
Composing Transitions into Transactions in
UML Diagrams

Júlio Pereira Machado1 and Paulo Blauth Menezes2

1 Faculdade de Informática, Pontif́ıcia Universidade,
Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil

juliopm@inf.pucrs.br
2 Instituto de Informática, Universidade Federal do Rio Grande do Sul,

Porto Alegre, RS, Brasil
blauth@inf.ufrgs.br

Abstract. When modeling concurrent or parallel systems, we must be
aware that basic activities of each system may be constituted by smaller
activities, i.e. transitions may be conceptually refined into transactions.
Nevertheless, the Unified Modeling Language seems to lack composi-
tional constructs for defining atomic actions/activities/operations. We
discuss proper extensions for UML behavioral diagrams that are able to
cope with the concept of transaction. Transactions are formally defined
through a special morphism between automata in a semantic domain
called Nonsequential Automata.

1 Introduction

The Unified Modeling Language (UML) [1] may be used to describe both the
structure and behavior of object-oriented systems using a combination of nota-
tions. For the modeling of the dynamic behavior, a number of different models
are offered such as interaction, state and activity diagrams.

When modeling concurrent or parallel systems with such diagrams, we must
be aware that basic activities of each system may be constituted by smaller
activities, i.e. transitions may be conceptually refined into transactions. This
important notion is present in different fields of computer science like operating
system’s primitives, implementation of synchronization methods for critical re-
gions, database management systems, and protocols, just no name a few. In this
sense, when modeling a computational process, we need means of composing sub-
activities both in a non atomic or atomic way. Nevertheless, the UML seems to
lack compositional constructs for defining atomic actions/activities/operations.

In this work1, we concentrate on describing groups of sequential or concurrent
activities that are responsible for performing a computation, and we address
the issue of modeling transactions. We remark that in our setting the term

1 This work was partially supported by CTXML/Microsoft/PUCRS, CNPq (Projects
HoVer-CAM, GRAPHIT, E-Automaton) and FINEP/CNPq (Project Hyper-Seed)
in Brazil.

R. Moreno Dı́az et al. (Eds.): EUROCAST 2005, LNCS 3643, pp. 50–55, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Composing Transitions into Transactions in UML Diagrams 51

“transaction” denotes a certain activity of the system that might be composed by
many, possibly concurrent, subactivities. Moreover, we require this composition
of activities to be considered atomic.

2 Nonsequential Automata

Nonsequential Automata [2,3] constitute a non interleaving semantic domain,
with its foundations on category theory, for reactive, communicating and con-
current systems. It follows the so-called “Petri nets are monoids” approach [4]
and is similar to Petri nets, but it is a more concrete model - it can be seen as
computations from a given place/transition net. In the next definitions CMon
denotes the category of commutative monoids and k ∈ {0, 1} (for simplicity, we
omit that k ∈ {0, 1}).

A nonsequential automaton NA = 〈V, T, δ0, δ1, ι, L, lab〉 is such that V =
〈V, ⊕, 0〉, T = 〈T, ||, τ〉, L = 〈L, ||, τ〉 are CMon-objects of states, transitions
and labels respectively, δ0, δ1 : T → V are CMon-morphisms called source and
target respectively, ι : V → T is a CMon-morphism for mapping identities, and
lab : T → L is a CMon-morphism for labeling transitions such that lab(t) = τ
whenever there is v ∈ V where ι(v) = t. Therefore, a nonsequential automaton
can be seen as NA = 〈G, L, lab〉 where G = 〈V, T, δ0, δ1, ι〉 is a reflexive graph
internal to CMon representing the automaton shape, L is a commutative monoid
representing the labels of transitions and lab is the labeling morphism associating
a label to each transition.

According to the definition, the automaton consists of a reflexive graph with
monoidal structure on both states and transitions, initial and final states and
labeling on transitions. The interpretation of a structured state is the same as in
Petri nets: it is viewed as a “bag” of local states representing a notion of tokens to
be consumed or produced. For example, 〈{A, B, C}⊕, {t, u}||, δ0, δ1, ι, {t, u}||, lab〉
with δ0, δ1, ι determined by transitions t : A → B, u : B → C, and labeling
t �→ t, u �→ u, is represented in figure 1 (identity arcs are omitted and, for
a given node A and arcs t : X → Y and ιA : A → A, the structured arc
t||ιA : X ⊕ A → Y ⊕ A is simply noted t : X ⊕ A → Y ⊕ A). This nonsequential
automaton was not completely drawn as it has infinite distinguished nodes, for
they are elements of a freely generated monoid chosen to represent its states.

