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Preface

This volume presents the proceedings of the 11th International Conference on
Computer Analysis of Images and Patterns (CAIP 2005). This conference se-
ries started about 20 years ago in Berlin. Initially, the conference served as a
forum for meetings between scientists from Western and Eastern-block coun-
tries. Nowadays, the conference attracts participants from all over the world.
The conference gives equal weight to posters and oral presentations, and the
selected presentation mode is based on the most appropriate communication
medium. The program follows a single-track format, rather than parallel ses-
sions. Non-overlapping oral and poster sessions ensure that all attendees have
the opportunity to interact personally with presenters.

As for the numbers, we received a total of 185 submissions. All papers were
reviewed by two to four members of the Program Committee. The final selection
was carried out by the Conference Chairs. Out of the 185 papers, 65 were se-
lected for oral presentation and 43 as posters. CAIP is becoming well recognized
internationally, and this year’s presentations came from 26 different countries.
South Korea proved to be the most active scientifically with a total of 16 ac-
cepted papers. At this point, we wish to thank the Program Committee and
additional referees for their timely and high-quality reviews. The paper sub-
mission and review procedure was carried out electronically. We also thank the
invited speakers Reinhardt Koch and Thomas Vetter for kindly accepting to
present invited papers.

CAIP 2005 was organized by INRIA Rocquencourt and took place at INRIA,
close to the Versailles Castle. We hope that the conference proved to be a stim-
ulating experience, and that you had an enjoyable stay in the beautiful town of
Versailles.

July 2005 A. Gagalowicz and W. Philips
Editors



Organization

CAIP 2005 was organized by INRIA Rocquencourt and Ghent University.

Steering Committee
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Vojtěch Franc, Václav Hlaváč, Mirko Navara . . . . . . . . . . . . . . . . . . . . . 407

Recognition of Partially Occluded and Deformed Binary Objects
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Carlos Joel Rivero-Moreno, Stéphane Bres . . . . . . . . . . . . . . . . . . . . . . . 732

Comparative Study of 3D Face Acquisition Techniques
Mark Chan, Patrice Delmas, Georgy Gimel’farb, Philippe Leclercq . . . 740

A Fuzzy Hierarchical Attributed Graph Approach for Handwritten
Hieroglyphs Description
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Abstract. We propose a simple but powerful method for tracking a non-
parameterized subject contour in a single video stream with a moving
camera and changing background for the purpose of video background
removal to capture motion in a scene. Our method is based on level-of-
detail (LOD) modified Canny edge maps and graph-based routing oper-
ations on the LOD maps. We generated modified Canny edge maps by
computing intensity derivatives in a normal direction of a previous frame
contour to remove irrelevant edges. Computing Canny edge maps in the
previous contour normal direction have effects of removing irrelevant
edges. LOD Canny edge maps are generated by changing scale parame-
ters for a given image. A simple (strong) Canny edge map, Scanny, has
the smallest number of edge pixels while the most detailed Canny edge
map, WcannyN , has the largest number of edge pixels. To reduce side-
effects because of irrelevant edges, we start our basic tracking by using
Scanny edges generated from large image intensity gradients of an input
image. Starting from Scanny edges, we get more edge pixels ranging from
simple Canny edge maps until the most detailed (weaker) Canny edge
maps, called Wcanny maps along LOD hierarchy. LOD Canny edge pixels
become nodes in routing, and LOD values of adjacent edge pixels deter-
mine routing costs between the nodes. We find the best route to follow
Canny edge pixels favoring stronger Canny edge pixels. If Scanny edges
are disconnected, routing between disconnected parts are planned using
Wcanny edges in LOD hierarchy. Our accurate tracking is based on re-
ducing effects from irrelevant edges by selecting the stronger edge pixels,
thereby relying on the current frame edge pixel as much as possible con-
trary to other approaches of always combining the previous contour. Our
experimental results show that this tracking approach is robust enough
to handle a complex-textured scene.

1 Introduction and Related Works

This work is an improvement on our previous work in contour tracking[1]. We
track a highly textured subject moving in a complex scene compared to a rela-
tively simple subject tracking done by others. We mean complex because both
tracked subject and background scene leave many edges after the edge detec-
tion. We assume our subject is never occluded by any background objects, but it

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 1–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 J. Park

occludes other objects in the background. In tracking a parameterized contour,
a subject contour estimating the motion is represented by using parameters. In
general, these methods use the Snake model[2]; Kalman Snake[3] and Adaptive
Motion Snake[4] are popular Snake models.

In the method of tracking a nonparameterized contour, a subject contour as
a subject border is represented. The contour created by these algorithms is rep-
resented as a set of pixels. Recently, Nguyen proposed a method[5] for tracking a
nonparameterized subject contour in a single video stream with a moving cam-
era and a changing background. Nguyen’s approach combined the outputs of two
steps: creating a predicted contour and removing background edges. Nguyen’s
background edge removal method of leaving many irrelevant edges is subject
to inaccurate contour tracking in a complex scene because removing the back-
ground edges is difficult. Nguyen’s method[5] of combining the predicted contour
computed from the previous frame accumulates tracking error. We remove re-
dundant edges by modifying Canny edge generation, one of major contribution
of this paper.

2 Overview of Our System

Figure 1 shows an overview of our system for tracking a single image frame.
As inputs, we get a previous image frame, denoted as frame (t − 1) and the
corresponding tracked subject contour of input frame (t − 1), and a current
image frame, denoted as frame (t). From frame (t−1), contour of frame (t−1),
and frame (t), we compute a predicted contour, ∂Ω(p,t), for frame (t) using
subject motion[5]. Then, we generate various detailed levels of modified Canny
edge image maps for the input frame (t). The modified Canny edge maps are
generated in terms of the predicted contour normal direction. We select Scanny
edges from the LOD Canny edge maps. From a Scanny edge map, we derive a
corresponding distance map. Using the predicted contour, the best matching is
then found between the predicted contour and the Scanny distance map. Scanny
edge pixels matching with the predicted contour become the frame of the contour
build up. We call these pixels selected Scanny contour pixels. Selected Scanny
contour pixels are the most reliable reference contour pixels to start building a
closed tracked contour, and are stored in the selected Scanny found list. We then
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Fig. 1. Overview of our single frame tracking
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route a path to connect adjacent selected Scanny contour pixels in the found
list using LOD Canny edge pixels. If we finish connecting every adjacent selected
Scanny contour pixel pair, we get a set of partial contours. We run a final routing
using the computed segments of partial contours and Scanny edges around it to
find the best contour. The resulting contour becomes the contour of frame (t).

3 Modified Canny Edge Generation

To overcome Nguyen’s two problems, difficulty in removing noisy background
edges and accumulating tracking errors, we propose a new method to increase the
subject tracking accuracy by using LOD Canny edge maps in predicted contour
normal direction. We use two major approaches. First, in order to reduce side-
effects caused by irrelevant edges, we generate Canny edge maps around the
predicted contour in the contour normal direction. Second, we start our basic
tracking contour using Scanny edges, some of them become our reference edge
pixels for contour routing.

(a) Ordinary map (b) Horizontal map (c) Vertical map

Fig. 2. Effect of computing Canny edge maps of the same image according to the
contour direction

Figure 2(a) shows an ordinary Canny edge map, and Figure 2(b,c) show
modified Canny edge maps generated for the same image assuming horizontal
and vertical contour direction respectively. It is generated by computing the
image intensity derivatives in the contour normal direction. As can be found
from the figures, the contour direction effect on generating Canny edge maps is
removing redundant edges generated in an ordinary Canny edge map. The first
frame contour is given as an input, as presented in Figure 3(a), and subsequent
contours are computed using modified Canny edges as presented in Figure 1.

4 LOD Canny Edge Maps

A strong Canny edge map is generated by a pixel-wise union of the simplest
Canny edge maps out of various scaled Canny edge maps. Our new method se-
lects only the Canny edges with large image intensity gradient values, Scanny
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edges. A Scanny edge map does not have noisy background edges and looks sim-
ple. Working on Scanny has an effect of background edge removal. Our accurate
tracking is based on reducing the effects from irrelevant edges by only select-
ing strongest edge pixels, and relying on the current frame edge pixels as much
as possible contrary to Nguyen’s approach of always combining the previous
contour.

For Canny edge maps generated with smaller image intensity gradient values,
we call Wcannyi, i = M +1, · · · , N where N is the number of LOD Canny edge
maps, M is the number of Canny edge maps used in computing Scanny edge
map. WcannyM+1 has the simplest Canny edges among Wcannyis. WcannyN

has the most detailed Canny edges generated by an accumulation from largest
(strongest) till to the smallest (weakest) intensity gradient valued edges.

Scanny edge maps are very reliable because they are generated only if there
are big intensity changes in the image. We need both simple and detailed Canny
edge maps for the best subject tracking. We totally order the resulting Canny
edge maps by counting the number of edge pixels in each edge map.

Let Φ
(I,t)
i , where i = 1, · · · , N , be a totally ordered set of Canny edge maps

of an input image frame (t). Φ(I,t)
1 has the smallest number of edge pixels while

Φ
(I,t)
N has the largest number of edge pixels. Then, we take the top 10 percent to

30 percent of the simple Canny edge maps and union into pixel-level to make a
Scanny edge map, SΦ(I,t). The rest of the Canny edge maps are used to generate
Wcannyi, WΦ

(I,t)
i .

SΦ(I,t) =
⋃M

i=1 Φ
(I,t)
i

WΦ
(I,t)
i = SΦ(I,t)

⋃(⋃i
j=M+1 Φ

(I,t)
j

)
, i = (M + 1), · · · , N (1)

where
⋃

is pixel-wise union of bitmaps. Part of Figure 3(e) shows an example
of Scanny, while Figure 2(a) looks the same as WcannyN Canny edge map.

LOD Canny edge map, LΦ(I,t), is generated using SΦ(I,t) and WΦ
(I,t)
i s edge

pixels around ∂Ω(p,t). Γ (LΦ(I,t)(x, y)) is a function returning an LOD value
given an edge pixel (x, y) of a LOD edge map, LΦ(I,t). To build a LΦ(I,t), we
search SΦ(I,t) and WΦ

(I,t)
i s from the simplest edge map to the most detailed

edge map.

5 Matching for Selecting Reference Scanny Contour Pixel

Basically, we rely only on a Scanny edge map and a predicted contour from
the previous frame to find reference pixels, called selected Scanny pixels, for
building a basic tracked contour frame. Then, we seek additional edge pixels from
Wcannyis following LOD in edge maps. These selected Scanny pixels become
start nodes and end nodes in routing. LOD Canny edge pixels become nodes in
routing, and LOD values of adjacent edge pixels determine routing costs between
the nodes. We assign the lowest cost between two adjacent Scanny edge pixels
to encourage Scanny-based routing.
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Fig. 3. Predicted contour from frame (t−1) (a), distance map generated from Scanny
(b), matching between predicted contour and Scanny distance map (c), circular dis-
tance map used in matching (d), Scanny edge map and selected reference pixels(e)

Figure 3 shows a process of computing selected Scanny pixels, and the se-
lection result is presented in Figure 3(e). Selected Scanny pixels are denoted as
green pixels in Figure 3(e), along the predicted contour, while red pixels mean a
failure in finding a matching Scanny pixel. By using an image matching as used
by others[5], we can get a predicted contour, ∂Ω(p,t), as presented in Figure 3(a).
Then, we generate a distance map of Scanny, DSΦ(I,t), as in Figure 3(b).

Figure 3(c) shows an example of the best matching with the reference contour
pixel point (marked as red cross). The green contour denotes the predicted con-
tour, while black edge pixels denote Scanny edge pixels. Gray levels are shown
because of a distance map of Scanny edge map. Selected Scanny contour pixels
are the reference pixels to start building a segment of a tracked contour and are
stored in the selected Scanny found list.

6 Reference Contour Pixel Connection by LOD Pixel
Routing

From a set of adjacent selected Scanny edge pixels, reference pixels for routing,
we find segments of contours, called partial contour. In finding a partial contour,
we find the best route to follow Canny edge pixels favoring stronger Canny edge
pixels using Dijkstra’s minimum cost routing. We route a minimum cost path to
connect adjacent selected Scanny contour pixels in the selected Scanny found list
using LOD Canny edge pixels, LΦ(I,t). If we finish connecting every adjacent se-
lected Scanny contour pixel pairs, we get a set of partial contours. Figure 4 shows
a close up of a matching result between the predicted contour and the current
frame Scanny edge map. The green pixels were stored in the selected Scanny
found list. The group of computed partial contours will be the basic tracked sub-
ject contour for frame (t). We take a part of the LOD Canny edge map around
two adjacent selected Scanny contour pixels. Pixels of the LOD map become
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(a) (b)

Fig. 4. Close-up of selected Scanny pixels after matching between the predicted con-
tour and the current frame Scanny edge map (a), selected Scanny pixels as well as
accumulation from WcannyM+1 until WcannyN edge pixels (b)

nodes, and we determine costs between adjacent pixels. We assign the lowest cost
between two adjacent Scanny edge pixels to encourage Scanny-based routing.

To build a closed and complete contour for the current frame, we use Scanny
edge maps around the predicted contour as well as a set of partial contours
computed from selected Scanny edge pixels. The resulting contour becomes the
contour of the current frame.

7 Experimental Results

We have experimented with easily available video sequences either available on
the Internet or generated with a home camcorder, SONY DCR-PC3. We have
generated 64 different LOD Canny edge maps, ordered them according to the
number of Canny edge pixels, and union simplest 13 (top 20 percent) Canny edge
maps to make Scanny Canny edge map. It is not necessary to keep 64 different
levels. We may vary the percentage of Canny edge maps in determining a Scanny
edge map. Figure 5 shows a man walking in a subway hall. The hall tiles as well
as a cross stripe shirt generate many complicated Canny edges. The tracked
contour shape and color changes as the man with a cross stripe shirt rotates
from facing the front to the back as he comes closer to a camera and then moves
away from it. There are many edge pixels in the background and the subject
has many edges inside the tracked contour. There are other people moving in
different directions, in the background. To make tracking more difficult, the face
color of the tacked subject is similar to the hall wall color (Figure 5[c,e]) while
his shirt color is similar to that of stairs (Figure 5[i,j]), and tracked body black
hair is interfered with by a walking woman in Figure 5(f,g) and a man with a
black suit in Figure 5(k-r). Stair colors in Figure 5(j-s) are similar to the tracked
subject shirt color. Our tracked contour is bothered by these interferences, but
recovers as soon as we get Scanny edges for the interfered part. Even under this
complex circumstance, our boundary edge-based tracking was successful. 1

1 The input image sequence was provided by Taeyong Kim. Full tracking movies can
be downloaded from http://www.cs.hongik.ac.kr/∼jhpark
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(a) initial frame (b) frame 30 (c) frame 60 (d) frame 90

(e) frame 120 (f) frame 140 (g) frame 147 (h) frame 150

(i) frame 185 (j) frame 194 (k) frame 211 (l) frame 214

(m) frame 215 (n) frame 216 (o) frame 217 (p) frame 218

(q) frame 221 (r) frame 224 (s) frame 228 (t) frame 240

(u) frame 270 (v) frame 300 (w) frame 330 (x) frame 359

Fig. 5. Input frame with input contour(a), tracking results at frame 30 (b), at frame
60 (c), at frame 90 (d), at frame 120 (e), at frame 140, before occluding a woman (f),
at frame 147, after occlusion (g), at frame 150 (h), at frame 185, before occluding a
second woman (i), at frame 194, after occluding the second woman (j), at frame 211,
before occluding a man (k), at frames from 214 untill 228, after occluding the man
(l-s), and tracking contour recovered at frames from 240 untill 359 (t-x)
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8 Conclusion

In this paper, we proposed a method of improving accuracy in tracking a highly
textured subject. We start by selecting a boundary edge pixel from the simple
(strong) Canny edge map, referring to the most detailed edge map to get edge
information along the LOD Canny edge maps. Our basic tracking frame is deter-
mined from the strong Canny edge map, and the missing edges are filled by the
detailed Canny edges along the LOD hierarchy. In order to reduce side-effects
because of irrelevant edges, we modified Canny edge computation in the normal
direction of the previous contour. Even though detailed Canny edges are noisy,
our basic tracking frame is determined from the Scanny and is not disturbed by
noisy edges. This has an effect of Nguyen’s background noisy edge removal. In
Nguyen’s approach, a new contour is determined by mixing the current image
edge map with the previous contour. Another major contribution of our work
is not accumulating tracking errors. We minimize the possibility of accumulated
tracking errors by relying on pixel-routing the current Canny edge map only.
The problem with our approach is that we need edge information as every other
edge-based approach does. But, our tracking performance recovers whenever we
get edge information back. Our tracking condition is tougher to track By using
our novel method, our computation is not bothered by noisy edges resulting in
a robust tracking. Our experimental results show that our tracking approach
is reliable enough to handle a sudden change of the tracked subject shape in a
complex scene. 2
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Abstract. A new kind of rotation moment invariants suitable for recog-
nition of symmetric objects is presented. They are composed of complex
moments of the image and their invariance to rotation is achieved by
multiplicative phase cancellation. Unlike earlier moment invariants they
explicitly consider the degree of symmetry of the objects. Thanks to this,
they do not vanish on symmetric objects and are able to recognize them.

1 Introduction

During last forty years, moment invariants have become a classical tool for object
recognition and have found numerous applications [1], [2], [3], [4]. The latest
results on rotation moment invariants have been recently published by Flusser
[5], [6], who presented a general method how to derive independent and complete
sets of invariants of any orders. He proposed to construct the invariants from
complex moments of the image

cpq =
∫ ∞

−∞

∫ ∞

−∞
(x + iy)p(x− iy)qf(x, y)dxdy. (1)

Under rotation of the object by an angle α, each complex moment preserves its
magnitude while its phase is shifted by (p− q)α

c′pq = e−i(p−q)α · cpq. (2)

This property allows us to construct moment invariants by phase cancellation
achieved just by multiplying complex moments of appropriate orders and powers
(see [5] for details).

It was also shown that there exist relatively small complete and independent
basis by means of which all other rotation invariants can be expressed. Such a
basis B is defined as

(∀p, q|p ≥ q
∧

p + q ≤ r)(Φ(p, q) ≡ cpqc
p−q
q0p0

∈ B),

� This work has been supported by the grant No. 201/03/0675 of the Grant Agency
of the Czech Republic.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 9–16, 2005.
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where p0 and q0 are arbitrary indices such that p0 + q0 ≤ r, p0 − q0 = 1 and
cp0q0 �= 0 for all images involved (see [5], [6] for proof and further discussion).

However, this construction of the basis cannot be applied if the objects to be
described/recognized exhibit certain degree of symmetry because such nonzero
cp0q0 need not exist. If we still used it, most of the invariants would vanish.

This ”vanishing effect” is not restricted to the invariants introduced in [5].
As many authors have pointed out, it is a common problem of all systems of
moment invariants. For example, all odd-order moments of a centrosymmetric
object equal identically zero. If an object is circularly symmetric, all its complex
moments, whose indices are different, also vanish. Since moment invariants have
a form of products of moment powers, many of them became useless.

Let us imagine an illustrative example. We want to recognize three shapes–
square, cross, and circle – independently of their orientation. Because of sym-
metry, all complex moments of the 2nd and 3rd orders except c11 are zero.
If the shapes are appropriately scaled, c11 can be the same for all of them.
Consequently, neither the traditional Hu’s invariants nor the invariants con-
structed as described above provide any discrimination power, even if the shapes
are easy to recognize visually. Appropriate invariants in this case would be
c22, c40c04, c51c04, c33, c80c

2
04, c62c04, c44, etc.

The above simple example shows the necessity of having different systems of
invariants for objects with different types of symmetry. The question on how to
construct them has not been resolved yet. In this paper, we present a solution to
this problem for objects having so called N–fold rotation symmetry (N -FRS).
The proposed solution consists in a modification of the above theory about
invariant bases.

2 Invariants for Objects with N–Fold Rotation Symmetry

An object is said to have N -FRS if it repeats itself when it rotates around its
centroid by 2πj/N for all j = 1, · · · , N . Rotation symmetry (or, more precisely,
the number of folds) of the object determines the vanishing moments.
Lemma 1: If object f(x, y) has N–fold rotation symmetry, then all its complex
moments with non-integer (p− q)/N equal zero.
Proof: Let us rotate the object around its origin by 2π/N . Due to its symmetry,
the rotated object must be the same as the original. In particular, it must hold
c′pq = cpq for any p and q. On the other hand, it follows from eq. (2) that

c′pq = e−2πi(p−q)/N · cpq.

Since (p − q)/N is assumed not to be an integer, this equation can be fulfilled
only if cpq = 0. �	

Construction of (non-trivial) invariants for recognition of objects with N–fold
rotation symmetry is described in the following Theorem.
Theorem 1: Let us consider objects having N -FRS, N ≥ 1, and their complex
moments up to the order r ≥ 2. Let a set of rotation invariants BN be constructed
as follows:
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(∀p, q |p ≥ q
∧

p+q ≤ r
∧

k ≡ (p−q)/N is integer)(Φ(p, q) ≡ cpqc
k
q0p0

∈ BN),

where p0 and q0 are arbitrary indices such that p0 + q0 ≤ r, p0 − q0 = N , and
cp0q0 �= 0 for all images involved. Then BN is a basis of a set of all rotation
invariants for objects with N -FRS, created from the moments up to the order r.

Proof: The invariance of all Φ(p, q)’s with respect to rotation follows directly
from eq. (2). The independence of BN is a consequence of mutual independence
of the complex moments themselves. To prove the completeness of BN , it is
sufficient to show that all complex moments up to the order r can be recovered
when knowing the elements of BN . The proof of this so-called symmetric inverse
problem is similar to the proof of the general inverse problem published in [6].
The only difference is that only the moments with integer-valued (p− q)/N are
recovered. The other complex moments are zero. �	

Let us consider some particular values of N . For N = 1, which means no
rotation symmetry, Theorem 1 is reduced exactly to the general case described
in [5]. An important case is when N = 2, which includes all centrosymmetric
objects. Then only even-order invariants exist. Another special case is N = ∞,
which characterizes objects having circular symmetry f(x, y) = f(

√
x2 + y2).

Then the only existing nontrivial invariants are Φ(p, p) ≡ cpp.
Theorem 1 has several interesting consequences. Some of them are summa-

rized in the following Lemma.

Lemma 2: Let us denote all rotation invariants which can be expressed by
means of elements of basis B as 〈B〉. Then it holds for any order r

1. If M and N are finite and L is their least common multiple, then

〈BM 〉 ∩ 〈BN〉 = 〈BL〉.

In particular, if M/N is integer then 〈BM 〉 ⊂ 〈BN 〉.
2.

∞⋂
N=1

〈BN 〉 = 〈B∞〉.

3. The number of elements of BN is

|BN | =
n∑

j=0

[
r − jN + 2

2

]
,

where n = [r/N ] and symbol [a] means integer part of a. Particularly,

|B∞| =
[
r + 2

2

]
.
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3 Recognition of Symmetric Objects

In practical pattern recognition experiments, the number of folds N may not be
known beforehand. In that case we can apply a fold detector (see [7], [8], and [9]
for algorithms detecting the number of folds) to all elements of the training set
before we choose an appropriate system of moment invariants. However, different
shape classes may have different numbers of folds. As can be seen from Lemma
2, we cannot simply choose one of the numbers of folds detected (although one
could intuitively expect the highest number of folds to be a good choice, it is
not that case). Instead, the least common multiple of all finite fold numbers
should be taken as the appropriate N for constructing invariant basis according
to Theorem 1.

4 Experiments on Artificial Data

In order to illustrate how important is a careful choice of the invariants in partic-
ular pattern recognition tasks, we carried out the following experimental study.

In the first experiment we used nine simple binary patterns with various
numbers of folds: capitals F and L (N = 1), rectangle and diamond (N = 2),
equilateral triangle and tripod (N = 3), cross (N = 4), and circle and ring
(N = ∞) (see Fig. 1). Each pattern was ten times rotated by ten random angles.

First, we applied general rotation invariants [5], which are in fact equivalent
to the invariants from Theorem 1 when choosing p0 = 2 and q0 = 1. The positions
of our test patterns in the feature space are plotted in Fig. 3. Although only a
2-D subspace showing the invariants c21c12 and Re(c20c212) is visualized here, we
can easily observe that the patterns form one dense cluster around the origin (the
only exception is the tripod, which is slightly biased because of its non-symmetry
caused by quantization effect). Two non-symmetric objects – the letters F and
L – are far from the origin, out of the displayed area. The only source of non-
zero variance of the cluster are spatial quantization errors. All other invariants
of the form cpqc

p−q
12 behave in the same way. Thus, according to our theoretical

expectation, we cannot discriminate among symmetric objects (even if they are
very different) by means of the general invariants.

Secondly, we employed the invariants introduced in Theorem 1 choosing
N = 4 (the highest finite number of folds among the test objects), p0 = 4,
and q0 = 0 to resolve the above recognition experiment. The situation in the
feature space looks different from the previous case (see the plot of two sim-
plest invariants c40c04 and Re(c51c04) in Fig. 4). Five test patterns formed their
own very compact clusters which are well separated from each other. However,
the patterns circle, ring, triangle, and tripod still made a mixed cluster around
the origin and remained non-separable. This is also fully in accordance with the
theory, because the number of folds used here is not optimal for our test set.

Finally, we repeated this experiment again with invariants according to The-
orem 1 but selecting N correctly as the least common multiple of all finite fold
numbers involved, i.e. N = 12. One can learn from Fig. 5 that now all clusters
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Fig. 1. Test patterns: capital L, rectangle, equilateral triangle, circle, capital F, dia-
mond, tripod, cross, and ring

Fig. 2. The test trademarks (from left to right): Mercedes-Benz, Mitsubishi, Recycling,
Fischer, and Woolen Stuff

are well separated (because of high dynamic range, logarithmic scale was used
for visualization purposes). The only exception are two patterns having circular
symmetry – the circle and the ring – that still made a mixed cluster. If we wanted
to separate also these two patterns from one another, we could use the invariants
cpp. On the other hand, using only these invariants for the whole experiment is
not a good choice from the practical point of view – since there is only one such
invariant for each order, we would be pushed into using high-order noise-sensitive
moments and, moreover, cpp’s may not provide enough discrimination power for
the other objects.

In the second experiment, we tested the capability of recognizing objects
having the same number of folds, particularly N = 3. As a test set we took
three trademarks of major companies (Mercedes-Benz, Mitsubishi and Fischer)
downloaded from the respective web-sites, and two commonly used symbols (”re-
cycling” and ”woolen stuff”). We decided to use trademarks as the test objects
because most trademarks have certain degree of symmetry and all commercial
trademark recognition systems face the problem of symmetry. A comprehensive
case study on trademark recognition and retrieval [10] used the Hu’s moment
invariants as a pre-selector; here we show that Theorem 1 yields more discrimi-
native features.
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N = 4. The symbols: × rectangle, ♦ di-
amond, � equilateral triangle, ∇ tripod,
+ cross, • circle, ◦ ring, ∗ capital F and,
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Fig. 6. Moire strips and landmarks for
scoliosis measurement. The landmark cen-
ters were detected by means of moment
invariants.
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2
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crimination power with respect to this
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Fig. 8. The trademark positions in the
space of two invariants c30c03 and
Re(c41c03) showing good discrimination
power. The symbols: �	 Mercedes-Benz, ♦
Mitsubishi, � Recycling, ∗ Fischer, and ◦
Woolen Stuff.

As can be seen in Fig. 2, all our test marks have three-fold rotation symme-
try. Each mark was ten times rotated by randomly generated angles. Moment
invariants from Theorem 1 (N = 3, p0 = 3, and q0 = 0) provide an excellent
discrimination power even if we take only two simplest of them (see Fig. 7), while
the general invariants are not able to distinguish the marks at all (see Fig. 8).

4.1 Real Data Experiment

A practical example of application of Theorem 1 in medical imaging is shown
in Fig. 6. The goal of this medical project was to measure and to evaluate the
changes of the women’s back and spine arising from pregnancy (see [11] for the
details of this study). All measurements were non-invasive using Moire contour-
graphs and specific landmarks attached to the body. This technique allows a 3-D
measurement from a sequence of 2-D images.

One of the tasks was to measure the progress of scoliosis. In order to do so,
circular black landmarks were glued on the women’s back. A template matching
algorithm was used for automatic localization of the landmark centers. In each
possible position, the values of four moment invariants of even orders were cal-
culated and correlated with the moment invariants of the template. Correlation
peaks indicated the matching positions. As one can see in Fig. 6, this method
yielded accurate localization of all landmarks and produced no false matches (the
crosses denote identified landmark centers). It should be noted that the Hu’s in-
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variants failed sometimes because they were not able to distinguish between the
landmarks and parts of Moire strips.

5 Conclusion

In this paper, moment invariants suitable for recognizing symmetric objects were
proposed. Since most traditional moment invariants vanish on symmetric objects,
this problem requires special treatment and has not been appropriately resolved
before. Our solution to this problem for objects havingN–fold rotation symmetry
is given in Theorem 1, where the construction of the invariant basis is described.
The new moment invariants explicitly consider the degree of symmetry of the
objects. Thanks to this, they are able to recognize both symmetric and non-
symmetric objects.
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A Linear Algorithm for Polygonal Approximations
of Thick Curves�

Trung Nguyen

Ecole Normale Superieure, 45 rue d’Ulm, 75005 Paris, France

Abstract. The concept of fuzzy segment was introduced in [2]. In this paper
we suggest a notion of strict fuzzy segment and provide a linear algorithm for
recognizing it thanks to a simple property of convex hull. A linear method to
decompose a thick curve into strict fuzzy segments is also given. The quality
of decomposition can be easily controlled by setting two threshold values: the
maximum order and the minimum density of the fuzzy segments. The algorithm
is fast, practical and multi-purpose.

1 Introduction

Polygonal approximation of curves is an important task in contour analysis, shape
recognition, digital cartography, and data compression. The problem can be informally
stated as follows: given a digitized curve of N ≥ 2 ordered vertices1, find M dominant
vertices among them that define a sequence of segments which most closely resem-
ble the original curve. A great deal of algorithms to resolve this problem have been
proposed for over forty years. Most of them base on one of two approaches: dynamic
programming and heuristics.

One of the best known algorithms using dynamic programming was presented by
Perez and Vidal [6]. They suggested the sum of the squared Euclidean distance as the
global error criterion. The drawback of this algorithm is that its implementation requires
O(MN2) time and O(MN) space. Salotti [8] improved this algorithm so that the com-
plexity is close to O(N2) by inserting the lower bound and employing the A* search
algorithm instead of the dynamic programming one. Keeping the same ideas of Perez
and Vidal, Kolesnikov and Fränti [4] introduced a bounding corridor and iterated dy-
namic programming within it. The complexity has been significantly reduced ranging
from O(N) to O(N2) but the solution does not remain optimal.

While dynamic programming tries to give relatively optimal results, many algo-
rithms using the heuristic approach are more favorable in real-time applications thanks
to their rapidity. Relying on the Diophantine definition of discrete straight line and its
arithmetical characteristics in [7], Debled-Rennesson and Reveillès [1] gave a linear
method for segmentation of curves into exact discrete lines. Their idea is to grow a
segment incrementally as much as possible and the vertex that cannot be added to the

� This work is partially supported by the Geometrica project, INRIA Sophia Antipolis, France.
Any opinions, findings, or conclusions expressed in this paper are those of the author and do
not necessarily reflect the views of the Geometrica.

1 The terms vertex and point will be used interchangeably through this paper.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 17–25, 2005.
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segment will be the beginning one of the next segment. This algorithm is distinguished
from the others by its lossless data compression: the original curve can be reconstructed
exactly from only the set of output segments and its first point. The number of segments
unfortunately being large in particularly for irregular curves makes the algorithm less
practical. In a slightly similar approach, Debled-Rennesson et al. [2] introduced the
concept of fuzzy segment and provided a linear algorithm for decomposition of dis-
crete curves into fuzzy segments. The algorithm is fast but not effective when applied
to spiral curves.

To the best of our knowledge, none of the algorithms of either approach reported
in the literature have formally resolved the problem of approximation of thick curves
as done in this paper. In many areas such as cartography or object recognition, we are
interested in detecting the shape of roads, rivers, fingerprints, the jet of wind, etc. whose
width is variable and considerable in comparison with their length. Obviously, one can
simplify them to thin curves and then apply to them any available algorithm but we are
likely to lose a valuable characteristic of curves. Another idea is to find the upper and
lower borders of the object and do the approximation on them separately. The shape of
the contour is however difficult to analyze. Moreover, no one can assure that the pairs
of corresponding segments of the two borders are parallel – an important condition in
cartography. In this paper, we extend the concept of fuzzy segment defined in [2] and
provide a linear method to detect strict fuzzy segments. The idea we base on is a simple
property of convex hull. Further, we present a fast algorithm to decompose a thick curve
into thick fuzzy segments. We introduce the density parameter of fuzzy segments which,
associated with the order parameter defined in [2], makes the quality of approximation
better.

2 Discrete Lines and Strict Fuzzy Segments

Many applications in Computer Vision are based on discrete points in Z2. The integer
set is however not strong enough even for the most basic properties in geometry, e.g.
two non parallel discrete lines may intersect at no point or at an infinite number of
points. In this paper, we base on the arithmetical definition of discrete line [7] on which
many basic operators like translation, rotation, symmetry, calculation of distance from
a point can be done in constant time. A great interest of this framework is that one may
visit all points of a line in only linear time.

Definition 1. [7] A discrete line, noted D(a, b, μ, ω), is the set of integer points (x, y)
verifying the inequalities μ ≤ ax− by < μ + ω where a, b, μ, ω are integers. The real
value a

b with b �= 0 and gcd(a, b) = 1 is the slope of the discrete line, μ is named lower
bound and ω arithmetical thickness.

We call D the naive line if the thickness ω verifies ω = max(|a|, |b|). D is the thick line
if ω ≥ |a| + |b|.

Definition 2. [2] Real straight lines ax− by = μ and ax− by = μ+ω−1 are named
the leaning lines of the discrete line D(a, b, μ, ω). An integer point of these lines is
named a leaning point (see Fig. 1).
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Fig. 1. A segment of the discrete line
D(7, 12, 6, 40) whose equation is 6 ≤ 7x −
12y < 46, for x ∈ [−3, 20]. In grey are the
leaning points.

x

y

Fig. 2. The points in squares constitute a strict
fuzzy segment with order d = 52

15
, bound-

ing line D(4,−15,−22, 52) and density ϕ ≈
78%

We can now state our definitions about strict fuzzy segments which may be independent
with those of fuzzy segments in [2].

Definition 3. A nonempty set Sf of consecutive points of an object is a strict fuzzy
segment with order d if:

1. There is a discrete line D(a, b, μ, ω) such that all points of Sf belong to D and
d = ω

max(|a|,|b|)
2. If there exits a discrete line D′(a′, b′, μ′, ω′) containing all points of Sf , then

ω′
max(|a′|,|b′|) ≥ d.

The line D is said bounding for Sf .

Definition 4. Let Sf be a strict fuzzy segment whose order is d, and whose abscissa
interval is [0, l - 1], the density ϕ of strict fuzzy segment Sf is the quotient ϕ = n

ld ,
where n is the number of points of Sf (see Fig. 2).

Lemma 1. A set of points Sf is a strict fuzzy segment with bounding D(a, b, μ, ω) only
if D possesses at least three leaning points. Among them, at least one is upper leaning
point and one is lower leaning point.

Corollary 1. Given a set of points Sf and its upper and lower hull, Sf is a strict fuzzy
segment with boundingD if D has on its leaning lines at least two consecutive points of
one hull and at least one point of the other hull. Moreover, this point is the farthest point
(i.e. the Euclidean distance is maximal) from the leaning line through the two points.

3 Strict Fuzzy Segment Recognition

From Corollary 1, the problem of detecting a strict fuzzy segment for an object is re-
duced to the problem of scanning triples of points, two consecutive points of the upper
(resp. lower) envelope and one of the other envelope. We adopt the Rotating Caliper
Algorithm [3] to calculate the order of the segment. Although width of a set, which is
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defined as the minimum distance between the parallel lines of its support, is generally
not order of the segment since the latter depends on slope of segment, the idea of Ro-
tating Caliper Algorithm works well. Indeed, at each rotating caliper where the slope of
segment is fixed, the point of minimum distance to the parallel line has also the smallest
order. An algorithm for recognizing strict fuzzy segment is described as below.

Algorithm STRICT FUZZY SEGMENT RECOGNITION

order ← ∞, F ← topL
CONSTRUCT CONVEX HULL

� Rotating calipers on the upper envelope
for i ← 0 to topU − 1 do

maxLocal ← DISTANCE(Low[F ], Upp[i], Upp[i+ 1])
d ← DISTANCE(Low[F − 1], Upp[i], Upp[i+ 1])
while maxLocal < d and F > 0 do

maxLocal ← d
F ← F − 1
d ← DISTANCE(Low[F − 1], Upp[i], Upp[i+ 1])

if order > maxLocal then
order ← maxLocal
a ← Upp[i + 1].y − Upp[i].y
b ← Upp[i + 1].x− Upp[i].x
μ ← a× Upp[i].x− b× Upp[i].y
ω ← a× Low[F ].x− b× Low[F ].y − μ + 1
l ← Upp[topU ].x− Upp[0].x+ 1
density = n

l×order

� Rotating calipers on the lower envelope
(same as the above with Upp and Low exchanged)
return D(a, b, μ, ω), order and density

For the construction of convex hull, we can employ any algorithm which computes
it correctly. In this paper, we recommend the algorithm of Melkman [5] for its simple
implementation. The construction takes O(n) time when the points of object are in
order and O(n logn) times when applied to the general case. In order that our paper
is self-contained, the pseudo-code of Melkman algorithm is given below with a minor
modification that we make use of two stacks to store the upper and lower envelope
separately instead of one deque in the author’s paper. The function DISTANCE takes
three vertices as arguments and returns the distance from the first vertex to the line
passing through two last ones. The function ISLEFT in the Melkman algorithm below
feeds the same arguments but returns the predicate whether the first point is strictly on
the left of the line taking into account its direction.

Correctness. The correctness of our algorithm comes from Corollary 1 and Rotating
Caliper Algorithm.
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Algorithm MELKMAN’S CONVEX HULL CONSTRUCTION

for each M ∈ Sf do
if not (ISLEFT(M,Low[topL− 1], Low[topL])

and ISLEFT(M,Upp[topU ], Upp[topU − 1])) then
� Get the rightmost tangent on the upper convex
while not ISLEFT(M,Upp[topU ], Upp[topU − 1]) do topU ← topU − 1
topU ← topU + 1
Upp[topU ] ← M
� Get the rightmost tangent on the lower convex
while not ISLEFT(M,Low[topL− 1], Low[topL]) do topL ← topL− 1
topL ← topL + 1
Low[topL] ← M

return Upp and Low

Complexity. The main for loop will run topU times which is smaller than N . The
assignment operations, the if condition and the functions ISLEFT and DISTANCE can
be computed in constant time. After each iteration of the while loop, the value of F
is decreased by one. The number of passes through this loop is therefore smaller than
topL in total. For the case where all of the points are ordered, Melkman’s construction
works in linear time. Hence, the complexity of our algorithm is O(N) time, where N is
the number of vertices. In the implementation, we use two arrays Upp and Low of size
N for storing the coordinates of the convex hull. Thus, the total memory requirement
of the algorithm is proportional to 2N , which is linear.

Remark. Rotating Caliper Theorem applies for the computational geometry where the
distance is in the Euclidean space. In the discrete geometry, the distance of a point
(x0, y0) to the discrete line D(a, b, μ, ω) is alternatively defined in [1] as ax0−by0−μ.
This number is only the result of multiplying the distance in the Euclidean space above
by (a2 + b2). In Algorithm STRICT FUZZY SEGMENT RECOGNITION, we fix the line
passing through a couple of convex points, i.e. the value of a and b are unchanged, when
compare the distances. Therefore, our algorithm works in the discrete geometry as well.
Moreover, it also allows to deal with the sets of disconnected points that do occur in the
real-world problems.

4 Strict Fuzzy Segmentation

In this section, we present a technique for approximating an object into strict fuzzy seg-
ments. We introduce two thresholds, the maximum order and the minimum density, for
all decomposed segments. Increasing the maximum permitted order makes the number
of segments reduce but it also decreases the quality of segmentation. This trade-off can
be under control by setting the appropriate value for the minimum density threshold.
Our idea of segmentation is then very simple: try to prolong the current segment as
much as possible until it violates the given thresholds. This idea can be best imple-
mented with the dichotomy algorithm. Fixing the first point of the object of N vertices,
we wish to look for the last possible point that the points between them constitute a
strict fuzzy segment. This segment must satisfy our thresholds and have the possibly
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maximal order. Firstly, the algorithm STRICT FUZZY SEGMENT RECOGNITION is ap-
plied for the whole object. If it returns the positive answer, we are done; otherwise, the
algorithm will check for the first half set [0, �N/2�]2 If again this subset is not a satisfy-
ing segment, we try for a smaller set [0, �N/4�]; if not, we extend the set to [0, �3N/4�].
After each step, we divide the interval by two and maintain the segment which satisfies
simultaneously the two thresholds and has the maximum order by far. Continue halving
the search interval in this way until the order of the segment reaches the threshold or
the interval is a unit. In the former case, we report the current segment as result; in the
latter case, the output segment is the one that we have recorded before. We repeat this
procedure again and the ending point of the current segment will start the next segment.

In the algorithm below, the variables first and last indicate the expected first and
last points of the current segment, maxOrder and minDensity are two given thresh-
olds. The function EXTRACT MONOTONE SET takes the argument first and returns
the maximal value of last such that the set of points [first, last] is horizontally or ver-
tically monotone. The function STRICT FUZZY SEGMENT RECOGNITION described in
the previous section returns the characteristics of the strict fuzzy segment for the subset
[first, last] of the object O.

Algorithm STRICT FUZZY SEGMENTATION

Segs ← ∅, first ← 0
while first < N do

last ← EXTRACT MONOTONE SET(O, f irst)
interval ← last− first
curOrder ← 0
while interval > 0 and curOrder �= minOrder do

STRICT FUZZY SEGMENT RECOGNITION(O, f irst, last)
if curOrder < order ≤ maxOrder and density ≤ minDensity then

curOrder ← order
curD ← D(a, b, μ, ω)
split ← last

interval ← �interval/2�
if order < minOrder then last ← last+ interval
else if order > minOrder then last ← last− interval

Segs ← Segs ∪ {curD}
first ← split

return Segs

Correctness. The dichotomy algorithm works well when the orders of segments are
sorted, that is verified by the following lemma. The algorithm of segmentation always
terminates and returns the correct answer since the unit set of two vertices defines an
ideal fuzzy segment whose order is 0 and density is 1.

2 To simplify the writing, we note [a, b](a ≤ b) the subset of points from the point numbered a
to the point numbered b according to their orders in the set Sf .
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Lemma 2. Let A and B be two nonempty sets of points and A ⊆ B. Suppose that A
and B are strict fuzzy segments with orders dA and dB respectively, then dA ≤ dB .

Complexity. Let us show that the algorithm STRICT FUZZY SEGMENTATION decom-
poses an object O into a set of strict fuzzy segments in linear time. The trick lies in
the implementation of two functions EXTRACT MONOTONE SET and STRICT FUZZY

SEGMENT RECOGNITION.
For the first function, we make use of four variables for each point P of O. These

variables store respectively the maximal lengths that vertically decreased, horizontally
decreased, vertically increased and horizontally increased sets starting from P may
have. They can be backwards determined in linear time at the initialization of the algo-
rithm. The function EXTRACT MONOTONE SET is only a simple calculation on them,
therefore not costly.

For the second function, we make a minor modification to the construction of con-
vex hull thanks to the online property in Melkman algorithm. Instead of computing the
new stacks Upp and Low from the first point for each halving of interval, we try to
reuse them as much as possible. For the first case where last ← last + interval, we
keep the old stacks and store them in memory. The construction may be continued at
the point in last + 1. The reason to store these stacks in memory is that all expected
last points in the following steps are on the right of the current last point last; so we
may reuse them further. For the other case where last is decreased by interval, we
restore the stacks from memory that we last saved. A simple deduction can show that
these stacks in fact stored the subsets [first, last − 2 × interval]. The construction
thus may continue from the top point on these stacks. In either case, the number of
points needed to be calculated is smaller than interval. The function STRICT FUZZY

SEGMENT RECOGNITION therefore takes no more than O(N) time in total. Hence, the
complexity of our algorithm is linear. In addition to the memory required by the func-
tion STRICT FUZZY SEGMENT RECOGNITION, we only use two stacks of size N for
memorizing. Thus the space complexity is O(N) as well.

Approximation of thick curves into thick segments. Our algorithm may also be per-
formed to decompose thick curves into thick segments. The output segments vary in
thickness. Figure 3 illustrate the results of decomposition when we apply the algorithm
STRICT FUZZY SEGMENTATION to a digitized route of 55705 vertices with different
values of the maximum order and the minimum density. In our examples, the algo-
rithm produces 9 and 12 segments respectively. Thus the compression ratio is about
3–5 × 10−3%, given a segment takes two times as much space in memory as a point
does. Along with the fact that one may visit all points of a line in linear time, we have
constructed a model of compression/decompression in linear time.

Choice of parameters. The maximum order should not be smaller than the largest
thickness of the curve, otherwise no solution will be found. Increasing the value of
maxOrder allows to minimize the number of detected segments. In return, it also re-
duces the quality of segmentation in the sense that many points of the segments do
not belong to the object. We call them the false points. The parameter minDensity
therefore is added to restrict the ratio of false points in each detected segment. The ex-
perimental evaluations show that the choice of this parameter does not affect the running
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Fig. 3. Results of polygonal approximation of a thick curve of 55708 points. LEFT: max order =
65, min density = 0.4, � M = 9. RIGHT: max order = 60, min density = 0.7 � M = 12.

Fig. 4. Results of polygonal approximation of a thick curve on a snake. LEFT: max order = 60,
min density = 0.6, � M = 14. RIGHT: max order = 75, min density = 0.4 � M = 10.
Photo Eastern Garter Snake courtesy of John White and CalPhotos.

Fig. 5. Results of polygonal approximation of thin curves
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time. Maintaining a high value of minimum density can lead to a high quality segmen-
tation but a large number of segments will be reported. Too small values of minimum
density may change the geometrical structures of output segments (compare in Fig. 4).
When the minimum density is set to 0, all fuzzy segments are strict, thus the number
of segments is minimal (min-# problem). On the other hand, when minOrder = 1, no
false point is allowed and the output retains only exact segments. In this case, the algo-
rithm has the same property of lossless data compression as [1]. At last, the algorithm
may apply for thin curves which is shown in Fig. 5.

5 Conclusion

We have presented a linear algorithm of strict fuzzy segmentation using a simple prop-
erty of convex hull. The trade-off between the number of segments and the quality of
segmentation can be regulated by the selection of the maximum order and the mini-
mum density. Our algorithm is multi-purpose: it can be used to decompose a thick or
thin curve into strict fuzzy segments or exact segments. It works in both geometries,
computational and discrete. The points may be connected or not making our algorithm
more practical. This work opens many perspectives for studying polygonal approxima-
tion of noisy thick curves in 3D space.
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Abstract. Many problems in image representation and classification involve 
some form of dimensionality reduction. Non-negative matrix factorization (NMF) 
is a recently proposed unsupervised procedure for learning spatially localized, 
parts-based subspace representation of objects. Here we present an improvement 
of the classical NMF by combining with Log-Gabor wavelets to enhance its 
part-based learning ability. In addition, we compare the new method with 
principal component analysis (PCA) and locally linear embedding (LLE) 
proposed recently in Science. Finally, we apply the new method to several real 
world datasets and achieve good performance in representation and classification. 

1   Introduction 

Recently, a new approach called non-negative matrix factorization (NMF), is proposed 
by Lee and Seung [6]. The new one demonstrates how to obtaining a reduced 
representation of global data in an unsupervised way. Non-negative matrix 
factorization is different from other methods by adding its non-negative constraints. 
When applied to image analysis and representation, the obtained NMF basis are 
localized features that correspond with intuitive notions of the parts of the images. It is 
supported by psychological and physiological evidence that perception of the whole is 
based on parts-based representations. And many recent learning strategies focus on the 
fact that an object can be divided into distinguished parts and only a subset of them are 
necessary for identification.  

In this paper, we combine NMF with Log-Gabor wavelets to improve the 
performance of learning parts of images of the classical NMF. And then we compare the 
new method with PCA and LLE. Finally, we apply the new method to several real world 
datasets to verify its good performance in image representation and classification. 

2   NMF vs. PCA and LLE Techniques 

2.1   Non-negative Matrix Factorization 

Non-negative matrix factorization (NMF), proposed recently by Lee and Sueng, is an 
outstanding method for obtaining a reduced representation of global data. When 
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applied to images analysis, the obtained NMF basis are localized features that 
correspond with intuitive notions of the parts of images.  

The goal of NMF is to find two new matrices W  and H  to approximate the whole 
database V  as 

1
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and all elements in W  and H  are non-negative. 

2.2   Performance Comparison of NMF with PCA and LLE  

To illustrate the performance of data representation and dimensionality reduction by 
NMF, PCA and LLE vividly, we applied these methods to a manifold in 3D space.  
Fig 1 shows the original data and the results by enforcing those three methods. After 
mapping the manifold to 2D space, the properties of these methods give rise to deep 
visual impression on us.  

The result (c) in Fig 1, discovered by LLE, demonstrates its neighbor relationship 
preserving property. Just imagine that using a scissors to cut the manifold into small 
squares that represent  

Locally linear patches of the nonlinear scroll-shape surface, and then put these 
squares onto a flat tabletop while preserving the angular relationship between 
neighboring squares. But if the data points in the original space are sparse enough, LLE 
leads to bad performance.  

As shown in Fig 1, PCA demonstrates the maximum projection of the original data in 
lower dimensional space. It is an optimal representation of the original space. In other 
words, PCA is the optimal method for dimensionality reduction in the sense of 
mean-square error. 

While the result (e) in Fig 1, discovered by NMF, is a compromise between PCA and 
LLE to some sense. It preserves the neighbor relationship and also gives a good 
representation of the original data in some way.  
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(a) a manifold in 3D space                (b) sampled from (a) 

 

(c) discovered by LLE          (d) discovered by PCA        (e) discovered by NMF 

Fig. 1. Mapping a manifold in 3D space to 2D space by LLE, PCA and NMF respectively. The 
results are shown in (c)(d)(e). 

 

Fig. 2. Some English letters (left) and its basis images discovered by NMF with 25r =  

After comparison with other methods, NMF is applied to real world datasets such as 
characters and human ears to demonstrate its parts-based learning ability. The results 
are shown in Fig 2. 
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Fig. 3. Images of 30 human ears (left) and its basis images discovered by NMF with 25r =  

3   LogGabor Wavelets for Image Representation 

Here we choose Log-Gabor wavelets because they have no DC response and a better 
response to high frequency details [10]. The transfer function of Log-Gabor in 
frequency domain is 

2
0

2
0

(log( / ))

2(log( / ))( )g e
ω ω
β ωω

−

=  
(4) 

where ω is frequency, and 0ω is the tuning frequency of the filter. β controls the spread 
of the filter. Fig 4 shows the result of Log-Gabor filter convolving with a face image at 
five scale and 8 spread. The first block image of (a) in Fig 4 is the original image. 

 

(a)                                             (b) 

Fig. 4. Log-Gabor representation of a face image. (a) real part of the representation and (b) the 
magnitude of the representation. 

4   NMF with Log-Gabor Wavelets for Representation 

As mentioned in section 1, NMF takes a longer time to give a desirable result. And for 
images contained complicated structure, such as face images, the basis images 
discovered by NMF are not wholly part-based perception. Fig 5 shows the basis images 
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learned by NMF without and with Log-Gabor wavelets. Here, the face image is the 
same as in Fig 4. When combined with Log-Gabor wavelets, NMF yields powerful 
performance in learning parts of the images. It is attributed to the non-negative 
constraints of NMF on the one hand, and the preprocessing the images by Log-Gabor 
wavelets on the other hand.  

 

(a)                                         (b) 

Fig. 5. Basis images learned by NMF (a) without Log-Gabor (b) with Log-Gabor 9r =  

 

(a)                                        (c) 

 
(b) (d) 

Fig. 6. Comparison of NMF without and with Log-Gabor, PCA eigenfaces. (a) parts of ORL 
database (b) basis images learned by NMF only (c) PCA eigenfaces (d) basis images learned by 
NMF with log-Gabor wavelets. 
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Next, NMF is applied to ORL face database combined with Log-Gabor wavelets. In 
addition, PCA is also applied to the face database to have a comparison with NMF.  
Fig 6 shows the results. 

The experiments related to NMF (b) (d) in Fig 6 choose 49r = . Higher pixel values 
are in darker color in (d) in order to make it clearer. This is different from the other 
three. The basis images of learned by NMF only are as holistic as the PCA basis 
(eigenfaces) for the training set (a) in Fig 6. It is noticed that the result demonstrated in 
[6] does not appear so probably because the faces used for producing that result are well 
aligned and processed. The new method, NMF combined with Log-Gabor wavelets, 
learns basis components which not only lead to non-subtractive representations, but 
also yields truly localized features and parts-based representations. Also, the features 
formed in basis components discovered by the new method become more localized as 
the r increases. 

5   Conclusions 

We have introduced a new method, original NMF with Log-Gabor wavelets, for image 
representation and visualization. The new method improves the classical NMF in terms 
of part-based learning ability largely because of a sparse and informative representation 
given by Log-Gabor wavelets. It gives a meaningful perceptional representation in 
image analysis and a high recognition performance in image classification. When 
compared with other methods such as linear PCA and nonlinear LLE, the new method 
shows robustness to variations in illumination, occlusion and facial expression.  

Our next goal is to further improve the performance of NMF such as accelerating the 
convergence time, learning the basis r  by machine and learning more informative 
local features. 
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Abstract. In this paper, we propose a new method to capture user’s
focused iris image at fast speed based on the corneal specular reflection
and the human eye model. Experimental results show that the focused
iris image acquisition time for the users with and without glasses is 450
ms on average and our method can be used for a real-time iris recognition
camera.

1 Introduction

For iris recognition, it is required to capture a magnified iris image to process
fine iris textures [1][5]. Consequently, it is reported that the DOF(Depth of
Field: the Z distance range in which focused iris images can be captured) of
iris camera is very small and it is very difficult to capture user’s focused iris
image at fast speed. Slow focusing can cause the increase of the total recognition
time and the severe inconvenience to user. In previous researches and systems
[2-4][8-15], they use the focusing method which has been used for general scene
(landscape or photographic scenes) without considering the characteristics of
iris image. However, their method can generate the erroneous focusing value
in case of iris image. Especially, in case of users with glasses, even if the lens
is positioned for focusing the glass surface or the glass frame, the scratch on
the glass surface or the glass frame may make their focusing value the greatest.
However, the conventional distance between glasses and iris is more than 1 cm
and the input iris image remains blurred consequently unless the focus lens does
not move. Due to those problems, the research [16] uses the method of checking
the pixel difference in the region of corneal specular reflection. However, they
use only one illuminator for checking focus value and iris recognition. In such a
case, the focus checking is impossible when the large specular reflection which
happens on the surface of glasses hides that on a cornea. In addition, in case
that many specular reflections happen from the scratch on the glass surface, it
is very difficult to detect the genuine specular reflection on a cornea by that
method [16]. To overcome such problems, we propose a new method to capture
user’s focused iris image at fast speed based on the corneal specular reflection
and the human eye model.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 33–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 A Fast Iris Image Acquisition Method

2.1 Auto Zooming and Focusing Based on Corneal Specular
Reflection

Due to the limitation of increasing the DOF(Depth of Field) with the sin-
gle(fixed) focal camera, we use the variable focal camera for iris recognition
and propose auto focusing algorithm. For focusing algorithm, we use the corneal
specular reflection(SR) generated by IR-LED illuminator. In case that the Z po-
sition of user’s eye is within the DOF, the size of SR can be minimized. On the
other hand, in case that the Z position of user’s eye is farther than DOF from
camera, the size of SR can be increased and dark gray pixels exist in the edge
of SR. And in case that the Z position of user’s eye is nearer than DOF from
camera, the size of SR can be also increased and dark gray pixels exist in the
center of SR. Based on that information, we can determine the lens direction in
case of defocusing. After determining the lens direction, the lens movement step
should be also determined. Our experiments show that we can determine the
amount of lens movement step based on the detected diameter of SR in image.
Because our iris camera uses zoom lens, the captured iris diameter in image is
maintained almost same size and the change of SR size in image is only caused
by the optical defocusing(blurring). So, we can get the experimental relationship
between the zoom(focus) lens position and the diameter of detected SR in im-
age. According to our experiments (on 350 persons), such relationship proves to
be almost identical to all the users and we can regard it as a standard relation
generalized for all the user.

2.2 Lens Position Compensation Considering Human Eye Structure

In general, a human iris is positioned inside the cornea and the aqueous humor
as shown in Fig. 1(a) [18]. The cornea and aqueous humor which surround iris
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Fig. 1. A human eye structure and an equivalent eye model for obtaining the projected

image of iris
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and pupil act as a convex lens. As a result, the location and the size of the
”projected image(PQ) of genuine iris ” are different from those of the ”genuine
iris(P’Q’)”. In other words, when we see someone’s iris of the eye, we see the
refracted image(PQ) of the genuine iris(P’Q’). From that, we can see there exists
some distance gap(L) between the position of corneal surface(on which specular
reflection happens) and that of the projected iris image(PQ). As explained in
section 2.1, we perform auto zooming(focusing) in the direction of making the
size of detected SR in image smallest and it means our algorithm is operated by
focusing the corneal specular reflection in other words. So, we should compensate
the distance gap (L) because the projected iris(PQ) is positioned behind the
cornea with the distance gap (L). Now, we explain the method of calculating the
distance gap (L) based on a human eye structure and an equivalent eye model as
shown in Fig. 1. According to the Gullstrand’s eye model [19], the refractive index
of cornea and aqueous humor is 1.336(n’), the radius of cornea is 7.8 mm(R) and
the iris exists 3.6 mm(L’) behind the cornea surface as shown in Fig. 1(b). From
that, we can obtain the location(P) of the projected image of the iris from the
Gaussian imaging formula[20] written as (n’/L’ - n/L = (n’-n)/R). Here, n’ and
n are the refractive indexes of lens and air, respectively. In addition, L’ and L are
the locations of the object and the projected image, respectively. R is the radius
of lens surface (See Fig. 1(b)). From the Gauss lens formula and Gullstrand’s eye
model (1.336/3.6 - 1/L = (1.336-1)/7.8), we can obtain the distance gap (L =
3.05 mm) between the position of corneal surface and that of the projected iris
image(PQ). So, in order to compensate such distance gap(3.05 mm) and focus
actual iris region, we make the zoom(focus) lens be positioned closer to the eye
by one more step (one step of lens corresponds to 5mm in our camera) compared
to focusing corneal specular reflection.

2.3 Specular Reflection Detection in an Input Image

Now, we explain the method of detecting specular reflection in an input image.
In order to detect the SR more easily, we use the method of changing the decoder
value of frame grabber board. Due to the limitation of A/D converting range
(from 0 to 28-1), the camera NTSC signal cannot be fully represented and some
signal range may be cut off. In this case, the NTSC signal in high saturated range
is represented as 255(28-1) gray level in the input image and both the genuine SR
on eye (cornea) and the other reflection region on facial skin or glasses surface
may be represented as same gray level(255) in the input image. However, the
NTSC analog level of SR on eye is higher than that of other region such as the
reflection on facial skin. That is because the reflectance rate on cornea is greater
than that on facial skin. So, if we change the decoder’s brightness setting (making
the brightness value lower), then the A-D converting range with decoder can be
shifted to the upper range. In such case, there is no high saturated range and it
is easy to discriminate the SR on eye and the other reflection. However, when
a user wears the glasses, some large SR on glasses surface may still happen. In
addition, if the surface of glasses is not smooth, many scratches may make a lot of
small imposter SRs. To overcome such problems, we use the successive On/Off
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scheme for IR-LED illuminators. When the user approaches in the operating
range of the iris camera, our iris camera can detect it and notify the user’s
approach to the micro-controller of camera. Then, the micro-controller turns on
the left IR-LED illuminator(during the even field period(16.7ms) of the CCD
output signal) and the right one(during the odd field period(16.7ms) of the
CCD output signal), alternately and repeatedly. In our iris camera, we use two
illuminators, which are positioned at left and right symmetrical to camera axis.
So, one SR by left illuminator happens in even field and the other one does in odd
field. Because we know the curvature of general human cornea(as explained in
section 2.2) and the distance between left and right illuminators, we can estimate
the distance between the genuine SRs in even and odd field image. However, the
other SRs (that happens on the glasses surface or the scratches of glasses) have
the tendencies not to exist with the pair characteristics (or having different size
in even and odd field) or the distance between each SR may be greater than that
between the genuine SRs on the cornea. That is because the curvature of glasses
is much smaller than that of human cornea.

Here, we explain it in details. The Fig. 2 shows the relationship among the
user’s eye, illuminators and iris camera. In our iris camera, the distance between
two illuminators (P1 and P2) is 70mm and they are positioned symmetrical to
the camera axis (Zc axis in the Fig. 2). From that, we can get the 3D positions
of P1 and P2 as (35, 0) and (-35, 0), respectively. In addition, two lights from
illuminators are aligned to be intersected at the Z position of 165mm in our
camera. The corneal (C1) radius of the general user is known as about 7.8 mm
as shown in Fig. 1(b) and the distance (Zp) between the camera and the cornea
surface is measured by distance measuring sensor. Based on that information,
we can obtain two line equations of L1 (Z = −4.714X + 165) and L2 (Z =
4.714X + 165) in the coordinate (Xc, Zc). In addition, we can get the circle
equation of C1 (X2 + (Z − (Zp + 7.8))2 = 7.82). With two lines(L1, L2) and
circle equations(C1), we can obtain the X positions(X1, X2) of p1 and p2 in the
coordinate (Xc, Zc) and obtain the X distance (D) between p1 and p2. With the
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Fig. 3. Detecting SR in difference image

calculated X distance (D) and the perspective transform[6], we can estimate the
X distance (d) between two specular reflections in image like Eq. (1)

d = (D ∗ f)/Z ′, (1)

where f is camera focal length (we can get the value from camera micro-
controller) and Z ′ is the actual Z distance between the p1 (or p2) and the origin
(0,0) in the coordinate (Xc, Zc). With two lines(L1, L2) and circle equations(C1),
we can obtain Z ′ (Z ′ = Zp+(7.8−7.8cos(sin−1(D/(2∗7.8)))). Of course, in case
that the user does not align his eye into the camera optical axis (Zc) accurately,
there can be some variations for d in Eq. (1). However, such variations are very
small according to our experiments (due to large Z distance of operating range
of our iris camera (more than 100 mm) compared to small corneal radius (7.8
mm) and perspective transform) and we allow a little margin (+- 3 pixels) for d
in Eq. (1) to cover such variations. With the difference image of even and odd
field image(in this case, we subsample each field of 640*240 pixels into that of
320*240 pixels in order to reduce processing time), we get an edge image by
3*3 sobel operator as shown in Fig. 3. As mentioned before, the time difference
between even and odd field is only 16.7ms and the motion difference of user is
very small during that time. So, almost only the edge for SR can be dominant
in the edge image. In addition, due to small time difference, we do not need the
time consuming procedure of motion compensation in order to reduce the motion
difference and we can reduce the processing time consequently [6]. From that,
we detect the center and radius of the corneal SR by 2D gradient-based circle
Hough transform [7]. With this scheme, we can detect the exact SR regions on
cornea and move the zoom(focus) lens to the exact focusing position according
to the SR size in image.

From that, we can get the clear and focused eye image for iris recognition at
very fast speed. In addition, we can know which illuminator (left or right) makes
less specular reflection on glasses surface from the detected SR and select that
illuminator for recognition in order to reduce the FRR(False Rejection Rate)
caused by the SR on the glasses surface.
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3 Experimental Results

The evaluation tests were performed on 350 persons (175 persons without glasses
and 175 persons with glasses). Each person tried to recognize 10 times and total
3500 trial data were acquired to measure the performance of our proposed algo-
rithm. The test data includes the persons from 23 to 60 ages, composed of 282
Korean and 68 Occidental. In addition, we collected(rearranged) the test data
according to the approaching speed of user; 1000 data at normal speed (from
5cm/sec to 15cm/sec), 1000 data at fast speed (more than 15cm/sec), and 1000
data at slow speed (below 5cm/sec). The remaining 500 data were collected in
case that users approached to the camera not from the front but from the side. In
the first experiment, we measured the processing time of detecting the SR in an
input image and it takes a little processing time as 3 ms in Pentium-IV 1.8Ghz.

In the second experiment, we compared the performance of our focusing
algorithm to those [8],[13],[14],[15] as shown in Fig. 4(a)(b). Fig. 4(a)(b) shows
the focusing performance by the curve of focus value vs. focus lens position. In
general, if the curve is steep near a focusing point and in the blurred region, it
is reported that the focusing algorithm shows good performance [15]. That is
because if the slope near the focusing point is steep, the focus lens can reach
the focused position fast and accurately. In addition, if the slope in the blurred
region is also steep, the focus lens can determine its movement direction easily
[15]. According to Fig. 4(a), our method shows the best focusing performance.
In addition, other methods show the local maximums of focus value curve which
make the focusing more difficult as shown in Fig. 4(b), but our method does
not show any local maximum in focus value curve. In the third experiment, we
compared the average focusing time. The focusing time of users without glasses is
shown as 551ms by Tenengrad[8], 434ms by SMD[13], 535ms by SML[14], 425ms
by WDOM[15], 328ms and 309ms by our method without and with lens position
compensation (as shown in section 2.2), respectively. The focusing time of users
with glasses is like these; 1523ms by Tenengrad, 928ms by SMD, 1411ms by
SML, 890ms by WDOM, 628ms and 601ms by our method without and with lens
position compensation, respectively. Experimental results show the focusing time

(a) (b)

Fig. 4. Focus value vs. focus lens position (a)in case of users without glasses (b)in case

of users with glasses
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of all users with/without glasses as 1037ms by Tenengrad, 681ms by SMD, 973ms
by SML, 658ms by WDOM, 474ms and 450ms by our method without and with
lens position compensation, respectively. From that, we can know our focusing
method shows the best performance. In the fourth experiment, we measured
the performances of our algorithm(with lens position compensation) in terms
of recognition speed. The average recognition time (including focusing and iris
recognition time) is 698 ms in case of the users without glasses and that is 1201
ms in case of that with glasses. The reason that the recognition time is increased
in the latter case is that large SR on glasses surface caused by illuminator hides
the whole iris region sometimes. In such case, our system turns on the other
illuminator (from left to right or from right to left) and the total recognition time
is increased, consequently. In the fifth experiment, we measured the recognition
rate and the results show the FAR of 0% and the FRR of 0.8%(28/3500 trials).
The FRR is mainly caused by the large SR from glasses and most of them are
recognized in second trial. In the sixth experiment, we tested the focusing time,
recognition time and recognition rate according to the Z distance between user
and the iris camera. The focusing time is like these; 452ms at 10cm, 458ms at
12cm, 457ms at 16cm, 451ms at 20cm, 451ms at 22cm. The recognition time
is like these; 946ms at 10cm, 952ms at 12cm, 949ms at 16cm, 954ms at 20cm,
950ms at 22cm. The FAR is 0% at all Z distances. The FRR is like these; 0.7%
at 10cm, 0.79% at 12cm, 0.8% at 16cm, 0.79% at 20cm, 0.8% at 22cm. From
that, we can know the focusing time, recognition time and recognition rate are
almost same irrespective of the Z distance. In the last experiment, we tested the
focusing time, recognition time and recognition rate by changing environmental
lighting intensity(with fluorescent lamp). The focusing time is like these; 451ms
in 250 Lux., 448ms in 500 Lux., 452ms in 750 Lux., 451ms in 1000 Lux., 455ms
in 1250 Lux. The recognition time is like these; 1220ms in 250 Lux., 1209ms in
500 Lux., 952ms in 750 Lux., 951ms in 1000 Lux., 948ms in 1250 Lux. The FAR
is 0% in all lighting intensity. The FRR is like these; 0.92% in 250 Lux., 0.83%
in 500 Lux., 0.8% in 750 Lux., 0.79% in 1000 Lux., 0.8% in 1250 Lux. From
that, we can know the focusing time, recognition time and recognition rate are
almost same irrespective of the change of lighting intensity. To be notable, in
case that the lighting intensity is below 500 Lux., the FRR and the recognition
time is increased a little. That is because the pupil is dilated too much due to
dark environmental light (iris region is contracted too much) and it causes False
Rejection cases.

4 Conclusions

In this paper, we propose a new iris image acquisition method to capture user’s
focused iris image at very fast speed based on the corneal specular reflection and
human eye model. From the experimental results, we can conclude our method
can be applicable for the real-time iris recognition camera. In future works, we
plan to estimate the user’s motion and move the lens in advance to enhance the
performance.
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Abstract. The contribution presents an integrated system for automatic acqui-
sition of a human torso model, using different input images. The output model
consists of two free-form surface patches (with texture maps) for the torso and
the arms. Also, the positions for the neck joint on the torso, and six joint positions
on the arms (for the wrist, elbow and shoulder) are determined automatically. We
present reconstruction results, and, as application, a simple tracking system for
arm movements.

1 Introduction

Human motion modeling plays an increasingly important role in medical applications,
surveillance systems or avatar animation for movies and computer games. This work
is part of a human motion analysis project as presented in [16]. For a detailed study of
human motions the research project requires an automatic model generation system, so
that the pose recovery can be evaluated for different persons (e.g. male, female, small,
tall and so forth). Our goal is to present an integrated framework for the automatic gen-
eration of human models that consist of free-form surface patches and body segments
connected by joints. The input of the algorithm is a set of 4 images and the output is a
VRML-model of the torso. The basic structure is given in Figure 1.

In the literature reconstruction techniques can be broadly divided into active and
passive methods. Where active methods use a light pattern projected into the scene, or
a laser ray emitting from a transmitter, passive techniques use the image data itself. Our
approach is a passive reconstruction method due to its greater flexibility in scene cap-
turing and being a low-cost technique. Kakadiaris et al. propose in [7] a system for 3D
human body model acquisition by using three cameras in mutually orthogonal views.
A subject is requested to perform a set of movements according to a protocol. The
body parts are identified and reconstructed incrementally from 2D deformable contours.
Hiltion et al. [4] propose an approach for modeling a human body from four views. The
approach uses extrema to find feature points. It is simple and efficient. However, it is
not reliable for finding the neck joint and it does not provide a solution to find elbow or
wrist joints. Plänkers et al. [13] model an articulated body by using layers for a skele-
ton, ellipsoidal meta-balls (to simulate muscles) and a polygonal surface representation
(to model the skin). But as discussed in [15] we prefer a non-layered representation,
where free-form surface patches are directly assigned to joint indexes. This leads to a
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Side viewFront view Joint viewArm side view

 Torso & arm  reconstruction Determine joint locations

 Texture mapped VRML model

Fig. 1. Steps of the implemented system. Four input images are used for model generation.

more compact representation and allows further freedom for modeling mesh deforma-
tions or joint shifts during tracking. Lee et al. [6] build a seamless human model. Their
approach obtains robust and efficient results, but it cannot detect joint positions which
have to be arranged manually.

The next section presents the implemented modules needed for model reconstruc-
tion. Section three presents some reconstruction and tracking results. Section four con-
cludes with a brief discussion.

2 Implemented Modules

This section describes implemented modules and those modifications of existing algo-
rithms which have been necessary to adapt them to our specific tasks.

Segmentation
Segmentation is the process of extracting a region of interest from an image. Accuracy
and efficiency of contour detection are crucial for the final outcome. Fortunately, the
task is relatively easy to solve, since we assume a person in a lab environment with
known static background. Here we use a modified version of [5], which proves to be
fast and stable: To decide between object and background pixels, we compare pixels
of typical background characteristics with all pixels in the given image. The difference
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between two pixels is decomposed in two components, brightness and chromaticity.
Thresholds are used to segment the images as shown in Figure 1. Afterwards the images
are smoothed using morphological operators [9].

Body Separation
Firstly it is necessary to separate the arms from the torso of the model. Since we only
reconstruct the upper torso, the user can define a bottom line of the torso by clicking
on the image. Then we detect the arm pits and the neck joint from the front view of
the input image. The arm pits are simply given by the two lowermost corners of the
silhouette which are not at the bottom line. The position of the neck joint can be found
when walking along the boundary of the silhouette from an upper shoulder point to the
head. The narrowest x-slice of the silhouette gives the neck joint.

Joint Localization
After a rough segmentation of the human torso we detect positions of arm joints. Basi-
cally, we use a special reference frame (joint view) which allows to extract arm segments.
To gain the length of the hands, upper arms, etc. we firstly apply a skeletonization proce-
dure. Skeletonization is a process of reducing object pixels in a binary image to a skeletal
remnant that largely preserves the extend and connectivity of the original region while
eliminating most of the original object pixels. Two skeletonization approaches are com-
mon, those based on thinning and those based on distance transforms. We implemented
the thinning approach presented in [8] called iterative thinning algorithm. The left image
of Figure 2 shows that the algorithm leads to a connected skeleton, but unfortunately it is
not centered. Furthermore, we are interested in detecting corners of the skeleton, but the
resulting curve is very smooth which makes it hard to detect, for example, the position
of the elbow joint. The middle image of Figure 2 shows the result using the Chamfer
distance transform. Here the skeleton is centered, but unfortunately it is not connected.
We decided to work with the skeletons based on the Chamfer distance transform and
close the skeleton by connecting nearest non-neighboring points. This leads to centered
skeletons as shown on the arms in right of Figure 2. We further use the method presented
in [2] to detect corners on the skeleton to identify joint positions of the arms.

Furthermore, we would like to point out that the joint localizations need to be refined
since the center of the elbow joint is not at the center of the arm, but beneath. For this
reason we shift the joint position such that it corresponds to the human anatomy, see

Fig. 2. Skeletonization using iterative thinning (left), Chamfer distance transform (middle), and
our modified version (right)
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B
CS

E’

Fig. 3. Left: Adapting elbow joints. Right: Extracted joint segments.

in the left image of Figure 3: Starting from the shoulder joint S and elbow joint E, we
use the midpoint C between the right boundary of the silhouette B and E as new elbow
position. The result of joint locations is shown at the right image of Figure 3.

Surface Mesh Reconstruction
For surface mesh reconstruction we assume calibrated cameras in nearly orthogonal
views. Then a shape-from-silhouettes approach [10] is applied. We attempt to find con-
trol points for each slice, and then to interpolate them as a B-spline curve using the
DeBoor algorithm. For this we start with one slice of the first image and use its edge
points as the first two reference points. Then they are multiplied with the fundamental
matrix of the first to the second camera and the resulting epipolar lines are intersected
with the second silhouette resulting in two more reference points. The reference points
are intersected leading to four control points in 3D space.

For arm reconstruction we use a different scheme for building a model: We use two
other reference frames (input images 2 and 3 in Figure 1). Then the arms are aligned
such so that they are horizontally and have the same fingertip starting point. This is
shown in Figure 4. These silhouettes are sliced vertically to gain the width and height
of each arm part. The arm patches are then connected to the mid plane of the torso.

front view

side view

Fig. 4. Alignment of the arm
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Fig. 5. Texture fusion: The images from the stereo setup are merged to get a texture map for the
head: the left texture gives a good face, whereas the right texture gives a good ear and side view
of the face. The fusion of both textures leads to a new texture used for the 3D model.

