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Abstract. A new protocol is presented that allows to convince of the
knowledge of a solution to the Independent Vertex Set Problem without
revealing anything about it. It is constructed from a bit commitment
scheme based on the hardness of the Discrete Logarithm Problem, which
guarantees its efficient performance and formal security. One of its possi-
ble applications is node identification in ad-hoc wireless network because
it does not require any authentication servers. Furthermore, recent works
on network security has pointed out the importance of the design of ef-
ficient Zero Knowledge Proofs of Knowledge for the Independent Vertex
Set Problem in broadcast models.

1 Introduction

Since the introduction of the notion of Zero-Knowledge Proof (ZKP ) in the
seminal paper of Goldwasser, Micali and Rackoff [12], it has proven to be very
useful both in Complexity Theory and in Cryptography, playing in this latter
field a major role as a building block in the construction of different crypto-
graphic protocols [1]. It is remarkable that most of the different ZKP that have
been published so far are related to the same presumably intractable problems
on which Public Key Cryptography is based. Such are the cases of the identi-
fication scheme based on the discrete logarithm problem [14], and the digital
signature based on the computation of square roots [7].

One of the most relevant results regarding ZKP was the demonstration that
the existence of perfect zero-knowledge for an NP − complete problem would
cause the Polynomial Time Hierarchy to collapse [9]. However, this work deals
with a different ZKP known as computational ZKP , whose existence has been
proven for any NP -problem under the assumption that a one-way function exists
[11]. In the same work, the authors provided a ZKP for the 3-coloring problem
and suggested the use of standard reductions to achieve a ZKP for any other
NP -problem. The efficiency of the algorithm here proposed comes from a distinct
approach based on an specific design of a computational ZKP for a concrete NP -
problem. It avoids the use of general reductions by combining tools from Number
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Theory and Graph Theory. Indeed, since this latter field is a dense source of NP -
problems, several ZKP for different graph problems such as isomorphism, non-
isomorphism, hamiltonian circuits, clustering and independent vertex set have
been previously introduced in the literature [13] but it is remarkable that all of
them are based exclusively on Graph Theory problems. Special mention regards
the algorithms proposed in [5] since they are described for the same problem,
the Independent Vertex Set Problem (IV SP ), as this present work. However
here a number theoretical problem, the Discrete Logarithm Problem (DLP ), is
also involved in the design of the ZKP in order to improve its efficiency and
security.

All the aforementioned bibliographic references include proposals related in
some way to the same basic graph problem, the Graph Isomorphism [3]. The
major drawback of such an approach is due to the fact that the computational
complexity of this problem is not yet known and furthermore the problem seems
to be easy for most random graphs [8]. On the contrary, the present work pro-
poses a new Computational ZKP for the IV SP whose security relies on the
hardness of a number theoretical problem, the DLP , whose difficulty is gener-
ally assumed in Cryptography, [4]. On the other hand, while general ZKP seem
to be the most promising identification method in ad-hoc wireless networks, the
concrete choice of the IV SP as base of our proposal comes from the necessity
of efficient ZKP for such a problem in broadcast models pointed out in [10].

This paper is organized as follows. First we recall the basic requirements for
the design of a ZKP . Then, in Section 3, the problems and notations that are
used throughout the work are defined. In the following Section, the proposed
ZKP is fully described and its security is formally proved. The adequate choice
of parameters and the performance of the scheme are analyzed in Section 5.
Finally, several conclusions and open questions are drawn in Section 6.

2 ZKP Design

A Zero-Knowledge Proof of Knowledge (ZKPK) may be defined as a two-party
cryptographic protocol that allows an infinitely powerful prover Alice (A) to
convince a probabilistic polynomial time verifier Bob (B), beyond any reasonable
doubt, that she knows some verifiable information such as the solution of a given
difficult problem, but in a way that does not help him to determine anything
about this information.

