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Abstract. In this paper we continue along the same line of research
started in earlier works, towards to providing a categorical view of struc-
tural complexity to optimization problems. The main aim is to provide
a universal language for supporting formalisms to specify the hierarchy
approximation system for an abstract NP-hard optimization problem.
Categorical shape theory provides the mathematical framework to deal
with approximation, enabling comparison of objects of interest and of
models. In this context, tractable optimization problems are considered
as a class of “models” or “prototypes” within a larger class of objects of
interest - the intractable optimization problems class. Standard catego-
rial constructions like universal objects, functors and adjunctions allow
to formalize an approximation hierarchy system to optimization prob-
lems, besides characterizing NP-hard optimization problems as concrete
universal objects.

1 Introduction

The notion of approximation problems was formally introduced by Johnson [4] in
his pioneering paper on the approximation of combinatorial optimization prob-
lems, and it was also suggested a possible classification of optimization problems
on grounds of their approximability properties. Since then, it was clear that,
even though the decision versions of most NP-hard optimization problems are
polynomial-time reducible to each other, they do not share the same approxima-
bility properties. In spite of some remarkable attempts, according to Ausiello
[1] the reasons that a problem is approximable or nonapproximable are still un-
known. The different behaviour of NP-hard optimization problems with respect
to their approximability properties is captured by means of the definition of ap-
proximation classes and, under the “P �= NP” conjecture, these classes form a
strict hierarchy whose levels correspond to different degrees of approximation.

In this paper we continue along the same line of research started in [7], to-
wards to providing a categorical view of structural complexity to optimization
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problems. The main aim is to provide a universal language for supporting for-
malisms to specify the hierarchy approximation system for an abstract NP-hard
optimization problem, in a general sense. From the observation that, intuitively,
there are many connections among categorical concepts and structural complex-
ity notions, we started defining two categories: the OPTS category of polynomial
time soluble optimization problems, which morphisms are reductions, and the
OPT category of optimization problems, having approximation-preserving re-
ductions as morphisms. The study of approximation implies to create means of
comparing optimization problems. The basic idea of approximation by models
is a recurrent one in mathematics and in this direction a comparison mechanism
between the OPTS and OPT categories has been introduced in [8]. In order
to establish a formal ground for the study of the approximation properties of
optimization problems, a system approximation to each optimization problem
is constructed, based on categorical shape theory [3]. In so doing, we were very
much inspired in previous works by Rattray [12,13] on complex systems.

Given a functor K: OPTS −→ OPT, the category APXB,K of approxima-
tions to an optimization problem B ∈ OPT is the comma category B ↓ K of
K-objects under B. A such kind of limit construction provides a means of form-
ing complex objects from patterns (diagrams) of simpler objects. In particular,
by using co-limits in the APXB,K definition, a hierarchical structure can be im-
posed upon the system of approximation, reaching the best approximation from
the system, if it exists. Besides, optimization problems B and B′ can be com-
pared by their approximation B ↓ K and B′ ↓ K more easily. In addition, if K
has an adjoint then each B ↓ K has an initial object, i.e., a best approximation
to B. The advantage of initiality conditions is that they imply that each B ↓ K
can be handled as if it were a directed set. Thus the existence of an initial object
means that given any two approximation, one can find a mutual refinement of
them.

In a sequel of this paper, we have planned to extend the investigation in
order to characterize optimization problems in terms of their hardness in being
approximated, also exploiting farther on the class of NPO problems.

2 Definitions and Known Results

In this section the results of earlier papers on the subject are summarized with
some notational improvements. It is supposed that the basic concepts as of com-
putational complexity theory well as of category theory are well known. The
main refereed books are [1,2,6,11]. Next, in analogy to P and NP complexity
classes, NPO stands to the class of nondeterministic polynomial time optimiza-
tion problems, and PO stands to the deterministic one.

2.1 Optimization Problems Categories

The notion of reductibility provides the key-concept to this approach. In this
context, reductions between optimization problems are considered as morphisms
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in the categorial sense, being optimization and approximation problems viewed
as the obvious objects.

Definition 1 (OPTS Category). The polynomial time soluble optimization
problems category OPTS has PO optimization problems as objects and reductions
between optimizations problems as morphisms.

Definition 2 (OPT Category). The optimization problems category OPT has
NPO optimization problems as objects and approximation-preserving reductions
as morphisms.

NP-hard problems were proved concrete universals objects to OPT category,
according to the Theory of Universals [5], confirming that a hard problem cap-
tures the essential properties of its class.

After defining both the OPTS and OPT categories in [9], the next step was
to identify the relationships between them. In [10] were proposed two basic
questions: What does it mean to say that a problem A “approximates” an op-
timization problem B? What is it understood by the “best approximation” for
such an optimization problem?

In order to answer those questions, were provided mechanisms for the com-
parison between such categories. This led us to the categorical shape theory.

2.2 Categorical Shape Theory Revisited

The first categorical approach to shape theory arose in the beginning seventies.
Since then many other works related to the subject have appeared. As was
pointed by Cordier and Porter in their introduction to [3], shape theory describes
a process which is common in mathematical reasoning. Typically one has a class
of objects in which one has a reasonably complete set of information. This class is
considered as a class of “models” or “prototypes” within a larger class of objects
of interest.

In the context of categorical shape theory, there are three basic defining
elements:

1. a category B of objects of interest;
2. a category A of prototypes or model-objects;
3. a “comparison” of objects with model-objects, ie. a functor K : A −→ B.

