
A Software Architecture for Effective Document
Identifier Reassignment

Roi Blanco and Álvaro Barreiro

Computer Science Department, University of Corunna, Spain
{rblanco, barreiro}@udc.es

Abstract. This works presents a software solution for enhancing in-
verted file compression based on the reassignment of document identi-
fiers. We introduce different techniques recently presented in the Infor-
mation Retrieval forums to address this problem. We give further details
on how it is possible to perform the reassignment efficiently by apply-
ing a dimensionality reduction to the original inverted file and on the
evaluation results obtained with this technique. This paper is devoted
to the software architecture and design practises taken into account for
this particular task. Here, we show that making use of design patterns
and reusing software components leads to better research applications
for Information Retrieval.

1 Introduction

Indexing mechanisms are a critical part of Information Retrieval systems, as they
provide fast access to term information needed for query evaluation [7]. Inverted
files are by far the most used indexing structure in Information Retrieval (and
even in large-scale database systems), specially when dealing with very large
sets of data. Indexing structures store different information related to each term
appearing in the collection, depending on the granularity specified. In this paper
we will focus on document-level inverted files, this is, we only take into account
the occurrences of terms in documents. Figure 1 is an illustrative example, where
each line stands for a different document, and the structure stores term document
frequency (number of different documents that contain the given term) and
document identifiers.

This indexing structure is organised in posting lists, where each one holds the
information for a different term. Therefore, an inverted file can be expressed as:

{< ti; fti ; d1, d2, . . . , dfti >, di < dj∀i < j}∀ti ∈ T, (1)

where T is the set of terms, fti stands for the document frequency of the
term ti, and di is the document identifier. As the notation implies, the document
identifiers are ordered.

Usually, posting lists are compressed with a suitable coding for the data
involved. Compression methods need a suitable model of the data to perform

R. Moreno Dı́az et al. (Eds.): EUROCAST 2005, LNCS 3643, pp. 254–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Software Architecture for Effective Document Identifier Reassignment 255

Doc.Id Input Text:

1: Rain on the green grass
2: and rain on the tree
3: And rain on the housetop
4: but not on me
5: Rain, rain, go away

term Documents
rain 〈4; 1, 2, 3, 5〉
on 〈4; 1, 2, 3, 4〉
the 〈3; 1, 2, 3〉
green 〈1; 1〉
grass 〈1; 1〉
and 〈2; 2, 3〉
tree 〈1; 2〉
housetop 〈1; 3〉
but 〈1; 4〉
not 〈1; 4〉
me 〈1; 4〉
go 〈1; 5〉
away 〈1; 5〉

Fig. 1. Inverted File Example

the coding and decoding operations. Nevertheless there exists a family of meth-
ods, known as static codes [6] that work without having to store any informa-
tion about the data. These coding methods are useful for posting lists, as they
only contain integers and a model can become larger than the real compressed
data.

Actually, not every integer corresponding to a document identifier is coded,
but the difference between two consecutive ones, also known as d-gaps [7]. Static
codes use the fact that small integers occurs often, and give shorter codes to them
(measured in bits). So the shorter the differences between consecutive documents,
the higher gain in compression, which translates into a smaller inverted file.

The reassignment of document identifiers is a very recent technique for en-
hancing compression with static codes [2]. The main idea is to map each original
document identifier appearing in the collection into a new one, trying to reduce
the distances between occurrences in the posting lists. Some papers proved that
reordering can lead into gains in compression ratio for static inverted files of
medium size collections [2,8,9,10]. These works approached the problem from
different perspectives, using other well-known problems for approximating the
original one. In this paper, we will show how to build a software architecture for
the technique described in [10], which tries to solve the problem in an efficient
way by reducing the dimensionality of the input data through matrix transfor-
mations. The set of programs to be used must be able to index, perform matrix
operations with large sets of data and recompress inverted files using a previously
calculated order, everything in an independent manner and using reusable and
modular data structures. We focus on an object oriented programming paradigm
and make extensive use of design patterns [12]. Section 2 describes the known
approaches to the document identifier reassignment problem. Section 3 shows
the main technique implemented in the software architecture we are describing.
Sections 4 and 5 presents the architecture developed for the referred solution
and implementation details. Finally, section 6 summarises the work and shows
some future research lines.