The three main characteristic properties of ZKPK are completeness (which
means that if the claim is valid, then A convinces B of it with very high proba-
bility), soundness (if the claim is not valid, then B is convinced of the contrary
with very small probability), and zero-knowledge (B does not receive any other
information except for the certainty that the claim is valid). This latter property
may be checked through the demonstration that the prover A can be replaced by
an efficient (expected polynomial time) simulator which generates an interaction
indistinguishable from the real one. The main difficulty of this proof, which is
usually based on a constructive specification of the way such a simulator pro-
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ceeds, is to achieve that the simulator convince the verifier about the knowledge
of the secret information without actually having it. Generally, this problem is
solved thanks to the rewinding capability of the simulator, which may use sev-
eral tries to answer the verifier without letting him know how many tries the
simulator has used.

Two basic variants of zero-knowledge may be distinguished depending on the
assumed computing power of possible dishonest parties. Computational zero-
knowledge arises when it would take more than polynomial time for a dishon-
est verifier to obtain some information about the secret, whereas perfect zero-
knowledge involves that even an infinitely powerful cheating verifier could not
extract any information. Both previous notions can also be characterized through
the amount of computational resources necessary to distinguish between the in-
teraction generated by the simulator and the verifier, and the one associated to
the prover and the verifier.

Generally, bit commitment and cut-and-choose techniques are basic ingre-
dients for the design of ZKPK. In these cases, A ’cuts’ her secret solution in
several parts, commits to them, and afterwards B chooses at random one of those
parts as a challenge. The typical design of ZKPK is also based on the existence
of a concrete possibility of fraud: a cheater is usually able to answer to some
types of challenges (for which he was prepared in advance) but not for all of
them. So, most protocols are designed as interactive challenge-response schemes
in such a way that some of A’s possible responses prove A’s knowledge of the
secret solution, whereas the others guarantee against A’s possible fraud. More
concretely, an answer to one question gives no information (zero-knowledge),
while answering all the questions is proved to reveal prover’s knowledge (sound-
ness). So, the security is based on the impossibility that the prover can predict
verifier’s questions. Also typically ZKPK consist of several iterations of the
atomic subroutine described below, so that by repeating it an enough number
of times the verifier’s confidence in the prover’s honesty increases because the
global fraud probability becomes smaller with the number of iterations. A. Con-
sequently, this number m of iterations should be agreed by A and B according
to their different interests.

3 Notations and Definitions

As mentioned before, the two problems that constitute the base of the proposed
algorithm are the Independent Vertex Set Problem (IV SP ) and the Discrete
Logarithm Problem (DLP ).

On the one hand, the DLP may be described as follows. Let p be a prime,
let g be a generator of Z

∗
p (the multiplicative group of integers modulo p) and

let x be an integer between 0 and p − 1. Define DLPp,g(x) to be y such that
0 < y < p, gy = x(mod p). Such a problem is in NPI class, which means that
no probabilistic polynomial algorithm is known for solving it. The intractability
assumption of the DLP has been yet used on public-key cryptography and as
single base of a ZKPK [4].



Algorithm for Proving the Knowledge of an Independent Vertex Set 349

On the other hand, the IV SP is an NP − complete problem that may be
defined as follows. Given a graph G = (V, E), it consists in finding a size k subset
I ⊆ V (independent vertex set) such that no two vertices in I are joined by an
edge in E.

A useful method to hide an independent vertex set in a graph such that it is
resistant to general heuristic approaches has been described in [2]. This method
tries to balance the vertices degree sequence so that there is no difference between
those belonging to the independent vertex set and the others. Consequently, due
to its robustness it may be used in the instances generation of the proposed
algorithm.

The concrete choice of the IV SP as base for our proposal seems to be quite
convenient since recent work on network security [10] has pointed as an important
contribution to the field of the design of protocols for broadcast channels the
definition of efficient ZKPK for the IV SP .

