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Abstract. The neural network sensitivity analysis, involving neural net-
work training and the calculation of its outputs derivative on inputs, was
applied to select the least significant sensor in the multicomponent gas
mixtures analysis system. The sensitivity analysis results, collected for
various neural network structures were compared with the real signif-
icances of the sensors, determined experimentally. The question of the
influence of the correlation of the input vector elements on the analysis
results was also illustrated and discussed.

1 Introduction

Contemporary gas mixtures analysis technology relies on the matrices of sensing
elements and smart data processing techniques applied for their responses anal-
ysis, providing the desired information of qualitative or quantitative character.
This approach is usually forced by the low selectivity of sensors, which disables
simple calibration of 1 sensor for 1 gas appearing in the mixture. It may be ob-
served that most of gas sensor systems described in the literature, although very
successful, contain more or less redundant sets of sensing elements [TI2314]5].
Shall be noted that each redundant sensor, applied in the matrix increases the
cost of both fabrication and operation of the prospective system. Seems like
the main problem is the lack of the reasonable and efficient methods of sensors
selection.

If to assume that the preliminary version of the system, providing the ac-
ceptable accuracy of measurements is available (what is btw. usually reached
using the large enough sensor array) the problem may be transformed to the
elimination of the most redundant sensors, as far as the required performance of
the system is preserved. The possible solution may be neural network sensitivity
analysis [6l7], adopted for the estimation of the significance of the information
given to the system by the particular sensors in the matrix. The neural networks
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approach is somewhat unusual here. In the initial phase of the system construc-
tion the dummy neural network is trained to provide the sensitivity analysis and
judge each sensor. After selection of the reasonable set of sensors the eventual
data processing algorithm may be created using either neural network again or
any other methodology.

The paper focused on the investigation of the efficiency and reliability of
the neural network sensitivity analysis approach in the context of both the real
world application in gas sensor system and the data artificially created for the
purposes of the experiment.

2 Neural Network Sensitivity Analysis

The operation of the feedforward neural network with a single hidden layer and
the sigmoid transfer function applied may be described by ().
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After the training process, when the weights, denoted by w (with the ap-
propriate indexes) are fixed, the neural network gains the unique approximation
capabilities [§]. In the context of sensor systems the vectors of sensors responses
u are transformed to the series of outputs y, providing desired information of
either qualitative or quantitative character, on request.

The k-th neural network output sensitivity for the selected input u; is defined
as a derivative (2l), which for the presumed construction () gives (Bl). Calcula-
tion of the sensitivity is made for each output-input pair and for each input
pattern «(?). Concerning the patterns, the global sensitivity for the whole data
set is calculated using for instance the Euclidean formula ) or by finding the
maximum absolute value. Eventually the sensitivity matrix is obtained with e.g.
inputs listed in columns and outputs listed in rows. Further analysis may involve
the min-max procedure providing the series of parameters describing how much
the neural network is sensitive to the particular input. The inputs (i.e. the sen-
sors in our context), with the lower values of sensitivity shall be considered as
the candidates to remove.
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Formula (@) was originally proposed for pruning the redundant inputs of the
neural network with the single hidden layer only [6]. The experience with con-
struction of neural networks for the gas sensor arrays shows the need of applying
the structures with two hidden layers to obtain the highest performance. Some
doubts may appear then whether the sensitivity analysis applied for the too
scant neural network structures would give the reliable results. Eventually the
extended sensitivity formula, for the neural networks with two hidden layers, was
calculated. Starting from (&) describing the appropriate neural network with two

hidden layers, where u;, and yk ) denote the selected input and output, and the
w®, w® and w® with the appropriate indexes are the weights of the neurons
in the following layers, the eventual sensitivity is given by (@]).
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Analysis of (@) and (@) induces that the extension of the sensitivity formula
for the bigger and bigger neural networks may be generalized to the recurrence,
somewhat similar to the classic error backpropagation [9], where the sensitivity
of the bigger structure may be calculated as a weighted sum of the sensitivities
calculated for the appropriate nodes of the smaller structure (), ().
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3 Experimental