For texture mapping, we generate a texture file as a combination of the different
views: Here we apply the multi-resolution method proposed by Burt et al. [1] for remov-
ing boundaries between different image sources. This is achieved by using a weighted
average splining technique. For sake of simplicity, we adapt it to a linear weighted func-
tion. A texture resulting from a fusion of two different input views is shown on the right
of Figure 5.

3 Experiments

We tested the algorithm on four different models. Figure 6 shows in the lower two
rows reconstruction results from two persons. One useful application is to animate the
models using motion capture data: The top row in Figure 6 shows some capture results

Fig. 6. Pose results of the pose recognition software. Mimicking the arm configurations with the
reconstructed models.
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Table 1. Example lengths for a test subject (unit: cm)

Name real person reconstructed model error

Bodo
lower arm 25.0 27.0 2.0

hand 20.0 19.0 1.0
width 185.2 187.3 2.0

using a human motion estimation algorithm and below are the pose configurations of
the reconstructed model. This allows us to let the “Reinhard” model mimic the actors
(Bodo) motion.

For a quantitative error analysis we compare reconstructed body parts with (man-
ually) measured ones. One example is shown in Table 1. A comparison with all (four
reconstructed) subjects and 6 body parts (head, upper arm, lower arm, width, etc.) shows
a maximum deviation of 2 cm. The average error is 0.88 cm.

3.1 Joint Tracking

In a second experiment we apply the model on a simple joint tracking algorithm. There-
fore we assume that the reconstructed model is standing in front of a camera and moving
its arms. The images are separated in their arm and body components and a skeletoniza-
tion is applied to detect the arm joints. This approach is similar to the one described in

Fig. 7. Joint tracking

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60  70  80  90

An
gle

Frame No.

Shoulder

Wrist

Elbow

Fig. 8. Joint angles



Automatic Human Model Generation 47

Fig. 9. Arms and head tracking of the “Reinhard”-model

Section 2. If the arm is stretched, the position of the arm is known from the length ratios
of the arm components. Tracking results are shown in Figure 7. Some joint angles of
the left arm are shown in Figure 8. Though we do not have any ground truth, the angles
match with the real motion and the curves are relatively smooth indicating a reasonable
stable algorithm.

Figure 9 shows results of the tracked Reinhard model, where also the head angle is
estimated. As can be seen, the model fits satisfactory to the image data.

4 Discussion

We present an automatic human model generation system. Several sub tasks are solved
and integrated into a system, including a GUI for comfortable interaction of threshold
parameters. The algorithm takes a sequence of four images and separates the arms from
the torso from a front and a side view. Then a shape-from-silhouettes approach is ap-
plied to reconstruct the torso from two views, and the arms from two other views. The
joint locations are determined from a fourth image showing a special pose of the arms.
Here a skeletonization is applied to detect the joint locations. Finally the model is re-
constructed including a texture map from the image data. We apply the reconstruction
to a simple joint tracking procedure and show that we are able to track a persons arms
with reasonable quality.

The system is developed under a Linux Redhat 9.0 environment. OpenGL is used
as the graphics API. The application is written in C/C++. Human models are specified
in the format VRML. A scene graph system OpenSG helps to parse and visualize the
VRML file. GTK is our GUI development toolkit.
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Abstract. This paper proposes a new method to solve the problem of face rec-
ognition under varying illumination conditions. We introduce an exemplar-
based technique to decouple and subsequently recover the canonical face and 
the illumination functions from the intensity images. The canonical image is 
equivalent to the reflectance field of the face that is invariant to illumination. 
We subsequently use the canonical face to synthesize novel face appearances 
together with a set of lighting models. We then demonstrate the ability of the 
synthesis approach to improve the performance of the face recognition task. 

1   Introduction 

The need to further develop robust face recognition techniques to meet real world 
situations is still an open research challenge. It is widely stated that the two main 
contributions of poor recognition performances are that caused by variations in face 
pose and lighting. We will deal with the problem of illumination in this paper. Ap-
proaches addressing the illumination-related problems can be broadly classified into 
two categories; feature-based approach and exemplar- or appearance- based approach. 
Feature-based approaches aim to define a feature space that exhibits some broad in-
variance over the lighting variations. Examples of these are [1][10] which uses differ-
ent image representations like 2D Gabor-like filters, first and second derivatives of 
the image, and the logarithmic transformation. Although these features may exhibit 
intensity immunity, none of these are found to be reliable to cope with significantly 
large variations in illumination changes [9][10]. 

Exemplar- or appearance- based approaches use a set of sample images taken of a 
class object (in this case a face) as a basis to compute an intermediary image. The 
intermediate image can then be used either directly as the probe image or be used to 
synthesize novel views of the face under different lighting conditions [11]. For exam-
ple, [2] reported a method to compute the Quotient Image from a small sample of 
bootstrap images representing a minimum of two class objects. The illumination in-
variant signature of the Quotient Image enables an analytic generation of the novel 
image space with varying illumination. However, this technique is highly dependent 
on the types of bootstrap images used which has the undesirable effect of generating 
diversely looking Quotient Images even from the same person. Sim and Kanade [3] 
use a statistical shape-from-shading model to estimate the 3D face shape from a single 
image. The 3D recovery model is based on the symmetric shape-from-shading algo-
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rithm proposed by [4]. They used the 3D face model to synthesize novel faces under 
new illumination conditions using computer graphics techniques. The approach pro-
duce high recognition rate on the illumination subset of the CMU PIE database [5]. 
However, it was not evident how their synthesis technique can cope with extreme 
illumination conditions [3]. Debevec in [6] presented a method to acquire the reflec-
tance field of a human face and use these measurements to render the face under arbi-
trary changes in lighting and viewpoint. However, the need to generate a large sample 
of images using the light stage is unfeasible for most face recognition systems. A 
parameter-free method of estimating the bi-directional reflectance distribution of a 
subject’s skin was proposed by Hancock et al in [12]. They estimated the radiance 
function by exploiting differential geometry and making use of the Gauss map from 
the surface onto a unit sphere. They demonstrated the approach by applying it to the 
re-rendering of faces with different skin reflectance models. 

As in [2] and [11], we address the problem of class-based image synthesis and 
recognition with varying illumination conditions. We define an ideal class as a collec-
tion of 3D objects that have the same shape but different albedo functions. For recog-
nition purposes, we can broadly assume all human faces to belong to a certain class 
structure. This assumption was similarly adopted by Shashua [2] and Mariani [11]. 
Our approach is based on the dual recovery of the canonical face model and lighting 
models given a set of images taken with varying lighting conditions and from a mini-
mum of two distinct subjects within the class. The canonical image is equivalent to 
the reflectance field of the face that is invariant to illumination. The lighting model is 
the image representation of the ambient lighting independent of the face input. We 
will first formulate the problem with an over-determined set of equations and propose 
a method in solving them over every pixel location in the image. We will demonstrate 
the quality of the recovered canonical face for generating novel appearances using 
both subjective and objective measures.   

2   The Simplified Illumination Function 

The intensity of reflected light at a point on a surface is the integral over the hemi-
sphere above the surface of a light function L times a reflectance function R. The 
pixel equation at point (x,y,z) can be expressed as  
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where 
x,y,z = the co-ordinate of the point on the surface 
φ and θ = azimuth and yaw angle from the z axis respectively 
t and λ = time and wavelength of the light source 

 
This equation is computationally too complex to solve in many real-time applications. 
We need to make further simplification of the equation without significantly affecting 
the goal of our work. Firstly, z, t and λ can be eliminated because we are dealing with 
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the projected intensity value of a 3D point onto a still frame image with grey scale 
intensity. Additionally, if one considers fixing the relative location of the camera and 
the light source, θ and φ both become constants and the reflectance function collapses 
to point (x, y) in the image plane. Therefore, the first-order approximation of equation 
(1) for a digital image I(x,y) can be further written as: 

I(x,y) R(x,y) L(x,y) (2) 

where R(x,y) is the reflectance and L(x,y) is the illumination at each image sample 
point (x,y). Our approach is to use exemplar images taken over different fixed lighting 
directions to recover both the reflectance model and illumination source. It is not the 
scope of this work to accurately model the skin reflectance property according to 
specificity like the melanin content of the skin, skin hemoglobin concentration and 
level of perspirations. These are important for visually accurate skin rendering appli-
cation but less so for face recognition. 

3   The Approach 

In our case, only the measured intensity images are available. Therefore, there are 
twice as many unknown data (RHS) as there are known data (LHS) making equation 
(2) ill-posed. The reflectance surface essentially comprises the combination of the 
reflectance property associated with the pigmentation of the skin, mouth, eyes and 
artifacts like facial hair. We define the reflectance model as the canonical face and 
represent it as a grey level intensity image. We will discuss in this section an ap-
proach that we propose to recover the canonical and illumination information from a 
set of intensity images Iij(x,y) Rj(x,y) Li(x,y), where i and j are indices to the collec-
tion of bootstrap1 faces and illumination directions respectively. 

3.1   Defining and Solving the Systems of Equations 

As explained in the previous section, equation (2) has more unknown terms than 
known. In order to make the equation solvable in a least square sense, we need to 
introduce additional measurements thus making the system of equations over deter-
mined. We further note that the bootstrap image, Iij(x,y) has two variable components. 
They are the reflectance component which is unique to the individual person and the 
illumination model which is dependent on the lighting source and direction. Suppose 
we have M distinct persons which we use in the bootstrap collection (i.e. Rj, j = 1, …, 
M) and N spatially distributed illumination sources whose direction with respect to 
the person is fixed at all instances (i.e. Li, i = 1, …, N), we will have therefore a total 
of MxN known terms and M+N unknown terms. These over-determined systems of 
equations can be solved by selecting any values of M and N that are greater than 1. 
For example, if we use M persons from the bootstrap collection, and collect N images 
for each person by varying the illumination, we get the following system of equations; 

                                                           
1 The bootstrap collection comprises of face sample images taken of various person over multi-

ple illumination directions, the relative location of which are fixed. 
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Ii1(x,y) R1(x,y) Li(x,y) 

 

IiM(x,y) RM(x,y) Li(x,y)  

(3) 

where i = 1,…,N. The terms on the left hand side of these equations are the bootstrap 
images from the M number of persons. If the illuminations used to generate these 
bootstrap images are the same, the illumination models, Li will be common for every 
person as is reflected in equation (3).  

Numerous non-linear minimization algorithms exist and are usually problem de-
pendent [7]. We chose to use the Levenberg-Marquardt non-linear least square fitting 
algorithm [8] as it is fast and suited to problems of high dimensionality. The solver 
takes as input the set of equations shown in (3) to minimize, a Jacobian matrix of 
derivatives, a set of known data (i.e. Iij) and seed values for the unknowns. We chose 
to set the seed value to 128 since there are 256 possible grey values for both the re-
flectance and illumination models. The internal functions of the solver are iterated 
until the change in computed values falls below a threshold. At this point the algo-
rithm is said to have converged, and the current computed values for the unknown 
data are taken as the solution. The algorithm is extremely fast and can recover the 
unknown values (for most practical values of M and N) in near real-time.      

3.2   Appearance Synthesis 

Once the canonical face and the illumination model are recovered, we can proceed to 
perform the appearance synthesis using the following principles: 

1. New illumination models can be generated by the combination of the subset of 
the recovered illumination models.  

2. Novel appearance views for each person can be generated by the combination of 
an expanded set of illumination models to closely match the actual illumination 
conditions.  

It is not economical and computationally feasible to store specific illumination 
models for specific faces. To make this approach viable, we need to define a set of 
generic illumination models that is suitable for a broad cross section of people with 
different skin types and bone structures. We estimate this generic illumination models 
using the weighted average models gathered from a genre of subjects.     

4   Experiments and Results 

4.1   The Database 

For our experiments, we make use of the illumination subset of the CMU PIE data-
base [5]. It comprises 63 people taken under 21 different illumination directions (with 
all ambient lights switched off) in a controlled environment. All the color images are 
first transformed to grey-level, pre-processed and the faces cropped. The final size for 
all images is 110 x 90 pixels. 
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4.2   Canonical Face Recovery 

We use equation (3) to recover the canonical faces with different values of M and N 
and a subset of them are shown in Fig. 1. In order to measure the quality of the recov-
ered canonical face, we define a set of measures that describes the properties of an 
acceptable canonical face. The measures are; (1) Elimination of lighting effects like 
specular reflections and cast shadows. (2) Preservation of the visual distinctiveness of 
the underlying face. (3) Well-balanced intensity distribution. Based on these meas-
ures, we can see that in general the recovery of the canonical faces for different values 
of M and N are very good. This is a significant improvement over the Quotient Image 
reported in [2]. To further support the significance of the recovered canonical face, we 
will next describe a face recognition experiment that will quantitatively show the 
ability of our approach to deal with illumination variation problem. 

04047 

  
04053 

  
 (a) M=2, N=3 (b) M=3, N=5 (c) M=5, N=7 (d) M=7, N=15 

Fig. 1. Canonical faces generated for candidate samples 04047 and 04053 using (a) M=2,N=3, 
(b) M=3,N=5, (c) M=5,N=7 and (d) M=7,N=15  

4.3   Face Appearance Synthesis 

For each recovered canonical face, the corresponding set of 21 illumination models 
can then be computed. We further estimated the generic illumination models as de-
fined in Section 3.2 by using 10 candidate samples from the CMU PIE database. We 
then use these generic illumination models and the canonical faces from the remain-
ing samples to generate novel appearance faces. Fig. 2a shows the synthesized views 
of a subject generated using 5 different illumination models. The corresponding im-
ages captured by the actual illuminations are shown in Fig. 2b. 

4.4   Recognition Experiment 

To demonstrate the feasibility of the face appearance synthesis for recognition, we 
implement a simple classifier based on template matching. This is equivalent to the 
nearest neighbor classifier reported by Sim and Kanade [3]. We use only frontal pose 
faces throughout the experiment. The generic illumination models used here is the 
same as in Section 4.3. To maintain unbiased recognition outcome, the test samples 
used for recognition does not come from any of the samples used to produce the  
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(a) Novel appearance for candidate 04019. 

  
(b) Corresponding actual appearance for candidate 04019 from CMU PIE data-
base. 

Fig. 2. Novel appearance synthesis results using a subset of the generic illumination models and 
its comparison with the actual appearance (derived from camera locations f02, f10, f07, f14 and 
f17 as defined in the CMU database) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Recognition rates (in percentage) by varying the values of M and N 

generic illumination models. There are 21 persons in the test samples. From each 
person we compute the canonical representation and use it to synthesize 21 appear-
ances of the person under different lighting conditions. These images collectively 
form the registry representation of the person in the database. We use actual illumina-
tion samples of the PIE database as the test images. There are a total of 441 (i.e. 
21x21) test sample images. We construct different registry databases for different 
combination of M (number of person) and N (number of lighting) values. We then 
perform the face recognition experiments on the test samples over the different regis-
tries. Fig. 3 shows the summary of recognition rate for different values of M and N. 
We observe several important behaviors. They are: 
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1. For a fixed value of M, the recognition rate increases monotonically when N 
increases. 

2. However when M increases, N has to consequentially increase for the ca-
nonical face to be recovered with reasonable quality. The minimum (M,N) 
pair needed to establish good recognition rates are (2,3), (4,5), (6,7), (8,9) 
and (10,11).  

3. The recognition rate for N=2 is very poor for all values of M. 
4. The range of recognition rates for different values of M and N (ex N=2) are 

between 83.0% and 90.7%. 

As can be seen, the results obtained here is significantly better than [3] which re-
ported an accuracy of 39% with the nearest neighbor classifier on a similar dataset. 
The general trend of the recognition rates which flatten off as N increases for all val-
ues of M suggest a wide perimeter for the choices of these values. However, from the 
computation, data acquisition and hardware standpoint, it would be effective to keep 
the M and N values small, without negatively impacting the recognition rate. 

5   Discussions 

The results obtained using the canonical face recovery algorithm is very encouraging. 
Besides using the images captured by the lighting module as described here, we can 
explore shape-from-shading techniques to recover the 3D shape of the face as was 
done in [4]. The range information together with the canonical face are essential for 
improving the illumination rendering quality and to deal with pose invariant recogni-
tion. Although the illumination models recovered using the CMU PIE database gener-
ates 21 different variations they are still inadequate as some crucial lighting directions 
(i.e. especially those coming from the top) are missing. We will next consider using 
computer graphics tools to develop a virtual light stage that can produce light render-
ing from any arbitrary lighting directions. These can then be used to extract finer 
illumination models.  We are also in the process of building a scale-down lighting 
platform to validate our approach further. 

6   Conclusion 

We have developed an exemplar-based approach aim at recovering the canonical face of 
a person. The canonical face can either be use as a probe face for recognition or use as a 
base image to generate novel appearance models under new illumination conditions. We 
have shown subjectively that the canonical faces recovered with this approach are very 
stable and not heavily dependent on the types and numbers of the bootstrap images. The 
strength of the view synthesis algorithm based on the canonical face was further demon-
strated by a series of face recognition tests using the CMU PIE images. 
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Abstract. In this paper, dealing with the case of large movements in active vision
applications, we first develop an algorithm to estimate the motion of an object and
its background. Furthermore, with the assumption of small translations between
successive frames, we develop an active tracking algorithm. Its main advantage
is that an area-based projection method is presented which resorts to an area in-
tegral. Thus, it becomes more robust to the translation distortion of the Log-polar
image. In addition, the rotation and scaling estimates can be fulfilled in the spa-
tial domain and not in the frequency domain. Thus, the intrinsic drawbacks of the
discrete Fourier transform, such as rotationally dependent aliasing and spectral
leakages, can be avoided in our case. Our novelty consists in the introduction of
the normalized phase correlation approach in our two algorithms. Because this
approach does not rely on the smoothness or differentiability of the flow field in
a sequence, it makes the large movement estimation possible. The experimental
results show that the motions of object and background can be effectively esti-
mated and a moving object can be tracked using our proposed algorithm in an
image sequence.

1 Introduction

Motion detection and estimation play an important role in visual tracking. In this paper,
we pay attention to the motion estimation based object tracking approach for active
vision.

In motion detection and estimation, we focus on the following challenging problems
in the context of active vision. The first problem is that an abrupt large movement of
an object results in the failure of tracking, such as a discontinuous optical flow field.
The second one is the estimation of the background motion. Active vision systems
usually seek to dynamically and intelligently gather selective scene information. Hence,
the familiar case is that a moving camera is controlled to automatically track a single
object. With the knowledge of the background motion, we can effectively recognize
an object being tracked, as well as have information to recover a lost object when our
other tracking methods fail or have uncertain results. In this paper, the phase correlation
technique is introduced to the estimation criterion. Its main advantage is that the phase
correlation approach does not require the smoothness or differentiability of the flow
field of the image sequence. This is suitable to detect a moving target with a large
displacement. From a theoretical viewpoint, 2D similarity motion parameters can be
estimated using the phase correlation under the Fourier-Mellin transform framework.
In particular, this technique has been widely exploited in the areas of image registration
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[1,2] and image watermarking [3] in recent years. The SVD approach presented in [4]
improves the accuracy of translation estimates to a sub-pixel level. On the other hand,
the frequency-domain criteria had been applied to the estimation of a constant-velocity
motion in an image sequence in [5]. Due to the lack of suitable theorems, this kind of
approach could not be applied to the non-translational motion model.

Furthermore, with the assumption of small translations between successive frames
in a sequence, we further devise an active tracking algorithm. Active tracking is dif-
ferent from the general tracking or motion estimation. In general, only a single object
is tracked and encompassed by a higher field of view at a time in active tracking[6,7].
This context is very suitable for the utilization of phase correlation techniques. But
then, due to the rotation, we will have to encounter some intrinsic drawbacks from the
discrete Fourier transform, such as rotationally dependent aliasing and spectral leak-
ages[8], which result in the failure of the rotation estimate. Thus, improving the robust-
ness of the rotation and scaling estimates will be emphasized in our study.

The rest of this paper is structured as follows. Section 2 shows a brief introduction
of the phase correlation techniques. Then, section 3 presents our motion estimation and
tracking algorithms. Section 4 presents the experimental results and analysis. Finally,
our conclusions and future works are provided in section 5.

2 Phase Correlation Techniques

Consider the images I0(x, y) and I1(x, y) are related by I1(x, y) = I0(x + tx, y + ty),
where (tx, ty)T is a translation vector. Taking the Fourier Transform of I0(x, y) and
I1(x, y) gives F1(u, v) = F0(u, v)e−j(utx+vty). The normalized cross power spec-

trum of the two images is expressed as, Corr(u, v) = F1(u,v)F∗
0 (u,v)

|F1(u,v)F∗
0 (u,v)| = e−j(utx+vty),

where F ∗ is the complex conjugate of F . It is clear that the phase of the normalized
cross-power spectrum is equivalent to the phase difference between the images I0 and
I1. By computing the linear phase of Corr(u, v), we can thus determine the translation
vector (tx, ty)T . Furthermore, by taking the inverse Fourier transform of Corr(u, v),
we obtain its spatial representation, corr(x, y) = IFT (Corr) = δ(x + tx, y + ty),
where corr(x, y) is a delta function which is zero everywhere except at the displace-
ment, namely the phase correlation peak. This correlation method is usually called the
phase correlation approach. Under the Fourier-Mellin transform framework, the rota-
tion and scaling can also be estimated by using it.

3 Motion Estimation and Tracking

3.1 Motion Estimation of an Object and Its Background

In this section, we will focus on the following challenging problems. The first problem
is that an abrupt large movement of an object results in the failure of tracking. The
second one deals with the estimation of the background motion.

First, consider the translation case I1(x, y) = I0(x+tx, y+ty). Applying the phase
correlation approach, one can obtain the normalized cross power spectrum
Corr(u, v) = e−j(utx+vty), and its spatial representation corr(x, y) = δ(x + tx, y +
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ty). When the motions of an object and its background are considered simultaneously,
there are three cases. The first case is that an object Ib in the successive images is
in motion while the background of the images I0 and I1 is still, i.e. I1b = I0b(x +
tx, y + ty), I0b,1b ⊂ I0,1. By computing their cross-correlation spectrum, there are
two impulses in corr(x, y), one is at (0,0) which corresponds to the stationary back-
ground while the other is at (tx, ty) which corresponds to the motion of the object. If
the object is still while the background is shifted by a cyclic translation, we have the
same explanation. The second case is when the background image is translated and
not cyclically shifted (i.e. some new features appear while some others disappear from
the scene), and the object is still. This translation can be expressed as a linear phase

e−j(ut
′
x+vt

′
y) in Corr(u, v). Similarly, there are two impulses in corr(x, y), one is at

the origin of corr(x, y) which corresponds to the non-shifted object and the other is at
(t

′
x, t

′
y) which corresponds to the background translational shift. However, due to the

change of the background information, some noise would be introduced to the linear

phase e−j(ut
′
x+vt

′
y). When the translation is very big, the linear phase will be submerged

by noise. However, the phase correlation usually enjoys superior signal-to-noise ratio
(SNR). For a tracking task, the background translation between the successive frames is
too small to cover the true linear phase. The third case is when an object is moving faster
than the background (i.e. both object and background are moving). In this case, there
are two linear phases. The first factor e−j(utx+vty) corresponds to the object transla-

tional shift while another factor e−j(ut
′
x+vt

′
y) corresponds to the background translation

respectively. Summarizing the above analysis, we can state the following proposition.

Proposition: Between two successive images related by a translational shift, there are
two linear phase components, one is for the object translational shift and the other is for
the background translational shift.

It can be noted that the above phase-correlation based motion estimation is un-
related to the smoothness or differentiability of the flow field of an image sequence.
Thus, it can be exploited to solve the abrupt large movement problem. Nevertheless, in
practice, we have to consider noise which usually causes the phase correlation peak in
the spatial domain to spread across neighboring pixels, degrading the accuracy of the
translation estimate. For simplicity, let’s first illustrate the singular linear phase case,
e.g. the background is translated while the object is still in two successive images re-
lated by I1(x, y) = I0(x + tx, y + ty). Their normalized cross-power spectrum can
be rewritten in matrix notation as, Corr = quqH

v , where (·)H indicates the complex
conjugate transpose and the components of vectors qu and qv are qu(u) = e−jutx

and qv(v) = ejvty respectively. It is clear that the normalized phase correlation matrix
Corr should be a rank-one matrix. Due to noise, rank(Corr) > 1. In order to get
a rank-one approximation of the correlation matrix Corr, the SVD decomposition is
applied Corr = UΛVH . By preserving the left and right dominant singular vectors
corresponding to the maximum singular value, we can obtain an optimal rank-one ap-
proximation of the matrix Corr in the least squares sense. Furthermore, it was shown
in [4] that the linear phase coefficients tx and ty could be estimated independently by
linear fitting. Now, let’s consider the two linear phase case, in which the translations of
the object and the background are taken into account. Our basic idea is to preserve two
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rank-one approximations of the correlation matrixes corresponding to the object and
the background respectively. Since the rank-one approximation of the correlation ma-
trix corresponding to the maximum singular value must indicate the linear phase with
the maximum correlation value, while the rank-one approximation of the correlation
matrix corresponding to the secondary maximum singular value implies another linear
phase with a lesser correlation value.

Furthermore, when considering the rotation, translation and scaling altogether un-
der the Fourier-Mellin transform framework, we unfortunately encounter the rotation-
ally dependent aliasing [8], which usually results in many spurious peaks in the spatial
domain and diminishes the value of the phase correlation peak at the correct displace-
ment position. Although using Blackman window in the pixel domain to eliminate the
spectral leakage caused by the boundary effects and masking out the central frequencies
in the Fourier domain, we can only eliminate the influence of the rotationally dependent
aliasing from the background and not the one from the moving object. Our basic idea is
that the motion parameters of the background are first estimated, then the background
in successive images are rectified and subtracted so that the region of the moving object
could be outlined. Finally, the motion estimates of the object are carried out on these
cropped regions.

Motion Estimation Algorithm of Object and Background is summarized as follows:
1) Under the Fourier-Mellin transform framework, compute the normalized cross-power
spectrum of the successive images ( Blackman window and removal of the central fre-
quencies are adopted); 2) Determine the rotation and scaling parameters of the back-
ground respectively using the SVD approach; 3) Rectify the original images using the
obtained rotation and scaling parameters, and compute the cross-power spectrum of the
rectified images; 4) Determine the translation parameters of the background using the
SVD approach; 5) Rectify the original images according to the obtained motion para-
meters of the background, and determine the region of the object by computing DFD; 6)
Crop the object regions in the original successive images respectively, and repeat step
(1)-(4) to determine the motion parameters of the object.

3.2 Active Tracking Algorithm

In this section, we focus on the case of small translations between successive frames
in an image sequence. Using the Log-polar mapping in active tracking, an object occu-
pying the central part of the visual field becomes dominant over the coarsely sampled
background elements of the image periphery. This makes it possible to directly estimate
the rotation and scaling of an object in the Log-polar image but not in the magnitude
spectrum so as to avoid the rotational dependent aliasing.

However, because of translation distortion or noise, projection methods are usually
applied to motion estimation in active vision. They can be classified into two kinds, the
frequency domain projection and the spatial domain projection. In the former, the radial
and angular projections are carried out on the magnitude spectrum under the Fourier-
Mellion transform framework [8]. While in the later, the projections are carried out
on the spatial Log-polar image [6,7]. Although the frequency domain projection can
avoid translations, it usually has to bear the rotationally dependent aliasing. With the
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assumption of small translations between successive frames, the spatial domain projec-
tion method has been exploited to estimate the rotation angle, scaling factor and trans-
lation vector respectively. However, the challenging problem of this kind of approach
is to overcome the translation distortion in the spatial Log-polar image. From the pro-
jection definitions in [6,7], it can be noted that the angular projection is an anisotropic
radial summation, while the radial projection is an isotropic circular summation. In-
deed, the angular projection is more sensitive to a cartesian translation within the whole
Log-polar plane than the radial projection. In this section, we devise an area-based pro-
jection method for the rotation and scaling estimates. Due to the use of the area integral,
this method is more robust to the translation distortion. It can also be computed in the
spatial domain and hence avoids any rotationally dependent aliasing.

In polar coordinates, let’s consider the following circular Fourier transforms,
Fu(ρ) = 1

2π

∫ 2π

0
I(ρ, θ)ejuθdθ and Fv(θ) = 1

ρmax

∫ ρmax

1
I(ρ, θ)ejvρdρ, where u and

v are the coordinates of the spatial-frequency domain respectively defined by, u =
2kπ
M , k = 0, ..., M −1 and v = 2kπ

N , k = 0, ..., N −1, in the discrete case. Furthermore,
we consider the radial projection of Fu(ρ) and angular projection of Fv(θ) as follows,
Au =

∫ ρmax

1
Fu(ρ)dρ and Av =

∫ 2π

0
Fv(θ)dθ. For the successive images related by

I1(ρ, θ) = I0(ρ + ρ0, θ + θ0), it is not difficult to see that these two integral quantities
hold the translation property, i.e. A1u = A0ue−juθ0 and A1v = A0ve−jvρ0 . Au and Av

are independent of each other. Therefore, we can easily obtain two 1D phase correlation
arrays respectively for the rotation and scaling estimates,{

Corr(u) = A1uA∗
0u

|A1uA∗
0u|

Corr(v) = A1vA∗
0v

|A1vA∗
0v|

. (1)

In order to avoid any rotationally dependent aliasing in the frequency domain, we will
have to use their spatial representations. Further expanding Au and Av and decompos-
ing them into the real and imaginary parts, we have,⎧⎪⎪⎨⎪⎪⎩

Re(Au) = 1
2π

∫∫
D I(x, y)cos

(
ucos−1

(
x√

x2+y2

))
dxdy√
x2+y2

Im(Au) = 1
2π

∫∫
D
I(x, y)sin

(
usin−1

(
y√

x2+y2

))
dxdy√
x2+y2

(2)

and, ⎧⎨⎩Re(Av) = 1
ρmax

∫∫
D I(x, y)cos(v

√
x2 + y2) dxdy√

x2+y2

Im(Av) = 1
ρmax

∫∫
D
I(x, y)sin(v

√
x2 + y2) dxdy√

x2+y2

(3)

where D ⊂ R2 is a sub-domain of the original image frame. It can be noted that Au and
Av are essentially area integrals in the cartesian image, which are isotropic integrals.
Therefore, they are insensitive to small cartesian translations. Using Eq.(2,3), we can
efficiently compute Au and Av in the spatial domain and not in the frequency domain.
Hence, the rotational dependent aliasing can be avoided.

After the rotation and scaling estimations, one can rectify the original successive
frames, then apply the translation estimation approach of section 3.1 to estimate the
translation. Due to the active tracking, the object can be centered by a window in the
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previous frame, and slightly translated in the next frame. All the motion estimations of
an object can be fulfilled in the sub-images of a window. Thus, estimating the transla-
tion, we only need the estimate corresponding to the maximum singular value.

Active Tracking Algorithm is simply summarized as follows:
1) Select appropriate object-centered window in the successive frames as the integral
domain D; 2) Use Eq.(2,3) to compute Au and Av of the successive frames respectively;
3) Apply Eq.(1) to the rotation and scaling estimates; 4) Rectify the original images
using the obtained rotation and scaling estimates; 5) Apply the translation estimation
approach of section 3.1 to the translation estimate, and adjust the view field so that the
object is centered in the image.

4 Experiments and Analysis

We demonstrate our motion estimation algorithm of object and background presented
in section 3.1 on a real image sequence. For comparison, our experiments are carried
out on the translation and the rotation cases respectively. In Fig.1a, we illustrate the case
of large translation in an image sequence. The initial rectangle is manually drawn in the
first frame. This rectangle is tracked from the first frame to the second one using motion
estimation and so on. In the first three frames, it can be noted that the moving hand can
be tracked without occlusion. While it is occluded by book, the tracking is failed. In
the fifth frame, there is no occlusion. We do the phase correlation on the second frame
and the fifth one. The result indicates that although there is a large translation between
the second frame and the fifth one, the translation can be exactly estimated using our
proposed algorithm. In Fig.1b, our algorithm is illustrated on an image sequence with
large rotation angles. We choose seven frames from an image sequence of ninety frames,
so that the rotation angle between each two successive frames is more than 10 degrees.
The rotating arm is marked by eight cross flags. The initial cross flags are manually
marked in the first frame, they are tracked from the first frame to the second frame using
motion estimation, and so on until the last frame. Compared with the results of Fig.1a,
the accuracy of the rotation estimate is less than the accuracy of the translation estimate.
Specially, when the rotation angle of the object is small (less than 3 degrees), there is
no distinct phase correlation peak corresponding to the rotation angle in the spatial
domain. This is because the rotationally dependent aliasing can only be diminished and
not removed in our algorithm. When the true peak and false peaks lie close to each other,
it is difficult to obtain an accurate estimate. However, the proposed algorithm is suitable
for the motion estimates of an object and its background. It can provide accurate motion
estimates for large rotations and translations. Thus, this proposed algorithm can also be
incorporated with other tracking algorithms to deal with the case of large movements.

In Fig.2, we illustrate the spatial projection method in [6,7] on a still image, which
is respectively scaled by 0.75 (Fig.2b), scaled by 0.75 and translated by (-5,5) (Fig.2c),
rotated by 15◦ counter clockwise (Fig.2d), and rotated by 15◦ counter clockwise and
translated by (-5,5) (Fig.2e). Fig.2f shows the radial projections of the original image,
the scaled image, and the scaled and translated image. Obviously, there is a distinct
phase difference between the projection of the scaled image and the projection of the
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a. Tracking in the case of translation.

b. Tracking in the case of rotation.

Fig. 1. Illustration of motion estimation algorithm

             
a.                            b.                           c.                              d.                          e. 
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Fig. 2. The comparison between the angular projection and the radial projection. a) original im-
age; b) scaled by 0.75; c) scaled by 0.75 and translated by (-5,5); d) rotated by 15 degrees; e)
rotated by 15 degrees and translated by (-5,5); f) radial projection; g) angular projection; h) com-
parison of radial and angular projection; i-j) area-based projection method.

original image. It can also be noted that the projection of the scaled and translated im-
age is distorted. Translation results in the distortion of the projection of scaled image.
Fig.2g shows the angular projections of the original, rotated, and rotated and translated
images. It can be noted that the projection of the rotated and translated image is dis-
torted. Compared with Fig.2f, the angular projection is more sensitive to translation
than the radial one. In order to compare the influence of translation in the radial and an-
gular projections, the image scaled by 0.75 and the image rotated by 15◦ counter clock-
wise are translated from (-1,1) to (-15,15), respectively. We respectively compute the
normalized correlation coefficient of the radial projections of the scaled image and the
scaled and translated image; and the normalized correlation coefficient of the angular
projections of the rotated image and the rotated and translated image. The coefficients
at every translation level are depicted in Fig.2h. It is clear that the angular projection is
more sensitive to translation than the radial one.

In Fig.2i-2j, we repeat the above experiment in Fig.2a-2e, and respectively estimate
the rotation and scaling using our area-based projection method described in the section
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3.2. It is clear that the area-based projection can suppress the translation distortion of
small translations.

5 Conclusions

In this paper, we focused on the motion estimation based object tracking for active vi-
sion, and presented two algorithms. The first algorithm is a motion estimation algorithm
of object and background, which can deal with the case of large movements in active
vision applications. The second is an active tracking algorithm, which works under the
assumption of small translations between successive frames. The novelty of these two
proposed algorithms consists in the introduction of the normalized phase correlation
approach. Because this approach does not rely on the smoothness or differentiability
of the flow field in a sequence, it makes the large movement estimation possible in the
first algorithm. Moreover, applying the SVD approach to the linear phase estimation
improves the accuracy of motion estimates. The experimental results show that the mo-
tions of object and background can be effectively estimated and a moving object can be
tracked using our proposed algorithm in an image sequence.

However, some problems need to be further investigated in our future work. The
main issue is the constant-intensity assumption. In active vision, because the camera
and the object are both moving at all time, this assumption can be violated. Although
the background can be reduced using an object-centered window and the Log-polar
mapping, the background’s disturbance sometimes results in a large error for motion
estimation. In our future work, we will introduce the time-frequency analysis techniques
to overcome this problem.
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Abstract. An important aspect of fingerprint verification systems is the
method used to quantify the similarity between two fingerprints. This
involves two key components: choosing fingerprint features that will be
used for comparison and selecting a match score function to calculate the
degree of correspondence. The choice of features and a match score func-
tion can have a significant impact on the performance of a system. This
paper presents a novel fingerprint verification criterion based on tabulat-
ing ridge intersections between distortion free fingerprints. Several alter-
native matching criteria have been implemented, and their performance
is compared using a publicly available FVC2002 dataset. The novel ridge
based approach proves to be highly discriminative, and a strong result is
obtained by a hybrid system using a combination of minutiae and ridge
based features.

1 Introduction

Biometrics is the automatic identification of an individual based on his or her
physiological or behavioural characteristics. Fingerprints have emerged as one of
the most researched and trusted biometrics. However, despite decades of study
there remains several challenges for the developers of automated fingerprint ver-
ification systems. These challenges include the enhancement of noisy fingerprint
images, dealing with the nonlinear deformations present in fingerprints, and ex-
ploiting the full, rich structure of fingerprints for verification. This last point
involves selecting appropriate fingerprint features for comparison and deriving
a method to calculate the degree of correspondence. This is an important (and
often overlooked) aspect of designing a fingerprint verification system and can
have a significant effect on a system’s performance.

As fingerprint databases increase in size, it is becoming increasingly impor-
tant to choose features that are highly discriminative. The majority of algo-
rithms in the literature rely heavily on minutiae information [1]. Minutiae do
embody much of a fingerprint’s individuality, yet when used in isolation useful
discriminatory information is inevitably lost. Therefore, for systems requiring a
high degree of accuracy it is important to supplement minutiae information with
non-minutiae features.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 65–72, 2005.
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Several approaches to fingerprint deformation modelling are available in the
literature [2,3]. As these techniques become more mature and robust, fingerprint
verification algorithms should begin to exploit the discriminative information
from the entire fingerprint ridge map. Two approaches to this are explored in
this paper. In one approach, correlation techniques are used to compare the
pixel intensities between the images. For the second approach, a novel method
of fingerprint verification based on tabulating ridge intersections is developed.

Section 2 contains a review of existing approaches to fingerprint verification,
and Section 3 presents the proposed ridge based method. The results of the
experimental validation can be found in Section 4. Finally, the paper concludes
with a discussion of the results in Section 5.

2 Fingerprint Verification

The output of a fingerprint verification systems is a score that quantifies the
degree of similarity between two prints. Without loss of generality, we will assume
the score is between 0 and 100, with 100 indicating a very strong match. A
threshold is determined for verification, above which two prints are labelled a
match and below which they are labelled a non-match. Fingerprint verification
systems can be broadly categorized by the features they use for matching. The
most common feature is minutiae points, however systems incorporation non-
minutiae features are becoming more common.

2.1 Minutiae Based Verification

Minutiae are local ridge discontinuities that come in two varieties: ridge endings
occur when a ridge terminates, and bifurcations are locations where a single ridge
separates into two. Each minutiae has a type, location, and orientation. Match
score functions using minutiae features typically involve tabulating minutiae
correspondences. A minutiae correspondences is two minutiae (one from each
print) that are in close proximity after registration and have similar attributes.
The ratio of minutiae correspondences to the total number of minutiae gives a
score for the match. An example score function is [4]:

Match Score =
100Npair

max{M,N} (1)

where Npair is the number of correspondences, M is the number of minutiae in
the reference set, and N is the number of minutiae in the test set.

There are three main drawbacks of minutiae based matching: (i) Minutiae
detection is a very difficult task (especially for low qualities images). This often
leads to missing and spurious minutiae, having a detrimental effect on the ro-
bustness of the system. (ii) Many of the scanning devices currently being used
for biometric systems have a very small capture surface, so the amount of over-
lap between two prints may be very small. Consequently, there may be few (or
even 0) minutiae correspondences. (iii) Finally, minutiae information is only a
subset of the information contained by a fingerprint’s ridge structure. By using
only this information, much of a fingerprint’s discriminatory information is lost.
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2.2 Non-minutiae Based Verification

One approach to non-minutiae verification is the correlation of fingerprint im-
ages. At first glance, this seems like an obvious and powerful approach to fin-
gerprint verification as it uses all of the information from the images. However,
there are several obstacles that prevent this from being a common approach. In
particular, the presence of nonlinear distortions and varying skin conditions can
cause captures of the same fingerprint to appear very different [5]. One approach
to overcome the problem of fingerprint deformations is to perform correlation
locally rather than globally [6,7].

Other non-minutiae features that can be used for verification can be de-
rived from local textural analysis. In these systems, filters are applied to extract
frequency and orientation information from the ridges in a local area [8,9,10].
The main disadvantage of these approaches is that they do not take fingerprint
deformations into consideration.

3 A Ridge Based Matching Criterion

Assume that the distortion has been mostly removed from a query fingerprint
with respect to a reference print. This deformation modelling can be accom-
plished using any of the available methods in the literature [2,3]. After aligning
the ridge maps, the ridges patterns will appear very similar for genuine matches
(assuming the deformations have been modelled accurately). This can be illus-

(a) A Genuine Match (b) An Imposter Match

Fig. 1. Ridge map alignment examples

trated with an example. In Fig. 1 (a), the alignment of a genuine match pair is
shown. Although not all ridges align exactly, it is obvious that their patterns are
the same. However in Fig. 1 (b), two prints from different fingers are shown. In
this case, although the overall curvature and ridge spacing is very similar, it is
obvious that the ridge patterns are different. It is this intuitive notion of ridge
map similarity that should be captured and quantified.

The approach proposed in this paper is to count ridge crossings between the
aligned ridge maps. A crossing is defined as any contact between two ridges.
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For each ridge in the query ridge map, it is traced and the number of distinct
ridges (after the first) in the reference ridge map that are crossed is tallied. A
score for each ridge is computed as 100 − (r × 100), where r is the number of
ridge crossings. A global score for the entire match is calculated by averaging the
individual ridge scores. Negative global match scores are set to 0. This is a very
simple algorithm, but it elegantly captures the notion of ridge map similarity.

There are a few implementation points that should be made. First of all,
very short ridges should be ignored. Due to their short length, they are unlikely
to cross any other ridges, and therefore give the overall print an artificially
high score. Secondly, dealing with bifurcations is a little bit troublesome. We
have found that the best approach is to break bifurcations, and treat all of the
branches as individual ridges. Finally, there are a few situations in which ridges
end prematurely, leading to spurious crossings. Ridges may be broken due to
noise or when part of the fingerprint leaves the capture area. When tracing a
ridge, if the ridge it last crossed has ended before a new ridge is reached, it should
not be counted as a new crossing. For example, in Fig. 2 the upper portion of

Fig. 2. In the reference ridge map, many ridges are broken due to the upper region of
the fingerprint not being captured

the reference print has not been captured. Therefore, when tracing ridges in
the query print, the ridge will make contact with a reference ridge, the query
ridge will loop around above and eventually make contact with a new ridge. This
“new” ridge is not actually a new ridge: it is the same reference ridge as before,
but has been broken because part of the print was not captured. Therefore,
this should not be counted as a new ridge crossing. The best way to handle
this situation is to record the remaining length of the reference ridge at each
crossing. When a new ridge is reached, it will not be counted as a new crossing
if the previous ridge has ended.

There are several advantages of this approach over both minutiae and cor-
relation based methods. One advantage over minutiae based methods is that
missing and spurious minutiae will have little effect on the match score. This
is because their effect is local and will not cause additional ridge intersections.
Furthermore, this method has the potential to be much more discriminative as it
is based on information from the entire ridge map. The primary advantage over
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correlation techniques is that it does not require perfect alignment of the ridge
maps. For correlation techniques to be successful it is necessary for the ridges
to align exactly, and this is very difficult to achieve. The ridge counting method
has some tolerance for misaligned ridges; even if the ridges are not aligned ex-
actly, they will not create false ridge crossings as long as they stay within the
boundaries created by the neighbouring ridges. Therefore, the method is robust
even if the deformation modelling is not exact.

4 Experimental Results

Several verification methods have been implemented for comparison. All meth-
ods use the same preprocessing, registration and deformation modelling. For
registration, we have used a two stage optimization algorithm that first finds a
coarse registration using orientation field, curvature and frequency information,
and then fine tunes this registration using minutiae features [11]. Fingerprint
deformation modelling is accomplished using a nonparametric elastic modelling
algorithm [3].

The following five verification methods have been implemented for evaluation.
(i) Minutiae matching based on the ratio of minutiae correspondences to the
maximum number of minutiae from the reference or query fingerprint (see Eq. 1).
(ii) The correlation of greyscale fingerprint pixel intensities. The score is based on
finding the average absolute difference of corresponding pixel intensities between
the registered images. This value is normalized and subtracted from 100 to give
a match score. (iii) The correlation of binary ridge maps. Before correlation, the
images are processed to extract binary ridge maps with a standard ridge width.
These binary ridge maps are then compared using cross-correlation. (iv) The
ridge based method presented in Section 3. (v) A hybrid method using both
minutiae and ridge crossing information. Assume that a minutiae score sm and
ridge score sr have been obtained for a given pair of fingerprints. The match
score S is defined as follows:

S =

⎧⎪⎨⎪⎩
0 if sr < t1,
100 if sr > t2,
sm otherwise.

(2)

where t1 and t2 are determined empirically. Intuitively, when prints have a very
similar (different) ridge map, they are automatically accepted (rejected). When
the ridge based match score is midrange, the minutiae matching score is used to
discriminate them.

The dataset used for evaluation is the publicly available FVC 2002 database
DB1 [12]. The fingerprint images were captured using fingerprint scanners and
contain a wide variety of fingerprint image qualities. The database contains 880
fingerprints from 110 different fingers. The competition organizers have selected
a set of 2,800 genuinely matching pairs and 4,950 non-matching pairs from the
databases for evaluation. A variety of performance measures are calculated, the
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Fig. 3. Match score distributions

Table 1. Match Score EERs

Match Score Method EER Run Time (ms)

Binary Correlation 6.21 % 21
Greyscale Correlation 4.52 % 35
Minutiae Matching 4.51 % 6
Ridge Crossing 3.46 % 21
Combination 2.09 % 27

details of which can be found in [12]. One measure in particular is often used
to summarize a system’s performance. The equal error rate (EER) is the point
at which a system’s false match rate (FMR) equals its false non-match rate
(FNMR).

The EER’s and run times for the various match score functions can be found
in Table 1, and the match score distributions can be found in Fig. 3. The run-
ning times do not include the time taken for preprocessing, registration, and
deformation modelling (which is constant for all algorithms).

The error rate for greyscale correlation is lower than for binary correlation.
This is surprising as it was expected that the preprocessing applied for binary
correlation would remove much of the noise, making correlation more reliable.
However, it appears that using the full range of pixel intensities is advantageous
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despite the presence of noise. The results of both correlation algorithms are not
very impressive. There are two main reasons for this. First of all, highly accurate
deformation modelling is necessary to obtain high scores for genuine matches.
Secondly, there tends to be a lot of ridge overlap between imposter matches with
similar ridge patterns. This can lead to relatively high scores. These two factors
lead to many midrange genuine and imposter scores. These midrange scores lead
to greater overlap of the score distributions, and consequently a higher error
rate.

The proposed ridge based method has a lower error rate than both the minu-
tiae and correlation algorithms. Furthermore, there is a significant reduction in
error by using a combination of ridge and minutiae information. Using combi-
nations of multiple features has been investigated by several researchers, and
shows promise for powerful algorithms [13].

In terms of running time, all methods are roughly in the same range. These
running times are almost insignificant compared to the other stages of verification
(e.g. preprocessing and deformation modelling).

The match score distributions in Fig. 3 illustrate an important advantage
of the ridge based approach developed in this paper. The genuine and imposter
distributions are extremely well separated compared to the other distributions.
Specifically, over 90% of genuine matches receive a score greater than 80, and
almost 80% of imposter matches receive a score of 0. This is highly discriminative.
Approximately 2% of genuine matches receive a score below 50, and virtually
the only reason for this is when the nonlinear distortions have not been modelled
accurately. If improvements to the deformation modelling algorithm are made,
it is expected that the EER for the ridge based approach will drop dramatically.

5 Conclusion

The results in this paper show that the choice of features for verification makes
a dramatic difference on the accuracy of a system. In our experiments, the exact
same registration and deformation modelling was used, yet the EER’s varied
from 6.21% down to 2.09%.

Traditionally fingerprint deformation algorithms have not been common in
verification systems due to the additional computational costs they demand.
However, as computational resources increase and become more readily avail-
able this will cease to be as much of an issue. Therefore, it is expected that
deformation modelling algorithms will be increasingly researched, and become
more common and robust in the coming years. As this happens, it will be im-
portant for verification systems to select fingerprint features that are able to
exploit the full, rich discriminatory power from a fingerprint’s ridge pattern.
In particular, it will be important to no longer rely strictly on minutiae infor-
mation. Correlation is one approach that has been explored, but its results are
comparatively poor. The novel ridge based approach presented in this paper is
very discriminative, and has the potential to be a powerful addition to future
verification systems.
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Abstract. This paper presents a novel approach to modelling finger-
print deformations. When fingerprints are captured, they undergo a cer-
tain amount of distortion due to the application of a three dimensional
elastic tissue against a flat surface. This poses a challenge for automated
fingerprint verification systems, which are generally based on aligning
two fingerprints and comparing their respective features. There are only
a few methods reported in the literature for modelling fingerprint distor-
tions. One prominent method is based on using minutiae correspondences
as landmarks, and creating a deformation model using thin-plate splines.
There are several disadvantages to this approach, and a nonparametric
elastic modelling algorithm is developed in this paper to address these
issues. Both algorithms have been implemented and are evaluated by in-
corporating them into a fingerprint verification system. The results show
an improvement of the proposed algorithm over the existing method of
deformation modelling.

1 Introduction

Fingerprints have been used as a means of personal identification for over a cen-
tury. Traditionally, the driving force behind advancements in fingerprint tech-
nology has been law enforcement agencies and forensic scientists. The admin-
istration and querying of massive fingerprint repositories motivated the early
research efforts towards automation. An application of fingerprint-based iden-
tification that has emerged more recently is biometric systems. Biometrics is
the automatic identification of an individual based on his or her physiological
or behavioural characteristics. The ability to accurately identify or authenticate
an individual based on these characteristics has several advantages over tra-
ditional means of authentication such as knowledge-based (e.g., password) or
token-based (e.g., key) authentication [1]. Due to its security related applica-
tions and the current world political climate, biometrics has become the subject
of intense research by both private and academic institutions.

Despite decades of intensive study, there are still many challenges facing
developers of automated fingerprint matching systems. Fingerprint image pre-
processing continues to be a difficult problem due to the large intraclass variation
of fingerprint images. Varying skin and capture conditions often cause images of
the same fingerprint to appear very different (see Fig. 1).
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Another obstacle to matching is fingerprint deformations. The skin tissue of
a finger is elastic, so when a finger is applied against a flat surface the ridge
pattern experiences some distortion. This deformation is nonlinear, and the ex-
tent of distortion varies with the angle of incidence and the amount of pressure
applied. Fingerprint matching algorithms generally work by aligning two prints
and comparing their respective features. Deformations are usually accounted for
by allowing some tolerance for displacements when matching features. Therefore,
the deformation is not explicitly modelled (i.e. a rigid transformation is used).
However, if a strong deformation is present the corresponding features will not
align closely, causing the match to fail.

This paper addresses the issue of fingerprint deformations and proposes a
novel method for modelling them. Section 2 gives some background to the prob-
lem and presents a brief review of existing deformation modelling techniques.
This is followed by a description of the proposed modelling algorithm in Section
3. An experimental evaluation of the technique is presented in Section 4, and
the paper concludes with some final thoughts and possible future directions for
the research in Section 5.

2 Deformation Modelling

As mentioned in the introduction, there is an inevitable deformation that occurs
when fingerprint images are captured. An example of this deformation is illus-
trated in Fig. 1. The prints from Figs. 1(a) and 1(b) have been captured from

(a) (b) (c)

Fig. 1. Two different captures of the same fingerprint and their alignment

the same finger, however the finger in Fig. 1(b) has been pressed against the
sensor with greater pressure. This has caused a deformation, as illustrated by
the overlapping ridge maps in Fig. 1(c). It is clear that the ridge maps do not
align very well, despite originating from the same finger.

We define deformation modelling as creating a mapping function that regis-
ters features from a query fingerprint to the corresponding features in a reference
fingerprint. Several methods for dealing with fingerprint distortion exist in the
literature. Cappelli et al. have developed a theoretical model of the elastic dis-
tortion in fingerprints [2]. This model could be used as a basis to analyze and
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remove distortions from prints. Senior and Bolle propose to remove distortions
by normalizing ridge spacing throughout the print [3]. Their system is based on
the assumption that the average ridge frequency is close to constant throughout
a non-distorted fingerprint.

A common technique for modelling deformations in image processing is using
the thin-plate spline (TPS) [4], which is a function that interpolates landmark
points. An obvious choice for landmark features in fingerprints are minutiae.
Minutiae come in two varieties: ridge endings are places where ridges terminate,
and bifurcations are places where a single ridge splits into two. Two sets of
researchers appear to have independently applied thin-plate splines to finger-
print deformation modelling using minutiae landmarks. Almansa and Cohen [5]
present a two-step iterative minimization algorithm for elastic matching using
thin-plate splines. Another application is suggested by Bazen and Gerez [6]. In
their system, several iterations are used to refine the initial model by incorpo-
rating new minutiae correspondences as they become sufficiently close together.
These iterations continue until the model converges to its final state. Ross et al.
use thin-plate splines to estimate an “average” distortion model for a fingerprint
given several of its prints [7]. This model can be applied to unseen query images
during the matching phase, thereby removing typical distortions for that print
and improving the accuracy of the system.

3 Nonparametric Elastic Deformation Modelling

There are several disadvantages of the thin-plate spline model when dealing with
fingerprints: (i) A minimum of 4 correspondence pairs is necessary to model non-
linear distortions (only 3 pairs are necessary for an affine deformation). If the area
of overlap between genuinely matching fingerprints is small, very few minutiae cor-
respondences may have been captured. In these cases, the thin-plate spline model
can not be used. (ii) The spatial locations of the correspondences is important. If
the correspondences are concentrated in a small area of the print or are co-linear,
small displacement errors lead to radical global distortions. Ideally, the landmarks
are plentiful and evenly distributed throughout the print; however, this is not al-
ways the case. (iii) The TPS model aligns landmark correspondences and interpo-
lates the area between them. However, the deformations outside the convex hull
of correspondence points are unpredictable. Distortions tend to be amplified in
areas far from the correspondences, and therefore are unreliable when matching
prints. (iv) Minutiae correspondence errors are difficult to avoid during finger-
print matching. Since TPS’s align all pairs of correspondences using one set of
parameters, a single correspondence error can cause nonlocal consequences. (v)
Finally, TPS’s are a parameterized model, meaning the entire global deformation
is represented by a finite set of parameters. These parameters are chosen such that
the bending energy of the deformation is minimized. Using this model, certain as-
sumptions are being made about the nature of fingerprint distortions. However,
the authors are not aware of any studies validating the belief that the elastic prop-
erties of skin tissue adhere to the TPS’s energy minimization criterion. The same



76 N. Yager and A. Amin

argument applies to all parameterized methods of distortion modelling, such as
polynomial transformations, multiquadratics, cubic B-splines, etc..

To deal with the aforementioned challenges, an alternative approach to the
parametric paradigm has been investigated. The general idea is to model the
distortion as if one was locally deforming an elastic surface. In this case, the de-
formation function has few constraints and the function space is very large. The
deformation is represented using a dense displacement vector field: for each pixel
in the query image, a vector indicates its new location after distortion modelling.

The algorithm for calculating the displacement field is as follows. First an
initial rigid registration is found. Any method can be used to achieve this: we
have employed a two stage optimization algorithm [8]. The first stage of this
algorithm finds a coarse registration using non-minutiae features (orientation
field, ridge curvature, and ridge frequency) and the second stage fine-tunes this
alignment using minutiae information. At this stage we have a robust global
registration estimate. Modelling the fingerprint deformations adds a third stage
to this algorithm, conforming to the hierarchical philosophy that coarse global
features should be used initially, followed by finer localized features as the prints
become more closely registered. This is a powerful and effective approach to
fingerprint registration.

After the initial rigid registration, minutiae correspondences are found based
on similarity of type (ridge ending or bifurcation), location, and orientation. It is
these minutiae correspondences that are used to calculate the displacement field.
Intuitively, imagine a rubber sheet has been fastened in place by the initial rigid
registration. Next, the local regions are stretched and twisted to align the minu-
tiae correspondences. The implementation of this idea is accomplished by using
Gaussian fields centered at the minutiae correspondences to weigh how heavily
their displacement will affect the surrounding area. The idea is similar to one
presented by Burr [9], however there are a few key differences. Burr’s algorithm
is an iterative model where the strength of the Gaussian varies at each step to
dynamically control the cooperation between the correspondences. Conversely,
our algorithm is performed in a single stage. Furthermore, our method has been
updated to take orientation information into account.

A minutia p is stored using a 3-tuple (px, py, pθ) which represents its coor-
dinates and orientation respectively. Assume that n minutiae correspondences
((p1, q1)...(pn, qn)) have been found, where correspondence i contains a minutia
pi from the reference print and a minutia qi from the query print. Each corre-
spondence pair uniquely determines rigid registration parameters for the entire
image by translating the minutiae to be in the same location and then rotating
to align their orientations. Given a correspondence pair (pi, qi), the rigid trans-
formation parameters (Δxi,Δyi, θi) are computed as follows: Δxi = pi

x − qi
x,

Δyi = pi
y − qi

y, and θi is the oreintation difference between pi
θ and qi

θ. Using the
parameters for the ith correspondence, the new location (xi, yi) for any point
(x, y) in the query image can be found using:[

xi

yi

]
=
[

cos(θi) sin(θi)
− sin(θi) cos(θi)

] [
x − qi

x

y − qi
y

]
+
[

qi
x

qi
y

]
+
[
Δxi

Δyi

]
(1)
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creating the displacement vector:

Di(x, y) =
[

x
y

]
−
[
xi

yi

]
(2)

This displacement is very relevant near the correspondence pair i, but as you
move away it is less useful because local distortions and feature extraction inac-
curacies will cause translation and rotation errors that are magnified as you move
away. Therefore, a Gaussian field is used to determine a given correspondence’s
influence on the rest of the image. The weight of correspondence i’s transfor-
mation parameters at the location (x, y) in the query image is determined using
the following function:

Wi(x, y) = exp

⎛⎝−

√
(x − qi

x)2 + (y − qi
y)2

σ2

⎞⎠ (3)

The weight Wi will be high (close to 1) in the area close to the ith correspon-
dence, but deceases rapidly (towards 0) as the distance increases. The speed of
decay is determined by the user defined parameter σ. A displacement vector
field for the entire query image is calculated for each correspondence. Therefore,
for each pixel in the original query image there are n displacements (one for
each correspondence). There is also one additional displacement vector for the
“background” rigid registration, which has a constant weight and will dominate
in areas distant from all minutiae correspondences. Define this background dis-
placement to be D0 and its weight to be W0. There are now n + 1 displacement
vectors defined for each pixel. These are averaged to determine the pixel’s final
location:

D′(x, y) =
∑n

i=0 Wi(x, y)Di(x, y)∑n
i=0 Wi(x, y)

(4)

The effect of this algorithm is as follows. In areas of the fingerprint close to a
single correspondence, its displacement will be strongly determined by aligning
that correspondence. In areas close to several correspondences, the displacement
will be averaged according to their proximity to the minutiae. Finally, in areas
distant from all correspondences, the initial rigid registration will be used. Due
to the use of Gaussian weighting, the final displacement vector field is smooth.

4 Experimental Results

To evaluate the effectiveness of the proposed deformation modelling procedure,
experiments were conducted to see the influence of the algorithm on the accu-
racy of a fingerprint verification system. The results of verification using no de-
formation modelling, TPS deformation modelling, and the nonparametric elastic
algorithm are reported. For all three algorithms, the same preprocessing, initial
image registration, and minutiae correspondences are used. Therefore the only



78 N. Yager and A. Amin

Table 1. Verification Results

Distortion Modelling Method EER Average Score for Genuine Matches

None 4.59 % 89.6
Thin-Plate Spline 3.99 % 91.3
Nonparametric Elastic 3.46 % 92.3

(a) (b) (c)

(d) (e) (f)

Fig. 2. Deformation modelling examples. (a) No deformation modelling. (b) Non-

parametric elastic deformation modelling. (c) Displacement field for (b). (c) Minutiae

Correspondences. (d) TPS deformation modelling. (d) Displacement field for (d).

variable is the distortion modelling. It should be noted that an iterative algo-
rithm (such as the one presented by Bazen and Gerez [6]) to find additional
minutiae correspondences after each stage of deformation modelling is not being
employed.

The dataset used for evaluation is the publicly available FVC 2002 database
DB1 [10]. The fingerprint images were captured using fingerprint scanners and
contain a wide variety of fingerprint image qualities. The database contains 880
fingerprints from 110 different fingers. The competition organizers have selected
a set of 2,800 genuinely matching pairs and 4,950 non-matching pairs from the
databases for evaluation. A variety of performance measures are calculated, the
details of which can be found in [10]. One measure in particular is often used
to summarize a system’s performance. The equal error rate (EER) is the point
at which a system’s false match rate (FMR) equals its false non-match rate
(FNMR).
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The match score function being used is ridge-based, and operates by counting
ridge intersections of the aligned ridge skeletons [11]. The advantage of this
method is that it is not only a very discriminative match score function, but
also directly measures how well the distortion is being removed from the prints.

The results from the experiments can be found in Table 1. As can be seen,
the nonparametric elastic algorithm outperforms the other methods in terms of
both lowering the error rate and increasing the mean match score for genuine
matches. In terms of running time, both modelling methods take approximately
the same amount of time (about 400 ms in our system).

Fig. 2 shows an example of both TPS and nonparametric deformation mod-
elling. This example illustrates an important advantage of the method proposed
in this paper. The minutiae correspondences (see Fig. 2(d)) are well distributed
throughout most of the print area, except for the lower left quadrant where there
are none. Both methods have been successful in aligning the ridges maps in the
rest of the print. However, in the lower left quadrant the TPS model has created
a strong deformation (see Fig. 2(f)). This has caused the ridges in that region to
cross over each other. However, the nonparametric method does not attempt to
extrapolate the deformation model to this area (see Fig. 2(c)), creating a much
better result.

5 Conclusion and Future Directions

There are several advantages of the proposed algorithm over the TPS deforma-
tion modelling algorithm. First of all, there is no minimum number of corre-
spondences necessary (whereas the TPS algorithm requires at least 4 to model
nonlinear deformations). Even if only one correspondence is found, this can be
used to remove local distortions from the query fingerprint. Secondly, when cor-
respondence errors occur, they only cause local disruptions. Thirdly, unlike the
TPS method, the orientation of the minutiae is taken into account when calcu-
lating the displacements. Fourthly, the deformation model is not extrapolated
to areas distant from the minutiae correspondences. Finally, since the solution
is not parameterized all plausible mappings exist within the function space.

The algorithm struggles for prints with very high distortion (such as the
example in Fig. 1). The main reason for this is not the deformation modelling
algorithm itself, but the difficulty in finding all of the correct minutiae corre-
spondences. In cases of severe distortion there is no initial rigid registration that
aligns all of the correspondences closely. One method to deal with this would
be to incorporate an iterative scheme for dynamically updating the correspon-
dences as new minutiae pairs become close together (like the approach taken by
Bazen and Gerez [6]). This is one possible future direction for the research, and
is currently under investigation.

Another possible extension of the research is to incorporate additional fin-
gerprint features into the algorithm. For example, pixel intensities, filterbank
responses, and ridge information could be used to supplement the landmark
based approach taken in this paper. Approaches along these lines are common
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for nonrigid registration in the medical imaging domain. However, these meth-
ods tend to be very computationally demanding, so the challenge lies in deriving
a method that can incorporate these supplementary features while remaining
computationally efficient.
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Abstract. AIRS classification algorithm, which has an important place among 
classification algorithms in the field of Artificial Immune Systems, has showed 
an effective and intriguing performance on the problems it was applied. In this 
study, the resource allocation mechanism of AIRS was changed with a new one 
determined by Fuzzy-Logic rules. This system, named as Fuzzy-AIRS and 
AIRS were used as classifiers in the classification of outdoor images. The clas-
sification of outdoor dataset taken from UCI repository of machine learning   
databases was done using 10-fold cross validation method. Both versions of 
AIRS well performed over other systems reported in UCI website for corre-
sponding dataset.  Fuzzy-AIRS reached to the classification accuracy of 90.00 
% in the applications whereas AIRS obtained 88.20 %. Besides, Fuzzy-AIRS 
gained one more advantage over AIRS by means of classification time. In the 
experiments, it was seen that the classification time in Fuzzy-AIRS was reduced 
by about 67% of AIRS for dataset. Fuzzy-AIRS classifier proved that it can be 
used as an effective classifier for image classification by reducing classification 
time as well as obtaining high classification accuracies.   

1   Introduction 

While a new artificial intelligence field named as Artificial Immune Systems (AIS) was 
emerging in late 1990s, performances of proposed methods were not so good especially 
for classification problems. However, AIRS system proposed in 2001 has changed this 
situation by taking attention among other classifiers with its performance [1]. 

 Image segmentation is the process of dividing a given image into homogenous re-
gions with respect to certain features, which correspond to real objects in the actual 
scene. The segmentation process is perhaps the most important step in image analysis 
since its performance directly affects the performance of the subsequent processing 
steps in image analysis [2].  
     In this study, resource allocation of AIRS was changed with its equivalent formed 
with Fuzzy-Logic to increase its classification accuracy. To see effects of this modifi-
cation, trials were made wtih an image segmentation problem. Both versions of algo-
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rithms were used to classify an outdoor image dataset and they were also compared 
with other classifiers used for same data set beside of being compared with each 
other. Fuzzy-AIRS obtained the highest classification accuracy among the classifiers 
reported in UCI website for related dataset consisting of Outdoor Image taken from 
UCI database [3]. Fuzzy-AIRS, which proved itself to be used as an effective classi-
fier in image classification field by reaching its goal, has also provided a considerable 
decrease in the number of resources. In conducted application, Fuzzy-AIRS required 
less resource than half of required by AIRS and by this way, classification time has 
reduced by a great rate. The rest of the paper is organized as follows. Section 2 pre-
sents Artificial Immune Systems and AIRS (Artificial Immune Recognition System. 
The results obtained in applications are presented in Section 3 for Image data set. 
Consequently in Section 4, we conclude the paper with summarization of results by 
emphasizing the importance of this study. 

2   Artificial Immune Systems and AIRS (Artificial Immune 
     Recognition System) 

Artificial Immune System (AIS) can be defined as a computational system based upon 
metaphors of biological immune system [1]. The topics involved in the definition and 
development of Artificial Immune Systems cover mainly: hybrid structures and algo-
rithms that take into account immune-like mechanisms; computational algorithms based 
on immunological principles, like distributed processing, clonal selection algorithms, and 
immune network theory; immune based optimization, learning, self-organization, artifi-
cial life, cognitive models, multi-agent systems, design and scheduling, pattern recogni-
tion and anomaly detection and lastly immune engineering tools [1], [3].  

In unsupervised learning branch of AISs, there are lots of works conducted by re-
searchers Dasgupta, De Castro, Timmis, Watkins, Neal…etc [1], [3], [8]. There are 
only two studies in supervised AISs. First of these was performed by Carter [8]. The 
other work is AIRS (Artificial Immune Recognition System), proposed by A.Watkins 
which is a supervised learning algorithm inspired from the immune system [3]. 

The used immune metaphors used in AIRS are: antibody-antigen binding, affinity 
maturation, clonal selection process, resource competition and memory acquisition. 
AIRS learning algorithm consists of four stages: initialisation, memory cell recogni-
tion, resource competition and revision of resulted memory cells.  

2.1   AIRS Algorithm 

The AIRS algorithm is as follows: 
  
1. Initialization: Create a random base called the    

memory pool (M) and the pool (P). 
2. Antigenic Presentation: for each antigenic pattern 

do: 
a) Clonal Expansion: 
For each element of M determine their affinity to       
the antigenic pattern, which resides in the same 
class. Select highest affinity memory cell (mc) 
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and clone mc in the proportion to its antigenic 
affinity to add to set of ARBs (P). 
b) Affinity Maturation: 
Mutation each ARB descendant of this highest   
affinity mc. Place each mutated ARB into P.  
c) Metadynamics of ARBs: 
Process each ARB through the resource allocation    
mechanism. This will result in some ARB death, 
and ultimately controls the population. Calculate 
the average stimulation for each ARB, and check 
for termination condition. 
d) Clonal Expansion and Affinity Maturation: 
Clone and mutate a randomly selected subset of 
the ARBs left in P based in proportion to their 
stimulation level.  
e) Cycle: 
While the average stimulation value of each ARB 
class group is less than a given stimulation 
threshold repeat from step 2.c. 
f) Metadynamics of Memory Cells: 
Select the highest affinity ARB of the same class   
as the antigenic from the last antigenic interac-
tion. If the affinity of this ARB with the anti-
genic pattern is better than that of the previ-
ously identified best memory cell mc then add the 
candidate (mc-candidate) to memory set M.      
Additionally,if the affinity of mc and mc-
candidate below the affinity threshold, then re-
move mc from M.  

3. Cycle. Repeat step 2 until all antigenic patterns       
have been presented.  

2.2   Fuzzy Resource Allocation Method  

The competition of resources in AIRS allows high-affinity ARBs to improve. Accord-
ing to this resource allocation mechanism, half of resources are allocated to the ARBs 
in the class of Antigen while the remaining half is distributed to the other classes. The 
distribution of resources is done according to a number that is found by multiplying 
stimulation rate with clonal rate. In the study of Baurav Marwah and Lois Boggess, a 
different resource allocation mechanism was tried [5]. In their mechanism, the Ag 
classes occurring more frequently get more resources. Both in classical AIRS and the 
study of Marwah and Boggess, resource allocation is done linearly with affinities. 
This linearity requires excess resource usage in the system that results long classifica-
tion time and high number of memory cells.  

In this study, to get rid of this problem, resource allocation mechanism was done 
with fuzzy logic. So there existed a non-linearity because of fuzzy rules. The differ-
ence in resource number between high-affinity ARBs and low-affinity ARBs is bigger 
in this method than in classical approach. 
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    The input variable of Fuzzy resource allocation mechanism is stimulation level of 
ARB hence the output variable is the number of resources that will be allocated to that 
ARB. As for the other fuzzy-systems, input membership functions as well as output 
membership functions were formed. The input membership functions are shown in 
Fig. 1.  

Fig. 1. Input membership functions 

The input variable, ARB.stim, varies between 0 and 1.  A membership value is cal-
culated according to this value using input membership functions.  In this calculation, 
two points are get which are the cutting points of membership triangles by the input 
value, ARB.stim. Also these points are named as membership values of input variable 
for related membership function. The minimum of these points is taken as the mem-
bership value of input variable x, ARB.stim (Eq. (1)).  

μA∩B (x) = min (μA(x), μB(x)), x∈X. (1) 

Here in Eq. (1), μA(x) is the membership value of x in A and μB(x) is the membership 
value of x in B, where A and B are the fuzzy sets in universe X. The calculated input 
membership value is used to get the output value through output membership func-
tions that are shown in Fig. 2. 

Fig. 2. Output membership functions 

In the x-axis of this Figure, allocated resource number that will be calculated using 
the membership functions for the ARB is shown which changes between 0-10. The 
weight in the y-axis that is the input membership value get as explained above inter-
sects the membership triangles at several points.  
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Here mf1, mf2…etc are the labels of input membership triangles and mf1’, 
mf2’…etc are the labels of output membership values. The rules in Table 1 define 
which points will be taken to average. For example if the input value cuts the triangles 
mf1 and mf2 among the input membership functions, then the points to be averaged 
will be only the ones of mf1’ and mf2’ triangles in the output membership functions.  

These linguistic values were determined in such a manner that the allocated re-
source number for ARBs which have stimulation values between 0 and 0.50 will be 
less while for ARBs which have stimulation values between 0.50 and 1 will be more. 

2.3   Measures for Performance Evaluation in AIRS  

In this study, the classification accuracies for the datasets were measured according to 
the Eq. (2). [1]: 
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i i
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=

otherwise
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tassess

0
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In equation 3, T is the set of data items to be classified (the test set), t T, t.c is the class of the 
item t, and classify (t) returns the classification of t by AIRS. 

For test results to be more valuable, k-fold cross validation is used among the re-
searchers. It minimizes the bias associated with the random sampling of the training 
[5]. In this method, whole data is randomly divided to k mutually exclusive and ap-
proximately equal size subsets. The classification algorithm trained and tested k 
times. In each case, one of the data subsets is taken as test data and the remaining 
folds are added to form training data. Thus k different test results exist for each train-
ing-test configuration. The average of these results gives the test accuracy of the algo-
rithm [5]. We used this method as 10-fold cross validation in our applications. But we 
also conducted our experiments in such a way that there runs, one for each of the 
possible configurations of the traing versus test data set. The average of these three 
test results gave us the test result for each fold. So we obtained 30 results in total to 
average. 

3   Fuzzy-AIRS Performance Analysis 

The classification performance of Fuzzy-AIRS was analyzed in outdoor image data set.  

3.1   Outdoor Image Data Set 

The problem to be solved here is classification of outdoor image dataset. This dataset 
was taken from Vision Group, University of Massachusetts in 1990 with the contribu-
tions of Carla Brodley.  In image segmentation data set, the instances were drawn 
randomly from a database of 7 outdoor images. The images were hand segmented to 
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create a classification for every pixel. Each instance is a 3x3 region. In training data 
there are 210 instances and in test data there are 2100 instances with 19 continuous 
attributes [2, 3]. 

In the data set, the third attribute is the same for all inputs therefore while the simu-
lations are being done this attribute is not added to network. The existing seven 
classes are grass, path, window, cement, foliage, sky, and brickface [2, 3].  

Fuzzy-resource allocation mechanism provided Fuzzy-AIRS to classify Outdoor 
Image data set with 90.00% classification accuracy. The accuracy reached with the 
use of AIRS was 88.2%.  

The results obtained by Fuzzy-AIRS and AIRS for Outdoor Image dataset is pre-
sented in Table 1.  The values of used resource number and classification time in the 
table are recorded for the highest classification accuracy.  

Table 1. Obtained results by Fuzzy-AIRS and AIRS for Outdoor Image Dataset 

 
Outdoor 

Image 
dataset 

Classification ac-
curacy 

(%) 

Number of        
resources used in 

classification algo-
rithm 

Classification 
Time 

(Sec) 

AIRS 88.20 700 180 
FuzzyAIRS 90.00 400 60 

The classification accuracy otained by Fuzzy-AIRS for Outdoor Image dataset is 
the highest one among the classifiers reported in UCI web site. The comparison of 
Fuzzy-AIRS with these classifiers with respect to the classification accuracy is shown 
in Table 2. 