Since the IV SP is NP-complete, by the result of [9], we know that this
problem cannot have perfect ZKPK unless the polynomial hierarchy collapses,
so the ZKPK for the IV SP described in the next section is a computational
ZKPK.

4 Zero-Knowledge Proof of Knowledge for the
Independent Vertex Set Problem

A Computational ZKPK for the IV SP that uses a bit commitment scheme
based on the DLP is now presented. In our proposal A’s inputs are a graph
G = (V, E) and an integer k, and her goal is to convince B that she knows a size
k independent vertex set of G.

In a pre-processing stage, A generates at random a graph G with n vertices
and an embedded secret independent vertex set I of size k through the method
described in [2], and publishes her inputs (G, k). Such a construction allows that
the embedded and secret independent vertex set I may be used in practice as A’s
secret identification because hiding the secret subset I takes polynomial time.
During the processing stage of the algorithm, in each iteration A generates a
c-coloring of G where the k vertices of I have the same colour that is not used
for any other vertex. It must be pointed out that the number of colours c is not
restricted to any value, so the computation of such a c-coloring takes polynomial
time.

A’s secret commitment is then formed by c binary n-dimensional vectors ai =
(aj

i ), a
j
i ∈ {0, 1}, i = 1, 2, ..., c, j = 1, 2, ..., n, where each position corresponding

to a vertex j colored with colour i contains a one and the rest contains a zero.
The cardinality of each vertex subset defined by the c-coloring is given by the
Hamming weight of vector ai, WH(ai) (where the Hamming weight of a vector is
simply the number of nonzero digits in the vector), which is a value which plays a
special role in the algorithm. After an initialization stage where A and B agree on
integers m and c, primes pi (i = 1, 2, ..., c), generators gi of Z

∗
pi

, (i = 1, 2, ..., c)
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and random integers ri ∈ Z
∗
pi

(i = 1, 2, ..., c), the IV SP − ZKPK algorithm
consists of m iterations of the following four steps:

Atomic Subroutine:

Commitment step: A generates the vectors ai = (a1
i , a

2
i , ..., a

n
i ), i = 1, 2, ..., c,

chooses secret random integers yj ∈ Z
∗
p−1, j = 1, 2, . . . , n, with p = min

i=1,...,c
{pi}

and commits to such parameters by sending to B the n-dimensional vectors:

Vi = ((raj
i

i · gyj

i )mod pi), (i = 1, 2, . . . , c, j = 1, 2, . . . , n).
Challenge step: B chooses at random and sends to A one bit b, and if b = 0,

he also sends two random adjacent vertices v and w.
Response step: A sends to B:

– if b = 0, the integers yv and yw

– else, the integers y =
n∑

j=1

yj and WH(ai) =
n∑

j=1

aj
i , i = 1, 2, . . . , c.

Verification step: B checks whether the values provided by A in previous steps
are correct, that is to say,
– when b = 0, from the elements V v

i and V w
i (i=1,2,. . . ,c), B checks that

only two different vectors exist where the components associated to v
and w have the value 1. (∃!h, l ∈ {1, 2, . . . , c} |h �= l, av

h = aw
l = 1).

– when b = 1, B checks that

•
c∑

i=1

WH(ai) = n,

• ∃i ∈ {1, 2, ..., c}|WH(ai) = k,

• ∀i ∈ {1, 2, ..., c} : (
n∏

j=1

r
aj

i
i · gyj

i ) = (rWH (ai)
i · gy

i )mod pi.

Note that in the previous algorithm the verification step is only possible
thanks to B’s knowledge of gi, pi, ri and Vi and the use of efficient modular
exponentiation methods.

In order to prove the security of the protocol, we follow the approach of
[6], first proving completeness, then soundness and finally the zero-knowledge
property.

Theorem 1. The IV SP −ZKPK algorithm is a computational zero-knowledge
proof of knowledge for the independent vertex set problem.

