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Abstract. Permutations are a core component of almost every cipher.
No matter if we consider the DES, AES or most of the other encryption
algorithms relevant nowadays, we always find permutation operators as
essential building blocks inside. In this contribution we will introduce
key-dependent permutation operators of provably excellent quality in-
spired by chaotic Kolmogorov flows.

From chaotic systems theory it is known that the class of Kolmogorov
flows exhibits the highest degree of instability among all dynamical sys-
tems. As will be derived and proven in detail in this paper, these out-
standing properties make them a perfect inspiration for developing a
novel class of strong cryptographic permutation operators.

1 Introduction

In recent years chaos theory has definitely been among the hot topics in systems
theory. Remarkable progress has been made in the analysis of chaotic systems
and up to a certain extent also in their application. Nevertheless, success in
applications lags progress in analysis. This may well be related to the fact that
many of the promising systems are defined to act on a continuous phase space
and it is often quite difficult or even impossible to find discrete counterparts that
preserve all the nice features present in the continuous case.

In this contribution we focus on chaotic Kolmogorov systems [6]. In the well-
established continuous form theyprovide a family of highly unstable systemswhere
it has been proven [1,3] that every member of this family provides perfect mixing of
the underlying phase space which makes them a tempting choice for realizing ex-
cellent permutation operators. However, for practical computer applications such
a permutation operator is only useful if it can be applied to mixing elements ar-
ranged on a discrete grid where we have to deal with integer grid positions.

It is the main purpose of this paper to show that it is possible to derive ade-
quate discrete counterparts for classical continuous Kolmogorov systems. Addi-
tionally we provide a detailed analysis under which criteria these novel discrete
Kolmogorov systems offer high-quality permutation operators. Availability of
such discrete permutation systems will finally be utilized to sketch several ex-
amples of potential applications for important tasks in information security such
as symmetric block ciphering, message digest computation, or copyright protec-
tion via digital watermarking.
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2 Chaotic Kolmogorov Systems

2.1 Continuous Kolmogorov Systems

Continuous Kolmogorov systems [1,3,6] act as permutation operators upon the
unit square. Figure 1 is intended to give a notion of the dynamics associated
with a specific Kolmogorov system parameterized by the partition π = (1

3 , 1
2 , 1

6 ).
As can be seen, the unit square is first partitioned into vertical strips which are
then stretched in the horizontal and squeezed in the vertical direction and finally
stacked atop of each other. Just after a few applications (see Fig. 1 from top left
to bottom right) this iterated stretching, squeezing and folding achieves perfect
mixing of the elements within the state space.

Fig. 1. Illustrating the chaotic and mixing dynamics associated when iterating a Kol-
mogorov system

Formally this process of stretching, squeezing and folding is specified as fol-
lows. Given a partition π = (p1, p2, . . . , pk), 0 < pi < 1 and

∑k
i=1 pi = 1 of the

unit interval U and stretching and squeezing factors defined by qi = 1
pi

. Further-
more, let Fi defined by F1 = 0 and Fi = Fi−1 +pi−1 denote the left border of the
vertical strip containing the point (x, y) ∈ E to transform. Then the continuous
Kolmogorov system Tπ will move (x, y) ∈ [Fi, Fi + pi) × [0, 1) to the position

Tπ(x, y) = (qi(x − Fi),
y

qi
+ Fi). (1)

2.2 Discrete Kolmogorov Systems

In our notation a specific discrete Kolmogorov system for permuting a data block
of dimensions n × n is defined by a list δ = (n1, n2, . . . , nk), 0 < ni < n and
∑k

i=1 ni = n of positive integers that adhere to the restriction that all ni ∈ δ
must partition the side length n. Furthermore let the quantities qi be defined by
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qi = n
ni

and let Ni specified by N1 = 0 and Ni = Ni−1 + ni−1 denote the left
border of the vertical strip that contains the point (x, y) to transform. Then the
discrete Kolmogorov system Tn,δ will move the point (x, y) ∈ [Ni, Ni+ni)×[0, n)
to the position

Tn,δ(x, y) = (qi(x − Ni) + (y mod qi), (y div qi) + Ni). (2)

The restriction to integral stretching- and squeezing factors is necessary to keep
resultant points at integer positions within the n × n grid. Use of the div
(division of positive integers a and b delivering �a

b �) and mod (remainder when
dividing positive integers) operation ensures that points in n × n are mapped
onto each other in a bijective and reversible manner.

