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Abstract. In this paper we describe a new mesh parametrization method
which combines the mean value coordinates and the Locally Linear Em-
bedding (LLE) method. The mean value method is extended to compute
the linearly reconstructing weights of both the interior and the bound-
ary vertices of a 3D triangular mesh, and the weights are further used
in the LLE algorithm to compute the vertex coordinates of a 2D planar
triangular mesh parametrization. Examples are provided to show the
effectiveness of this parametrization method.

1 Introduction

Triangular mesh parametrization aims to determine a 2D triangular mesh with
its vertices, edges, and triangles corresponding to that of the original 3D trian-
gular mesh, satisfying an optimality criterion. The technique has been applied in
a wide range of problems in computer graphics and image processing, including
texture mapping [9], morphing [7], and remeshing [4]. Extensive research has
been undertaken into the theoretical issues underpinning the method and its
practical application. For a tutorial and survey, the reader is referred to [3].

A well-known parametrization method is that proposed by Floater [1]. It is a
generalization of the basic procedure originally proposed by Tutte [8] which was
used to draw planar graphs. The basic idea underpinning this method is to use
the vertex coordinates of the original 3D triangular mesh to compute reconstruct-
ing weights of each interior vertex with respect to its neighbour vertices.These
weights are subsequently used together with the boundary vertex coordinates
on a plane to compute the interior vertex coordinates of a 2D triangular mesh.
A drawback of Floater’s parametrization method is that the boundary vertex
coordinates must be determined manually beforehand.

There are many methods for computing the reconstructing weights. The sim-
plest one is Tutte’s barycentric coordinates [8]. Floater provided a method of
computing the weights in his first paper about parametrization [1], which has a
so-called shape-preserving property. More recently, Floater computes mean value
coordinates as the reconstructing weights[2]. These mean value coordinates per-
form better than the earlier shape-preserving weights of [1].
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The Linearly Local Embedding (LLE) [5] is a method of mapping high di-
mensional data to a low dimensional Euclidean space. The idea underlying the
method is to use the high dimensional data to compute locally linear recon-
structing weights for each data point. These weights are then used to compute
the point coordinates in a low dimensional data space. It can be used in a nat-
ural way to map 3D coordinates to 2D coordinates. Thus it can be used as a
parametrization method. However, because for 3D triangular meshes, the dimen-
sion of the data (here it is 3) is usually less than the number of neighbours of
any data point, the original algorithm does not compute optimal weights. Hence,
LLE is not a good parametrization method.

In this paper, we combine the advantages of both the mean value coordinates
and LLE to develop a new parametrization method. The paper is organised
as follows. Section 2 introduces the basic problem and provides a overview of
the proposed algorithm. Sections 3 and 4 describes the mean value coordinates
and the LLE method, and their adaptation for use in our algorithm. Section 5
provides some experimental examples of the method. Finally, Section 6 draws
some conclusions.

2 Problem and Algorithm Overview

Consider a triangular mesh T = T (V, E, F, X) with vertex set V = {i : i =
1, 2, ..., N} and corresponding coordinate set X = {xi : xi ∈ Rd, i ∈ V } (d =
2 or 3), edge set E = {(i, j) : (i, j) ∈ V × V }, and triangular face set F =
{(i, j, k) : (i, j), (i, k), (j, k) ∈ E}. Here an edge (i, j) is represented by a straight
line segment between vertices i and j, and a triangular face (i, j, k) is a triangular
facet bounded by three edges (i, j), (i, k) and (j, k). When d = 2, T is drawn
on a plane and represents a planar triangular mesh, while d = 3, T is drawn in
a 3-dimensional space and represents a 3D triangular mesh. A triangular mesh
is called valid if the only intersections between edges are at common end points
(vertices) and the only intersections between triangular faces are on the common
edges. Hereafter, when a triangular mesh is referred without qualification, it
implies that the triangular mesh is valid.

The parametrization is made on a valid 3D triangular mesh. A parametriza-
tion of a valid 3D triangular mesh T = T (V, E, F, X) is any valid planar tri-
angular mesh Tp = Tp(V, E, F, Y ) with Y = {yi : yi ∈ R2, i ∈ V } being the
corresponding coordinates of V .

The parametrization algorithm proposed here combines the mean co-ordinates
of Floater and the LLE method. It consists of the following three steps.

– Based on the algorithm proposed by Floater [2], the mean value coordinates
(or the reconstructing weights) are computed for each vertex using the vertex
coordinates X .

– Using the LLE algorithm [5], the weights obtained above are used to recover
the vertex coordinates Y of the planar triangular mesh.
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– If Tp(V, E, F, Y ) is not valid, then the coordinates of the boundary vertices
are fixed, and the coordinates of the interior vertices are computed using
Floater’s algorithm [1].

Note that in Step 1 of our algorithm, the reconstructing weights of both the
interior and boundary vertices are computed, while only the weights of interior
vertices are computed in Floater’s algorithm [1,2].