Table 2. Fuzzy-AIRS’s classification accuracy for Outdoor Image dataset problem with classi-
fication accuracies obtained by other methods in UCI web site 

Author(Year) Method Classification 
Accuracy (%) 

Tin and Kwork (1999) SVM 83.00 
Lim et.al. (2000) Decision Trees 85.01 
Tolson (2001) k-NN 85.2 
Ço kun and Yildirim (2003) PNN 87.6 
Ço kun and Yildirim (2003) GRNN 86.7 
Our study (2005) AIRS 88.2 
Our study (2005) Fuzzy-AIRS 90.00 

 
  The considerable difference between the accuracies of Fuzzy-AIRS and the classifier 
that reached highest accuracy previously can be seen easily from the table. We don’t 
include AIRS for this comparison because we want to emphasize the classification 
power of Fuzzy-AIRS over the other classifiers in the table.  
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4   Conclusions 

In this study, the resource allocation mechanism of AIRS that is among the most im-
portant classification systems of Artificial Immune Systems was changed with a new 
one that was formed using fuzzy-logic rules.   

In the application phase of this study, Outdoor image dataset data set was used. In 
the classification of this dataset, the analyses were conducted both for the comparison 
of reached classification accuracy with other classifiers in UCI web site and to see the 
effects of the new resource allocation mechanism.  

According to the application results, Fuzzy-AIRS showed a considerably high per-
formance with regard to the classification accuracy for Outdoor image dataset. The 
reached classification accuracy of Fuzzy-AIRS for Outdoor image dataset was 
90.00% which was the highest one among the classifiers reported in UCI web site. 
With this result, it is going clearer that AIRS is ready for real world problems with 
some improvements possibly done.  

Beside of this success, Fuzzy-AIRS reduced the classification time with respect to 
AIRS approximately by the amount of 66.7% for Outdoor image dataset. This was the 
result of decrease in resource number done by fuzzy-resource allocation. If we con-
sider the importance of classification time for image data and large data sets, this 
improvement makes AIRS more applicable. An increase in classification accuracy 
was also obtained by Fuzzy resource allocation over the AIRS that is 1.8%.    
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Abstract. We propose a technique to compute the fraction of boar spermatozoid
heads which present an intracellular density distribution pattern hypothesized as
normal by veterinary experts. This approach offers a potential for digital image
processing estimation of sperm capacitation which can substitute expensive stain-
ing techniques. We extract a model distribution from a training set of heads as-
sumed as normal by veterinary experts. We also consider two other training sets,
one with heads similar to the normal pattern and another formed by heads that
substantially deviate from that pattern. For each spermatozoid head, a deviation
from the model distribution is computed. This produces a conditional probability
distribution of that deviation for each set. Using a set of test images, we deter-
mine the fraction of normal heads in each image and compare it with the result of
expert classification. This yields an absolute error below 0.25 in the 89% of the
samples.

1 Introduction

In the last years, digital image processing and analysis are used for computer assisted
evaluation of semen quality with therapeutic goals or to estimate its fertility by means
of spermatozoid motility and morphology.

Boar artificial insemination presents more advantages than the natural one: reduc-
tion of the number of boars in a farm, maximization of genetic improvements, homo-
geneous production lots, fertility control of males, and also savings in time and work.
Sperm quality analysis is the basic means to avoid infertility problems and to identify
boars with the best reproductive features. Generally, four factors are considered to eval-
uate boar sperm quality: concentration, motility, morphology and acrosome integrity
[1]. For instance, if a given sample contains more than 30% of abnormal spermatozoa,
the fertility will be reduced. Computer programs are essential tools in such an evalua-
tion because of the complexity of sperm quality estimation. Digital image analysis can
be used to assess this problem.

Fourier descriptors and neural nets yield classification error rates similar to the re-
sults obtained by experts in evaluation of human spermatozoid head morphology [2].

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 88–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Statistical Approach to Boar Semen Head Classification 89

Most of the commercial systems in this area are based on motility measures (Hobson
Tracking and Mika Medical) [3] or shape abnormalities (Cell-Morf of Motion Analysis)
[4]. Hamilton-Thorn combines both features and has a specific module for boar semen
[5]. Several morphometric measures are computed by the Sperm Class Analyzer of Mi-
croptic [6]. However, some disadvantages are encountered due to the specific design
for human spermatozoa. Also aspects like density distribution or intracellular texture
are not considered.

Various features are deployed in spermatozoid assessment with digital images, such
as cellular motility [7], head abnormalities and distal or proximal droplets. Acrosome
integrity and plasma membrane integrity determine the sperm viability because their
enzymes take part in the oocyte penetration process. For instance, a pear shaped head,
acrosome lifting or a detached acrosome are abnormalities that cause fertility reduc-
tion. Spermatozoid heads present a variety of cellular textures that are determined by
their corresponding cytoplasmic densities. New research is directed towards finding a
correlation between certain patterns of intracellular density distribution and semen fer-
tility. In this approach, veterinary experts first assume that a certain intracellular density
distribution is characteristic of healthy cells. Then the fraction of spermatozoid heads
in a sample which have intracellular distributions that are sufficiently similar to the as-
sumed model distribution is determined. Applying traditional techniques as vital and
fluorescent stains, experts assess the sperm capacitation of such a sample, and try to
find a correlation between the above mentioned fraction and semen fertility. The goal
is to find a pattern of intracellular density distribution, such that the fraction of sperm
heads that exhibit such a pattern has high correlation with the semen fertility as deter-
mined by traditional techniques. If successful, this approach can lead to the substitution
of expensive staining techniques for fertility evaluation by inexpensive image analysis
techniques.

In the current work, we analyse grey-level images of boar semen samples obtained
with a phase-contrast microscope, Fig. 1a. More specifically, we study the intracellular
density distributions of the spermatozoid heads. Using a training set of images of heads
that have been hypothesized by an expert to be “normal”, we create a model intracellular
density distribution and use it to estimate the fraction of heads in a sample that are
sufficiently similar to the model distribution. The goal is to determine automatically the
fraction of heads that match an expert’s idea of how a normal healthy cell should look
like.

In Section 2, we present the methods we have used and the obtained results. Dis-
cussion and conclusions are given in Section 3.

2 Methods and Results

2.1 Image Acquisition, Preprocessing and Head Segmentation

Fresh boar semen sample images of size 1600×1200 pixels were captured using a digi-
tal camera connected with a phase-contrast microscope at ×40 magnification. They are
converted to grey-level images. Each image presents a variable number of spermatozoa
whose heads are in different orientations just as tails withouth head, agglutinated heads



90 L. Sánchez, N. Petkov, and E. Alegre

and debris. Using morphological closing, holes in the contours of the heads are filled
and the spermatozoid tails are removed. In a next segmentation stage, spermatozoid
heads are separated from the background deploying Otsu’s method to find a threshold
that separates the heads from the background [8]. Heads near the boundary of the image
as well as the ones with an area smaller than an experimental obtained value of 45% of
the average head area are not considered. Fig. 1b shows a typical image obtained by the
above mentioned preprocessing and segmentation.

(a) (b)

Fig. 1. (a) Sample image of boar sperm using a phase-contrast microscope. (b) Image obtained
after preprocessing and segmentation. The spermatozoid heads are grey-level distributions on a
black background.

2.2 Head Orientation and Re-scaling

Taking into consideration that a spermatozoid head presents an oval shape, for each
of the spermatozoid heads in an image (Fig. 2a), we determine a major and a minor
axis of the ellipse that fits into the head by applying principal component analysis.
Subsequently, we consider the grey-level distribution in the head in these (head-specific)
principal component coordinates. In practice, we rotate the head image so that the major
and minor axes of the concerned ellipse coincide with the x and y axes, respectively,
Fig. 2b. According to the empirical measures, a normal boar spermatozoid head takes
an oval shape which is from 4 to 5 μm wide and from 7 to 10 μm long. We re-scale all
head images to size 19 × 35 pixels. Next, for each head we consider the 2D function
that is defined by the grey levels of those pixels of the head that lie in the fitting ellipse
with a minor axis of 19 pixels and a major axis of 35 pixels, Fig. 2c.

2.3 Brightness and Contrast Normalization

Sample images contain heads with diverse intracellular distributions. Three areas can
be distinguished in a head image: a darker region which corresponds to the post nucleus
cap, an intermediate light area, and the acrosome that covers the nucleus region. How-
ever, the contrast between the regions and the average head brightness are not the same
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(a) (b) (c)

Fig. 2. (a) Image of a spermatozoid head obtained after preprocessing and segmentation. (b) Ro-
tated head image. (c) 2D grey-level distribution defined in an ellipse fitting in a head image
re-scaled to a size of 19 × 35.

across different images. To deal with that, we carry out a linear transform on the grey-
levels of the 2D function of each head, such that after this transform the 2D functions
of all heads have the same mean and standard deviation. More precisely, let f(x, y) be
the 2D grey-level function defined on a region S enclosed by an ellipse with main axes
19 and 35 pixels. We transform the function f(x, y) into a function g(x, y) defined on
S by:

g(x, y) = af(x, y) + b, (1)

where the coefficients a and b are defined as follows:

a =
σg

σf
, b = μg − aμf . (2)

The mean μf and the standard deviation σf of f are computed from f and the mean μg

and the standard deviation σg of g are fixed to μg = 100 and σg = 8 since the sper-
matozoid head images assumed as “potentially normal” by experts take around those
values for their means and standard deviations.

2.4 Definition of a Model Head Intensity Distribution

Next, we compute a model 2D intensity distribution function m(x, y) as an average of a
given number of 2D intensity distribution functions obtained from the images of heads
that have been hypothesized to be “potentially normal” by experts, Fig. 3a. Such heads
are characterized by an appropriate intracellular density distribution according to the
regions: dark post nucleus cap, light intermediate area and slightly darker acrosome.
Let gi(x, y), i = 1 . . . n, be n such functions that were obtained from images of normal
heads by applying the above given pre-processing steps of re-scaling and contrast and
brightness normalization. In our experiments we took the images of n = 34 such heads
that form our “model” training set M. We define the model 2D intensity distribution
function m(x, y) as a pixel-wise average of these functions (Fig. 4):

m(x, y) =
1
n

n∑
i=1

gi(x, y) . (3)
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(a)

(b)

Fig. 3. Examples of heads that were classified by an expert as having distributions that are (a)
similar and (b) not similar to an assumed normal density distribution

Fig. 4. Intensity map of the model intensity distribution function obtained as an average of the
intensity distributions of a number of heads that were assumed to be “potentially normal” by an
expert

We also compute the standard deviation σ(x, y) in each pixel inside the ellipse to assess
the variability of the grey-levels for each point

σ(x, y) =

√√√√ n∑
i=1

(gi(x, y) −mi(x, y))2

n
. (4)

2.5 Measure of Deviation from the Model Distribution

We now consider a set of microscopic images of boar semen samples and isolate a
number of heads according the above described segmentation method. A re-scaled and
normalized intensity distribution function can be computed for each segmented head.
Let g(x, y) be the function that represents one of the heads observed in the image. We
now compute a measure of deviation d of this function from the model functionm(x, y)
using the L∞ norm:

d = max
(
|g(x, y) −m(x, y)|

σ(x, y)

)
. (5)

We compute the value of this measure of deviation from the model intensity distribution
for every head in an image. Different values are computed for different heads. Fig. 5a
presents a histogram of the values that were computed for a group of 44 heads that were
hypothesized to be normal by an expert from the isolated head images (Fig. 3a). These
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heads form our “normal” training set N and yield values for d from 2 to 5.2. This
histogram defines a conditional probability distribution P (d|n) of observing deviation
value d for a normal head. Similarly, Fig. 5b presents a histogram of the values that were
computed for a group of 82 heads (from a “not-normal” or “bad” training set B) that
were classified as “not-normal” by an expert (Fig. 3b). The obtained values of d for each
head image of such set B fall in the range [3, 15]. This histogram defines a conditional
probability distribution P (d|b) of observing deviation value d for a not-normal head.

0 ≤ d ≤ 15
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(a) (b)

Fig. 5. Histograms of the values of the deviation from the model function for (a) normal and (b)
not-normal heads. These histograms can be seen as conditional probability distributions P (d|n)
and P (d|b), respectively.

2.6 Estimation of the Fraction of Normal Heads in an Image

Considering a new boar semen sample, we next estimate the fraction of normal heads.
For this purpose, a deviation value d is computed for each head in a microscopic image
of the semen sample and a histogram of the observed values is built. This histogram
defines a distribution P (d) for which in theory holds:

P (d) = P (d|n)Pn + P (d|b)(1 − Pn) . (6)

where P (d|n) and P (d|b) are the above defined conditional probabilities of observing
deviation value d for a normal and a not-normal head, respectively, and Pn and 1 − Pn

are the probabilities that a given head is normal or not-normal, respectively. In the above
equation, P (d), P (d|n) and P (d|b) are considered as known and Pn as unknown. This
equation defines an overdetermined system of linear equations for Pn that contains one
equation for each histogram bin of d. The approximate solution to this system according
to the least squares method is given by:

Pn =
∑

d(P (d) − P (d|b))(P (d|n) − P (d|b))∑
d(P (d|n) − P (d|b))2 . (7)

Using the distribution P (d) for the considered sample and the conditional probabili-
ties P (d|n) and P (d|b) pre-computed on the training sets N and B of sample images,
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the above formula is an effective means to compute the fraction Pn of normal heads
in a sample. Note that we estimate this fraction without having to classify each head
separately as normal or not normal.

2.7 Experimental Results

A test set T of 100 images of different samples of boar sperm was considered. After
preprocessing, segmentation, brightness and contrast normalization, each head was de-
scribed by a 2D grey level distribution function and a deviation of this function from the
model distribution function as defined above was computed. The heads obtained from
a given sample yield a histogram P (d) of the deviation from the model for that sample.
Then, the fraction Pn of heads with a normal intracellular distribution was evaluated
for each test image according to the method described above. The obtained 100 values
are illustrated by a box-and-whisker diagram shown in Fig. 6a. These values were com-
pared with the values of the fraction Pe of normal heads in the concerned images as
determined by an expert (Fig. 6b). The values of the absolute error Pn − Pe computed
for the different test images are illustrated by the box-and-whisker diagram shown in
Fig. 6c. The absolute error is below 0.25 for 89 of the 100 test images, between 0.25
and 0.32 for another 8 test images and below 0.47 for the 3 remaining images.
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Fig. 6. (a) Box-and whisker diagrams of the values of the fraction of normal heads determined by
means of the proposed method, and (b) by veterinary experts and (c) absolute error of the method
in comparison with the experts

3 Discussion and Conclusions

We proposed a novel approach to the analysis of images of boar spermatozoid heads in
order to describe and classify them by means of their intracellular distribution. Using
a training set M of spermatozoid head images that were hypothesized by a veterinary
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expert as potentially “normal”, we compute a model intracellular distribution for such a
head. For each head in an image we compute a value of dissimilarity of its intracellular
distribution to the model distribution. The histogram of dissimilarity values obtained
for the intracellular distributions of normal heads is different from the histogram ob-
tained for the distributions of heads that are considered by an expert as potentially not
normal. To build these histograms we use two other training sets (N and B). We use the
two histograms to estimate the fraction of heads in a semen sample image that would
be classified as “potentially normal” by an expert. The absolute error of our method
compared to a human expert is less than 0.25 in 89% of the sample images. That is an
encouraging result because this work is the first that uses cellular density information
instead of morphological features. Note that our algorithm gives systematically an over-
estimation of the concerned fraction. Our future work will be directed towards reducing
this error. We will also explore the potential of single head classification in which first
each head is classified individually as normal or not normal and the results for all heads
in a sample image are used to determine the concerned fraction of normal cells.

The absolute error defined above is not the final criterion for the performance of
our method because the classification by a human expert can differ from one session to
another and across experts. It is more important that, once the algorithm is trained to
evaluate the fraction of potentially normal heads in a sample, this fraction is correlated
with the sperm vitality of that sample as determined by means of staining techniques.
The potential of our approach in that respect will next be tested in veterinary praxis.
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Abstract. In this paper we describe a new mesh parametrization method
which combines the mean value coordinates and the Locally Linear Em-
bedding (LLE) method. The mean value method is extended to compute
the linearly reconstructing weights of both the interior and the bound-
ary vertices of a 3D triangular mesh, and the weights are further used
in the LLE algorithm to compute the vertex coordinates of a 2D planar
triangular mesh parametrization. Examples are provided to show the
effectiveness of this parametrization method.

1 Introduction

Triangular mesh parametrization aims to determine a 2D triangular mesh with
its vertices, edges, and triangles corresponding to that of the original 3D trian-
gular mesh, satisfying an optimality criterion. The technique has been applied in
a wide range of problems in computer graphics and image processing, including
texture mapping [9], morphing [7], and remeshing [4]. Extensive research has
been undertaken into the theoretical issues underpinning the method and its
practical application. For a tutorial and survey, the reader is referred to [3].

A well-known parametrization method is that proposed by Floater [1]. It is a
generalization of the basic procedure originally proposed by Tutte [8] which was
used to draw planar graphs. The basic idea underpinning this method is to use
the vertex coordinates of the original 3D triangular mesh to compute reconstruct-
ing weights of each interior vertex with respect to its neighbour vertices.These
weights are subsequently used together with the boundary vertex coordinates
on a plane to compute the interior vertex coordinates of a 2D triangular mesh.
A drawback of Floater’s parametrization method is that the boundary vertex
coordinates must be determined manually beforehand.

There are many methods for computing the reconstructing weights. The sim-
plest one is Tutte’s barycentric coordinates [8]. Floater provided a method of
computing the weights in his first paper about parametrization [1], which has a
so-called shape-preserving property. More recently, Floater computes mean value
coordinates as the reconstructing weights[2]. These mean value coordinates per-
form better than the earlier shape-preserving weights of [1].
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The Linearly Local Embedding (LLE) [5] is a method of mapping high di-
mensional data to a low dimensional Euclidean space. The idea underlying the
method is to use the high dimensional data to compute locally linear recon-
structing weights for each data point. These weights are then used to compute
the point coordinates in a low dimensional data space. It can be used in a nat-
ural way to map 3D coordinates to 2D coordinates. Thus it can be used as a
parametrization method. However, because for 3D triangular meshes, the dimen-
sion of the data (here it is 3) is usually less than the number of neighbours of
any data point, the original algorithm does not compute optimal weights. Hence,
LLE is not a good parametrization method.

In this paper, we combine the advantages of both the mean value coordinates
and LLE to develop a new parametrization method. The paper is organised
as follows. Section 2 introduces the basic problem and provides a overview of
the proposed algorithm. Sections 3 and 4 describes the mean value coordinates
and the LLE method, and their adaptation for use in our algorithm. Section 5
provides some experimental examples of the method. Finally, Section 6 draws
some conclusions.

2 Problem and Algorithm Overview

Consider a triangular mesh T = T (V,E, F,X) with vertex set V = {i : i =
1, 2, ..., N} and corresponding coordinate set X = {xi : xi ∈ Rd, i ∈ V } (d =
2 or 3), edge set E = {(i, j) : (i, j) ∈ V × V }, and triangular face set F =
{(i, j, k) : (i, j), (i, k), (j, k) ∈ E}. Here an edge (i, j) is represented by a straight
line segment between vertices i and j, and a triangular face (i, j, k) is a triangular
facet bounded by three edges (i, j), (i, k) and (j, k). When d = 2, T is drawn
on a plane and represents a planar triangular mesh, while d = 3, T is drawn in
a 3-dimensional space and represents a 3D triangular mesh. A triangular mesh
is called valid if the only intersections between edges are at common end points
(vertices) and the only intersections between triangular faces are on the common
edges. Hereafter, when a triangular mesh is referred without qualification, it
implies that the triangular mesh is valid.

The parametrization is made on a valid 3D triangular mesh. A parametriza-
tion of a valid 3D triangular mesh T = T (V,E, F,X) is any valid planar tri-
angular mesh Tp = Tp(V,E, F, Y ) with Y = {yi : yi ∈ R2, i ∈ V } being the
corresponding coordinates of V .

The parametrization algorithm proposed here combines the mean co-ordinates
of Floater and the LLE method. It consists of the following three steps.

– Based on the algorithm proposed by Floater [2], the mean value coordinates
(or the reconstructing weights) are computed for each vertex using the vertex
coordinates X .

– Using the LLE algorithm [5], the weights obtained above are used to recover
the vertex coordinates Y of the planar triangular mesh.
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– If Tp(V,E, F, Y ) is not valid, then the coordinates of the boundary vertices
are fixed, and the coordinates of the interior vertices are computed using
Floater’s algorithm [1].

Note that in Step 1 of our algorithm, the reconstructing weights of both the
interior and boundary vertices are computed, while only the weights of interior
vertices are computed in Floater’s algorithm [1,2].

3 Mean Value Coordinates

Given a 3D triangular mesh T = T (V,E, F,X), where the vertex set V is divided
into disjoint boundary and interior vertex subsets, i.e. V = VI ∪ VB , where VI

is the interior vertex set, VB is the boundary vertex set and VI ∩ VB = ∅. The
parametrization method proposed by Floater [1] is a generalization of Tutte’s
method of drawing a planar graph [8], which consists of the following steps.

– For each interior vertex i ∈ VI , assign a non-negative weight Wi,j to each of
its incident edges (i, j) ∈ E such that

∑
(i,j)∈E Wi,j = 1, and Wi,j = 0 for

all (i, j) /∈ E.
– For each boundary vertex i ∈ VB, determine a coordinate yi ∈ R2 in the

plane such that the order of the boundary vertices in the plane remains the
same as that of the original ones, and they form a closed convex polygon.

– Solve the following linear system for the coordinates of the interior vertices

yi =
∑

(i,j)∈E

Wi,jyj, i ∈ VI . (1)

There are some important features of this algorithm that deserve further
comment. In the first step, although Tutte’s barycentric coordinates [8] and
Floater’s early shape-preserving weights [1] can be used here as the reconstruct-
ing weights, a better choice are the mean value coordinates recently proposed
by Floater [2]. The mean value coordinates are computed using the formula

Wi,j =
λi,j∑

(i,k)∈E λi,k
, λi,j =

tan(αi,j−1/2) + tan(αi,j/2)
‖xj − xi‖

, (2)

where αi,j−1 and αi,j are the angles between the edge (i, j) and its two neigh-
bouring edges (i, j − 1) and (i, j + 1) (see Fig. 1(a)).

Next, we consider the second step. The boundary vertex coordinates are de-
termined manually. This a drawback since if the boundary vertex coordinates are
selected inappropriately, the resulting parametrization is poor. In our method,
the boundary vertex coordinates are determined by the LLE method. Hence,
although we dispense with this step, the weights of boundary vertices must still
be computed.
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(a) (b) (c)

Fig. 1. Elements for the computation of mean value coordinates: (a) interior vertex,
(b) general boundary vertex, (c) boundary vertex in case with additional neighbour
vertex

Here, we still use the mean value coordinates as the weights of the boundary
vertices. For the boundary vertex i, the weights λi,k and λi,k′ of its neigbouring
boundary vertices k and k′ are computed using the formula (refer to Fig. 1(b))

λi,k =
tan(αi,k−1/2) + tan(αi,k/2)

‖xk − xi‖
, λi,k′ =

tan(αi,k/2) + tan(αi,k′/2)
‖xk′ − xi‖

, (3)

Because αi,k is not strictly less than π, two problems arise when (2) and
(3) are used to compute Wi,j . The first problem occurs when αi,k = π, i.e.
tan(αi,k/2) = ∞, which causes a computational overflow. The solution of this
problem is to simply set λi,k = 1/‖xk − xi‖, λi,k′ = 1/‖xk′ − xi‖, and λi,j = 0
for all other j ∈ V . The second problem occurs when

∑
(i,j)∈E λi,j = 0, which

causes a divide-by-zero error when Wi,j is computed. In this case, an additional
vertex l, which is originally not the neighbour vertex of i, but that of one of i’s
neighbouring vertices, is now taken as the neighbour vertex of i in computing
the mean value coordinates (see Fig. 1(c)).

After computing the reconstructing weights, we depart from Floater’s version
of Tutte’s algorithm. Our idea here is to borrow ideas from LLE algorithm to
compute the co-ordinates of the interior vertices.

4 Locally Linear Embedding

In this paper, we only exploit a component part of the LLE method for mesh
parametrization. However, for completeness and further analysis of this method,
the complete LLE algorithm is described. The LLE algorithm consists of follow-
ing three steps:

– For each data point xi, find the K nearest neighbours {xi1, · · · , xiK}.
– Compute the weights Wi,j that best linearly reconstruct xi from its neighours

through minimizing the cost function
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E(W ) =
∑

i

‖xi −
∑

j

Wi,jxj‖2 (4)

with the additional constraints
∑

j Wi,j = 1, and Wi,j = 0 if xj is not the
K nearest neighbour of xi.

– Compute the low dimensional embedding vector yi that is best reconstructed
by Wi,j by minimizing the embedding cost function

Φ(Y ) =
∑

i

‖yi −
∑

j

Wi,jyj‖2 (5)

with additional constraints
∑

i yi = 0 and 1
N

∑
i yiy

T
i = I.

When the LLE method is directly used for parametrization of a 3D triangular
mesh, the first step (i.e. the selection of the K nearest neighbours) may seem
superfluous, since the 3D triangular mesh has its own natural neighbourhood.
However, the number of neighbours significantly affects the performance of the
algorithm. If the number of neighbours is too small, then the reconstructed
embedding will be poor. Unfortunately, the numbers of natural neighbours in
a triangular mesh are usually small. Hence, better results can be obtained by
choosing a suitable value of K.

The second step attempts to locate the best weights that minimize (4). How-
ever, because for most of the interior vertices, the valency (the number of neigh-
bour vertices) is greater than 3, the solution of (4) has been conditioned in the
original LLE algorithm [5], thus the weights are in fact not optimal. In this pa-
per, the mean value coordinates described in Section 3 are used as alternative
weights to obtain a better result.

After the weights are obtained, yi in Step 3 can be easily obtained by using
the eigenvectors of the matrix M = (I −W )T (I −W ).

Let Λ = diag(λ1, λ2, λ3, ...) be the matrix with the ordered eigenvalues
0 = λ1 ≤ λ2 ≤ λ3 ... as diagonal elements, and let Φ = (φ1|φ2|φ2|...) be the
matrix with the corresponding eigevalues as columns. The eigendecomposition
of the matrix M is M = ΦΛΦT . The eigenvector of this matrix corresponding to
eigenvalue λ1 = 0 is the unit vector with equal components, and is discarded. The
eigenvectors φ2 and φ3 give us the 2D coordinates Y , and yi = (φ2(i), φ3(i))T .

Now that Y has been obtained, then Tp(V,E, F, Y ) gives us a parametrization
of T (V,E, F,X). In most of the cases, Tp(V,E, F, Y ) is a valid planar triangular
mesh. However, when the original 3D mesh has too high curvatures on some
points, the above resulting planar triangular mesh may fold over. In this case,
we only need to select the 2D coordinates of the boundary vertices from Y and
adjust their order if necessary. Fixing the coordinates of the boundary vertices,
the coordinates of the interior vertices can then be computed by solving equation
system (1), and finally, a valid planar triangular mesh Tp(V,E, F, Y ) is obtained.

5 Examples

In this section, two examples are provided to illustrate some of the properties
of the algorithm proposed in this paper. In the first example, we consider an
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S-shaped manifold [6]. It is an intrinsically two dimensional manifold. Figure
2(a) shows a regular sample of N = 600 data points and its triangulation in the
3D space. Figure 2(b) shows the parametrization using the algorithm proposed
here, and Fig. 2(c) shows the result using LLE with K = 12 neighbours per data
point. It is evident that the algorithm of this paper performs better than the
LLE algorithm. In particular, the current algorithm results in a parametrization
with an appearance which is closer to the original one than that obtained by the
LLE algorithm.

(a) (b) (c)

Fig. 2. Parametrization of S-shape manifold: (a) regular triangulation, (b) parametriza-
tion using our algorithm, (c) parametrization using LLE algorithm with K=12

Figure 3(a) shows a random sample of N = 600 data points on the same
S-shape manifold. Figure 3(b) shows the parametrization using the algorithm
proposed here, and Fig. 3(c)˜(e) shows the result obtained using LLE with K =
6, 12, 24 neighbours per data point, respectively. Again, it can be seen that the
proposed algorithm results in a parametrization of better appearance. Moreover,
the performance of the LLE algorithm is highly dependent on a suitable choice
of the parameter K. When K is too small (here, K = 6) or too large (K = 24),
the resulting planar triangular mesh is invalid because some of the interior or
boundary edges cross each other (see Fig. 3(c) and 3(e)). The second example
uses the peaks function of Matlab. Figure 4(a) shows an irregular triangulation
of this function. Figure 4(b) shows the result using only the first two steps of the
proposed algorithm and Fig. 4(c) shows a local zoom-in part of Fig. 4(b). It can
be seen that some triangles are folded over, and the resulting parametrization is
invalid. From the other point, however, we can see that the boundary vertices
have been self-adjusted on the plane, and thus we can use these coordinates of
the boundary vertices and perform Step 3 of the proposed algorithm to obtain
a valid parametrization of the original 3D triangular mesh.

We have also scaled down the z-coordinates by 1/3 and directly obtained a
valid parametrization using just the first two steps of the proposed algorithm.
The result is shown in Fig. 4(d). Figure 4(e) is the result of texture mapping using
the parametrization of Fig. 4(d). It can be seen that the resulting parametrization
is suitable for the texture mapping application.
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6 Conclusion

In this paper, we have combined the mean value coordinates and the LLE
method to construct a new parametrization method. Although the parametriza-
tion method using mean value coordinates has a drawback of requiring manually
determined boundary vertex coordinates and the LLE method has the drawback
that reconstructing weights are not optimal, a combination of these two meth-
ods have been proved to be reasonable. We have used examples to show that the
proposed parametrization method can automatically find good boundary vertex
coordinates and it is practically useful.
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Abstract. This paper focuses on variational image analysis on a sphere.
Since a sphere is a closed Riemannian manifold with the positive constant
curvature and no holes, a sphere has similar geometrical properties with
a plane, whose curvature is zero. Images observed through a catadioptric
system with a conic-mirror and a dioptric system with fish-eye lens are
transformed to images on the sphere. Therefore, in robot vision, image
analysis on the sphere is an essential requirement to the application
of the omni-directional imaging system with conic-mirror and fish-eye
lens for navigation and control. We introduce algorithms for optical flow
computation for images on a sphere.

1 Introduction

In this paper, we deal with image analysis on a sphere. A sphere has mathemat-
ically important geometrical properties.

1. A sphere is a closed manifold without any holes.
2. The mean curvature on a sphere is constant and positive. Therfore, a spher-

ical surface and a plane, which is the manifold with zero curvature, have
geometrically similar properties [1].

3. Functions on a sphere are periodic.
4. The stereographic projection provides a one-to-one correspondence between

points on a plane and on a sphere. Therefore, a function on a plane is bijec-
tively transformed to a function on a sphere.

Since variational method provides a coordinate-free expression of image analysis
such as optical flow computation, noise removal, edge detection, in-printing [2,3]
and boundary detection and tracking [2,13,14]. We extend the the variational-
method-based image-analysis algorithms as fundamental tools for image analysis
on a sphere. Spherical motion field on the spherical retina has some advantages
for ego-motion estimation of an autonomous mobile observer [4,5]. Furthermore,
the spherical retina is interested both from robot vision and biological vision.

– An omni-directional image captured by conic-mirror-based catadioptric sys-
tem is transformed to images on a sphere [6].

– A view captured by the insect compound eye is modelled as an image on a
sphere [8].

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 104–111, 2005.
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Since the omni-directional imaging system is widely used as imaging system
of mobile robots, image analysis on a sphere is required in robot vision. Further-
more, in biological vision, spherical views are fundamental tools for studies on
ego-motion estimation of insects with compound eyes in environments. Motion
analysis and tracking of obstacles and targets are fundamental requirements for
robot vision. In this paper, as an application of image analysis on a sphere, we
introduce optical flow computation for motion analysis on a sphere and edge
detection for tracking of the boundary of a region on a sphere.

2 Optical Flow Computation on the Sphere

Setting x = (x, y, z)� to be a point on a space R3, for 0 ≤ θ ≤ π and 0 ≤ φ < 2π,
a point on the unit sphere is parameterised as x = cosφ sin θ, y = sin φ sin θ, and
z = cos θ. Therefore, a function on the unit sphere S2 is parameterised as I(θ, φ).
The vector expressions of the spatial and spatio-temporal gradients on the unit

sphere are ∇S =
(

∂
∂θ , 1

sin θ
∂

∂φ

)�
and ∇St =

(
∂
∂θ , 1

sin θ
∂

∂φ , ∂
∂t

)�
, respectively. For

temporal image I(θ, φ, t) on the unit sphere S2, the total derivative is

d

dt
I =

∂

∂θ
I
dθ

dt
+

1
sin θ

∂

∂φ
I
dφ

dt
+

∂

∂t
I. (1)

The solution q = (θ̇, φ̇)� = (dθ
dt ,

dφ
dt )� of the equation

q�(∇SI) + It = s�(∇StI) = 0, (2)

for s = (q�, 1)� = (θ̇, φ̇, 1)�, is optical flow of image I on the unit sphere S2.
The computation of optical flow from eq. (2) is an ill-posed problem. Horn-

Schunck criterion for the computation of optical flow [9,10] on the unit sphere
is expressed as the minimisation of the functional

J(θ̇, φ̇) =
∫

S2

(
|s�(∇StI)|2 + α(||∇S θ̇||22 + ||∇Sφ̇||22)

)
sin θdθdφ, (3)

where L2 norm on the unit sphere is defined by

||f(θ, φ)||22 =
∫

S2
|f(θ, φ)|2 sin θdθdφ. (4)

The Euler-Lagrange equations of this minimisation problem are

∇�
S · ∇S θ̇ =

1
α

∂I

∂θ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
,

∇�
S · ∇Sφ̇ =

1
αsinθ

∂I

∂φ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
. (5)
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From this system of equations, we have the system of diffusion-reaction equations
on the sphere as

∂

∂τ
θ̇ = ∇�

S · ∇S θ̇ −
1
α

∂I

∂θ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
,

∂

∂τ
φ̇ = ∇�

S · ∇S φ̇ − 1
αsinθ

∂I

∂φ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
(6)

for the computation of optical flow. For numerical computation, we adopt back-
ward Euler method.

Since q is a function of the time t, we accept the smoothed function

q(t) :=
∫ t+τ

t−τ

w(τ)q(τ)dτ,
∫ t+τ

t−τ

w(τ)dτ = 1, (7)

as the solution. Furthermore, we achieve the operation

q∗ = argument
(
medianΩ(q) {|q| ≤ T |medianM(minJ(q))|}

)
, (8)

which we call the double median operation [11].
The Nagel-Enkelmann criterion [12] for the optical flow computation on the

unit sphere is expressed as,

JNE(θ̇, φ̇) =
∫

S

(
|s�(∇StI)|2 + α(∇S θ̇

�NS∇S θ̇ + ∇Sφ̇�NS∇S φ̇)
)

sin θdθdφ,

(9)
where

NS =
1

(∂I
∂θ )2 + 1

sin2θ
( ∂I

∂φ )2 + 2λ2

(
1

sin2θ ( ∂I
∂φ )2 + λ2 − 1

sinθ
∂I
∂θ

∂I
∂φ

− 1
sinθ

∂I
∂θ

∂I
∂φ (∂I

∂θ )2 + λ2

)
. (10)

This minimisation criterion derives the Euler-Lagrange equation in the form of
system of equations as

∇�
S NS · ∇S θ̇ −

1
α

∂I

∂θ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
= 0,

∇�
S NS∇S φ̇ − 1

αsinθ
∂I

∂φ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
= 0. (11)

On the unit sphere, to solve this system of equation, we have a system of
diffusion-reaction equations

∂

∂τ
θ̇ = ∇�

S NS · ∇S θ̇ −
1
α

∂I

∂θ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
,

∂

∂τ
φ̇ = ∇�

S NS∇Sφ̇ − 1
αsinθ

∂I

∂φ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
. (12)

This system of equation is solved with the same scheme which we adopt to solve
the Euler-Lagrange equation derived by the Horn-Schunck criterion.
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For an image on the sphere and a weight function w(θ, φ) > 0, the Lucas-
Kanade criterion is expressed as the minimisation of the functional

JLK(θ̇, φ̇) =
∫ ∫

Ω⊂S2
w2(θ, φ, t)|s�∇StI|2 sin θdθdφdt = s�Lws, (13)

for the smoothed structure tensor on the sphere

Lw =
∫ ∫

Ω⊂S2
(w(θ, φ, t)∇StI(θ, φ, t))(w(θ, φ, t)∇StI(θ, φ, t))� sin θdθdφdt,

(14)
assuming that q = (φ̇, θ̇)� is constant in the finite region Ω. Therefore, setting
v = (a, b, c)� to be the eigenvector of the matrix L associated to the small-
est eigenvalue, we have the relation q = (a

c , b
c )� for c �= 0. For the achieve-

ment of Lucas-Kanade-criterion-based method to the accurate computation of
optical flow on a sphere, we are required to design an appropriate weight func-
tion and the window-control process based on the domain decomposition on the
sphere [?].

Table 1. Discretisation Parameters for Real-World Images

Parameter (H-S, N-E) α 1000

Parameter(N-E) λ2 10000

Parameter(L-K) T 4

Grid pitch Δθ 0.20◦

Grid pitch Δφ 0.20◦

Grid size (φ × θ) 1800 × 900

Discretisation pitch Δτ 0.002

Iteration times 2000

In Figure 1 we show the detected optical flow in the spherical representa-
tions by the Lucas-Kanade with the unit weight, the Horn-Schunck, and Nagel-
Enkelmann criteria from left to right. In these results, flows whose vector length
are shorter than 0.5 pixels for the Lucas-Kanade and Horn-Schunck criteria are
removed. Furthermore, for the Nagel-Enklemann criterion, flows whose vector
length are shorter than 0.01 pixels are removed. These results tell us that as
expected the Nagel-Enkelmann method detect the boundary of moving objects,
though the method fails to detect small motion. The Lucas-Kanade method re-
quires to design appropriate windows since it assumes the local stationarity on
the flow vectors. Furthermore, these results show the validity of the embedding
of the Horn-Schunck and Nagel-Enkelmann methods to the system of diffusion-
reaction equations. In Figure 1 (j) and (k) show a pair of successive cylindrical
images from a sequence of spherical images for the computation of optical flow.
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Fig. 1. Results of real world images: (a), (b), and (c) are spherical expressions of

computed by the Lucas-Kanade criterion, the Horn-Schunck criterion, and the Nagel-

Enkelmann criterion, respectively. The thresholds for (a), (b), and (c) are 0.5, 0.5 and

0.01 pixels, respectively. (d), (e), and (f), and (g), (h), and (i) are cylindrical expressions

of (a), (b), and (c), and images observed from the north poles. (j) and (k) are a pair

of successive cylindrical images of a sequence of spherical images.
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3 Boundary Detection on the Unit Sphere

Setting v(θ, φ) = (θ̇(θ, φ), φ̇(θ, φ))�, for an image I(θ, φ) on the unit sphere, the
minimisation criterion of the gradient vector flow (GVF) [13] is expressed as

JGV F (φ, θ) =
∫ θ

0

∫ 2π

0

μ(|v|22) + |∇SI(θ, φ)|2|v −∇SI(θ, φ)|2 sin θdθdφ. (15)

The GVF allows us to detect the boundary of gray-valued images [13]. Therefore,
the criterion of eq. (15) provides a boundary-detection algorithm for images on
the unit sphere. The Euler-Lagrange equations which minimise this functional
are

μ∇S · ∇S θ̇ − (θ̇ − Iθ)(I
2
θ +

1
sin2θ

I2
φ) = 0,

μ∇S · ∇S φ̇ − (φ̇ − 1
sinθ

Iφ)(I2
θ +

1
sin2θ

I2
φ) = 0. (16)

The solutions are computed using the system of the diffusion-reaction equations
on the sphere,

∂

∂t
θ̇ = μ∇S · ∇S θ̇ − (θ̇ − Iθ)(I2

θ +
1

sin2θ
I2
φ),

∂

∂t
φ̇ = μ∇S · ∇Sφ̇,−(φ̇ − 1

sinθ
Iφ)(I2

θ +
1

sin2θ
I2
φ). (17)

We show numerical examples of the boundary detection for synthetic data
on a sphere. In Figure 2 (a) and (b) show the cylindrical expression of synthetic
images on the sphere. (c) and (d) are the cylindrical expression of the boundaries
extracted using the gradient field flow of images (a) and (b), respectively. (e)
and (f) are images observed from north poles and (g) and (h) are boundaries on
the spheres. We set the parameters as shown in table 2. These results show that
our method extracts the boundary of a binary pattern on a sphere.

Table 2. Discretisation Parameters for the Computation of GVF

Reguralisation parameter μ 1

Grid pitch Δθ 0.25◦

Grid pitch Δφ 0.25◦

Grid size (φ × θ) 1440 × 360

Discretisation pitch Δτ 0.002

Iteration time 2000
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Fig. 2. Numerical results of the boundary extraction by the gradient vector flow. (a)

and (b) show the cylindrical expression of synthetic images on the sphere. (c) and

(d) are the cylindrical expression of the boundaries extracted the gradient field flow

of images (a) and (b), respectively. (e) and (f) are images observed from north poles

and (g) and (h) are boundaries on the spheres. (a) and (b) are binary and gray-value

images, respectively on the sphere.
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4 Conclusions

We have introduced some examples for image analysis on the sphere, which are
required from the context of robot vision. Since, the Hamiltonian-minimisation-
based variational methods for image analysis provide a coordinate-free expression
for the image analysis, our idea and extension of image analysis are applicable
to wide ranges of new problems, which would be interested in robot vision and
image analysis.
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Abstract. Digital photogrammetric processing of aerial and space ste-
reo images acquired with CCD-line scanners is widely used in today’s
remote sensing, surveying, and mapping of the Earth’s surface. Because
of considerable geometric distortions due to movements of a scanner
platform, the acquired images have to be corrected before processing.
A conventional approach consists of sequential correction and terrain
reconstruction stages. Its main drawback is that the former stage loses
calibration information for restoring terrain model in a world co-ordinate
frame, so that an extra processing is necessary to restore this informa-
tion. We propose a more flexible approach iteratively combining both the
stages. Experiments confirm that such processing holds much promise for
photogrammetric processing of the line scanner stereo images.

1 Introduction

Digital photogrammetric terrain reconstruction from space and aerial digital
images occupies a prominent place in modern remote sensing, surveying, and
mapping of the Earth’s surface. At present only scanners with digital CCD-line
sensors [5] can compete by spatial resolution and field of view with conventional
photogrammetric photocameras. But in contrast to these latter or a CCD frame
camera, the line scanner does not form central perspective projections assumed
in traditional photogrammetry. Also, scanner attitude disturbances due to con-
tinuous movements of an aerial or space platform result in heavy geometric dis-
tortions comparing to photographic images. Hence, terrain reconstruction from
the line scanner images differs much from traditional photogrammetric stereo,
e.g. the distortions have to be eliminated or at least reduced before the fur-
ther processing. Fortunately, today’s inertial and GPS measurements combined
with sophisticated signal processing provide precise estimates of dynamics of the
sensor platform for correcting the images up to a sub-pixel level.

Conventional stereo processing of line scanner images begins with an attitude
correction assuming a mean-altitude flat (horizontal) planar terrain. Then to
reconstruct actual terrain, one-to-one correspondence between 3D co-ordinates
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of each binocularly visible terrain point and 2D co-ordinates of corresponding
points in two or more corrected stereo images is established with stereo match-
ing. The matching specifies quantitatively (and visually) similar regions that
may represent the same terrain parts under their admissible geometric and pho-
tometric distortions. The main disadvantage of such two-stage approach is that
the correction stage loses information about spatial camera positions and orien-
tations and an additional processing is necessary later on to restore connections
between the original and corrected stereo data.

We propose a more flexible iterative approach to terrain reconstruction from
stereo pairs obtained by three-line scanners such as ADS40 [7] or WAOSS /
WAAC [8]. It is built upon the common observation that the attitude correction
assuming a constant-height planar terrain produces stereo images which be-
come “quasi-epipolar” under low spatial resolution. Epipolar geometry of binoc-
ular viewing relates 3D co-ordinates of each visible surface point to differences
between 2D x- and y-co-ordinates of two corresponding image points (pixels)
called x- and y-disparities, or parallaxes. True epipolar geometry means zero y-
disparities, and we call images quasi-epipolar if their y-disparities are relatively
small, e.g. less than one pixel. This feature is considerably weaker than the true
epipolar geometry but still allows for examining stereo correspondences only
along rows with the same y-coordinate of pixels in both the images. A digital
x-parallax map (DPM) for computing a digital terrain model (DTM) can be eas-
ily found with an appropriate row-by-row stereo matching of the quasi-epipolar
images. Stereo matching is an ill-posed mathematical problem because the same
stereo images are produced by a large number of different 3D surfaces due to
partial occlusions of and homogeneous textures on the surfaces. The matching
usually involves regularisation to bring the reconstructed DTM closer to visually
perceived terrain. Because the obtained DTM allows for more precise image cor-
rection, the quasi-epipolarity persists in the corrected higher-resolution images.

Section 2 below describes a general framework of correcting the line scan-
ner images. Our iterative terrain reconstruction and image correction algorithm
based on fast symmetric dynamic programming stereo is presented in Section 3.
Experimental results with images obtained by the WAOSS/ WAAC airborne
scanner and concluding remarks are given in Section 4.

2 Correction of the Line Scanner Imagery

We assume that interior calibration parameters of a line scanner such as its focal
length f and principal image point (x0, y0) as well as parameters of optical dis-
tortions are determined by classical (laboratory) measurements or directly from
image data during the correction process. Spatial attitude of a line scanner (in
terms of its optical centre position and optical axis orientation) is changing for
each captured scan-line along a flight path in accord with varying roll, pitch, and
yaw angles, flight velocity, and acceleration of an aerial or space platform. Thus
each initial image formed from the successive scan-lines has considerable geo-
metric distortions comparing to a central projection of the same terrain. With
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no precise knowledge of the platform movements, it is impossible to calculate
geometric relationships for the image points. Typically, spatial positions and
attitudes of the scanner are measured with a very precise combined global posi-
tioning (GPS) and inertial device like Applanix POS-AV 410 being an integral
part of the digital line scanner Leica Geosystems ADS40. After post-processing,
its absolute and relative positional error is 5–30 cm, and roll (ψ), pitch (θ), and
yaw (φ) angular errors are δφ = δθ = 0.008◦, and δψ = 0.015◦.

To exclude the distortions, an attitude correction using either accurate on-
board measurements or posterior estimates of the scanner attitude for each scan-
line has to be included into photogrammetric processing of the initial images.
Generally, the precise correction can be obtained only by using both the accurate
DTM and the accurately measured scanner attitudes. But usually the DTM
has to be reconstructed just from these images by stereo matching. Figure 1,a
presents an extreme example of how the images acquired by an airborne CCD-
line scanner could be distorted by the platform motions. White and black lines
along the left side indicate changes of the image roll and pitch, respectively, due
to the actual aircraft movements. It is evident that horizontal and vertical image
disturbances relate directly to these latter. In this case it is extremely difficult
(if at all possible) to perform any traditional photogrammetric image processing,
for instance, stereo matching. The same image corrected by assuming terrain is
roughly approximated with a horizontal reference plane is shown in Fig. 1,b.

(a) (b)

Fig. 1. Initial distorted image (a) acquired by the line scanner WAAC and its correction

(b ) by projecting onto the reference plane

Figure 2 illustrates principles of such correction. Pixels of the initial distorted
images are back-projected onto an object plane by ray tracing based on the
known spatial position and orientation of the scanner for each measured scan-
line. Each ray represents the line-of-sight of the corresponding sensing element,
the ray origin and direction being the optical centre of the scanner and viewing
direction of the sensing element, respectively.

Let vectors Xn = [X, Y,Z]T and X0 = [X0, Y0,Z0]T denote 3D positions of
an object point and of the camera (scanner) projection center, respectively, in the
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world (geographical or navigation) coordinate system. Let xp be the point coordi-
nates in the own camera coordinate frame. Let a 3 × 3 matrix R with the compo-
nents r11...r33 specify a 3D rotation of the camera coordinate frame into the world
coordinate one. The matrix can be expressed in terms of the three photogrammet-
ric orientation, or Euler angles ω, φ and κ: R = Rz(κ)Ry(ϕ)Rx(ω) where each
matrix Rt(τ) describes the rotation through an angle τ around a co-ordinate axis
t. The measured roll, pitch, and yaw platform orientation angles differ from the
Euler angles but end up with the same rotation matrix. Generally, a misalignment
between the camera and the image coordinate systems have to be corrected, too,
in order to accurately relate the 3D image and world coordinates:

Xn = X0 + λR (xp − x0) (1)

where λ is a scaling factor and x0 = [x0, y0, f ]T is the projection centre with
respect to the image coordinate system. The viewing directions are measured
in the camera coordinate system (by calibrating the scanner) and then trans-
formed to the world co-ordinate system using the attitude data. Each ray traces
to the position observed by the sensing element in the reference plane. The
rays are specified in the world co-ordinate system for the terrain. Let the

Fig. 2. Projecting an object point onto the reference plane

vector xd = [x, y, z]T denote the particular image pixel position in the cam-
era coordinate system of the scanner with the focal length f and an offset
x0, y0 to the perspective center origin. It is easily shown that the position
Xc = [Xc, Yc,Zc]T of the observed point r in the horizontal reference plane
having a known constant height Zc is specified with the collinearity equation
as follows:

Xc = X0 + (Zc − Z0)
r11(x−x0)+r21(y−y0)−r31f
r13(x−x0)+r23(y−y0)−r33f

Yc = Y0 + (Zc − Z0)
r12(x−x0)+r22(y−y0)−r32f
r13(x−x0)+r23(y−y0)−r33f

(2)

It should be noted that pixel coordinates in the corrected images relate to
the 3D object coordinates in a much less straightforward way than in the central
image projections. Because of no direct relationships between the corrected and
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initial coordinates, most of the standard photogrammetric techniques cannot be
used for terrain reconstruction, and more adequate techniques taking account of
actual intricate links between the image, attitude, and calibration data have to
be developed. One possible approach to solve this problem is proposed in [1].

3 Combined Image Correction and DTM Reconstruction

Stereo pairs after the above initial correction procedure differ much from the
central-projection images such that acquired by conventional photo cameras or
digital matrix cameras. Actually, this procedure is close to a classic orthophoto
generation that corrects all relief effects of observed terrain in perspective stereo
images to form an orthographic projection superposing the images onto an ac-
curate terrain map. To eliminate geometric deviations of the corrected images
from this latter projection, the initial images should be back-projected onto the
real terrain model in the world co-ordinate system. Thus to produce the or-
thoimages, the collinearity relationships of Eq. (2) are inverted for mapping the
corresponding grey values from the perspective images onto a raster supporting
both terrain and its orthoimage. Because continuous changes of the projection
centre in the line scanner images impact heavily the forward terrain-to-image
projection, such a backward image-to-terrain projection becomes possible only
if image correction and DTM reconstruction are combined.

This suggests an iterative approach to more accurate correction of stereo
images acquired by line scanners. It exploits the same pixel-wise backward ray
tracing as in Fig. 2 but places each back-projected point on a known DTM. For
a true terrain, the process produces an accurate orthoimage. Obviously, its geo-
metric accuracy depends on the accuracy of the DTM and attitude data. Let the
initially corrected images forming a stereo pair are represented by two pyramids
such that the top-level pair has (almost) no y-disparities in the corresponding
image rows. Then a top-level DTM can be reconstructed with an epipolar (i.e.
row-to-row) stereo matching. The higher resolution images at the lower pyramids
level have also almost no y-disparities of the corresponding pixels after having
been corrected by projection onto the higher-level DTM. Thus the same epipolar
matching gets a supplementary x-disparity map to refine the current DTM.

The following top-down iterative processing based on the above considera-
tions reconstructs and successively refines the DTM by correcting stereo images
at each pyramidal level in accord with the previous-level DTM. It assumes that
a stereo pair is converted into two multiple-resolution quadtrees, or bottom-up
image pyramids, such that each next pyramid level halves the spatial x- and
y-resolution of the preceding level by averaging grey values in non-overlapping
2 × 2 windows. Each iteration consists of three stages:

1. Correction: Images at a current pyramidal level are independently trans-
formed into orthoimages using the current DTM in order to form a stereo
pair with only residual x- and y-disparities of the corresponding pixels.

2. Reconstruction: A supplementary disparity map is formed by terrain re-
construction from the obtained stereo pair.



Iterative Stereo Reconstruction from CCD-Line Scanner Images 117

3. DTM refinement: The supplementary map is combined with the current
DTM to refine this latter providing the residual disparity range allows for
stereo matching of the higher resolution images from the next pyramid level.

Due to relatively limited (at least, by the current image resolution) geometric
distortions, the corrected images are suitable for both visual and computational
stereo reconstruction of the supplementary disparity maps. The first stage per-
forms the above attitude correction using the DTM from the previous iteration
and the stereo pair of current resolution doubling the resolution at the previous
iteration. The corrected pair of the quasi-epipolar higher resolution images is
used at the second stage for reconstructing the map of the residual x-disparities.
The third stage uses the reconstructed map to refine the higher resolution DTM.

This pyramid-based iterative algorithm for processing large amounts of image
data acquired by line scanners assumes that both the images and DTMs at each
level can be refined in a relatively small range with respect to the previous level.
The attitude correction produces exactly the epipolar images only if the DTM
precisely represents the underlying terrain because large height errors disrupt
the (quasi)epipolar image structure. Therefore, the first iteration starts with
the images of the lowest resolution at the top level of the pyramids ensuring
(almost) no y-disparities. Each next iteration doubles the resolution, the number
of iterations being equal to the number of the pyramid levels. Each currently
reconstructed disparity map refines the DTM in order to correct the higher-
resolution images at the next iteration. The iterative refinement of the images
and DTM terminates after reaching the initial (bottom-level) image resolution.

Because of the large data volumes to process, our implementation uses the
fast symmetric dynamic programming stereo (SDPS) [3] for the row-by-row
DTM reconstruction at the first iteration and the like DTM refinement at all
other iterations. The implemented SDPS combines the reconstruction of the sup-
plementary x-disparity map and the DTM refinement using the map. At present
better reconstruction performance than can be achieved by the SDPS is provided
by more sophisticated stereo matching techniques such as graph minimum-cut
or belief propagation ones [2,9]. Unfortunately these latter are too computation-
ally complex for typical photogrammetric applications involving large-size stereo
pairs. The SDPS comprises a reasonable compromise between the reconstruction
quality and rate because it is faster than most of the known techniques and is
second only to the best performing ones, e.g., 38.8 s with the mean error of
3.37 pixels and standard deviation of 5.74 pixels with respect to a set of known
ground control points for the SDPS comparing to 1320.1 s, 2.79 pixels, and 4.89
pixels, respectively, for the graph minimum-cut algorithm to obtain the DPM of
the same urban scene of size 1054 × 721 under the disparity range [0, 100] [4].

To simplify and accelerate the above DTM reconstruction, the quasi-epipolar
lines in the corrected images should be horizontal, i.e. coincide with the image
rows, and the overlapping regions should be specified in both the images. To meet
the first requirement, the corresponding rows in the images must be oriented
along the flight direction. The typical flight path is not straight, but it can be
approximated by a straight line using an appropriate coordinate regression.
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4 Experimental Results and Conclusions

Figure 3 shows the aerial stereo pair acquired by the line scanner WAAC during
the flight in the Rigi region of Switzerland (south of Zurich) on July 23,1996,
and the DTM with the linear resolution of 25 m generated with the proposed
iterative algorithm. One more example of correcting the backward – nadir stereo
pair of images acquired by WAAC is shown in Fig. 4. The ground test objects
on these latter images confirm the accuracy of the process.

These and other experiments show that the proposed combined iterative
DTM and orthophoto generation from CCD-line scanner stereo images notably
improves photogrammetric quality of the reconstructed DTMs. Our approach
needs no knowledge about how the attitude corrected images on a plane relate to
the original ones in accord with the interior and exterior orientation data which
is necessary for their conventional photogrammetric processing. Also it produces
very fast a first approximation of the DTM due to the combined image correction
and epipolar stereo matching. Therefore this approach is also feasible to mutually
register on a very early processing level the spectral and panchromatic channels
of a line scanner that have different positions on the focal plane and different
view angles.

a b c

Fig. 3. Backward (a) and nadir (b) images of the flight over the Rigi region (23rd July

1997) and the generated DTM (c)
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a b c d

Fig. 4. Uncorrected backward – nadir (a,b) vs corrected (c,d) stereo pair 1239PAN

with calibrated rectangular ground test objects
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Abstract. We propose a new content-based image retrieval method us-
ing the color and pattern histogram that is adaptive to the block clas-
sification characteristics. In the proposed method, the color and pat-
tern feature vectors are extracted according to the characteristics of the
block classification after dividing an image into the blocks with a fixed
size. Specifically, the adaptive representative color histograms are cal-
culated according to the statistical characteristics of the classified block
and the directional pattern histograms are extracted by performing the
directional pattern classification. Experimental results show that the pro-
posed method can outperform the conventional methods as regards the
precision.

1 Introduction

Recent years have seen a rapid increase in the volume of digital media such as
image, audio, and video. Also, users that store and transmit such information are
on the increase. In particular, efficient searching and retrieval methods for digital
image have been proposed due to the spread of digital camera and the growth of
the Internet. A general framework of image retrieval is divided into text-based
image retrieval system and content-based image retrieval system. Text-based
image retrieval system is embodied by representing contents of the image using
text such as the keywords or sentences. In this system, the same image can be
differently annotated because contents of the image are represented according
to the subjective perception of the classifier. Also, this system has difficulties in
manual annotation in the case of a vast database. Content-based image retrieval
(CBIR) extracts the feature vectors from visual information of the image such as
color, texture, and shape. This system is more objective than text-based image
retrieval system because the feature vectors are extracted without the subjec-
tive perception of the classifier. Also, it is automatic annotation in extracting
the feature vectors. Consequently, many CBIR methods have been proposed as
efficient retrieval methods [1]-[9].

Swain et al. [1] proposed a CBIR method using a color histogram, which is
robust to rotation and a change of image size, as it extracts the global color
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distribution. However, in the case of a vast database volume, different images
can have a similar color histogram because it does not include any spatial cor-
relation. Huang et al. [2] proposed a CBIR method using a color correlogram
which is a table indexed by color pairs that combine a color histogram and
the spatial correlation. Therefore, this method is superior to the method using
only a histogram because it considers the spatial correlation. Recently, many
methods that combine color, texture, and shape features have been proposed
because color information cannot represent overall visual information of images.
Qiu et al. [3] proposed a CBIR method that derived two content description
features, one termed a block color co-occurrence matrix and the other block
pattern histogram. However, it extracts two representative colors regardless of
block statistical characteristics. In addition, it requires many training images and
additional storage space for a codebook. Nezamabadi-pour et al. [4] proposed a
histogram of uni-color for uniform block, a histogram of bi-color for non-uniform
block, and a histogram of directional changes in intensity gradient. However, it
does not represent completely the color features for the block with various colors
because it extracts two representative colors for even all complex block. There-
fore, we propose a new CBIR method using an adaptive representative color
histogram and a directional pattern histogram.

We divide an image into the blocks and classify the blocks into three classes,
such as the flat blocks, smooth blocks, and complex blocks, according to the block
variance. In the classified blocks, the adaptive representative color histogram is
calculated as the color feature, according to the block characteristics. Also, a
directional pattern feature is extracted by calculating a histogram of maximum
direction among intensity directional changes. Simulation results show that the
proposed method is superior to conventional methods as regards a precision.

2 Proposed Retrieval Method

A block diagram of the general CBIR system is shown in Fig. 1. When the user
selects a query image, the feature vectors are automatically extracted and the
retrieved images shown in a descending order of similarity. A block diagram for
the proposed feature vector extraction process among the total retrieval system
is shown in Fig. 2. In the proposed method, color and pattern features are
extracted adaptively according to block classification characteristics.

2.1 Adaptive Color Feature Vector Extraction

The intensity average I(i, j) in the location (i, j) of the RGB color image with
the size Nv × Nh is defined as

I(i, j) =
Ir(i, j) + Ig(i, j) + Ib(i, j)

3
(1)

The intensity average I has blocks B with the size (Nv ×Nh)/(Nn ×Nm) when
an image is divided into a fixed size Nn × Nm. The block Bk,l in the block
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Query image
Feature

extraction
Distance

measurement

Image
database

Retrieved images

Feature
indexing

Fig. 1. Block diagram of general content-based image retrieval system

location (k, l), according to the block variance σk,l of Ik,l, is classified into three
classes Cc = {ccl, ccm, cch} where ccl, ccm, and cch are classes that represent
flat, smooth, and complex blocks which satisfy

ccl = {B|σk,l < T1} (2)

ccm = {B|T1 ≤ σk,l < T2} (3)

cch = {B|T2 ≤ σk,l} (4)

For the ccl class, as the class has little color change within block, the color
feature is represented as one representative color LM = {mr, mg, mb} where LM
indicates the block average for each RGB image. For the ccm class, as the class
has smooth color change within block, the color feature is represented as one
representative color pair MMb = {mrb, mgb, mbb} and MMd = {mrd, mgd, mbd}
where MMb are the average of brighter pixels than the block average LM, while
MMd the average of darker pixels. For the cch class, the color feature cannot
be represented as one or one color pair, as the class is complex block with
various colors. Therefore, the feature vector of two color pairs is extracted. Four
representative averages HMb, HMd, SMb, and SMd are calculated by comparing
each pixels with LM, MMb, and MMd. HMb is the average of brighter pixels
than MMb, HMd the average of pixels between LM and MMb, SMb the average
of pixels between LM and MMd, and SMd is the average of darker pixels than
MMd. After extracting all representative color and color pairs, color quantization
is performed and a histogram Hc is calculated.

2.2 Pattern Feature Vector Extraction

The intensity directional change pattern of each block is classified as six classes
to extract the pattern feature as shown in Fig. 3. The pattern class Cp is de-
fined as Cp = {cpl, cpch, cpcv, cpd1, cpd2, cpcr} where cpl is no directional flat
block, cpch the horizontal directional block, cpcv the vertical directional block,
cpd1 the 45 degree directional block, cpd2 the 135 degree directional block, and
cpcr no directional complex random block. Because the ccl is the flat block,
it is automatically classified as no directional flat block. For ccm and cch, the
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Fig. 2. Block diagram of the proposed feature vector extraction

(a) (b) (c)

(d) (e) (f)

Fig. 3. Directional pattern with (a) non-directional flat block cpl, (b) horizontal di-

rectional block cpch, (c) vertical directional block cpcv, (d) 45 degree directional block

cpd1, (e) 135 degree directional block cpd2, and (f) no directional complex random

block cpcr for pattern feature vector extraction

directional pattern classification is performed by calculating the intensity di-
rectional change G = {Gh, Gv, Gd1, Gd2} as shown in Fig. 3. After calculating
four directional changes, the directional pattern is decided as the direction with
the maximum value among four directional changes. For example, the vertical
directional change pattern cpcv is defined as

cpcv = {B|max(Gh, Gv, Gd1, Gd2) = Gv} (5)

Meanwhile, ccm and cch are decided as no directional complex random block
cpcr when the directional pattern is not dominated as one direction. Finally,
the pattern feature vector is extracted by calculating a histogram Hp of the
directional pattern.
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3 Experimental Results

Experiments were conducted to evaluate the performance of the proposed
method. The database included one thousand JPEG encoded color test images
sized 384×256 or 256×384 [4], [6]. It consists of ten classes as shown in Table 1.
The distance measure D(q, r) between the query images q and the images r in
the database were used as

D(q, r) = λ1(Hc(q) − Hc(r)) + λ2(Hp(q) − Hp(r)) (6)

where λ1 and λ2 represent weighting factors for the color and pattern respec-
tively. For the equal weighing factor, we determined λ1 = λ2. The image was
divided into size 4×4 blocks and the thresholds T1 and T2 were determined exper-
imentally. The RGB color space was transformed into the HSV (hue, saturation,
and value) space and it was quantized into 54 levels with 6 levels of hue, 3 levels
of saturation, and 3 levels of value. As an objective measurement for evaluation,
the precision P was used. The precision calculates the number of images that is
included in the same class with the query images among the retrieved images
and it is represented as

Pk =
Ak

Ak + Bk
(7)

where Ak and Bk are the number of image included and not included in same
class with the query images respectively. The rank k has ten interval ranges
from ten to one hundred. The proposed method was compared with two conven-
tional methods, one is block color histogram and the other is [4]. Fig. 4 shows
some of query image and retrieved images. The precision of proposed method is
4.50∼7.81% higher than block color histogram and 2.80∼3.77% higher than [4]
as shown in Table 2.

Table 1. Image categories for experiment

Class number

1

2

3

4

5

6

7

8

9

10

Class name

Africa people and villages

Beach

Buildings

Buses

Dinosurs

Elephants

Flowers

Horses

Mountains and glaciers

Food
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(a) (b) 650.jpg (c) 964.jpg (d) 665.jpg

(e) 603.jpg (f) 950.jpg (g) 626.jpg (h) 974.jpg

(i) 655.jpg (j ) 983.jpg (k) 691.jpg

Fig. 4. (a) Query image and retrieved images from (b) 650.jpg of rank 1 to (k) 691.jpg

of rank 10 ranked in a descending order of similarity using a istogram

Table 2. Precision of retrieved images according to rank

Rank
Precision [%]

Proposed
method

Nezamabadi-pour's
method [4]

10

20

30

40

50

60

70

80

90

100

67.76

63.00

59.69

57.02

54.53

52.18

50.15

48.30

76.64

44.94

72.63

68.01

64.41

61.07

58.11

55.16

52.68

50.30

48.04

45.97

Histogram

75.48

70.81

67.42

64.18

61.46

58.92

56.38

53.93

51.59

49.43

4 Conclusions

We proposed a new CBIR method by using the color and pattern histogram that
is adaptive to the block classification characteristics. In the proposed method,
an image is divided into blocks to exploit local characteristics and then classified

H
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blocks into three classes such as flat, smooth, and complex block. After the
block classification, a color histogram is calculated by extracting one color for
the flat block, one color pair for the smooth block, and two color pairs for the
complex block. In addition, the directional pattern classification is performed for
six directions to extract the pattern feature vector and a histogram is calculated.
Simulation results showed that the proposed method outperforms conventional
methods as regards the precision.

(a) (b) 964.jpg (c) 983.jpg (d) 925.jpg

(e) 921.jpg (f) 930.jpg (g) 950.jpg (h) 943.jpg

(i) 978.jpg (j ) 973.jpg (k) 626.jpg

Fig. 5. (a) Query image and retrieved images from (b) 964.jpg of rank 1 to (k) 626.jpg

of rank 10 ranked in a descending order of similarity using Nezamabadi-pour’s method

(a) (b) 964.jpg (c) 983.jpg (d) 925.jpg

(e) 950.jpg (f) 921.jpg (g) 973.jpg (h) 953.jpg

(i) 923.jpg (j ) 943.jpg (k) 937.jpg

Fig. 6. (a) Query image and retrieved images from (b) 964.jpg of rank 1 to (k) 937.jpg

of rank 10 ranked in a descending order of similarity using proposed method
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Commute Times for Graph Spectral Clustering

Huaijun Qiu and Edwin R. Hancock

Department of Computer Science, University of York, York, YO10 5DD, UK

Abstract. This paper exploits the properties of the commute time to develop a
graph-spectral method for image segmentation. Our starting point is the lazy ran-
dom walk on the graph, which is determined by the heat-kernel of the graph and
can be computed from the spectrum of the graph Laplacian. We characterise the
random walk using the commute time between nodes, and show how this quantity
may be computed from the Laplacian spectrum using the discrete Green’s func-
tion. We explore the application of the commute time for image segmentation
using the eigenvector corresponding to the smallest eigenvalue of the commute
time matrix.

1 Introduction

Spectral graph theory [2] is concerned with characterising the structural properties of
graphs using information conveyed by the eigenvalues and eigenvectors of the Lapla-
cian matrix (the degree matrix minus the adjacency matrix). One of the most important
tasks that arises in the analysis of graphs is that of how information flows with time
across the edges connecting nodes. This process can be characterised using the heat
equation [5]. The solution of the heat equation, or heat kernel, can be found by expo-
nentiating the Laplacian eigensystem over time. The heat kernel contains a considerable
amount of information concerning the distribution of paths on the graph. For instance,
it can be used to compute the lazy random walk on the nodes of the graph. It may also
be used to determine commute times under the random walk between pairs of nodes.
An alternative, but closely related, characterisation of the graph is the discrete Green’s
function which captures the distribution of sources in the heat flow process. Not sur-
prisingly, there is a direct link between commute times and the Green’s function [3].

Random walks [14] have found widespread use in information retrieval and struc-
tural pattern analysis. For instance, the random walk is the basis of the Page-Rank al-
gorithm which is used by the Googlebot search engine [1]. In computer vision random
walks have been used for image segmentation [7] and clustering [10]. More recently
both Gori, Maggini and Sarti [4], and, Robles-Kelly and Hancock [9] have used ran-
dom walks to sort the nodes of graphs for the purposes of graph-matching. However,
most of these methods use a simple approximate characterisation of the random walk
based either on the leading eigenvector of the transition probability matrix, or equiva-
lently the Fiedler vector of the Laplacian matrix [6]. However, a single eigenvector can
not be used to determine more detailed information concerning the random walk such
as the distribution of commute times. The aim in this paper is to draw on more detailed
information contained within the Laplacian spectrum, and to use the commute time as
means of grouping.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 128–136, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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There are two quantities that are commonly used to define the utility in graph-
theoretic methods for grouping and clustering. The first of these is the association,
which is a measure of total edge linkage within a cluster and is useful in defining
clump structure. The second is the cut, which is a measure of linkage between dif-
ferent clusters and can be used to split extraneous nodes from a cluster. Several meth-
ods use eigenvectors to extract clusters using the utility measure. Some of the earliest
work was done by Scott and Longuet-Higgins [12] who developed a method for re-
fining the block-structure of the affinity matrix by relocating its eigenvectors. At the
level of image segmentation, several authors have used algorithms based on the eigen-
modes of an affinity matrix to iteratively segment image data. For instance, Sarkar and
Boyer [11] have a method which uses the leading eigenvector of the affinity matrix,
and this locates clusters that maximise the average association. This method is ap-
plied to locating line-segment groupings. The method of Shi and Malik [13], on the
other hand, uses the normalized cut which balances the cut and the association. Clus-
ters are located by performing a recursive bisection using the eigenvector associated
with the second smallest eigenvalue of the Laplacian (the degree matrix minus the
adjacency matrix), i.e. the Fiedler vector. Recently Pavan and Pelillo [8] have shown
how the concept of a dominant set can lead to better defined clusters, and can give
results that are superior to those delivered by the Shi and Malik algorithm for image
segmentation. The dominant set provides a more subtle definition of cluster member-
ship that draws on the mutual affinity of nodes. The method does not rely simply on
the affinity between pairs of nodes alone. Here argue that commute time can also cap-
ture the affinity properties of nodes in a way that extends beyond the use of pairwise
weights.

Graph theoretic methods aim to locate clusters of nodes that minimize the cut or
disassociation, while maximizing the association. The commute time has properties
that can lead to clusters of nodes that increase both the dissociation and the association.
A pair of nodes in the graph will have a small commute time value if one of three
conditions is satisfied. The first of these is that they are close together, i.e. the length of
the path between them is small. The second case is if the sum of the weights on the edges
connecting the nodes is small. Finally, the commute time is small if the pair of nodes
are connected by many paths. Hence, the commute time can lead to a finer measure of
cluster cohesion than the simple use of edge-weight which underpins algorithms such
as the normalized cut [13]. In this respect it is more akin with the method of Pavan and
Pelillo [8].

2 Heat Kernel, Lazy Random Walks and Green’s Function

Let the weighted graph Γ be the quadruple (V,E,Ω, ω), where V is the set of nodes,
E is the set of arcs, Ω = {Wu, ∀u ∈ V } is a set of weights associated with the nodes
and ω = {wu,v, ∀(u, v) ∈ E} is a set of weights associated with the edges. Further
let T = diag(dv; v ∈ V (Γ )) be the diagonal weighted degree matrix with Tu =∑n

v=1 wu,v . The un-normalized weighted Laplacian matrix is given by L = T −A and
the normalized weighted Laplacian matrix is defined to be L = T−1/2LT−1/2 , and
has elements
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Luv(Γ ) =

⎧⎨⎩
1 if u = v
− wu,v√

dudv
if u �= v and (u, v) ∈ E

0 otherwise

The spectral decomposition of the normalized Laplacian is L = ΦΛΦT , where Λ =
diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the ordered eigenvalues as elements
satisfying: 0 = λ1 ≤ λ2 . . . ≤ λ|V | and Φ = (φ1|φ2|....|φ|V |) is the matrix with the
ordered eigenvectors as columns.

In the paper we are interested in the heat equation associated with the graph Lapla-
cian, i.e. ∂Ht

∂t = −LHt where Ht is the heat kernel and t is time. The solution of
the heat-equation is found by exponentiating the Laplacian eigenspectrum i.e.Ht =
exp[−tL] = Φ exp[−tΛ]ΦT . The heat kernel is a |V | × |V | matrix, and for the nodes
u and v of the graph Γ the element of the matrix is Ht(u, v) =

∑|V |
i=1 exp[−λit]φi(u)

φi(v).
Now consider the discrete Laplace operator Δ = T−1/2LT 1/2. The Green’s func-

tion is the left inverse operator of the Laplace operator Δ, defined by GΔ(u, v) =
I(u, v) − dv

vol , where vol =
∑

v∈V (Γ ) dv is the volume of the graph. A physical in-
terpretation of the Green’s function is the temperature at a node in the graph due to a
unit heat source applied to the external node. It is related with the heat kernel Ht in the
following manner

G(u, v) =
∫ ∞

0

d1/2
u (Ht(u, v) − φ1(u)φ1(v)) d−1/2

v dt (1)

Here φ1 is the eigenvector associated with eigenvalue 0 and its k-th entry is
√
dk/vol.

Furthermore, the normalized Green’s function G = T−1/2GT 1/2 is defined as (see [3]
page 6(10)),

G(u, v) =
|V |∑
i=2

1
λi

φi(u)φi(v) (2)

where λ and φ are the eigenvalue and eigenvectors of the normalized Laplacian L.
The normalized Green’s function is hence the generalized inverse of the normalized

Laplacian L. Moreover, it is straightforward to show that GL = LG = I−φ1φ
∗
1, and as

a result (LG)uv = δuv −
√

dudv

vol . From equation 2, the eigenvalues of L and G have the
same sign and L is positive semidefinite, and so G is also positive semidefinite. Since G
is also symmetric(see [3] page 4), it follows that G is a kernel.

3 Commute Time

We note that the hitting time Q(u, v) of a random walk on a graph is defined as the
expected number of steps before node v is visited, commencing from node u. The com-
mute time CT (u, v), on the other hand, is the expected time for the random walk to
travel from node u to reach node v and then return. As a result CT (u, v) = Q(u, v) +
Q(v, u). The hitting time Q(u, v) is given by [3]

Q(u, v) =
vol

dv
G(v, v) − vol

du
G(u, v)
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where G is the Green’s function given in equation 1. So, the commute time is given by

CTuv = Quv + Qvu =
vol

du
Guu +

vol

dv
Gvv − vol

du
Guv − vol

dv
Gvu (3)

As a consequence of (3) the commute time is a metric on the graph. The reason for
this is that if we take the elements of G as inner products defined in a Euclidean space,
CT will become the norm satisfying: ‖xi − xj‖2 =< xi − xj , xi − xj >=< xi, xi >
+ < xj , xj > − < xi, xj > − < xj , xi >.

