≤ n − 1) of non-fixed elements and reduce the
resulting permutation π′ in order to obtain a γ−permutation σ ∈ Sn+k. This
operation can clearly be reverted, and this completes the proof. ��

We can now prove our main result.

Theorem 8. ∀ π ∈ Sn :

d(π) ≤ n − codd(Γ (π)) . (5)
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Proof. Let σ be the γ−permutation from which π �= ι is obtained by deletion of
k even elements. Cycles in Γ (σ) can all be sorted individually by sequences of ex-
changes for which we know the corresponding minimal number of transpositions
(Proposition 5), and all these exchanges still work on Γ (π) (after accordingly
adapting some of them). Therefore, we can claim that d(π) ≤ d(σ), and:

d(π) ≤ d(σ) = n + k − codd(Γ (σ)) = n + k − codd(Γ (π)) − k = n − codd(Γ (π)).

And even though ι cannot be obtained from a γ−permutation, it is clear that
our thesis holds for it too, since d(ι) = 0 ≤ n − n. ��

6 Conclusions and Future Plans

Using a well-known graph, we were able to show that the transposition distance
of some nicely characterized permutations can be computed in linear time, by-
passing the classical structure introduced in [3]. In fact, no graph at all is needed,
since decomposing a permutation into “classical cycles” is quite a trivial algo-
rithm, running in linear time. Such an approach has proved most successful for
computing another rearrangement distance in [11], and we are confident it is of
great interest, certainly not just for the transposition distance. Furthermore, we
also proved that the formula used to compute this distance is actually an upper
bound on the transposition distance of every permutation.

Several questions arise.
Firstly, this new upper bound in Equation (5) is sometimes better, sometimes

worse than the bounds in Equations (1), (2) and (3), and we want to tighten
it. Table 1 compares our result with previous ones, giving the number of cases
where it is at least as good as that of Theorems 3, 4, and 5. Apart from a fast
approximation of the transposition distance, this could also help determine the
maximal value of d(π), which is still an open problem, as is the complexity of
sorting by transpositions.

Secondly, the permutations characterized in Theorem 6 are not the only ones
to reach our upper bound. Can the set of all such permutations be characterized?

Finally, there might be other useful permutation-related notions in combina-
torics that are as well-known and eluded in the theory of genome rearrangement
as is the graph we used. Although we do not think that those classical notions

Table 1. Comparison of our new upper bound with previous results

n Number of permutations (5)≤(1) (5)≤(2) (5)≤(3)
3 6 2 1 6
4 24 8 8 15
5 120 45 24 31
6 720 304 49 495
7 5040 2055 722 1611
8 40320 17879 3094 4355
9 362880 104392 60871 10243
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can model each and every notion of this problem (in particular, it has been
shown [14] that the structure of G(π) is much more stable than that of Γ (π)
under the toric equivalence class), we feel that some of them could be of interest.
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bridge hand. Discrete Mathematics 241 (2001) 289–300 Selected papers in honor
of Helge Tverberg.

14. Hultman, A.: Toric Permutations. Master’s thesis, Dept. of Mathematics, KTH,
Stockholm, Sweden (1999)



Perfect Sorting by Reversals Is
Not Always Difficult
(Extended Abstract�)
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1 INRA Toulouse, Dépt. de Mathématique et Informatique Appliquée, France
Severine.Berard@toulouse.inra.fr
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Abstract. This paper investigates the problem of conservation of com-
binatorial structures in genome rearrangement scenarios. We characterize
a class of signed permutations for which one can compute in polynomial
time a reversal scenario that conserves all common intervals, and that is
parsimonious among such scenarios. Figeac and Varré (WABI 2004) an-
nounced that the general problem is NP-hard. We show that there exists
a class of permutations for which this computation can be done in linear
time with a very simple algorithm, and, for a larger class of signed per-
mutations, the computation can be achieved in subquadratic time. We
apply these methods to permutations obtained from the X chromosomes
of the human, mouse and rat.

1 Introduction

The reconstruction of evolution scenarios based on genome rearrangements has
proven to be a powerful tool in understanding the evolution of close species
[9,14]. The computation of such evolution scenarios relies on the problem of
sorting signed permutations by reversals: given two chromosomes, represented as
sequences of genomic segments, find a parsimonious sequence of reversals that
transforms a chromosome into the other one. However, the number of parsimo-
nious sequences of reversals can be exponential [5]. It is then natural to ask for
some additional criteria that can help to select putative scenarios. We are inter-
ested in scenarios that do not break combinatorial structures that are present in
both chromosomes. In this work, the combinatorial structures that we consider
are common intervals [22,15]. A rearrangement scenario is said to be perfect if
it does not break any common interval. It was claimed in [13] that comput-
ing a parsimonious perfect scenario is difficult, but recent works [2,18] showed
that in some non-trivial cases, such scenarios can be computed efficiently. In
this paper we describe a class of instances that allow efficient computation of a
parsimonious perfect scenario.
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In Section 2, we define the links between sorting by reversals and structure
conservation, and we state precisely the problem we address in this paper. In
Section 3, we relate common intervals and perfect scenarios to a basis of common
intervals, the strong intervals, that can be represented with a classical data
structure in graph theory, the PQ-trees. These observations are consequences of
deep relationships between common intervals and the modular decomposition of
permutation graphs [11,17]. This point is central in our approach since we rely,
in Section 4, on the combinatorial structure of strong intervals trees to design
algorithms that are both efficient – subquadratic time, even linear time in some
cases – and simple. We apply these results to the comparison of the human,
mouse and rat X chromosomes, based on data of [14].

2 Sorting by Reversals and Common Intervals

A signed permutation on n elements is a permutation on the set of integers
{1, 2, . . . , n} in which each element has a sign, positive or negative. Negative
integers are represented by placing a bar over them. An interval of a signed
permutation is a segment of consecutive elements of the permutation. One can
define an interval by giving the set of its unsigned elements, called the content
of the interval.

The reversal of an interval of a signed permutation reverses the order of the
elements of the interval, while changing their signs. Note that every reversal is an
interval of the permutation on which it is performed, which lead us to often treat
reversals as intervals, and to represent a reversal by the corresponding interval.
If P is a permutation, we denote by P the permutation obtained by reversing
the complete permutation P .

Definition 1. Let P and Q be two signed permutations on n elements. A sce-
nario between P and Q is a sequence of distinct reversals that transforms P
into Q, or P into Q. The length of such a scenario is the number of reversals it
contains. When Q is the identity permutation, a scenario between P and Q is
called a scenario for P .

Given a signed permutation P on n elements, the problem of sorting by reversals,
defined in [19], asks for a scenario for P of minimal length among all possible sce-
narios, also called a parsimonious scenario. Currently, the best known algorithm
for this problem runs in O(n3/2 log(n)) worst-case time [21].

Definition 2. Two distinct intervals I and J commute if either I ⊂ J , or J ⊂ I,
or I ∩ J = ∅. If intervals I and J do not commute, they overlap.

Definition 3. Let P be a signed permutation on n elements. A common interval
of P is a set of one or more integers that is an interval in both P and the identity
permutation Idn. Note that any such set is also an interval of P and of Idn. The
singletons and the set {1, 2, . . . , n} are called trivial common intervals.
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The notion of common interval was introduced in [22]. It was studied, among
others, in [15], to model the fact that a group of genes can be rearranged in a
genome but still remain connected.

Definition 4. Let P be a signed permutation. A scenario S for P is called a
perfect scenario if every reversal of S commutes with every common interval of
P . A perfect scenario of minimal length is called a parsimonious perfect scenario.

Example 1. Let P = (3 2 5 4 1) be a signed permutation.

1. Reversing the interval (2 5 4 1), or equivalently the set {1, 2, 4, 5}, yields
the signed permutation (3 1 4 5 2).

2. The common intervals of P are {2, 3}, {4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5} and
the singletons {1}, {2}, {3}, {4} and {5}.

3. ({1, 2, 3, 4, 5}, {2, 3, 4, 5}, {2, 3}, {4, 5}, {1}) is a perfect scenario that trans-
forms P into Id5.

4. ({2, 3, 4, 5}, {2, 3}, {4, 5}, {1}) is a parsimonious perfect scenario for P ,
transforming P into the reverse Id5 of the identity.

5. ({1, 4, 5}, {1, 2, 3}) is a parsimonious scenario, but it is not perfect since
the reversal {1, 4, 5} overlaps the common interval {2, 3, 4, 5}.

As shown in [13], given a signed permutation P , there exists at least one
perfect scenario for P . However, the authors of [13] claim that the construction
of parsimonious perfect scenarios is computationally difficult: they state that
computing a parsimonious perfect scenario between two signed permutations is
NP-hard in general. Hence the difficulty of the problem relies in the parsimonious
aspect.

The main goal of this paper is to propose algorithms for computing parsimo-
nious perfect scenarios that are efficient for large classes of signed permutations
(Section 4). Our results rely on the strong intervals tree of a signed permutation
described in the next section.

3 Strong Intervals Trees

As the number of common intervals of a permutation P on n elements can be
quadratic in n, an efficient algorithm (i.e. subquadratic time) for computing
perfect scenarios should rely on a space efficient encoding of the set of common
intervals. In [17], the author pointed out a correspondence between common
intervals of permutations and the concept, well studied in graph theory, of mod-
ules of graphs. Inspired from the modular decomposition theory1, this section
describes structural properties of the set of common intervals of a permutation
P that are central in the design of the algorithms in Section 4.

Let us first remark that being a common interval for a set I has nothing to do
with the sign of the elements of I. Therefore all the structural results presented
1 All the results presented in this section can be seen as direct consequences or corol-

laries of well known graph theoretical results (see [11] for example).
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in this section are valid for both signed and unsigned permutations. For the sake
of simplicity, we omit the signs which will be reintroduced in the next section.

Definition 5. A common interval I of a permutation P is a strong interval of
P if it commutes with every common interval of P .

For example, the strong intervals of P = (1 4 2 5 3 7 8 6 9) are {2, 3, 4, 5},
{7, 8}, {6, 7, 8}, {1, 2, 3, 4, 5, 6, 7, 8, 9} and {1},. . . , {9}. The singletons and {1, 2,
. . . , 9} are the trivial strong intervals of P .

It follows from Definition 5 that the inclusion order of the set of strong inter-
vals defines an n-leaves tree, denoted by Ts(P ), whose leaves are the singletons,
and whose root is the interval containing all elements of the permutation. We
call the tree Ts(P ) the strong intervals tree of P (Fig. 1), and we identify a node
of Ts(P ) with the strong interval it represents.

Since each strong interval with more than one element, or equivalently each
internal node of Ts(P ), has at least two children in Ts(P ), we have immediately:

Proposition 1. A permutation on n elements has O(n) strong intervals.

Let I be a common interval of a permutation P on n elements and x ∈ {1, 2, . . . ,
n} such that x /∈ I. It follows from the definition of common interval that either
x is larger than all elements of I or x is smaller than all elements of I. Hence,
for two disjoint common intervals I and J , we can define the relation I < J by
extending the order relation on integers that belong to I and J .

Definition 6. Let P be a permutation and I = {I1, . . . , Ik} be a partition of
the elements of P into strong intervals. The quotient permutation of P with
respect to I, denoted P|I , is the permutation on k elements such that i precedes
j if and only if Ii < Ij .

For example, for the permutation P = (1 4 2 5 3 7 8 6 9) of Fig. 1, I =
{{1}, {2, 3, 4, 5}, {7, 8}, {6}, {9}} is a partition of P into strong intervals, and
P|I = (1 2 4 3 5).

Theorem 1. Let P be a permutation on n elements and I = {I1, . . . , Ik} be the
partition of P into strong intervals given by the children of the root of TS(P ).
Then exactly one of the following is true:

1. P|I is Idk (the identity permutation on k elements).
2. P|I is Idk (the reverse of the identity permutation on k elements).
3. The only common intervals of P|I are trivial.

Theorem 1 induces a classification of the nodes of the strong intervals tree Ts(P )
that is central in the design of our algorithms: let PI be the quotient permutation
defined by the children of an internal node I of Ts(P ). The node I, or equivalently
the strong interval I of P , is either:

1. Increasing linear, if PI is the identity permutation, or
2. Decreasing linear, if PI is the reverse of the identity permutation, or
3. Prime, otherwise.
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4 2 5 3 7 8 961

7, 8, 6

7, 8

1, 4, 2, 5, 7, 8, 6, 9

4, 2, 5, 3

Fig. 1. The strong intervals tree Ts(P ) of the permutation P = (1 4 2 5 3 7 8 6 9).
Prime and linear nodes are distinguished by their shape. There are two non-trivial linear
nodes, the rectangular nodes: (7, 8) is increasing and (7, 8, 6) is decreasing. There is
only one prime node, the round node (4, 2, 3, 5).

For example, in Fig. 1, the rectangular nodes are the linear nodes, and the
round node (4, 2, 5, 3) is the unique prime node. The only decreasing linear node
in this tree is (7, 8, 6).

Property 1. In a strong intervals tree, a child of an increasing (resp. a decreasing)
linear node is either a prime node or a decreasing (resp. an increasing) linear
node.

Finally, we show that the strong intervals tree is a compact representation –
it only requires O(n) space – of the set of all common intervals, which is possibly
a set of quadratic size.

Proposition 2. Let P be a signed permutation. An interval I of P is a com-
mon interval of P if and only if it is either a node of TS(P ), or the union of
consecutive children of a linear node of TS(P ).

This representation for strong intervals was first given implicitly in [15], and
explicitly in [16], where it was shown that Ts(P ) can be related to a data struc-
ture widely used in graph theory, called PQ-tree. It can be computed in O(n)
worst-case time using algorithms similar to the ones given in [15,16]. A for-
mal link between PQ-trees and conserved structures in signed permutations was
first proposed in [4], in the context of conserved intervals, a subset of common
intervals.

4 Computing Perfect Scenarios

We now turn to the description of efficient algorithms for computing parsimo-
nious perfect scenarios for large classes of signed permutations. The central point
is a characterization of perfect scenarios in terms of TS(P ). We assume that
TS(P ) is given (see [6] for a simple algoritm to build it).
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Proposition 3. A scenario S for a permutation P is perfect if and only if each
of the reversals of S is either a node of TS(P ), or the union of children of a
prime node of TS(P ).

Computing a perfect scenario S thus amounts to identify leaves, linear nodes and
union of children of prime nodes of TS(P ) that are the reversals of S. Even if the
general problem of computing parsimonious perfect scenarios was claimed to be
difficult [13], it can be done efficiently for a large class of signed permutations,
defined in terms of the structure of their strong intervals tree.

A strong intervals tree TS(P ) is unambiguous if every prime node has a linear
parent, and definite if it has no prime nodes. For definite trees, there is essentially
a unique perfect scenario for P (Theorem 2), and for unambiguous trees, we can
compute a parsimonious perfect scenario in subquadratic time (Theorem 3).

Remark 1. Note that definite strong intervals trees are also known as co-trees in
the theory of modular decomposition of graphs [11].

A signed tree is a tree in which each node has a sign, + or −. We associate
to an unambiguous tree TS(P ) the following signed tree T ′

S(P ):

1. The sign of a leaf x is the sign of the corresponding element in P .
2. The sign of a linear node is +, if the node is increasing, and − if the node is

decreasing.
3. The sign of a prime node is the sign of its parent.

Fig. 2, Fig. 3 and Fig. 4 show signed strong intervals trees associated to the
permutations obtained by comparing 16 synteny blocks of the human, mouse
and rat X chromosomes [14]. In Fig. 2 the labels of the nodes are given with
respect to the order of the blocks of the mouse chromosome.

Human = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Mouse = 6̄ 5̄ 4 13 14 1̄5 16 1 3̄ 9 1̄0 11 12 7̄ 8 2̄

Rat = 1̄3 4̄ 5 6̄ 1̄2 8̄ 7̄ 2 1 3̄ 9 10 11 14 1̄5 16

Theorem 2. If TS(P ) is definite, the set of nodes having a sign different from
the sign of their parent is a parsimonious perfect scenario for P .

Given the tree TS(P ), Theorem 2 implies that, when TS(P ) is definite, computing
a parsimonious perfect scenario for P is almost immediate. The comparison
of the rat and mouse X chromosomes yields a definite tree, Fig. 2, and the
corresponding scenario can be obtained by comparing the signs of the O(n)
nodes. When such a scenario exists, it is unique up the order of the reversals,
since each of them commutes with all the others.

We next turn to the more general case of unambiguous trees. Recall that
a prime node inherits its sign from its parent, and that any reversal that is a
union of children of a prime node commutes with all common intervals, thus
may belong to a perfect scenario.
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Mouse = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rat = 4̄ 3̄ 2̄ 1 1̄3 1̄5 14 1̄6 8 9 10 1̄1 12 5 6 7

− − + + + +−

+

4 3 2 1 13 815 14 16
+

9 10 11 12 5 6 7
−

−

++

+

−−

− − + + + +−

4, 3, 2, 1, 13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7

8, 9, 10, 11, 12 5, 6, 7

13, 15, 14, 16

13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7

4, 3, 2, 1 15, 14

Fig. 2. Comparing the rat and mouse X chromosomes. The set of nodes hav-
ing a sign different from the sign of their parent form a parsimonious perfect
scenario that transforms the rat X chromosome into the mouse X chromosome:
(4, 3, 2, 1), (1), (13, 15, 14, 16, 8, 9, 10, 11, 12, 5, 6, 7), (13, 15, 14, 16), (13), (15, 14), (14),
(16), (8, 9, 10, 11, 12), (11), (5, 6, 7).

Algorithm 1 describes how to obtain a parsimonious perfect scenario in the
case of unambiguous trees. The basic idea is to compute, for each prime node
I of the tree, any parsimonious scenario that sorts the children of node I in
increasing or decreasing order, depending on the sign of I. Then, it suffices to
deal with linear nodes whose parent is linear in the same way than for a definite
tree.

Fig. 3 shows the signed tree associated to the permutations of the human
and rat X chromosomes. This tree is unambiguous: it has one prime node
(4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11) whose parent is a decreasing linear node. The
quotient permutation of this node over its five children is PI = (2 5 3 1 4), and
a parsimonious scenario that sorts PI to Id is given by: {1, 3, 4}, {1, 3}, {1},
{2, 3, 4, 5}, {3, 4, 5}. Note that if the corresponding five reversals are applied to
the rat chromosome, the resulting permutation has a definite tree.

The time complexity of Algorithm 1 depends on the time complexity of the
sorting by reversals algorithm used to compute a reversal scenario that sorts the
children of a prime node. Using the O(n3/2 log n) algorithm described in [21], we
have:

Theorem 3. If TS(P ) is unambiguous, Algorithm 1 computes a parsimonious
perfect scenario for P in subquadratic time.

When TS(P ) is ambiguous, the sign of some prime nodes is undefined. A general
algorithm to compute parsimonious perfect scenario would repeatedly apply Al-
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Algorithm 1: Computing a parsimonious perfect scenario for unambiguous TS(P )
S is an empty scenario.
For each prime node I of Ts(P )

PI is the quotient permutation of I over its children
e If the sign of I is positive

Then compute any parsimonious scenario T from PI to Id
Else compute any parsimonious scenario T from PI to Id

Deduce the corresponding scenario T ′ on the children of PI

Add the reversals of T ′ to scenario S
Add to S the linear nodes and leaves having a linear parent and a sign different
from the sign of their parent.

Human = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Rat = 1̄3 4̄ 5 6̄ 1̄2 8̄ 7̄ 2 1 3̄ 9 10 11 14 1̄5 16

+ +
13 4 5 6 12 8 7 2 1 3 9 10 11 14 15 16
−

− −+

+

+

−

−

+

4, 5, 6 8, 7 2, 1 9, 10, 11

4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11

13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11

+ − − − − + + − + + − +−

2, 1, 3

13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11, 14, 15, 16

Fig. 3. Comparing the human and rat X chromosomes: a parsimonious perfect scenario
is obtained by sorting the five children (4, 5, 6), (12), (8, 7), (2, 1, 3) and (9, 10, 11) in
decreasing order using any parsimonious scenario that sorts the quotient permutation
PI = (2 5 3 1 4), and then reversing the linear nodes and leaves whose linear parent
have a different sign: (13, 4, 5, 6, 12, 8, 7, 2, 1, 3, 9, 10, 11), (4), (6), (2, 1), (2), (1), (3),
(15). The length of the scenario is 13.

gorithm 1 to all possible sign assignments to prime nodes that do not have linear
parents. As an example, consider Fig. 4 that shows the signed tree associated to
the permutations of the human and mouse X chromosomes.

This tree is ambiguous since its root is a prime node, and we must try to
sort this node both to Id and to Id. In this case, both parsimonious scenarios
have the same length. Such an algorithm is a generalization of the algorithm we
described in this section for unambiguous trees, and was described using another
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Human = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Mouse = 6̄ 5̄ 4 13 14 1̄5 16 1 3̄ 9 1̄0 11 12 7̄ 8 2̄

81191164 13 14 126
−

7
−

10
−

3
−

15
−+ + + + + + + + +

5
−

6, 5, 4
−

13, 14, 15, 16
+

7, 8
+

−
9, 10, 11, 12, 7, 8

9, 10, 11, 12
+

2
−

6, 5, 4, 13, 14, 15, 16, 1, 3, 9, 10, 11, 12, 7, 8, 2

Fig. 4. Comparing the human and mouse X chromosomes: the root has no sign but
its children can be sorted to Id or Id in 6 reversals using a parsimonious scenario that
sorts the quotient permutation PI = (4 6 1 3 5 2), A parsimonious perfect scenario
would also contain the reversals: (4), (15), (9, 10, 11, 12), (10), (7, 8), (7). The total
length of the scenario is 12.

formalism in [13]. It has a worst-case time complexity that is exponential in the
number of prime nodes whose parent is prime, and thus is efficient if the number
of such nodes is small.

Permutations that arise from the comparison of genomic sequences are not
“random”, and this could partly explain why perfect sorting is not difficult for
the permutations we considered. Constructing permutations that are hard to
sort perfectly requires to break almost any structure in a given permutation.
The smallest example of a hard to sort permutation is given by the permutation
P = (2 5̄ 7 4 6̄ 1 3).

5 Conclusion

From the algorithmic point of view, the central aspect of our work is the detailed
description of the link between computing perfect scenarios and the strong inter-
vals tree of a signed permutation. We gave a new description of the exponential
time algorithm of [13] that highlights many of its properties. In particular, in
Section 4, we characterized classes of signed permutations for which the compu-
tation of a parsimonious perfect scenario can be done efficiently.

In [18], it was shown that when there exists a parsimonious scenario that
is also a perfect scenario for a given signed permutation, computing such a
scenario can be done in subquadratic time, extending a previous result of [2].
In the present work, one can, once a parsimonious perfect scenario has been
computed, check whether this scenario is also parsimonious, using for example
one of the linear time algorithm for computing the reversal distance proposed in
[1,7]. However, the computation of a parsimonious perfect scenario can require
an exponential time depending on the strong intervals tree. In order to close the
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gap between these two approaches in computing perfect scenarios, it would be
interesting to characterize, in terms of strong intervals tree, the class of signed
permutations for which a parsimonious perfect scenario is also parsimonious
among all possible scenarios.

From a practical point of view, it is worth to recall that the interest in com-
puting scenarios that do not break any common intervals relies on the assumption
that genes, or other genomic markers, cluster in such groups for functional rea-
sons, like co-transcription for example. Of course, it is possible that clusters of
genes exist by “chance”, or are not supported by any functional evidence, and it
would not be relevant to impose that such intervals should not be broken. Note,
however, that the algorithms developed in this work can be used without any
modification: given a set of common intervals that are believed to be pertinent
from the evolutionary point of view, they define a set of strong intervals, and
then a PQ-tree, and one can apply our method on this PQ-tree.

Among other future directions, it would be interesting to consider the median
problem, that is one of the main reasons for computing reversals scenarios [8].
This problem has been shown to be NP-hard [10] in the general case, but the
question has not been settled if one restricts every scenario to be perfect. Finally,
the most natural extension would be to consider signed sequences instead of
signed permutations. Some work has been done on common intervals of signed
sequences [12,20], but structures that could play the role of strong intervals are
yet to be discovered in this case.
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Abstract. Recombination plays an important role in creating genetic diversity
within species, and inferring past recombination events is central to many prob-
lems in genetics. Given a set M of sampled sequences, finding an evolutionary
history for M with the minimum number of recombination events is a computa-
tionally very challenging problem. In this paper, we present a novel branch and
bound algorithm for tackling that problem. Our method is shown to be far more
efficient than the only preexisting exact method, described in [1]. Our software
implementing the algorithm discussed in this paper is publicly available.

1 Introduction

Recombination is a fundamental biological process that plays a central role in generat-
ing genetic diversity within species. A question that has been receiving considerable
interest, from biologists and mathematical scientists alike, is determining the mini-
mum number Rmin(M) of recombination events needed in the evolution of a given
set M of sequences. A closely-related problem of tantamount interest is reconstruct-
ing a possible evolutionary history for M with exactly that many recombination events.
Finding Rmin(M) for an arbitrary data set M is a very difficult problem, however,
and therefore several methods of computing lower bounds on Rmin(M) have been pro-
posed [2,3,4,5,6,7]. Such deterministic methods have interesting practical applications.
For example, it has been shown [8] that efficient lower bound methods can be quite use-
ful for detecting potential recombination hotspots. A challenging algorithmic problem
is to develop new efficient methods that can produce good estimates of Rmin(M), while
being able to handle large data sets at genomic scale. For making significant progress in
that direction, it would be of great help if we could study systematically when currently
existing methods produce poor bounds on Rmin(M).

A point pertinent to all lower bound methods is that, in most cases, it is difficult to
know whether the number one obtains is actually equal to Rmin(M), or whether one
should try harder to obtain a sharper lower bound. To address this problem, a method
of computing upper bounds on Rmin(M) has recently been proposed [7], the main
motivation being that if the upper bound is equal to the lower bound, then one actu-
ally knows the minimum number of recombination events for a given data set. Lower
and upper bounds constructed in [7] are surprisingly often very close or equal when
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recombination and mutation rates are low, but they begin to diverge as those parame-
ters are increased, and it becomes difficult to know where in-between the two bounds
Rmin(M) lies.

Unfortunately, no efficient algorithm for computing Rmin(M) is currently known.
The only work so far that has tried to compute Rmin(M) exactly is [1]. Being compu-
tationally intensive, both in terms of time and space, that method can analyse at most
9 sequences after some data reduction, and therefore does not have a wide range of
application in practise. In this paper, we propose a branch-and-bound-based method of
computing Rmin(M) exactly that is far more efficient than the method described in [1];
our method can handle tens of sequences, requires far less memory, and runs thousands
of times faster. The root sequence can be chosen to be either known or unknown in our
method. In addition to finding the minimum number Rmin(M), our method explicitly
constructs a minimal ancestral recombination graph [9] that represents a possible evo-
lutionary history with exactly Rmin(M) recombination events; that most parsimonious
(or minimal) history can be viewed using open source graphics interfaces. Our method
has been fully implemented in the programming language C. The software is called
beagle and is publicly available.

Our work should have a number of important applications. For example, using sim-
ulated data generated under various mutation and recombination rates, one can use our
method to find out, when lower and upper bounds on Rmin(M) do not match, which
bound is closer to the minimum number. Such study should prove useful for devising
new efficient recombination detection methods that can produce qualitatively better es-
timates of Rmin(M). The minimal ARG constructed by our method should also be of
interest to many researchers who wish to see an explicit graphical representation of
the most parsimonious history. For instance, the upper bound method proposed in [7]
explicitly constructs a class of ARGs, which may not contain minimal ARGs. By study-
ing the minimal ARG constructed by our method when the upper bound is not equal
to Rmin(M), one may be able to learn how to capture the structure of minimal ARGs
more accurately.

The organisation of this paper is as follows. In Sect. 2 we introduce the model
assumed for the inference of Rmin(M). In Sect. 3 we present our method for computing
Rmin(M). In Sect. 4 we apply our method to the data set analysed in [1] and compare
performances. Finally, in Sect. 5 we discuss some future directions and open problems.

2 The Infinite Sites Model

We assume the standard infinite sites model of mutation [10]. This model is applicable
to phased single nucleotide polymorphism (SNP) data sampled from a population with a
relatively low mutation rate. The infinite sites model restricts the occurrence of mutation
event to at most one per site. Hence, each polymorphism, or segregating site, is caused
by exactly one mutation event, and sampled sequences can be represented as binary
sequences, as each segregating site contains only two of the four possible nucleotides.

In our work, we allow sequences to contain unresolved positions. Some SNP data
sets do contain sequences with unresolved positions (i.e. missing data). More impor-
tantly, as described in Sect. 3.2, recombination introduces uncertainty regarding the
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state of ancestral sequences. Hence, we assume that data sets consist of m sequences
of length n over {0, 1, ∗} (or equivalently an m×n binary matrix with entries possibly
left unspecified). A “∗” at a site corresponds to an unresolved character, while 0 and 1
correspond to the two observed nucleotides. If the grand most recent common ancestor
is known, we adopt the convention that, at each site, 0 corresponds to the ancestral type
while 1 corresponds to the mutant type, i.e., the grand most recent common ancestor is
the all-0 sequence.

In what follows, we use M to denote the data set being analysed, with m denoting
the number of sequences and n the number of segregating sites. We assume that the
observed sequences have evolved from a single common ancestor through a succession
of three types of events.

– a mutation event at a site that has not been subjected to mutation before, changing
the state of the site in a sequence from 0 to 1 (or possibly from 1 to 0, if the most
recent common ancestor is not known).

– a coalescent event, creating an extra copy of a sequence
– a recombination event, replacing two sequences with a recombinant consisting of a

prefix from one sequence concatenated with the corresponding suffix of the other
sequence.

As exactly one mutation event occurs in each segregating site, any valid history for M
contains exactly n mutation events. Each coalescent event increases the number of se-
quences by one, while each recombination event decreases the number of sequences by
one. Obtaining m sequences from a single common ancestor therefore require m−1+r
coalescent events if r recombination events occur. So the histories with the minimum
number of events are the ones with the minimum number of recombination events.
We denote the minimum number of recombinations required to explain a data set M
by Rmin(M).

3 Finding a Minimum Recombination History

Given a data set M , it is relatively straightforward to determine whether it can be ex-
plained by an evolutionary history with no recombinations, and to reconstruct such a
history [11]. Two sites are said to be conflicting if they contain all four possible gametic
types 00, 01, 10, and 11 (or the three types 01, 10, and 11, if the ancestral sequence
is known). At least one recombination event must have occurred between two conflict-
ing sites. Testing for the presence of the above gametic types is known as the four (or
three, if the ancestral sequence is known) gamete test. Based on this test, [2] proposes
a method for finding a lower bound on the number of recombinations required: a set
of pairs of conflicting sites spanning non-overlapping regions implies a lower bound
on Rmin(M) equal to the set size, as at least one recombination is required between
each pair of conflicting sites. In [2] it is shown how to find such a set of maximum size.
However, determining the exact value of Rmin(M) for an arbitrary data set M is NP
hard when the most recent common ancestor is known [12].

Recently, improved methods for computing lower bounds on Rmin(M) have been
proposed [3, 4, 5, 6, 7], and in certain restricted cases, efficient methods exist for find-
ing an evolutionary history with the minimum number of recombinations [13, 7]. We
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are only aware of one implemented method for computing Rmin(M) exactly [1]. This
method is based on scanning M from left to right, detecting recombinations that are
needed to change local tree topologies. The main result of our present paper is a branch
and bound algorithm that searches for an evolutionary history with the minimum num-
ber of recombinations. Our method constructs histories backward in time starting from
the input data M , until a single common ancestor is reached. For ease of exposition, we
assume that the ancestral sequence is known, but everything immediately extends to the
case in which the ancestral sequence is unknown.

3.1 Reimplementation of the Haplotype Bound

Crucial elements of a branch and bound algorithm are the quality of the bounds com-
puted and the speed with which they are obtained. We have chosen to use the haplotype
bound introduced in [3]. It can provide quite powerful bounds as documented in [7],
tremendously improving on the lower bound method of [2]. Though NP hard to com-
pute [6], heuristics can significantly reduce computation time without seriously sacrific-
ing power. It should be mentioned that the branch and bound algorithm implementation
makes no assumptions about the lower bound computation, hence it is straightforward
to substitute in any other lower bound method or implementation.

The haplotype bound can be seen as a generalisation of the method in [2]. Whereas
the method of [2] looks only at pairs of segregating sites to establish a lower bound
on the number of recombinations required in a region, the haplotype bound looks at
all subsets of sites in the region. The key observation is that each mutation event and
recombination event can introduce at most one extra sequence type. The number of
mutation events equals the number of sites, due to the infinite sites assumption. Hence,
if a subset of a sites gives rise to b distinct sequences, at least b − a − 1 recombination
events must have occurred in the interval spanned by the sites. Local lower bounds
obtained this way are then combined to produce a global lower bound for Rmin(M) by
determining the maximum sum of lower bounds on a set of disjoint intervals (in [3] this
second step is called the composite bound, while the term haplotype bound is reserved
for the first step). The authors of [3] originally implemented the haplotype bound in
a program called RecMin. In the following we discuss our reimplementation of the
haplotype bound.

If M contains identical sites, some subsets of sites can be discarded a priori: in gen-
eral, we want subsets to contain as few sites and span as short intervals as possible. Let
ci denote site i of M , and let C ⊆ {1, . . . , n} be a set of sites. We can ignore C if there
exists i, j ∈ C with ci = cj . The set C \ {i} (or equivalently C \ {j}) will give rise to
as many sequence types as C using one site less. This provides a better lower bound in
any region containing C. Let span(C) denote the interval spanned by a set of sites C,
i.e. span(C) = [mini∈C .. maxi∈C ]. Assume there exists another set of sites C′ contain-
ing the same types of sites, i.e. {ci | i ∈ C} = {ci | i ∈ C′}. If span(C′) ⊂ span(C) we
can ignore C as C′ provides an identical lower bound in any region containing C.

It follows that it suffices to determine the minimal intervals spanned by sets of sites
corresponding to a set of site types, for all sets of type sites. We do this by incrementally
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Algorithm 1. Minimal intervals combining a position from s and an interval from t

while s and t are non-empty do
while |s| > 1 and s[2] < t[1][’right’] do

s = s[2 :]
while |t| > 1 and t[2][’right’] < s[1] do

t = t[2 :]
if s[1] < t[1][’left’] then

Report minimal interval {’left’ : s[1], ’right’ : t[1][’right’]}
s = s[2 :]

else
if t[1][’right’] < s[1] then

Report minimal interval {’left’ : t[1][’left’], ’right’ : s[1]}
else

Report minimal interval t[1]
t = t[2 :]

0000
0010
0001
1000
0100
1010
0101

1 2 3 4

Fig. 1. An example where our heuristic fails. The exact haplotype lower bound on the set is
7 − 4 − 1 = 2 recombinations. The only conflicting pairs of sites in the data are {1, 3} and
{2, 4}. Therefore, our heuristic fails to build the full set of all four sites, and only establish lower
bounds of one recombination on the three non-disjoint regions from site 1 to site 3, from site 2 to
site 4, and from site 1 to site 4.

constructing sets of type sites, adding one type site at a time. Algorithm 1 shows how we
maintain the ordered set of minimal intervals spanned under the addition of a new site
type, in time linear in the total number of previous minimal intervals and occurrences
of the new site type.

To limit computation time, the default setting of RecMin is to only consider sub-
sets of up to five sites spanning regions of width at most 12. Depending on the data,
this heuristic may significantly decrease the computed bound. The user is advised to
start with reasonable values of these parameters, and then increase them until the com-
puted bound appears stable or the run time becomes too large. This approach is not well
suited as a subprocess of a branch and bound algorithm. Instead, we use a more adap-
tive heuristic. Recall that a subset of a sites giving rise to b distinct sequences results in
a bound of b − a − 1. If adding a new site type only increases the number of distinct
sequences by at most one, the bound does not improve. We use this as a stopping crite-
ria, ceasing further expansion of a set of site types the first time an increased bound is
not obtained. It significantly reduces running time but in most cases results in the same
lower bound on the minimum number of recombinations as the exact haplotype bound.
As shown by the example in Fig. 1, however, data sets causing this heuristic to perform
arbitrarily poorly can be constructed.
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*00
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*00
000
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000
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000

000

Fig. 2. One possible evolutionary history, or ARG, explaining the small data set
{010, 110, 100, 000, 001}. Mutations are represented by •s, where mi denotes a mutation at
the i’th site; coalescent events are represented by two lineages merging; recombination events
are represented by one lineage forking out into two lineages at a ��, where (i, i + 1) denotes that
the crossover point is between site i and site i + 1 and the orientation of the black half of the ��
indicates the lineage supplying the prefix to the recombinant sequence. Listed in the table are the
10 ancestral states encountered in this ARG, with the most recent first.

3.2 Basic Branch and Bound Algorithm

We trace the evolution of M backward in time. The configurations encountered are
called ancestral states and the aim is to reach the ancestral state consisting of only the
all-0 common ancestor sequence. For a configuration ψ, the possible predecessors ψ′

can be deduced from the event types listed in Sect. 2:

Mutation can occur in site i if exactly one sequence s ∈ ψ carries the mutant type in
site i; i.e. if s[i] = 1 and ∀t ∈ ψ \ {s} : t[i] �= 1, then ψ′ = ψ \ {s} ∪ {s[1..i −
1]0s[i + 1..n] is a possible predecessor of ψ.

Coalescence can occur if s, t ∈ ψ are compatible; i.e. if ∀1 ≤ i ≤ n : {s[i], t[i]} �=
{0, 1}, then ψ′ = ψ \ {s, t}∪ {u} is a possible predecessor of ψ, where u[i] = s[i]
if s[i] �= ∗ and u[i] = t[i] otherwise.

Recombination can always occur in any sequence; if s ∈ ψ and 0 ≤ i ≤ n, then
ψ′ = ψ \{s}∪{s[1..i]∗n−i, ∗is[i+1..n]} is a possible predecessor of ψ. Note that
we only trace the ancestral material observed in M , so sites not passing ancestral
material on to ψ are left unresolved indicated by the ∗ character. Moreover, it is easy
to see that a recombination introducing the all-∗ sequence cannot be part of an evo-
lutionary history with a minimum number of recombinations. Hence, we implicitly
assume that only recombinations splitting the recombinant into two sequences both
carrying ancestral material are considered.

A sequence of events, or evolutionary history, can graphically be represented by an
ancestral recombination graph (ARG) as illustrated in Fig. 2.

Based on this description of the consequences of each type of evolutionary event,
it is easy to search for an evolutionary history with at most r recombinations. To avoid
repeating previous work, we maintain a hash table containing the best lower bound es-
tablished for all ancestral states already encountered. So when we arrive at an ancestral
state ψ with r′ recombinations remaining to meet the overall target of r recombina-
tions we



Minimum Recombination Histories by Branch and Bound 245

– first check whether ψ is already present in the hash table with a lower bound ex-
ceeding r′; if this is the case we backtrack the search

– if ψ is not present in the hash table, we compute a lower bound on the minimum
number of recombinations required for ψ as described in Sect. 3.1; if this lower
bound exceeds r′ we insert ψ in the hash table with this lower bound and backtrack
the search

– otherwise, we make a depth-first search starting at the possible predecessors of ψ,
with r′ recombinations remaining for predecessors obtained through coalescence
and mutation events and r′ − 1 recombinations remaining for predecessors ob-
tained through recombination events; if this search fails, we update the hash table
to contain ψ with lower bound r′ + 1.

To determine the minimum number of recombinations required for a data set M , we
start by computing a lower bound r on this number as described in Sect. 3.1. We then try
to find an evolutionary history with at most r recombinations. If this fails, we increase
r by one. We repeat this until r is increased to Rmin(M), at which stage we will find a
minimum recombination history.

This approach essentially develops the true minimum number of recombinations
required by improving a lower bound. An alternative would be to start with an upper
bound r on the number of recombinations required – obtained by heuristic means, see
e.g. [7], or possibly even ∞ – and updating it whenever a new evolutionary history
with a lower number of recombinations is discovered. This continues until it is estab-
lished that no evolutionary history with fewer recombinations than the current value of
r is possible. This alternative approach would essentially develop the true minimum
number of recombinations required by successive improvements of an upper bound.
We would expect these two alternatives to have comparable run times, although our
approach would probably exhibit a smaller variance; the total time will usually be dom-
inated by the time used to establish that no evolutionary history exists with Rmin(M)−1
recombinations.

3.3 Refinements of the Branch and Bound Algorithm

In the previous section we described a vanilla flavoured branch & bound algorithm
for determining Rmin(M), utilising the haplotype bound. This forms the basis of our
full branch & bound algorithm, but would by itself not be sufficiently efficient to yield
a major improvement in efficiency compared to [1]. Hence, we apply three tricks to
speed up the computation and decrease the amount of memory used: one based on data
set reduction, one based on only considering certain orderings of events, and one based
on requiring splits caused by recombinations to be maximal.

Reduced Data Sets. As observed in [3,1], an ancestral state ψ can be reduced without
changing the value of Rmin(ψ). We use l to refer to the sequence length in ψ, which
may differ from n as the reduction process may remove sites. We reduce ψ by repeatedly
applying the following operations until no operations are possible:

1. collapse identical sequences into one; i.e. if s, t ∈ ψ and s = t, then ψ can be
replaced by ψ′ = ψ \ {s}
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Fig. 3. The Drosophila melanogaster alcohol dehydrogenase data from [14], and the same data
after having been reduced

2. remove sites where at most one sequence carries the mutant type, also known as
uninformative sites; i.e. if ∃1 ≤ i ≤ l : |{s ∈ ψ | s[i] = 1}| = 1, then ψ can be
replaced by ψ′ = {s[1..i− 1]s[i + 1..l] | s ∈ ψ}

3. collapse neighbouring identical sites; i.e. if ∃1 ≤ i < l, ∀s ∈ ψ : s[i] = s[i + 1],
then ψ can be replaced by ψ′ = {s[1..i − 1]s[i + 1..l] | s ∈ ψ}

In the presence of unresolved sites we can slightly strengthen operation 1. We will say
that a sequence s is subsumed in another sequence t if s[i] ∈ {∗, t[i]} for all 1 ≤ i ≤ l.
That is, if s and t are compatible and s does not carry ancestral material in any site where
t does not carry ancestral material. Operation 1 can be applied to any pair of sequences
where one is subsumed in the other. We can define a site being subsumed in another site
in a similar manner, and strengthen operation 3 to apply to neighbouring sites where one
is subsumed in the other. That the effect of this reduction can be significant is illustrated
in Fig. 3.

Restricted Event Orderings. Reduction can be seen as imposing restrictions on the
order in which events occur. Operations 1 and 2 can be seen as equivalent to only con-
sidering evolutionary histories where coalescent events, that as a net result removes all
traces of one of the sequences, and mutations are carried out at the first given opportu-
nity. Operation 3 can be seen as requiring the mutations in the collapsed sites to happen
consecutively. We can impose further restrictions on the sequences of events considered,
while guaranteeing that we will still consider at least one sequence of events containing
a minimum number of recombinations.

As operation 2 of ancestral state reduction forces all mutations possible, we never
perform a recombination event on an ancestral state where a mutation is possible. It is
easy to see that a recombination event cannot make a new mutation event possible. So
after a sequence of recombination events starting from ancestral state ψ, a coalescence
event must necessarily follow. This event will coalesce sequences t = ∗is[i + 1..j]∗l−j

and t′ = ∗i′
s′[i′ + 1..j′]∗l−j′

(with l denoting sequence length in ψ), i.e. segments of
ancestral material carried by sequences s, t ∈ ψ. Note that i, i′ may equal 0 and j, j′

may equal l. Evidently, any recombination not involved in creating the segments of t
and t′ can be postponed until after coalescing t and t′.

Even a recombination involved in creating t or t′ can be postponed. Only the at most
two recombinations defining the boundaries of overlap of ancestral material between t
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0100010101010101
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0101011001010111
0110101001010100
0001000000000010
0001000010101000
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Fig. 4. Illustration of the event ordering and maximality principles used in the refined branch &
bound algorithm. The right-hand illustration shows that of the four splits defining two segments
being coalesced, two can be postponed till after the coalescence as illustrated in the right-hand
sequence of events. In the right-hand illustration, the maximum subsumed prefix and suffix is
underlined for each sequence.

and t′ are required to make the coalescence possible, as illustrated in Fig. 4. Hence,
we will only consider sequences of events with at most two consecutive recombination
events. Moreover, the recombination event or events have to be involved in creating the
sequences of the ensuing coalescence event.

Maximality. Finally, we require recombinations to split off segments that are in a
certain sense maximal. We discuss this for the case where a single recombination event
is followed by a coalescence involving the prefix split off by the recombination event,
but the principle is applied to all recombination events. Assume the recombination splits
sequence s ∈ ψ after site i, and that the prefix s[1..i]∗l−i (where l is the sequence length
in ψ) coalesces with sequence t ∈ ψ to create sequence t′. The ensuing ancestral state
is ψ′ = ψ ∪ {∗is[i + 1..l], t′} \ {s, t}. If s[i + 1] = t[i + 1] then s[1..i + 1]∗l−i−1

will also coalesce with t to create t′. So by splitting s after site i + 1 instead, we
obtain the alternative ancestral state ψ′′ = ψ ∪ {∗is[i + 2..l], t′} \ {s, t}. Evidently,
Rmin(ψ′′) ≤ Rmin(ψ′) as ∗is[i + 2..l] does not contain any ancestral material not
present in ∗is[i + 1..l]. Hence, we only consider recombinations that split off segments
that cannot be extended without changing the outcome of the ensuing coalescence event.

More generally, for two ancestral states φ and φ′ we will say that φ ≺ φ′ if we can
obtain φ from φ′ by changing one or more characters in φ′ to ∗. We do not pursue events
leading to an ancestral state φ whenever it can be established that we can reach another
ancestral state φ′ ≺ φ using the same number of recombinations. In particular, let the
maximum subsumed prefix of a sequence s in ancestral state ψ be the longest prefix of s
that is subsumed in some other sequence of ψ. Similarly define the maximum subsumed
suffix. Then no recombination events occurring within the maximum subsumed prefix
or suffix of a sequence are considered (with the exception of one recombination event
if they overlap). This is illustrated in Fig. 4.

4 Application

We have implemented the branch & bound algorithm outlined in the previous section
in a C program called beagle (as branch & bound shares its acronym with the infa-
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mous Beagle Boys). The source code is available under the GNU public license from
http://www.stats.ox.ac.uk/∼lyngsoe/beagle/. The program can pro-
duce an evolutionary history that established the value of Rmin(M), and accompanying
scripts can convert such a history to three different formats used by different programs
for drawing networks. The program can also compute the minimum number Rmin(I)
of recombinations required in a sub-interval I of the input data M . Note that these local
values Rmin(I) may not be attainable by any minimal ARG for the entire data M .

s6 s7 s8 s9 s10 s5 s11 s3 s1 s2 s4

(8,9)

(15,16)

(30,31)

(37,38)

(36,37)

(16,17)

(3,4)

2

44

intervalend

1 43interval start

Fig. 5. Results obtained from applying beagle to the data of [14]. On the left is the ARG
representing the evolutionary history with Rmin(M) = 7 found by beagle, with mutations
left out for clarity. On the right is the matrix of local values of Rmin(I) for all sub-intervals I of
the data, colour coded from light grey for no recombinations to black for 7 recombinations.

We have applied beagle to Kreitman’s data of the alcohol dehydrogenase locus
from 11 chromosomes of Drosophila melanogaster. This data set was also analysed
in [1], and therefore it provides a useful benchmark for comparing our method with the
only previously existing method for computing Rmin(M) exactly. The data is shown in
Fig. 3. An ARG recreated from the history and the matrix of local values of Rmin(I)
are shown in Fig. 5. The implementation of the method described in [1] required about
30 minutes on a 1.26GHz Pentium III processor and 1.5GB of memory to determine
that Rmin(M) = 7 for this data set. On a similar processor, a 1.4GHz Athlon processor,
beagle obtained the same result in less than a second using less than 100kB of mem-
ory. On this particular data set, we have thus managed an improvement of three to four
orders of magnitude in both time and space requirements. This significantly expands
the range of data for which an exact computation of Rmin(M) is feasible.

To illustrate how the performance of beagle depends on the size and complexity
of the input data, we have also applied beagle to the human LPL data from [15],
with missing or non-SNP sites removed. These sequences are sampled from three ge-
ographically distinct regions, Jackson, North Karelia, and Rochester. Following [3] we
further partition the sites into three regions. Analysing the full data set is beyond the
capabilities of beagle, but based on the above partitions we obtain nine smaller data
sets of varying size and complexity. For eight of the nine data sets beagle was able
to determine Rmin(M) and the results are summarised in Table 1. Not surprisingly, a
key aspect influencing the time requirement seems to be how far the initial lower bound
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Table 1. Results of applying beagle to the human LPL data. In each entry, we first list the size
of the data set in terms of number of sequences/number of sites; we then list Rmin(M) with the
initial lower bound obtained from our haplotype heuristic in parentheses; finally, we list the time
required to determine Rmin(M) on a 1.4GHz Athlon processor.

Population region 1 region 2 region 3
Jackson 40/14; 13(10); 18m52s 40/14; 10(8); 26s 40/22; 15(12); > 15h
North Karelia 31/15; 2(2); < 1s 31/24; 8(7); < 1s
Rochester 27/17; 1(1); < 1s 27/13; 14(12); 8m00s 27/28; 8(7); < 1s

is from Rmin(M). Only two of these data sets are sufficiently small that it would be
feasible to use the method of [1] to determine Rmin(M).

5 Discussion

The framework of our branch & bound algorithm works independently of the lower
bound method utilised. It should be quite easy to replace our implementation of the
haplotype bound with other lower bound implementations available, to explore whether
any of these can further improve the efficiency of beagle. Two crucial aspects are
the quality of the bound produced and the time taken to produce it. A qualitatively im-
proved lower bound will in general result in beagle having to explore fewer ancestral
states, while a faster lower bound method will result in beagle having to spend less
time on each ancestral state encountered. Profiling data obtained from running beagle
indicates that most of CPU time is spent on computing lower bounds. A lower bound of
similar quality that can be computed faster can lead to a significant reduction in com-
putation time, but not a reduction by orders of magnitude. To obtain such a reduction
we would need a method producing better lower bounds. Therefore, we are particularly
interested in testing beagle with the improved haplotype bound discussed in [7].

It would be interesting and worthwhile to use beagle to produce a lower bound on
Rmin(M). We can use beagle to compute the minimum number of recombinations
for all small regions of the data, while using an efficient lower bound method for large
regions. These local bounds can then be combined using the composite bound method
of [3] to produce a lower bound on Rmin(M) for the entire data. We expect beagle
to work quite well on data sets of short sequences, for which the search space reduction
based on ignoring recombinations in maximum subsumed prefixes and suffixes should
dramatically limit the number of recombination events pursued. In this context, it should
be noted that the method of [1] may be more efficient for data sets consisting of very few
long sequences, as the running time of that method depends only linearly on sequence
length, albeit super-exponentially on the number of sequences.

The computation of a local value Rmin(I) by beagle is oblivious to the region
surrounding I , i.e. the local value may not be attainable in any history with a globally
minimum number Rmin(M) of recombinations. It would be of interest to compute local
values in the context of the surrounding data, not least to study the effects of ignoring
context. It is not clear to us, however, whether beagle can be modified to compute
local Rmin(I) values without sacrificing the refinements discussed in Sect. 3.3
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Abstract. We propose a general approach to compute the seed sen-
sitivity, that can be applied to different definitions of seeds. It treats
separately three components of the seed sensitivity problem – a set of
target alignments, an associated probability distribution, and a seed
model – that are specified by distinct finite automata. The approach
is then applied to a new concept of subset seeds for which we propose
an efficient automaton construction. Experimental results confirm that
sensitive subset seeds can be efficiently designed using our approach,
and can then be used in similarity search producing better results than
ordinary spaced seeds.

1 Introduction

In the framework of pattern matching and similarity search in biological se-
quences, seeds specify a class of short sequence motif which, if shared by two
sequences, are assumed to witness a potential similarity. Spaced seeds have been
introduced several years ago [1,2] and have been shown to improve significantly
the efficiency of the search. One of the key problems associated with spaced seeds
is a precise estimation of the sensitivity of the associated search method. This
is important for comparing seeds and for choosing most appropriate seeds for a
sequence comparison problem to solve.

The problem of seed sensitivity depends on several components. First, it
depends on the seed model specifying the class of allowed seeds and the way
that seeds match (hit) potential alignments. In the basic case, seeds are speci-
fied by binary words of certain length (span), possibly with a constraint on the
number of 1’s (weight). However, different extensions of this basic seed model
have been proposed in the literature, such as multi-seed (or multi-hit) strate-
gies [3,4,2], seed families [5,6,7,8,9,10], seeds over non-binary alphabets [11,12],
vector seeds [13,10].

The second parameter is the class of target alignments that are alignment
fragments that one aims to detect. Usually, these are gapless alignments of a
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given length. Gapless alignments are easy to model, in the simplest case they
are represented by binary sequences in the match/mismatch alphabet. This rep-
resentation has been adopted by many authors [2,14,15,16,17,18]. The binary
representation, however, cannot distinguish between different types of matches
and mismatches, and is clearly insufficient in the case of protein sequences. In
[13,10], an alignment is represented by a sequence of real numbers that are
scores of matches or mismatches at corresponding positions. A related, but yet
different approach is suggested in [12], where DNA alignments are represented
by sequences on the ternary alphabet of match/transition/transversion. Finally,
another generalization of simple binary sequences was considered in [19], where
alignments are required to be homogeneous, i.e. to contain no sub-alignment with
a score larger than the entire alignment.

The third necessary ingredient for seed sensitivity estimation is the proba-
bility distribution on the set of target alignments. Again, in the simplest case,
alignment sequences are assumed to obey a Bernoulli model [2,16]. In more
general settings, Markov or Hidden Markov models are considered [17,15]. A
different way of defining probabilities on binary alignments has been taken in
[19]: all homogeneous alignments of a given length are considered equiprobable.

Several algorithms for computing the seed sensitivity for different frameworks
have been proposed in the above-mentioned papers. All of them, however, use a
common dynamic programming (DP) approach, first brought up in [14].

In the present paper, we propose a general approach to computing the seed
sensitivity. This approach subsumes the cases considered in the above-mentioned
papers, and allows to deal with new combinations of the three seed sensitivity
parameters. The underlying idea of our approach is to specify each of the three
components – the seed, the set of target alignments, and the probability distri-
bution – by a separate finite automaton.

A deterministic finite automaton (DFA) that recognizes all alignments
matched by given seeds was already used in [17] for the case of ordinary spaced
seeds. In this paper, we assume that the set of target alignments is also specified
by a DFA and, more importantly, that the probabilistic model is specified by a
probability transducer – a probability-generating finite automaton equivalent to
HMM with respect to the class of generated probability distributions.

