
Certificateless Public Key Encryption Without

Pairing

Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

Centre for Information Security Research
School of Information Technology and Computer Science

University of Wollongong
Wollongong NSW 2522, Australia

{baek, rei, wsusilo}@uow.edu.au

Abstract. “Certificateless Public Key Cryptography” has very appeal-
ing features, namely it does not require any public key certification (cf.
traditional Public Key Cryptography) nor having key escrow problem
(cf. Identity-Based Cryptography). Unfortunately, construction of Cer-
tificateless Public Key Encryption (CLPKE) schemes has so far depended
on the use of Identity-Based Encryption, which results in the bilinear
pairing-based schemes that need costly operations. In this paper, we
consider a relaxation of the original model of CLPKE and propose a new
CLPKE scheme that does not depend on the bilinear pairings. We prove
that in the random oracle model, our scheme meets the strong security
requirements of the new model of CLPKE such as security against public
key replacement attack and chosen ciphertext attack, assuming that the
standard Computational Diffie-Hellman problem is intractable.

1 Introduction

Motivation. Consider a situation where Alice wants to send a confidential mes-
sage to Bob. Using a public key encryption (PKE) scheme, Alice needs to obtain
Bob’s public key and encrypts her message using this key. When this operation is
performed correctly, then only Bob who is in possession of a private key matched
to his public key can decrypt the ciphertext and read the message. One direct
implication of this mechanism is an assurance that Bob’s public key is authen-
tic. In the normal Public Key Cryptography (PKC), this assurance is obtained
via certification by a Certification Authority (CA). More precisely, the CA digi-
tally signs on Bob’s public key and the “Digital Certificate” which contains the
resulting signature and the public key should be checked against the CA’s pub-
lic key by any interested party. However, the realization of this authentication
mechanism called “Public Key Infrastructure (PKI)” has long been a concern for
implementers as the issues associated with revocation, storage and distribution
of certificates must be resolved.

On the other hand, a very different approach to the above authenticity prob-
lem in public key cryptography was made by Shamir [16]. In this new approach
named “Identity-Based Cryptography (IBC)”, every user’s public key is just

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 134–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Certificateless Public Key Encryption Without Pairing 135

his/her identity (identifier) which is an arbitrary string such as an email address
while the corresponding private key is a result of some mathematical operation
that takes as input the user’s identity and the secret master key of a trusted au-
thority, sometimes referred to as “Private Key Generator (PKG)”. Notice that
in this setting, certification of the public keys is provided implicitly based on
the fact that if the user has obtained a correct private key associated with the
published identity, he/she will be able to perform some cryptographic operations
such as decrypt or sign. Hence, it is no longer necessary to explicitly authenticate
public keys, i.e. verifying the digital certificates of the public keys, as in the tra-
ditional PKI setting. However, an obvious drawback of IBC is an unconditional
trust that must be placed to the PKG, as the PKG can always impersonate any
single entity as every user’s private key is known to the PKG.

In order to resolve the above escrow problem in IBC while keeping the im-
plicit certification property of IBC, a new paradigm called “Certificateless Public
Key cryptography (CLPKC)” was introduced by Al-Riyami and Paterson [1]. In
CLPKC, the user’s public key is no longer an arbitrary string. Rather, it is
similar to the public key used in the traditional PKC generated by the user.
However, a crucial difference between them is that the public key in CLPKC
does not need to be explicitly certified as it has been generated using some “par-
tial private key” obtained from the trusted authority called “Key Generation
Center (KGC)”. Note here that the KGC does not know the users’ private keys
since they contain secret information generated by the users themselves, thereby
removing the escrow problem in IBC.

Therefore, it is sometimes said that CLPKC lies in between PKC and IBC.
However, it should be emphasized that so far “Certificateless Public Key En-
cryption (CLPKE)” schemes have been constructed within the framework of
Identity-Based Encryption (IBE) schemes proposed by Boneh and Franklin [5],
and Cocks [7]. As a result, the CLPKE schemes in the literature had to be based
on either the bilinear pairings or somewhat inefficient IBE scheme proposed in
[7]. In spite of the recent advances in implementation technique, the pairing com-
putation is still considered as expensive compared with “standard” operations
such as modular exponentiations in finite fields. According to the current MIR-
ACL [12] implementation, a 512-bit Tate pairing takes 20 ms whereas a 1024-bit
prime modular exponentiation takes 8.80 ms. Also, it is known that Cock’s IBE
scheme [7] uses bit-by-bit encryption and hence outputs long ciphertexts.

Being aware of the above problem of the current constructions of CLPKE, we
focus on constructing a CLPKE scheme that does not depend on the pairings.
This way, our scheme will be more efficient than all of the CLPKE schemes
proposed so far [1,2,17]. The approach we make to achieve such a goal is to
construct a CLPKE scheme that tends more towards a PKE scheme in the
traditional PKI setting. We note that the reason why the CLPKE schemes in
[1,2,17] have to depend on IBE is that in those schemes, a user need not be
in possession of a partial private key before generating a public key, which is
indeed a feature provided by IBE. By relaxing this requirement, however, we
could construct a very efficient CLPKE scheme without pairings.



136 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

Related Work. Al-Riyami and Paterson [1] proposed CLPKE and Certificateless
Public Key Signature (CLPKS) schemes, all of which are based on the bilinear
pairing used in Boneh and Franklin’s [5] IBE scheme. We note that their new
construction of a CLPKE scheme given in [2] is also based on the bilinear pairing.

