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Abstract. In PKC’04, a signcryption scheme with key privacy was pro-
posed by Libert and Quisquater. Along with the scheme, some security
models were defined with regard to the signcryption versions of confiden-
tiality, existential unforgeability and ciphertext anonymity (or key pri-
vacy). The security of their scheme was also claimed under these models.
In this paper, we show that their scheme cannot achieve the claimed secu-
rity by demonstrating an insider attack which shows that their scheme
is not semantically secure against chosen ciphertext attack (not even
secure against chosen plaintext attack) or ciphertext anonymous. We
further propose a revised version of their signcryption scheme and show
its security under the assumption that the gap Diffie-Hellman problem
is hard. Our revised scheme supports parallel processing that can help
reduce the computation time of both signcryption and de-signcryption
operations.
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1 Introduction

Signcryption, introduced by Zheng in 1997 [17], is a public key primitive which
has the ingredients of both digital signature and data encryption. A signcryp-
tion scheme allows a sender to simultaneously sign and encrypt a message for a
receiver in such a way that it takes less computation time and has lower message
expansion rate than that of performing signature generation and then encryp-
tion separately, which is referred to as signature-then-encryption procedure [17].
The performance advantage of signcryption over the signature-then-encryption
procedure makes signcryption attractive to providing secure and authenticated
message delivery for resource constrained devices such as low-power mobile units,
smart cards, and emerging sensors.
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A number of signcryption schemes were proposed after Zheng’s work [2, 13,
15, 16, 12, 9, 11]. In 2002, formal security proofs for Zheng’s schemes were given
by Baek et al. [3]. In their paper, they defined a notion similar to semantic
security against adaptive chosen ciphertext attack (IND-CCA2) [14] for message
confidentiality and a notion similar to existential unforgeability against chosen
message attack (EUF-CMA) [10] for signature unforgeability.

In [1], An et al. described a new security notion called ‘Insider Security’.1

The notion of ‘Insider Security’ is to allow an adversary to have access to the
sender’s private key besides the public keys of the sender and the receiver. If a
signcryption scheme is ‘Insider Secure’, then this adversary should not be able
to obtain the message of a signcryption from the sender. Instead, it is similar to
the requirement for the conventional signature-then-encryption procedure that
only the one who has the receiver’s private key can open a signcryption. In
some cases, it becomes important for ensuring ‘Insider Security’. For example,
if an adversary happens to steal the sender’s private key, then we do not want
all previous (and future) signcrypted ciphertexts from the honest sender being
compromised by the adversary.

In [9], more security notions for signcryption schemes have been defined under
the identity-based setting. One of which is “Ciphertext Anonymity”. It captures
the property that the ciphertext must contain no information in the clear that
identifies the sender or recipient of the message. This can be considered as an
extension to the notion of “Key-Privacy” defined by Bellare et al. [4] for public
key encryption.

In [11], a new signcryption scheme claiming to have ciphertext anonymity (or
key privacy) was proposed. Along with the scheme, some security models were
also defined with regard to the signcryption versions of confidentiality, existential
unforgeability and ciphertext anonymity (or key privacy). In particular, these
models captured the notions of IND-CCA2, EUF-CMA, Insider Security and
Ciphertext Anonymity. The security of their scheme was also claimed under
these models.

However, we find that their scheme cannot achieved the claimed security. In
this paper, we demonstrate an insider attack which shows that their scheme is not
semantically secure against adaptive chosen ciphertext attack (not even secure
against chosen plaintext attack). The same attacking technique also compromises
its ciphertext anonymity.

We further propose a revised/improved version of their scheme and show
its security under the assumption that the gap Diffie-Hellman problem is hard.
Our improved scheme supports parallel processing which can help reduce the
computation time of both signcryption and de-signcryption operations.

Organization. In the rest of the paper, we first give the definition and security
models of a signcryption scheme with key privacy in Sec. 2. It is then followed
by the description of the Libert-Quisquater scheme in Sec. 3. We show that their

1 The original paper of An et al. [1] only presents the insider attack against the
integrity of a signcryption. The idea has later been extended to confidentiality and
other security properties [9, 11].
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scheme is not semantically secure against chosen plaintext attack and hence not
secure against chosen ciphertext attack. We also show that key privacy is not
achieved either. In Sec. 4, a modification of their scheme is described. Security
and performance analyses are also given. We conclude the paper in Sec. 5.

2 The Definition and Security Models of a Signcryption
Scheme with Key Privacy

A signcryption scheme is a quadruple of probabilistic polynomial time (PPT)
algorithms (Keygen, Signcrypt, De-signcrypt, Verify).

