
Towards a Certified and Efficient
Computing of Gröbner Bases�

J. Santiago Jorge, Vı́ctor M. Guĺıas, José L. Freire, and Juan J. Sánchez

MADS - LFCIA, Dept. de Computación, Universidade da Coruña,
Campus de Elviña, s/n., 15071 A, Coruña, Spain

{sjorge, gulias, freire, juanjo}@dc.fi.udc.es

Abstract. In this paper, we present an example of the implementation
and verification of a functional program. We expose an experience in
developing an application in the area of symbolic computation: the com-
puting of Gröbner basis of a set of multivariate polynomials. Our aim
is the formal certification of several aspects of the program written in
the functional language Caml. In addition, efficient computing of the
algorithm is another issue to take into account.

1 Introduction

Certifying the correctness of a program is a difficult and expensive labor and, at
the same time, it is one of the most important activities for a software engineer.
Debugging and testing techniques can detect errors, but they cannot guarantee
the correctness of the software. Formal methods complement those techniques
assuring that some relevant property holds in the program.

This work aims to contribute to the construction of a methodology to pro-
duce certified software, i.e., we intend to find the way to strengthen two different
notions: First, there is a need for formal verification of the correctness of algo-
rithms which goes together with their construction; and second, programs are
mathematical objects which can be handled using logico-mathematical tools.
We present the way in which one can formally verify several aspects of the ap-
plication implemented following the functional paradigm. These techniques will
be exemplified by means of the verification of a program which calculates the
Gröbner basis of a set of multivariate polynomials [1]. Here, both the certifica-
tion of the program and its efficiency will be taken into consideration. We study
the development of algorithms formally proved for an efficient computing. The
steps are: formalization of a multivariate polynomial ring; construction of a well-
founded polynomial ordering; and finally, definition of the reduction relation and
Buchberger’s algorithm.

Functional programming [2,3,4] has often been suggested as a suitable tool
for writing programs which can be analyzed formally, and whose correctness
can be assured [5]. This assertion is due to referential transparency, a powerful
mathematical property of the functional paradigm that assures that equational
� Supported by MCyT TIC2002-02859 and Xunta de Galicia PGIDIT03PXIC10502PN.

R. Moreno Dı́az et al. (Eds.): EUROCAST 2005, LNCS 3643, pp. 111–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

112 J.S. Jorge et al.

reasoning makes sense. The mathematical way of proving theorems can be suc-
cessfully applied to computer science. As programming language, Objective

Caml [6,7] was chosen due to its efficiency and its wide coverage both in the
research and academic environments.

Properties are proved by means of the formalization of theorems in an abstract
model of actual code in the Coq [8,9] proof assistant and also, in a manual
but exhaustive style directly applied to the final code. Programs are treated
as mathematical objects and each step of those proofs is justified by means of
mathematical reasoning. Significant progress has been made (see [10,11,12]) in
the automated verification of the proof of Gröbner bases algorithm by proof
checkers. Theorem provers assist us in proving the correctness of a program.
They not only help us in the development of the proofs but also guarantee the
correctness of such proofs; thus they prevent bugs that could be introduced in
a hand-made certification. The logical framework Coq is an implementation of
the Calculus of Inductive Constructions [13].

The paper is organized as follows. In section 2, a reusable multivariate poly-
nomial library is certified, and a well-founded polynomial ordering is also verified.
Section 3 states the correctness of the reduction relation on polynomials. Sec-
tion 4 reasons about Buchberger’s algorithm, and presents some results. Finally,
we conclude.

2 Multivariate Polynomials Using Dependent Types

A reusable polynomial library is going to be formally verified. It will make fur-
ther work in verification of polynomial algorithms less difficult. A multivariate
polynomial ring over a coefficient field is our target. We not only want to prove
the fundamental properties of polynomial rings, but we also search for an ad-
equate implementation allowing efficient computing. Canonical representations
of polynomials are used, and it can be decided if two polynomials are equal by
studying if their representations are equal.