Recently, a generic construction of CLPKE was given by Yum and Lee [17],
who showed that any IBE and normal public key encryption schemes, if combined
together properly, can yield a CLPKE scheme. Although their result indeed
brings some flexibility in constructing CLPKE schemes, one should still expect
a new IBE scheme to emerge to obtain a CLPKE scheme that does not depend
on the bilinear pairings or Cock’s IBE scheme [7].

More recently, Castellucia et al. [6] proposed a new Secret Handshake (SH)
scheme. An interesting feature of this scheme compared with the original SH
scheme [3] is that it does not depend on the bilinear pairings but the key issuing
technique based on the Schnorr signature [15], which is very similar to the “Self-
Certified Keys” technique presented in [13], so that the required computational
cost is twice less expensive than the original one. We note that Castellucia et al.
[6] mentioned that their technique can also be applied to build a Hidden Cre-
dential (HC) scheme [11], however, no further application of it was considered.

Finally, we remark that CLPKC in general and our work are related to the
early works on the “self-certified keys” [10,13,14]. One crucial difference between
schemes based on CLPKC and those based on self-certified keys is that the for-
mer depends more on the “identity-based” property, so that a user does not
need to obtain any (private) key from the KGC before generating a public key.
This property is useful as mentioned in [1], but we emphasize that if one merely
wants the “certificate-less property” for public key encryption, there is an alter-
native method to construct a certificateless public key encryption scheme, which
bypasses the use of IBE. The technique of self-certified keys is such a method
and is similar to our method to construct the CLPKE scheme presented in this
paper. However, we point out that no schemes in [10,13,14] are supported by
formal security analysis. Moreover, the CLPKE scheme presented in this paper
is structurally different from any schemes presented in [10,13,14]. Hence, one
can view our work as formal treatment and extension of the early works on the
self-certified keys.

Our Contributions. In this paper, we elaborate on a new formal model of CLPKE
and construct a CLPKE scheme that does not depend on the bilinear pairings:
We extend the technique of [3,13] non-trivially to the CLPKE setting and con-
struct a new CLPKE scheme which is almost as efficient as the “hashed” ElGa-
mal encryption scheme modified by the Fujisaki-Okamoto transform technique
[8]. We prove in the random oracle model [4] that our scheme is secure against
adaptive chosen ciphertext attacks, relative to the Computational Diffie-Hellman
(CDH) problem.



Certificateless Public Key Encryption Without Pairing 137

2 Definitions

Model. The main goal of CLPKE [1] is to allow a sender to transmit a confidential
message to a recipient by encrypting the message using the recipient’s public key
which does not have to be contained in a certificate issued by CA. As a result, one
can remove the certificate checking process that increases the system complexity.
In spite of the absence of the checking process, the sender is guaranteed that only
the honest recipient who has gone through appropriate authentication procedure
and has obtained a right “partial private key” associated with his identifier ID
from the Key Generation Center (KGC) will be able to decrypt the message.

Our model of CLPKE is very similar to that of original CLPKE [1]. In fact,
the sub-algorithms of our CLPKE, Setup, SetSecretValue, SetPrivateKey, Encrypt
and Decrypt are identical to those of the original CLPKE. Two different algo-
rithms are PartialKeyExtract and SetPublicKey. PartialKeyExtract is similar to the
“Partial Private Key Extract” algorithm of the original CLPKE with a differ-
ence that the output of PartialKeyExtract consists of not only a partial private
key which should be kept secret but a “partial public key” which will be used
to generate a public key later by the user. The only difference between the “Set
Public Key” algorithm of the original CLPKE and SetPublicKey of our CLPKE is
that in our model of CLPKE, the partial public key output by PartialKeyExtract
should be provided as input to SetPublicKey, which makes it impossible for the
user to set a public key if he/she has not contacted the KGC and obtained a
partial private/public pair.

We note that our model of CLPKE is slightly weaker than the one given
in [1] as a user must authenticated himself/herself to the KGC and obtain an
appropriate partial public key to create a public key, while the original CLPKE
does not require a user to contact the KGC to set up his/her public keys. (As
discussed in Section 1, one can view our CLPKE is close to the public key
encryption in the normal PKI setting while Al-Riyami and Paterson’s original
CLPKE of is close to IBE).

However, we argue that our CLPKE does not lose the unique property of
CLPKE that the use of certificates to guarantee the authenticity of public keys
is not required any more, which is the main motivation for CLPKE. Below, we
formally describe our model of CLPKE.

Definition 1 (CLPKE). A generic CLPKE (Certificateless Public Key En-
cryption) scheme, denoted by Π , consists of the following algorithms.

– Setup: The Key Generation Center (KGC) runs this algorithm to generate a
common parameter params and a master key masterKey. Note that params
is given to all interested parties. We write (params, masterKey) = Setup().

– PartialKeyExtract: Taking params, masterKey and an identity ID received
from a user as input, the KGC runs this algorithm to generate a par-
tial private key DID and a partial public key PID. We write (PID, DID) =
PartialKeyExtract(params, masterKey, ID).

– SetSecretValue: Taking params and ID as input, the user runs this algorithm
to generate a secret value sID. We write sID = SetSecretValue(params, ID).



138 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

– SetPrivateKey: Taking params, DID and sID as input, the user runs this al-
gorithm to generate a private key SKID. We write SKID = SetPrivateKey(
params, DID, sID).

