
Verification of Language Based Fault-Tolerance

Clara Benac Earle1 and Lars-Åke Fredlund2,3

1 Computing Laboratory, University of Kent, England
2 LSIIS, Facultad de Informática, Universidad Politécnica de Madrid�

3 Swedish Institute of Computer Science, Sweden

1 Introduction

As software based critical systems are now becoming widely deployed, it is a crucial
development task to analyse whether such systems will survive the inevitable faults (in
hardware, in network links, in software components) that occur. However, this remains
very difficult. It is hard to develop realistic failure models for simulation and testing
(often the environment characteristics are not fully known), and to test and simulate
for all possible faults would be very time consuming. Consequently, here is an area
where there is a need for formal verification. But that too is hard. Most earlier work on
verifying fault-tolerance target a single application only, are ad-hoc, and do not provide
a reusable verification method. In this paper, instead, we propose a verification method
based on model checking, that, since it addresses programs developed using higher-
level design patterns which address fault-tolerance in a structured way, can be reused
for a large set of such applications.

Erlang is a programming language developed at the Ericsson corporation for im-
plementing telecommunication systems [1]. It provides a functional sub-language, en-
riched with constructs for dealing with side effects such as process creation and inter–
process communication. Today many commercially available products offered by Eric-
sson are at least partly programmed in Erlang. The software of such products is typi-
cally organised into many, relatively small, source modules, which at runtime execute
� The second author was supported by an ERCIM grant and a Spanish Governmental Grant from

the Ministerio de Educación Y Ciencia, with reference SB2004–0195

Abstract. In this paper we target the verification of fault tolerant aspects of
distributed applications written in the Erlang programming language. Erlang
programmers mostly work with ready-made language components. Our approach
to verification of fault tolerance is to verify systems built using a central
component of most Erlang software, a generic server component with fault
tolerance handling.

To verify such Erlang programs we automatically translate them into processes
of the µCRL process algebra, generate their state spaces, and use a model
checker to determine whether they satisfy correctness properties specified in the
µ-calculus.

The key observation of this paper is that, due to the usage of these higher-
level design patterns, the state space generated from a Erlang program, even with
failures occurring, is relatively small, and can be generated automatically.

R. Moreno Dı́az et al. (Eds.): EUROCAST 2005, LNCS 3643, pp. 140–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

.

as a dynamically varying number of processes operating in parallel and communicating
through asynchronous message passing. The highly concurrent and dynamic nature of
such software makes it particularly hard to debug and test. We therefore explore the
alternative of software verification based on a formal proof system.

A key feature of the systems for which Erlang was primarily created is fault-tolerance.
Switching systems should provide an acceptable level of service in the presence of
faults. Erlang implements fault-tolerance in a simple way. Links between two processes
A and B can be set up so that process B is notified of the termination of process A and
vice versa. The default behaviour of a process that is informed of the abnormal termi-
nation (e. g., due to an exception) of another process is to terminate abnormally itself,
although this behaviour can be modified. This process linking feature can be used to
build hierarchical process structures where some processes are supervising other pro-
cesses, for example restarting them if they terminate abnormally.

We start, in Section 2, by explaining the software components that are used to build
quality Erlang software. The basic mechanisms for error handling in Erlang are de-
scribed in Section 3. In Section 4, we describe how the generic server component of
Erlang is extended with fault tolerance, and the actual translation from Erlang to µCRL
is given in Section 5. The checking of correctness properties of fault-tolerant systems is
discussed in Section 6, where as an example we analyse mutual exclusion and starvation
properties of a server implementing a locking service for a number of client processes.

A key aspect of the Erlang approach to development is the use of design patterns (pro-
vided by Erlang/OTP) which are encapsulated in terms of generic components. This
approach simplifies the development cycle, as well as our verification of fault-tolerance.

Erlang/OTP provides a convenient component, the generic server, for programming
server processes. A server is a process that waits for a message from another process,
computes a response message and sends that back to the original process. Normally
the server will have an internal state, which is initialised when starting the server and
updated whenever a message has been received.

The behaviour module (gen server) implements the common parts of a generic
server process, providing a standard set of interface functions, for example, the func-
tion gen server:call for synchronous communication with the server. The specific
parts of the concrete client-server system are given in a call-back module.

