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Abstract. A network consisting of two Stein-type neuronal units is an-
alyzed under the assumption of a complete interaction between the neu-
rons. The firing of each neuron causes a jump of constant amplitude of
the membrane potential of the other neuron. The jump is positive or neg-
ative according to whether the firing neuron is excitatory or inhibitory.

Making use of a simulation procedure designed by ourselves, we study
the interspike intervals of the two neurons by means of their histograms,
of some descriptive statistics and of empirical distribution functions. Fur-
thermore, via the crosscorrelation function, we investigate the synchro-
nization between the neurons firing activity in the special case when one
neuron is excitatory and the other is inhibitory.

1 Introduction

The dynamics of a pair of Stein’s neuronal units serially connected has been
recently analyzed under the hypothesis that they are subject to excitatory and
inhibitory stimuli with constant or alternating rates ([6], [7]). Making use of an
ad hoc simulation procedure designed by ourselves, various quantitative results
have been already obtained. In particular, the existence has been disclosed of
an “optimal” value for the amplitude γ of the jumps of the membrane potential
of the second unit (the “receiving neuron”) attained as effect of the firing of
the first unit (the “sending neuron”). We also studied the reaction time, defined
as the random time elapsing between a firing of the sending neuron and the
subsequent firing of the receiving neuron. The reaction times have been analyzed
in [7], under the assumption of constant inhibitory rate, for both constant and
alternating excitatory rates, with emphasis on the effects of various choices of γ
and of the amplitude of the refractory period.

The model described in [6] and [7] is re-considered here under the novel
assumption that a complete interaction between the two neurons exists. The
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effect of the firing of each neuron is a sudden constant magnitude jump of the
membrane potential of the other neuron.

By means of our simulations, we obtain the neurons interspike intervals (ISIs)
histograms and their empirical distribution functions. The synchronization of the
firing activity of the neurons is studied in the special case in which one neuron
is excitatory and the other is inhibitory.

We point out that the analysis of firing activity of coupled neurons under
various mutual interactive paradigms is particularly relevant in various respects:
for instance, it is known that the cerebellar cortex includes pairs of coupled
neurons, which has motivated some previous studies (see, for instance, [4] and
[5]). Synchronization will be studied via the firing times crosscorrelation function
(see [2]). Furthermore, by means of the autocorrelation function, we have been
able to disclose particular patterns of spikes elicited by each single neuron.

2 The Method

In previous papers we analyzed the behavior of two coupled neuronal units that
interact according to a sending-receiving model, assuming that an unidirectional
connection from the first to the second neuron exists. We now present a statistical
analysis of the firing activity of the two neurons under the hypothesis of complete
interaction. For each neuronal unit, changes in the membrane potential between
two consecutive spikes are described by the Stein’s differential equation; however,
the further hypothesis is now added that whenever a neuron fires, the membrane
potential of the other neuron undergoes a jump of constant magnitude. Let
{[X1(t), X2(t)]; t ≥ 0} be the stochastic process describing the time-evolution of
the membrane potential of the pair of neurons between consecutive firings. We
consider the following stochastic differential equations:

dX1(t) = −1
τ

X1(t) dt + α dN+
1 (t) − β dN−

1 (t) + γ1 dM2(t) (1)

dX2(t) = −1
τ

X2(t) dt + α dN+
2 (t) − β dN−

2 (t) + γ2 dM1(t), (2)

where τ is the positive time constant according to which, in absence of stimuli,
the membrane potential exponentially decays to the resting level. The effects
of excitatory and inhibitory stimuli, that are assumed to occur according to
independent Poisson processes, consist of instantaneous jumps of the membrane
potential of magnitudes α and −β, respectively, where α and β are positive
constants. The stochastic processes N+

i (t) and N−
i (t) (i = 1, 2) in the above

equations are assumed to be independent time-homogeneous Poisson processes
describing the arrival of excitatory and inhibitory stimuli on the i-th neuronal
unit originating from the environment. Processes M1(t) and M2(t) count the
number of firings produced in [0,t] by the first and second neuron, respectively.
The amplitude of the jump of the first (second) neuron membrane potential
caused by the spike of the second (first) neuron is γ1 (γ2). Its value is positive
or negative according to the excitatory or inhibitory nature of the firing neuron.
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As implied by Eqs. (1) and (2), in absence of stimuli the neuronal membrane
potential exponentially decays with time constant τ to the resting level that,
without loss of generality, is set to be 0. A firing occurs when the membrane
potential of a neuronal unit crosses the constant firing threshold S. We also
assume that after each firing a refractory period of fixed duration takes place,
at the end of which the membrane potential is reset in the neighborhood of the
resting level according to some probability density. Here we shall assume that
the reset occurs according to some probability density. Here we shall assume
that the reset occurs according to the truncated Gaussian probability density
f(x) = C e−x2/2, −3 < x < 3.