– SetPublicKey: Taking params, PID, sID and ID as input, the user runs this
algorithm to generate a public key PKID. We write PKID = SetPublicKey(
params, PID, sID, ID).

– Encrypt: Taking params, ID, PKID, and a plaintext message M as input, a
sender runs this algorithm to create a ciphertext C. We write C = Encrypt(
params, ID, PKID, M).

– Decrypt: Taking params, SKID and the ciphertext C as input, the user as a
recipient runs this algorithm to get a decryption δ, which is either a plaintext
message or a “Reject” message. We write δ = Decrypt(params, SKID, C).

Security Notion. We also modify the security notion for the original CLPKE and
present a new notion, which we call “indistinguishability of CLPKE ciphertexts
under chosen ciphertext attack (IND-CLPKE-CCA)”. We note that the modifi-
cation is very small: In our security notion of CLPKE, the attacker’s “public key
request” queries should be answered by running the PartialKeyExtract algorithm,
which is not needed in the original CLPKE.

Like the security notion for the original CLPKE, we assume two types of
attackers AI and AII . A difference between these two attackers is that AI does
not have access to the master key of KGC while AII does have. Now a formal
definition follows.

Definition 2 (IND-CLPKE-CCA). Let AI and AII denote Type I attacker
and Type II attacker respectively. Let Π be a generic CLPKE scheme. We con-
sider two games “Game I” and “Game II” where AI and AII interact with their
“Challenger” respectively. Note that the Challenger keeps a history of “query-
answer” while interacting with the attackers.

Game I: This is the game in which AI interacts with the “Challenger”:

Phase I-1: The Challenger runs Setup() to generate masterKey and params.
The Challenger gives params to AI while keeping masterKey secret.
Phase I-2: AI performs the following:
• Issuing partial key extraction queries, each of which is denoted by (ID,

“partial key extract”): On receiving each of these queries, the Challenger
computes (PID, DID) = PartialKeyExtract(params, masterKey, ID) and re-
turns it to AI .

• Issuing private key extraction queries, each of which is denoted by (ID,
“private key extract”): On receiving each of these queries, the Chal-
lenger computes (PID, DID) = PartialKeyExtract(params, masterKey, ID)
and sID = SetSecretValue(params, ID). It then computes SKID =
SetPrivateKey(params, DID, sID) and returns it to AI .

• Issuing public key request queries, each of which is denoted by (ID,
“public key request”): On receiving each of these queries, the Chal-
lenger computes (PID, DID) = PartialKeyExtract(params, masterKey, ID)
and sID = SetSecretValue(params, ID). It then computes PKID =
SetPublicKey(params, PID, sID) and returns it to AI .



Certificateless Public Key Encryption Without Pairing 139

• Replacing the User’s public key: AI replaces a public key PKID with its
own at any time.

• Issuing decryption queries, each of which is denoted by (ID, PKID, C,
“decryption”): On receiving such a query, the Challenger finds SKID from
its “query-answer” list for public key request, computes δ = Decrypt(
params, SKID, C), which is either a plaintext message or a “Reject” mes-
sage and returns δ to AI . If the Challenger cannot find SKID, it runs
a special “knowledge extractor” to obtain a decryption δ and returns
it to AI . (As discussed in [1], it is not unreasonable to assume that
the Challenger cannot answer a decryption query when a corresponding
public key has been replaced, and hence returns “Reject”. However, as
also pointed out in [1]), replacing public keys gives a huge power to the
attacker. Hence, we assume that the Challenger uses other means, called
“knowledge extractor” [1], to decrypt a requested ciphertext. Note that
a construction of the knowledge extractor is specific to each CLPKE
scheme).

Phase I-3: AI outputs two equal-length plaintext messages (M0, M1) and a
target identity ID∗. Note that ID∗ has not been queried to extract a partial
private key nor a private key at any time. Note also that ID∗ cannot be
equal to an identity for which both the public key has been replaced and
the partial private key has been extracted. On receiving (M0, M1) and ID∗,
the Challenger picks β ∈ {0, 1} at random and creates a target ciphertext
C∗ = Encrypt(params, PKID∗ , Mβ). The Challenger returns C∗ to AI .
Phase I-4: AI issues queries as in Phase 2. The same rule the game applies
here: ID∗ has not been queried to extract a partial private key nor a private
key at any time; ID∗ cannot be equal to an identity for which both the public
key has been replaced and the partial private key has been extracted. Ad-
ditionally, no decryption queries should be made on C∗ for the combination
of ID∗ and PKID∗ that was used to encrypt Mβ.
Phase I-5: AI outputs its guess β′ ∈ {0, 1}.
Game II: This is the game in which AII interacts with the “Challenger”:

Phase II-1: The Challenger runs Setup() to generate masterKey and params.
The Challenger gives params and masterKey to AII .
Phase II-2: AII performs the following:
• Computing partial key associated with ID: AII computes (PID, DID) =

PartialKeyExtract(params, masterKey, ID).
• Issuing private key extraction queries, each of which is denoted by (ID,

“private key extract”): On receiving each of these queries, the Chal-
lenger computes (PID, DID) = PartialKeyExtract(params, masterKey, ID)
and sID = SetSecretValue(params, ID). It then computes SKID =
SetPrivateKey(params, DID, sID) and returns it to AII .

