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Abstract. We address the problem of constructing multi-wavelets, that
is, wavelets with more than one scaling and wavelet function. We general-
ize the algorithm, proposed by Alpert [1] for generating discrete Legendre
multi-wavelets to the case of arbitrary, non-dyadic time interval splitting.

1 Introduction

In the past two decades there has been a considerable interest to the wavelet
analysis, a tool that emerged from mathematics and was quickly adopted by
diverse fields of science and engineering [7]. Wavelets are being applied to a wide
and growing range of applications such as signal processing, data and image
compression, solution of partial differential equations, and statistics.

Recently, multi-wavelets, that is, wavelets with more than one scaling and
wavelet function have gained a considerable interest in the area of signal pro-
cessing. Promising results have been obtained with multi-wavelets in signal de-
noising and compression [8].

The first multi-wavelets were introduced by Alpert [1], who constructed
Legendre type of wavelets on the interval [0,1) with several scaling functions
φ0, φ1, . . . , φN−1, instead of just one scaling function φ0. This difference enabled
high-order approximation with basis functions supported on non-overlapping in-
tervals. In the particular case of N = 1, Alpert’s multi-wavelets coincide with
the Haar basis.

The discrete analogue of continuous Legendre multi-wavelets was also intro-
duced by Alpert [1]. The structure of this analogue is essentially similar to that
of continuous multi-wavelet bases, but the discrete construction is more conve-
nient when the representation of a function (and its related operations) is based
on its values at a finite set of points [1].

In [3], a new basis, called the tree-structured Haar (TSH) basis was intro-
duced. It is a generalization of the classical Haar basis to arbitrary time and
scale splitting. The idea behind such a construction is to adapt the basis to the
signal on hand. Discrete orthogonal TSH transform has been successfully applied
to the problem of de-noising signals [5].

In [4], the TSH structure has been extended to the multi-wavelet bases by an
analog to Alpert’s construction. The construction of the basis functions assured
their orthogonality in the continuous space. However, the question regarding
the construction of discrete orthogonal bases has been left unexplored. In this
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paper we address the problem of constructing the discrete counterpart of tree-
structured multi-wavelets, so called, tree-structured Legendre (TSL) transform,
by generalizing the construction procedure, that has been introduced in [1].

2 Wavelet Fundamentals

The key concept behind the wavelet theory is multiresolution analysis (MRA).
A multiresolution analysis in L2(R) is given by a nested sequence of subspaces:

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ,
←− Coarser F iner −→ (1)

such that closL2(
⋃

j∈Z Vj) = L2(R) (completeness),
⋂

j∈Z Vj = {0} (unique-
ness), and f(t) ∈ Vj ↔ f(2t) ∈ Vj+1, j ∈ Z (scaling property).

It can be shown that the following relations hold for MRA. There exists a
function φ(t):

φ(t) =
∞∑

k=−∞
pkφ(2t − k), (2)

called scaling function, such that Vj = linear span {φj,k}; j, k ∈ Z, where

φj,k(t) =
√

2jφ(2jt − k); j, k ∈ Z (3)

are dilated and translated versions of φ(t) (we refer to Mallat [6] for detailed
explanation).

Given a set of nested subspaces Vj , there exists a set of subspaces Wj , such
that

Vj+1 = Vj

⊕
Wj , Wj+1⊥Wj′ , if j �= j′; j, j′ ∈ Z. (4)

These subspaces give an orthogonal decomposition of L2(R), namely

L2(R) =
⊕

j∈Z

Wj . (5)

Moreover, Wj ’s inherit the scaling property from V j: f(t) ∈ Wj ↔ f(2t) ∈
Wj+1; j ∈ Z. For a scaling function φ in V0, there exists its counterpart ψ in
W0, called wavelet, such that {ψj,k} generate Wj , where

ψj,k(t) =
√

2jψ(2jt − k); j, k ∈ Z. (6)

Since ψ ∈ W0 ⊂ V1, it can be written in terms of φ(2t − k). A pair
{

φ(t) =
∑∞

k=−∞ pkφ(2t − k),
ψ(t) =

∑∞
k=−∞ qkφ(2t − k) (7)

is called two-scale relations.
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3 Continuous Legendre Multi-wavelets

