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Abstract. In recent years, extensive work has been done to design algorithms 
that strive to mimic the robust human vision system which is able to perceive 
the true colors and discount the illuminant from a scene viewed under light hav-
ing different spectral compositions (the feature is called “color constancy”). We 
propose a straightforward approach to the color constancy problem by employ-
ing an Interactive Genetic Algorithm [1] (e.g. a Genetic Algorithm [2], [3] 
guided by the user) that optimizes a well known and robust variant of color 
constancy algorithm called “gamut mapping” [4]. Results obtained on a set of 
test images and comparison to various color constancy algorithms, show that 
our method achieves a good color constancy behavior with no additional 
knowledge required besides the image that is to be color-corrected, and with 
minimal assumptions about the scene captured in the image. 

1   Introduction 

Color Constancy algorithms are fundamental both in Computer Vision whenever 
recognition of objects in a scene is performed based on the color of the respective 
objects, as well as for color correction of digital pictures with applications in medi-
cine, remote sensing, arts and media. When compared to the human visual system, 
algorithms that perform Color Constancy fail short to achieve the same effectiveness 
in recuperating the colors in scenes taken under different illuminants. This is due to 
the fact that such algorithms make restrictive assumptions about the world from 
which the image was taken. More-over, several algorithms require additional informa-
tion about the scene and the technical characteristics of the camera that captures the 
image, knowledge that is not always readily available. We tackle the color constancy 
problem by employing an Interactive Genetic Algorithm [1] (e.g. a Genetic Algorithm 
guided by the user) that optimizes a well known and robust variant of color constancy 
algorithm called “gamut mapping” [2]. Results are given on a set of test images and 
comparison is made to various color constancy algorithms that proved efficient and 
that pertain to the following categories: Gray World (GW) methods, Gamut Mapping 
methods, and Neural Networks methods [2].  
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1.1   Gamut Mapping as Basis Transformation for IGA-GM 

The set of all possible responses due to known or expected surface reflectances, as 
seen under a known, canonical illuminant (usually taken to be the daylight, or an 
approximation of it), is a convex set, referred to as the canonical gamut. Similarly, the 
set of responses due to an unknown illuminant is also a convex set. Illumination 
change is assumed to be modeled by a simple diagonal transformation according to 
the research of von Kries which was later confirmed to hold as a reasonable assump-
tion in [3]. It was shown that under the von Kries adaptation assumption the two 
gamuts are within a diagonal transformation of each other. Due to the fact that GM 
proposes a simple diagonal transformation to each pixel in the image, and because it 
has been shown that under not very restrictive assumptions such diagonal transforma-
tions suffice for good color constancy [3], in this paper we adopt the GM method as 
the basis for the color constancy transformation applied to correct a given image. The 
main drawbacks of the classical GM methods are: a) they use extensive knowledge 
about the camera used to take the picture; b) they use a priori information about the 
world in which the image was taken in order to construct the gamuts.   

2   IGA-GM. Algorithm Presentation 

In the present paper we employ an Interactive Genetic Algorithm (IGA) in which a 
human evaluator iteratively gives a subjective score for each result of a diagonal 
mapping (corrected image), until the best corrected image (and implicitly the best 
diagonal mapping) is discovered.  Thus IGA-GM adapts to the “best” gamut map-
ping (diagonal transformation) according to human subjective criteria. This is done 
without making use of any a priori knowledge about the surrounding world condi-
tions, or the camera. The Genetic Algorithm [4] is given in pseudocode in Fig.1. 