(sk, pk)← Keygen(1k) is the key generation algorithm which takes a security
parameter k and generates a private/public key pair (sk, pk).
σ ← Signcrypt(1k, m, skU , pkR) takes as inputs a security parameter k, a
message m, a private key skU and a public key pkR, outputs a ciphertext σ. m
is drawn from a message space M which is defined as {0, 1}n where n is some
polynomial in k.
(m, s, pkU )/reject ← De-signcrypt(1k, σ, skR) takes as inputs a security
parameter k, a ciphertext σ and a private key skR, outputs either a triple
(m, s, pkU ) where m is a message, s is a signature and pkU is a public key,
or reject which indicates the failure of de-signcryption.
true/false← Verify(1k, m, s, pkU ) takes as inputs a security parameter k, a
message m, a signature s and a public key pkU , outputs true for a valid signature
or false for an invalid signature.

For simplicity, we omit the notation of 1k from the inputs of Signcrypt,
De-signcrypt and Verify in the rest of this paper.

Note that the specification above requires the corresponding signcryption
scheme to support the “unwrapping” option which was introduced in [12]. The
“unwrapping” option allows the receiver of a ciphertext to release the message
and derive the embedded sender’s signature from the ciphertext for public ver-
ification. Early schemes such as [17] do not support the “unwrapping” option
and therefore not satisfy this definition.

Definition 1 (Completeness). For any m ∈ M , (skU , pkU ) ← Keygen(1k)
and (skR, pkR)← Keygen(1k) such that skU �= skR, we have

(m, s, pkU )← De-signcrypt(Signcrypt(m, skU , pkR), skR)

and true← Verify(m, s, pkU ).

Informally, we consider a secure signcryption scheme with key privacy to
be semantically secure against adaptive chosen ciphertext attack, existentially
unforgeable against chosen message attack, and anonymous in the sense that a
ciphertext should contain no information in the clear that identifies the author
or the recipient of the message and yet be decipherable by the intended recipient
without that information. We capture these notions in the following definitions.
They are similar to those defined by Libert and Quisquater [11].
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Definition 2 (Confidentiality). A signcryption scheme is semantically secure
against chosen ciphertext insider attack (SC-IND-CCA) if no PPT adversary has
a non-negligible advantage in the following game:

1. The challenger runs Keygen to generate a key pair (skU , pkU ). skU is kept
secret while pkU is given to adversary A.

2. In the first stage, A makes a number of queries to the following oracles:
(a) Signcryption oracle: A prepares a message m ∈M and a public key pkR,

and queries the signcryption oracle (simulated by the challenger) for the
result of Signcrypt(m, skU , pkR). The result is returned if pkR �= pkU

and pkR is valid in the sense that pkR is in the range of Keygen with
respect to the security parameter. Otherwise, a symbol ‘⊥’ is returned for
rejection.

(b) De-signcryption oracle: A produces a ciphertext σ and queries for the
result of De-signcrypt(σ, skU ). The result is made of a message, a sig-
nature and the sender’s public key if the de-signcryption is successful and
the signature is valid under the recovered sender’s public key. Otherwise,
a symbol ‘⊥’ is returned for rejection.

These queries can be asked adaptively: each query may depend on the answers
of previous ones.

3. A produces two plaintexts m0, m1 ∈ M of equal length and a valid private
key skS such that skS is in the range of Keygen with respect to the security
parameter. The challenger flips a coin b̌

R← {0, 1} and computes a signcryp-
tion σ∗ = Signcrypt(mb̌, skS , pkU ) of mb̌ with the sender’s private key skS

under the receiver’s public key pkU . σ∗ is sent to A as a challenge ciphertext.

4. A makes a number of new queries as in the first stage with the restriction
that it cannot query the de-signcryption oracle with σ∗.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b̌.

A’s advantage is defined as Advind−cca(A) = Pr[b′ = b̌] − 1
2 and the probability

that b′ = b̌ is called the probability that A wins the game.

The definition above captures the advantage of an active adversary over an
eavesdropper. That is, the adversary knows and has the full control of the signing
key. This also gives us insider-security for confidentiality [1].

Definition 3 (Unforgeability). A signcryption scheme is existentially un-
forgeable against chosen-message insider attack (SC-EUF-CMA) if no PPT forger
has a non-negligible advantage in the following game:

1. The challenger runs Keygen to generate a key pair (skU , pkU ). skU is kept
secret while pkU is given to forger F .

2. The forger F adaptively makes a number of queries to the signcryption oracle
and the de-signcryption oracle as in the confidentiality game.

3. F produces a ciphertext σ and a valid key pair (skR, pkR) in the sense that
the key pair is in the range of Keygen and wins the game if
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(a) De-signcrypt(σ, skR) returns a tuple (m, s, pkU ) such that true ←
Verify(m, s, pkU ), and

(b) σ is not the output of the signcryption oracle.

We allow the forger to have the full control of the de-signcryption key pair
(skR, pkR). This also captures the notion of insider-security for unforgeability.

Definition 4 (Ciphertext Anonymity). A signcryption scheme is cipher-
text anonymous against chosen-ciphertext insider attack (SC-ANON-CCA) if
no PPT distinguisher has a non-negligible advantage in the following game:

1. The challenger generates two distinct public key pairs (skR,0, pkR,0) and
(skR,1, pkR,1) using Keygen, and gives pkR,0 and pkR,1 to the distinguisher
D.

