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Abstract. In this paper a way to have structures with partiality in its
internal structure in a categorical approach is presented and, with this,
a category of partial graphs Grp is given and partial automata are con-
structed from Grp. With a simple categorical operation, computations of
partial automata are given and can be seen as a part of the structure of
partial automata.
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1 Introduction

In Computer Science, to express non-terminanting computations and to define
partial recursive functions, it is common to use the notion of partiality. Actually,
due to partiality, p.g., the class of partial recursive functions becomes equiva-
lent to Turing Machines. Category Theory arrises as an useful tool to formalize
abstract concepts making easy to construct proofs and investigate properties in
many areas, specially in Semantics and Type Theory. The constructions about
universal mappings like limits and adjunctions are getting useful interpretations
in terms of compositionality of systems. Besides, in Category Theory there are
tools to define structures more complex based in simple ones like Comma Cate-
gories, that allows to define a category based in another and to inherit properties.
Categories of Graphs and Automata are usually defined by this structure.

Graphs are commonly used to model systems, either by simple graphs or by
graph-based structures like Petri nets [1,2,3] and automata [4,5]. Automata is
a common formalism used in many areas in Computer Science like compilers,
microelectronics, etc. Most of the study about it is in the Formal Language area.

In this paper we define a different category of automata: a category of Partial
Automata, named Autp. This category is constructed over a category of partial
graphs (Grp). The difference between a graph and a partial graph is in the
definitions of the source and target functions that mapped an arc to a node:
in graphs these functions are total while in partial graphs source and target
functions are partial functions. Due to this difference, automata based in partial
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graphs can have marks of initial and final states naturally. Beyond that, we can
also define constructions like limits in Autp that allows composition of partial
automata.

In [6], span Composition [7] is used to compose graphs given semantics of
systems with dynamic topology, p.g.. This kind of composition could be used
to define the computations of (partial) automata. Briefly, a span composition of
two partial automata results in a partial automata where each edge represents a
path of length up to two (between nodes), which first half is some edge of the first
automaton and which second half is some edge of the second one. It is possible
to compose the same automaton with itself several times which is the purpose
of this paper. In the case of n successive span compositions, we can obtain all
the words of its accepted language whose needs n + 1 steps of computation in
the arcs of the partial automaton that don’t have source neither target.

2 Partial Graphs

To define partial automata, we’ll first construct a way to define structures with
partiality in its internal structure: this is done with the definition of pComma – a
special kind of comma-category [8]. Then a category of partial graphs is defined.
A partial graph is a directed graph where the functions source and target of arcs
are partial functions. The definition of pComma, uses the notion of category of
partial morphisms – named pC – defined in [9].

Definition 1 (pComma). Consider the finitely complete category C and the
functors incp : C → pC (the canonical inclusion functor), f : F → C and g : G →
C. Therefore, pComma(f ,g) is such that the objects are triples S = 〈F, s, G〉,
where F is a F-object, G is a G-object and s : incp ◦ fF → incp ◦ gG is a pC-
morphism; a morphism h : S1 → S2 where S1 = 〈F1, s1, G1〉, S2 = 〈F2, s2, G2〉
is a pair h = 〈hF : F1 → F2, hG : G1 → G2〉 where hF and hG are morphisms
in F and G respectively, and are such that in pC (see figure 1) (incp ◦ ghG) ◦
s1 = s2 ◦ (incp ◦ fhF ); the identity morphism of an object S = 〈F, s, G〉 is
ιS = 〈ιF : F → F, ιG : G → G〉; and the composition of u = 〈uF , uG〉 : S1 → S2,
v = 〈vF , vG〉 : S2 → S3 is v ◦ u = 〈vF ◦ uF , vG ◦ uG〉 : S1 → S3.

incp ◦ fF1 s1 ��

incp◦fhF

��

incp ◦ gG1

incp◦ghG

��
incp ◦ fF2 s2 �� incp ◦ gG2
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Fig. 1. Diagram of Partial Comma Category

Definition 2 (Category of Partial Graphs). The category of partial graphs
with total homomorphisms, named Grp, is the partial comma category pCom-
ma(∆,∆) (beeing ∆ : Set → Set2 the diagonal functor).
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Thus, a partial graph is 〈V, T, ∂0, ∂1〉 respectively set of nodes, set of arcs
and source and target partial functions. Seeing a graph as a system, arcs with
target function defined only can be seen as entry-points, arcs with source func-
tion defided only as end-points. And arcs with neither defined can be seen as
transactions. We can divide the set of arcs of a given partial graph respecting
the type of the arc.