Sketch of Proof. In order to prove that completeness is met there should be
shown that if A knows a k size independent vertex set in G and both participants
follow correctly the protocol, then the verifier B always accepts the proof.

If challenge b = 0 is requested by B, he should check that two chosen adja-
cent vertices v and w are colored with exactly two different colours. To achieve
this, he computes gyv

i and gyw

i , ∀i = 1, 2, . . . , c and compares these values with
the corresponding components in the committed vectors Vi. If A has built an
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appropriate coloring, B finds that there is a unique vector Vh where the v-th com-
ponent coincides with rh · gyv

h , whereas the v-th component in the other vectors
is equal to gyv

i . The same occurs for some vector Vl and w-th component.
If B chooses bit b = 1 as challenge, both the Hamming weight of coloring

vectors ai, and the value y provided by A in the response step, allow B to check
the following items:

–
∑c

i=1 WH(ai) = n,, so all the vertices are colored using only one colour.
– ∃i ∈ {1, 2, ..., c} |WH(ai) = k, so there is at least a size k independent vertex

set to whose vertices the coloring has assigned the same colour.
– (

∏n
j=1 r

aj
i

i ·gyj

i ) = (ra1
i

i ·gy1
i ) · (ra2

i

i ·gy2
i ) · · · (ran

i

i ·gyn

i ) = (ra1
i

i ·ra2
i

i · · · ran
i

i ) · (gy1
i ·

gy2
i · · · gyn

i ) = r
�n

j=1 aj
i

i · g
�n

j=1 yj

i = r
WH (ai)
i · gy

i , so the c committed vectors
have been properly computed.

In order to prove soundness, if the prover A does not know any size k independent
vertex set in G and the verifier B follows correctly the protocol, then no matter
how A plays, B should reject the proof with high probability. In such a case,
A has basically two possible ways to try to fool B. She could use an incorrect
c-coloring of G with some vertex subset of cardinality k, or she could compute
correct coloring vectors ai with no vertex subset of Hamming weight k. In the
first case, there exists at least a vector ai, i ∈ {1, 2, · · · , c} such that two adjacent
vertices are colored with the same colour, and hence B could detect the fraud if
b = 0 with probability at least 1/|E| in each iteration. When a dishonest prover
A uses a correct coloring, if B chooses bit b = 1 he always detects the fraud
when checking the existence of a vertex subset of size k colored with the same
colour (∃i ∈ {1, 2, ..., c}|WH(ai) = k).

Hence, under the assumption that a dishonest prover A chooses at random
the way to commit fraud, after m successive and independent iterations with
uniformly random chosen challenges, the probability that A successfully cheats
B is upper bounded by (2−2m · (3 − 1/|E|)m).

Regarding computational zero-knowledge, we need to show that the prover
A conveys no knowledge to any possible verifier, including ones that deviate
arbitrarily from the protocol. From the received witnesses, B should be able
to obtain the committed c-coloring and consequently the independent vertex
set I, only if he is able to solve the DLP . So, according to the simulation
paradigm, it is possible to build an expected polynomial time simulator that
generates a probability distribution which is polynomially indistinguishable from
the distribution induced during the interaction between A and B. In particular,
the simulator first tries to guess B’s challenge so chooses a random bit b′. Then,
if b′ = 0 the simulator generates at random correct coloring vectors ai and
consequent witnesses passing verification. Else, if b′ = 1, false coloring vectors ai

are generated such that there is a vertex subset with cardinality k colored using
the same colour that is not used for any other vertex.