2. In the first stage, D adaptively makes a number of queries in the form of
Signcrypt(m, skR,c, pkR) or De-signcrypt(σ, skR,c), for c = 0 or c = 1.
pkR is some arbitrary but valid recipient key such that pkR �= pkR,c.

3. After completing the first stage, D outputs two valid and distinct private keys
skS,0 and skS,1, and a plaintext m ∈M .

4. The challenger then flips two coins b, b′ R← {0, 1} and computes a challenge
ciphertext σ = Signcrypt(m, skS,b, pkR,b′) and sends it to D.

5. D adaptively makes a number of new queries as above with the restriction
that it is not allowed to ask the de-signcryption oracle of the challenge ci-
phertext σ.

6. At the end of the game, D outputs bits d, d′ and wins the game if (d, d′) =
(b, b′).

D’s advantage is defined as Advanon−cca(D) = Pr[(d, d′) = (b, b′)]− 1
4 .

The ciphertext anonymity definition above follows that of Libert and Quisquater
in [11, Def. 4], which is considered to be an extension of the “Key-Privacy” notion
of public key encryption [4]. We only consider this definition for key privacy in
this paper rather than also considering an additional one called key invisibility
[11, Def. 5]. We believe that the definition above is more intuitive. With only
a few differences, one can also consider it as a non-identity based version of
Boyen’s definition [9] of ciphertext anonymity in the identity-based setting.

3 Security Analysis of the Libert-Quisquater Scheme

3.1 Preliminaries

Bilinear Pairings. Let k be a system-wide security parameter. Let q be a k-bit
prime. Let G1 be an additive cyclic group of order q and G2 be a multiplicative
cyclic group of the same order. Let P be a generator of G1. A bilinear map is
defined as e : G1 ×G1 → G2 with the following properties:
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1. Bilinear : For all U, V ∈ G1, and a, b ∈ Z, we have e(aU, bV ) = e(U, V )ab.
2. Non-degenerate: e(P, P ) �= 1.
3. Computable: there is an efficient algorithm to compute e(U, V ) for any U, V ∈

G1.

Modified pairings [7] obtained from the Weil or the Tate pairing provide admis-
sible maps of this kind.

The Gap Diffie-Hellman Problem. The Decisional Diffie-Hellman problem
(DDH) [6] in G1 is to distinguish between the distributions of 〈P, aP, bP, abP 〉
and 〈P, aP, bP, cP 〉 where a, b, c are random in Zq. The Computational Diffie-
Hellman problem (CDH) in G1 is to compute abP from 〈P, aP, bP 〉 where a, b
are random in Zq.

The Gap Diffie-Hellman problem (GDH) is to solve a given random instance
〈P, aP, bP 〉 of the CDH problem with the help of a DDH oracle. The DDH
oracle can be implemented through a bilinear map since it suffices to check if
the equation e(P, cP ) = e(aP, bP ) holds for determining if cP = abP .

3.2 Libert-Quisquater Signcryption Scheme

Suppose each element in G1 can distinctly be represented using � bits. Let
H1 : {0, 1}n+2� → G1, H2 : G3

1 → {0, 1}� and H3 : {0, 1}� → {0, 1}n+� be
cryptographic hash functions where n denotes the length of a plaintext in binary
representation and is some polynomial in k. For security analysis, all hash func-
tions are viewed as random oracles [5]. Also assume that the discrete logarithm
of the output of H1 for any input is hard to compute. The Libert-Quisquater
signcryption scheme [11] is reviewed as follows.

Keygen: A private key is generated by picking a random xu ← Zq and the
corresponding public key is computed as Yu = xuP . In the following, the
sender and the receiver are denoted by u = S and u = R, and their public
key pairs are denoted by (xS , YS) and (xR, YR), respectively.

Signcrypt: To signcrypt a message m ∈ {0, 1}n for receiver R, sender S carries
out the following steps:
1. Pick a random r ← Zq and compute U = rP .
2. Compute V = xSH1(m, U, YR).
3. Compute W = V ⊕H2(U, YR, rYR) and Z = (m‖YS)⊕H3(V ).

The ciphertext is σ = 〈U, W, Z〉.
De-signcrypt: When a ciphertext σ = 〈U, W, Z〉 is received, receiver R per-

forms the following steps:
1. Compute V = W ⊕H2(U, YR, xRU).
2. Compute (m‖YS) = Z ⊕H3(V ).
3. If YS �∈ G1, outputs reject. Otherwise, compute H = H1(m, U, YR) and

check if e(YS , H) = e(P, V ).
4. If the equation holds, output 〈m, (U, YR, V ), YS〉; otherwise, output

reject.



224 Guomin Yang, Duncan S. Wong, and Xiaotie Deng

Verify: For a message-signature pair (m, (U, YR, V )) and a signing key YS , the
algorithm checks if e(YS , H1(m, U, YR)) = e(P, V ). If the condition holds, it
outputs true. Otherwise, it outputs false.