Although there are previous works on the formalization of multivariate poly-
nomials by proof checkers (see [14,15]), they neither work directly with canonical
representations of polynomials, nor do they use dependent types. The certifica-
tion of this library has been carried out both reasoning directly about the actual
functional program and also proving laws in the abstract model in Coq. Below,
the main laws stated with the help of the proof assistant are presented.

A term in the variables X = {x1, x2, . . . , xn} is represented by a list of the
exponents of each variable.

type term = int list

In Coq, they are described as lists of fixed length with dependent types. The
use of dependent types improves the accuracy and clarity of the specification.

Inductive Dlist [A: Set]: nat->Set :=
Dnil: (Dlist A (0))

Towards a Certified and Efficient Computing of Gröbner Bases 113

| Dcons: (n:nat)A->(Dlist A n)->(Dlist A (S n)).
Definition term: nat->Set:= [n: nat] (Dlist nat n).

Dependent types provide accuracy in the specifications, which is an additional
reliability. But, sometimes this precision can impose a heavy manipulation of
expressions.

Two terms are multiplied by adding the respective exponents of each variable.

(*val mult_term : term->term->term*)
let mult_term xs ys = map2 (+) xs ys

This Caml code is very similiar to to the abstract model built in Coq:

Definition mult_term:(n:nat)(term n)->(term n)->(term n):=
[n:nat;t,s:(term n)](map2 nat nat nat plus n t s).

Terms form a commutative monoid under multiplication.

Lemma mult_term_sym: (n: nat) (t,s: (term n))
(mult_term n t s)=(mult_term n s t).

Lemma mult_term_assoc_l: (n:nat) (t,s,r: (term n))
(mult_term n t (mult_term n s r))

= (mult_term n (mult_term n t s) r).

Lemma mult_term_1_t: (n: nat; t,s: (term n))
(null_term n t) -> (mult_term n t s)=s.

Other results on terms are also proved.

Lemma div_term_mult_term: (n: nat) (t, s: (term n))
(div_term n (mult_term n t s) s)=t.

We state the lexicographical order on terms, and we show that it is an ad-
missible order.

[a1, . . . , an] > [b1, . . . , bn] ⇔ ∃i con aj = bj for 1 ≤ j < i and ai > bi

1. There exists a first element, t >lex 1, ∀t ∈ TX , 1 �= t

Theorem ltlex_term_admissibility_1: (n: nat; e, t: (term n))
(null_term n e) -> ~ (null_term n t) -> (ltlex_term n e t).

2. The ordering respects multiplication, t >lex s ⇒ t · r >lex s · r, ∀t, s, r ∈ TX

Theorem ltlex_term_admissibility_2: (n: nat; t, s: (term n))
(ltlex_term n t s) -> (r:(term n))

(ltlex_term n (mult_term n t r) (mult_term n s r)).

Monomials are represented as coefficient-term pairs. In the Caml program,
absolute precision numbers (num library) are used as coefficients. In the model
built in Coq, on the other hand, the coefficients are axiomatized. Monomials
form a commutative monoid under multiplication.

114 J.S. Jorge et al.

Lemma mult_mon_sym: (m1, m2: mon)
(eq_mon (mult_mon m1 m2) (mult_mon m2 m1)).

Lemma mult_mon_assoc_l: (m1, m2, m3: mon)
(eq_mon (mult_mon m1 (mult_mon m2 m3))

(mult_mon (mult_mon m1 m2) m3)).

Lemma mult_mon_1_m: (e, m: mon)
(mon1 e) -> (eq_mon (mult_mon e m) m).

Polynomials are represented as lists of monomials. The representation is
canonical: terms are strictly ordered by a decreasing term order, and the list
contains no null monomial. Hence, two polynomials are equals if their represen-
tations are syntactically equal. As we axiomatize the coefficients in the model
built in Coq, an explicit equality has to be used.

Inductive eq_pol : pol->pol->Prop :=
eq_pol_1 : (eq_pol (nil mon) (nil mon))

| eq_pol_2 : (m1,m2:mon; p1,p2:pol)
(eq_mon m1 m2) -> (eq_pol p1 p2) ->
(eq_pol (cons m1 p1) (cons m2 p2)).

Sometimes two different versions of a polynomial function (for instance, addi-
tion) are implemented: one efficient, the other simple. We prove they are equiv-
alent.