2.3 Important Properties

Kolmogorov systems tend to permute elements of the state space in a chaotic
non-linear and apparently random fashion. After a sufficient number of iterations
it becomes extremely hard for an observer to deduce the initial state of a Kol-
mogorov system from its final state. To be more specific, Kolmogorov systems
offer very unique properties that are explained in more detail in the sequel.

Ergodicity. Ergodicity is important for a system that is to be applied in cryp-
tography because it stands as a synonym for confusion. Informally speaking and
expressed in terms of permutation systems, ergodicity stands for the property
that almost any initial point will move to almost any other position in state
space with equal probability as the system evolves in time. In other words there
is no statistical way to predict the initial from the final position or vice versa.

Ergodicity of continuous Kolmogorov systems has been proven long ago [1].
As for discrete Kolmogorov systems, we have no knowledge that anyone has
succeeded in defining them in a way such that ergodicity can be shown. In the
sequel we derive necessary and sufficient conditions on the number of iterations
necessary to ensure ergodicity of discrete Kolmogorov systems as introduced by
equation 2. Note that this way a constructive proof of ergodicity is achieved.

In the following we restrict attention to the practically most relevant case of
n = pm being an integral power of a prime p. The discrete Kolmogorov system
Tn,δr is defined by the list δr = (n1r, n2r, . . . , nkrr) of length kr containing the
positive integers to be used as key in round r. As mentioned before there are the
restrictions 1 ≤ i ≤ kr, 0 < nir < n,

∑kr

i=1 nir = n and the constraint that all
nir ∈ δr must partition the side length n.

Furthermore let the stretching and squeezing factors qir to use for vertical
strip number i in round number r be defined by qir = n

nir
. This results in

quantities qir, qir ≥ p that also have to be integral powers of p because of the
divisibility assumption made.

Consider an arbitrary point (x, y) ∈ [Nir, Nir + nir) × [0, n) in vertical strip
number i to be transformed in round number r under the influence of the key
δr (see equation 2 and figure 1). Coordinates x and y can then be expressed
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by qir-adic representations of length tir = �logqir
n� by x =

∑tir

j=1 xjr(qir)tir−j

and y =
∑tir

j=1 yjr(qir)tir−j . Similarly Nir can be expanded according to Nir =
∑tir

j=1 Nijr(qir)tir−j and x − Nir may be expressed as x − Nir =
∑tir

j=1 xmjr

(qir)tir−j . Obviously x is the sum of x − Nir and Nir.
To clarify these relations, the following illustration should be helpful. Please

note that while in the representation of x the most significant position stands on
the right side, the most significant position in the qir-adic representation of y is
found on the left side. This arrangement has been made so that the subsequent
transformation can essentially be depicted as a cyclic right shift by one position.

x

xtirr . . . x3r x2r x1r

xmtirr . . . xm3r xm2r 0
Nitirr . . . Ni3r Ni2r Ni1r

y

y1r y2r y3r . . . ytirr

y1r y2r y3r . . . ytirr

0 0 0 . . . 0

According to equation 2 application of Tn,δr will move the point (x, y) to
a new position (x′, y′) = Tn,δr(x, y) with coordinates x′ = qir(x − Nir) +
(y mod qir) and y′ = (y div qir) + Nir, as made clear by the subsequent
figure.

