
Parallel State Space Generation and Exploration
on Shared-Memory Architectures

Milan Češka, Bohuslav Křena, and Tomáš Vojnar

Faculty of Information Technology, Brno University of Technology,
Božetěchova 2, 612 66 Brno, Czech Republic

{ceska, krena, vojnar}@fit.vutbr.cz

1 Introduction

Model checking is a technique for an automated formal verification of correctness of
various classes of systems. Compared to the more traditional approaches to this prob-
lem based on simulation and testing, the main advantage of model checking is that the
desirable behavioural properties of the considered system are checked in such a way
that all the reachable states which may affect the given property are guaranteed to be
covered. The disadvantage of model checking is that it may have very high compu-
tational time and space requirements. That is why various ways of dealing with the
computational complexity of model checking are sought.

The systems to be verified may be described using various languages. Here, we
consider the systems to be described by the PNtalk language based on Object-Oriented
Petri Nets (OOPNs). PNtalk [6] has been developed at the Brno University of Technol-
ogy as a tool suitable for modelling, prototyping and rapid development of concurrent
and distributed software systems.

In the paper, we discuss possibilities of parallel OOPN state space generation and
exploration on shared-memory architectures. The goal is to combat the high time com-
plexity of state spaces-based verification methods.

2 Object-Oriented Petri Nets

TheOOPNformalismischaracterizedbyaSmalltalk-likeobjectorientationenrichedwith
concurrency and polymorphic transition execution, which allows for message sending,
waiting for and accepting responses, creating new objects, and performing computations.

OOPNs are based on active objects whose internal activity is described by high-level
Petri nets that are called object nets. The objects communicate via message sending.
Asynchronous reactions of objects to incoming message are described by method nets.
Method nets are also high-level Petri nets and each of them has a set of parameter places
and a return place. Method nets can access places of the corresponding object net. Both
object nets and method nets are dynamically instantiable. Objects can also communicate
synchronously via synchronous ports that resemble special transitions of objects nets,
which can be fired only when they are activated from some classical transition. A simple
OOPN model in Fig. 1 demonstrates modelling by OOPNs on a simple example of
dealing with the stack data structure.

The latest research in the area of OOPNs shows that due to their features, OOPNs
are very suitable for describing open and reflective systems [7].

R. Moreno Dı́az et al. (Eds.): EUROCAST 2005, LNCS 3643, pp. 275–280, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

276 M. Češka, B. Křena, and T. Vojnar

Application is_a PN

Stack is_a PN

push: x

x

NT

(NT,x)

return
stack

push

x

pop

(t,x)

return

pop

NT

tt

t

t=0

err

(#ok,x)#ok #err

t1
s1:=Stack new

s1

p3 1, 2, 3, 4

s1 push: xt2 y:=s1 pop t3

s1s1x

y

top

0

NT:=t+1

p1

NT:=t-1

t>0

p2

p4p5
(#ok,x)x

t4

n

hasDepth: n
class

parameter

output
place

place

class name super class object net

synchronous port

method net selector

transition guard

method net

place with
initial marking

input arc

transition action

output arc

test arc

Fig. 1. A simple OOPN model

3 A Parallel OOPN State Space Generator

The main problem of the model checking methods is the so-called state space explo-
sion—the number of states grows exponentially with the size of the model. Thus, it is
difficult or practically impossible to apply these methods directly to large systems. We
can identify two main approaches for dealing with the problem. The first class of these
methods consists in sophisticated generation and exploration of the state spaces while
the second one tries to exploit more powerful computer architectures. In the context
of OOPNs, we have explored the first approach, e.g., in [4,9,5]. Here, we consider the
second possibility. Namely, we discuss the techniques behind a parallel state space gen-
erator of OOPNs which we have developed for architectures with shared memory using
the Java programming language and the JOMP tool [2].

The main task in programming parallel applications for shared-memory architec-
tures is to achieve a good load balance among multiple computation threads taking into
account their need to synchronize when accessing shared data. In our case, we need to
deal with three shared data structures—(1) a hash table, which is used for storing the
state space such that fast searching of states is possible when we need to know whether
a certain state has already been found or not, (2) a list of non-explored states that con-
tains states whose successors have not been explored yet, and (3) a marking pool which
is a special pool for storing decomposed markings.