We are able to define atomic composition of transitions through the con-
cept of refinement. It is defined as a special morphism of automata where the
target one (more concrete) is enriched with its computational closure (all the
conceivable sequential and nonsequential computations that can be split into
permutations of original transitions). Considering the previous nonsequential
automaton its computational closure is also partially depicted in figure 1 (added
transitions were drawn with a dotted pattern).

The computational closure (tc) of a nonsequential automaton is formally de-
fined as the composition of two adjoint functors between the NAut category and
the category CNAut of nonsequential automata enriched with it computations:
the first one (nc) basically enriches an automaton with a composition operation

52 J.P. Machado and P.B. Menezes

Fig. 1. Nonsequential automaton with computational closure (left) and refinement
morphism (right)

on transitions, and the second functor (cn) forgets about the composition oper-
ation. Then, the refinement morphism ϕ from NA into (the computations of)
NA′ can be defined as ϕ : NA → tcNA′. Both functors were presented in [5] and
due to limitations are not being rephrased here. The transitive closure functor is
tc = cn ◦ nc : NAut → NAut. To illustrate the refinement morphism, given two
nonsequential automata NA and NA′ with free monoids on states and labeled
transitions respectively induced by transitions t : X → Y , and t0 : A → C,
t1 : B → D, suppose we want to build a transaction containing both t0 and t1.
First we apply the transitive closure functor tc. For the last step we build the
refinement morphism by mapping the corresponding states and transitions. The
refinement ϕ : NA → tcNA′ is given by X �→ A ⊕ B, Y �→ C ⊕ D, t �→ t0||t1
(see figure 1 - right). Notice that due to the equations, we actually get a class of
transitions containing t0||t1, t0; t1 and t1; t0, represented as t0||t1 in the figure.

3 Transactions in UML Diagrams

In order to correctly introduce the notion of transactions, we need to analyze
the UML official documentation. The UML specification by OMG [6,7] posses a
semi-formal semantics, composed by a set of metalanguage, restrictions and text
in natural language. The metalanguage is basically a set of class diagrams which
describe the basic building blocks of UML models (it can be seen as the abstract
syntax of the language). The Object Constraint Language (OCL) further defines
constraints over models so they can be considered well-formed.

In our approach, a basic set of metamodel elements is selected. The idea is
to focus only on constructs for exposing the behavior (to be understood as a se-
quence of observable actions) of software artifacts. From this set, we extend the
metamodel with elements denoting atomic composites. The graphical notations
for the new composites are based on the nonatomic ones and are further dec-
orated with proper stereotypes. Also, new OCL expressions are built to define
the new constraints over atomic compositions. One example of a new constraint
for the atomic composite state in sate diagrams is the one that does not al-
low internal states to be interrupted by explicit external events. Finally, the

Composing Transitions into Transactions in UML Diagrams 53

Fig. 2. Semantic mapping examples

Fig. 3. UML activity diagram without (left) and with composite state (center) , and
nonsequential automaton for its semantics (right)

well-formed models are mapped to nonsequential automata, thus formally defin-
ing its semantics. We define one new atomic composite for activity diagrams,
state diagrams and sequence diagrams, but due to space limitations, our dis-
cussion and working example are based only on activity diagrams. A similar
approach for state and sequence diagrams have been employed.

Activity diagrams are one of the means for describing behavior of systems
within UML focused on the flow of control from activity to activity. The most ba-
sic node is the action node, which represents an atomic action. Activities are rep-

54 J.P. Machado and P.B. Menezes

resented by nonatomic composites of sequential or concurrent actions/activities.
The control flow is described by special nodes as fork/join for concurrency, deci-
sion/merge for alternative paths of execution and initial/final nodes. Our work-
ing example (figure 3 - left) depicts a simple activity diagram for a sequence of
operations in a pseudo programing language. Suppose we are interested in defin-
ing the sequential sequence of actions “Eval Y” and “Attrib Y” as atomic. To
overcome the lack of an atomic activity composite, we introduce a new notation
based on the idea of atomic transaction. The new composite activity is decorated
with the stereotype << transaction >> as depicted in figure 3 (center).