We show that once these three automata are set, the seed sensitivity can be
computed by a unique general algorithm. This algorithm reduces the problem to
a computation of the total weight over all paths in an acyclic graph corresponding
to the automaton resulting from the product of the three automata. This com-
putation can be done by a well-known dynamic programming algorithm [20,21]
with the time complexity proportional to the number of transitions of the re-
sulting automaton. Interestingly, all above-mentioned seed sensitivity algorithms
considered by different authors can be reformulated as instances of this general
algorithm.

In the second part of this work, we study a new concept of subset seeds –
an extension of spaced seeds that allows to deal with a non-binary alignment
alphabet and, on the other hand, still allows an efficient hashing method to
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locate seeds. For this definition of seeds, we define a DFA with a number of
states independent of the size of the alignment alphabet. Reduced to the case of
ordinary spaced seeds, this DFA construction gives the same worst-case number
of states as the Aho-Corasick DFA used in [17]. Moreover, our DFA has always
no more states than the DFA of [17], and has substantially less states on average.

Together with the general approach proposed in the first part, our DFA
gives an efficient algorithm for computing the sensitivity of subset seeds, for
different classes of target alignments and different probability transducers. In the
experimental part of this work, we confirm this by running an implementation of
our algorithm in order to design efficient subset seeds for different probabilistic
models, trained on real genomic data. We also show experimentally that designed
subset seeds allow to find more significant alignments than ordinary spaced seeds
of equivalent selectivity.

2 General Framework

Estimating the seed sensitivity amounts to compute the probability for a random
word (target alignment), drawn according to a given probabilistic model, to
belong to a given language, namely the language of all alignments matched by
a given seed (or a set of seeds).

2.1 Target Alignments

Target alignments are represented by words over an alignment alphabet A.
In the simplest case, considered most often, the alphabet is binary and ex-
presses a match or a mismatch occurring at each alignment column. However,
it could be useful to consider larger alphabets, such as the ternary alphabet of
match/transition/transversion for the case of DNA (see [12]). The importance
of this extension is even more evident for the protein case ([10]), where different
types of amino acid pairs are generally distinguished.

Usually, the set of target alignments is a finite set. In the case considered
most often [2,14,15,16,17,18], target alignments are all words of a given length
n. This set is trivially a regular language that can be specified by a determinis-
tic automaton with (n + 1) states. However, more complex definitions of target
alignments have been considered (see e.g. [19]) that aim to capture more ade-
quately properties of biologically relevant alignments. In general, we assume that
the set of target alignments is a finite regular language LT ∈ A∗ and thus can
be represented by an acyclic DFA T =< QT , q0

T , qF
T ,A, ψT >.

2.2 Probability Assignment

Once an alignment language LT has been set, we have to define a probability
distribution on the words of LT . We do this using probability transducers.

A probability transducer is a finite automaton without final states in which
each transition outputs a probability.
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Definition 1. A probability transducer G over an alphabet A is a 4-tuple <
QG, q0

G,A, ρG >, where QG is a finite set of states, q0
G ∈ QG is an initial state,

and ρG : QG ×A× QG → [0, 1] is a real-valued probability function such that
∀q ∈ QG,

∑
q′∈QG,a∈A ρG(q, a, q′) = 1.

A transition of G is a triplet e =< q, a, q′ > such that ρ(q, a, q′) > 0. Letter
a is called the label of e and denoted label(e). A probability transducer G is
deterministic if for each q ∈ QG and each a ∈ A, there is at most one transition
< q, a, q′ >. For each path P = (e1, ..., en) in G, we define its label to be the word
label(P ) = label(e1)...label (en), and the associated probability to be the product
ρ(P ) =

∏n
i=1 ρG(ei). A path is initial, if its start state is the initial state q0

G of
the transducer G.

Definition 2. The probability of a word w ∈ A∗ according to a probability
transducer G =< QG, q0

G,A, ρG >, denoted PG(w), is the sum of probabilities
of all initial paths in G with the label w. PG(w) = 0 if no such path exists. The
probability PG(L) of a finite language L ⊆ A∗ according a probability transducer
G is defined by PG(L) =

∑
w∈L PG(w).

Note that for any n and for L = An (all words of length n), PG(L) = 1.
Probability transducers can express common probability distributions on

words (alignments). Bernoulli sequences with independent probabilities of each
symbol [2,16,18] can be specified with deterministic one-state probability trans-
ducers. In Markov sequences of order k [17,6], the probability of each symbol
depends on k previous symbols. They can therefore be specified by a determin-
istic probability transducer with at most |A|k states.

A Hidden Markov model (HMM) [15] corresponds, in general, to a non-
deterministic probability transducer. The states of this transducer correspond
to the (hidden) states of the HMM, plus possibly an additional initial state. In-
versely, for each probability transducer, one can construct an HMM generating
the same probability distribution on words. Therefore, non-deterministic proba-
bility transducers and HMMs are equivalent with respect to the class of generated
probability distributions. The proofs are straightforward and are omitted due to
space limitations.

2.3 Seed Automata and Seed Sensitivity

Since the advent of spaced seeds [1,2], different extensions of this idea have
been proposed in the literature (see Introduction). For all of them, the set of
possible alignment fragments matched by a seed (or by a set of seeds) is a
finite set, and therefore the set of matched alignments is a regular language. For
the original spaced seed model, this observation was used by Buhler et al. [17]
who proposed an algorithm for computing the seed sensitivity based on a DFA
defining the language of alignments matched by the seed. In this paper, we
extend this approach to a general one that allows a uniform computation of seed
sensitivity for a wide class of settings including different probability distributions
on target alignments, as well as different seed definitions.



A Unifying Framework for Seed Sensitivity and Its Application 255

Consider a seed (or a set of seeds) π under a given seed model. We assume
that the set of alignments Lπ matched by π is a regular language recognized by
a DFA Sπ =< QS, q0

S , QF
S ,A, ψS >. Consider a finite set LT of target alignments

and a probability transducer G. Under this assumptions, the sensitivity of π is
defined as the conditional probability

PG(LT ∩ Lπ)
PG(LT )

. (1)

An automaton recognizing L = LT ∩ Lπ can be obtained as the product of au-
tomata T and Sπ recognizing LT and Lπ respectively. Let K =< QK , q0

K , QF
K ,A,

ψK > be this automaton. We now consider the product W of K and G, denoted
K × G, defined as follows.

Definition 3. Given a DFA K =< QK , q0
K , QF

K ,A, ψK > and a probability
transducer G =< QG, q0

G,A, ρG >, the product of K and G is the probability-
weighted automaton W =< QW , q0

W , QF
W ,A, ρW > (for short, PW-automaton)

such that QW = QK × QG, q0
W = (q0

K , q0
G), qF

W = {(qK , qG)|qK ∈ QF
K},

ρW ((qK , qG), a, (q′K , q′G)) = ρG(qG, a, q′G) if ψK(qK , a) = q′K , and 0 otherwise.

W can be viewed as a non-deterministic probability transducer with final states.
ρW ((qK , qG), a, (q′K , q′G)) is the probability of the < (qK , qG), a, (q′K , q′G) > tran-
sition. A path in W is called full if it goes from the initial to a final state.

Lemma 1. Let G be a probability transducer. Let L be a finite language and K
be a deterministic automaton recognizing L. Let W = G × K. The probability
PG(L) is equal to sum of probabilities of all full paths in W .

Proof. Since K is a deterministic automaton, each word w ∈ L corresponds to a
single accepting path in K and the paths in G labeled w (see Definition 1) are in
one-to-one correspondence with the full path in W accepting w. By definition,
PG(w) is equal to the sum of probabilities of all paths in G labeled w. Each such
path corresponds to a unique path in W , with the same probability. Therefore,
the probability of w is the sum of probabilities of corresponding paths in W .
Each such path is a full path, and paths for distinct words w are disjoint. The
lemma follows.

2.4 Computing Seed Sensitivity

Lemma 1 reduces the computation of seed sensitivity to a computation of the
sum of probabilities of paths in a PW-automaton.

Lemma 2. Consider an alignment alphabet A, a finite set LT ⊆ A∗ of target
alignments, and a set Lπ ⊆ A∗ of all alignments matched by a given seed π.
Let K =< QK , q0

t , QF
K ,A, ψQ > be an acyclic DFA recognizing the language

L = LT ∩ Lπ. Let further G =< QG, q0
G,A, ρ > be a probability transducer

defining a probability distribution on the set LT . Then PG(L) can be computed
in time O(|QG|2 · |QK | · |A|) and space O(|QG| · |QK |).
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Proof. By Lemma 1, the probability of L with respect to G can be computed as
the sum of probabilities of all full paths in W . Since K is an acyclic automaton,
so is W . Therefore, the sum of probabilities of all full paths in W leading to final
states qF

W can be computed by a classical DP algorithm [20] applied to acyclic
directed graphs ([21] presents a survey of application of this technique to different
bioinformatic problems). The time complexity of the algorithm is proportional
to the number of transitions in W . W has |QG| · |QK | states, and for each letter
of A, each state has at most |QG| outgoing transitions. The bounds follow.

Lemma 2 provides a general approach to compute the seed sensitivity. To
apply the approach, one has to define three automata:

– a deterministic acyclic DFA T specifying a set of target alignments over
an alphabet A (e.g. all words of a given length, possibly verifying some
additional properties),

– a (generally non-deterministic) probability transducer G specifying a prob-
ability distribution on target alignments (e.g. Bernoulli model, Markov se-
quence of order k, HMM),

– a deterministic DFA Sπ specifying the seed model via a set of matched
alignments.

As soon as these three automata are defined, Lemma 2 can be used to compute
probabilities PG(LT ∩Lπ) and PG(LT ) in order to estimate the seed sensitivity
according to equation (1).

Note that if the probability transducer G is deterministic (as it is the case
for Bernoulli models or Markov sequences), then the time complexity is O(|QG| ·
|QK | · |A|). In general, the complexity of the algorithm can be improved by re-
ducing the involved automata. Buhler et al. [17] introduced the idea of using the
Aho-Corasick automaton [22] as the seed automaton Sπ for a spaced seed. The
authors of [17] considered all binary alignments of a fixed length n distributed
according to a Markov model of order k. In this setting, the obtained complex-
ity was O(w2s−w2kn), where s and w are seed’s span and weight respectively.
Given that the size of the Aho-Corasick automaton is O(w2s−w), this complexity
is automatically implied by Lemma 2, as the size of the probability transducer is
O(2k), and that of the target alignment automaton is O(n). Compared to [17],
our approach explicitly distinguishes the descriptions of matched alignments
and their probabilities, which allows us to automatically extend the algorithm
to more general cases.

Note that the idea of using the Aho-Corasick automaton can be applied to
more general seed models than individual spaced seeds (e.g. to multiple spaced
seeds, as pointed out in [17]). In fact, all currently proposed seed models can be
described by a finite set of matched alignment fragments, for which the Aho-
Corasick automaton can be constructed. We will use this remark in later sections.

The sensitivity of a spaced seed with respect to an HMM-specified probability
distribution over binary target alignments of a given length n was studied by
Brejova et al. [15]. The DP algorithm of [15] has a lot in common with the
algorithm implied by Lemma 2. In particular, the states of the algorithm of [15]
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are triples < w, q, m >, where w is a prefix of the seed π, q is a state of the HMM,
and m ∈ [0..n]. The states therefore correspond to the construction implied by
Lemma 2. However, the authors of [15] do not consider any automata, which
does not allow to optimize the preprocessing step (counterpart of the automaton
construction) and, on the other hand, does not allow to extend the algorithm to
more general seed models and/or different sets of target alignments.

A key to an efficient solution of the sensitivity problem remains the definition
of the seed. It should be expressive enough to be able to take into account
properties of biological sequences. On the other hand, it should be simple enough
to be able to locate seeds fast and to get an efficient algorithm for computing
seed sensitivity. According to the approach presented in this section, the latter
is directly related to the size of a DFA specifying the seed.

3 Subset Seeds

3.1 Definition

Ordinary spaced seeds use the simplest possible binary “match-mismatch” align-
ment model that allows an efficient implementation by hashing all occurring
combinations of matching positions. A powerful generalization of spaced seeds,
called vector seeds, has been introduced in [13]. Vector seeds allow one to use
an arbitrary alignment alphabet and, on the other hand, provide a flexible def-
inition of a hit based on a cooperative contribution of seed positions. A much
higher expressiveness of vector seeds lead to more complicated algorithms and,
in particular, prevents the application of direct hashing methods at the seed
location stage.

In this section, we consider subset seeds that have an intermediate expressive-
ness between spaced and vector seeds. It allows an arbitrary alignment alphabet
and, on the other hand, still allows using a direct hashing for locating seed, which
maps each string to a unique entry of the hash table. We also propose a con-
struction of a seed automaton for subset seeds, different from the Aho-Corasick
automaton. The automaton has O(w2s−w) states regardless of the size of the
alignment alphabet, where s and w are respectively the span of the seed and
the number of “must-match” positions. From the general algorithmic framework
presented in the previous section (Lemma 2), this implies that the seed sensi-
tivity can be computed for subset seeds with same complexity as for ordinary
spaced seeds. Note also that for the binary alignment alphabet, this bound is the
same as the one implied by the Aho-Corasick automaton. However, for larger
alphabets, the Aho-Corasick construction leads to O(w|A|s−w) states. In the
experimental part of this paper (section 4.1) we will show that even for the bi-
nary alphabet, our automaton construction yields a smaller number of states in
practice.

Consider an alignment alphabet A. We always assume that A contains a
symbol 1, interpreted as “match”. A subset seed is defined as a word over a seed
alphabet B, such that
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– letters of B denote subsets of the alignment alphabet A containing 1 (B ⊆
{1} ∪ 2A),

– B contains a letter # that denotes subset {1},
– a subset seed b1b2 . . . bm ∈ Bm matches an alignment fragment a1a2 . . . am ∈

Am if ∀i ∈ [1..m], ai ∈ bi.

The #-weight of a subset seed π is the number of # in π and the span of π is
its length.

Example 1. [12] considered the alignment alphabet A = {1, h, 0} representing
respectively a match, a transition mismatch, or a transversion mismatch in a
DNA sequence alignment. The seed alphabet is B = {#, @, } denoting respec-
tively subsets {1}, {1, h}, and {1, h, 0}. Thus, seed π = #@ # matches alignment
s = 10h1h1101 at positions 4 and 6. The span of π is 4, and the #-weight of π
is 2.

Note that unlike the weight of ordinary spaced seeds, the #-weight cannot serve
as a measure of seed selectivity. In the above example, symbol @ should be
assigned weight 0.5, so that the weight of π is equal to 2.5 (see [12]).

3.2 Subset Seed Automaton

Let us fix an alignment alphabet A, a seed alphabet B, and a seed π = π1π2 . . .
πm ∈ B∗ of span m and #-weight w. Let Rπ be the set of all non-# positions
in π, |Rπ| = r = m − w. We now define an automaton Sπ =< Q, q0, Qf ,A, ψ :
Q ×A → Q > that recognizes the set of all alignments matched by π.

The states Q of Sπ are pairs < X, t > such that X ⊆ Rπ, t ∈ [0, . . . , m], with
the following invariant condition. Suppose that Sπ has read a prefix s1 . . . sp of
an alignment s and has come to a state < X, t >. Then t is the length of the
longest suffix of s1 . . . sp of the form 1i, i ≤ m, and X contains all positions
xi ∈ Rπ such that prefix π1 · · ·πxi of π matches a suffix of s1 · · · sp−t.

(a) π = #@# ## ###

(b) s = 111h1011h11...

(c)

s9 t

111h1011h11...
π1..7 =#@# ##

π1..4 =#@#
π1..2 =#@

Fig. 1. Illustration to Example 2

Example 2. In the framework of Example 1, consider a seed π and an alignment
prefix s of length p = 11 given on Figure 1(a) and 1(b) respectively. The length t
of the last run of 1’s of s is 2. The last mismatch position of s is s9 = h. The set
Rπ of non-# positions of π is {2, 4, 7} and π has 3 prefixes ending at positions
of Rπ (Figure 1(c)). Prefixes π1..2 and π1..7 do match suffixes of s1s2 . . . s9, and
prefix π1..4 does not. Thus, the state of the automaton after reading s1s2 . . . s11
is < {2, 7}, 2 >.
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The initial state q0 of Sπ is the state < ∅, 0 >. The final states Qf of Sπ are
all states q =< X, t >, where max{X}+ t = m. All final states are merged into
one state.

The transition function ψ(q, a) is defined as follows: If q is a final state, then
∀a ∈ A, ψ(q, a) = q. If q =< X, t > is a non-final state, then

– if a = 1 then ψ(q, a) =< X, t + 1 >,
– otherwise ψ(q, a) =< XU ∪ XV , 0 > with

• XU = {x|x ≤ t + 1 and a ∈ πx}
• XV = {x + t + 1|x ∈ X and a ∈ πx+t+1}

Lemma 3. The automaton Sπ accepts the set of all alignments matched by π.

Proof. It can be verified by induction that the invariant condition on the states
< X, t >∈ Q is preserved by the transition function ψ. The final states verify
max{X} + t = m, which implies that π matches a suffix of s1 . . . sp.

Lemma 4. The number of states of the automaton Sπ is no more than (w+1)2r.

Proof. Assume that Rπ = {x1, x2, . . . , xr} and x1 < x2 · · · < xr. Let Qi be
the set of non-final states < X, t > with max{X} = xi, i ∈ [1..r]. For states
q =< X, t >∈ Qi there are 2i−1 possible values of X and m− xi possible values
of t, as max{X} + t ≤ m − 1. Thus, |Qi| ≤ 2i−1(m − xi) ≤ 2i−1(m − i)
and

∑r
i=1 |Qi| ≤

∑r
i=1 2i−1(m − i) = (m − r + 1)2r − m − 1. Besides states

Qi, Q contains m states < ∅, t > (t ∈ [0..m − 1]) and one final state. Thus,
|Q| ≤ (m − r + 1)2r = (w + 1)2r.

Note that if π starts with #, which is always the case for ordinary spaced
seeds, then Xi ≥ i+1, i ∈ [1..r], and previous bound rewrites to 2i−1(m− i−1).
This results in the same number of states w2r as for the Aho-Corasick automaton
[17]. The construction of automaton Sπ is optimal, in the sense that no two
states can be merged in general. A straightforward generation of the transition
table of the automaton Sπ can be performed in time O(r · w · 2r · |A|). A more
complicated algorithm allows one to reduce the bound to O(w · 2r · |A|). In the
next section, we demonstrate experimentally that on average, our construction
yields a very compact automaton, close to the minimal one. Together with the
general approach of section 2, this provides a fast algorithm for computing the
sensitivity of subset seeds and, in turn, allows to perform an efficient design of
spaced seeds well-adapted to the similarity search problem under interest.

4 Experiments

Several types of experiments have been performed to test the practical applica-
bility of the results of sections 2,3. We focused on DNA similarity search, and
set the alignment alphabet A to {1, h, 0} (match, transition, transversion). For
subset seeds, the seed alphabet B was set to {#, @, }, where # = {1}, @ =
{1, h}, = {1, h, 0} (see Example 1). The weight of a subset seed is computed by
assigning weights 1, 0.5 and 0 to symbols #, @ and respectively.
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4.1 Size of the Automaton

We compared the size of the automaton Sπ defined in section 3 and the Aho-
Corasick automaton [22], both for ordinary spaced seeds (binary seed alphabet)
and for subset seeds (ternary seed alphabet). The Aho-Corasick automaton for
spaced seeds was constructed as defined in [17]. For subset seeds, a straightfor-
ward generalization was considered: the Aho-Corasick construction was applied
to the set of alignment fragments matched by the seed.

Tables 1(a) and 1(b) present the results for spaced seeds and subset seeds
respectively. For each seed weight w, we computed the average number of states
(avg. s.) of the Aho-Corasick automaton and our automaton Sπ, and reported
the corresponding ratio (δ) with respect to the average number of states of the
minimized automaton. The average was computed over all seeds of span up to
w + 8 for spaced seeds and all seeds of span up to w + 5 with two @’s for subset
seeds. Interestingly, our automaton turns out to be more compact than the Aho-

Table 1. Comparison of the average number of states of Aho-Corasick automaton,
automaton Sπ of section 3 and minimized automaton

Spaced Aho-Corasick Sπ Minimized
w avg. s. δ avg. s. δ avg. s.

9 345.94 3.06 146.28 1.29 113.21
10 380.90 3.16 155.11 1.29 120.61
11 415.37 3.25 163.81 1.28 127.62
12 449.47 3.33 172.38 1.28 134.91
13 483.27 3.41 180.89 1.28 141.84

Subset Aho-Corasick Sπ Minimized
w avg. s. δ avg. s. δ avg. s.

9 1900.65 15.97 167.63 1.41 119.00
10 2103.99 16.50 177.92 1.40 127.49
11 2306.32 16.96 188.05 1.38 135.95
12 2507.85 17.42 198.12 1.38 144.00
13 2709.01 17.78 208.10 1.37 152.29

(a) (b)

Corasick automaton not only on non-binary alphabets (which was expected),
but also on the binary alphabet (cf Table 1(a)). Note that for a given seed, one
can define a surjective mapping from the states of the Aho-Corasick automaton
onto the states of our automaton. This implies that our automaton has always
no more states than the Aho-Corasick automaton.

4.2 Seed Design

In this part, we considered several probability transducers to design spaced or
subset seeds. The target alignments included all alignments of length 64 on
alphabet {1, h, 0}. Four probability transducers have been studied (analogous to
those introduced in [23]):

– B: Bernoulli model
– DT 1: deterministic probability transducer specifying probabilities of {1, h, 0}

at each codon position (extension of the M (3) model of [23] to the three-letter
alphabet),

– DT 2: deterministic probability transducer specifying probabilities of each of
the 27 codon instances {1, h, 0}3 (extension of the M (8) model of [23]),

– NT : non-deterministic probability transducer combining four copies of DT 2
specifying four distinct codon conservation levels (called HMM model in [23]).
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Table 2. Best seeds and their sensitivity for probability transducer B

w spaced seeds Sens. subset seeds, two @ Sens.
9 ### # # ## ## 0.4183 ### # #@# @## 0.4443
10 ## ## ## # ### 0.2876 ### @# @# # ### 0.3077
11 ### ### # # ### 0.1906 ##@# ## # # @### 0.2056
12 ### # ## # ## ### 0.1375 ##@# # ## #@ #### 0.1481

Table 3. Best seeds and their sensitivity for probability transducer DT1

w spaced seeds Sens. subset seeds, two @ Sens.
9 ### ## ## ## 0.4350 ##@ ## ## ##@ 0.4456
10 ## ## ## ## ## 0.3106 ## ## @## ##@# 0.3173
11 ## ## ## ## ### 0.2126 ##@#@ ## ## ### 0.2173
12 ## ## ## ## #### 0.1418 ## @### ## ##@## 0.1477

Table 4. Best seeds and their sensitivity for probability transducer DT2

w spaced seeds Sens. subset seeds, two @ Sens.
9 # ## ## ## ## 0.5121 # #@ ## @ ## ## 0.5323
10 ## ## ## ## ## 0.3847 ## @# ## @ ## ## 0.4011
11 ## ## # # # ## ## 0.2813 ## ## @# # # #@ ## 0.2931
12 ## ## ## # # ## ## 0.1972 ## ## #@ ## @ ## ## 0.2047

Table 5. Best seeds and their sensitivity for probability transducer NT

w spaced seeds Sens. subset seeds, two @ Sens.
9 ## ## ## ## # 0.5253 ## @@ ## ## ## 0.5420
10 ## ## ## ## ## 0.4123 ## ## ## @@ ## # 0.4190
11 ## ## ## ## ## # 0.3112 ## ## ## @@ ## ## 0.3219
12 ## ## ## ## ## ## 0.2349 ## ## ## @@ ## ## # 0.2412

Models DT 1, DT 2 and NT have been trained on alignments resulting from a
pairwise comparison of 40 bacteria genomes. For each of the four probability
transducers, we computed the best seed of weight w (w = 9, 10, 11, 12) among
two categories: ordinary spaced seeds of weight w and subset seeds of weight w
with two @. Ordinary spaced seeds were enumerated exhaustively up to a given
span, and for each seed, the sensitivity was computed using the algorithmic
approach of section 2 and the seed automaton construction of section 3. Each
such computation took between 10 and 500ms on a Pentium IV 2.4GHz computer
depending on the seed weight/span and the model used. In each experiment, the
most sensitive seed found has been kept. The results are presented in Tables 2-5.

In all cases, subset seeds yield a better sensitivity than ordinary spaced seeds.
The sensitivity increment varies up to 0.04 which is a notable increase. As shown
in [12], the gain in using subset seeds increases substantially when the transition
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probability is greater than the transversion probability, which is very often the
case in related genomes.

5 Discussion

We introduced a general framework for computing the seed sensitivity for various
similarity search settings. The approach can be seen as a generalization of meth-
ods of [17,15] in that it allows to obtain algorithms with the same worst-case
complexity bounds as those proposed in these papers, but also allows to obtain
efficient algorithms for new formulations of the seed sensitivity problem. This
versatility is achieved by distinguishing and treating separately the three ingre-
dients of the seed sensitivity problem: a set of target alignments, an associated
probability distributions, and a seed model.

We then studied a new concept of subset seeds which represents an inter-
esting compromise between the efficiency of spaced seeds and the flexibility of
vector seeds. For this type of seeds, we defined an automaton with O(w2r) states
regardless of the size of the alignment alphabet, and showed that its transition
table can be constructed in time O(w2r |A|). Projected to the case of spaced
seeds, this construction gives the same worst-case bound as the Aho-Corasick
automaton of [17], but results in a smaller number of states in practice. Different
experiments we have done confirm the practical efficiency of the whole method,
both at the level of computing sensitivity for designing good seeds, as well as
using those seeds for DNA similarity search.

As far as the future work is concerned, it would be interesting to study the
design of efficient spaced seeds for protein sequence search (see [10]), as well as
to combine spaced seeds with other techniques such as seed families [5,6,8] or
the group hit criterion [12].
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1. Burkhardt, S., Kärkkäinen, J.: Better filtering with gapped q-grams. Fundamenta
Informaticae 56 (2003) 51–70 Preliminary version in Combinatorial Pattern Match-
ing 2001.

2. Ma, B., Tromp, J., Li, M.: PatternHunter: Faster and more sensitive homology
search. Bioinformatics 18 (2002) 440–445
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Abstract. Finding similar patterns (motifs) in a set of sequences is an
important problem in Computational Molecular Biology. Pevzner and
Sze [18] defined the planted (l,d)-motif problem as trying to find a length-
l pattern that occurs in each input sequence with at most d substitutions.
When d is large, this problem is difficult to solve because the input se-
quences do not contain enough information on the motif. In this paper,
we propose a generalized planted (l,d)-motif problem which considers as
input an additional set of sequences without any substring similar to
the motif (negative set) as extra information. We analyze the effects of
this negative set on the finding of motifs, and define a set of unsolvable
problems and another set of most difficult problems, known as “chal-
lenging generalized problems”. We develop an algorithm called VANS
based on voting and other novel techniques, which can solve the (9,3),
(11,4),(15,6) and (20,8)-motif problems which were unsolvable before as
well as challenging problems of the planted (l,d)-motif problem such as
(9,2), (11,3), (15,5) and (20,7)-motif problems.

1 Introduction

A genome is a sequence consisting of four symbols ‘A’, ‘C’, ‘G’ and ‘T’. Along
the genome are substrings, called genes, which are blueprints of proteins. In or-
der to decode a gene (gene expression) to produce the corresponding protein, a
molecule called a transcription factor binds to a short region (6 - 20 base pairs),
called the binding site, in the promoter region of the gene. One kind of transcrip-
tion factor can bind to the binding sites of several genes to cause these genes to
coexpress. These binding sites, which should have similar lengths and patterns,
can be represented by a pattern called motif. The motif discovering problem
[14,18] is predicting the motif given a set of coexpressed genes, i.e., when given
a set of sequences T , each of which contains at least one binding site. Pevzner
and Sze [18] gave a precise definition of this problem.

Planted (l,d)-Motif Problem: Suppose there is a fixed but unknown string
M (the motif) of length l. Given t length-n sequences, each of which contains
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a planted d-variant of M , we want to determine M without a priori knowledge
of the positions of the planted d-variants. A d-variant (or simply variant) is a
string derivable from M with at most d symbol substitutions.

Many algorithms [1,3,4,5,8,9,10,11,12,13,15,16,17,18,19] have been developed
to solve this problem and have predicted some motifs successfully. However, this
problem model will fail to find a solution when d is large, because there will be
many length-l strings having at least one variant in each input sequence and no
algorithm is likely to distinguish the motif from these strings. Buhler and Tompa
[4] found the maximum d such that a planted (l,d)-motif problem is still solvable
by calculating the expected number Et(l, d) of length-l strings with at least one
variant in each input sequence. When Et(l, d) is small, say Et(l, d) ≤ 1, the
problem is theoretically solvable. When Et(l, d) is large, no algorithm is likely to
discover M without extra information. For example, when t = 20 and n = 600,
the planted (9,3), (11,4), (15,6) and (20,8)-motif problems are unsolvable as the
values of Et(l, d) for these problems are huge (2.5× 105, 3.3× 106, 1.8× 108 and
3.1 × 104 respectively).

In biological experiments, besides getting a set of sequences bound by the
transcription factor, we may have as a by-product another set of sequences F
which are not bound by the transcription factor [2,6,7,20]. We may assume se-
quences in F contain no d-variant of the motif M . Based on this extra informa-
tion, we can modify the planted (l,d)-motif problem as follows.

Generalized Planted (l,d)-Motif Problem: Suppose there is a fixed but
unknown string M (the motif) of length l. Given t length-n sequences, each of
which contains a planted d-variant of M , and f length-n sequences which con-
tains no d-variant of M , we want to determine M without a priori knowledge of
the positions of the planted d-variants.

Note that when f = 0, the generalized planted (l,d)-motif problem (or sim-
ply generalized (l,d)-problem) is reduced to the planted (l,d)-motif problem (or
simply (l,d)-problem). The extra information provided by F might make some
of the previously unsolvable problems based only on information in T , e.g. (9,3),
(11,4), (15,6) and (20,8)-motif problems, solvable.

In this paper, we analyze the information provided by set T and set F (Sec-
tion 2) and how they are related (Section 3). We define a new set of unsolvable
and also another set of “challenging” generalized (l,d)-problems (most difficult
solvable problems). In Section 4, we develop an algorithm called VANS (Voting
Algorithm with Negative Set) to solve this generalized (l,d)-problem under dif-
ferent situations by employing, in additional to voting, other simple but novel
techniques, such as filtering, projection with merging and local search. In par-
ticular, VANS can solve those challenging (l,d)-problem, such as (9,2), (11,3),
(15,5) and (20,7)-problems, when F is empty. Experimental results (Section 5)
show that VANS can solve all theoretically solvable generalized (l,d)-problems
when d ≤ 20 and works well on some real data.
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2 Calculation the Expected Value Eb(l, d)

Let T be the set of t length-n input sequences, each of which contains a variant
of M and let F be the set of f length-n input sequences with no variant of M .
Assume the occurrence probabilities of ‘A’, ‘C’, ‘G’ and ‘T’ are equal. Buhler
and Tompa [4] studied the limitation of the (l,d)-problem by calculating the
expected number Et(l, d) of length-l strings with at least one d-variant in each
sequence in T . Their calculation is described as follows.

Given a length-l string P and a length-l substring σ in the input sequence,
the probability that P and σ are at most d symbol substitution apart is

p(l, d) =
d∑

i=0

Cl
i

(
3
4

)i(1
4

)l−i

The probability that a length-l string P has at least one d-variant in each se-
quence in T is (

1 − (1 − p(l, d))n−l+1)t
Consider the 4l possible length-l strings, the expected number of length-l strings
with at least one d-variant in each sequence in T is approximately

Et(l, d) = 4l
(
1 − (1 − p(l, d))n−l+1)t (1)

When Et(l, d) is much larger than 1, that means there are many random length-l
strings which have the same characteristics as motif M on T , i.e. have at least
one d-variant in each sequence in T . Under this situation, no algorithm can
distinguish the motif M from this set of random length-l strings. On the other
hand if Et(l, d) is smaller than 1, the smaller the value of Et(l, d), the more
plausible that the found pattern is M and not an artifact. Thus Et(l, d) can be
used to estimate the amount of information contained in the set of sequences
T ; the larger is Et(l, d), the less is the information and vice versa. Given the
parameters t, n and l, we can find the range of d such that the (l,d)-problem is
unsolvable, i.e. with Et(l, d) much larger than 1, e.g. (9,≥ 3), (11,≥ 4), (15,≥ 6)
and (20,≥ 8)-problems.

Similarly, we can estimate the amount of information contained in F by the
expected number Ef (l, d) of length-l strings with no variant in any sequences in
F , and also the amount of information of both T and F by the expected number
Eb(l, d) of length-l strings with at least one variant in each sequence in T and
no variant in the sequences of F . If Eb(l, d) is smaller than 1, the generalized
(l,d)-problem is theoretically solvable, otherwise, it is unsolvable.

The probability that a length-l string P has no variant in F is(
(1 − p(l, d))n−l+1)f

Consider the 4l possible length-l strings, we have

Ef (l, d) = 4l
(
(1 − p(l, d))n−l+1)f (2)
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Fig. 1. Expected number of strings against d for different motif length l

Eb(l, d) = 4l
(
1 − (1 − p(l, d))n−l+1)t ((1 − p(l, d))n−l+1)f (3)

Figure 1 shows the values of Et(l, d), Ef (l, d) and Eb(l, d) for different values
of l and d when t = f = 20 and n = 600. We have the following observations
which match with our intuition.

1. The (l,d)-problem is easier to solve for a smaller d because T has more infor-
mation for smaller d. Thus Et(l, d) increases with d. By the same argument,
F has more information for larger d, thus Ef (l, d) decreases with d.

2. The value of Eb(l, d) is always less than Et(l, d) and Ef (l, d). Eb(l, d) ≈
Et(l, d) when d is small and Eb(l, d) ≈ Ef (l, d) when d is large. Eb(l, d) is
peaked or the amount of information is the least for some d, 0 < d < l. It
can be shown that Eb(l, d) is maximum when p(l, d) = pthres, where

pthres = 1 − e
ln f−ln (t+f)

n−l+1

Figure 2 shows the value of p(l, d) against d and pthres = 0.0012 when t = f =
20 and n = 600. The intersections between pthres and each curve represent
those problems with the least amount of information, e.g. the generalized
(9,2), (15,5), (20,8), (26,12) and (30,14)-problems which match the results
given in Figure 1.
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Fig. 2. The value of p(l, d) against d for different motif length l

3. As a result, some previously unsolvable (l,d)-problems, e.g. the (9,3), (11,4)
and (15,6)-problem, become solvable after adding the set F . In fact, all
(l,d)-problems with 0 ≤ d ≤ l and l ≤ 20 are solvable. However, when
l increases, there are still some generalized (l,d)-problems having a large
value of Eb(l, d) (e.g. the generalized (26,12), (30,14) and (30,15)-problems)
which means they are theoretically unsolvable.

Buhler and Tompa [4] defined those solvable (l,d)-problems with the largest d
as “challenging problems” (i.e. if the (l,d)-problem is a challenging problem, the
(l,d + 1)-problem should be unsolvable). Similarly, we can define a set of “chal-
lenging problems” for the generalized planted (l,d)-motif problems. A generalized
planted (l,d)-motif problems is challenging if it is solvable and either (l,d−1) or
(l,d + 1) is unsolvable. For example, the generalized (26,11),(26,13),(30,13) and
(30,16)-problems are “challenging problems”.

3 Trade Off Between t and f

Although sequences in both T and F contain information of the motif, the
amounts of information in these two sets vary with the values of n and p(l, d).
One question we want to know is “If we reduce the number of sequences in T
by Δt, how many sequences should we add to F so that the input data retains
the same amount of information?” This question can be answered by comparing
the value of Eb(l, d) before and after changing the number of input sequences.
The amount of information is retained if and only if the new value of Eb(l, d) is
no larger than the original value.
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Table 1. Trade off between t and f when n = 600

l
R 9 11 15 20
1 44.16 1118 4.22 × 105 5.35 × 108

2 0.7547 35.41 1.39 × 104 1.48 × 107

3 0.0004 0.9763 680.6 6.37 × 105

4 4.27 × 10−15 0.0026 40.36 3.74 × 104

d 5 0 5.44 × 10−11 2.119 2760
6 0 0 0.0362 237.6
7 0 0 3.54 × 10−6 21.46
8 0 0 4.23 × 10−17 1.598
9 0 0 0 0.0463

4l
(
1 − (1 − p(l, d))n−l+1

)t ((1 − p(l, d))n−l+1
)f

4l (1 − (1 − p(l, d))n−l+1)t−Δt ((1 − p(l, d))n−l+1)f+Δf
≥ 1

Δt log
(
1 − (1 − p(l, d))n−l+1)− Δf log

(
(1 − p(l, d))n−l+1) ≥ 1

Δf ≥ RΔt

where R =
log (1−(1−p(l,d))n−l+1)

log ((1−p(l,d))n−l+1)
Since a random sequence containing d-variants of the motif M is independent

of another random sequence containing a d-variants of M , the information of
M contained in each input sequence is independent of the input size t and f .
Therefore, the value of R is independent of the number of sequences t and f in
the data set as shown in the above equation.

Table 1 shows the values of R for different values of l and d when n = 600.
For example, when l = 20 and d = 8, if we remove one sequence from T , we
should add at least )1.598* = 2 sequences in F to retain the same amount of
information in the input data. When d is large, the probability that a random
sequence contains a d-variant of the motif M is large while the probability that
a random sequence contains no d-variant of the motif M is small, therefore the
amount of information in each sequence in T is much less than that in each
sequence in F . If we remove a sequence in T , even no sequence is added to F ,
the total amount of information in the data set remains almost the same(e.g.
l = 9, d = 9). On the other hand, when d is small, the amount of information in
each sequence in T is much more than that in each sequence in F . If we remove
a sequence in T , many sequences should be added to F in order to retain the
same amount of information (e.g. l = 20, d = 1).

4 Voting Algorithm with Negative Set (VANS)

Our Voting Algorithm with Negative Set (VANS) is based on a simple idea that
if a substring σ is a planted d-variant of the motif M , M is also a d-variant
of σ. In order to find the motif, each length-l substring in T and F gives one
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vote to its d-variant. The motif M would receive at least one vote from each
sequence in T and no vote from any length-l substring in F . Although the idea
used in the Voting algorithms [5] is simple and enumerative, they are so far the
fastest algorithms than the other methods based on brute-force [3,10,17], finding
the maximum clique [15,18] and heuristic search [1,4,8,9,11,12,13] for solving the
(l,d)-problem without F . The running times of the brute-force and the clique
search algorithms (O(ntl4l) and O((nt)t+2.376) respectively) are much longer
than that of the Voting algorithms (O(ntCl

d4d)). The brute-force algorithms can
only solve the (l,d)-problems with l ≤ 11 and the clique search algorithms can
tackle those problem with small d. Thus, they have difficulties to deal with those
challenging (11,3), (15, 5) and (20,7)-problems. Heuristic algorithms can solve
the (l,d)-problems for larger l, say l ≤ 20, but they do not guarantee finding
the motifs all the time. The Voting algorithms, [5] on the other hand, can solve
not only the challenging (9,2), (11,3), (15,5) and (20,7)-motif problems, but also
(30,11) and (40,15)-problems.

As indicated in Figure 1, the generalized (l,d)-problem can be solved for small
d and large d when Eb(l, d) is much less than 1. Moreover, since we have shown
in Sections 2 and 3, the amount of information in the generalized (l,d)-problem is
mainly derived from T when d is small and from F when d is large, our algorithm
VANS will first identify a set of candidate motifs by voting from T when d is
small and from F when d is large. VANS will then filter out the false candidate
motifs by F or T accordingly. Based on the value of d, VANS applies different
strategies to solve the generalized (l,d)-problem.

4.1 Voting by Sequences in T

Since each length-l substring σ has Ci
l 3

i variants with exactly i substitutions, σ

has
∑d

i=0 Ci
i3

i variants. By considering each length-l substring in each sequence
in T , the voting process by T takes

O

(
nt

d∑
i=0

(Cl
i3

i)

)
= O

(
ntCl

d4
d
)

time

The candidate motifs are those variants (length-l strings) which receive at least
one vote from each sequence in T . It is shown in [5] that this simple algorithm
can solve the challenging (9,2), (11,3), (15,5) and (20,7)-motif problems in time
less than a few minutes. The filtering process removes those candidate motifs
having variants in F and this filtering step takes O(nlf) time for each candidate
motif. Since the expected number of length-l strings with at least one variant in
each sequence in T is Et(l, d), the expected running time is

O
(
ntCl

d4
d + nlfEt(l, d)

)
This approach works well on T when d or Et(l, d) is small. Table 2 shows the
values of d for which this approach works well.
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Table 2. Values of d at which voting by T works when t = f = 20 and n = 600

l 9 11 15 20 26 30
d ≤ 2 ≤ 3 ≤ 5 ≤ 7 ≤ 10 ≤ 13

Et(l, d) ≤ 1.6 ≤ 4.7 ≤ 2.8 ≤ 1.4 × 10−8 ≤ 2.1 × 10−11 ≤ 0.22

4.2 Voting by Sequences in F

When d increases, both 4d and Et(l, d) increase exponentially such that the
running time of the voting process becomes unacceptable. Since the amount of
information in F is much more than the amount of information in T when d is
large, we should focus on F instead of T .

As motif M has no variant in F , M should not be a variant of any length-l
substring in F . If each length-l substring in F gives one vote to its variants, we
can find a set of candidate motifs which get no vote from any substring in F . The
expected number of candidate motifs getting zero vote is Ef (l, d). The filtering
process removes those candidate motifs which have a variant in each sequence in
T . When d is large, Ef (l, d) ≈ Eb(l, d) is small, therefore the expected running
time of the filtering process (O(nltEf (l, d))) should be small too. However, the
running time of the voting process by sequences in F , i.e.

O

(
nf

d∑
i=0

(Cl
i3

i)

)
= O

(
nfCl

d4
d
)

might be prohibitively long for large d.
Our approach is to reduce this generalized (l,d)-problem to a smaller gen-

eralized (l′,d′)-problem with l′ < l, d′ < d and d′ small enough to be solvable.
Let us consider a generalized (l,d)-problem. Since M has no d-variant in F , the
length-l′ prefix of M and the length-l′ suffix of M should not have any ds-variant
in F either, where ds = d − (l − l′). Let

d′ = min
l−d≤l′≤l

{ds|Ef (l′, ds) ≤ 1}

For example, the generalized (20,11)-problem can be reduced to the generalized
(14,5)-problem where Ef (14, 5) = 0.0027. Since Ef (l′, d′) is small and solvable,
the reduced generalized (l′, d′)-problem is much easier to solve because d′ is
much smaller. The set of length-l′ candidate motifs should contain any length-l′

substrings of any length-l candidate motifs for the generalized (l,d)-problem, in
particular, the length-l′ prefix and length-l′ suffix of motif M . If the length-
(2l′ − l) suffix of a length-l′ candidate motif is the same as the length-(2l′ − l)
prefix of another length-l′ candidate motif, we can combine them to form a
length-l candidate motif. It can be shown that any length-l candidate motif
for the generalized (l,d)-problem can be formed by combining two candidate
length-l′ motifs of the generalized (l′, d′)-problem. Thus the expected number
of length-l candidate motifs by merging two candidate (l′, d′)-motifs is at most
[Ef (l′, d′) + (l − l′)]2 and the expected running time is
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Table 3. Values of d for which voting by F works when t = f = 20 and n = 600

l 9 11 15 20 26 30
d ≥ 3 ≥ 4 ≥ 6 ≥ 11 ≥ 16 ≥ 20
d′ 1 2 4 5 6 6

O
(
nfCl′

d′4d′
+ nlt[Ef (l′, d′) + (l − l′)]2

)
Again this Voting algorithm based on a reduced size generalized (l′,d′)-problem
works very well for large d as long as d′ is reasonably small. Table 3 shows the
values of d for which this approach works.

4.3 Local Search

The voting technique discussed in Section 4.1 and 4.2 works fine for all d when
l ≤ 15. However, when l > 15, there are cases that this voting technique will fail.
In particular when d is not too small or too large, we cannot solve the generalized
(l,d)-problems by voting from T or from F . For example, the generalized (20,9)-
problem cannot be solved by voting directly from sequences in T or directly from
sequences in F because of the long running time (c20

9 49 ≈ 4.4 × 1010 is a big
number). On the other hand, we cannot reduce the generalized (20,9)-problem
to another smaller generalized (l′,d′)-problem with a small value of Ef (l′, d′).

In order to solve these problems, a local searching method is proposed. The
motif M has no d-variant in F and this information in F should be more useful
than the information in T for finding M by local search. Assume we have a
length-l seed string S. For each length-l neighboring string N , i.e. 1-variant of
S, we find the number of d-variants of N occurring in set F . We replace string S
by the neighboring string N if N has the least number of d-variants in F and has
less d-variants than S in F . We repeat this process several times. If seed S and
motif M are within a few symbol substitutions, we may hopefully refine S to M .

The seeds can be generated randomly or selected by voting from T and F .
The probabilities that S can be refined to M after k iterations when S and
M differ by k symbols for some generalized (l,d)-motif problems were shown in
Table 4. It is evident from Table 4 that there is a high probability that we can
find motif M from seed S when S and M differ by no more than 5 symbols.

Table 4. Probabilities for refining the seeds successfully. k is the number of symbol
substitutions between seed S and motif M .

k (20,8) (20,9) (20,10)
1 0.9895 1 1
2 0.9784 0.9707 0.9394
3 0.9563 0.9282 0.8652
4 0.9074 0.8603 0.7588
5 0.8483 0.4554 0
6 0 0 0
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5 Experimental Results

We have implemented VANS in C++ and tested it on a computer with P4 2.4
GHz CPU and 4GB memory on the simulated and real data. For the simulated
data, we picked a length-l motif M randomly and also generated 20 length-600
sequences in F randomly with the 0.25 occurrence probability of ’A’, ’C’, ’G’
and ’T’ at each position. Each of these sequences in F would be regenerated
if it had a variant of M . Similarly we generated 20 length-600 sequences in T
and planted a variant of M at a random position in each of these sequences.
For each pair of l and d values, we ran 50 test cases and checked whether our
program could discover the motif. Our program discovered the motif in all cases
and the average running time is shown in Table 5. Some simulated data is missed
(e.g. (9,6), (9,7) and (11,7)) because d is so large that any randomly generated
length-600 sequence always contain a variant of any motif.

We have also tested VANS on real biological sequences stored in the public
database SCPD. For each set of genes, we chose the 600 bp upstream of the
genes as the input sequences in T . We also randomly picked the same number
of genes and chose the 600 bp upstream of these genes as the input sequences
in F . The lengths of the motifs l were the same as those of the published motifs

Table 5. VANS’ Experimental results on simulated data

running l
time 9 11 15 20

2 0.4s 2s 201s 9.4s
3 tends to 0s 9s 240s 10.6s
4 tends to 0s 1s 382s 11.2s

d 5 0.2s 3s 113.6s 27.1s
6 - 4s 17m 107.1s
7 - - 9s 111.4s
8 - - 47s 3.4hr
9 - - - 80m
10 - - - 8.6m
11 - - - 7.7m
12 - - - -

Table 6. VANS’ Experimental results on real data

Transcription Factor Published Motif pattern Motif Pattern Found
GCR1 CWTCC CTTCC
GATA CTTATC CTTAT

CCBF,SCB,SWI6 CNCGAAA CGCGAAA
CuRE,MAC1 TTTGCTC TTTGCTC

GCFAR CCCGGG CCCGGG
GCN1 TAATCTAATC TAATCTAATC
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and d was 1. Experimental results are shown in Table 6. VANS could find the
motifs for these data sets within one second for each data set.

6 Conclusion

Since the (l,d)-problem has a limitation that no algorithm can discover the mo-
tif when d is large, we define the generalized (l,d)-problem which treats those
sequences without variants of motif M as additional input. With this extra
information, the motif discovering problem with large d becomes theoretically
solvable. We also developed the VANS algorithm to solve the generalized (l,d)-
problem. Experimental results showed that VANS performed well on most prob-
lem instances including the challenging (9,2), (11,3), (15,5), (20,7)-motif problem
when F is empty.

The challenging generalized (l,d)-problems for l>20, e.g. (26,11) and (26,13),
remain unsolvable because of its long running time. Local search might work if
we can reduce the number of seeds by generating “good” seeds efficiently.
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Duplication, Substitution and Indels (EDSI)
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Abstract. Traditional sequence comparison by alignment applies a mu-
tation model comprising two events, substitutions and indels (insertions
or deletions) of single positions (SI). However, modern genetic analysis
knows a variety of more complex mutation events (e.g., duplications, ex-
cisions and rearrangements), especially regarding DNA. With the ever
more DNA sequence data becoming available, the need to accurately
compare sequences which have clearly undergone more complicated types
of mutational processes is becoming critical.

Herein we introduce a new model, where in total four mutational
events are considered: excision and duplication of tandem repeats, as
well as substitutions and indels of single positions (EDSI). Assuming
the EDSI model, we develop a new algorithm for pairwisely aligning
and comparing DNA sequences containing tandem repeats. To evaluate
our method, we apply it to the spa VNTR (variable number of tan-
dem repeats) of Staphylococcus aureus, a bacterium of great medical
importance.

1 Introduction

Sequence alignment is a rather well established tool to compare biological se-
quences. To align sequences, so-called edit operations have been defined which
represent the atomic steps of the biological phenomenon called evolution. By
successively applying such edit operations, the compared sequences can be con-
verted into each other and - assuming parsimony as a major characteristic of
evolution - good sequence alignments minimize the number of operations for
these conversions or, more precisely, the assigned costs. In the classical model
of mutation, two different edit operations are considered: the substitution and
the insertion or deletion (together indel) of single characters in a sequence. In
accordance with other literature [2], we will refer to this as the SI model (for
substitution and indels) further on.

In general sequence alignments, the SI model has proven to work well. How-
ever, modern genetics knows more complex sources of mutation, especially when
regarding the evolution of DNA. These mechanisms affect no longer only single
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positions but complete subareas of a sequence. Common other edit operations
are duplications (insertions of copied subsequences, in case of tandem dupli-
cations, immediately adjacent to the original), excisions (deletions of subareas
of a sequence), and rearrangements (relocations or reorientations of substrings
within the sequence, e.g. transpositions or inversions).

In recent years quite some work has been invested in the algorithmic inves-
tigation of tandem repeats. Tandem duplications and excisions follow different
rules than regular, character-based indels. On one hand the inserted or deleted
substrings are usually much bigger in duplications and excisions, and on the
other hand they contain the pattern of the tandem repeats in the corresponding
sequence. Preliminary work in this field roughly is categorized into (1) tandem
repeat detection, (2) alignment of sequences containing tandem repeats (with
or without knowledge of their positions), and (3) reconstruction of a tandem
repeat history where the phylogenetic history of the tandem repeats of one se-
quence is tracked down to a single ancestor repeat. (1) concerns the detection
of tandem repeat copies with an unknown pattern [9]. In the context of (2)
various works extended the SI mutation model to additionally respect tandem
duplication events (DSI model), e.g. in [2,5,1]. The research of (3) investigates
possible duplication histories of the tandem repeats in a sequence. These are
represented by duplication phylogenies which under certain conditions can be
turned into rooted duplication trees, see [3,10,7,4].

Staphylococcus aureus (S. aureus), a bacterium responsible for a wide range
of human diseases (e.g., endocarditis, toxic shock syndrome, skin, soft tissue and
bone infections etc. [16]), contains polymorphic 24-bp variable-number tandem
repeats (VNTRs) in the 3’ coding region of the staphylococcal protein A (the
spa protein) [6]. The tandem repeats in this region undergo a mutational pro-
cess including duplication and excision events in addition to nucleotide-based
substitutions and indels [11], probably caused by slipped strand mispairing [17].
Further on, the microvariation of the spa VNTR cluster [12] seems to support
the phylogenetic signal reported by other methods (e.g., by [14]). Therefore, an
automated method to compare strains of S. aureus and classify them according
to the microvariation of the spa tandem repeats is critical in order to determine
the types of newly acquired sequences rapidly and accurately.

In this paper, we introduce a novel model of evolution, the EDSI model
(excisions, duplicatons, substitutions and indels), which in addition to the DSI
model includes repeat excision operations. Moreover, the restrictions on the or-
der of mutation events are relaxed: all four edit operations may occur arbitrarily
cascaded with each other. In Section 2 we formalize the EDSI model and give
an overview of the problem addressed. Next, in Section 3, we propose an exact
algorithm to align and compare a pair of sequences under the EDSI model of
mutation. Finally, in Section 4, we give some practical examples for comparing
spa sequences of S. aureus with the novel method and Section 5 summarizes the
benefit of the EDSI model and outlines its potential for accurate phylogenetic in-
vestigations. Additional material including the proofs of all theorems is provided
in the online supplement http://www.sammeth.net/pub/05wabi suppl.pdf.
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2 Description of the EDSI Model

Let s be a sequence of characters over the DNA alphabet Σ = {A,C,G,T}, and
let s contain tandem repeats. If the boundaries of the repeats are known, s can
be written directly as a sequence s′ over the macro alphabet of the different
repeat types Σ′ = {−, A, B, C, D, . . .}. The additional gap character (− ∈ Σ′)
is used later on when aligning repeat sequences (Section 3). (Σ′)+ denotes the
set of all nonempty strings over the repeat alphabet Σ′. On s′ we define the
EDSI evolution, allowing duplication and excision of repeats (characters in s′),
as well as substitutions and indels of nucleotides within the repeats. Note that
the commonly used substitution and indel operations work on the DNA bases
of s, and therefore are comprised in the term mutation of a tandem repeat. In
contrast, the duplication and excision events affect complete repeats of s′ (Fig. 1).

Precisely, the duplication events occurring in the evolution of the spa repeat
cluster aremulti-copy duplications (1-duplication, 2-duplication, etc.) copying one
or more adjacent repeat copies at a time. The boundaries of the duplicated repeats
are restricted to the boundaries of tandem repeats on the nucleotide sequence s.
However, on s′ the duplication boundaries are free in the characters of the macro
alphabet Σ′, i.e., duplicated substrings may start and end anywhere in s′. Finally,
the duplication operation in the EDSI model is single-step, denoting that no more
than one copy of a duplicated substring is produced in one evolutionary step. In
the same manner, the excision operation of the model is characterized as multi-
copy (1-excision, 2-excision, etc.) with free boundaries on s′. The order of events
in EDSI is unrestricted. To be specific, all four edit operations described by the
model may be applied arbitrarily cascaded with each other (Fig. 1).