x′

ytirr . . . xm4r xm3r xm2r

0 . . . 0 0 0
y′

0 y1r y2r . . . y(tir−1)r
Ni1r Ni2r Ni3r . . . Nitirr

Suppose that lists δr are chosen independently and at random1. Neglecting
the constraint Nir ≤ x which follows from the fact that Nir is the left border
of the vertical strip containing the point (x, y) for a moment, the proof of er-
godicity becomes straightforward. Nir adds random qir-bits to all the qir-bits
of y′ yielding a random value for the new y-coordinate in one step. Cyclically
shifting the least significant position of the y-coordinate to the least significant
position in the x-coordinate and shifting these random qir-bits towards more
significant positions in the x-coordinate ensures that after at most an additional
maxkr

i=1 tir ≤ m iterations the transformed point can move to almost any other
position in state space with equal probability. Thus ergodicity is achieved after
at most m + 1 iterations.
1 This is a common assumption whenever proving specific properties of iterated crypto-

graphic schemes. Round keys are generally supposed to be random and independent.
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Now let us pay attention to the constraint Nir ≤ x. A moment of thought
reveals that the worst non-trivial point that will need the largest number of
rounds until being able to move to any position has a x-coordinate of 0 and a
y-coordinate where just y1r is different from zero. Then it takes at most m + 1
iterations until the second-least significant qir-bit in the x-coordinate is set and
the least significant qir-bit in Nir (and also in the x-coordinate!) may assume
any random value. By shifting qir-bits towards more significant positions in
the x-coordinate every iteration causes one additional position in x to become
random and by adding Nir the same applies to the y-coordinate. This way it
is guaranteed that after another at most m − 1 iterations ergodicity is achieved
after at most 2m steps in total.

Theorem 1. Let the side-length n = pm be given as integral power of a prime
p. Then the discrete Kolmogorov system Tn,δr as defined in equation 2 is ergodic
provided that at least 2m iterations are performed and lists δr used in every step
r are chosen independently and at random.

In the discussion above we have noted that the restriction Nir ≤ x to observe
in every step significantly increases the number of iterations necessary until an
initial point can move to any other position. Particularly points with small (zero)
x-coordinate need a long time until exhibiting ergodic behaviour. However, a
simple trick can help a lot in reducing the number of iterations necessary to
achieve ergodicity of the underlying system: after every discrete Kolmogorov
permutation round just apply a cyclic shift by n

2 − 1 to the elements in the
n × n array. This corresponds to adding n

2 − 1 modulo n to every x-coordinate
and helps points with initially small x-coordinates to move to any other position
in a reduced number of rounds. Additionally this simple trick also solves the
problems associated with the fixed points (0, 0) and (n − 1, n − 1) so that not
just almost all points can move to almost any position but really all of the n×n
points will have ergodic behaviour.

Exponential Divergence. Informally speaking and expressed in terms of per-
mutation systems, exponential divergence implies that neighboring points con-
tained in the same subspace of the state space (e.g. points of the same vertical
strip corresponding to the same block of the defining partition) diverge at an ex-
ponential rate. This way even highly correlated points in input blocks will quickly
loose correlations and structures present in input data will soon disappear.

Proving exponential divergence of specific discrete Kolmogorov systems can
proceed using similar arguments as applied in proving ergodicity of discrete
Kolmogorv systems. Specifically we derived the the following theorem [12].

Theorem 2. Let the side-length n = pm be given as integral power of a prime p.
Then the discrete Kolmogorov system Tn,δr as defined in equation 2 exhibits ex-
ponential divergence of points contained in the same blocks defined by partitions
δr ensuring that after at most 2m−1 iterations arbitrary non-zero deviations be-
tween initial points have propagated at least once to the most significant position
in the x-coordinate.
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Mixing Property. Informally speaking and expressed in terms of permutation
systems, fulfillment of the mixing property implies that any subspace of the state
space will dissipate uniformly over the whole state space. Obviously this is an
even stronger requirement than ergodicity because it does not only imply that
almost any point will move to almost any position in state space with equal
probability but also that distances between neighboring points within certain
subspaces will become random as the system evolves in time.

Combining results derived in proving ergodicity and exponential divergence
of discrete Kolmogorov systems, we have proven the following theorem [11].