We illustrate the functionality provided by the generic server component using a
server in Figure 1 which also serves to introduce the concrete Erlang syntax. Informally
the server implements a locking facility for a set of client processes. A client can acquire
the lock by sending a request message, and release it using a release message.

Names of functions and atoms begin with a lowercase letter, while variables begin
with an uppercase letter. The usual data types are provided, e.g., lists, tuples (enclosed
in curly braces) and numbers. Matching a value against a sequence of patterns, which
happens in function applications and in the case expression, is sequential.

A programmer that uses the generic server component essentially has to provide
two functions: init which is invoked when the generic server starts, and which should

2 Erlang Components

Verification of Language Based Fault-Tolerance 141

init(A) -> {ok,[]}.

handle_call(request, Client, Pending) ->
case Pending of

[] -> {reply, ok, [Client]};
_ -> {noreply, Pending ++ [Client]}

end;
handle_call(release, Client, [_|Pending]) ->

case Pending of
[] -> {reply, done, []};
_ -> gen_server:reply(hd(Pending), ok), {reply, done, Pending}

end.

Fig. 1. The source code of an Erlang generic server

return the initial state of the server (the empty list in the example), and handle call
which is invoked when a call is made to the generic server, and a reply is expected by
the caller. The handle call function is invoked with three arguments, the message
submitted in the call, a value that is used to reply to the message, and the current state of
the generic server. It returns the new state of the server upon completion. The processing
of calls by a generic server is sequential, i.e., there are never concurrent invocations of
the callback functions; a generic server thus offers a convenient way of controlling the
amount of concurrency in an application and of protecting the state of the server.

In the example the server may be called with a request or a release message.
If the message is a request, and if Pending is the empty list, it replies to the caller
with the atom ok, and the new state of the server is [Client]. If Pending is not
empty, then the reply is postponed (until more messages arrive) and the new state of the
server is obtained by adding Client to the end of Pending. In case of a release,
the server may issue a reply to the waiting caller, using gen_server:reply.

Client processes use a uniform way of communicating with the server; when a re-
ply is expected they issue a call gen_server:call(Locker, Message) where
Locker is the process identifier of a generic server. The client process suspends until
a value is returned by the server.

Note that the semantics of communication using the generic server component is
less complex that the communication paradigm of the underlying Erlang language.
Generic servers always receive messages sequentially, i.e., in FIFO (first-in first-out)
order. Erlang processes in contrast can potentially receive messages sent to them in ar-
bitrary order. Thus by focusing on the higher-level components, rather than the under-
lying language primitives, our verification task becomes easier (concretely, state spaces
are reduced). We will see the same thing happening when considering fault tolerance.

In Erlang, bidirectional links are created between processes by invoking the link func-
tion with the process identifier of the process to link to as argument. There is also a
function spawn link which atomically both spawns a new process, and creates a
bidirectional link to it.

3 Fault-Tolerance in Erlang

142 C. Earle and L.-Å. FredlundBenac

Terminating processes will emit exit signals to all linked processes. Erlang distin-
guishes between normal process termination (the toplevel function of the process re-
turned a value) from abnormal process termination (e.g. a runtime error such as attempt-
ing to divide by zero). If a process terminates abnormally, linked process will by default
terminate abnormally as well. However, a linked process can trap exit such exit signals,
and thus escape termination, by calling process_flag(trap_exit,true).

In this case, when an exit signal reaches the process it is transformed into an exit
message and delivered to the process mailbox like any other message. Exit messages
are of the form {’EXIT’,Pid,Reason}, with Pid the process identifier of the pro-
cess that terminated, and Reason the reason for termination. If a process terminates
normally Reason is equal to normal.

This basic mechanism of Erlang for error handling is exploited by the Erlang generic
server behaviour in order to build fault-tolerant client-server systems. The Erlang pro-
grammer that implements a server process using the generic server component has to
take several possible types of faults into account. First, the server itself may be faulty
and crash. Recovery should be implemented by designating a supervisor process that
restarts the server process (or takes some other corrective action).