Parallel State Space Generation and Exploration 277

Node

hash table

work list

Thread

local work list

marking pool

Fig. 2. Data Distribution

N0 N1

N2

N3N4

N5

Thread 0

Thread 1

Fig. 3. Work Seeking

In order to minimize conflicts among threads trying to access the hash table, we
have divided the table into several parts. In addition, we have divided also the list of
non-explored states (also called as the work list) in such a way that a newly generated
state is put to the unique part of the work list associated with the part of the hash table
to which the state is stored. Moreover, we let the thread that is responsible for handling
a certain part of the hash table use a private work list when processing the states to be
explored. Finally, to further improve the performance, we create a copy of the marking
pool for each thread. The distribution of data we thus obtain is shown in Fig. 2.

As we have already said, one of the crucial issues for efficiency of parallel applica-
tions is the quality of load balance among threads. We have started with one data node
(i.e. a fraction of the hash table) for each thread. However, this did not work well. At
first, we are not able to divide the hash table to parts with the same number of states in
advance. Moreover, for a good load balance, it is necessary that each thread has some
work (i.e. states to explore) during the whole production run, which is impossible to
predict and guarantee in advance too.

278 M. Češka, B. Křena, and T. Vojnar

Therefore, we have divided the hash table and the work list to more parts than we
have threads. We find by experiments that the best performance is reached when three
times more nodes than threads are created. Then, threads switch among nodes and try
to find some work to do as it is shown in Fig. 3 for the case of two threads.

4 Experimental Results

In this section, we show parallel speedups achieved using all the optimizations dis-
cussed in the previous section. For our experiments and measurements, we used two
servers, namely, a Sun Fire 15k server (52 processors UltraSPARC III, heartbeat
900 MHz, and 52 GB of memory, provided by the Edinburgh Parallel Computing Cen-
tre) and a Sun Enterprise 450 server (4 processors Sun UltraSPARC-II, heartbeat
400 MHz, and 4 GB of memory, provided by the Brno University of Technology).

In the following tables, we show average values for three successive production runs
in order to statistically minimize the measuring error. The simple OOPN model called
life model [8] was used in all the measurements discussed here.

The average execution times for the server Sun Fire 15k are listed in Tab. 1 while
the corresponding speedups can be found in Tab. 2. The values in the left columns were
obtained using the sequential garbage collector (SGC) while the values in the right ones
were obtained using the parallel garbage collector (PGC). The average execution times
for the server Sun Enterprise 450 are listed in Tab. 3 while the corresponding speedups
can be found in Tab. 4.

Table 1. Average execution times for the Sun Fire 15k server

Threads Number of Unique States
102 340 400 995

SGC PGC SGC PGC
1 26,50 s 105,68 s
2 20,08 s 20,85 s 78,73 s 90,07 s
4 13,61 s 13,50 s 59,53 s 58,04 s
8 9,82 s 9,20 s 49,50 s 38,88 s
12 9,21 s 8,80 s 42,76 s 32,52 s
16 8,77 s 8,31 s 44,57 s 32,30 s

Table 2. Average speedups for the Sun Fire 15k server

Threads Number of Unique States
102 340 400 995

SGC PGC SGC PGC
1 1,00 1,00
2 1,32 1,27 1,34 1,17
4 1,95 1,96 1,78 1,82
8 2,70 2,88 2,14 2,72
12 2,88 3,01 2,47 3,25
16 3,02 3,19 2,37 3,27

Parallel State Space Generation and Exploration 279

Table 3. Average execution times for the Sun Enterprise 450 server

Threads Number of Unique States
23 426 176 851 585 276 1 373 701 2 667 126

1 12,5 s 81,7 s 264,6 s 656,8 s 2 571 s (42 min 51 s)
2 8,1 s 51,0 s 180,0 s 436,8 s 1 874 s (31 min 14 s)
3 6,7 s 39,6 s 140,3 s 340,7 s 1 642 s (27 min 22 s)
4 6,6 s 35,8 s 126,3 s 304,5 s 1 517 s (25 min 17 s)

Table 4. Average speedups for the Sun Enterprise 450 server

Threads Number of Unique States
23 426 176 851 585 276 1 373 701 2 667 126

1 1,00 1,00 1,00 1,00 1,00
2 1,54 1,60 1,47 1,50 1,37
3 1,87 2,06 1,89 1,92 1,57
4 1,89 2,28 2,10 2,16 1,69