The scheme can be viewed as a sequential composition of the short signature
by [8] and some Diffie-Hellman based encryption scheme. It is called sequential
because the signature component V and the ‘masking’ Z of the message have to
be computed in sequence.

3.3 Security Analysis

In [11], it is claimed that the scheme reviewed above is semantically secure
against chosen ciphertext insider attack in the model of SC-IND-CCA, existential
unforgeable against chosen message insider attack in the SC-EUF-CMA model,
and also provides ciphertext anonymity in the model of SC-ANON-CCA.

However, we find that the scheme is not even semantically secure against
chosen plaintext attack. That is, with non-negligible advantage (in fact, our
attacking technique can break the scheme with overwhelming probability), there
exists a PPT adversary A which can win the game defined in Definition 2 even
without querying any of the signcryption oracle and de-signcryption oracle. We
will also show that the scheme does not provide ciphertext anonymity either.
Below is the attack which compromises the scheme’s confidentiality.

Attack Against Confidentiality:
Let A be an adversary defined in the game of Definition 2. Suppose the
public key that A received from the game challenger is YR.

– In the first stage of the game, A does nothing. That is, A does not
make any query to the signcryption oracle or the de-signcryption
oracle.

– After completing the first stage, A randomly chooses m0 ← {0, 1}n
and sets m1 = m0. That is, m1 is the complement of m0. Then, A
randomly picks a private key xS ← Zq and asks the game challenger
for a challenge ciphertext.

– When σ = 〈U, W, Z〉 is received, A does the following test.

(m0‖YS) ?= Z ⊕H3(xSH1(m0, U, YR))

– If the equation holds, A outputs a bit b′ with value 0. Otherwise, A
outputs 1 for b′.

It is easy to see that Pr[b′ = 0 | b = 0] = 1. In the case of b = 1, let E be the
event that (m0‖YS) = m1‖YS ⊕ H3(xSH1(m1, U, YR)) ⊕ H3(xSH1(m0, U, YR)),
or 1n‖0� = H3(xSH1(m1, U, YR)) ⊕H3(xSH1(m0, U, YR)). 1n‖0� can be viewed
as the distance between the hash values of two different inputs, one involves m1

and the other one involves m0. As H1 and H3 are viewed as random oracles,
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Pr[E] ≤ max(1/2�, 1/2n+�) = 2−�. We can see that Pr[E] = Pr[b′ = 0 | b = 1].
Hence Pr[b′ = 1 | b = 1] = 1− Pr[E] ≥ 1− 2−�. Therefore,

Pr[A wins the game] = Pr[b′ = 0, b = 0] + Pr[b′ = 1, b = 1]

≥ 1
2
· 1 +

1
2
(1− 2−�)

= 1− 2−�−1.

Compromising Ciphertext Anonymity. The attacking technique described
above can be extended easily to compromise the ciphertext anonymity of the
scheme. For a distinguisher D described in Definition 4, it also does nothing
in the first stage of the game. After obtaining a challenge ciphertext from the
game challenger, D only needs to conduct several rounds of tests similar to that
described in the Attack Against Confidentiality above. The chance for D of
winning the game is overwhelming.

Note that in either of these attacks, the oracles of signcryption and de-
signcryption are not queried. This also implies that the scheme is not even secure
against chosen plaintext insider attack.

These attacks also show that two theorems (Theorem 1 and Theorem 3) in
[11] are incorrect. The errors are due to the imprecision of the corresponding
proofs. In their proof for Theorem 1, a simulator B is constructed to simulate
the role of the challenger in the SC-IND-CCA game (Definition 2). The proof
is to demonstrate that if there exists an adversary A which can break the SC-
IND-CCA security of the scheme, then B can solve the CDH problem (in other
words, given a random instance (aP, bP ), calculate abP ) with the help of A. B
first sets A’s challenge public key to bP . After getting m0, m1 and xS from A, B
produces a challenge ciphertext σ = 〈U, W, Z〉 = 〈aP, W, Z〉 where W

R← {0, 1}�
and Z

R← {0, 1}n+�. Then the authors claimed: “...A will not realize the σ is not
a valid signcryption for the sender’s private key xS and the public key bP unless
it asks for the hash value H2(aP, bP, abP ).” But our attack demonstrates that
A can easily verify whether σ is a valid ciphertext or not without querying H2.
The same problem exists in the proof for Theorem 3 in [11].

4 An Improved Signcryption Scheme

The problem of Libert-Quisquater’s scheme is that one can judge whether a
ciphertext is the signcryption of a specific plaintext once the signing private key
of the ciphertext is known. In other words, it does not provide insider security.
To solve this problem, we observe that Z = (m‖YS) ⊕H3(V ) where V can be
obtained from V ← W ⊕ H2(U, YR, rYR) or V ← xSH1(m, U, YR). Knowing
either r or xs is sufficient to break the secrecy of the plaintext “m‖YS”. In order
to prevent insider attack, we modify the scheme such that the secrecy of the
plaintext does not rely on xS .
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4.1 Improved Libert-Quisquater Signcryption Scheme

The public parameters are the same as the original scheme except that H3 is
modified to H3 : G3

1 → {0, 1}n+�.