We now describe briefly the Alpert’s design of Legendre type of multi-wavelets
on the interval [0,1). The two-scale relations for N Legendre scaling functions of
order (N − 1), φ0, φ1, . . . , φN−1, are defined as

φi(t) =
∑N−1

j=0 pi,jφj(2t) +
∑m

j=0 pi,N+jφj(2t − 1); i ∈ {0, 1, . . . , N − 1}. (8)

Here as well as below we assume t ∈ [0, 1). The i − th scaling function, φi, is an
i − th order polynomial, and all φi’s form an orthonormal basis, that is,

φi(t) =
∑i

k=0 ai,kxk; i ∈ {0, 1, . . . , N − 1}, (9)

where ∫ ∞
−∞ φi(t)φk(t)dt = δi,k; i, k ∈ {0, 1, . . . , N − 1}. (10)

The coefficients pi,j in (8) are determined uniquely from the conditions (9),(10).

Remarks:

1. Since φi(t) is the i − th order polynomial, if follows that pi,j = pi,N+j = 0,
for i < j.

2. The two-scale relations for the Legendre scaling function of order n < N − 1
is a subset of the first n two-scale relations for φi for i ∈ {0, 1, . . . , n} from
the (N − 1) − th order two-scale relations.

The two-scale relations for the (N − 1) − th order Legendre wavelets are in the
form:

ψi(t) =
∑N−1

j=0 qi,jφj(2t) +
∑N−1

j=0 qi,N+jφj(2t − 1); i ∈ {0, 1, . . . , N − 1}. (11)

Since there are 2N2 unknown coefficients qi,j in (11), we need 2N2 independent
conditions to determine the two-scale relations. Among many possible choices
for these conditions that would determine different wavelets, the orthonormality
and vanishing moment conditions were selected by Alpert [2]:

∫ ∞
−∞ ψi(t)ψk(t)dt = δi,k; i, k ∈ {0, 1, . . . , N − 1}, (12)

∫ ∞
−∞ ψi(t)tjdt = 0, i ∈ {0, 1, . . . , N − 1}; j ∈ {0, 1, . . . , i + N − 1}. (13)

4 Continuous Legendre Multi-wavelets: Non-dyadic
Interval Splitting

In [4], the concept of the dyadic two-scale relations between Legenrde scaling
functions and wavelets has been generalized to two-scale relations having an
arbitrary interval-splitting point, namely, α. The two-scale relations for the (N −
1)-th order non-dyadic Legendre scaling functions and wavelets are:

φi(t) =
∑N−1

j=0 pi,jφj(αt) +
∑N−1

j=0 pi,N+jφj(αt−1
α−1 ), (14)
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ψi(t) =
∑N−1

j=0 qi,jψj(αt) +
∑N−1

j=0 qi,N+jφj(αt−1
α−1 ), (15)

for i ∈ {0, 1, . . . , N − 1}, t ∈ [0, 1). The unknown coefficients pi,j and qi,j are
uniquely defined based on the same considerations, as for the dyadic Legendre
multi-wavelets.

It has been mentioned in [4], that by the construction (14), (15), there is no
more scale invariance. No integer shifts at the same scale (like in the dyadic case)
form the subspaces Vj . In other words, the nested subspaces cannot anymore be
indexed by their scale. However, the functions φj(αt) and φj(αt−1

α−1 ) are orthog-
onal and hence form a basis for V0 and for its orthogonal complement, W0 [4].

In the particular case of α = 2, the new construction coincides with dyadic
Legendre multi-wavelets.

Example 1. Linear non-dyadic Legendre multi-wavelets. If N = 2, the two-scale
relations for scaling functions and wavelets take the form:

(
φ0(t)
φ1(t)

)

=

(
1 0 1 0

−
√

3(α−1)
α

1
α

√
3

α
α−1

α

)
⎛

⎜
⎜
⎝

φ0(αt)
φ1(αt)
φ0(αt−1

α−1 )
φ1(αt−1

α−1 )

⎞

⎟
⎟
⎠ , (16)

(
ψ0(t)
ψ1(t)

)

=

⎛

⎝
(α−2)

√
α−1√

α2−α+1
−√

3
√

α−1√
α2−α+1

(α−2)
√

α−1
(α−1)

√
α2−α+1

√
3
√

α−1√
α2−α+1√

3(α−1)
√

α−1
α
√

α2−α+1
(α+1)(α−1)

√
α−1

α
√

α2−α+1
−√

3
√

α−1
α
√

α2−α+1
(2α−2)

√
α−1

α(α−1)
√

α2−α+1

⎞

⎠×

×

⎛

⎜
⎜
⎝

φ0(αt)
φ1(αt)
φ0(αt−1

α−1 )
φ1(αt−1

α−1 )

⎞

⎟
⎟
⎠ .