Fig. 1. An example for cascaded duplication, excision, and mutation events. Shown
are DNA sequences si and the corresponding sequences s′

i on the macro alphabet Σ′ of
repeat types (superimposed on si in grey). Some edit operations (as given to the right)
successively are performed on the sequence. It can be easily seen that after a couple of
cascaded operations the sequence of characters is rather scrambled.
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In order to assess the evolutionary distance between two given sequences,
we assign costs to all operations comprised in the EDSI model: coste(w) for the
excision of the tandem repeat copies in string w, costd(w) for a duplication of
the tandem repeats in string w, and costm(w1, w2) for a mutation of a repeat
type w1 into the repeat type w2. The cost model of EDSI evolution then can
be freely adjusted1 with respect to the following criteria:

– Excision costs should be positive, coste(w) > 0 for all w ∈ (Σ′)+, since exci-
sion events can replace all other operations. To be specific, any non-identical
pair of sequences (s′, t′) can be derived from a concatenated ancestor string
s′t′ by two excisions (once excising s′ to reconstruct t′ and once exising t′

to deduce s′ from the ancestor). Hence, finding the minimum distance for
sequences in a cost model with coste(w) = 0 is trivial.

– Duplication costs should be non-negative, costd(w) ≥ 0 for all w ∈ (Σ′)+.
– Mutation costs should comply with the properties of a metric: symme-

try (costm(w1, w2) = costm(w2, w1) for all (w1, w2) ∈ Σ′), zero property
(costm(w, w) = 0 for all w ∈ Σ′) and the triangle inequality (costm(w1, w2)+
costm(w2, w3) ≥ costm(w1, w3) for all w1, w2, w3 ∈ (Σ′)+).

The problem of sequence evolution comprising EDSI operations can now be
formulated as an optimization problem with the goal of minimizing the EDSI
distance defined in the following: Given two sequences (s′, t′) and cost measures
coste, costd, and costm, find the distance d(s′, t′) under the EDSI evolution that
is the minimum sum of costs of all series of operations possible to reproduce
one sequence from the other. This can be interpreted such that both sequences
s′ and t′ are subjected to evolutionary operations in order to transform them
into a common string – a possible common ancestor according to the biological
model. The operations that produce a common ancestor of s′ and t′ with the
least costs define the EDSI distance d(s′, t′).

Theorem 1 (finiteness). The edit operations under EDSI evolution and their
unrestricted order basically force us to explore an infinite search space of possible
ancestor sequences. However, the space of operation sets to be explored in order
to find the minimal distance between two sequences d(s′, t′) is finite.

Proof. When reconstructing possible evolutionary histories from a given pair
of sequences (s′, t′), theoretically there could have been present an arbitrarily
large number of repeats between two adjacent positions x and x + 1 of s′ (or,
symmetrically, t′) which later were deleted with cost coste > 0. There are two
possible sources for these deleted repeats in the tandem-repeat history: (i) they
may have emerged from duplication events, or (ii) they may have been repeats
from non-duplicated sequence areas. Cnsider case (i). If a deleted repeat has
originated from a duplication event, the corresponding excision can be detected
by investigating all possible duplication events to the left (in s′[1, x]) and to the

1 For a definition of the costs used for the Staphylococcus aureus evolution see Sec-
tion 4.
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right (in s′[x+1, |s′|]). The number of single duplication events on a finite string
is limited, and so is the number of possibly excised repeat units between x and
x+1. Moreover, all character insertions between x and x+1 induced by possible
duplication events with consecutive excisions are collected (Section 3.1 and 3.2)
and taken into account in the final comparison between s′ and t′ (Section 3.3).
Consider now case (ii). If deleted substrings have originated from non-duplicated
sequence areas (or whenever the second repeat copy of a duplication has been
excised as well), they are not relevant in the search for a minimal distance: in
the comparison of s′ with t′ an appropriate excision event will be detected (Sec-
tion 3.3), whenever t′ has a substring that aligns between s′[x] and s′[x + 1].
However, if the alignment with t′ does not indicate any presumptive excision be-
tween x and x+1 in s′, all such theoretically possible excisions are not contained
in the operations determining the minimum distance since additional excision
costs coste > 0 produced an ancestor sequence that is not closer to t′ than the
original sequence s′. ��

3 Pairwise Alignment Under the EDSI Model

After the definition of the EDSI model, we can describe an exact algorithm
to compare and align sequences with respect to the four edit operations. The
main idea of our method is to find possible repeat histories, assign costs to
them according to the edit operations, and consider them as alternatives dur-
ing an alignment procedure. Thereby the alignment possibility between both
sequences with the least cost is selected, regarding the original sequences with
all contracted substrings generated by the repeat histories. Assuming the parsi-
mony principle for nature we take these costs as a distance measure for the
compared sequences. So basically our algorithm works in two steps: first it
finds possible duplications on each sequence under the rules given by the EDSI
model. Afterwards, we determine the distance between a sequence pair in a high-
dimensional multiple sequence alignment (MSA) using the duplication events
found before as alternative alignment possibilities between the compared se-
quences.

Although not observed in biology, we also use the term contraction for the
mathematically inverse process of a duplication. Our technique is based on con-
tramers C = (s′, b, m, e, A), representing contraction units. These are substrings
of s′ (the macro alphabet representation of the input string s) on which a con-
traction is performed. The substring to be contracted, s′[b, e], is located within
s′ by its beginning b and its end position e. The meridian m, (b < m ≤ e)
splits the contramer into two segments, also called the prefix (the first segment
s′[b, m− 1]) and the suffix (the second segment s′[m, e]). Finally, the alignment
A of the prefix and the suffix describes how the characters of both segments
are evolutionarily related according to the contramer. To be specific, aligned
repeats correspond to each other (with respect to possible mutation events) and
gaps indicate the excision of repeats. An example of a contramer representing a
duplication event (including mutation and excision) is given in Fig. 2.
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Fig. 2. A contramer C = (s′, 1, 5, 7, A) that implies the duplication of substring
s′[1, 4] = ABCD and its post-duplicational modification into ADD. The alignment
(grey box) shows that repeat B was excised while repeat C mutated to repeat D.
All vertically adjacent repeat pairs (i.e., non-gap characters) in an alignment layout
correspond to each other w.r.t. possible mutations. These links (black lines) are not
explicitly visualized in further representations of an alignment.

3.1 Primary Library of Contramers

The initial set of contramers is extracted directly from the repeat sequence s′. For
each meridian position in s′, 1 < m ≤ |s′|, all alignment possibilities of available
non-empty prefixes s′[b, m−1], 1 ≤ b < m, and non-empty suffixes s′[m, e], m ≤
e ≤ |s′|, are generated. The contramers inferred thereby form the primary library.
Note that at this stage the similarity of the aligned segments is not optimized
by any objective function since links between amalgamated contramers later on
can involve new repeat copies (i.e., characters of s′). Contramers in the primary
library represent possible duplication events, i.e. links of positions in neighboring
segments.

Algorithm 1. (Generate the contramers for the primary library L)
1: L ← ∅
2: for m ← 2 to |s′| do
3: for b ← 1 to (m − 1) do
4: for e ← m to |s′| do
5: AP [] ← GeneratePossibleAlignments(b,m, e)
6: for all A in AP[] do
7: Store(L, C = (s′, b, m, e, A))
8: end for
9: end for

10: end for
11: end for

Algorithm 1 outlines the technique used to assemble the primary library of
contramers. As input serves a sequence s′ on the alphabet of tandem repeats Σ′.
The resulting list L contains each possible contramer C = (s′, b, m, e, A) of s′.
The cost of a contramer may be derived directly from the associated alignment A
by adding, for each column of the alignment, the costs of mutations or excisions.
In addition, to reflect the costs for the duplication event, costd(s′[b, (m− 1)]) is
added, yielding the final cost of contramer C = (s′, b, m, e, A):
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cost(C) = costd(s′[b, (m − 1)])

+
|A|∑
i=1

⎧⎨⎩
costm(A1i, A2i) for each mutation (A1i �= − �= A2i)
coste(A1i) for each excision in the prefix (A1i �= −, A2i = −)
coste(A2i) for each excision in the suffix (A1i = −, A2i �= −).

Theorem 2 (completeness of the primary library). Contramers contained
in the primary library exhaustively generate all ancestor strings that can be de-
rived from a sequence by reversing exactly one duplication event (Supplement).

3.2 The Secondary Library

In order to infer cascaded duplication histories, overlapping primary contramers
C1 and C2 are to be merged to form cascaded duplication events. Abusing no-
tation, we define a contramer intersection (union) as the intersection (union)
of the corresponding segments of s′, i.e. C1 ∩ C2 = {b1, . . . , e1} ∩ {b2, . . . , e2}
(C1 ∪ C2 = {b1, . . . , e1} ∪ {b2, . . . , e2}).

If C1 ∩ C2 comprises positions of both segments of C1, we call C1 a con-
tained contramer (and C2 a containing contramer). Otherwise, C1 and C2 are
connected contramers. However, not all overlapping duplication events are nec-
essarily compatible with each other. The precondition for a pair of compatible
contramers (C1, C2) is that they can be realized in a common evolutionary or-
der, i.e., there exists at least one repeat history tree comprising both described
duplication events.

Evolutionary order of compatible contramers. The common evolutionary
realizability can be deduced from analyzing the intersection of the two con-
tramers C1 ∩ C2. In evolution, the duplication events described by contained
contramers must have happened before the duplication events of the contramer
they are contained in (Fig. 3a), whereas for a pair of connected contramers the
evolutionary order does not matter (Fig. 3b). Two contramers mutually con-
tained in each other are not realizable in a common repeat history (Fig. 3c),
even if they share the same meridian position m (Fig. 3d).

Lemma 1 (merging conditions). Two contramers C1 = (s′, b1, m1, e1, A1)
and C2 = (s′, b2, m2, e2, A2) are compatible and can be merged if:

1. they overlap, C1 ∩ C2 �= ∅ ( connectibility) and
2. one of the reflected duplication events has happened after the other one.

Therefore at least the contramer C1 needs to have a segment outside of the
intersection area, (m1 − 1) /∈ C1 ∩ C2 or m1 /∈ C1 ∩ C2 ( compatibility).

Lemma 1 describes the preconditions that are to be met to merge a pair of
contramers. Afterwards, C1 and C2 are merged into C1 ∪C2 by combining their
respective alignments: any repeat s′[x] in the overlapping area C1 ∩ C2 may be
linked to two other repeat copies s′[y] ∈ (C1 \ C2) and s′[z] ∈ (C2 \ C1) by the
alignments A1 and A2. Thereby a transitive link between both of the not directly
associated repeats s′[y] and s′[z] is created. All three repeats (s′[x], s′[y], s′[z])
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Fig. 3. Restrictions on compatible contramer pairs C1 = (s′, b1, m1, e1, A1) and C2 =
(s′, b2, m2, e2, A2) (grey boxes, meridian position indicated by a dashed line). Possible
repeat histories expressed by the amalgamation C1∪C2 are depicted on the right. (a) C1

is contained in C2, therefore the evolutionary order is fixed and the duplication captured
in C1 must have happened before the one described by C2 (only one possible repeat
history). (b) Merging two connected contramers imposes no order on the evolution
(i.e., the duplication of C1 or C2 may have happened first). (c) and (d) If none of
the contramers has a non-intersecting segment, {m1 − 1, m1, m2 − 1, m2} �∈ C1 ∩ C2,
no repeat history can be found incorporating both duplication events captured by the
contramers. This holds even if the meridians coincide, m1 = m2, see (d).

are then written in one column of the merged alignment (Fig. 4a). Problems arise
when both contramers comprise excisions in between corresponding positions of
the overlapping area (Fig. 4b). In this case the contramers do not provide a
unique information about the transitive relation between the excised characters.
One possibility would be to exhaustively generate all the alignment possibili-
ties between the respective characters. However, since we are only interested in
finding a ”good” combination of characters minimizing the distance to another
sequence, we let these ambiguous repeats unaligned for the moment and search
for a combination similar to the compared sequence later on in the comparison
step (Section 3.3).

The merging strategy is straightforwardly extendable to deal with more than
two contramers. A set of combinable contramers {C1, C2, . . . , Ck} obviously re-
quires that each of the contramers Ci, i ∈ {1, 2, . . . , k} has to fulfill the precon-
dition of connectibility with at least one other contramer j ∈ {1, 2, . . . , k}, j �= i.
Otherwise Ci is isolated and cannot be joined. Furthermore, it is required that
each pair of overlapping contramers (Ci, Cj), i, j ∈ {1, 2, . . . , k}, is compatible.
The order in which the contramers are joined is not important:
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Fig. 4. Transitive links when merging contramers. (a) A pair of partially overlapping
contramers where e.g. C1 connects the positions (2, 5) and C2 links position 5 with
8. The transitive link created when merging A1 with A2 links all three B-characters
together (2nd column of the merged alignment to the right). (b) The amalgamation
of a pair of contramers (C1, C2) which are both inducing characters in the same area.
Consequently, the phylogenetic relation of the characters (lowercase) cannot be exactly
determined (possible relations are indicated by the dotted grey lines).

Fig. 5. A set of multiply merged contramers (C1 ∪ C2 ∪ C3 ∪ C4) and the respective
concatenated alignment. Note that lowercase characters are not uniquely aligned by
the transitive links of the contramers, and their position is determined later during the
comparison process (Section 3.3).

Theorem 3 (commutativity). The pairwise merging steps of multiply joined
contramers are commutative, (C1 ∪ C2) = (C2 ∪ C1) (Supplement).

Figure 5 demonstrates that when performing a multiple amalgamation with all
preconditions met by the contramers {C1, C2, . . . , Ck}, we perform successively
the merging step for each pair of overlapping contramers (Ci, Cj) such that i �= j,
Ci ∩ Cj �= ∅.

Algorithm 2 describes the construction of contramers in the secondary li-
brary. Initially, L comprises the contramers already included in the primary
library. The set of contramers with beginning b, meridian m, and end e can be
accessed via the function getC(L, b, m, e). The functions findConnectedC()
and findContainedC() extract contramers in a given subarea (specified by the
start and end point). For each pair of overlapping contramers the preconditions
are checked before returned (set DP []). In the end, compatible contramers F are
merged with C, and the result is added to L.
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Algorithm 2. (Amalgamate contramers to build the secondary library L)
1: L ← PrimaryLibrary()
2: for m ← 2 to |s′| do
3: for b ← 1 to (m − 1) do
4: for e ← m to |s′| do
5: CP [] ← getC(L, b, m, e)
6: for all C in CP [] do
7: DP [] ← findConnectedC(L,m, e)
8: for all D in DP[] do
9: F ← Merge(C,D)

10: Store(L,F )
11: end for
12: DP [] ← findContainedC(L, b, m)
13: for all D in DP[] do
14: F ← Merge(C,D)
15: Store(L,F )
16: end for
17: end for
18: end for
19: end for
20: end for

Theorem 4 (completeness of the secondary library). Contramers con-
tained in the secondary library generate all ancestor strings that can be derived
from a sequence under the EDSI model containing one or more duplication events
(Supplement).

3.3 Contramer Alignment

In the final alignment phase, the possible tandem repeat histories of two se-
quences (s′, t′) are used as alternative character combinations when comparing
s′ to t′. To this end, we extend the well established technique of dynamic pro-
gramming (DP) for sequence alignment to additionally take into account the
(cascaded) duplications. The contramers found along both sequences to be com-
pared serve as additional alignment possibilities, i.e., cells extending the reg-
ular DP matrix. For each cell (i, j) to be computed in the DP recursion of
the main matrix M of size |s′| × |t′|, (merged) contramers ending at position
i in s′ (or at position j in t, respectively) are considered. The alignment pro-
file of each comprimer C = (s, b, m, e, A) can substitute the characters of the
original sequence in the area s′[b, e]. Note that each cell (i, j) of the matrix
M is connected by multiple contramers with any of the cells computed earlier
during the DP process. Therefore, the resulting alignment is high-dimensional
with multiple alternative submatrices for each contramer in both sequences
(Fig. 6).
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Fig. 6. An example for an alternative submatrix within a DP matrix M = |s′| ×
|t′|. C2 = (t′, 5, 10, 11, A2) substitutes the substring t′[5, 11] with the alignment A2.
Projected into M , C2 spans the submatrix shown. During the DP process paths within
the original and within the submatrix are taken into account when determining the
optimum of the cells in column 12. Note that only contramers of one possible repeat
history are depicted here, but all cascaded duplication events of the secondary library
are investigated.

The matrix M can be computed by the following recursion formula:

M(i, j) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(i − 1, j − 1) + costm(s′[i], t′[j]) //mutation
M(i − 1, j) + coste(s′[i]) //excision in s′

M(i, j − 1) + coste(t′[i]) //excision in t′

M(i − bx, 0) + cost(Cx) + align(t′[0, j], Ax)
for all Cx = (s′, bx, mx, i, Ax) //duplication in s′

M(0, j − by) + cost(Cy) + align(s′[0, i], Ay)
for all Cy = (s′, by, my, j, Ay) //duplication in t′

M(i − bx, j − by) + cost(Cx) + cost(Cy) + align(Ax, Ay)
for all Cx = (s′, bx, mx, i, Ax)
and Cy = (s′, by, my, j, Ay) //duplication in s′ and t′

At each stage (i, j) of the alignment, the minimum cost is calculated for
all edit operations of the EDSI model: mutation (line 1) of repeats (comprising
substitutions and indels on the DNA alphabet Σ), excisions (lines 2 and 3) of
repeat copies (on the macro alphabet Σ′) or duplication events (lines 4, 5 and 6).
The preference of the algorithm is in the same order as given, and to optimize
the performance a bounding step was added to only assess the alignment of
contramers C which are not already exceeding the costs found earlier for a cell
(i, j) by their cost cost(C).
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As found earlier (Section 3.2, Fig. 4), in merged contramers not necessarily all
of the transitive relations are clear. These positions are to be aligned within the
amalgamated contramer taking also into account the sequence the contramer
is compared to. To this end we use a stable re-implementation of the hyper-
space multiple sequence alignment procedure [15], which was modified to use
the scoring function for repeat evolution, when aligning the amalgamated con-
tramers with the corresponding compared sequence: all positions already aligned
between the duplication events of the contramers are provided as constraints,
whereas the ambiguous positions finally are aligned optimally according to the
sequence information (Supplement).

Theorem 5 (correctness of the method). The distance d(s′, t′) found by
the DP recursion is the minimum distance possible in the comparison of s′ and
t′, assuming the model of EDSI evolution.

Proof. In the primary library all possible links between repeats of s′ and t′

that can originate from single duplication events, are generated (Theorem 2).
Thus, by merging overlapping duplication events in the secondary library, we
explore all possible cascades of duplications collected in the primary library
(with restrictions to the biological model as given in Lemma 1, Theorem 4). On
each of these cascades, excision events are tried before and after the respective
duplication in order to yield the minimum costs according to the EDSI evolution.
Finally, in a high dimensional alignment all contramers extracted from s′ and t′

are used as alternative substrings imposing replacement costs as calculated. The
minimum distance is then finally found by a DP recursion in a high dimensional
alignment (Section 3.3). ��

Obviously the time and space complexity of the method are exponential w.r.t. the
sequence length. Note that the input of the algorithm are sequences of already
annotated repeats and the input size therefore is much smaller than the original
sequences.

4 Results

To test our method, we applied it to the DNA sequences of Staphylococcus au-
reus. To be specific, the 5’-VNTR clusters in the gene encoding the spa pro-
tein were used as input for pairwise alignment under the EDSI model. Since
the repeat patterns for all hitherto isolated strains (so-called spa types) are
known, the sequences are provided in characters of the macro alphabet Σ′.
To this point, we use the Kreiswirth notation defined by identify the repeats
Σ′ = {A, A2, B, B2, C, C2, . . . , V, V2, W, X, Y, Y2, Z, Z2}. In addition to the sim-
plified alphabet used to introduce the model, in the Kreiswirth notation each
letter may be used more than once in conjunction with a unique index [12].

Comparison of ST-254 spa types. We set up a simple cost scheme for the com-
parison of spa types: since we are interested in a distance to measure evolutionary
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Fig. 7. Sequence comparison of the MLST sequence type ST-254. (a) a list of spa types
found to have the ST-254 pattern. The data was acquired by sequencing from the same
laboratory strains the VNTR cluster of the spa protein and the MLST loci [13]. (b)
One alignment that scores minimal costs for each pair of spa types from the ST-254
group. Substrings involved in duplication events leading to the minimum distance are
underlined. To the right of the alignments the costs are given w.r.t. the EDSI model and
in parentheses the costs under the SI model (without taking into account duplications).
Under the EDSI model, the costs in the comparison of t036 and t048 are composed of
a duplication event of the substring t048[5, 6] = BL and the mutation of repeat L into
t036[6] = Q with distance d(t036, t048) = costd(t048[5, 6]) + costm(L, Q) = 1 + 0 = 1.

steps, we assign a unit cost u corresponding to the number of operations needed
to perform the change. A duplication costs one operation (costd(s′[x, y]) = u),
regardless of its length. The objective function to score mutation events (sub-
stitutions and indels of nucleotides) is based on the alignment of the repeat
types (Supplement). In order to contribute to the fact that the repeat clus-
ter is coding, nucleotide substitutions changing effectively the corresponding
codon are weighted with a cost of u, while silent mutations are omitted. In the
same manner indels are penalized according to the number of codons x missing
(xu). If not further specified, we set u = 1 in the tests. The mutation costs
costm(x, y) for x, y ∈ Σ′ are summed up along the pairwise DNA alignment of
x and y which is projected from the global alignment of all repeats. Excisions
are treated differently, we penalize them according to their length, such that
costc(s′[x, y]) = (y − x). The linear cost function prevents the algorithm from
replacing all evolutionary events by excisions when repeat copies are no longer
exact. From another point of view, the scoring biases the algorithm to favor
duplications and mutations and prefer them – up to a certain threshold – over
possible excisions.

Since, to our knowledge, this is the first time the VNTR data of spa types is
used to infer distance measures, we focus on one sequence type (ST-254), which
by definition pools strains with the same types of the seven housekeeping genes
used for MLST [8]. However, the resolution of STs found by MLST is lower
than the microvariation within the spa repeat cluster. Thus, a ST group with
an identical MLST pattern can pool several strains with diverging spa types
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(named by ”t” and a 3-digit code), while the other way around a spa type may
have evolved in different ST groups. Spa types used in here to investigate the
micro-variation of the repeats (i.e., t036, t048, t115, t139, and t146) were isolated
in the laboratory from identical strain stocks [13]. Therefore, the microvariation
of these spa types can be assumed to bear a phylogenetic marker (Fig. 7a [11]).

Figure 7b summarizes the differences of applying the novel method based on
the EDSI evolution in contrast to standard scoring functions for SI model. We
adapted the scoring function of the SI alignment to the same values given for the
EDSI evolution (xu for the insertion of x gaps and substitution costs according
to non-synonymous mutations, Supplement). We want to stress on the fact, that
the alignments shown are only one example from a set of alignments that can
reproduce the minimal costs shown. Minimal costs of the other alignments in
Fig. 7b can be calculated as follows (mutations of cost 0 are omitted):

d(t036, t115) = 2costd(t036[6, 8]) = 2
d(t036, t139) = costd(t036[6, 8]) + coste(t036[2, 2]) = 2
d(t036, t146) = coste(t036[2, 2]) + coste(t036[8, 8]) = 2
d(t048, t115) = costd(t048[5, 6]) + 2costd(QBL) = 3
d(t048, t139) = coste(t048[2, 2]) + costd(t048[4, 5]) + costd(QBL) = 3
d(t048, t146) = coste(t048[2, 2]) + coste(t146[6, 6]) = 2
d(t115, t139) = coste(t115[2, 2]) + coste(t115[6, 8]) = 2
d(t115, t146) = costd(t146[2, 2]) + coste(t115[8, 8]) + 2costd(QBL) = 4
d(t139, t146) = costd(t139[7, 7]) + costd(QBL) = 2

5 Conclusion

The EDSI model of evolution joins the events of tandem duplication, tandem
copy excision, point mutation and deletion that may happen in arbitrary order
throughout evolution. To our knowledge, this is the first time an evolutionary
model of that complexity has been described for sequence comparison. Taking
into account operations as captured in the EDSI model, we described an exact
method to compare a pair of repeat sequences and to assign them a distance. In
first tests we could show that the pairwise comparison under the EDSI model
efficiently captures cascades of duplication events and expresses them in the
distance measure. Regular scoring functions (based on the SI or DSI model)
cannot resolve these distances, which already have been demonstrated in vivo
studies to be essential mechanisms in the evolution of S. aureus [11].
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Abstract. Recently Peres and Shields discovered a new method for es-
timating the order of a stationary fixed order Markov chain [15]. They
showed that the estimator is consistent by proving a threshold result.
While this threshold is valid asymptotically in the limit, it is not very
useful for DNA sequence analysis where data sizes are moderate. In this
paper we give a novel interpretation of the Peres-Shields estimator as a
sharp transition phenomenon. This yields a precise and powerful estima-
tor that quickly identifies the core dependencies in data. We show that
it compares favorably to other estimators, especially in the presence of
noise and/or variable dependencies. Motivated by this last point, we ex-
tend the Peres-Shields estimator to Variable Length Markov Chains. We
give an application to the problem of detecting DNA sequence similarity
using genomic signatures.

Abbreviations: Mk = Fixed order Markov model of order k, PST
= Prediction suffix tree, MC = Markov chain, VLMC = Variable length
Markov chain.

1 Introduction

Markov chains (MCs) are often used for analysis of biological sequence data,
such as DNA [8]. The predominant model is a fixed order MC of discrete state
space. The order, k, represents the number of nucleotides (symbols) taken into
account when predicting the next state. These models have been applied success-
fully when identifying transcription factor binding sites [9] and detecting new
microbial genes [3].

A fundamental problem in using fixed order MCs is the so called order esti-
mation problem, where the unknown order is inferred from observed data. There
are many order estimators described in the literature. Some of the better known
include the AIC [1] and BIC [19] methods based on maximum likelihood. The
consistency of the BIC method was only recently established by a complicated
analysis [6]. More recently, Peres and Shields [15] discovered a new method for the
order estimation problem and established its consistency by a significantly sim-
pler proof. In this article we present the first experimental analysis and compar-
ative evaluation of the new method of order estimation due to Peres and Shields .
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One drawback with the fixed order MCs is that the number of free pa-
rameters, the transition probabilities, grows very rapidly as the dependencies
get longer. The number of free parameters in a fixed order MC of order k
with alphabet Γ is O(k) := |Γ |k(|Γ | − 1) More specifically, if the alphabet
is DNA, the resulting number of parameters for order k = 0, 1, 2, 3, 4, 5 is
O(k) = 3, 12, 48, 192, 768, 3072 respectively. The amount of data required to
estimate these parameters increases rapidly resulting in the “curse of dimen-
sionality”: This problem is accentuated in the presence of noise. If the number
of data available was unlimited this would not be a problem; however, this is
not the case in biology.

The class of fixed order MCs is also structurally poor: to quote Bühlmann
et al. [4], “There are no models ”in between” ... it is impossible to fit a model
with, say, 72 parameters. Such a very discontinuous increase in dimensionality
of the model does not allow a good trade-off between bias (being low with many
parameters) and variance (being low with few parameters)”.

Both the “curse of dimensionality” and the structural poverty of fixed order
MCs are addressed by allowing the context to vary as in VLMC [17]. These
models constitute a powerful tool when transition-matrices are sparse and the
memory long in certain directions. VLMCs have been applied successfully in
biology, e.g. identification of transcription factor binding sites [20] and classifi-
cation of protein sequences [2]. The fundamental problem in VLMC, analogous
to the order estimation problem, is to estimate (identify) the context describing
the transitions. This is captured by the minimal state space description as a
Prediction Suffix Tree (PST) [17].

We show how to extend the Peres-Shields idea to the problem of estimating
the underlying PST of a VLMC. We prove that the resulting estimator eventu-
ally almost surely identifies the underlying PST. We also demonstrate how to
engineer algorithms for implementing the estimator using sharp transition phe-
nomena and give a comparison to the VLMC module in the statistical software
package R (http://www.R-project.org).

This paper is organized as follows: In Sect. 2 we describe the fixed order
MC and discuss practical issues in terms of using the Peres-Shields estimator for
identifying the order. We give an extensive experimental analysis comparing it
to other estimators and identify the strength of the new estimator. In particular,
we show that it is significantly more robust to noise and that it is more sensitive
to mixture of models. In Sect. 4 we describe VLMCs and show how to extend the
Peres-Shields idea to identify the underlying PST. In Sect. 5 we give a biological
application for detecting sequence similarity using genomic signatures.

2 Fixed Order Markov Chains

2.1 Higher Order Markov Chains

Let Γ be a finite alphabet (for biological applications, {A, C, G, T} is a common
choice). Let X := {Xn} denote a stationary Γ -valued process with distribution
P = PX defined by: P (an

m) := P(Xn
m = an

m), for all m ≤ n and all sequences



The Peres-Shields Order Estimator for Fixed and Variable Length 293

an
m := am, am+1, · · · , an ∈ Γ . We will also use the standard conditional proba-

bility notation, e.g. P (am+1 | am
1 ) := P (am+1

1 )/P (am
1 ).

The process X = {Xn} is said to be Markov of order 0 if it is i.i.d. and
Markov of order m if m is the least positive integer k such that

P (a1 | a0
−∞) = P (a1 | a0

−k+1), (1)

for all sequences a0
−∞ := a0, a−1, · · · ∈ Γ .

2.2 Peres-Shields Fluctuation Formula and Estimator

Let Nx(v) := |{i ∈ [n] | xi+�
i = v}|, denote the frequency of occurrence of the

word v of length � ≤ n in xn
1 .

Using these frequencies, we can form the empirical transition probabilities:
for v ∈ Γ � and a ∈ Γ ,

p̃v,a :=

{
Nx(va)/Nx(v) if Nx(v) �= 0,
0 otherwise.

(2)

The basic observation of Peres and Shields is that if the source is of true
order k, then for any v ∈ Γ �, the empirical probabilities p̃v,a should be very
close to the empirical probabilities p̃τk(v),a, where τk(v) denotes the k-suffix of v

i.e. τk(v) := v�
�−k+1.

To quantify this, introduce the Peres–Shields Fluctuation function

Δk
x(v) := max

a∈Γ

∣∣∣∣Nx(va) − Nx(τk(v)a)
Nx(τk(v))

Nx(v)
∣∣∣∣ . (3)

If the true order is k or less, one expects this fluctuation to be “small”, otherwise
“large”.

Theorem 1 (Peres-Shields 2004). The estimator

kPS(xn
1 ) := min{k ≥ 0 | max

k<|v|<log log n
Δk

x(v) < n3/4} (4)

is a consistent Markov order estimator i.e. it is almost surely correct in the limit
n → ∞.

3 Experimental Analysis: Fixed Order

3.1 Sharp Transitions

The threshold in (4) is valid in the asymptotic limit. As we discovered, just taken
as such, it is not very useful in a typical practical setting. The actual thresholds
at finite values of n are different for different order models. So one is forced to the
cumbersome resort of finding a different threshold for every k to use in practice.
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Fig. 1. The sharp transitions. In, (a) and (b) the Peres-Shields fluctuation. In (a)
the simulation is for n = 300 nucleotides. The cut-off is already clear, but in (b) the
simulation is for n = 10000 and the transition is much sharper. 100 simulated DNA
sequences were used for each plot using an M1 model.

Even then, it is quite difficult (if not impossible) to come up with a consistent
set of thresholds that work together for all k simultaneously.

We avoid the obstacle by making the observation that even though the ab-
solute thresholds are different for different order models (at finite values of n),
nevertheless, all order models display the same distinct trend: there is a sharp
transition from a high fluctuation to a low fluctuation value at the correct or-
der. Figure 1 shows the sharp transition phenomenon used by the Peres-Shields
method to pinpoint the true order for two different sizes of data. The rule,

argmax
k≥0

Δk
x

Δk+1
x

. (5)

was tested as a simple criterion determining for which k the sharp transition
occurs. Using this criterion may be viewed actually as using a new order estima-
tor, albeit one very closely related to the Peres-Shields estimator. The criterion
successfully determines the correct order when many nucleotides are present.

3.2 Comparison to Other Estimators

In order to compare the performance of the Peres-Shields estimator (PS) to some
of the more well-known estimators we simulated DNA sequences under different
MCs according to the following settings: for an order k model, the transition
probabilities pu,a are generated independently at random to a specified target
G + C content, i.e. a stationary distribution which the MC will converge to as
time goes to infinity. The G + C content is known to be an important factor in
the genome evolution of bacteria (e.g. [11]). The target value will be denoted X
and is a normally distributed stochastic variable of mean μ := 0.5 and standard
deviation σ := 0.15, i.e. X ∼ N(0.5, 0.15). The values were found by studying a
set of bacteria.

Simulating 1000 artificial sequences from the above schema for k = 1, 2, 3, 4, 5
we compared the PS estimator, implemented as in Sect. 3.1, to the following
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Fig. 2. Efficiency of different estimators. 1000 simulated sequences per sequence length
were used. In (a) data was generated using a k = 1 model and the percentage of k̂ = 1
of each estimator is presented on the y-axis. Similar in (b) k = 3, (c) k = 5. In (d) an
M5 model (k = 5) was first used and the output passed through a noisy channel where
each site is randomly mutated into another with pnoise = 0.4.

estimators [1,19,6,10]: Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), Bayes Factor with uniform prior (BF1) and Bayes Factor with
Jeffreys prior (BF2). The results indicate that the PS estimator is comparable
in terms of efficiency with the others. It performs slightly worse for data under
an M1 model, Fig. 2 (a), but performs comparable for larger k. Fig. 2 (b-c). The
BIC estimator tend to under-estimate the order as k gets larger for moderate
data-sizes. This trend has been observed earlier (eg. [10]).

Knowing that all models are rough approximations to the biological reality,
we decided to add a fraction of noise to the sequences produced according to
the above models. The generated sequences are passed through a noisy channel
where each site randomly mutates into another with probability pnoise > 0. It
appears that the PS estimator is more robust to these changes and when the
level of noise reaches higher values than 50% it is much more robust than the
others. Fig. 2 (d) shows the case of 40% noise of the M5 data. The AIC estimator
performs quite well but no other estimator is near the PS.

The critical reader might STOP here and draw the conclusion that this is
just yet another estimator that is comparable to the others but not significantly
better. It works better in some conditions but worse in others! This is a mistake
and we shall try to convince him/her otherwise. One of the reasons the estimator
falls a bit behind in some cases is that it seeks the longest dependencies in data
and not the average. It identifies the maximal dependencies and this is also
its strength when exposed to noise. This strength will also be seen in another,
perhaps even more important category of data — mixtures of models.

3.3 Mixture of Models

An Mk model can be sparse meaning that many of the transition probabilities
are of lower order than k. One example is if P (A|TT ) = P (A|T ). This is often
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Fig. 3. Percentage of times of estimating models of different order k when using a
variable Markov model as underlying model. The model used has the longest depen-
dence of order 4 and hence can only fully be represented with an M4 model in a fixed
context. In (a) the number of times each estimator assigns the order to one, k̂ = 1. In
(b) similarly but k̂ = 2. In (c) k̂ = 3. In (d) k̂ = 4, which is the true order.
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Fig. 4. An example of a PST which can be used for representing a variable length
Markov model. The corresponding fixed order Markov model would need to be M4 to
model this structure.

the case in biology where genes, repetitive regions and other patterns shape the
structure of the chromosomes. Memory is long in certain directions. The esti-
mated k of any consistent order estimator should output k equal to the longest
dependence when data is unlimited. To investigate this setting, we construct two
types of models.

1. Two nested models are used simultaneously to generate data. One of lower
order and one of higher order. When a new site is to be generated the lower
or higher order model is used with probabilities according to plower > 0 and
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1 − plower > 0. We use the word nested meaning that the lower order model
can be derived from the higher order without any additional information.

2. A variable length Markov model (see Sect. 4) corresponding to a non-sparse
fixed lower order model (in other words complete in terms of having a distinct
set of all transition-probabilities) with an additional single long branch of
length k, where k will be the order of any fixed Markov chain to model this
dependence (An example of such is seen in Fig. 4).

Using both the above categories of simulated data, we find that the PS esti-
mator is much more efficient at finding longer dependencies in data than all other
estimators. A typical trend observed from the first category, when 1 − plower is
low, is that most estimators initially select the lower order model. The PS es-
timator tends to select the higher model at a much lower number of data. In
the second category of simulated data, VLMCs, we observe a similar trend.
Fig. 3 shows four plots illustrating the percentage of estimating the order 1,
2, 3 and 4 where the true order, or the longest branch in the PST, equals 4.
Note how AIC picks up the trace gradually. In (b) it believes the order is 2
but abandons this hypothesis as data grows. In (c) it believes the order is 3 and
also here abandons the result. Finally in (d) AIC finds the correct order (not
shown in plot, all estimators find the correct k = 4 order as the size of data
grows).

The simulations in this section show that the Peres-Shield estimator is supe-
rior for identifying the order of Markov models when the context is variable or
comprised of several Markov models: It is more efficient and identifies the true
model at a significantly lower number of data when the source is sparse — as
often is the case in biology.

4 Variable Length Markov Chains

The basic idea behind variable length Markov chains (VLMC, eg. [17,4]) is that
the memory of the process at any point in time is allowed to depend on the
current context i.e. the preceding history. A convenient way to formalize this
is by a representation as a finite rooted tree, a so called Prediction Suffix Tree
(PST) [17]. The edges of the tree are labeled by letters from the alphabet Γ and
each vertex by a string over Γ . The root is labeled by the empty string. Each
vertex may have up to |Γ | children, each connected by an edge labeled with a
distinct letter from Γ . If a vertex v is labeled �(v), then a child w connected by
an edge with label a is labeled �(w) := �(v)a. A vertex v is called maximal if
there is a a ∈ Γ and no child of v with label �(v)a. Finally, with each maximal
vertex v, is associated a set of probabilities P (a | �(v)) for all a ∈ Γ , i.e. the
next-symbol probabilities given the string �(v).

Now, the analogue of (1) is as follows: given the current context a0
−∞, follow

the path from the root taking the edges labeled a0, a−1, · · · successively until
we arrive at a maximal node. (Note that reading down from the root gives the
context when reading backwards in time). Then P (a1 | a0

−∞) = P (a1 | �(v)).
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Example 1. Consider the PST in Fig. 4. This is the underlying PST for a VLMC
whose transitions are performed as follows. If the current context is “A”, “C”
or “G”, then there are corresponding leaves with the transition probabilities
P (· | A), P (· | C) and P (· | G) respectively. If the current context is “AT”, then
the transition probabilities correspond to the maximal node labeled by “T” and
given by by P (· | T ). If the context is “CATT”, the transitions correspond to
the maximal node labeled “ATT” and are given by P (· | ATT ) (Remember that
in the current context, we read backwards in time.)

Note that a Markov chain of a fixed order m is a special case where the tree
is the complete |Γ |-ary tree of depth m.

4.1 Extending Peres-Shields to VLMC

The Peres-Shields estimator can be readily extended to estimating the underlying
tree of a VLMC from the observed output. In analogy to the fluctuation Δk

x(v)
in (3) introduce, for every suffix w of v, the fluctuation

Δx(v, w) := max
a∈Γ

∣∣∣∣Nx(va) − Nx(wa)
Nx(w)

Nx(v)
∣∣∣∣ . (6)

To infer the tree, we infer equivalently the set of labels of the maximal ver-
tices. A word w will be included as the label of a maximal vertex in the tree if
for all extensions v of w of length at most log log n, Δx(v, w) < n3/4, and this is
not true for any prefix of w. This is the analogue of (4).

The following theorem extends one of the main results of Peres and Shields
[15]. The proof we give is more direct (avoiding the law of the iterated logarithm).

Theorem 2. The extended Peres-Shields procedure infers the underlying tree of
a VLMC with high probability, and eventually almost surely.

Proof. The proof that almost surely “underestimation” does not occur is the
same ergodic argument as in [15]. To show that eventually almost surely “over-
estimation” does not occur, we must show that for every maximal word in the
true PST, Δx(v, w) < n3/4 for all extensions v of w of length at most log log n.
Let v be any extension of w including w itself. Consider the function

f(x) := Nx(va) − p(a | w)Nx(v).

This is a Lipschitz function, and moreover,

E[f ] = E[Nx(va) − p(a | w)Nx(v)]
= E[E[Nx(va) − p(a | w)Nx(v) | Nx(v)]]
= 0,

since E[Nx(va) | Nx(v)] = p(a | w)Nx(v). Thus, by the Method of Bounded
Differences [14],

P[|f | > n3/4] < e−c
√

n,
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for some constant c > 0. Applying this successively to w and an arbitrary ex-
tension v of w, we conclude that with probability at least 1 − 2e−c

√
n,

|Nx(wa) − p(a | w)Nx(w)| ≤ n3/4, (7)

and
|Nx(va) − p(a | w)Nx(v)| ≤ n3/4. (8)

Combining (7) and (8), with probability at least 1− 2e−c
√

n,

Nx(va) − Nx(wa)
Nx(w)

Nx(v) ≤ n3/4
(

1 − Nx(v)
Nx(w)

)
≤ n3/4,

and similarly, Nx(va) − Nx(wa)
Nx(w) Nx(v) ≥ −n3/4. Thus,

P
[∣∣∣∣Nx(va) − Nx(wa)

Nx(w)
Nx(v)

∣∣∣∣ > n3/4
]

< 2e−c
√

n,

for some constant c. Since there are at most o(log n) extensions v of length
at most log log n, we conclude that with high probability, all the fluctuations
Δ(v, w) are small and so “overestimation” does almost surely not occur as
n → ∞.

The Peres-Shields estimator for VLMC may be implemented either top-down
or bottom-up:

Top-down. We grow the tree from the root. We start at the root labeled with
the empty string. To decide whether to extend a vertex w with label �(w),
we check for all extensions v of w of length at most log log n if the fluctuation
Δx(v, w) > n3/4. If there is such an extension v, we extend the tree by adding
a child of w which is a suffix of v. The advantage of the top-down method is
it does not need a prior bound on the depth of the tree.

Bottom-up. If we know a prior bound L on the depth of the tree, we can
implement the method bottom up. First we generate the full |Γ |-ary tree of
depth L. Then we prune the tree bottom-up. To decide whether to prune
an edge connecting a vertex w to a child v, we check if the fluctuation
Δx(v, w) < n3/4. If so, we delete the edge. This is repeated until no more
edges can be deleted.

In practice, the method may be implemented without absolute thresholds,
but by identifying a sharp transition. Thus, we study each of the child-branches
of a node individually and observe if the next branch is the major transition
compared to all possible transitions in the subtree. If it is, this branch is removed,
and if not it is considered next — a recursive algorithm. For the purpose of
illustration we show the fluctuation Δ calculated in each of the sub-branches of
the root in the tree and its children from the example in Fig. 4. Figure 5 shows
these transitions and note how the three short branches have a sharp transition
at k = 1 while the fourth continues all the way to k = 4, the correct order.
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Fig. 5. Shows the first 4 branches from the root in the PST obtained from simulating
data under the model in Fig. 4. In (a), the branch towards the letter ”A”, the proceed-
ing branches should be truncated since we observe the “sharpest” transition in along
towards the terminal leaves. In (b) the branch towards “C”, also branches proceeding
this should be truncated. In (c) similarly towards ”G”. In (d), branch towards ”T”
where children must be kept until next step in recursion. (d) also shows that the order
of this branch corresponds to k = 4.

Table 1. Showing the number of correct and additional nodes identified for different
cut-offs using the method implemented in the vlmc package in R

Cut-off #correct #additional

2.0 8 26
3.0 8 6
3.1 7 1
3.5 7 1
3.9 6 0

4.2 Comparison to Other Methods for Estimating the Minimal
State Space

The algorithm in Sect. 4.1 was implemented and tested on a variety of topologies.
The result looks promising and the estimator finds the topologies of a mixture
of simulated data. It was also compared to the one implemented in R [4,13,5]
that relies on a threshold that is either set manually or by the software. The
threshold suggested by R often seems more conservative than necessary and
the resulting topology of the PST has less parameters than the true one. To
illustrate the problem, data was generated from the model shown in Fig. 4. The
Peres-Shields estimator correctly identifies the full model at 400 nucleotides. At
the same number of data, threshold=3.9, the method in R does not identify two
nodes in the topology, among these, the longest dependency. Table 1 shows the
number of correct nodes identified together with the number of additional nodes.
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The threshold, in order to get all correct nodes, ought to be somewhere between
3.0 and 3.1.

A more systematic testing of the Peres-Shields method is needed to compare
methods of identifying the minimal state-space. However, it is worth noting that
a major advantage of our method is that the user does not need to specify any
cut-off and that it runs in a fully automated fashion.

5 Application: Detecting Sequence Similarity Using
Genomic Signatures

The usage of short oligomers, over-lapping DNA words, constitute a genomic sig-
nature that has proven to be species-specific (e.g. [12,16,18]), even in sequences
as short as 1000 nt. Sandberg et al. [18] built a näıve classifier for modeling
an arbitrary size of oligomers. A natural extension to this approach is by using
Markov models instead. A fixed order Markov chain can model oligomers ex-
actly as their length l naturally translates into using an l − 1 order model. We
have investigated the use of both fixed and variable Markov chains applied to
this problem [7]. The result is an improvement in classification. However, the
gain in using variable length Markov models compared to fixed order Markov
models is heavily dependent on finding a good representation of the state-space,
the PST. Ideally, a VLMC of the same number of parameters as a fixed order
Markov chain should never be a worse representation. The Peres-Shield esti-
mator will help move a step closer in identifying a more parsimonious set of
probabilities.

6 Conclusions

We have given an extensive experimental analysis of the new method for esti-
mating the order of a Markov chain due to Peres and Shields. While comparable
in general to other estimators with respect to accuracy, we show that the Peres-
Shields estimator is superior to the previous estimators in several respects. First,
it is simpler and faster. Second, it is much more robust against noise in the data.
Third, it is able to identify variable dependencies very quickly — for example,
in mixture models. We showed that the same basic idea can be extended to
inferring the underlying PST of a VLMC. The resulting estimator seems very
promising.
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Abstract. Many classes of functionally related RNA molecules show a
rather weak sequence conservation but instead a fairly well conserved sec-
ondary structure. Hence, it is clear that any method that relates RNA
sequences in form of (multiple) alignments should take structural fea-
tures into account. Since multiple alignments are of great importance for
subsequent data analysis, research in improving the speed and accuracy
of such alignments benefits many other analysis problems.

We present a formulation for computing provably optimal, structure-
based, multiple RNA alignments and give an algorithm that finds such an
optimal (or near-optimal) solution. To solve the resulting computational
problem we propose an algorithm based on Lagrangian relaxation which
already proved successful in the two-sequence case. We compare our im-
plementation, mLARA, to three programs (clustalW, MARNA, and pmmulti)
and demonstrate that we can often compute multiple alignments with
consensus structures that have a significant lower minimum free energy
term than computed by the other programs. Our prototypical experi-
ments show that our new algorithm is competitive and, in contrast to
other methods, is applicable to long sequences where standard dynamic
programming approaches must fail. Furthermore, the Lagrangian method
is capable of handling arbitrary pseudoknot structures.

1 Introduction

Similarity searches based on primary sequence or the detection of structural
features using multiple alignments are usually the first steps in analyzing the
sequences of biomolecules. Unfortunately, many functional classes of RNA show
little sequence conservation, but rather a conserved secondary structure which
is formed by folding in space and forming hydrogen bonds between its bases.
Among such RNAs are tRNA, rRNA, snoRNAs, and SRP RNA [10].

Hence, algorithms to compute (multiple) alignments ought to take not only
the sequence, but also the secondary structure into account. Washietl and Ho-
facker [18] back up this consideration by showing that sequence based alignments
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are significantly worse than sequence-structure based alignments if their pair-
wise sequence identity sinks below ≈ 60%. Thus, the problem of producing RNA
alignments that find a common structure has become the bottleneck in the com-
putational study of functional RNAs. To date, the available tools for computing
structural alignments are either based on heuristic approaches and thus produce
suboptimal alignments or cannot attack instances of reasonable input size. In
this paper we deal with the computation of a multiple RNA sequence-structure
alignment, given a number of RNA sequences together with their secondary
structure. Our formulation and algorithms are able to deal with pseudoknots,
although their presence makes the problem algorithmically harder—the problem
becomes NP-hard even when only two sequences have to be aligned; Evans gives
an NP-hardness proof for a special case of this problem [6].

Previous Work. The computational problem of considering sequence and struc-
ture of an RNA molecule simultaneously was first addressed by Sankoff [16] who
proposed a dynamic programming algorithm that simultaneously aligns and folds
a set of RNA sequences. Bafna et al. [2] improved the dynamic programming
algorithm to a running time of O(n4) which still does not make it applicable
to many instances of realistic size. Common motifs among several sequences are
searched by Waterman [19]. Eddy and Durbin [5] describe probabilistic mod-
els for measuring the secondary structure and primary sequence consensus of
RNA sequence families. They present algorithms for analyzing and comparing
RNA sequences as well as database search techniques. Since the basic operation
in their approach is an expensive dynamic programming algorithm, their algo-
rithms cannot analyze sequences longer than 150-200 nucleotides. Gorodkin et al.
[8], Mathews and Turner [14], and Hofacker et al. [10] published banded versions
of Sankoff’s original algorithm. We will make use of the proposed similarity func-
tion for two RNA sequences with structures proposed in [10] which uses the base
pair probability matrices to search for a common structure of maximal weight.

This function can be directly used to weight edges in the structural alignment
graph introduced in Lenhof et al. [13] where the authors presented a branch-
and-cut algorithm for structurally aligning two RNA sequences. The underlying
formulation is flexible and allows for pseudoknots. Previous work on contact
map alignment in the area of proteomics by Caprara and Lancia [4] and for
the two-sequence case of the sequence-structure alignment problem by Bauer
and Klau [3] indicates, however, that Lagrangian relaxation is better suited to
obtain good solutions to this ILP than a direct branch-and-cut approach in terms
of running time.

Contribution. We extend the formulation of Lenhof et al. [13] to the case of mul-
tiple sequences and show how to solve it efficiently using Lagrangian relaxation.
While progressive approaches can only approximate the usual sum-of-pair score
for multiple alignments, we can compute for the first time a solution of a true
sum-of-pair multiple sequence-structure alignment.

We tested a first version of our algorithm with a dataset used in a recent
study [7] on different alignment programs for functional RNAs. We compared
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our results to those of other sequence-structure programs by comparing the
minimum free energy values of the consensus secondary structure as given by
the multiple alignment.

Our experiments show that computing the best multiple RNA alignment is
worthwhile, since the obtained alignments are often better than the ones ob-
tained by heuristic approaches. Furthermore, our approach can deal with ar-
bitrary pseudoknots without additional costs and with long sequences where
standard dynamic programming approaches fail due to their space requirements.

2 Approach

We first describe the graph-theoretical model we use, which is based on the
description in [3] and [13]. Then, we present an integer linear programming
formulation for this model and devise a solution approach based on Lagrangian
relaxation.

Graph-Theoretical Model for Structural RNA Alignment. Let S be a sequence
s1, . . . , sn of length n over the alphabet Σ = {A, C, G, U}. A paired base (i, j) is
called an interaction if (i, j) forms a Watson-Crick-pair. The set P of interactions
is called the annotation of sequence S. Two interactions are said to be in conflict,
if they share one base; they form a pseudoknot if they cross each other. A pair
(S, P ) is called an annotated sequence. Note that a structure where no pair of
interactions is in conflict with each other forms a valid secondary structure of
an RNA sequence, possibly with pseudoknots.

We are given a set of k annotated sequences {(S1, P1), . . . , (Sk, Pk)} and
model the input as a mixed graph G = (V, L ∪ I ∪ A). The set V denotes the
vertices of the graph, in this case the bases of the sequences, and we write vi

j

for the jth base of the ith sequence. The set L contains undirected alignment
edges between vertices of two different input sequences (for sake of better dis-
tinction called lines) whereas the set I codes the annotation of the sequence by
means of interaction edges between vertices of the same sequence. In addition
to the undirected edges the graph has directed arcs A representing consecutivity
of characters within the same string that run from each vertex to its “right”
neighbor, i.e., A = {(vi

j , v
i
j+1) : 1 ≤ i ≤ k, 1 ≤ j < |Si|}. A path in a mixed

graph is an alternating sequence v1, e1, v2, e2, . . . of vertices vi and lines or edges
ei ∈ L∪A. It is a mixed path if it contains at least one arc in A and one line in L.
A mixed path is called a mixed cycle if the start and end vertex are the same. A
mixed cycle represents an ordering conflict of the letters in the sequences. In the
two-sequence case a mixed cycle represents lines crossing each other. A subset
L ⊂ L corresponds to an alignment of the sequences S1, . . . Sk if L∪A does not
contain a mixed cycle. In this case, we use the term alignment also for L.

Two interaction edges (i1, i2) ∈ Pi and (j1, j2) ∈ Pj are said to be realized
by an alignment L if and only if L contains the alignment edges l = (i1, j1)
and m = (i2, j2). The pair (l, m) is called an interaction match. Note that we
define (l, m) as an ordered tuple, that is, (l, m) is distinct from (m, l). Figure 1
illustrates the above definitions by means of an example.



306 M. Bauer, G.W. Klau, and K. Reinert

C C - G U GA
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-

-

Fig. 1. Graph-theoretic concept of alignment. The right side shows a structural align-
ment of three annotated sequences, the left side the corresponding graph. Thicker lines
represent alignment edges in L, adding the grey, dotted line creates a mixed cycle. Lines
L realize six interaction matches (mind that interaction matches are ordered tuples).

We assign positive weights wl and wij to each line l and each interaction
match (i, j), respectively, that represent the benefit of realizing the line or the
match. The weights are given, for example, by mutation score matrices or—
in the case of interaction matches— by the base pair probability computed
by McCaskill’s algorithm [15]. Note that since each interaction edge occurs in
two interaction matches (m, l) and (l, m) we divide the weight of these edges
by two.

Approaches for traditional sequence alignment aim at maximizing the score
of edges in an alignment L. Structural alignments, however, must also take the
structural information encoded in the interaction edges into account.The prob-
lem of structurally aligning a set of annotated sequences {(S1, P1), . . . , (Sk, Pk)}
calls for an alignment such that the weight of the lines plus the weight of the
realized interaction matches is maximal. More formally, we seek to maximize∑

l∈L wl +
∑

(i,j)∈I wij where L is an alignment and I contains the interaction
matches realized by L. In graph-theoretic terms, this corresponds to finding a
maximally weighted subset of lines and interaction edges in the input graph such
that no mixed cycles occur, each interaction match has to be realized, and no
vertex is incident to more than one interaction edge for each pair of sequences.