The simulator tries one of both possible challenges at random and if it co-
incides with B’s challenge b (which happens with probability exactly 1/2) then
its output is polynomially indistinguishable from A’s output. Else, it reinitiates.
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So, in an expected polynomial time the described simulator may replace A, and
therefore computational zero-knowledge is proven. �

The proposed IV SP − ZKPK algorithm may be applied in a quite natural
way as an identification protocol with advantages compared to other similar
schemes. In the corresponding identification scheme the public file containing
records for each user should consist of each name and the respective auxiliary
identification information composed of a graph G and the size k of the secret
embedded independent vertex set. All users should have free read access to this
public file. When a user A wishes to convince B of her identity, she invokes the
identification protocol with the public file record corresponding to her name as a
parameter, and B verifies her record in the public file and proceeds executing his
role in the protocol. So, soundness property of the IV SP − ZKPK algorithm
yields that an impersonation attack is practically infeasible.

A different application of the independent vertex set Problem in Cryptog-
raphy has been recently addressed in [5]. This application has to do with the
computation of an access structure taking into account the relationship graph.
By using the algorithm here proposed it is also possible to convince an adversary
of the validity of such an access structure without revealing who the honest mem-
bers are. Another cryptographic use of this problem was addressed in the same
paper where the authors proposed tackling the key scrow problem via the inde-
pendent vertex set problem. In general, different cryptologic applications of this
problem may be described anywhere it is important that the participants with
access privileges to a determined information form an independent vertex set.

5 Complexity Analysis

This section specifies both the techniques used to build the instances that are
necessary for the IV SP −ZKPK algorithm, and the complexity of the different
operations that are required.

First of all, the random generation of a graph G with n vertices and an
embedded independent vertex set of size k takes O((n−k)2). Then, the coloring
is accomplished through a well-known greedy heuristic that takes O(n3) under
the worst-case analysis. In order to build the instances of the DLP , A should
generate c prime numbers and use the modular exponentiation algorithm c · n
times whose complexity is O(c ·n · log3 l) (where l = max

i=1,2,...,c
{pi}). The response

associated to the challenge b = 0 takes constant time, whereas if the challenge
chosen by B is b = 1 the computation of the answer takes linear time. Hence, the
computational complexity associated to A may be estimated by O(n3), which
confirms that the assumed restriction of the capabilities of A to polynomial time
is possible.

The operations corresponding to B when he has to verify the answers pro-
vided by A depend on the challenge chosen by him. So, if the challenge is b = 0,
then B should compute several exponential operations that take O(c · log3l). On
the other hand, also the operations associated to the process of verification when
the challenge is b = 1 are of order O(c · log3l).
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Regarding the communication complexity, in the pre-processing stage the
prover should publish the graph G = (V, E), so O(|E| · log(n)) determines the
size of the file containing it. Furthermore, the committed vectors are formed by
n ·c integers and the response to both challenges is composed by two integers, so
the corresponding communication complexity of the algorithm is O(m·c·log(n)).

So, a question regarding the use of IV SP − ZKPK algorithm that deserves
special attention is the choice of parameters such as n, c and pi. In order to
guarantee the security of the scheme, graph’s size n and primes pi should be
large enough, whereas it is convenient that the number of colours c be small
in order to reduce communication complexity. Also generation and computer
representation of random graphs G are important factors having a profound
effect on the complexity of the algorithm. In particular, experimental analyzes
of generations of graphs guaranteeing the difficulty of the IV SP recommends
the use of n > 1000, [2].

6 Conclusions

In this work a new computational zero-knowledge proof of knowledge has been
described for the independent vertex set Problem. Its validity based on the dif-
ficulty of the discrete logarithm problem has been formally established.

Among known schemes based on NP-complete problems, the one proposed
in this paper is one of the most efficient when parameters are adequately chosen.
Due to its efficiency and to the basic problem of the independent vertex set
problem, the proposed scheme may be used for identification and access control
systems, as well as for the design of secure network protocols for broadcast
channels and for the computation of access structures.

A full comparison among the computational efficiency of the proposed algo-
rithm and other previous schemes is part of a work in progress. Also a forth-
coming version of this work will include some open questions such as the range
of parameters that guarantees both security and efficient performance.
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