Substituting the spectral expression for the Green’s function into the definition of
the commute time, it is straightforward to show that

CT (u, v) = vol

|V |∑
i=2

1
λi

(
φi(u)√

du

− φi(v)√
dv

)2

(4)

For a regular graph with du = dv = d, and the commute time satisfies:

CT (u, v) =
vol

d

|V |∑
i=2

1
λi

(φi(u) − φi(v))2 (5)

This expression is important, since in the data clustering and image segmentation
literature it is usual to work with an affinity matrix, and the underlying graph is therefore
regular for the clustering problem and almost regular for the segmentation problem
(boundary pixels have smaller degrees). As a result, the commute time can be taken
as a generalisation of the normalized cut since from Equation 5, for a pair of node u
and v the commute time depends on the difference of the components of the successive
eigenvectors of L. Of the eigenvectors, the Fiedler vector is the most significant since
its corresponding eigenvalue λ2 is the smallest.

4 Commute Times for Grouping

The idea of our segmentation algorithm is to use the spectrum of the commute time
matrix for the purposes of grouping. We do this by using the eigenvector corresponding
to the smallest eigenvalue to bipartition the graphs recursively.

Our commute time algorithm consists of the following steps:

1. Given an image, or a point set, set up a weighted graph Γ = (V,E) where each
pixel, or point, is taken as a node and each pair of nodes is connected by an edge.
The weight on the edge is assigned according to the similarity between the two
node as follows
– a) for a point-set, the weight between node i and j is set to be w(i, j) =
exp(−d(i, j)/δx), where d(i, j) is the Euclidean distance between two points and
δx controls the scale of the spatial proximity of the points.
– b) for an image, the weight is:

w(i, j) = exp

(−‖Fi − Fj‖2

δI

)
∗

⎧⎨⎩exp

(
−‖Xi−Xj‖2

δX

)
if ‖Xi − Xj‖2 < r

0 otherwise
(6)
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where Fi is the intensity value at pixel i for a brightness image or the RGB value
for a color image.

2. From the weight matrix W we compute the Laplacian L = T −W .
3. Then we compute the normalized Green’s function using Equation 2 and the eigen-

spectrum of the normalized Laplacian L.
4. From Equation 3, we compute the commute time matrix CT whose elements are

the commute times between each pair of nodes in the graph Γ .
5. Use the eigenvector corresponding to the smallest eigenvalue of the commute time

matrix to bipartition th weighted graph.
6. Decide if the current partition should be sub-divided, and recursively repartition the

component parts if necessary.

5 Experiments

In this section we experiment with our new spectral clustering method. We commence
with examples on synthetic images aimed at evaluating the noise sensitivity of the
method. We then provide examples on real world images and compare the performance
of our method with that of Shi and Malik.

Commute Times

20 40 60 80100120

20

40

60

80

100

120

0 100 200
−0.2

−0.1

0

0.1

0.2
Smallest Eigenvector

−50 0 50

−20

−10

0

10

20

Clustered Data

20 40 60 80

20

40

60

80

0 50 100
−0.1

0

0.1

0.2

0.3

−20 0 20

−20

−10

0

10

20

20 40

10

20

30

40
0 20 40

−0.2

−0.1

0

0.1

0.2

35 40 45

−10

0

10

20

D−1/2(D−W)D−1/2

20 40 60 80100120

20

40

60

80

100

120

0 100 200
−0.2

−0.1

0

0.1

0.2
Fiedler vector

−50 0 50

−20

−10

0

10

20

Clustered Data

20 40 60 80

20

40

60

80

0 50 100
−0.4

−0.2

0

0.2

0.4

−20 0 20

−20

−10

0

10

20

20 40

10

20

30

40
0 20 40

−0.4

−0.2

0

0.2

0.4

35 40 45

−10

0

10

20

Fig. 1. Clustering examples

Point-set clustering examples: In Figure 1(a) and 1(b) we compare the results for
point-set clustering using commute-times and the normalized cut. Here we set δ =
1.5. The sub-figures in both figures are organised as follows. The left-hand column
shows the point-sets, the middle column the affinity matrices and right-most column
the components of the smallest eigenvector. The first row shows the first bipartition
and the successive two rows show the bipartition based on the first partitions. From
the figures it is clear that both methods succeeded in grouping the data. However, the
commute time method outperforms the normalized cut since its affinity matrix is more
block like and the distribution of the smallest eigenvector components is more stable,
and its jumps corresponding to the different clusters in the data are larger.
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Fig. 2. Method comparison for synthetic image with increasing Gaussian noise

Fig. 3. Real world segmentation examples

Image segmentation: We have compared our new method with that of Shi and Malik
[13] on synthetic images subject to additive Gaussian noise. On the left-hand side of
Figure 2, we show the results of using these two methods for segmenting a synthetic
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(a) Commute time for 50x50 image with r = 8
δX = 0.5 δI = 0.1
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(b) Commute time for 50x40 image with r =
10 δX = 0.1 δI = 0.03
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(c) Normalized cut for 50x50 image with r = 5
δX = 2 δI = 0.05

Segmented Image

20 40

10

20

30

40
−0.1 0 0.1
0

200

400

600
Eigen Histogram

0 1000 2000
−0.05

0

0.05

0.1

0.15
Fiedler vector

−1 0 1
0

200

400

600

800

0 500 1000
−0.5

0

0.5

20 40

10

20

30

40

−0.2 0 0.2
0

500

1000

0 1000 2000
−0.2

−0.1

0

0.1

0.2

20 40

10

20

30

40

(d) Normalized cut for 50x40 image with r = 5
δX = 5 δI = 0.02

Fig. 4. Detailed segmentation process in comparasion

image composed of 3 rectangular regions with additive Gaussian noise increasing from
0.04 to 0.20 with width 0.04. On the right hand side of Figure 2 we show the fraction of
pixels correctly assigned as a function of the noise standard derivation. At the highest
noise levels our method outperforms the Shi and Malik method by about 10%.

In Figure 3, we show eight real world images (from the Berkeley image database)
with the corresponding segmentation results. The images are scaled to be 50x50 in size
and the parameters used for producing the results are r = 5, δI = 0.02 and δX = 0.2.
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In each set of the images, the left-most one shows the original image. The middle and
right panels show the results from two successive bipartitions.

For two of the real images in Figure 3, we compare our method with the normal-
ized cut in the following sub-figures 4(a),4(b),4(c) and 4(d). The first column of each
sub-figure shows the first, second and third bipartitions of the images. The second col-
umn shows the histogram of the components of the smallest eigenvector, and the right-
hand column the distribution of the eigenvector components. The blue and red lines in
the right-hand column respectively correspond to zero and the eigenvector component
threshold.

Comparing the results of using the commute time and the normalized cut, it is clear
that commute time out performs the normalized cut in both maintaining region integrity
and continuity. Another important feature is that once again our eigenvector distribution
is more stable and discriminates more strongly between clusters.

6 Conclusion

In this paper we have described how commute time can be computed from the Laplacian
spectrum. This analysis relies on the discrete Green’s function of the graph, and we have
reviewed the properties of Green’s function. Two of the most important of these are that
the Green’s function is a kernel and that the commute time is a metric. We show how
commute time can be used for clustering and segmentation. Our future plans involve
using the commute times to embed the nodes of the graph in a low dimensional space,
and to use the characteristics of the embedded node points for the purposes of graph-
clustering.

References

1. S. Brin and L.Page. The anatomy of a large-scale hypertextual Web search engine. Computer
Networks and ISDN Systems, 30(1–7):107–117, 1998.

2. F.R.K. Chung. Spectral Graph Theory. CBMS series 92. American Mathmatical Society
Ed., 1997.

3. F.R.K. Chung and S.-T. Yau. Discrete green’s functions. In J. Combin. Theory Ser., pages
191–214, 2000.

4. M. Gori, M. Maggini, and L. Sarti. Graph matching using random walks. In ICPR04, pages
III: 394–397, 2004.

5. R. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. 19th
Intl. Conf. on Machine Learning (ICML) [ICM02]., 2002.

6. L. Lovász. Random walks on graphs: A survey.
7. M. Meila and J. Shi. A random walks view of spectral segmentation, 2001.
8. M. Pavan and M. Pelillo. A new graph-theoretic approach to clustering and segmentation. In

CVPR03, pages I: 145–152, 2003.
9. A. Robles-Kelly and E. R. Hancock. String edit distance, random walks and graph matching.

PAMI to appear, 2005.
10. M. Saerens, F. Fouss, L. Yen, and P. Dupont. The principal components analysis of a graph,

and its relationships to spectral clustering. In LN-AI, 2004.
11. S. Sarkar and K. L. Boyer. Quantitative measures of change based on feature organization:

Eigenvalues and eigenvectors. In CVPR, page 478, 1996.



136 H. Qiu and E.R. Hancock

12. G. Scott and H. Longuet-Higgins. Feature grouping by relicalisation of eigenvectors of the
proximity matrix. In BMVC., pages 103–108, 1990.

13. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE PAMI, 22(8):888–905,
2000.

14. V. Sood, S. Redner, and D. ben Avraham. First-passage properties of the erdoscrenyi random
graph. J. Phys. A: Math. Gen., pages 109–123, 2005.



A New Approach to Camera Image Indexing

Rastislav Lukac and Konstantinos N. Plataniotis

The Edward S. Rogers Sr. Dept. of Electrical and Computer Engineering,
University of Toronto, 10 King’s College Road, Toronto, M5S 3G4, Canada

{lukacr, kostas}@dsp.utoronto.ca
http://www.dsp.utoronto.ca/∼lukacr

Abstract. This paper presents a color filter array (CFA) image index-
ing approach. To enhance the functionality of single-sensor consumer
electronics such as digital cameras, imaging-enabled mobile phones and
wireless personal digital assistants (PDAs), the proposed solution em-
beds the metadata information to a CFA image using a common dis-
crete cosine transform (DCT) based watermarking scheme. Depending
on a consumer electronic device employed, the metadata information
can be used to indicate ownership, capturing device identification num-
bers, time and location information. The metadata information can be
extracted from the gray-scale, mosaic-like CFA image or the full-color,
demosaicked image using PC software commonly available by camera
manufacturers or with conventional public image database tools. Sim-
ulation studies reported in the paper indicate that the proposed CFA
indexing approach does not affect the performance of the demosaicking
methods which produce full-color images that are visually identical to
those obtained by demosaicking of the non-indexed CFA data.

1 Introduction

Cost-effective imaging devices use a single image sensor, usually a charge-coupled
device (CCD) or complementary metal oxide semiconductor (CMOS) sensor, to
capture a visual scene [1]-[5]. Due to the monochromatic nature of the sensor, a
color filter array (CFA) is placed at the top of the sensor to capture the Red-
Green-Blue (RGB) primary colors at the same time [3]. Since each sensor cell has
its own spectrally selective filter, the CFA sensor values constitute a mosaic-like
gray-scale image (Fig.1a) [4]. The full-color RGB image (Fig.1c) is obtained by
estimating the two missing color components at each spatial location of the CFA
image using a process called demosaicking [5]-[9].

Single-sensor devices store a captured image either in CFA or demosaicked
formats. To organize and retrieve the captured images in personal databases, and
authenticate the visual material available to public, a single-sensor captured im-
age should be naturally connected to digital databases using metadata [10],[11]
embedded in the CFA domain. The metadata information can be extracted from
either the CFA images or their demosaicked variants in both personal and public
image databases using the processing routines to be built in PC software com-
monly available by camera manufacturers and public database programmers.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 137–144, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(a) (b) (c)

Fig. 1. Single-sensor imaging: (a) raw sensor data, (b) CFA data arranged as a color

image, (c) reconstructed, full-color, demosaicked image

2 Bayer CFA Based Single-Sensor Imaging

Let us consider a single-sensor imaging pipeline equipped with a Bayer CFA
(Fig.2) [12]. The captured sensor data constitute a K1 ×K2 gray-scale, mosaic-
like, CFA image z : Z2 → Z (Fig.1a) of integer samples z(r,s), with r =
1, 2, ..., K1 and s = 1, 2, ..., K2 denoting the image rows and columns, respec-
tively. This CFA image z can be transformed to a K1 × K2 color (RGB) image
x : Z2 → Z3 (Fig.1b) of RGB vectors x(r,s) = [x(r,s)1, x(r,s)2, x(r,s)3] with x(r,s)k

indicating the R (k = 1), G (k = 2) and B (k = 3) component. Similarly to z,
the vector field x have a mosaic-like structure due to the fact that the vector
x(r,s), such as x(r,s) = [z(r,s), 0, 0] for (odd r, even s), x(r,s) = [0, 0, z(r,s)] for
(even r, odd s), and x(r,s) = [0, z(r,s), 0] for (odd r, odd s) and (even r, even s),
contains the values which correspond to different spectral bands [4],[6].

The full-color image (Fig.1c) is recovered from the CFA image using the so-
called demosaicking process which calculates the missing color components from
the adjacent CFA data [4],[9]. Depending on the device and the demosaicking
solution employed, the quality of the demosaicked image as well as the compu-
tational complexity can vary significantly [4],[6]. Since the demosaicked images
often suffer from zipper effects, reduced sharpness, and false coloration which
result in various visual impairments, the postprocessing steps should be used to
complete the demosaicking process [13],[14].

B B B

R R R

B B B

G G G

G G G

G G G

G R G R G R

Fig. 2. Bayer CFA pattern with a GRGR phase in the first row [12]
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3 Proposed CFA Image Indexing Approach

The demosaicking solutions are conventionally implemented in a digital camera
which stores the demosaicked output. Alternatively, demosaicking is performed
in a companion personal computer (PC) which interfaces with the digital camera
that stores the images in the raw CFA format. Therefore, a single-sensor cap-
tured image should be naturally connected to digital databases using metadata
embedded in the CFA domain [10]. As it is shown in Fig.3, the metadata can
vary in the type and amount of the information to be processed, for example:
i) digital cameras can automatically use their identification number, ownership
information and a time stamp, ii) imaging enabled phones can complete the cam-
era’s metadata information by adding location stamps, and iii) semantic content
can be optionally added using the mobile phone’s or pocket device’s keyboard.

The solution in [10] processes the metadata information using image sharing
concepts [15]-[21] and encrypts the metadata information into two shares. In the
sequence, the highest perceptual quality of the captured image is obtained by
embedding the metadata share information at the least significant bits (LSB) of
R and B CFA samples.

By embedding the metadata information in the frequency domain of the CFA
image through digital watermarking (DW) concepts, the proposed here approach
enhances efficiency of the CFA indexing approach and increases the robustness
against signal processing operations. In addition, it twice reduces the amount of
the embedded information compared to the information embedded through the
secret sharing concept in [10]. Note that the proposed solution can employ any
DW scheme operating in the frequency domain. To demonstrate the concept,
the conventional discrete cosine transform (DCT) based DW solution [22]-[24]
is used in the sequence.

Following the dominance of G values (50%) in the Bayer CFA which greatly
contribute to the perceived sharpness of the demosaicked image [8],[9], our solu-
tion embeds the metadata information to the spatial locations corresponding to
the R or B CFA components. It will be shown that by operating on the indexed
CFA image, the subsequent demosaicking procedure produces a demosaicked im-
age which is visually identical to the one reconstructed using the non-indexed,
original CFA data.

CFA data

registration

metadata

satellite tracking

information

indexed

CFA data

semantic

information

camera, ownership

& time information

Fig. 3. A CFA image indexing concept
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CFA image

metadata indexed

CFA image
+

R or B CFA

component

extraction

DCT

DCT
-1

R or B CFA

component

replacement

R or B CFA

component

extraction

DCT

indexed CFA

image or indexed

demosacked

image

watermark

extraction
metadata

Fig. 4. Simplified block scheme representation of the proposed CFA image indexing

solution: (top) metadata embedding, (bottom) metadata extraction

Using the conventional DCT based DW framework [22]-[24], the metadata
information is considered here as a binary image. As it is shown in Fig.4, the
highest perceptual quality of the captured image is ensured by performing the
indexing operations over the R or B components of the captured data. To demon-
strate the concept, only the R CFA locations were considered in this paper to
be affected by the indexing operations and thus, the proposed solution firsts ex-
tracts all the R CFA components. Following the conventional practice, the DCT
is applied in blocks of 8 × 8 pixels. The metadata information is embedded in
the DCT transform domain of the image constituted by the R CFA components.
The metadata embedding process was controlled by global parameter α used
to amplify or attenuate the watermark at each DCT coefficient. By tuning the
value of α, the tradeoff between the maximization of watermark energy (and
robustness of the watermark) and imperceptibility of the changes introduced by
watermarking is controlled. In this paper we used the value α = 3.

Based on the extracted metadata information, the indexed single-sensor cap-
tured images (both CFA images and demosaicked images) can be archived,
uniquely organized, and retrieved in digital databases [10]. The original CFA
components, as described in Section 2, are not affected by the demosaicking pro-
cedure and thus, they are present in both CFA and demosaicked images. The
database tools are used to extract the R CFA components in order to recover
the original metadata information (Fig.4).

4 Experimental Results

To demonstrate the performance of the proposed method, a number of color
and binary (metadata) test images have been used. The test color images, such
as those shown in Figs.5a-d have been captured using three-sensor devices and
normalized to 8-bit per channel RGB representation. The example of a binary
metadata image is shown in Fig.5e.



A New Approach to Camera Image Indexing 141

(a) (b) (c) (d) (e)

Fig. 5. Test images: (a-d) 512× 512 color images Parrots, Lighthouse, Bikes and Raft-

ing, (e) 64 × 64 binary metadata image

Table 1. Demosaicking performance using the BI scheme

Input CFA image non-indexed indexed

Image / Criterion MAE MSE NCD MAE MSE NCD

Parrots 2.087 29.5 0.0265 2.149 29.7 0.0268

Lighthouse 4.555 129.5 0.0579 4.612 129.7 0.0579

Bikes 6.060 155.5 0.1205 6.114 155.7 0.1208

Rafting 4.711 89.4 0.0750 4.746 89.6 0.0752

Following the conventional practice, the mosaic versions of the original color
images were created by discarding color information in a GRGR phased Bayer
CFA filter shown in Fig.2. The indexed version of the CFA image was produced
via the proposed CFA image indexing solution (Fig.4). The demosaicked and
indexed demosaicked images were respectively obtained from non-indexed and
indexed images by applying the bilinear demosaicking (BI) solution of [25] and
the color-correlation demosaicking approach (CCA) of [1]. Note that the BI
scheme is commonly accepted as an industry standard whereas the CCA scheme
is one of the most powerful demosaicking solutions.

The difference between the original images and the demosaicked images, as
well as the original images and the indexed demosaicked images was evaluated
using the mean absolute error (MAE), the mean square error (MSE) and the
normalized color difference criterion (NCD). The interesting reader can find the
definition of the above criteria in [1],[9]. Demosaicking results reported in Ta-
bles 1-2 indicate that the demosaicked images obtained using both non-indexed
and indexed CFA data are of similar quality. The comparison of the results also
reveals the qualitative difference between the simple BI scheme and the sophis-
ticated CCA solution. In both cases, demosaicking of the non-indexed data led
to slightly better results.

Since the demosaicked images are intended for human inspection, visual com-
parisons are provided in Fig.6. As it can be seen, visual inspection does not
reveals any difference by comparing the non-indexed BI demosaicked (Fig.6b)
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(a)

(b) (c)

(d) (e)

Fig. 6. Detailed parts of the obtained results: (a) original image, (b,c) BI demosaick-

ing, (d,e) CCA demosaicking, (b,d) demosaicking using non-indexed CFA data, (c,e)

demosaicking using indexed CFA data

and indexed BI demosaicked (Fig.6c) images. Similarly, no difference between
non-indexed and indexed demosaicked images can be observed by inspecting the
images produced using the CCA demosaicking method (Figs.6d,e). It should be
noted that the various visual impairments present in the BI demosaicked im-
ages are caused by the lack of spatial and spectral information during the BI
demosaicking process. In the summary, it can be said that the proposed solution
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Table 2. Demosaicking performance using the CCA scheme

Input CFA image non-indexed indexed

Image / Criterion MAE MSE NCD MAE MSE NCD

Parrots 1.062 4.2 0.0151 1.123 4.4 0.0154

Lighthouse 1.455 9.3 0.0193 1.513 9.5 0.0195

Bikes 1.772 12.2 0.0428 1.829 12.3 0.0432

Rafting 1.725 14.1 0.0308 1.783 14.2 0.0311

preserves the perceptual quality of both the CFA and demosaicked images. In
addition, it does not introduce any side effect nor decrease the measured and/or
visual quality of the captured image.

5 Conclusion

A new CFA image indexing approach was presented. Digital watermarking con-
cepts were used to embed metadata into the single-sensor captured image in
an imperceivable way. The extraction procedure recovers the original metadata
from either indexed CFA or demosaicked image.
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Abstract. In this article we present an algorithm for computing discrete
average of n two-dimensional shapes. Our previous work was limited to
two shapes, we generalize it to an arbitrary number of objects with con-
sideration of increasing inter-individual variability. The first step of our
approach performs a rigid transformation that aligns the shapes as best
as possible. The next step consists in searching the progressive meta-
morphosis of one object toward the other one, that iteratively adds or
suppresses pixels. This process is then iterated between the last average
shape obtained and the new object from the set according to weighting
consideration. It considers the rank in which each shape is added and
gives criteria of optimization in variability and global topology preserva-
tion. The basic operations are based on geodesic distance transformations
and lead to an optimal (linear) algorithm.

1 Introduction

Electronic devices produce a lot of images in medical, multimedia and physics
domains. These images are produced every moment and their interpretation is
a very hard and heavy task. It would be of great interest to concentrate all the
data in a flexible representative.

Morphing techniques allow the creation of an image starting from an initial
image under particular constraints and permit also the generation of a sequence
of images starting from given images. This later functionality interests us in
this study. An average shape could be among the images in this sequence. In
this paper, our goal is to generalize an already developed study of progressive
deformation, from one object to another one, to a set of shapes. By considering
pair wise shapes, our method is decomposed into two steps: the first one consists
in making a rigid registration of the two objects and the second one in computing
the deformation. The new obtained average shape is then updated with another
shape from the hole set by repeating the same process with proportionality
considerations.

� This work is supported by the Ragtime project of the Rhone Alpes region and
Medigrid project of ACI GRID Program.
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2 State of the Art

Morphing techniques allow the transformation of a source into a target object.
They generate a sequence of images starting from two given images. It is very
interesting to investigate this sequence to extract an average shape. Many ap-
proaches for morphing are studied.

One of the oldest technique [1] called mesh morphing consists in superim-
posing a deformable grid on the image source, and to deform this grid so that
its intersections indicate particular features of the image. The operation is ap-
plied to the image destination, and the transformation of the passage of a grid
deformed with the other is calculated by interpolation. Another approach was
later introduced [2], based on the mapping of segments, defined in each image
by the user. Physical studies gave also another technique based on deformation
of a model according to laws of rigidity and elasticity [5]. The best results were
observed with point-based morphing. It operates directly on vertices, their in-
terpolation can be done with different methods based on thin plate splines or
Gaussian [3] or elastic splines [4]. Our technique consists in adding pixels to one
shape and deletion of others from the second with a control technique which
makes it possible to generate a sequence of transitions from shapes.

A recent study [6] computes the average shape between two continuous
shapes. First, it makes the registration of the two images and it computes the
skeleton of the difference between the two shapes. Using an elimination process,
it only keeps the points of the skeleton that are equidistant of two borders of two
different objects. The method we present in this paper is a generalized discrete
version of the previous one. The generalization we propose allows to compute
not only a median shape but also the different intermediate shapes.

3 Preliminaries

Let us give the formal context of our study and recall some basic notions con-
cerning the inertia moments and neighborhood properties.

3.1 Neighborhood, Connectivity and Distance

We consider 2D shapes in the Z2 space. The pixels of the shape have the value
1 and the pixels that belong to the background have the value 0. The object
is considered as 8-connected and background is considered as 4-connected. We
work in 3 × 3 neighborhood. Let a and b denote two binary shapes, we denote
the symmetric difference by aΔb = {a ∪ b}\{a∩ b}.

In our study, we will use the chamfer distance 3-4 which is a good approxi-
mation of the Euclidean distance.

3.2 Inertia Moments: Eigen Values and Vectors

In order to make the registration, we will use the moments associated to the
shapes. Such descriptors are especially interesting in order to determine the



Discrete Average of Two-Dimensional Shapes 147

position, the orientation and scale of an object. Moreover, one of their main
advantages is their small sensitivity to noise. With these moments, we deduce
the eigenvectors V1 and V2 and the associated eigenvalues λ1 and λ2 for each
shape. Let us suppose λ1 > λ2. V1 represents the maximal elongation axis of
the object. These data will be used to apply the different transformations in the
morphing process.

4 Discrete Average Shape

4.1 Previous Work

The overall system structure of the proposed approach is similar to our previous
work [7]. The method is based on aligning rigidly the two considered input
shapes and then applying the morphing. The first step is directly deduced from
the computation of the inertia moments and consists in a translation and a
rotation.

The scaling and re-sampling operations are very important. We have chosen
a compromise which aligns the principal vectors on a new system of coordinates
and which chooses an intermediate scale between the two shapes (it reduces
the biggest and increases the smallest). Lets suppose that our first two shapes
are a and b. λ1

a and λ1
b are the eigenvalues corresponding to the two maximal

elongation of shapes V 1
a and V 1

b . The factor of scaling of the first shape is:

F1 =
√

(λa
1 + λb

1)/2λa
1 (1)

The factor of scaling of the second shape is similar and proportional to its
maximal elongation:

F2 =
√

(λa
1 + λb

1)/2λ
b
1 (2)

Once the two input shapes are superimposed, we deformate one into the other
to make morphing. This process is based on two operations: adding and deletion
of pixels.

We construct first of all, two kinds of geodesic waves as shown in figure 3.
We denote by d1 the 3-4 distance from a∩b to aΔb, and d2 the 3-4 distance from
the complement of a ∪ b to aΔb. Consequently, to each pixel of the difference
we associate two distances d1 and d2. The next step consists in labeling each
connected component of aΔb in order to permit proportionality considerations
between each other.

Let us denote by β a parameter, varying between 0 and 1, that gives the
degree of progression of the morphing. To obtain exactly the median shape, the
parameter β must be equal to 1

2 . Suppose we deform a into b.
A pixel of a\b in the ith connected component of aΔb is removed from a if it

is labeled with distances d1 and d2 verifying:

d1 ≥ d1i(1 − β) or d2 ≤ d2iβ (3)
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A pixel of b\a in the ith connected component of aΔb is added to a if it is
labeled with distances d1 and d2 verifying:

d1 ≤ d1iβ and d2 ≥ d2i(1 − β) (4)

where dji is the biggest distance value in the ith connected component according
to the jth propagation. These equations should be modified if we have more than
two shapes to average. These considerations will be explained in the following
section.

4.2 N Shapes Generalization

The important part previously described makes possible the deformation of a
shape into another one and to generate their average. This section is about the
extension to n objects. At this level, this extension can be done according at
least to two possibilities:

– Dichotomic approach: it consists in subdividing the set of n objects in n/2
pairs and then applying the same process between each couple. The new
n/2 average shapes are then treated to get n/4 other average objects. If the
starting whole is odd, we can consider one of the shapes as a first average
one.

– Unilateral approach: this approach consists in always keeping the average
shape active in all the transformations. That is to say every new object,
according to its rank, will directly affect the average form until the last one.
We have chosen this approach because it allows to add a posteriori a new
shape easily. Suppose we denote x̄ the (n− 1)th average shape created from
(n− 1) objects, let xn+1 be a new form. Suppose we readjusted, scaled and
re-sampled the two shapes as best as possible. We suppose that we deform
x̄ into xn+1. Adding or deletion of pixels will depends on these conditions:

• If we add pixels to x̄ and remove pixels from xn+1:
a pixel of xn+1\x̄ in the ith connected component of x̄Δxn+1 is added
to x̄ if it is labeled with distances d1 and d2 verifying:

d1 ≤ d1iβ
n + 1
n

and d2 ≥ d2i(1 − β)
n

n + 1
(5)

According to equation 4, we should add more pixels to x̄, so increasing
d1i will be tolerant to accept more pixels. The same reason for decreasing
d2i.

• If we add pixels to xn+1 and remove pixels from x̄:
a pixel of x̄\xn+1 in the ith connected component of x̄Δxn+1 is removed
from x̄ if it is labeled with distances d1 and d2 verifying:

d1 ≥ d1i(1 − β)
n

n + 1
or d2 ≤ d2iβ

n + 1
n

(6)

According to equation 3, we should remove less pixels from x̄, so de-
creasing d1i will be less tolerant to remove pixels. The same reason for
increasing d2i.
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One of the important points also, which is in the two approaches, is the order
in which the forms are taken. This is closely related to the first phase concerning
the scaling. Let us suppose that we have an average form , if the next form which
will update it is too small or too large compared to it, we would risk to have a
considerable modification on the size of the new average form.

What we have done is according to the maximum elongations of the two
forms, we add matter to small shape and remove matter from the biggest. We
can also use the same technique based on weighting according to at least two
different techniques:

– If there is a sufficient knowledge of the set of forms, we can order them in a
growing or decreasing way of variation according to the maximum elongation.
This will enable us to have a direction balanced of the growth of our average
form each time that a form is selected to update it.

– If the unilateral approach is chosen, which is our case, we use the same factor
of weight of the form (its rank in the cycle) which will update the average
form like factor loading in the phase of scaling. That is to say, if there is
an average form created starting from n forms, the scaling process will be
(n/n + 1) more attracted towards it than towards the (n + 1)th form. The
equations 1 and 2 should be changed. What we did before is equivalent to
compute an average between λa

1 and λb
1, if we suppose that λa

1 is now the
big eigenvalue of our recent average shape, we should give more weight to
its value. So instead of having λa

1+λb
1

2 , we will get:

coef = λa
1 + |λ

a
1 − λb

1

n + 1
| (7)

Thus, the factors of scaling will attract the two shapes, according to maximal
elongation, to a shape closer to the recent average one.

F1 =
√
coef/

√
λa

1 F2 =
√
coef/

√
λb

1 (8)

Figure 1 gives the result of each average shape obtained during the whole pro-
cess. It indicates that we can have a considerable size modification if we have
important inter-individuality. This not the case in figure 2 where we apply our

Fig. 1. Scaling with intuitive coefficients(1/2)
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modified coefficients F1 and F2. Each average shape is more attracted by the
previous one even if we introduce a shape with important variation of size.

In order to preserve topology, we adopted a technique which consists in
adding only pixels from the difference of the shapes to their intersection. By
considering each layer of propagation as a source, we compute the next layer
which is connected to the previous one.

Fig. 2. Scaling with weighting considerations

5 Results

In order to validate our approach, we made tests on a set of fishes. They have
an important inter-individual variability concerning scale and shape. We begin
with two arbitrary shapes that we registrate and scale. We propagate then the
two geodesic waves. By fixing the parameter β=1/2 we generate our first average
fish. This process was then iterated by considering:

– The order in which each shape is added to update the recent average one.
– The proportionality of adding and deletion of pixels depend on the rank of

the new added shape.

We made tests on ten shapes as shown in figure 3. The order in which they were
treated was arbitrary chosen. For best check of the whole process, we extracted
the two last average shapes obtained as shown in figure 5. We remark, according
to the order in which the shapes are treated, that results seem to be satisfying.
The variations are small due to the fact that starting from a certain rank, average
shape is less influenced by new shapes. It should be noted that an anti-aliasing
filter could be applied to improve the results. Figure 4 gives the distance prop-
agation results between the 8th average shape and the last shape to get the 9th

one. These results are used to decide about adding or deletion of pixels. Shaded
zones of the difference of the two shapes in the figure indicate, according to the
final result, that we have small number of added/deleted pixels in connected
components where the maximum values due to the propagations are important.
However, this number is almost null in the other connected components. It is
obvious that the result should be 1

10 ∗ β proportional to the maximum values.
The final result is so more attracted to the 8th average shape.
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Fig. 3. Sample of our fish data base

Fig. 4. Distance propagation in the 9th average shape generation process

Fig. 5. The 8th and 9th average shape
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6 Conclusion

The proposed approach gives a linear solution for computing an intermediate
shape between arbitrary input set of binary objects. This average shape could be
updated easily. We give also a solution to inter-individual variability by balancing
the scaling process in the first step of registration between shapes. This permits
less influence of size difference which can affect clearly the average shape even
between two iterations. A progression parameter β ranging from 0 to 1 allows
to control the influence of each input shape.

In this paper we have used the chamfer distance as a good integer approxi-
mation of Euclidian distance. An improvement in precision could be the use of
the Euclidian distance itself which can also be computed in linear time as shown
in [8] at least for 2D domains. With our approach, the topology of intermediate
shapes is ”globally” preserved, due to the continuous propagation from the in-
tersection of shapes to their difference. An heuristic for reaching better results
could be to use thinning or thickening operators, allowing to ensure that the re-
moval or adding of a point does not change the topology of intermediate. These
topics and other problems related to noise and segmentation errors should be
the subject of further studies.
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Abstract. We present a coupled statistical model that can be used to
accurately recover facial surfaces from single images by jointly capturing
variations in surface normal direction and surface height. The model is
trained on range data. By fitting the model to surface normal data, the
surface height function is implicitly recovered without having to integrate
the recovered field of surface normals. We show how the coupled model
can be fitted to image brightness data using geometric constraints on
surface normal direction furnished by Lambert’s law.

1 Introduction

One of the most alluring ways to recover 3D facial shape from a 2D image,
is to use shape-from-shading is to extract a field of surface normals. Surface
height can then be recovered by integrating the surface normals. Unfortunately,
there are a number of obstacles that are encountered when this simple strategy
is applied to real-world data. The first of these is that when integrated, the
concave/convex ambiguities in the needle-map can lead to the distortion of the
topography of the reconstructed face. One of the most serious instances of this
problem is that the nose can become imploded. The second problem encountered
is how to accommodate variations in facial albedo.

One way of overcoming these problems is to use domain specific constraints.
Several authors [1,2,3] have shown that, at the expense of generality, the accuracy
of recovered shape information can be greatly enhanced by restricting a shape-
from-shading algorithm to a particular class of objects. For instance, Prados
and Faugeras [3] use the location of singular points to enforce convexity on the
recovered surface. Zhao and Chellappa [2], on the other hand, have introduced
a geometric constraint which exploited the approximate bilateral symmetry of
faces. Atick et al. [1] proposed a statistical shape-from-shading framework based
on a low dimensional parameterisation of facial surfaces. Principal components
analysis was used to derive a set of ‘eigenheads’ which compactly captures 3D
facial shape. Unfortunately, it is surface orientation and not depth which is
conveyed by image intensity. Therefore, fitting the model to an image equates to
a computationally expensive parameter search which attempts to minimise the
error between the rendered surface and the observed intensity. Dovgard and Basri
[4] combined the statistical constraint of Atick et al. and the geometric constraint
of Zhao and Chellappa into a single shape-from-shading framework. However,
asymmetry in real face images results in errors in the recovered surfaces. Nandy
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and Ben-Arie [5] attempt to learn the relationship between 3D shape and image
intensity for a number of face parts. Their shape-from-recognition framework
helps constrain the space of solutions to the image irradiance equation, but
relies on statistical methods to learn the effects of illumination variations.

The aim in this paper is to present a coupled statistical model that can
be used to overcome these difficulties by jointly describing variations in surface
normal direction and height over the surface of a face. The coupled model is
inspired by the active appearance model developed by Cootes, Edwards and
Taylor [6], which simultaneously models 2D shape and texture. The model is
trained on range images of faces. We construct separate eigenspaces for the
surface normal and height variations from the covariance matrices of the training
data. To overcome problems associated with constructing a statistical model over
the surface normals, we convert to a Cartesian representation using the azimuthal
equidistant projection.

2 A Coupled Surface Normal and Depth Model

Shape-from-shading is concerned with recovering surface shape information from
single images of shaded surfaces. Ultimately, the aim is to recover the surface
height function z(x, y) from the image intensity I(x, y), where x, y are the ortho-
graphic projections onto the image plane of the 3D coordinates (x, y, z) in which
the surface, z(x, y), is embedded. Assuming Lambertian reflectance and a single
known light source, s, the measured brightness I(x, y) is uniquely determined
by the orientation of the surface at the coordinates (x, y). This relationship is
captured by the image irradiance equation: I(x, y) = n(x, y).s, where n(x, y) is
the local surface normal at the coordinates (x, y). The surface height function
may be related to image intensity by expressing the local surface normal in terms
of the surface gradients: n = (−p,−q, 1), where p = ∂xz and q = ∂yz.

The aim in this paper is to construct a generic statistical model that can
be used to simultaneously capture the modes of variation in surface normal di-
rection and surface height. Our ultimate goal is to develop a model that can
be used to recover surface height by fitting the surface normal component to
image brightness using Lambert’s law. We train the model on range data. Here
the surface normals and height are both available. The model used is a lin-
ear eigenspace method, in which the eigenvectors of the covariance matrices
for the surface normals and height, or depth, data are used to represent sta-
tistical variations in the data. The parameters of the model are the weights
associated with the eigenmodes. We demonstrate how the parameters may be
estimated by fitting the model to surface normal data. The parameters may
then be used to recover the surface height using a simple matrix multiplication
operation.

Statistical Representation of Surface Normals: To overcome problems
associated with modelling the statistics of directional data we represent the
surface normals as points on a unit sphere, and then convert them to Cartesian
point data by using the azimuthal equidistant or Postel projection from the unit
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sphere onto a tangent plane. This projection has the important property that it
preserves the distances between locations on the sphere.

Let nk(i, j) = (nx
k(i, j), ny

k(i, j), nz
k(i, j))T be the unit surface normal at

the pixel indexed (i, j) in the kth training image. At the location (i, j), the
mean-surface normal direction is n̂(i, j) = n̄(i, j)/||n̄(i, j)|| where n̄(i, j) =
(1/K)

∑K
k=1 nk(i, j).

On the unit sphere, the surface normal nk(i, j) has elevation angle θk(i, j) =
π
2 − arcsinnz

k(i, j) and azimuth angle φk(i, j) = arctanny
k(i, j)/nx

k(i, j), while
the mean surface normal at the location (i, j) has elevation angles θ̂(i, j) =
π
2 − arcsin n̂z(i, j) and azimuth angle φ̂(i, j) = arctan n̂y(i, j)/n̂x(i, j).

To construct the azimuthal equidistant projection we proceed as follows. We
commence by constructing the tangent plane to the unit-sphere at the location
corresponding to the mean-surface normal. We establish a local co-ordinate sys-
tem on this tangent plane. The origin is at the point of contact between the
tangent plane and the unit sphere. The x-axis is aligned parallel to the local
circle of latitude on the unit-sphere.

Under the azimuthal equidistant projection at the location (i, j), the surface
normal nk(i, j) maps to the point with coordinates vk(i, j) = (xk(i, j), yk(i, j))T .
The transformation equations between the unit-sphere and the tangent-plane co-
ordinate systems are

xk(i, j) =k′ cos θk(i, j) sin[φk(i, j) − φ̂(i, j)]

yk(i, j) =k′
{

cos θ̂(i, j) sinφk(i, j) − sin θ̂(i, j) cos θk(i, j) cos[φk(i, j) − φ̂(i, j)]
}

where cos c = sin θ̂(i, j) sin θk(i, j)+cos θ̂(i, j) cos θk(i, j) cos[φk(i, j)−φ̂(i, j)] and
k′ = c

sin c .

Surface Normal Model: Suppose that each training example is a range im-
age which consists of an array of depth data. For the pixel indexed (i, j) in
the kth training sample the depth is zk

i,j . Using the range data we estimate the
surface normal directions, and the surface normal at the pixel location (i, j)
for the kth training image is nk

i,j . The components of the vector are trans-
formed into the coordinates (xk(i, j), yk(i, j)) using the azimuthal equidistant
projection. If the range images have M rows and N columns the surface nor-
mal coordinates of each training sample may be represented by the long vec-
tor Uk = [xk(1, 1), . . . , xk(M,N), yk(1, 1), . . . , xk(M,N)]T which is length 2MN
and contains the x and y coordinates obtained by applying the azimuthal equidis-
tant projection to the surface normals. Since the azimuthal equidistant projec-
tion involves centering the local co-ordinate system, the coordinates correspond-
ing to the mean direction are (0, 0) at each image location. Hence, the long-vector
corresponding to the mean direction at each image location is zero.

The K training samples can be used to form the (2MN) × K data-matrix
Ds = [U1| . . . |UK ]. The (2MN) × (2MN) covariance matrix is therefore given
by L = 1

K DsDT
s . We use the numerically efficient snap-shot method of Sirovich

[7] to compute the eigenvectors of L. Accordingly, we construct the matrix L̂ =
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1
K DT

s Ds. The eigenvectors êi of L̂ can be used to find the eigenvectors ei of L
using ei = Dsêi. We deform the azimuthal equidistant point projections in the
directions defined by the matrix Ps = (e1|e2| . . . |eK) formed from the leading
K principal eigenvectors. As a result, the long-vector U may be projected onto
the eigenvectors and represented by a vector of model parameters bs = PT

s U.

Depth Model: Each of the K range images in the training set may be rep-
resented by the vector of depth values ordered according to the raster scan:
zk = [zk

1,1, z
k
1,2, . . . , z

k
M,N ]T . The mean depth vector ẑ is given by ẑ = 1

K

∑K
i=1 zi.

We form the MN ×K data matrix of depth values using: Dd = [(z1 − ẑ)|(z2 −
ẑ)| . . . |(zK − ẑ)]. Once again we use principal components analysis to extract the
set of orthogonal modes of variation Pd. Again, a long-vector of depth values
zk can be projected onto the eigenvectors and represented using the vector of
model parameters bd = PT

d (zk − ẑ).

Combining the Depth and Surface Normal Models: We now show how
the depth and surface normal models described above can be combined into a
single coupled model. Each training sample can be summarised by the parameter
vectors bs and bd, representing the needle-map and depth map of the sample
respectively. Since depth and surface normal direction are closely related (re-
call that n = (−∂xz,−∂yz, 1)) the two sets of parameters will contain strong
correlations.

In both models, we may consider small scale variation as noise. Hence, if
the ith eigenvalue for the surface normal model is λsi, we need only retain
S eigenmodes to retain p percent of the model variance. We choose S using∑S

i=1 λsi ≥ p
100

∑K
i=1 λsi. Similarly for the depth model we retain D eigenmodes

to capture p percent of the variance.
For the kth training sample we can generate the concatenated vector of length

S + D:

bk

(
Wsbk

s

bk
d

)
=
(

WsPT
s Uk

PT
d (zk − ẑ)

)
(1)

where Ws is a diagonal matrix of weights for each surface normal model param-
eter, allowing for the different relative weighting of the surface normal and depth
models. The reason for performing this weighting is that the elements of bs have
units of radians, bd have units of distance, so they cannot be compared directly.
We set Ws = rI where r2 is the ratio of the total depth variance to the total
surface normal variance. The coupled model data matrix is Dd = [b1| . . . |bK ],
where bk represents the concatenated vector for the kth training sample. We
apply a final PCA to this data to give the coupled model

b = Pcc =
(
Pcs

Pcd

)
c (2)

where Pc are the eigenvectors and c is a vector of coupled parameters controlling
both the surface normal model and depth model simultaneously. The matrix Pcs

has S rows, and represents the first S eigenvectors, corresponding to the surface
normal subspace of the model. The matrix Pcd has D rows, and represents the
final D eigenvectors, corresponding to the depth subspace of the model.
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The vectors of projected surface normal directions U = PsW−1
s Pcsc and

depth values z = ẑ + PdPcdc are given in terms of the parameter vector c. For
compactness we write Qs = PsW−1

s Pcs and Qd = PdPcd.
We aim to recover the coupled model parameters which minimise the error

between the observed and reconstructed field of surface normals. Suppose that
U is a vector of length 2MN that represents a field of surface normals obtained
by applying shape-from-shading to the brightness image of a face. We fit the
model to data seeking the vector c∗ of length S +D that satisfies the condition

c∗ = arg min
c

(U − Qsc)T(U − Qsc) (3)

The corresponding best-fit vector of depth values is given by z = ẑ + Qdc∗.

3 Fitting the Model to Image Brightness Data

The overall aim in this paper is to fit the model to image brightness data rather
than surface normal data. To do this we exploit the constraint that according
to Lambert’s law the surface normal must fall on a cone whose axis is the light
source direction and whose opening angle is the inverse cosine of the normalised
image brightness. If I is the measured image brightness, then according to Lam-
bert’s law I = n.s, where s is the light source direction. The recovered surface
normal lies on the reflectance cone whose axis is aligned with the light-source vec-
tor s and whose opening angle is arccos I. Suppose that (n′)l(i, j) is an off-cone
surface normal estimate at iteration l of the algorithm, then the update equation
is nl+1(i, j) = Θ(n′)l(i, j), where Θ is a rotation matrix computed from the apex
angle α and the angle between (n′)l(i, j) and the light source direction s. To re-
store the surface normal to the closest on-cone position it must be rotated by
an angle θ = α− arccos

[
(n′)l(i, j).s

]
about the axis (u, v, w)T = (n′)l(i, j) × s.

To iteratively fit our model to brightness data using the geometric constraints
on surface normal direction, we make use of the following algorithm:

1. Calculate an initial estimate of the field of surface normals n by placing each
normal on its reflectance cone at the point closest to the local average nor-
mal direction. Each normal in the estimated field n undergoes an azimuthal
equidistant projection to give a vector of transformed coordinates U.

2. The vector of surface normal model parameters representing the best fit to U
is given by bs = PT

s U. The vector of transformed coordinates corresponding
to the best-fit parameters is given by U′ = PsPT

s U
3. Using the inverse azimuthal equidistant projection find the off-cone best fit

field of surface normals n′ from U′. Find the on-cone surface normals n′′ by
rotating the off-cone surface normals in n′.

4. Test for convergence. If
∑

i,j cos−1 [n(i, j).n′′(i, j)] < ε, where ε is a prede-
termined threshold, then proceed to step 6.

5. Make n = n′′ and return to step 1.
6. Find the coupled model parameters c∗ corresponding to the best fit field of

normals U′ using Eq. 3. Return z = ẑ + Qdc∗ as the recovered depth map.
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4 Experiments

We begin by examining the effect of the number of eigenmodes used on the
surface normal, depth and coupled models. The models were trained on a set
of high resolution 3D scans of 100 male and 100 female subjects with a neutral
expression. The scans were collected using a CyberwareTM 3030PS laser scanner.
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Fig. 1. Plot of cumulative variance versus number
of eigenmodes used for depth model (solid line),
surface normal model (dashed line) and coupled
model (dotted line)

In Figure 1 we plot cumula-
tive variance against the num-
ber of eigenmodes used. It is ev-
ident that fewer eigenmodes are
required to capture variance in
facial depth than in facial needle
maps. This is because the sur-
face normal at each point has
two degrees of freedom whereas
the depth value has only one.
We retained 63 dimensions of
the depth model and 142 di-
mensions of the surface normal
model (each accounting for 95%
of the variance). As would be
expected, the coupled model lies
between the two and requires 95
dimensions to capture 95% of
the variance.

Fig. 2. Ground truth profile view (left), surface
recovered from best fit needle-map using cou-
pled model (middle) and using Frankot and Chel-
lappa’s method (right)

We now compare the sur-
faces recovered using the cou-
pled model with the surfaces re-
covered using the technique of
Frankot and Chellappa [8] on
ground truth data. We use a
leave-one-out validation strat-
egy, in which we train the cou-
pled model with all but one
of the range scans. We render
an intensity image of the out-
of-sample subject to which we
fit the coupled model using the
technique described in Section
3. We use a Matlab implemen-
tation of a quasi-Newton min-
imisation procedure to solve Equation 3, constrained such that each coupled
parameter lies within ±3 standard deviations of the mean. Let zk

frankot be the
surface for the kth subject recovered by integrating the best fit needle-map (n′)
using the method of Frankot and Chellappa, and let zk

coupled be the surface for
the kth subject given by the best-fit surface in the coupled model. We found that
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the average absolute error of the surfaces recovered using the coupled model was
2.3mm with a standard deviation of 0.7mm. Using the Frankot and Chellappa
method this error was 3.2mm with a standard deviation of 1.1mm. Hence us-
ing the coupled model for surface recovery offers both improved accuracy and
stability over integrating the recovered field of normals.

In Figure 2 we show two typical sets of recovered surfaces as described above.
On the left of the figure the ground truth profile view is shown. In the middle
column the surface recovered using the coupled model is shown, while on the
right the surface using the Frankot and Chellappa method are shown. In both
cases the Frankot and Chellappa method has reduced the size of the nose and
brought the forehead forwards.

The results on ground truth data suggest fitting the coupled model to an
image in a frontal view allows surfaces to be recovered of sufficient quality to
synthesise accurate profile views. We now test whether this performance can be
transferred to real world images which contain noise and albedo variations. We
use images from the Yale B [9] database of subjects in a frontal pose illuminated
by a single light source situated close to the view point. As a preprocessing
step we remap Lambertian reflectance onto the faces using an image-based re-

Fig. 3. Top row: Input frontal view, second row: synthesised view rotated 24◦ from
frontal, third row: corresponding actual view, fourth row: recovered surface mesh
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flectance estimation process [10]. Figure 3 shows the results of fitting the coupled
model to images of five subjects. The first row shows the input images prior to
reflectance correction. The second row shows a synthesised view in which the
input image has been texture mapped onto the estimated surface and rotated
24◦ about the vertical axis. The third row contains a real image of the subject
in approximately the same pose and frontal illumination for comparison. In all
cases the synthesis is convincing under a fairly large change in viewpoint, re-
covering the size and relative height of the features accurately. Note that the
placement of specularities is inconsistent because their position is dependent
on viewpoint, an effect which is not captured by texture mapping a frontal
view onto the recovered mesh. In the fourth row we show the recovered surface
meshes rotated 40◦ about the horizontal axis to allow inspection of the shape
alone.

5 Conclusions

In this paper, we have shown how variations in surface normal direction can
be coupled to variation in height using a global statistical model inspired by
the active appearance model. Effectively the method allows us to overcome the
problems of concave-convex ambiguity associated with recovering surface height
from brightness alone and avoids an explicit height-from-gradient step. The face
model is represented by separate subspaces that represent the modes of variation
in the covariance matrices for surface normal direction and relative depth. The
model is trained on range data, and fitted to image brightness data using a sim-
ple geometric algorithm. We experiment with the method on frontal brightness
images of faces and demonstrate that synthesised views are well reconstructed
by the fitted surfaces.
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Abstract. This paper describes a method for establishing stereo corre-
spondences using diffuse polarization information. To do this we exploit
the spontaneous polarization of light caused by reflection from dielectric
surfaces to recover surface normals. The normals recovered from two dif-
ferent views are used to locally reconstruct surface height. The similarity
between reconstructed surface regions determines whether or not a pair
of points correspond to each other. The technique is able to overcome
the convex/concave ambiguity found in many single view techniques. As
the technique relies on smooth surface regions to detect correspondences
it is applicable to objects that normally cause difficulty for stereo vision
algorithms.

1 Introduction

Multiple view techniques have proved to be highly effective in recovering models
of surface shape [1]. The basic principle behind most computational stereo is
that with two known views of an object it is possible to calculate the three-
dimensional location of a point that is visible in both images. One major difficulty
with stereo is deciding which points in one image correspond to which other
points in the second. Most existing methods are largely geometric in nature and
rely on the availability of salient surface features to establish correspondence.

Unfortunately, these methods are not particularly effective in the recovery of
surface shape for smooth featureless surfaces. A different approach, photometric
stereo, involves the object under study being kept static with respect to the cam-
era, and the direction of the light source being varied [8]. However, such methods
implicitly assume correspondence is known since they rely on the capture of a
relatively large number of images under fixed object position and varying light
source direction.

One source of information that has not been widely used on the photometric
recovery of surface shape from multiple views is polarization. The aim in this
paper is therefore to explore whether information provided by the polarization of
light caused by diffuse surface reflection can be used to establish correspondences
on featureless surfaces for the purposes of stereoscopic depth recovery.

Polarization has been extensively exploited for many decades now [6] and has
recently been used in computer vision [7]. Analysis of the polarization of light
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caused by surface reflection has been used in the past as a means to provide
constraints on surface geometry. The underlying principle is that when initially
unpolarized light is reflected from a surface, it becomes partially polarized [7].
This applies to both specular reflection (which we refer to as specular polariza-
tion) and diffuse reflection (diffuse polarization) and is due to the directionality
of the molecular electron charge density interacting with the electromagnetic
field of the incident light [3].

Most research aimed at extracting and interpreting information from polar-
ization data, involves placing a linear polarizer in front of a camera and taking
images of an object or a scene with the polarizer oriented at different angles
[5,7]. Ikeuchi and colleagues have used specular polarization in shape recovery,
where there is a need for specular reflections across the whole surface. This was
achieved by placing the object under investigation inside a spherical diffuser,
with several light sources outside and a hole for the camera [4]. Diffuse polar-
ization [5] can also be used in shape recovery. In this case the polarizing effects
are weaker but the global specular reflection is not required.

The aim of this paper is to describe a new method for shape recovery that
uses polarization data from images of an object taken from different viewpoints.
The views of the object are found by rotating the object on a turn-table. Our
method obtains a set of correspondences, a field of surface normals and a depth
map. To do this, we make use of Fresnel Theory, which relates the reflected and
incident wave amplitudes and provides a route to estimating the surface normals
from polarization data. The available information is the phase and degree of
polarization of the reflected light. The phase ambiguously defines azimuth angle,
while the degree of polarization determines the zenith angle. Surface normal
determination is most reliable when the degree of polarization, and therefore
the zenith angle, are large, that is close to the occluding boundary.

A number of features make this work distinct from other stereo methods.
Firstly, the height is reconstructed via surface integration, not triangulation,
hence the need for a highly detailed geometric calibration is diminished. Sec-
ondly, the new method is applicable to surfaces that have no distinctive albedo
or curvature features. Results presented here show that some albedo variations
or specularities do not severely affect correspondence detection. The method is
applicable to smooth dielectric objects that do not have excessive albedo varia-
tions. For slightly rough surfaces, results are degraded but still of use (the surface
azimuth angle can still be very accurately estimated). Illumination conditions
do not need to be known, but results are most reliable when fewer light sources
are used since this reduces specularities.

2 Polarization and Reflection

The Fresnel equations [3] give the ratios of the reflected wave amplitude to the
incident wave amplitude for incident light that is linearly polarized perpendicular
to, or parallel to, the plane of specular incidence. These ratios depend upon the
angle of incidence and the refractive index, n, of the reflecting medium. Since
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ficients for a dielectric (n = 1.5)

the incident light can always be resolved into two perpendicular components,
the Fresnel equations are applicable to all incident polarization states. Indeed,
throughout this work, we assume that the incident light is unpolarized.

For the geometry of Fig. 1, the Fresnel reflection coefficients are

r⊥ (ni, nt, θi) ≡
E0r⊥
E0i⊥

=
ni cos θi − nt cos θt

ni cos θi + nt cos θt
(1)

r‖ (ni, nt, θi) ≡
E0r‖
E0i‖

=
nt cos θi − ni cos θt

nt cos θi + ni cos θt
(2)

where (1) gives the reflection ratio for light polarized perpendicular to the plane
of incidence and (2) is for light polarized parallel to the plane of incidence. The
angle θt can be obtained from the well-known Snell’s Law: ni sin θi = nt sin θt.
Cameras do not measure the amplitude of a wave but the square of the ampli-
tude, or intensity. With this in mind, it is possible to show that the intensity
coefficients, which relate the reflected power to the incident power, are R⊥ = r2

⊥
and R‖ = r2

‖ [3].
Figure 2 shows the Fresnel intensity coefficients for a typical dielectric as

a function of the angle of the incident light. Both reflection and transmission
coefficients are shown, where the latter refers to the ratio of transmitted to
incident power (the transmission coefficients are simply T⊥ = 1 −R⊥ and T‖ =
1 −R‖).

The work reported here relies on taking a succession of images of objects
with a polarizer mounted on the camera at different angles. As the polarizer is
rotated, the measured pixel brightness at a given point varies according to the
Transmitted Radiance Sinusoid (TRS):

I (θpol, φ) =
Imax + Imin

2
+

Imax − Imin

2
cos (2θpol − 2φ) (3)

Let Imax and Imin be the maximum and minimum intensities in this sinusoid
respectively. The degree of polarization is defined to be

ρ =
Imax − Imin

Imax + Imin
(4)

R.
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Careful consideration of Fig. 2 and the Fresnel equations leads to an expression
for the degree of polarization in terms of the refractive index and the zenith angle,
the angle between the surface normal and the viewing direction. Unfortunately,
this equation is only applicable to specular reflection since the process that causes
diffuse polarization is different, as explained below.

Diffuse polarization is a result of the following process [7]: A portion of the
incident light penetrates the surface and is scattered internally. Due to the ran-
dom nature of internal scattering, the light becomes depolarized. Some of the
light is then refracted back into the air, being refracted and partially polarized
in the process. Snell’s Law and the Fresnel equations can be used to predict the
degree of polarization of light emerging from the surface at a given angle. Figure
3 shows the Fresnel coefficients for light being refracted from within the medium
back into air.

Using a similar method to that used for specular polarization, an equation
for the degree of polarization in terms of the zenith angle and refractive index
can be derived:

ρ =
(n − 1/n)2 sin2 θ

2 − 2n2 − (n + 1/n)2 sin2 θ + 4 cos θ
√

n2 − sin2 θ
(5)

The dependence of the diffuse polarization ρ on the zenith angle θ is shown in
Fig. 4. The azimuth angle of the surface normal, i.e. the angle of the projection of
the surface normal onto the image plane, is also intimately related to the Fresnel
equations. As Fig. 3 shows, diffusely reflected light is reflected most efficiently
when polarized parallel to the plane containing the surface normal and the ray
reflected towards the camera. The orientation of this plane is determined by the
surface normal azimuth angle.

3 Method and Algorithm

In this section we discuss the experimental set-up used to acquire the images for
processing and the structure of the new algorithm. The inputs to the algorithm
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are polarization images of the object being studied. For this paper, the images
were obtained by mounting a Nikon D70 digital SLR camera with a linear po-
larizer and taking images of the object with the polarizer at 10◦ increments. A
single point light source was used, placed near the camera. Different views were
obtained by rotating the object on a turn-table. The table and walls of the lab-
oratory are matte black to minimise reflections from the environment. For each
view, the phase φ and degree of polarization ρ were calculated at each pixel by
fitting the TRS (3) to measured pixel brightnesses.

The novel contribution of this paper, namely the unambiguous conversion of
these polarization images to needle maps can be divided into three main sections:

1. Selection of potential correspondences directly from polarization images.
2. Calculation of most likely correspondences from this selection.
3. Disambiguation of azimuth angles.

In addition to these steps, we have used the Frankot-Chellappa needle map
integration algorithm [2] to recover depth from the field of surface normals.

3.1 Locating Potential Correspondences

The purpose of this stage is to select pixels from each image that have similar
surface normals and to form a list of potential correspondences. Before the initial
selection of points is made, an angle is calculated from which the algorithm
derives all correspondences. This angle, θD, is defined to be that between the
viewing direction and the projection of the surface normal onto the horizontal
plane. Note that θD falls in the interval [−90◦, +90◦], where negative values
indicate that the surface normal is directed to the left. At this stage however,
the sign of θD is unknown since φ falls within the interval [0, 180◦). θD allows
reconstruction of the depth of any single slice of the object and is given by

θD = arctan (sin (φ) tan (θ)) (6)

After θD has been calculated for each pixel, a search is performed for points
with certain values and listed as potential correspondences. For example, if the
angle by which the object was rotated was θrot = 20◦, then it would be reasonable
to search for θD = 70◦ (call this θ0) in the unrotated image, and θD = θ0−θrot =
50◦ in the rotated image. Because the rotation is about a vertical axis, we know
that points on the object move about a horizontal plane. This means that the
two points in any correspondence lie in the same horizontal line in the images.
More correspondences can be then found using other values of θ0.

Figure 5a shows points on a (simulated) sphere that have θD = 70◦. In
Fig. 5b, which shows the sphere rotated by 20◦ (obviously with an identical
intensity image) points are highlighted where θD = 50◦. Without prior knowledge
of surface geometry, we know that some of the highlighted points from Fig. 5a
are likely to correspond to those in Fig. 5b, but it is not yet clear, for example,
whether point A corresponds to A′ or B′. Indeed, it may be that A is occluded
in the second image so no correspondence exists for that point.

E. HancockR.
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a b

A B A’ B’

Fig. 5. a) Simulated |θD| image for a sphere. Darker areas have higher values. The

highlighted regions have |θD| = θ0, in this case 70◦. b) Same sphere rotated by 20◦.
Here points with |θD| = 50◦ are highlighted.

Moderate smoothing is applied at this stage of the algorithm to the featureless
areas. Since these areas have no features, the problem of over-smoothing, which
is frequently encountered in computer vision, is not an issue. The unsmoothed
images can be used again later for needle map integration, after correspondences
have been found.

Consider an object rotating clockwise if viewed from above. Now imagine the
object viewed horizontally. Most, and on many occasions all, of the points on
the visible surface of the object will be moving away from the occluding contour
that is to left of the point, and toward the contour to its right. This fact is used
to reduce the number of potential correspondences for a given point.

3.2 Final Estimates of Correspondences

The algorithm takes the remaining correspondence possibilities and decides which
are genuine and which to discard. This is done by locally reconstructing the
height of parts of surfaces near the selected points and comparing the results
from each view.

The surface height, z is calculated in the vicinity of each selected point for
both views using standard integration methods [9]:

px = tan (θD) zn =
n∑

pxn − c (7)

where px is the x-component of the surface normal (in 2D) and c is an unimpor-
tant constant. The surface is not reconstructed where θD is close to zero since the
diffuse polarization theory is less accurate here. Reconstructed surface segments
from the rotated image are then rotated in the opposite direction by θrot and
aligned with the point’s potential correspondence in the unrotated image. The
root-mean-square (RMS) difference, ε, between the two surfaces is calculated.

The final list of correspondences are then found by using the combination
of correspondences that gives the least total RMS error while remaining valid
(i.e. does not cause the surface to overlap on itself).

3.3 Disambiguation

After correspondences have been located using a range of θ0, many points on the
surface are unambiguous since the sign of θD for the two points of any detected
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correspondence is the same. For the remaining points the following procedure
was used:

Correspondences are sorted according to reliability by introducing the fol-
lowing confidence measure: fc = lθ0/ε, where l is the length of the reconstructed
slice. A more meaningful measure will be derived for future work.

The algorithm then propagates away from the correspondences in order of
confidence and sets the surface azimuth angle to whichever is closest to the local
mean, either φ or φ+180◦. This process continues until an area is reached where
θD < θmin, (where θmin is taken to be about 20◦ although the exact figure is not
important), at which point, the next correspondence is used. A few areas, mainly
where θ0 < θmin, still remain ambiguous. These regions are simply “closed” by
aligning with the local mean azimuth angle. Such regions are unimportant, since
the surface height changes only slightly across these areas.

4 Results

To demonstrate the usefulness of the method, we have analysed the shape of the
porcelain bear shown in Fig. 6. The bear is made of a smooth featureless white
dielectric so is well suited to the technique. The overall geometry however, is
complex and specular inter-reflections are present, where the incident light is re-
flected twice or more without absorption. For these areas the theory for specular
reflection is obeyed. The phase images show the results that one would expect
apart from a few small areas (near arms, legs and ears) where the phase has
deviated by 90◦ from the expected value. This is due to the inter-reflections.

With a few exceptions, the correspondences have been accurately located.
The addition of the constraint that corresponding points move away from the left
occluding contour clearly plays an important (and computationally inexpensive)
role. The disambiguation routine appears to work well except for areas where θD

is near zero. This is due to the unsophisticated final stage of processing, which
attempts to disambiguate these areas.

Figure 7 shows the result of applying the Frankot-Chellappa algorithm to
recovered needle maps. The first depth map shows the frontal view (let the angle
of the turn-table here be θturn = 0) of the bear obtained using θturn = 0 and 20◦.
The other depth maps were found using θturn = 120◦ and 140◦ and θturn = 240◦

and 260◦. This combination of six different θturn allows for a compromise between
keeping the two views used to disambiguate azimuth angles close (which allows
a greater density of correspondences to be obtained since there is less occlusion)
and the acquisition of 360◦ of the object. Zippering the segments together will
be the focus of future work. Figure 8 shows a reconstruction of a partly painted
porcelain cat. This shows that even in the presence of some textured regions
accurate correspondence detection and height reconstruction are still possible.
The figure also shows the original colours mapped back onto the surface.

5 Conclusion

A new method for height reconstruction has been presented that makes use of
diffuse polarization information from two views. The polarization data is used

E. HancockR.
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Fig. 6. Various stages in the processing of a porcelain bear. From left: greyscale images

from the original view and after a 20◦ rotation; phase image; degree of polarization

(dark areas are highest); |θD|, (the sign of θD is unknown at this stage and, again, dark

areas are higher); potential correspondences (where the |θD| condition is met); final

estimates of correspondences (for a single value of θ0); disambiguated azimuth angles.

Fig. 7. Reconstruction of the porcelain

bear from different views separated by

120◦

Fig. 8. Left: original image of porcelain

cat with a small amount of paint added.

Centre: recovered depth map. Right: map-

ping of original colours onto the surface.

both to find correspondences and to recover surface normals. The results are
promising, with the majority of azimuth angles correctly disambiguated and
the surface height accurately recovered. There are nevertheless several possible
improvements to the technique. For example, including the detection of surface
features (for objects with one or more textured regions), as in previous stereo
methods, would provide a greater density of correspondences for some objects.
Accuracy in surface height would be improved by the use of normals from both
views when applying the Frankot-Chellappa algorithm. We also intend to com-
pare and possibly combine this method with intensity-based methods such as
shape from shading [10].
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Abstract. This work describes FSVC (Fully Scalable Video Codec), a
scalable video compression system which is able to generate temporal-,
spatial- and quality-scalable video streams. FSVC is very suitable for
video-on-demand applications where a single version of the compressed
video sequence is used. A video server can provide video streams to
several clients with different visualization and band-width requirements
using a single copy of the stream which is organized as a set of packets
(as in Motion JPEG 2000). The server is able to accommodate to a
large variety of clients just selecting which packets will be transmitted.
The simplicity of this transcoding operation makes possible a low-power
server to provide service to a large number of clients.

1 Introduction

Scalable video coding is a technique which allows a compressed video stream
to be decoded in several different ways. Users can adaptively recover a specific
version of a video just selecting which parts of the compressed sequence will be
decoded depending on its own requirements: (1) frame-rate, (2) spatial resolu-
tion, (3) image quality and (4) data-rate. Frame-rate (or image-rate) is obtained
by means of the Temporal Scalability. Spatial Scalability provides a set of spatial
resolutions for each image. The progressive minimization of the distortion of the
reconstructed video at the decoder is obtained by the Quality Scalability. These
types of scalabilities can be combined together to achieve some target bit-rate
that can be limited by the capabilities of the decoder or the transmission link.
Therefore, it is possible to generalize the scalability idea to the concept of a
Data-rate Scalability. Video scalable coding is a major feature for video storage
and transmission systems. For example, in Video on Demand (VoD) applications
a server sends a video stream to a set of clients thorough a number of transmis-
sion links. For most of the cases, the quality, resolution, and frame-rate of the
visualizations must be adapted to the requirements of the decoder and/or the
band-width available for each link. In this context, the computational require-
ments of the servers are proportional to the number of clients. For non-scalable
video coding, there are two alternatives to minimize one of these requirements
(not both): (1) the creation of a specific copy of each sequence for each pos-
sible client or (2) the use of CPU-intensive real-time transcoding processes to
re-encode on-the-fly the sequences. A scalable video coding can address both
problems at the same time because only a copy of each sequence is stored in the
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server and the transcoding task is simplified. In the worst case, the transcoding
will consist of a re-ordering of the compressed data at the transmission time.
This action is so simple that it can be carried out by the clients retrieving the
adequate portions of the stream.

2 The Video Codec

Our proposed video compressor FSVC (Fully Scalable Video Codec), as shown
in Figure 1, is a differential coding system that reduces the temporal redundancy
of the video sequence I and the spatial redundancy of each image (frame) of the
video sequence. FSVC produces a compressed stream that is highly scalable. The
FSVC decompressor recovers the original input video I when the full stream of
the compressed data is available.

Decoder

Coder Decoder

MC MC

Entropy
Coder

Entropy
Decoder

ME

2D-DWT
I

I − P
E EBCOT

Coder

M

E EBCOT E
I + P

I

2D-DWT
Inverse

I I

P P

M M

Fig. 1. A block diagram of FSVC

The input sequence of frames is first divided in GOFs (Group of Frames)
and each GOF is encoded separately. This allows the decoder: (1) to access any
GOF of the compressed video without decoding the rest and (2) to avoid the
error propagation when real-time transmissions are carried out over error-prune
transmission links.

A differential prediction scheme (MCTF Motion Compensated Temporal Fil-
tering [1]) is used to reduce the temporal redundancy of the video. For each frame
I[i], a prediction image P [i] is generated by the Motion Compensation (MC)
module. This module uses the motion vectors M [i] that have been produced by
the Motion Estimation (ME) module. The motion estimation is performed in
the image domain. Each motion field M [i] indicates the spatial displacements
of a set of blocks in a set of previously encoded images (reference images, see
Figure 2) in order to create the prediction image P [i] that approximates the
current frame I[i]. The differential coding is carried out in the wavelet domain
in order to (1) minimize the disgraceful blocking artifacts that are visible at
low bit-rates when it is carried out in the image domain and (2) avoid spatial
scalability drift errors [2]. For this reason, each image I[i] is transformed using
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the 2-D Discrete Wavelet Transform (DWT). The compensated blocks are also
in the wavelet domain, but using the correct phase to avoid the shift variability
of the DWT [3]. The same motion field is used at each resolution level. Thus,
the resulting sequence of residues E has smaller entropy than the original I.
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Fig. 2. An example of a motion-compensated prediction for a 8-frames GOF (only one
sub-band is shown). Frame 9 is shared with tne next GOF.

The MCTF is performed in the wavelet domain. The prediction image is
composed by blocks of a previous frame (P-blocks) and by blocks of a future
frame (N-blocks) as shown in Figure 2. When no prediction can be generated,
an I-block (intra) is used. Figure 2 shows also the relationship between the
images of the GOF to obtain dyadic temporal scalability. For instance, frame 5
is predicted with frames 1 and 9; frame 3 is predicted with frames 1 and 5, and
so on. Every block of a predicted frame can be backward or forward predicted.
The choice between forward or backward prediction is made according to the
MSE (Mean Square Error) and minimizing drift errors. Drift errors accumulate
over dependencies between predicted frames. Therefore, for predicted frame 2,
forward predictions have higher priority than backward, because at the decoder,
frame 1 (whose every block is intra coded) will be reconstructed with more or
less quality but with no drift errors.

Notice that the frames of every GOF are predicted with two intra coded
frames (in Figure 2, frames 1 and 9). This feature is not possible in conventional
MPEG standards, but for scalable video frameworks it allows better reconstruc-
tions at the decoder because the intra-frames are shared by two GOFs.

Each residue E[i] is compressed using EBCOT [4], generating a collection
of packets. Each packet is the contribution of a precinct P (a spatial region of
the image) to a quality layer L (a level of distortion), for a spatial resolution R,
for a colour component C and for a GOF G. The packet-stream can be easily
reorganized because information about the location of each packet is also stored
in it.



174 M.F. López et al.

The motion data M is entropy compressed. An static 0-order probabilistic
model and Huffman coding are used to remove the statistical redundancy. For
future work we should include techniques for scalable coding of the motion in-
formation.

3 The Use of FSVC on VoD Systems

Most VoD systems are implemented using a client-server architecture. The com-
pressed video data is stored in the server and several clients retrieve the data
(or a part of it) in order to visualize the video sequence. Scalable video coding is
extremely useful in these applications because usually it is impossible to decode
all the data. Therefore, the server or the clients must select which packets are
going to be transmitted.

In FSVC, the output is a sequence of packets that are placed in the stream
using some ordering. This ordering is important because it determines the way
the video sequence will be displayed when only a partial decoding of the com-
pressed stream is carried out. In our system the coder selects the ordering (also
called progression) depending on the requirements of the visualization:

1. Progressive by quality is used when most of the clients need to preserve
the original frame-rate and spatial resolution, but allowing a variation of the
quality (in a SNR sense) of the GOF. Any GL-subordinated ordering can be
used for this proposal because packets are organized in the stream first by
GOF and second by quality layer.

2. Progressive by resolution is provided by any GR-subordinated ordering.
Using these progressions clients preserve the original frame-rate of the GOF
but the spatial resolution is controlled by the bit-rate.

3. Progressive by frame-rate is used when most of the clients need to pre-
serve the maximal spatial resolution of the GOF. GT-subordinated orderings
should be used.

All the proposed progressions are G-subordinated. These progressions have two
advantages in VoD applications: (1) for a simple configuration, the control of
the data-flow between a client and the server is produced once for each GOF
and can be done using reliable protocols such as the TCP (Transmission Control
Protocol); (2) it is easy to access randomly to any GOF of the video sequence
because each GOF can be independently decompressed.

As it has been explained before, the default packet ordering can be modified
in real-time by the clients depending on their own requirements. For example, if
the number of precincts used is large enough, a client could retrieve the packets
that improve (with respect to the rest of the image) the quality of a moving
Region Of Interest (ROI) [5].

4 Experimental Results

In this section, results on coding efficiency and visual quality in a “progressive
by quality scenario” are presented. This scenario is the most interesting for VoD
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applications because its excellent bit-rate scalability. A comparison has been
performed between our codec and the RWMH codec proposed by Cui et al. [6].
Table 1 describes the FSVC and RWMH codecs used in the experiments.

Table 1. Summary of FSVC and RWMH: SF = Spatial Filters, SRL = Spatial Res-
olution Levels, TF = Temporal Filters, TRL = Temporal Resolution Levels, MC =
Motion Compensation, MC-PA = MC Pixel Accuracy, EoR = Encoding of Residuals,
EoMI = Encoding of Motion Information

FSVC RWMH

SF Biorthogonal 9/7 Biorthogonal 9/7
SRL 4 1
TF Bidirectional 1/1 IPPP...
TRL 5 -
MC Fixed block-size Fixed block-size
MC-PA 1/1 1/8
EoR EBCOT SPIHT
EoMI Huffman coding Huffman coding

In the experiments described in this section, we have compressed the lumi-
nance component of the flower garden and tempete sequences. The GLTRPC
progression has been selected for FSVC. Each GOF is composed of 16 frames
(4 TRLs). Each image is encoded using 16 quality layers and 4 SRLs. Cod-
ing only the luminance component implies that C = 1 in GLTRPC. Finally, 1
precinct per subband has been used. Therefore, each quality layer is composed
of 16 × 4 × 1 × 1 = 64 packets and each GOF has 16× 64 = 1024 packets. Us-
ing the GLTRPC progression, the first n packets of each GOF will be decoded,
depending on the available bit-rate and the size of the packets.