Another error condition occurs when the server may communicate with remote
processes, or hardware devices, that can malfunction without crashing, and moreover
without generating exit signals to linked processes. Such error conditions should be
handled in a traditional manner using timeouts. We focus instead on the error con-
dition when an explicit exit signal reaches the generic server process. For the Er-
lang programmer such signals are handled by providing a new callback function,
handle_info(Signal,State) that gets passed the exit signal as argument, to-
gether with the current state of the server. The handle_info function should, sim-
ilarly to the other callback functions, either return the new state of the server or stop.
This function will be called only if no call to the server is being processed.

In the client-server applications that we want to verify using the fault-tolerant exten-
sion, the state of the server contains information about the state in which its clients are
in, for example, in the locker in Figure 1, the state of the locker reflects whether a client
is accessing a resource or whether is waiting to get access to it. If a client terminates
abnormally, the system should be able to recover gracefully without a complete restart,
i.e., the state of the server process should be cleaned up accordingly.

Our goal is to check the correctness of generic servers in the presence of crashing
clients. The class of servers that we can analyse for fault tolerance have the follow-
ing characteristics: (i) the server expects to receive an exit message whenever a linked
client crashes, and (ii) the server establishes a process link to every client that issues a
generic server call to it.

Although the above conditions may appear arbitrary, they are in fact indicative of a
class of servers that safely implement a stateful protocol between itself and its clients,
through call and reply exchanges. Thus, in a sense, these conditions give rise to a new
Erlang high-level component which refines the basic Erlang generic server component.

4 Fault-Tolerance in Generic Servers

Verification of Language Based Fault-Tolerance 143

As an example of a fault-tolerant server let us reconsider the simple server in Fig-
ure 1. The main loop of a client that accesses the locker is given below. Every client
process sends a request message followed by a release message.

loop(Locker) ->
gen_server:call(Locker, request),
gen_server:call(Locker, release),
loop(Locker).

We implement a locker which recovers from the abnormal termination of a client
process by first adding the functions process flag and link to the call-back mod-
ule of the locker given in Figure 1 as shown below.

init(A) -> process_flag(trap_exit,true), {ok,[]}.

handle_call(request, {ClientPid,Tag}, Pending) ->
link(ClientPid),
case Pending of

[] -> {reply, ok, [Client]};
_ -> {noreply, Pending ++ [Client]}

end;

The locker process now gets linked to the clients when they request a resource. If
a client crashes, the locker will receive an exit message. As previously mentioned, exit
messages are handled by the generic server function handle info provided by the
Erlang generic server behaviour. A trivial implementation of this function just returns
the state of the server.

handle_info({’EXIT’,ClientPid,Reason},Pending) -> {noreply, Pending}.

Now, if a client process crashes immediately after sending the request message
to the locker, then the locker will process the request message before the exit signal.
If there the resource is available, then the locker will send an ok message to the client
that crashed and will put the client in the pending list. Since this client has crashed, it
cannot release the resource, therefore, all other clients requesting the resource are put
in the pending list and will eventually starve. If the resource is not available, the client
will be put in the pending list, and when the resource is available, we have the same
starving situation described before. Starvation also occurs if the client crashes while
accessing the resource and before releasing it. However, if the client crashes after re-
leasing, then the program behaves correctly. Of course, more than one client process
may crash, therefore, we need to consider all the combinations of clients crashing at
different points in the program execution. Already we can see that testing fault-tolerant
code for a simple protocol like the one presented here is quite complex. Our goal is
to use a high-level language, a process algebra, and use tools to automatically gener-
ate all these combinations and to check that key properties, deadlock-freedom, mutual
exclusion, and non-starvation, are fulfilled.

The implementation of the handle info function for the locker is given below.

handle_info({’EXIT’,ClientPid,Reason},Pending) ->
NewPending = remove(ClientPid,Pending),
case available(ClientPid,Pending) of

true -> gen_server:reply(hd(NewPending), ok),
{noreply, NewPending};

144 C. Earle and L.-Å. FredlundBenac

_ -> {noreply, NewPending}
end.

remove(ClientPid,[]) -> [];
remove(ClientPid,[{ClientPend,TagPending}|Rest]) ->

case ClientPid == ClientPend of
true -> Rest;
false -> [{ClientPend,TagPending}|remove(ClientPid,Rest)]

end.

available(ClientPid,[]) -> false;
available(ClientPid,[{ClientPend,TagPending}]) -> false;
available(ClientPid,[{ClientPend,TagPending}|Rest]) -> ClientPid == ClientPend.