Functions over polynomials always act on canonical objects to yield canonical
results. Thus, on the one hand more efficient programs are obtained from an
algorithmic point of view. However, on the other hand, polynomial functions
become more complex because there are lots of alternatives, and consequently
proofs get more complex and tedious.

Lemma add_pol_canonical: (p1, p2: pol)
(canonical p1)->(canonical p2)->(canonical (add_pol p1 p2)).

Lemma mult_pol_canonical: (p1, p2: pol)
(canonical p1)->(canonical p2)->(canonical (mult_pol p1 p2)).

Polynomials with addition and negation form an Abelian group.

Lemma add_pol_p_0: (p: pol)
(canonical p) -> (eq_pol (add_pol p pol0) p).

Lemma add_pol_sym: (p1, p2: pol)
(canonical p1) -> (canonical p2) ->

(eq_pol (add_pol p1 p2) (add_pol p2 p1)).

Lemma add_pol_assoc_l: (p1, p2, p3: pol)
(canonical p1) -> (canonical p2) -> (canonical p3) ->

(eq_pol (add_pol p1 (add_pol p2 p3))
(add_pol (add_pol p1 p2) p3)).

Towards a Certified and Efficient Computing of Gröbner Bases 115

Lemma add_pol_minus_pol: (p: pol)
(canonical p) -> (eq_pol (add_pol p (minus_pol p)) pol0).

With the multiplication they form a ring.

Lemma mult_pol_1_p: (e, p: pol)
(canonical p) -> (pol1 e) -> (eq_pol (mult_pol e p) p).

Lemma mult_pol_sym: (p1, p2: pol)
(canonical p1) -> (canonical p2) ->

(eq_pol (mult_pol p1 p2) (mult_pol p2 p1)).

Lemma mult_pol_assoc_l: (p1, p2, p3: pol)
(canonical p1) -> (canonical p2) -> (canonical p3) ->

(eq_pol (mult_pol p1 (mult_pol p2 p3))
(mult_pol (mult_pol p1 p2) p3)).

And multiplication distributes over addition.

Lemma mult_pol_add_mon_pol_distr: (p1, p2: pol; m: mon)
(canonical p1) -> (canonical p2) -> (not_mon0 m) ->

(eq_pol (mult_pol (add_mon_pol m p1) p2)
(add_pol (mult_mon_pol m p2) (mult_pol p1 p2))).

2.1 Well-Founded Polynomial Ordering

The well-foundedness of the lexicographical order on terms has been verified
both on the Caml program, and on the abstract model in Coq. Reasoning over
the Caml code, the well-foundedness of the total degree order was also proved.

We extend the term order on monomials. With polynomials in canonical
form, the monomial ordering is extended to polynomials in a straightforward

Theories Lines Defs. Laws Prop. Size
Dlist 101 9 5 7.21 15K
Term 331 6 18 13.79 155K
LtlexTerm 191 1 8 21.22 146K
Coef 155 6 32 4.08 11K
Mon 171 14 18 5.34 42K
Pol 175 7 15 7.95 73K
AddMonPol 862 1 10 78.36 348K
AddPol 311 2 18 15.55 35K
MultMonPol 260 1 14 17.33 61K
MultPol 338 1 16 19.88 32K
total 2895 48 154 14.33 918K

(a) Polynomial Theories

Theories Lines Defs. Laws Prop. Size
WfLtlexTerm 49 2 2 12.25 18K
WfLtlexMon 23 1 3 5.75 3K
Desc 110 0 6 18.33 18K
WfLtlexPol 98 6 7 7.54 33K
total 280 9 18 10.37 72K

(b) Well-founded Theories

Fig. 1. Quantitative Information on the Development in Coq

116 J.S. Jorge et al.

way. In this proof, we use a lexicografic exponentiation theory from Paulson [16]
that requires monomials to be strictly ordered in a decreasing order. So, the
lexicographic relation induced on polynomials is well-founded. In this work, we
started with the lexicographic order on terms, but the development is generic.
Any well-founded term ordering can be used.