4.1 Rate-Distortion Evaluations

The results for FSVC have been obtained compressing at high bit-rates and
decoding at the desired bit-rate. Thus, the images reconstructed by the decoder
are expected to show drift errors (these errors are minimized due to the temporal
filtering we have used). Nevertheless, the bit-rate is a parameter only available at
the RWMH coder (due to the RWMH implementation provided by the author;
it can not be set at the decoder) and the decoded images are artificially free of
drift errors. In spite of this, as can be seen in Figures 3 and 4 FSVC performs
between 0.5 and 1.0 dB better than RWMH. FSVC is specially superior at low
bit-rates. We think that these results are due mainly to (1) the coding efficiency
of EBCOT compared to SPIHT (which is the coding algorithm used by RWMH)
and (2) the sharing of intra frames between GOFs.
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4.2 Visual Evaluations

Figure 5 shows a visual comparison between FSVC and RWMH. At the left,
images from flower garden and tempete reconstructed with the FSVC decoder
at different bit-rates; at the right, RWMH’s. At 256 Kbps FSVC is clearly better.
At 512 Kbps both codecs perform quite similar; however paying attention, some
elements as the street lamp of flower garden and the vertical trunk of tempete
are more detailed in FVSC decompressions.

5 Conclusions

A new fully scalable video codec FSVC based on MCTF and JPEG 2000 has
been described. Our codec provides fine granularity on temporal, quality and
spatial/ROI scalabilities. Moreover it exhibits higher performance than others
scalable video coders, such as RWMH, on both objective and subjective compar-
ison carried out in our experiments. Our future work involves the optimization
of the parameters of our coder in order to improve its coding efficiency, and the
study of techniques for the scalable coding of the motion information.
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Eigenspaces from Seriated Graphs
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Abstract. The aim in this paper is to show how the problem of learning the
modes of structural variation in sets of graphs can be solved by converting the
graphs to strings. We commence by showing how the problem of converting
graphs to strings, or seriation, can be solved using semi-definite programming
(SDP). This is a convex optimisation procedure that has recently found
widespread use in computer vision for problems including image segmentation
and relaxation labelling. We detail the representation needed to cast the graph-
seriation problem in a matrix setting so that it can be solved using SDP. We show
how to perform PCA on the strings delivered by our method. By projecting the
seriated graphs on to the leading eigenvectors of the sample covariance matrix,
we pattern spaces suitable for graph clustering.

1 Introduction

The literature describes a number of attempts at developing probabilistic models for
variations in graph-structure that can be used for shape recognition. Some of the earli-
est work was that of Wong, Constant and You [2], who capture the variation in graph-
structure using a discretely defined probability distribution. Bagdanov and Worring [1]
have overcome some of the computational difficulties associated with this method by
using continuous Gaussian distributions. For problems of graph matching Christmas,
Kittler and Petrou [5] and Wilson and Hancock [14] have used simple probability dis-
tributions to measure the similarity of graphs. However, despite this effort the methods
fall well short of constructing genuine generative models from which explicit graph
structures can be sampled. In this respect the study of graph-structures is less advanced
than the study of pattern-vector or shape spaces. The reasons for limited progress are
two-fold. First, graphs are not vectorial by nature. While conventional pattern recogni-
tion techniques construct shape-spaces from vectors, it is not straightforward to convert
graphs into vectors. Second, in practice there usually exists structural noise or distur-
bance, and graphs are of different size.

To solve these problems, in this paper we turn to graph-seriation as a means of
placing the nodes of a graph in a serial order. Theoretically, the graph-seriation is a
challenging one since the task of locating optimal paths on graphs is one that is thought
to be NP-hard [12]. The problem is known under a number of different names includ-
ing “the minimum linear arrangement problem” (MLA) [15] and “graph-seriation”[9].
Stated formally, graph seriation involves finding a permutation of the nodes of a graph
that satisfies constraints provided by the edges of the graph. The recovery of the permu-
tation order can be posed as an optimisation problem. It has been shown that when the
cost-function is harmonic, then an approximate solution is given by the Fiedler vector
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of the Laplacian matrix for the graph under study [9]. In a recent paper, Robles-Kelly
and Hancock [3] have reformulated the problem as that of recovering the node permu-
tation order subject to edge connectivity constraints, and have provided an approximate
spectral solution to the problem. Although spectral methods are elegant and convenient,
they are only guaranteed to locate solutions that are locally optimal. Recently, semidef-
inite programming (SDP) [11] has been developed as an alternative method for locating
optimal solutions couched in terms of a matrix representation. Broadly speaking, the
advantage of the method is that it has improved convexity properties, and is less likely
to locate a local optimum. The method has been applied to a number of graph-based
problems in pattern recognition including graph partitioning [7], segmentation [8][16]
and the subgraph isomorphism problem [6].

The aim in this paper is hence to investigate whether SDP can be applied to the
graph-seriation problem and whether the resulting strings can be used for learning
a generative model of graph structure. We commence by illustrating how the cost-
function can be encoded in a matrix form to which SDP can be applied. With this
representation to hand, then standard SDP methods can be applied to extract the opti-
mal serial ordering. To do this we lift the cost function to a higher-dimensional space.
Here the optimization problem is relaxed to one of convex optimization, and the solu-
tion recovered by using a small set of random hyperplanes.

We explore how the resulting strings delivered by the seriation method can be used
for the purposes of constructing eigenspaces for sets of graphs. To do this we use an
optimisation method to construct a reference string, and bring each of the set of graphs
under study into correspondence with this reference string. Using this permuted or-
der, we construct a covariance matrix for the set of graphs. We then perform principal
components analysis by projecting the graphs onto the leading eigenvectors of the co-
variance matrix. We demonstrate that provided sufficient eigenvectors are used, then the
Euclidean distance in the eigenspace approximates well the edit distance between the
strings.

2 Graph Seriation

We are concerned with the undirected graph G = (V, E) with node index-set V and
edge-set E =⊆ V ×V . The adjacency matrix A for the graph is the V ×V matrix with
elements

A(i, j) =
{

1 if(i, j) ∈ E
0 otherwise

(1)

The graph seriation problem has been formally posed as one of optimisation in the work
of Atkins et al [9]. Formally, the problem can be stated as finding a path sequence for
the nodes in the graph using a permutation π which will minimize the penalty function

g(π) =
|V |∑
i=1

|V |∑
j=1

A(i, j)(π(i)− π(j))2 (2)

Since the task of minimizing g is NP-hard due to the discrete nature of the permutation,
a relaxed solution is sought using a function h of continuous variables xi. The relaxed
problem can be posed as seeking the solution of the constrained optmisation problem
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x = arg minx∗ h(x∗) where h(x) =
∑

(i,j) f(i, j)(xi − xj)2 subject to the constraints∑
i xi = 0 and

∑
i x2

i = 1. Using graph-spectral methods, Atkins and his coworkers
showed that the solution to the above problem can be obtained from the Laplacian
matrix of the graph. The Laplacian matrix is defined to be LA = DA − A where
DA is a diagonal matrix with di,i =

∑n
j=1 Ai,j . The solution to the relaxed seriation

problem equation (2) is given by the Fiedler vector, i.e. the vector associated with the
smallest non-zero eigenvalue of LA. The required serial ordering is found by sorting
the elements of the Fiedler vector into rank-order. Recently, Robles-Kelly and Hancock
[3] have extended the graph seriation problem by adding edge connectivity constraints.
The graph seriation problem is restated as that of minimising the cost-function

hE(x) =
|V |−1∑
i=1

|V |∑
k=1

(A(i, k) + A(i + 1, k))x2
k (3)

By introducing the matrix

Ω =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 · · · 0 0
0 2 0 0 · · · 0 0
...
0 0 0 0 · · · 2 0
0 0 0 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎦
the path connectivity requirement is made more explicit. The minimiser of hE(x) sat-
isfies the condition

λ = arg min
x∗

x∗T ΩAx∗
x∗T Ωx∗

(4)

Although elegant and convenient, spectral methods are only guaranteed to find a
locally optimal solution to the problem. For this reason in this paper we turn to the
more general method of semidefinite programming to locate an optimal solution which
utilizes the convexity properties of the matrix representation.

3 Semidefinite Programming

Semidefinite programming (SDP) is an area of intense current topical interest in opti-
mization. Generally speaking, the technique is one of convex optimisation that is ef-
ficient since it uses interior-point methods. The method has been applied to a variety
of optimisation tasks in combinatorial optimization, matrix completion and dual La-
grangian relaxation on quadratic models. Semidefinite programming is essentially an
extension of ordinary linear programming, where the vector variables are replaced by
matrix variables and the nonnegativity elementwise constraints are replaced by positive
semidefiniteness. The standard form for the problem is: X = arg minX∗ traceCX∗,
such that traceFiX = bi, i = 1...m, X � 0. Here C, Fi and X are real symmet-
ric n × n matrices and bi is a scalar. The constraint X � 0 means that the variable
matrix must lie on the closed convex cone of positive semidefinite solutions. To solve
the graph seriation problem using semidefinite programming, we denote the quantity
Ω1/2AΩ−1/2 appearing in equation (4) by B and Ω1/2x∗ by y. With this notation
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the optimisation problem can be restated as λ = arg minyT y=1 yT By. Noting that
yT By = trace(ByyT ) by letting Y = yyT in the semidefinite programming setting
the seriation problem becomes Y = arg minY ∗ traceBY ∗ such that traceEY ∗ = 1,
where the matrix E is the unit matrix, with the diagonal elements set to 1 and all the
off-diagonal set to 0. Note that Y = yyT is positive semidefinite and has rank one. As
a result it is convex and we can add the positive semidefinite condition Y ∈ S+

n where
S+

n denotes the set of symmetric n× n matrices which are positive semidefinite.

Interior Point Algorithm: To compute the optimal solution Y ∗, a variety of iterative
interior point methods can be used. By using the SDP solver developed by Fujisawa
et.al [10], a primal solution matrix Y ∗ can be obtained. Using the solution Y ∗ to the
convex optimization problem, we must find an ordered solution y to the original prob-
lem. To do this we use the randomized-hyperplane technique proposed by Goemans and
Williamson [13].

Since Y ∗ ∈ S+
n , by using the Cholesky decomposition we have that Y = V T V, V =

(v1, ....vn).Recalling the constraint yT y = 1, the vector y must lie on the unit sphere
in a high dimensional space. This means that we can use the randomized hyperplanes
approximation. This involves choosing a random vector r from the unit sphere. An
ordered solution can then be calculated from Y ∗ = V T V by ordering the value of
vT

i r. We repeat this procedure multiple times for different random vectors. The final
solution y∗ is the one that yields the minimum value for the objective function yT By.
This technique can be interpreted as selecting different hyperplanes through the origin,
identified by their normal r, which partition the vectors vi, i = 1....n.

The solution vector x∗ can be obtained using the equation Ω1/2x∗ = y, and the
elements of the vector x∗ then can be used to construct the serial ordering of the nodes
in the graph. Commencing from the node associated with the largest component of x∗,
we sort the nodes in so that the nodes are ordered so that the components of x∗ are of
decreasing magnitude and also satisfy edge connectivity constraints on the graph. We
iteratively proceed in the following. Let us denote the list of the visited nodes by Sk at
the kth iteration. Initially S1 = i1 = arg maxi x∗(i). We proceed by searching the set
of the first neighbours of i1, i.e. Ni1 = {j|(i1, j) ∈ E}, to locate the node which is
associated with the largest remaining component of x∗. This node is then appended to
the list of nodes visited list and satisfies the condition i2 = arg maxl∈Ni1

x∗(l). This
process is repeated until every node in the graph is visited. At termination the sorted list
of nodes is the string SG.

4 Graph Matching

With the converted strings at hand, we are able to pose the graph matching problem as
that of aligning the strings so as to minimise the transition cost on a string edit matrix.
We denote the seriations of the data graph GD = (VD, ED)and model graph GM =
(VM , EM ) by X = {x1, x2, ......, xm} and Y = {y1, y2, ......, yn} respectively. Here m
and n represent the number of nodes in the two graphs. These two strings can be used to
index the rows and columns of an edit lattice. Since the graphs may have different sizes,
we introduce a null symbol ε which can be used to pad the strings. The graph matching
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problem can be stated as finding a path Γ =< p1, p2, ...pk..., pL > through the lattice
which generates the minimum transition cost. Each element pk ∈ (VD ∪ ε)× (VM ∪ ε)
of the edit path is a Cartesian pair. We constrain the path to be connected on the edit
lattice, and also the transition from the state pk to the state pk+1 is constrained to move
in a direction on the lattice, which is increasing and connected in the horizontal, vertical
or diagonal directions on the lattice. The diagonal transition corresponds to the match
of an edge of the data graph to an edge of the model graph. A horizontal transition
implies that the traversed nodes of the model graph are null-matched. Similarly, the
visited nodes of the data graph are null-matched when a vertical transition is made.

By representing the adjacent states on the path by pk and pk+1, the cost function of
the edit path can be given as follows:

d(X, Y ) =
∑

pk∈Γ

η(pk → pk+1) (5)

where η(pk → pk+1) is the transition cost between the adjacent states. The optimal
edit path is the one that minimises the edit distance between string and satisfies the
condition Γ ∗ = arg minΓ d(X, Y ). The optimal edit sequence may be found using
Dijkstra’s algorithm and the matching results are obtained from the optimal transition
path on the edit lattice.

5 Computing a Reference String

We are interested in whether the strings delivered by our graph seriation method can be
used for the purposes of graph clustering and constructing eigenspaces for graphs. To
do this a reference string is required, since this can be used as a class prototype, and also
allows the covariance matrix for a set of strings (i.e. seriated graphs) to be computed.
To construct the reference string, we proceed as follows. After converting the set of
M graphs {G1, G2, .., Gk, ..GM} into a set of strings {SG1 , SG2 , .., SGk

, .., SGM}, we
compute the pair-wise edit distances of the strings using the correspondences between
graphs obtained using graph matching technique. We denote the edit distance matrix
by EDG. We then select the reference string S{r} so as to satisfy the condition r =
argminr∗

∑
j∈|M| EDG(r∗, j).

This reference string can be used to capture the statistical properties of the set of
graphs. In order to create a meaningful pattern-space for graph clustering, we construct
permuted graph adjacency matrices by making use of the matching results between
the individual string SG−{r} and the reference string Sr. For the graph indexed k, the
permuted adjacency matrix is given by

Ak(i, j) =
{

1 if (C(i),C(j)) ∈ E
0 otherwise

(6)

where the C(i) and C(j) represent the node correspondences of nodes i and j in the
reference string. Next we convert the permuted adjacency matrices into long-vectors by
stacking the columns of the permuted adjacency matrices. For the graph indexed k, the
long vector is Hk = (Ak(1, 1),Ak(2, 1),Ak(3, 1), ....)T .
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6 Graph Eigenspaces

Our aim is to construct an eigenspace which can be used to capture the modes of vari-
ations is graph edge-structure. To do this, we represent the variations present in the set
of graphs using the mean long-vector and the covariance matrix for the long-vectors.
The eigenspace is constructed by projecting the individual graph long-vectors onto the
directions spanned by the principal eigenvectors of the covariance matrix.

To be more formal, we commence by calculating the mean long-vector (ẑ) and the
long-vector covariance matrix (σ) for the set of permuted adjacency matrices using the
following formulae

Ĥ =
1
M

M∑
k=1

Hk Σ =
1
M

M∑
k=1

(Hk − Ĥ)(Hk − Ĥ)T . (7)

To construct the eigenspace we commence by computing the eigenvalues and eigen-
vectors for the covariance matrix Σ. The eigenvalues λ1, λ2, . . . , λN are found by solv-
ing the polynomial equations |Σ − λI| = 0, where I is the identity matrix. The associ-
ated eigenvectors φ1, φ2, . . . , φN are found by solving the linear eigenvector equation
Σφk = λkφk . From the eigenvectors we construct a modal matrix. The eigenvectors
are ordered in decreasing eigenvalue order to form the columns of the modal matrix, de-
noted by Φ = (φ1|φ2| . . . |φN ). If eigenspace is taken over the leading K eigenvectors,
then the projection matrix is ΦK = (φ1|φ2| . . . |φK). The projection of the long-vector
Hk onto the eigenspace is given by Hk = ΦT

KHk. In the eigenspace the distance be-
tween the graphs indexed k1 and k2 is SD(k1, k2) = (Hk1 −Hk2)T (Hk1 −Hk2).

7 Experiments

For our experimental evaluation we use the COIL image database. To extract graphs
from the images, we detect feature points using the Harris corner detector[4]. The
graphs used in our study are the Delaunay triangulations of the point sets. The rea-
son for using Delaunay graph is that it incorporates important structural information
from the original image. In the images studied there are rotation, scaling and perspec-
tive distortions present. Example images from the sequences are shown in Fig 1 and
correspond to different camera viewing directions of the objects. The detected feature
points and their Delaunay triangulations are overlayed on the images.

Fig. 1. Delaunay graphs overlayed on COIL data
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Fig. 2. Scatter Plot of SD versus ED for k=81,k=30,k=10,k=1

Table 1. Value of dispersion about the best-fit regression line

No. of eigenvectors Value of dispersion
1 7.0718

10 3.587
30 2.3337
81 0.6914

We have selected six objects from the COIL database. For each object there are
20 different views. For the 120 graphs in the data-set, we have computed the complete
set of distances between each pair of graphs.

We commence by exploring the relationship between the string edit distance ED
and the Euclidean distance between the graphs in the eigenspace SD. In Figure 2, we
show scatter plots of SD versus ED as the number of leading eigenvectors is decreased.
The main feature to note is that for large numbers of eigenvectors, there is a clear
regression trend in the plots. Hence, the distance in the eigenspace reflects well the true
edit distance. However, as the number of eigenvectors decreases then so the regression
trend weakens and the eigenspace distance is a poor approximation of the edit distance.
In Table 1 we list the value of the dispersion about the best-fit regression line as a
function of number of eigenvectors.

Finally, we consider the distribution of the graphs in the eigenspace. In Figure 4 we
show the projections of the graphs onto the leading eigenvectors of the sample covari-
ance matrix. The different objects form well defined clusters.
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In Figure 3 we take this analysis one step further. Here we show the result of ap-
plying multidimensional scaling to the Euclidean distances computed in the eigenspace
and the edit distances. In each plot we show the result of projecting the graphs into a
two dimensional space spanned by the leading two eigenvectors of the distance matrix
for the graphs. The graphs extracted from the different views of the same object are
shown as points of the same symbol . The first panel shows the embedding obtained
from the edit distances, and the remaining panels show the results obtained using the
Euclidean distances as the number of eigenvectors is decreased. Initially, both the edit
distances give good separations of the the different object-views, but as the number of
eigenvectors is decreased then so the results obtained using Euclidean distance degrades
badly.

8 Conclusions

In this paper we have shown how graphs can be projected into an eigenspace using
strings extracted using semi-definite programming. SDP is a convex optimisation pro-
cedure that uses randomised hyperplanes to locate the solution. By applying PCA to the
resulting strings we have constructed an eigenspace for the sample of graphs. We have
demonstrated that provided a sufficiently large number of eigenvectors are used, then
the Euclidean distances in the eigenspace approximate well the edit distance between
graphs.
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Abstract. A set of predictive-direction-oriented quadrangle search patterns is 
proposed in this paper. Based on these patterns, a new fast motion estimation 
algorithm is developed. In this new algorithm, the search process is guided by the 
predictive direction and adaptively selects the appropriate search pattern from 
predictive-direction-oriented quadrangle search patterns, thus significantly 
reduces the number of search steps and search points of every search step. 
Simulation results demonstrate the effectiveness of this algorithm by 
considerably reducing encoding complexity while incurring little if any loss in 
quality. 

1   Introduction 

The rapid growth of wireless communication and access, together with the success of 
the Internet, has brought a new era of mobile/wireless multimedia applications and 
services. Motion estimation (ME) and compensation are critical components for digital 
video compression and coding systems especially in wireless video applications, where 
the bandwidth is limited and precious. BMA (Block-Matching ME Algorithm) has 
been widely adopted by international standards such as MPEG4 and h.264 [1, 2], 
aiming at exploiting the strong temporal redundancy between successive frames. BMA 
method attempts to find a block from a reference frame within the predefined search 
window that best matches the co-located block in the current frame. Matching is 
performed by minimizing a matching criterion, which in most cases is the SAD (Sum of 
Absolute Difference) between this pair of blocks. However, the motion estimation is 
quite computationally intensive and can consume up to 80% of the computational 
power of the encoder if the full search (FS) is used by exhaustively evaluating all 
possible candidate blocks within the search window. Therefore, fast algorithms are 
highly desired to significantly speed up the process without sacrificing the distortion 
seriously. 

Many computationally efficient BMAs were developed, among which are typically 
the three-step search (TSS), new three-step search (NTSS) [3] , four step search (4SS) 
[4], block-based gradient descent search (BBGDS) [5], diamond search (DS)[6], 
Hexagon-Based Search(HEXBS)[7] and Context-Adaptive Parallelogram 
Search(CAPS) [8] algorithms. The methods in [3]-[8] use the different special search 
pattern respectively during the search process, can remarkably reduce the number of 
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search points thus lead to very low encoding complexity and high efficiency compared 
to the brute force Full Search (FS) algorithm. But these algorithms do not consider 
selecting the appropriate start search point so that they maybe result in too much pattern 
search iteration steps or can be easily trapped into local minima areas. The literature [8] 
takes into account the initial search point selection and using different search pattern 
according to the predictive motion vector (MV)’s direction. But it only compute the 
median MV of the three spatial adjacent points (left, top and top-right) as the initial 
predictor and does not exploit the temporal correlations such as the co-located and it’s 
surrounding blocks. Also the consideration of the predictive direction in this method is 
not adequate.  

In this paper we propose a set of predictive-direction-oriented quadrangle search 
patterns (PDQS), each of which responds to a special prediction direction. Based on the 
patterns proposed, we develop a new fast motion estimation algorithm. Simulation 
results demonstrate the efficacy of our algorithm. 

The remainder of the paper is organized as follows. In Section 2, we introduce the 
proposed search patterns. The developed ME algorithm are described in Section 3. 
Experiment results are presented in Section 4. Section 5 is conclusion of this paper. 

2   Predictive-Direction-Oriented Quadrangle Search Patterns 

A set of predictive-direction-oriented quadrangle search patterns is depicted in Fig. 1, 
which consists of seven patterns. Among them, patterns in Fig .1(a)-(f) indicate 
different prediction direction respectively, namely horizontal, horizontal-right, 
horizontal-left, vertical, vertical-right, and vertical-left. The direction of the quadrangle 
pattern can also be indicated by the direction of the vector AB  . They are used in the 
predictive direction guided search procedure according to some special rules described 
in section 3.2. The pattern illustrated in Fig. 1(g) is the small search pattern, which used 
in the final refinement search step.  

3   ME Algorithm Development 

Based on the PDQS search patterns proposed, we have developed a new motion 
estimation algorithm, which mainly includes two parts: initial search point selection 
and predictive direction guided search. 

3.1   Initial Search Point and Search Pattern Selection 

In contrast with the CAPS [8] where the median MV of the three spatial adjacent points 
is used as the predictor and the end point of this MV selected as the initial search point, 
here we select the MV of co-located point in reference frame in addition to the median 
MV as the candidates. The MV with the minimal SAD value is used as the predictor 
named as mvpred _ and the end point of the mvpred _ selected as the initial search 

point.  



190 Cheng-Dong Shen , Tie-Jun Li, and Si-Kun Li 

v v

v

v v

v

vA

(a) (b)

(d) (e)

(c)

(f) (g)

A

AA

AA

A

B

B B

B
B B

 

Fig. 1. PDQS patterns: (a) horizontal pattern; (b) horizontal-right pattern; (c) horizontal –left 
pattern; (d) vertical pattern; (e) vertical-right pattern; (f) vertical-left pattern; and (g) final 
refinement pattern 

 

Fig. 2. Initial search pattern selection method  

After selecting the initial search point, we choose the appropriate start search pattern 
from that the Fig. 1(a)-(f) illustrated according to the direction of mvpred _ . There are 

six direction used responding to the direction of the pattern: horizontal, 
horizontal-right, horizontal-left, vertical, vertical-right and vertical-left. The detailed 
search pattern selection method is illustrated as Fig. 2. The value of the angle 
between mvpred _ and the horizontal x axial is defined asα , and the selected search 

pattern named as Ps . The following formula defined the start search pattern selection 

rules: 
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The Above formula considers the situation that )165,15[ 00−∈α . In this situation, 

the point “A” in the Fig. 1. (a)-(f) is the start search point. If )165,15[ 00−∉α , the same 

pattern is selected as that of the opposite direction and the point “B” in Fig. 1. (a)-(f) is 
regarded as the start search point.  

3.2   Predictive Direction Guided Search 

During the search procedure, the ME algorithm compute the candidate points’ SAD 
value and find the best matched point with the minimal SAD. At the first step of the 
search, there are seven candidate points to be considered including an initial search 
point and other six points located at the vertex of two same search patterns which are 
connected by the initial search point and toward the same direction. This can be 
depicted by Fig. 3, which is just an example of six cases (patterns from Fig. 1(a)-(f)). 
The solid dots in Fig. 3 refer to the seven points, among which the “A” is the initial 
search point. 

  

Fig. 3. First step of the predictive direction 
guided search 

Fig. 4. Predictive direction guided search 
(pattern last step used as Fig. 1.(b) for 
example) 

 

In the flowing search steps, the point with minimum block distortion (MBD) and the 
point with second MBD (SMBD) of the last search step are used to decide the 
prediction direction and the corresponding PDQS search pattern. There are two 
situations: the two points belong to the same edge of quadrangle pattern or are diagonal. 
If it is the former, two additional points are selected as the candidate points to be 
computed. The four points including these two additional points, the MBD point and 
the SMBD construct the new search pattern. At the same time, if the latter situation 
exists, three additional points will be selected and together with the MBD point they 
form the new search pattern same as the last step used. For simplicity, below is the 
detailed description of the search method in case of that the pattern in Fig. 1(b) is taken 
as that of the last search step. The other alterations from Fig. 1(a) and Fig. 1(c)-(f) are 
similar. Fig. 4 depicts this method. 

The point A is taken as the start point of the current search step, if A is the MBD 
point, then the search will complete the final refinement search step using the pattern in 
Fig .1(g) and finish the entire search process. If not, then combination of the MBD and 
SMBD points and the new search points will be the following possibility: BA(1,2), 
BC(2,3), CB(3,4), CD(6,7), DC(7,8), DA(8,9), BD(1,2,3), and DB(7,8,9), where the 
former capital letter refers to the MBD point and the latter one refers to the SMBD, 
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followed by which is the new search points. The MBD and(or) SMBD, together with 
the new quadrangle search pattern, such as Q(A, B, 1, 2), Q(A, 1, 2, 3) and etc.  

Fig. 5 illustrates two more alternations: Fig. 5(a) for the horizontal search pattern as 
the last search step used depicted in Fig. 1(a); Fig. 5(b) for the vertical-left one in Fig. 
1(f). From Fig. 4 and Fig. 5 we can observe that: (1) there are nine candidate points 
around the quadrangle search pattern, and the figure formed by these points is similar to 
a taper which direction is corresponding the direction of the surrounded quadrangle 
search pattern; (2) the quadrangle search patterns can be divided into two groups: one is 
composed of the vertical, horizontal-right, and horizontal-left pattern (as Fig. 1(d)(b)(c) 
refers); the other consists of the horizontal, vertical-right, and vertical-left pattern(as 
Fig. 1(a)(e)(f) refers), the search pattern is adaptively selected from one special group 
according to the distribution of the MBD and SMBD points. 

 

Fig. 5. Predictive direction guided search. (a) horizontal pattern as last step used; and (b) 
vertical-left one as last step used. 

3.3   Detailed ME Algorithm Description 

The proposed algorithm can be summarized in the following detailed steps.  

Step 1)  Select the median MV of the three spatial adjacent points and the MV of the 
co-located in the reference frame as the predictor MVs. By computing the two 
predictor’s SAD, picking out the predictor with the minimal SAD as the initial 
prediction MV and the end point of it as the initial search point.  
Step 2)  Perform the first search step according to the search rules as Section3.1 
described, and find out the MBD and SMBD points. If the MBD point is the initial 
search point, then proceed to Step 4) (Ending); otherwise, proceed to Step 3) 
(Searching). 
Step 3)  Go on searching guided by the predictive direction which decided by the 
pre-used pattern and the relative location of the MBD and SMBD points last search step 
found, which is detailed described in Section3.2. Three or two new candidate points are 
checked, and the MBD point is again identified. If the MBD point is still the MBD 
point of the last search step, then proceed to Step 4) (Ending); otherwise, repeat this 
step continuously. 
Step 4)  Switch the large search pattern ( illustrated in Fig. 1 (a)-(f) ) to the small 
refinement search pattern as in Fig. 1(g). The four points covered by the small 
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quadrangle are evaluated to compare with the current MBD point. The new MBD point 
is the final solution of the motion vector.  

The above process applies to each block in the current frame for block motion 
estimation. From the procedure, it can be easily derived that the total number of search 
points per block will be 

4327),( +×+×+= nmmmN yxPDQS              (2) 

where ),( yx mm is the final motion vector found, m is the number of execution of 

Step 3) where the MBD and SMBD points are diagonal , and n is the number of 
execution of Step 3) where the MBD and SMBD points are on the same edge. 

3.4   Analysis of the Proposed Algorithm 

In contrast to the DS algorithm [6], the HEXBS algorithm [7], and other non-predictive 
ME algorithms, the proposed algorithm uses predictive-direction-oriented quadrangle 
search patterns and predicts the initial motion vector, thus can substantially reduce the 
search step. Compare with the CAPS algorithm [8], this algorithm can predict the initial 
motion vector more accurately with additional predictor checked and use more search 
patterns which cover the predictive motion direction more elaborate.  

Compare with the proposed algorithm by which the number of search points used is 
indicated in (2), the DS method requires the following number of search points per 
block: 

49),( +×+= nMmmN yxDS
   (3) 

where M is either 5 or 3, depending on the search direction, and n depends on the search 
distance which is always greater than or equal to the sum of m and n in (2). The number 
of search points required for the HEXBS method is: 

437),( +×+= nmmN yxHEXBS    (4) 

where n is the number of search steps, it is easily know that n is always greater or equal 
to the sum of m and n in (2). For the CAPS method, the number of search points as 
below: 

 3327),( +×+×+= qpmmN yxCAPS    (5) 

where p and q is the number of search step corresponding to different search pattern. 
For the improvement of the prediction technology, we can conclude that the sum of p 
and q in (5) is always greater than or equal to the sum of m and n in (2). The speed 
improvement rate (SIR) of HEXBS over DS for locating a motion vector is obtained by  

%100
,,

,, ×
−

=
CAPSHEXBSDS

CAPSHEXBSDSPDQS

N

NN
SIR     (6) 

From the aforementioned analysis, it can be concluded that SIR is always greater than 
zero. 
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4   Experimental Results 

Our proposed algorithm was integrated within version 7.6 of the H.264 software [9], 
and it is compared versus FS, the DS algorithm [6], the HEXBS algorithm [7], and the 
CAPS algorithm [8]. The experimental setup is as follows. The distortion measurement 
of sum of absolute difference (SAD) used, CAVLC entropy coder used, with quantizer 
values of 28, 32, 36, and 40, a search range of ±32, and 5 references. Even though we 
have examined several different resolution sequences, we have selected to only present 
four relatively difficult sequences in this paper. These are CIF sequences Foreman, 
Stefan, Bus, and Garden. To make the estimation even more difficult, we have also 
selected to encode the sequences at 10fps, thus reducing temporal correlation even 
further. The average SIR results of the proposed algorithm versus the other algorithms 
are shown in Table 1. Also we show average PSNR gain and bitrate reduction results, 
while also we show speed up results for the entire encoding versus the overlapped FS. 
The results are shown in Table 2. As an example, The RD-plot of the Foreman 10fps is 
shown in Fig. 6.  

Table 1. Average SIR results for the proposed algorithm versus DS, HEXBS, and CAPS 

               
Sequence 
Versus. 

Forman Stefan Bus Garden 

DS 45.12 50.35 47.76 51.64 
HEXBS 27.06 31.48 33.15 34.53 
CAPS 18.32 22.98 20.72 24.08 

Table 2. RD performance of the proposed algorithm  

 Sequence Forman Stefan Bus Garden 
bitrate% 15.09 32.18 2.63 4.24 

PSNR -0.9 -2.08 -2.42 -0.12 DS 
SpeedUp 5.28 4.99 5.08 5.33 

bitrate% 9.33 17.24 1.32 2.56 

PSNR -0.82 -0.97 -0.16 -0.13 HEXBS 
SpeedUp 5.33 5.22 5.37 5.64 

bitrate% 7.05 15.16 1.75 2.88 

PSNR -0.81 -0.79 -0.67 -0.53 CAPS 
SpeedUp 5.59 5.37 5.65 5.78 

bitrate% 3.68 2.13 0.97 1.46 
PSNR -0.06 -0.06 -0.12 -0.07 PROP. 

SpeedUp 6.43 6.78 6.43 7.36 
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Fig. 6. RD performance plot for sequence Foreman CIF at 10fps 

From these results we observe that our proposed algorithm is considerably better 
than the DS, HEXBS, and CAPS algorithm. Table1 shows that the proposed algorithm 
checks the least check points. From Table2, it can be observed that this algorithm can 
significantly speed up the encoding process while losing a little video quality. Fig. 6 
demonstrates that the proposed algorithm can achieve better RD performance than 
other fast ME algorithms while keeping similar video quality as compared to FS 
algorithm. 

5   Conclusions 

In this paper we developed a novel fast algorithm using a set of 
predictive-direction-oriented search patterns in block motion estimation. Our results 
demonstrate that our scheme can produce similar and in some cases better results 
compared to even the FS algorithm while having considerably lower complexity. 
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Abstract. All the polygonalisation algorithms we can find in the litera-
ture proceed on 4-connected or 8-connected discrete arcs. In this article,
we aim to polygonalise “thick arcs”. A first step consists in giving a
definition of such arcs based on morphological properties. In a second
step, we propose two methods in order to polygonalise such arcs. The
first one is based on a squelettisation of the arc and uses the fuzzy arc
polygonalisation. The second one is based on a grouping of the cells in
order to obtain heterogeneous pixels and then, the polygonalisation of
heterogeneous arcs is applied.

1 Introduction

Within the framework of image analysis, one step consists in representing and
describing the shapes. Hence, on the basis of the objects identified during the
segmentation, the goal of this step is to extract characteristics, also called de-
scriptors. These are informations that can be computed on the shape. These
characteristics can be the perimeter, the area, the compactness, the curvature,
the inertia center, the orientation for examples. The computation of such char-
acteristics can be done directly on the frontier of the object such as the inertia
center or the principal axis. Others, on the contrary, need before the extraction
of primitives. A primitive is an elementary component such as straight lines or
circular arcs. This article deals with the second ones and more precisely its goal
is to give an approximation of the contour.

Many approaches are available in the literature in order the approximate
the contour of an object. We can cite for example methods based on Minimum
Length Polygon [SZ96, KKY99, KB00] or on Euclidean path [Via96]. However,
a basic approach that consists in decomposing the contour of the object into
polygonal arc offers a good approximation of if [CDRT01] and allows efficient
computation of global estimators. This is the reason why we are interested in
the polygonalisation of discrete curves or arcs.

We can find in the literature many articles dealing with polygonalisation of
discrete arcs or recognition of segments. As a matter of fact, many equivalent or
quasi-equivalent characterizationsof adiscrete segmenthavebeenproposed [Fre74,
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Ros74, LDW82, DS84, Kov90, Rev91] for example, and have been at the origin of
recognition algorithms more or less powerful [Kov90, DR95, Buz02]. But all these
works deal with 4−connected or 8−connected arcs in which we have an intrin-
sic way to traverse the pixels. But, such arcs are restrictive. I. Debled introduced
in [DRRD03] the notion of fuzzy segment in order to be more tolerant with the
noise but her algorithm also took in entry 4−connected or 8−connected arcs. In
this article, we present two methods that take in entry thick arcs.

In the section 2, we remember existing definitions and existing algorithms
that allow to polygonalise 4−connected or 8−connected arcs [DRR95, DRRD03]
and heterogeneous arcs [CT04]. All these elements are then used in the sections 3
and 4 in which we respectively propose a definition of thick arcs and describe
two methods to polygonalise them.

2 Existing Definitions and Algorithms

In this paragraph, we recall the definitions of an arithmetical discrete line, of a
fuzzy segment with order d and of an heterogeneous digital straight line that all
lead to polygonalisation algorithms.

First, let us remember the definition of arithmetical discrete line [Rev91].

Definition 1 (Arithmetical discrete line). A k−arc A belongs to the arith-
metical line of slope a

b , of inferior bound μ and of thickness ω (with a, b, μ,
ω integers, b �= 0 and pgcd(a, b) = 1), if and only if all the pixels (xi, yi) of A

satisfy : μ ≤ axi − byi < μ + ω.

Associated to this definition, I. Debled and J.P. Reveillès have proposed an
algorithm that allows to recognize arithmetical 4− or 8−connected segments in
linear time [DRR95]. An optimal time algorithm that give the polygonalisation
of a 4- or 8-arc has also been proposed by the same authors. Just remark that
this definition is not tolerant with the noise. As a matter of fact, if only one
pixel is not exactly between the real lines ax− by = μ and ax− by = μ + ω− 1,
named leaning lines, the recognition stops. Hence, in order to be more tolerant
with the noise, I. Debled introduced the notion of fuzzy segment [DRRD03].

Definition 2 (Fuzzy segment with order d). A k−arc A is a fuzzy segment
with order d if and only if there is an arithmetical discrete line D(a, b, μ, ω) such
that all the points of A belong to D and ω

max(|a|,|b|) ≤ d. The line D is said
bounding for A.

Associated to this definition, a segmentation algorithm of 8-connected arcs into
fuzzy segments has been proposed. Let us called it Polygonalisation Algorithm
based on Fuzzy Segments in the following. Such an algorithm takes in entries a
8-arc and a real number d. Each point of the 8-arc is sequentially added and
tested to the current segment and the characteristics a, b, μ and ω of a strictly
bounded line of this new segment are computed. More precisely, at each step,
the value ω

b is evaluated and if it is greater than d, the recognition stops : we
don’t have a fuzzy segment. Otherwise, we proceed with the next point of the
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8-arc. For more details, the reader can refer to [DRRD03].Such an algorithm
allows to decompose a 8-arc or a 4-arc into segments, in fact “fuzzy segments”,
which length depends on the order d fixed a priori.

On other side, works have been done on heterogeneous grid [CT04]. In this
context, a polygonalisation algorithm based on heterogeneous segments has been
proposed. In this context, a discretisation process is considered. For example, an
extension of the Closed Discrete Naive Model [And00, CA02] denoted by N̄(F )
for the object F R

2. Using this discretisation process, the notion of heterogeneous
digital straight line can be defined as follows.

Definition 3 (Heterogeneous digital straight line). Let S be a set of pixels
in H, S is called a piece of heterogeneous digital straight line (HDSL for short)
iff there exists an Euclidean straight line l such that: S ⊆ N̄(l).

Using a conversion in the dual space, we can propose an algorithm that segment
a ve-arc into heterogeneous segment. Such an algorithm is relatively simple. It
consists on one hand to verify that the current piece of ve-arc is monotonic and
in other hand, that the two associated pre-images are not empty. If they are
empty or if the monotonic constraint is not satisfied, a new segment begins.

Just remark that in all the previous works, the starting arc is either ve−
or e−connected (8−connected or 4−connected). In order to be more tolerant,
we propose in this article to study “thick arcs” such that the one presented in
figure 1. In other words, we want to decompose such arcs into “thick segments”,
segments we can easily see on the example and which are marked by rectangles.

Fig. 1. Example of decomposition we would have of a “thick arc”

Just remark that the notion of “thick segment”, we want here, is different
from the notion of “arithmetical thick segment” proposed by J.P. Reveillès [Rev91]
where the parameter ω > a+b. Indeed, in the “arithmetical thick segment” case,
if one pixel is missing or if one pixel is adding, it is not an “arithmetical thick
segment”. In this article, we want to be more flexible. This is the reason why,
in the following section, we introduce the notion of “thick arcs”. Let’s notice
that polygonalising such arcs will be more difficult than polygonalising ve− or
e−arcs in the way where we don’t have, in this case, an intrinsic circuit to scan
the pixels.
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Just before introducing such “thick arcs”, let us remember the problem of
polygonalisation.

Problem 1. Let E= {P1, ..., Pn} be a k-arc. What is the polygonalisation of E

from P1? In other words, what are the segments Sj of the polygonalisation of E

from P1, denoted P E

P1
, such that P E

P1
= {Sj , j ∈ [1, k]}, with

1. π1(S1) = P1,
2. ∀j ∈ [1, k], Sj is a segment,
3. ∀j ∈ [1, k − 1], Sj ∩ Sj+1 = π2(Sj) = π1(Sj+1),
4. in the k-curve case, Sk ∩ S1 = π2(Sk) = π1(S1).

where π1(S) and π2(S) denote respectively the left and the right extremities of
the segment S.

In theory, the polygonalisation which we want is the one the segments of which
have maximal length even if in the arc case, the last segment is seldom maximal.

3 Definition of Thick Discrete Arcs

The definition of thick discrete arcs (thick arcs in short) we propose, and by
extension of thick discrete arc (thick arc in short) is a morphological definition
based on the dilation operation using a circular structuring element.

Definition 4 (Thick discrete arc). Let l be an Euclidean arc in R
2 and Bx

a circular structuring element centered on x. Let L be the set of points of R
2

defined by : L= l⊕Bx = {x ∈ R
2, Bx∩L �= 0}. The thick arc L(l, Bx) associated

to the Euclidean arc l and the structuring element Bx is defined by Bx = D(L)
where D is a discretisation process.

As the object “thick arc” is now mathematically well-defined, we are going to
describe two methods to decompose such an arc into “thick segments”. Just
remark that the definition of “thick segment” will be algorithmic.

4 Polygonalisation of Thick Discrete Arcs

As polygonalising such arc is not easy due to the fact that we don’t have an
intrinsic way to scan the pixels, we will propose two different methods to trans-
form the thick arc in order to obtain a simple way to go through the pixels. The
first one is very intuitive and is based on a squelettisation of the arc. It then
uses the polygonalisation based on fuzzy segments. This basic method presents
some advantages, as we will see in the following and in particular, it is easy to
implement and very rapid. But, it takes in entry a parameter, the order d used
in the polygonalisation based on fuzzy segments. Such a parameter is not easy
to fix and it is very dependent of the arc we work on. This is the reason why we
propose a second method which transforms the thick arc into an heterogeneous
arc, grouping the pixels, and which then uses the polygonalisation based on het-
erogeneous segments. The figure 2 resume the two methods and their different
steps.

Let us now detail more precisely these two methods.
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Fig. 2. Diagram which recapitulates the two proposed methods

4.1 Squelettisation Based Method

This first method is very basic as it is founded on the squelettisation of the thick
arc. This squelettisation is obtained by intersection of wave frontiers initialized
on the borders of the thick arc. The so obtained skeleton is then “clean up”: it
is transformed into a 8−arc and the simple points are suppressed.

The second step of this method consists in polygonalising the so obtained
8−arc using the polygonalisation algorithm based on fuzzy segments previously
described. The extremity pixels of the thick segments are then marked using
the extremity fuzzy segments. In order to observable, we mark them with large
squares as we can see on the figure 3.

Fig. 3. Examples of obtained polygonalisation for the arc of the figure 1: (right) d=2,5

and (left) d=9. The large squares mark the segment extremities.

As it is based on the fuzzy polygonalisation, the number of obtained thick
segments depends on the fixed parameter d. On a given arc, it is possible, by
blind searching, to find the value of d that extracts the segments that seems
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correct that is to say visible to the naked eye. Meanwhile this value would not
be necessarily available for another arc. This is the main drawback of the fuzzy
polygonalisation that is transmitted here. Then, even if this method is easy
to implement and is efficient, because the fuzzy polygonalisation as a linear
complexity, the parameter d is a problem.

This is the reason why we have look for an other method that not requires
to fix a parameter. Such a method is based on the grouping of cells. This is the
purpose of the next subsection.

4.2 Grouping Based Method

In order to relieve the previous problem, we propose a second method which, in
a first step, extracts from the thick arc an heterogeneous arc and in a second
step, proceeds to the polygonalisation of the heterogeneous arc.

The extraction of the heterogeneous arc is based on the previous skeleton and
uses the distance transform, based on the distance d8, associated to the image that
contains the thick arc. Indeed, it allows to extract successively the largest hetero-
geneous pixels contained in the thick arc. More precisely, we first browse all the
pixels of the skeleton and keep the maximal distance associated, by the distance
transform, to each pixel. Let us denote this distance dmax. Then, we extract as
soon as possible heterogeneous pixels of length dmax from the thick arc taking into
account that two pixels may not overlap. When we can extract no more pixels of
length dmax, we try with (dmax-1) and so on until pixels of length 1.

The previous heterogeneous polygonalisation algorithm is then applied to
mark the extremity of heterogeneous segment which coincide here with the ex-
tremity of thick segments.

The figure 4 shows the heterogeneous arc extracted from the thick arc of the
figure 1 and the obtained segment extremities. These ones are the grey pixels on
the figure.

Fig. 4. Heterogeneous arc extracted from the thick arc of the figure 1 and its polygo-

nalisation
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4.3 Discussion

The first proposed algorithm based on a skeletisation of the arc and that uses the
fuzzy polygonalisation algorithm has some advantages such as its complexity, its
simplicity to implement. In the meantime, it takes in entry a parameter d which
is not easy to fix and which is very dependent on the arc we study.

The second method is a little more complex to implement particularly con-
cerning the extraction of heterogeneous pixels. But, it does not need such param-
eter. We can remark that, on the presented example, the obtained result with
the second method is better than the ones obtained with the first one. One can
say that for a given arc, we could adjust the parameter d in order to obtain a
better result. But, even if we manage it, such parameter would not be available
for another arc. So, it seems that the second method is better than the first,
even if it is not perfect. In fact, we can see some extremities that are not well
situated and some of them that are not expected.

In the following section, we conclude about this work and give some possible
extensions in order to improve the second method that seems to be a sound idea.

5 Conclusion and Future Works

In this article, on the one hand we have proposed a definition of thick arc and
on the other hand we have presented two algorithms that allow to polygonalise
such thick arcs. All the works that exist in the literature until now focus on e−
or ve−arcs. The notion of thick arc is then new and the proposed algorithms
use recent works in the domain, combining them in order to obtain interesting
results.

Obviously these are first results on a new problem and many extensions are
possible to improve the results. In particular, we could try other methods to
extract heterogeneous pixels in order to limit the small ones for example or
try to work with non square pixels [Coe05] which could also reduce small ones.
Another direct extension should be the study of curves instead of arcs. Some
results exist in the literature about minimal number of segments extracted by
polygonalisation of the 4− or 8−arc [FT03].

Finally, such a work is included in a more general project that consists in
obtaining algorithms more tolerant with the noise in discrete geometry.
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Abstract. This paper presents a segmentation algorithm for gray-level
images and addresses issues related to its performance on noisy images.
It formulates an image segmentation problem as a partition of a weighted
image neighborhood hypergraph. To overcome the computational diffi-
culty of directly solving this problem, a multilevel hypergraph partition-
ing has been used. To evaluate the algorithm, we have studied how noise
affects the performance of the algorithm. The α-stable noise is consid-
ered and its effects on the algorithm are studied.

Keywords: graph, hypergraph, neighborhood hypergraph, multilevel
hypergraph partitioning, image segmentation and noise removal.

1 Introduction

Image segmentation is an important step in computer vision. Several algorithms
have been introduced to tackle this problem. Among them are approaches based
on graph partitioning [1,2,3]. Their common point is the building of a weighted
graph. This graph is partitioned into components in a way that minimizes a
specified cost function of the vertices in the components and/or the boundary
between those components. One of the most frequently used techniques to par-
tition a graph is by means of the cut cost function. Several alternatives to the
cut criterion have been proposed [1,2,3]. Of particular note is the normalized cut
criterion (Ncut) of Shi and Malik [1], which attempts to rectify the tendency
of the cut algorithm to favor isolated nodes of the graph. Also, like graphs, hy-
pergraphs may be partitioned such that a cut metric is minimized. However,
hypergraph cut metrics provide a more accurate model than graph partitioning
in many cases of practical interest [4]. It has been shown that, in general, there
does not exist a graph model that correctly represents the cut properties of the
corresponding hypergraph [5]. Recently, several serial and parallel hypergraph
partitioning techniques have been extensively studied [6,7] and tools support ex-
ists (e.g. hMETIS [8], PaToH [4] and Parkway [9]). These partitioning techniques
showed a great efficiency in distributed databases and VLSI circuits fields.

In practice, the images are often corrupted by a noise. Indeed, the noise
influences considerably the segmentation quality. To solve this problem, many
methods integrate a pre-filtering step. The segmentation quality is conditioned
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by this step, and more precisely by preserving the useful information. The latter
one can be assured by using conditional filters. Only the noisy pixels are filtered.
Our goal in this paper is to create a hybrid method between a conditional noise
removal algorithm and an image segmentation algorithm. The two algorithms use
a combinatorial model of the hypergraph theory. The hybrid method integrates
three goals: (1) the use of a combinatorial model which adapts perfectly to the
image. This model can be used to model a variety of systems, where the relations
between objects in a system play a dominant role. (2) The implementation of a
multilevel hypergraph partitioning algorithm. (3) The use of a structural noise
model. These objectives are gathered in an algorithm which processes in three
steps. In the first step, we generate the weighted hypergraph of an image, while
in the second step we remove the noise. Only the noisy pixels are filtered. In the
last step, we partition the weighted hypergraph into k regions.

The remainder of this paper is organized as follows: in section 2, we introduce
the weighted image neighborhood hypergraph. In section 3, we define the struc-
tural model of noise. The hypergraph partitioning is introduced in section 4. In
section 5, we illustrate the performance of the proposed segmentation approach.
The paper ends with a conclusion in section 6.

2 Weighted Image Neighborhood Hypergraph (WINH)

A hypergraph H on a set X is a family (Ei)i∈I of non-empty subsets of X called
hyperedges with : ∪i∈IEi = X, I = {1, 2, . . . , n}, n ∈ . Given a graph G(X ; e),
where X is a set of vertices, and e is a set of unordered pairs of members
of X called edges. The hypergraph having the vertices of G as vertices and
the neighborhood of these vertices as hyperedges (including these vertices) is
called the neighborhood hypergraph of graph G. To each G we can associate a
neighborhood hypergraph: HG = (X, (Ex = {x} ∪ Γ (x))) where Γ (x) = {y ∈
X, (x, y) ∈ e}.

Let HG = (X ; (Ei)i∈I) be a hypergraph. A chain is a sequence of hyperedges
Ex. It is disjoined if the hyperedges Ex are not connected two by two. An hyper-
edge Ei is isolated if and only if : ∀j ∈ I, j �= i if Ei ∩Ej �= ∅ then Ej ⊆ Ei.

The image will be represented by the following mapping : I : X ⊆ 2 −→
C ⊆ n. Vertices of X are called pixels, elements of C are called colors. A
distance d on X defines a grid (a connected, regular graph , without both loop
and multi-edge). Let d′ be a distance on C, we have a neighborhood relation on
an image defined by: Γλ,β(x) = {x′ ∈ X, |d′(I(x), I(x′)) ≤ λ and d(x, x′) ≤ β).

The neighborhood of x on the grid will be denoted by Γλ,β(x). To each image
we can associate a hypergraph called Image Neighborhood Hypergraph (INH):
HΓλ,β

= (X, ({x} ∪ Γλ,β(x))x∈X).
On a grid Γβ , to each pixel x we can associate a neighborhood Γλ,β(x),

according to a predicate λ. The threshold λ can be carried out in two ways. In
the first way, the λ is given for all the pixels of the image. In the second way, the
λ is generated locally and applied in an adaptive way to the unit of the pixels.
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From Hλ,β , we define a Weighted Image Neighborhood Hypergraph (WINH)
according to the two maps functions fwv and fwh

. The first map fwv , associates
an integer weight wxi with every vertex xi ∈ X . The weight is defined by the
color in each pixel. The map function fwh

associates to each hyperedge a weight
whi defined by the mean color in hyperedge. According to λ, we generate two rep-
resentations: WINH and WAINH using respectively global and local thresholds.
The last one is named: Weighted Adaptive Image Neighborhood Hypergraph.

3 Noise Model Definition

In this section, we define a structural noise model. This model exploits a lack
of homogeneity criterion. We consider that the non-homogeneity characterizes
noise. The isolated hyperedge can be used to model this non-homogeneity in an
image. It is a hyperedge which does not have any information shared with its
open neighborhood in the image. We call open neighborhood of the hyperedge
E noted Γ o(E), the set Γ (E)\E.

By using this property, we propose the following noise definition: Eλ,β(x) is
a noise hyperedge if it verifies one of the two conditions : (1) The cardinality of
Eλ,β(x) is equal to 1 and Eλ,β(x) is not contained in disjoined thin chain having
ω elements at least. (2) Eλ,β(x) is an isolated hyperedge and there exists an
element y belonging to the open neighborhood of Eλ,β(x) on the grid, such that
Eλ,β(y) is isolated.

4 Multilevel WINH Partitioning

The formal definition of the k-way hypergraph partitioning technique is as fol-
lows: find k disjoint subsets Xi, (i = 0, . . . , k − 1) of the vertex set X with
part (region) weights Wi (i = 0, . . . , k − 1)(given by the sum of the constituent
vertex weights), such that, given a prescribed balance criterion 0 < ε < 1,
Wi < (1 + ε)Wavg holds ∀i = 0, . . . , k − 1 and an objective function over the
hyperedges is minimized. The Wavg denotes the average part weight.

If the objective function is the hyperedge cut metric, then the partition cost
(or cut-size) is given by the sum of the costs of hyperedges that span more than
one part.

Computing the optimal bisection or k-section of a hypergraph under the
hyperedge cut metric is known to be NP-complete [10]. Thus, researches have

Initial Partitioning Phase

H0 H1 H2
H1

H0

UnCoarsening PhaseCoarsening Phase

Fig. 1. Multilevel Hypergraph Partitioning
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Partitioning
WINHNoise

RemovalGeneration
WINH 

input image + parameters Segmented image
Step 1 Step 2 Step 3

Fig. 2. The three steps of the proposed segmentation algorithm. The input parameters
are: λ, β, ω and k desired regions.

focused on developing polynomial time heuristic algorithms resulting in good
sub-optimal solutions. Because it scales well in terms of run time and solution
quality with increasing problem size, the multilevel paradigm is preferred to
direct solution approaches. Below, we describe the main steps of the multilevel
paradigm (figure. 1):

– Coarsening phase: Hλ,β is approximated via a succession of smaller hy-
pergraphs that maintain its structure as accurately as possible. Many ap-
proaches have been proposed for finding the groups of vertices to be merged
[7].

– Initial partitioning phase: During the initial partitioning phase, a partition-
ing of the coarsest hypergraph Hλ,β

coarse is computed, such that it minimizes
the cut.

– Uncoarsening phase: During the uncoarsening phase, a partitioning of the
coarser hypergraph is successively projected to the next level finer hyper-
graph, and a partitioning refinement algorithm is used to reduce the cut-set.

Figure 2 illustrates the proposed algorithm. It starts with a WINH genera-
tion, noise removal using structural noise model followed by a multilevel hyper-
graph partitioning.

5 Experimental Results

We shall present a set of experiments in order to assess the performance of the
segmentation approach we have discussed so far. The experimental results con-
tain two steps. In the first step, we evaluate only the segmentation method in
non-corrupted images. The algorithm is carried out in two stages: weighted im-
age neighborhood generation followed by a multilevel hypergraph partitioning.
In the second step, we evaluate the segmentation method in corrupted images. In
this step, the algorithm is carried out in three stages. We start with an evaluation
of noise model, then we evaluate the segmentation algorithm in noisy images.
For all experiments: In WINH generation, we use the parameters values β, λ and
k adjusted in experiments . In the case of WAINH generation, we use an adap-
tive threshold λ estimated using: λ = Median {I(y)−Median(F (x))}∀y∈F . F
is the window centered in x with the size [2β + 1 × 2β + 1]. In WINH parti-
tioning, and in the coarsening phase, we use the hyperedge coarsening approach
(figure 3). In the initial partitioning phase, we compute the k-way partitioning
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Fig. 3. Hyperedge coarsening method

of the coarsest hypergraph using the multilevel hypergraph bisection algorithm
[7]. In the uncoarsening phase, we use the F.M. refinement algorithm [6].

For the coarsening, initial partitioning and uncoarsening phases we use the
Hmetis package [8].

We will now show the effect of the weighted hypergraph generation on the
quality of the image segmentation results. For this study, we implement two
weighted neighborhood hypergraph representation : WINH and WAINH. Figure
4 shows the segmentation results of Peppers image. From this figure, we can see
that using the WAINH, we obtain significant and better results. Indeed, using
WAINH, we detect more significant regions compared to segmentation approach
using WINH representation.

(a) (b) (c)

Fig. 4. WINH and WAINH comparison. (a) the original image of size 256×256. Outputs
of our algorithm : (b) using WINH with (λ, β, k) = (10, 1, 51) and (c) using WAINH
with (β, k) = (1, 51).

In order to compare our method with an existing one, we have chosen the
technique of Shi and Malik (Normalized Cuts detection - Ncut) [1]. We have
processed a group of images with our segmentation method and compared the
results to Ncut algorithm. The Ncut algorithm used the same parameters for
all images, namely, the optimal parameters given by authors. Figure 5 shows a
comparison between the proposed and Ncut algorithms on Peppers and Medical
images. According to the segmentation results on these images, we note that
our algorithm make a better localization of the regions in the processed image
compared to the Ncut method. The strength of this algorithm is that it better
detects the regions containing many details. In addition, it results in shorter
computing times faster than Ncut algorithm. The computing times of these two
algorithms have been implemented using C++ language in a notebook with the
following characteristics: Pentium Centrino, 1.5GHz, 512 Mo RAM.

Using the noise model illustrated in section 3, we develop a conditional noise
removal algorithm. It is conditional because only the noisy hyperedges are fil-
tered. The noise removal algorithm starts with AINH representation followed
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Original images proposed Ncut

(a) (b) (c)

(a’) (b’) (c’)

Fig. 5. A comparison between the proposed and Ncut algorithms. (b,b’) The outputs
processed in 32,23s and 29,06s respectively. (c,c’) The outputs processed in 402,75s with
k = 51 and 463,64s k = 40 respectively. The parameters of (b,b’) are ((β, k) = (1, 51))
and ((β, k) = (1, 39)) respectively.

by noisy hyperedge detection and followed by noisy hyperedge estimation. We
tested the performance of noise removal algorithm in the presence of α-stable
noise. This distribution is a useful model of noise distribution. For a symmetrical
distribution, the characteristic function is given by: ϕ(t) = e{jat−γ|t|α}, where:
(1) α is the characteristic exponent satisfying 0 < α ≤ 2. The characteristic
exponent controls the heaviness of the tails of the density function. The tails are
heavier, and thus the noise more impulsive, for low values of α while for a larger
α the distribution has a less impulsive behavior. (2) a is the location parameter
(−∞ < a < +∞). (3) γ is the dispersion parameter (γ > 0), which determines
the spread of the density around its location parameter.

The objective of the filtering is to remove the noisy hyperedges while pre-
serving the noise-free patterns. In figure 6, we present the results of the noise
detection in Peppers and Medical images corrupted by α-stable noise with two
parameters: α = 0.5 and α = 1, 5 representing respectively a impulsive and
Gaussian distribution noise. These two results are compared with the Median
Filter. It operates using 3 × 3 square processing windows. From the error im-
ages 6(e,e’) between the filtered image and the original image, we note that the
proposed algorithm preserves better the edge of the corrupted image than the
Median filter.

Segmentation results of Peppers and Medical images corrupted by the same
parameters of α-stable noise are illustrated in figure 7. This figure shows the
segmentation results with and without the integration of the noise model in
the proposed algorithm. In the case of non-integration of noise model in the
proposed algorithm, we note that this last one detects the noise like regions
(figures 7(c,c’)). This noise influences the segmentation result considerably. The
figures 7 (b,b’) justify the absence of this drawback in the case of use of noise
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a b c d e

a’ b’ c’ d’ e’

Fig. 6. Noise model evaluation. (a,a’) corrupted images by α-stable noise. The α-stable
noise parameters are (α = 0.5,γ = 1, a = 0, percentage = 10%) and (α = 1, 5,γ = 20,
a = 0 and percentage = 10%) for images a,a’ respectively. (b,b’) filtered image by our
noise model (β = 1,ω = 5). (c,c’) output of median 3×3 filter. (d,d’) error ×10 between
the orginal images and b,b’ images respectively. (e,e’) error ×10 between the original
images and c,c’ images respectively.

(a) (b) (c)

(a’) (b’) (c’)

Fig. 7. Robustness evaluation of the proposed algorithm to noise effect. (a,a’) corrupted
images with α = 0.5, γ = 1 and α = 1.5, γ = 20 respectively with 10% of α-stable
noise. (b,b’) The output of the proposed algorithm after noise removal with proposed
noise model. (c,c’) the output of the proposed algorithm without noise removal. The
Peppers image was processed by β = 2 and k = 56 parameters, while the Medical
image used β = 2 and k = 37 parameters.

model. According to this figure and to several simulations on several image types
we note that the use of both noise model and hypergraph partitioning in WAINH
representation constitutes a robust segmentation algorithm to the noise effect.

6 Conclusions

We have presented a segmentation algorithm for noisy images. The segmenta-
tion is accomplished in three steps. In the first step, a weighted adaptive image
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neighborhood hypergraph is generated. In the second stage, a conditional noisy
hyperedge removal algorithm is computed. In the last stage, a hypergraph parti-
tioning method is computed using a multilevel technique . Experimental results
demonstrate that our approach performs better than Ncut algorithm. It can
be improved in several ways (parameters: the function maps, the colorimetric
threshold, the unsupervised region number, etc.).
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Abstract. Non-parametric data representation can be done by means
of a potential function. This paper introduces a methodology for finding
modes of the potential function. Two different methods are considered
for the potential function representation: by using summations of Gaus-
sian kernels, and by employing quantum clustering. In the second case
each data sample is associated with a quantum physics particle that has
a radial energy field around its location. Both methods use a scaling
parameter (bandwidth) to model the strength of the influence around
each data sample. We estimate the scaling parameter as the mean of the
Gamma distribution that models the variances of K-nearest data sam-
ples to any given data. The local Hessian is used afterwards to find the
modes of the resulting potential function. Each mode is associated with
a cluster. We apply the proposed algorithm for blind signal separation
and for the topographic segmentation of radar images of terrain.

1 Introduction

There are two main data modelling approaches in pattern recognition: paramet-
ric and non-parametric. The second approach aims to achieve a good estimate
of the density function without any underlying model assumption [1]. A non-
parametric technique is unsupervised and can model any probability density
function [2]. The nonparametric methods can be classified into histogram-based
and kernel-based approaches [2,3,4,5,6]. While histogram based approaches re-
quire a large data set, kernel methods usually result in smooth, continuous and
differentiable density estimates [1,6].

Most nonparametric approaches associate a function to each data sample [2].
Such a function is usually assumed to be Gaussian. The cumulating effect of the
influence of several such functions, each associated with a data sample, creates
a potential function [2]. The way how the activation function is defined can be
assimilated with the electro-magnetic field that develops around a particle.

Recently, a new approach was considered, where the potential of a data set is
modelled by the Shrödinger partial differential equation [7]. In quantum mechan-
ics, orbits of particles and their corresponding energy can be found by solving
this equation. Horn and Gottlieb, considered the reverse problem [8]. The eigen-
function (ground state) is considered as a sum of Gaussians, each centred at a
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data sample, and depending on a scale parameter. The corresponding Shrödinger
potential is calculated for the given eigenfunction [8]. The minima of the resulting
potential corresponds to data clusters.

The number of modes in any nonparametric representation, modelling either
minima or maxima of a potential function, depends on the scaling parameter, also
known as the bandwidth [5,6,8]. In this paper we propose a statistical approach
for estimating the scale parameter of a potential function. The average Euclidean
distance to a set of neighbours is evaluated for each data sample. The resulting
histogram of such local variances is modelled as a Gamma distribution and the
scale parameter is estimated as the mean of this Gamma distribution [9]. Horn
and Gottlieb have chosen the minima in the potential landscape provided by the
Shrödinger equation by using gradient descent after appropriate thresholding [8].
However, there is no rule about selecting the threshold while gradient descent is
prone to getting stuck in local minima and failing to find all the modes. In this
study we employ the Hessian of the potential function for finding the modes. The
data set is split into regions according to the sign of the local Hessian eigenvalues.
The proposed approach is applied in blind detection of modulated signals [10]
and for segmenting vector fields. In the second case, the vector fields represent
surface orientations in a Synthetic Aperture Radar (SAR) image of terrain [11].

Data modelling using nonparametric clustering is described in Section 2. The
estimation of the scale parameter is presented in Section 3, while the identifica-
tion of cluster modes is explained in Section 4. Experimental results are provided
in Section 5 and the conclusions of this study are drawn in Section 6.

2 Nonparametric Methods

A major problem in data modeling is that of defining clusters [1]. The advantage
in nonparametric clustering is that we can use a very simple model to represent
any data set. By assigning a kernel function to each data sample, usually con-
sidered Gaussian, we can model the potential function as [2] :

ψ(X) =
N∑

i=1

K

(
X−Xi

σ

)
=

N∑
i=1

exp
[
− (X−Xi)2

2σ2

]
(1)

where there are N data samples Xi, K(·) is the kernel function, and σ corre-
sponds to the scale parameter (bandwidth). Maxima of ψ(X) from (1) have been
considered as cluster centers in a nonparametric approach in [3].

More recently, Horn and Gottlieb introduced a new nonparametric algorithm
called quantum clustering [8]. Their method was derived based on the analogy
between the quantum potential and data representation. Each data sample is
associated with a particle that is part of a quantum mechanical system. The
state of a quantum mechanical system is completely specified by a function that
depends on the coordinates X of that particle at time t and can be described
using ψ(X, t), similar to the potential function used for (1). According to the
first postulate of quantum mechanics, the probability that a particle lies in a
volume element dX, located at X, at time t, is given by |ψ(X, t)|2dX, [7].
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According to the fifth postulate of quantum mechanics, a quantum sys-
tem evolves according to the Schrödinger differential equation [7]. The time-
independent Schrödinger equation is given by:

H · ψ(X) ≡
(
−σ2

2
∇2 + V (X)

)
· ψ(X) = E · ψ(X) (2)

where H is the Hamiltonian operator, E is the energy, ψ(X) corresponds to the
state of the given quantum system, V (X) is the Shrödinger potential and ∇2 is
the Laplacian. In Quantum mechanics the potential V (X) is given and the equa-
tion is solved to find solutions ψ(X) [7]. The solutions of this equation describe
orbits of electrons and other particles. However, in nonparametrical clustering
we consider the inverse problem where we assume known the location of data
samples and their state as given by equation (1). This equation is considered as
a solution for (2). We want to calculate the resulting potential V (X) created by
the quantum mechanical system assimilated with the given data.

We assume that the potential is always positive, V (X) > 0. After replacing
ψ(X) from (1) into (2), we calculate the Shrödinger potential as, [8] :

V (X) = E − d

2
+

1
2σ2ψ(X)

N∑
i=1

(X−Xi)2 exp
[
− (X−Xi)2

2σ2

]
(3)

The modes of a potential function are associated with data clusters. The modes
are indicated by the local minima in the potential function given by (3).

3 The Estimation of the Scale Parameter

It can be observed that both the function ψ(X) from (1) and the quantum poten-
tial V (X) from (3) depend on the scale parameter (bandwidth), σ. The number
of modes of a potential function are determined by σ. In [8] σ was initialized to
arbitrary values, while in [5,6] various test hypotheses were considered. In this
paper we propose a statistical approach for estimating the bandwidth σ. For
a given data sample Xi we consider the ranking of all the other data samples,
according to their squared Euclidean distance to Xi :

RK(Xi) = { X(k) | ‖X(k−1) −Xi‖2 < ‖X(k) −Xi‖2 } (4)

for k = 1, . . . ,K, where X(k) represent the K nearest neighbours of Xi [1], and
‖·‖ denotes the Euclidean distance between a data sample and Xi. The variance
in the local neighbourhood is calculated as :

si =
∑K

k=1 ‖X(k) −Xi‖2
K

(5)

for i = 1, . . . , N , where K < N , is the neighbourhood set cardinality. An em-
pirical distribution of local variance estimates from (5) is formed by considering
several data samples Xi and their neighbourhoods RK(Xi).
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The probability density function characterizing the empirical local variance
is modelled with the Gamma distribution [9] :

p(s) =
sα−1

βαΓ (α)
e−s/β (6)

where α > 0 is the shape parameter, and β > 0 is the scale parameter of the
Gamma distribution. Γ (·) represents the Gamma function:

Γ (t) =
∫ ∞

0

rt−1e−rdr (7)

By modeling distributions of variances of K-nearest neighbours we have a sta-
tistical description of the local variance in the given data set.

The parameters α and β are estimated from the empirical distribution of ran-
dom variables calculated as (5), modelled by equation (6). A well known method
to calculate the parameters of the Gamma distribution is the moments method
[9]. This method calculates first the sample mean and standard deviation of the
distribution, denoted as s and l, respectively. The parameters are estimated as :

α̂ =
(
s

l

)2

; β̂ =
l2

s
(8)

After inferring the parameters of the Gamma probability density function we
take the estimate of σ̂ as the mean of the Gamma distribution, [9] :

σ̂ = α̂β̂ (9)

where α̂ and β̂ are calculated in (8).

4 Finding the Modes of the Potential Function

After estimating an appropriate bandwidth σ̂, we define a potential function such
as ψ(X) from (1), or V (X) resulting from applying the Schrödinger equation (3).
Such a function can be interpreted as a landscape in the (d + 1)th dimension,
where d is data dimension. Let us assume a regular orthogonal lattice Z that
is defined by sampling at regular intervals between extreme data entries along
each dimension. The inter-lattice distance is considered equal along each axis
and depends on the scale as ‖zi,j − zi,j−1‖ = σ̂/2, where zi,j ∈ Z is a lattice
knot and σ̂ is estimated in (9). Data clusters will correspond to local maxima in
the potential function when using (1), or to local minima for (3).

In order to determine the relative extremes in the potential function we use
the local Hessian. The Hessian is calculated at each lattice knot as:

H[F (Z)] =
(
∂2F (Z)
∂x∂y

)
(10)

where F (Z) is either ψ(Z) or V (Z). The evaluation of a potential function on
a regular lattice facilitates the calculation of the local discrete Hessian. The
eigendecomposition of the Hessian matrix provides :

H = T ·Λ ·T−1 (11)
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where | · | denotes matrix multiplication, T is a matrix whose columns represent
the eigenvectors, while Λ = {λi|i = 1, . . . , d} is a diagonal matrix that contains
the eigenvalues λi. We can identify local minima, maxima and saddle points
according to the signs of the local Hessian eigenvalues :

λi(Z) > 0, ∀ i = 1, . . . , d then local minimum
λi(Z) < 0, ∀ i = 1, . . . , d then local maximum (12)
∃λj(Z) > 0, ∧ ∃λi(Z) < 0, i �= j then saddle point

A common sense assumption is that either local minima or local maxima are
surrounded by saddle points.

In the case when considering the potential as defined by (1) we assume that
clusters are represented as compact areas of local maxima that are surrounded
by local minima and saddle points. Conversely, when using (3) we consider that
clusters are defined in the regions of local minima that are surrounded by maxima
and saddle points. Let us assume eight-knots neighbourhoods denoted as N8(Z)
on the given lattice Z. The resulting regions will correspond, when the potential
is modelled by (1), to local clusters defined as:

C(k) = {zk| λi(zk) < 0, ∀ i = 1, . . . , d zk ∈ N8(zk), zk /∈ N8(zj), j �= k} (13)

where k and j are two different local modes that are separated by saddle points
and have no connectivity to each other. To each mode we assign a factor Fk,
calculated as the ratio of its potential from the potential of all modes :

Fk =

∫
C(k) F (Z)dZ∑
j

∫
C(j) F (Z)dZ

(14)

where F (Z) is the potential function defined as ψ(Z) from (1), or as V (Z) from
(3). The integrals from (14) are calculated using Riemman additions. The factors
Fk corresponding to the local extrema are ordered according to their decreasing
importance in the total potential. Consequently, the entire lattice is split into
clusters according to a region growing process that works on labelled regions
employing Markov Random Fields (MRF) propagation. At each iteration a layer
of lattice points are added simultaneously to each cluster. This process continues
until lattice areas assigned to two different clusters become adjoint.

5 Experimental Results

Nonparametric clustering algorithms are considered for blind detection of modu-
lated signals. We consider quadrature amplitude (QAM) and phase-shifting-key
(PSK) modulated signals. The modulated signals are corrupted assuming inter-
symbol interference and noise, identically with the model used in [10]. We have
generated N = 960 signals, by assuming equal probabilities for all inter-symbol
combinations. The resulting signal constellations are displayed in Figures 1a and
1d, where each signal is represented by a point.
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Fig. 1. Modulated signals and their potential surfaces

K-nearest neighbours for K = N/4 are considered and σ̂ is estimated from
the resulting empirical distribution of the local variance as described in Section 3.
We evaluate the potential ψ(Z) from (1) and the quantum potential V (Z) ac-
cording to (3) on a lattice. In Figures 1b and 1c the two potentials are shown for
4-QAM, while in Figures 1e and 1f they are calculated for 8-PSK. The lattice
knots assigned to each mode, according to the quantum potential, are marked
with ‘*’ in Figures 1a and 1d. Correctly, 4 clusters have been identified for 4-
QAM and 8 for 8-PSK when using the estimated bandwidth.

We consider several values for the scale parameter σ̂. We evaluate the number
of clusters and the misclassification error, by comparing the data sets that are
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Table 1. Misclassification error and the number of clusters when varying the scale σ̂
for 4-QAM and 8-PSK. The results that correspond to the chosen scale are highlighted.

4-QAM 8-PSK
ψ(X) V (X) ψ(X) V (X)

σ Misclas. No. of Misclas. No. of σ Misclas. No. of Misclas. No. of
Error (%) cluster Error (%) cluster Error (%) cluster Error (%) cluster

0.3 - 8 - 36 0.10 - 48 - 84

0.4 3.54 4 - 9 0.15 - 15 - 37

0.5 4.37 4 4.79 4 0.20 2.29 8 - 20

0.6 4.58 4 5.10 4 0.25 1.98 8 1.46 8

0.63 6.56 4 6.15 4 0.27 2.71 8 2.50 8

0.7 6.04 4 8.13 4 0.30 3.02 8 2.71 8

0.8 10.00 4 9.69 4 0.35 9.17 8 6.67 8

0.9 16.56 4 15.21 4 0.50 - 7 - 7

1.0 11.35 4 11.46 4 0.55 - 4 - 5

1.1 - 2 - 3 0.60 - 2 - 4

assigned to each potential function mode with those that have been generated.
The results obtained for both potential functions and for both data sets are
displayed in Table 1. From this table it can be observed that the procedure
of estimating σ̂ proved to be reliable, even though suboptimal. The estimation
of the scale parameter σ̂ is more important for the quantum potential V (Z)
from (3), which without a proper scale parameter it can miss to find the right
number of clusters. The misclassification error is better when using the quantum
potential V (X) from (3) when compared to ψ(X) from (1).