256 R. Blanco and Á. Barreiro

2 Previous Work

Next, we describe the state of the art concerning the reassignment of document
identifiers. Different approaches to the problem consider different data struc-
tures. Most works build a weighted similarity graph G, where the nodes vi, vj

represent the document identifiers i, j and an edge (vi, vj) represents the simi-
larity between documents i and j [2,8,10]. On the other hand, the work in [9]
uses document clusters for reordering the identifiers.

Blandford and Blelloch (B&B) [2] developed a technique that improved the
compression ratio about fourteen percent in TREC text collections. The tech-
nique employs a similarity graph as described before, and operates in three
different phases. The first phase constructs the document-document similarity
graph from the original inverted file. The second part of the algorithm calls
to a graph partitioning package which implements the Metis [11] algorithm for
splitting recursively the similarity graphs produced by the first part. Finally,
the algorithm applies rotations to the clustered graph outputted by the second
part for optimising the obtained order. The final assignment for the document
identifiers is obtained by simply depth-first traversing the resulting graph. As is
stated in [2], constructing a full similarity graph is O(n2), so the raw technique
may not suitable for very large collections. Nevertheless, the efficiency of the
algorithm can be controlled by two parameters: τ and ρ. The first parameter,
τ , acts as a threshold for discarding high-frequency terms, i.e., if a term ti has
size |ti| > τ it is discarded for the construction of the similarity graph. Actually
the algorithm works with a sample of the full similarity graph. The parameter
ρ stands for how aggressively the algorithm sub-samples the data: if the index
size is n it extracts one element out of �nρ�. Tuning τ and ρ the technique may
lead to a tradeoff between efficiency and time and memory usage.

Shie et al. [8] proposed a different graph-based approach, based on the well
known Travelling Salesman Problem. The TSP is stated as follows: given a
weighted graph G = (V, E) where e(vi, vj) is the weight for the edge from vi to vj ,
find a minimal path P = {v1, v2, . . . , vn} containing all the vertexes in V , such as
if P ′ = {v′1, v′2, . . . , v′n} is another path in G,

∑n
i=2 e(vi, vi−1) ≤

∑n
i=2 e(v′i, v

′
i−1).

Considering Sim a weighted adjacency matrix, it is possible to build a Docu-
ment Similarity Graph (DSG). The idea is to assign close document identifiers
to similar documents as this will likely reduce the d-gaps in common terms post-
ings. This traversing problem can be transformed into a TSP just by considering
the complement of the similarity as the weights in the edges of the DSG. The
solution found by the TSP is the path that minimises the sum of the distances
between documents, therefore the algorithm is an appropriate strategy to the
document reassignment problem.

Silvestri et at [9] proposed a method which aimed at enhancing the clus-
tering property of the index. Prior to reassigning, the technique computes a so
called transactional representation for the documents, which consists in storing
a 4-bytes truncated MD5 [13] digest for the terms appearing in them. Starting
from that, the authors follow into two different assigning schemes, differing in
the starting point of the algorithms: top-down, considering the whole collection



A Software Architecture for Effective Document Identifier Reassignment 257

and recursively splitting it, and bottom-up assignment, starting from a flat set
of documents and extracting disjoint sequences containing similar documents,
grouping them.

The previously described techniques are only approximations for solving the
real problem, and have some efficiency drawbacks, as stated in [10], like comput-
ing and storing the full similarity graph or in [9] the linear dependence of time
and memory usage respect to the document size.

3 Document Identifier Reassignment Through
Dimensionality Reduction

The architecture to be presented here, solves the document identifier reassign-
ment problem as a TSP like in [8] but avoiding some efficiency problems. The
main idea is to reduce the input similarity matrix data via Singular Value De-
composition. That leads to the development of a new software framework, in
which reordering and recompressing techniques can operate after carrying out
a dimensionality reduction. This way, the memory usage by such algorithms is
controlled and as it is possible to determine the total amount of memory used in
each step. Moreover, by assigning document identifiers through dimensionality
reduction, results are consistent between different collections and are compara-
ble with those obtained by working with the full dimension schema, as stated
by [10].