• Issuing public key request queries, each of which is denoted by (ID, “pub-
lic key request”): On receiving each of these queries, the Challenger
computes DID = PartialKeyExtract(params, masterKey, ID) and sID =



140 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

SetSecretValue(params, ID). It then computes PKID = SetPublicKey(
params, PID, sID) and returns it to AII .

• Issuing decryption queries, each of which is denoted by (ID, PKID,
C, “decryption”): On receiving each of these queries, the Chal-
lenger finds SKID from its “query-answer” list, computes δ =
Decrypt(params, SKID, C), which is either a plaintext message or a “Re-
ject” message, and returns δ to AII .

Phase II-3: AII outputs two equal-length plaintext messages (M0, M1) and
a target identity ID∗. Note that ID∗ has not been issued as a private key
extraction query. On receiving (M0, M1) and ID∗, the Challenger picks β ∈
{0, 1} at random and creates a target ciphertext C∗ = Encrypt(params,
PKID∗ , Mβ). The Challenger returns C∗ to AII .
Phase II-4: AII issues queries as in Phase 2 subject to the same rules.
(That is, ID∗ has not been issued as a private key extraction query). But in
this phase, no decryption queries should be made on C∗ for the combination
of ID∗ and PKID∗ used to encrypt Mβ .
Phase II-5: AII outputs its guess β′ ∈ {0, 1}.

We define Ai’s guessing advantage in Game i, where i ∈ {I, II}, by
AdvIND−CLPKE−CCA

Π,Game i (Ai) = |Pr[β′ = β] − 1
2 |. Ai breaks IND-CLPKE-CCA of

Π with (t, qpaex, qprex, ε) if and only if the guessing advantage of Ai that makes
qpaex partial key extraction and qprex private key extraction queries is greater
than ε within running time t. The scheme Π is said to be (t, qpaex, qprex, ε)-IND-
CLPKE-CCA secure if there is no attacker Ai that breaks IND-CLPKE-CCA of
Π with (t, qpaex, qprex, ε).

Computational Problem. We now review the standard “Computational Diffie-
Hellman (CDH)” problem used in a large number of cryptographic schemes.

Definition 3 (CDH). Let p and q be primes such that q|p − 1. Let g be a
generator of ZZ∗

p. Let A be an attacker. A tries to solve the following problem:
Given (g, ga, gb) for uniformly chosen a, b, c ∈ ZZ∗

q, compute κ = gab.
Formally, we define A’s advantage AdvCDH

ZZ∗
p

(A) by Pr[A(g, ga, gb) = gab]. A
solves the CDH problem with (t, ε) if and only if the advantage of A is greater
than ε within running time t. The CDH problem is said to be (t, ε)-intractable
if there is no attacker A that solves the CDH problem with (t, ε).

We remark that the current CLPKE schemes presented in [1] and [2] all
depend on the “Bilinear Diffie-Hellman (BDH)” problem which is a pairing ver-
sion of the CDH problem used in the construction of Boneh and Franklin’s IBE
scheme [5]. (Informally, the BDH problem is to compute ê(g, g)abc given ga, gb

and gc, where g is a generator, ê denotes a bilinear pairing and a, b, c are chosen
at random from ZZ∗

q).



Certificateless Public Key Encryption Without Pairing 141

3 Our CLPKE Scheme

We now present our CLPKE scheme based on the Schnorr signature [15]. As
mentioned previously, our CLPKE scheme is motivated by the construction of
PKI-enabled encryption scheme given in [6]. However, we apply this scheme non-
trivially to construct an efficient CLPKE scheme: The computational cost for
realizing our scheme is very low due to not only the efficiency brought from
the Schnorr signature but also the effective method that combines the Schnorr
signature and the public key encryption scheme. – We remark that the encryption
algorithm of our CLPKE scheme requires two more modular exponentiations
compared with the “hashed” ElGamal encryption transformed by the technique
proposed by Fujisaki and Okamoto [8]; the decryption algorithm requires one
more exponentiation compared with the same scheme. Below, we describe the
scheme:

– Setup(): Generate two primes p and q such that q|p − 1. Pick a generator
g of ZZ∗

p. Pick x ∈ ZZ∗
q uniformly at random and compute y = gx. Choose

hash functions H1 : {0, 1}∗ × ZZ∗
q → ZZ∗

q , H2 : {0, 1}l0 × {0, 1}l1 → ZZ∗
q and

H3 : ZZ∗
p ×ZZ∗

p → {0, 1}l, where l = l0 + l1 ∈ IN. Return params = (p, q, g, y,
H1, H2, H3) and masterKey=(p, q, g, x, H1, H2, H3).

– PartialKeyExtract(params, masterKey, ID): Pick s ∈ ZZ∗
q at random and com-

pute w = gs and t = s + xH1(ID, w). Return (PID, DID) = (w, t).
– SetSecretValue(params, ID): Pick z ∈ ZZ∗

q at random. Return sID = z.
– SetPrivateKey(params, DID, sID): Set SKID = (sID, DID) = (z, t). Return SKID.
– SetPublicKey(params, PID, sID, ID): Let PID = w and sID = z. Compute µ =

gz and set PKID = (w, µ). Return PKID.
– Encrypt(params, ID, PKID, M) where the bit-length of M is l0: Parse PKID

as (w, µ) and compute γID = wyH1(ID,w). Pick σ ∈ {0, 1}l1 at random, and
compute r = H2(M, σ). Compute C = (c1, c2) such that

c1 = gr; c2 = H3(k1, k2) ⊕ (M ||σ),

where k1 = µr and k2 = γr
ID. (Note that “||” denotes“concatenation”. Note

also that the bit-length of (M ||σ) equals to l = l0 + l1). Return C.
– Decrypt(params, SKID, C): Parse C as (c1, c2) and SKID as (z, t). Compute

M ||σ = H2(cz
1, c

t
1) ⊕ c2.