In another application we consider a Synthetic Aperture Radar (SAR) image
of terrain shown in Figure 3a. We want to identify various topographic regions
in this image according to the clustering of local surface orientation. In [11] the
surface normals have been estimated by adapting shape-from-shading techniques
to radar images. The resulting local surface normals depicted as needle maps are
shown in Figure 3b. The x and y coordinates of 1518 local surface normal vectors
are used for nonparametric clustering. The resulting potentials corresponding to
the given data set are shown for ψ(Z), calculated as in (1), in Figure 2a, and
for V (Z), calculated as in (3), in Figure 2b. The ratio of the total energy Fk

associated with each mode is calculated for both potentials according to (14).
The segmentation in topographic regions for the SAR image from Figure 3a,
when using the potential ψ(X), is shown in Figure 3c for 4 clusters and in
Figure 3e for 7 clusters. The SAR image segmentation when considering the
quantum potential V (X) is displayed in Figure 3d for 4 clusters and in Figure 3f
for 7 clusters. In the segmented representations we can identify several compact
topographical areas that correspond to the actual terrain features. From Figure 3
it can be observed that the segmentation of the potential modelled by V (Z)
provides more compact regions than when using ψ(Z). When considering 7 modes
we can see from Figures 3e and 3f that a cluster is assigned for the top of ridges
and bottom of valleys, both characterized by vector normals parallel with z axis.
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(a) SAR image (b) Surface normals

(c) ψ(X) for 4 clusters (d) V (X) for 4 clusters

(e) ψ(X) for 7 clusters (f) V (X) for 7 clusters

Fig. 3. Topographical segmentation of a SAR image of terrain

6 Conclusions

This paper proposes a new methodology for nonparametric segmentation. Two
different approaches are considered for generating a potential function from a
given data set. The first approach assumes simple additions of Gaussian ker-
nels. The second approach considers an algorithm, called quantum clustering,
that employs the Shrödinger partial differential equation. Two important inter-
related problems in nonparametric clustering are analysed. The first one is the
selection of the scale parameter and the second one consists of finding the ap-
propriate number of modes in the potential function. The local data variance is
modelled with a Gamma distribution. The scale parameter is considered as the
mean of this distribution. The resulting potential function is interpreted using
the local Hessian on a lattice. From the signs of the eigenvalues of the local Hes-
sian we identify the modes of the potential function and the data are segmented
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accordingly. The proposed algorithm is applied in blind detection of modulated
signals and in segmenting vector fields of surface normals extracted from a syn-
thetic aperture radar image of terrain. The segmented areas can be used in a
graph-based representation of the local topographical information.
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Abstract. This paper provides a comparison study among a set of ro-
bust diffusion algorithms for processing optical flows. The proposed al-
gorithms combine the smoothing ability of the heat kernel, modelled by
the local Hessian, and the outlier rejection mechanisms of robust statis-
tics algorithms. Smooth optical flow variation can be modelled very well
using heat kernels. The diffusion kernel is considered Gaussian, where
the covariance matrix implements the inverse of the local Hessian. Ro-
bust statistics operators improve the results provided by the heat kernel
based diffusion, by rejecting outliers and by avoiding optical flow over-
smoothing. Alpha-trimmed mean and median statistics are considered
for robustifying diffusion kernels. The robust diffusion smoothing is ap-
plied onto multiple frames and is extended to 3D lattices.

1 Introduction

Analyzing motion patterns is essential for understanding visual surroundings
[1]. When estimating motion, the common assumption is that the intensity of
a moving pixel in the image plane is constant along its trajectory, in time [2].
This condition represents the main assumption for the optical flow constraint
equation. However, in many cases, for example when representing the motion of
fluids, the optical flow becomes very complex. Outlier vectors could affect the
optical flow estimation in such situations.

Optical flow estimation algorithms can be classified as gradient-based and
feature-based methods. A widely used local motion detection method is the
block matching algorithm (BMA) [1]. BMA estimates the optical flow based on
the correlation between a block of pixels in one frame and the corresponding
block from within a search region in another frame and is used in the MPEG-2
motion compression standard. However, lack of contrast can lead to erroneous
estimations. In order to overcome such problems, regularization terms have been
used. Other approaches employ robust statistics algorithms [3,4].

This paper develops a methodology that combines the advantages of two dif-
ferent approaches: diffusion with heat kernels and robust statistics. This method-
ology is applied for smoothing vector fields. Perona and Malik introduced aniso-
tropic diffusion for multiscale image segmentation [5]. Their proposed method
uses partial differential equations (PDE) [6] to smooth grey-level images while
preserving edges. Black et al. proposed Tukey’s biweight function for obtaining
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sharper boundaries [7]. Field regularization of orthonormal vector sets, using
constraint-preserving anisotropic diffusion kernels was used by Tschumperlé and
Deriche for denoising color images and for inpainting [8,9]. Their method intro-
duces the use of tensor and Hessian matrices that are calculated from the local
statistics. Important image structure such as edges and features are preserved
while noise and smaller features are smoothed out in directions that are parallel
with those of edges. Burgi [10] uses an optical flow constraint equation that in-
cludes diffusion terms and considers gradient directions. PDE’s have been used
in inpainting [9,11] and for various other applications [12].

The concept behind the approach presented in this paper is to enable the
smoothing process with an outlier rejection mechanism. Diffused outliers can
cause undesirable effects. The proposed algorithms aim to remove outliers with-
out affecting structural data. When using local Hessian diffusion kernels, as in
the case of the heat equation, the diffusion occurs along the direction of the
edges, thus preserving the structure of objects. Section 2 introduces the appli-
cation of diffusion kernels on vector fields and its extentions for 3D lattices.
Section 3 introduces robust statistical diffusion kernels. Section 4 provides the
experimental results of this study, while the conclusions are drawn in Section 5.

2 Hessian Diffusion Kernels

The heat equation of a geometric manifold can be described as [6]:

∂I(x, t)
∂t

−∇2I(x, t) = 0 (1)

where I(x, t) represents the heat at location x and time t, starting with the
initial conditions I(x, 0) = I(x) and ∇2 denotes the Laplacian. The solution to
the heat equation is [6]:

I(x, t) =
∫

M

Kt(x, y)I(y)dy (2)

where Kt(x, y) is the heat kernel (diffusion kernel) and x, y ∈M . When M ≡ IR,
the heat kernel becomes the Gaussian function :

I(x, t) =
1√
4πd

∫
IR

exp [−(x− zc)T Σ−1(x− zc)/4d]I(y)dy (3)

where Σ represents the covariance matrix, zc the kernel center and d is a nor-
malization coefficient.

Differential techniques compute velocity from spatio-temporal derivatives of
image intensities. After considering the Taylor series expansion, we obtain, [2]:

I(x + δx, t + δt) ≈ I(x, t + 1) = I(x, t) +∇I · δx + δtgt (4)

where ∇I = ( ∂I
∂x , ∂I

∂y ) and gt represent first order partial spatial and temporal
derivatives, respectively. Rearranging equation (4), we obtain :

∇I ·V + gt = 0 (5)
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where V = (Vx, Vy) denotes the motion vector and ∇I is the local intensity
gradient. Equation (5) is known as the constrained optical flow equation. The
optical flow is represented as a vector field on a 3D lattice. Each plane of the
lattice corresponds to the motion between two consecutive frames [4]. Motion
vectors can be calculated using the block matching algorithm. Block matching
uses the correlation of a given image block from the frame I(t) with blocks of
the same size inside a search region in the next frame I(t + 1) [1]. Matching is
performed by minimizing the displaced frame difference (DFD) for a particular
block of pixels. Matching blocks in image areas that have constant grey-levels or
similar texture patterns can lead to erroneous motion vectors [4]. The challenge is
to achieve high robustness against strong assumption violations, commonly met
in real sequences. In such cases, vector field smoothing is necessary. In order to
obtain well defined moving objects and to maintain the optical flow constraints,
second order differential methods are needed [2]. The local Hessian can be used
as a detector of change in the direction of the optical flow.

The Hessian for the optical flow is represented as a matrix, H2D:

H2D =
[
ψxx ψxy

ψyx ψyy

]
(6)

whose entries ψxx, ψxy, ψyx and ψyy are second order partial spatial derivatives,

ψxx =
∂2V

∂x2
, ψyy =

∂2V

∂y2
, ψxy =

∂2V

∂x∂y
, ψyx =

∂2V

∂y∂x
.

2.1 Smoothing Using 2D Hessian Kernel

The Hessian detects major changes in the direction of the optical flow. Optical
flow associated with complex motion such as that of rotation, zooming or created
by turbulent fluids can be accurately represented after being smoothed with a
Hessian kernel. Hessians have been employed as kernels for diffusion smoothing
in various applications [8,9]. The discretization of (3) is given by :

V̂
t+1

kc =

∑
xi∈η(zc)

exp[−(xi − zc)T H−1
2D,c(xi − zc)/4d] ·Vt

ki∑
xi∈η(zc)

exp[−(xi − zc)T H−1
2D,c(xi − zc)/4d]

(7)

where Vt
ki is the vector at location i within a neighborhood η(zc) = 3×3 around

the central location zc, t denotes iteration number and k is the frame number.

2.2 Smoothing Using Multiple Frame 2D Hessian Kernel

The 2D Hessian kernel applies smoothing on pairs of 2 frames. This can be
extended to include data from multiple frames, thus considering the temporal
influence in smoothing. In this case the Hessian is calculated in each vector
field, individually, as in (6), and the diffused vector takes into account all these
Hessians assuming the temporal continuity. The resulting smoothed vector is :
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V̂
t+1

kc =

j=k+K∑
j=k−K

∑
xi∈η(zj,c)

exp[−(xi − zj,c)T H−1
2D,jc(xi − zj,c)/4d] ·Vt

ji

j=k+K∑
j=k−K

∑
xi∈η(zj,c)

exp[−(xi − zj,c)T H−1
2D,jc(xi − zj,c)/4d]

(8)

where j �= k and 2K represents the number of frames considered.

2.3 Smoothing Using 3D Hessian Kernels

In the following the diffusion kernel is extended to 3D lattices :

V̂
t+1

kc =

∑
xi∈η3D(zc)

exp[−(xi − zc)T H−1
3D,c(xi − zc)/4d] ·Vt

ki∑
xi∈η3D(zc)

exp[−(xi − zc)T H−1
3D,c(xi − zc)/4d]

(9)

where the neighbourhood is defined in 3D as η3D(zc) = 3 × 3 × 4, and j is the
central frame. In (9) the 2D Hessian kernel is extended to 3D to accommodate
the spatio-temporal variation in the optical flow. By processing a larger amount
of data, the optical flow transitions and moving object boundaries will be better
preserved, whilst diffusing the vector field. The 3D Hessian matrix is given by :

H3D =

⎡⎣ψxx ψxy ψxt

ψyx ψyy ψyt

ψtx ψty ψtt

⎤⎦ (10)

where ψxx =
∂2V

∂x2
, ψyy =

∂2V

∂y2
, ψxt =

∂2V

∂x∂t
, ψyt =

∂2V

∂y∂t
, ψtx =

∂2V

∂t∂x
, ψty =

∂2V

∂t∂y
and ψtt =

∂2V

∂t2
, where t denotes the frame index.

3 Robust Statistics Diffusion Kernels

3.1 Alpha-Trimmed Mean of Hessians Kernel

We integrate robust statistics into diffusion kernels. The alpha-trimmed mean
algorithm, called also interquartile range averaging, ranks the given data and
excludes from further computation a certain percentage of data at both extremes
of the ranked array. The aim of this method is to remove outliers and to apply the
diffusion algorithm only onto data that are statistically consistent. The updating
equation is :

V̂
t+1

kc =

N−αN∑
i=αN

exp[−(xi − zc)T H−1
c (xi − zc)/4d] ·Vt

(i)

N−αN∑
i=αN

exp[−(xi − zc)T H−1
c (xi − zc)/4d]

(11)
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where the motion vectors have been ranked according to their length, ‖V(0)‖ <
‖V(1)‖ < · · · < ‖V(N)‖, where ‖V‖ represents the length of the vector V,
N is the total number of vectors in the neighbourhood η(zc), α ∈ (0, 1) is
the trimming percentage from a ranked array. The Hessian can be either H2D,
multiple frame H2D or H3D.

3.2 The Median of Directional Hessians Kernel

Another robust statistics approach consists of combining the use of median sta-
tistics with the diffusion kernel. Median algorithms have the ability to eliminate
up to 50 % outliers and have been successfully used with radial basis function
networks for moving object segmentation and motion estimation [4]. We first ap-
ply the Hessian-based diffusion algorithm as in (7) but calculated directionally,
instead of centrally, with respect to the window location. We obtain directional
smoothing for all the vectors from a certain neighbourhood. In this case we take
into account extended neighbourhoods and we aim to reduce overlaps among lo-
cal estimates. The total number of vectors considered in the smoothing process
is extended from 3× 3 vectors to 5× 5 vectors. The median operator is applied
onto the results produced by directional diffusions:

Vt+1
kc = Median(Vt+1

kc , ηmed(zc)
) (12)

where ηmed(zc)
is the window of the median operator centered at the location zc

that contains ranked diffused vectors. The influence of outliers will be diffused
during the first operation. During the second processing operation any biased in-
fluence is eliminated. This operator can be applied with 2D Hessian (7), multiple
frame 2D Hessian (8), or 3D Hessian (9) kernels.

4 Experimental Results

The proposed robust diffusion algorithms have been applied onto artificial vector
fields as well as on optical flows extracted from image sequences. The vectorial
field, entitled “Synthetic-1” is given by:[

Vx

Vy

]
=
[
c −s
s c

] [
D + S −R
R D − S

] [
c s
−s c

] [
x− μ
y − μ

]
(13)

where Vx and Vy are velocity components in the x and y direction, c = cos(θ)
and s = sin(θ), respectively, where θ = 0, D = 0.8 is the dilation coefficient,
S = 0.05 is the shear coefficient, R = 0.1 is the rotation coefficient, and μ = 31 is
the center position of the resultant flow. The vector field, entitled “Synthetic-2,”
is created by differentiating the expression :

Z(x, y) = 3(1−x)2 exp−(x2)−(y+1)2 −10(
x

5
−x3−y5) exp−x2−y2 −1

3
exp−(x+1)2−y2

The velocity components are obtained as V = (∂Z/∂x, ∂Z/∂y).
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Table 1. MSE and MCE for synthetic vector fields after one iteration of diffusion

Method
Noise

Perona-Malik Black 2DH ATM-2DH MED-2DHData σ2
MSE MCE MSE MCE MSE MCE MSE MCE MSE MCE

S
y
n
th

et
ic

-1

G
a
u
ss

ia
n

0.01 0.007 0.991 0.007 0.991 0.016 0.982 0.017 0.973 0.007 0.995
0.10 0.063 0.933 0.063 0.933 0.097 0.931 0.154 0.860 0.059 0.973
0.25 0.180 0.872 0.180 0.871 0.237 0.887 0.444 0.740 0.126 0.952
0.30 0.229 0.855 0.229 0.854 0.276 0.873 0.528 0.721 0.158 0.947
0.40 0.287 0.819 0.286 0.818 0.327 0.852 0.680 0.690 0.186 0.933

P
o
is
so

n

0.01 0.015 0.993 0.015 0.993 0.009 0.998 0.001 0.998 0.002 0.999
0.05 0.309 0.963 0.309 0.963 0.182 0.978 0.005 0.995 0.094 0.987
0.10 1.053 0.934 1.052 0.934 0.728 0.959 0.036 0.985 0.501 0.975
0.25 7.594 0.797 7.594 0.797 7.091 0.830 1.627 0.867 6.454 0.851
0.40 20.874 0.649 20.873 0.649 20.767 0.668 10.629 0.712 19.470 0.692

S
y
n
th

et
ic

-2

G
a
u
ss

ia
n

0.01 0.011 0.722 0.011 0.722 0.019 0.682 0.023 0.626 0.012 0.776
0.10 0.061 0.532 0.061 0.532 0.088 0.531 0.239 0.428 0.043 0.612
0.25 0.156 0.435 0.156 0.435 0.195 0.473 0.473 0.350 0.108 0.554
0.30 0.214 0.469 0.213 0.469 0.253 0.493 0.482 0.362 0.146 0.572
0.40 0.425 0.415 0.425 0.414 0.522 0.443 0.658 0.320 0.342 0.546

P
o
is
so

n

0.01 0.021 0.961 0.021 0.961 0.027 0.956 0.007 0.974 0.008 0.985
0.05 0.291 0.803 0.291 0.805 0.338 0.800 0.013 0.969 0.113 0.889
0.10 1.364 0.631 1.364 0.633 1.482 0.633 0.070 0.923 0.832 0.703
0.25 8.008 0.374 8.008 0.376 8.106 0.372 2.427 0.623 6.883 0.359
0.40 19.592 0.239 19.591 0.240 20.073 0.237 10.871 0.359 17.994 0.219

We consider Gaussian and Poisson noise distributions, each with five different
variances, corrupting the given vector fields. The algorithms described in this
paper and two well know diffusion algorithms, respectively Perona-Malik (PM)
[5], and Black [7], that have been adapted for the use on vectorial data, are
applied for smoothing the noisy vector fields with the aim of trying to reconstruct
the original vectorial fields. The numerical results obtained after smoothing the
synthetic vectorial fields corrupted by noise after one iteration by the given
algorithms are provided in Table 1. The algorithms are denoted according to the
type of kernel and the algorithm that has been used for smoothing as: 2DH - 2D
Hessian, ATM-2DH - alpha trimmed mean using 2D Hessian, M2DH - multiple
2D Hessian, ATM-M2DH - alpha trimmed mean of multiple 2D Hessian, 3DH
- 3D Hessian, ATM-3DH - alpha trimmed mean of 3D Hessian, MED-2DH -
median of 2D Hessian, MED-M2DH - median of multiple 2D Hessian, MED-
3DH - median of 3D Hessian. For the alpha-trimmed mean smoothing algorithm
in the case of the H2D kernel we consider N = 9, while αN = 3 and so 6 vectors
are eliminated from the diffusion process. The results are assessed numerically
in terms of mean square error (MSE) and mean cosine error (MCE). The second
measure calculates the average cosines of the angle between the ground truth
vector and its smoothed version. In Table 1 the best results are highlighted.
MED-2DH proved to be better in the case when removing the Gaussian noise,
while ATM-2DH is better in the case of Poisson noise.
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Fig. 1. Results obtained for “Concorde” sequence
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(d) 2DH (e) MED-M2DH (f) MED-3DH

Fig. 2. Results obtained for “Tornado” sequence

The second set of experiments provides a comparison when diffusion algo-
rithms are applied on optical flows estimated from image sequences. The block
matching algorithm (BMA) has been used to estimate motion vector fields in a
set of image sequences. The image sequences considered are listed in Table 2.
Fig. 1 shows the results obtained when applying diffusion algorithms on “Con-
corde take-off” sequence, while Fig. 2 shows the results when processing the “Tor-
nado” sequence. Fig. 1a displays frame 4 of the “Concorde” sequence, Fig. 1b
shows the vector field extracted between frames 4 and 6, using BMA. This se-
quence was chosen for its complex motion characteristics such as rotational move-
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Table 2. PSNR between the predicted frame based on smoothed optical flow after 1

iteration and the actual frame

PSNR(dB)
Method

Taxi Concorde Fighter Clouds Tornado Traffic

PM 18.15 17.40 16.65 16.93 21.14 12.97

Black 18.05 17.39 16.68 16.99 21.21 13.00

2DH 19.10 17.83 17.32 17.57 21.72 13.90

M2DH 19.43 19.03 18.23 16.91 21.75 13.67

ATM-2DH 20.40 16.81 16.62 16.85 22.32 14.05

MED-2DH 20.99 19.04 19.13 20.29 22.95 15.84

ATM-M2DH 20.12 18.59 16.20 16.86 23.33 13.56

MED-M2DH 20.88 20.40 20.07 20.31 23.71 16.10

3DH 18.96 17.77 17.29 17.76 21.64 13.86

ATM-3DH 19.84 18.31 16.05 16.54 23.40 13.30

MED-3DH 21.07 19.00 19.10 20.28 23.09 15.83

ment, turbulent air from jet thrusters, blocky artifacts from compression and
camera movement combined with a rigid moving object. In order to assess the
efficiency of the smoothed optical flows we calculate the PSNR (peak signal-to-
noise ratio) between the next frame and the corresponding frame reconstructed
using the smoothed optical flow. Fig. 1c shows the reconstructed frame 6, ob-
tained by translating individually each block of the frame with its corresponding
smoothed vector by MED-M2DH. Figs. 1d-1f show the smoothed vector fields af-
ter 5 iterations when using M2DH, ATM-M2DH and MED-M2DH, respectively.
The corresponding results are displayed in Fig. 2 for the “Tornado” sequence.
The movement and the area affected by the twister can be easily identified after
employing the robust diffusion algorithms and their multi frame extensions, as it
can be seen in Figs. 2d-2f. In the case of the 3D Hessian kernel the total number
of vectors considered in smoothing is N = 36.

Table 2 provides the PSNR calculated between the actual frame and the
predicted frame for six different image sequences. From this table as well as
from Figs. 1 and 2 it can be observed that robust kernels such as MED-M2DH
and MED-3DH, have better performance than Perona-Malik, Black or 2DH al-
gorithms. Methods that use data from the 3D lattice such as those based on
ATM-3DH and MED-3DH kernels smooth better than 2DH kernels.

5 Conclusions

A set of robust diffusion algorithms is proposed for optical flow smoothing. The
diffusion kernel ensures that smoothing occurs along the optical flow structure.
The extention of 2D Hessian to the 3D Hessian kernel considers the temporal
information from multiple frames. Robust statistics algorithms such as alpha
trimmed-mean and marginal median are employed on diffusion kernels for re-
moving the outliers and for enhancing vector smoothing. The improvements
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provided by the robust algorithms are particularly evident when dealing with
complex optical flows such as those that describe the motion of fluids. Optical
flow smoothing algorithms represent a core processing module for motion estima-
tion, segmentation, tracking of moving objects as well as in video compression.
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9. D. Tschumperlé, R Deriche, “Vector-Valued Image Regularization with PDE’s: A
Common Framework for Different Applications,” Proc. IEEE Computer Vision and
Pattern Recognition, Madison, USA, 2003, vol. I, pp. 651-656.

10. P.-Y. Burgi, “Motion estimation based on the direction of intensity gradient,”
Image and Vision Computing, vol. 22, no. 8, pp. 637-653, 2004.

11. M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous Structure and Texture
Image Inpainting,” IEEE Trans. on Image Proces., vol. 12, no. 8, pp. 882-889,
2003.

12. M. Irani, “Multi-Frame Optical Flow Estimation Using Subspace Constraints,”
Proc. IEEE Int. Conf. on Computer Vision, Corfu, Greece, 1999, vol. I, pp. 626–
633.



A. Gagalowicz and W. Philips  (Eds.): CAIP 2005, LNCS 3691, pp. 231 – 239, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Stereo Vision Based Localization of Free Parking Site 

Ho Gi Jung1, Dong Suk Kim1, Pal Joo Yoon1, and Jai Hie Kim2 

1 MANDO Corporation Central R&D Center, Advanced Electronic System Team, 
413-5, Gomae-Ri, Giheung-Eub, Yongin-Si, Kyonggi-Do 449-901, South Korea 

{hgjung, greenhupa, pjyoon}@mando.com 
http://www.mando.com/eng/main.asp 

2 Yonsei University, Department of Electrical and Electronic Engineering, 
134, Sinchon-Dong, Seodaemun-Gu, Seoul 120-749, South Korea 

jhkim@yonsei.ac.kr 
http://cherup.yonsei.ac.kr 

Abstract. This paper describes a novel stereo vision based localization of free 
parking site, which recognizes the target position of automatic parking system. 
Pixel structure classification and feature based stereo matching extracts the 3D 
information of parking site in real time. Parking site marking is separated by 
plane surface constraint and is transformed into bird’s eye view, on which tem-
plate matching is performed to determine the location of parking site. Obstacle 
depth map, which is generated from the disparity of adjacent vehicles, can be 
used as the guideline of the template matching by limiting search range and ori-
entation. Proposed method using both the obstacle depth map and the bird’s eye 
view of parking site marking increases operation speed and robustness to visual 
noise by effectively limiting the search range. 

1   Introduction 

Generally novice, female and old driver feels constraint in parking backward between 
vehicles. J. D. Power’s 2001 Emerging Technology Study, which found that 66% of 
consumers were likely to purchase parking aid, is a good proof [1]. Many upper class 
cars adopt ultrasonic parking assist system, which warns the driver of close distance 
to obstacle. Recently, car and component manufacturers started to provide vision 
based parking assist system. Toyota and Aisin Seiki introduced Back Guide Monitor, 
which helps the driver by projecting predicted driving course on the image of a rear 
view camera [2,3]. Aisin Seiki’s next generation is expected to include circumstance 
recognition function to provide an optimistic view to the driver [4]. They use wheel 
speed sensor, structure from motion technology and virtual camera, i.e. IVR (Inter-
mediate View Reconstruction) technology, to make a virtual rendered image from an 
optimistic viewpoint. 

Automatic parking system automates parking operation with automatic steering 
control and automatic braking control. Automatic parking system consists of three 
components : path planning including the localization of target position, automatic 
steering and braking system used to implement the planned trajectory, HMI (Human 
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Machine Interface) used to receive driver’s input and provide the visual information 
of ongoing parking process. The localization of target position can be implemented by 
various methods, e.g. fully manual designation [2], GPS infrastructure [5] and the vi-
sion based localization of free parking site [6,7]. Toyota’s IPA (Intelligent Parking 
Assist) is a semiautomatic parking system, which leaves the braking control as 
driver’s responsibility. Toyota’s IPA developed the localization of target position by 
HMI, which shows a potential target position on the image from rear view camera and 
enables the driver to change the target position with direction control buttons such as 
up, down, left, right and rotation [2]. 

Although semiautomatic parking system becomes commercialized, fully manual des-
ignation is too tedious and complicated for daily usage. Therefore, it is natural that the 
need of the vision based localization of free parking site is increasing rapidly. Nico 
Kaempchen developed a stereo vision based pose estimation of parking lots, which uses 
feature based stereo algorithm, template matching algorithm on a depth map and 3D fit-
ting to the planar surface model of vehicle by ICP (Iterative Closest Point) algorithm [6]. 
The vision system uses the disparity of vehicles but ignores all the information of parking 
site marking. Jin Xu developed a color vision based localization of parking site marking, 
which uses color segmentation based on RCE neural network, contour extraction based 
on least square method and inverse perspective transformation [7]. Because the system 
depends only on parking site marking, it can be degraded by poor visual conditions such 
as stain on marking, shadow and occlusion by adjacent vehicles. 

This paper proposes a novel vision system to localize free parking site for auto-
matic parking system. Proposed method is based on feature based stereo matching and 
separates parking site marking by plane surface constraint. The location of parking 
site is determined by template matching on the bird’s eye view of parking site mark-
ing, which is generated by inverse perspective transformation on the separated park-
ing site marking. Obstacle depth map, which is generated by the disparity information 
of adjacent vehicles, can be used to narrow the search range of parking site center and 
the orientation. Because the template matching is fulfilled within the limited range, 
the speed of searching effectively increases and the result of searching is robust to 
noise including previously mentioned poor visual conditions. Using both obstacle 
depth map and parking site marking can be justified because typical parking site in 
urban area is constructed by nation-wide standards. 

2   Stereo Vision System 

2.1   Pixel Classification 

In the case of automotive vision, it is known that vertical edges are sufficient to detect 
noticeable objects [9]. Consequently, stereo matching using only vertical edges dras-
tically reduces computational load [10,11]. Pixel classification investigates the inten-
sity differences between a pixel and 4 directly connected neighbors so as to assign the 
pixel a class reflecting the intensity configuration. It is known that the feature based 
stereo matching with pixel class is fast and robust to noise [11]. Equation (1) shows 
that a pixel of smooth surface will be classified as zero class and a pixel of edge will 
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be classified as non-zero class. To reduce the effect of threshold T, histogram equali-
zation or adaptive threshold can be used. 

  

1, if g(i)-g(x)> +T

d(i) 2, if g(i)-g(x)< -T

0, else

=   

 

4 neighbors        g(.) : grey value             pixel class 

 0  

3 x 1 

 2  

d(3) d(2) d(1) d(0) 
(1) 

 
(a) left image                                                    (b) right image 

Fig. 1. Stereo image of typical parking site. Parking site marking is drawn according to corre-
sponding standards. Some portion of parking site marking is occluded by adjacent vehicle and 
trash. Some portion of parking site marking is invisible because of shadow.  

Fig.1 is the stereo image of typical parking site, which is acquired with Point Grey 
Research’s Bumblebee camera installed on the backend of test vehicle. Each image 
has 640x480 resolution and 24 bits color information. The images are rectified with 
 

 
(a) pixels classified as horizontal edge                 (b) pixels classified as vertical edge 

Fig. 2. Pixel classification result 
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Point Grey Research’s Triclops rectification library [8]. Fig.2 shows the result of the 
pixel classification. 13.7% of total pixels are classified as horizontal edge and 7.8% 
are classified as vertical edge. 

2.2   Feature Based Stereo Matching 

Stereo matching is performed only on pixels classified as vertical edge. Furthermore, 
stereo matching is composed of step-by-step test sequences through class comparison, 
class similarity, color similarity and maximum similarity detection. Only correspon-
dence candidates passing previous test step successfully will be investigated in the 
next test step. 

 
     (a) left image                                                             (b) right image 

Fig. 3. Stereo matching result of a pixel. Graph on the right image shows the total similarity of 
pixels within search range. A pixel with highest total similarity becomes corresponding point. 

Assuming that the vertical alignment of Bumblebee is correct, the search range of a 
pixel is limited to a horizontal line with –35 ~ 35 displacement. First, correspondence 
test is performed on pixels with the same class as the investigated pixel. Class similar-
ity is the measure of how the candidate pixel is similar to the investigated pixel in the 
sense of 3x3 class window. Color similarity is the measure of how the candidate pixel 
is similar to the investigated pixel in the sense of 5x5 color window. Total similarity 
is the product of the class similarity and the color similarity. If highest total similarity 
is lower than a certain threshold, the investigated pixel fails to find corresponding 
point and is ignored.  

1 1

left right
u=-1 v=-1

left right
left right

left right

1
ClassSimilarity(x,y,s) = f(Class (x+u,y+v),Class (x+u+s,y+v))

3x3

0, Class   Class
where   f(Class ,Class )=

1, Class  = Class

≠
 

(2) 

corresponding point investigated point 
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1 ColorSSD(x,y,s)
ColorSimilarity(x,y,s) = 1 - 

256 5x5

(R (x+u,y+v)-R (x+u+s,y+v)) +

 where ColorSSD(x,y,s)= (G (x+u,y+v)-G (x+u+s,y+v)) +

(B (x+u,y+v)-B (x+u+s,y+v))

2

u=-2

 
(3) 

Similarity(x,y,s)=ClassSimilarity(x,y,s)  ColorSimilarity(x,y,s)×  (4) 

2.3   Road / Object Separation 

Generally, pixels on the road surface satisfy plane surface constraint, i.e. the y coordi-
nate of a pixel is in linear relationship with the disparity of the pixel, d(x,y), like equa-
tion (5) [11]. Consecutively, the pixels of obstacles, e.g. adjacent vehicles, do not fol-
low the constraint. Therefore, the disparity map which is the result of stereo matching 
can be separated into two disparity maps : the disparity map of parking site marking 
and the disparity map of obstacle. 

x y
y

x y

B y
d(x,y)= f ( cos +sin ), with y  f tan

H f

where B : baseline, H : Height, f , f  : focal length,  : tilt angle

α

α

 (5) 

 
(a) disparity map of obstacle          (b) disparity map of parking site marking 

Fig. 4. Road / Object separation result 

The distance between camera and object, Zworld, is inverse proportional to the dis-
parity like equation (6-1). Previously mentioned plane surface constraint can be sim-
plified like equation (6-2). P1 and P2 is the constant parameter of camera configura-
tion. Consequently, the relationship between the y coordinate of a pixel on road 
surface and Zworld can be summarized like equation (6-3), (6-4). The relationship be-
tween Xworld and the x coordinate of a pixel can be defined like (6-5) by triangulation. 
Using the relationship, the disparity map of parking site marking is transformed into 
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the bird’s eye view of parking site marking. The bird’s eye view is constructed by 
copying values from the disparity map to the ROI (Region Of Interest) of Xworld and 
Zworld. Pixels with different color from parking site marking are ignored to remove the 
noise of textures such as asphalt and grass. 

world

B f
z =

d(x,y)

⋅  (6-1) 

x x
1 2 1 2

y y

f fB B
d(x,y)=P y+P , where P = cos  , P = sin  

H f H f
 (6-2) 

world
1 2

B f
z =

P y+P

⋅
⋅

 (6-3) 

2
1 world

1 B f
y= P

P z

⋅ −  (6-4) 

world
world world

world

f X
X :Z =x:f       x=

Z

⋅  (6-5) 

 

 

    (a) bird’s eye view                               (b) separated parking site marking 

Fig. 5. Bird’s eye view of parking site marking 

Obstacle depth map is constructed by projecting the disparity information of pixels 
unsatisfying the plane surface constraint. World coordinate point (Xworld, Zworld) corre-
sponding to a pixel in the obstacle disparity map can be determined by equation (6-1) 
and (6-5) [10]. Because the stereo matching does not implement sub-pixel resolution 
for real time performance, a pixel in the disparity map contributes to a vertical array 
in the depth map. The element of depth map accumulates the contributions of corre-
sponding disparity map pixels. By eliminating the elements of depth map under a cer-
tain threshold, noise on the disparity map can be removed. In general, the noise of the 
disparity map does not make a peak on the depth map. 
 

Xworld 

Zworld 

x 

y 
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(a) obstacle depth map               (b) separated obstacle disparity map 

Fig. 6. Obstacle depth map 

3   Localization of Parking Site 

Free parking site is localized using both the depth map of obstacle and the bird’s eye 
view of parking site marking. Localization algorithm consists of 3 steps : 1) finding 
the guideline, which is the front line of parking area, by the Hough transform of the 
bird’s eye view of parking site marking, 2) obstacle histogram which is generated by 
projecting the obstacle depth map onto the guideline, 3) template matching within the 
search range limited by the obstacle histogram. 

 

             (a) seed point for localization                        (b) guideline and obstacle histogram 

Fig. 7. Search range reduction by guideline and obstacle histogram. HMI displays the image of 
rear view camera during parking process and user can set target position by clicking on touch 
screen. User’s input is seed point and is used to restrict initial search range. 

The pose of ego-vehicle is limited to –40~40 degrees with respect to the longitudi-
nal direction of parking area. Therefore, the peak of Hough transform in this angular 
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range is the guideline depicted in Fig. 7(b). Free space is the continuous portion of the 
obstacle histogram under a certain threshold and is determined by bi-directional 
search from the seed point. The search range of parking site center in the guideline di-
rection is central 20% of the free space. The initial guess of parking site center in an-
other direction, i.e. orthogonal to the guideline direction, is the position distant from 
the guideline by the half size of template length. Search range in the orthogonal direc-
tion is 10 pixels and angular search range is 10 degrees. 

Final template matching uses a template consisting of 2 rectangles derived from 
standards about parking site drawing. The template matching measures how many 
pixels of parking site marking exist between 2 rectangles, i.e. between inner and outer 
rectangle. Fig. 8(a) shows the result on the bird’s eye view of parking site marking 
and Fig. 8(b) projects the result on the bird’s eye view of input image. Because the 
search range is narrowed by the obstacle depth map, template matching successfully 
detects correct position in spite of stain, blurring and shadow. Furthermore, template 
matching, which is the bottleneck of localization process, consumes little time. Total 
computational time on 1GHz PC is about 400~500 msec. Once the initial position is 
detected successfully, the next scene needs only template matching with little varia-
tion around the previous result. 

(a) result on parking site marking (b) result on input image 

Fig. 8. Detected parking site 

4   Conclusion 

This paper proposes a stereo vision based 3D localization of the target position of 
automatic parking system. Obstacle depth map establishes the search range of free 
parking site and simple template matching finds the exact location of free parking 
site. By using both parking site marking and obstacle depth map, the search range of 
template matching is drastically reduced and the result is robust to noise such as stain, 
waste and shadow. Hereafter, to make practical system, research on the variation of 
parking site marking is needed. 
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Abstract. This study aims at building photorealistic 3D models of real-
world objects. We discuss the problem of combining a 3D textureless
model obtained by 3D scanner, with optical images that provide textu-
ral information of the object. Recently, we have proposed a novel method
to register an uncalibrated image pair to a 3D surface model. After reg-
istration, the images are mapped to the surface. However, as the images
show different parts of the objects, partial overlapping textures can only
be extracted from them. Combining the images into a complete texture
map that covers the entire object is not trivial. We present a method to
build photorealistic 3D models that includes algorithms for data regis-
tration and for merging multiple texture maps using surface flattening.
Experimental results on real and synthetic data are shown.

1 Introduction

Thousands of cultural heritage objects around the world are in the danger of be-
ing lost. During the last years a number of ambitious projects have been started
to preserve these objects by digitalising them. Such projects are: the Michelan-
gelo Project [13], the Pieta Project [2] and the Great Buddha Project [4].

There exist different techniques to reconstruct the object surface and to build
photorealistic 3D models. Active and passive methods are discussed in [18]. Al-
though the geometry can be measured by various methods of computer vision,
for precise measurements laser scanners are usually used. However, most of laser
scanners do not provide texture and colour information, or if they do, the data
is not accurate enough. (See [18] for a detailed discussion.)

We address the problem of combining geometric and textural information of
the object. We consider the case when the two sources are independent, namely
the 3D model is obtained by 3D scanner and is combined with high quality
optical images. In [8] and [9] we introduced a novel method based on photo-
consistency. The novelty of our method consists in using uncalibrated cameras
– in contrast to Clarkson et al. [5] who need a calibrated setup – and applying
a genetic algorithm.

Textures extracted from the images can cover only parts of the object. Merg-
ing multiple texture maps is not trivial. Mayer et al. [3] paste multiresolution
textures to objects with large flat surfaces, for instance to buildings. They split
rectangular surfaces until each portion can uniquely be related to a texture map,
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which shows it in the highest resolution. However their method handles polyhe-
drons only, while we look for solution for arbitrary surfaces.

Yemez et al. [18] use triangulated 3D mesh and subdivide each triangle into
particles. For each particle the best colour is determined from the full set of
images from which the particle is visible. Their method could not guarantee the
continuity of the neighbouring texture maps; in addition, it assumes that the
triangles have very similar sizes, which is a strong constraint. Papers [2] and [15]
present similar techniques for combining multiple texture mappings.

Surface flattening is popular technique to support texture mapping. Zigelman
et al. [19] discuss how to flatten arbitrary surfaces preserving the structure and
having minimal distortions, which properties are of crucial importance from the
point of view of texture mapping. Papers [6,11,14,16] also examine surface pa-
rameterisation, although none of them discusses the problem of merging multiple
texture mappings.

In this paper we present our technique to build photorealistic 3D models. In
section 2 a photo-consistency based registration method with genetic algorithm
based optimisation is discussed. In section 3 we analyse the problem of fusion
of multiple texture mappings, and present a novel method which combines the
techniques of surface flattening and texture merging. Test results on synthetic
and real data are shown for the methods.

2 Registration

In this section the registration of images to a 3D model is discussed based on
our previous papers [8,9]. We give a mathematical formulation of the registration
problem and show a possible solution for it.

2.1 Problem Formulation

The input data consists of two colour images, I1 and I2, and a 3D surface model.
They represent the same object. (See figure 1 for an example.) The images are
acquired under fixed lighting conditions and with the same camera sensitivity. All
other camera parameters may differ and are unknown. The raw data is acquired
by a hand-held 3D scanner, then processed by the triangulator of Kós [10]. The
3D model obtained consists of a triangulated 3D point set P with normal vectors
assigned.

The finite projective camera model [7] is used to project the object surface
to the image plane: u � PX, where u is an image point, P the 3×4 projection
matrix and X a surface point. (� means that the projection is defined up to
an unknown scale.)

The task of registration is to determine the precise projection matrices, P1

and P2, for both images. Since the projection matrix is up to a scale factor, it has
only 11 degrees of freedom in spite of having 12 elements. The collection of the
11 unknown parameters can be denoted by p, which represents the projection
matrix P as an 11-dimensional parameter vector.
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Values of the two parameter vectors p1 and p2 are sought such that the
images are consistent in the sense that the corresponding points – different
projections of the same 3D point – have the same colour value. Note that the
precise mathematical definition is valid only when the surface is Lambertian. The
formal definition is the following: We say that images I1 and I2 are consistent
by P1 and P2 (or p1 and p2) if for each X ∈ P : u1 = P1X, u2 = P2X and
I1(u1) = I2(u2). (Here Ii(ui) is the colour value in point ui of image Ii.) This
type of consistency is called photo-consistency [5,12].

The photo-consistency holds for accurate estimates for p1 and p2. Inversely,
misregistered projection matrices mean much less photo-consistent images. The
cost function introduced in [9] is the following:

Cφ(p1, p2) =
1
|P|

∑
X∈P

‖I1(P1X)− I2(P2X)‖2 . (1)

Here φ stands for photo-inconsistency while |P| is the number of points in P .
Difference of the colour values ‖I1 − I2‖ can be defined by a number of different
colour models: CIE XYZ ITU, HSI, CIE LUV [8]. The minimum of the cost
function (1) gives a good estimation for the projection matrices.

The problem of occlusion and wrong measurements requires the cost func-
tion to be robustified. Occluded points are eliminated by using the surface nor-
mals, and the outliers by rejecting a certain amount of the smallest and largest
squares (α-trimmed mean technique). Finally we note that although the prob-
lem is formulated with two images, it can be easily extended to the case of more
images.

2.2 Optimisation Method

Although the cost function Cφ(p1, p2) is simple, it has unpredictable shape in the
22-dimensional parameter space, thus the standard local nonlinear minimisation
techniques we have tested (such as the Levenberg-Marquardt algorithm [7]) failed
to provide reliable results. A global nonlinear optimisation technique has also
been tested. However, the stochastic optimisation method by Csendes [1] did
not yield acceptable results either. The randomness of a stochastic method is
excessive, and it does not save nearly good solutions. Finally, we decided to
apply a genetic algorithm, as a time-honoured global search strategy. Note that
in contrast to the stochastic optimisation, genetic algorithms preserve the most
promising results and try to improve them. Running a GA without elitism yields
also unstable and imprecise results.

We pre-register the images and the 3D model manually. This yields a good
initial state for the search, which narrows the search domain and accelerates
the method. Manual pre-registration is reasonable since this operation is simple
and fast compared to the 3D scanning, which is also done manually. The photo-
consistency based registration makes the result more accurate.

The genetic algorithm starts by creating the initial population. The individu-
als of the population are chosen from the neighbourhood of the parameter vector
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obtained by the manual pre-registration. The values of the genes are from the
intervals defined by the pre-registered values plus a margin of ±ε. In our exper-
iments ε was set to values between 1% and 3%, depending on the meaning and
the importance of the corresponding parameter. The individual that encodes the
pre-registered parameter vector is also inserted in the initial population to avoid
losing it.

We have tested the method with a number of different genetic settings to
check their influence on registration. Different settings can lead to significantly
different results, but choosing the best settings the projection error of registration
can be decreased from 18–20 pixels, which is the average error of the manual
pre-registration, to 5–6 pixels1. After preliminary testing with semi-synthetic
data, the following genetic setting has been selected: Steady state algorithm
with Tournament selector, Swap mutator and Arithmetic crossover, with 250
individuals in the population, with mutation probability of 0.1 and crossover
probability of 0.7. The typical running time with a 3D model containing 1000
points was 5–6 minutes on a 2.40 GHz PC with 1 GB memory.

We applied the method to different real data. Due to the paper size limita-
tions, only the Bear Dataset is shown here (figure 1). (Papers [8] and [9] present
other results.) The precision of the registration can be best judged at the mouth,
the eyes, the hand and the feet of the Bear. Figure 2 visualises the difference
between the manual pre-registration and the photo-consistency based registra-
tion. The areas of the mouth, the eyes and the ears show the improvement of
the quality.

Images 3D model Textured model

Fig. 1. The Bear Dataset and the result of the registration

1 Here the projection error is measured, which means that the 3D point set P is pro-
jected onto the image planes by both the ground truth and the estimated projection
matrices, and then the average distance between the corresponding image points is
calculated.
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Manual Genetic

Fig. 2. Difference between manual pre-registration and genetic registration

3 Merging Multiple Textures

After registering the images to the 3D model, they can be mapped to the sur-
face. Usually one image can show only one part of the model, but a number of
images of the same object taken from different viewpoints can cover the whole.
This section discusses the problem of combining partial overlapping textures and
shows a novel method for it.

To paste texture to the surface of an object we need two pieces of information:
a texture map and texture coordinates. The former is the image we paste, while
the latter specify where it is mapped to. Texture coordinates can be determined
by a texture mapping function, for instance, by applying projection matrix P to
3D point X.

Figure 3a shows two images of the globe, which can be considered as texture
maps. Merging the two texture maps to one is not obvious. Creating an image by
appending the second image to the first one and modifying the second projection
matrix with a translation yields gap between the border of the textures.

a. Input Images b. Partially Textured Model

Fig. 3. Textures cover only parts of the model

There exists an other way to create a texture map based on the images. Flat-
tening the surface of the object yields also a two-dimensional parameterisation.
The advantage of this parameterisation is that it preserves the topology of the
three-dimensional mesh. A texture that covers entirely the flattened 2D surface
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ImageFlattened Surface

3D Model
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Ti

Fig. 4. Relation between 3D model, optical image and flattened surface

covers also the original 3D surface. Figure 4 illustrates the relation between the
3D surface, the optical image and the flattened surface. Converting optical im-
ages to flattened surfaces yields partially textured meshes, but since flattening
preserves the structure of the 3D mesh, these texture maps can be merged, in
contrast to the optical images.

We use the algorithm of Kós and Várady [11] to flatten and parameterise
triangular meshes. After this one needs to convert the optical images to flattened
texture maps. Since the transformation of flattening cannot be represented by a
matrix, we have to use the mesh representation for conversion. Given a triangle
of the mesh, denote by Ti and Tf the known corresponding triangles in the
optical image and on the flattened surface, respectively. (See figure 4.) The affine
transformation between Ti and Tf can be easily determined. This transformation
gives the correspondence between the points of the triangles. Note that the affine
transformation is unique for each triangle pair.

Conversion of optical images yields partially textured flattened surfaces. (See
figure 5.) Merging these partial texture maps may cause problem only at the
overlapping areas. To eliminate the seams appearing at the borders of the texture
maps, we blend the views as follows. For each triangle all the views are collected
which the given triangle is entirely visible from. A measure of visibility of a 3D
point is the scalar product of the normal vector and the unit vector pointing
towards the camera. This measure is used to set a weight for each view: If the
point is better visible from the view, the weight is greater. To set the colour of
a point, all of these views with their weights are combined.

Partial textures Merged texture

Fig. 5. Partial and merged texture maps
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Images Texture Map Textured Surface

Fig. 6. Result for the Earth

The method has been tested both on synthetic and real data. The Earth
Dataset consists of 8 images of the globe and a synthetic 3D model. The images
were obtained by the script of John Walker [17], which also gives the precise
projection matrices. Figure 6 shows two of the input images, the merged texture
map and a snapshot of the textured 3D model.

Applying the method to real data is illustrated by figure 7. The projec-
tion matrices of the images of the Bear Dataset were obtained by our photo-
consistency based registration method described in section 2.

Images Texture Map Textured Surface

Fig. 7. Result for the Bear

4 Conclusion

We have discussed the problem of building photorealistic 3D models. Our tech-
nique assumes having accurate 3D model measured by laser scanner and high
quality images of the object. The images are registered to the 3D model by
minimising a photo-consistency based cost function using a genetic algorithm.
Since textures extracted from images can only cover parts of the 3D model, they
should be merged to a complete texture map. We have presented a novel method
to combine partial texture mappings using surface flattening. Test results with
synthetic and real data demonstrate the efficiency of the proposed methods.
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IEEE Comp. Graphics & Applications, 22(1):59–67, 2002.

3. H. Mayer et al. Multiresolution texture for photorealistic rendering. In Proc. 17th

Spring Conference on Computer Graphics, page 109. IEEE Comp. Soc., 2001.
4. K. Ikeuchi et al. The great Buddha project: Modeling cultural heritage for VR

systems through observation. In Proc. IEEE ISMAR03, 2003.
5. M.J. Clarkson et al. Using photo-consistency to register 2D optical images of the

human face to a 3D surface model. IEEE Tr. on PAMI, 23:1266–1280, 2001.
6. S. Haker et al. Conformal surface parameterization for texture mapping. IEEE

Tr. on Visualization and Comp. Graphics, 6(2):181–189, 2000.
7. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge Univ. Press, 2000.
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Abstract. This paper presents a new technique of a scene augmentation using 
images of real objects’ views that are not generated using a graphical library. 
We call them ‘Virtualized Real Objects’ (VRO). The idea may be used, for 
example, for art objects of a commercial organization wanting to deploy its 
trade by Internet. VRO are important for cases where real objects 3D models 
availability is not obvious. This orientation is equally useful for adaptation tests 
of heavy or big real objects with respect to their expected places. This article 
outlines our developed prototype for this realization. In the occurrence, how 
real objects’ images can be integrated in a sequence and how they are 
manipulated for a visual disposition. 

1   Introduction 

The augmentation of a real scene is the addition, in real time, of one or several virtual 
objects to the related video sequence. The objects are assumed virtual because of their 
computer-generated nature which limits their existence to the video flow. They may 
accurately register to searched and located real-world marks. These marks may be 
explicitly added to the real-world or deduced from its 3D depth study. The foremost 
augmentation techniques used without explicit marks suffer from computation time-
consuming and do not allow real time augmentations [2]. As opposed to the formers 
ones, the use of explicit indices inevitably denaturalize the scene and the 
augmentation techniques become typical patterns constrained [11], [12]. 

To reach an accurate augmentation process, a set of problems must be solved. 
There are algorithmic problems related to static and dynamic parameters errors cited 
in [10] and others related to semantic nature of the scene. The type of problems we 
are concerned by is how to maintain the real aspect of a generated scene. Ideally, the 
virtual and real objects appear to co-exist in the same space and merge together 
seamlessly. The possible manipulation of virtual objects improves the realism 
sensation and facilitates the reaching of some user’s objectives in the achievement of 
particular tasks [4], [6], [9]. More over, it may become a new means of 
communication for the user to convey her or his ideas. 

This work reports the manipulation of inserted virtual objects in a collaborative 
environment. According to her or his objectives, the user will be able to adjust them 
into the scene. Adjustments consist of a set of geometrical transformations to apply 
for virtual objects. According to our objectives, the system uses the simple means of 
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manipulation: the mouse and the keyboard [7], [9]. To do so, we use a visual 
augmentation implemented using a video system [11]. This consists of a 2D pattern 
added to a filmed scene in order to serve as a mark for the registration of virtual 
elements. Initially, inserted objects are supposed to be superimposed on the top of the 
pattern in the augmented scene. 

These objects can be constructed by using a graphical library [4], [5], [6], [7] or 
inserting different images corresponding to different views of real objects. The aim of 
our work is that augmentation may use the latter objects category. We call them 
‘virtualized real objects’. The challenge to insert images of real captured objects is 
important. For example, it is difficult to have underlying graphical models for some 
art objects. Our objective is to show real objects for a customer as if she or he owns 
them and has not to displace them. 

To present the underlying theory and to evaluate the obtained results, the work is 
divided into three more sections. The second one presents an overview of the 
augmentation process using a planar pattern where the third section shows the 
theoretical framework used for overlaying VRO, the realized prototype through its 
advantages and limits, and makes a tour of manipulation laws. The last section 
includes points that are not yet covered, insufficiencies and future work orientations. 

2   Overview of Video Augmentation Using 2D Patterns  

Two systems are used for augmentation: optic and video [11]. The optical system uses 
transparent glasses. They allow the perceiving of the view of the real-world above 
which virtual objects are projected. The video system consists of an ordinary screen 
or an opaque helmet (HMD) that totally occludes the user’s eyes, and in which a 
small screen exists. The grabbed scene by HMD’s cameras or independent ones is 
projected on the screen after having been augmented by virtual objects. 

A video augmentation begins by analyzing the generated numerical scene to find 
its correspondence with the real world and to insert virtual objects in it. A great 
number of techniques are applied according to the environment whether it is prepared 
or not [4], [6], [8]. The prepared environment consists of adding explicitly indices or 
markers (2D or 3D patterns) whose form and size are known and searching for them 
in each frame of the generated sequence. Once found, they should allow to calibrate 
the camera [11], [12], and to deduce the scene’s geometry that allows its 
augmentation. This technique is characterized by its simplicity, accuracy and its 
adaptation to real time processing. 

The calibration of the camera determines its intrinsic and extrinsic parameters. 
Intrinsic parameters reflect the camera characteristics as Mint matrix. They are the 
focal length, the generated image centre in pixel units and its horizontal and vertical 
directions scale factors. Extrinsic parameters are related to the quantified position and 
orientation of the camera relatively to real world system coordinates. 

To achieve augmentation, a perspective transformation is required in order to 
determine analytic relations that allow the projection of virtual elements. The pin-hole 
camera model is the simplest and largest used one (Fig. 1). It allows finding three 
transformations (To, Tc, Ti) that respectively express the Object-to-World, World-to-
Camera and Camera-to-Image plane transformations.  
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Firstly, a virtual object is positioned in the real world using ‘To’. Its position is 
either computed following located marks disposition or fixed explicitly by a user. 
Extrinsic parameters reflect the transformation ‘Tc’ as Mext matrix, that is a rotation R 
and a translation T to apply on each point po(xo, yo, zo) of any real or virtual object, 
known as camera viewpoint. Intrinsic parameters reflect the ‘Ti’ transformation. It 
transforms each point p(x, y, z) in the camera system by projecting it to p’(x’, y’) in 
the image plane. It is then possible to compute a 3D object homogeneous coordinates 
in the image plane system from those in its proper system by using the relationship 
(1). The projective projection matrix is defined as Mint . Mext [11], [12]. 
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The application of these principles begins by searching for the pattern in each 
current image of the sequence. This starts by its binarisation using a dynamic 
threshold based on lighting scene conditions. It is chosen as the average of pixels’ 
values of each image after its transformation to grey level. The transformed image is 
then prospected for connected black regions having four corners. By a simple binary 
difference with the real image of the pattern and according to a given threshold value, 
the region that presents a minimal value will be considered as being the pattern. This 
allows us to calculate the terms of the homography matrix H. Using it, it would be 
possible to proceed directly with 2D augmentation or to deduce the projection matrix 
for 3D augmentation. For the following frames of the sequence, a simple tracking of 
pattern’s corners is made in order to update the homography matrix for each frame. 

 

Fig. 1. Correspondence pin-hole camera model used for augmentation 

3   Virtualized Real Object Incarnation 

A virtual object can be drawn by using two different manners. Most researchers make 
use of graphical library such as OpenGL in order to draw virtual entities at runtime. 
They are known as synthetics. They are designed and projected in the sequence 
according to the computed camera’s viewpoint [1]. The second used way about virtual 
entities’ kinds is where they are captured as 2D images. They can be projected by 
using the computed homography. Images will then appear mapped on the desired plan 
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in the scene. Following this way, our work’s idea is to map images of 3D real objects 
as if they are designed by using a graphical library. Various object’s views are 
projected by using its different captured images from various viewpoints. Thus, the 
image that shows the object in the current computed camera’s viewpoint is used. The 
projected image is what we call virtualized real object. 

A lot of object’s images must be grabbed according to different viewpoints in order 
to allow object projection in different visual oriented positions. They can be acquired 
from sphere-shaped view space where object background is dark or light (Fig. 2). 
Finally, the number of images to use is variable and is associated to user’s needs. The 
alone important aspect is that the expected perceptible realism of object’s motion is 
related to the number of captured images and to their qualities. 

       

Fig. 2. Images of real objects associated to different views 

3.1   Size Constraint in Augmentation Realism 

The used method which uses the pine-hole model allows a good approximation. It 
gives the possibility to compute the homography matrix to use for projection, but it 
does not give any information to use directly about the scene’s real objects 
dimensions. The metrics information is included automatically in computed terms as 
camera auto calibration. Thus, the information about object’s size is insufficient to 
adapt it visually to the scene’s real size. The solution that we used for is the respect of 
relative sizes of the real object and the printed pattern. This constraint is applied to 
images’ sizes in order to deduce their proportion. Fig. 3 shows this problem. 

Let us assume that So and Sp symbolise respectively the measurement vectors of an 
object and the pattern. The object’s size is related to a chosen reference direction view 
which is pictured as a reference image. So as well as Sp must either be given as an 
input session in order to calculate the proportion real size por SSP = . Similarly, let 

us also assume that the extracted object’s region from the reference image has its size 
vector equal to Sio and the image’s size vector is Si, the proportion of the object in its 
image is iioi SSP = . This hypothesis remains true for similar images’ size of object’s 

views even if the sizes of object’s views in images are different. Thus, by using the 
matrix notation and a detail of width (W) and height (H), we obtain: 

====
iio

iio

P

P
i

po

po

P

P
r HH

WW

H

W
Pand

HH

WW

H

W
P

i

i

r

r  (2) 

In addition, the proportion of the object’s region size in the reference image and 
the detected pattern’s size remains constant. So, it is right to write 

ds pro SPS ⋅= ,  
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Fig. 3. On the left, the two images equal in size. On the right, the real proportion of the pattern 
and real objects (not projected) and measurement principles. 

where
soS re-presents the scaled object’s size vector to use in current frame relatively 

to the detected pattern’s size vector
dpS . Likewise, knowing that the object’s region in 

the reference image preserves its proportion after scaling (Fig. 6), it would have as 
size iprioi PSPPSS

dss
⋅== . The current scale proportion to apply to object’s image 

is then expressed as irpis PPSSP
ds

== . Using matrix notation, we obtain:  
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Thus, after having been expressed relatively to the pattern’s detected centre, each 
detected corner pio(xo, yo) among the four will be translated to ),(

sss ooio yxp : 
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These expressions must be used to compute the homography matrix for each 
frame. We note equally that they are all established under supposition of the pattern’s 
plane is always parallel to the camera’s image plane. If this is not the case, the size of 
at least one side decreases under the effect of the geometrical projection. As a primary 
solution, we impose to the pattern to be a square form. After its detection, the lengths 
of the four lines connecting the detected points are evaluated. Then, the longest one is 
the closest to the camera and will be used to calculate the projection scale. Generally, 
the associated error has no effect on the visual aspect. 

3.2   Objects Manipulation 

For a synthetic 3D object, the theoretical detail is explained in [1]. For virtualized real 
objects, translations following x and y axes and rotation following z axis are similar to 
synthetic objects. On the other hand, rotations following x and y axes are used in order 
to search for the images that reflect related views of rotated object. Their values serve 
as index value search which expresses the current camera viewpoint. If the search 
could not match any image, the first one linked to the nearest coordinates is used. For 
example, in the acquisition of only six views, the angle between each consecutive two 
views is π/2 and all searches for intermediary rotations will fail. 
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The visual aspect after z translations is controlled as the current image’s size 
change which would make enlarge or narrow its appearance. So, we have to compute 
a simulated pattern’s displacement in order to simulate the visual object’s 
displacement ‘m’ to the front or to the back (Fig. 4). We have then to compute the 
estimated size SS’s where the found pattern’s size in a frame is 2SSs. It is easy to see 

that )(''.' mopppfSS ss += where m is an algebraic value, f is the calculated 

camera’s focal length and p’p’s and op are the correspondent vectors’ modules. In the 
same way, we can write sss SShfSSppfop 2.. == ; h is the size of the image 

pattern’s side. 
By using the same laws, it is simple to evaluate the expression 

of αααα tgmtghtgmpptgpppp rrs ).).2(()(.''' −=−== . Hence, by the 

replacement of all these expressions, we obtain:  
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For our primary solution the angle 2α, that expresses the field of view, is given as 
an input of the augmentation session as for the OpenGL principle. 

 

Fig. 4. Geometrical basis used when object is displaced along the z axis. The used principle 
supposes a displacement ‘m’ of the pattern which size is controlled by 2α field of view and 
projects the object’s image on the calculated position. 

The projection of each image of a virtualized real object is done relatively to the 
computed gravity centre of the found pattern’s region. To do so, a virtual square 
frame is built firstly around it and rearranged in order to have its sides parallel to 
image’s sides and faced to the camera’s image plane. This simulates the object’s 
image sits in front of the camera. Each side’s size is scaled to SS’s and multiplied by 
the factor Ps. Hence, the selected object’s image projection can be done after 
application of other user’s actions. 
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3.3   Chosen Image Projection 

Images of the different views of an object are captured from a spherical equidistant 
positions 'd', around and in direction of its gravity centre. The adopted principle 
consists of sweeping the object by fixed angles from the low towards the upper, 
following its horizontal axes and picturing consequent views. Each captured image 
constitutes a different view identified by the polar coordinates of the camera’s 
position during its grab. The reference view should have (d, 0, 0) as coordinates (Fig. 
5). We notice that as small is the angle of sweeping as great is the obtained realism 
during augmentation. However, the augmentation performance would be lost. For 
example, for an angle of π/18, the total number of images to take for all views is 36 
(horizontally) x 19 (vertically) = 684. If each image size is 43.200 bytes, as a RGB 
bitmap 24 bits and has a dimension of 120x120, the total images’ size is 29.548.800 
bytes, which is a lot. On other side, a great angle loses the realism. After some tests, 
we have found out that a step of π/9 is an optimal value for object’s images access to 
do not degrade the augmentation process time.  

      

Fig. 5. Objects’ views sample. After segmentation and internal region extraction, transprent 
regions surrounding the objects are colored white. For the left object, polar coordinates from 
left to right are: (d, 0, 0), (d, -π/4, π/9), for the right one: (d, 0, 0). 

Each pictured object’s image is pre-processed before its storage. The pre-
processing consists of declaring object’s surrounding region as transparent in order to 
do not be projected. To do so, it assumes the external region uniform and tries to 
delimit it from the internal one by its segmentation. The internal region is assumed to 
be the object form. The object’s surrounding region is set to black or white, according 
to whether it is respectively clear or dark (Fig. 5, Fig. 6). 

 

Fig. 6. Virtual object disposed visually by the user on a chair 

4   Conclusion and Perspectives 

In this paper, we have presented a method for the implementation of an augmented 
reality application allowing the incrustation of real objects. We have shown how it is 



 Virtualized Real Object Integration and Manipulation in an Augmented Scene 255 

possible to augment a video sequence in real time, using images of a real object 
views. We call it ‘virtualized real object’. We have equally shown how it is also 
possible to manipulate it in augmented scene and how to obtain an acceptable realism 
in relation to user’s different actions. 

The major problems related to scene augmentation with virtualized real objects are 
not yet solved and demand more researches to be fulfilled: the proportion size of the 
real object and the printed pattern, the searching for the current image view, the 
number of object views images taken, database views images organisation to allow 
real time augmentation constraint, and so on. 

In our work, a number of points have not been covered. The most important is 
related to visual aspect. It is associated to the change of the camera viewpoint; the 
view of the object does not change when the camera is moved around the scene. We 
have not studied the occlusion of real objects by virtual ones and their lighting. Our 
future work will mainly include opened problems. In addition, our works will 
improve current results. 
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Abstract. This paper describes the development of a system for the
automatic detection of spiculated masses in digital mammography. We
have adopted the lattice space as an image domain model and a distance
measure to describe image shapes precisely in pixel scale. Based on the
model, we have developed a method to automatically determine binary
mass shapes. The method is robust against noise and background bright-
ness of mass region. We also have proposed a novel method in mapping
a mass shape into a one-dimensional profile, and then quantified the ir-
regularity of the mass shape by calculating the fractal dimension of the
profile. Preliminary experimental results support the hypothesis of the
spiculation detection performance of the proposed method would show
a possible solution for finding spiculated masses.

1 Introduction

Breast cancer has been a leading cause of fatality among all cancers for women.
Mass lesion in mammogram can be described as more or less compact areas
that appear brighter than the tissue in which they are embedded because of a
higher attenuation of x-rays. The detection of mass lesions in mammogram can
be a difficult task for human observers or machines. Especially, spiculation is
a stellate distortion caused by the intrusion of breast cancer into surrounding
tissue. Its existence is an important clue to characterizing malignant tumors.
Incorporation of spiculation measures is an important strategy in the detection
of breast cancer with CAD(computer-aided detection).

Due to the reason of the complexity of normal glandular patterns in the
breast and the variability in appearance of mass lesions, a straightforward and
simple approach to detect mass lesions in mammogram does not exist[1]. A
great variety of approaches have been proposed in the literature, but it seems
that for a successful approach a number of techniques need to be combined.
Karssemeijer studied detecting stellate patterns based on statistical analysis of
a map of pixel orientation[2]. Brake further developed the statistical analysis
method at different scales in a multi-scale scheme[3]. Recently, Huang and et al.
proposed a method to identify spiculation from 3-D ultrasonic volume data[4].
They used the modified rotating structure element operation to find the central
region, and used stick algorithm to estimate the direction of edge around the
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central region. Pohlman and et al. estimated the fractal dimension of the one-
dimensional signature using the ruler method for quantitative classification of
breast tumors[5].

We have utilized the fact that the mass lesion in mammogram appears
brighter than the tissue around because of a higher attenuation of x-rays. If
the region of interest has irregular property based on fractal analysis, they are
marked as a potential spiculated mass. The proposed algorithm is designed to
identify the location and to mark regions of interest that manifest features as-
sociated with spiculation.

2 Automatic Detection of Mass Area

Although the area of mass has a brighter contrast comparing with normal tissue
area, each mass area has a different brightness and it has very much diverse
contrast even in a small local area. Thus, there are many local maxima even
in one mass area. It is very difficult to determine one threshold value for the
detection of mass centers or the discrimination of mass areas. In this section, we
propose algorithms for the detection of mass center and areas without any prior
knowledge.

2.1 Detection of Mass Center

In order to decide the area of mass, we first determine the center of mass. We
adopted an iteration of adaptive histogram equalization to detect the centers of
masses. When we apply the adaptive histogram equalization, the local contrast
is increased and therefore the relatively brighter areas, which are the possible
center of mass eventually, can be discriminated from the relatively darker area
which are unimportant background. The contrast between the candidate center
of mass and unimportant area are getting shaper, therefore, we can determine
easily one threshold value for the detection of center of mass. If we apply the
above algorithm iteratively, the neighbor areas near the centers of mass are
fading away while the center areas are surviving. Fig. 1 shows an example of it-
erative mass center detection process using the adaptive histogram equalization.
The center position can be determined from the center of intensity of the mass
area. The following is the iterative histogram equalization algorithm to detect
the center of mass.

Let I0(i, j) be the brightness of a pixel at the position (i, j) of an image.

1. Apply the adaptive histogram equalization process to the image Ik, where
k = 0, 1, 2, . . ..

2. Update Ik+1(i, j) after removing non-important areas from Ik(i, j) according
to the following decision rule:

Ik+1(i, j) =

{
Ik(i, j) for Ik(i, j) ≥ Tc

0 for Ik(i, j) < Tc

(1)
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Fig. 1. An example of iterative mass center detection process using the adaptive his-
togram equalization. AHE means adaptive histogram equalization.

where the threshold value, Tc, is set to be the 50 % of the maximum bright-
ness of an image, i.e. Tc = 0.5×max{Ik(i, j)}.

3. Iterate the step 1 and 2 for a certain time. We have iterated it for 20 times
for the experiment.

4. Apply a labelling algorithm to Ik+1(i, j) for discriminating areas. Assume
small areas as noise, and then remove them from the list of candidate centers.

5. Provide the detected areas with an index using ROI(Region-of-Interest), i.e.,
if there exists N numbers of detected areas, those ROIs are labelled such as
ROI1,ROI2, . . . ,ROIN .

6. Calculate the center of intensity as a center of mass for each ROI, i.e., the
n-th ROI’s center of mass, (Cn

i ,C
n
j ), can be calculated as follows,

Cn
i =

∑
i∈ROIn

i · I(i, j)∑
i∈ROIn

I(i, j)
, Cn

j =

∑
j∈ROIn

j · I(i, j)∑
j∈ROIn

I(i, j)
(2)

Fig. 2 shows the original mammo image, the candidate areas for the centers of
masses which have dominant gray values, and the detected centers of masses.
We have applied the proposed algorithm to diverse mammo images, and we can
detect the center of mass correctly.

2.2 Adaptive Mass Size Decision

Karssemeijer et al. determined the orientation of line of stellate patterns using
gradient operation[1,2,3,4]. However, they should use binomial statistics to cal-
culate the features because of the sensitivity of the operation. Fig. 3 shows one
example of spiculated mass, its 3D-image, and its gradient of average contour,
respectively, where we can find that application of gradient method is not a good
approach because the image itself contains high frequency information.

To prevent the sensitivity against high frequency information we propose a
new method which utilizes the gradient of contour rather than the gradient-
orientation toward the center of spiculation. The outward gradient of average
contour of a specific region of interest can be defined as Eq.(3). The gradient
C(r) of average contour of image I(i, j) is determined

C(r) =
1
Nr

∑
(i,j)∈Cr

I(i, j), r = 1, 2, . . . (3)
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Fig. 2. (a) the original mammo image, (b) the candidate areas for the centers of masses
which have dominant gray values, and (c) the detected centers of masses. (The centers
are exaggerated for display purpose).
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Fig. 3. (a) a mass image, (b) its 3D-image, and (c) its average contour graph

where Cr = {(i, j)| |i|+ |j| = r } and Nr is the number of pixels on the contour
at the radius r, that is Nr = |Cr | = 4 · r. Using this relation we can calculate
the orientation and gradient of a stellate pattern.

3 Analysis of Mass Shape

In this section we describe how to detect a binary mass shape using a regional
thresholding method, and we propose a new scanning method which can check
every degree along the counter-clockwise to estimate the direction of the edge of
each pixel around the central region.

3.1 Binary Mass Shape Detection

Sometimes mammogram can vary its contrast rapidly even in a small area and
the signal-to-noise ratio is poor, so the region of interest can not convert to
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(a) (b) (c) (d)

Fig. 4. Binary images: (a) one threshold value, (b) 8 divisions, (c) twisted 8 divisions,
and (d) logical AND result of (b) and (c)

binary image correctly if one threshold value is used. Therefore, we divide the
region of interest into 8 sections for 45◦ each ,and use a different threshold value
for each section. To prevent a wrong division in case, another 22.5◦ twisted
version of 8 divisions are used for double checking. Those two binary images can
be combined using logical AND operation.

An individual threshold value should be selected for each sections using the
gradient of average gray values along the contours which are outwards from
the center. First, find out the maximum and minimum values of the average
contours and calculate the slope of those two points. Using the straight line
from the maximum point to the minimum point and the line of the average
contour graph, we can determine the maximum distance point between those
two graphs which can be used for the threshold value of the section. The above
thresholding method is also known as ‘Shoulder thresholding’. This method has
been applied to each section of 8 divisions to find 8 threshold values. Through
these values, we can generate a binary image from 8 sections.

Fig. 4(a) shows that the case of one threshold value is used. The suspect
region might lose a stellate pattern since the selected threshold value is too low
for the bright region on one side, but too high for the dark region. On the other
hand, Fig. 4(b) and (c) show that individual thresholding for each section may
not lose the local information, and as a result, a better binary image can be
achieved, compared to one threshold value case as shown in Fig. 4(a). Fig. 4(d)
is the result of logical AND operation of the outputs of Fig. 4(b) and Fig. 4(c).

3.2 Radar Scanning of Mass Shape

If we divide the region into several sections like a fan-shape, we may interpret
incorrectly if we just count on number of pixels in a section. Therefore, we
propose a new scanning method like a radar scanning which can check every
degree along the counter-clockwise as shown in Fig. 5.

To implement the scanning process on discrete image domain, we should find
all lattice points which are the closest pixels to a certain scanning angle as shown
in Fig.5. The scanning angle varies from 0◦ to 360◦ and the length of the probe
is the diamond radius of a mass, rmax. If an angle θ of radar scanning and the
L1-norm radius, i.e., the diamond radius r of a mass are given, we should find
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Fig. 5. Example of radar scanning

the closest pixel index, (mθ
r, n

θ
r) to the scanning angle θ among a set of points,

{(mr, nr) | |mr| + |nr| = r}. For a given scanning angle θ at a certain radius
rmax, we can find a set of pixels (mθ

r , n
θ
r) which are on the scanning probe as

follows:
P (x) =

{
(mθ

r , n
θ
r), r = 0, 1, . . . , rmax

}
(4)

After finding the lattice points (mθ
r , n

θ
r) in the first quadrant, we can achieve a

set of pixels (mθ
r , n

θ
r) for other quadrants using the symmetrical property.

If we define that pr = |mr| and qr = |nr|, then (mθ
r , n

θ
r) can be found as

follows.

qθ
r = arg min

0<qr<r

{∣∣∣∣ qr

pr
− | tan θ|

∣∣∣∣} = arg min
0<qr<r

{∣∣∣∣ qr

r − qr
− | tan θ|

∣∣∣∣} (5)

(mθ
r , n

θ
r) =

⎧⎪⎪⎨⎪⎪⎩
(r − qθ

r , q
θ
r ) for 0◦ ≤ θ < 90◦

(−r + qθ
r , q

θ
r) for 90◦ ≤ θ < 180◦

(−r + qθ
r ,−qθ

r) for 180◦ ≤ θ < 270◦

(r + qθ
r ,−qθ

r) for 270◦ ≤ θ < 360◦
(6)

Thus, we should check all the pixels of which indices are (mθ
r, n

θ
r) at each diamond

radius r and a certain scanning angle θ. To find those indices, we only need to
find qθ

r . Let D(y) be the difference of two slopes; a slope of certain point y and
the slope of a certain scanning angle θ

D(y) =
y

r − y
− | tan θ| (7)

where y is a real number and y ∈ [0, r). Since the D(y) is a monotonously
increasing function and D(0) < 0, D(r−) > 0, a solution x0 which satisfies
D(y0) = 0 must be existed as

y0 =
r · | tan θ|
1 + | tan θ| (8)
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(a)

(b)

Fig. 6. (a) original binary image and (b) a cleaned binary image

As shown in Fig.5, if x0 = r− y0, the coordinate (x0, y0) in real form should
be the intersection of the scanning probe at a certain angle θ and a diamond
radius r. Since the closest lattice coordinate to (x0, y0) is the closest integer
coordinate to (x0, y0), qθ

r is the closest integer to y0. Therefore, we can get qθ
r as

qθ
r = arg min

0<qr<r

{∣∣∣∣ qr

pr
− | tan θ|

∣∣∣∣} = R
(

r · | tan θ|
1 + | tan θ|

)
(9)

where R(·) represents a round operation.
The binary image of a suspect region is converted to 2-D image using radar

scanning method, where x-axis represents the degree from 0 to 359 and y-axis
represents the number of pixels as shown in Fig. 6. The binary image is very noisy,
and therefore the disconnected part from center should be removed to process
further. After the disconnected part is removed, the binary image showed sharp
edges.