Next, the main method for effectively reducing the dimensionality by SVD
is described. Section 5 gives further details on the algorithm used.

3.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a well known mathematical technique
used in a wide variety of fields. It is used to decompose an arbitrary rectangular
matrix into three matrices containing singular vectors and singular values. This
matrices show a breakdown of the original relationships into linearly independent
factors. The SVD technique is used as the mathematical base of the Latent
Semantic Indexing (LSI) IR model [14].

Analytically, we start with X , a t× d matrix of terms and documents. Then,
applying the SVD X is decomposed into three matrices:

X = T0S0D
′
0 (2)

T0 and D0 have orthonormal columns, and S0 is diagonal and, by convention,
sii ≥ 0 and sii ≥ sjj∀i ≥ j. T0 is a t × m matrix, S0 is m × m and D′

0, the
transposed matrix of D0, is m×d where m is the rank of X . However it is possible
to obtain a k-ranked approximation of the X original matrix by keeping the k
largest values in S0 and setting the remaining ones to zero obtaining the matrix
S with k × k dimensions. As S is a diagonal matrix with k non-zero values, the
corresponding columns of T0 and rows D0 can be deleted to obtain T , sized t×k,
and D′, sized k × d, respectively.



258 R. Blanco and Á. Barreiro

This way we can obtain X̂ which is a reduced rank k approximation of X :

X ≈ X̂ = TSD′ (3)

X̂ is the closest rank k approximation of X in terms of the Euclidean or
Frobenious norms, i.e. the matrix which minimises ||X − X̂||2N where || · ||2N is
the involved norm.

The i-th row of DS gives the representation of the document i in the reduced
k-space and the similarity matrix Θ(X) is k-approximated by Θ(X̂):

Θ(X) ≈ Θ(X̂) = X̂ ′X̂ = DS2D′, (4)

where X̂ ′ is the transposed matrix of X̂ and D′ is the transposed of D.
If Dd×k = {zij} and {si} is the set of diagonal elements of S, it is easy to

prove that

Θ(X̂)ij =
k−1∑

γ=0

ziγzjγs2
γ (5)

Therefore it is possible to calculate Θ(X̂)ij only storing the set of k elements
{si} and the d × k matrix D instead of computing and writing the full rank
matrix Θ(X)d×d.

The output of the SVD of X , X̂ has been used in the computation of Θ(X̂)
(equation 4). The same result could be obtained by calculating the SVD of Θ(X)
due to the uniqueness property of SVD [1]. Since SVD computes the best rank
k approximation, it is proved that the best rank k approximation of Θ(X) is
obtained starting from X and without the need of computing Θ(X).

3.2 Results

Applying this technique and tackling the TSP with a Greedy Nearest Neighbour
algorithm (Greedy-NN), we obtain good values in compression ratios, measured
in bits per document gap used. For a detailed reference of this results see [10].
Tests were driven in the LATimes and FBIS collections, which form the TREC-
5 disk, and with different values of the k parameter (which reflects the matrix
dimension in the reduced space).

With k=200, for the LATimes collection (FIBS collection) we achieved a
13.65% (8.02%) gain in compression ratio respect to the original document iden-
tifier order with the gamma encoding, 13.2%(8.7%) for the delta encoding, and
11.32% (5.15%) for the interpolative coding. These values are 17.67% (21.92%),
17.8%(21.1%) and 13.66% (14.58%) repectively for both collections and the three
encoding schemes, respect to a random reassignment. Computing the Greedy-
NN TSP with the reduced space approximation Θ(X̂) gives worthy compression
ratios in every case. The gains in the FBIS collection are worse than the ones in
the LATimes, although starting from a randomized order the result is inverted.
This is the expected behaviour if the FBIS collection exhibits a better original
document order. One point to remark is that even in the case of interpolative
coding, where the starting point is much better, the method is able to produce
gains in bits per document gap.