Integer Linear Programming Formulation. The graph-theoretic model lets us
very conveniently state the following integer linear program (ILP):

max
∑
l∈L

wlxl +
∑
l∈L

∑
m∈L

wlmylm =: z (1)

s. t.
∑
l∈C

xl ≤ |C ∩ L| − 1 ∀ mixed cycles C (2)

ylm = yml ∀ l, m ∈ L, l < m (3)∑
m∈L

ylm ≤ xl ∀ l ∈ L (4)

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer (5)
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The variable xl equals one, if line l is part of the alignment, whereas ylm = 1
holds, if lines l and m realize the interaction match (l, m). One can easily verify
that all properties for a multiple structural alignment are satisfied: (3) and (4)
guarantee that interaction matches are realized by lines and that every vertex is
incident to at most one interaction edge, whereas (2) ensures that the selection of
lines forms a multiple alignment. The order l < m within the equality constraints
(3) denotes an arbitrary order defined on the elements of A.

Lagrangian Relaxation. Following the Lagrangian optimization method (see,
e.g., [20]), we drop the constraints that complicate the original problem and
incorporate them into the objective function with a penalty term for their vio-
lation. We obtain the relaxed problem by dropping constraint (3). Although it is
still NP-hard, medium instance sizes can be solved to optimality in reasonable
computation time with a sophisticated branch-and-cut approach as proposed by
Althaus et al. [1].

Lemma 1. The relaxed problem is equivalent to the general multiple sequence
alignment problem.

Proof. We distinguish two cases, depending on whether a line l is part of an
alignment or not. First, assume xl = 0. In this case, due to (4), all ylm must be
zero as well, and the contribution of line l to the objective function is zero. If,
however, a line is part of an alignment, its maximal contribution to the score is
given by solving

pl := max wl +
∑
m∈L

wlmylm (6)

s. t.
∑
m∈L

ylm ≤ 1 (7)∑
ylm ≤ 0 ∀m ∈ L crossing l (8)

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer (9)

Inequality (7) states that only one interaction match can be chosen. Accord-
ing to the objective function (6) it is clear that this will be the one with the
largest weight wlm. Inequality (8) constrains this choice by excluding interaction
matches with lines m that are in conflict to l. This ILP is easily solvable by just
selecting the most profitable interaction match (l, m̂) such that l and m̂ do not
cross each other, which can be done in linear time. Thus, the profit pl a line l can
realize is given by its own weight wl plus the weight wlm̂ of such an interaction
match. In the second step, we compute the optimal overall profit by solving the
multiple sequence alignment problem

max
∑
l∈L

plxl

s. t.
∑
l∈C

xl ≤ |C ∩ L| − 1 ∀ mixed cycles C

0 ≤ x ≤ 1 integer
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Let x∗ be the solution of this problem. We claim that an optimal solution
of the relaxed problem is given by (x∗, y∗) with y∗

lm = x∗
mylm̂. First, it is easy

to see that (x∗, y∗) is indeed a feasible solution of the relaxed problem, since x∗

represents an alignment and our choice of y∗ does not violate the restrictions
given in (4). To see that (x∗, y∗) is optimal, observe that its value is∑

l∈L
plx

∗
l =

∑
l∈L

(wl + wlm̂)x∗
l =

∑
l∈L

x∗
l wl +

∑
l∈L

∑
m∈L

wlmy∗
lm .

Thus, the optimal solution x∗ of the sequence-based multiple alignment yields
an optimal solution (x∗, y∗) of the relaxed problem. ��

Having demonstrated how to formulate the relaxed problem as a pure
sequence-based multiple alignment problem we now describe the Lagrangian
method. Formally, we introduce appropriate Lagrangian multipliers λi with
λi

ml = −λi
lm for l < m and with λi

ll = 0 and define the Lagrangian problem as

max
∑
l∈L

wlxl +
∑
l∈L

∑
m∈L

(λi
lm + wlm)ylm := z̄i

s. t.
∑
l∈C

xl ≤ |C ∩ L| − 1 ∀ mixed cycles C

∑
m∈L

ylm ≤ xl ∀ l ∈ L

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 integer

Note that, according to Lemma 1, we can solve instances of the Lagrangian
problem by solving a multiple sequence alignment problem where the profits of
the interaction matches are coded in the weights of the lines.

The task is now to find Lagrangian multipliers that provide the best bound to
the original problem. We do this by employing iterative subgradient optimization
as proposed by Held and Karp [9]. This method determines the multipliers of
the current iteration by adapting the values from the previous iteration. More
formally, we set λ0

lm = 0, ∀m, l ∈ L and

λi+1
lm =

⎧⎪⎨⎪⎩
λi

lm if si
lm = 0

max(λi
lm − γi,−wlm) if si

lm = 1
min(λi

lm + γi, wlm) if si
lm = −1

where si
lm = y∗

lm − y∗
ml and γi = μ

zU − zL∑
l,m∈L

(si
lm)2

.

Here, μ is a common adaption parameter and zU and zL denote the best upper
and lower bounds, respectively. The closer these bounds are to z (the optimal
value of a multiple structural alignment), the faster the method will converge.

Clearly, we can set zU to min{z̄j | 0 ≤ j ≤ i}, the lowest objective function
value of the Lagrangian problems solved so far. To obtain a high lower bound is
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Fig. 2. (a) Multiple alignment (solution of the Lagrangian problem) and (b) interaction
matching graph

more involved and we show in the following how to use the information computed
in the Lagrangian problem in order to deduce a good feasible solution.

A solution of the Lagrangian problem is a multiple alignment L plus some
information about interaction matches coded by the y-values; see Figure 2 (a). If
for all lines l and m the equation ylm = yml holds, then the solution is a feasible
multiple structural alignment, and we have found the optimal solution to the
original problem. Otherwise, some pairs ylm and yml contradict each other. The
idea is to select a subset of interaction edges of maximum weight such that the
structural information for each sequence is valid, that is, each base is paired with
at most one other base (the structural completion of L).

We can formulate this problem as a general weighted matching problem in
an auxiliary graph, the interaction matching graph. Consider the edges of L as
vertices and every pair of interaction edges (i1, i2) whose endpoints are adjacent
to a pair (l, m) ∈ L× L as the edges of the graph (see Figure 2 (b)).

Lemma 2. A matching of maximum weight in the interaction matching graph
corresponds to the best structural completion of the given alignment L.

Proof. The equivalence follows directly from the construction of the interaction
matching graph and the definition of a matching. ��

3 Computational Results

Assessing the Quality. Our tool mLARA is a prototypical C++ implementation of
the Lagrangian approach. The evaluation of our results is as follows:

– We compare the best lower and upper bound for the Lagrangian relaxed
problem. If these values coincide, we have found a provably optimal solution,
otherwise, the ratio between lower and upper bound gives a measure for the
quality of the best solution found.

– In order to compare our results to other structural alignment programs, we
evaluate the computed multiple sequence alignments using RNAalifold [11].
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In short, given a multiple sequence alignment, this tool computes a con-
sensus folding that does not only take the well-studied minimum free energy
model (MFE) into account, but also the sequence covariation as given by the
multiple alignment. Thus, it incorporates the phylogenetic information con-
tained in the alignment. Lower values of this consensus folding correspond,
generally spoken, to more stable structures.

We ran mLARA on an AMD server with a 2Ghz Opteron processor, allowing a
maximal running time of three hours per computation: If the computation was
not finished within this limit, we stopped, taking the best alignment found so
far as the final one.

Generating the Input Graph. For generating the set of alignment edges we apply
a more sophisticated approach than the one reported in [13]: instead of comput-
ing a conventional sequence alignment with affine gap costs and subsequently
inserting all alignment edges realized by any suboptimal alignment scoring bet-
ter than a fixed threshold s below the optimal score, we use a sliding window
technique—as described in [12]—that adjusts the suboptimality threshold s ac-
cording to the local quality of the alignment. More precisely, for every nucleotide
we compute a confidence value evaluating the quality of the local alignment
within a certain window. In regions of the sequence where the quality of the
conventional sequence alignment appears to be very good, none or only a small
number of suboptimal alignment edges are considered. In alignment regions that
show little sequence conservation, more alignment edges are generated.

In our experiments we start from a conventional sequence alignment with
affine gap costs (gap open and gap extension penalty are set to 6 and 2, the
score for a (mis-)match is set to 2 and 1, respectively) and insert alignment
edges according to the local quality of the alignment. To count the sequence
specific parts less, we use an approach proposed by Hofacker et al. [10], namely
to multiply the scores for matches and mismatches with a constant factor τ
to gain the actual weights of the alignment edges. Convenient values for τ are,
for instance, 0.05 (as proposed in [10]) or 0.5 in case of sequences with a high
sequence identity.

For generating a set of reasonable interaction edges we resort to the same
technique that was already successfully employed in [10]: we compute the base
pair probability matrices for each RNA sequence and assign the value ϕij =
log10(φij/φmin) as the weight to the interaction edge between nucleotide i and
j (with φij being the actual base pair probability for (i, j) and φmin being the
smallest probability found).

It should be noted, however, that the underlying graph-theoretical model
gives absolutely no restriction on scoring the interaction and alignment edges:
even position-dependent scoring matrices are possible and do not enforce any
modification to the approach itself.

Computing an Optimal Multiple Sequence Alignment. In each iteration of our La-
grangian approach we have to compute an optimal multiple sequence alignment.
We use the implementation by Althaus et al. [1] for this task. Their branch-and-
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Fig. 3. Consensus secondary structure of three tRNA sequences based on alignments
computed by MARNA, pmmulti, and mLARA. Graphics are generated by RNAalifold.

cut approach is based on a similar graph-theoretical model as our algorithm and
computes an optimal multiple alignment with arbitrary gap costs and arbitrary
scores assigned to the alignment edges.

Experimental Evaluation. The following evaluation should not be understood as
a comprehensive study of the performance of different RNA structure alignment
programs, but rather serves as an illustration that convincingly demonstrates
the advantages of truly optimal multiple structural alignments. We compared
mLARA to the latest versions of clustalW, MARNA [17], and pmmulti [10].

As a first example of small and medium–sized instances, we took instances
of three randomly chosen tRNA and 5S RNA sequences from BRAliBase [7] and
compared the MFE-values of the consensus structure as computed by
RNAalifold. Table 1 shows the sequence identity of the instances where mLARA
performed well compared to pmmulti (or clustalW for longer sequences) and
we give the MFE values of clustalW, MARNA, and pmmulti for comparing the
results. As one can see, the results back up the observation given in [18] that
for sequences with a sequence identity greater than ≈ 65% pure sequence-based
approaches yield similar results to those of sequence-structure based ones.

Figure 3 illustrates the corresponding consensus secondary structures of three
tRNA sequences (GenBank: X06054, AE009773, and AE006699), based on the
alignments computed by MARNA, pmmulti, and mLARA. For this example, the align-
ment computed by mLARA is the only one that yields the typical tRNA clover-leaf
structure. The structure is supported by many compensatory mutations (indi-
cated through circles around the nucleotides) in each of the four stems.

Two things are quite remarkable: First, the mLARA consensus secondary struc-
ture is based on a set of ≈ 1400 candidate lines. This small number of edges is
nevertheless sufficient to reconstruct the correct structure. Secondly, there is
a substantial gap between the best lower and upper bound, that is, it is not
guaranteed that the solution found by the Lagrangian method is actually the
optimal one. Nevertheless we can guarantee that it is at most 12% worse than
the optimal solution. Again, although the optimal solution was not found, the
typical tRNA clover-leaf structure was reconstructed.

Finally, we took longer SRP sequences from [7] and different ncRNA fami-
lies from the Rfam database. Due to the average sequence length of ≈ 300-320
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Table 1. Results of clustalW, MARNA, pmmulti, and mLARA on tRNA (upper part), 5S
(middle part), and SRP (lower part) sequences. Level of optimality given in brackets,
lowest RNAalifold value given in bold face.

SeqID Instance clustalW MARNA pmmulti mLARA
0.30 aln22 −20.69 −29.47 −34.64 −33.97 (0.98)
0.30 aln30 −10.62 −12.79 −21.48 −20.18 (0.66)
0.65 aln42 −38.51 −38.51 −38.51 −38.81 (0.97)
0.66 aln49 −31.18 −25.16 −39.27 −39.27 (0.99)
0.67 aln38 −29.29 −26.72 −34.60 −34.60 (0.99)
0.70 aln39 −33.46 −12.57 −33.46 −33.66 (0.97)
0.71 aln40 −35.84 −24.85 −35.84 −35.84 (0.96)
0.71 aln37 −24.00 −24.34 −38.78 −38.42 (0.94)
0.73 aln33 −35.83 −35.83 −35.83 −35.40 (0.98)
0.79 aln34 −35.09 −27.38 −35.09 −34.86 (0.98)
0.87 aln36 −32.39 −25.36 −32.39 −32.39 (0.99)
0.38 aln84 −17.45 −29.63 −38.02 −38.75 (0.99)
0.38 aln87 −32.86 −41.64 −42.54 −43.11 (0.98)
0.44 aln62 −36.63 −20.38 −42.62 −42.62 (0.94)
0.46 aln76 −42.64 −26.10 −45.99 −48.23 (0.90)
0.52 aln30 −47.54 −50.76 −51.80 −52.16 (1.00)
0.56 aln72 −28.73 −20.22 −28.73 −28.61 (0.95)
0.71 aln36 −36.70 −28.19 −35.01 −35.54 (0.99)
0.76 aln44 −47.06 −45.21 −47.06 −47.58 (0.99)
0.79 aln58 −43.72 −46.48 −46.72 −46.72 (1.00)
0.87 aln45 −36.55 −40.21 −40.21 −40.21 (0.99)
0.43 RF00012 −28.88 −20.00 — −39.80 (0.97)
0.53 aln7 −87.15 −75.57 — −89.10 (0.87)
0.54 aln20 −86.65 −97.60 — −94.46 (0.93)
0.54 aln31 −83.45 −47.69 — −87.10 (0.99)
0.59 aln37 −78.86 −72.05 — −82.92 (0.97)
0.59 aln10 −90.02 −77.21 — −100.63 (0.99)
0.60 aln23 −93.98 −94.07 — −99.57 (0.99)
0.61 RF00017 −75.25 −61.80 — −83.22 (0.90)
0.62 RF00229 −51.73 −41.55 — −53.26 (0.93)
0.75 aln12 −93.44 −72.38 — −106.74 (0.99)
0.78 RF00012 −42.42 −35.63 — −42.54 (0.98)

nucleotides, the exact progressive approach pmmulti fails due to its high com-
putational demands (see Table 1).

4 Discussion

It has to be remarked that in a considerable number of instances mLARA did
not compute an alignment that yields an MFE value competitive to the one
computed by pmmulti. There are three main reasons for that:

1. The number of alignment edges is not sufficient to compute an alignment
that yields the smallest MFE value possible, e.g., computing an alignment
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of three 5S RNA sequences (GenBank: AJ131595, X06578, X02627) with
1025 alignment edges yields a consensus MFE value of −24.75, computing
an alignment with 1602 edges already yields a value of −31.77 (the MFE
value of the progressive approach pmmulti is actually −37.45). We expect a
substantial improvement in terms of speed and quality by combining sets of
variables that correspond to local structural motifs in combination with a
preprocessing and pricing strategy.

2. A higher number of alignment edges leads to much higher computational
costs for computing the exact multiple sequence alignments, which makes
each iteration very expensive. In order to decrease the number of iterations,
we plan to switch from subgradient optimization to the bundle method.

3. Finally, the underlying scoring scheme has to be revisited: during our exper-
iments we observed that a higher score of an alignment does not necessarily
yield a lower MFE value, e.g., aligning three 5S RNA sequences (GenBank:
X01501, X02260, M58416) yields a score of 1447.13 with a corresponding
MFE value of −28.61 after three hours. Allowing 5.5 hours of computation
time, the score increases to 1450.52, whereas the MFE value drops to −27.63.
Therefore, incorporating statistically significant values for scoring RNA nu-
cleotides would be preferable to the scores that are used in the current version
of the prototype.

The evaluation shows that mLARA is often competitive to or better than pmmulti
and almost always better than MARNA. In most cases, however, pmmulti achieves
the lowest MFE values and, even when it is worse compared to mLARA, it is only
in a small amount. Therefore, pmmulti can currently be seen as the tool of choice
for sequences up to 150 nucleotides. mLARA, however, can compute alignments
of good quality for sequences longer than 150 nucleotides, where the time and
space demands of pmmulti are prohibitive. The results obtained by mLARA are
still better than those of MARNA for longer sequences.

As pointed out in the introduction, the Lagrangian method does not always
yield an optimal solution. We therefore plan to embed our approach in a branch-
and-bound algorithm, such that we can always compute an optimal solution to
our ILP formulation. This will allow us to assess whether it is worth to solve
the problem to complete optimality. Simultaneously, we are incorporating the
two-sequence version of the Lagrangian approach into a progressive alignment
framework: we hope to combine the advantages of both approaches—computing
multiple alignments based on pairwise structural alignments—to obtain a tool
that yields excellent results for sequences up to 1000 nucleotides.
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Abstract. Multiple Sequence Alignment (MSA) is one of the most fundamen-
tal problems in computational molecular biology. The running time of the best
known scheme for finding an optimal alignment, based on dynamic program-
ming, increases exponentially with the number of input sequences. Hence, many
heuristics were suggested for the problem. We consider the following version
of the MSA problem: In a preprocessing stage pairwise alignments are found
for every pair of sequences. The goal is to find an optimal alignment in which
matches are restricted to positions that were matched at the preprocessing stage.
We present several techniques for making the dynamic programming algorithm
more efficient, while still finding an optimal solution under these restrictions.
Namely, in our formulation the MSA must conform with pairwise (local) align-
ments, and in return can be solved more efficiently. We prove that it suffices to
find an optimal alignment of sequence segments, rather than single letters, thereby
reducing the input size and thus improving the running time.

1 Introduction

Multiple Sequence Alignment (MSA) is one of the central problems in computational
molecular biology — it identifies and quantifies similarities among several protein or
DNA sequences. Typically, MSA helps in detecting highly conserved motifs and remote
homologues. Among its many uses, MSA offers evolutionary insight, allows transfer of
annotations, and assists in representing protein families [20].

Dynamic programming (DP) algorithms compute an optimal Multiple Sequence
Alignment for a wide range of scoring functions. In 1970, Needleman and Wunsch [19]
proposed a DP algorithm for pairwise alignment, which was later improved by Masek
and Paterson [13]. Murata et al. [17] extended this algorithm to aligning k sequences
(each of length n). Their solution constructs a k-dimensional grid of size O(nk), with
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each of the sequences enumerating one of its dimensions. The optimal MSA is an opti-
mal path from the furthermost corner (the end of all sequences) to the origin (their be-
ginning). Unfortunately, the O(nk) running time of this approach makes it prohibitive
even for modest values of n and k. There is little hope for improving the worst-case
efficiency of algorithms that solve this problem, since the MSA problem is known to
be NP-Hard for certain natural scoring functions [10,3]. This is shown by reduction
from Max-Cut and Vertex Cover [8], that is, instances of these problems are encoded as
a set of sequences. However, the encoding sequences are not representative of protein
and DNA sequences abundant in nature, and the alignments are not reminiscent of ones
studied in practice. This is the main motivation for our work.

Since MSA is NP-hard, heuristics were devised, including MACAW [22],
DIALIGN [14], ClustalW [25], T-Coffee [21], and POA [12]. Many of these meth-
ods share the observation that aligned segments of the pairwise alignments are the basis
for the multiple alignment process. Lee et al. [12] argued that the only information
in MSA is the aligned sub-sequences and their relative positions. Indeed, many meth-
ods (e.g., [14,22,21]) align all pairs of sequences as a preprocessing step and reason
about the similar parts; the additional computational cost of O(n2k2) is not consid-
ered a problem. In progressive methods, this observation percolates to the order of
adding the sequences to the alignment [21,25,5]. Other methods assemble an alignment
by combining segments in an order dictated by their similarity [22,14]. The Carrillo-
Lipman method restricts the full DP according to the pairwise similarities [4]. Unfor-
tunately, none of these methods guarantee an optimal alignment. Another expression
of this observation is scoring, and then matching, of full segments rather than single
residues [16,14,21,27]. See [20] for recent results on MSA.

Alternatively, researchers designed optimal algorithms for (mostly pairwise) se-
quence alignment that are faster than building the full DP table. The algorithms of Epp-
stein et al. [6,7] modify the objective function for speedup. Wilbur and Lipman [26,27]
designed a pairwise alignment algorithm that offers a tradeoff between accuracy and
running time, by considering only matches between identical “fragments”. Myer and
Miller [18] and Morgenstern [15] designed efficient solutions for special cases of the
segment matching problem. In particular, the case considered by Myer and Miller can
be solved in polynomial time [18], while the general problem is NP-hard.

In this study, we identify combinatorial properties that are amenable to faster DP
algorithms for MSA, and are biologically reasonable. We measure the efficiency of a
DP solution by the number of table updates; this number is correlated with both the
time and memory required by the algorithm. We suggest a way to exploit the fact that
the input sequences are not general, but rather naturally occurring — some of their
segments are evolutionary related, while others are not.

We define and study the Multiple Sequence Alignment from Segments (MSAS) prob-
lem, a generalization of MSA. Intuitively, MSAS accounts for assumptions regarding
the pairwise characteristics of the optimal MSA. In MSAS, the input also includes a
segmentation of the sequences, and a set of matching segment pairs. As in the original
problem, we seek an MSA that optimizes the objective score. However, only corre-
sponding positions in matching segments may be aligned. Trivially, one can segment
the sequences into individual letters and specify all possible segment (letter) pairs, each
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with their substitution matrix score, getting back the original MSA problem. However,
for biological sequences we can often postulate that only solutions that conform to
some pairwise alignments are valid, e.g. when segments of different sequences clearly
match, or clearly do not match. Using these assumptions, we develop a more efficient
DP algorithm.

We then prove that the MSAS problem is essentially equivalent to the segment
matching problem. This equivalence implies that it is enough to match segments, rather
than individual positions. In particular, the complexity of DP algorithm for MSA, and,
indeed, any algorithm for MSA, depends on the number of segments in each sequence,
rather than the number of letters. We show that in practice this reduces the number of
table updates by several orders of magnitude. For example, aligning five human pro-
teins (denoted by their Swiss-Protidentifiers) GBAS, GBI1, GBT1, GB11, and GB12
requires 4.3 × 108 rather than 6.6 × 1012 table updates. Nonetheless, we prove that in
general it is NP-hard.

We can make the algorithm even faster, while still guaranteeing an optimal solution,
by further decoupling the sub-problems computation. Essentially, this improved DP
algorithm avoids some of the nodes in the k-dimensional grid when calculating the
optimal path. Indeed, in practice it outperforms naive DP, and the MSA of the example
mentioned above requires only 1.5 × 105 table updates.

Lastly, we further study the combinatorial structure of the problem by considering
two additional assumptions, and the performance improvement they imply. The follow-
ing assumptions may hold in some cases of aligning DNA sequences, where a match
indicates (near) identity. Here, we assume that the segment matches have a transitive
structure, i.e., if segment A matches segment B, and B matches C, then A necessarily
matches C. Also, an optimal alignment is one of minimal width, rather than optimal
under an arbitrary scoring function. We prove that under these assumptions, an optimal
alignment has a specific structure, which leads to a faster algorithm.

The paper is organized as follows: In Section 2 we define the MSA problem and cast
it into a graph-theoretic framework; for completeness, we mention the straightforward
DP solution. In Section 3 we present the MSAS problem and prove its equivalence to
the segment matching problem, leading to a faster algorithm. We improve the running
time even more by considering only “relevant directions” in Section 3. We describe
our implementation in Section 4, including the conversion of pairwise alignments to
the input format of MSAS, and give several examples of the performance when align-
ing human proteins. Lastly, in Section 5 we show that a transitivity assumption on the
matches leads to further improved efficiency.

2 Multiple Sequence Alignment

The input of a Multiple Sequence Alignment (MSA) problem is a set S = {σ1, . . . , σk}
of k sequences of lengths n1, . . . , nk over an alphabet Σ and a scoring function f :
(Σ ∪ {−})∗ → R (where the gap sign, “−”, is not in Σ). A multiple alignment of the
sequences is a k × n matrix with entries from Σ ∪ {−}. In the ith row the letters of
the ith sequence appear in order, possibly with gap signs between them. The score of a
column of the matrix is the value of f on the k-tuple that appears in that column. The
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FindOptimalPath(x) (Version 0)

1. If x = 0 return 0
2. For all ∅ �= I ⊆ [k]

2.1 If px−eI is undefined, compute px−eI = FindOptimalPath(x − eI)
3. I = arg maxJ⊆[k] s(x, x − eJ) + s(px−eJ )
4. Return the path x, px−eI .

Fig. 1. Basic DP MSA algorithm

score of a multiple alignment of S is the sum of scores over all columns. The objective
in the MSA problem is to find an alignment of S with optimal score. Without loss of
generality, we consider scoring functions whose optimum is a maximum, rather than a
minimum. Other formulations of MSA, which have been suggested (e.g. [12,16]), are
beyond the scope of this work.

We first define our notation: Let I ⊆ [k], where [k] := {1, . . . , k}. We denote by
ei ∈ {0, 1}k the vector that is zero in all coordinates except the ith, where it is 1, and
eI =

∑
i∈I ei. For a vector x = (x1, . . . , xk) ∈ Nk let x|I be the projection of x

onto the subspace spanned by {ei}i∈I , i.e., the ith coordinate of x|I is xi if i ∈ I ,
and 0 otherwise. For two vectors, x, y ∈ Nk we say that x dominates y, and write
x > y if xi ≥ yi for i = 1, . . . , k. We study the directed graph G0 — its vertex set is
[n1]∪{0}× [n2]∪{0}× . . .× [nk]∪{0}, and there is an edge (x, y) in G0 if and only
if x > y and x − y = eI for some ∅ �= I ⊂ [k]; in this case we call I the direction that
leads from x to y.

The paths from the vertex (n1, . . . , nk) to (0, . . . , 0) in G0 correspond to alignments
of the input sequence. Let p be such a path. Consider (x, x − eI), the jth edge that the
path transverses: In the corresponding sequence alignment, the jth column is a k-tuple
that aligns positions xi of sequences i ∈ I , and has a gap in the rest (in this case we
say that the path matches position xi of sequence i and position xi′ of sequence i′, for
all i, i′ ∈ I). We define s : E(G0) → R to be a scoring function over the edges of
G0, based on the scoring function f over the columns of the alignment. The function s
assigns to an edge the value that f assigns to the corresponding column. We also extend
s to paths, or sets of edges E′ ⊆ E(G0): s(E′) =

∑
e∈E′ s(e). It is not hard to see that

every such path defines a multiple alignment, and that every multiple alignment can be
described by such a path.

In MSA we seek a maximal (scoring) path from (n1, . . . , nk) to (0, . . . , 0) in G0.
The well-known DP solution to this problem is straightforward; we sketch it in Figure 1.
Most importantly, we store the optimal scores of subproblems that have been solved
recursively to avoid recomputing them later. For each vertex x ∈ G0, we compute the
optimal path from x to the origin, denoted px, by considering the optimal scores of all
its neighbors that are closer to the origin. Thus, we calculate the optimal MSA by calling
FindOptimalPath(n1, . . . , nk). The time complexity of the algorithm is the number of
edges in G0, i.e., Θ(2k

∏k
j=1 nj).
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3 MSA from Segments

In this section we formulate Multiple Sequence Alignment from Segments (MSAS) —
a generalization of MSA. We assume a preprocessing step that partitions the sequences
into segments and matches pairs of these segments. These define a subgraph G1 ⊆
G0, and we then consider the restricted problem of finding an optimal path in G1.
Intuitively, G1 disallows some of the pairwise alignments in G0 and consequently in
the optimal alignment; clearly, we can allow all the diagonals in G0 (by segmenting the
sequences into letters), leaving the MSA problem unchanged. Next, we show that the
vertices of G1 can be condensed, yielding an even smaller graph G2; the vertices in G2
correspond to the segments of input sequences computed in the preprocessing step. The
problem is now reduced to computing an optimal path in G2, which we refer to as the
segment matching problem. Finally, we show that for computing the optimal path at a
vertex it suffices to consider a subset of directions – the so-called relevant directions.
We discuss the implementation of the algorithm and elaborate on the preprocessing step
in Section 4.

Preliminaries.

Definition 1. For a sequence q of length n, a segmentation of q is a sequence of ex-
tremal points 0 = c0 ≤ c1 ≤ . . . ≤ cl = n. The interval [ci−1 + 1, ci] is called the
ith segment of q. The extremal point ci is said to be the entry point into segment i (for
i = 1, . . . , l), and the exit point from segment i + 1 (for i = 0, . . . , l − 1). Denote by lj
the number of segments in the jth sequence.

Definition 2. A segment matching graph (SMG) over k segmented sequences is a k-
partite undirected weighted graph with vertex set {(j, i) : j ∈ [k], i ∈ [lj ]}. Each
vertex has an edge connecting it to itself. In addition, vertices (j1, i1) and (j2, i2) may
be connected if the i1th segment of sequence j1 has the same length as the i2th segment
of sequence j2, and j1 �= j2.

An edge e = ((j1, i1), (j2, i2)) in the SMG signifies a match between segment
i1 in sequence j1 and segment i2 in sequence j2. Let l be the (same) length of these
segments, and x1 and x2 their exit points on sequences j1 and j2, respectively, then for
t = 1, . . . , l, the edge e implies a match between position x1 + t of sequence j1 and
position x2 + t of sequence j2.

The input to the MSAS problem is a set of segmented sequences, and a list of
matching segments, described by an SMG M . The objective is still finding the highest
scoring sequence alignment, but with the following restrictions. First, two sequence
positions may be aligned together only if they appear in matching segments, and in the
same relative position therein. Second, the score of a multiple match depends only on
the weights of the corresponding edges in the SMG (and not on the letters themselves).
In other words, we can think of the domain of the scoring function as being k-tuples of
segments, rather than positions.

The intuition behind these restrictions is that the preprocessing stage identifies
matching segments, and commits the algorithm to them. Furthermore, it assigns a “con-
fidence level” (or the weight) to each match, and the objective is to find a highest-
scoring alignment, with respect to these values. Here, the segments of each sequence
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Fig. 2. Example of an SMG for two sequences: Panel (A) shows the sequences, their partitioning
and the SMG where each segment corresponds to a (gray) node. Panel (B) shows G1. Unlike G0

that has all diagonals, the diagonals in G1 are defined by the SMG. An allowed path in G1 is also
shown. Panel (C) shows G2, and an allowed path in it. The directions of the edges are omitted in
the illustration for clarity, but are towards the origin.

are non-overlapping. In practice, we derive the segments from aligned portions of two
sequences, and these may be overlapping. This is resolved by splitting the overlapping
segments to smaller non-overlapping ones, as we discuss in Section 4.

Formally, given a set of segmented sequences, and an SMG M , we define G1(M)
as follows. It is a subgraph of G0, containing all vertices. The edge (x, x − eI) is in
G1(M) if and only if for all i, j ∈ I there is an edge m ∈ E(M), such the position xi

on sequence i is matched to position xj on sequence j. In this case we say the I is an
allowed direction at x, and that m is a match defining the edge (x, x − eI). The score
of such an edge depends only on the weights of the corresponding edges in M (e.g.,
the sum-of-pairs scoring function). It is not hard to see that if x and y are vertices such
that xI = yI and I is allowed at x, then I is also allowed at y. Note also, that because
all vertices in M have an edge connecting them to themselves, for i ∈ [k], {i} is an
allowed direction at all vertices x such that xi > 0.

As in the MSA problem, the goal in the MSAS problem is to find a highest scoring
path from (n1, . . . , nk) to (0, . . . , 0). Clearly the previously mentioned DP algorithm
solves this restricted MSA problem as well. In the following subsections we describe
how it can be improved.

MSAS and Segment Matching. The vertices of G1 correspond to k-tuples of positions
along the input sequences, one from each sequence. We now define the graph G2, a
“condensed” version of G1, whose vertices correspond to k-tuples of segments. That
is, its vertex set is [l1] ∪ {0} × [l2] ∪ {0} × . . . × [lk] ∪ {0}. There is a directed edge
from z = (z1, . . . , zk) to z − eI in G2 if for all i, j ∈ I the zith segment of sequence
i matches the zjth segment of sequence j. Define x ∈ V (G1) by taking xi to be the
entry point into the zith segment of sequence i. Suppose the length of the segments
defining the edge (z, z − eI) is l (recall that two segment match only if they are of the
same length). Observe that (z, z − eI) ∈ E(G2) implies that (x, x − eI), (x − eI , x −
2eI), . . . , (x − (l − 1)eI , x − l · eI) are all edges in G1. In this sense, (z, z − eI) is a
“condensation” of all these edges. Define the score of the edge (z, z − eI) as the sum
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FindOptimalPath(x) (Version 1)

1. If x = 0 return 0.
2. For all y = x − l · eI that is extremal with respect to x

2.1 If py is undefined, compute py = FindOptimalPath(y)
2.2 dy = l · s(x, x − eI)

3. y∗ = arg max s(py) + dy

4. Return the path x, py∗ .

Fig. 3. Segment based DP MSA algorithm

of the scores of all the edges in G1 that it represents. Since the score depends only on
the segments, this is simply l · s(x, x − eI).

The segment matching problem is to find a highest-scoring path from (l1, . . . , lk)
to (0, . . . , 0) in G2. Clearly the same DP algorithm as above can be used to solve this
problem in time Θ(2k

∏k
j=1 lj). Hence, when the sequences are long, but consist of

a small number of segments, DP for solving the segment matching problem may be
plausible, while solving the MSA problem might not.

In the sequel of this section we prove that in order to find an optimal solution to
the MSAS problem, it is enough to solve the associated segment matching problem. To
state this precisely, we need the following definition.

Definition 3. Let x be a vertex in G1(M). We say that x is an extremal vertex if for all
i ∈ [k], xi is an extremal point of sequence i.
We say that y is extremal with respect to x, if it is the first extremal vertex reached when
starting at x and repeatedly going in direction I , for some allowed direction I . Denote
X(x) = {y ∈ V (G1(M)) : y is extremal w.r.t. x}.

Theorem 1. There is an optimal path, p = p1, . . . , pv, such that if x1, . . . , xu are the
extremal points, in order, through which it passes, then xi+1 ∈ X(xi).

Observe that in particular, the theorem says that segments are either matched in their
entirety, or not matched at all. Hence, any solution to the segment matching problem
defines an optimal solution of the MSAS problem. In other words, it suffices to solve the
problem on the “condensed” graph G2. While Theorem 1 is intuitively clear, the proof
is somewhat involved, and omitted from this version. Figure 3 sketches the revision of
the DP algorithm based on Theorem 1.

Narrowing the Search Space: Relevant Directions. Consider an input to the MSAS
problem that consists of two subsets of k sequences each. Suppose that none of the
segments in the first subset match any of those in the second subset. Naively apply-
ing the algorithm above will require running time exponential in 2k. Yet clearly the
problem can be solved on each subset independently, in time exponential in k rather
than 2k. Intuitively, this is also the case when there are only few matches between the
two subsets. We make this notion explicit in this subsection. Again, we start with some
definitions:
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FindOptimalPath(z) (Version 2)

1. If z = 0 return 0.
2. D = minimal set of directions that intersect a subset of independent relevance.
3. For all ∅ �= I ∈ D

3.1 If pz−eI is undefined, compute pz−eI = FindOptimalPath(z − eI)
4. I = arg maxJ∈D s(z, z − eJ ) + s(pz−eJ )
5. Return the path z, pz−eI .

Fig. 4. Version 2 of MSA algorithm. Details on how to compute D are given in the full version

Definition 4. Let x be a vertex in G2(M). Let ((i, yi), (j, yj)) be a match in the SMG.
We say that such a match is relevant for x at coordinate i, if xi = yi and xj > yj .
We say that a subset of indices S ⊂ [k] is of independent relevance at x if for all i ∈ S
the match ((i, yi), (j, yj)) is relevant for x at coordinate i implies j ∈ S.

Theorem 2. Let p be an optimal path in G2, and x a vertex on it. Let S be a subset of
indices of independent relevance at x. Then there is an optimal path p′ that is identical
to p up to x, and from x goes to x − eI for some I ⊂ [k] such that I ∩ S �= ∅.

Proof: Let y be the first vertex on p after x, such that yi = xi−1 for some i ∈ S. Define
p′ to be the same as p up to x, and from y onwards. We will define a different set of
allowed directions that lead from x to y. Let I1, . . . , It be the directions followed from
x to y. Let i ∈ It∩S. For all i �= j ∈ It, there is a match between (i, xi) and (j, yj +1).
Hence, either j ∈ S, or yj + 1 = xj . Since y is the first vertex in p that differs from
x on a coordinate in S, if j ∈ S, then j /∈ I1, . . . It−1. Clearly, if yj + 1 = xj then
again j /∈ I1, . . . It−1. In other words, for all h < t, we have Ih ∩ It = ∅. Define p′

to follow directions It, I1, . . . , It−1 from x. As It is disjoint from the other directions,
this indeed defines an allowed path from x to y, and i ∈ It ∩ S.

The theorem implies that in the DP there is no need to look in all directions. Let S be a
subset of independent relevance at a point x, then to compute the optimal path from x
to the origin it is enough to consider paths from x − eI to the origin for I ⊂ [k] such
that I ∩ S �= ∅. This suggests the DP algorithm sketched in Figure 4 (this time think of
z as a vertex in G2). Note that to implement this algorithm there is no need to keep a
table of size |V (G2)|. The vertices that are actually visited by the algorithm can be kept
in a hash table.

4 Implementing the Algorithm

We have implemented Version 2 of our algorithm, described in Figure 4. Using our
implementation of the algorithm, we investigate its efficiency (measured in the number
of vertices it visits, or table updates) on real biological sequences. We first describe the
preprocessing step that constructs the SMG, and then discuss the performance of the
algorithm on a few examples. We stress that efficiency is indeed the property of interest
here, as the multiple alignment found is an optimal solution for the MSAS problem.
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Generating a Segment Matching Graph (SMG). Existing tools, such as BLAST [2]
or DIALIGN [16], provide local alignments rather than the input format that we as-
sumed previously. In order to restrict the problem only to MSAs that conform to these
local pairwise alignments, we must convert them to an SMG. In particular, we need to
segment the sequences, and allow matches only between equal-length segments.

Starting with the set of sequences, we add breakpoints onto them based on the local
alignments. This way, we progressively build the SMG, stopping when all local align-
ments are properly described. The ends of an alignment define breakpoints in the two
aligned sequences. If the segments between those breakpoints have the same length, we
simply add a connecting edge (or edges) to the SMG. However, the segments lengths
may differ due to two reasons: First, gapped alignments match segments of unequal
length; we solve this by adding breakpoints at the gap ends. Second, regions of the se-
quences corresponding to different alignments may overlap; we solve this by adding
breakpoints at the ends of the overlapping region (or regions). Notice that if we add a
breakpoint inside a segment that already has an edge associated with it, we must split
the edge (and a corresponding breakpoint must be added to the connected segment).

Table 1. Number of table updates for three sets of human proteins. We compare full DP (Ver-
sion 0), full DP on the Segment Matching Graph (Version 1), and the actual number of table
updates when considering only relevant directions (Version 2); the SMG is generated using all
significant gapped/un-gapped BLAST alignments. We see that in all cases, the actual work is
several orders of magnitudes faster than the DP calculation.

gapped BLAST un-gapped BLAST
Human proteins full DP Version 1 Version 2 Version 1 Version 2
MATK,SRC, 6.65 × 101091 · 98 · 99 · 89 7.20 × 10677 · 84 · 81 · 74 1, 994, 813
ABL1,GRB2 =78, 576, 498 =38, 769, 192
PTK6,PTK7, 2.40 × 101492 · 96 · 106 · 88· 281, 752 60 · 53 · 66 · 57·2, 980
RET, SRMS, DDR1 ·125=1.03 × 1010 ·58=3, 736, 260
GBAS, GBI1, GBT1,6.62 × 1012148 · 116 · 113 · 115·270, 289 61 · 72 · 68 · 71·145, 366
GB11, GB12 ·120 = 2.68 × 1010 ·70=4.3 × 108

Example MSAs.We demonstrate the effectiveness of our algorithm by several exam-
ples of aligning human protein sequences. We align two sets of proteins from kinase
cascades: (1) MATK, SRC, ABL1, and GRB2 of lengths 507, 535, 1130, and 217 re-
spectively. (2) PTK6, PTK7, RET, SRMS, DDR1 of lengths 451, 1070, 1114, 488, and
913 respectively. We also align five heterotrimeric G-protein (subunits alpha) GBAS,
GBI1, GBT1, GB11, GB12 of lengths 394, 353, 349, 359, and 380 respectively. We
chose these (relatively long) proteins because their “mix-and-match” modular compo-
nents characteristic highlights the strengths of our method. We use gapped and un-
gapped BLAST with E-value threshold of 10−2 to find local alignments. Namely, in the
optimal MSA two letters can be matched only if they are in a local BLAST alignment
with E-value at most 10−2.

Table 1 lists the number of table updates needed to find the optimal MSA for these
alignments. The first column has the size of the full DP matrix, or the product of the
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sequences lengths (same for gapped and un-gapped). The second column lists the num-
ber of segments in each sequence in the SMG, which was calculated from the BLAST
gapped or ungapped alignments, and the size of their DP matrix. The last column has
the actual number of vertices visited, or equivalently, the number of table updates. The
number of updates drops dramatically, in the best case from 1014 to less than 3000.
Other alignments that we studied had similar properties to the ones shown. Complete
figures of the cases listed in Table 1 are available at [1] in a format that allows zooming
for exploring the details.

5 The Transitive MSAS

In this section we further restrict the problem by making the following two assumptions,
which allow for additional “shortcuts” in the DP algorithm.

ASSUMPTION 1: The matches are transitive, in the sense that if {i, j} is an allowed
direction at x, and {i, k} is an allowed direction at x, then {j, k} is also allowed at x
(and hence, {i, j, k} as well).
ASSUMPTION 2: The scoring function is such that we seek to find an alignment of
minimal width, or equivalently, the shortest path from (n1, . . . , nk) to (0, . . . , 0) in G0.

The assumption of transitivity may be too restrictive in many biological relevant
cases. We study it here for two main reasons: (1) The assumption holds in special cases
of aligning nucleotide sequences, where a match indicates (near) identity; and (2) this
analysis illuminates additional properties of the combinatorial structure of the problem,
by further limiting the search space. The missing proofs appear in the full version.

Assumption 2 is achieved by setting the scoring function (over the edges of G1) as
s(x, x − eI) = |I| − 1: The longest possible path from (n1, . . . , nk) to (0, . . . , 0) is of
length

∑
ni. Each edge (x, x − eI) “saves” |I| − 1 steps in the path, exactly its score.

Hence, a shortest path, or the one that “saves” the most steps, is the highest scoring one.
Since this scoring function is so simple over G1, it is convenient to return the discussion
from G2 to G1. At the end of this section we prove that the techniques developed here
apply to G2 as well.

We call the problem of finding the highest scoring path from (n1, . . . , nk) to (0, . . . ,
0) in G1(M), with s and M as above, the Transitive MSAS Problem.

Maximal Directions. The first observation is that an optimal solution to the Transitive
MSAS proceeds in “maximal” steps.

Definition 5. An edge (x, x − eI) ∈ E(G1(M)) is called maximal, and the subset I a
maximal direction (at x), if for all J � I , the pair (x, x−eJ ) is not an edge. We denote
by D(x) the collection of maximal directions at vertex x (note that by transitivity, this
is a partition of [k]). A path in G1(M) is called a maximal path if it consists solely of
maximal edges.

Lemma 1. There is an optimal path in G1(M) that is also maximal.

Henceforth, by “optimal path” we refer to a maximal optimal path. As a corollary of
Lemma 1, the DP algorithm for the transitive MSA problem needs not check all direc-
tions (or all those that intersect a subset of independent relevance), only maximal ones.
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This reduces the time complexity of the algorithm to O(k
∏

li), with a data structure
that allows finding the maximal directions at a given vertex in O(k). Details will be
provided in the full version.

Obvious Directions. The notion of “relevant directions” discussed in Section 3 can
be strengthened in the transitive setting. Indeed, there is a simple characterization of
vertices in G1 for which the first step in an optimal path is obvious, and there is no need
for recursion.

Definition 6. Let x be a vertex in G1(M) and I a maximal direction at x. The set I is
called an obvious direction (at x) if for all y ∈ G1(M), y < x, such that x|I = y|I , I
is a maximal direction at y. If y = x − c · eI is extremal with respect to x, and I is an
obvious direction at x, we say that y is an obvious vertex with respect to x.

Lemma 2. Let p be an optimal path, x a vertex in p and I an obvious direction at x.
Then there is an optimal path p′ that is identical to p up to x, and that proceeds to x−eI

from x.

Corollary 1. There is an optimal path p, such that if x is an extremal vertex in p, and
y is obvious with respect to x, then p proceeds from x to y.

Intuitively, obvious directions are cases where all benefits to the scoring function can be
gained in the first step, or equivalently, there are no tradeoffs to consider. Hence, as for
relevant directions, the DP algorithm can be revised to immediately move to an obvious
vertex, avoiding the recursion over all extremal vertices.

Special Vertices. In this section we extend the “leaps” that the DP algorithm performs.
Once more, we start with a few definitions.

Definition 7. We say that a vertex y is special with respect to a vertex x if the following
four conditions hold: (1) x dominates y; (2) D(x) �= D(y); (3) there is a path from x
to y consisting solely of maximal edges; and (4) no vertex y′ satisfies all the above, and
dominates y. Denote by S(x) the set of vertices that are special with respect to x.

We define the set of special vertices S ⊆ G1(M) as the smallest one such that (n1, . . . ,
nk) ∈ S, and for every x ∈ S, S(x) ⊂ S. We first show that instead of “leaping” from
one extremal vertex to another, we can “leap” from one special vertex to another.

Definition 8. Let p = (p0, . . . , pr) and p′ = (p′0, . . . , p
′
r) be two paths. Let I1, . . . , Ir

be the sequence of directions that p moves in, and I ′1, . . . , I
′
r be the sequence of direc-

tions that p′ does. We say that p and p′ are equivalent if p0 = p′0, pr = p′r and there is
some permutation σ ∈ Sr such that Ii = I ′σ(i) for i = 1, . . . , r.

Note that equivalent paths have the same length, and hence the same score. We also
observe:

Lemma 3. Let p be an optimal path. Let x be a vertex in p, and let y be the first vertex
in p that is also in S(x). Then all maximal paths from x to y are equivalent.



326 P.K. Agarwal, Y. Bilu, and R. Kolodny

Let p = (p1, . . . , pt) be an optimal path. Define x1 = p1 and xi+1 to be the first vertex
in p that is also in S(xi). Lemma 3 says that we only need to specify the vertices {xi}
to describe an optimal path — all maximal paths connecting these vertices in order are
equivalent.

As a corollary, we can further restrict the search space of the DP algorithm. When
computing the shortest path from a vertex x, rather than considering the relevant ex-
tremal vertices, it is enough to consider the special ones. As we shall soon show, this is
indeed a subset of the extremal vertices.

Before describing the modified algorithm in detail, let us observe that special points
have a very specific structure.

Definition 9. Let x, y ∈ G1(M) be such that y is special with respect to x. Let I and I ′

be maximal directions at x. We say that y is a breakpoint of direction I , if y = x− c ·eI

for some natural c, and I is not allowed at y.
We say that y is a straight junction of direction I if y = x − c · eI for some natural c,
and I is allowed, but not maximal, at y.
We say that y is a corner junction of directions I and I ′ if y = x − c · eI − c′ · eI′ for
some natural c and c′, and I and I ′ are allowed, but not maximal, at y.

Theorem 3. Let y be a special vertex with respect to x. Then y is one of the types in
definition 9. Furthermore, if x is an extremal vertex, then so is y.

Corollary 2. All special vertices are extremal vertices.

This suggests a further improved DP algorithm that runs on G2. We defer the pseudo
code listing and a detailed analysis of the running time of the algorithm to the full
version. The analysis shows that the running time is linear in the number of segments
and the number of special vertices, and at most cubic in the number of sequences.
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Abstract. We present a method for automatically extracting groups
of orthologous genes from a large set of genomes through the develop-
ment of a new clustering method on a weighted multipartite graph. The
method assigns a score to an arbitrary subset of genes from multiple
genomes to assess the orthologous relationships between genes in the
subset. This score is computed using sequence similarities between the
member genes and the phylogenetic relationship between the correspond-
ing genomes. An ortholog cluster is found as the subset with highest
score, so ortholog clustering is formulated as a combinatorial optimiza-
tion problem. The algorithm for finding an ortholog cluster runs in time
O(|E| + |V | log |V |), where V and E are the sets of vertices and edges,
respectively in the graph. However, if we discretize the similarity scores
into a constant number of bins, the run time improves to O(|E| + |V |).
The proposed method was applied to seven complete eukaryote genomes
on which manually curated ortholog clusters, KOG (eukaryotic ortholog
clusters, http://www.ncbi.nlm.nih.gov/COG/new/) are constructed. A
comparison of our results with the manually curated ortholog clusters
shows that our clusters are well correlated with the existing clusters. Fi-
nally, we demonstrate how gene order information can be incorporated
in the proposed method for improving ortholog detection.

1 Introduction

One of the fundamental problems in comparative genomics is the identification
of genes from different organisms that are involved in similar biological functions.
This requires identification of orthologs which are homologous genes that have
evolved through vertical descent from a single ancestral gene in the last com-
mon ancestor of the considered species [1]. In recent years, many genome-wide
ortholog detection procedures have been developed [2,3,4,5,6,7], however, they
suffer from limitations that present real challenges for addressing the problem
in a large set of genomes. Some of them are limited to identifying orthologs in a
pair of genomes [2,3,4]; [7] requires phylogenetic information and are not com-
putationally efficient, and others [5,6] require expert curation. Known complete
methods for finding ortholog clusters have at least two stages - automatic and

� The author was, in part, supported by the DIMACS Graduate Students Awards.

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 328–340, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Ortholog Clustering on a Multipartite Graph 329

manual. The role of the latter is to correct th results of the first stage which is
usually a clustering procedure. Although specific implementations of clustering
procedures in different methods vary, most successful methods include critical
steps such as building clusters based on a set of ”mutually most similar pairs”
of genes from different genomes. These pairs are called BBH (bi-directional best
hits [4,5,6]). This preprocessing is not robust as small changes in data or in
the set of free parameters can alter the results substantially. So, currently there
are three bottlenecks in ortholog extraction: (a) the manual curation, (b) time
complexity, and (c) the hypersensitivity of the automatic stage to parameter
changes. We propose a combinatorial optimization based approach for ortholog
detection in a large set of genomes that addresses these bottlenecks.

The proposed method assigns a score to any arbitrary subset of genes from
multiple genomes to assess orthologous relationships between genes in the subset,
finding an ortholog cluster as the subset with the highest score. Thus, an ortholog
cluster is found as a global solution to a combinatorial optimization problem on
multipartite graphs. Assigning a score that best reflects the ortholog relation-
ships among genes in an arbitrary subset of genes is critical to our approach.
When considering orthologs from multiple genomes, observed sequence similar-
ities between a pair of orthologous genes depends on the time since divergence
of the corresponding genomes. So, in addition to sequence similarities between
genes we consider the phylogenetic relationship between genomes. We also de-
scribe how the gene order information can be incorporated into our method to
improve ortholog detection.

The method is efficient for finding candidate ortholog clusters in a large num-
ber of genomes and automatically determines the number of candidate ortholog
clusters. We have applied this method to find ortholog clusters in seven genomes
on which the KOG database [5] is constructed.

In the following we present our ortholog model in section 2 and describe
the algorithm for extracting ortholog clusters in section 3. The implementation
details and techniques to speed up the ortholog extraction are in section 4. The
experimental results on the 7 genomes and the comparison of the orthologs are
presented in sections 5. Section 6 contains the conclusion and future work.

2 Problem Formulation: Ortholog Model

A challenge in ortholog cluster extraction is to avoid detection of paralogs, which
are genes that have evolved through duplication of an ancestral gene [1]. From
a gene-function point of view, correct identification of orthologs is particularly
important since they usually perform very similar function whereas paralogs,
although highly similar at the primary sequence level, functionally diverge to
adapt to new functions. Paralogs are closely related to orthologs, because if a
duplication event follows a speciation event, orthology becomes a relationship
between a set of paralogs [5]. Due to this complex relationship, paralogs related
to ancient duplications are placed in different ortholog clusters whereas recently
duplicated genes are placed in the same ortholog cluster, as has been done in
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COG [6], KEGG [2] and Inparanoid [4]. Such definition of ortholog clusters is
justified from a gene function perspective because anciently duplicated genes are
most likely to have adapted to new functional niches.

We address the above challenge by modeling the ortholog cluster as clusters in
a multipartite graph. Orthologs, by definition, are present in different genomes
[1]. We represent this in the multipartite graph, by letting different genomes
correspond to partite sets and the genes in a genome correspond to vertices
in a partite set. The multipartite graph considers the similarity relationships
between genes from different genomes and ignores similarities between genes
within a genome. Furthermore, the multipartite graph representation is suitable
for discriminating between recently and anciently duplicated paralogs. Recently
duplicated paralogs are confined to a genome and are very similar in primary
sequence, so these copies share similarities to the same set of genes in other
genomes. On the other hand, anciently duplicated paralogs are more similar to
orthologs in other genomes compared to paralogs within the genome. So, the
multipartite graph clustering, described below, places recently duplicated genes
in the same ortholog cluster and the ancient paralogs in different clusters.

A challenge specific to ortholog detection in a large set of genomes is the
variation in observed sequence similarity between orthologs from different pairs
of genomes. Within an ortholog family, orthologous sequences belonging to an-
ciently diverged genomes are relatively less similar in comparison to those from
the recently diverged genomes [8]. So, automatic methods based on numerical
measures of sequence similarity must correct for these observed sequence simi-
larities 1. To correct the observed sequence similarity between a pair from two
genomes, we use the distance between corresponding genomes.

Most ortholog detection methods consider genomes as a bag of genes and
find ortholog clusters solely based on sequence similarity [6,5,4]. However, the
leverage gained by using auxiliary information such as order of genes in a genome
is widely recognized [8]. In fact, studies [9] show that the order of genes in the
genome can reliably determine the phylogenetic relationship between closely
related organisms. We describe later how the gene-order information can be
used in conjunction with the sequence similarity to find ortholog clusters.