Figures 1(a) and 1(b) show quantitative information on the Coq theories.
The columns correspond to the number of lines of code in each theory, the
number of definitions (including tactics) and the number of laws, the proportion
between the number of lines and the quantity of laws and definitions (which
can be used as a measure of the complexity of the theory), and the size of each
compiled Coq theory, respectively.

3 Polynomial Reduction

The reduction relation on polynomials involves subtracting an appropriate mul-
tiple of one polynomial from another. Below it can be seen the Caml code.

red(p, q) = p − hcoef (p) · hterm(p)
hcoef (q) · hterm(q)

· q

(*val nred : (term->term->bool) -> pol -> pol -> pol*)
let nred gt_term f g = match (f, g) with
((c, t)::_, (b, s)::_) ->

sub_pol gt_term f (mult_pol gt_term [c//b, div_term t s] g)

In the following example, the act of reducing p by r implies subtracting a
multiple of r from p so that the head term of p is canceled: p = 2x2yz3−7xy10+z,
r = 5xyz−3, the polynomial r reduces p to p′ = p−(2

5xz2)r = −7xy10+ 6
5xz2+z.

Reduction of polynomials is not a total function because term division is not
a total function. A polynomial p is reducible by q if the heading term of q divides
the heading term of p. The verification of the reduction relation covers two facts:

1. is reducible(p, q) ⇒ hterm(red(p, q)) <TX hterm(p)
2. is reducible(p, q) ⇒ ∃r such that p = red(p, q) + r · q

Next subsection contains the certification of the two conditions above, carried
out with manual proofs that treat the Caml program as a mathematical object.

3.1 Laws About Reduction

Theorem 1. For every nonzero polynomials p = [(c1,t1);...;(cm,tm)] and
q = [(b1,s1);...;(bl,sl)], both in canonical form with respect to a term order
gt term, and such that is reducible p q, it holds:

gt term (ht p) (ht (red gt term p q))

Towards a Certified and Efficient Computing of Gröbner Bases 117

Proof. By equational reasoning, using two previous results, and with:

redp = nred gt term divt = div term
multp = mult pol gt term multt = mult term
subp = sub pol gt term

gt term (ht p) (ht (redp p q))

= { 1) by definition of nred (left to right) }
gt term (ht p) (ht (subp p (multp [(c1/b1, divt t1 s1)] q)))

= { 2) by definition of mult pol (left to right) }
gt term (ht p) (ht (subp p (((c1/b1)*b1, multt (divt t1 s1) s1):: . . .)))

= { 3) by arithmetic on num and the law (t/s)*s=t on terms }
gt term (ht p) (ht (subp p ((c1,t1):: . . .)))

= { 4) ht f = ht g ⇒ gt term (ht f (ht (subp f g)) }
true �	

Theorem 2. For every nonzero polynomials in canonical form with respect to
a term order gt term, p = ((c1,t1)::f’) and q = ((b1,s1)::g’), such that
is reducible p q, it holds:

p = add pol gt term (red gt term p q) (mult pol r q)

where: r = [(c1/b1, div term t1 s1)]

Proof. By equational reasoning, using two previous results and with:

redp = nred gt term multp = mult pol gt term
addp = add pol gt term subp = sub pol gt term
minusp = minus pol divt = div term

addp (redp ((c1,t1)::f’) ((b1,s1)::g’))

(multp [(c1/b1,divt t1 s1)] ((b1,s1)::g’))

= { 1) by definition of nred (left to right) }
addp (subp ((c1,t1)::f’) (multp [(c1/b1,divt t1 s1)] ((b1,s1)::g’)))

(multp [(c1/b1,divt t1 s1)] ((b1,s1)::g’))

= { 2) by definition of sub pol (left to right) }
addp (addp ((c1,t1)::f’)

(minusp (multp [(c1/b1,divt t1 s1)] ((b1,s1)::g’))))

(multp [(c1/b1,divt t1 s1)] ((b1,s1)::g’))

= { 3) by associativity of add pol }
addp ((c1,t1)::f’)

(addp (minusp (multp [(c1/b1,divt t1 s1)] ((b1,s1)::g’))))

(multp [(c1/b1,divt t1 s1)] ((b1,s1)::g’))