The sensitivity analysis methodology was applied to the design of the sensor
system providing quantitative analysis of the mixtures of butanol and toluene.
The matrix, initially containing six sensors - TGS 800, TGS 822, TGS824, TGS
825, TGS 880, TGS 883 [10], was placed in a test chamber with controlled atmo-
sphere for the multi-component characterisation. The set of vectors containing
the gas concentrations and sensors responses was collected this way building up
the 148 samples data set [2]. A series of the neural networks was created to
provide some estimation of the reliablity of the method, with the sensors re-
sponses acting as the input and two gas concentrations as the desired output.
The structures were varying between 6-10-2 and 6-40-2. For each neural network
the sensitivity analysis was performed, i.e. sensitivities of all outputs to all the
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sensitivity & significance

sensor

Fig. 1. Neural network sensitivities obtained for the structures with the single hid-
den layer (dotted lines) and with two hidden layers (dashed lines) compared with the
experimental estimation of the sensors significance (thick solid line).

inputs were calculated for all the available samples. The global sensitivities for all
patterns were calculated in two variants - Euclidean formula (5) and mazimum.
In-house developed software tools were used for both the neural networks de-
velopment and sensitivity calculation. In further steps of the analysis the sensor
with the lowest absolute value of the sensitivity factor shall be removed and
the whole process may be repeated, with the reduced sensor matrix, to point
the next one to remove etc. This process shall be stopped when either the sys-
tem performance decreases dramatically or the results of the sensitivity analysis
performed for series of neural networks are no longer coherent.

The sensitivity analysis performed for several neural networks with the sin-
gle hidden layer consequently pointed to the sensor No. 4 as redundant. The
details may be found in [I1]. The sensitivity factors, obtained in several trials,
are presented in Fig. 1 (the dotted lines). The dashed lines present analogous
results obtained for the structures with two hidden layers. Various structures
were implemented, starting from 6-12-8-2 up to 6-50-30-2. The results within
this group are similar again, but this time sensor No. 5 is commonly recognized
as redundant one. Such contradiction could be perceived as a stop condition for
the sensor matrix reduction, but it is known from the other experiments that
this set of sensors may be reduced indeed without visible loss in accuracy.

Further investigation of this phenomenon involved the introduction of the
six data sets deriving from the original one, but with 1 input-sensor removed in
each. The series of neural networks were trained for each variant, targeting in the
experimental determination of the signi ficance factors for all the sensors. These
factors were calculated as an average error of the 3 best structures. (The higher
error of the neural network trained without particular input denotes its higher
significance). The balance of these factors was plotted again in Fig. 1 (thick solid
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Fig. 2. Sensitivity analysis results (left) compared with the experimental estimation
of the input significance (right) for (a) linear dependent, (b) independent and (c) non-
linear dependent data

line). If to analyse the precise values of the sensors significance factors obtained
this way, No. 2 shall be considered most redundant this time. Eventually the re-
sults of the sensitivity analysis performed for various neural networks, especially
in the critical first to remove context are sometimes contradicting themselves
and simultaneously contradicting the experimentally determined significance of
the sensors. Shall be noted however that the experimental analysis, which shall
be perceived as the most reliable here, estimates the significance of five sensors
(i.e. No. 1, 2, 4, 5 and 6) at the very similar level. The insignificant differences
mean that in fact any of these sensors could be removed, with similar impact on
the system performance, what probably justifies the contradictions mentioned
before.

The meaningless differences between the significance of the sensors and con-
sequently the contradictions are probably caused by the correlation of the sensors
responses (i.e the elements of the neural network input vector), which is very
high. The simple experiment may show how the dependent inputs may keep the
sensitivity analysis results far away from the real balance of the inputs signifi-
cance. Let’s take a sample function of y = 1 4+ 2x2 + 3x3 + 4x4 and generate a
data set for the appropriate neural network training, in 3 variants - the first one
with independent input variables x1, z2, x3, x4, the second one with linear depen-
dence x4 = 21 +x2+ 23, and the third one with non-linear x4 = 23+ 3 +2%. The
results of the sensitivity analysis are shown in Fig. 2 (on the left). These ones are
very similar for all the data sets. And the real significance factors of the input
variables, estimated by the ”remove the input and train the neural network” pro-
cedure, are completely different for the dependent and non-dependent variants
as it is shown in Fig. 2 (on the right), matching the intuitive expectations.
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Conclusions

The neural network sensitivity analysis may be attractive tool for the reduction
of the redundant sensor arrays. Presented experiments have shown however, that
it does not provide the absolutely reliable results, when some elements of the
input vector are dependent. It may be used, with care, as a reasonable heuristics
for the construction of the effective gas sensor arrays, where the number of
sensors is critical issue, and in many other fields requiring an estimation of the
significance of the particular factor.
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