2.1 Ortholog Clusters on a Multipartite Graph

Consider the ortholog clustering problem with k genomes, where Vi, i ∈ {1, 2,
. . . , k} represents the set of genes from the genome i. Then, the similarity rela-
tionships between genes from different genomes can be represented by an undi-
rected weighted multipartite graph G = (V, E, W ), where V = ∪k

i=1Vi and Vi is
the set of genes from the genome i, and E ⊆ ∪i�=jVi × Vj is the set of weighted,
undirected edges representing similarities between genes.

The problem of finding an ortholog cluster could be modeled as finding maxi-
mum weight multipartite clique, but no efficient procedure exists for solving this
1 The issue related to the correction is more complicated due to diverse evolutionary

rates across lineages and protein families [8]. Our intention is not to correct for the
absolute rates of evolution.
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problem [10]. Moreover, cliques are simple models for an ortholog cluster which
requires robust models that allow some incompleteness in subgraph extracted
as a cluster. Due to this, clusters are often modeled as quasi-cliques or dense
graphs [2].

To find a weighted multipartite quasi-clique as an ortholog cluster, we assign
a score F (H) to any subset H of V . The score function denotes a measure of
proximity among genes in H . Then, our multipartite quasi-clique, or cluster, H∗

is defined as the subset with largest score value, i.e.,

H∗ = arg max
H⊆V

F (H) (1)

The subset H contains genes from multiple genomes, so according to (1) our
approach finds an ortholog cluster as a set of genes from multiple genomes by
simultaneously considering all the similarity relationships in H . This is novel
since to our knowledge all sequence similarity based methods, such as [6,4], find
an initial set of orthologs from two genomes and possibly extend them at later
stages. The function F (H) is designed using a linkage function π(i, H) which
measures the degree of similarity of the gene i ∈ H to other genes in H .

F (H) = min
i∈H

π(i, H), ∀i ∈ H ∀H ⊆ V (2)

In other words, F (H) is the π(i, H) values of the least similar (outlier) gene in
H . Then, according to (1), the subset, H∗ contains genes such that similarity of
the least similar gene in H is maximum.

Our linkage function considers the sequence similarity between genes within
the ortholog cluster, their relationship to genes outside the cluster, and the
phylogenetic distance between the corresponding genomes. Consider a subset H
of V that contains genes from at least two genomes, so that H be decomposed as
H = ∪k

i=1Hi where Hi is the subset of genes from Vi present in H . If mij (≥ 0)
is the similarity value between gene i from genome g(i) and gene j from another
genome g(j) and p(g(i), g(j)) represents the distance between the two genomes,
then the linkage function is defined as

π(i, H) =
k∑

�=1
� �=g(i)

p(g(i), �)

⎧⎨⎩∑
j∈H�

mij −
∑

j∈V�\H�

mij

⎫⎬⎭ (3)

Given the phylogenetic tree for the genomes under study, the distance, p(g(i),
g(j)) (≥ 0), between the genomes is defined as the height of the subtree rooted
at the last common ancestor of the genomes g(i) and g(j). This term is used to
correct the observed sequence similarities by magnifying the sequence similarities
corresponding to genomes which diverged in ancient times. The term

∑
j∈H�

mij

aggregates the similarity values between the genes i from genome g(i) and all
other genes in the subset H that do not belong to genome g(i), while the second
term,

∑
j∈V�\H�

mij , estimates how this gene is related to genes from genome �
that are not included in H�. A large positive difference between these two terms
ensures that the gene i is highly similar to genes in H� and at the same time very
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dissimilar from genes not included in H�. From a clustering point of view, this
ensures large values of intra-cluster homogeneity and inter-cluster separability
for extracted clusters. Translated to ortholog clustering, such a design enables a
separation of ortholog clusters related to anciently duplicated paralogs.

3 Multipartite Graph Clustering

We now give an algorithm to find the solution for the combinatorial optimization
problem defined in (1) and study properties of the functions π(i, H) and F (H)
which guarantee an efficient algorithm to find the optimal solution. The linkage
function in (3) and the score function in (2) were designed such that they satisfy
these properties.

Definition 1. A linkage function, π : V × 2V → �, is monotone increasing if

π(i, H) ≥ π(i, H1) ∀i,∀H1, ∀H : i ∈ H1 ⊆ H ⊆ V (4)

Claim 1. The linkage function π(i, H) defined in (3) is monotone increasing.

Proof. Observe that the distance p(ı, j) is merely a scaling factor for the observed
similarities and does not impact the monotonicity. Consider the case when H is
extended to H ∪ {k}, and assume k ∈ Vs. If i ∈ Vs then π(i, H ∪ {k}) = π(i, H),
otherwise π(i, H ∪ {k})− π(i, H) = 2mik ≥ 0, which proves the claim. ��

Definition 2. A set function, F : 2V \ ∅ → �, is quasi-concave if it satisfies

F (H1 ∪ H2) ≥ min(F (H1), F (H2)) ∀H1, H2 ⊆ V (5)

Proposition 1. The set function F (H) as defined in (2) is quasi-concave if and
only if the linkage function is monotone increasing.

Proof. [⇒] Let H1, H2 ⊆ V , and i∗ ∈ H1 ∪ H2 be such that F (H1 ∪ H2) =
π(i∗, H1∪H2). Suppose, i∗ ∈ H1, then using (4) we get, F (H1∪H2) = π(i∗, H1∪
H2) ≥ π(i∗, H1) ≥ mini∈H1 π(i, H1) = F (H1) ≥ min(F (H1), F (H2)).

[⇐] The proof is by contradiction. For i ∈ H1 ⊆ H ⊆ V , assume that π(i, H1 ∪
H) < π(i, H1) and (5) hold. From the assumption we get mini∈H1 π(i, H1∪H) <
mini∈H1 π(i, H1) = F (H1). Further, F (H1 ∪ H) = mini∈H1∪H π(i, H1 ∪ H) ≤
mini∈H1 π(i, H1 ∪ H). Combining these two inequalities we get, F (H1 ∪ H) <
F (H1) which contradicts the quasi-concavity property (5) in the assumption. ��

Proposition 2. For a quasi-concave set function F (H) the set of all its maxi-
mizers, as defined by (2), is closed under the set union operation.

Proof. Follows from the quasi-concavity of F (H). ��

A maximizer of F (H) that contains all other maximizers is called the ∪-maxi
mizer, Ĥ. It is obvious from proposition (2) that Ĥ is the unique largest max-
imizer. The algorithm to find the optimal solution Ĥ is described in Table 1.
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Table 1. Pseudocode for extracting Ĥ

Step 0: Set t := 1; H1 := V ; Γ := V ;
Step 1: Find Mt := {i : π(i, Ht) = minj∈Ht π(j, Ht)};
Step 2: if ((Ht \ Mt = ∅) ∨ (π(i,Ht) = 0 ∀i ∈ Ht)) STOP.

else { Ht+1 := Ht \ Mt; t := t + 1; }
if (F (Ht) > F (Γ )) {Γ = Ht; }
go to Step 1.

This iterative algorithm begins by calculating F (V ) and the set M1 containing
the subset of vertices that satisfy F (V ) = π(i, V ), i.e., M1 = {i ∈ V : π(i, V ) =
F (V )}. The vertices in the set M1 are removed from V to get H2 = V \M1. At
the iteration t, it considers the set Ht−1 as input, calculates F (Ht−1), identifies
the subset Mt such that F (Ht−1) = π(it, Ht−1), ∀it ∈ Mt, and removes this
subset from Ht−1 to produce Ht = Ht−1 \ Mt. The algorithm terminates at the
iteration T when HT = ∅ or F (HT ) = 0. It outputs Ĥ as the subset, Hj with
smallest j such that F (Hj) ≥ F (H�)∀l ∈ {1, 2, . . . , T}. Thus, the algorithm finds
the largest optimal solution that includes all other optimal solution.

This algorithm resembles the one for finding the largest subgraph with maxi-
mum minimum degree [11], however, our formulation is very general and applies
whenever the function F (H) is quasi-concave. Furthermore, by designing an ap-
propriate linkage function various structures in a graph can be obtained [12].

Theorem 1. The subset Γ output by the above algorithm is the ∪-maximizer
for F in the set V .

Proof. According to the algorithm, F (Γ ) = maxHi∈H F (Hi), where H = {H1,
H2, . . . , HT } and HT ⊂ . . . ⊂ H2 ⊂ H1 = V . We divide the proof into two cases.
Case (i) [H \ Γ �= ∅]: Let Hi be the smallest set in the sequence H containing
H , so that H ⊆ Hi but H �⊆ Hi+1. Since Mi = Hi \ Hi+1, there is at least one
element, say iH , common to both Mi and H . By definition of F (Hi), we have

F (Hi) = min
i∈Hi

π(i, Hi) = π(i∗, Hi) (6)

By construction of Mi, i∗ ∈ Mi, so π(i∗, Hi) = π(iH , Hi). Using (4) we get

π(i∗, Hi) = π(iH , Hi) ≥ π(iH , H) ≥ min
i∈H

π(i, H) = F (H) (7)

Using (6) and (7) we obtain F (Hi) ≥ F (H). According to the algorithm F (Γ ) >
F (Hi), ∀Hi ⊃ Γ , so we prove

F (Γ ) > F (H), ∀H \ Γ �= ∅ (8)

Case (ii) [H ⊆ Γ ]: Similar to the previous case, there exists a smallest subset
Hi in the sequence H that includes H . So, the inequalities in (7) hold here too,
and we could write F (Hi) ≥ F (H). On the other hand, F (Γ ) ≥ F (Hi), which
in conjunction with the previous inequality implies

F (Γ ) ≥ F (H), ∀H ⊆ Γ (9)

Further, a maximizer satisfying inequalities (8) and (9) is the ∪-maximizer. ��
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Table 2. Pseudocode extract for finding a series of multipartite clusters

Initialization: V 0 := V ; m := 0; C = ∅;
Step 1: Extract Ĥm from V m using (1); Add Ĥm to C;
Step 2: V m+1 := V m \ Ĥm; m := m + 1;
Step 3: if ( (V m = ∅) ∧ (mij = 0 ∀i, j ∈ V m) )

Output C, V m as R, and m; STOP;
else go to step 1

3.1 Partitioning of Data into Multipartite Clusters (MPC)

The algorithm in Table 1 outputs one multipartite cluster. However, many such
clusters are likely to be present in the set V . If we assume that these clusters are
unrelated, we can use a simple heuristic of iteratively applying the above proce-
dure to extract all these clusters. To do this we remove the elements belonging
to the first cluster Ĥ from V and extract another multipartite cluster in the set
V \ Ĥ . This procedure is formalized in Table 2 and produces an ordered set,
C = {Ĥ0, Ĥ1, . . . , Ĥm}, of m ortholog clusters, and a set of residual elements
R = {i : i ∈ G \C}. The number, m, of non-trivial clusters (ortholog clusters) is
automatically determined by the method. It must be remarked that every cluster
in C contains genes from at least two genomes.

4 Analysis and Implementation

The run-time of the algorithm depends on the efficiency of evaluation of the
linkage function. A linkage function which can be updated efficiently, instead of
having to be evaluated from scratch at each iteration, is preferable. The linkage
function described in (3) is additive and can be updated efficiently when vertices
are removed from the set.

Theorem 2. The algorithm for finding an ortholog cluster runs in time O(|E|+
|V | log |V |) and space O(|E| + |V |).

Proof. Clearly, the step 0 of the algorithm in Table 1 takes a constant time. The
initialization includes computing π(i, V ) ∀i ∈ V . To compute π(i, V ) we must
look at all edges incident on i, thus computing π(i, V )∀i ∈ V takes O(|E|) time.
At subsequent iterations, due to the additive property of the linkage function
(3), efficient updates are possible without recomputing from scratch. As each
edge is deleted once, all linkage function updates together requires O(|E|) time.

Step 1 involves determining the set Mt by finding the vertices with minimum
value of the linkage function. Observe that in a sparse multipartite graph, only a
few edges are deleted at each iteration implying that only a few linkage function
values are updated. Consequently, the order of vertices determined by the linkage
function values remains approximately fixed. We use Fibonacci heaps [13] (which
work irrespective of the sparsity in the input graph) to store vertices according
to their linkage function values. So, elements in the set Mt can be found in O(1)
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time using the find-min operation. In Step 2, the set Ht+1 = Ht \ Mt can
be found in O(log |Ht|) time using the delete-min operation and each update
to linkage function value can be performed in O(1) using the decrease-key
operation. Thus, using Fibonacci heaps each iteration takes O(log |Ht|) time. The
maximum number of iteration is |V |, and each iteration takes at most O(log |V |).
Thus, the algorithm runs in O(|E| + |V | log |V |) time. Using the adjacency list
representation for the graph, the algorithm requires O(|E| + |V |) space. ��

Theorem 3. If the values in the similarity matrix are discretized into c different
values, the algorithm runs in O(|E| + |V |) time.

Proof. The initialization step, as in Theorem 2, takes O(|E|) time. To reduce the
time complexity of subsequent iterations, we sort and store the vertices in the
order of the initial linkage function values, π(i, V ). We assume that the graph is
represented in the adjacency list format, and sort the vertices using the bucket
sort algorithm [14]. Within each bucket, the vertices are stored using a linked
list to accommodate multiple vertices with the same value. The edge weights
can take c different values, so the initial linkage function values are bounded i.e.,
0 ≤ π(i, V ) ≤ |V |.c. So, sorting the |V | values of π(i, V ) takes O(|V |) time.

At each iteration, finding the vertex with minimum value of the linkage func-
tion. This takes O(1) time as vertices are sorted according to the linkage function
values. Deletion of a vertex entails updates to the linkage function values for the
neighboring vertices. The cost for updating linkage function values is already
considered, but to preserve the sorted order of vertices, we must find the new
place for each updated vertex. Since the edge weights are discretized, the new
place must lie at most c bins away from the current position (towards the mini-
mum). Thus, the new place is found in at most c, or O(1) time. Every iteration
requires O(1) time, and since the number of iterations is at most |V |, the total
time is bounded by O(|V |). Combining this with the total cost for computing
the linkage function values, the run time of the algorithm is O(|E| + |V |). ��

As a result of Theorem 2, the procedure for finding all the m ortholog clusters
runs in time O(m(|E| + |V |)). We now give some implementation details which
do not improve the complexity of the algorithm but enable a speedup in practice.

Vertices in different connected components of a graph cannot come together
to form a cluster. So, different connected components can be processed in iso-
lation. Furthermore, the input multipartite graph between genes is large but
very sparse, so when a dense subgraph is extracted as the optimal solution, the
remaining graph becomes disconnected. As a consequence, in practice, a signif-
icant speedup is achieved when the procedure in Table 2 is run on individual
connected components after extraction of an ortholog cluster. Also, finding an
optimal solution in different connected components is amenable to parallelism.

The algorithm in Table 1 removes the vertices corresponding to the minimum
of the linkage function, if, however, we could remove a larger set of vertices
without affecting the correctness of the procedure, the algorithm would be faster
as more vertices would be removed at each iteration. The following theorem
determines such elements.
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Theorem 4. Define Q = {i ∈ V : π(i, V ) < θ, θ > 0} and let ĤV \Q be the
∪-maximizer in the set V \ Q, and Ĥ be the ∪-maximizer in the set V . Then,

F (ĤV \Q) > θ ⇒ ĤV \Q = Ĥ. (10)

Proof. The score-value of ĤV \Q, obtained from V \ Q (a subset of V ) can be
at most the score-value of Ĥ obtained from V , i.e., F (Ĥ) ≥ F (ĤV \Q) > θ.
Then using (2) it follows that ∀i ∈ Ĥ, π(i, Ĥ) > θ. Further, by the monotonicity
property we get π(i, V ) ≥ π(i, Ĥ) > θ. But, according to the definition of Q,
π(i, V ) > θ ⇒ i ∈ V \Q. This proves that ∀i ∈ Ĥ, i ∈ V \Q, in other words, Ĥ ⊆
V \Q. But, by the definition of ∪-maximizer, we have F (ĤV \Q) ≥ F (H)∀H ⊆ V \
Q i.e., F (ĤV \Q) ≥ F (Ĥ). But we already had F (Ĥ) ≥ F (ĤV \Q), so F (ĤV \Q) =
F (Ĥ). Further, uniqueness of ∪-maximizer implies ĤV \Q = Ĥ. ��

According to Theorem 4, we can remove all vertices whose linkage function
value is less than the current estimate of the score value of ∪-maximizer. In the
algorithm in Table 1, F (Γ ) is the current estimate of the F (Ĥ), so we can remove
all vertices, Mt = {i : π(i, Ht) < F (Γ )} ∪ {i : π(i, Ht) = minj∈Ht π(j, Ht)}. This
reduces the number of iterations as more vertices are likely to be removed at
each iteration.

Theorem 4 can also improve the run-time of the procedure given in Table 2.
This procedure, at the iteration t, finds a cluster as the optimal set Ĥt, removes
this optimal set from the current set to produce a resulting set, V t+1 = V t \ Ĥt,
in which the optimal set, Ĥt+1 is found at the next iteration t + 1. For the
ortholog clustering, we empirically found that F (Ĥt+1)/F (Ĥt) ≥ 0.8, so we
apply Theorem 4 with θ = 0.8 ∗ F (Ĥt) for finding Ĥt+1. Such preprocessing
removes more than 95% of vertices that do not belong to the optimal set and
thus leads to significant performance gains.

5 Experimental Results

We have applied the proposed method for constructing ortholog clusters to the
complete genome data on which the manually curated eukaryotic orthologous
groups (KOGs) [5] are constructed. The 4,852 KOGs contain 60,759 sequences
from 112,920 sequences present in the seven eukaryotic genomes (A. thaliana, C.
elegans, D. melanogaster, E. cuniculi, H. sapiens, S. cerevisiae and S. pombe).

For this study, we used the linkage function described in (3). The species
tree in [5] was used to calculate the phylogenetic distance function. We used
the pair-wise sequence similarity scores (bit-scores) computed using Blast [15]
available at the KOG website. We considered only a subset of the top hits for any
given sequence. To be precise, if the best hit for gene i ∈ Vs in another genome
Vt is j ∈ Vt with bit-score mij , then we consider all genes from Vt which have
bit-score value larger than mij/2. The idea behind such selection is to avoid
low-scoring spurious hits for a given gene. The values of sequence similarity
scores between genes within an ortholog family vary across ortholog families
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Fig. 1. A comparison of distribution of size and number of organisms in KOGs and
our ortholog clusters

and one cannot use a constant threshold across all ortholog families. Such gene-
specific and genome-specific cutoff [3] avoids spurious matches without filtering
out potential orthologs.

Our method produced 36,034 clusters including 25,434 singletons, 2,870 clus-
ters of size 2 and 7,830 clusters that contain at least 3 sequences. A comparative
distribution of size and the number of organisms in our clusters and the KOGs
is shown in Figure 1a and 1b, respectively. In comparison to KOGs, our ortholog
clusters are relatively smaller in size and contain sequences from fewer genomes.

A KOG cluster, by construction, contains sequences from at least three
genomes, so for the purpose of comparison, we divided the 7,830 clusters with
at least three sequences into 1,488 clusters containing sequences from 2 genomes
and 6,342 ortholog clusters that contain sequences from at least 3 genomes. The
6,342 clusters contain 61,272 sequences of which 47,458 are common with the
60,759 sequences in the KOG ortholog clusters. Of the 13,301 sequences from
KOGs that are not covered by these clusters, 9,078 sequences are grouped into
1,566 clusters that contain sequences from at most two genomes while the re-
maining are classified as singletons. In comparison to KOGs our clusters contain
fewer paralogs - a desirable feature obtained by ignoring similarities between
genes within a genome. Although desirable from an ortholog clustering perspec-
tive, this also means that our ortholog clusters are smaller in size as the method
avoids detection of paralogs in an ortholog cluster. This is consistent with the
distribution of sizes (see Figure 1a) and the following statistical comparison.

To estimate the association between KOGs and our ortholog clusters, we
used several statistical parameters. We used the rand index [16] to quantify the
relatedness of the two clusterings, and obtained a value of 0.792 implying that
approximately 80% of all pairs of sequences in input data are co-clustered in
KOGs and in our results. The average number of KOGs that overlap with an
ortholog cluster is 1.031, which indicates that most of our clusters contain se-
quences from a single KOG. Conversely, the average number of candidate clusters
that overlap with a KOG is 3.012, however, in most cases a KOG completely
contains the candidate clusters which suggests that our clusters are homogeneous
with respect to the KOGs. These statistics along with the size distribution are
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a confirmation of our observation that our ortholog clusters are usually subsets
of single KOGs.

A set-theoretic comparison of our clusters with the KOGs shows 844 KOGs
exactly match our clusters. There are 611 KOGs that are divided into 2 clusters,
each of which contains a sequence only from the corresponding KOG. Carrying
out this analysis further, we found that 2,472 KOGs (51% of all KOGs) can
be partitioned into our clusters whose members belong to a single KOG. The
remaining 2,380 KOGs overlap with at least one mixed ortholog cluster, i.e.,
cluster that either contains sequences from multiple KOGs, or contains some
sequences that do not belong to any KOG . Among 6,342 clusters produced
by our method, there are 1,857 clusters that contain sequences from multiple
KOGs. Using Pfam [17] annotations to assess the homogeneity of these 1,857
clusters, we found that all members in 952 of these clusters were annotated with
the same Pfam families while no member in 436 clusters could be annotated with
any Pfam family. In summary, the statistical coefficients and the set-theoretic
comparison of our clusters with the manually curated ortholog clusters in KOG
shows that the two clusterings to be very well correlated.

6 Conclusion

We have modeled the problem of finding orthologous clusters in a large number of
genomes as clustering on a multipartite graph. The proposed method is efficient
and finds an ortholog cluster in time O(|E|+ |V | log |V |). To further speedup the
method, we presented implementation choices that lead to significant speedups
in practice. The proposed ortholog clustering method was applied to the seven
eukaryote genomes on which KOG ortholog clusters are constructed. The anal-
ysis of the results shows that clusters obtained using the proposed method show
a high degree of correlation with the manually curated ortholog clusters.

This method extracts an ortholog cluster by ignoring similarities between
genes within a genome while emphasizing orthologous relationships between
genes from different genomes. Since observed sequence similarity scores are
higher for recently diverged orthologs compared to those for the anciently di-
verged orthologs, we used the species tree to correct for these differences (3).

Corrections to observed sequence similarity using phylogenetic trees assume
the correctness of the given phylogenetic tree. However, there are instances when
multiple hypothesis about the phylogenetic relationship between a group of or-
ganisms exist, in such cases the confidence in those hypotheses is low. We hope
that the proposed method can be modified to resolve such conflicts by construct-
ing the gene tree for each ortholog cluster and deriving support for the species
tree(s) from these gene trees (personal communication with Roderic Guigo and
Temple Smith [18]). When the phylogenetic information is controversial, an it-
erative process of finding ortholog clusters can resolve the ambiguities in the
phylogenetic tree.

Recently the gene order has been used to find ortholog clusters in a pair
of genomes [19]. The conserved gene order between a pair of genomes can be
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inferred using programs like DiagHunter [19]. This additional information about
the orthologous relationships also can be incorporated in our method. Indeed,
let us consider a new similarity coefficient between genes i and j which belong
to different genomes, but are conserved in gene order as determined by methods
such as DiagHunter. Then, we can design a new linkage function

π′(i, H) = π(i, H)

⎛⎜⎜⎝ k∑
�=1

� �=g(i)

∑
j∈H�

eij

⎞⎟⎟⎠ (11)

where π(i, H) is linkage function defined in (3). The first term inside the paren-
theses aggregates gene order similarity coefficients between gene i and genes in
other genomes, while the second term aggregates gene order similarity coefficients
between the gene i and genes in H�, the subset of genes from genome l present
in H . Thus, π′(i, H) incorporates three diverse components: sequence similarity,
species tree, and the gene order information, critical for ortholog clustering.
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Linear Time Algorithm for Parsing RNA
Secondary Structure

Extended Abstract

Baharak Rastegari and Anne Condon

Department of Computer Science, University of British Columbia

Abstract. Accurate prediction of pseudoknotted RNA secondary struc-
ture is an important computational challenge. Typical prediction algo-
rithms aim to find a structure with minimum free energy according to
some thermodynamic (“sum of loop energies”) model that is implicit
in the recurrences of the algorithm. However, a clear definition of what
exactly are the loops and stems in pseudoknotted structures, and their
associated energies, has been lacking.

We present a comprehensive classification of loops in pseudoknotted
RNA secondary structures. Building on an algorithm of Bader et al. [2]
we obtain a linear time algorithm for parsing a secondary structures into
its component loops.

We also give a linear time algorithm to calculate the free energy of a
pseudoknotted secondary structure. This is useful for heuristic prediction
algorithms which are widely used since (pseudoknotted) RNA secondary
structure prediction is NP-hard. Finally, we give a linear time algorithm
to test whether a secondary structure is in the class handled by Akutsu’s
algorithm [1]. Using our tests, we analyze the generality of Akutsu’s
algorithm for real biological structures.

1 Introduction

RNA molecules play diverse roles in the cell: as carriers of information, catalysts
in cellular processes, and mediators in determining the expression level of genes
[8]. The structure of an RNA molecule is often the key to its function with other
molecules. In particular, the secondary structure, which describes which bases
of an RNA molecule bond with each other, can provide much useful insight as
to the function of the molecule. If the RNA molecule is viewed as an ordered
sequence of n bases (Adenine (A), Guanine (G), Cytosine (C), and Uracil (U)),
indexed starting at 1 from the so-called 5’ end of the molecule, then its secondary
structure is a set of pairs i · j, 1 ≤ i < j ≤ n with each index in at most one pair.

Most well known are pseudoknot free secondary structures in which no base
pairs overlap - that is, there do not exist two base pairs i · j and i′ · j′ in the
structure with i < i′ < j < j′. Because of their biological importance, there has
been a huge investment in understanding the thermodynamics of pseudoknot
free secondary structure formation. For example, it is well understood that in a
pseudoknot free secondary structure, the base pairs together with unpaired bases
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c© Springer-Verlag Berlin Heidelberg 2005



342 B. Rastegari and A. Condon

form hairpin loops, internal loops (of which stacked pairs and bulge loops are
special cases), external loops, or multiloops, with every unpaired base in exactly
one loop and every base pair in exactly two loops. Parameters for estimating the
free energies of such loops have been determined experimentally. The standard
thermodynamic model posits that the free energy of a pseudoknot free secondary
structure is the sum of the energies of its loops. A pseudoknot free secondary
structure can be conveniently represented as a string in dot-parenthesis format, a
generalization of a string of balanced parentheses in which matching parentheses
denote base pairs and dots denote unpaired bases. It is straightforward to parse
a pseudoknot free secondary structure represented in dot-parenthesis notation
in linear time, in order to determine its loops and calculate its free energy.
Finally, dynamic programming algorithms can find the minimum free energy
(mfe) pseudoknot free secondary structure in O(n3) time; the mfe structure is
the most stable of the possibly exponentially many structures that a molecule
may form, according to current models.

In contrast, there has been no classification of loops in pseudoknotted sec-
ondary structures, though some examples of structural motifs, such as kissing
hairpins, have been named. Since pseudoknotted secondary structure prediction
is NP-hard, several polynomial time algorithms have been proposed for pre-
dicting the mfe secondary structure from restricted classes of structures that
may contain pseudoknots. Of these, the O(n6) algorithm of Rivas and Eddy [12]
handles (i.e. finds the mfe structure from) the most general class of structures.
However, the loop types and thermodynamic model underlying the Rivas and
Eddy and other algorithms are specified only implicitly in the recurrence equa-
tions of the algorithms. There is not a one-to-one correspondence between loops
and terms in the recurrence equations, making it difficult to infer the loop types
directly from the recurrences. The underlying energy models are unclear; there
has been no algorithm to calculate the energy of a structure, and no way to
compare the quality of thermodynamic models proposed by different authors.

In this work we present the first classification of loops that arise in pseudo-
knotted secondary structures. Our classification is derived from the algorithm of
Rivas and Eddy, and allows us to formulate the thermodynamic models underly-
ing the Rivas and Eddy and other dynamic programming algorithms as sum-of-
loop-energies models. With this description, it becomes possible to evaluate the
strengths and weaknesses of current thermodynamic models for pseudoknotted
structures.

By extending an algorithm of Bader et al. [2], it is possible to parse a given
secondary structure into its component loops in linear time. We present two
applications of this parsing algorithm. First, we show how to calculate the free
energy of a pseudoknotted secondary structure in linear time. This can be use-
ful in heuristic algorithms, which hold promise since pseudoknotted secondary
structure prediction is NP-hard [11].

The second application of our parsing algorithm is in assessing the trade-off be-
tween generality and running time of dynamic programming algorithms for RNA
secondary structure prediction. Each dynamic programming algorithm in the lit-
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erature only predicts structures from a restricted class. Usually, the more general
the class, the higher the running time of the algorithm. An outstanding challenge is
to design efficient dynamic programming algorithms that can predict biologically
important structures. For example, Akutsu [1] proposed an algorithm that runs in
O(n5) time, can in theory handle more secondary structures than the O(n5) algo-
rithm of Dirks and Pierce [9], though less than the O(n6) algorithm of Rivas and
Eddy. As another example, Uemura [14] proposed an algorithm that runs in O(n5)
time, similar to Akutsu’s algorithm in time complexity, but in theory handle more
secondary structures than Akutsu’s algorithm, though it is much more harder to
understand and analyse. Let U, A, D&P, and R&E denote the classes of structures
handledby theUemura, Akutsu,Dirks andPierce, andRivas andEddy algorithms,
respectively. The question we address is: does A contain more biologically mean-
ingful structures than does D&P and perhaps as many as U and/or R&E?

To help answer this question, we apply the parsing algorithm to give linear
time test for membership in class A. In previous work [7], we obtained linear time
tests for membership in the D&P and R&E classes. We provide a comparison of
all four algorithms on a set of 1439 biological structures; the result shows that
exactly 2 of the structures are in class A but not in class D&P.

The paper is organized as follows. In Sec. 2, we define what is a closed region
in an RNA secondary structure. (The parsing algorithm, based on an algorithm
of Bader et al. [2], is not shown due to the lack of space). In Sect. 3 we present our
loops classification and our algorithm for enumerating the loops of a secondary
structure. We briefly describe how to calculate the free energy of a secondary
structure in Sect. 4. Our algorithm for testing membership in Akutsu’s class is
in Sect. 5, and conclusions are in Sect. 6.

We should note that some details of the algorithms and most of the details
of the proofs are eliminated in this extended abstract.

2 Closed Regions

Here we first introduce closed regions of a secondary structure, which are impor-
tant throughout the paper. Examples are shown in Fig. 1, where a secondary
structure is represented as an arc diagram, in which base indices are shown as
vertices on a straight line (backbone), ordered from the 5′ end, and arcs (always
above the straight line) indicate base pairs. Intuitively, a closed region is a “min-
imal” set of contiguous base indices - corresponding to a region of the line - with
the property that no arcs leave the region and there is at least one arc in the
region. The definitions in this and the following sections are with respect to a
fixed non-empty secondary structure R for an RNA sequence of length n.

We denote the set of indices i, i + 1, ..., j by [i; j] and call this set a region if
i ≤ j. We say that region [i; j] is weakly closed if it contains at least one base
pair and for all base pairs i′ · j′ of R, i′ ∈ [i; j] if and only if j′ ∈ [i; j]. We say
that [i; j] is closed, and write i; j, if either (i) i = 1 and j = n or (ii) [i; j] is
weakly closed and for all l with i < l < j, [i; l] and [l; j] are not weakly closed
(Fig. 1(a)).
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Fig. 1. Arc diagram representation of an RNA secondary structure R. (a) [1; 46],
[38; 45], and [47; 61] are closed regions. [48; 60] is weakly closed but it is not closed
as [48; 52] is weakly closed. [38; 45] is a pseudoknotted closed region. 38.43 and 40.45
are its external base pairs, and 38 and 45 are its left and right borders respectively.
38.43, 39.42, 40.45 and 41.44 are all pseudoknotted pairs and 38, 39, ..., 45 are all pseu-
doknotted bases. (b) [48; 52] and [54; 60] are disjoint closed regions and both are nested
in [47; 61]. (c) [8; 10]∪ [36; 46] is a band of pseudoknotted closed region [1; 46], and 8.46
and 10.36 are the band’s outer and inner closing pairs. [8; 10] and [36; 46] are the band’s
regions, and 8 and 46 are the left and the right border of the band. 8.46, 9.37 and 10.36
span the band. (d) 47.61 is a multiloop external base pair with (48, 52) and (54, 60)
as tuples. (1, 46) and (47, 61) are the tuples of an external loop. (e) [1; 46] is a pseu-
doknotted loop with bands [1; 2] ∪ [6; 7], [3; 3] ∪ [20; 20], [4; 5] ∪ [11; 12], [8; 10] ∪ [36; 46]
and [13; 19] ∪ [34; 35]. [21; 33] is the closed region nested in [1; 46]. (f) 1.7 and 2.6 are
the external and internal base pairs of an interior-pseudoknotted loop. (g) 8.46 is the
external base pair of a multi-pseudoknotted loop with (9, 37) and (38, 45) as tuples.
(h) [38; 45] is an in-Band loop, [21; 33] is an out-Band loop, and 8.46 is the external
base pair of a span-Band loop (multi-pseudoknotted loop).

Let i; j′. If i′ and j are such that i.j and i′.j′ then we say that i.j and i′.j′ are
the external base pairs of [i; j′]. If i.j′ then the region has just one external base
pair; otherwise we call [i; j] a pseudoknotted closed region. We also refer to
i and j′ as [i; j′]’s left and right borders respectively.

Pair i.j is pseudoknotted if there exists i′.j′ with i < i′ < j < j′ or
i′ < i < j′ < j. We also refer to i and j as pseudoknotted base indices.

2.1 Closed Regions Tree

Let i; j and i′; j′ with i < i′. If j < i′ we say that [i; j] and [i′; j′] are disjoint ;
otherwise we say that [i′; j′] is nested in [i; j] (Fig. 1(b)).

We say that closed region [i′; j′] is a child of closed region [i; j] if [i′; j′] is
nested in [i; j] and is not nested in any closed region [i′′; j′′] with i < i′′. We say
that [i; j] and [i′; j′] are siblings if they are children of the same closed region
and i �= i′. So the closed regions form a tree structure.

A tree T (R) in which the children of a node are ordered is called the closed
regions tree of R if: (i) there is a 1-1 correspondence between nodes of the tree
and closed regions of R, and (ii) if node V corresponds to closed region C then
V is the parent of all the nodes whose corresponding closed regions are nested
in C. The children of each node are ordered by the left index of the closed
region.
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Building on an algorithm by Bader et al. [2], parsing algorithm (not shown)
builds the closed region tree in linear time. (Details will be in full paper - omitted
in this extended abstract)

3 Loops

In this section we describe the loops that comprise a pseudoknotted secondary
structure, and how these can be enumerated in linear time. Models underlying
the algorithm of Rivas and Eddy [12] and the algorithm of Dirks and Pierce
[9] can be expressed by sum of the loops that we describe here. We need one
important definition, that of a band.

3.1 Bands

Loosely speaking, a band is a pseudoknotted stem, which may contain internal
loops or multi loops (Fig. 1(c)). We next define a band formally.

Let i2.j2 be a pseudoknotted base pair. We say that i2.j2 is directly banded
in i1.j1 if (i) i1 ≤ i2 < j2 ≤ j1, and (ii) [i1+1, i2−1] and [j2+1, j1−1] are weakly
closed. Note that the “is directly banded in” relation is reflexive. We let “are
banded” be the symmetric and transitive closure of the “is directly banded in”
relation. Let B be an equivalence class under the “are banded” relation. That
is, B is a set of base pairs such that every two base pairs in B are banded and
every base pair in B is pseudoknotted. B has outer and inner closing base pairs
i1 · j1 and i′1 · j′1 respectively, such that for every base pair i.j in B, i1 ≤ i ≤ i′1
and j′1 ≤ j ≤ j1. Note that i1 · j1 may equal i′1 · j′1.

We call the union of two non-overlapping regions a gapped region. A gapped
region [i1; i′1]∪ [j′1; j1] is a band if for some equivalence class B, i1 · j1 and i′1 · j′1
are the closing pairs of B. We refer to i1 and j1 as the left and the right border
of the band respectively (Fig. 1(c)).

We refer to [i1; i′1] and [j′1; j1] as the band regions, which have borders i1, i′1
and j′1, j1 respectively. Closed region i; j is contained in band [i1; i′1]∪ [j′1; j1], if
and only if i; j is in a band region - that is, i, j ∈ [i1; i′1] or i, j ∈ [j′1; j1] - and
there is no p, q with p; q, p < i < j < q, such that p, q ∈ [i1; i′1] or p, q ∈ [j′1; j1].
Base pair i.j spans band [i1; i′1] ∪ [j′1; j1] if i1 ≤ i ≤ i′1 and j′1 ≤ j ≤ j1.

We say that [i1; i′1] ∪ [j′1; j1] is a band of closed region [i; j] if i ≤ i1 ≤ j1 ≤ j
and there is no p; q with i < p ≤ i1 < j1 ≤ q < j.

Lemma 1. Let i1.j1, i2.j2, ...., in.jn , i1 < i2 < ... < in, be the base pairs that
span band [i1; i′1] ∪ [j′1; j1]. Then jn < .... < j2 < j1.

3.2 Loop Types

Our definitions of hairpin and interior loops are standard for pseudoknot free
structures so we do not include them here. The definitions of multiloop and
external loop are generalized (Fig. 1(d)):
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Multiloop: contains an external base pair i.j and k tuples (i1, j1), (i2, j2), ...,
(ik, jk), for some k ≥ 1, along with the bases in [i + 1; j − 1]−∪[il; jl], 1 ≤ l ≤ k
all of which must be unpaired, where il; jl, 1 ≤ l ≤ k, i < i1 < j1 < i2 < j2 <
... < ik < jk < j. Also, if il.jl, 1 ≤ l ≤ k, then k should be at least 2.

External loop: contains k > 0 tuples (i1, j1), (i2, j2), ..., (ik, jk) along with
the bases in [1;n] − ∪1≤l≤k[il; jl], all of which must be unpaired, where il; jl,
1 ≤ l ≤ k, and i1 < j1 < i2 < j2 < ... < ik < jk.

We next introduce further types of elementary structures which are the con-
sequence of having pseudoknotted base pairs and pseudoknotted regions.

Pseudoknotted loop: Let [i; j′] be a pseudoknotted closed region. Let the
bands of [i; j′] be: [i1; i′1]∪[j′1; j1], [i2; i′2]∪[j′2; j2], ..., [im; i′m]∪[j′m; jm]. Let [p1; q1],
[p2; q2], ..., [pk; qk] be children of [i; j′] which are nested in [i; j]−(∪m

l=1[il; i
′
l]∪m

l=1
[j′l ; jl]). The pseudoknotted loop corresponding to [i; j′] is the set: {(il, jl), (i′l, j

′
l)|1

≤ l ≤ m} ∪ {(pl, ql)|1 ≤ l ≤ k}, along with the bases in: [i; j′] − ∪k
l=1[pl; ql] −

∪m
l=1[il; i

′
l] − ∪m

l=1[j
′
l ; jl] all of which must be unpaired (Fig. 1(e)).

Interior-pseudoknotted loop: contains two base pairs i.j and i′.j′ where i <
i′ < j′ < j, along with the bases in [i+1, i′− 1]∪ [j′ +1, j− 1] all of which must
be unpaired. Moreover, there is a band [bi; bi′] ∪ [bj′; bj] such that bi ≤ i < bi′

and bj′ < j ≤ bj. We refer to i.j and i′.j′ as the interior-pseudoknotted loop
external and internal base pairs respectively (Fig. 1(f)).

Multi-pseudoknotted loops: contains an external base pair i.j and k tuples
(i1, j1), (i2, j2), ..., (ik, jk), for some k > 1, along with the bases in [i + 1; j −
1] − ∪1≤l≤k[il; jl], all of which must be unpaired, where (i) there is a band
[bi; bi′] ∪ [bj′; bj] such that bi ≤ i < bi′ and bj′ < j ≤ bj, (ii) il; jl, for all
1 ≤ l ≤ k except for exactly one tuple (il0 , jl0) for which il0 ; jl0 is not true (i.e
[il0 ; jl0 ] is not a closed region) and il0 .jl0 spans the band (bi ≤ il0 ≤ bi′ and
bj′ ≤ jl0 ≤ bj), and (iii) i < i1 < j1 < i2 < j2 < ... < ik < jk < j (Fig. 1(g)).

3.3 Enumerating Loops

We can enumerate the loops of a secondary structure in linear time. Each loop
is fully specified by its list of tuples; thus an enumeration algorithm should list
the tuples of each loop, with the external tuple first and the others in order.

Each node (closed region) of the tree corresponds to a hairpin loop, internal
loop, multiloop, external loop, or pseudoknotted loop. A simple traversal of the
tree suffices to enumerate such loops: when visiting a node, its closed region and
the closed regions of its children (in order) are the needed tuples.

However, interior- and multi-pseudoknotted loops are not closed as their
external base pair is pseudoknotted and spans a band. To enumerate these types
of loops, two steps are needed:

Band finding: For each pseudoknotted closed region, construct the list of its
bands regions, ordered by the left border index.

Loop finding: Identify all multi-pseudoknotted and interior-pseudoknotted
loops, which are “nested” in the bands of the structure.
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Algorithm 1 finds the bands of a pseudoknotted closed region [i; j] of structure
R. Loop finding is somewhat similar (details omitted).

Let L be a linked list representation of a secondary structure R for a strand
of length n. In this representation, list elements are the base indices, with bidi-
rectional links between adjacent elements and additionally bidirectional links
between paired indices. In this algorithm, bp(i) denotes j if i.j or j.i, and 0 if i
is unpaired. Algorithm 1 takes as input a sublist BL of L starting from index
i to index j, in which unpaired base indices, and base indices corresponding to
nested closed regions, are removed. Sublist BL can be generated using the closed
region tree in time proportional to the number of closed regions that are nested
in [i; j]. Thus, BL is a linked list representation of spanning band base pairs
in i; j. Inspired by Lemma 1, Algorithm 1 scans list BL from left to right to
identify bands and their region’s borders.

algorithm Band-Finding
input: BL, a linked list representation of spanning band base pairs in [i; j]
output: ordered linked list of band regions in [i; j]
1 bi := i;
2 repeat
3 bj := bp(bi); // bi.bj is the outer closing pair of a band, B
4 b′

i := bi;
5 b′

j := bj ;
7 while Next(b′

i, BL) = bp(Prev(b′
j , BL)) do

8 b′
i := Next(b′

i, BL);
9 b′

j := Prev(b′
j , BL);

// b′
i.b

′
j is the inner closing pair of the band B So B = [bi; b′

i] ∪ [b′
j ; bj ] is a band of i; j

10 Add-Band-Region(BL, bi, b
′
i);

11 Add-Band-Region(BL, b′
j , bj);

12 bi :=Next-leftBase(b′
i, BL);

13until bi = j + 1;
14 return BL

Algorithm 1. Find bands of a pseudoknotted closed region

Next(b′i, BL) returns the index right after b′i in BL and Prev(b′j, BL) returns
the index right before b′j in BL. Next-leftBase(b′i, BL) returns l, the first index
after b′i in BL for which bp(l) > l. l.bp(l) will be the outer closing pair of the
next band.

Add-Band-Region(BL, b, b′) (i) replaces index b in BL with a list element
containing the band region borders (b and b′) and (ii) removes from BL all other
base indices that lie within the region [b; b′]. At the end, BL is an ordered list
of band regions.

By traversing the closed regions tree and applying the above algorithm to
each pseudoknotted closed region, all lists of band regions can be constructed in
time linear in the number of base pairs in R.
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4 Energy Model

In the standard thermodynamic model for pseudoknot free secondary structures,
the energy of a loop is a function of (i) loop type, (ii) an ordered list of its base
pairs or tuples, (iii) the bases forming each base pair, and (iv) the bases in the
loop (if any) that are adjacent to each base pair. The energy of a secondary
structure is then calculated by summing the free energy of its component loops.

For pseudoknotted structures, the standard thermodynamic model is ex-
tended so that the energy of a loop depends additionally on (v) the location
status of the loop, which shows its position relative to pseudoknotted loops in
the structure. The location status can be one of the following (Fig. 1(h)).

span-Band: Interior-pseudoknotted and multi- pseudoknotted loops are called
span-Band loops, since their external base pair spans a band.

Each of the remaining loop types corresponds to a closed region. Suppose that
such a loop, L, with corresponding closed region [iL; jL], is a child of pseudo-
knotted closed region [i; j]. Then L can have one of the following two location
statuses:

in-Band: If [iL; jL] is contained in a band region of [i; j], then L is an in-Band
loop.

out-Band: Otherwise L is an out-Band loop.

standard: Loops that are not of the three types above are called standard loops.
Such loops do not span bands and are not children of pseudoknotted loops.

4.1 Energy Calculation

It is straightforward to extend the loop enumeration algorithm so that the loop’s
type and location status is output in addition to its list of tuples. For example,
the type of a loop corresponding to a closed region can be determined from the
number and types of its children (e.g. if the closed region is not pseudoknotted
and has no children, it must be a hairpin loop; if it has one child which is not
a pseudoknotted closed region then it must be an internal loop). The location
status of a loop can be determined using additionally the ordered list of band
regions of its parent (if any). Then the free energy of the structure can be
calculated by adding up the free energy of all loops.

4.2 Discussion

In the Rivas-Eddy model [12], the energy of a loop is exactly as in the standard
model (for pseudoknot free structures) if the loop does not span a band. The
standard model is generalized in the case of multiloops, which may now contain
pseudoknotted regions, as follows: the energy is of the form a + bu + ch + dm,
where a, b, c, and d are constants independent of the loop, u is the number of
unpaired bases of the loop, h is the number of tuples (i, j) of the multiloop with
i · j ∈ R, and m is the number of tuples (i, j) of the multiloop with i · j �∈ R.
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For multi-pseudoknotted loops, the constants a, b, c, d are replaced by distinct
constants a′, b′, c′, d′. In contrast, in the D&P model [9], the energy of a multiloop
and multi-pseudoknotted loop are calculated using the same constants. In both
models, the energy of a pseudoloop is the sum of terms, with one term depending
on the total number of unpaired bases, one term per tuple of the pseudoloop,
and one term that depends on the location status of the pseudoloop; however the
dependence on the location status is different for both models. An interesting
direction for future work would be to establish which method is most biologically
plausible (neither paper provides justification for their choice of model).

The notion of what is a multiloop in the Rivas-Eddy is perhaps unnaturally
restrictive. An (artificially small) example lies in the structure {1 ·4, 2 ·9, 3 ·5, 6 ·
8, 7 · 10}. Here, the base pairs 2 · 9, 3 · 5, and 6 · 8 could be considered to form
a “multiloop”, but it is not recognized as such by the Rivas-Eddy algorithm,
and thus also not by our classification. (We note that the Dirks-Pierce model,
being less general, does not handle such loops.) We expect that the Rivas-Eddy
algorithm could be reformulated to assign multiloop energies to such loops.

5 Akutsu’s Structure Class

Akutsu’s dynamic programming algorithms for RNA secondary structure predic-
tion handles a restricted class of pseudoknotted RNA structures, called secondary
structures with recursive pseudoknots [1]. We present a concise characterization
of the class of structures Akutsu’s algorithm can handle.

In this section, we will represent secondary structures as patterns, in which
information about unpaired bases and base indices is lost but the pattern of
nesting or overlaps among base pairs is preserved. To define patterns precisely,
we use ε to denote the empty string and Nn to denote the natural numbers
between 1 and n (inclusive).

Patterns: A string P (of even length) over some alphabet Σ is a pattern, if
every symbol of Σ occurs either exactly twice, or not at all, in P . We say that
secondary structure R for a strand of length n corresponds to pattern P if there
exists a mapping m : Nn → Σ ∪ {ε} with the following properties: (i) if i.j ∈ R
then m(i) ∈ Σ and m(i) = m(j), (ii) if i.j and j.i /∈ R for all j ∈ Nn, then
m(i) = ε, and (iii) P = m(1)m(2)...m(n).

We refer to the index of the first and the second occurrence of any symbol σ
in P by L(P, σ) and R(P, σ) respectively (L for Left and R for Right). When
P is understood, we use L(σ) and R(σ). For example, pattern P = abccdebaed
corresponds to the closed region [21; 33] in Fig. 1, and L(a) = 1 and R(a) = 8.

In what follows, let P be a pattern of size 2n over an alphabet Σ of size n.

5.1 Definitions

Definition 1. Our definition: P is a simplest pseudoknot if and only if either:

B1: P = a1a1 (for some a1), or
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B2: Either P = a1aiP1aia1P2 or P = a1P1aia1aiP2, where a1P1a1P2 is a sim-
plest pseudoknot.

P is a B&C simple pseudoknot if and only if either it is a simplest pseudoknot
or for some a1, ai, . . . ar ∈ Σ it is equal to a1P1a1ai ai+1 . . . arar . . . ai+1aiP2,
where a1P1a1P2 is a simplest pseudoknot.

Theorem 1. B&C simple pseudoknot is equivalent to Akutsu’s definition of sim-
ple pseudoknot.

Therefore, in what follows, we will simply refer to simple pseudoknots.
The following definition is derived from Akutsu [1].

Definition 2. Pattern P is a recursive pseudoknot if and only if P is a simple
pseudoknot or P = P1P2P

′
1 where P2 is a nonempty simple pseudoknot and

P1P
′
1 is a recursive pseudoknot.
We say that an RNA secondary structure R is a secondary structure with

recursive pseudoknots or conveniently recursive pseudoknot structure if its cor-
responding pattern P is a recursive pseudoknot.

Assume that C is the closed region corresponding to node V and C1, . . ., Cm are
the closed regions correspond to the children of V . Then we say that the pattern
corresponding to C also corresponds to node V . Also, C′ = C −∪m

i=1Ci is called
the private region corresponding to V and we refer to the pattern corresponding
to C′ as the private pattern of V .

Theorem 2. R is an Akutsu (i.e. recursive pseudoknot) structure if and only if
all of the private patterns corresponding to the nodes in T (R) are simple pseu-
doknots.

5.2 Akutsu Tests

Our algorithm for testing whether a pattern P is a simple pseudoknot has two
steps. In the first step it deals with the aiai+1 . . . arar . . . ai+1ai subpattern and
removes it from P , making the pattern a simplest pseudoknot. This can be done
in linear time by scanning the symbols of P , starting from the symbol after the
second occurrence of a1, and removing the subpattern aiai+1 . . . arar . . . ai+1ai

if any.
Next the algorithm determines if P is a simplest pseudoknot, building on

both cases in the definition of simplest pseudoknot. We define two simplify op-
erations according to B2: (i) a1aiS1aia1S2 is converted to a1S1a1S2, and (ii)
a1S1aia1aiS2 is converted to a1S1a1S2. We define one more operation, final op-
eration, according to B1: (iii) a1a1 is converted to ε. In these cases we say that
a simple/final operation is applicable to a1.

The linear time algorithm for testing whether the pattern P is a simplest
pseudoknot (1) applies one of the simplify operations, i or ii, on the first sym-
bol, a1, if applicable, repeatedly (2) does the final operation, iii, on a1 if it is
applicable. (3) return true if the pattern is empty and false otherwise.



Linear Time Algorithm for Parsing RNA Secondary Structure 351

Thus, using Theorem 2, to test whether a secondary structure R is an Akutsu
(i.e. recursive pseudoknot) structure, it is sufficient to check whether the pri-
vate pattern corresponding to each node of T (R) is a simple pseudoknot. It is
straightforward to generate the private pattern for all nodes in linear time; thus
the overall algorithm is a linear time algorithm.

5.3 Classification of Biological Structures

Condon et al. [7] provide linear time algorithms to test if an input structure is in
the R&E and D&P classes. To compare the generality of Akutus’s algorithm with
those of R&E and D&P, we applied our algorithms for membership in Akutsu’s
recursive class along with those of Condon et al.[7] to classify biological structures
from several sources [3,10,6,4,5,13,15]. As results show (Table 1), exactly 2 of
the structures are in class A but not in class D&P.

Table 1. Structure classification. Columns 2-8 present data for each RNA data set.
For each data set (column), the entry in the first row lists the number of structures in
the data set. The second row lists the average number of base pairs in the structures.
The remaining rows list the number of structures of the data set that are in D&P, A,
and R&E classes.

PBase Pseudo Gutell RCSB RNase SR tm
Viewer PDB RNA

# Strs 240 15 426 279 468 4 7
Avg.
#Bps 14.2 144 970.6 35.5 198.4 92 85.71

D&P 232 11 354 244 95 3 5
A 232 11 354 246 95 3 5

R&E 240 15 369 274 468 4 7

6 Conclusions

In this work we present a precise definition of the structural elements in a sec-
ondary structure, and a comprehensive way to classify the type of loops that
arise in pseudoknotted structure. Based on an algorithm of Bader et al. [2],
we also introduced a linear time algorithm to parse a pseudoknotted secondary
structure to its component loops, and to calculate its the free energy. Finally,
we applied our algorithm to compare the generality of Akutsu’s algorithm with
those of Dirks and Pierce and Rivas and Eddy on a large test set of biological
structures.

Our work can be continued in future in several directions. First, heuristic
algorithms commonly use a procedure to calculate the free energy for a given
sequence and structure. Incorporating our linear time free energy calculation
algorithm into heuristic algorithms may cause improvements in their efficiency.
Second, it would be interesting to investigate the structures which are in Akutsu’s
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class but not in D&P class. Third, there is no linear time characterization of
Uemura’s [14] algorithm and having one makes it possible to figure out about the
differences between Uemura’s class of structures and other classes of structures
(A, D&P, and R&E). Fourth, the parsing algorithm can be used to analyse
known biological RNA structures, in order to find out what structures occur more
frequently in biology. Finally, it would be useful to refine the thermodynamic
model presented in this paper, to obtain mfe predictions of better quality.

Acknowledgement. We would like to thank Satoshi Kobayashi for his useful
comments and pointing out an error in an earlier version of the paper.
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Abstract. Phylogenetic tree searching algorithms often produce thousands of
trees which biologists save in Newick format in order to perform further analy-
sis. Unfortunately, Newick is neither space efficient, nor conducive to post-tree
analysis such as consensus. We propose a new format for storing phylogenetic
trees that significantly reduces storage requirements while continuing to allow
the trees to be used as input to post-tree analysis. We implemented mechanisms
to read and write such data from and to files, and also implemented a consensus
algorithm that is faster by an order of magnitude than standard phylogenetic anal-
ysis tools. We demonstrate our results on a collection of data files produced from
both maximum parsimony tree searches and Bayesian methods.