A Software Architecture for Effective Document Identifier Reassignment 259

4 Architecture

Figure 2 describes the system built for testing this approach. Nodes represent
the data and components represent the different modules deployed. A solid ar-
rows means direct dependency between data and a module (either input or
output), and dashed arrows drive the flow of the program through the different
components.

Fig. 2. Main component diagram for the software architecture

The full process is driven by a Mediator [12], which controls the interaction
between the different components and reduces the dependency between the pro-
cessing steps. The mediator serves as an intermediary and keeps modules from
referring to each other explicitly, thereby reducing the number of interconnec-
tions. This has a purpose of generality for the architectural design, as it is a
feature that facilitates the development and extension of the current software
by allowing the construction of program pieces completely independent between
each other. This is interesting for having different indexing, compression, dimen-
sionality reduction, statistical and reordering modules. Extensions could be, for
example, a component for building Direct Files, which are convenient for doing
query expansion.

The process starts with the inversion of the text collection. The inverted file
builder mechanism produces a complete version of the inverted file, considering
the document identifiers in natural order, this is, as they appear originally in the
collection. Also, this module outputs the X data matrix to a SVD module (see
3 for more details on this). This module produces the matrices Dd×k and Sk×k

that allow the computation of Θ(X̂), therefore there is no longer needed to store
the similarity matrix Θ(X)d×d. The reassignment module uses the SVD output



260 R. Blanco and Á. Barreiro

matrix to compute the TSP approach fully described in [10], however the open
design allows the interchangeability with the other techniques introduced in 2.

The output of the TSP reassignment module is used by an inverted file
recoding program which exploits the new locality of the documents to enhance
d-gap compression. Finally, some statical information is taken to make suitable
comparisons between compression ratios achieved by the original encoding and
those obtained after reassignment.

Respect to the complexity involved, as k is a constant factor, we can conclude
that the space usage of the algorithm now is O(d), i.e., linear in collection size and
not dependant on document size. The main difference with respect to previous
implementations for the TSP technique for the document identifiers reassign-
ment problem, is that computing the similarity between two documents di and
dj involves k operations (

∑k−1
γ=0(DS)iγ(DS)jγ) and storing k real pointers per

document, making a total of k×d for the full matrix. This representation can fit
smoothly into memory by adjusting the parameter k and uses considerably less
space than the original d×d matrix. Even more, the space usage can be precalcu-
lated so suitable scalable algorithms can be easily developed. Considering 32 bits
per float (real number), our implementation uses 4×k×d bytes of main memory.

5 Implementation

In this section, it is explained how the architecture was developed. The modules
implemented make extensive use of design patterns: descriptions of problems
that appears repeatedly and solutions to them, in such way that the solution
can be applied in different situations. Design patterns are an extended technique
for developing Object Oriented software providing a good balance between space
and time [12].

For indexing and compressing tasks we used the MG4J [4] from the University
of Milan, a free Java implementation of the indexing and compression techniques
described in [7] and originally implemented in the MG software [3]. The indexing
is made in three different passes to the original text of the collection, using a
technique called in-memory text-based partitioning inversion [7]. As an overview,
the technique builds the index entirely in main memory and avoids random
accesses to disk by controlling the amount of storage needed in each step of the
algorithm and using compression techniques. This way it is possible to perform
an efficient map from memory to disk, avoiding seeking and swapping times.
The first pass collects statistics from the text, like term document frequency
and in-document term frequency, and builds a dictionary file, also known as
lexicon. The second pass reads the lexicon and calculates appropriate values for
compressing efficiently the data structures used in the inversion process, and
allocates disk space for guarantying an optimum usage of the resources. After
that, the program builds a random access in-memory inverted file for chunks of
the collection, and the inverted file in disk for the whole collection. Finally, a
third an optional pass over the text is done for recompressing and producing a
new final inverted file.



A Software Architecture for Effective Document Identifier Reassignment 261

For the SVD module we used the SVDLIBC [5], a C library based on the
SVDPACKC library. It should be pointed that we needed to modify the MG4J
software to output data directly to the SVDLIBC module. This module computes
the singular values associated to a matrix, which can be inputted in different
formats, by the algorithm las2, standing for Single-Vector Lanczos Method [15].