3 Mean Value Coordinates

Given a 3D triangular mesh T = T (V, E, F, X), where the vertex set V is divided
into disjoint boundary and interior vertex subsets, i.e. V = VI ∪ VB , where VI

is the interior vertex set, VB is the boundary vertex set and VI ∩ VB = ∅. The
parametrization method proposed by Floater [1] is a generalization of Tutte’s
method of drawing a planar graph [8], which consists of the following steps.

– For each interior vertex i ∈ VI , assign a non-negative weight Wi,j to each of
its incident edges (i, j) ∈ E such that

∑
(i,j)∈E Wi,j = 1, and Wi,j = 0 for

all (i, j) /∈ E.
– For each boundary vertex i ∈ VB, determine a coordinate yi ∈ R2 in the

plane such that the order of the boundary vertices in the plane remains the
same as that of the original ones, and they form a closed convex polygon.

– Solve the following linear system for the coordinates of the interior vertices

yi =
∑

(i,j)∈E

Wi,jyj, i ∈ VI . (1)

There are some important features of this algorithm that deserve further
comment. In the first step, although Tutte’s barycentric coordinates [8] and
Floater’s early shape-preserving weights [1] can be used here as the reconstruct-
ing weights, a better choice are the mean value coordinates recently proposed
by Floater [2]. The mean value coordinates are computed using the formula

Wi,j =
λi,j∑

(i,k)∈E λi,k
, λi,j =

tan(αi,j−1/2) + tan(αi,j/2)
‖xj − xi‖ , (2)

where αi,j−1 and αi,j are the angles between the edge (i, j) and its two neigh-
bouring edges (i, j − 1) and (i, j + 1) (see Fig. 1(a)).

Next, we consider the second step. The boundary vertex coordinates are de-
termined manually. This a drawback since if the boundary vertex coordinates are
selected inappropriately, the resulting parametrization is poor. In our method,
the boundary vertex coordinates are determined by the LLE method. Hence,
although we dispense with this step, the weights of boundary vertices must still
be computed.
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(a) (b) (c)

Fig. 1. Elements for the computation of mean value coordinates: (a) interior vertex,
(b) general boundary vertex, (c) boundary vertex in case with additional neighbour
vertex

Here, we still use the mean value coordinates as the weights of the boundary
vertices. For the boundary vertex i, the weights λi,k and λi,k′ of its neigbouring
boundary vertices k and k′ are computed using the formula (refer to Fig. 1(b))

λi,k =
tan(αi,k−1/2) + tan(αi,k/2)

‖xk − xi‖ , λi,k′ =
tan(αi,k/2) + tan(αi,k′/2)

‖xk′ − xi‖ , (3)

Because αi,k is not strictly less than π, two problems arise when (2) and
(3) are used to compute Wi,j . The first problem occurs when αi,k = π, i.e.
tan(αi,k/2) = ∞, which causes a computational overflow. The solution of this
problem is to simply set λi,k = 1/‖xk − xi‖, λi,k′ = 1/‖xk′ − xi‖, and λi,j = 0
for all other j ∈ V . The second problem occurs when

∑
(i,j)∈E λi,j = 0, which

causes a divide-by-zero error when Wi,j is computed. In this case, an additional
vertex l, which is originally not the neighbour vertex of i, but that of one of i’s
neighbouring vertices, is now taken as the neighbour vertex of i in computing
the mean value coordinates (see Fig. 1(c)).

After computing the reconstructing weights, we depart from Floater’s version
of Tutte’s algorithm. Our idea here is to borrow ideas from LLE algorithm to
compute the co-ordinates of the interior vertices.

4 Locally Linear Embedding

In this paper, we only exploit a component part of the LLE method for mesh
parametrization. However, for completeness and further analysis of this method,
the complete LLE algorithm is described. The LLE algorithm consists of follow-
ing three steps:

– For each data point xi, find the K nearest neighbours {xi1, · · · , xiK}.
– Compute the weights Wi,j that best linearly reconstruct xi from its neighours

through minimizing the cost function
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E(W ) =
∑

i

‖xi −
∑

j

Wi,jxj‖2 (4)

with the additional constraints
∑

j Wi,j = 1, and Wi,j = 0 if xj is not the
K nearest neighbour of xi.

– Compute the low dimensional embedding vector yi that is best reconstructed
by Wi,j by minimizing the embedding cost function

Φ(Y ) =
∑

i

‖yi −
∑

j

Wi,jyj‖2 (5)

with additional constraints
∑

i yi = 0 and 1
N

∑
i yiy

T
i = I.

When the LLE method is directly used for parametrization of a 3D triangular
mesh, the first step (i.e. the selection of the K nearest neighbours) may seem
superfluous, since the 3D triangular mesh has its own natural neighbourhood.
However, the number of neighbours significantly affects the performance of the
algorithm. If the number of neighbours is too small, then the reconstructed
embedding will be poor. Unfortunately, the numbers of natural neighbours in
a triangular mesh are usually small. Hence, better results can be obtained by
choosing a suitable value of K.