If gH2(M,σ) = c1, return M . Else return “Reject”.

It can be easily seen that the above decryption algorithm is consistent: If
C = (c1, c2) is a valid cipheretxt, we obtain

H2(cz
1, c

t
1) ⊕ c2 = H2(grz, grt) ⊕ H2(µr, γr

ID) ⊕ (M ||σ)
= H2((gz)r, (gs+xH1(ID,w))r) ⊕ H2(µr, γr

ID) ⊕ (M ||σ)
= H2(µr, (gsyH1(ID,w))r) ⊕ H2(µr, γr

ID) ⊕ (M ||σ)
= H2(µr, γr

ID) ⊕ H2(µr, γr
ID) ⊕ (M ||σ) = M ||σ.



142 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

4 Security Analysis

Basically, the main idea of the security proofs given in this section is to have the
CDH attacker B simulate the “environment” of the Type I and Type II attackers
AI and AII respectively until it can compute a Diffie-Hellman key gab of ga and
gb using the ability of AI and AII . As described in Definition 2, AI and AII will
issue various queries such as random oracle, partial key extraction, public key
request, private key extraction and decryption queries. B will respond to these
queries with the answers identically distributed as those in the real attack.

We note that for the attacker AI , B sets ga as a part of the challenge ci-
phertext and gb as a KGC’s public key. On the other hand, for the attacker AII ,
B sets ga as a part of the challenge ciphertext but uses gb to generate a public
key associated with the challenge identity. The KGC’s public key is set up as
gx where B knows random x ∈ ZZ∗

q . This way, B can give the master key of the
KGC to AII .

We remark that care must be taken when the answers for the attackers’
public key request queries are simulated. One reason is that a public key in our
scheme is related to not only a private key but also partial private and public
keys obtained from the KGC. The other reason is that during the attack, the
attackers are entitled to see (or receive) any public keys even associated with
the target identity. The proofs given in this section address these two issues.

Theorem 1. The CLPKE scheme based on the Schnorr signature is IND-
CLPKE-CPA secure in the random oracle model, assuming that the CDH prob-
lem is intractable.

In order to prove the above theorem, we prove two lemmas. Lemma 1 shows
that our CLPKE scheme is secure against the Type I attacker whose behavior
is as described in Definition 2.

Lemma 1. The CLPKE scheme based on the Schnorr signature is (t, qH1 , qH2 ,
qH3 , qpaex, qprex, ε)-IND-CLPKE-CCA secure against the Type I attacker AI in
the random oracle model assuming that the CDH problem is (t′, ε′)-intractable,
where ε′ > 1

qH3

(
2ε

e(qprex+1) −
qH2
2l1 − qDqH2

2l1 − qD

q

)
and t′ > t + (qH1 + qH2)O(1) +

qH3(2TEX +O(1))+ (qpaex + qprex)(TEX +O(1))+ qD(2TEX +O(1)) where TEX

denotes the time for computing exponentiation in ZZ∗
p.

Proof. Let AI be an IND-CLPKE-CCA Type I attacker. The number of queries
to the oracles that AI makes and its running time are as defined in the above
theorem statement. We show that using AI , one can construct an attacker B
that can solve the CDH problem (Definition 3).

Suppose that B is given (p, q, g, ga, gb) as an instance of the CDH problem.
(Note that the number of queries to the oracles that B makes and its running
time are as defined in the above theorem statement). B can simulate the Chal-
lenger’s execution of each phase of IND-CLPKE-CCA game for AI as follows.
[Simulation of Phase I-1] B sets y = gb and gives AI (p, q, g, y, H1, H2, H3) as
params, where H1, H2 and H3 are random oracles controlled by B as follows.



Certificateless Public Key Encryption Without Pairing 143

On receiving a query (ID, w) to H1:

1. If 〈(ID, w), e〉 exists in H1List, return e as answer.
2. Otherwise, pick e ∈ ZZ∗

q at random, add 〈(ID, w), e〉 to H1List and return e
as answer.

On receiving a query (M, σ) to H2:

1. If 〈(M, σ), r〉 exists in H2List, return r as answer.
2. Otherwise, pick r ∈ ZZ∗

q at random, add 〈(M, σ), r〉 to H2List and return r as
answer.

On receiving a query (k1, k2) to H3:

1. If 〈(k1, k2), R〉 exists in H3List, return R as answer.
2. Otherwise, pick R ∈ {0, 1}l at random, add 〈(k1, k2), R〉 to H3List and return

R as answer.

[Simulation of Phase I-2] B answers AI ’s queries as follows.

On receiving a partial key extraction query (ID, “partial key extract”):

1. If 〈ID, (w, t)〉 exists in PartialKeyList, return (w, t) as answer.
2. Otherwise, do the following:

(a) Pick t, e ∈ ZZ∗
q at random and compute w = gty−e; add 〈(ID, w), e〉

to H1List (That it, e is defined to be H1(ID, w).) and 〈ID, (w, t)〉 to
PartialKeyList; return (w, t) as answer.