Keygen: Same as the original scheme.
Signcrypt: To signcrypt a message m ∈ {0, 1}n for receiver R, sender S con-

ducts the following steps:
1. Pick a random r ← Zq and compute U = rP .
2. Compute V = xSH1(m, U, YR).
3. Compute W = V ⊕H2(U, YR, rYR) and Z = (m‖YS)⊕H3(U, YR, rYR).

The ciphertext is σ = 〈U, W, Z〉.
De-signcrypt: When a ciphertext σ = 〈U, W, Z〉 is received, receiver R per-

forms the following steps:
1. Compute V = W ⊕H2(U, YR, xRU)
2. Compute (m‖YS) = Z ⊕H3(U, YR, xRU).
3. If YS �∈ G1, output reject. Otherwise, compute H = H1(m, U, YR) and

check if e(YS , H) = e(P, V ).
4. If the equation holds, output 〈m, (U, YR, V ), YS〉; otherwise, output

reject.
Verify: For a message-signature pair (m, (U, YR, V )) and a signing key YS , the

algorithm checks if e(YS , H1(m, U, YR)) = e(P, V ). If the condition holds, it
outputs true. Otherwise, it outputs false.

4.2 Security Analysis of the Improved Scheme

The improved scheme can effectively thwart the attack described in Sec. 3.3. It is
also obvious that the scheme satisfies the completeness definition (Definition 1).
The following theorems state that the improved scheme is secure in the models
defined in Sec. 2.

Theorem 1. The improved signcryption scheme is SC-IND-CCA secure in the
random oracle model under the assumption that Gap Diffie-Hellman Problem is
hard.

Proof. For contradiction, we assume that there exists an adversary A who wins
the game given in Definition 2 with non-negligible advantage. In the following,
we construct an algorithm B to solve the CDH problem in G1.

Suppose B is given a random instance of the CDH problem (aP, bP ), B runs
A as a subroutine to find the solution abP . B sets up a simulation environment
for A as follows:
B gives bP to A as the challenging public key Yu.
B maintains three lists L1, L2 and L3 to simulate the hash oracles H1, H2

and H3, respectively. In each entry of the lists, it keeps the query and the cor-
responding return of the oracle.

When a hash query H1(m, P1, P2) is received, where m ∈ {0, 1}n and P1, P2 ∈
{0, 1}�, B first checks if the query tuple (m, P1, P2) is already in L1. If it exists,
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the existing result in L1 is returned. If it does not exist, B randomly chooses
t← Zq and returns tP to A provided that tP is not in L1. Otherwise, B should
keep trying other random values for t until there is no collision found. The query
tuple and return value are then saved in L1. For enabling the retrieval of t
possibly in some later time of the simulation, the value is also saved in L1.

Hash queries to H2 or H3 are handled similarly in the way that randomly
chosen values returned cannot be equal to any other value previously returned.
Of course, returned values are chosen from the corresponding ranges of these hash
functions. There is also one additional step: Let a query tuple be (P1, P2, P3) ∈
G3

1. If e(P1, P2) = e(P, P3) and (P1, P2,�) is in the corresponding hash list,
where ‘�’ is a special symbol, B replaces ‘�’ in the entry with P3 and uses the
return value of the entry as the value to be returned. The reason will be given
shortly.

For a signcryption query on a message m with a receiver’s public key YR both
chosen by A, B first checks if YR ∈ G1. If it is incorrect or YR = Yu, B returns
the symbol ‘⊥’ for rejection. Otherwise, B picks a random r ← Zq, computes
U = rP and simulates the H1(m, U, YR) hash query described as above. After
obtaining t′ such that t′P := H1(m, U, YR), B computes V = t′(Yu) which is
equal to bH1(m, U, YR). B then simulates H2 and H3 as above for obtaining
H2(U, YR, rYR) and H3(U, YR, rYR), and computes the result ciphertext σ =
(U, W, Z) according to the description of the improved signcryption scheme.

When A performs a De-signcrypt(σ, sku) query, where σ = (U, W, Z), B looks
for tuples of the form (U, Yu, λ) in L2 and L3 such that e(P, λ) = e(U, Yu). For
each of L2 and L3, if the tuple (U, Yu, λ) does not exist in the list, B adds a
new entry into that particular list by saving (U, Yu,�) as the query tuple and
a value randomly drawn from the range as the oracle return value, provided
that the value is not in the list yet (for preventing collision). The special symbol
‘�’ is used as a marker for denoting that the real value should be the solu-
tion of the CDH problem instance (U, Yu). This step ensures that the values of
H2(U, Yu, λ) and H3(U, Yu, λ) are fixed before σ is de-signcrypted. After that, B
computes V = W ⊕H2(U, Yu, λ) and m‖YS = Z⊕H3(U, Yu, λ). Then B checks if
e(P, V ) = e(H1(m, U, Yu), YS) holds where H1(m, U, Yu) is simulated as above.
If this condition holds, (m, (U, Yu, V ), YS) are returned as the message-signature
pair and the sender’s public key. Otherwise, the symbol ‘⊥’ is returned for re-
jection.