The second step attempts to locate the best weights that minimize (4). How-
ever, because for most of the interior vertices, the valency (the number of neigh-
bour vertices) is greater than 3, the solution of (4) has been conditioned in the
original LLE algorithm [5], thus the weights are in fact not optimal. In this pa-
per, the mean value coordinates described in Section 3 are used as alternative
weights to obtain a better result.

After the weights are obtained, yi in Step 3 can be easily obtained by using
the eigenvectors of the matrix M = (I − W )T (I − W ).

Let Λ = diag(λ1, λ2, λ3, ...) be the matrix with the ordered eigenvalues
0 = λ1 ≤ λ2 ≤ λ3 ... as diagonal elements, and let Φ = (φ1|φ2|φ2|...) be the
matrix with the corresponding eigevalues as columns. The eigendecomposition
of the matrix M is M = ΦΛΦT . The eigenvector of this matrix corresponding to
eigenvalue λ1 = 0 is the unit vector with equal components, and is discarded. The
eigenvectors φ2 and φ3 give us the 2D coordinates Y , and yi = (φ2(i), φ3(i))T .

Now that Y has been obtained, then Tp(V, E, F, Y ) gives us a parametrization
of T (V, E, F, X). In most of the cases, Tp(V, E, F, Y ) is a valid planar triangular
mesh. However, when the original 3D mesh has too high curvatures on some
points, the above resulting planar triangular mesh may fold over. In this case,
we only need to select the 2D coordinates of the boundary vertices from Y and
adjust their order if necessary. Fixing the coordinates of the boundary vertices,
the coordinates of the interior vertices can then be computed by solving equation
system (1), and finally, a valid planar triangular mesh Tp(V, E, F, Y ) is obtained.

5 Examples

In this section, two examples are provided to illustrate some of the properties
of the algorithm proposed in this paper. In the first example, we consider an



3D Triangular Mesh Parametrization Using Locally Linear Embedding 101

S-shaped manifold [6]. It is an intrinsically two dimensional manifold. Figure
2(a) shows a regular sample of N = 600 data points and its triangulation in the
3D space. Figure 2(b) shows the parametrization using the algorithm proposed
here, and Fig. 2(c) shows the result using LLE with K = 12 neighbours per data
point. It is evident that the algorithm of this paper performs better than the
LLE algorithm. In particular, the current algorithm results in a parametrization
with an appearance which is closer to the original one than that obtained by the
LLE algorithm.

(a) (b) (c)

Fig. 2. Parametrization of S-shape manifold: (a) regular triangulation, (b) parametriza-
tion using our algorithm, (c) parametrization using LLE algorithm with K=12

Figure 3(a) shows a random sample of N = 600 data points on the same
S-shape manifold. Figure 3(b) shows the parametrization using the algorithm
proposed here, and Fig. 3(c)˜(e) shows the result obtained using LLE with K =
6, 12, 24 neighbours per data point, respectively. Again, it can be seen that the
proposed algorithm results in a parametrization of better appearance. Moreover,
the performance of the LLE algorithm is highly dependent on a suitable choice
of the parameter K. When K is too small (here, K = 6) or too large (K = 24),
the resulting planar triangular mesh is invalid because some of the interior or
boundary edges cross each other (see Fig. 3(c) and 3(e)). The second example
uses the peaks function of Matlab. Figure 4(a) shows an irregular triangulation
of this function. Figure 4(b) shows the result using only the first two steps of the
proposed algorithm and Fig. 4(c) shows a local zoom-in part of Fig. 4(b). It can
be seen that some triangles are folded over, and the resulting parametrization is
invalid. From the other point, however, we can see that the boundary vertices
have been self-adjusted on the plane, and thus we can use these coordinates of
the boundary vertices and perform Step 3 of the proposed algorithm to obtain
a valid parametrization of the original 3D triangular mesh.

We have also scaled down the z-coordinates by 1/3 and directly obtained a
valid parametrization using just the first two steps of the proposed algorithm.
The result is shown in Fig. 4(d). Figure 4(e) is the result of texture mapping using
the parametrization of Fig. 4(d). It can be seen that the resulting parametrization
is suitable for the texture mapping application.
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(a) (b) (c)

(d) (e)

Fig. 3. Parametrization of S-shape manifold with random sample: (a) triangulation,
(b) parametrization using our algorithm, (c)˜(e) parametrization using LLE algorithm
with K=6,12,24, respectively

(a) (b) (c)

(d) (e)

Fig. 4. Parametrization of peaks function: (a) an irregular triangulation, (b)
parametrization with only first two steps, (c) zoom-in part of (b), (d) parametriza-
tion for z-axis being scaled down by 1/3, (e) texture mapping
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6 Conclusion

In this paper, we have combined the mean value coordinates and the LLE
method to construct a new parametrization method. Although the parametriza-
tion method using mean value coordinates has a drawback of requiring manually
determined boundary vertex coordinates and the LLE method has the drawback
that reconstructing weights are not optimal, a combination of these two meth-
ods have been proved to be reasonable. We have used examples to show that the
proposed parametrization method can automatically find good boundary vertex
coordinates and it is practically useful.
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