Definition 3 (Division of T ). Let G = 〈V, T, ∂0, ∂1〉 a partial graph, ∅ :
T → {∗} the empty partial function, totT : T → {∗}, totV : V → {∗} both
total functions and ∂∗

0 = totV ◦ ∂0, ∂∗
1 = totV ◦ ∂1. The following subobjects

are given by the equalizers in pSet like in figure 2:〈K0, ¬∂0〉 equalizer of ∂∗
0 and

∅ – arcs of G with source undefined; 〈K1, ¬∂1〉 equalizer of ∂∗
1 and ∅ – arcs

of G with target undefined; 〈E0, ‘∂′
0〉 equalizer of ∂∗

0 and tot – arcs of G with
source defined; and 〈E1, ‘∂′

1〉 equalizer of ∂∗
1 and tot – arcs of G with target

defined. The pullbacks of figure 3 give the division of T in four classes, where:

K0
�� ¬∂0 �� T

∂∗
0

��
∅

�� {∗} K1
�� ¬∂1 �� T

∂∗
1

��
∅

�� {∗}

E0
��
‘∂′

0 �� T
∂∗

0
��

totT

�� {∗} E1
��
‘∂′

1 �� T
∂∗

1
��

totT

�� {∗}

Fig. 2. Equalizers in pSet

〈V V, vv〉, being vv = ‘∂′
0 ◦ vv0 = ‘∂′

1 ◦ vv1, arcs with ∂0 and ∂1 defined; 〈V F, vf〉,
being vf = ‘∂′

0 ◦ vf0 = ¬∂1 ◦ vf1, arcs with ∂0 defined only; 〈FV, fv〉, being
fv = ¬∂0 ◦ fv0 = ‘∂′

1 ◦ fv1, arcs with ∂1 defined only; and 〈FF, ff〉, being
ff = ¬∂0 ◦ ff0 = ¬∂1 ◦ ff1, arcs with ∂0 and ∂1 undefined.
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Fig. 3. Division of Arcs

3 Partial Automata

The term “partial automaton” had been used before to define an algebraic struc-
ture based in the definition of automaton. One of the most frequent reference of
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this term is given by [10]. This kind of partial automata accepts a different type
of language in comparison with the languages in [4] that are one of the subjects
of this work. Despite, the term partial automata in this paper is different from
Rutten. Here, a partial automaton is an automaton (possible non-deterministic)
where transitions can occur without the assumption of any state before and/or
after them. In other words: is an automaton defined from a partial graph.

To define a partial automata category of partial automata we first define two
functors: arcsp and coprod4. The forgetful functor arcsp takes a partial graph
to its set of arcs T in Set with a function m : T → Ω2 that classifies each arc of
T in its type by the definition 3, where Ω2 = {vv, vf, fv, ff}.

Definition 4 (Functor arcsp). The functor arcsp : Grp → Set/Ω2 is such
that, taking 〈V, T, ∂0, ∂1〉 any partial graph, arcsp(〈V, T, ∂0, ∂1〉) = 〈T, m〉 where
m : T → Ω2 is such that (given t ∈ T ) m(t) = 〈v, v〉 if t ∈ V V, m(t) =
〈v, f〉 if t ∈ V F, m(t) = 〈f, v〉 if t ∈ FV or m(t) = 〈f, f〉 if t ∈ FF ; and given
h = 〈hV , hT 〉 : 〈V1, T1, ∂

1
0 , ∂1

1〉 → 〈V2, T2, ∂
2
0 , ∂2

1〉 a total homomorphism of partial
graphs, arcsp(h) = hT .