After completing the first stage of the game, A chooses two n-bit plaintexts
m0 and m1 together with a sender’s private key xS , and requests B for a challenge
ciphertext built under the receiver’s challenging public key Yu.

B updates L1 with H1(m0, aP, Yu) and H1(m1, aP, Yu) by executing the
simulator for H1 on these inputs and then sets the challenge ciphertext to
σ = (aP, W, Z) where W and Z are randomly drawn from distributions. B
answers A’s queries as in the first stage. If A queries H2 or H3 with (aP, Yu, λ)
such that e(aP, Yu) = e(λ, P ), then B outputs λ and halts. If A halts without
making this query, B outputs a random point in G1 and halts.
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Analysis. Obviously, the running time of B is in polynomial of A’s running
time. To see that the simulated game is computationally indistinguishable from
a real game, we note that the simulated game above could never have a collision
happen while a real game may have collisions. Other than that, the two games
are identical to each other. Suppose the number of hash queries made in one
run of the game is at most qH . It is a polynomial in the security parameter k.
Note that � must be no smaller than k as the order of G1 is k. The probability
of having at least one collision is no more than qH (qH−1)

2×2k which is negligible. In
the following, we analyze B’s success rate.

Let E be the event that (aP, Yu, aYu) is queried on H2 or H3. Ē denotes the
event that (aP, Yu, aYu) is not queried on H2 or H3. Note that B solves the CDH
problem instance in event E.

We claim that for event Ē, A does not have any advantage in winning the
game over random guessing: Let Vb = xSH1(mb, aP, Yu) for b = 0, 1. Then
σ = (aP, W, Z) is the signcryption of m0 if the values of H2(aP, Yu, aYu) and
H3(aP, Yu, aYu) are W ⊕ V0 and (m0||Ys)⊕Z, respectively. While σ is the sign-
cryption of m1 if the values of the two hashes are W ⊕ V1 and (m1||Ys) ⊕ Z.
Since H2 and H3 are not queried with (aP, Yu, aYu), due to the random oracle
assumption, A does not have any advantage in determining the oracle returns of
H2 and H3 on this query tuple. This is because B has not decided on the oracle
returns yet. Hence,

Pr[A wins the game |Ē] =
1
2
.

From the assumption,

Pr[A wins the game] =
1
2

+ ρ(k)

≤ Pr[E] +
1
2
(1− Pr[E])

where ρ is A’s non-negligible advantage in winning the game defined in Defini-
tion 2 and k is the system-wide security parameter. Therefore,

Pr[E] ≥ 2ρ(k)

which is non-negligible. �

Theorem 2. The improved signcryption scheme is SC-EUF-CMA secure in the
random oracle model under the assumption that Gap Diffie-Hellman Problem is
hard.

Proof. We prove it also by contradiction, namely if F can successfully produce
a forgery, there exists an algorithm B that can solve the CDH problem in G1.
After B is given a random instance of the CDH problem (aP, bP ), B runs F as
a subroutine to find the solution.
B gives F bP as the challenge public key Yu.
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B maintains three lists L1, L2 and L3 to simulate the hash oracles H1, H2

and H3, respectively. In each entry of the lists, it keeps the query and the corre-
sponding return of the oracle. Hash oracles H2 and H3 are simulated as in the
proof of Theorem 1.

When a hash query H1(m, P1, P2) is asked by F , B first checks if the query
tuple (m, P1, P2) is already in L1. If it exists, the existing result in L1 is returned.
If it does not exist, B randomly chooses t← Zq and returns t(aP ) to F provided
that t(aP ) is not in L1. Otherwise, B should keep trying other random values
for t until there is no collision found. The query tuple and return value are then
saved in L1. For enabling the retrieval of t possibly in some later time of the
simulation, the value is also saved in L1.

For a signcryption query on a message m with a receiver’s public key YR both
chosen by F , B first checks if YR ∈ G1. If it is incorrect or YR = Yu, B returns
the symbol ‘⊥’ for rejection. Otherwise, B picks a random r ← Zq and computes
U = rP . If the tuple (m, U, YR) is already defined in L1, B picks a new random
r and recompute U until the tuple (m, U, YR) is not in L1 yet. Then B selects a
random t′ ← Zq and returns t′P as the value of H1(m, U, YR) provided that t′P
is not in L1. Otherwise, B should keep trying other random values for t′ until
there is no collision found. The query tuple, oracle return and the value of t′ are
then saved in L1. After obtaining t′ such that t′P := H1(m, U, YR), B computes
V = t′(Yu) which is equal to bH1(m, U, YR). B then simulates H2 and H3 as in
the proof of Theorem 1 for obtaining H2(U, YR, rYR) and H3(U, YR, rYR), and
computes the result ciphertext σ = (U, W, Z) according to the description of the
improved signcryption scheme.