1 Introduction

Producing a phylogeny for a set of taxa involves four major steps. First, comparative
data for the taxa must be collected. This data often takes the form of DNA sequences,
other biomolecular information or matrices of morphological data. Second, this data is
aligned to ensure that comparable information is considered as input to the tree pro-
ducing step. The third step is to produce candidate trees. There are many techniques
for doing this including optimizing maximum parsimony or maximum likelihood cri-
teria, or, more recently, by using Bayesian methods [7] [10]. These techniques rarely
result in a single optimal tree. Instead, there are often many trees that a phylogeneticist
would like to save for further processing such as consensus analysis, which is used to
summarize the collection of trees. These post-tree analyses are the final step.

We have developed methods for storing and retrieving phylogenetic tree data, and
using these methods we have implemented a consensus algorithm. Our approach per-
mits very large data sets to be compactly stored and retrieved without any loss of preci-
sion. Also, our implementation of our consensus algorithm provides greatly increased
performance when performing strict and majority consensus computations as compared
to PAUP [18] and TNT [8].

Our system is called the Texas Analysis of Symbolic Phylogenetic Information
(TASPI), and it is an experimental system, written from scratch. It is a stand alone tool
for a few kinds of phylogenetic data manipulation. TASPI is written in the ACL2 [12]
formal logic, where all operations are represented as pure functions. Using ACL2’s as-
sociated mechanical theorem prover, it is possible to prove assertions about the TASPI
system.
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In this paper, we explain our representation of phylogenetic trees, and how this for-
mat reduces the storage requirement for a collection of trees. We also give an algorithm
for computing strict and majority consensus trees that exhibits improved performance
as compared to currently available software. Finally, we include an empirical study
confirming our results.

2 Representation

Newick format [6] is the standard way of storing a collection of phylogenetic trees.
Adopted in 1986, Newick is a parenthetical notation that uses commas to separate sib-
ling subtrees, parentheses to indicate children, and a semicolon to conclude a tree.
Newick outlines each tree in its entirety whether storing one tree, or a collection of
trees.

On the other hand, TASPI capitalizes on common structure within a collection of
trees. TASPI stores a common subtree once, and then each further time the common
subtree is mentioned, TASPI references the first occurrence. This saves considerable
space since potentially large common subtrees are only stored once, and the references
are much smaller (for empirical results see Section 5).

There are two layers to the TASPI representation of trees. At a high-level, trees
are represented as Lisp lists, similar in appearance to Newick, but without commas
and semicolons. This is the format presented to the user of TASPI and on which user
functions operate. At a low-level, the data are instead represented in a form that uses
hash-consing [9] to achieve decreased storage requirements and improved accessing
speeds. For ease of reference in Section 5, we call this the Boyer-Hunt compression.

Consider the following set of rooted trees in Newick format:

(a,((b,(c,d)),e));
(a,((e,(c,d)),b));
(a,(b,(e,(c,d))));
((a,b),(e,(c,d)));

The format of these trees presented to the user of TASPI is straightforward:

(a ((b (c d)) e))
(a ((e (c d)) b))
(a (b (e (c d))))
((a b) (e (c d)))

Notice that storing this set of trees involves restoring the subtree containing taxa c
and d once for every tree. The Boyer-Hunt compression instead stores the c-d clade
once, the first time it is encountered. If, subsequently, the c-d clade is encountered
again, the first time is marked with “#n=” for the current value of a counter n that is
incremented each time it is used. Then, instead of re-storing the c-d clade, a reference
in the form “#n#” is stored in its place. This compression has parallels to the Lempel-Ziv
data compression which is based only on characters seen so far [20]. The compressed
version of the trees above is given below:
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((A ((B #1=(C D )) E ))
(A (#2=(E #1#) B))
(A (B #2#))
((A B)#2#))

We use a technique sometimes called hash-consing, which ensures that no object
is ever stored twice. In the context of phylogenetic trees, an object is a subtree, and
consing is a tree constructor that joins subtrees. Hashing, put simply, is a technique
that creates a table that allows for fast searches. In this case, hashing is used to quickly
determine if a subtree was previously encountered. The format, using “#n=” and “#n#”,
is a standard read dispatch macro from Lisp programming [17].

Two subtleties remain to be addressed. First, though we will be presenting rooted
trees in this paper, trees are not all rooted. In fact, most tree searching algorithms return
unrooted trees since determining the root of a tree may itself be a computationally
intensive problem [7]. Newick format does not distinguish between rooted and unrooted
trees except through the use of auxiliary flags. By placing [&R] and [&U] just before
the beginning of a tree, rooted and unrooted trees, respectively, are indicated. Without
these flags, the onus is on the user to interpret the trees appropriately.

Second, Newick does not give a unique representation
for a tree. Consider the tree on the right. There are many
representations for this tree in both Newick and TASPI.
Possible TASPI representations include:

((F G) ((A B) (C (D E)))) and
((C (E D)) ((B A) (G F))).

BA

F
G E

D

C

To ensure a unique answer in our computations, we order the output with respect to an
ordering on the taxa. As far as we can tell, PAUP also does this. Thus, given an alpha-
betical ordering, we would order the tree above as (A B ((C (D E)) (F G))).

3 Consensus Analysis

3.1 Background

Consensus trees are defined by Felsenstein as “trees that summarize, as nearly as possi-
ble, the information contained in a set of trees whose tips are all the same species” [7].
The idea of a consensus tree was first proposed by Day in 1972 [1], and quickly fol-
lowed by other criteria for agreement between trees. In 1981, Margush and McMorris
defined the majority rule trees as we know them today. They proposed this form of con-
sensus as following best the “dictionary definition of consensus as ’general agreement’
or ’majority of opinion”’ [13]. It was also around this time that Sokal and Rohlf coined
the term “strict consensus” [16].

Consensus methods return a single tree, or an indication that no tree meeting that
method’s requirements exists. The types of consensus include Adams, maximum agree-
ment subtree, semi-strict, also called loose, combinable component or Bremer [7],
greedy, local, and Nelson-Page. See Bryant [4] for an overview of various consensus
methods and their interrelationships.

Two of the most common types of consensus trees are strict and majority. Both of
these decide which branches in the input trees to keep, and then build a tree from the
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resulting branches. Strict consensus requires that any branch in the consensus tree be
a branch in every input tree, while a majority tree only requires that any branch in the
consensus tree be a branch in at least some majority of the input trees. A threshold is
a parameter to majority consensus that determines what percentage is to be used as a
cutoff. Strict consensus is a special case of majority consensus; that is, it is a majority
consensus with a threshold of 100%. Strict and majority consensus algorithms always
return a tree, and have optimal O(kn) algorithms as described by Day [5] and Amenta
et al. [2] (where k is the number of trees and n is the number of taxa).

3.2 Our Algorithm

We compute a consensus through a sequence of steps. We first read the source file con-
taining the trees for which a consensus is to be computed. During the read process, we
identify every subtree for which we have already read an identical subtree; thus, instead
of creating a new data structure for the subtree just read, we reference the previously
created subtree. We next create a mapping from all subtrees to every parent in which
a subtree is referenced. Using this information, we compute the occurrence frequency
of every subtree. Finally, after we have selected the subtrees that match our selection
criteria, we construct the consensus answer. We give an example computation in Sub-
section 3.3.

In the following explanation, we use the notion of a ”multiset”, which is, intuitively
speaking, a kind of set in which the number of occurrences count. More formally, one
may regard a multiset as a function to the set of positive integers. If A and B are mul-
tisets, then A is a multisubset of B if and only if for each x in the domain of A, x is in
the domain of B and A(x) <= B(x).

For example, suppose u, v, and w are all distinct objects. Let A = <u, 1>, <v, 2>
and let B = <u, 2>, <v, 4>, <w, 5>, then A is a multiset with one occurrence of u
and two of v. Thus, A(v) = 2. A is a multisubset of B because A(u) <= B(u) and A(v)
<= B(v).

One way to represent multisets is with lists in which the number of occurrences
of an element in a list represents the number of times that the element is in the cor-
responding multiset. So for example, we may represent the example A above with the
Lisp list (u v v).

Several definitions will be useful.

– tip: a symbol or integer.
– tree: a tip or, recursively, a list of one or more trees.
– fringe: a list of all tips in a tree.
– subtree: If a and b are trees, then a is a subtree of b if and only if either (1) a is b

or (2) b is a list and a is a subtree of a member of b.
– proper subtree If a and b are trees, a is a proper subtree of b iff a is a subtree of b

and a is not b.
– domain: The domain of an association list (a list of key-value pairs) is the set of

the keys of the members of the association list.
– replete An association list db is replete if and only if for all t1 in the domain of

db, (1) t1 is a nontip tree and (2) if t2 is a nontip proper subtree of t1, then db(t2)
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is a list representing the multiset of all trees in the domain of db that have t2 as
a member, including t1. Note that the multiset ((a) (b) (a)) has the tree (a) as a
member twice.

– top level A tree in the domain of a replete db is said to be top level if and only if it
is a proper subtree of no member of the domain of db.

To compute the consensus, our algorithm proceeds by:

1. Producing a replete association list of all of the subtrees in the original input,
2. Counting the frequencies of the non-tip subtrees,
3. Collecting the subtrees that appear as often as the designated majority threshold,

and finally,
4. Constructing the consensus tree.

Step one is accomplished by our function replete-trees-list-top which converts the
original input list of trees into a replete association list (database). This replete database
is a mapping from subtrees to every parent tree containing the subtree in question. Step
two is performed by the function fringe-frequencies which counts the frequencies of
every subtree fringe in the replete database by iterating through the replete database.
Step three is collecting the subtrees that occur as often as the threshold. Finally, using
this collection of subtrees, function build-term-top constructs the consensus answer.

Our function replete-trees-list-top takes a list l of non-tip trees no member of which
is a proper subtree of another, such as a list of trees all with the same set of taxa.
replete-trees-list-top returns a replete association list db such that (1) x is a member
of the domain of db if and only if x is a member of l or is a non-tip proper subtree of
a member of l and (2) if x is in the domain of db, then db(x) is an integer if and only
if x is a member of l and db(x) is the number of times x occurs in l. For an example
execution of replete-trees-list-top, see Subsection 3.3.

Function fringe-frequencies takes a list l of nontip trees such that no member of l is
a proper subtree of any other member of l (such as that produced by replete-trees-list-
top). fringe-frequencies returns a minimal length association list that pairs the fringe
fr of each nontip subtree of each member of l with the number of occurrences in l of
non-tip subtrees of members of l that have fringe fr.

By scanning through the resulting association list, we just pick out the subtrees that
appear as often as the desired threshold. We have no need to store the actual number of
times any specific subtree appears, we simply collect the desired subtrees (fringes) into
a list.

The function build-term-top takes two arguments. The first argument is a sorted
list l of the subtrees’ fringes; l is sorted using a lexicographic (normalization) order
that is based both on the internal tips and the size of the elements in each subtree.
All the subtrees in l must appear in the consensus answer. The second argument is a
normalization taxa list tx, that is used by our lexicographic ordering function so we
can produce a unique representation of any subtree that itself includes more than one
subtree. Remember, we represent each subtree as a list of subtrees, so to make the
representation unique we sort members of each subtree. build-term-top constructs a
consensus answer tree recursively by first building an answer of the first subtree of l.
Once the first answer subtree is computed for the first element in l, any (sub-)subtrees
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required to build the first subtree are “crossed out” from l that remain to be processed,
and we continue with the next remaining element of l until no entries remain.

3.3 Example

Consider the five trees in Figure 1. The TASPI representation of these trees is the input
to the function replete-trees-list-top. This function returns the following association
list, where keys are in boldface:

((A B)((A B) C))
((((A B) C) ((D E) (F G))) . 1)
((D E)((D E) F G)

((D E) (F G)))
(((D E) F G) ((A B) C) ((D E) F G)))
((((A B) C) ((D E) F G)) . 1)
(((A B) C)(((A B) C) (D (E (F G))))

(((A B) C) ((D E) F G))
(((A B) C) ((D E) (F G))))

((F G) (E (F G))
((D E) (F G)))

((E (F G)) (D (E (F G))))
((D (E (F G))) (((A B) C) (D (E (F G)))))
((((A B) C) (D (E (F G)))) . 1)
((B C) (A (B C)))
((D E F) ((D E F) G))
(((D E F) G) ((A (B C)) ((D E F) G)))
(((A (B C)) ((D E F) G)) . 1)
((A (B C))((A (B C)) ((D E) (F G)))

((A (B C)) ((D E F) G)))
(((D E) (F G))((A (B C)) ((D E) (F G)))

(((A B) C) ((D E) (F G))))
(((A (B C)) ((D E) (F G))) . 1)

A B C D E F G A B C D E F G

AA AB B BC CD DE EF FG GE F GC D

(((A B) C) (D (E (F G))))

(((A B) C) ((D E) F G)) ((A (B C)) ((D E F) G))

((A (B C)) ((D E) (F G)))(((A B) C) ((D E) (F G)))

Fig. 1. A collection of trees together with their TASPI representations
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A subtree is the key for each element of the list, and the remainder of each entry
(the values) is either (1) trees or subtrees in which the key appears, or (2) an integer
representing the number of times this top level tree occurs in the input collection. Thus,
this is a replete association list. This association list is now the input to the function
fringe-frequencies, which produces this list:

((A B) . 3) ((D E F). 1)
((D E) . 3) ((A B C) . 5)
((F G) . 3) ((D E F G) . 5)
((E F G) . 1) ((A B C D E F G) . 5)
((B C) . 2)

This frequency list has each fringe from our replete association list, together with an
integer. Remember, a fringe is simply a list of the tips in a tree, so we do not distinguish
between the fringe from (A (B C)) and the fringe from ((A B) C). The integer
gives the number of trees that have a subtree with this fringe.

We are now prepared to sweep through this list and record the fringes that occur at
least as often as the threshold for both a strict and majority consensus. In this example,
for the strict majority we collect those fringes that occur 5 times, and for the majority,
we collect those that occur at least 3 times. This gives us:

((A B C D E F G) . 5)
((D E F G) . 5)
((A B C) . 5)

and

((A B C D E F G) . 5)
((D E F G) . 5)
((A B C) . 5)
((F G) . 3)
((D E) . 3)
((A B) . 3)

Finally, the function build-term-top uses either the strict or majority fringes to-
gether with a normalization list such as (A B C D E F G) to create the strict and
majority consensus trees. In this case we create ((A B C) (D E F G)) and
(((A B) C) ((D E) (F G))).

4 Experiments

4.1 Data Sets

We first obtained collections of phylogenetic trees from Dr. Usman Roshan and Dr.
Tiffani Williams. These trees were created by PAUP and TNT performing maximum
parsimony searches using biomolecular data sets. We have analyzed hundreds of these
collections though we only present the results from ten collections. The results pre-
sented are representative of the full set. We also generated sets of trees using Mr-
Bayes [11] that had more taxa than either PAUP or TNT can even read; these data
sets were created by the third author.

Table 1 gives characteristic information for each collection we present, namely, the
numbers of taxa per tree, the number of trees in the collection, and the source of the
collection.
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Table 1. Data set statistics

Data Set Number Data Set Name Number of Taxa Number of Trees Source

1 Dom 2org 8506 47 Roshan
2 sRNA mito 2587 369 Roshan
3 Will Euk 2000 537 Roshan
4 Three567 567 2505 Williams
5 Actino 4583 301 Roshan
6 Ocho854 854 2505 Williams
7 John921 921 2505 Williams
8 t10000 500 10000 Roshan
9 Will2000 2000 2505 Williams

10 Mari2594 2594 2505 Williams
11 20000seqs 20000 1001 Nelesen
12 50000seqs 50000 1001 Nelesen

4.2 Methods

The files we obtained often contained comments about how the trees were generated,
parsimony scores, or other output from their production. TASPI does not store this
information, so we began by creating files that contained only the topological tree in-
formation so that we could accurately assess our compression.

Next, we created a suite of Perl scripts that take these original files and generate
appropriate input files for PAUP and TNT. In each case, the taxa list is created from the
first tree in the file, and the trees themselves are collected. Then, for PAUP, a Nexus file
is produced with the taxa list, the trees, and a PAUP block containing the commands to
compute consensus. Similarly for TNT, an appropriate input file is created with the taxa
list, trees, and commands to compute consensus.

TASPI reads the source files directly. As with PAUP and TNT, TASPI can be run
both interactively, where we submit one command at a time, or using an input file
containing all commands needed for the desired computation.

Using PAUP, TNT and TASPI, we measured the time it took the software to read
each collection, and the time needed to compute both a strict and majority consensus
tree. For PAUP, we produced a strict consensus tree using its majority consensus com-
mand with percent set to 100 since the strict consensus command took considerably
longer to do the same calculation. Also, by default, TNT does not include branches that
are not well supported by the data used to create trees. However, we were not including
any initial data other than the trees themselves, so we turned this feature off using the
command collapse notemp.

Our experiments, where we were able to compare PAUP, TNT and TASPI, were
all performed on an Intel Pentium 4 CPU 3.4 Ghz computer. However, for the two
largest data sets, we used an AMD Opteron CPU 2.4 Ghz computer, which has similar
computational performance, but more physical memory. Either computer produces the
same compressed files. The largest files are too large to be read by either PAUP or TNT
due to internal limitations on the number of taxa allowed in a tree.
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5 Results

The first major contribution of TASPI is the condensed format in which trees can be
stored, while maintaining structural information. Figure 2 shows four sets of sizes for
each of our benchmark data sets. The Newick data represents the size of the trees as
they were given to us, after removing information that TASPI does not currently store
(e.g. comments and branch lengths) and Newick.bz2 illustrates the size of the file after
compression using the algorithm implemented in bzip2 [15]. TASPI.bhz displays the
size of the file after compression using the Boyer-Hunt method. Notice that this file
is still in ASCII, but with redundancies removed. Unlike most compression methods,
all the information present in the original files is still immediately accessible, without a
decompression step. Finally, TASPI.bhz.bz2 shows the size of the file if it is compressed
using the Boyer-Hunt method and then bzip2 is applied.

Using the compressed TASPI format saves considerable memory space. For the data
sets we present, the storage requirement for the TASPI format ranges from 2% of the
storage requirement of Newick for the t10000 (data set 8) collection, up to 26% for the
Dom 2org (data set 1) collection. Over all data sets, the compressed TASPI format uses
just 5% of the storage requirement of the Newick format.

The amount of storage space saved is dependent on the amount of similarity be-
tween input trees. The more similarity between input trees (i.e. the greater the number
of common subtrees) the more effective the compression. It is known in the phylo-
genetic community that trees derived from independent data sets are unlikely to have
common structure [4]. However, it appears that collections of trees such as those we
are presenting do have common structure since our compression was able to reduce the
storage requirement for these collections of trees. Further, the greater the number of
trees in the collection, the more likely there will be common structure.

It is readily apparent that bzip2 produces smaller files than the Boyer-Hunt compres-
sion on the smaller collections of trees, but for the very large data sets, the Boyer-Hunt
compression produces smaller files than bzip2. Further, the Boyer-Hunt files are ASCII,
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Data Set

10K

100K

1M

10M

100M

1G
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s) Newick 

TASPI.bhz
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TASPI.bhz.bz2

Fig. 2. Storage requirements
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Fig. 3. Time to read a collection of trees (a-c) and compute strict and majority consensus trees
with PAUP, TNT and TASPI (d-f)

and thus are ready to be used as input to analysis, such as consensus. If the data are not
currently required as input to a post-tree analysis, compressed TASPI is even more use-
ful. Boyer-Hunt files can be further compressed using bzip2 to produce even smaller
files than those produced by using bzip2 on the original Newick files for sharing and
transmission purposes. For our data sets, using the Boyer-Hunt compression together
with bzip2 produces files that require 1% of the storage space of Newick.

The second major contribution of TASPI is its ability to read collections of trees
quickly. Figure 3(a-c) shows average read times in seconds for each of our benchmark
collections of trees. Notice that while reading trees with TNT or PAUP requires compa-
rable times, reading the Boyer-Hunt compressed trees with TASPI is by far the fastest
time for any collection. In fact, neither PAUP nor TNT is able to read the last two data
sets. For the data sets which PAUP and TNT can read, reading the compressed TASPI
format takes just 2% of the time to read the Newick files with PAUP. This means that
loading these files takes more than 48 times longer when read with PAUP or TNT rather
than using TASPI to read their compressed counterpart. Even reading the source files



Collections of Phylogenetic Trees and Improved Consensus Performance 363

is faster in TASPI than it is in either PAUP or TNT – using TASPI to read the Newick
files takes just 16% of the time needed to read the same files with PAUP or TNT.

The third major contribution of TASPI is a consensus implementation with im-
proved performance. Figure 3(d-f) shows the time to compute consensus with each of
TASPI, TNT and PAUP. In each case, both a strict consensus tree and a majority con-
sensus tree are computed. Notice that the time to compute consensus includes the time
to read the collection of trees since the trees are the input to a consensus calculation.
Thus, we show both the time to compute consensus when reading compressed trees and
also the time when reading Newick trees.

In all cases, the result TASPI produces is identical to that produced by PAUP (when
PAUP is able to read the input), but TASPI is faster. For the data sets PAUP and TNT
can process that we present, using TASPI to compute consensus with input trees in
compressed TASPI format requires 5% of the time it takes PAUP to compute consensus
with input trees in Newick format. If we factor out the improved reading time, TASPI
computes these consensus trees in about 10% of the time it takes PAUP to do the same
computation.

6 Conclusion

In phylogenetics, the ability to store large numbers of trees is increasingly important.
Bayesian methods, which use Monte Carlo Markov Chains, are visiting more trees than
previous methods, and are growing in popularity. Biologists are also choosing to retain
additional trees visited during a search. We have shown that our format provides de-
creased storage requirements, while maintaining data accessibility for further process-
ing. Further, our format together with techniques like memoization allows for improved
performance in post-tree analysis. We showed this using strict and majority consensus.

The use of post-tree analyses are also becoming more prevalent. Williams et al.
propose using the rate of change of a consensus tree as a stopping criterion for heuris-
tic maximum parsimony searches, which requires the computation of a consensus tree
multiple times over the course of an analysis [19]. We have given a new format for
collections of phylogenetic trees that would make this feasible. In addition, our replete
database, the output of the first step in our consensus algorithm, provides a possible
starting point for phylogenetic databases such as those proposed in [14].

In the future we hope to investigate the changes necessary to make our consensus
algorithm incremental. This would allow online consensus analysis as proposed in [3].
We would also like to look at even larger collections of trees (larger both in number
of trees and number of taxa) and consider application of our techniques to supertree
methods.
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Abstract. In this paper, we use integer programming approach for solv-
ing a hard combinatorial optimization problem, namely protein thread-
ing. For this sequence-to-structure alignment problem we apply cost-
splitting technique to derive a new Lagrangian dual formulation. The
optimal solution of the dual is sought by an algorithm of polynomial com-
plexity. For most of the instances the dual solution provides an optimal
or near-optimal (with negligible duality gap) alignment. The speed-up
with respect to the widely promoted approach for solving the same prob-
lem in [17] is from 100 to 250 on computationally interesting instances.
Such a performance turns computing score distributions, the heaviest
task when solving PTP, into a routine operation.

1 Introduction

Protein folding is one of the most extensively studied problems in computational
biology. The problem can be simply stated as follows: given a protein sequence,
which is a string over the 20-letter amino acid alphabet, determine the positions
of each amino acid atom when the protein assumes its 3D folded shape. Although
simply stated, this problem is extremely difficult to solve and is widely recognized
as one of the most important challenges in computational biology today [10,16,6].

In case of remote homologs, one of the most promising approaches to the
above problem is protein threading, i.e., one tries to align a query protein se-
quence with a set of 3D structures to check whether the sequence might be com-
patible with one of the structures. Fold recognition methods based on threading
are complex and time consuming computational techniques consisting of the
following components:

1. a database of known 3D structural templates;
2. an objective function which evaluates any alignment of a sequence to a tem-

plate structure;
3. a method for finding the best (with respect to the score function) possible

sequence-3D structure alignment;
4. a statistical analysis of the raw scores allowing the detection of the significant

sequence-structure alignments.
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R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 365–375, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



366 P. Veber et al.

The third point above is related to the problem of finding the optimal sequence-
to-structure alignment and is referred to as protein threading problem (PTP).
From a computer scientist’s viewpoint this is the most challenging part of the
threading methods. Until recently, it was the main obstacle to the develop-
ment of efficient and reliable fold recognition methods. In the general case, when
variable-length alignment gaps are allowed and pairwise amino acid interac-
tions are considered in the score function, PTP is NP-hard [8]. Moreover, it is
MAX-SNP-hard [1], which means that there is no arbitrary close polynomial
approximation algorithm, unless P = NP. In this context the progress done by
the computational biology community in solving PTP during the last few years
is really remarkable [12,20,2,17,18,3]. The empirical results clearly illustrate that
PTP is easier in practice than in theory and that it is possible to solve real-life
(biological) instances in a reasonable amount of time. These results also show
that one of the most promising approaches in solving this problem is using ad-
vanced mathematical programming (Mixed Integer Programming, MIP) models
for PTP [19,20,2,17]. The most amazing observation is that for almost all (more
than 95%) of the instances, the LP relaxation of the MIP models is integer-
valued, thus providing optimal threading. This is true even for polytopes with
more than 1046 vertices. Moreover, when the LP relaxation is not integer, its
value is a relatively good approximation of the integer solution. However, to
the best of our knowledge, this observation has not been practically used be-
fore the current paper. Other successful Integer Programming approaches for
solving combinatorial optimization problems originated in molecular biology are
discussed in the recent survey [11].

The main drawback of mathematical programming approaches is that the
corresponding models are often very large (over 106 variables). Even the most
advanced MIP solvers need prohibitively large running time for solving such
instances. For example, the authors in [17] find out 30 templates for which it
takes about 15 hours to thread one target onto them on a Silicon Graphics Origin
3800 system, which has 40400 MHz MIPS R12000 CPUs and 20 GB of RAM.
Different divide-and-conquer methods and parallel algorithms can be used to
overcome this drawback [18,19,20].

A further step in solving the huge MIP models is the development of special-
purpose algorithms based on advanced combinatorial optimization techniques
like Lagrangian relaxation. Such an algorithm has been recently designed by S.
Balev in [3] and computationally compared with the B&B algorithm from [8]
and a heuristic used in [9]. The computational results are very impressive and
clearly show that the Lagrangian relaxation (LR) significantly outperforms both
other algorithms. However, comparisons with MIP solver are not provided in [3].

In this paper we continue the same direction of research and propose a new
dedicated algorithm for solving protein threading MIP models. It is as well based
on Lagrangian relaxation. But, both our Lagrangian dual formulation and the
optimization technique that we use for solving it (the so-called cost-splitting
[13]), differentiate from those described in [3]. Extensive computational results
prove that: (i) our algorithm is in most cases faster than the one in [3]; (ii) both
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Lagrangian relaxation algorithms significantly outperform solving MIP models
by LP relaxation. To the best of our knowledge the only other impressive appli-
cation of LR to an alignment problem is discussed in [5].

Another contribution of the current paper concerns the 4th point above.
When aligning a given query sequence to a set of 3D structures it is not possible
to directly use the raw scores to rank the 3D structures. The reason is that
these scores strongly depend on the query and template lengths and also, in a
complicated way, on the particular features of the 3D structures. In addition,
the query sequence may correspond to none of the existing folds. Therefore one
must have means to evaluate the significance of an alignment score. This can be
done as a preprocessing stage, by empirically calculating a distribution of scores
for each template, using a set of sequences not related to it1. The underlying
score normalization procedure involves threading a large set of queries against
each template and requires solving millions of PTP. For example the package
FROST (Fold Recognition-Oriented Search Tool) [9], uses a database of about
1,200 known 3D structures, each one associated with empirically determined
score distributions. Computing these distributions is extremely time consuming:
it requires solving about 1,200,000 sequence-to-structure alignments and takes
about 40 days on a 2.4 GHz computer and about 3 days on a cluster of 12 PCs
[14]. Accelerating computations involved in this component is crucial for the
development of efficient fold recognition methods.

Based on extensive comparisons we observe that the approximated solutions
obtained by any one of the three algorithms considered in this paper can be
successfully used when computing scores distributions. Since these approximated
solutions are obtained by polynomial algorithms, we experimentally prove that
this heavy stage can be polynomially computed.

The organization of the paper is as follows. In section 2 we introduce a formal
presentation of PTP, and then study some special cases in the section 3. Section
4 presents the cost-splitting technique. Last section is dedicated to experimental
results.

2 Protein Threading Problem

For the sake of brevity, in this paper we stick to the network optimization
problem formulation proposed in [19,2]. Formally, for a given sequence (query)
of R characters and an ordered sequence (template) {s1, . . . , sm} of m blocks
(structural elements), the ith one of length |si|, an alignment could be defined
by insertion of gaps gi between the blocks, s.t. |g1s1g2s2 . . . smgm+1| = R. Obvi-
ously,

∑
|gi| = n′ = R −

∑
|si| ≥ 0 and 0 ≤ |gi|, i = 1, . . . , m + 1. Now, we can

substitute the gaps by s.c. relative positions defined by rk =
∑k

i=1 |gi| + 1, k =
1, . . . , m and to determine an alignment by choosing a point (r1, . . . , rm) ∈ Zm

+
with 1 ≤ r1 · · · ≤ rm ≤ n = n′ + 1.

1 More justifications for this phase the interested reader can find in [9].
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Let us introduce binary variables yij for modeling the event ri = j, and
denote by Y the set of feasible threading, defined by the following:

n∑
k=1

yik = 1 i = 1, . . . , m (1)

k∑
l=1

yil −
k∑

l=1

yi+1,l ≥ 0 i = 1, . . . , m − 1, k = 1, . . . , n − 1 (2)

yik ∈ {0, 1} i = 1, . . . , m, k = 1, . . . , n (3)

To facilitate the interpretation of this set, we will many times refer to a m-partite
graph G with a vertex set V given by the grid of points, whose coordinates
(i, j), i = 1, . . . , m; j = 1, . . . , n correspond to the indices of y variables. Let G
be the digraph obtained by adding arcs from each grid point (i, j) in the ith
column (layer), i = 1, . . . , m − 1, of the grid to all points (i + 1, k), k = j, . . . , n
in the i + 1th column.One could easily check that the set Y is equivalent to
the set of all paths in G of length m − 1. Thus the feasible threading could
be regarded either as a point in Y either as a path in G. In the sequence-to-
structure alignment context each layer corresponds to a block, and each vertex
in a layer corresponds to a positioning of this block on a query protein. Let
L ⊆ {(i, k) | 1 ≤ i < k ≤ m} be a given set of inter-layers links. This is the so-
called contact graph: a link between layers i and k means that the corresponding
structural elements are in contact (close) in the 3D structure. As for the graph
G, each such link adds the arcs (called z-arcs) ((i, j), (k, l))l = j, . . . , n for each
vertex (i, j), j = 1, . . . , n. In the optimization problem, given below, the feasible
set consist of previously defined paths together with all z-arcs having their both
ends on such a path.

Let Aik be the 2n × n(n+1)
2 node-arc incidence matrix for the subgraph

spanned by the layers i and k, (i, k) ∈ L. The submatrix Ai, the first n rows of
Aik, (resp. Ak, the last n rows) corresponds to the layer i (resp. k). To avoid
added notation we will use vector notation for the variables yi = (yi1, ...yin) ∈
Bn where Bn is the set of n-dimensional binary vectors, with assigned costs
ci = (ci1, ...cin) ∈ Rn and zik = (zi1k1, . . . , zi1kn, zi2k1, . . . , zinkn) ∈ B

n(n+1)
2 for

(i, k) ∈ L with assigned costs dik = (di1k1, . . . , di1kn, di2k1, . . . , dinkn) ∈ R
n(n+1)

2 .
In the sections below the vector dik will be considered as a n × n upper trian-
gular matrix, having arbitrarily large coefficient below the diagonal. This slight
deviation from the standard definition of an upper triangular matrix is used only
for formal definition of some matrix operations.

Now the protein threading problem PTP (L) is defined as:

vL
ip = v(PTP (L)) = min{

m∑
i=1

ciyi +
∑

(i,k)∈L

dikzik} (4)

subject to: y = (y1, . . . , ym) ∈ Y, (5)
yi = Aizik, yk = Akzik (i, k) ∈ L (6)

zik ∈ B
n(n+1)

2 (i, k) ∈ L (7)
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The shortcut notation v(.) will be used for the optimal objective function value
of a subproblem obtained from PTP (L) with some z variables fixed. Throughout
the next section, vertex costs ci are assumed to be zero. We study three sorts of
contact graph that make PTP polynomially solvable.

3 Special Cases

3.1 Contact Graph Contains No Crossing Edges

Two links (i1, k1) and (i2, k2) such that i1 < i2 are said to be crossing when k1
is in the open interval (i2, k2). The case when the contact graph L contains no
crossing edges has been mentioned to be polynomially solvable for the first time
in [1]. Here we present a different sketch for O(n3) complexity of PTP in this
case.

If L contains no crossing edges, then PTP (L) can be recursively divided into
independent subproblems. Each of them consists in computing all shortest paths
between the vertices of two layers i and k, discarding links that are not included
in (i, k). Thus the result of this computation is a distance matrix Dik such that
Dik(j, l) is the optimal length between vertices (i, j) and (k, l). Note that for
j > l as there is no path in the graph, Dik(j, l) is an arbitrarily large coefficient.
Finally, the solution of PTP (L) is the smallest entry of D1m.

We say that an edge (i, k), i < k is included in the interval [a, b] when [i, k] ⊆
[a, b]. Let us denote by L(ik) the set of edges of L included in [i, k]. Then, an
algorithm to compute Dik can be sketched as follows:

1. if L(ik) = {(i, k)} then the distance matrix is given by

Dik =
{

dik if (i, k) ∈ L
0̃ otherwise (8)

where 0̃ is an upper triangular matrix in the previously defined sense (ar-
bitrary large coefficients below the main diagonal) and having only zeros in
its upper part.

2. otherwise as L(ik) has no crossing edges, there exists some s ∈ [i, k] such
that any edge of L(ik) but (i, k) is included in [i, s] or in [s, k]. Then

Dik =
{

Dis.Dsk + dik if (i, k) ∈ L
Dis.Dsk otherwise (9)

where the matrix multiplication is computed by replacing (+,×) operations
on reals by (min, +).

Remark 1. If the contact graph has m vertices, and contains no crossing edges,
then the problem is decomposed into O(m) subproblems. For each of them, the
computation of the corresponding distance matrix is a O(n3) procedure (matrix
multiplication with (min, +) operations). Overall complexity is thus O(mn3).
Typically, n is one or two orders of magnitude greater than m, and in practice,
this special case is already expensive to solve.
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3.2 All Edges Have Their Left End Tied to a Common Vertex

A set of edges L = {(i1, k1), . . . , (ir, kr)}, k1 < k2 < . . . kr is called a star if it
has at least two elements and it = i1, t ≤ r. The arc costs corresponding to the
link (i, ks) are given by the upper triangular matrix diks .

The following algebra is used to prove the O(n2) complexity of the corre-
sponding PTP.

Definition 1. Let A, B be two matrices of size n×n. M = A⊗B is defined by
M(i, j) = min

i≤r≤j
A(i, r) + B(i, j)

In order to compute A ⊗ B, we use the following recursion: let M ′ be the
matrix defined by M ′(i, j) = min

i≤r≤j
A(i, r), then

M ′(i, j) = min{M ′(i, j − 1), A(i, j)}, for all j ≥ i

Finally A ⊗ B = M ′ + B. From this it is clear that ⊗ multiplication for n × n
matrices is of complexity O(n2).

Theorem 1. Let L = {(i, k1), . . . , (i, kr)} be a star.
Then Dikr = (. . . (dik1 ⊗ dik2 ) ⊗ . . . ) ⊗ dikr

Proof. The proof follows the basic dynamic programming recursion for this
particular case: for the star L = {(i, k1), . . . , (i, kr)} = L′⋃{(i, kr)}, we have
v(L : zijkr l = 1) = dijkr l + min

j≤s≤l
v(L′ : zijkr−1s = 1)

3.3 Sequence of Independent Subproblems

Given a contact graph L = {(i1, k1), . . . , (ir, kr)}, PTP (L) can be decomposed
into two independent subproblems when there exists an integer e ∈ (1, m) such
that any edge of L is included either in [1, e], either in [e, m]. Let I = {i1, . . . , is}
be an ordered set of indices, such that any element of I allows for a decomposition
of PTP (L) into two independent subproblems. Suppose additionally that for all
t ≤ s − 1, one is able to compute Ditit+1 . Then we have the following theorem:

Theorem 2. Let p = (p1, p2, . . . , pn) be obtained by the following matrix-vector
multiplication p = Di1i2Di2i3 . . . Dis−1isp, where p = (0, 0, . . . , 0) and the scalar
product in the matrix-vector multiplication is defined by changing ”+” with
”min” and ”.” with ”+”. Then for all i, pi = v(PTP (L : y1i = 1), and
v(PTP (L)) = min{pi}.
Proof. Each multiplication by Dikik+1 in the definition of p is an algebraic re-
statement of the main step of the algorithm for solving the shortest path problem
in a graph without circuits.

Remark 2. With the notations introduced above, the complexity of PTP (L) for
a sequence of such subproblems is O(sn2) plus the cost of computing matrices
Ditit+1 .
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From the last two special cases, it can be seen that if the contact graph can
be decomposed into independent subsets, and if these subsets are single edges
or stars, then there is a O(srn2) algorithm, where s is the cardinality of the
decomposition, and r the maximal cardinality of each subset, that solves the
corresponding PTP.

4 Cost Splitting

In order to apply the results from the previous section, we need to find a suit-
able partition of L into L1⋃L2...

⋃
Lt where each Ls induces an easy solvable

PTP (Ls), and to use the s.c. cost-splitting variant of the Lagrangian duality.
Now we can restate (4)- (7) equivalently as:

vL
ip = min

⎧⎨⎩
t∑

s=1

(
m∑

i=1

cs
iy

s
i +

∑
(i,k)∈Ls

dikzik)

⎫⎬⎭ (10)

subject to: y1
i = ys

i , s = 2, t (11)
ys = (ys

1, ..y
s
m) ∈ Y, s = 1, . . . , t (12)

ys
i = Aizik, ys

k = Akzik s = 1, . . . , t (i, k) ∈ Ls (13)

zik ∈ B
n(n+1)

2 s = 1, . . . , t (i, k) ∈ Ls (14)

Taking (11) as the complicating constraints, we obtain the Lagrangian dual
of PTP (L):

vcsd = max
λ

min
y

t∑
s=1

(
m∑

i=1

cs
i (λ)ys

i +
∑

(i,k)∈Ls

dikzik) = max
λ

t∑
s=1

vLs

ip (λ) (15)

subject to (12), (13) and (14).
The Lagrangian multipliers λs are associated with the equations (11) and

c1
i (λ) = c1

i +
∑t

s=2 λs, cs
i (λ) = cs

i − λs, s = 2, . . . , t. The coefficients cs
i are

arbitrary (but fixed) decomposition (cost-split) of the coefficients ci, i.e. given
by cs

i = psci with
∑

ps = 1. From the Lagrangian duality theory follows vlp ≤
vcsd ≤ vip. This means that for each PTP instance s.t. vlp = vip holds vcsd = vip.
By applying the subgradient optimization technique ([13]) in order to obtain
vcsd, one need to solve t problems vLs

ip (λ) (see the definition of vLs

ip ) for each λ
generated during the subgradient iterations. As usual, the most time consuming
step is PTP (Ls) solving, but we have demonstrated its O(n2) complexity in the
case when Ls is a union of independent stars and single links.

5 Experimental Results

The numerical results presented in this section were obtained on an Intel(R)
Xeon(TM) CPU 2.4 GHz, 2 GB RAM, RedHat 9 Linux. The behavior of the al-
gorithm was tested by computing the distributions used in FROST (Fold Recog-
nition Oriented Search Tool) software [9]. The MIP models were solved using
CPLEX 8.1.1 solver [7].
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We pursued three main objectives. First: to compute the distributions with
approximated values (found in a polynomial time) instead of the exact values,
and to study the quality of these “approximated” distributions. Second: to com-
pare the running times obtained by the cost-split algorithm with the ones of
the CPLEX LP solver. Third: to compare the running times obtained by both
Lagrangian algorithms.

We first focused on the phase of computing score distributions. Five dis-
tributions are associated to any 3D template in the FROST database, and
any distribution requires solving about 200 sequence-to-template alignments.
Only the 1st and at the 3rd quartile values from any of these distribution (q25
and q75) are needed to compute the normalized score which is used for final
evaluation [9,14].

We conducted the following experiment. We chose a set of 12 non-trivial
templates, which are the same as given in [3], plus few extra-large instances
based on real-life data generated by FROST. 60 distributions are associated to
them. We first computed these distributions using an exact algorithm for solving
the underlying alignment problem. The same distributions have been afterwords
computed using approximated values obtained by any of the three PTP algo-
rithms here considered. By approximated value we respectively mean: i) for a
MIP model, this is the solution given by the LP relaxation; ii) for Stefan Balev’s
Lagrangian Relaxation algorithm (SB-LR) [3], this is the solution obtained for
500 iterations; iii) for the Cost-Splitting Lagrangian Relaxation algorithm (CS-
LR) this is the solution obtained either for 300 iterations, or when the relative
duality gap becomes less than 0.001.

For a MIP model we used the s.c. MYZ model introduced in [2] which has
been proved faster than the model used in the package RAPTOR [17]. Because
MIP models are relatively slow, we present here results from only 10 distributions
which required solving 2000 alignments. We observed that in the 1st quartile the
relative error between the exact and approximated (LP) distribution was 3×10−3

in only two cases and less than 10−6 for all other cases. In the 3rd quartile, the
relative error was 10−3 in two cases and less than 10−6 for all other cases.

With LR algorithms we were able to compute all 12125 alignments for the
selected set of 60 templates. We observed that in the 1st quartile, the exact
and approximated values were equal for all cases for both (SB-LR and CS-LR)
algorithms. In the 3rd quartile the exact solution of SB-LR algorithm was equal
to the approximated one in all, but two cases, in which the relative error was
respectively 10−3 and 10−5. As for the CS-LR algorithm the exact value was
equal to the approximated one in 12119 instances and the relative error was
7 × 10−4 in only 6 cases.

Obviously, such loss of precision is negligible and does not degrade the quality
of the prediction. For this reasons we didn’t explore a few nodes in a Branch
and Bound tree just to improve insignificantly the heuristic solution in one out
of 2000 cases.

We therefore conclude that the approximated values given by any of above
mentioned algorithm can be successfully used in order to compute distributions.
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Fig. 1. Cost-Splitting Lagrangian Relaxation versus LP Relaxation

Table 1. CS-LR versus SB-LR running time comparison. For cores given respectively
in the first and the seventh column, and from left to right, the meaning of the columns
is as follows: PDB code, number of blocks, number of query sequences that were aligned
to the core, the minimum and maximum size of the solution space. The columns g mean
give the geometric mean of the ratio between SB-LR and CS-LR execution time.

Core m ali. smin smax g mean Core m # smin smax g mean
1KEVA 27 28 1.7e+33 1.7e+33 0.928 1DIK 57 15 7.85e+48 7.85e+48 0.957
1MUCA 25 25 3.96e+31 3.96e+31 0.925 1ECEA 20 73 6.21e+29 6.21e+29 1.006
1AJSA 25 600 1.27e+25 5.06e+33 0.920 1FCDA 27 37 1.8e+35 1.8e+35 1.044
1AK5 23 979 9.1e+23 3.82e+37 1.084 1HRDA 26 17 1.74e+33 1.74e+33 1.194
1ASYA 26 752 3.48e+20 2.07e+37 1.242 1JDC 29 69 5.53e+39 5.53e+39 0.858
1LYLA 26 591 5.29e+28 1.89e+37 1.202 2TYSB 25 600 7.52e+22 3.49e+32 1.066
1SESA 26 593 5.18e+23 8.95e+33 1.300 2NACA 28 600 2.81e+28 8.4e+36 1.285
1PHP 29 600 4.19e+26 5.54e+36 1.033 2PHLA 23 600 3.22e+22 9.85e+30 1.386
1AFWB 24 600 3.89e+23 1.14e+32 1.309 1CG2A 26 600 5.19e+20 2e+32 0.998
1BGLA 55 480 5.39e+27 6.65e+77 0.936 1PBE 25 400 8.31e+25 3.64e+30 1.035
1CXSA 56 77 1.75e+68 1.75e+68 0.682

Our second numerical experiment compared running times for computing
“approximated” distribution by LP and CS-LR algorithm. The obtained results,
given on Fig. 1 clearly show that CS-LR algorithm significantly outperforms the
LP relaxation.

Our third test concerned CS-LR versus SB-LR running time comparison.
For this purpose we selected a set of 8837 hard instances based on computations
from [14]. These instances are related to 21 cores listed in table 1. In order to
evaluate the performance of our algorithm, we computed the ratio of execution
time between SB-LR and CS-LR algorithms for each one of these instances. We
then computed the geometric mean of this ratio, for each core as shown in table
1. The overall mean is 1.12 showing that both methods are comparable, with a
slight advantage for CS-LR algorithm. Fig. 2 visualizes the obtained results.
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Fig. 2. CS-LR versus SB-LR : recapitulation plot concerning 8337 alignments

6 Conclusion

The results in this paper confirm once more, that integer programming ap-
proach is well suited to solve protein threading problem. Here, we proposed
a cost-splitting approach, and derived a new Lagrangian dual formulation for
this problem. This approach compares favorably with the Lagrangian relaxation
proposed in [3]. It allows to solve huge PTP instances2 (of size above to 1077)
within a few minutes.
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Abstract. Computational alignment of a biopolymer sequence (e.g., an RNA or
a protein) to a structure is an effective approach to predict and search for the
structure of new sequences. To identify the structure of remote homologs, the
structure-sequence alignment has to consider not only sequence similarity but
also spatially conserved conformations caused by residue interactions, and con-
sequently is computationally intractable. It is difficult to cope with the ineffi-
ciency without compromising alignment accuracy, especially for structure search
in genomes or large databases.

This paper introduces a novel method and a parameterized algorithm for
structure-sequence alignment. Both the structure and the sequence are repre-
sented as graphs, where in general the graph for a biopolymer structure has a
naturally small tree width. The algorithm constructs an optimal alignment by
finding in the sequence graph the maximum valued subgraph isomorphic to the
structure graph. It has the computational time complexity O(ktN2) for the struc-
ture of N residues and its tree decomposition of width t. The parameter k, small
in nature, is determined by a statistical cutoff for the correspondence between the
structure and the sequence. The paper demonstrates a successful application of
the algorithm to developing a fast program for RNA structural homology search.

1 Introduction

Structure-sequence alignment plays the central role in a number of important computa-
tional biology methods. For instance, protein threading, an effective method to predict
protein tertiary structure, is based on the alignment between the target sequence and
structure templates in a template database [3,5,37,19,36]. Structure-sequence alignment
is also essential to RNA structural homology search, a viable approach to annotating
(and identifying new) non-coding RNAs [10,12,29,22]. Structure-sequence alignment
also finds applications in other bioinformatics tasks where structure plays an instru-
mental role, such as in the identification of the structure of intermolecular interactions
[25,27], and in the discovery of the structure of biological pathways through compara-
tive genomics [8].
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The structure-sequence alignment is to find an optimal way to “fit” the residues of
a target sequence in the spatial positions of a structure template. To be able to identify
the structure of remote homologs, the alignment has to consider not only sequence sim-
ilarity but also spatially conserved conformations caused by sophisticated interactions
between residues, and consequently is computationally intractable. For example, it is
both NP-hard for protein threading with amino acid interactions [18] and for thermody-
namic determination of RNA secondary structure including pseudoknots [23].

The alignment problem has often been formulated as integer programming that
characterizes residue spatial interactions with (a large number of) linear inequality
constraints [36,20]. Commercial software packages for linear programming are usu-
ally used to approximate the integer programming and to reduce the computation time.
More sophisticated techniques, such as branch-and-cut, can be used to dynamically in-
clude only needed linear constraints [20,28]. Moreover, a divide-and-conquer method
based on the notion of “open-links” has also been devised to address the residue-residue
interaction issue [37]. For RNA structure-sequence alignment, dynamic programming
has been extended to include crossing patterns of RNA nucleotide interactions [32,7].
The above algorithmic techniques cope with the alignment intractability, however, most
of them still require computation time polynomial of a high-degree.

In this paper, we introduce an efficient structure-sequence alignment algorithm.
Both structure and sequence are represented as mixed graphs (with directed and undi-
rected edges); the optimal alignment corresponds to finding in the sequence graph the
maximum valued subgraph isomorphic to the structure graph. In addition, we introduce
an integer parameter k to constrain the correspondence between the graphs. A dynamic
programming algorithm is developed over a tree decomposition of the structure graph.
For each value of k, the optimal alignment can be found in time O(ktN2) for each
structure template containing N residues given a tree decomposition of tree width t.

Our algorithm is a parameterized algorithm [11], in which the naturally small pa-
rameter k determined by a statistical cutoff reflects the accuracy of the alignment. The
new algorithm with the time complexity O(ktN2) is more efficient than previous algo-
rithms, for example, of the time complexity O(Nk) [37]. This is also because the tree
width t of the graph for a biopolymer structure is small in nature. For example, the tree
width is 2 for the graph of any pseudoknot-free RNA and the width can only increase
slightly for all known pseudoknot structures (see Figure 5). Our experiments also show
that among 3890 protein tertiary structure templates compiled using PISCES [33], only
0.8% of them have tree width t > 10 and 92% have t < 6, when using a 7.5 Å Cβ-Cβ

distance cutoff for defining pair-wise interactions (Figure 2(a)).
The alignment algorithm has been applied to the development of a fast RNA struc-

ture homology search program [31]. With a significantly reduced amount of computa-
tion time, the new search method achieves the same accuracy as searches based on the
widely used Covariance model (CM) [13]. The new algorithm yields about 24 to 50
times of speed up for the search of pseudoknot-free RNAs with 90 to 150 nucleotides;
it gains even more significant advantage for larger RNAs or structures including pseu-
doknots. In addition, for all the conducted tests, including the searches of medium to
large RNAs in bacteria and yeast genomes, parameter k ≤ 7 has been sufficient for the
accurate identification.
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2 Problem Formulation

We formulate structure-sequence alignment as a generalized subgraph isomorphism
problem. Graphs used here are mixed graphs contaning both undirected and directed
edges. Let V (G), E(G), and A(G) denote the vertex set, the undirected edge set, and
the directed edge (arc) set of graph G, respectively.

Fig. 1. (a) Folded ChainB of Protein Kinase C interacting protein with 8 cores (the PDB-file
corresponding to PDB-ID 1AV5); (b) its corresponding structure graph

Definition 1. A structural unit in a biopolymer sequence is a stretch of contiguous
residues (nucleotides or amino acids). A non-structural stretch, between two consecu-
tive structural units, is called a loop.

A structure of the sequence is characterized by interactions among structural units.
For example, structural units in a tertiary protein are α helices and β strends, called
cores. Figure 1(a) shows a protein structure with 8 structural units. In the RNA sec-
ondary structure, a structural unit is a stretch of nucleotides, one half of a stem formed
by a stack of base pairings.

Given a biopolymer sequence, a structure graph H can be defined such that each
vertex in V (H) represents a structural unit, each edge in E(H) represents the interac-
tion between two structural units, and each arc in A(H) represents the loop ended by
two structural units. Figure 1(b) shows the structure graph for the folded protein in 1(a).
Figure 5 shows the graph for bacterial tmRNAs.

The alignment between a structure template and a target sequence is to place
residues of the sequence in the spatial positions of the template. Instead of placing
individual residues to the spatial positions, the method we introduce in this paper al-
lows us to put a stretch of residues as a whole in the position of some structural unit
of the template. The sequence to be aligned to the structure is preprocessed so that all
candidates in the sequence are identified for every structural unit in the template.

By representing each candidate as a vertex, the target sequence can also be repre-
sented as a mixed graph G, called a sequence graph. Each edge in E(G) connects a
pair of candidates that may possibly interact but do not overlap in sequence positions,
and an arc in A(G) connects two candidates that do not overlap.
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Based on the graph representations, the structure-sequence alignment problem can
be formulated as the problem of finding in the sequence graph G a subgraph isomorphic
to the structure graph H such that the objective function based on the alignment score
achieves the optimum. For this, we first introduce a mechanism to parameterize (and to
scrutinize) the mapping between H and G.

Definition 2. A map scheme M between graphs H and G is a function: V (H) → 2V (G)

that maps every vertex in H to a subset of vertices in G. The maximum size of such a
subset, k = maxv∈V (H){|M(v)|}, is called the map width of the map scheme.

A map scheme can be obtained in the preprocessing step that finds all candidates of
every structural unit. The qualification of these candidates can usually be quantified by
a statistical cutoff of the degree to which a candidate is aligned to a structural unit. One
may simply choose the top k candidates for each structural unit. More sophisticated
map schemes are possible (see section 4), in which ideally, the parameter k reflects the
accuracy of alignment results. We define the following parameterized problem:

GENERALIZED SUBGRAPH ISOMORPHISM:
INPUT: mixed graphs H and G, and map scheme M of width k;
OUTPUT: a subgraph G′ of G and an isomorphic mapping f : V (H) → V (G′), con-
strained by f(x) ∈ M(x) for any x, such that the objective function

∑
u∈V (H)

S1(u, f(u)) +
∑

(u,v)∈E(H)

S2((u, v), (f(u), f(v))) +

∑
〈u,v〉∈A(H)

S3(〈u, v〉, 〈f(u), f(v)〉) (1)

achieves the optimum (i.e., maximum or minimum).
Functions S1, S2, and S3 are application dependent, scoring respectively three dif-

ferent alignments between the structure template and the target sequence: the alignment
between a structural unit u and its candidate f(u), the alignment between the interac-
tion of two structural units (u, v) and the interaction of the corresponding candidates
(f(u), f(v)), and the alignment between a loop (connecting two neighboring structural
units u and v) and its correspondence loop in the sequence.

This problem generalizes the well-known NP-hard subgraph isomorphism deci-
sion problem. Efficient algorithms for subgraph isomorphism may be obtained on con-
strained instances. However, algorithms of this kind only exist for the cases where H is
small, fixed, and G is planar or of a small tree width [1,14,24]. None of these conditions
can be satisfied by the application in structure-sequence alignment, where the structure
can be large and the sequence graph is often arbitrary.

We conclude this section by noting that the parameterization introduced on the map
width does not trivialize the problem under investigation. In fact, one can transform
NP-hard problem 3-SAT to (a decision version of) this problem when k is fixed to be
3, leading to the following theorem (the proof details are omitted).