Each individual ix  in the population (chromosome) codes a diagonal transformation 

which is next applied to each pixel in the original (input) image, to give the corrected 
(output) image: 
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How well a chromosome performs (that is, how good the diagonal mapping is in 
recuperating the original colors and how well it corrects the input image) is judged 
mainly by the human evaluator who looks at the corrected image and gives a numeric 

score, called fitness value: ( )ixf  ranging from 0 (worst appearing image) to 10 (best 

appearing image). The user shouldn’t evaluate all images corrected by each chromo-
some in the population, in each generation of the algorithm, because such a process 
would become too tedious (there would be a lot of images to evaluate). Many of the 
chromosomes to be evaluated are actually given a fitness value automatically, using a 
clustering algorithm over fitness values previously allocated by the user. Clustering  
is  performed  by  two  distinct  procedures  (see Fig. 1): evaluate_1 and  
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evaluate_2. evaluate_1 is applied in the first generation of the GA, when the 
population is initialized randomly. The population is clustered and for each cluster an 
individual is picked up at random. The respective chromosome is evaluated by the 
user. The rest of the members of the respective cluster get the same fitness value as 
the one allocated by the user. In evaluate_2 again the population is first clus-
tered, then for each individual in the population we identify the cluster in which this 
individual lies. There is a fixed probability PE that this individual will be evaluated by 
the user. If not evaluated by the user we proceed as follows: if the size of the respec-
tive cluster is greater than 2, the fitness of the respective individual is computed as the 
average of the fitness of all individuals in the cluster. If the cluster contains just one 
individual (e.g. the individual for which we calculate the fitness), then the respective 
chromosome is evaluated by the user. 

    t : = 0 
    initialise P(t) 
    evaluate_1 P(t) 
    while (terminate(P(t)) ≠ true) do 
    { 
     P’(t) := select_tournament (P(t) | q) 
     P’’(t):= crossover(P’(t) | Pc) 
     P’’’(t):= mutate (P’’(t) | Pm) 
     P(t+1):= elitist(P’’’(t) ∪ P(t) | K) 
     evaluate_2 P(t+1) 
     t := t+1 
    } 
    endwhile 

Fig. 1. Pseudocode of IGA-GM. t represents the time/generation index; P(t) is the population at 
generation t, P’(t) is the population at generation t after selection, P’’(t) is the population at 
generation t after selection and crossover, and P’’’(t) is the population at generation t after 
selection, crossover and mutation. K is the number of elites. 

The selection strategy has been adopted to insure a steady convergent behavior 
of the algorithm. The trade-off we had to make is the well-known trade-off between 
exploration and exploitation present in any search method including EA. The con-
vergent exploitation assured by selection and crossover should well-balance the 
wide exploration effect achieved by our mutation operator [5]. The selection 
method    (select_tournament in Fig. 1) was chosen as a combination be-
tween binary tournament for which groups of q = 2 individuals are randomly 
formed and the chromosome with better fitness in the group is selected into the next 
generation [5], and a K-elitist scheme that attempts the preservation of the K best 
individuals in the population [6]. Binary tournament was chosen because it has a 
constant and relatively high selection pressure [7], and it is simple to implement and 
computationally light. The elitist scheme does not assure with probability 1 the 
preservation of the best individuals in the population, it just attempts this preserva-
tion. This is due to the subjective nature of fitness allocation by the user: the human 
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evaluator might score the same image (corresponding to the best chromosome) with 
different fitness values on different occasions, and when this score diminishes in 
value the respective chromosome (i.e. the best solution) might be lost from the 
population due to selection effects. 

The crossover operator should efficiently exploit the search space around the par-
ents (i.e. the pair of chromosomes that undergo crossover). The advantage of using 
SBX is that it generates children (i.e. the pair of chromosomes resulted after cross-
ing-over the parents) that are spread symmetrically around the parents and propor-
tionally to the spread of the parents, as discussed in [8]. SBX was implemented as 
described in [8], the parameter that controls the spread of the children around the 
parents being η, and the probability of applying crossover is Pc.  

The mutation operator should counter-balance the reduction of diversity due 
mainly to selection (associated with exploitation of the search space) and reintro-
duce diversity into population and thus increase exploration of the search space. 
The reduction of diversity is a cause of premature convergence [5] and it becomes 
more apparent when small populations of short in length chromosomes are used. 
This is precisely the case of our application. For such cases we have designed a 
novel mutation operator based on Principal Component Analysis, called PCA-
mutation in [9] which maintains high levels of diversity in the population and in-
creases the probability of discovering better solutions, as shown in [9]. The parame-
ter of PCA-mutation (see [9]) is denominated c, and the probability of applying 
mutation is Pm. 