(17)
If α = 2, (16), (17) will be identical to the linear two-scale relations for dyadic
Alpert’s multi-wavelets.

The wavelets ψ0 and ψ1 for the case of α = 3, N = 2 are presented in Fig. 1.

5 Splitting Point Selection

For general non-dyadic splitting, the scaling parameter, α, is selected according
to so called binary interval splitting tree (BIST), that has been introduced in
[3]. BIST is a binary tree, where each nonterminal node has either two children
(splitting node), or a single child (non-splitting node). The root of the tree is
associated to the entire interval [0, 1). The outedges are labelled as below:

1. if the node is splitting, its left outedge is labelled by λ = 0, and its right
outedge is labelled by λ = 1;

2. if the node is non-splitting, its only outedge is labelled by λ = 2.
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Fig. 1. Non-symmetric Legendre multi-wavelets for α = 3: a) wavelet ψ0(t), b) wavelet
ψ1(t)

Each node, a, is indexed by a ternary vector (λ1(a), λ2(a), . . . , λk(a)), where λj

are the outedge labels from the root to this node, and depth(a) = k. Additionally,
the node a is labelled by the number l of leaves of the subtree rooted in that
node (all leaves are labelled with 1). The described tree determines splitting of
[0, 1) interval into subintervals, each defined by a node of the tree:

1. assign Iroot = [0, 1);
2. if Iλ1,λ2,...,λk

= [0, 1) for a node (λ1, λ2, . . . , λk), then
⎧
⎨

⎩

Iλ1,λ2,...,λk,0 = [c, c + lλ1,λ2,...,λk

lλ1,λ2,...,λk,0
(d − c)),

Iλ1,λ2,...,λk,1 = [c + lλ1,λ2,...,λk

lλ1,λ2,...,λk,0
(d − c), d),

(18)

if (λ1, λ2, . . . , λk) is a splitting node; and

Iλ1,λ2,...,λk,2 = Iλ1,λ2,...,λk
, (19)

if (λ1, λ2, . . . , λk) is a non-splitting node.

A BIST is illustrated in Fig. 2. The parameter α determines the interval splitting
ratio:

11 1

2 1

3 0 1

0 1

0 1

Iroot

I1I0

I00 I01 I12

2/3

1/3 2/3

Fig. 2. Binary interval splitting tree



296 E. Pogossova et al.

⎧
⎨

⎩

|Iλ1,λ2,...,λk
|

|Iλ1,λ2,...,λk,0| = lλ1,λ2,...,λk

lλ1,λ2,...,λk,0
= α,

|Iλ1,λ2,...,λk
|

|Iλ1,λ2,...,λk,1| = lλ1,λ2,...,λk

lλ1,λ2,...,λk,1
= α

α−1 .
(20)

Given such a rule for interval splitting, a multi-wavelet basis with non-dyadic
splitting points can be generated. For each splitting node, two sets of functions,
φ0, φ1, . . . , φN−1 and ψ0, ψ1, . . . , ψN−1 can be assigned according to α, defined
from (20).

Construction of the basis functions, described by (16), (17) assures their
orthogonality.

6 Discrete Construction

In [1], Alpert proposed a discrete bases construction for Legendre multi-wavelets.
The structure of this analogue is essentially similar to that of the continuous
bases, but the discrete construction is more convinient when representation of
the function (and its related operators) is based on its values at a finite set of
points [1]. The price is the loss of complete scale invariance: Vn’s are no longer
the dilates of a single space V0, rather only nearly so.