The functor coprod4 does the 4-ary disjoint union of a set and associates a
function where each element of a given set A goes to each element of Ω2.

Definition 5 (Functor coprod4). The functor coprod4 : Set → Set/Ω is
such that, given any set A, coprod4(A) = 〈�4

A, α〉 where α : �4
A → Ω2 is such

that (suppose ai ∈ �4
A where i ∈ {1, 2, 3, 4} indicate the source of the element

in the coproduct – first, second, third or fourth immersion) α(ai) = 〈v, v〉 if i =
1, α(ai) = 〈v, f〉 if i = 2, α(ai) = 〈f, v〉 if i = 3 or α(ai) = 〈f, f〉 if i = 4; and
taking f : A → B a function, coprod4(f) = f∗ : 〈�4

A, α〉 → 〈�4
B , β〉 where (for

p, q ∈ {v, f}) f∗(〈a, 〈p, q〉〉) = 〈f(a), 〈p, q〉〉.

Definition 6 (Category Autp). The category of Partial Automata, called
Autp, is the comma-category arcsp ↓ coprod4.

4 Computation of Partial Automata

We use an extension of span composition to define computations of partial au-
tomata in the sense used in [6], where span composition was used to compose
graphs as dynamic systems. To have definitions and proprieties of span and span
composition see [7,11,6].

Definition 7 (Partial Automata Composition of Transitions). Given the
partial automata A1 = 〈V, T1, ∂

1
0 , ∂1

1 , Σ1, etiq1〉 and A2 =〈V, T2, ∂
2
0 , ∂2

1 , Σ2, etiq2〉.
The Binary Composition of Transitions, or just Composition of Transitions, of
A1 and A2 is the partial automaton A1 � A2 = 〈V, T, ∂0, ∂1, Σ, etiq〉 where T is
the object from the pullback, Σ = Σ1 × Σ2 and etiq is the function induced by
the product in pSet illustrated in figure 4 and ∂0 = ∂1

0 ◦ p0 and ∂1 = ∂2
1 ◦ p1.
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Fig. 4. Partial Automata Composition of Transitions

Example 1 (Partial Automata and Composition of Transitions). Let the partial
automaton A = 〈{A, B}, {t, u, v, w, x, y, z}, ∂A

0 , ∂A
1 , {0, 1}, etiqB〉 from figure 5

(left) where the functions ∂A
0 , ∂A

1 and etiqA are represented in there. The resulted
Composition of Transitions A � A is in figure 5 (right).
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Fig. 5. Partial Automaton A (left) and its Composition of Transitions (right)

Definition 8 (Finite Computation of Partial Automata). Given a partial
automaton A = 〈V, T, ∂0, ∂1, Σ, etiq〉, the finite computations of length up to n+1
of A is the class of arcs FF (as in the definition 3) of the resulting automaton
from the Transitions Composition with itself n times.

Let a partial automaton that computes the language L (the automaton from
example 1 computes the language L = {w|w ∈ {0, 1}∗∧w finishes in 11}). Com-
posing itself ad infinitum by composition od transistions, the resulting arcs with-
out source neither target nodes can be seen as the transitive closure L+. If we
compose itself n times, this kind of arcs will be the subset of L+ whose word’s
length is limited to n + 1, i.e., the computations of the automaton with n + 1
steps.

5 Concluding Remarks

In this paper we presented a way to define computations of a different type of
automata: the partial automata. One of the advantages of this kind of automaton
is that initial and final actions are natural in the structure, that is constructed
in a categorical approach. Generally, to construct structures like graphs and
automata in a categorical way, initial and/or final states are not natural. Besides,
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we can computes the language of a partial automaton with a simple operation
of composition seen in each resulting automaton the steps of the computation.

From this work is possible to research and to develop extensions to more
complex structures like, for instance, Petri Nets; to explore partial automata that
evolve (by a graph-grammar like approach) using the composition of transitions
and to study proprieties of formal languages using this approach.
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