Note from the above simulation that we have wyH1(ID,w) = gty−eye = gt,
which holds in the real attack too.
On receiving a public key request query (ID, “public key request”):

1. If 〈ID, (w, µ), coin〉 exists in PublicKeyList, return PKID = (w, µ) as answer.
2. Otherwise, pick coin ∈ {0, 1} so that Pr[coin = 0] = δ. (δ will be determined

later).
3. If coin = 0, do the following:

(a) If 〈ID, (w, t)〉 exists in PartialKeyList, pick z ∈ ZZ∗
q at random and com-

pute µ = gz; add 〈ID, (z, t)〉 to PrivateKeyList and 〈ID, (w, µ), coin〉 to
PublicKeyList; return PKID = (w, µ) as answer.

(b) Otherwise, run the above simulation algorithm for partial key extraction
taking ID as input to get a partial key (w, t); pick z ∈ ZZ∗

q at random and
compute µ = gz; add 〈ID, (z, t)〉 to PrivateKeyList and 〈ID, (w, µ), coin〉
to PublicKeyList; return PKID = (w, µ) as answer.

4. Otherwise (if coin = 1), pick s, z ∈ ZZ∗
q at random and compute w = gs

and µ = gz; add 〈ID, (z, ?), s〉 to PrivateKeyList and 〈ID, (w, µ), coin〉 to
PublicKeyList; return PKID = (w, µ) as answer.



144 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

On receiving a private key extraction query (ID, “private key extract”):

1. Run the above simulation algorithm for public key request taking ID as input
to get a tuple 〈ID, (w, µ), coin〉 ∈ PublicKeyList.

2. If coin = 0, search PrivateKeyList for a tuple 〈ID, (z, t)〉 and return SKID =
(z, t) as answer.

3. Otherwise, return “Abort” and terminate.

On receiving a decryption query (ID, PKID, C, “decryption ”), where C = (c1, c2)
and PKID = (w, µ):

1. Search PublicKeyList for a tuple 〈ID, (w, µ), coin〉.
2. If such a tuple exists and coin = 0

(a) Search PrivateKeyList for a tuple 〈ID, (z, t)〉. (Note that from the simu-
lation of public key request, 〈ID, (z, t)〉 must exist in PrivateKeyList as
long as one can find 〈ID, (w, µ), coin〉 with coin = 0 in PublicKeyList).

(b) Compute M ||σ = H3(cz
1, c

t
1) ⊕ c2.

(c) If c1 = gH2(M,σ), return M and “Reject” otherwise.
3. Else if such a tuple exists and coin = 1

(a) Run the above simulation algorithm for H1 to get a tuple 〈(ID, w), e〉.
(b) If there exist 〈(M, σ), r〉 ∈ H2List and 〈(k1, k2), R〉 ∈ H3List such that

c1 = gr, c2 = R ⊕ (M ||σ), k1 = µr and k2 = γr
ID,

where γID = wye, return M and “Reject” otherwise. We remark that
the pair 〈(M, σ), r〉 that satisfies the above condition uniquely exists in
H2List as the encryption function is injective with respect to (ID, w).

4. Else if such a tuple does not exist (This is the case when the public key of a
target user is replaced by AI)
(a) Run the above simulation algorithm for H1 to get a tuple 〈(ID, w), e〉.
(b) If there exist 〈(M, σ), r〉 ∈ H2List and 〈K, R〉 ∈ H3List such that

c1 = gr, c2 = R ⊕ (M ||σ), k1 = µr and k2 = γr
ID,

where γID = wye, return M and “Reject” otherwise.

[Simulation of Phase I-3] B answers AI ’s queries as follows.
On receiving a challenge query (ID∗, (M0, M1)):

1. Run the above simulation algorithm for public key request taking ID∗ as
input to get a tuple 〈ID∗, (w∗, µ∗), coin〉 ∈ PublicKeyList.

2. If coin = 0 return “Abort” and terminate.
3. Otherwise, do the following:

(a) Search PrivateKeyList for a tuple 〈ID∗, (z∗, ?), s∗〉.
– In this case, we know that µ∗ = gz∗

and w∗ = gs∗
.

(b) Pick σ∗ ∈ {0, 1}l1, c∗2 ∈ {0, 1}l and β ∈ {0, 1} at random.
(c) Set c∗1 = ga , γID∗ = w∗ye∗

and e∗ = H1(ID∗, w∗).



Certificateless Public Key Encryption Without Pairing 145

(d) Define a = H2(Mβ, σ∗) and H3(µ∗a, γa
ID∗) = c∗2 ⊕ (Mβ ||σ∗). (Note that

B does not know “a”).
4. Return C∗ = (c∗1, c

∗
2) as a target ciphertext.

* Note that by the construction given above, c∗2 = H3(µ∗a, γa
ID∗)⊕ (Mβ||σ∗) =

H3(gaz∗
, ga(s∗+bH1(ID∗,gs∗ ))) ⊕ (Mβ||σ∗).