When the locker receives an exit message, i.e., a client process has terminated ab-
normally, then if the client is in the pending list, then it is removed from it. Moreover, if
the client was accessing the resource (i.e., it was in the head of the pending list), then,
the resource is available and therefore the locker gives access to the resource to a client
which was waiting for it. This is similar to when a client sends a release message.

In this section we briefly review the translation to µCRL of Erlang fault-tolerant client-
server systems, full details are provided in [3].

For the purpose of verification Erlang programs are translated into the µCRL pro-
cess algebra [5] by an automatic translator tool [2]. In µCRL behaviour is described
on two levels, as traditional process behaviour using the process algebra operators of
µCRL (sequencing, parallel composition, recursion, communication using synchroni-
sation, etc), and data kept by processes and exchanged in communications. Functions
can be defined over data types using rewrite rules.

The translation of Erlang mimics the separation between process behaviour and
functional behaviour present in µCRL. A pre-analysis step partitions Erlang functions
into two categories: the ones with pure functional computation, and the ones with side
effects (e.g., communication to/from a generic server). The side-effect free Erlang func-
tions are translated into µCRL functions, which are defined using a set of rewrite rules.
Thus such Erlang functions do not generate any state. In contrast the side-effect Erlang
functions are translated into µCRL processes, using the process operators.

The translation of communications with a generic server uses an intermediate buffer
process implemented in µCRL, which stores sent messages until the translated generic
server process is ready to receive them. Thus the asynchronous nature of communi-
cation in Erlang is kept in the translated code. The translation of non-tail recursive
side-effect functions uses an explicit call-stack to keep track of recursive calls.

Which processes (e.g., generic servers and clients) to translate is computed by
analysing the code for setting up the system. The generic server processes are found
by analysing which processes initially execute a function in a module with the generic
server behaviour attribute.

The fault-tolerant extension of Erlang only affects the process part of Erlang, hence,
the translation of the functional part of fault-tolerant Erlang remains the same. For the
process part, the fault-tolerant extension of Erlang assumes that a server expects to

5 Translating ault-Tolerant Systems to µCRLF

Verification of Language Based Fault-Tolerance 145

receive an exit message in its mailbox whenever a linked client crashes, and that this exit
message is received and handled by the generic server primitive handle info. The
translation to µCRL therefore needs to take into account this implicit communication
between the client and the server, and the translation of the handle info function.

The µCRL toolset [4] is used to generate a state space from the µCRL translation.
Obviously, the state space generated for a client-server system with this client process is
larger than the one where the client cannot crash. For example, the state space generated
in a scenario with two client processes which cannot crash contains 33 states and 48
transitions, while the state space for the same scenario with crashing clients consists of
326 states and 584 transitions.

Once the labelled transition system has been generated by the µCRL toolset from the
µCRL specification (the result of translating the Erlang program), the CADP toolset is
used to check whether safety and liveness properties hold. Such correctness properties
are formulated in the regular alternation free µ-calculus [8, 7]. Informally, the modali-
ties in the logic are relaxed to sequences of actions characterised by regular expressions.

Action label are enclosed in quotes (e.g., ′crash′) and can contain wildcards (e.g.,
′. ∗ crash.∗′ matches any action that has the text string crash somewhere in its
name), ¬regaction matches any action that does not match the action regular expres-
sion regaction , regaction1∨regaction2 is disjunction. Actions can be composed using
the normal regular expression operators, i.e., | denotes alternative, ∗ zero or more oc-
curencies, . is sequencing, and − matches any action. Comments can be enclosed in
formulas using the (* comment *) notation.

Since we model crashing of client processes, actually we are introducing deadlock
states. To verify that a client-server system is deadlock-free except for the states where
all clients have crashed, we formulate a fault-tolerant version of the classical deadlock-
freedom property. The property we are interested in states that no deadlocks occurs as
long as not all the processes in the system have crashed. This property can be expressed
by explicitly stating the crash actions in the formula.