The semantics for activity diagrams take into account the fact it comprises
a token game similar to Petri nets. So, the semantic mappings from activity
diagrams into nonsequential automata are targeted into constructing local tran-
sitions for a nonsequential automaton. Before applying the mapping we need
to transform the activity diagram in such a way each action node has only one
incoming/outgoing edge. We do this as a precaution to avoid misinterpretation
of activities control flow because implicit merging/joining of edges has changed
from previous UML versions. Each action node consumes/produces control to-
kens as the steps of computation progresses through the activity diagram. For
nonsequential automata, this semantics belongs to transitions. Thus, each action
node corresponds to a nonsequential automaton transition, whose origin denotes
the necessary tokens for its firing, and whose destiny denotes the tokens pro-
duced after its firing. Edges and control nodes are mapped to a consistent set of
nonsequential automaton states according to its purpose. Figure 2 depicts the
resulting states and transitions in a nonsequential automaton.

The central core of the composite transaction node makes use of nonsequen-
tial automata refinement. The source automaton corresponds to the basic trans-
lation using the previous mappings, where the composite node is viewed as only
one nonsequential automaton transition. The target automaton corresponds to
the translation taking into account the subactivity nodes of the composite. The
refinement then maps the more abstract transition into the concrete implemen-
tation of the transaction obtained via the computational closure of the target
automaton. Figure 3 partially depicts the target nonsequential automaton for our
working example of activity diagrams. Notice it explicits all possible computa-
tional paths, including the transaction state represented by the atomic sequential
composition Evaly; Atriby.

4 Concluding Remarks

We believe transactions are an important part of today systems and they de-
serve a first class mechanism in modeling languages, especially UML. Following
that premise, this work presented an extension to UML diagrams centered on
constructions for defining atomic composition of actions/activities/operations.
Its semantics were defined as nonsequential automata refinement morphisms.

Other approaches to translating UML diagrams into formal models have been
based on Petri nets [8]. For example, [9] describes a formal translation of activity

Composing Transitions into Transactions in UML Diagrams 55

and collaboration diagrams into place/transition Petri nets and [10] compares
different proposals for the semantics based on Petri nets. Also, other works have
used formal methods to verify the behavior of UML specifications [11,12]. The
main differences between this proposal and related works may be summarized as
follows: we are based on the UML 2.0 specification, in which activity diagrams
have been decoupled from state diagrams; the applied semantic domain is com-
positional, in contrast to domains based on Petri nets or statecharts semantics;
we are dealing with mechanisms for atomic compositions and not just nonatomic
composites.

References

1. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. 2 edn. Addison-Wesley (2004)

2. Menezes, P.B., Costa, J.F.: Compositional reification of concurrent systems. Jour-
nal of the Brazilian Computer Society 2 (1995) 50–67

3. Menezes, P.B., Costa, J.F., Sernadas, A.S.: Refinement mapping for general (dis-
crete event) system theory. In: Lecture Notes in Computer Science - 5th Interna-
tional Conference on Computer Aided Systems Theory and Technology. Volume
1030., Springer-Verlag (1996) 103–116

4. Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computation
88 (1990) 105–155

5. Machado, J.P., Menezes, P.B.: Modeling transactions in uml activity diagrams via
nonsequential automata. In: Actas de la XXX Conferencia Latinoamericana de
Informatica, CLEI (2004) 543–553

6. OMG: Uml 2.0 superstructure ftf. Technical Report ptc/04-10-02, Object Man-
agement Group (2004)

7. OMG: Uml 2.0 infrastructure final adopted specifcation. Technical Report ptc/03-
09-15, Object Management Group (2003)

8. Reisig, W.: Petri Nets: an introduction. Volume 4 of Eatcs Monographs on Theo-
retical Computer Science. Springer-Verlag (1985)

9. Gehrke, T., Goltz, U., Wehrheim, H.: The dynamic models of UML: Towards a
semantics and its application in the development process. Technical Report 11/98,
Institut fur Informatik, Universitat Hildesheim (1998)

10. Eshuis, R., Wieringa, R.: Comparing petri net and activity diagram variants for
workflow modelling - a quest for reactive petri nets. In: Lecture Notes in Computer
Science - Petri Net Technology for Communication Based Systems. Volume 2472.,
Springer-Verlag (2003) 321–351

11. Shen, W., Compton, K., Huggins, J.: A validation method for uml model based
on abstract state machines. In: Proceedings of EUROCAST. (2001) 220 – 223

12. Knapp, A., Merz, S.: Model checking and code generation for uml state machines
and collaborations. In: Proceedings of 5th Workshop on Tools for System Design
and Verification. (2002) 59 – 64

	Introduction
	Nonsequential Automata
	Transactions in UML Diagrams
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