In the more general case of non-dyadic spitting, the continuous multi-wavelet
basis can be also transformed into a discrete basis. Below we present an algorithm
for constructing such bases for non-dyadic Legendre multi-wavelets that includes
Alpert’s dyadic contruction as a special case. We will refer to these beses as to
tree-structured Legendre (TSL) multi-wavelets.

Given a set of n discrete points, {x1, x2, . . . , xn} ⊂ R, our goal is to de-
fine an orthogonal basis for the n-dimensional space of functions, defined on
{x1, x2, . . . , xn}. We assume, that x1 < x2 < . . . < xn, and n = 2mN , where N
is the required order of approximation, and m is a positive integer. The basis
will have two fundamental properties:

1. all but N basis vectors will have N vanishing moments;
2. the basis vectors will be nonzero on different scales.

We start with constructing a binary tree, similar to BIST, though slightly differ-
ent. Now a label at each node of the tree must be a multiple of N , where N ≥ 1.
Each label is equal the sum of labels of its children, however, all terminal nodes
will now be labelled with N , instead of 1 as in the case of BIST. The root of the
tree has label n. An example of such a tree with N = 2 is presented in Figure 3.
By d we denote the depth of the tree, and let µj , j ∈ {0, 1, . . . , d} be the num-

ber of nodes on level j (j = d corresponds to the leaves). The above tree is of
depth d = 4, with µ0 = 1, µ1 = 2, µ2 = 3, µ3 = 4, and µ4 = 6. Let also c(j, i),
i ∈ {1, 2, . . . , µj} be the nodes on level j, counted from the left to the right, and
ν(c(j, i)) be the label at node c(j, i).

Let us fix the following notations. For a (2k × 2k) matrix S we let SU and
SL denote the two (k × 2k) matrices: SU , consisting of the upper k rows and
SL, consisting of the lower k rows of S. Suppose that the columns s1, s2, . . . , s2k

of S are linearly independent. We define T = Orth(S) to be the matrix that
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Fig. 3. TSL tree

results from the column-by-column Gram-Shmidt orthogonalization of S. Then,
denoting the columns of T by t1, t2, . . . , t2k, we have:

linear span{t1, t2, . . . , ti} = linear span{s1, s2, . . . , si}
tTi ti = δij

}

i, j ∈ {1, 2, . . . , 2k}.

(21)
Now we proceed to the definition of basis matrices. We construct so called mo-
ment matrices, M1,i for i ∈ {1, 2, . . . , µd−1} as follows:

M1,i =

⎛

⎜
⎜
⎜
⎝

1 xui+1 x2
ui+1 . . . x2N−1

ui+1
1 xui+2 x2

ui+2 . . . x2N−1
ui+2

...
...

1 xui+2N x2
ui+2N . . . x2N−1

ui+2N

⎞

⎟
⎟
⎟
⎠

, (22)

if c(d − 1, i) is a splitting node, and

M1,i =

⎛

⎜
⎜
⎜
⎝

1 xui+1 x2
ui+1 . . . x2N−1

ui+1
1 xui+2 x2

ui+2 . . . x2N−1
ui+2

...
...

1 xui+N x2
ui+N . . . x2N−1

ui+N

⎞

⎟
⎟
⎟
⎠

, (23)

if c(d − 1, i) is a non-splitting node. Here ui =
∑i−1

j=1 ν(c(d − 1, j)) for i > 1, and
u1 = 0. Additionally, we define matrices U1,i, i ∈ {1, 2, . . . , µd−1}:

U1,i =

⎧
⎨

⎩

Orth(M1,i)T , if c(d − 1, i) is a splitting node,(
IN

0N

)

, otherwise. (24)

Here IN and 0N denote (N ×N) identity and zero matrices, respectively. In this
way, the lower N rows of U1,i will have at least N vanishing moments (since they
are orthogonal to the first N columns of M1,i). These N last rows of U1,i will
be included into the final basis, while the first N rows will remain for further
processing.
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The first (n × n) basis matrix, U1, is constructed by deleting all zero rows
from the following auxiliary matrix Ũ1:

Ũ1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

UU
1,1

UU
1,2

. . .
UU

1,µd−1

UL
1,1

UL
1,2

. . .
UL

1,µd−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (25)

The second basis matrix is U2 × U1, with an (n × n) matrix U2, defined by
the formula