For instance, supposing there are three processes in the system. Then we define a
action sequence macro denoting the sequences containing 0, 1, or 2 crashes:

BETWEEN 0 AND 2 CRASHES() =
((¬′.∗info.∗′)∗ (* 0 crashes *) |
(¬′.∗info.∗′∗′.∗info.∗′.(¬′.∗info.∗′)∗ (* 1 crash *) |
(¬′.∗info.∗′∗.′.∗info.∗′.(¬′.∗info.∗′)∗.′.∗info.∗′.(¬′.∗info.∗′)∗))

Using the macro, the deadlock freedom property becomes:

[BETWEEN 0 AND 2 CRASHES()]〈-〉true

6 Model Checking Properties in Fault-Tolerant Systems

6.1 Deadlock Freedom

146 C. Earle and L.-Å. FredlundBenac

This formula will spot the deadlocks unrelated to complete crashes of the sys-
tem. In general, for N processes in the system, one must write N-1 lines of the form
(′.∗info.∗′.(¬′.∗info.∗′)∗) in the macro above.

This example highlights the need to reconsider the properties used to verify nonfault-
tolerant systems in order to verify fault-tolerant systems. In the following two subsec-
tions we discussed how mutual exclusion and non-starvation can be verified.

The formulation of the mutual exclusion property for the non-fault-tolerant locker is
given below. To make verification easier two actions are introduced in the Erlang code
of the client to signal the entering (use) and the exiting (free) of the critical section.

BETWEEN (a1, a2, a3) = [-∗ . a1 . (¬a2)
∗ . a3]false

MUTEX () = BETWEEN (′use(.∗)′,′ free(.∗)′,′ use(.∗)′)

The formula states that ’on all possible paths, after an use action, any further use
action must be preceded by an free action’. Intuitively, the formula means that if a
client process is accessing the resource, then no other client process can access it until
the resource has been freed. This formula does not hold in the state space generated for
the a scenario with two crashing clients. The CADP model checker gives the following
counter-example.

"call(locker,request,C1)"
"reply(C1,ok,locker)"
"action_use(C1)"
"info(locker,{EXIT,C1,EXIT))"
"call(locker,request,C2)"
"reply(C2,ok,locker)"
"action_use(C2)"

The counter-example shows that the mutual exclusion property is violated, since
the resource is accessed by two process clients, client 1 and client 2, without being
freed. However, the counter-example is also showing that, client 2 is accessing the re-
source after client 1 has crashed, therefore, strictly speaking, client 1 is not accessing
the resource because it is dead.

In order to show that the mutual exclusion property is verified in the fault-tolerant
first version of the locker case-study, we need to take the client crashes into account, as
is done in the property below.

FT − BETWEEN (a1, a2, a3, a4) = [-∗ . a1 . (¬a2 ∨ a3)
∗ . a4]false

FT − MUTEX () = FT − BETWEEN (′use(.∗)′,′ free(.∗)′, ,′ use(.∗)′)

To illustrate the power of model checking as a debugging tool, consider the fol-
lowing erroneous implementation of the handle info function of the locker. After a
client crashes, access to the resource is given to the client that was waiting to get access
in the head of the pending list.

6.2 Mutual Exclusion

Verification of Language Based Fault-Tolerance 147

handle_info({’EXIT’,ClientPid,Reason},Pending) ->
NewPending = remove(ClientPid,Pending),
case NewPending == [] of

false -> gen_server:reply(hd(NewPending), ok),
{noreply, NewPending};

_ -> {noreply, []}
end.

This code is correct for the case where a client crashes after obtaining access to
the resource, but it is wrong if the client crashes after releasing the resource. Testing
concurrent code is tricky, in particular, in this example, only the right combination of
more than three clients, a client crashing after releasing the resource and the other two
or more clients waiting in the pending list triggers the error in the fault-tolerant code.

As with the verification of mutual exclusion, the fault-tolerant behaviour of the system
we want to verify needs to be taken into account in order to prove the non-starvation
property. Thus, instead of the following property that checks for non-starvation of the
client C, which because of crashes is not satisfied,

NONSTARVATION (C) =
[-∗ . ′gen server :call(.∗request.∗, C)′]

µX.(〈-〉true ∧ [¬′reply(ok,C)′]X)

we use the following “fault-tolerant” one, which is satisfied by the locker:

NONSTARVATION (C) =
[-∗ . ′gen server :call(.∗request.∗, C)′]

µX.(〈-〉true ∧ [¬′reply(ok,C)′ ∨ ′info(.∗, C, .∗)′]X)

One of the aspects that makes the programming language Erlang popular among devel-
opers of business-critical systems is the inclusion of constructs to handle fault-tolerance.
Our approach to verification of such fault-tolerant systems has several components.
First, Erlang systems are translated into µCRL specifications. Next, the µCRL toolset
generates the state space from the algebraic specification, and finally, the CADP toolset
is used to check whether the system satisfies correctness properties specified in a the
alternation-free µ-calculus.