Theorem 3. Let the side-length n = pm be given as integral power of a prime
p. Then the discrete Kolmogorov system Tn,δr as defined in equation 2 is mixing
provided that at least 4m iterations are performed and lists δr used in every step
r are chosen independently and at random.

2.4 Analysis Summary

Summarizing the preceding discussion, a simple law on the conditions necessary
to ensure that discrete Kolmogorov systems generate high-quality permutations
can be stated as follows:

Theorem 4. Let the side-length n = pm be given as integral power of a prime
p. Then the discrete Kolmogorov system Tn,δr as defined in equation 2 fulfills
the properties of ergodicity, exponential divergence and mixing provided that at
least 4m iterations are performed and lists δr used in every step r are chosen
independently and at random.

Based on this theorem it is well justified to claim that the permutation op-
erator developed in this contribution is indeed an excellent key-dependent per-
mutation operator for cryptographic applications.

3 Applications

As shown in our analysis section, discrete chaotic Kolmogorov systems offer per-
fect permutation operators. In this section we would like to emphasize relevance
of this analysis by giving several examples showing that discrete Kolmogorov
systems can successfully be applied to many important problems encountered
in communication security. Due to the limited space available, description must
be restricted to just outlining some examples in symmetric encryption, secure
hashing, password based access control, and digital image watermarking.

3.1 Efficient Block Ciphering

The structure of iterated symmetric product ciphers [13] which perform a block-
wise encryption of the plaintext input to the system by repeated intertwined
application of r round of permutations and substitutions can be observed from
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Fig. 2. Input to the system is a block of plaintext and a pass-phrase. From this
key the internal key management derives individual keys and supplies them to
the various rounds. Every round applies one permutation and one substitution
operation to the output of the previous round (initially the plaintext block).
After r rounds, the output of the final round gives the ciphertext output by the
r-round product cipher.

plain-text P0
Subst

1 1C  = P
Perm SubstPerm

2 2C  = P ..... C     = Pr-1 r-1
Perm Subst

Cr cipher-text

KrP KrS

Kr

.....
internal key management

K2P K2S

K2

K1P K1S

K1

pass-phrase

Fig. 2. Structure of an r-round product cipher

The role for discrete Kolmogorov systems within this framework is immediate
to see. We use them as high-quality permutation operators for implementing
the permutations needed. When complemented with an adequate substitution
operator, this approach can deliver very strong and efficient ciphers. More details
on that matter can e.g. be found in [10].

3.2 Cryptographic Message Digests

To provide integrity [8] and authenticity [7] in secure communications applica-
tions at reasonable computational costs, efficient and strong cryptographic hash
functions are needed. Our approach to compute a message digest based on dis-
crete chaotic Kolmogorov systems runs as follows.

First a 16 × 16 square array of bits is initialized with 256 pseudo-random
bits (128 zeros, 128 ones) taken from the after-comma binary expansion of some
”magic” constants (π, e, golden ratio φ,

√
2,

√
5, etc.) as done in almost any cryp-

tographic hash function. Taken line-by-line or column-by-column, this provides
the initial 256 bit message digest MD0.

After initialization, in every step t = 1, 2, . . . the message digest MDt−1 is
updated by processing the message in blocks Wt of 256 bit each. Since message
lengths are usually not a multiple of 256, padding the last block with arbitrary
constant bits may be necessary.

Now these 256 message bits are XORed with the current 256 bit message
digest to obtain Xt = Wt ⊕ MDt−1. This step ensures that any block contains
approximately an equal number of zeros and ones, regardless of the message
block (which could be entirely zero etc.).

To maximize input avalanche effects, the 8 32-bit words Xt(i) (0 ≤ i ≤ 7) are
processed according to a linear recurrence relation. First a forward dissipation
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MD
t-1

MD
t

W
t

X = W MD
t t t-1

XOR

Y (0) = X (0); Y (i) = aY (i-1)+b 2 X (i)
t t t t t

MOD XOR
32

Z (7) = Y (7); Z (i) = aZ (i+1)+b 2 Y (i)
t t t t t

MOD XOR
32

Z (0,0)
t

Z (7,3)
t

T
16, (Zt(0,0))�

Cyclic shift

(7 positions)

T
16, (Zt(7,3))))�

Cyclic shift

(7 positions)

. . . . .