3.3 Fractal Analysis of Mass Irregularity

The fractal dimension of the one-dimensional profile was estimated by using
the ruler method[5]. Malignant tumors generally have a higher fractal dimension
than benign masses because they are more spiculated. If a high fractal dimension
is found, this should increase the likelihood of a stellate pattern presence.

The proposed method is applied to 50 cases for the preliminary test. One
radiologist has tested and described all of the test images. The images were ana-
lyzed with the proposed method, and the resultant output which is the location
of spiculated masses was compared with the standard overlays created by the
radiologist. Overall false negative error rate is 10% and false positive error rate
is about 30 %.

4 Conclusions

We have presented the development of a system for the automatic detection of
spiculated masses in digital mammogram. We have adopted the lattice space
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as an image domain model and a distance measure to describe image shapes
precisely in pixel scale. Based on the model, we have developed a method to
automatically detect sizes and centers of various masses. We devised a regional
binarization that is robust against noise and background brightness of mass
region. We also have proposed a novel method mapping a mass shape into one-
dimensional profile that enable to analyze and parameterize the irregularity of
mass shapes, and then quantified the irregularity of the mass shape by calculat-
ing the fractal dimension of the profile. The proposed system has merits such as
no sensitive to noise, adaptive tumor size processing, and fast processing time
compared to other approaches. Preliminary experimental results support that
the proposed system can accurately discriminate a spiculated mass from glan-
dular patterns or adipose tissues.
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Abstract. Medical image segmentation is essential step for many image 
processing applications. In this paper, we present a hybrid framework designed 
for automated segmentation of radiological image, to get the organ or interested 
area from the image. This approach integrates region-based method and 
boundary-based method. Such integration reduces the drawbacks of both 
methods and enlarges the advantages of them. Firstly, we use fuzzy 
connectedness method to get an initial segmentation result and homogeneity 
classifier. Then we use Voronoi Diagram-based to refine the last step’s result. 
Finally we use level set method to handle some vague or missed boundary, and 
get smooth and accurate segmentation. This hybrid approach is automated, 
since the whole segmentation procedure doesn’t need much manual 
intervention, except the initial seed position selection for fuzzy connectedness 
segmentation. 

1   Introduction 

Internal organ segmentation from different kinds of image modalities is an essential 
step for many anatomy and pathology studies. A variety of segmentation methods 
have been developed over past several years. There are two main sorts of 
segmentation techniques, region-based and edge-based. Region-based method tries to 
divide the image into regions and classify the pixels as inside, outside or on the 
boundary according to its position and surrounding structure. Edge-based method uses 
a numerical test for image gradient or curvature, or other properties to classify pixels. 

The fuzzy connectedness-based method [1] is one kind of region-based techniques. 
Medical image is considered fuzzy. It is composed by signal intensities specific to 
different tissue types, noise, blurring, background variation, partial voluming, and 
certain acquisition-specific effects. The fuzzy connectedness-based method assigns 
fuzzy affinities to the target object. The affinity is computed as the weight sum of 
some characters. They are the intensity, the intensity gradient in the neighborhood of 
the pixel to capture the intensity features and patterns of intensity variations. The 
weight can also be dynamically adaptive for the homogeneity and the gradient energy 
functions [2]. The adaptive weights introduce shift-variance to the definition of fuzzy 
connectedness, and decrease user interaction. The other region-based segmentation 
algorithm is to divide an image into regions, classify each region as either inside or 
outside the target object. For the boundary region between two classifications, the 
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dividing and classifying procedure will be repeated till the boundary is satisfied the 
segmentation of target. [3] describes such a region-based method. It makes use of 
Voronoi diagrams to perform the division on the image. And [4] improves this 
method so that the final result can be produced in a few iterations. 

Snake method [5] is one kind of boundary-based techniques. In this method, there 
is an energy function to qualify the difference between the model and the edge in the 
image. The model starts with a coarse initialization, by minimizing the energy 
function with smoothness constraints, and attempts to align this boundary to the edge 
in the image. To avoid the propagation of the model sticking locally, the initial model 
should be set near the solution. Prior model [6] adapts an “average shape” as a prior 
term in active contour model. A statistical model of shape variation can be 
constructed by finding corresponding points across a set of training images [7]. The 
prior information can combine the shape of an object and its neighbors [8]. However, 
for the energy function model, it is difficult to handle the situation, when the 
topological of the contour changes during the evolution. Level set method [9] solves 
this problem by computing the evolution in one higher dimension. This method is 
combined in active contour methods in [10], [11]. Level set evolution with fixed 
propagation direction is either initialized inside or outside sought objects, and the 
propagation force is opposed by a strong gradient magnitude at image discontinuities. 
The internal force is strong enough to act against to global smoothness and leaks 
through gaps when the boundary is miss or fuzzy. This is the region competition, 
where two adjacent regions compete for the common boundary. 

We have developed a new method to segment the organ from image. It integrates 
region-based techniques and edge-based techniques. The hybrid framework amplifies 
the strengths of both region-based and edge-based techniques but reduces the 
weaknesses of them. 

2   Hybrid Framework 

We present a hybrid approach for medical image segmentation. This approach 
requires minimum user interactions. It starts with fuzzy connectedness method to get 
the region, which contains the target object. Then with automatically homogeneity 
statistics, the VD-based algorithm will generate an estimation of boundary in a few 
iterations. After that, the level-set method will find the accurate boundary for the 
segmentation procedure. In the following sections, we will introduce the each 
algorithm that composes our hybrid approach, and how we use them in our hybrid 
segmentation framework. 

2.1   Fuzzy Connectedness Algorithm 

Medical image captured by devices is inherent fuzzy. The fuzzy property is caused by 
both the capture procedure and the anatomical objects hang together. The fuzzy 
setting notion is developed by J. K. Udupa in [1]. It is considered that the object 
should be defined formally in the fuzzy setting so that the data inaccuracies can be 
handled beyond mere visualization to object segmentation, manipulation, and 
analysis. The fuzzy affinities are defined to the target object during classification. The 
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affinity between two elements in an image (e.g. pixels, voxels, spels) is defined via a 
degree of adjacency and the similarity of their intensity values. The aim of fuzzy 
connectedness is to capture the specific intensity patterns related to the target object. 

We define a scene over a fuzzy digital space ),( αnZ as a pair ),( fC=ς , 

where C is a n -dimensional array of spels (spatial elements – pixels or voxels) and 

f is a function in the domain C . Its range is a subset of the closed interval [0, 

1], [ ]1,0: →Cf . Fuzzy affinity k is any reflexive and symmetric fuzzy relation 

in C , that is: 
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κμ can be written as follows generally: 
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where: ( )dc,αμ  represents the degree of coordinate space adjacency of c and d ; 

ϕμ represents the degree of intensity space adjacency of c and d ; and φμ represents 

the degree of intensity gradient space adjacency of c and d to the corresponding 

target object features. Fuzzy k - connectedness K  is a fuzzy relationship in C , 

where ( )dc,κμ is the strength of a path is the strongest path between c and d , and 

the strength of a path is the smallest affinity along the path. The hard binary relation 

θK based on the fuzzy relation K is used to define the notion of a fuzzy connected 

component.  
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In a generic implementation of fuzzy connectedness for 

( ) ( ) ( ) ( )( )dcdfcfdchdcCdc ,,,,,,:, ακ μμ =∈  where dc, are the image 

locations of the two pixels, ( )dc,αμ is an adjacency function based on the distance 

of the two pixels, and ( )cf  and ( )df are the intensity of pixels c and d , 

respectively. In this general form, ( )dc,κμ is shift-variant. A more specific and 

shift-variant definition for a fuzzy affinity was introduced in [1]. The weight values 
can be captured by some improved methods [2] so that the only manual work is to 
select the seed pixel. 
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2.2   Voronoi Diagram-Based Algorithm 

The second part in our hybrid approach is Voronoi diagram (VD)-based segmentation 
algorithm. This algorithm divides the Voronoi regions repeatedly according to the 
homogeneity classifier for the medical image segmentation. And the classifier for 
different tissue type is generated from the regions that segmented by the fuzzy 
connectedness based method mentioned above. 

The definition of the Voronoi Diagram is detailed described in [12]. We give a 

brief review here. Let S be a set of N points in the plane, indexed by { }Ni ,,1∈ . 

The Voronoi region associated to one point Spi ∈ denoted by ( )iS pVor is the set of 

the points closer to ip than to any other points of S. Let us denote ( )ji ppH ,  the 

half-plane containing ip that is defined by the perpendicular bisector of ji pp . It is 

written as below: 

                          ( ) ( )
ji

jiiS ppHpVor
≠

= ,                                                       (3) 

The Voronoi diagram is defined by the set of all Voronoi polygons. 
An interesting property is that the dual graph of the Voronoi diagram is the 

Delaunay graph with the following properties: the Delaunay graph is a triangulation 

such that each circle C circumscribed by every triangle kji ppp , does not contain 

any point of S in its interior. The proof is that assume there exists a point ip of S in the 

interior of C. Then the distance between the center c of C and lp is smaller than the 

distance between c and any lnSpn ≠∈ , . According to the definition of a Voronoi 

polygon, c belongs to the interior of ( )lS pVor , which is contradictory.  

As the continue step in our hybrid approach, the Voronoi diagram-based 
segmentation method processes the image based on the result of last step, fuzzy 
connectedness-based segmentation. The former step has got the initial segmented area 
of the target object. It offers the following step the statistic homogeneity classifier for 
the exterior part, interior part and boundary. By adding some seed points, the image 
will be divided into some regions as Voronoi diagram. For each region, the 
homogeneity classifier will reclassify it to exterior, interior or boundary. For the 
boundary region, connecting the seed points as Delaunay triangulation, the boundary 
outline is formed. This procedure can be repeated in a number of iterations till the 
boundary is accurate enough. The pseudocode for the algorithm is shown as Figure 1. 

This algorithm is quite robust. Normally in a few iterations, the accuracy of the 
boundary outline computed by this method is acceptable. Since it is region-based 
algorithm, the search procedure can only be concentrated on the specified area by the 
result of last step. It improves the algorithm both in speed and in accuracy.  
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2.3   Level Set Method 

The third part of our hybrid framework is level set method. Level set method solves 
the topology modified problem that snake method is difficult to handle. Level set 
front evolution with fixed propagation direction is either initialized inside or outside 
sought objects, and the propagation force is opposed by a strong gradient magnitude 
at image discontinuities. At location of missing or fuzzy boundaries, the internal force 
is often strong enough to counteract global smoothness and leaks through these gaps. 

A level set model specifies a surface as a level set (iso-surface) of a scalar 

volumetric function, ℜU:φ , where 3ℜ⊂U  is the range of the surface model. 

Thus, a surface S  is 

                                          ( ){ }kssS == φ ,                                                     (4) 

and k is the isovalue. In other words, S is the set of points s in 3ℜ that compose the 

k th iso-surface ofφ  . The embedding φ can be specified as a regular sampling on a 

rectilinear grid. Level set methods provide the mathematical and numerical 
mechanisms for computing surface deformations as isovalues of φ  by solving a 

partial differential equation (PDE) on the 3D grid.  
One approach to define a deformable surface from a level set of a volumetric 

function as described in equation (4) is to think of ( )sφ as a static function and fix 

k and let the volumetric function dynamically change in time, i.e. ( )ts,φ . The 

dynamic model is expressed mathematically as 

                                         ( ) kts =,φ .                                                              (5) 

To transform this definition into PDE that can easily be solved by standard 
numerical techniques, we differentiate both sides of equation (5) with respect to 
time t , and apply the chain rule: 

                                    
( ) ( ) 0,
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∂

∂
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t
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.                                       (6) 

Fig. 1. Pseudocode for VD-based Segmentation Algorithm 

1. Input some points in the image 
2. Compute Voronoi Diagram of those points 
3. Classify each region as interior, exterior or boundary 
4. Compute Delaunay triangulation and show the connection 

of the boundary regions 
5. Add seeds to the edges and inside of boundary regions 
6. Goto 2 until a specified number of iterations procedures are 

processed or user quits 
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Equation (6) is sometimes referred to as a “Hamilton-Jacobi-type” equation and 
defines an initial value problem for the time-dependentφ . Let dtds / be the 

movement of a point on a surface as it deforms, such that it can be expressed in terms 
of the position of Us ⊂ and the geometry of the surface at that point, which is, in 

turn, a differential expression of the implicit function, φ . This gives a PDE 

onφ : ( )tss ≡  

             ( ),,, 2φφφφφ
DDsF

dt

ds

t
⋅−∇≡⋅−∇=

∂
∂

,                                  (7) 

where F is user-defined “speed” term which generally depends on a set of order-

n derivatives ofφ , φnD  evaluated at s , as well as other functions of s . ( )xF  can 

combine the attraction term with smooth term as weighting factors. So that the surface 
can be attracted following the gradient of grey scale features, at the same time kept its 
smoothness.  

Level set models have a number of practical and theoretical advantages over 
conventional surface models. They are topologically flexible, and easily represent 
complicated surface shapes that can, form holes, split to form multiple objects, or 
merge with other objects to form a single structure. These models can incorporate 
many of degrees of freedom, and therefore they can accommodate complex shapes.  

3   Implementation of Hybrid Framework  

The framework consists of three methods, fuzzy-connectedness, VD-based algorithm and 
level set method. The concept of each algorithm has been described above. The fuzzy 
connectedness algorithm is used to find the broad outline of the target tissue. It might be 
not so precise. The segment result offers a set of statistics automatically to define the 
homogeneity operator. The homogeneity operator is used in the next step, VD-based 
algorithm as classifier. The second step enhances the result of the first step since fuzzy-
connectedness algorithm will stick locally. The VD-based algorithm improves the 
boundary to the target. The third step is level-set method. This deformable surface model 
refines the output from the second step. It extracts boundary data to fill in the missing 
boundary data and to override the spurious boundary data due to image noise. So it keeps 
the boundary preciseness and smoothness also. 

For the first step, the fuzzy connectedness algorithm segments a sample of the 
target tissue, and generates statistics, average and variance. To initialize the fuzzy 
connectedness algorithm, the user clicks on the image and selects one small square 
region inside the target tissue. From the segmented sample of the tissue, the 
homogeneity operator is generated. It classifies the internal and external region. 

For the second step, the VD-based algorithm computes an initial VD by adding 
random points in the image. Then every region in VD is classified to as internal or 
external region by homogeneity operator. Those external regions having at least one 
internal region neighbour are identified as boundary region. The boundary region is 
processed iteratively by the VD-based algorithm until the boundary is precise enough 
or user chooses quit. 
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For the third step, the output of the second step is the coarse segmentation of the 
target issue. The boundary separates the region of interest and its background during last 
two steps. However, the boundary is not smooth enough. Level set model makes use of 
its two kinds of forces to get smooth and accurate boundary. The level set model works 
on the output of the second step. It needs a small number of iterations to converge.  

4   Result of Hybrid approach 

In this section, we present the result from experiments of the hybrid approach. As 
shown in figure 2, we segment the MRI proton density brain image to get the light 
part. As the first step, fuzzy connectedness method gets sample of target object. But it 
is not the whole object. The segmentation procedure stops locally since the grey level 
variance. The second step improves the segmentation result of the first step. The 
segmented area covers the whole target tissue. However, the boundary is quite rough 
since the image might contain some noise. The third step refines the rough boundary 
of the last step. The final segmentation result gets both precise and smooth property of 
the boundary of the target tissue. 

 

Fig. 2. This figure shows one example of our hybrid approach. The image (a) is one MRI 
proton density brain image. The following images (b), (c), (d) are the result of three 
segmentation steps, respectively. 

(a) 

(b) (c) (d) 
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5   Conclusions and Future Work 

In this paper, we report a hybrid framework for medical image segmentation. This 
approach integrates region-based and edge-based segmentation method. There are 
three components in this hybrid approach, fuzzy connectedness method, VD-based 
method, and level set model. The hybrid approach offers the greater robustness than 
either technique alone. 

In the current system, only 2D image is segmented. We would expend it to 3D 
segmentation. However, the complexity of each method for 3D increases largely, and 
robustness decreases at meanwhile. We will find a good strategy to overcome it.  
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Abstract. This paper explores how to use the heat kernel to evolve the
minimum spanning tree of a graph with time. We use the heat kernel
to weight the edges of the graph, and these weights can be computed
by exponentiating the Laplacian eigensystem of the graph with time.
The resulting spanning trees exhibit an interesting behaviour as time
increases. Initially, they are bushy and rooted near the centre of graph,
but as time evolves they become string-like and hug the boundary of the
graph. We characterise this behaviour using the distribution of terminal
nodes with time, and use this distribution for the purposes of graph
clustering and image segmentation.

1 Introduction

Graphs play a pivotal role in structural pattern analysis. However, they are not
as easily manipulated as pattern vectors since there is no canonical ordering of
the nodes of a graph. Instead, they must be labelled or a correspondence order
established before their statistical properties can be easily analysed. However,
frequently the modes of variation in a population or sample of graphs corre-
spond to changes in node or edge structure. Establishing correspondence under
these circumstances can prove computationally restrictive, since the subgraph
isomorphism problem is suspected to be NP complete.

An alternative to explicitly establishing a correspondence order is to extract
a simpler structure from the graph which imposes a natural order on its nodes.
There are a number of ways of doing this. One approach is to compute the
spanning tree of the graph. Here the distance of the nodes from the root provides
a way of sorting them into order, and this can be used to characterise the graph.
An alternative is to use the random walk on the graph. This can be used to
convert the graphs into a string order.

Random walks [1] have found widespread use in information retrieval and
structural pattern analysis. For instance, the random walk is the basis of the
Page-Rank algorithm which is used by the Googlebot search engine [2]. In com-
puter vision random walks have been used for image segmentation [3] and clus-
tering [4]. More recently both Gori, Maggini and Sarti [5], and, Robles-Kelly
and Hancock [6] have used random walks to sort the nodes of graphs for the
purposes of graph-matching. Most of these methods use a simple approximate

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 272–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

characterisation of the random walk based either on the leading eigenvector of
the transition probability matrix, or equivalently the Fiedler vector of the Lapla-
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cian matrix [7]. In general though, the random walk is not edge-connected on
the graph. Hence, it may not preserve the edge structure and can prove to be an
ineffective way of capturing the structural properties of the graph. In an attempt
to overcome this problem Robles-Kelly and Hancock [6] explore two approaches.
The first of these is to use a postpocessing step to recover an edge connected
path from the components of the leading eigenvector. The second refinement is
to pose the recovery of an edge-ordered path as one of graph seriation using a
utility function and to recover an approximate solution to this problem using
graph-spectral (i.e. eigenvector) methods.

In this paper we aim to take a different approach to the problem of extracting
a simplified ordered structure from the graph. It is well known that the random
walk on a graph is the limit of the heat kernel in the continuous time limit. The
heat kernel [8] is the solution of the heat-equation on the graph and is found by
exponentiating the normalised Laplacian of the graph (the identity matrix minus
the degree normalised adjacency matrix) with time. As a result, the heat kernel
can be computed efficiently by exponentiating the Laplacian eigensystem [9]. The
heat kernel can be viewed as capturing the way in which information flows with
time across the edges of the graph. For large times the heat kernel is dominated
by the Fiedler vector, and so it is equivalent to the random walk.

Our idea in this paper is to study the minimum spanning tree associated with
the heat kernel as time evolves, and to use the time dependance of the spanning
tree as a way of characterising the graph. We associate with each edge in the graph
a weight that is determined by the heat kernel. We then use Prim’s method to
locate the spanning tree that minimises the sum of weights. The spanning trees
evolve in a rather interesting way with time. For small time, they are rooted near
the centre of the graph, and branches connect to terminal nodes that are on the
boundary of the graph. As time increases, the tree becomes string like, and winds
itself from the centre of the graph to the perimeter. As it does so, the number of
terminal nodes decreases, i.e. the large time tree has the appearance of a string
to which a small number of short branches or ligatures are attached. Based on
these observations, we explore whether the distribution of the number of terminal
nodes with time can be used as a signature of the graph. Experiments show that
this signature can be used for the purposes of graph clustering. We also show how
the spanning trees can be used for image segmentation.

2 Heat Kernels and Lazy Random Walks

In this section, we review some of the properties of the heat kernel and explain
its relationship with the lazy random walk on a graph. To commence, suppose
that the graph under study is denoted by G = (V,E,W ) where V is the set of
nodes, E ⊆ V × V is the set of edges and W : E → [0, 1] is the weight function.
Since we wish to adopt a graph-spectral approach we introduce the adjacency
matrix A for the graph where the elements are

A(u, v) =
{

1 if (u, v) ∈ E
0 otherwise

(1)
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We also construct the diagonal degree matrix D, whose elements are given by
D(u, u) = deg(u) =

∑
v∈V A(u, v). From the degree matrix and the adjacency

matrix we construct the Laplacian matrix L = D−A, i.e. the degree matrix mi-
nus the adjacency matrix. The normalised Laplacian is given by L̂ = D− 1

2LD− 1
2 .

The spectral decomposition of the normalised Laplacian matrix is L̂ = ΦΛΦT

where Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the ordered eigen-
values (0 = λ1 < λ2 ≤ λ3...) as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix
with the correspondingly ordered eigenvectors as columns. Since L̂ is symmetric
and positive semi-definite, the eigenvalues of the normalised Laplacian are all
positive. The eigenvector φ2 associated with the smallest non-zero eigenvalue λ2

is referred to as the Fiedler-vector. We are interested in the heat equation asso-
ciated with the Laplacian, i.e. ∂ht

∂t = −L̂ht where ht is the heat kernel and t is
time. The heat kernel can hence be viewed as describing the flow of information
across the edges of the graph with time. The rate of flow is determined by the
Laplacian of the graph. The solution to the heat equation is found by exponen-
tiating the Laplacian eigenspectrum, i.e. ht = exp[−L̂t] = Φ exp[−tΛ]ΦT . The
heat kernel is a |V | × |V | matrix, and for the nodes u and v of the graph G the
resulting element is

ht(u, v) =
|V |∑
i=1

exp[−λit]φi(u)φi(v) (2)

When t tends to zero, then ht � I − L̂t, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then ht � exp[−λ2]φ2φ

T
2 , where λ2 is the smallest non-zero eigenvalue and φ2 is

the associated eigenvector, i.e. the Fiedler vector. Hence, the large time behavior
is governed by the global structure of the graph.

2.1 Path Length Distribution

It is interesting to note that the heat kernel is also related to the path length dis-
tribution on the graph. To show this, consider the matrix P = D−1/2AD−1/2 =
I − L̂, where I is the identity matrix. The heat kernel can be rewritten as
ht = e−t(I−P ). We can perform a McLaurin expansion [10] on the heat-kernel to
re-express it as a polynomial in t. The result of this expansion is

ht = e−t

(
I + tP +

(tP )2

2!
+

(tP )3

3!
+ · · ·

)
= e−t

∞∑
k=0

P k t
k

k!
(3)

The matrix P has elements

P (u, v) =

⎧⎪⎨⎪⎩
1 if u = v

1√
deg(u)deg(v)

if u �= v and (u, v) ∈ E

0 otherwise
(4)

As a result, we have that

P k(u, v) =
∑
Sk

k∏
i=1

1√
deg(ui)deg(ui+1)

(5)
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where the walk Sk is a sequence of vertices u0, · · · , uk of length k such that
ui = ui+1 or (ui, ui+1) ∈ E. Hence, P k(u, v) is the sum of weights of all walks
of length k joining nodes u and v. The spectral expression for the matrix is
P k = (I − L̂)k = Φ(I − Λ)kΦT .

2.2 Lazy Random Walk

The heat kernel is the continuous time limit of the lazy random walk. Consider a
lazy random walk with transition matrix T = (1−α)I +αD−1A which migrates
between different nodes with probability α and remains static at a node with
probability 1−α. When α = 1, then T = D−1A = D1/2PD1/2. Let Δ = D−1L,
α = α0Δt and Δt = 1

N . In the continuous time limit, i.e. N →∞

lim
N→∞

T N = lim
N→∞

(
I + α0

1
N

(D−1A− I)
)N

= exp[−α0D
−1L] (6)

Another way of viewing the contininuous time ramdom walk. Let pt be the
vector whose element pt(i) is the probability of visiting node i of the graph under
the random walk. The probability vector evolves under the equation ∂pt

∂t = −L̂pt,
which has the solution pt = exp[−L̂t]p0. As a result pt = htp0. Consequently
the heat kernel determines the random walk. The aim in this paper is to explore
how the heat kernel of the graph evolves with time and to use this as a means
of constructing spanning trees on the graph.

3 Prim’s Minimum Spanning Tree Algorithm

We use the elements of the heat-kernel as edge-weights and seek the minimum
spanning tree on the weighted graph. A spanning tree T of a connected weighted
graph G = (V,E,W ) is a connected subgraph of G which contains every vertex
of G and contains no cycles. A minimum spanning tree is a spanning tree of G
with a minimum total weight.

There are two classical algorithms that efficiently construct a minimum span-
ning tree of a general weighted graph G, namely the algorihms of Prim and
Kruskal. Here, we choose Prim’s algorithm which uses Dijkstra’s method to find
a shortest path between two nodes. Prim’s algorithm commences with a tree T
that contains an arbitrary vertex r, and then repeatly locates the lowest weight
edge connecting T to G−T and then adds it to T . The minimum spanning tree
can be constructed in 0(|E|+ |V |log|V |)) time by using a Fibonacci heap.

We use the heat kernel as the edge weight function of the graph, i.e. W (u, v) =
ht(u, v). Then using Prim’s algorithm to find the minimum spanning tree of the
graph. Since the heat kernel varies with time, so does the minimum spanning
tree of the graph.

In order to extract a feature vector that can efficiently characterize the graph,
we use the number of terminal nodes NT (t) of the minimum spanning tree at
different times t. The idea is a simple one. At each time t we count the number
of terminal nodes. The distribution of terminal nodes is sampled at a number
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of equally spaced times and normalised (so that the area under the distribution
is unity). If Ct is value of the normalised distribution and t1, t2, ...., tM are the
sampling times, then our graph feature vector is F = (Ct1 , ...,CtM )T . We embed
the graph feature vectors in a low dimensional pattern space using PCA [11].

4 Experiments

Graph Clustering: We applied our method to images from the COIL database.
The database contains images of 3D objects under controlled camera direction
and lighting conditions. For each object in the database there are 72 equally
spaced views, which are obtained as the camera circumscribes the object. We
used six example objects and for each object we used a subsample of 15 equally
spaced views. For each image of each object we computed the Voronoi tessella-
tions of feature points [12] extracted using a corner detector and constructed the
Delaunay graph from the Voronoi regions. A sample view of each object and its
Delaunay graph is shown in Fig 1. In our experiment, we investigated the time
interval from t = 0.1 to t = 10, which we sampled at M = 25 equally spaced
intervals. At each of the sample times we constructed the minimum spanning
tree using the value of heat kernel to computer edge weights, and recorded the
frequency of the terminal nodes.

Fig. 1. Delaunay graphs of six objects

In Fig 2 for one of the
graphs used in our experi-
ments, we illustrate the evo-
lution of the spanning tree
with time. The first image in
the sequence shows the in-
put graph, and the remain-
ing images show the recov-
ered spanning trees as time
elapses. Initially, the tree is
rooted near the centre of the
graph with terminal nodes
on the boundary. The recov-
ered tree has many branches

and is very “bushy”. As time evolves, the pattern changes. The tree becomes
rather string-like and wraps itself around the boundary, with branches extend-
ing it to the centre of the original graph.

Fig 3 shows the normalised distributions of terminal node numbers. Each plot
in the figure is for a different object. The different plots shows the distributions
stacked in view order. Hence, the axis pointing to upper left is time, and that
pointing to the upper right is view number. There are a number of features
to note from this plot. First, the distributions are rather different in shape for
the different objects. Second, the distributions for images of the same object are
stable with view number. This suggests that they could form the basis of a stable
object characterisation.
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Fig. 2. A Delauney graph and its minimum spanning trees with varying t
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Fig. 3. Terminal node distributions for six objects with varying view number

Figure 4 shows the result of applying PCA to the feature vectors for the
graphs. This involves first computing the covariance matrix for the feature vec-
tors. Next we compute the eigenvectors of the covariance matrix. The graph
feature vectors are projected into the space spanned by the leading two eigen-
vectors. In the figure the different symbols correspond to different objects. The
object-views are well separated by the projection and can be separated by linear
boundaries.

Image Segmentation: We have also applied our method to the problem of
image segmentation[13]. To do this we have commenced by constructing an
affinity matrix from the measured pixel brightness Ii. The matrix has elements
A(i, j) = ‖Ii − Ij‖2 if the image pixels i and j are separated by a distance less
than r, and A(i, j) = 0 otherwise. From the affinity matrix A we construct the
normalised Laplacian matrix L̂. Using the heat kernel and Prim’s algorithm we
construct the minimum spanning tree, so all the pixels from the same region are
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Fig. 5. Four image segmentation sequences of t=0.01, 0.1, 0.5, 1, 2, 3 respectively
from column 2 to column 7. Row 1: imagesize 50×50 r=5 σ=0.03 Row 2: imagesize
60×40 r=9 σ=0.03 Row 3: imagesize 55×53 r=6 σ=0.04 Row 4: imagesize 60×40 r=6
σ=0.04.

the nodes of a subtree in it. To segment the image into regions, we recursively
partition the spanning tree into two subtrees by removing an edge. Suppose that
the spanning tree is partitioned into two subtrees Ti and Tj by removing the
edge (i, j), where Ti is the sub-tree rooted at the node i and Tj is the sub-
tree with node j as its root. This “tree cut” method is based on the criterion
CT (Ti,Tj) = Ai,j exp[−(1−Bi,j)/σ] where Bi,j = min(|Ti|, |Tj|)/max(|Ti|, |Tj|).
We cut the tree at the edge with the maximum value of CT (Ti,Tj).

In Figure 5 we show four sequences of segmentations obtained for different
values of t. The main features to note from these results are as follows. First, for
low values of t we detect a larger number of regions, and the method tends to
oversegment the images. For larger values of t a smaller number of regions are
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detected. However, these larger regions preserve fine boundary detail. Hence, the
effect of using the heat kernel is different to that of image smoothing.

5 Conclusions

In this paper we have explored how the minimum spanning tree of a graph
can be evolved with time using the heat-equation. The spanning trees formed
at different times have different structural properties and probe the structure
of the original graph in different ways. At small time the tree is “bushy” and
rooted near the centre of the graph. At large times the tree becomes string like
and clings to the boundary of the graph. We capture this behaviour using the
distribution of terminal nodes with time. This distribution is shown to be useful
for the purposes of graph-clustering. We also demonstrate that the spanning
trees can be used for image segmentation.
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Assessment of Image Segmentation Schemes
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Abstract. Image segmentation is discussed for years in numerous pa-
pers, but assessing its quality is mainly dealt with in recent works. Qual-
ity assessment is a primary concern for anyone working towards better
segmentation tools. It both helps to objectively improve segmentation
techniques and to compare performances with respect to other similar
algorithms.

In this paper we use a statistical framework to propose statistical mea-
sures capable to describe the performances of a segmentation scheme. All
the measures rely on a ground-truth segmentation map that is supposed
to be known and that serves as a reference when qualifying the results
of any segmentation tool. We derive the analytical expression of several
transition probabilities and show how to calculate them. An important
conclusion from our study, often overlooked, is that performances can be
content dependent, which means that one should adapt a measure to the
content of an image.

1 Introduction

Segmentation is one the most difficult task in automatic image analysis. It con-
sists in partitioning an image into objects (segments) homogeneous with respect
to a specific property. Many algorithms for segmentation have been proposed
over the years and this number still continues to raise. One of the reasons for
this proliferation of techniques is that no segmentation technique offer enough
universality to meet the requirements of a broad family of applications.

While the development of new segmentation techniques has attracted signif-
icant attention, fewer efforts have been spent on their evaluation. Some could
also argue that no satisfactory evaluation measure has been proposed so far and
that the discipline is still in its infancy.

In [1] Zhang reviews some methods for segmentation evaluation. He divides
the family of evaluation methods into two categories:

1. the analytical methods, which evaluates the properties and the principles of
segmentation algorithms,
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2. and the empirical methods, that judge algorithms by applying them to test
images and by measuring the results.

According to Zhang [1], empirical methods can been further divided into two
types: goodness methods and discrepancy methods. In the first category results
are qualified according to human intuition and judged by the values of goodness
measures. In the second category some segmentation references, called ground -
truth maps, that represent expected results are given, and results are compared
with these references by counting the difference.

In the following we investigate the statistical significance of a discrepancy
method. In Section 2 we develop a framework for describing a segmentation
result. This model leads to statistical measures that are defined and discussed in
Section 3. From our study it appears that evaluating the quality of segmentation
depends on the data and that one has to adapt the measures to the size of the
segmentation maps. These conclusions are presented in Section 4.

2 Statistical Model for Assessing Segmentation
Techniques

Let x be the location of a pixel inside the image that can be of any type (a 2D flat
image, a volumetric 3D image, or an image flow like a video). Generally speaking
image segmentation produces a region map, in which each pixel is labeled with
a number designating the region to which it was assigned. In the following we
restrict the number of regions to a single object, that might be composed of
several disconnected parts, and a background.

There are various ways to generate segmentation references. Ideally a refer-
ence is specified on the base of a perfect segmentation process. If this last is
available the need to measure the quality of segmentation techniques is rather
low. One possible alternation is to use synthetic images made by the superposi-
tion of an object (the blue screen technique can help producing a realistic object)
on a real background.

In the following we assume that there exists perfect segmentation maps. The
known background is denoted by b[x], and f [x] is the image captured by the
camera. If no object is superimposed on the background then b[x] = f [x] for any
x. To the contrary, when an object is added to the scene, the previous equality
holds for some pixels but not all of them anymore. In this case, the background
is masked by a function denoted m[x]. We define m[x] = 0 when the background
is visible and m[x] = 1 when an object in the foreground hides the background.
If per coincidence the color of the object is identical to the background color, i.e.
b[x] = f [x], we still consider that the background is masked and therefore that
m[x] = 1. Note that this simple model does not discard transparent objects like
windows.

With the aforementioned model and notations the segmentation algorithm
has to process

f [x] = m[x]f [x] + (1−m[x])b[x] (1)
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where m[x]f [x] = o[x] denotes the superimposed object. From all the func-
tions, b[x] is known and f [x] is observed. If we choose a non-cooperative design
scheme, the algorithm has no prior knowledge of o[x], nor of m[x]. Despite that
relation (1) holds for any x, there is not enough information for the algorithm
to recover o[x] or m[x].

One of the key techniques to segment an image is background substrac-
tion [2,3]. A background is first estimated, by time integration for example,
and then the estimated background b̂[x] is compared to f [x]. If one assumes that
noise has been filtered out, a simple decision rule states that if f [x] �= b̂[x] then
m[x] = 1 and f [x] = o[x]. Clearly this technique does not suffice as f [x] = b̂[x]
does not imply that m[x] = 0. In order words background substraction produces
underestimated object surfaces. Therefore background substraction is usually
combined to an object tracking algorithm. This avoids the two main drawbacks
of background substraction techniques : the progressive inclusion in the back-
ground of static objects and the non-detection of objects that have the same
color than the background (like transparent objects).

2.1 A Statistical Interpretation of the Segmentation Process

Regardless of whether the background is known or not the segmentation process
may be seen as a stochastic process. Let us consider image segmentation as a two
states pixel classification process M [x]. For any location x, M [x] is a random
variable equal to

– 1 when x belongs to a foreground object O, and
– 0 when x is included in the background B.

When the ground-truth segmentation map is not available, M [x] can only be
described in terms of probabilities characterizing two possible outcomes: M [x] =
1 or M [x] = 0. Let the probabilities of these events be p(x ∈ O) and p(x �∈
O) = p(x ∈ B). For simplicity these probabilities are denoted p(o) and p(b)
respectively. Obviously x ∈ O or x ∈ B, so that p(o) = 1− p(b).

The role of segmentation is to estimate the masking function M [x], hopefully
as close as possible to the real segmentation mask. In practical terms we have to
estimate the function M̂ [x] which should be equal to M [x] almost everywhere.
Since a perfect match is not achievable, we have to model the segmentation
process with some probabilities. Let ps(o) and ps(b) be the probabilities for a
pixel to be classified as a foreground object or as a background respectively. The
probability ps(o) sums the probability of two cases: x belongs to the object or,
although x is in the background, it has been assigned to the object.

Figure 1 shows the model used in the following. Let us consider a given
location x. The input, drawn on the left-hand side, represents the original two
possible states (and probabilities) for the mask. A referenceless segmentation
produces an estimated binary value M̂ [x]; it is drawn on the right-hand side of
Figure 1.



Design of Statistical Measures 283

p(o|o)
p(o)

M

p(b)

p(o|b)

p(b|o)

ps(b)

ps(o)

p(b|b)

M̂

Fig. 1. Binary model for segmentation

As suggested by Martin [4], we could compute the mutual information I

between M̂ and the ground-truth map M which is a global measure. Our model
puts the focus on several probabilities rather than on a global measure. The
model is characterized by the set of possible original states, the set of possible
outcomes, and a set of conditional probabilities also called transition probabili-
ties. For example, p(o|b) is the probability of an error for a background pixel to
be labelled as an object.

As a consequence

ps(o) = p(o|o)p(o) + p(o|b)p(b) . (2)

A similar relation yields for ps(b):

ps(b) = p(b|b)p(b) + p(b|o)p(o) . (3)

Segmentation errors originate from the diagonal probabilities p(b|o) and p(o|b).
The larger these probabilities, the larger the segmentation error rate will be.
The probability of error pe for a two-class problem can be defined by

pe = p(b|o)p(o) + p(o|b)p(b) (4)

where p(o) and p(b) are viewed as a priori probabilities. An extension of pe for
multi-class problems can be found in [5].

3 Statistical Discrepancy Measures

3.1 Statistical Assumptions

The statistical segmentation model summarized in Figure 1 is location-dependent.
Indeed classification probabilities as well as transition probabilities are related to
the position of a pixel in the image. We will nevertheless suppose thatM [x] is spa-
tially stationary in the wide sense, which implies that its mean is constant. This
assumption is debatable but if an object moves equally over the image plane or
inside a 3D volume, wide-sense stationarity is acceptable.



284 M. Van Droogenbroeck and O. Barnich

Additionally we assume that M [x] is mean-ergodic. As a consequence the
constant local mean theoretically equals the average over the observation volume.
In order words, if x is observed over D ∈ Rn then

μM = E {M} =
1

�(D)

∫
D
m(x) dx (5)

where �(D) is the cardinality of D. Again this is acceptable if D is large enough,
which is the case for a usual image size, like a 640× 480 VGA image.

3.2 Estimation of the Means

Assuming wide-sense stationarity and ergodicity in the mean it is possible to
compute the means of M and M̂ . The statistical mean of M is equal to

μM = E {M} = 1× p(o) + 0× p(b) = p(o) . (6)

If the ground-truth segmentation map is known, the cardinality of the objects
by �(o) is easily computed so that μM = p(o) is nothing but the ratio of �(o) to
the image size �(D):

μM =
�(o)
�(D)

. (7)

Computing the mean of M̂ is not as straightforward. Analytically,

μ
M̂

= E
{
M̂
}

= 1× ps(o) + 0× ps(b) = ps(o) . (8)

Using equation (2) this yields

μ
M̂

= p(o)p(o|o) + p(b)p(o|b) . (9)

Because of segmentation inaccuracies, μM �= μ
M̂

.

3.3 Probabilistic Quality Measures

Basically all four transition probabilities drawn on Figure 1 are interesting mea-
sures but for different reasons:

– p(o|o) directly relates to the aim of segmentation,
– p(b|b) is a useful measure for gauging the quality of any background detection

tool, and
– p(o|b) and p(b|o) determine the overall segmentation errors.

Like for relation (7), the mean of M̂ can be estimated by counting the number
of object pixels divided by the image size:

μ
M̂

=
�(os)
�(D)

(10)
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where os represents the objects after segmentation. Accordingly we can easily
compute a valid statistical estimate of μ

M̂
, and its value is assumed to be known

hereafter.
Let us now reconsider equation (9). A substitution of p(o) and p(b) by their

values yields

μ
M̂

=
�(o)
�(D)

p(o|o) +
(

1− �(o)
�(D)

)
p(o|b) . (11)

Further simplifications are needed to isolate p(o|o) and p(o|b). We will first con-
sider the case of large objects and then the case of small objects as the number
of samples impact of the statistical significance of the estimates.

First Case: Large Objects. If the objects occupy a large portion of the
image and the segmentation performs relatively well —it would be pointless to
address the performances of a poor segmentation technique!—, p(o|b)� p(o|o).
Consequently μ

M̂
reduces to

μ
M̂
� �(o)

�(D)
p(o|o) . (12)

This provides the value of p(o|o):

p(o|o) � μ
M̂

�(D)
�(o)

=
�(os)
�(o)

. (13)

So two simple counting processes on the segmentation reference and on the
real segmentation are sufficient to compute a criterion capable to estimate the
object segmentation quality. Note that p(o|o) might be superior to 1 which is
theoretically impossible. Therefore we should use a modified criterion, like the
absolute value of 1− p(o|o), to evaluate the segmentation performances.

To compute p(b|b) we start with the complementary probability of ps(o),
1− ps(b), and replace ps(b) by its value (see relation 3):

ps(o) = 1− p(b)p(b|b)− p(o)p(b|o) = 1−
(

1− �(o)
�(D)

)
p(b|b)− �(o)

�(D)
p(b|o) . (14)

Remember that μ
M̂

= ps(o) and considering that the large objects hypothesis
also implies that p(b|o)� p(b|b), we get after some simplifications,

p(b|b) =
�(D)− �(os)
�(D)− �(o)

. (15)

To determine the missing diagonal transition probabilities we use the coher-
ence relationship between probabilities originated from the same original event:
p(b|o) + p(o|o) = 1. Therefore

p(b|o) = 1− p(o|o) =
�(o)− �(os)

�(o)
. (16)
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Likewise,

p(o|b) = 1− p(b|b) =
�(os)− �(o)
�(D) − �(o)

. (17)

Second Case: Small Objects. Expression (13) is inadequate when the objects
occupy a negligible part of the image. More precisely, if �(o)� �(D), then

μ
M̂
� �(o)

�(D)
p(o|o) + p(o|b) . (18)

We now consider that the segmentation is symmetric, i.e. that p(b|o) = p(o|b); a
non-symmetric segmentation would otherwise be biased towards the foreground
or the background and would lead to unacceptable results in the case of small
objects. As p(o|o) = 1− p(b|o),

μ
M̂
� 1 +

(
�(o)
�(D)

− 1
)
p(o|o) (19)

so that, after further simplifications,

p(o|o) �
1− μ

M̂(
1− �(o)

�(D)

) � (1− μ
M̂

)(
1 +

�(o)
�(D)

)
= 1 +

�(o)− �(os)
�(D)

+
�(o)�(os)
�(D)

.

(20)
�(os) and �(o) are small compared to �(D), so that the quadratic term is negligible
and therefore

p(o|o) � 1 +
�(o) − �(os)

�(D)
. (21)

This probability gets very close to 1 as �(os) tends to 0. We then obtain p(b|o)
on the spot:

p(b|o) = 1− p(o|o) =
�(os)− �(o)

�(D)
, (22)

which is also the value of p(o|b). Again, by symmetry, p(b|b) = p(o|o). The
probability of error is then

pe =
�(os)− �(o)

�(D)
. (23)

Discussion. In [1] Zhang concludes that evaluation methods based on discrep-
ancy measures are more powerful than evaluation methods using other measures.
Moreover he compared several discrepancy measures to rank their ability to dis-
criminate the overall quality. While there are many discrepancy measures, it
appears that pe is one of the best quality measure. Subsequently we can rely on
this conclusion and do not have to validate pe as a useful measure.

In the meanwhile we have computed additional probabilities that can have
their relevance for certain segmentation purposes. A possible measure could be
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any weighted summation of p(o|o), p(b|b), p(o|b), and p(b|o). But one has to be
careful with the interpretation of such a criteria because its statistical suitabil-
ity is questionable. A sounder approach consists in comparing the probabilities
separately, but then one has to cope with multiple criteria.

All four transition probabilities offer different insights on the quality of the
segmentation but we can notice that the transition probabilities, in particular
p(o|b), seem less sensitive to the object size. They are also analytically very close
to pe. Therefore, if one is looking for a measure independent of the size of the
object, we recommend p(o|b). On the other hand p(o|o) and p(b|b) can also be
useful if one wants a measure that changes its discriminating power with the
foreground size.

4 Conclusions

In this paper we have derived several statistical measures to assess the quality
of a segmentation algorithm with respect to a ground-truth reference. These
measures are expressed in terms of transition probabilities.

From these values we can conclude that:

– appropriate estimates of transition probabilities depend on the data content.
– the statistical relevance of these estimates varies with the size of the object in

the foreground. Analytical expressions show that �(o) and �(os) appears in all
the transition probabilities. Since �(os) is an estimate, it would be interesting
to investigate the impact of the variability of �(os) on the probabilities.

– we recommend p(o|b) as a assessment criterion insensitive to the size of the
object.

Further works are needed to examine the influence of several parameters of the
model. Still we have established the unsuitability to trust a single criterion all
over the foreground object size range.
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Abstract. The illumination variance makes the robust face detection a
challenging problem. Although there are some methods focusing on the
de-lighting problem, the requirement for testing set or the 3D information
limits the application for the detection tasks. According to the reflection
function, the illumination takes the role of amplification for the reflective
character of the surface. The shadows will make the features of the object
attenuated or diminished. We introduce the radiance map ratio to adjust
the image to a new illumination condition and apply the original image
to compensate the adjusted image. The re-lighting and compensation
makes the illumination condition uniform and keeps the original smooth
changed information. As a pre-filter in the detector, the re-lighting and
compensation method facilitates the performance of the detector. 1

1 Introduction

The image is the projection of 3D objects on a 2D plane. When the same ob-
ject appears in different poses under different illumination conditions, the image
will be very different. Therefore the pose and illumination variance make the
robust recognition and detection challenging tasks. Under the uniform and suit-
able illumination condition, the details of the object can be shown out clearly.
However, under the non-uniform illumination condition, some part of the object
is under brighter lighting and some under dimmer lighting. Then the details in
the darker region cannot be shown out clearly in the image. It is because that
the dim lighting suppresses the information while the bright lighting expands
the information.

Histogram equalization (HE) is the most used method to adjust the illumi-
nation condition through making the intensity distribution more uniform. It is
a global adjustment and always there is some abrupt noise left. Belhumeur [1,
2] proposes the illumination cone theory. He points out that the face images
with the same pose under different illumination conditions compose a convex
cone, which is called illumination cone. The requirement for a set of test images
limits the illumination cone’s application in the detection task. Ramamoorith
1 This work was performed in Microsoft Research Asia.
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[3, 4] and Baris [5] prove the first nine spherical harmonic bases can span the
lighting space. The spherical harmonic theory provides a good framework for
object rendering and inverse rendering. However, its application range is limited
by the requirement for the 3D information of the object.

An image can be considered as the product of incident illumination and the
reflective properties of the surface, i.e. the reflectance, in general. Land presents
the Retinex theory [6]. He estimates the reflectance as the ratio of the image
to its illumination condition that is approximated by the low pass version of
the image. However at large discontinue part of the image, the halo effects are
obvious. Jobson [7] gives an isotropic filter to extract the low pass information,
Gross [8] applies anisotropic filter. But their methods still cannot resolve the
halo problem. And always too much low frequency information of the image is
lost.

Based on the reflection theory, we propose a method to do re-lighting. The
re-lighting method is not to remove the illumination but adjust the illumination
condition of the image to be more uniform. In the rest part of the paper, we
first introduce the method to estimate the radiance map and the method to do
re-lighting and compensation for images with the radiance map in Sec. 2. The
experiments are given in Sec. 3. And the conclusion is drawn in Sec. 4.

2 Illumination Adjustment for Images

The image is the result of the surface reflectance and the lighting irradiating on
it. For a certain object, the reflectance is considered as a constant. But with the
changing of lighting as well as object’s pose, the images will be greatly different.
To remove the illumination from the image is an ill-posed problem. Therefore
we aim to re-lighting images, i.e. to adjust the image to another illumination
condition.

2.1 Reflection Function

The intensity of every point in the image is decided by the reflective character
(including the surface normal of that point and the reflectance of the material)
and the incident lighting from the up sphere of the point. Then we have

I(n) =
∫

Ω(n)

L(ω)(n · ω)ρdω (1)

where Ω(n)is the up sphere of the point that is with surface normal n. L(ω)is
the incident lighting. ρ is the reflectance of the point. (n ·ω)is the inner product
of n and ω. That inner product represents the incident angle of the lighting. To
every point its reflectance is always a constant. Then the reflection function can
be rewritten as

I(n) = ρ

∫
Ω(n)

L(ω)(n · ω)dω

= ρE(n) (2)
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Fig. 1. The sample of the radiance environment map (a) a sample image (b) the radi-
ance environment map of image (a)

E(n) is the radiance environment map. According to formula 2, given the
radiance environment map, we can look up the intensity of every point according
to the surface normal in the radiance environment map. Fig.1 gives an example
of the radiance environment map. The map describes the intensity of the points
on a ball under the same illumination condition of the test image (Fig.1(a)).
Then with another radiance environment map , we can render the object to a
new lighting condition.That is

I ′(n) = ρE′(n) (3)

This method is very efficient and can produce photorealistic results. However
the requirement for the 3D information limits its application range.

2.2 Estimation of the Radiance Map

Without 3D information the exact description of the environment illumination
will be very difficult. Furthermore without the knowledge of the reflectance, the
separation of the illumination from intensity is an ill-posed problem. In order to
solve the ill-posed problem we need to put some constrains on it.

From the viewpoint of convolution, the reflection function can be considered
as the rotational convolution in the angular space. Then similar to the Fourier
basis on the line, the spherical harmonics are the bases on the sphere. There-
fore the illumination can be represented through linear combination of spherical
harmonic bases Ylm(θ, φ) as,

L(θ, φ) =
∑
l,m

LlmYlm(θ, φ) (4)

where bases Ylm(θ, φ) = NlmPm
l (cos θ)eImφ and Nlm =

√
2l+1
4π

(l−m)!
(l+m)! . Rama-

moorith [3] points out that the first nine spherical harmonic bases can approx-
imate the radiance map well enough. The average error rate of all the point in
the estimated radiance map can be under 3%. In Fig. 2, we give a sample image
(a) and its illumination condition estimated by the first nine spherical harmonic
bases (b). The estimated lighting map describes the slowly changed information
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Fig. 2. Estimated radiance maps (a) a sample image (b) estimated radiance map for
the sample image by spherical harmonic bases (c) Gauss radiance map (d) Wiener
radiance map

of illumination condition but not the abruptly changed information. Therefore
the low-frequency part of the illumination condition can account for the radiance
map.

Then the radiance map can be estimated from the local information of every
point with a proper low-pass filter. And also we should consider of the abrupt
changes of the image. When the local variance is larger, the filter should perform
little smoothing. When the local variance is small, the filter should perform more
smoothing. The Wiener filter is just the filter that can filter out the noise while
keeping the signal’s original changes. Fig.2 (d) is the result of Wiener filter for
the sample image (a). Compared with the Gauss filter result (c), Wiener filter
can do the smooth work adaptively to the local variance. Wiener filter also keeps
the abrupt changes in original images, which can help to alleviate the halo effect.

2.3 Re-lighting and Compensation

According to the reflection function, the intensity of every point is only decided
by the reflectance and the incident lighting. Then when two of these three factors
are known, the third one should be calculated out in theory. For example when
we know the intensity and radiance map, the reflectance can be represented as,

ρ =
I(n)
E(n)

(5)

Formula (5) describes the basic idea of quotient image (QI) methods [6∼8]. In
practice, the radiance map is always estimated from image, i.e. E(n) ≈ I(n).
Then in the smooth region, the estimated reflectance ρ̂ ≈ 1; in the region with
changes, the changes will be enlarged. Therefore some bigger changes in original
images will be more obvious in the quotient images. Those changes contain the
character of the object itself as well the noises caused by non-uniform illumina-
tion. Fig.3 gives a sample of face image and their re-lighting results. From the
histogram of QI we can see that the dynamic range of the image is suppressed
greatly. In a face the skin is very smooth and the local variance is small. But
in the QI, the skin will be suppressed to be a same value and the local vari-
ance is enlarged. However these low frequency information that describes the
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Fig. 3. Face image and re-lighting results. (a) original image, (b) quotient image of (a),
(c) the re-lighting and compensation result of (a).(d)∼(f) is the histogram of (a)∼(c),
respectively.

slowly changes of the skin also takes its role in representing object and can do
help to the detection or recognition tasks.The suppression of that low-frequency
information will make the facial features diminished.

From the viewpoint of signal processing, illumination is the amplification for
the reflectance. In order to alleviate the illumination influence, we can make
the reflectance expressed in a uniform illumination condition. According to the
reflection function, we have

ρ =
I(n)
E(n)

=
I ′(n)
E′(n)

(6)

Then the image under new illumination condition is

I ′(n) =
I(n)
E(n)

E′(n) (7)

To avoid doing the direct division of image to radiance map, formula (7) can be
rewritten in another form

I ′(n) = I(n)rE(n)

= I(n)
E′(n)
E(n)

(8)

According to formula (8), the image under new illumination condition can be
gotten from the product of the original image and the radiance map ratio rE(n),
which is the ratio of new radiance map to original one. The ratio describes
the changes of the illumination condition. Intuitively for the information in the
shadow region, we want to enlarge absolute value of every point as well the local
contrast. And for the highlight region, we want to reduce the brightness and
suppress the local contrast. Then the radiance map ratio rE(n) should enhance
the shadow part while suppress the highlight part. The new radiance map can
be the inverse of the original one. The inverse lighting will make the shadow part
brighter while the highlight part dimmer. Then the new image I ′(n) expresses
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the situation that the object under the inverse illumination environment. With
the aim to make the object under uniform illumination condition, we combine
the new inverse image I ′(n) and original image to alleviate the influence of
non-uniform illumination. And these two images should be in the same scale.
Therefore the new image should be normalized to the range of [0,255]. The re-
lighting and compensated image Ir(n) is

Ir(n) = Iinverse(n) + Ioriginal(n)

= N(Ioriginal(n)
Einverse(n)
Eoriginal(n)

) + Ioriginal(n) (9)

where N(·) is the normalizing method that can make the image in the range
of [0,255]. In Fig. 3(c), we also give a re-lighting and compensated face image
sample. Compared with the quotient image, the compensated image reduces the
dynamic range of the original signal but also keeps the original low frequency
information.

3 Experiments and Discussions

Before evaluating the proposed re-lighting method, we give out some samples of
the illumination adjustment results. In Fig.4(a), we give the results of histogram
equalization (HE), quotient image (QI) and the proposed re-lighting and com-
pensation (RC). HE method adjusts the intensity value according to the global
intensity distribution. It does not consider the local information, and as a result
there is some abrupt noises left in the HE result images. QI methods makes
most part of the face same value. In the QI result images, only the great changes
are left and much low frequency information is lost. RC method suppresses the
dynamic range of the images, i.e. alleviates the influence of non-uniform illu-
mination. RC method can enhance the shadow part and suppress the highlight
part as well. Also it can keep the low frequency information.

We evaluate these re-lighting methods as the pre-filter for face detector. The
detector is based on Gabor features. We first extract the Gabor features from
every test images which are labeled as face and non-face. The boosting method
is applied to choose the most discriminative features. Based on these selected
features we decide whether the test image contains face or not.

In order to train the face detector, we collect images from more than 12000
images without faces and 10000 faces images. These images were collected by
cropping from various sources, such as AR, Rockfeller, FERET, BioID and from
WEB [9, 10]. Most faces in the training set have the variation of pose and lighting.
A total number of about 80000 face samples with the size of are generated
from the 10000 face images by random transformation: mirroring, four-direction
shift with 1 pixels, in-plane rotation within 15 degrees and scaling within 20%
variations. 20000 face and 20000 non-face samples are chosen randomly to train
the face detectors.

The test image is a part of the PIE dataset (C27 series) [11]. According to
the illumination condition, we separate it into four subsets. The detail of the
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Fig. 4. (a)For every row from left to right, they are the original image and HE, QI,
RC results of the original image, respectively; (b)From top to bottom, every row are
the sample images of PIE subset 1 to 4, respectively

Table 1. Illumination condition of every PIE subset

Ambient Light Flash No.

Subset1 Yes 2,3
No 2∼4 and 19∼22

Subset2 Yes None

Subset3 No 5∼18

Subset4 Yes 4∼22

Table 2. Detection rate on the PIE datasets

Subset1 Subset2 Subset3 Subset4

HE 510/88 365/73 821/94 1129/163

QI 553/45 433/5 902/13 1273/19

RC 538/15 438/0 906/9 1278/14

illumination condition is shown in Table 1. Fig.4(b) gives the example images
of every subset. In the test procedure, we first apply the re-lighting methods to
adjust the lighting condition of the images. Then the adjusted images are sent to
the face detector to decide whether it is a face or not. The detection results of face
detectors with the HE, QI and RC methods as the pre-filter are shown in Table
2(the value X/Y in the table means true positive/false negative). Compared
with HE and QI methods, RC method alleviates the influence of illumination
variance, keeps the appearance of the faces which is lost in the QI method and
does not bring the abrupt noises that is introduced in HE method. Therefore
with the RC method as the pre-filter, the face detector can reduce the number
of false negative much more. Especially in the extreme lighting condition, the
performance of RC method is much better.
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4 Conclusion

Illumination makes the appearance of a same object greatly different. That
makes the robust detection a challenging problem. Illumination is too compli-
cated to describe it completely. Due to the reason that the low frequency part
of the illumination takes over 90% energy of the overall illumination, the low
frequency part can be applied to describe the illumination condition. According
to the reflection function, illumination can be considered as the amplification
for the reflectance. Given a new radiance map we can re-lighting the image to a
new illumination condition with the radiance map ratio. Additionally with the
compensation of the original image, the adjusted image can keep the smooth
changes of the original image, which will do help to the detection task. In the
experiments, we introduce some different illumination correction methods as the
pre-filter of the detector. Compared with other methods, the proposed re-lighting
and compensation method improve the performance of detector more greatly.
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Abstract. Shape from silhouettes is a problem in binary geometric to-
mography since both objects and projections, which are measured as sil-
houettes, are binary. In this paper, we formulate shape from silhouettes
in two- and three- dimensional discrete spaces. This treatment of the
problem implies an ambiguity theorem for the reconstruction of objects
in a discrete space. Furthermore, we show that, in the three-dimensional
Euclidean space, it is possible to reconstruct a class of non-convex objects
from a collection of silhouettes although on a plane non-convex object is
unreconstractable from projections.

1 Introduction

Shape reconstruction from silhouette is a conventional technique for the de-
tection of shape models and shape reconstruction in computer graphics, com-
puter vision [1], and robotics [2,3,4,5,6]. Shape reconstruction from silhouette
is achieved by visible voting [7], shape carving [1] and so on. Though these
reconstruction methods are mathematically formulated in the continuous frame-
work [5,8], the reconstruction is achieved in a discrete space. In this paper, we
deal with the shape-from-silhouette problem in a discrete space and describe
the problem as a discrete binary geometric tomography since both objects and
projections, which are measured as silhouettes, are binary.

In two- and three- dimensional Euclidean space Rn for n = 2 and n = 3,
respectively, for a finite closed region O, we define the silhouette from a source
s ∈ Rn as

Ω(s) = {ω|l(s) ∩O �= ∅}, (1)

for the half line

l(s) = {x|x = s + tω, ω ∈ Sn−1, t ≥ 0}, (2)

where Sn−1 is the unit sphere in Rn, that is, S1 and S2 are the unit circle
and the unit sphere on R2 and in R3, respectively. Therefore, the collection of
Ω(s) corresponds to the measurements of ray summations. The cross section of
cone l(s), s ∈ Ω(s) with hyperplane s�x = d is geometrically defined as the
silhouette from source s. In this paper, we define the direction of the rays which
yield silhouettes as the silhouettes.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 296–303, 2005.
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If for all s in Rn \ K, where K is a finite convex region in Rn, Ω(s) are
measured, we can reconstruct K as

K =
⋂

s∈Rn\K

⎛⎝ ⋂
ω∈Ω(s)

{x|x = s + tω}

⎞⎠ . (3)

This is the inversion formula for the reconstruction of an object from silhouettes.
On two-dimensional Euclidean plane, the method is equivalent to the recon-

struction of K from support lines as the intersection of half planes. In three-
dimensional Euclidean space, for a source s, a set Ω(s) in S2 defines a convex
cone. This convex cone defines a set of tangent plane to the cone. Then, using
these planes, the reconstruction of K in R3 is also achieved by support planes
as the intersection of half spaces.

For a finite convex object K in R3, if we can detect all planes which inter-
sect with K, we can obtain all rays which pass through K as the intersections of
pairs of planes. These rays defines silhouettes. Therefore, this geometrical prop-
erty implies that we can reconstruct a finite convex object in three-dimensional
Euclidean space from the collection of all planes which intersect with this ob-
ject. In this paper we, deal with the reconstruction problem in two- and three-
dimensional discrete spaces Z2 and Z3, respectively.

2 Shape Reconstruction on Discrete Plane

On the discrete plane Z2, three types of discrete lines, for gcd(a, b) = 1,

{(x, y)�|0 ≤ a�x + μ < |a|∞}, (4)
{(x, y)�|0 ≤ a�x + μ < |a|1}, (5)

{(x, y)�|a�x + μ| ≤ 1
2
|a|1}, (6)

are dealt with, where for vectors x = (x, y)� and a = (a, b)�, |a|∞ = max(|a|, |b|)
and |a|1 = (|a|+ |b|). These lines are called naive, standard, and supercover lines
on Z2. For the reconstruction of objects as the intersection of digital half planes,
we adopt modified naive and standard lines, which are defined as

{(x, y)�| − 1
2
|a|∞ ≤ a�x + μ <

1
2
|a|∞}, (7)

{(x, y)�| − 1
2
|a|1 ≤ a�x + μ <

1
2
|a|1}, (8)

since these modified lines have symmetry for the thickness of discrete lines.
In Zn for n = 2, instead of the pair of s and Ω(s), for a line, we detect the

pair of s and d, where d lies on the detector. We assume that detector pixels lie
on the edges E of the square D2 whose four vertices are

(−3n,−3n)�, (3n,−3n)�, (3n, 3n)�, (−3n, 3n)�,
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and that a discrete object exists in the square R whose four vertices are

(−n, n)�, (n,−n)�, (n, n)�, (−n, n)�.

We assume that our object is a 4-connected simple object. Furthermore, the
source pixel moves on the square D2. Therefore, we can detect collection of
discrete half-planes which are separated by line segments connecting two pixels,
namely the source s and the detector d on D2.

Setting l(s,d) to be the line segment in D2 connecting s and d, for a fixed
s, we classify l into three classes

l(s,d) ∩R = ∅, l(s,d) ∩R �= ∂R, l(s,d) ∩R �= R \ ∂R. (9)

Following pixels on E from the source s in the counter-clock-wise direction,
we set pixels which satisfy the relation

l(s,d) ∩R �= ∅ (10)

as d = {d⊥(s),d1(s),d2(s), · · · ,d�(s)}. We affix the labels for pixels on lines as

L(s,d) =

⎧⎨⎩1, if di ∈ l(s,d),
2, if d⊥,d� ∈ l(s,d),
3, otherwise.

(11)

For these labels, we apply the operation

L(p) = max
s∈D2

(L(s,d)). (12)

This operation classifies the pixels in D2 as

R̂ = {p|L(p) = 1, 2}, ∂R̂ = {p|L(p) = 2}, D \ R̂ = {p|L(p) = 3}. (13)

For these pixels, we have the next theorem.

Theorem 1. If K is the discretisation of a finite convex region in R2, K̂ sat-
isfies the relation

K̂ \K ⊂ (K ⊕N8 ⊕N8) \K, (14)

where N8 is the eight-neighbourhood of the origin and ⊕ is the Minkowski ad-
dition of point sets on Rn.

Since the right-hand-side of eq. (14) is the collection of pixels whose 8-
connected distance to K is at most two, this theorem implies that the object
K̂ reconstructed from the silhouettes encircles the original object K and the
difference is the collection of pixels which lie on the discrete closed curve with
width two with respect to 8-connected neighbourhood.

From this theorem, in shape carving and visible voting, smoothing and weight-
ing, respectively, are considered as operations to yield K ′ such that

|K̂ΔK| > |K ′ΔK|, K ⊆ K ′ ⊂ K̂, (15)
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where
AΔB = (A ∩B) ∪ (A ∩B) (16)

and |A| is the number of elements in set A. Modified naive and standard lines for
the reconstruction eliminate some pixels in (K ⊕ N8 ⊕ N8) \ K since these lines
have symmetry for the thickness of lines.

3 Reconstruction of Non-convex Object

In this section, we summarise the results in reference [9] on the reconstruction
of non-convex object from silhouettes.

Lemma 1. From the collection of silhouettes which observed from vertices which
lie on a sphere encircling this object, we can obtain the collection of 2-dimens-
ional perspective projections of a slice from a point which moves on a circle
encircling this object.

For any points on the boundary, if there exists at least one unique convex
slice curve which contains this point, we call this object a slice convex object.
A convex closed object is slice convex. This geometric property and Lemma 1
derive the following theorem.

Theorem 2. A slice convex object is uniquely reconstructible from the collection
of silhouettes observed from vertices which lie on the whole sphere encircling this
object.

This theorem permits us for the reconstruction of a class of non-convex objects
from silhouettes. Furthermore, in this expression, the axis for the reconstruction
is not required to be a straight line.

For a slice convex object V with respect to axis λv0 for |v0| = 1 and λ �= 0,
setting A[v] to be a reconstructed object with respect to the axis λv, for λ �= 0,
we have the following theorem

Theorem 3. For an object V the relation V = ∩v∈S2A[v] is satisfied if V is
slice convex with respect to axis λv0.

If an object is defined as the common region of a finite number of slice convex
objects, that is, object V is expressed as V = ∩n

α=1A[aα], such that |aα| = 1,
for λ �= 0, where λaα is the axis with respect to which slices of an object is
convex, we have the relation

V = ∩n
α=1A[aα] ⊇ ∩v∈S2A[λv] ⊇ V . (17)

This relation leads to the following theorem.

Theorem 4. Object V is reconstructed as

V = ∩v∈S2A[v]. (18)
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These theorems show that it is possible to reconstruct a slice convex object
from silhouettes using the equation

O = ∩s∈Al(s,O), (19)

where A is a closed convex manifold encircles an object O and l(s,O) is a line
which passes through s and satisfies the property l(s,O) ∩O �= ∅, if we do not
detect the axe of a slice convex object. Furthermore, if we can pre-detect axes of
slice convex object, we can reconstruct a three-dimensional non-convex object.
This property show the difference between shape from silhouettes in 2D and 3D,
since, in 2D, the collection of silhouettes does not allow us the reconstruction of
non-convex objects.

4 Shape Reconstruction in Discrete Space

In Z3, we adopt the supercover

|ax + bz + μ1| ≤
1
2
(|a|+ |c|),

|ay + cz + μ2| ≤
1
2
(|a|+ |b|), (20)

|cx− by + μ3| ≤
1
2
(|b|+ |c|),

and the modified standard

−1
2
(|a|+ |c|) ≤ ax + bz + μ1 <

1
2
(|a|+ |c|),

−1
2
(|a|+ |b|) ≤ ay + cz + μ2 <

1
2
(|a|+ |b|), (21)

−1
2
(|b|+ |c|) ≤ cx− by + μ3 <

1
2
(|b|+ |c|),

of line in R3,

ax + bz + μ1 = 0, ay + cz + μ2 = 0, cx− by + μ3 = 0. (22)

In Z3, we assume that detectors are voxels on a cube D3 whose vertices are

(−3n,−3n,−3n)�, (−3n, 3n,−3n)�, (3n, 3n,−3n)�, (3n,−3n,−3n)�,
(−3n,−3n, 3n)�, (−3n, 3n, 3n)�, (3n, 3n, 3n)�, (3n,−3n, 3n)�,

and an object exits in a cubic region R whose vertices are

(−n,−n,−n)�, (−n, n,−n)�, (n, n,−n)�, (n,−n,−n)�,
(−n,−n, n)�, (−n, n, n)�, (n, n, n)�, (n,−n, n)�.

Source s moves on the faces F of D3. We assume that our object is 6-connected
simple object.
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Setting l(s,d) to be a line which passes through a fixed source s and a voxel
d on D3, we define a collection of voxels d on D3 such that

S = {d|l(s,d) ∩O = ∅} (23)

for an object O. A collection of voxels d is the silhouette of object O with respect
to the source s.

The boundary voxels of silhouettes on the detector is computed as

∂S = {S \ (S �N26)} ∩D3, (24)

where � expresses the Minkwoski subtraction operation.
In D3, for voxels on a line l(s,d) with respect to a source s, we affix the

labels as

L(s,x) =

⎧⎨⎩
1, if x ∈ S \ ∂S
2, if x ∈ ∂S
3, otherwise.

(25)

Same as the two-dimensional case, for these labels, we apply the operation

L(p) = max
s∈D3

(L(s,x)). (26)

This operation classifies the voxels in D3 as

R̂ = {p|L(p) = 1, 2}, ∂R̂ = {p|L(p) = 2}, D3 \ R̂ = {p|L(p) = 3}. (27)

For these voxels, we have the next theorem.

Theorem 5. If K is the discretisation of a finite convex region in R2, K̂ sat-
isfies the relation

K̂ \K ⊂ (K ⊕N26 ⊕N26) \K, (28)

where N26 is the 26-neighbourhood of the origin.
Furthermore, the labelling operation in Z3 allows us to reconstruct a class of

non-convex objects as discussed in the previous section.

5 Examples

In this section, we show four examples.

1. Reconstruction of a convex object on a plane, which shows ambiguity prop-
erties. The results are shown in Figure 1.

2. Reconstruction of a slice convex object from rays, without pre-detecting axes.
The results are shown in Figure 2.

3. Reconstruction of a slice convex object as the intersection of objects recon-
structed using 2D method in each slice. The results are shown Figure 3.

4. Comparison of 3D reconstructed objects using supercover, standard, and
naive lines. The results are shown in Figure 4.
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(a) (b) (c) (d)

Fig. 1. Reconstruction of Convex Object in 2D. (a) Reconstructed object by super-
cover. (b) Expanded part of the reconstructed object by supercovers. (c) Expanded part
of the reconstructed object by standard lines. (d) Expanded part of the reconstructed
object by naive lines.

(a) (b) (c) (d)

Fig. 2. Reconstruction of Non-Convex Object as the Intersection of Slice Convex Ob-
jects. (d) is the intersection of (a)(b),and (c)

(a) (b)

Fig. 3. Reconstruction of Non-Convex Object. (a) Multi-slice Method and (b) Line
Voting.
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(a) (b) (c) (d)

Fig. 4. Reconstruction of Non-Convex Object by Line Voting. (a) and (b) are views of
the original object. (c) and (d) are the corresponding views of the reconstructed object.

6 Conclusions

In this paper, we formulated shape from silhouettes in two- and three- dimen-
sional discrete space. This treatment of the problem implied an ambiguity theo-
rem for the reconstruction of objects in discrete space. To reduce the ambiguity
of the reconstructed shapes, we introduced a modified naive and standard models
discrete lines in both two- and three- dimensional spaces.
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Abstract. The conventional neural networks methods of motor unit action 
potential analysis in clinical Electromyography are mainly based on single 
feature set model, the diagnosis accuracy of which is not always satisfactory. In 
order to utilize multiple feature sets to improve diagnosis accuracy, a hybrid 
decision support system based on fusion of multiple feature sets classification 
outputs is presented. Back-propagation (BP) neural network is used as single 
diagnosis model in every feature set, i.e. i) time domain morphological 
measures, ii) frequency parameters, and iii) time-frequency domain wavelet 
transform feature set. Then these outputs are combined by a modified fuzzy 
integral method to obtain the consensus diagnosis result. More excellent 
diagnosis yield indicates the potential of the proposed multiple feature domain 
strategies for aiding the neurophysiologist in the early and accurate diagnosis of 
neuromuscular disorders. The method is also compared with the majority vote 
combination scheme. 

1   Introduction 

The motor unit is the smallest functional unit of the muscle. The motor unit action 
potential (MUAP) is recorded that reflects the electrical activity of a single 
anatomical motor unit, the procedure known as electromyography (EMG). The 
MUAP findings are used to detect and describe different neuromuscular disease [1]. 
With the development of quantitative EMG techniques, some automated decision 
making system of neuromuscular disorder diagnosis have emerged. Neural network 
based MUAPs classification system has been used to give a more standardized, 
sensitive and specific evaluation of the neurophysio-logical findings. The networks 
used include back-propagation, the radial basis function network, and the self-
organizing feature map network [2-4]. The feature sets used as network input include 
time domain parameters, frequency domain parameters, AR coefficients, cepstral 
coefficients, wavelet transform coefficients. However, the MUAP is a complicated 
physiological electric action with low amplitude. Moreover, the different force, 
muscles, and difference of the number of activated fibers render different MUAP 
from person to person. It is very difficult to extract one feature domain parameters 
which reflect the unique feature of the complicated neuromuscular action for all 
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persons. The problem is currently solved with not very satisfactory accuracy by using 
these single neural networks classifiers of different architectures and based on 
different sets of features. So, it is desirable to utilize multiple domain information 
from different points to represent and analysis MUAPs in clinical electromyography. 

On the other hand, it is well known that in many situations combination the outputs 
of several neural network classifiers with different feature inputs lead to an improved 
classification result. This happens because each network makes errors on a different 
region of the input space. Till now, many methods to combine the outputs of several 
individual neural networks have been developed, such as majority vote, Borda count, 
and Dempster-Shafer (D-S) evidence accumulation, etc [5].  

In this paper, we propose to utilize the multiple MUAPs feature domain 
information, for improving the diagnostic performance in computer-aid clinical 
electromyography. A modified fuzzy integral combination scheme, which considers 
the difference of performance of each feature domain classification network in 
combination, is adopted in the system. The paper is organized as follows. Section 2 
presents the modified fuzzy integral fusion method that considers the difference of 
performance of each network in combining the networks in detail. Section 3 describes 
MUAP feature sets used as neural networks inputs and Section 4 covers the 
experimental results for the assessment of normal subjects (NOR) and subjects 
suffering with myopathy (MYO) and motor neuron disease (MND) with the fuzzy 
integral fusion method, and the results are also compared with the majority vote. At 
last, section 5 the discussion and concluding remarks.   

2   Combination Scheme Based on Modified Fuzzy Integral Theory  

2.1   The Fuzzy Integral Theory 

A set function : 2 [0,1]Yg →  with ( ) 0g φ = , ( ) 1g Y =  and ( ) ( )g A g B<  if A B⊂ , is 

said a fuzzy measure. From this definition, Sugeno [6] introduced the so-called gλ -

fuzzy measure which comes with an additional property 

                                      ( ) ( ) ( ) ( ) ( )gg A B g A g B g A g Bλ∪ = + +                            (1) 

for all ,A B X⊂  and A B φ∩ = , and for some 1λ > − . 