[Simulation of Phase I-4] In this phase, B answers AI ’s queries in the same way
as it did in Phase I-2. Note that ID∗ cannot be issued as a partial key extraction
query and a private key extraction query while AI can freely replace public keys.
Note also that no decryption queries should be made on C∗ for the combination
of ID∗ and PKID∗ = (w∗, µ∗) that was used to encrypt Mβ. The decryption
queries can be answered in the same way as in Phase 2. We just repeat the
following important case:
On receiving a decryption query (ID∗, PKID∗ C), where C = (c1, c2) and PKID∗ =
(w∗, µ∗) (In this case, we know that 〈ID∗, (w∗, µ∗), coin〉 exists in PublicKeyList
with coin = 1).:

– If there exist 〈(ID∗, w∗), e∗〉 ∈ H1List, 〈(M, σ), r〉 ∈ H2List and 〈(k1, k2), R〉 ∈
H3List such that

c1 = gr, c2 = R ⊕ (M ||σ) , k1 = µr and k2 = γr
ID∗ ,

where γID∗ = w∗ye∗
, return M and “Reject” otherwise. Again, we remark

that the pair 〈(M, σ), r〉 that satisfies the above condition uniquely exists in
H2List as the encryption function is injective with respect to (ID∗, w).

[Simulation of Phase I-5] When AI outputs its β′, B returns the set

S = {
( k2i

gas∗

)1/e∗

|k2i is the second component of queries to H3 for i ∈ [1, qH3 ]

such that e∗= H1(ID∗, w∗) and k1i = gaz∗
where k2i is the first component

of queries to H3}.
[Analysis] We first evaluate the simulations of the random oracles given above.
From the construction of H1, it is clear that the simulation of H1 is perfect. As
long as AI does not query (Mβ , σ∗) to H2 nor gaz∗

(def= µ∗) and ga(s∗+be∗)(def=

(w∗ye∗
)a) to H3, where σ∗, z∗ and s∗ are chosen by B in Phase I-3 and e∗ def=

H1(ID∗, gs∗
), the simulations of H2 and H3 are perfect. By AskH∗

3 we denote the
event that (µ∗a, (w∗ye∗

)a) has been queried to H3. Also, by AskH∗
2 we denote

the event that (Mβ , σ∗) has been queried to H2.
Next, one can notice that the simulated target ciphertext is identically dis-

tributed as the real one from the construction.
Now, we evaluate the simulation of the decryption oracle. If a public key PKID

has not been replaced nor PKID has not been produced under coin = 1, the sim-
ulation is perfect as B knows the private key SKID corresponding to PKID. Oth-
erwise, simulation errors may occur while B running the decryption oracle sim-
ulator specified above. However, these errors are not significant as shown below:



146 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

Suppose that (ID, PKID, C), where C = (c1, c2) and PKID = (w, µ), has been
issued as a valid decryption query. Even if C is valid, there is a possibility that
C can be produced without querying (µr, (wye)r) to H3, where e = H1(ID, w)
and r = H2(M, σ). Let Valid be an event that C is valid. Let AskH3 and AskH2

respectively be events that (µr, (wye)r) has been queried to H3 and (M, σ) has
been queried to H2 with respect to C = (c1, c2) = (gr, (M ||σ) ⊕ H3(µr, (wye)r)
and PKID = (w, µ), where r = H2(M, σ) and e = H1(ID, w). We then have

Pr[Valid|¬AskH3] ≤ Pr[Valid ∧ AskH2|¬AskH3] + Pr[Valid ∧ ¬AskH2|¬AskH3]
≤ Pr[AskH2|¬AskH3] + Pr[Valid|¬AskH2 ∧ ¬AskH3]

≤ qH2

2l1
+

1
q
.

Let DecErr be an event that Valid|¬AskH3 happens during the entire simula-
tion. Then, since qD decryption oracle queries are made, we have Pr[DecErr] ≤
qDqH2

2l1 + qD

q .
Now define an event E to be (AskH∗

3 ∨ (AskH∗
2 |¬AskH∗

3) ∨ DecErr)|¬Abort,
where Abort denotes an event that B aborts during the simulation. (Notice that
AskH∗

2 and AskH∗
3 are as defined above in the beginning).

If E does not happen, it is clear that AI does not gain any advantage greater
than 1/2 to guess β due to the randomness of the output of the random oracle
H3. Namely, we have Pr[β′ = β|¬E] ≤ 1

2 . Hence, by splitting Pr[β′ = β], we
obtain

Pr[β′ = β] = Pr[β′ = β|¬E] Pr[¬E] + Pr[β′ = β|E] Pr[E]

≤ 1
2

Pr[¬E] + Pr[E] =
1
2

+
1
2

Pr[E]

and

Pr[β′ = β] ≥ Pr[β′ = β|¬E] Pr[¬E] =
1
2
− 1

2
Pr[E].

By definition of ε, we then have

ε <
∣∣Pr[β′ = β] − 1

2

∣∣ ≤ 1
2

Pr[E]

≤ 1
2 Pr[¬Abort]

(
Pr[AskH∗

3 ] + Pr[AskH∗
2 |¬AskH∗

3 ] + Pr[DecErr]
)
.

First, notice that the probability that B does not abort during the simulation
(the probability that ¬Abort happens) is given by δqprv (1−δ) which is maximized
at δ = 1−1/(qprex +1). Hence we have Pr[¬Abort] ≤ 1

e(qprex+1) , where e denotes
the base of the natural logarithm.

Since Pr[AskH∗
2 |¬AskH∗

3 ] ≤ qH2
2l1 and Pr[DecErr] ≤ qDqH2

2l1 + qD

q , we obtain

Pr[AskH∗
3 ] ≥

2ε

e(qprex + 1)
− qH2

2l1
− qDqH2

2l1
− qD

q
.