Theorem 1. The problem GENERALIZED SUBGRAPH ISOMORPHISM remains NP-
hard on map schemes of map width k = 3.
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3 Parameterized Alignment Algorithm

Definition 3. [30] Pair (T, X) is a tree decomposition of a mixed graph H if

1. T is a tree,
2. X = {Xi|i ∈ V (T ), Xi ⊆ V (H)}, and

⋃
Xi∈X Xi = V (H),

3. ∀u, v, (u, v) ∈ E(H) or 〈u, v〉 ∈ A(H), ∃i ∈ V (T ) such that u, v ∈ Xi, and
4. ∀i, j, k ∈ V (T ), if k is on the path from i to j in tree T , then Xi ∩ Xj ⊆ Xk.

The tree width of (T, X) is defined as maxi∈V (T ){|Xi|} − 1. The tree width of the
graph is the minimum tree width over all possible tree decompositions of the graph.
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Fig. 2. (a) Tree width distribution of the graphs for 3,890 protein structure templates compiled
using PISCES [33,34]. (b) A tree decomposition for the structure graph in Figure 1(b).

Biopolymer structure graphs in general have small tree width. For instance, the tree
width of the structure graphs for pseudoknot-free RNAs is 2, and it can only increase
slightly for all known pseudoknots. Figure 2(a) gives a statistics on the tree width of
about 3,890 protein structure templates compiled using PISCES [33,34]. Figure 2(b)
shows a tree decomposition for the protein structure graph in Figure 1(b).

3.1 Parameterized Algorithm for Subgraph Isomorphism

We now describe a tree decomposition based parameterized algorithm for the problem
GENERALIZED SUBGRAPH ISOMORPHISM formulated in section 2. Our algorithm as-
sumes a given tree decomposition (T, X) of width t for structure graph H . Our algo-
rithm follows the basic idea of the tree decomposition based techniques in [1,2].

To simplify our discussion, we assume that T for the tree decomposition is a binary
tree. The following notations will also be useful. Let U ⊆ V (H) and Y ⊆ V (G)
such that |U | = |Y |. Then a mapping f : U → Y is a valid mapping for U if f is a
subgraph isomorphism between the graph induced by U and the graph induced by Y . If
W ⊆ U , then f |W is f projected onto W , therefore a valid mapping for W . A partial
isomorphism for H with respect to Xi is a valid mapping f for U = Xi ∪

⋃
k∈D(i) Xk,

where D(i) is the set of i’s descendent nodes in the tree.
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In a bottom up fashion, the algorithm establishes one table for each tree node. Let
Xi = {u0, u1, . . . , ut}. Table mi for tree node i consists of |Xi| + 3 columns, one for
every vertex in Xi. Rows are all possible mappings for Xi restricted by the map scheme
M ; each row is of the form 〈x0, x1, . . . , xt〉 representing the mapping f , f(ul) = xl,
l = 0, 1, . . . , t. There are three additional columns in the table: V, S, Opt (see Fig-
ure 3). V (f) = ‘

√′ if and only if mapping f is valid for Xi. S(f) is the optimal
score over all the partial isomorphism e for H with respect to Xi such that f = e|Xi .
Opt(f) indicates whether S(f) is the optimal over all valid mapping f ′ for Xi, where
f ′|Xi∩Xp = f |Xi∩Xp for p, the parent node of i.

u0…uh…um…ur…ut V S Opt

x0…xh…xm…xr…xt

Xi Xk

Xi Xj Xi-Xk-Xj
mi

f

v1…vp u0…um V S Opt

a1…ap x0…xm

b1…bp x0…xm

Xk-Xi Xi Xk

mk

w1…wq uh…ur V S Opt

c1…cq xh…xr

d1…dq xh…xr

Xj-Xi Xi Xj

mj

g h

Fig. 3. Computing dynamic programming tables over a tree decomposition in which tree node i
has two children k and j

If i is a leaf node, the score S(f) is simply the value computed based on formula (1)
(given in section 2) for vertices in Xi only. If i is an internal node with children nodes
k and j, S(f) is the sum of the following three value :

1. The value computed for f with formula (1) for vertices in Xi only,
2. The maximum S value over all valid mappings g in table mk such that g|Xi∩Xk

=
f |Xi∩Xk

, and
3. The maximum S value over all valid mappings h in table mj such that h|Xi∩Xj =

f |Xi∩Xj .

Figure 3 illustrates the computation for row f in table mi of the internal node i that
has two children nodes k and j. The formal algorithm, GENSUBGISOMO, is outlined as
a recursive process in Figure 4. The optimal score computed in the table for the root of
the tree T is the best isomorphism score. A recursive routine can be used to trace back
the corresponding optimal isomorphism. Details are omitted here.

We need to prove that the (bottom up) dynamic programming always produces cor-
rect partial isomorphisms. Since the algorithm automatically validates the isomorphism
for locally involved vertices, it suffices to ensure that for every u ∈ Xi, the mapping
from u to x for some x ∈ M(u) does not conflict with an earlier mapping from v to
x, for some vertex v ∈ Xk, where k is a descendent of i. Interestingly enough, for
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ALGORITHMGENSUBGISOMO (T , Xi, M , i, mi)
If i has left child k, GENSUBGISOMO(T , Xk, M , k, mk);
If i has right child j, GENSUBGISOMO(T , Xj , M , j, mj);
For every every mapping f for Xi, constrained by M

If i has left child k in T
Find in mk a valid mapping g, such that g|Xi∩Xk = f |Xi∩Xk of Opt(g) being ‘

√′;
If i has right child j in T

Find in mj a valid mapping h, such that h|Xi∩Xj = f |Xi∩Xj of Opt(h) being ‘
√′;

Compute score score(f) with formula (1) for Xi only;
Let S(f) = score(f) + S(g) + S(h);
If i has parent p in T, and S(f) maximizes over all f ′ with f ′|Xi∩Xp =f |Xi∩Xp

Let Opt(f) = ‘
√′;

Return (mi);

Fig. 4. An outline for the tree decomposition based recursive algorithm GENSUBGISOMO that
solves the problem GENERALIZED SUBGRAPH ISOMORPHISM. The algorithm assumes the input
of a tree decomposition (T, X) and a map scheme M ; it returns table mi for every node i in T .

mixed graphs H constructed from biopolymer structures, the non-conflict property is
also automatically guaranteed. The following is a brief justification for this claim.

Note that the directed edges in graph H form the total order relation (V (H),-)
defined as follows: v - u if (i) either 〈u, v〉 ∈ A(H), or (ii) ∃w, v - w and 〈u, w〉 ∈
A(H). This relation needs to be satisfied by any (partial) isomorphism. Assume vertices
u ∈ Xi, v ∈ Xk, and k is one of i’s descendants in the tree. Assume v - u (the case
of u - v is similar). Then in general there exists j on the path from i to k, such that
∃w ∈ Xj , v - w and w - u. An induction on the distance of the chain from u to v can
assert that the mapping conflict cannot occur between u and v so long as v - u.

Theorem 2. GENSUBGISOMO correctly solves the GENERALIZED SUBGRAPH ISO-
MORPHISM problem for every given tree decomposition and every given map scheme.

Corollary 3. Parameterized algorithm GENSUBGISOMO computes the optimal
structure-sequence alignment for every given map scheme of width k.

3.2 Tree Decomposition and Total Alignment Time

For graphs with tree width t, theoretical algorithms [4] can find an optimal tree decom-
position in time O(ctn) for some (possibly large) constant c. We introduce a simple
greedy algorithm for tree decomposition that practically runs fast on structure graphs.

Given a structure graph H , undirected edges are selected such that removals of these
edges from the graph result in an outerplanar graph. The removals of these edges are
done by first removing an edge (but not the endpoints) that crosses with the maximum
number of other edges, and then repeating the same process until the resulting graph
contains no crossing edges. Note that two edges (u, v) and (u′, v′) in H cross each
other if either v′ - v - u′ - u or v - v′ - u - u′ (see section 3.1 for the definition
of the partial order (V (H),-).
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Fig. 5. Diagram of the pairing regions on the tmRNA gene. Upper case letters indicate base
sequences that pair with the corresponding lower case letters. The four pseudoknots constitute
the central part of the tmRNA gene and are called Pk1, Pk2, Pk3, Pk4 respectively.

A simple recursive algorithm can find a tree decomposition of tree width 2 for the
remaining outerplanar graph. Then for each removed edge (u, v), in the tree we place
v in every node on the (shortest) path from a node containing v to a node containing
u. The tree decompositon shown in Figure 2(b) is obtained by first removing crossing
edge (3, 5). Then a tree decomposition for the remaining outerplanar graph is built,
which is extended to the tree decomposition for the original graph by placing vertex 3
(in the bold font) in node {1, 5, 4} on the path from node {1, 4, 3} to node {1, 8, 5}.
This strategy produces a tree decomposition of size at most 2 + c if there are c crossing
edges removed. In reality, the obtained tree decomposition has much smaller tree width.
For example, for the structure graph constructed from the bacterial tmRNA structure
(Figure 5), our strategy shall yield a tree decomposition of tree width 4 instead of 9.
This algorithm is of linear time O(|E(H) + |A(H)| + |V (H)|).

The running time for algorithm GENSUBGISOMO is O(ktt2n), for map width k,
tree width t, number of vertices n in H . For each row in the table, the compliance
with subgraph isomorphism needs to be validated and a score computed according to
formula (1) (by looking up pre-computed values of functions S1, S2, S3). The former
step needs O(t2) and the latter O(t2 + 2t log2 k) (note that the rows of a table can be
ordered to facilitate binary search by the computation for its parent node).

It takes O(knN) time to preprocess the target sequence of length N to construct
the sequence graph. Simultaneously, this step pre-computes the values of functions
S1, S2. The values of function S3 can then be pre-computed, using time O(k

∑l
i=1 l2i )=

O(knN), where li is the length of ith loop and l is the number of loops in the structure.
Summing up the times needed by the preprocessing, tree decomposition, and ALGO-
RITHM GENSUBGISOMO gives us a loose upper bound O(ktnN), or O(ktN2), for the
total time for the structure-sequence alignment.

4 Applications in Fast RNA Structural Homology Search

To evaluate the performance of our method and algorithm for structure-sequence align-
ment, we have applied them to the development of a fast program that can search for
RNA structural homologs. We have also conducted extensive tests on finding medium
to large RNA secondary structures (including pseudoknots) in both random sequences
and biological genomes (bacteria and yeasts) [31]. We summarize our test results in the
following.
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4.1 Data Preparations

The tests on RNA structure searches that we conducted can be grouped into three cate-
gories:

1. On 8 RNA pseudoknot-free structures, of medium size (61 - 112 nucleotides), in-
serted in random sequences of length 105,

2. On 6 RNA pseudoknot structures, of medium size (55 - 170 nucleotides), inserted
in random sequences of length 105, and

3. On 3 RNA pseudoknot structures, of medium to large size (61 - 755), in a variety
of genomes of lengths range from 2.7 × 104 to 1.1 × 107.

Each homologous RNA family is modelled with a structure graph. Each undirected
edge in the graph represents a stem that is profiled with a simplified Covariance Model
(CM) [13]. Each arc in the graph represents a loop (5’ to 3’) that is profiled with a profile
Hidden Markov Model (HMM). In the first two categories of searches, for each family
we downloaded from the Rfam database [16] 30 RNA sequences with their mutual
identities below 80%. We used them to train the CMs and profile HMMs in the model.

For each family we downloaded from Rfam another 30 sequences with their mutual
identities below 80% and use them for search. They were inserted in a random back-
ground of 105 nucleotides generated with the same base compositions. Using a method
similar to the one used in RSEARCH [17], we computed the statistical distribution for
the alignment scores with a random sequence of 3,000 nucleotides generated with the
same base composition as the sequences to be searched. An alignment score with a Z-
score exceeding 5.0 was reported as a hit. Both random sequences and genomes were
scanned through with a window of a size correlated with the structure model size. The
segment of the sequence falling within the window was aligned to the model with the
structure-sequence alignment algorithm presented in the earlier sections.

For the tests of the third category, we searched for three RNA pseudoknot structures:
the pseudoknot structure in the 3’ UTR in the corona virus family [15], the bacterial
tmRNA structure (see Figure 5) that contains 4 pseudoknots [26], and yeast telom-
erase RNA consisting of up to 755 nucleotides [9]. The structures for these RNAs were
trained with 14, 85, and 5 available sequences respectively. The searched genomes for
the 3’ UTR pseudoknot were Bovine corona virus, Murine hepatitus virus, Porcine diar-
rhea virus, and Human corona virus, with the average length 3×104. The two searched
bacteria genomes for the tmRNA were Haemophilus influenzae and Neisseria menin-
gitidis, with the average length 2 × 106. Yeast genomes,Saccharomyces cerevisiae and
Saccharomyces bayanus of the average length 11 × 106, were used to search for the
telomerase RNA.

To obtain a reasonably small value for the parameter k, the map scheme between the
structure and the sequence was designed with the constraint that candidates of a given
stem were restricted in certain region in the target sequence. For this, we assumed that
for homologous sequences, the distances from each pairing region of the given stem
to the 3’ end follow a Gaussian distribution, whose mean and standard deviation were
computed based on the training sequences. For training sequences representing distant
homologs of an RNA family, we could effectively divide data into groups so that a
different but related structure model was built for each group and used for searches.
This method ensures a small value for the parameter k in search models.
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Fig. 6. Performance comparison between the tree decomposition based method and the CM
based method on search for RNA structures, (a) and (b) for pseudoknot-free structures, (c) and
(d) for pseudoknots

4.2 Performance Evaluations

We conducted the tests on the tree decomposition based search program and on a Co-
variance Model (CM) based search system1 and compared the performances of the two.
The tests results showed that, on all three categories, parameter k = 7 was sufficient
for our new search program to achieve the same accuracy as the CM based search
system does. But the computation time used by the new method was significantly re-
duced.

Figure 6(a) and (b) respectively show the sensitivity comparison and specificity
comparison between the two search methods on pseudoknot-free RNA structures. These
structures were from eight RNA families: Entero CRE, SECIS, Lin 4, Entero OriR,
Let 7, Tymo tRNA-like, Purine, and S box, in the increasing order of their length. The
tree decomposition based algorithm performed quite well for k = 6 and larger values.

Figure 6(c) and (d) respectively show the sensitivity comparison and specificity
comparison between the two search methods on RNA pseudoknot structures. These
were from six RNA families: Antizyme FSE, corona pk3, HDV ribozyme,
Tombus 3 IV, Alpha RBS, and IFN gamma, in the increasing order of their lengths.
As for pseudoknot-free structures, the tree decomposition based searches for pseudo-

1 We developed this CM based system [21] in the same spirit of Brown and Wilson’s work
[6] that profiles pseudoknots with intersection of CMs. CM was first introduced by Eddy and
Durbin [13] and has proved very accurate in profiling for search of pseudoknot-free RNA
structures.
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Fig. 7. The speed up of the tree decomposition based method over the CM based method: (a) on
pseudoknot-free structures, and (b) on pseudoknot structures

Left Right Left offset Right offset Time Left off Right off Time

BCV 30798 30859 0 0 0.053 0 0 1.24 3.1 x 104

MHV 31792 31153 0 0 0.053 0 0 1.27 3.1 x 104

PDV 27802 27882 0 0 0.048 0 0 1.17 2.8 x 104

HCV 27063 27125 0 0 0.047 0 0 1.12 2.7 x 104

HI 472209 472574 -1 -1 44.0 0 0 1700 1.83 x 105

NM 1241197 1241559 0 0 52.9 0 0 2044 2.2 x 105

SC 307688 308429 -3 -1 492.3 - - - 1.03 x 107

SB 7121529 7122284 -3 2 550.2 - - - 1.15 x 107

Genome
length

3'PK

TLRNA

tmRNA

Tree decomposition based CM basedReal locationncRNA

Fig. 8. Performance comparison between the tree decomposition based method and the CM
based method on RNA structure searches on genomes. Offset is between the annotated and the
real positions. Time unit is hour.

knots achieved the same performance as the CM based method for parameter values
k ≤ 7.

Figure 7 shows the speed up by the new method over the CM based method, for
(a) pseudoknot-free and (b) pseudoknot structures. It is evident that for k = 7 the
new method was about 20 to 30 times faster than the other method on pseudoknot-free
structures. On the pseudoknot structures, typically on Alpha RBS and Tombus 3 IV
containing more than 100 nucleotides, the new method was 66 and 38 times faster,
suggesting its advantage in the search of larger and more complex structures.

Figure 8 compares the search results obtained by the two methods on three types of
RNA pseudoknots in virus, bacteria, and yeast genomes. Parameter k = 7 is used for
the parameterized algorithm. Both methods achieve 100% sensitivity and specificity. It
clearly shows that the new method had a speed-up of about 30 to 40 times over the other
method for searches in virus and bacteria genomes. With the new method, searching
genomes of a moderate size for structures as complex as tmRNA gene (see Figure 5)
only took days, instead of months. Searching a larger genome such as yeast for larger
structure like telomerase RNAs was also successful, a task not accomplishable by the
CM based system within a reasonable amount of time.
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5 Conclusions

We introduced a novel method and an efficient parameterized algorithm for the
structure-sequence alignment problem by exploiting the small tree width of biopoly-
mer structure graphs. The algorithm was applied to the development of a fast search
program that is capable of accurately identifying complex RNA secondary structure
including pseudoknots in genomes [31]. Our method provides a new perspective on
structure-sequence alignment that is important in a number of bioinformatics research
areas where structure plays an instrumental role. In particular, we expect the tree de-
composition based method, together with one for protein side-chain packing [35], to
yield efficient and accurate protein threading algorithms.
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Abstract. Protein design software places amino acid side chains by pre-
computing rotamer-pair energies and optimizing rotamer placement. If
the software optimizes by rapid stochastic techniques, then the precom-
putation phase dominates run time. We present a new algorithm for rapid
rotamer-pair energy computation that uses a trie data structure. The trie
structure avoids redundant energy computations, and lends itself to time-
saving pruning techniques based on a simple geometric criteria. With our
new algorithm, we compute rotamer-pair energies nearly 4 times faster
than the previous approach.

1 Introduction

Researchers have recently achieved notable success in computational protein de-
sign. Homme Hellinga’s lab redesigned the active site of Ribose Binding Protein
to bind TNT [1,2]. David Baker’s lab designed a more stable protein-L and cre-
ated a novel protein fold [3,4]. The two labs solve a common subproblem: with
a fixed protein backbone as scaffold, they search for a side chain placement that
packs them snuggly without collisions. The snugness-of-fit is captured by an en-
ergy function. The problem of minimizing the energy function over all side chain
conformations is known as the side chain placement problem.

Side chain conformational flexibility is typically modeled by creating many
possible atom placements. Each side chain may be modeled with bond lengths
and bond angles fixed to standard or experimentally determined values; selected
torsional (or dihedral) angles that are variable give the flexibility. These an-
gles have preferred values that have been observed within the Protein Databank
(PDB) [5] and confirmed through quantum mechanical calculations [6]. Design-
ers sample the continuous torsional space near these torsional angles’ preferred
values to generate “rotamers:” conformational isomers that differ by torsional
rotations. Scientists have collected preferred side chain conformations into ro-
tamer libraries [7,8,9,10].

Designers divide the side chain placement problem into two phases. In phase
1, they precompute all possible rotamer-pair interaction energies for their ro-
tamer library, and in phase 2, they search for the (globally) optimal side chain
placement. Significant work has gone into exact algorithms for the side chain
placement problem [11,12,13,14,15]. Still, the problem is NP-Complete [16], and
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many researchers choose fast stochastic optimization techniques [17,18,19,20,21].
The rotamer-pair energy computation of phase 1 can be a significant fraction of
the running time for both techniques, and usually dominates the running time
of stochastic techniques. Thus, in this paper, we address rotamer-pair energy
computation.

The interaction energy between two rotamers, A and B, is the sum of the
atom/atom interaction energies over all atoms of A with all atoms of B. When
a pair of rotamers on the same residue share torsional angles, they share atoms.
Repeated atoms imply repeated atom/atom energy evaluations when computing
all rotamer-pair energies

The obvious way to avoid repeating atom/atom energy computations is to
store in a table the result of atom/atom energy computations for unique atom
pairs. When a unique atom pair is encountered for the first time, calculate the
pair’s interaction energy and store it. When a unique atom pair is encountered
any subsequent time, simply look up the old result. However, with a moderately
large rotamer library of 2K rotamers, which we use as our running example,
a single residue can generate ∼10K unique atoms. A unique-atom by unique-
atom table with 10K x 10K entries would occupy 400 MB. This table does not
fit in a processor’s cache (∼512 KB). Although storing energies avoids repeated
computation, retrieving the table entries incurs cache misses, eroding any savings
in running time.

We use a trie to represent all the rotamers on a single residue. With a pair of
these “rotamer tries” we can rapidly compute the rotamer-pair energies, while
reducing our memory usage. We have implemented our algorithm within the
Rosetta molecular modeling software [17]. Because our memory use is mini-
mal, and because we reuse atom/atom energy computations, our algorithm runs
nearly 4 times faster than Rosetta’s existing method.

2 Methods

2.1 Rotamers and Tries

As mentioned in the introduction, rotamer libraries are usually built by sampling
certain torsional (or dihedral) angles; these are denoted by χ1, χ2, . . . in order
from the protein backbone. The most flexible amino acids, lysine and arginine,
have four χ dihedrals. Rotamers of the same amino acid on the same residue that
share a prefix of χ dihedrals place many of their atoms in the same position.
For instance, two leucine rotamers that share a χ1 dihedral place their Cβ, 1Hβ ,
2Hβ and Cγ atoms identically. If we order atoms by distance from the backbone
as well, then the shared atoms are also a prefix. Trie data structures are perfect
for capturing shared prefixes.

A “trie” is a rooted tree. Each node in the trie contains an object. Each
root-to-leaf path in the trie represents a string of objects. Tries are often used
to represent dictionaries. In a dictionary trie, each node represents a letter.
Each root-to-leaf path represents a word. For example, consider a dictionary
containing just two words: ‘apple’ and ‘apply.’ The root would be the letter ‘a’.
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Fig. 1. Two example tries. a) One rotamer from each of the small amino acids and
three for threonine. b) A set of arginine rotamers showing the branching pattern for
arginine’s four χ dihedrals. c) Angle χ1 determines the coordinates of 1Hβ , 2Hβ and
Cγ , so they lie together along a path.

The shared prefix ‘appl’ would lie along an unbranched path of the trie. The ‘l’
node would have two children, ‘e’ and ‘y’. The path to the leaf node ‘y’ from the
root spells out the word ‘apply’.

In a rotamer trie, each node contains an atom. Each root-to-leaf path rep-
resents a rotamer. We depict a few rotamer tries in Figure 1. Note that the
trie connectivity does not reflect the amino acids’ chemical structure. Note also
that the three threonine rotamers depicted differ only in their hydrogen posi-
tion: their substantial shared prefix lets us save space. The trie for arginine in
Figure 1(b&c) shows the trie branching produced by its four χ dihedrals. A trie
for a complete rotamer set would be too large to display.

Tries have proven useful in a number of other string problems in compu-
tational biology [22,23,24]. Homme Hellinga previously introduced representing
rotamer sets in a trie-like structure to weed out rotamers colliding with the
background [25] but does not use tries to compute energies.

It is with a pair of rotamer tries that we compute rotamer-pair energies. We
have implemented our algorithm to be compatible with the energy function from
Rosetta. We describe the details of Rosetta’s energy function, and the existing
rotamer-pair energy subroutine in the next section.

2.2 Rosetta’s Energy Function

Rosetta has four terms that apply on an atom-by-atom basis. Between all heavy
atom pairs, Rosetta includes three terms: a van der Waal’s attractive term, a
van der Waal’s repulsive term, and a Lazaridis-Karplus implicit solvation [26]
term. Each of these terms depend on the atom types of the two heavy atoms,
and their distance. For speed, Rosetta uses a maximum distance threshold of
5.5 Å: if two heavy atoms are further than 5.5 Å apart, then their interaction
energy is zero.

Between hydrogen/other atom pairs two terms apply: a van der Waal’s repul-
sive term, and a statistically derived hydrogen bonding term [27]. The hydrogen
bonding term is usually described by four atoms acting simultaneously: the donor
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hydrogen, the donor heavy atom, the acceptor and the acceptor-base. The term
depends on one distance and the cosine of two angles: the hydrogen-acceptor
distance, the cosine of the donor heavy atom—hydrogen—acceptor angle and
the cosine of the hydrogen—acceptor—acceptor-base angle. We reformulate the
hydrogen bond function to depend on only two atoms, the hydrogen and the ac-
ceptor, by including orientation vectors with each atom. The orientation vectors
allow us to compute the two cosines needed.

Because Rosetta’s terms involving hydrogens are so short-ranged, Rosetta’s
developers use a distance threshold between two heavy atoms to determine if
their attached hydrogen atoms could be close enough to interact. If two heavy
atoms are further than 4.6 Å apart, then all hydrogen/other atom pairs for the
attached hydrogens have zero interaction energy.

Rosetta’s existing rotamer-pair energy function, get energies(), takes two
rotamers sets, R and S, and outputs their rotamer-pair energies into a ro-
tamer/rotamer energy table (rot rot E). We describe get energies() with the
following pseudocode:

get_energies(R, S)
for i = 1 : R.num_rotamers
for j = 1 : S.num_rotamers

if cbeta_dis( i, j) > threshold(amino_acid(i), amino_acid(j) )
continue;

energy_sum = 0
for k = 1 : num_heavy_atoms(i)

for l = 1 : num_heavy_atoms(j)
energy_sum += atom_atom_energy( R.atom(i,k), S.atom(j,l) );
if dis( R.atom(i,k), S.atom(j,l) ) < 4.6
energy_sum += calc_attached_h_energies( R.atom(i,k), S.atom(j,l) );

rot_rot_E[ i, j ] = energy_sum;
return;

where calc attached h energies(k, l) iterates over the hydrogen/heavy atom pairs
and hydrogen/hydrogen atom pairs calling atom atom energy() for the heavy
atoms k and l and their attached hydrogen atoms. Because hydrogens make
up roughly half of the atoms in a rotamer, it would be roughly 4 times more
expensive to evaluate all atom/atom energies as it would be to evaluate all heavy
atom/heavy atom energies, descending into the hydrogens only as needed.

Rosetta does not compute rotamer-pair energies between rotamers if their
Cβ atoms are so distant that it is impossible for any pair of rotamers of those
two amino acid types to interact. Rosetta uses its 5.5 Å heavy atom distance
cutoff to calculate these thresholds.

2.3 Trie Node

The trie data structure stores everything we need for evaluating Rosetta’s energy
function. It also stores a number of variables needed to prune energy computa-
tions, which we describe after the algorithm.

We represent our trie as an array. We store the nodes in their preorder
traversal order. In the recursive description of the algorithm that we give be-
low (Sec. 3.1), we refer to child pointers as if they were explicit. However, we
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store the depth of each node in the tree instead of explicit child pointers. The pre-
order/depth representation is sufficient to completely describe the trie structure.

We store the atom type for each atom, its xyz coordinate, and its orientation
vector. In a redundant, but time-saving extension of the atom type, we keep
several boolean flags: is backbone, is heavy atom, is acceptor, is donor h, etc.
Each of these flags is stored as a single bit. Each bit value is determined by the
atom type and is therefore redundant. However, the logic is somewhat complex
to convert between atom type and these boolean values. Instead of evaluating
the conversion functions during the trie traversal O(n2) times, we evaluate the
value of these flags outside of the main loop and store them compactly in the
trie node.

When we prune, we use 40 bytes per node. The last three variables in the
trie node are needed only for pruning. The “no pruning” implementation does
not allocate space for these three variables, and so the cost per trie node drops
to 32 bytes. We have found it especially important to make sure our trie nodes
align with the 32-bit memory boundaries.
struct trie_node

float[3] xyz; //12 bytes
float[3] o_vector; //12 bytes
unsigned char atom_type; // 4 bytes
unsigned char depth;
unsigned char hv_depth;
unsigned char flags;
unsigned short flags2; // 4 bytes
unsigned short hybridization;
unsigned short rotamers_in_subtree; // 4 bytes
unsigned short sibling;
float subtree_radius; // 4 bytes

3 Interaction Energy Between Two Rotamer Tries

We now give the algorithm to calculate the rotamer-pair energies between two
tries, R and S. The idea is simple, we perform a preorder traversal of R,
and for each atom r ∈ R, we perform a preorder traversal of S. We evaluate
atom atom energy(r, s) for each pair of atoms we encounter (s ∈ S). (We refer
to the preorder traversal order when we use the words ‘before’, ‘preceed’ and
‘after’ below.)

To calculate the rotamer-pair energies, we use two recursive functions:
atom vs trie() and trie vs trie(). For clarity we describe these functions recur-
sively; for speed we implement them iteratively.

– atom vs trie(r, s, ancestral E) recursively computes the interaction energy
between atom r and all the rotamers in the subtree of S rooted at node s.
It stores these energies in a global variable, AREnergies, a stack of arrays.
atom vs trie() calls atom atom energy() and is called by trie vs trie(r, S).

– trie vs trie(r, S) recursively computes the interaction energy between the
rotamers in the subtree of R rooted at node r and the rotamers in the
trie S. It stores these energies in a global variable, RREnergies, the table of
rotamer/rotamer energies. An invocation of trie vs trie(R.root, S) calculates
all rotamer-pair energies. trie vs trie() invokes atom vs trie().
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3.1 Functions in Detail

Global Variables. We use three global variables in these recursive functions:

– RREnergies. Rotamer/Rotamer Energies. This table has (R.num rotamers
× S.num rotamers) entries, one for each rotamer pair.

– AREnergies. Atom/Rotamer Energies. This is a stack of arrays. Each array
contains S.num rotamers entries and holds r’s ancestors’ interaction energies
with rotamers of S. The stack height is limited to the maximum number of
ancestors with siblings of any leaf in a rotamer tree.

– ARStackTop. Top of stack pointer for AREnergies.

atom vs trie(r, s, ancestral E) in Detail. Precondition: r is an atom of
R, s is an atom of S. ancestral E holds the sum of the interaction energies r
has with all ancestors of s. AREnergies[ARStackTop] contains the sum of the
interaction energies of all of r’s ancestors with the rotamers of S that terminate
at or after s, and contains the sum of r’s ancestors’ and r’s interaction energies
for all rotamers of S that terminate before s.

Postcondition: AREnergies[ARStackTop] contains the sum of interaction en-
ergies of r and its ancestors with the rotamers of S that terminate before s
or terminate in s’s subtree. AREnergies[ARStackTop] contains the sum of the
interaction energies of all other rotamers in S with r’s ancestors only.

Pseudocode:

atom_vs_trie(r, s, ancestral_E)
ancestral_E += atom_atom_energy(r, s);
if (s.terminal_rotamer_id != -1)

AREnergies[ARStackTop][s.terminal_rotamer_id] += ancestral_E;
for (int i = 0; i < s.num_children; i++)

atom_vs_trie(r, s.child[i], ancestral_E);
return;

trie vs trie(r, S) in Detail. Precondition: r is an atom of R. AREnergies[
ARStackTop ] contains the sum of the interaction energies of r’s ancestors with
the rotamers of S. If r is the root, then ARStackTop must be zero and each
entry in AREnergies[ 0 ] is zero.

Postcondition: RREnergies contains the interaction energies for all rotamers
of S and the rotamers of R that terminate in the subtree of R rooted at r.

Pseudocode:

trie_vs_trie(r, S)
atom_vs_trie(r, S.root, 0);
if (r.terminal_rotamer_id != -1)
//copy entire AREnergies row
RREnergies[r.terminal_rotamer_id] = AREnergies[ARStackTop];

if (r.num_children > 0)
ARStackTop++;
for (int i = 0; i < r.num_children-1, i++)

//copy stack top for children with siblings
AREnergies[ARStackTop] = AREnergies[ARStackTop - 1];
trie_vs_trie(r.child[i], S);

ARStackTop--;
//last child doesn’t need its own stack copy
trie_vs_trie(r.child[r.num_children - 1], S);

return;
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Because we traverse S repeatedly, it is critical that S fit inside the processor’s
cache. The size of each node in the trie is 40 bytes. In our example rotamer
set with 10K unique atoms, S would occupy 400KB. Since most cache sizes
are 512KB, S fits comfortably. AREnergies’s size would be 4 rows × 2K ro-
tamers/row × 4 bytes/float = 32KB. There are only 4 rows in AREnergies since
the most flexible amino acids have only 4 χ dihedrals.

3.2 Pruning Computations

We can use the tree structure of the two tries R and S to avoid performing many
of the atom/atom energy computations. Suppose we are somewhere in the middle
of the trie traversals, examining atoms r ∈ R and s ∈ S. Beneath r is a subtree
containing some number of atoms, beneath s is another subtree containing some
number of atoms. If r is a heavy atom, then there are some number of hydrogen
atoms bound to r in the subtree beneath r. We have three conceptual entities:
atoms, heavy atoms (including their associated hydrogen atoms), and subtrees.
We may prune calculations for any combination of entities.

We decide how to prune based on r and s’s distance. In the following sections
we describe the additional data structures we maintain. Briefly, here is a sketch
of our pruning options.

1. atom/atom: If the distance between r and s exceeds a threshold, we can
assign their interaction energy to zero without doing a more detailed cal-
culation. After this prune, we still must continue calculating interactions
between the atoms in r’s and s’s subtrees. Rosetta already includes this
prune within its atom atom energy() function. Because we use this function
as well, we get this prune for free.

2. atom/subtree: If the distance between r and s is so great that r must be
too far to interact with any atom in s’s subtree, then we can make an
atom/subtree prune.

3. subtree/subtree: If the distance between r and s is so great that all atoms
in r’s subtree must be too far to interact with any atom in s’s subtree, then
we can make a subtree/subtree prune. Rosetta makes a similar prune using
Cβ atoms (see Section 2.2 above).

4. heavy atom/heavy atom: If the distance between heavy atoms r and s ex-
ceeds 4.6 Å, we can skip calculating interactions among their bound hy-
drogens. Rosetta already employs this prune, so we must too, if we hope
to improve upon the running time. After this prune, we still must continue
calculating interactions between the atoms in r’s and s’s subtrees.

5. heavy atom/subtree: Much like the atom/subtree pruning, we may see that
a heavy atom r and all of its attached hydrogens are too far to interact with
all the atoms in s’s subtree and then perform this skip.

Heavy Atom/Heavy Atom Pruning. As we described above, if a pair of
heavy atoms are further apart than λ = 4.6 Å, then all the interactions between
the hydrogen/heavy atom pairs and the hydrogen/hydrogen pairs is zero. We
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prune computations based on this cutoff by 1) restricting the atom ordering
within the trie and 2) including another global variable in our algorithm, skipH.

We order the atoms in our trie so that the closest ancestral heavy atom for
a hydrogen is the heavy atom to which it is chemically bound. For instance,
the ordering of atoms for alanine would be: C O N H CA HA CB 1HB 2HB
3HB. (We include backbone atoms as part of the trie. This leaves room for later
incorporating backbone flexibility as part of a protein redesign task.) We store
each atom’s “heavy atom depth” (hv depth). The heavy atom depth for a heavy
atom is its position in a list of an amino acid’s heavy atoms. Alanine’s CA heavy
atom depth is 4. The heavy atom depth for a hydrogen atom is the depth of its
parent heavy atom. Alanine’s HA heavy atom depth is also 4.

Our new global variable, skipH, is a stack of booleans, represented as a table.
It has MAX HEAVY rows (the largest number of heavy atoms for a single amino
acid, which in tryptophan is 14). Each row has S.num heavyatoms entries. This
table is a stack in that its contents describes properties for ancestor atoms of our
currently focused r atom. In essence, the top-of-stack pointer is stored within
each atom of R by its heavy atom depth.

Now we’ll describe how we use skipH. If a heavy atom r at heavy atom
depth d is at least λ away from heavy atom s of S, then we set skipH[d][s]
to ‘true.’ Later, if we want to know if the parent heavy atom for a hydrogen
atom of R at heavy atom depth, d, and the heavy atom s of S are greater
than λ apart, then skipH[d][s] tells us. To capture this formally, we revise the
atom vs trie(r, s, ancestral E) pre- and postconditions.

Additional Precondition: For all heavy atom ancestors r′ of r,
skipH[r′.hv depth][s′] holds ‘true’ iff s′ is further than λ from r′ for all heavy
atoms s′ ∈ S. Additionally if r is a heavy atom, then for all s′′ that precede s,
skipH[r.hv depth][s′′] holds ‘true’ iff s′′ is further than λ from r.

Additional Postcondition: For all heavy atom ancestors r′ of r, (including r
if r is a heavy atom), skipH[r′.hv depth][s′] holds ‘true’ iff s′ is further than λ
from r′ for all heavy atoms s′ ∈ S.

skipH scales in size with the number of heavy atoms in S, unlike some of our
other global variables that scale with the number of rotamers in S. It is a rather
large data structure. In our example rotamer trie with 10K atoms, roughly 5K
would be heavy atoms. In this case, skipH would occupy 70KB.

Subtree/Subtree Pruning. In a subtree/subtree prune, we avoid calculating
atom/atom energies for all pairs of atoms in the subtrees of r and s. We prune
based on a sphere overlap test. The “interaction sphere” of heavy atom r is
the sphere centered at r that has a radius of one half of the threshold distance
for heavy atom/heavy atom interaction; in our case, one half of 5.5 Å. For two
heavy atoms to interact, their interaction spheres must overlap. The “subtree-
interaction sphere” of heavy atom r is centered at r, and is large enough that,
for any atom s to interact with an atom in r’s subtree, s’s interaction sphere
must overlap with r’s subtree-interaction sphere. Equivalently, the radius of the
subtree-interaction sphere is the greatest distance between r and all heavy atoms
in r’s subtree + (5.5 Å/2).
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When two subtree-interaction spheres do not overlap, we may make a sub-
tree/subtree prune. The non-overlapping condition is met when the squared
distance between r and s exceeds the square of the sum of r and s’s subtree-
interaction-sphere radii. This comparison is very fast and we can afford to make
it at each heavy atom pair we encounter.

When we decide to skip computations involving the subtrees rooted at r
and s we immediately add ancestral E to AREnergies for all rotamers of S that
terminate in the subtree rooted at s. We then skip to the first node of S, that
is not in s’s subtree. To make this jump, we must know the sibling of s’s closest
ancestor (which may be s itself if s has a sibling).

We also skip over s’s subtree for all of r’s descendants in later calls to
atom vs trie(). We maintain another global array, trim depth, to record which
subtrees should be skipped. This array has one entry for each heavy atom of
S. The values stored in each entry are small (< 14) so we can get away with
using a single byte per entry. In our example rotramer trie with 5K heavy atoms,
trim depth occupies only 5KB.

We describe the functionality of this variable with another pre- and postcon-
dition pair for atom vs trie(r, s, ancestral E).

Additional Precondition: If r is a heavy atom (hydrogen), then trim depth[s]
is less than (less than or equal to) r.hv depth if 1) the subtree-interaction sphere
of the heavy atom ancestor of r at depth trim depth[s] (call this ancestor, r′)
does not overlap with s’s subtree-interaction sphere, and 2) s is the only atom
amongst it and its ancestors whose subtree-interaction sphere does not overlap
with r′’s subtree-interaction sphere. The value of trim depth[s] is undefined for
those atoms of S for which condition 1, but not condition 2, holds. If s’s inter-
action sphere overlaps with the subtree-interaction spheres for all ancestors of
r, then trim depth[s] is greater than or equal to r.hv depth when r is a heavy
atom, or strictly greater than r.hv depth when r is a hydrogen atom.

Additional Postcondition: If r is a heavy atom (hydrogen) and
trim depth[s] was less than (less than or equal to) r.hv depth, then trim depth[s]
remains the same, and the values in trim depth for atoms in the subtree rooted
at s are undefined. If r and s are heavy atoms, and r and s’s subtree-interaction
spheres do not overlap, then trim depth[s] is r.hv depth. Otherwise,
trim depth[s] is MAX HEAVY + 1.

We also make subtree/subtree prunes when we encounter colliding atoms.
Collisions reflect physically impossible situations, and an exact representation of
a collision’s energy is unnecessary. We prune when we find an atom/atom energy
that exceeds 20 kcal/mol.

Heavy Atom/Subtree Pruning. If r’s interaction sphere and s’s subtree-
interaction sphere do not overlap we may skip past s’s subtree. In order to re-
peat this subtree-skip for the hydrogen atoms attached to r, we maintain another
global variable, skipSubtree. skipSubtree, like skipH, is a stack of boolean ar-
rays represented as a table. Each array has S.num heavyatoms entries. There are
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MAX HEAVY rows. We do not provide additional pre- and postconditions as
they are so similar to those describing skipH. skipSubtree would occupy 70KB
in our example 10K atom rotamer trie.

4 Results

We wrote our algorithm in C++ and verified that it generates the same en-
ergies as Rosetta’s existing rotamer-pair energy function, get energies(). We
compared the running time of our algorithm using six pruning options against
get energies() in 57 complete protein redesign tasks (Fig. 2). All six variants
included heavy atom/heavy atom pruning. We measured running times on Intel
Xeon 2.8 GHz processors each with 2.5 GB RAM. Our algorithm runs 3.87 times
faster than get energies().

Fig. 2. Comparing trie vs trie() and get energies() for 57 entire-protein-redesign energy
computations. Mean speedup factors for the six pruning combinations were 1.65, 2,75,
2.96, 3.52, 3.54, and 3.87.

5 Discussion

We have sped up the bottleneck stage of Rosetta’s protein design module. There
are a few direct consequences of our trie structure we would like to highlight.
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Hydroxyl Hydrogens. Fine grained sampling of dihedral space for terminal
hydroxyl groups now comes at a reduced cost. The shared atomic prefix for two
rotamers that differ in their hydroxyl hydrogen placement spans all atoms but
the last two: the hydroxyl oxygen and hydrogen. Because the orientation vectors
on hydroxyl oxygens point at the hydrogen, each oxygen is distinct. For tyrosine
the shared atomic prefix includes 13 side chain atoms.

Uniform Rotamer Libraries. Common dihedral angles can improve trie per-
formance by 23%. Currently Rosetta selects its rotamers using Dunbrack’s back-
bone dependent rotamer library. In this library, very few χ1 dihedrals agree. The
overlap that buys us our performance boost comes from the additional rotamer
samples Rosetta takes at χ2 that surround (±σ) Dunbrack’s rotamers. We mea-
sured a 10% decrease in the number of unique atoms in the rotamer trie when
we construct our rotamers using a new rotamer library built from rounding
Dunbrack’s rotamers to the nearest 10◦.

Flexible Backbone Design. Imagine sampling a few backbone conformations
for a pair of residues [28] and attaching hundreds of rotamers to each sample.
This setup for flexible backbone design promotes the backbone from the role of
static background into the role of structural variable. With flexible backbone
design, side chain/backbone energies must be included in the rotamer-pair en-
ergy calculations. We incorporated backbone atoms into our tries so that when
we begin using flexible backbone design, we can make effective reuse of side
chain/backbone computations.
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Abstract. We present recent developments in efficiently maintaining
the boundary and surface area of protein molecules as they undergo
conformational changes. As the method that we devised keeps a highly
accurate representation of the outer boundary surface and of the voids
in the molecule, it can be useful in various applications, in particular in
Monte Carlo Simulation. The current work continues and extends our
previous work [10] and implements an efficient method for recalculating
the surface area under conformational (and hence topological) changes
based on techniques for efficient dynamic maintenance of graph connec-
tivity. This method greatly improves the running time of our algorithm
on most inputs, as we demonstrate in the experiments reported here.

1 Introduction

We study efficient techniques for dynamic maintenance of protein molecular
surfaces as the molecules undergo conformational changes. Our techniques in-
clude: efficient detection of intersections of atoms, local update of the molecular
surface, perturbation that allows for robust computation of the surface using
floating-point arithmetic, and maintenance of the connectivity of the surface.
Previously, our solution to this last step of connectivity maintenance, was rather
straightforward. The major contribution of the current work is the application of
an improved method for maintaining the connected components of the surface
which is an adaptation to our setting of a fully dynamic algorithm for graph
connectivity.

A common approach to modeling the three-dimensional geometric structure
of molecules is to represent each atom as a sphere of fixed radius in a fixed
placement relative to the other atoms. The radius assigned to each atom depends
on the type of the atom. The spheres are allowed to penetrate one another.
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This model, called the hard sphere model, has proven useful in many practical
applications, in spite of its approximate nature.

Molecular surfaces have many uses, such as drug design, studies of solvation
and hydrophobicity, the protein folding problem, and more. One type of molecu-
lar surfaces is simply the outer boundary of the union of the spheres in the hard
sphere model. This type uses the van der Waals radii, and is often referred to as
the van der Waals surface. There are two closely related types of surfaces: The
solvent accessible surface introduced by Lee and Richards [19] and the smooth
molecular (solvent excluded) surface introduced by Richards [24]. See also [6,7,21]
and the survey by Mezey [23] for an extensive discussion on molecular surfaces.

The study of the conformations adopted by proteins is an important topic
in structural molecular biology. Some of the methodologies used for this study
are Monte Carlo Simulation (MCS) [3,14] and Molecular Dynamics Simulation
(MDS) [1,18]. In the context of molecular simulations, the surface area of a
molecule is required when calculating the energy of the molecule (see [4] for a
discussion and more references). Therefore fast methods to maintain the surface
area of a molecule dynamically during conformation changes are desired.

Several algorithms and their software implementation for calculation of the
various surfaces mentioned above have been designed in the last two decades
[6,20,21,27]. Halperin and Shelton [13] used controlled perturbation to calculate
the van der Waals and the solvent accessible surfaces robustly.

Bajaj et al [2] maintain molecular surfaces dynamically as the radius of the
solvent probe-atom changes continuously. Edelsbrunner et al [5] developed an
algorithm for maintaining an approximating triangulation of a deforming surface
in IR3. Bryant et al [4] calculate the area derivatives of molecular surfaces in
motion, for a molecular dynamics simulation. Sanner and Olson [25] presented
surface reconstruction for moving molecular fragments when only a small number
of atoms move in each step. Lotan et al [22] introduced a fast implementation of
MCS of proteins where a large number of atoms move in each step. They exploit
the fact that proteins are long kinematic chains.

Several algorithms for dynamic graph connectivity have been designed in
the last two decades. The first non-trivial fully-dynamic connectivity algorithm
was presented by Frederickson [11] and supported O(

√
m) time updates (where

m is the number of edges) and constant time queries. Eppstein et al [9] im-
proved the update time to O(

√
n) (where n is the number of vertices). Hen-

zinger and King [15] presented a randomized algorithm supporting updates in
O(log3 n) expected amortized time and O(log n/ log log n) time queries. Holm et
al [16] presented a deterministic fully dynamic algorithm with O(log2 n) amor-
tized time updates and O(log n/ log log n) time queries. Both poly-logarithmic
algorithms use O(m+n logn) space. Thorup [26] further improved these bounds
to O(log n(log log n)3) expected amortized time updates, O(log n/ log log log n)
time queries and O(m) space.

In our previous work [10] we maintain the boundary and surface area of pro-
teins as they undergo conformational changes. We exploit the fact that proteins
are long kinematic chains (and not an arbitrary collection of spheres). As the
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conformations change, we update the torsion angles of the protein backbone,
instead of updating the Cartesian coordinates of the atoms. This allows us to
modify the boundary of the molecule quickly even when a large number of atoms
move, as is usually the case in conformation changes of proteins. The update time
of the boundary depends on the number of intersecting pairs of atom spheres
whose intersection pattern changed, which is relatively small when just a few
torsion angles are changed in each step of the simulation. Maintaining a highly
accurate1 representation of the outer boundary surface and of the voids of the
molecule allows us to keep track of the surface area of the molecule and the
contribution of each atom to the outer boundary and to the voids, which can be
useful in various applications such as MCS. Our use of controlled perturbation
ensures the robustness of our implementation even while using floating-point
arithmetic.

In [10] we also suggested an alternative method based on efficient main-
tenance of graph connectivity. Here we present its implementation, heuristic
improvement and experimental results. The new method yields an amortized
update time of O(p log2 n) for each accepted conformational change — here and
throughout the paper n is the total number of atoms in the molecule and p
is the number of atom spheres whose intersection pattern with the other atom
spheres was affected by a conformational change. For Monte Carlo simulation,
the number p is typically much smaller than the number of moving atoms.

The implementation of this method improved our running time by up to
55% compared to the original method, which itself was improved to run up to
30% faster than the original implementation in [10]. The graph connectivity
implementation can yield even better results when using general heuristics to
improve the basic graph connectivity algorithm (up to 57% faster than the orig-
inal method). In our best experimental results (for a molecule with 5614 atoms)
we managed to update the molecular surface under conformational changes in
1% of the total time it would take to construct that surface from scratch. Our
results indicate that our algorithm gives better gains for larger molecules. The
algorithm is useful in particular for MCS, where in each step of the simulation
few degrees of freedom are modified, and therefore p is small.

2 An Overview of the Algorithm

Before we describe the novel contribution of the current work (in Section 3), we
review the overall algorithm for dynamic maintenance of the boundary surface
of molecules.

We compute a highly accurate representation of the boundary of a molecule
(both the outer boundary and the voids), and the surface area of each connected
component of the boundary. The contributions in terms of surface area of each
atom to the outer boundary of the molecule and to the voids are also calculated.

1 We use the description highly accurate rather than exact to avoid confusion with
exact geometric computing, since we are using floating point arithmetic.
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Initially this information in computed when the molecule is first loaded. For
that purpose we construct the spherical arrangement for each atom sphere (a
subdivision of the atom sphere induced by the collection of intersection circles
of that atom sphere with the other atom spheres — see Figure 1) and con-
nect these spherical arrangements of intersecting atoms to form a subset of the
3D arrangement of the spheres of the atoms (the subdivision of IR3 induced
by the atom spheres), which is traversed in order to find the two-dimensional
faces (regions) of the arrangement that form the boundary of the molecule.

Fig. 1. A spherical arrange-
ment

This construction is based on work by Halperin
and Shelton [13], which uses a perturbation scheme,
controlled perturbation, that overcomes degenera-
cies and precision problems in computing spheri-
cal arrangements while using floating-point arith-
metic. The initial construction of the boundary
takes O(n) time (recall that n is the number of
atoms in the molecule) due to favorable properties
of molecules [12] and a careful calculation of the
perturbation parameters [13].

Next we describe the dynamic maintenance of
the molecular surface under conformation changes, which includes updating the
spherical arrangements and updating the connectivity of the surface. A more
detailed description of this algorithm can be found in [10].

2.1 Updating the Spherical Arrangements

When we allow the atoms of the molecule to move, it is practically expensive
to reconstruct the data structure used for detecting intersections in [13] as well
as the arrangements and the boundary surface from scratch, and may be pro-
hibitively slow for large molecules.

In [22] Lotan et al introduced a novel data structure called the ChainTree
(CT), which takes advantage of the fact that proteins are long kinematic chains
(and not an arbitrary collection of spheres) and that few degrees of freedom
(DOFs) are changed at each step of the simulation. They represent the protein
as a kinematic chain [8] of rigid links (each link consists of a group of atoms
with no DOFs between them) separated by torsion angle DOFs. See [22] for
more details. In [10] we use the CT to detect self-collisions and to find the
modified pairs of intersecting atoms after performing DOF changes. When a
DOF change is accepted (when it incurs no self-collisions), we have to modify
some of the spherical arrangements and portions of the arrangement of spheres in
order to compute the new boundary surface of the molecule and its area.2 To find
these pairs we introduced a data structure called the IntersectionsTree (IT) [10].
We summarize the worst-case performance of the CT and IT in the following
theorem, which is proven in [22].
2 In order to use the surface area in energy calculations for the acceptance criterion,

these calculations will have to be done in each step of the simulation, and in rejected
steps will be reversed.
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Theorem 1. The overall cost of finding all the modified intersections (including
the maintenance of the CT and IT) is O(n

4
3 ).3

The CT and IT tell us which old circles need to be removed from the spher-
ical arrangements and which new circles should be added. Additional pairs of
intersecting atoms for which the intersection circle has not changed may have
to be removed and re-added to the arrangements due to our extensions of the
controlled perturbation scheme for the dynamic case [10].

Lemma 1. The overall cost of updating the spherical arrangements is O(p),
where p is the number of atoms whose spherical arrangement is involved in a
change.
The proof is given in [10].

2.2 Updating the Connectivity of the Surface

After the modification of the spherical arrangements, we have to reconstruct the
outer boundary and void boundaries of the molecule and to calculate their areas,
as well as the contribution of each atom to the outer boundary and to the voids.

The outer boundary of the molecule is constructed by starting from the bot-
tommost region (of the bottommost atom), and traversing the arrangement of
spheres, adding regions to the surface as we move along. Each time we reach an
arc that connects two intersecting atoms, we move from the spherical arrange-
ment of the current atom to that of the other. For each visited region of the
outer boundary we calculate its area and sum the areas to get the total surface
area. Later we calculate the void boundaries. This is done by finding the set of
exposed regions, and excluding from this set all the regions on the already com-
puted outer boundary. Then we traverse the remaining regions and construct
the void boundaries, in the same way that we construct the outer boundary.

The computation of the exposed regions of a given atom was recently im-
proved. Instead of subtracting from the set of all regions the regions buried within
each of the atoms that intersect it, we do a single traversal of the regions of the
atom a, and find for each region how many atoms cover it. We start with an
arbitrary region which we assume to be exposed (covered by 0 atoms). Whenever
we cross an arc to a new region, we determine if we are entering or leaving an
intersection circle, and update the number of atoms covering the newly visited
region accordingly. During the traversal we maintain a list of the regions covered
by the minimum number of atoms (this number is 0 if the initial region is really
exposed, and negative if not). After we finish the traversal, this list holds all the
exposed regions of a, unless the entire atom is buried within other atoms (which
can be determined by checking a single region from this list against the atoms
that intersect a to see if any of them cover it).

3 The O(n
4
3 ) The bound in Theorem 1 is a worst-case bound, but the typical practical

performance is much better and constitutes a negligible portion of the overall time
of an update step (see Figure 4).
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This construction takes Θ(n) time, since we traverse the entire boundary,
which has an overall Θ(n) complexity in the worst case. However, a great deal
of the required calculations depend on the number p of modified atoms in the
current step.

3 Dynamic Connectivity

Avoiding the traversal of the spherical arrangements that have not changed
requires some more care in terms of identifying connected components of the
boundary. The main difficulty is that in general there can be topological changes
to the boundary and connected components of the boundary may merge, split,
newly appear or disappear. We now present an efficient approach that despite the
topological changes can accurately recompute the surface area of every bound-
ary component in total time O(p log2 n). For that purpose we adapt tools from
dynamic maintenance of graph connectivity.

