
R. Moreno Díaz et al. (Eds.): EUROCAST 2005, LNCS 3643, pp. 379 – 385, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Image Processing Techniques for Braille
Writing Recognition

Néstor Falcón, Carlos M. Travieso, Jesús B. Alonso, and Miguel A. Ferrer

Dpto. de Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria
Campus de Tafira s/n, E-35017, Las Palmas de Gran Canaria, Spain
nesmofalcon@gmail.com, ctravieso@dsc.ulpgc.es

Abstract. In this paper we present the development of BrailLector, a system
able to speak from Braille writing. By means of dynamic thresholding, adaptive
Braille grid, recovery dots techniques and TTS software (Text-To-Speech),
BrailLector translates Braille scanned images into normal text, and not only
that, it speaks the translated text. BrailLector is a robust application with
innovative thersholding and Braille grid creation algorithms which detects and
read Braille characters with 99.9% of correct symbols and an error variance
below 0.012. The conversion time is only 26 secs for double-sided documents
by MATLAB programming language.

1 Introduction

Nowadays, lack or problem of vision has been an important obstacle to access to
printed contents and to the information society. For this reason, some people have
tried to achieve that blind people are able to access to the printed culture, for example
Valentin Haüy and Luis Braille who have understood the importance of a
communication code. Globally, an estimated 40 to 45 million people are blind and
135 million have low vision according to the World Health Organization (WHO) [1]
and this number grows every year.

A Braille Optical Character Recognizer is interesting due to the following reasons;

• It is an excellent communication tool for sighted people (who do not know
Braille) with the blind writing.

• It is a cheap alternative Braille to Braille copy machine instead of the current
complex devices which use a combination of heat and vacuum to form Braille
impressions.

• Braille writing is read using the finger so is necessary touch the document, for
this reason the book after many readings is possible has been deteriorated.

• It is interesting to store a lot of document of blind authors which were written in
Braille and were never converted to digital information.

• Braillector offers a better integration of blind people to the “information society”.

Since the most part of Braille books are written with two kinds of points, we will
have to distinguish between each one. One kind is like “mountains” and the other is as
little “valleys”, hence the finger of the blind person who reads the text only detects

380 N. Falcón et al.

Fig. 1. Protrusions and Depressions on a Braille sheet

the protrusions, while depressions are points written to be read from the other side of
the sheet. If we are able to distinguish between each point we will have a big
advantage, we will be able to recognize the two sides with only one scan.

The structure of this paper is the next: In the next text we will describe the
characteristics of the database created. After, image processing techniques used for
dots detection and recovering will be described. Then, we will explain the conversion
from Braille text to standard text. Conclusions close this paper.

2 Database

A big database has been created in order to check the global system with as many
characters as we could. This database provides single and double-sided documents,
which have dots in one or both sides of the sheet respectively. The number of
characters in this database ensures the correct testing of the developed system and a
good analysis of the error variance. The next table gives a full explanation of this
database.

Table 1. Database created

Braille sheets 26
Total number of characters 30862
Mean number of character per sheet 1235
Digital format Gray scale
Resolution 100 dpi (horizontal and vertical)
Image size 1360 Kbytes
Image format Bitmap (‘bmp’)
Braille type Double sided – grade 1
Document size 29.5 cm. (horizontal) x 30.5 cm. (vertical)

The mechanism used for image acquisition has been a flat-bed scanner instead of a
digital camera because it is a cheap alternative which can be used for so many other

 Image Processing Techniques for Braille Writing Recognition 381

applications and it is easy and quick to use. The system is able to work with images of
different resolution than 100 dpi since it uses interpolation methods to resize the
input image.

3 Image Processing Techniques

The next image represents the global blocks of image processing techniques;

Fig. 2. Braille Image Processing

The different steps of the scanned image for its translation are;

1. An innovative thresholding method has been used to extract the useful
information of Braille images instead of traditional methods [2]. Once we know
the optimum area of Braille spots (it reduces the number of wrong symbols
detected), an iterative algorithm looks for the best threshold according to these
areas of Braille dots. This area criterion for thresholds selection offers an
accuracy way to get the optimum levels to separate black, white and grey.

Fig. 3. Automatic threshold selection process

After this first step, no useful information has been rejected and the image is now
ready to be processed in the pattern detection block.

2. Once this primary process is done, we take advantage of the shadows which
make dot patterns. As we have seen, these protrusions on a Braille sheet have a
brilliant zone above and a dark zone below. The depressions have exactly the
opposite pattern (these shadows are created by the skew angle of the light beam

382 N. Falcón et al.

in reflection scanners) so this difference will facilitate the separation between
front and back side dots;
o Moving white “islands” 4 pixels downwards and doing a logical “and” with

black spots we will extract front side dots.
o Moving white “islands” 4 pixels upwards and doing a logical “and” with

black spots we will extract back side dots.
The goal of this secondary process is to separate each side of the document in
different images. This algorithm consists of a “shift and overlap” process since it
only moves the spots downwards or upwards and carries out a logical and. It is
the fastest method we have tried because it avoids the sequential reading of the
image matrix and it is very simple and efficient. In this stage, skew angle of the
scanned document is detected by means of horizontal histogram and mass centers
calculation and corrected rotating the original image.