. . . . .

Fig. 3. One step in calculating data dependent chaotic permutation hashes based on
discrete Kolmogorov systems

step is done according to Yt(0) = Xt(0), Yt(i) = aYt(i − 1) + b mod 232 ⊕ Xt(i)
with parameters a and b set accordingly (see e.g. [9] for a large variety of suitable
parameter settings) to give pseudo-random sequences Yt(i). This is followed by a
backward dissipation step (with index i decreasing) according to Zt(7) = Yt(7),
Zt(i) = aZt(i + 1) + b mod 232 ⊕ Yt(i).

After preprocessing the message block Wt to obtain the block Zt, the ac-
tual hashing step takes place. The 256 bit of Zt are used to provide 32 key
bytes Zt(i, j) (0 ≤ i ≤ 7, 0 ≤ j ≤ 3) to permute the message digest MDt−1
stored in the 16 × 16 array of bits using the corresponding discrete Kolmogorov
system. Fig. 3 summarizes one round when calculating data dependent chaotic
permutation hashes based on chaotic Kolmogorov systems. Iterating this pro-
cedure for all blocks of the input message and finally reading the 16 × 16 2D
array line-by-line or column-by-column delivers the 256 bit message digest of
the message to hash in a very efficient and elegant manner as pseudo-random
message-dependent permutation of the initial message digest MD0.

3.3 Digital Image Watermarking

Most of the commercially available systems for digital image watermarking [14]
are based on ideas known from spread spectrum radio communications [2]. In
spread spectrum communications, one transmits a narrowband signal over a
much larger bandwidth such that the signal energy present in any single fre-
quency is undetectable. This allows the signal reception even if there is interfer-
ence on some frequencies.

Although there are many variants of spread-spectrum communications, we
will focus on Direct-Sequence Spread Spectrum (DSSS) as the method most useful
for application in digital image watermarking. A descriptive exposition how this
can be achieved is found e.g. in [4] and similarly in [5]; to illustrate the principle
we will closely follow along these lines.
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Fig. 4 illustrates a simple, straightforward example of spread spectrum wa-
termarking. The watermark bits (key2) to be embedded2 are spread to fill an
image of the same size as the image to be watermarked. The spread information
bits are then modulated with a cryptographically secure PN signal keyed by
watermarking key key1, scaled according to perceptual criteria, and added to
the image in a pixel-wise fashion.

Fig. 4. Spread spectrum watermark embedding

Considering this practically most relevant approach for digital copyright pro-
tection via watermarking, an potential role for discrete Kolmogorov systems
within the framework of DSSS watermarking becomes obvious. Security of any
such DSSS watermarking scheme is heavily based on the cryptographically se-
cure PN signal keyed by watermarking key key1. We implement this process
as follows. Starting with a balanced initial binary image (might be a corporate
logo), this image is permuted by discrete Kolmogorov systems under the influ-
ence of a key for as many rounds as are necessary to ensure that a high-quality
PN signal is achieved. This PN signal is then used in the watermark embedding
(and also detection) phase as depicted in Fig. 4, a fact that stresses the vital role
that chaotic permutation operators can play in copyright protection via digital
watermarking.

4 Conclusion

In this contribution we have shown that it is possible to derive adequate discrete
counterparts for classical continuous Kolmogorov systems. Additionally we pro-
vided a detailed analysis under which criteria these novel discrete Kolmogorov
systems offer high-quality permutation operators. Availability of such discrete
permutation systems was finally utilized to sketch several examples of poten-
tial applications for important tasks in information security such as symmetric
2 For simplicity, we just embed 4 bits; in real systems, 128 bit or more are used.
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block ciphering, message digest computation, or copyright protection via digital
watermarking. Summing up it can be concluded that our analysis performed for
discrete Kolmogorov systems proves validity of specific important properties and
constitutes a solid basis to apply them in many fields of secure communications.
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