3.1 The Algorithm

(a) (b)

Fig. 2. A portion of the union of all spheres
(a) and the subgraph induced by it (b)

We define the following graph:
Each exposed region of the spher-
ical arrangements becomes a ver-
tex of the graph; two vertices of
the graph are connected by an edge
if their respective regions are adja-
cent on the boundary of the union
of all spheres. See Figure 2 for an
illustration. As the molecule un-
dergoes DOF changes, some re-
gions are modified, some regions
are deleted and new regions are cre-
ated. These changes are reflected in
the graph by deleting the vertices of deleted and modified regions and adding
the vertices of new and modified regions. For each deleted region, all the edges
incident to its vertex in the graph are deleted.

In order to maintain the connected components of the boundary of the
molecule, we simply need to maintain the connected components of this graph as
the molecule undergoes DOF changes. One connected component of the graph
represents the outer boundary of the molecule and the rest of the components
represent the voids.

In [16] Holm et al present a poly-logarithmic deterministic fully-dynamic
algorithm for graph connectivity. Their algorithm maintains a spanning forest
of a graph, answers connectivity queries in O(log n) time in the worst case and
uses O(log2 n) amortized time per insertion or deletion of an edge. Here n, the
number of vertices of the graph, is assumed to be fixed as edges are added
and removed. In our case the vertices are not fixed, since we create and delete
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regions during the DOF changes. However, the number of vertices throughout
the simulation remains O(n) [12,22], and therefore the algorithm still works with
the same amortized time bound. We next describe the original algorithm and
our extension of it that efficiently maintains the surface area of the boundary of
the molecule without traversal of the entire boundary.

The connectivity algorithm in [16] maintains a spanning forest F of the input
graph G, and uses for this purpose a data structure called ET-tree. An ET-tree
is a dynamic balanced binary tree over some Euler tour around a tree T . An
Euler tour around a tree is a maximal closed walk over the graph obtained from
the tree by replacing each edge by a directed edge in each direction. If we merge
two trees or split a tree, the new Euler tours can be constructed by at most two
splits and two concatenations of the original Euler tours, which take O(log n)
time while maintaining the balance of the ET-tree(s). Each vertex of the tree
may occur several times in the Euler tour, and one of these occurrences is chosen
arbitrarily as a representative. Each ET-node represents the set of representative
leaves below it, and may hold data that represent these leaves. See Figure 3 for
an illustration. For more details cf. [15,16].
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Fig. 3. A tree (a), an Euler Tour of that tree (b), and an ET-tree of that Euler Tour
with its representative occurrences marked (c)

The edges of the graph are split into �max = #log2 n$ levels, and a hierarchy
F = F0 ⊇ F1 ⊇ ... ⊇ F�max of spanning forests is maintained, where Fi is the
sub-forest of F induced by the edges of level ≥ i.

Inserting an edge to the graph as well as removing a non-tree edge are simple.
Removing a tree edge e = (v, w) requires finding a replacement edge, reconnect-
ing the two trees Tv and Tw created by the removal of e. Such an edge can only
be found in levels ≤ l(e) [16]. The replacement edge is searched recursively in
the levels ≤ l(e) starting with level l(e). The amortization argument of the algo-
rithm is based on increasing the levels of the edges (since the level of each edge
can be increased at most �max times).

We add to each representative node of each ET-tree the area of its respective
region. Each internal node of the ET-tree will hold the sum of the areas of the
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representative leaves in its sub-tree. The root of each tree of F will hold the total
surface area of that connected component. Maintaining the area information in
the ET-trees takes O(log n) time per each split or merge of the ET-trees, the same
time required by the original data structure [16]. Maintaining this information in
the spanning forest F takes O(log2 n) amortized time when an edge is inserted
or deleted.

To summarize:

Theorem 2. (i) The amortized cost of recalculating the surface area of the outer
boundary and voids of the molecule is O(p log2 n), where p is the number of atoms
whose spherical arrangement is involved in a change. (ii) The cost of computing
the contribution of an atom to the boundary and all the voids is O(log n).

Proof. (i) The number of inserted and deleted regions involved in a change is
O(p), as the complexity of each spherical arrangement is bounded by a constant.
Since each insertion or deletion of an edge of G takes O(log2 n) amortized time,
the overall amortized cost is O(p log2 n). (ii) The number of regions in an atom is
bounded by a constant. Given any region of the atom, we can find the connected
component it belongs to in O(log n) time by finding the root of its tree in the
spanning forest F . Therefore we can compute the contribution of the atom to
the surface area of all the components in O(log n) time. �

3.2 Implementation Details

Our implementation of the dynamic graph connectivity algorithm is based on
the implementation by Iyer, Karger, Rahul and Thorup [17] of the algorithm by
Holm et al [16].

Creating the Boundary Graph. After the initial construction of the spherical
arrangements, we find for each atom its exposed regions. Each such region will
be represented by a vertex of our graph. Then for each such region we create an
edge from its vertex to the vertices of its adjacent exposed regions. The vertices
and the edges are then passed on to the dynamic graph connectivity structure,
and the initial spanning forest of the graph is constructed. We maintain a list of
the connected components of the graph, for easier access to the outer boundary
and voids. Each component is represented by the root of its tree, which holds
its surface area.

Updating the Boundary Graph. During each simulation step, we mark all
the regions that were modified (regions which are split into smaller regions or
merged into larger regions, due to updates of the spherical arrangements). The
vertices of these regions will be removed from the graph. After the spherical
arrangements are updated we find the exposed regions of each modified atom,
and collect the newly created exposed regions. Those regions will be added as
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vertices to the graph and their areas will be calculated. For each of these vertices
we find their adjacent exposed regions and create edges corresponding to the
adjacencies.

Next we remove all the vertices of the modified regions and their adjacent
edges from the graph. Note that whenever we remove an edge that belongs
to a spanning tree of some connected component (a tree edge), we search for
a replacement edge, and this search is the most costly part of the algorithm.
Since each deleted edge is adjacent to some vertex all whose edges are deleted,
if we remove those edges in an arbitrary order, the algorithm is likely to replace
deleted tree edges with edges about to be deleted, and thus work harder than is
necessary. The solution to this problem is simply to first remove all the non-tree
edges and then remove the tree edges.

The original implementation [17] does not handle deletion of graph vertices.
Therefore, whenever we want to delete a vertex, we simply store that vertex in
a list of vertices to be recycled. When new vertices will be added to the graph,
the recycled vertices will be reused.

After the modified vertices and their adjacent edges are removed from the
graph, the new vertices and edges are added. At the end of this addition process,
we have a spanning forest of the new graph, and each connected component of
this graph holds the area of a boundary component of the molecule.

Whenever we require to find the contribution of an atom to the outer bound-
ary of the molecule and to the voids, we simply go over the exposed regions of
the atom, and for each such region find the component it belongs to in O(log n)
time, by finding the root of its tree in the spanning forest.

Heuristics. The implementation by Iyer et al has some heuristics that may
run faster than the original algorithm of Holm et al on certain inputs. These
heuristics are aimed to reduce the cost of searching for a replacement edge for
a deleted tree-edge: (i) Sampling: Searches for a replacement edge within the
first s (the sampling threshold) non-tree edges of the smaller tree created by the
removal of the tree-edge, without promoting any edges. To keep the O(log2 n)
time of the operation, s can be at most O(log n). (ii) Truncating Levels: At a
high level of the hierarchy, where the trees are guaranteed to be small, it is no
longer worth doing anything sophisticated. Therefore it may be more efficient to
simply check all the non-tree edges. For that purpose we choose a base size b, and
for trees with less than b nodes we perform this simple search. We experimented
with various values of s and b and briefly report the results in Section 4.

4 Experimental Results

The experiments described in this section were all executed on a 1 GHz Pen-
tium III machine with 2 GB of Ram.

Table 1 describes the proteins used in our experiments reported here. In PDB
files that contain more than one backbone chain, we handle only the first chain.
We also show in this table the initial size of the boundary graph. We can see
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Table 1. Proteins used in the experiments. The numbers of vertices and edges are of
the initial boundary graph (induced by the boundary of the molecule at the original
conformation).

Input File # of Atoms # of Amino Acids # of Links # of Vertices # of Edges
4PTI.pdb 454 58 117 3405 10553
1BZM.pdb 2034 260 521 15254 47266
2GLS.pdb 3636 468 937 29385 90820
1JKY.pdb 5614 748 1497 45558 138818
1KEE.pdb 8181 1058 2117 62308 191317
1EA0.pdb 11180 1452 2905 84536 260096

that both the number of vertices and the number of edges are proportional to n
(the number of atoms) which verifies the proof [12] that the complexity of the
boundary of a molecule is linear. The ratio between the number of edges and the
number of vertices is similar for all the tested inputs — about 3 — which means
that the average degree of each vertex is about 6. Due to the linear bound on
the complexity of a molecule boundary, the overall size of the boundary graph
remains bounded by O(n) during conformation changes.

Each simulation consisted of 1,000 steps. At each step the changed DOFs
were picked uniformly at random and the magnitude of the change was chosen
uniformly at random between −1◦ and 1◦ (we chose small angle changes in order
to increase the number of accepted steps). The results, reported in the following
figures and tables, refer only to accepted simulation steps whose number was
usually several hundreds (the time taken by rejected simulation steps is negligible
compared to accepted steps).

We improved the original implementation (as described in [10]). Some of the
improvements are algorithmic (as described in Section 2.2) while others are the
result of technical code tuning. These improvements reduced the average running
time of the original algorithm by up to 29%.

In Tables 2 and 3 we compare the time it takes to update the surface after
a k-DOF change to the time it takes to reconstruct the surface from scratch.
The reconstruction time is the time it takes to construct the static surface (not
including the time spent on the construction of the CT and IT). The update
time is the average time (for accepted steps) it takes to update the CT, the
IT, the spherical arrangements and the surface. We made this comparison for
several values of simultaneous DOF changes (k). For each update time, we give
the percentage of that time from the reconstruction time. Table 2 gives the
results of the näıve connectivity algorithm while Table 3 gives the results of
the dynamic connectivity algorithm. Note that the static construction times are
different for the two implementations, since the initial construction of the surface
is different (the initial construction of the connectivity graph is slightly slower
than the näıve construction of the surface). However, for the dynamic updates
of the surface, the dynamic algorithm is faster in most cases.4 The dynamic

4 For 50-DOF simulations the dynamic connectivity algorithm runs a little slower (up
to 11%) than the näıve algorithm.
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Table 2. Time (in seconds) of static reconstruction vs. dynamic modification of the
surface, using the näıve connectivity algorithm

Input File # of Atoms static 1-DOF 5-DOFs 20-DOFs
4PTI.pdb 454 1.95 0.11 (5.5%) 0.48 (24.4%) 0.83 (42.6%)
1BZM.pdb 2034 8.79 0.61 (7%) 1.49 (16.9%) 2.24 (25.5%)
2GLS.pdb 3636 18.25 0.57 (3.1%) 1.45 (7.9%) 2.65 (14.5%)
1JKY.pdb 5614 27.31 0.61 (2.3%) 1.43 (5.2%) 2.81 (10.3%)
1KEE.pdb 8181 36.48 1.10 (3%) 2.29 (6.3%) 3.51 (9.6%)
1EA0.pdb 11180 53.53 1.29 (2.4%) 2.91 (5.4%) 4.79 (8.9%)

Table 3. Time (in seconds) of static reconstruction vs. dynamic modification of the
surface, using the dynamic connectivity algorithm

Input File # of Atoms static 1-DOF 5-DOFs 20-DOFs
4PTI.pdb 454 2.05 0.09 (4.7%) 0.51 (24.9%) 0.92 (44.7%)
1BZM.pdb 2034 9.27 0.56 (6%) 1.57 (17%) 2.46 (26.6%)
2GLS.pdb 3636 19.27 0.37 (1.9%) 1.39 (7.2%) 2.82 (14.6%)
1JKY.pdb 5614 28.91 0.27 (1%) 1.18 (4.1%) 2.81 (9.7%)
1KEE.pdb 8181 38.62 0.65 (1.7%) 2.03 (5.3%) 3.55 (9.2%)
1EA0.pdb 11180 56.49 0.64 (1.1%) 2.54 (4.5%) 4.95 (8.8%)
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Fig. 4. Average breakdown of the running time of the main components of our applica-
tion in a single accepted simulation step for different k values using the näıve algorithm
(a) and the dynamic connectivity algorithm (b)

connectivity algorithm works better for small numbers of simultaneous DOF
changes, but as the size of the molecules grows, it becomes faster than the näıve
algorithm even for larger numbers of simultaneous DOF changes. The dynamic
connectivity algorithm runs up to 55% faster compared to the näıve algorithm.

Figure 4 shows the fractions of the average running time taken by the main
components of our application for both the näıve algorithm (a) and the dynamic
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connectivity algorithm (b). It can be seen that for most inputs updating the
surface is faster with the dynamic connectivity algorithm, and takes a smaller
fraction of the total time.

We also experimented with the heuristic parameters added by Iyer et al to
the dynamic connectivity algorithm (See Section 3.2). We tested different values
of s and b (the sampling threshold and the base size). Most values of s and b
tested gave better running times than the original algorithm, by speeding up the
deletion of tree edges in up to 30% for the larger molecules. The best heuristic
we found was for s = 10000 and b = 5000.

5 Future Work

The graph connectivity algorithm used in our work was designed for general
graphs. It may be possible to develop a more efficient algorithm that better
suits the graph used in our application, in which all vertices have a low degree
bounded by a constant. Our implementation may also be improved by detecting
small changes in the molecular surface that do not affect the topology of the
graph. Finally, we observe that in a typical scenario of protein motion simulation
there is one very big component of the molecular surface (the outer boundary)
and several much smaller components (the voids). It would be interesting to use
this imbalance of component sizes to improve their maintenance.
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Abstract. The examination of the arrangement of the strands in beta-
sandwich proteins reveals strict rules, which constrain the folding of a
polypeptide chain. These structural rules allowed us to investigate the
main principles of the packing of strands in the sandwich-like proteins
and place severe restrictions on the number of allowed ways these proteins
can fold. It was found that dissimilar sequences from different protein
families and superfamilies, which share the same sandwich-like architec-
ture, have 8 common key positions in sequences, whose residues govern
the similar protein folding. These structural determinants can serve for
protein classification.

1 Introduction

As with any text, the genetic code requires both reading and understanding.
Much progress has been made with regard to the first task, while the thrust of
work in molecular biology today is directed toward understanding the relation-
ships between sequence and structure, between sequence and function, between
sequence and the location of binding site, and so on.

The seminal insight into sequence-structure relationship of protein chains is
due to Anfinsen [1]. He has shown that all information about the native structure
of a protein is coded in the amino acid sequence. It follows that similar sequences
fold into similar structure in the same solution environment. This conclusion has
been confirmed for many proteins.

What about dissimilar sequences? Would they necessarily fold into dissimilar
3D structures? Although, proteins from different superfamilies do tend to fold
differently, it is also true that non-homologous proteins often have very similar
folds [2-5]. Good examples of dissimilar sequences forming similar structures
are the proteins from different superfamilies with the same architecture, which
is defined in CATH database by relative orientations of secondary structures
(barrel, 2-layer sandwich, or alpha four helix bundle [6].

To explain how non-homologous sequences may share similar architecture we
put forth a two-part hypothesis that can be formulated as follows:

1. dissimilar sequences, which form similar structures possess common essential
elements at the sequence level – to be referred to as structure determinants;

2. structure determinants govern protein folding.

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 414–422, 2005.
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Each structure determinant is a key position within sequence occupied by chem-
ically similar amino acids with similar structural roles. Structure determinants
are interspersed within a sequence. Note, that the same structural determinants,
which are responsible for similar chain folding may be located at widely different
sites within the sequences of different protein families / superfamilies. By this
reason the popular algorithms such as PSI-BLAST or Hidden Markov models [7-
8], for uncovering common sequence features on the basis of sequence similarity
cannot be used when dealing with a group of such diverse proteins. A principally
different approach is called for.

The starting point of our approach is the statement that proteins from differ-
ent families/superfamilies with similar architecture share supersecondary struc-
ture features - common regularities in the arrangement of strands and helices.
Once these common supersecondary structural elements have been identified,
their constituent secondary structure elements with analogous structural roles
can be compared. Analogous secondary structure elements can be aligned among
themselves to yield invariant sequence features for a group of proteins. The
proposed approach involves projecting, as it were, common 3D supersecondary
structural features onto the 1D sequence to reveal sequence similarity.

The subject of our investigation is a large group of beta proteins - ‘sandwich-
like proteins’ (SPs) - from different folds and superfamilies. The underlying ar-
chitectural motif of these proteins consists of two beta sheets packed against
each other. And yet sandwich-like proteins from different superfamilies have no
detectable sequence similarity; the number of strands and arrangement of the
strands in the beta sheets may vary considerably; they have different biological
functions. The goal of this research is to find the constraint structural rules and
use these rules for uncovering the structural determinants in the sequences of
sandwich proteins.

Our analysis has shown that despite a seemingly unlimited number of ar-
rangements of strands resulting in sandwich-like structure, there exist a rigor-
ously defined constraints on supersecondary structure that apply to almost all
SPs. Knowledge of these constraints makes it possible to carry out multiple se-
quence alignment of SPs and to find positions in sequences that are occupied
by residues with similar chemical and structural natures. Our analysis revealed
eight hydrophobic positions conserved across all SPs that fulfill the criteria for
structure determinants.

In perspective we suppose that the knowledge of the structural and sequence
features of seemingly completely dissimilar sequences arising from different an-
cestors will shed light on the fundamental question of how sequence determines
structure.

2 Results and Discussion

2.1 Construction and Analysis of Supersecondary Structures

The concept of strandon is essential for our analysis. We define strandon as a
set of all consecutive strands connected by hydrogen bonds among main chain
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atoms. If a strand is not hydrogen-bonded to a consecutive strand it by itself
constitutes a strandon.

Consider, for example, the NGF binding domain of trkA receptor (the PDB
code: 1he7, chain A). According to the PDBSum database the domain has 7
strands. Our calculations of the inter-strand hydrogen bonds, represented by a
dash, ‘-’, reveal the following arrangement of the 7 strands in the two main beta
sheets, termed A and B:

A: 1-5-4
B: 7-6-2-3
According to our definition, strandon I includes only strand 1. Strandon

II consists of two strands: 2 and 3: strandon III is made of strands 4 and 5,
and strandon IV from strands 6 and 7. Thus, if we denote the strandons by
Roman Numerals, their arrangement in the two beta sheets A and B that form
the main motif of the trkA receptor can be expressed as:

A: I III V
B: IV II

An arrangement of strandons in a structure will be referred to as supermotif.
Following the SCOP hierarchical structural classification, we determined the

supermotifs for 303 protein structures from 21 folds, 46 superfamilies, 76 fam-
ilies [9]. The examination of the supersecondary structures of these proteins
revealed that six most popular supermotifs, which describe about 90% of all
beta-sandwich domains

2.2 The Constraints on the Arrangement of Strandons Within
Supermotifs

Analysis of strandon arrangements within the supermotifs showed that strandons
are combined in such a way so as to satisfy three following constraints:

Rule 1. Two consecutive strandons are always located in different sheets. It
follows that the odd-numbered strandons are to be found in one sheet, and the
even-numbered strandons in the other.

Rule 2.Two strandons located on the same edge of two sheets are always
consecutive. For example, in supermotif #1 (see fig. 1) two pairs of consecu-
tive strandons; pairs I/II and IV/V are located at the left and right edge of

1) A: I III V 2)A: I III 3) A: I III
B: II VI IV B: IV II B: IV II

4)A: I V III 5) A: III I V 6) A: I III VII V
B: VI II IV B: II IV VI B: II VIII IV VI

Fig. 1. The six supermotifs that describe 90% of sandwich proteins
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the beta sheets, respectively. In this research we assume cyclic ordering of the
strandons, i.e. the ?rst strandon of the domain follows the last strand. For ex-
ample, the strandons VI and I are considered as consecutive neighbors in the
supermotif # 4.

Rule 3. For any pair of consecutive strandons, iandi+1, where at least one
strandon is not at the edge of a sheet, there is always another pair of consecutive
strandons, k and k+1, such that the arrangement of these two pairs have the
following characteristics (Fig. 2):

a) The strandons iand kare the neighbors in one sheet and the strandons i+1
and k+1 are neighbors in the other sheet;
b) If strandon i is the right (left) ofk, then i+1 is the left (right) of k+1.

In effect, this rule describes an invariant substructure within all SPs, shown on
Fig.2, which we call the ‘strandon interlock ’.

                          i+1     k+1 
•   •     •     • 
•   •     •     • 

 k    i 

Fig. 2. Schematic representation of a strandon interlock in the supermotif. ‘•’- denotes
a strandon.

2.3 Collaries of the Constraint Rules

Supersecondary structures of sandwich proteins are governed by few specific
rules, which place severe restrictions on the number of allowed ways these pro-
teins can fold. Nearly all sandwich structures can be described by just a handful
of supermotifs.

Let us consider in more detail how the constraint rules delimit the number
of allowed supermotifs for SPs. Clearly, supermotifs made of 3 strandons could
not exist in the sandwich proteins as existence of the interlock requires at least 4
strandons within SP structure. It can be easily shown that from the rules follows
only two permissible four-strandon supermotifs ## 2 and 3 in Fig. 1. Both of
them are found to represent protein structures

Analysis of the arrangements of five strandons in the structures shows that
the three supermotifs shown below are not valid, because they either do not
satisfy the rule stipulating that odd and even strandons be in opposite sheets,
or the rule requiring consecutive strandons at the edge of the sheets, or do not
conform with strandon interlock. These supermotifs are “illegal”:

‘
A: II V III A: I III V A: I III V
B: I IV B: IV II B: II IV

Consideration of all possible arrangements of five strandons that would satisfy
the constraint rules leads one to the conclusion that only the following two
supermotifs are possible:
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A: III V I A: V I III
B: IV II B: IV II

These two supermotifs do in fact represent all currently known five-strandon
SP structures.

Similar analysis can be carried out to discover all the permissible supermotifs
with six and more strandons.

2.4 Two Main Constraints on Strand Arrangement Within
Strandons

Having described the rules of arrangement of strandons (supersecondary ele-
ments) in the structures, we proceed to investigate the regularities of the ar-
rangement of strands (secondary elements) within the strandons.

Here the analysis yields two rules that will be illustrated using an example
in Fig. 3.

a)                                                                      b) 
                         →        ←                                   i     k 
                  A:    (1−−−−2) −−−− (6−−−−5)                             A:   I  −−−− III 
                  B:    (8−−−−7) −−−− (3−−−−4)                             B:  IV −−−− II 
                         ←        →                                  k+1  i+1    

Fig. 3. Schematic representation of the arrangement of strands and strandons in do-
main 4kbp, chain A: 9-120; a) Arrangement of the strands is the motif of the domain.
The arrows point in the direction of increasing sequential strand number within the
strandons. b) Arrangement of the strandons is the supermotif of the domain.

1. The arrangement of the strands in the strandons i and k, which take part in
an interlock, can be represented using “→” and “←” arrows. The arrows point
toward each other to represent the fact that strands in the two hydrogen-bonded
strandons are lined up in sequentially increasing and decreasing order, respec-
tively. The arrangement of strands in the two other strandons of the interlock,
k+1 and i+1, can be represented by arrows pointing in opposite direction: “←”
and “→”. In the example shown in fig. 3, strands 1 and 2 within strandon i =
I, are bound to strands 6 and 5 within strandon k =III in such a way that the
‘later’ strands of each strandon form hydrogen bonds. By contrast, the arrange-
ment of strands in strandons II (i+1) and IV (k+1) in the structure 4kbp is such
that the numerically ‘earlier’ strands are bonded to each other.
2. The sequential numbering of strands in the ‘edge strandons’ runs in anti-
parallel directions and may be represented by arrows pointing in opposite direc-
tions: “←” and “→”. Thus, in Fig. 3, each edge strandon pairs: i/ k+1 and i+1
/ k, is marked by two arrows pointing in opposite directions.

In summary: analysis at the level of secondary structure revealed two rigorous
constraints on the arrangement of the strands within all strandons. In fact,
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from Rule 3, which describes strandon interlock follows that there are only two
possibilities of the strandons in the structure to be at the edge of the sheet or
participate in the interlock.

2.5 Structural Determinants of Sandwich Proteins

The main idea of structure-based sequence alignment is to find and align amino
acids with similar structural properties in different proteins. Selection of residues
in corresponding strands in a group of homologous proteins (protein family) with
the same number and similar arrangement of strands in space (same motif) is a
straightforward problem. Structurally similar strands can be readily selected in
all proteins of the group and aligned with each other.

In contrast to the analysis of homologous proteins, the determination of the
corresponding strands in a group of non-homologous proteins can be a rather
complicated problem. Fortunately, in case of sandwich proteins, it was possible
to delineate an invariant supersecondary substructure, the interlock, common
for all proteins. Various strands that play analogous role in the formation of
interlock can then be identified and aligned with each other.

Let us consider the arrangement of the strands, presented in Fig. 3. In the
strandons i and k, the last strands are 2 and 6, respectively, whereas in the
strandons i+1 and k+1, the first strands are 3 and 7, respectively. Let us call
these four strands 2, 3, 6 and 7 as J, J+1, M and M+1 respectively. These
strands form strand interlock, which can be defined by analogy to the strandon
interlock in the following way: If two pairs of the strandons i, i+1 and k, k+1
form strandon interlock, then there are always two pairs of consecutive strands
J, J+1 and M, M+1 in these strandons such that strand J in strandon i and
strand M in strandon k are hydrogen bonded in one sheets, while strand J+1
in strandon i+1 and strand M+1 in strandon k+1 are hydrogen-bonded in the
other sheet. Strand J can be either to the left of M or to the right of M. If J is
to the left of M, then J+1 is to the right of M+1, and vice versa.

A sandwich-like protein contains four strands - J, J+1, M and M+1, each
of which has similar structural properties across all SP. Thus, we were able to
identify and collect all J strands from SP structures and aligned with each other,
then all J+1 strands, etc. The essential feature of our method of structure-based
sequence alignment is that it involves an alignment not of whole sequences,
but of structurally analogous strands. The multiple alignment is carried out
separately for each set of the corresponding strands. It is important to note that
for purposes of alignment no gaps within strands are allowed, because strands
are viewed as indivisible structural units. Adjacent residues within a strand are
always assigned sequential position numbers.

In order to find conserved positions in strands J, J+1, M and M+1, we
characterized each residue with respect to its (i) residue-residue contacts, (ii)
hydrogen bonds, (iii) residue surface exposure, and (iv) structural superposition
of strands. Since strand alignment is based on structural properties of residues,
the first residue in Jth strand of one sequence can possess similar structural
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properties, and be aligned with, for example, 3rd residue of Jth strand of another
sequence.

Structure-based alignment of SP sequences revealed that in each of the
strands that make up the strand interlock there are only three positions that
have the similar structural properties and are occupied by a residue in all known
SPs. The remainder of the positions in the four strands can only be assigned a
residue in a subset of SP sequences. Thus, there is a total of 12 positions, which
are occupied by residues with structurally-similar properties in their respective
SP structures.

Inspection of amino acid frequencies in these 12 positions showed that two
of three positions in each strand are conserved hydrophobic positions of SPs:
they are occupied by either aliphatic (A, V, L and I), aromatic (W, Y and F)
or non-polar residues (M and C). Residues at these 8 conserved positions were
termed the SP structure determinants: they are the structurally and chemically
conserved positions of the sandwich proteins. Eighty percent of all structure
determinants were occupied by residues V, L, I and F. [10]. Thus the first hy-
pothesis about the common sequence features in dissimilar sequences is proved.

2.6 Role of the Structural Determinants in Protein Folding

Identification of a distinct set of structural determinants in a group of proteins
as diverse as sandwich-like proteins may shed light on how the folding of this
type of structures may be determined by the primary structure. The question is:
what are the structural roles of these residues in the folding process. Recently,
the analysis of folding kinetics by using fluorescence and far-UV CD detection
showed that the structural determinants discovered by us play very important
role for structure formation [11]. Half of the structure determinants participate
in the folding nucleus with little affect on native-state stability, whereas the
other half governs high native state stability without participating in the folding
transition state. It follows from this observation that similar folding behavior of
all SPs is largely due to structure determinants. Thus we proved the second hy-
pothesis that non-similar sequences, which form similar structures have common
sequence features – structural determinants, which govern the protein folding.

2.7 Role of the Structural Determinants for Protein Classification

For the structural classification we explored spatial distribution of eight Cα

atoms of the structure determinants. Calculations of distances between Cα atoms
revealed similar substructure in approximately one half of protein domains des-
ignated as ‘sandwiches’ in SCOP database [12]. Thus, this substructure can be
used for an automatic or semiautomatic protein classification procedures. We
suppose that in the other sandwich-like domains there is another type of inter-
lock or very few geometrically different types of interlock. This analysis is the
goal of our further research.

Discovery of a small set of the structure determinants furnishes us with char-
acteristic amino acid patterns for proteinfamilies, superfamilies or groups of
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superfamily and allows us to develop a computer algorithm for classificationof
proteins.To assign a query sequence to its proper group of proteins, weneed to
find a match between residues at positions in the querysequences and the residues
of the structural determinants of the given group of proteins. In fact, we need
not know residues at all positionsin the query sequence. The advantage of our
approach is thatit is not necessary to compare all residues in a query sequence:
findings characteristic set of residues at the defining positions is sufficient for
proper assignment of a sequence.

The algorithm for assignment (classification) of a query sequence to the
group of proteins can be presented as anorderly search for structural deter-
minants within the sequence from N to C end. Each residue of the sequence is
analyzed in terms of its chemical properties and interval distances (a possible
rangeof residues) to neighboring sequence determinants to determine whether
it fits the profile of any structure determinant. Results of the analysis are for-
mulated simply as the number of structural determinants found within a query
sequence. If the sequence inquestion contains all or almost all structure determi-
nants of a particular protein group, then the sequence is consideredto belong to
that protein group. This approach has been successfully tested for the cadherin
family [13].

In future we plan to extend our approach to classification of genomic se-
quences with no known homologues. They, too, can be checked out against any
known set of structure determinants. Once a genomic sequence is found possess
particular set of determinants, it can be assigned to its proper protein group and
a number of testable predictions about its structure and function can be made.
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Abstract. Cryo-EM has become an increasingly powerful technique for
elucidating the structure, dynamics and function of large flexible macro-
molecule assemblies that cannot be determined at atomic-resolution. A
major challenge in analyzing EM maps of complexes is the identification
of their subunits. We propose a fully automated highly efficient method
for discovering high-resolution subunits of a complex, given as an in-
termediate resolution map, without prior knowledge of their boundaries
and content. The method extracts helices from an EM map and uses
their spatial arrangement to detect candidate subunits. The method was
tested successfully on several simulated 8.0Å resolution maps. The ob-
tained spatial helix arrangement was sufficient for the discovery of the
correct subunits from a dataset of 887 SCOP representatives.

Keywords: Structural bioinformatics, intermediate resolution cryo EM
maps, 3D alignment of secondary structures, macromolecular assemblies.

1 Introduction

Structure determination of large macromolecular assemblies is one of the main
challenges in structural genomics. To date, only 1.5% of the structures in the
Protein Data Bank (PDB) are of large macromolecular complexes [1]. The rea-
son is that X-ray crystallography, the most prolific and accurate technique for
structure determination, has difficulties in the crystallization process of large
and unstable assemblies such as membrane proteins and viruses.

In the absence of crystals, cryo-electron microscopy (Cryo-EM) is a valuable
source of structural information. It is well suited for studying both the structure
and dynamics of large macromolecule assemblies [2,3]. Its main limitation is the
relatively low resolution of the data, ranging between 6 to 30Å. The predominant
resolution criterion is the Fourier shell correlation, which is calculated between
the 3D Fourier transforms of two independent 3D reconstructions [4]. At low
resolution (15-30Å) only the overall shape and, possibly, subunit boundaries can
be revealed. At 7-9Å , often referred to as intermediate resolution [5], secondary
structure elements (SSEs) become apparent. Helices appear as cylinders and β-
sheets appear as planar regions. Due to major improvements in the cryo-EM
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technique, 10Å resolution maps become available [6]. Thus, developing methods
for analyzing intermediate resolution EM data is of utmost importance.

Cryo-EM methods can be synergistically combined with atomic resolution
methods for structure determination to overcome the limitations of either
method alone. For large flexible complexes that cannot be crystallized, it is
possible to fit the atomic structures of the individual subunits into a low or in-
termediate resolution EM map of the entire complex. The resulting quasi atomic
model of the complex may provide crucial information about the interactions of
its subunits.

Indeed, several hybrid approaches have been developed for fitting atomic reso-
lution domains into cryo-EM data. Some of them are based on manual placement
with visualization tools [7,8], while others are fully automated. The majority of
the automated methods apply a 6D search of a predefined domain in the EM
map using variants of cross correlation as a measure of fitness [9,10,11,12].

One major drawback of the domain fitting methods is the assumption that
the searched domain is present in the map and its conformation is a-priori known.
For intermediate resolution maps, a different methodology has been suggested
[11]. The methodology exploits the fact that the scaffold of a domain is defined
by the spatial arrangement of its secondary structure elements (SSEs). First,
helices in the given EM map are identified using Helixhunter and then known
homologous folds are revealed using DEJAVU [13] or COSEC [14].

In our preliminary study presented here, we adopt the methodology intro-
duced in [11] for intermediate resolution maps. We suggest a combined new
approach both for helix extraction and fold alignment (Figure 1). The hybrid
method detects helices in an EM map and uses the 3D arrangement of the
identified helices to query a dataset of high-resolution folds to find potential
structural homologues. The method is highly efficient and suitable for explor-
ing macromolecular assemblies. Another important feature of the method is its
ability to detect ‘partial alignments’ between the extracted set of helices and
the database folds. Thus, the method is tolerant to errors in the helix extraction
stage and capable of detecting non-predefined motifs.

2 Method

2.1 Helix Extraction

Problem Definition. The input is an EM map at intermediate resolution given
as a three-dimensional (3D) grid, in which each voxel is associated with a density
value. The output is a set of 3D undirected segments {si = (pi, qi) | pi, qi ∈ 3D},
where segment si represents the central axis of the ith predicted helix.

Outline. In intermediate resolution EM maps helices are usually characterized
as highly dense long regions [2,11]. We exploit this observation and define a
helix-like region as a region in the EM grid with the following properties: (i) the
region is highly dense (compared to the average grid density); (ii) the region is
homogeneous (its density standard deviation is below a predefined threshold);
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Fig. 1. Substructure Discovery Flow. The hybrid method detects helices in an
EM map and uses the 3D arrangement of the identified helices to query a dataset of
high-resolution structures to find potential homologous folds.

(iii) the 2D slices of the region that are perpendicular to its central axis behave
roughly as a 2D Gaussian [15]; and (iv) the region’s shape is a thin cylinder
(formally defined below as a helix predicate).

The Helix extraction method consists of four main stages (Figure 2). The
objective of the first two stages is to enhance helical regions and suppress non-
helical ones by thresholding and fitting techniques. In the next two stages, the
goal is to identify helix-like regions and represent them as 3D undirected seg-
ments using a segmentation procedure followed by a linkage procedure for linking
small fractions of the same helix. Below is a detailed description of each stage.

Threshold Filtering. We apply an image processing technique for filtering noise
(non-helical regions in our case) [15].

Helix Fitting. We use cross correlation for matching a helix template in the EM
grid. The template is a 3D electron density pattern of a blurred ideal two-turn α-
helix. We construct this template by first interpolating its atoms onto a grid with
the same sampling as the searched EM grid. Then, for each atom we convolute
the helix’s grid with a Gaussian mask defined by

√
2πσAe−2π2σ2r2

, where A is
the number of electrons in the atom and σ is its influence radius, which depends
on the map’s resolution. Similar blurring methods are also used in [12,16,17].

The helix template is exhaustively correlated with the EM grid. All possible
orientations and positions (up to six degrees of freedom) of the template are
searched to find the optimal match for each voxel. The optimal match for a
voxel is defined as the orientation of the helix template with maximum cross
correlation coefficient (CCC). The result is a new grid in which each voxel stores
the optimal orientation and its normalized CCC. Note that the highest CCCs are
found along the helices’ central axes and decrease as we reach their boundaries.
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Fig. 2. Helix Extraction Flow. In the filtering and fitting stages helical regions are
enhanced and non-helical ones are suppressed. In the next two stages, helix-like regions
are identified and represented as 3D undirected segments.

The orientation of the helix template is determined by 3 rotation angles
(azimuth, elevation and tilt). Utilizing cylinder shape symmetry, all tilt rotations
and half of the azimuth angles can be disregarded. This leaves us with (π/ρ)2

orientations of the search object, where ρ is the rotational sampling interval
(π/12 by default). Once an orientation has been determined, we rapidly scan
the translation space by utilizing the advantages of the fast Fourier transform
(FFT) [18]. For a grid of n voxels each translation scan takes O(n log n) time and,
thus, the total time complexity of the exhaustive search is O((π/ρ)2 · n log n).

Segmentation. A helix is defined by its orientation and length. Even though the
fitting procedure reveals strongly correlated orientations and potential helices’
center points, the lengths of the helices remain unresolved. Furthermore, inherent
difficulties due to resolution problems may lead to false identification (strands as
helices or two parallel close helices as one helix) and to failures in distinguishing
between short helices and noise. To solve these problems we have developed the
following helix-like region segmentation method.

We use a graph-theoretic approach. Let G = (V, E) be an undirected graph.
Each vertex vi ∈ V represents a voxel in the new EM grid and stores the
orientation and the CCC of the best match with the helix template, denoted
as dir(vi) and score(vi) respectively. The scores of the vertices in G satisfy
score(vi) ≥ threshold. A pair of vertices vi and vj are connected by an edge if
the following conditions are satisfied: (i) vi and vj represent neighboring voxels
in the EM grid; and (ii) dir(vi) and dir(vj) are ε-parallel, where two vectors are
considered as ε-parallel if the angle between them is not higher than ε. Note that
the first condition bounds the number of edges in the graph to O(|V |).

A helix-like region segmentation S is a partition of V into regions R1, ..., Rk

so that the following conditions are satisfied: (i) ∪Ri = V ; (ii) ∀i �= j Ri∩Rj = ∅;
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(iii) Ri is a connected region, meaning that each pair of vertices in Ri is connected
by a path in Ri; and (iv) each Ri satisfies a helix predicate (D), which prefers thin
cylinder-like regions. Formally, a region R is said to satisfy the predicate D(R)
if |pc1(R)|,|pc2(R)| ≤ 3.5Å (roughly a helix radius) and for each v ∈ R, dir(v) is
ε-parallel to pc1(R), where pci(R) is the ith principal components of the region.
Note that the predicate is valid only if the region contains a sufficient number
of voxels. One can show that given a region R with pre-calculated principal
components, we can answer whether R∪ {u ∈ V } satisfies the predicate in O(1)
time. The principal components of a set S of points in R3 are the eigen vectors
of its 3× 3 covariance matrix. Assuming we have already calculated the average
point and covariance matrix of S, we can calculate the average point and the
covariance matrix of S ∪ p in O(1), for any p ∈ R3. Hence, calculation of the
principal components of S ∪ p is done in constant time.

For a graph G a helix-like region segmentation is not uniquely defined. Fol-
lowing the approach introduced in [19], a helix-like region segmentation is sat-
isfactory if (i) it is not too fine - ∀i �= j, Ri ∪ Rj does not satisfy D; and (ii) not
too coarse - any refinement S′ of S, where S �= S′ is too fine. A refinement S′

of S is such that any region in S′ is contained in (or equal to) a region in S.
Similarly to the proof given in [19] it can be shown that there is at least one
helix-like region segmentation that is not too fine and not too coarse.

To find a satisfactory helix-like region segmentation we apply a greedy ap-
proach. We construct a set of helix-like regions from a number of seed vertices
using a variant of the BFS algorithm [20]. First, we sort the vertices by their
scores and add them to a seed queue in descending order. Then, the vertex at
the top of the seed queue is given as a seed vertex for BFS. The initial helix-like
region R consists of the seed vertex. During the search we iteratively add to
R newly discovered vertices v that satisfy D(R ∪ {v}). If the newly discovered
vertex cannot be added to R, then its neighbors are not further explored. When
no vertex can be added to R we define R as a new helix-like region. The vertices
of R are marked as visited and removed from the seed queue. We repeat the
BFS procedure until the seed queue is empty. The time required for building the
graph is linear in the number of the EM grid voxels, that is O(n). Sorting the
vertices costs O(|V | log |V |). The BFS costs O(|V |+ |E|) since the validation of
the helix predicate for each vertex costs only O(1). Since E is linear in V , the
overall running time is O(n + |V | log |V |). Although theoretically |V | equals n,
in practice the thresholding and fitting procedures dramatically decrease |V |.

Linkage. The input is a set of helix-like regions S = (R1, R2, ...Rk) in the EM
grid such that each satisfies the helix predicate. We apply a liberal set of con-
ditions to allow fragments of the same helix to be connected. The output is a
coarse set S′ = (R′

1, R
′
2, ...R

′
l) l ≤ k. Each region is represented as a segment.

The segment’s direction is the first principal component (pc1) of the region (for
helices the direction is along its central axis). The segment’s endpoints are deter-
mined by projecting each of the region’s voxels onto its direction and choosing
the extreme projected points. Two regions can be linked if the angle between
them is below a threshold (π/9 by default), and the minimal distance between
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the two segments’ endpoints is below another threshold (6Å by default). Finding
the refined set is equivalent to finding connected components [20] in an undi-
rected graph G′ = (V ′, E′), where each v′i ∈ V ′ represents a region’s segment
and two vertices are connected if their regions can be linked. The output helices
are S′ regions’ segments with pc1 higher than the length of a two-turn helix.

For each vertex we can find all the neighboring vertices in O(1) by querying
the EM grid. Thus, E′ is linear in V ′ and the time required to construct the
graph is O(|V ′|). Finding connected components costs O(|V ′|) and the overall
time complexity of the stage is O(|V ′|), where |V ′| is bounded by |S|.

Complexity. For an EM grid of size n, the overall complexity is O((π/ρ)2 ·n logn+
n + |V | log |V | + |V ′|) , where both |V | and |V ′| are at most n. Thus, the total
time complexity is O(n log n).

2.2 Fold Alignment

The fold alignment algorithm is partially based on the MASS method for multi-
ple 3D alignment of proteins by their secondary structures [21,22]. While MASS
compares high resolution structures, the fold alignment method was designed
to compare proteins for which there are no atomic structures and the 3D ar-
rangement of their SSEs is the only available information. The input for the fold
alignment method is a set of SSEs extracted from cryo-EM data and the output
is a set of folds that share the largest common configuration of SSEs with the
input. This is carried out by comparing the spatial arrangement of the input
SSEs with a dataset of known folds. Below is a description of the method for a
single comparison with one dataset structure.

Problem Definition. We are given two protein structures, A and B. Each
structure is characterized by the set of its SSEs, where each SSE is represented
as an undirected line segment in 3D space. A segment is represented by the
two endpoints of its central axis, that is A = {ai = (ai1, ai2)} and B = {bi =
(bi1, bi2)}. The task is to find a rigid transformation (rotation and translation)
T and two corresponding subsets A′ = {a′

i}k
i=1 ⊆ A and B′ = {b′i}k

i=1 ⊆ B
of maximal cardinality (k) so that the corresponding segments of T (A′) and
B′ are coincident up to a predefined error threshold ε. The coincidence error
between two segments is defined as a pair (e1, e2), where e1 is the Euclidean
distance between their midpoints and e2 is the angle between them. Given an
error threshold ε = (ε1, ε2) two segments with coincidence error (e1, e2) are said
to be ε-coincident if ei < εi for i = 1, 2. By default, ε = (6.0Å, 0.5 radians).
The transformation T defines the alignment between the two structures and the
corresponding subsets A′ and B′ are its core.

Outline. The algorithm exploits the observation that a biologically interesting
alignment consists of at least two common SSEs. We define a basis as an ordered
pair of nonlinear SSEs and represent it by a 5D vector fingerprint. The fingerprint
is invariant to a 3D rigid transformation and composed of: (i-ii) the types of the
SSEs (helix or strand) (iii) the angle between them; (iv) their midpoint distance;



Discovery of Protein Substructures in EM Maps 429

and (v) their line distance, which is the closest distance in space between the
lines on which the segments are located. Two bases are said to have a similar
configuration if the type of the corresponding SSEs is the same and the differences
between the other attributes of their fingerprints are below predefined thresholds.

Construction of Basis Alignments. We use the hashing approach described in
[21] to efficiently detect all pairs of bases with similar configuration between the
two structures. Then, for each pair, (ai, aj) ∈ A and (bk, bl) ∈ B, we compute the
two possible transformations for superimposing the basis of A onto the basis of B
in O(1) time. Specifically, for each basis we uniquely define a Cartesian reference
frame as follows: (i) the first SSE segment of the basis is defined as the X-axis
and its direction is arbitrary defined; (ii) the line distance segment between the
two SSE segments is considered as the Y -axis and its direction is from the first to
the second SSE; and (iii) the Z-axis is the cross product of the X-axis with the
Y -axis. There are two possible transformations for superimposing the reference
frames of the bases, one for each possible direction for the X-axis of the first
basis. For each transformation, we compute the coincidence error for the two
pairs of corresponding segments, (ai, bk) and (aj , bl), and if the error is below
ε the transformation is considered as a potential alignment between the two
structures with a core of at least two SSEs.

Global Extension. In this stage we extend the basis alignments. Specifically, for
a given basis alignment with a transformation T , we are interested to find two
corresponding subsets A′ = {a′

i}k
i=1 ⊆ A and B′ = {b′i}k

i=1 ⊆ B of maximal car-
dinality (k) so that the corresponding segments of T (A′) and B′ are ε-coincident.
This optimization problem can be solved by an exact algorithm for finding max-
imal matching in a bipartite graph [23], where the graph is G = (T (A) ∪ B, E)
and an e = ((T (ai), bk) ∈ E if and only if the corresponding segments T (ai) and
bk are ε-coincident. The time required for constructing the graph and finding
maximal bipartite matching is O(|G| +

√
|A| + |B| · |E|). For n = max(|A|, |B|)

there are O(n) edges in the graph, since a segment can ε-coincide with a bounded
number of segments. Thus, the total time complexity is O(n1.5). Due to efficiency
considerations, we have solved the problem by a greedy approach. We store the
segments’ midpoints of T (A) in a 3D grid. Then, for each segment bk ∈ B, we
use its midpoint to access the grid and examine a ball of radius ε1. The segment
whose for which the midpoint is in this ball and ε-coincides with bk with the
smallest error is matched to bk. Since different helices cannot be too close in
space, the number of segment midpoints in an ε1-radius ball is bounded for a
small ε1. Thus, for each segment of B we examine a constant number of possible
alignments and the total time runtime is O(n). Finally, after extending a basis
alignment, we refine its transformation by applying the Least-Squares Fitting
technique [24] on the corresponding segment midpoints.

Scoring, Clustering and Ranking. The extended alignments are sorted by their
core size and the RMSD between the midpoints of the corresponding segments.
Since two structures may share more than one common substructure, we report



430 K. Lasker et al.

the t top-ranking non-redundant alignments. For this purpose, we apply an it-
erative RMSD clustering procedure. In each iteration, we pop the top-ranking
alignment from the sorted list and add it to a non-redundant list of top-ranking
alignments if its transformation differs from the transformations of all the cur-
rent alignments in this list. Two transformations are considered different if the
RMSD distance between their images on the same reference set of points is above
a threshold. Specifically, given a reference set {p1, ..., pr} and two transformations
T1 and T2, their RMSD distance is defined as ((

∑r
i=1 ||T1(pi) − T2(pi)||2)/r)0.5.

For a constant-size reference set it takes O(1) time to check if two transforma-
tions are different. Thus, the total time is O(m log m + m · t), where m is the
number of initial alignments. This is equal to O(m log m) for a small t.

Complexity. For n = max(|A|, |B|) the number of possible bases for each struc-
ture is O(n2). In the theoretical worst case, we will construct, extend and score
O(n4) alignments. This takes an overall O(n4)·O(1)+O(n4)·O(n)+O(n4 log n) =
O(n5) time. In practice, the runtime is significantly lower due to the usage of a
hash table [21].

3 Results

We tested our application on simulated 8Å resolution cryo-EM maps (with
1.5Å voxel spacing) of several proteins. Among them are the four proteins used to
validate the results of Helixhunter (PDB codes: 1c3w, 1irk, 1tim:A, 1bvp:1) [11].
The simulated maps were constructed using the pdb2mrc utility [16]. For each
simulated map we applied our two-tier approach (Figure 1). Specifically, a set
of helices was extracted from the map and used to query a SCOP representative
dataset consisting of 887 domains, where each domain is a fold representative
[25]. The alignments between the set of predicted helices and each domain in the
dataset were obtained and sorted by the core size and the RMSD between the
midpoints of their central axes. All experiments were performed on a standard
PC (Pentium c© 4, 2.60 GHz with 2GB RAM). Below is a detailed description of
some results. A summary is given in Table 1.

Photosynthetic Reaction Center Complex. The photosynthetic reaction
center is a transmembrane protein complex that converts light into chemical
energy. A simulated EM map of the whole complex from Rhodopseudomonas
viridis (PDB:1r2c) was given as input to the method. The complex consists of
five subunits, where the mostly helical subunits, L (light) and M (medium),
provide the scaffold. A set of 26 helices was detected in six minutes. Most of
these helices are located in the L and M subunits (Figure 3a). 37 out of the
68 helices of the high resolution structure were not detected due to their short
size (less than 2.5 turns). Also notice that although the complex contains an
all-β domain, there were no false positives, meaning that none of the strands
was falsely identified as a helix. Despite the large size of the complex, comparing
it with all the 887 SCOP domains of the dataset took less than one hour and
the top-ranking solution was the fold representative of the L subunit domain
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(a) (b)

Fig. 3. Photosynthetic Reaction Center. (a) The alignment between the high
resolution complex (PDB:1r2c, gray) and the predicted set of helices from the EM-
map (orange); (b) The alignment between the detected set of helices (orange) and an
L subunit domain (PDB:1dxr, chain L, green). This figure and the subsequent one were
prepared using PyMOL (http://www.pymol.org).

(PDB:1dxr, chain L). Figure 3b presents the alignment with a core of six helices
and an RMSD of 2.9Å between their midpoints. This example demonstrates the
ability of our method to identify partial alignments without prior knowledge of
subunit boundaries and content.

TIM-barrel Fold. The TIM-barrel fold is a common fold observed in many dif-
ferent superfamilies. A simulated EM map of the fold from the Triosephosphate
isomerase superfamily (PDB:1tim, chain A) was given as input to our method.
Nine helices were identified in less than seven minutes. Also, despite the fact that
the structure belongs to the α/β class and contains a β-sheet of eight strands,
there were no false-positives. Comparing the detected set of helices with the 887
SCOP domains took less than 13 minutes. The TIM-barrel fold representative
(PDB:1thf) was the top-ranking domain despite the fact that it belongs to a dif-
ferent superfamily (the Ribulose-phoshate binding barrel superfamily). Figure 4a
presents the alignment of the two structures. The core consists of seven helices
with an RMSD of 3.7Å between the midpoints of their central axes.

Endocytic AP2 Complex. AP2 is a heterotetrameric clathrin adaptor com-
plex that plays a key role in many vesicle trafficking pathways in the cell. A
simulated EM map of an endocytic AP2 core (PDB:1gw5) was given as input to
our method. The AP2 core is a compact assembly of five subunits, where two of
them have an α-α superhelix fold. Despite the size of the assembly, a set of 80
helices was detected in less than ten minutes. Also, although the assembly con-
tains a large all-β subunit, there were no false positives. When we compared the
identified set of helices with the structures of the SCOP dataset, the top-ranking
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(a) (b)

Fig. 4. (a) TIM-barrel. The alignment between the detected set of medium-
resolution helices of a TIM-barrel domain from the Triosephosphate isomerase su-
perfamily (PDB:1tim, orange) and a high resolution TIM-barrel domain from the
Ribulose-phoshate binding barrel superfamily (PDB:1thf, green). (b) AP2 Core. The
alignment between the detected set of medium-resolution helices for an endocytic AP2
core (PDB:1gw5, orange) and a high resolution structure of one of its α-α superhelix
domain (PDB:1gw5, chain B, green).

was one of the α-α superhelix domains of the assembly (PDB:1gw5, chain B).
Figure 4b presents the alignment for which the core consists of nine helices with
an RMSD of 3.8Å between the midpoints of their central axes.

4 Conclusions

We have described a new fully automated method for discovering subunits in
intermediate resolution maps of macromolecular assemblies without a-priori
knowledge of the subunits boundaries and content. The method reveals the spa-
tial arrangement of helices in a given EM map of a complex and exploits this
information for identifying all subunits appearing in a fold database. The method
is highly efficient and the preliminary experimental results are encouraging. The
results demonstrate the capability of the method to extract almost all longer
than two-turn helices without false positives as well as its capability to discover
the correct folds even when the helical information is partial. We are currently
testing the application on real data taken from the EBI database [26]. We con-
sider this method as the first of a larger set of tools for structure interpretation
of molecular assemblies at intermediate resolution. Future challenges include
β-sheet extraction from the EM data, RNA structure analysis, handling confor-
mational flexibility of the various subunits, and the integration of the presented
method with advanced multi-molecular docking methodologies [27].
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Table 1. Results: For each query the data appearing in the columns are: (1) the PDB
code followed by the chain identifier of the modeled 8Å resolution structure. In brackets
are the number of identified helices and the number of helices in the original structure;
For some structures the number of predicted helices is significantly lower than the
number of helices in the original structures. The main reason is that the structures
contain many short helices between loops (e.g. 37 in PDB:1r2c and 9 in PDB:1hno).
The other reason is that parallel helices that are a turn apart are merged in the linkage
step; (2) The PDB code and the chain identifier of the top-ranking SCOP domain and
the number of the helices in the structure; (3) the core size of the alignment; (4) the
RMSD between the axial midpoints of the corresponding SSEs; (5) the running times
for the helix extraction and fold alignment vs. the full database respectively.

Query Fold Homologue Matched
Helices

RMSD Runtime
(hh:mm:ss)

1c3w (7/8) 1bm1 (7) 7 1.2 00:06:23 00:13:11
1tim:A (9/12) 1thf (11) 7 3.7 00:06:54 00:12:26
1irk (7/9) 1gz8:A (13) 6 2.9 00:04:44 00:11:13
1bvp:1 (6/10) 2btv:P (9) 6 1.9 00:04:48 00:13:37
1s0p:A (7/8) 1s0p (8) 5 1.9 00:04:38 00:12:31
1hn0 (16/27) 1gai (18) 6 3.5 00:04:13 00:11:27
1r2c (26/68) 1dxr:L (17) 6 2.9 00:06:06 00:54:15
1gw5 (80/84) 1gw5:B (36) 9 3.7 00:09:53 07:43:13
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