When F performs a De-signcrypt(σ, sku) query, where σ = (U, W, Z), B looks
for tuples of the form (U, Yu, λ) in L2 and L3 such that e(P, λ) = e(U, Yu). For
each of L2 and L3, if the tuple (U, Yu, λ) does not exist in the list, B adds a
new entry into that particular list by saving (U, Yu,�) as the query tuple and a
value randomly drawn from the range as the oracle return value, provided that
the value is not in the list yet (for preventing collision). The special symbol ‘�’
is used as a marker for denoting that the real value should be the solution of the
CDH problem instance (U, Yu). This step ensures that the values of H2(U, Yu, λ)
and H3(U, Yu, λ) are fixed before σ is de-signcrypted. After that, B computes
V = W ⊕H2(U, Yu, λ) and m‖YS = Z ⊕H3(U, Yu, λ). B then checks if the tuple
(m, U, Yu) is already in L1. If it exists, the existing result in L1 is obtained. If
it does not exist, B simulates the H1(m, U, Yu) hash query described as above,
which sets the hash value to t(aP ), where t is a distinct random element in Zq.
Then B checks if e(P, V ) = e(H1(m, U, Yu), YS) holds. If this condition holds,
(m, (U, Yu, V ), YS) are returned as the message-signature pair and the sender’s
public key. Otherwise, the symbol ‘⊥’ is returned for rejection.

When F produces a ciphertext σ = (U, W, Z) and a receiver’s key pair
(xR, YR), B de-signcrypts the ciphertext in the same way as the simulation of
the de-signcrypt query above. If the forgery is valid, which means (m, V, Yu)
are returned as the message-signature pair and the sender’s public key, and
e(P, V ) = e(Yu, H1(m, U, YR)).
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From the simulation of the de-signcrypt query above, we can see that there
must be an entry in L1 for H1(m, U, YR). We also claim that the corresponding
oracle return in the entry must be in the form t(aP ) for some t ∈ Zq, which
can be retrieved from L1. Notice that if H1(m, U, YR) is equal to tP , which is
generated in a signcryption query, the values of W and Z would also have been
determined in that signcryption query, which contradicts the restriction of the
game defined in Definition 3.

Since e(Yu, H1(m, U, YR)) = e(bP, taP ) = e(P, V ), B can get V = tabP and
compute abP = t−1V with the probability equal to the advantage of winning the
game by F , which is non-negligible. The running time of B is also in polynomial
of F ’s running time. As in the proof of Theorem 1, the simulated game is also
computationally indistinguishable from a real game. �

Theorem 3. The improved signcryption scheme is SC-ANON-CCA secure in
the random oracle model under the assumption that Gap Diffie-Hellman Problem
is hard.

Proof. The proof follows that of Theorem 1. Suppose B is given (aP, cP ) as a
random instance of the CDH problem, B runs D to find the solution.
B picks two random elements x, y ∈ Zq and sets the two challenge public

keys as pkR,0 = x(cP ) and pkR,1 = y(cP ). B then simulates all the hash queries,
signcryption queries and de-signcryption queries as in the proof of Theorem 1.

After the completion of the first stage, D chooses two private keys skS,0, skS,1

and a plaintext m ∈ {0, 1}n and requests a challenge ciphertext built under skS,b

and pkR,b′ where b, b′ R← {0, 1}.
B then updates L1 with H1(m, aP, pkR,0) and H1(m, aP, pkR,1), and returns

σ = (aP, W, Z) as the challenge ciphertext where W, Z are randomly drawn from
the distributions. B answers D’s queries as in the first stage. If D queries H2

or H3 with (aP, pkR,0, λ) such that e(aP, pkR,0) = e(P, λ), B halts and outputs
x−1λ; If D queries H2 or H3 with (aP, pkR,1, λ) such that e(aP, pkR,1) = e(P, λ),
B halts and outputs y−1λ. B halts when D halts.

Analysis. Obviously, the running time of B is in polynomial of D’s running
time, and the simulated game is computationally indistinguishable from a real
game. In the following, we analyze B’s success rate.

Let E be the event that (aP, pkR,0, a(pkR,0)) or (aP, pkR,1, a(pkR,1)) has been
queried on H2 or H3. Ē denotes event E does not happen. Note that B solves
the CDH problem instance in event E.

We claim that for event Ē, D does not have any advantage in winning the
game over random guessing: Let V(b,b′) = skS,bH1(m, aP, pkR,b′) for b, b′ R←
{0, 1}. Then σ = (aP, W, Z) is the signcryption of m under skS,b and pkR,b′

if the values of H2(aP, pkR,b′ , a(pkR,b′)) and H3(aP, pkR,b′ , a(pkR,b′)) are W ⊕
V(b,b′) and (m||pkS,b) ⊕ Z, respectively. Since H2 and H3 are not queried with
(aP, pkR,0, a(pkR,0)) or (aP, pkR,1, a(pkR,1)), due to the random oracle assump-
tion, D does not have any advantage in determining the oracle returns of H2
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and H3 on these query tuples. This is because B has not decided on the oracle
returns yet. Hence,

Pr[D wins the game |Ē] =
1
4
.