U2 =
(

U ′
2

In−l2

)

, (26)

where l2 is the size of matrix U ′
2. The latter is obtained by deleting zero rows

from Ũ ′
2,

Ũ ′
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ŨU
2,1

ŨU
2,2

. . .
ŨU

2,µd−2

ŨL
2,1

ŨL
2,2

. . .
ŨL

2,µd−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (27)

with

Ũ2,i =

⎧
⎨

⎩

U2,i, if c(d − 2, i) is a splitting node,(
IN

0N

)

, otherwise. (28)

If c(d − 2, i) is a splitting node with two children c(d − 1, k) and c(d − 1, k + 1),
then U2,i = Orth(M2,i)T , where M2,i is given by

M2,i =
(

UU
1,k × M1,k

UU
1,k+1 × M1,k+1

)

. (29)

Otherwise, if the node c(d − 2, i) is non-splitting, and c(d − 1, k) is its (only)
child, then U2,i = U1,k and M2,i = M1,k.

In general, the m−th basis matrix, for m ∈ {2, . . . , d}, is Um×Um−1×· · ·×U1
with Uj , j ∈ {2, . . . , m}, defined by the formula

Uj =
(

U ′
j

In−lj

)

, (30)
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where lj is the size of U ′
j , and U ′

j are obtained by deleting zero rows from the
following matrices Ũ ′

j :

Ũ ′
j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ŨU
j,1

. . .
ŨU

j,µd−j

ŨL
j,1

. . .
ŨL

j,µd−j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (31)

Here again

Ũj,i =

⎧
⎨

⎩

Uj,i, if c(d − j, i) is a splitting node,(
IN

0N

)

, otherwise. (32)

Uj,i = Orth(Mj,i)T , and Mj,i is

Mj,i =
(

UU
j−1,k × Mj−1,k

UU
j−1,k+1 × Mj−1,k+1

)

, (33)

if c(d − j, i) is a splitting node, and c(d − j + 1, k), c(d − j + 1, k + 1) are its
left and right children, respectively. Uj,i = Uj−1,k, Mj,i = Mj−1,k if the node
c(d − j, i) is non-splitting, and c(d − j + 1, k) is its only child.

The final matrix, U = Ud × Ud−1 × · · · × U1, represents the discrete wavelet-
like basis of parameter N on x1, x2 . . . , xn. As it has been mentioned in [1], some
adjustments must be made to this formula to ensure numerical stability. These
issues are discussed in [2] and we will not cover them here.

Example 2. For the TSL tree, illustrated in Fig. 3, the schematic final basis ma-
trix showing the irregular structure of the construction is given below. Nonzero
elements of the matrix are denoted by ”�”.

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � 0 0 0 0
� � � � � � � � 0 0 0 0
0 0 0 0 � � � � 0 0 0 0
0 0 0 0 � � � � 0 0 0 0
� � � � 0 0 0 0 0 0 0 0
� � � � 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 � � � �
0 0 0 0 0 0 0 0 � � � �

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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7 Fast Implementation

Since the basis matrix U is represented as a product of sparse matrices, U =
Ud ×Ud−1 × · · ·×U1, it is apparent, that for an arbitrary vector of length n, the
application of matrix U can be accomplished in order O(n) arithmetic operations.
Thus, the described transform is equally efficient with Haar or TSH transofms.
The inverse transform matrix, U−1 is factorized as U−1 = UT = UT

1 × UT
2 × UT

d

(since U is orthogonal), and thus the inverse transform is of the same complexity.

8 Conclusion

We have considered multi-wavelet bases, that is, bases with a finite set of scaling
functions and wavelets. In particular, we have focused on Legendre type of multi-
wavelets, introduced by Alpert in [1] and generalized later in [4] to the case of
arbitrary (non-dyadic) time splitting. The latter can be appropriate for signals
with some irregular structure. Knowing this structure, an adaptive wavelet-like
basis can be constructed that can lead to a more efficient transform-domain
expansion of the signal. Here we have proposed an algorithm for constructing
discrete counterparts of such non-dyadic Legendre multi-wavelets. The discrete
construction is more convenient, when representation of a function (and its re-
lated operators) is based on its values at a finite set of points.
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