= { 4) by the law: eq pol (add pol p (minus pol p)) pol0 }
addp ((c1,t1)::f’) []

= { 5) by definition of add pol (left to right) }
((c1,t1)::f’) �	

118 J.S. Jorge et al.

3.2 Extension of the Reduction Relation

A polynomial p is reducible modulo Q = {q1, q2, . . . , qm}, if there exists qi such
that p is reducible by qi. We define recursively the closure of reduction.

full red(p, Q) =
{

p if ¬(is reducible(p, Q))
full red(red(p, Q), Q) otherwise

(*val full_red : (term->term->bool) -> pol -> pol list -> pol*)
let rec full_red gt_term f gs = match sred gt_term f gs with

None -> f
| Some [] -> []
| Some h -> full_red gt_term h gs

There is no infinite sequence of reductions because <TX is well-founded
and hterm(red(p, Q)) <TX hterm(p). In addition, the result is not reducible
modulo Q.

4 Buchberger’s Algorithm

Buchberger’s algorithm [1] is a generalization of Gaussian elimination. Given a
set of polynomials, it produces another set of polynomials with the same roots
and additional properties which ease the computation of those roots. The new
set, called the Gröbner basis, is analogous to a triangular set of linear equations,
which can be solved by substitution. The two basic operations in computing a
Gröbner basis are: to eliminate one of the terms of two polynomials obtaining
a new polynomial (S-polynomial), and to simplify a polynomial by subtracting
multiples of other polynomials.

We implement the Buchberger’s algorithm in Caml. In each recursion a pair
of polynomials is selected, and the reduction of the S-polynomial is added to
the set only if it is nonzero. The polynomial added is then smaller than the two
selected polynomials, thus the algorithm always ends.

(* val buch: (term->term->bool) -> pol list -> pol list *)
let buch gt fs =
let rec buch_aux gs = function

[] -> gs
| (f,g)::ps -> let h = spol gt f g in

match full_red gt h gs with
[] -> buch_aux gs ps

| h’ -> buch_aux (gs @ [h’])
(ps @ (map (fun g->(g,h’)) gs)) in

buch_aux fs (allpairs fs)

The function allpairs computes all possible pairs of the elements of a list.
Function buch aux is the recursive implementation of the loop of the algorithm.
In each recursion, it is selected a pair and, the reduction of the S-polynomial by

Towards a Certified and Efficient Computing of Gröbner Bases 119

Linux 2.2.20 Windows 98
gcalc gcalcopt gcalc Maple V

(1) 2.99 s. 1.05 s. 4.13 s. 12.75 s.
(2) 23.32 s. 8.25 s. 27.19 s. 69.98 s.
(3) 243.43 s. 91.12 s. 288.58 s. 519.45 s.

(a) Pentium 200MMX/48M

Linux 2.4.22
gcalc gcalcopt Gap

(1) 1.20 s. 0.23 s. 4.10 s.
(2) 9.48 s. 1.80 s. 20.98 s.
(3) 100.59 s. 19.89 s. 117.06 s.

(b) AMD Duron 800/768M

Fig. 2. A simple benchmark of the program

gs is chosen if it is nonzero. The function always terminates because the chosen
polynomial is always less than the two ones we have studied.

Figure 2 presents some measurements of the program. An execution times
comparaison between our program and Maple is shown in figure 2(a). Execu-
tions have been carried out on a Pentium 200MMX/48M. Running under Linux,
two different versions of our program were used: gcalc and gcalcopt, the for-
mer obtained with the bytecode compiler of Objective Caml and the latter
generated with the high-performance native-code compiler [7]. Running under
Windows 98 with the same hardware, we execute both Maple implementation
and gcalc. See below the examples that were used employing the lexicographical
order.

{x25 − y25zt, xz25 − y25, x25y − z25t} (1)

{x50 − y50zt, xz50 − y50, x50y − z50t} (2)

{x100 − y100zt, xz100 − y100, x100y − z100t} (3)

In addition, figure 2(b) presents an execution comparison between both versions
of our program and GAP on a AMD Duron 800/768M running under Linux.
In all cases we have repeated three times each execution and the best one was
selected.