Table 5. Load balance among threads (in number of states)

Threads Thread 0 Thread 1 Thread 2 Thread 3
1 23 426 0 0 0

88 401 0 0 0
2 11 871 11 555 0 0

43 881 44 520 0 0
3 8 011 7 573 7 742 0

29 685 28 702 30 014 0
4 5 946 6 501 5 078 5 901

22 516 23 428 20 735 21 722

The parallel speedups that we have currently achieved are satisfactory despite we
had expected a little bit better results (especially efficiency). However, the load bal-
ance among particular threads is nearly ideal. This is promising for the future develop-
ment because the good load balance is a basic condition for achieving a good parallel
speedup. We illustrate the quality of our algorithm regarding the load balance in Tab. 5
and Tab. 6 where the values for the Sun Enterprise 450 server and a small number of
states are showed. An upper number in each cell corresponds with a number of unique
states while the lower one corresponds with a number of generated states. We show
here the values for the model with small number of states due to the load balance is
even better when models with bigger number of states are considered.

5 Conclusions and Future Work

We have discussed possibilities of exploiting parallel architectures with shared memory
for combating the high computational complexity of model checking. We have used
Java and JOMP [2] as programming tools and considered OOPNs as a modelling for-
malism. Proposing a parallel algorithm with good load balance among threads is an
important result of our work.

280 M. Češka, B. Křena, and T. Vojnar

Table 6. Load balance among threads (in percentage)

Threads Thread 0 Thread 1 Thread 2 Thread 3
1 100,0 0 0 0

100,0 0 0 0
2 50,7 49,3 0 0

49,6 50,4 0 0
3 34,2 32,3 33,5 0

33,6 32,5 34,0 0
4 25,4 27,8 21,7 25,2

25,5 26,5 23,5 24,6

We have also presented experimental results that we have achieved. To sum up them,
we have reached parallel speedups up to 3.3 using 16 processors on the Sun Fire 15k
server and speedups up to 2.3 using 4 processors on the Sun Enterprise 450 server.

The main problem that prevents us to achieve an even better parallel speedup is the
memory management system (especially garbage collecting) due to the memory opera-
tions being performed sequentially. We have tried to exploit parallel garbage collectors
too—the results are, however, not satisfactory. Another possible approach to this prob-
lem is to implement a user-specific memory management system like in [1] to reduce
the number of dynamically created objects.

Acknowledgement. This work was supported by the Czech Grant Agency under the
contracts 102/04/0780 and 102/03/D211 and it was also supported by the European
Community within the “Access to Research Infrastructure Action of the Improving Hu-
man Potential Programme” under the contract HPRI-CT-1999-00026.

References

1. S. C. Allmaier and G. Horton. Parallel Shared-Memory State-Space Exploration in Stochastic
Modelling. In Proc. of IRREGULAR ’97, LNCS 1253, 1997. Springer.

2. M. Bull and M. E. Kambites. JOMP—an OpenMP-like Interface for Java. In Proc. of the ACM
2000 conference on Java Grande, 2000. ACM Press.

3. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, London, England, 2000.

4. M. Češka, V. Janoušek, and T. Vojnar. Towards Verifying Distributed Systems Using Object-
Oriented Petri Nets. In Proc. of EUROCAST’99, LNCS 1798, 2000. Springer.

5. M. Češka, L. Haša, and T. Vojnar. Partial Order Reduction in Model Checking of Object-
Oriented Petri Nets. In Proc. of EUROCAST’03, LNCS 2809, 2003. Springer.

6. V. Janoušek. Modelling Objects by Petri Nets. PhD. thesis, Brno University of Technology,
Brno, Czech Republic, 1998.

7. B. Kočı́. Methods and Tools for Implementing Open Simulation Systems. PhD. thesis, Brno
University of Technology, Brno, Czech Republic, 2004.

8. B. Křena. Analysis Methods of Object Oriented Petri Nets. PhD. thesis, Brno University of
Technology, Brno, Czech Republic, 2004.

9. T. Vojnar. Towards Formal Analysis and Verification over State Spaces of Object-Oriented
Petri Nets. PhD. thesis, Brno University of Technology, Brno, Czech Republic, 2001.

	Introduction
	Object-Oriented Petri Nets
	A Parallel OOPN State Space Generator
	Experimental Results
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