Certificateless Public Key Encryption Without Pairing 147

Meanwhile, if AskH∗
3 happens then B will be able to solve the CDH problem

by picking
(

k2i

gas∗

)1/e∗

from the set S defined in the simulation of Phase I-5.

Hence we have ε′ ≥ 1
qH3

Pr[AskH∗
3 ]. Consequently, we obtain

ε′ >
1

qH3

( 2ε

e(qprex + 1)
− qH2

2l1
− qDqH2

2l1
− qD

q

)
.

The running time of the CDH attacker B is t′ > t + (qH1 + qH2)O(1) +
qH3(2TEX + O(1)) + O(1)) + (qpaex + qprex)(TEX + O(1)) + qD(2TEX + O(1))
where TEX denotes the time for computing exponentiation in ZZ∗

p.

The following lemma shows that our CLPKE scheme is secure against the
Type II attacker.

Lemma 2. The CLPKE scheme based on the Schnorr signature is (t, qH1 , qH2 ,
qH3 , qpaex, qprex, ε)-IND-CLPKE-CCA secure against the Type II attacker AII in
the random oracle model assuming that the CDH problem is (t′, ε′)-intractable,
where ε′ > 1

qH3

(
2ε

e(qprex+1) −
qH2
2l1 − qDqH2

2l1 − qD

q

)
and t′ > t + (qH1 + qH2)O(1) +

qH3(TEX + O(1)) + (qpaex + qprex)(TEX + O(1)) + qD(2TEX + O(1)) where TEX

denotes the time for computing exponentiation in ZZ∗
p.

Due to lack of space, the proof of the above theorem is given in the full
version of this paper.

5 Concluding Remarks

We have presented the first CLPKE scheme that does not depend on the pairing.
We have proven in the random oracle that that the scheme is IND-CLPKE-CCA-
secure (Definition 2), relative to the hardness of the standard CDH problem.

We remark that one may also construct a “Certificate-Based Encryption
(CBE) [9]” scheme without pairing using a similar technique presented in this
paper, which will be our future work.

Acknowledgement

The authors are grateful to the anonymous referees for their helpful comments.

References

1. S. Al-Riyami and K. Paterson, Certificateless Public Key Cryptography, A full
version, A short version appeared at Asiacrypt 2003, LNCS 2894, pp. 452–473,
Springer-Verlag, 2003.

2. S. Al-Riyami and K. Paterson, CBE from CLPKE: A Generic Construction and
Efficient Schemes, In PKC ’05, LNCS 3386, pp. 398–415, Springer-Verlag, 2005.



148 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

3. D. Balfanz, G. Durfee, N. Shankar, D. K. Smetters, J. Staddon, and H.C. Wong,
Secret Handshakes from Pairing-Based Key Agreements, In IEEE Symposium on
Security and Privacy ’03, pp. 180–196, IEEE Press, 2003.

4. M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols, In ACM CCCS ’93, pp. 62–73, 1993.

5. D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, In
Crypto ’01, LNCS 2139, pp. 213–229, Springer-Verlag, 2001.

6. C. Castellucia, S. Jarecki and G. Tsudik, Secret Handshake from CA-Oblivious
Encryption, In Asiacrypt ’04, LNCS 3329, pp. 293–307, Springer-Verlag, 2004.

7. C. Cocks, An Identity Based Encryption Scheme Based on Quadratic Residues, In
IMA ’01, LNCS 2260, pp. 360–363, Springer-Verlag, 2001.

8. E. Fujisaki and T. Okamoto, Secure Integration of Asymmetirc and Symmetric
Encryption Schemes, In Crypto ’99, LNCS 1666, pp. 537–554, Springer-Verlag,
1999.

9. C. Gentry, Certificate-Based Encryption and the Certificate Revocation Problem,
In Eurocrypt ’03, LNCS 2656, pp. 272–293, Springer-Verlag, 2003.

10. M. Girault, Self Certified Public Keys, In Eurocrypt ’91, LNCS 547, pp. 490–497,
Springer-Verlag, 1992.

11. J. Holt, R. Bradshaw, K. E. Seamons and H. Orman, Hidden Credentials, In ACM
Workshop on Privacy in the Electronic Society (WPES) ’03, pp. 1–8, ACM Press,
2003.

12. MIRACL, Multiprecision Integer and Rational Arithmetic C/C++ Library,
http://indigo.ie/ mscott/

13. H. Petersen and P. Horster, Self-Certified Keys – Concepts and Applications, In
International Conference on Communications and Multimedia Security, Chapman
and Hall, 1997.

14. S. Saeednia, Identity-Based and Self-Certified Key-Exchange Protocols, In ACISP
’97, LNCS 1270, pp. 303–313, Springer-Verlag, 1997.

15. C. P. Schnorr, Efficient Identifications and Signatures for Smart Cards, In Crypto
’89, LNCS 435, pp. 239–251, Springer-Verlag, 1990.

16. A. Shamir: Identity-based Cryptosystems and Signature Schemes, In Crypto ’84,
LNCS 196, pp. 47–53, Springer-Verlag, 1984.

17. D. Yum and P. Lee, Generic Construction of Certificateless Encryption, In ICCSA
’04, LNCS 3043, pp. 802–811, Springer-Verlag, 2004.


	Introduction
	Definitions
	Our CLPKE Scheme
	Security Analysis
	Concluding Remarks