If B is an object of B, one can form the comma category B ↓ K whose
objects are pairs (f, A) with f : B −→ KA. A morphism from (f, A) to (g, A′) is
a morphism a : A −→ A′ such that K(a)◦f = g. If h : B −→ B′ is a morphism in
B, there is an induced functor h∗ : B ↓ K −→ B′ ↓ K obtained by composition
in an obvious way. This functor preserves the codomain h∗(f, A) = (fh, A).

A shape category is defined introducing new morphisms preserving codomain
between objects in B. The basic idea behind categorical shape theory is that rec-
ognizing and understanding an object of interest B via a comparison K : A−→B
requires the identification of the corresponding prototype A which best repre-
sents B. Besides, in any approximating situation, the approximations are what
encode the only information that it can analyze.
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3 Category of Approximations

Through categorical shape theory and under a few many conditions it is possi-
ble to identify the best approximation to an optimization problem B in OPT
category, if it exists. The notion of “most closely approximates” is given by a
universal object. Besides, it is provided the way of comparing NP-hard problems
whose are approximated by the same design technique.

Let OPT be the category of objects of interest B and OPTS the category
of prototypes A. We must have some way of comparing hard problems with
tractable problems. The fundamental techniques for the design of approxima-
tion algorithms are presented in [1]. In many cases it is possible to define an
algorithm scheme that can be applied to obtain several algorithms for the same
problem with possibly different approximation properties. The most used such
design techniques are: relaxation method, greed method, local search, linear pro-
gramming based algorithm, dynamic programming and randomized algorithm.

Let K: OPTS−→ OPT be a comparison mechanism related to an approxima-
tion method (for instance by using relaxation method). In order to characterize
approximation degrees by means of categorical shape theory, the basic idea is
the construction of a system approximation to each optimization problem, using
the notion of co-limit. In a general case, approximations with their morphisms
form a category B ↓ K, the comma category of K-objects under B.

Definition 3 (Approximation Problem). Given a functor K:OPTS−→OPT,
a problem B ∈OPT is said an approximation problem if there are a problem
A ∈OPTS and an approximation-preserving reduction f , such that f : B−→KA.

In this case, the pair (f, A) is an approximation to the problem B. Notice that
as a particular K may apply distinct problems from OPTS to the same problem
in OPT, it is better to represent such an approximation as a pair (f, A).

Definition 4 (Category of Approximations).
Given a functor K:OPTS−→OPT, the category APXB,K of approximations to
an optimization problem B ∈ OPT is the comma category B ↓ K of K-objects
under B.

The definition of a morphism h : (f, A) −→ (g, A′) between approximations
corresponds to saying that g : B −→ KA′ can be written as a composite K(a)◦f ,
where f : B −→ KA and a : A −→ A′, that is

B → KA → KA′

This it means that (f, A) already contains the information encoded in (g, A′).
Thus in some way (f, A) is ”finer” approximation to B than is (g, A′). The cone-
like form of the morphisms in B giving the approximations for some problem B,
suggests that the best approximation to such problem B, if it exists, is given by
a limit object in APXB,K . In this case, a hierarchical structure can be imposed
upon the system of approximation by using a kind of universal construction in
the category of approximations.
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3.1 Comparison of NP-Hard Problems

Very often we are faced to comparing two problems related to the approximation
issue. Supposing that it is given a comparison functor K:OPTS−→OPT, and a
problem-object B in OPT, the category of approximations APXB,K encodes the
only information available on B, by using an approximating-object (f, A). There-
fore, if we would compare two problems B and B′ in OPT, we should compare
the corresponding categories of approximations APXB,K and APXB′,K .

In this case a morphism preserving codomain from B to B′ induces a func-
tor(shape morphism) that compares the information encoded in their corre-
sponding categories of approximations.

The meaning of this categorial construction has to be investigated in more
detail and it is in order for further work.

3.2 Approximation Scheme

In the context of complexity theory, the existence of an algorithm scheme to a
problem means that there is a best approximation to such problem.

Consider the comparison functor K:OPTS−→OPT resulting of an algorithm
scheme. In the categorical approach, this it means that a problem-object B in
OPT has a K-universal prototype A in OPTS. Therefore there is an adjoint func-
tor to K. This fact implies that the corresponding category of approximations
APXB,K has an initial subcategory consisting of a single morphism and a single
object. Thus such a category can be handled as if it were a directed set. The
meaning of this result is of great theoretical significance: it implies that given
any two approximations to the problem B, one can find a finer approximation
than both of them.

4 Conclusions

Approximation of optimization problems has become a very active area of re-
search. Nowadays it is known that the computational efficiency of approximating
different NP-hard optimization problems varies a great deal. It is normal in com-
putational theory to regard a problem as “tractable” if we know of an algorithm
that takes time that is bounded above by some polynomial of the size of the
problem instance. Unfortunately, for many problems there are complexity theo-
retic evidence to suggest strongly that they are, in fact, “intractable”. In order
to define the structure of problems better, much effort has been turned to classi-
fying computational problems according to how hard they are to solve. However,
computational problems are not only things that have to be solved. They are
also objects that can be worth studying problems and can be formalized math-
ematically.

In this paper we extend our previous work on the application of categori-
cal shape theory in order to provide a mathematical framework in dealing with
the question outlined above. Our knowledge is by no means complete however,
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and there remain many open problems. The direction is aimed towards actually
exploring the connections among the structural complexity aspects and categor-
ical concepts, which may be viewed in a ”high-level”, in the sense of a structural
complexity approach.
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