3. Not all the dots are detected with overlapping process, some of them are missed,
either because they are very small or their shadows do not overlap with only 4
pixels. For this reason, a new stage was added to the system: The Braille grid.

An adaptive algorithm has been developed in order to make this mesh from the
detected dots. The algorithm builds columns in a first stage: since distances
between points are normalized [3], the process begins searching for groups of
dots in the same vertical plane that respect these distances. Then it builds the
columns according to the pattern of Braille columns adapting itself to the layout
of the document. Thus, we get a flexible mesh that tolerates small differences
between columns. The process for the rows is quite similar but in this case the
pattern to search is a Braille row. Detected columns and rows will be arranged
together to create the final structure. This grid is flexible and respects the layout
of the original document which makes it suitable for copying Braille sheets
without losing the format.

Fig. 4. Braille grid layout for frontal side

4. After mesh building, all valid Braille positions are known. Those intersections
between rows and columns will define a valid position for a Braille dot. First,
dilation techniques [4] are used to expand the search zone. Then, we fit this

 Image Processing Techniques for Braille Writing Recognition 383

image on the dots image after thresholding in order to check in detail those
positions where dots were not found. In this point lays the intelligence of the
global system, only potential positions of dots are checked; this means time
saving and efficient search. Original dots will be recovered (they belong to
correct Braille positions) and false dots will be discriminated as they are out of
the valid places for a Braille dot. In the following figure, we show this effect on
the recuperation of Braille dots.

Fig. 5. Front side detected dots before and after the use of the recovered algorithm

4 From Braille to Normal Text

At this point all valid Braille dots have been detected in both sides of the document.
This final image contains the Braille dots represented by spots, so now it is analyzed
and text is segmented in rows and characters. For this segmentation process we will
take advantage of the Braille mesh one more time since it marks all the positions of
Braille dots. Every character will be converted into a binary number according to the
active dots. The process consists of reading character by character and each one of the
six positions that make the basic cell [5]. Hence we will have six possible values for
each character (either raised or flat). This way of coding is simple and fast. It can be
explained better by means of the next figure.

Fig. 6. Standard Braille Character (left) and ‘r’ symbol

In this way and looking at the previous example, ‘r’ symbol can be coded like
‘111010’ where each black dot is an active dot or a “mountain” on the paper and they
become ‘1’ in the binary number. This way of Braille text binarization makes the
global system independent of the language of the document and easily configurable
for adding different alphabets. The output of this step will be a file with each

384 N. Falcón et al.

character coded like a binary number; we will only have to translate each number for
its equivalent letter in normal text to get the final output like a text file.

Fig. 7. Global translation process of Braille documents

This final output can be presented in different formats such as a text file, a new
Braille printed copy, voice (by means of TTS software [6]) or even mp3 audio format.

5 Conclusions

In this paper we have explained the development of an automatic system for
translating Braille text to normal text or voice. The global algorithm is very fast and
robust. It has been divided in different modules for each part of the image processing.
For achieving this system, dynamic thresholding and adaptive Braille grid has been
used, adding some intelligence to the global process and making it able to detect dots
in both sides of the document with only one scan. This process has an efficiency of
99.9% and it takes only 26 secs to translate a double-sided document improving all
the main references found in the bibliography [7], [8], [9].

Acknowledgments

As with most works, many have provided help in the development of this research.
Many thanks to Dr. Fatih Kurugollu, Lecturer of School of Computer Science at
Queen´s University, Belfast, United Kingdom where a big part of this work was done.
He provided invaluable help and clear ideas to solve many problems about image
processing. He has my admiration for his patience and my deep appreciation for his
assistance.

This work was supported by the research Project “Pi 2003/005” from Canary
Autonomous Government (Spain).

References

1. http://www.who.int Active on April 1st 2005
2. N. Otsu. “A threshold selection method from gray-level histograms” In IEEE Transactions

on Systems, Man, and Cybernetics, vol 9, no.1, pp 62-66. Jannuary 1979
3. Dubus J., Benjelloun M., Devlaminck V., Wauquier F., Altmayer P.: Image processing

techniques to perform an autonomous system to translate relief Braille into black-ink,
called: Lectobraille. In Proceedings of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, (1988) 1584–1585.

 Image Processing Techniques for Braille Writing Recognition 385

4. Rafael C. González, Richard E. Woods “Digital Image Processing” Prentice Hall (2002)
5. http://www.fbraille.com.uy/alfabeto Active on April 1st 2005
6. http://www.textreader.net Active on April 1st 2005
7. Wong L., Abdulla W., Hussman S.: A Software Algorithm Prototype for Optical

Recognition of Embossed Braille. The University of Auckland, New Zealand, (Technical
Report) (2004).

8. Mennens J.,. Tichelen L. V, Francois G., Engelen J.: Optical recognition of braille writing
using standard equipment. IEEE Transactions on Rehabilitation Engineering, 2(4) (1994)
207– 212.

9. Ng C., Ng V., Lau Y.: Regular feature extraction for recognition of Braille. In Proceedings
of Third International Conference on Computational Intelligence and Multimedia
Applications, (1999) 302-306.

	Introduction
	Database
	Image Processing Techniques
	From Braille to Normal Text
	Conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