Since an analytical solution of the membrane potential dynamics for the
model described by Eqs. (1) and (2) is not available, a Monte-Carlo simulation
method has been devised and implemented by us. This procedure, described
in [6], is very suitable for the statistical description of coupled neurons firing
activity.

3 Statistical Results on ISIs

In this Section we study the dependence of interspike intervals of both neurons
on parameters γ1 and γ2. Hereafter we shall focus our attention on three related
matters: (i) to discuss the shape exhibited by ISIs histograms, (ii) to calculate
the relevant statistical indices of ISIs, and (iii) to perform some comparisons
between ISIs empirical distribution functions.

3.1 ISI Histograms

A measure of the variability in the timing of the sequence of spikes generated
by the neurons is provided by the histograms interspike intervals. We consider
the case in which the first neuron is excitatory whereas the second may possess
excitatory or inhibitory nature. Computational results based on extensive sim-
ulations show that when the second neuron sends large inhibitory inputs, the
probability mass of first neuron’s ISI spreads over the temporal axis. The oppo-
site occurs for large positive values of γ1, i.e. when the second neuron is highly
excitatory (see, for instance, Figure 1).

Feedback effects appear in the firing activity of the two coupled neurons. For
instance, if the first neuron is excitatory and causes a jump of amplitude γ2 of
the membrane potential of the second neuron, then the interspike intervals of
the latter exhibit a dependence on the behavior of γ1. This is shown in Figure
2, where the second neuron ISI histograms are more spread when γ1 < 0.

3.2 Some Statistical Indices of ISIs

Some relevant descriptive statistics of both neurons’ ISIs are analyzed in this
Section. The intrinsic symmetry property of the model, evident from Eqs. (1)
and (2), is reflected in the ISIs statistical indices. The mean of the first neuron’s
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Fig. 1. First neuron’s ISI histograms for
γ2 = 2 and (a) γ1 = −2, (b) γ1 = −1, (c)
γ1 = 1, (d) γ1 = 2
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Fig. 2. Second neuron’s ISI histograms
for γ2 = 2 and (a) γ1 = −2, (b) γ1 = −1,
(c) γ1 = 1, (d) γ1 = 2

ISI evaluated for the couple of parameters (γ1, γ2) equals the mean of second
neuron’s ISI for (γ2, γ1). A similar behavior is exhibited also by the standard
deviation and by the coefficient of variation of the interspike intervals.
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Fig. 3. Mean of first neuron’s ISI
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Fig. 4. Mean of second neuron’s ISI

The mean of the first neuron’s ISI decreases when γ2 is fixed and γ1 in-
creases. Similarly, the mean of second neuron’s ISI decreases for fixed γ1 when
γ2 increases (see Figures 3 and 4). Moreover, mean of first neuron’s ISI is larger
(smaller) than the mean of the second neuron’s ISI when γ2 is larger (smaller)
than γ1. The means of the two neurons’ ISIs are closer when γ1 approaches γ2,
and viceversa. These remarks suggest that firing activity properties of the couple
of neurons are globally dependent on the difference between γ1 and γ2.
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Fig. 5. Standard deviation of first neu-
ron’s ISI
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Fig. 6. Standard deviation of second
neuron’s ISI

Similar remarks about symmetry hold for the standard deviation (see Figures
5 and 6) and for the coefficient of variation (see Figures 7 and 8). Both statistical
indices for the ISI of the first neuron decrease when γ1 increases and γ2 is fixed.
By symmetry, the standard deviation and the coefficient of variation of the
second neuron’s ISI decrease when γ1 is fixed and γ2 increases. Moreover, if γ1 is
larger (smaller) than γ2, the standard deviation and the coefficient of variation
of second neuron’s ISI are larger (smaller) than those of first neuron’s ISI.