To enable analysis of fault behaviour we introduce during the translation phase to
µCRL explicit failure points in the algebraic specification, in a systematic way, where
the system processes may fail. The key observation is that, due to the usage of higher-
level design pattern that structure process communication and fault recovery, the num-
ber of such failure points that needs to be inserted can be relatively few, and can be
inserted in an application independent manner. In other words, the state spaces gener-
ated from a failure model can be generated automatically, are relatively small, and are
thus amenable to model checking.

6.3 Non- tarvation

7 Conclusions and Related Work

148

S

C. Earle and L.-Å. FredlundBenac

We have demonstrated the approach in a case study where a server, built using the
generic server design pattern, implements a locking service for the client processes
accessing it. The server necessarily contains code to handle the situation where clients
can fail; if it did not the server would quickly deadlock. In the study we verify, using
the automated translation and model checking tool, systems composed of a server and
a set of clients with regards to crucial correctness properties such as deadlock freedom,
mutual exclusion and liveness.

The formal verification of fault-tolerant systems has been studied in several case-
studies such as e.g. [9, 10]. In contrast to our approach, they target a single application
only, are ad-hoc, and often do not provide a reusable verification method.

General models for the verification of fault-tolerant algorithms are also present in
the literature, for example [6]. The main difference with our approach is that our models
(similar to the software) are on a higher-abstraction level than those works; there is more
intelligence built-in the Erlang component programming model than in general model,
and it is interesting to see, that using such a model actually makes it easier to verify the
correctness of the solution.

References

[1] J.L. Armstrong, S.R. Virding, M.C. Williams, and C. Wikström. Concurrent Programming
in Erlang. Prentice Hall International, 2nd edition, 1996.

[2] T. Arts, C. Benac Earle and J. J. Sánchez-Penas. Translating Erlang to µCRL. Application
of Concurrency to System Design, 2004. ACSD 2004. Proceedings. Fourth International
Conference on, Vol., Iss., 16-18, pp. 135-144, June 2004.

[3] C. Benac Earle. Model Checking the Interaction of Erlang Components. PhD thesis, Uni-
versity of Kent, UK. February 2005.

[4] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireau.
CADP (CÆSAR/ALDÉBARAN development package): A protocol validation and verifica-
tion toolbox. In Proc. of CAV, LNCS 1102, p. 437–440, Springer-Verlag, Berlin, 1996.

[5] J. F. Groote. The syntax and semantics of timed mCRL. Technical report SEN-R9709,
CWI, Amsterdam, 1997.

[6] T. Janowski and M. Joseph. Dynamic Scheduling and Fault-tolerance: Specification and
Verification. Real-Time Systems. Vol. 20, Issue 1, Kluwer Academic Publishers. 2001.

[7] D. Kozen. Results on the propositional µ-calculus. TCS, 27:333-354, 1983.
[8] R. Mateescu. Local Model-Checking of an Alternation-free Value-Based Modal Mu-

Calculus. Proceedings of the International Workshop on Software Tools for Technology
Transfer STTT’98, Aalborg, Denmark, July 1998.

[9] J. Rushby. Systematic Formal Verification for Fault-Tolerant Time-Triggered Algorithms.
IEEE Transactions on Software Engineering, volume 25, number 5, 1999.

[10] F. Schneider, S. M. Easterbrook, J. R. Callahan and G. H. Holzmann, Validating Require-
ments for Fault Tolerant Systems using Model Checking. Proceedings, 3rd International
Conference on Requirements Engineering, 4-13, Colorado, Springs, Colorado, April 1998.

Verification of Language Based Fault-Tolerance 149

	Introduction
	Erlang Components
	Fault-Tolerance in Erlang
	Fault-Tolerance in Generic Servers
	Translating ault-Tolerant Systems to µCRL
	Model Checking Properties in Fault-Tolerant Systems
	Deadlock Freedom
	Mutual Exclusion
	Non- tarvation

	Conclusions and RelatedWork
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