From the assumption,

Pr[D wins the game] =
1
4

+ ρ(k)

≤ Pr[E] +
1
4
(1− Pr[E])

where ρ is D’s non-negligible advantage in winning the game defined in Defini-
tion 4 and k is the system-wide security parameter. Therefore,

Pr[E] ≥ 4
3
ρ(k)

which is non-negligible. �

4.3 Performance

As explained at the end of Sec. 3.2, the original Libert-Quisquater signcryption
scheme is sequential. Whereas our improved scheme supports parallel computing.
In the improved scheme, Z can be computed in parallel with the computations
of V and W . Also in a de-signcryption process, ‘unwrapping’ the signature and
revealing the message from a signcryption (Step 1 and 2 of De-signcrypt in
Sec. 4) can be carried out in parallel. Thus, an implementation may make use of
this property to reduce the computation time of signcryption and de-signcryption
operations.

5 Conclusion

In this paper, we show that the Libert-Quisquater signcryption scheme cannot
achieved the claimed security with respect to SC-IND-CCA (confidentiality) and
SC-ANON-CCA (ciphertext anonymity). The scheme is shown to be insecure
even in a weaker model, namely, the security against chosen plaintext insider
attacks.

Improvement for the scheme is given and security proofs are provided to show
that the improved scheme is secure under the strong security models defined (in
Sec. 2). We also observe that the improved scheme supports parallel processing
for both signcryption and de-signcryption. This feature could be used to reduce
the computation time when compared with the original scheme.

Acknowledgement

The authors are grateful to anonymous reviewers for their comments.



232 Guomin Yang, Duncan S. Wong, and Xiaotie Deng

References

[1] J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryp-
tion. In Proc. EUROCRYPT 2002, pages 83–107. Springer-Verlag, 2002. LNCS
2332.

[2] F. Bao and R. H. Deng. A signcryption scheme with signature directly verifiable
by public key. In PKC’98, pages 55–59. Springer-Verlag, 1998. LNCS 1431.

[3] J. Beak, R. Steinfeld, and Y. Zheng. Formal proofs for the security of signcryption.
In PKC’02, pages 80–98. Springer-Verlag, 2002. LNCS 2274.

[4] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In Proc. ASIACRYPT 2001, pages 566–582. Springer-Verlag, 2001.
LNCS 2248.

[5] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de-
signing efficient protocols. In First ACM Conference on Computer and Commu-
nications Security, pages 62–73, Fairfax, 1993. ACM.

[6] D. Boneh. The decision Diffie-Hellman problem. In Proc. of the Third Algorithmic
Number Theory Symposium, pages 48–63. Springer-Verlag, 1998. LNCS 1423.

[7] D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In
Proc. CRYPTO 2001, pages 213–229. Springer-Verlag, 2001. LNCS 2139.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Proc. ASIACRYPT 2001, pages 514–532. Springer-Verlag, 2001. LNCS 2248.

[9] X. Boyen. Multipurpose identity-based signcryption: A swiss army knife for
identity-based cryptography. In Proc. CRYPTO 2003, pages 383–399. Springer-
Verlag, 2003. LNCS 2729.

[10] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attack. SIAM J. Computing, 17(2):281–308, April 1988.

[11] B. Libert and J.-J. Quisquater. Efficient signcryption with key privacy from gap
Diffie-Hellman groups. In PKC’04, pages 187–200. Springer-Verlag, 2004. LNCS
2947.

[12] J. Malone-Lee and W. Mao. Two birds one stone: Signcryption using RSA. In
Topics in Cryptology - proceedings of CT-RSA 2003, pages 211–225. Springer-
Verlag, 2003. LNCS 2612.

[13] Y. Mu and V. Varadharajan. Distributed signcryption. In INDOCRYPT 2000,
pages 155–164. Springer-Verlag, 2000. LNCS 1977.

[14] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In Proc. CRYPTO 91, pages 433–444. Springer,
1992. LNCS 576.

[15] R. Steinfeld and Y. Zheng. A signcryption scheme based on integer factorization.
In ISW’00, pages 308–322. Springer-Verlag, 2000. LNCS 1975.

[16] D. H. Yum and P. J. Lee. New signcryption schemes based on KCDSA. In Infor-
mation Security and Cryptology - ICISC 2001, pages 305–317. Springer-Verlag,
2002. LNCS 2288.

[17] Y. Zheng. Digital signcryption or how to achieve cost(signature & encryption)
<< cost(signature) + cost(encryption). In Proc. CRYPTO 97, pages 165–179.
Springer-Verlag, 1997. LNCS 1294.


	Introduction
	The Definition and Security Models of a Signcryption Scheme with Key Privacy
	Security Analysis of the Libert-Quisquater Scheme
	An Improved Signcryption Scheme
	Conclusion