−4

−2

0

2

4

−4−2024
0.6

0.65

0.7

0.75

0.8

0.85

γ
2

γ
1

Fig. 7. Coefficient of variation of first
neuron’s ISI
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Fig. 8. Coefficient of variation of second
neuron’s ISI



Feedback Effects in Simulated Stein’s Coupled Neurons 441

3.3 ISIs Distribution Functions

Due to the symmetry of the model, first neuron’s ISI distribution function is
identical to that of the second neuron when the values of parameters γ1 and γ2
are exchanged. An example of this property is shown in Figures 9 and 10, where
the ISIs cumulative distribution functions of first and second neuron are plotted
for some choices of γ1 and γ2, respectively.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9. First neuron’s ISIs distribution
functions for γ2 = 2, and γ1 = −2
(solid line), γ1 = 0 (dashed line), γ1 = 2
(dashed-dotted line)
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Fig. 10. Second neuron’s ISIs distribu-
tion functions for γ1 = 2, and γ2 = −2
(solid line), γ2 = 0 (dashed line), γ2 = 2
(dashed-dotted line)

Comparing first neuron’s ISIs distribution functions for different values of
γ1 we notice that the cumulative distribution function becomes larger when
γ1 increases (see Figure 9). The same property holds for the second neuron’s
ISI distribution function when γ2 increases (see Figure 10). This suggests the
existence of some kind of stochastic ordering. Indeed, denoting by Y

(γ1,γ2)
i the

random variable describing the i-th neuron interspike intervals and by H
(γ1,γ2)
i (t)

its distribution function (i = 1, 2), for δ > 0 we have:

H
(γ1,γ2)
1 (t) ≤ H

(γ1+δ,γ2)
1 (t) and H

(γ1,γ2)
2 (t) ≤ H

(γ1,γ2+δ)
2 (t), for all t ≥ 0.

(3)
Eq. (3) shows that

Y
(γ1,γ2)
1 ≥st Y

(γ1+δ,γ2)
1 and Y

(γ1,γ2)
2 ≥st Y

(γ1,γ2+δ)
2 ,

where ≥st denotes the usual stochastic order. (For the definition of usual stochas-
tic order see, for instance, [9]).
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Fig. 11. ISIs distribution functions for
the first neuron, with γ1 = 2 (solid line),
and for the second neuron, with γ2 = −2
(dashed line), γ2 = 0 (dashed-dotted
line), γ2 = 2 (dotted line)
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Fig. 12. ISIs distribution functions for
the first neuron, with γ1 = −2 (solid
line), and for the second neuron, with
γ2 = −2 (dashed line), γ2 = 0 (dashed-
dotted line), γ2 = 2 (dotted line)

Let us now compare the ISIs distribution functions of the two neurons. We
note that when γ1 is larger (smaller) than γ2, the first neuron’s ISI distribu-
tion function is larger (smaller) than that of second neuron. The distribution
functions are equal when γ1 = γ2. Hence, since

H
(γ1,γ2)
1 (t) ≥ H

(γ1,γ2)
2 (t), for all t ≥ 0, with γ1 ≥ γ2,

H
(γ1,γ2)
1 (t) ≤ H

(γ1,γ2)
2 (t), for all t ≥ 0, with γ1 ≤ γ2,

we conclude that

Y
(γ1,γ2)
1 ≤st Y

(γ1,γ2)
2 for γ1 ≥ γ2 and Y

(γ1,γ2)
1 ≥st Y

(γ1,γ2)
2 for γ1 ≤ γ2.

Figures 11 and 12 show the distribution functions of the two neurons’ ISIs for
different values of (γ1, γ2).

4 Entropies and Correlation Functions

Information theory is widely used in neuronal coding to quantify the information
on the received stimuli conveyed by the neural response [3]. Aiming to obtain
a measure of information on the coupled neuronal activity, hereafter we con-
sider the following discrepancy measure between the distributions of Y

(γ1,γ2)
1

and Y
(γ1,γ2)
2 :

I
(γ1,γ2)
(Y1,Y2)

=
∫ +∞

0
h

(γ1,γ2)
1 (u) log

h
(γ1,γ2)
1 (u)

h
(γ1,γ2)
2 (u)

du, (4)
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I
(γ1,γ2)
(Y2,Y1)

=
∫ +∞

0
h

(γ1,γ2)
2 (u) log

h
(γ1,γ2)
2 (u)

h
(γ1,γ2)
1 (u)

du. (5)

Here, h
(γ1,γ2)
i (t) denotes the probability density function (pdf) of Y

(γ1,γ2)
i (i =

1, 2). Functions I
(γ1,γ2)
(Yi,Yj)

(i, j ∈ {1, 2}, i �= j) are called relative entropies, or
discrimination measures. They provide a measure of the inefficiency of assuming
that the probability density function of interspike intervals is h

(γ1,γ2)
j (u) when

the true p.d.f. is h
(γ1,γ2)
i (u).