3   Experimental Results 

The experimental part comprises two main sections: a) firstly we perform a com-
parison between IGA-GM and other Color Constancy algorithms for a single un-
known illuminant (e.g. different than canonical or daylight illuminant). b) secondly, 
we check the effectiveness of IGA-GM on a set of scenes taken under two quite 
different than daylight illuminants. In Table 1 we give the parameters of IGA-GM 
used in both experimental parts and for all images in the test set. 

Table 1. IGA-GM parameters: N - population size, l- number of genes in each chromosome 
that undergo the evolution process, Pc - crossover probability , Pm - mutation probability, PE - 
user evaluation probability, q – size of the tournament selection, c – parameter of PCA-
mutation (see [35]), η – parameter of the SBX crossover, Tmax -number of generations the GA is 
allowed to run,  

jvlb - lower bound of the genes, 
jvub  - upper bound of the genes, χ - inconsis-

tency threshold for the clustering algorithm 

N l Pc Pm PE K q c η Tmax 
jvlb

 
jvub

 

χ 

50 3 0.9 0.25 0.04 1 2 100 2 10 0 100 0.95 



408 C. Munteanu et al. 

 

Fig. 2. Comparison to Color Constancy algorithms (Detergent image). Upper-row from left to 
right: original image (to be color-corrected), target image (image under canonical illuminant), 
GW, Retinex; Lower-row from left to right: NN, GM, IGA-GM. 

Table 2. RMS error calculated for Detergent image on pairs between target image (T) and 
Color Constancy corrected image. The image that is not corrected (the original - input image) is 
denoted as O. 

 (T, O) (T,GW) (T, Retinex) (T,NN) (T, GM) (T, IGA-GM) 

RMS(R,G,B) 2.34e+04 18.02 49.13 13.38 22,30 16.16 

RMS(r,g) 16.42 12.88 16.27 7.78 21.74 7.99 

 

Fig. 3. IGA-GM solutions on different illuminants. Figure is divided in horizontal bands for 
each scene. First column first line: target image; second line first column: image under 
“solux_4700+3202”; second line second column: IGA-GM; second line third column: “IGA-
GM + intensity correction”; third line first column: image under “syl_wwf”; third line second 
column: IGA-GM; third line third column: IGA-GM + intensity correction. 
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4   Conclusions 

The main advantages of IGA-GM are the following: the method does not require 
previous information and knowledge about the scene being captured in the image, it 
does not make further restrictive assumptions about the world from which the image 
was taken, it is a simple algorithm with no pre-processing or training phases, it takes 
into account very subtle subjective criteria when judging the quality of an image, 
criteria that so far cannot be successfully “coded” in an automatic or machine con-
trolled way. Moreover, results obtained on a wide set of test images show that IGA-
GM achieves an effectiveness that is close to that of the best Color Constancy meth-
ods operating on the respective images. Consequently, the advantage lies in the ro-
bustness of IGA-GM, that is: we may use a single method (i.e. IGA-GM) to correct a 
wide range of images, instead of testing several Color Constancy methods (such as 
GM, GW, NN, etc.) and see which performs better on the respective images. Though 
results are good even when the human evaluator that analysis the outputs of IGA-GM 
doesn’t have any knowledge about the scene captured in the input image, an increase 
in efficiency is expected when human evaluator experts are used to correct images 
which pertain to fields for which they have acquired the necessary expertise. Thus, for 
future work, we will first divide the images into groups pertaining to various fields 
and letting a human expert on the respective field correct the images using IGA-GM. 
Such fields of application may include medical images, remote sensing images, con-
sumer and commercial images, or artistic photography. 
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