The rest of the program code (reassignment, recoding and statistical soft-
ware) is written in Java, taking into account that some routines and methods
are shareable between different components. Some excerpts of the written code
may include modifying coding routines and generating generic libraries for graph
manipulation, matrix transformations and standard data formats for matrices.
As a brief example, in the figure 3 we present an usage of the strategy pattern
[12] for coding routines, which was adapted for including interpolative coding [6]
for document pointers.

Fig. 3. Main component diagram for the software architecture

The inverted file acts as the context for the pattern, and the individual
strategies implement an interface with the coding and decoding methods. This
way the coding scheme is a behaviour of the different subclasses involved in the
pattern, thus, adding new coding methods is just a matter of implementing the
interface with different classes and behaviours.

6 Conclusions

Previous works established that reassigning the identifiers of the documents ap-
pearing in a collection improves compression ratios of inverted files, when coding
the differences between consecutive identifiers with static codes. Moreover, the
work in [10] shows how the reassignment can be done effectively by making a
prior dimensionality reduction of the term-document matrix. In this paper we
have focused on the software architecture and the concrete design and imple-
mentation issues. We underlined the importance of reusing software pieces and
making use of good design practises. These methodologies must have an impact
not only in a corporate environment but also for developing software tools with
research purposes, where software lies above well-founded mathematical con-
cepts. Therefore, working with a reusable framework for Information Retrieval



262 R. Blanco and Á. Barreiro

research avoids a lot of unnecessary work when reusing software pieces, and fa-
cilitates the deployment and development of more robust software kits that can
be used by the IR community.

Acknowledgements

The work reported here was co-founded by the ”Secretaŕıa de Estado de Uni-
versidades e Investigación” and FEDER funds under research projects TIC2002-
00947 and Xunta de Galicia under project PGIDT03PXIC10501PN.

References

1. B. T. Bartell, G. W. Cottrel and R. K. Belew. Latent Semantic Indexing is an op-
timal special case of Multidimensional Scaling. In Proceedings of the 15th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 161-167, 1992.

2. D. Blandford and G.Blelloch. Index compression through document reordering. In
Proceedings of the IEEE Data Compression Conference (DCC’02), pp. 342-351,
2002.

3. http://www.cs.mu.oz.au/mg/ Managing Gigabytes.
4. http://mg4j.dsi.unimi.it/ MG4J (Managing Gigabytes for Java).
5. http://tedlab.mit.edu/~dr/SVDLIBC/ SVDLIBC.
6. A. Moffat, A. Turpin. Compression and Coding Algorithms, Kluwer 2002.
7. I. H. Witten, A. Moffat and T. C. Bell. Managing Gigabytes - Compressing and

Indexing Documents and Images, 2nd edition. Morgan Kaufmann Publishing, San
Francisco, 1999.

8. W.-Y. Shieh, T.-F. Chen, J. J.-J. Shann and C.-P. Chung. Inverted file compres-
sion through document identifier reassignment. Information Processing and Man-
agement, 39(1):117-131, January 2003.

9. F. Silvestri, S. Orlando and R. Perego. Assigning identifiers to documents to en-
hance the clustering property of fulltext indexes. In Proceeding of the 27th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 305-312, 2004.

10. R. Blanco, A. Barreiro. Document identifier reassignment through dimensionality
reduction. In Proceeding of the 27th European Conference on IR Research, ECIR
2005, LNCS 3408, pp. 375-387, 2005.

11. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for patitioning
irregular graphs. Technical Report TR 95-035, 1995.

12. E. Gamma, R. Heml, R. Johnson, J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software Addison Wesley 1995.

13. R. Rivest, RFC 1321: The md5 algorithm.
14. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer and R. Harshman.

Indexing by Latent Semantic Analysis. In Journal of the American Society for
Information Science, 41(6):391-407, 1990.

15. M. Berry. Large Scale Singular Value Computations. In International Journal of
Supercomputer Applications. 6:1, (1992), pp. 13-49


	Introduction
	Previous Work
	Document Identifier Reassignment Through Dimensionality Reduction
	Singular Value Decomposition
	Results

	Architecture
	Implementation
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