According to the nature of our simulation scheme, I
(γ1,γ2)
(Y1,Y2)

and I
(γ1,γ2)
(Y2,Y1)

are
evaluated by means of a discretization of the right-hand sides of Eqs. (4) and
(5). Figures 13 and 14 show the ISIs relative entropies as γ1 and γ2 vary. The
symmetry is again evident by comparing these entropies. We point out that, as
expected, the minimum of such functions is attained for γ1 = γ2.
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Fig. 13. Relative entropy of first neu-
ron’s ISI for some choices of γ1 and γ2
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Fig. 14. Relative entropy of second neu-
ron’s ISI for some choices of γ1 and γ2

Let us denote by {T i
n, n ∈ N} the stochastic process describing i-th neuron

firing time (i = 1, 2), where T i
n denotes the random time in which the i-th neuron

(i = 1, 2) fires for the n-th time (n ∈ N). We adopt the following definition of
autocorrelation function (see [1] for a more general definition):

ACi(τ) =

∑
k(T i

k+j − T
i
)(T i

k − T
i
)∑

k(T i
k − T

i
)2

(i = 1, 2), (6)

where T
i
=

1
ntot

∑
n

T i
n is the mean firing time of the i-th neuron, with ntot

denoting the total number of spikes released by the i-th neuron. The index j
appearing in the right-hand-side of (6) is larger than k, and it is such that
T i

k+j − T i
k = τ .
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Fig. 15. First neuron’s autocorrelation
function for γ1 = −1 and γ2 = 2
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Fig. 16. Second neuron’s autocorrela-
tion function for γ1 = −1 and γ2 = 2

As Eq. (6) shows, the autocorrelation function is an even function of τ that
may take both positive and negative values. When τ is small, the firing times
T i

k+j and T i
k involved in T i

k+j − T i
k = τ are very close, and the autocorrelation

function takes positive values. On the contrary, for large values of τ we have
observed negative values for the function ACi(τ). A plot of the autocorrelation
function when the first neuron is excitatory and the second inhibitory is shown
in Figures 15 and 16. Second neuron’s autocorrelation function is larger than
that of the first neuron and shows numerous peaks. Hence, for the second neu-
ron’s firing times, some lags are more likely than others: in particular, for the
case described in Figure 16, the firing times show a very frequent lag of about
30 ms.

Aiming to analyze the synchronization between the two neurons firing activ-
ity we consider the crosscorrelation function defined as:

CC1(τ) =

∑
k(T 1

k+j − T
1
) (T 2

k − T
2
)√∑

k(T 1
k − T

1
)2

√∑
k(T 2

k − T
2
)2

, (7)

CC2(τ) =
∑

k(T 2
k+m − T

2
) (T 1

k − T
1
)√∑

k(T 1
k − T

1
)2

√∑
k(T 2

k − T
2
)2

, (8)

where T
i
is the mean firing time of the i-th neuron (i = 1, 2), and j ≥ 1 (m ≥ 1)

is such that T 1
k+j − T 2

k = τ (T 2
k+m − T 1

k = τ). Due to Eqs. (7) and (8) it is

CC1(τ) = CC2(−τ), τ > 0.

Figure 17 shows CC1(τ) when γ1 = −1 and γ2 = 2. The peak exhibited
by this function at the lag −1.75 ms suggests that the second neuron is very
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likely to fire about 1.75 ms after a spike of the first neuron. The crosscorrelation
function CC1(τ) for γ1 = 1 and γ2 = −1 is plotted in Figure 18. In this case the
crosscorrelation function does not show significant peaks.
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Fig. 17. Crosscorrelation function in the
case γ1 = −1 and γ2 = 2
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Fig. 18. Crosscorrelation function in the
case γ1 = 1 and γ2 = −1

5 Concluding Remarks

Under the assumption of complete interaction between the neurons, the firing
activity of the coupled Stein-type neuronal units is characterized by the presence
of evident feedback effects. These effects can be observed looking at the shape
of histograms of neurons interspike intervals when both γ1 and γ2 are different
from 0 (see Section 3.1).

The comparison between the means of the ISIs of the two neurons suggests
that the firing activity properties of the pair of neurons are globally depen-
dent on the difference between γ1 and γ2. Indeed, in Section 3.2 it is empha-
sized that the mean of the first neuron’s ISI is larger (smaller) than that of
the second neuron’s when γ2 is larger (smaller) than γ1, and is equal to the
mean of the second neuron’s ISI when γ1 = γ2. The standard deviation and
the coefficient of variation show a similar behavior. Moreover, in Section 3.3
the analysis of ISIs distribution functions proves the existence of a stochastic
ordering between the random variables describing the two neurons interspike
intervals.

Finally, the crosscorrelation function studied in Section 4 when the cou-
pled neurons have different nature, reveals the phase-locked connection between
the neurons firing activity existing when γ1 and γ2 take very distant opposite
values.
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