5 Conclusions

We have exposed the development of an efficient functional program for com-
puting Gröbner bases of a set of multivariate polynomials, assuring that some
relevant properties hold in the program.

We suggest to develop programs using a side-effect free language, a functional
language for instance, where tools like equational reasoning make sense. Proofs
of properties have been carried out both in an informal and exhaustive style (on
Caml programs), and in (with the help of) the Coq proof assistant.

Elaboration of proofs is based on the syntactic structure of the program.
Complex proofs are carried out with help of auxiliary laws.

The developments are kept as general as possible. Different reusable modules
are implemented as, for example, an efficient multivariate polynomial library.

Program efficiency is taken into account. Sometimes two different versions
of a function are implemented: one efficient, the other simple, proving their
equivalence. Canonical representations that allow us to use syntactical equality

120 J.S. Jorge et al.

and efficient algorithms are used. Formalizing the canonical representation of
polynomials is not complex, but we run into dificulties when defining operations
which become more complicated causing more complex and tedious proofs.

Formal methods are not intended to provide absolute reliability, but to in-
crease software reliability. Formal methods can be used to improve the design
of systems, its efficiency, and to certify its correctness. It is often difficult to
apply formal methods to a whole system. As future work, we should look for
compositional techniques.

We think that the future of program verification heads for a general proposal:
to obtain certified software libraries.

References

1. Buchberger, B.: An Algorithm for Finding a Basis for the Residue Class Ring
of a Zero-Dimensional Polynomial Ideal. PhD thesis, Univ. of Innsbruck, Austria
(1965)

2. Bird, R., Wadler, P.: Introduction to Functional Programming. Prentice Hall
(1988)

3. Hudak, P.: Conception, evolution, and application of functional programming lan-
guages. ACM Computing Surveys 21 (1989)

4. Paulson, L.C.: ML for the Working Programmer. 2nd edn. Cambridge University
Press (1996)

5. Jorge, J.S.: Estudio de la verificación de propiedades de programas funcionales: de
las pruebas manuales al uso de asistentes de pruebas. PhD thesis, University of A
Coruña, Spain (2004)

6. Weis, P., Leroy, X.: Le langage Caml. 2nd edn. Dunod (1999)
7. Leroy, X., et al.: The Objective Caml system: Documentation and User’s Manual,

Release 3.08. INRIA, http://caml.inria.fr. (2004)
8. The Coq Development Team: The Coq Proof Assistant Reference Manual, Version

7.3. INRIA, http://coq.inria.fr. (2002)
9. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development,

Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag (2004)
10. Théry, L.: A machine-checked implementation of Buchberger’s algorithm. Journal

of Automated Reasoning 26 (2001)
11. Medina-Bulo, I., Palomo-Lozano, F., Alonso-Jiménez, J.A., Ruiz-Reina, J.L.: Veri-

fied computer algebra in ACL2 (Gröbner bases computation). In: 7th International
Conference on Artificial Intelligence and Symbolic Computation (AISC 2004). Vol-
ume 3249 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2004)

12. Pérez, G.: Bases de Gröbner: Desarrollo formal en Coq. PhD thesis, University of
A Coruña, Spain (2005)

13. Coquand, T., Huet, G.: The calculus of constructions. Information and Computa-
tion 76 (1988)

14. Barja, J.M., Pérez, G.: Demostración en implementaciones concretas de anillos de
polinomios. RSME (2000)

15. Medina-Bulo, I., Alonso-Jiménez, J.A., Palomo-Lozano, F.: Automatic verifica-
tion of polynomial rings fundamental properties in ACL2. In: 2nd International
Workshop on the ACL2 Theorem Prover and Its Applications. (2000)

16. Paulson, L.C.: Constructing recursion operators in intuitionistic type theory. Jour-
nal of Symbolic Computation 2 (1986)

http://caml.inria.fr
http://coq.inria.fr

	Introduction
	Multivariate Polynomials Using Dependent Types
	Well-Founded Polynomial Ordering

	Polynomial Reduction
	Laws About Reduction
	Extension of the Reduction Relation

	Buchberger's Algorithm
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