Let 1 2{ , , , }nY y y y= be a finite set and let ({ })i
ig g y= . The values ig are 

called the densities of measure. λ is given by solving the equation 

1

1 (1 )
n

i

i

gλ λ
=

+ = +∏                                                (2) 

where ( 1, )λ ∈ − +∞ and 0λ ≠ .             

   It affords that the measure of the union of two disjoint subsets can be computed 
from the component measures. 

   Let Y be a finite set and : [0,1]h Y → a fuzzy set of Y . The fuzzy integral over 

Y  of the function h with respect to a fuzzy measure g  is defined by 



306 H. Xie, H. Huang, and Z. Wang 

( ) ( ) max[min(min ( ), ( ))]
y EE Y

h y g h y g E
∈⊆

⋅ =  

                                                      
[0,1]

max[min( , ( ))]g Fαα
α

∈
=                                      (3) 

where { | ( ) }F y h yα α= ≥  

   When Y is a finite set, the calculation of the fuzzy integral is easily given. Let 

1 2{ , , , }nY y y y=  and : [0,1]h Y → be a function. Suppose 1( )h y ≥  

2( ) ( )nh y h y≥ ≥ , (if not, Y is rearranged so that this relation holds). Then a fuzzy 

integral e , with respect to a fuzzy measure g over Y can be computed by 

1
max{min( ( , ( ))}

n

i i
i

e h y g A
=

=                                          (4) 

where 1 2{ , , , }i iA y y y= . 

When g is a gλ -fuzzy measure, the values of ( )ig A can be calculated recursively 

as 
1

1 1( ) ({ })g A g y g= =                                                (5) 

1 1( ) ( ) ( )i i
i i ig A g g A g g Aλ− −= + +                                      (6) 

where 1 i n< <  
In terms of multiple evidences combination, a more explicit understanding over the 

fuzzy integral is given as following [7]: 
When Y is a set of evidence sources, ( )ih y could be interpreted as an evaluation of 

how certain we are about decision proposition of the evidence toward the final 
evaluation. If an evidence subset A Y⊂ is considered, min ( )

y A
h y

∈
may be regard as the 

most conservative evaluation that this subset gives about decision proposition. ( )g A  

indicates the degree of importance of the subset A toward the final evaluation. The 
fuzzy integral could be interpreted as searching for the maximal grade of agreement 
between the objective evidence and the expectation. 

2.2   Modified Combination Algorithm by Fuzzy Integral  

Given K diagnosis propositions by 1 2{ , , , }KA A AΘ = , j jA X C= ∈ , j∀ ∈ Λ , 

which respectively denote that the input sample X belongs to the category jC . For 

the input sample X , M neural networks are considered and each of them will produce 
a confidence value for each class. These networks are represented by the integral set 
Y above. Those confidence values are represented by the function h  about the 
decision proposition. On the other hand, the output of each network in corresponding 
feature domain will present an evidence about the final diagnosis evaluation. The 
output, ijO , ( 1,2, , ; 1, 2, )i M j K= =  is just an appropriate evaluation that the 

evidence in domain i about proposition jA . So, it is reasonable to take ijO as 

( )j ih x [7].  

 



 Multiple Feature Domains Information Fusion for Computer-Aided Clinical EMG 307 

The fuzzy density is an important parameter in the algorithm and fluctuates by the 
influence of parameter λ . It indicates the worth of various ‘expert’ for the diagnosis 
proposition. The conventional methods often take the diagnosis accuracy of each 
network as this degree of importance, i.e. the fuzzy densities, { : 1,2, , }ig i M= , 

could be obtained by network test in various feature domains. However, in many 
situations, even for on features domains, its classification power to different classes is 
also various. So, in the present work, we propose a modified method to determine 
parameter λ . We utilize the diagnosis accuracy of each network for each class to 
determine jiλ , not simply using the diagnosis accuracy of each network to obtain 

parameter iλ ( 1,2, , ; 1, 2, )i M j K= = . Then jiλ  is applied to Eq.(5) and Eq.(6) to 

calculate the fuzzy measure. Given the fuzzy densities, the parameter λ could be 
determined by Eq. (4). 

Now, we can calculate the fuzzy integral je over Y  of the functions, 

{ : 1,2, , }jh j K= , with respect to the fuzzy densities, { : 1,2, , }ig i M=  by 

1

[min( ( ), ( ))]
M

j j i i
i

e h x g A
=

=                                           (7) 

The overall confidence for the class is the fuzzy integral. The class with the largest 
integral value can be taken as the final diagnosis result. 

3   MUAP Features Sets 

Motor Neuron Disease (MND) is a disease causing selective degeneration of the 
upper and lower motor neuron. This disease affects middle- to old-aged people, with 
progressive widespread loss of motor neurons usually leading to death within three to 
five years. In the advanced stages of this disease, large motor units also denervate. 
Motor unit potentials with duration values that are longer than normal and with 
increased amplitude are typical findings in MND. Their occurrence reflects an 
increase in the number or density of fibers in motor units, or increased temporal 
dispersion of the activity picked up by the recording electrode.  

Myopathy (MYO) is a group of diseases that affect primarily skeletal muscle fibers 
and are divided into two groups, according to whether they are inherited or acquired. 
Most muscular dystrophies are hereditary, causing severe degenerative changes in the 
muscle fibers. They show a progressive clinical course from birth or after a variable 
period of apparently normal infancy. MUAP’s with short duration and reduced 
amplitude are typical findings in patients suffering from myopathy. These findings are 
attributed to fiber loss within the motor unit, with the degree of reduction of these 
parameters reflecting the amount of fiber loss.  

In this study, the EMG signal is acquired from the biceps brachii muscle using a 
concentric needle electrode. The template matching method was used to identify 
twenty MUAPs recorded from the motor unit. Three various MUAP feature set 
parameters are considered as neural network inputs.  
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3.1 Time Domain Morphological Parameters  

As shown in Figure.1, the features measured from each MUAP in time domain 
include [4, 8]: 

1) Duration: (Dur), beginning and ending of the MUAP are identified by sliding a 
         measuring window of 3ms in length and 10uV in width; 

2) Spike duration: (SpDur), measured from the first to the last positive peak; 
3) Amplitude: (Amp), maximum peak to peak measure of the MUAP; 
4) Area: sum of the rectified MUAP integrated over the duration; 
5) Spike area: (SpArea), sum of the rectified MUAP integrated over the spike 

         duration; 
6)  Phase: (Ph), number of the baseline crossings that exceed 25 Vμ , plus one;  

7)  Turns: (T), number of positive and negative peaks separated from the preceding 
and following peak by 25 Vμ . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. MUAP morphological parameters  

3.2   Frequency Domain Parameters 

The frequency parameters of MUAP are derived from its autoregressive (AR) model. 
The AR model of a signal is given by: 

1

( ) ( ) ( )
M

i
i

x k a x k i e k
=

= − +                                            (8) 

duration

spike duration 

tur

phase

am
pl

itu
de
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where ( )x k  is the signal we want to model, ia  are the coefficients of the AR model 

signal, M is the order of the AR model of the signal, and ( )e k is the white noise. 

According to the Akaike’s information criterion, the AR model of order 11 is usually 
used for MUAP processing. Several techniques are available for estimating the 
parameters of an autoregressive random process. We use the Fast Transversal Filters 
(FTF) algorithm, which presents highly desirable characteristics in terms of numerical 
stability and time of convergence [9]. After the AR coefficients ia of each MUAP are 

estimated, then it was normalized with its maximum power value. The following 
frequency domain spectral parameters are computed from the AR power spectrum 
curve [10]. 

1) Bandwidth (BW) is the difference of frequencies at the upper ( 2F ) and lower 

( 1F ), 3dB points of the power spectrum and is given as: 

2 1BW F F= −                                                       (9) 

2) Quality factor (Q) is the ratio of the dominant peak frequency 0F  divided by BW 

and is expressed as: 

0F
Q

BW
=                                                         (10) 

3) Moments of order 0, 1 and 2: A moment jM of order j is defined as given by 

Lindstrom and Petersen [7]: 
1

1
0

2
( ) ( ( ))

(2 )

N
j

j ARj
n

M f n P f n
π

−

+
=

=                                   (11) 

4) Median frequency (FMED) is the frequency at which the power spectrum is 
divided into two regions with equal power defined as: 

1

0

( ( )) ( ( ))
FMED N

AR AR
n FMED

P f n P f n
−

=

=                                      (12) 

5) Maximum frequency (FMAX) is the frequency with the maximum power. 

3.3   Time-Frequency Domain Wavelet Transform Energy Coefficients 

Wavelet transform gives the information of the signal localized in both time and 
frequency domain. The wavelet transform of the signal ( )x t is defined as: 

1
( , ) ( ) ( )

t
W s x t dt

ss

ττ ψ −=                                      (13) 

where mother wavelet ψ is scaled by parameter s and translated byτ . The result of 

such decomposition is a series of “detail” coefficients jd  and approximation 

coefficients ja . Here, the index j represents the decomposition level. In our study, 

Daubechies 4 mother wavelet is selected and the energy in each frequency band, i.e. 

1d to 6d and 6a is computed by summing the coefficients square of each frequency 
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band. Then, the normalized percentage wavelet energy of each frequency band is used 
as time-frequency domain feature set. 

4   Experiment and Results 

There was a total of 80 subjects corresponding to 3 situations, 20 normal, 30 suffering 
motor neuron disease and 30 myopathy, involving in the experiment. Informed consents 
were provided by all subjects. The data are recorded from the biceps brachii of each 
subject at Hua Shan Hospital, Shanghai. Three back-propagation neural networks are 
chosen as the single model classifier of corresponding feature set. For each single 
network, the average vector of 20 MUAPs per subject for each feature set is computed as 
input. The conjugate gradient method is used in training to improve the convergence. 
Training and testing of the neural network are all completed using the Matlab neural 
network toolbox. The architecture of the networks is determined as follows: 

    1) NN1-network: 7 7 3× × . The inputs are the aforementioned time domain 
  morphological parameters’ means of 20 MUAP per subject. 

2)  NN2-network: 7 7 3× × . Frequency domain seven parameters. 
3) NN3-network. 7 7 3× × . Normalized percentage value of wavelet energy 

coefficients 1d to 6d and 6a  

15 subjects of each category are extracted randomly to compose the training set. 
The mean value of there feature domain for the NOR, MND, and MYO groups of the 
train set are given in Table 1, Table 2, and Table 3.  The others are used as testing set. 
In order to verify the effectiveness and robustness of the multiple neural networks 
diagnosis approach, bootstrap resample technique is used to obtain 6 different training 
and testing samples [11]. The output in each network of corresponding feature set 
presents an evidence about the final diagnosis evaluation. After training the three 
neural networks, we obtain the diagnosis performance of the various neural networks. 
The mean diagnosis accuracy of various feature parameters is shown in table 4. Then, 
utilizing the outputs and diagnosis accuracy of each neural network for each class, the 
consensus diagnosis result could be calculated. The diagnosis yields based on fuzzy 
integral and majority vote are also shown in Table 4. 

 

Table 1. The mean value of morphological parameters for the train sets of three groups 

 Duratio
n 

ms 

Spike 
Duratio

n 
ms 

Amplitude 
mV 

Area 
mVms 

Spike 
Area 

mVms 

Phases Turns 

NOR 8.73 4.92 0.342 0.337 0.221 2.5 2.9 
MND 12.27 6.25 0.568 0.758 0.475 4.1 4.5 
MYO 6.58 3.96 0.301 0.223 0.149 2.6 3.3 
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Table 2. The mean value of frequency domain parameters for the train sets of three groups 

 
0M  
2mV  

1M  
2 310mV s ∗  

2M  
2 2 610mV s ∗  

FMED 
Hz 

FMAX 
Hz 

Bandwidth 
Hz 

Quality 
factor 

NOR 9.24 13.95 22.46 399 202 507 0.44 
MND 14.97 8.92 12.84 305 197 388 0.80 
MYO 27.15 26.01 40.28 622 423 778 0.66 

5   Discussion and Conclusions 

The multiple feature domains consensus diagnosis based on fuzzy integral is 
investigated in this study for the assessment of MUAPs recorded from NOR, MND, 
and MYO subjects. When the single feature set is used, the morphological feature 
gives the highest diagnostic yield, followed by time-frequency parameters. Frequency 
domain feature gives the worst classification performance. There has been no one 
feature set has performed consistently highly for all trails and none of them is good 
enough to be employed in practice. This may due to the fact that MUAPs are 
modified by various neural, physiological and physical factors. It is difficult to extract 
the feature domain parameters which reflect the unique feature of the measured 
MUAPs. So, one can hardly say that a specific MUAP feature sets will give high 
discriminant power consistently. Compared to the above single domain method, the 
proposed multiple feature domains consensus diagnosis strategy based on fuzzy 
integral achieves a highly accurate and more consistent diagnosis result. This happens 
for the hybrid system utilizing the multiple domain information of the initial data.  

For comparison, majority vote is also investigated in the experiment. It gives slight 
higher accuracy than time domain parameters but lower than fuzzy integral. For the 
majority vote, the class label assigned to the sample is the one that is most represented 
in the set of the crisp class labels obtained from all networks. The deficiency is that 
all networks are treated equally. However, the recognition ability of each feature set 
in each network is not the same. The fuzzy integral considers the difference of 
performance of each network in combination. More excellent diagnosis yield 
indicates the potential of the proposed multiple feature domain strategies for aiding 
the neurophysiologist in the early and accurate diagnosis of neuromuscular disorders. 

Table 3. The mean value of normalized percentage wavelet energy distribution for the train sets 
of three groups 

 
1d  2d  3d  4d  5d  6d  6a  

NOR 0.52 1.75 5.95 26.7 18.4 17.7 28.9 
MND 0.33 1.27 4.04 15.29 16.56 23.71 38.80 
MYO 0.83 3.31 9.77 38.86 22.78 11.48 12.97 
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In the future work, we will investigate the results of combination some other 
feature domain parameters, such as cepstral coefficient, short-time Fourier transform 
coefficient, and wavelet packet transform coefficient of MUAPs. Also, in order to 
improve the fusion performance, different approach to determine the fuzzy density 
should be considered. 

Table 4. MUAPs diagnosis results based on single network and multiple networks fusion 

Network Accuracy (%) 
Time domain feature set 72.38 7.8±  

Frequency domain feature set 60.48 10.6±  
Time-frequency domain feature set 65.24 7.1±  

Fuzzy integral fusion 80.95 6.6±  
Majority vote 75.22 7.6±  
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Abstract. In this paper a novel scheme for colored video compression using 
color transfer techniques is proposed. Color transfer for video sequences is 
made more accurate by incorporation of motion information in the transfer 
mechanism. Encoder and decoder architectures for the proposed compression 
scheme are also presented. Compression is achieved by firstly discarding 
chrominance information for all but selected reference frames and then using 
motion prediction and DCT based quantization techniques. While decoding, 
luminance-only frames are colored using chrominance information from the 
reference frames using the proposed color transfer technique. Furthermore, this 
strategy is such that it can be seamlessly integrated with traditional hybrid com-
pression schemes like MPEG1 and H.263. 

1   Introduction 

Colorization is generally used for increasing visual appeal of grayscale images and 
perceptually enhancing various single band medical and scientific images. For this, 
traditional approach is to segment an image into some regions and manually or semi-
automatically color it region by region. Obtaining high quality colorization using tra-
ditional techniques is extremely time consuming and thus, grossly inefficient for time 
constrained applications like compression. An attempt to minimize human interven-
tion in colorization process to speed it up was presented by Welsh et al. [1] where 
they used luminance statistics to colorize grayscale images (target) using some refer-
ence color images (source). Unfortunately, empirical evidence suggests that the de-
gree of similarity between the color source and target image has a strong influence on 
the quality of the results obtained. Thus, obtaining reasonably high quality coloring 
with the techniques developed in [1] is, in principle, still strongly dependent on hu-
man selection of an appropriate source color image for each given grayscale (target) 
image. 

This very property of dependence of results on appropriate source color image can 
be exploited for video compression as proposed by Rao et al. [2]. The idea is to re-
move color from all but selected reference frames at the encoder and transfer color 
(using luminance statistics) to chrominance-less frames using color reference frame at 
the decoder. The compression is obtained by the fact that chrominance information 
need not be transferred for all frames between encoder and decoder. They propose re-
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taining color every eighth frame and encoding rest of the frames as luminance only. 
The quality of color transfer is relatively better in case of video frames because the 
color source image is generally only a motion displaced version of the target image.  

Colorization using color transfer, as proposed in [1], does not produce results of 
acceptable quality when used as it is for video compression (as proposed in [2]). In 
this work we propose a novel method of color transfer designed specifically for video 
sequences using motion information. Also the method proposed by Rao et al. [2] does 
not exploit temporal and spatial redundancies to achieve higher compression. We pre-
sent an approach that integrates color transfer, motion prediction and DCT based 
quantization. The proposed architecture is such that it can be easily integrated with 
various popular hybrid compression schemes like MPEG1 and H.263, in certain cases 
without even modifying the file formats.  

2   Colorization 

2.1   Colorization Technique 

Mathematically the coloring problem amounts to replacing each scalar values stored 
in the grayscale image by a color vector (e.g. mapping from g to RGB or g  [R, G, 
B], where g is luminance or intensity of a grayscale image and RGB is a three dimen-
sional vector).  This is, in general, a severely under-constrained problem with no in-
herently correct solution. In an attempt to tackle this problem, Reinhard et al. [3] pro-
posed a general scheme for color transfer between two images focusing on “color 
mood” transfer (e.g. giving a day time image a night time look) between images. 
Their remarkable achievement was the use of target pixel’s luminance value and 
neighborhood luminance variance to find matching source pixel for color transfer, us-
ing l  color space (originally defined by Ruderman et al. in [4]). This technique was 
adapted by Welsh et al. [1] to transfer color from a color image to a grayscale image. 
Although before the actual color transfer, Welsh et al. [1] used luminance remapping 
to linearly shift and scale the luminance histogram of the source image to fit the his-
togram of the target image. This helped create better correspondence in luminance 
range between the two images. They also defined the color-transfer-metric, weighted 
average of luminance (50%) and standard deviation (50%), to find the best source 
pixel for color transfer. 

Our approach for color transfer exploits motion information from video to enhance 
the quality of color transfer. We explore the use of YCbCr color space instead of l  
space so as to enable better integration of this technique with existing compression 
mechanisms which are largely YCbCr based. Exploiting the spatial redundancy in im-
ages, we propose transferring color for 2 x 2 pixel block (called pixel-group hereon) 
at a time instead of pixel-by-pixel. This speeds up the transfer without much loss in 
quality. Further, as the transfer of color is between two (similar) frames, for each 
pixel-group in the target image, best match can be found (using color-transfer-metric) 
by searching only a small neighborhood (3 x 3 pixel-groups) in the source image (ex-
ploiting the temporal redundancy in videos sequences). The color is transferred pixel-
to-pixel from the selected pixel-group to target pixel-group. The luminance value of 
the target pixel-group is retained. The crucial part of our proposal, which significantly 
improves the quality of color transfer, is the use of motion estimations in color trans-
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fer. We effectively expand the search area for the best match by incorporating the mo-
tion flow information. As motion estimates are generally calculated anyway in hybrid 
compression schemes, no extra overhead is added by incorporating this proposal. 

2.2   Color Spaces 

l  color space was defined by Ruderman et al. [4] and is such that, all the three chan-
nels are uncorrelated to each other unlike RGB and YCbCr. Reinhard et al. [3] and 
Welsh et al. [1] adapted this color space because in color transfer, chrominance is 
transferred based on luminance statistics and this demands uncorrelated luminance 
and chrominance channels so as to avoid cross channel artifacts from creeping in 
when luminance-chrominance channels are converted back to RGB. 

In case of video sequences the source frame and the target frame are similar (as-
suming same shot) and thus the nature of correlation between luminance and chromi-
nance channels is also similar in both source and target frames. This property in video 
sequences, by virtue of temporal redundancy, allows correlated color spaces like 
YCbCr to be used for color transfer because though the cross channels artifacts are 
induced, these not undesirable artifacts and infact were always present in original im-
age. Further, as our color transfer technique is developed to be used with video com-
pression, in order to keep the encoder and decoder efficient, it is better not to intro-
duce extra transforms to new color spaces.  

2.3   Integration with Motion Estimations 

Our proposal is independent of the method used for motion estimation and only as-
sumes existence of motion vectors. The quality of color transfer degrades or improves 
with the quality of motion prediction. In cases where motion is nil, color-transfer-
metric for the current pixel-group in the target image is matched against correspond-
ing (same pixel row and column) 3 x 3 pixel-groups search space in the source image 
to find the best pixel-group for color transfer. In cases where motion estimation algo-
rithm detects motion and renders motion vectors to non-zero values, we propose dis-
placement of search space in accordance with motion vectors and then searching for 
the best match. Note that motion is generally estimated for a larger pixel block size 
(16 x 16) as compared to our smaller pixel-group size of 2 x 2. Thus the motion vec-
tors need to be appropriately mapped for smaller size pixel-groups. This process ef-
fectively pushes the search domain in the direction where the best match is most 
likely to be found and thus produces better results. 

While estimating motion, there exists a possibility that for a given block (16 x 16) no 
good match can be found in the reference image. This can arise due to various camera 
movements like panning, zooming out etc. In many popular video compres 
sion algorithms such block are intra-coded or stored as it is without using any motion es-
timates. We propose to adopt this practice for color transfer as well. For blocks that are 
designated to be intra-coded by the motion estimation process, all color is stored as it is 
and these blocks are excluded from participating in color transfer process. This was not 
necessary for works presented in [1] and [3] because there is no “correct” color transfer 
in color-mood transfers while in case of video, the transfer needs to be near exact. The 
number of blocks that need to be intra-coded generally increases as the motion between 
the source and the target frames increases but can be forcibly increased or decreased on 
cost of quality of color transfer. 
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Fig. 1. Use of motion estimates in color transfer: First image is the first frame of the ‘tennis’ 
video sequence. Second and third images are the eighth frames of this sequence and have been 
colored using first frame as color source. Second image is colored without using any motion in-
formation while third image has been colored using motion information. White boxes in second 
image shows the color spilling out. 

3   Video Compression 

3.1   Basic Approach 

Though a simple approach for video compression using color transfer was proposed 
by Rao et al. [2], it does not take advantage of various redundancies present in video 
sequences. Here we propose an integrated approach towards video compression on 
lines of hybrid compression mechanism by bringing together color transfer technique, 
motion prediction and DCT based quantization. 

In a typical hybrid video compression scheme, most of the compression is obtained 
in the last stage – entropy encoding. Stages before this try to render the data to en-
tropy encoder in a form that can be compressed to the maximum. The primary job for 
these initial stages is to identify and remove redundancies and lesser important com-
ponents (in case of lossy compression) from the data. Three kinds of redundancies are 
taken care of in our design. Firstly, the redundant chrominance information is re-
moved at encoder and regenerated at decoder using color transfer technique. Sec-
ondly, spatial redundancy is removed at encoder using Discrete Cosine Transform 
based quantization scheme. Finally, temporal redundancies from the video sequence 
are removed at encoder using motion prediction. Infact, we use motion vectors gener-
ated form motion prediction to our advantage by using them in color transfer. 

3.2   Encoder Design 

To design the encoder, we borrow the concept of Group of Pictures (GOP) as defined 
for MPEG1 [5] and extend it to encompass color transfer mechanism. GOP refers to a 
sequence of frames such that their luminance and chrominance is coded independent 
of any frame not in GOP. Within a GOP there are three kinds of frames, Intra-coded 
frames (I), Predicted frames (P) and Bi-directionally predicted or interpolated frames 
(B). I frames are coded independently of any other frame in GOP. P frames are pre-
dicted from previous I or P frames. B frames are predicted from both previous and 
next I or P frames. Unlike MPEG1, the term prediction here is not limited to lumi-
nance based motion prediction but it also include chrominance transfer. For I frames 
all color information is preserved, for P frames color is transferred from previous I or 
P frames and for B frames color is transferred from both previous and next I or P 
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frame. The blocks that need to be intra-coded (cannot be predicted) are identified dur-
ing the prediction of P and B frames. Number of such blocks for P frames tends to be 
higher than those for B frames as later uses two reference frames. 

It must be noted that though luminance based motion prediction from a single I 
frame may work for up to 16 frames or more but this is not necessarily true for 
chrominance transfer. Every time color is transferred from one frame to another cer-
tain amount of error is induced into the target frame. In present scheme, error is ac-
cumulated and passed on from frame to frame. This limits the number of frames to 
which color can be transferred from a single color source. To handle this, we propose 
an overlay structure for color transfer which is fully compatible with luminance based 
GOP structure. For luminance based motion prediction we use I B B P B B P B B P B 
B P B B P GOP structure while for chrominance transfer we define a new structure I 
B B P B B P B B P B B P B B P. The highlighted frames in chrominance GOP repre-
sent those frames which have all color information intact (although in highlighted P 
frames chrominance can still be motion predicted from previous I frames) while other 
P frames are colored from previous (towards left) I or P frame and B frames are col-
ored using previous and next I or P frames.  This structure can be changed in applica-
tion specific manner, even from one GOP to another within a single video sequence. 

Compression by virtue of color transfer is obtained as only minimal (for intra-coded 
blocks) chrominance information is being encoded for all but highlighted I and P frames. 
Out of three kind of frames, I frames provide the least amount of compression, followed 
by P and B frames respectively. Encoder’s first stage down-samples chrominance chan-
nel for I frames and removes chrominance completely for P and B frames. Then error 
frames are computed using luminance based motion estimation. After computing error 
frames (output of prediction stage) the next step is to exploit spatial redundancy to obtain 
more compression. Two-dimensional frequency decomposition of elementary (8 x 8) 
pixel blocks is carried out and all but the most prominent frequency coefficients are re-
moved by the process of quantization depending on quantization scale factor (QSF). 
QSF is an integer (1-31) defined for each frame type by which the quantization matrix is 
scaled. After quantization the blocks are scanned in the ‘zig-zag’ [5] manner and then en-
tropy coding is used. Fig. 2 shows the encoder architecture. 

 

Fig. 2. Encoder Design [a: Uncompressed video, b: Reconstructed frames, c: Reference frame, 
d: Motion vectors, e: Compressed video stream, f: Motion vectors, g: Reference frame]. Buffers 
are provided at input and output to handle variable bit rates 
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3.3   Decoder Design 

The decoder is almost a reverse of the encoder except for the fact that this is where 
the actual color transfer takes place. First of all, entropy encoding is decoded and In-
verse Quantization followed by Inverse Discrete Cosine Transform is applied to ob-
tain intra coded frames (I) and error frames (B, P). Then from I frames P frames are 
derived using motion compensation and then colored using the algorithm described in 
the section 2. Then all the B frames between the decoded I and P frames are predicted 
and colored using bi-directional compensation.  

 

Fig. 3. Video Decoder [a: Compressed video stream, b: Motion vectors, c: Reference frame, d: 
Color reference frame, e: Luminance-only frame, f: Uncompressed video]. Buffers are provided 
at input and output to handle variable bit rates 

The advantage of this decoder architecture (Fig. 3) is that it can be easily integrated 
with existing popular video compression schemes. In case of MPEG1, all that is re-
quired at encoder is to save no chrominance information for appropriate frames (as 
described above) and the decoder can be plugged in with a module for color transfer 
keeping other functionalities intact. 

4   Experimental Results 

The methodology has been implemented and tested on a set of benchmark video se-
quences. For the experiments, quantization matrices as defined in [5] and exhaustive 
block search method for motion estimation were used. For a typical QSF setting 
(IQSF = 1, PQSF=8, BQSF=16), quality loss (PSNR) for Y channel is 0 db, for Cb 
channels 0.65 db and for Cr channel 0.47 db as compared to MPEG1 with almost no 
visually detectable difference in quality. Our approach outperforms MPEG1 for typi-
cal settings by 1 to 14 percent in terms of compression as shown in Fig. 4. Fig. 5 
shows compression across different frame types for various test video sequences. 
Chrominance bearing I (frame 1) and P (frame 10) frames are coded exactly as in 
MPEG1 and thus they show no improvement in compression over MPEG1. B frames 
show more compression than P frames both in absolute terms and relative to MPEG1 
due to the fact that they use two reference frames. 
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Fig. 4. Performance comparison of proposed scheme with MPEG1 for various video sequences  

 

Fig. 5. Performance comparison of proposed method with MPEG1 for all frame types in GOP 
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5   Conclusion 

In this paper we have presented a novel mechanism of color transfer for video frames 
and there by using it for video compression. We have adapted and evolved the color 
transfer technique described in [1] for video sequences and have improved the com-
pression mechanism described in [2] to achieve better quality and compression. It has 
been shown that integration of color transfer with video compression schemes can 
produce significant improvement in compression without much loss in quality. We 
proposed an architecture which can easily be integrated with popular hybrid compres-
sion schemes, but for this, we had to compromise at certain stages which could have 
improved compression and quality of color transfer but at loss of execution efficiency 
e.g. use of YCbCr color space, use of intra-coded blocks, and use of overlay GOP for 
chrominance transfer. Besides integration with MPEG1, the proposed scheme can be 
easily extended to be integrated with MPEG2 also. 
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Abstract. We consider simple cube-curves in the orthogonal 3D grid.
The union of all cells contained in such a curve (also called the tube of this
curve) is a polyhedrally bounded set. The curve’s length is defined to be
that of the minimum-length polygonal curve (MLP) fully contained and
complete in the tube of the curve. So far only one general algorithm called
rubber-band algorithm was known for the approximative calculation of
such an MLP. A proof that this algorithm always converges to the correct
curve, is still an open problem. This paper proves that the rubber-band
algorithm is correct for the family of first-class simple cube-curves.

1 Introduction

The analysis of cube-curves is related to 3D image data analysis. A cube-curve
is, for example, the result of a digitization process which maps a curve-like object
into a union S of face-connected closed cubes. The definition of length of a simple
cube-curve in 3D Euclidean space can be based on the calculation of the minimal
length polygonal curve (MLP) in a polyhedrally bounded compact set [3,4].

The computation of the length of a simple cube-curve in 3D Euclidean space
was a subject in [5]. But the method may fail for specific curves. [1] presents
an algorithm (rubber-band algorithm) for computing the approximating MLP
in S with measured time O(n), where n is the number of grid cubes of the given
cube-curve.

The difficulty of the computation of the MLP in 3D may be illustrated by
the fact that the Euclidean shortest path problem (i.e., find a shortest obstacle-
avoiding path from source point to target point, for a given finite collection
of polyhedral obstacles in 3D space and a given source and a target point) is
known to be NP-complete [8]. However, there are some algorithms solving the
approximate Euclidean shortest path problem in 3D with polynomial-time, see
[9]. The rubber-band algorithm is not yet proved to be always convergent to the
correct 3D-MLP.

Recently, [6] developed of algorithm for calculation of the correct MLP (with
proof) for a special class cube-curves. The main idea is to decompose a cube-
curve into arcs by finding “end angles” (see Definition 3 below).

More recently, [7] constructed an example of a (special - see title of reference)
simple cube-curve, and generalized this by characterizing the class of all of those
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cube-curves. In particular, it is true that these cube-curves do not have any end
angle; and this means that we cannot use the MLP algorithm proposed in [6]
which is provable correct. This was the basic importance of the result in [7]: we
showed the existence of cube-curves which require further algorithmic studies.

Both [6] and [7] focus on a special class of simple cube-curves which are
called first-class simple cube-curves (defined below). This paper proves that the
rubber-band algorithm is correct for first-class simple cube-curves.

The paper is organized as follows: Section 2 defines the notations used in this
paper. Section 3 describes theoretical proofs of our results. Section 3 discusses
the computational complexity. Section 4 gives the conclusions.

2 Definitions

Following [1], a grid point (i, j, k) ∈ Z3 is assumed to be the center point of a
grid cube with faces parallel to the coordinate planes, with edges of length 1,
and vertices as its corners. Cells are either cubes, faces, edges, or vertices. The
intersection of two cells is either empty or a joint side of both cells. A cube-curve
is an alternating sequence g = (f0, c0, f1, c1, . . . , fn, cn) of faces fi and cubes ci,
for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for 0 ≤ i ≤ n and
fn+1 = f0. It is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g with |i− k| ≥ 2
(mod n+ 1), if ci

⋂
ck �= φ then either |i− k| = 2 (mod n+ 1) and ci

⋂
ck is an

edge, or |i− k| ≥ 3 (mod n + 1) and ci

⋂
ck is a vertex.

A tube g is the union of all cubes contained in a cube-curve g. A tube is
a compact set in R3, its frontier defines a polyhedron, and it is homeomorphic
with a torus in case of a simple cube-curve. A curve in R3 is complete in g iff it
has a nonempty intersection with every cube contained in g. Following [3,4], we
define:

Definition 1. A minimum-length polygon (MLP) of a simple cube-curve g is a
shortest simple curve P which is contained and complete in tube g. The length
of a simple cube-curve g is defined to be the length l(P ) of an MLP P of g.

It turns out that such a shortest simple curve P is always a polygonal curve,
and it is uniquely defined if the cube-curve is not only contained in a single layer
of cubes of the 3D grid (see [3,4]). If it is contained in one layer, then the MLP
is uniquely defined up to a translation orthogonal to that layer. We speak about
the MLP of a simple cube-curve.

A critical edge of a cube-curve g is such a grid edge which is incident with
exactly three different cubes contained in g.

Definition 2. If e is a critical edge of g and l is a straight line such that e ⊂ l,
then l is called a critical line of e in g or critical line for short.

Definition 3. Assume a simple cube-curve g and a triple of consecutive critical
edges e1, e2, and e3 such that ei ⊥ ej, for all i, j = 1, 2, 3 with i �= j. If e2

is parallel to the x-axis (y-axis, or z-axis) implies that the x-coordinates (y-
coordinates, or z-coordinates) of two vertices (i.e., end points) of e1 and e3 are
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equal, then we say that e1, e2 and e3 form an end angle, and g has an end angle,
denoted by ∠(e1, e2, e3); otherwise we say that e1, e2 and e3 form a middle angle,
and g has a middle angle.

Definition 4. A simple cube-curve g is called first-class iff each critical edge of
g contains exactly one vertex of the MLP of g.

Figure 1 shows a first-class simple cube-curve (left) and a non-first-class
simple cube-curve (right). Because the vertices of the MLP must be in e0, e1,
e3, e4, e5, e6 and e7. In other words, the critical edge e2 does not contain any
vertice of the MLP of this simple cube-curve.

The rubber-band algorithm is published in [1].

Definition 5. One iteration of rubber-band algorithm is a complete pass through
the main loop of the algorithm.

Let g be a simple cube-curve. Let AMLPn(g) be an n-polygon of g, where n
= 1, 2, . . .. Let AMLP = limn→∞AMLPn(g). Let pi(ti0 ) be the i-th vertex of
AMLP , where i = 0, 1, . . ., or m+ 1. Let di = de(pi−1, pi) + de(pi, pi+1), where
i = 1, 2, . . ., or m. Let d(t0, t1, . . . , tm, tm+1) =

∑m
1 di.

Definition 6. Let e0, e1, e2, . . . em and em+1 be all consecutive critical edges
of g and pi ∈ ei, where i = 0, 1, 2, . . ., m or m+1. We call the m+2 tuple (p0,
p1, p2, . . ., pm, pm+1) a critical point tuple of g. We call it an AMLP critical
point tuple of g if it is the set of the vertices of an AMLP of g.

Definition 7. Let P =(p0, p1, p2, . . ., pm, pm+1) be a critical point tuple of g.
Using P as an initial point set, and n iterations of the rubber-band algorithm,
we get another critical point tuple of g, say P ′ = (p′0, p

′
1, p

′
2, . . . , p

′
m, p′m+1). The

polygon with vertice set {p′0, p′1, p′2, . . . , p′m, p′m+1 } is called an n-polygon of g,
denoted by AMLPn(g), or AMLPn for short, where n = 1, 2, . . ..

Fig. 1. (1) A first-class simple cube-curve. (2) A non-first-class simple cube-curve.
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Definition 8. Let ∂d(t0,t1,...,tm,tm+1)
∂ti

|ti0 = 0, where i = 0, 1, . . ., or m+1. Then
we say that (t00, t10, . . . , tm0, tm+10) is a critical point of d(t0, t1, . . . , tm, tm+1).

Definition 9. Let P =(p0, p1, p2, . . ., pm, pm+1) be a critical point tuple of
g. Using P as an initial point set, n iterations of the rubber-band algorithm, we
calculate an n-rubber-band transform of P , denoted by P

−−−−−→
(r − b)nQ, or P → Q

for short, where Q is the resulting critical point tuple of g, and n is an positive
integer.

Definition 10. Let P =(p0, p1, p2, . . ., pm, pm+1) be a critical point tuple of
g. For sufficiently small real ε > 0,

the set
{ (p′0, p

′
1, p

′
2, . . . , p

′
m, p′m+1) : x′i ∈ (xi − ε, xi + ε) and y′i ∈ (yi − ε, yi + ε)

and z′i ∈ (zi − ε, zi + ε) and p′i = (x′i, y
′
i, z

′
i) and pi = (xi, yi, zi), where i =

0, 1, 2, . . . ,m,m + 1 }
is called P’s ε-Neighborhood, denoted by U(P, ε).

Definition 11. Let n be a positive integer. Let x = (x1, x2, . . ., xn). Let T be
the family of subsets of Rn defined by : A subset K of Rn belongs to T iff for
each r = (r1, r2, . . ., rn) in K there are real numbers ai, bi such that ai < ri < bi

and
{x : x ∈ R

n, ai < xi < bi, i = 1, . . . , n} ⊂ K.

The topological space (Rn,T ) is called n dimensional usual topology.

Definition 12. ([12], Definition 4.1) Let Y ⊂ X, where (X, T) is a topological
space. Let T ′ be the family of sets defined as follows: A set W belongs to T ′ iff
there is a member U in T such that W = Y ∩ U . The family T ′ is called the
relativization of T to Y, denoted by T |Y .

3 Proofs

We provide mathematical fundamentals to prove that the rubber-band algorithm
is correct for any first-class simple cube-curve. We start with citing a basic
theorem from [1]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.

Let de(p, q) be the Euclidean distance between points p and q.
Let e0, e1, e2, . . ., em and em+1 be m+2 consecutive critical edges in a simple

cube-curve, and let l0, l1, l2, . . ., lm and lm+1 be the corresponding critical lines.
We express a point pi(ti) = (xi +kxiti, yi +kyiti, zi +kziti) on li in general form,
with ti ∈ R, where i = 0, 1, . . ., or m + 1.

In the following, pi(ti) will be denoted by pi for short, where i = 0, 1, . . ., or
m + 1.
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Theorem 2. ([10], Theorem 8.8.1) Let f = f(t1, t2, . . . , tk) be a real-valued func-
tion defined on an open set U in Rk. Let C = (t10, t20, . . . , tk0) be a point of U.
Suppose that f is differentiable at C. If f has a local extremum at C, then ∂f

∂ti
= 0,

where i = 1, 2, . . ., k.

Lemma 1. (t00, t10, . . . , tm0, tm+10) is a critical point of d(t0, t1, . . . , tm, tm+1).

Proof. d(t0, t1, . . . , tm, tm+1) is differentiable at each point (t0, t1, . . . , tm, tm+1) ∈
[0, 1]m+2. Because AMLPn(g) is a n-polygon of g, where n = 1, 2, . . .. and
AMLP = limn→∞AMLPn(g), so d(t00 , t10 , . . . , tm0 , tm+10) is a local minimum
of d(t0, t1, . . . , tm, tm+1). By Theorem 2, ∂d

∂ti
= 0, where i = 0, 1, 2, . . ., m+1. ��

Theorem 3. ([7], Theorem 2) If ei ⊥ ej, where i, j = 1, 2, 3 and i �= j, then
e1, e2 and e3 form an end angle iff the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a

unique root 0 or 1.

Theorem 4. ([7], Theorem 3) If ei ⊥ ej, where i, j = 1, 2, 3 and i �= j, then
e1, e2 and e3 form a middle angle iff the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has

a root t20 such that 0 < t20 < 1.

Theorem 5. ([7], Theorem 4) e0 and em+1 are on different grid plane iff 0 <
t10 < t20 < . . . < tm0 < 1.

Let pi(ti0) be i-th vertex of an AMLP , where i = 0, 1, . . ., or m + 1.
By Lemma 1 and Theorems 3, 4 and 5, we immediately prove the following

theorem.

Theorem 6. If ei−1, ei and ei+1 form an end angle, then ti0 = 0 or 1 ; other-
wise, 0 < ti0 < 1, where i = 1, 2, . . ., or m.

By the proofs of the two lemmas (Lemmas 1 and 2) of [7], we have

Lemma 2. If e1 ⊥ e2, then ∂de(p1,p2)
∂t2

can be written as t2−α√
(t2−α)2+(t1−β)2+γ

,

where α, β, and γ are reals.

Lemma 3. If e1 ‖ e2, then ∂de(p1,p2)
∂t2

can be written as t2−t1√
(t2−t1)2+α

, where α is

a real.

Theorem 7. ([6], Theorem 4) ∂d2
∂t2

= 0 implies that we have one of the following
representations for t3: we can have

t3 =
−c2t1 + (c1 + c2)t2

c1

if c1 > 0; we can also have

t3 = 1−

√
c21(t2 − a2)2

(t2 − t1)2
− c22
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or

t3 =

√
c21(t2 − a2)2

(t2 − t1)2
− c22

if a2 is either 0 or 1, and c1 and c2 are positive; and we can also have

t3 = 1−

√
(t2 − a2)2[(t1 − a1)2 + c21]

(t2 − b1)2
− c22

or

t3 =

√
(t2 − a2)2[(t1 − a1)2 + c21]

(t2 − b1)2
− c22

if a1, a2, and b1 are either 0 or 1, and c1 and c2 are positive reals.

Lemma 4. The number of critical points of d(t0, t1, . . . , tm, tm+1) in [0, 1]m+2

is finite.

Proof. Let d = d(t0, t1, . . . , tm, tm+1).
Case 1. The simple cube-curve g has some end angles.
Assume that ei, ei+1, and ei+2 form an end angle, and also ej, ej+1, and

ej+2, and no other three consecutive critical edges between ei+2 and ej form an
end angle, where i ≤ j and i, j = 0, 1, 2, . . . ,m−2. By Theorem 6 we have ti+3 =
fi+3(ti+1, ti+2), ti+4 = fi+4(ti+2, ti+3), ti+5 = fi+5(ti+3, ti+4), . . . , tj, and tj+1 =
fj+1(tj−1, tj). This shows that ti+3, ti+4, ti+5, . . . , tj , and tj+1 can be represented
by ti+1, and ti+2. In particular, we obtain an equation tj+1 = f(ti+1, ti+2), or

g(tj+1, ti+1, ti+2) = 0,

where tj+1, and ti+1 are already known, or

g1(ti+2) = 0. (1)

By Lemmas 2 and 3, function g1(ti+2) can be decomposed into finitely many
monotonous functions. Therefore, Equation( 1) has finite solutions. This implies
that the system formed by ∂d

∂ti
= 0 (where i= 0, 1, . . ., and m + 1.) has finite

solutions.
Case 2. The simple cube-curve g does not have any end angle.
Analogous to Case 1, the system formed by ∂d

∂ti
= 0 (where i= 0, 1, . . ., and

m + 1.) implies a two variables system formed by

h1(t0, t1) = 0 (2)

h2(t0, t1) = 0 (3)

Again by Lemmas 2 and 3, Equations ( 2) and ( 3) can be decomposed into
finite monotonous functions, so the system formed by Equations ( 2) and ( 3)
has finite solutions. This implies that the system formed by ∂d

∂ti
= 0 (where i=

0, 1, . . ., and m + 1.) has finitely many solutions. ��
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By Lemmas 4 and 1, we have

Lemma 5. g has only a finite number of AMLP critical point tuples.

Let e0, e1 and e2 be three consecutive critical edges. Let pi(pi1 , pi2 , pi3) ∈ ei,
where i = 0, 1, 2. Let the two endpoints of ei be ai(ai1 , ai2 , ai3) and bi(bi1 , bi2 , bi3),
where i = 0, 1, 2.

Lemma 6. There is an algorithm such that its computing complexity of finding a
point p1 ∈ e1 with de(p1, p0)+de(p1, p2) = min{p1|de(p1, p0)+de(p1, p2), p1 ∈ e2}
is O(1).

Proof. p1 can be written as (a11 +(b11−a11)t, a12 +(b12−a12)t, a13 +(b13−a13)t).
Note that

de(p1, p0) =

√√√√ 3∑
i=1

((a1i − p1i) + (b1i − a1i)t)2

can be simplified. In fact, the straight line a1b1 is parallel to one coordinate
axis (x, y or z axis) So, only one element of the set {b1i − a1i : i =1,2,3 } is 1
and the other two should be 0. Without loss of generality, we can assume that
de(p1, p0) =

√
(t + A1)2 + B1, where A1 and B1 are functions of a1i , b1i and p1i ,

where i = 0, 1, 2. Analogously, de(p1, p2) =
√

(t + A2)2 + B2, where A2 and
B2 are functions of a1i , b1i and p2i , where i = 0, 1, 2. In order to find a point
p1 ∈ e1 such that de(p1, p0) + de(p1, p2) = min{p1|de(p1, p0) + de(p1, p2), p1 ∈
e1}, we can solve the equation ∂(de(p1,p0)+de(p1,p2))

∂t = 0: the unique solution is
t = −(A1B2 + A2B1)/(B2 + B1). ��

By the proof of Lemma 6, and if we represent pi as (ai1 + (bi1 − ai1)ti, ai2 +
(bi2 − ai2)ti, ai3 + (bi3 − ai3)ti), then we have

Lemma 7. t2 = t2(t1, t3) is a continous function at each tuple (t1, t3) ∈ [0, 1]2.

Lemma 8. If P
−−−−−→
(r − b)1Q, then for every sufficient small real ε > 0, there is

a sufficient small real δ > 0 such that P ′ ∈ U(P, δ) and P ′−−−−−→(r − b)1Q′ implies
Q′ ∈ U(Q, ε).

Proof. By Lemma 6 and note that g has m + 2 critical edges, so by using Lem-
mas 1 repeatedly m + 2 times we prove this lemma. ��

By Lemma 8, we have

Lemma 9. If P
−−−−−→
(r − b)nQ, then for every sufficiently small real ε > 0, there

is a sufficiently small real δε > 0 and a sufficiently large integer Nε such that
P ′ ∈ U(P, δε) and P ′−−−−−→(r − b)n′Q′ implies Q′ ∈ U(Q, ε), where n′ is an integer
and n′ > Nε.
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By Lemma 5, let Q1, Q2,. . . , QN with N ≥ 1 be the set of all AMLP critical
point tuples of g. Let ε be a sufficiently small positive real such that U(Qi, ε) ∩
U(Qj , ε) = ∅, where i, j = 1, 2, . . ., N and i �= j. Let Di = {P : P → Q′, Q′ ∈
U(Qi, ε), P ∈ [0, 1]m+2}, where i = 1, 2, . . ., N .

The following two lemmas are straightforward.

Lemma 10. If N > 1 then Di ∩Dj = ∅, where i, j = 1, 2, . . ., N and i �= j.

Lemma 11. ∪N
i=1Di = [0, 1]m+2.

We consider usual topology T = Rm+2|[0,1]m+2 .

Lemma 12. Di is an open set of T , where i = 1, 2, . . ., N with N ≥ 1.

Proof. By Lemma 9, for each P ∈ Di, there is a sufficiently small real δP > 0
such that U(P, δP ) ⊆ Di. So we have ∪P∈DiU(P, δP ) ⊆ Di.

On the other hand, for P ∈ U(P, δP ), we have Di = ∪P ⊆ ∪P∈DiU(P, δP ).
Note that U(P, δP ) is an open set of T . So Di = ∪P∈DiU(P, δP ) is an open set
of T .

��
Lemma 13. ([11], Proposition 5.1.4) Let U ⊂ R be an arbitrary open set. Then
there are countably many pairwise disjoint open intervals Un such that U = ∪Un.

Lemma 14. g has a unique AMLP critical point tuple.

Proof. By contradiction. Suppose thatQ1, Q2,. . . , QN with N > 1 are all AMLP
critical point tuples of g. Then there exists i ∈ {1, 2, . . . , N} such that Di|ej ⊂
[0, 1], where ej is a critical edge of g, i, j = 1, 2, . . ., N . Otherwise we have
D1 = D2 = · · · = DN . This is a contradiction to Lemma 10.

Let E = {ej|Di|ej ⊂ [0, 1]}, where ej is a critical edge of g. We can select a
critical point tuple of g as follows: go through each e ∈ {e0, e1, . . ., em, em+1 }.
If e ∈ E, by Lemmas 12 and 13, select the minimum left endpoint of the open
intervals whose union is Di|e. Otherwise select the midpoint of e. We denote the
resulting critical point tuple as P =(p0, p1, p2, . . ., pm+1). By the selection of
P , we know that P is not in Di. By Lemma 11 there is j ∈ {1, 2, . . . , N} − {i}
such that P ∈ Dj. Therefore there is a sufficiently small real δ > 0 such that
U(P, δ) ⊂ Dj . Again by the selection of P , there is a sufficiently small real δ′ > 0
such that U(P, δ′) ∩Di �= ∅. Let δ′′ = min{δ, δ′}. Then we have U(P, δ′′) ⊂ Dj

and U(P, δ′′)∩Di �= ∅. This implies that Di ∩Dj �= ∅, and it is a condtradiction
to Lemma 10. ��

Let g be a simple cube-curve. Let AMLPn(g) be an n-polygon of g, where n
= 1, 2, . . .. AMLP = limn→∞ AMLPn(g).

Theorem 8. The AMLP of g is the MLP of g.

Proof. By Lemma 14 and the proof of Lemma 1, d(t0, t1, . . . , tm, tm+1) has a
unique local minimal value. This implies that the AMLP of g is the MLP
of g. ��
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4 Computational Complexity

Assume that a simple cube-curve g has m critical edges. By Lemma 6, the
computational complexity of each iteration of running the rubber-band algo-
rithm is O(m). Let AMLPn(g) be an n-polygon of g, where n = 1, 2, . . ..
Then the computational complexity of finding AMLPn(g) is nO(m). Suppose
limn→∞ AMLPn(g) = AMLP . By Theorem 8, we can use AMLPN(ε)(g) as an
approximate MLP of g, where ε is the error between the length of AMLPN(ε)(g)
and that of MLP. The computational complexity is N(ε)O(m).

5 Conclusions

We have proved that the rubber-band algorithm is correct for the family of first-
class simple cube-curves and that the algorithm’s computational complexity of
finding an approximate MLP of a simple cube-curve is linear for this family of
curves.

Acknowledgements. The CAIP reviewers’ comments have been very helpful for
revising an earlier version of this paper.
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Abstract. In this paper the probabilistic aproach to handwritten words
recognition is described. The decision is performed using results of char-
acter classification based on a character image analysis and probabilistic
lexicon treated as a special kind of soft classifier. The novel approach
to combining these both classifiers is proposed, where fusion procedure
interleaves soft outcomes of both classifiers so as to obtain the best recog-
nition quality. The proposed algorithms were experimentally investigated
and results of recognition of polish handwritten surnames and names are
given.

1 Introduction

Handwritten character recognition has attracted enormous scientific interest due
to its evident practical utility. To achieve high recognition accuraccy, many dif-
ferent classification algorithms have been proposed here, which are based on a
variety of theories and methodologies. For several years, the concept of combin-
ing multiple classifiers is considered as a method for the development of highly
reliable character recognition system (e.g. [12]).

In this paper, adopting the probabilistic model, we discuss the handwritten
word recognition method which uses character classifier supported with prob-
abilistic lexicon. Probabilistic properties of lexicon and character classifier are
typically used to build Hidden Markov Model (HMM) of the language (e.g. [11]).
We propose another approach to the word recognition, in which probabilistic lex-
icon is treated as a special kind of classifier based on a word length, and next
result of its activity is combined with soft outcomes of character classifier based
on recognition of character image. Different algorihms of fusion of both classifiers
lead to the several word classifiers which differ in procedures and - as it results
from experimental investigations - also in recognition quality.

This paper is a sequel to the authors earlier publications ([4], [5], [6], [7]) and
it yields an essential extension of the results included therein.
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The contents of the work are as follows. In section 2 necessary background is
introduced and a task of combining character and lexicon classifiers is formulated
as an appropriate optimization problem. In section 3 we present the novel method
of fusion of both classifiers. Its idea consists in original so-called interleaving
procedure, in which successive characters in a word are recognized using either
character classifier or lexicon classifier, so as to achieve the best result of a whole
word recognition. The proposed algorithms were experimentally investigated in
the computer-aided recognition of handwritten polish surnames and names and
results of classification accuracy on real data are given in section 4.

2 Preliminaries and the Problem Statement

Let us consider a paper form designed to be filled by handwritten characters.
The form consists of data fields. Each data field contains a sequence of characters
of limited length coming from the alphabet A = {c1, c2, ..., cL}. Data fields do
not have to be filled completely - only the leading part of each field must be filled
with characters. We assume that the actual length of filled part of data field can
be faultlessly determined. The set A can be different for each field. Typically we
deal with fields that can contain only digits, letters or both of them.

We assume next that on character (alphabetical) level classifier ΨC is given
which gets character image x as its input and assigns it to a class (character label)
c from A, i.e., ΨC(x) = c. Alternatively, we may define the classifier output to
be a L-dimensional vector with supports for the characters from A ([3]), i.e.

ΨC(x) = [d1(x), d2(x), ..., dL(x)]T . (1)

Without loss of generality we can restrict di(x) within the interval [0, 1] and
additionally

∑
i di(x) = 1. Thus, di(x) is the degree of support given by classifier

ΨC to the hypothesis that image x represents character ci ∈ A. If a crisp decision
is needed we can use the maximum membership rule for soft outputs (1), viz.

ΨC(x) = arg (max
i

di(x)). (2)

There are different possibilities to determine the output vector of classifier
(1) on character level. Generally, the nature of extracted features, classification
criteria (discriminant functions of classifier) or classifier statistical properties
can suggest some solutions. Some proposals of support vector for MLP and
dissimilarity-based methods applied to the character classifier ΨC can be found
in [5].

Any classifier can be used on character level. In further experiments we have
applied MLP-based classifier using a vector of directional features ([1]). The
vector of support values [d1(x), d2(x), ..., dL(x)]T in (1) is the normalized out-
put of MLP obtained by clipping network output values to [0, 1] range and by
normalizing their sum to 1.0.

Independently of nature of classifier ΨC , support vector (1) is usually inter-
preted as an estimate of posterior probabilities of classes (characters) provided
that observation x is given ([3], [8], [9]), i.e. in next considerations we adopt:
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di(x) = P (ci | x), ci ∈ A. (3)

For each data field there exists a probabilistic lexicon L. Lexicon contains
words that can appear in the data field and their probabilities:

L = {(W1, p1), (W2, p2), ..., (WN , pN )}, (4)

where Wj is the word consisting of characters from A, pj is its probability and
N is the number of words in the lexicon.

Let the length | W | of currently recognized word W ∈ L be equal to n. This
fact defines the probabilistic sublexicon Ln

Ln = {(Wk, qk)Nn

k=1 : Wk ∈ L, |Wk |= n}, (5)

i.e. the subset of L with modified probabilities of words:

qk = P (Wk/ |Wk |= n) =
pk∑

j:|Wj |=n pj
. (6)

The sublexicon (5) can be also considered as a soft classifier ΨL which maps
feature space {| Wk |: Wk ∈ L} into the product [0, 1]Nn, i.e. for each word
length n produces the vector of supports to words from Ln, namely

ΨL(n) = [q1, q2, ..., qNn ]T . (7)

Let suppose next, that classifier ΨC , applied n times on the character level,
on the base of character images Xn = (x1, x2, ..., xn), has produced the sequence
of character supports (1) for the whole recognized word, which can be organized
into the following matrix of supports, or matrix of posterior probabilities (3):

Dn(Xn) =

⎛⎜⎜⎜⎝
d11(x1) d12(x1) . . . d1L(x1)
d21(x2) d22(x2) . . . d2L(x2)

...
... . . .

...
dn1(xn) dn2(xn) . . . dnL(xn)

⎞⎟⎟⎟⎠ . (8)

Now our purpose is to built soft classifier ΨW for word recognition as a fusion
of activity of both lexicon-based ΨL and character-based classifier ΨC :

ΨW (ΨC , ΨL) = ΨW (Dn,Ln) = [s1, s2, ..., sNn ]T , (9)

which will produce support vector for all words from sublexicon Ln. In the next
chapters a method of combination of ΨC and ΨL will be proposed and discussed.

3 Method of Combining Classifiers

Let N = {1, 2, ..., n} be the set of numbers of character positions in a word
W ∈ Ln and I denotes a subset of N . In the proposed fusion method with
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”interleaving” first the algorithm ΨC applied for recognition of characters on
positions I on the base of set of images XI = {xk : k ∈ I}, produces matrix of
supports DI and next - using these results of classification - the lexicon Ln (or
algorithm ΨL) is applied for recognition of a whole word W .

The main problem of proposed method consists in an appriopriate division
of N into sets I and Ī (complement of I). Intuitively, subset I should contain
these positions for which character recognition algorithm gives the most reliable
results. In other words division ofN should lead to the best result of classification
accuracy of a whole word. Thus, subset I can be determined as a solution of an
appropriate optimization problem.

Let W I = {cik
: k ∈ I, cik

∈ A} be any set of characters on positions I.
Then we have following posterior probability:

P (W I | XI) =
∏
k∈I

dk ik
(xk). (10)

The formula (10) gives conditional probability of hypothesis that on positions
I of word to be recognized are characters W I provided that set of character
images XI has been observed.

Applying for remaining part of the word sublexicon Ln, we can calculate con-
ditional probability of the whole word Wj ∈ Ln, which constitutes the support
(9) for word Wj of soft classifier ΨW :

sj = P (Wj | XI) = P (W I | XI) P (Wj |W I). (11)

The first factor in (11) is given by (10) whereas the second one can be cal-
culated as follows:

P (Wj |W I) =
qj∑

j:WjcontainsWI qj
. (12)

Since the support vector (11) of the rule ΨW strongly depends on the set I
hence we can formulate the following optimization problem:

It is neccesary to find such a subset I∗ of N and such a set of charcters W I∗

which maximize some criterion Q(ΨW ) of word classifier quality (or classifiers
ΨC and ΨL fusion quality), namely

Q(Ψ∗
W ) = max

I,WI
Q(ΨW ). (13)

The following two criteria of soft classifier quality ΨW producing vector of
supports (9), seem to be intuitively substantiated:

– the maximum value of decision supports dependent on sets I and W I :

Q1(ΨW = (s1(I,W I), s2(I,W I), ..., sNn(I,W I)) = max
j=1,2,...,Nn

sj(I,W I),

(14)
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– the normalized entropy of the support vector (9):

Q2(ΨW = (s1(I,W I), ..., sNn(I,W I))) =

= 1−
∑Nn

j=1 sj(I,W I) log2(sj(I,W I))

log2
1

Nn

, (15)

which is frequently used as a measure of discriminative power of a classifier
([13]).

It should be noted, that both criteria (14) and(15) may be also used in the
fusion methods as a quality measure of character classifier ΨC with support
values (1), i.e. Q(ΨC = (d1(x), d2(x), ..., dL(x)).

The number of solutions of discrete optimization problem (13) is equal to
(L+1)n− 1, hence - except the case of very short words - the exhaustive search
is rather infeasible method. Therefore we suggest the following suboptimal pro-
cedure which was applied in the further experimental investigations.
Initial data: Dn(Xn), Ln, I0 = �
for i = 1 to n do

Find k∗ : Q(dk∗1(xk∗), dk∗2(xk∗), ..., dk∗L(xk∗) =
= maxk/∈Ii−1 Q(dk1(xk), dk2(xk), ..., dkL(xk))
Ii ← Ii−1 ∪ k∗
For j = 1 to Nn calculate sj(Ii) according to (10), (11) and (12)
Calculate Q(Ii) = Q(s1(Ii), s2(Ii), ..., sNn(Ii))

end i
Find I∗ for which Q(I∗) = maxi=1,2,...,n Q(Ii)

4 Experimental Comparative Analysis of Algorithms

In order to study the performance of the proposed word recognition concept and
evaluate their usefulness to the practical structured handwritten forms recog-
nition, several computer experiments were made, in which polish names and
surnames were applied as recognized words.

In experiments six words classifiers were tested:

- C1W1 - algorithm with criterion Q1 for ΨC and ΨW evaluation,
- C2W2 - algorithm with criterion Q2 for ΨC and ΨW evaluation,
- C1W2 - algorithm with criterion Q1 for ΨC and Q2 for ΨW evaluation,
- C2W1 - algorithm with criterion Q2 for ΨC and Q1 for ΨW evaluation,
- C - classifier based merely on classification of isolated characters,
- CL - classifier based on character level recognizer results where lexicon is

used merely to restrict the set of word recognition results (probabilistic lexicon
properties not used).

On the character level, MLP recognizer was applied based on gradient fea-
tures set extracted according to the procedure described in [1]. MLP with L
outputs (each one corresponding to single element of alphabet) was trained in
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”1 of L” manner. It means that when presenting to the net the feature vector
extracted from the image of character c, the expected MLP response consists of
0.0 on all net outputs except the one corresponding to character c, where the
value 1.0 is expected. The training set consists of 354 character prototypes pre-
pared manually in such way that they imitate typical writing styles of characters
from the alphabet. The average accuracy of MLP character recognizer was equal
to 90.1%. Relatively weak quality of MLP classifier results from the specific
properties of the polish alphabet - it contains 35 characters which have special
diacritical marks. The name and surname lexicons containing 818 and 17,440
items, respectively, were created on the base of hospital information database
system containing 47,845 patient records. In order to test how the method per-
formance depends on the lexicon size, the subsets of surnames consisting of 5,000,
1,000 and 17,440 most frequently appearing words were used.

The experiments were performed using simulated data according to the fol-
lowing scheme. First, the word to be recognized is randomly selected from the
lexicon, taking into account its probabilistic properties. Then, for each character
field of the selected word, appropriate letter image is randomly drawn from the
set of 5,040 letter images other than images used to train MLP-based character
classifier ΨC . The word images obtained in this way are subject of recognition.
Results are presented in Table 1. It includes the frequency of misclassifications
(in percent) for the investigated algorithms. The first row contains results ob-
tained in names recognition with 818 elements lexicon. Successive rows contain
results of surnames recognition based on lexicon subsets containing 5,000, 10,000
and 17,440 elements.

Table 1. Error rates comparison - names and surnames recognition

Test set C CL C1W1 C1W2 C2W1 C2W2

818 names 42.3% 10.2% 3.6% 3.6% 3.5% 3.2%
5,000 surnames 48.1% 9.4% 6.0% 5.8% 5.8% 4.9%
10,000 surnames 48.0% 11.0% 6.5% 6.2% 6.1% 5.3%
17,440 surnames 48.3% 12.2% 8.3% 7.9% 7.7% 6.5%

For some applications it is not extremely important that the actual word has
the highest support si. Instead, it is expected that the actual word is among k
words with highest si. Hence, we can consider the recognition as successful if
the word being recognized is among k ones highestly evaluated by the classifier,
and as failure otherwise. Tables 2. and 3. present the failure rate for compared
algorithms for k=3 and k=5.

These results imply the following conclusions:

1. Word classification based merely on isolated character recognition gives very
poor results, even for best currently available letter classifiers for which error
rate is lower that 10%. In practical applications, the lexicon is necessary at
least to reduce the set of admissible words by applying CL algorithm.
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Table 2. Failure rates comparison for k=3

Test set C CL C1W1 C1W2 C2W1 C2W2

818 names 37.0% 7.7% 2.4% 2.4% 2.3% 2.3%
5,000 surnames 41.7% 8.7% 4.4% 4.2% 4.6% 3.7%
10,000 surnames 41.9% 10.2% 4.8% 4.6% 4.6% 4.2%
17,440 surnames 41.7% 12.1% 6.2% 5.9% 5.8% 5.0%

Table 3. Failure rates comparison for k=5

Test set C CL C1W1 C1W2 C2W1 C2W2

818 names 34.9% 7.4% 2.1% 2.2% 2.1% 2.0%
5,000 surnames 39.3% 8.3% 3.9% 3.7% 3.8% 3.2%
10,000 surnames 39.4% 10.4% 4.4% 4.2% 4.3% 4.0%
17,440 surnames 39.2% 11.2% 5.7% 5.5% 5.4% 4.8%

2. Combining character level classification with probabilistic lexicon always
gives better results than classifier which does not utilize the lexicon proba-
bilistic properties (CL vs. C1W1, C1W2, C2W1, C2W2). In our experiments
it resulted in reduction of error rate by 50-60% (from 10% to 4% on average).
This confirms the effectiveness and usefulness of the concepts and algorithms
presented above.

3. Selection of criteria (14), (15) used to assess character classification and
partial word classification seems to have only minor influence on final recog-
nition quality. Combinations C1W1, C1W2, C2W1 result in approximately
equal recognition quality. Application of entropy on both levels (C2W2) gives
slightly better result (further reduction of error rate by about 5% in relation
to C1W1).

5 Conclusions

In this paper we have focused our attention on the combined words recognition
in structured handwritten documents via fusion of results of character classifier
on lower level and probabilistic lexicon treated as a special classifier. Taking the
probabilistic model of classification task, we have proposed the novel concept of
fusion of both classifiers which leads to the soft word classifier producing vector
of support values for all words from the lexicon. Soft outcomes of a word classifier
can be used next as data for semantic level classifier, which recognize the object
described by the whole form ([7]).

Presented algorithms have been experimentally tested on the real data con-
taining a set of polish names and surnames. Their results, especially compari-
son with recognition quality of separated character image recognition algorithm,
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demonstrate the effectiveness of the proposed word recognition concept and yield
some recommendation for a wide range of practical applications which deal with
problem of structured handwritten text recognition.
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Abstract. The problem considered is that of recognizing if a given con-
vex polygon comes from a known collection by applying probes. Existing
approaches use a number of probes that is linear in the number of sides
of the polygon. The current premise is that probing is expensive, while
computing is cheap. Accordingly, a method is proposed that recognizes
a polygon from the collection, with high probability, using only a con-
stant number of probes, at the cost of fairly large computing resources,
particularly, in setting up and applying a range tree data structure.

1 Introduction

The problem of recognizing an object by means of probes has application in
domains ranging from robotics to security. Because of its significance the problem
has been studied extensively (see [10,11,12] for surveys of methodologies). In this
paper we consider finger probes which are probes of an object by directed rays,
the outcome of each probe being the co-ordinates of the point of contact of the
ray with the object. Finger probes model existing devices that shoot laser or
sonar beams.

Cole and Yap [4] initiated the theoretical study of finger probes. Research
since then has focused primarily on determining the shape of an object given
that it belongs to some restricted class – often, convex polygons or polytopes,
e.g., [4,6,11] – or recognizing an object given that it belongs to a known finite
collection – called model-based probing, again, often, for collections of convex
polygons, e.g., [1,2,8,11]. Results proved require, typically, O(n) probes, where
n is the number of sides of the convex polygon(s).

Our premise for this paper is the following: the process of physical prob-
ing itself is expensive relative to the computing power available to process the
outcome of the probes. This is justified by real scenarios. For example, con-
sider airport surveillance where laser or sonar beams are aimed at individuals
streaming through a checkpoint. An individual is in the checkpoint area for a
short duration and within that time some number of beams are fired at him (or
her), and, subsequently, the outcome transmitted over a network to a central

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 338–346, 2005.
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computer. The constraints on the size of the checkpoint area, the number and
location of the probing devices, the turnaround time of the physical beams, and
network delay imply the desirability of being able to recognize a suspect with
very few probes . On the other hand, it is equally reasonable to assume that the
central computer that processes probe outcomes, once they arrive, is extremely
powerful with massive RAM and processor speed.

Accordingly, we propose a method where an object from a given finite collec-
tion – we restrict to collections of convex polygons in this paper – can be detected
with very high probability using O(1) finger probes. Our method is based on the
observation (proved partially in this version) that the probability that the out-
come of four finger probes, from one convex polygon in a random collection,
will match another, is zero. We preprocess the collection, therefore, that, given
four probe outcomes, we can determine possible matches: as we allow for noise
and computational error, our method, typically, picks up a few possible matches,
even though the theoretical probability of more than one is zero. With additional
probes, that we process in groups of four, the number of possible matches drops
rapidly to one.

Our primary search structure is a range tree – for a given set P of points
in n-dimensional space, a range tree is a geometric data structure that allows
efficient orthogonal range searching, i.e., reporting of points of P that lie in some
query box B with axes-parallel sides. Owing to the size of the parameters in-
volved our particular range tree requires a large amount of time to construct and
space to store, which is acceptable given our assumption on available comput-
ing resources. Our theoretical analysis is mostly heuristic, so we have performed
extensive experiments to assess our method. The results are encouraging.

We feel that primary significance of our contribution is in initiating the study
of this very practical problem of model-based recognition using few probes – we
are not aware of any earlier papers – and formulating a practical solution.

2 Problem and Solution Plan

We are given a collection C = {C0, . . . ,Cm−1} of m mutually disjoint convex
polygons on a plane. Our problem is to determine if some target polygon C,
assumed to lie on the same plane as the collection C, can be obtained by a 2D
rigid transformation t (i.e., by translation and rotation on the plane) of some
Ci ∈ C – if it can then we say that Ci is a match for C. We are only allowed
finger probes on C. Now, r finger probes on C yield r points q0, q1, . . . , qr−1

on the boundary of C (say, the points lie in the given order, either clockwise
or counterclockwise, on the boundary). We first formalize a trivial necessary
condition for a polygon Ci ∈ C to be a match for C based on the results of the
r probes.

Lemma 1. A necessary condition for Ci ∈ C to be a match for target polygon
C is if the polygon P , with vertices at the r probed points q0, q1, . . . , qr, can be
inscribed in Ci by rigid transformation.
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Proof. If Ci is a match for C, then there exists a rigid transformation t such
that t(Ci) = C, so that t−1(C) = Ci, which implies that the vertices of t−1(P )
lie on the boundary of Ci.

This leads to the following proposition in case of three finger probes:

Proposition 1. Say that the target polygon C has been probed at three points
q0, q1, q2 on its boundary. A necessary condition for Ci ∈ C to be a match for
C is that there exist three points p0, p1, p2 on the boundary of Ci such that
d(qi, qi+1) = d(pi, pi+1), 0 ≤ i ≤ 2 (addition in the subscripts being modulo
3), and so that the order q0, q1, q2 and p0, p1, p2 on the plane is the same (either
both counterclockwise or clockwise).

Proof. The proposition follows from the preceding lemma and that a rigid trans-
formation is an orientation-preserving Euclidean transformation.

For example, see Figure 1(a), where the triangle T gives a match between
the target polygon C and the polygon C0 of a collection of three polygons.

For a pair of straight-line segments s0, s1 define (see Figure 1(b)):

max(s0, s1) = sup{d(p, q) : p ∈ s0, q ∈ s1} and
min(s0, s1) = inf{d(p, q) : p ∈ s0, q ∈ s1}

Assume the result of probing a target polygon C are three non-collinear
points q0, q1, q2 on the plane such that the order q0, q1, q2 is counterclockwise.
Let d0 = d(q0, q1), d1 = d(q1, q2), d2 = d(q2, q0). By Proposition 1, a necessary
condition for Ci ∈ C to be a match for C is that there exist points p0, p1 and
p2 on the boundary of Ci such that d(pi, pi+1) = di, 0 ≤ i ≤ 2, and so that the
order p0, p1, p2 is counterclockwise as well. If the points p0, p1, p2 are assumed
to lie on the edges e0, e1, e2 of Ci, respectively, this in turn implies the following
necessary condition for Ci to be a match for C:

There exist exist edges e0, e1, e2 of Ci (not necessarily distinct) so that:

(1) The order e0, e1, e2 around Ci is counterclockwise (if at least two of e0, e1

and e2 are identical then the order can be assumed to be either of counter-
clockwise or clockwise).

(2) Not all three of e0, e1, e2 are identical (for, otherwise, p0, p1, p2 are collinear).
(3) min(ei, ei+1) ≤ di ≤ max(ei, ei+1), 0 ≤ i ≤ 2.

Physical probing is never exact as noise cannot be fully eliminated from the
process, and, moreover, exact arithmetic is computationally infeasible as well.
Therefore, we heuristically relax condition (3) to:

(3’) min(ei, ei+1)− ε ≤ di ≤ max(ei, ei+1) + ε, 0 ≤ i ≤ 2

where ε is a user-specified small constant.
Call a triple of edges (e0, e1, e2) from Ci satisfying these conditions (1), (2)

and (3’) a candidate triple of edges from Ci w.r.t. q0, q1, q2. Note that conditions
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Fig. 1. (a) Target polygon C probed to find triangle T which can be inscribed in C0 (b)
Two straight-segments s0 and s1 with |AB| = max(s0, s1) and |CD| = min(s0, s1) (c)
Sliding triangle T with its base on two edges of the polygon Ci
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(1) and (2) are independent of the results of probes, while (3’) depends on the
knowing the results.

With the above in mind, our plan is simple. First, preprocess to construct a
data structure such that, given the result q0, q1, q2 of three finger probes, one can
rapidly find all candidate triples of edges w.r.t. q0, q1, q2 from each polygon in
the collection C. Subsequently, apply this data structure to determine matches
given sets of four probes.

3 Implementation

3.1 Preprocessing and Data Structures

For 0 ≤ i ≤ m− 1, let

E2
i = {(e0, e1) : e0, e1 are edges of Ci}

Let
E2 = ∪{E2

i : 0 ≤ i ≤ m− 1}
For each (e0, e1) ∈ E2, define the point

P (e0, e1) = (min(e0, e1), max(e0, e1))

in R2.
Construct a 2-dimensional range tree (see [5]) R on the set of points

{P (e0, e1) : (e0, e1) ∈ E2}

which is allowed to contain duplicates, that arise in case
P (e0, e1) = P (e′0, e′1), for distinct pairs (e0, e1) and (e′0, e′1) from E2.

At each point P (e0, e1) ∈ R put a pointer back to (e0, e1). Since the polygons
in C are mutually disjoint, so that a straight-line segment can be an edge of at
most one member of C, this pointer identifies, as well, the polygon Ci amongst
whose edges are e0 and e1.

Given (e0, e1) ∈ E2
i , let

E(e0, e1) = {e2 : e2 is an edge of Ci and e0, e1, e2 is counterclockwise around
Ci and e0, e1, e2 are not all identical}

In other words, E(e0, e1) consists of the edges e2 of Ci such that the triple
(e0, e1, e2) satisfy conditions (1)and (2) above.

For each e2 ∈ E(e0, e1), define the point

Q(e2) = ( min(e0, e2), max(e0, e2), min(e1, e2), max(e1, e2) )

in R4.
For each (e0, e1) ∈ E2

i , construct a 4-dimensional range tree R(e0, e1) on the
set of points

{Q(e2) : e2 ∈ E(e0, e1)}
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which again is allowed to contain duplicates, that arise if Q(e2) = Q(e′2), for
distinct edges e2 and e′2.

At each point P (e0, e1) ofR place a pointer to R(e0, e1). The entire structure
R′ consisting of R with R(e0, e1), for all (e0, e1) ∈ E2, is equivalent to a 6-
dimensional range tree on the set of points

( min(e0, e1), max(e0, e1), min(e0, e2), max(e0, e2), min(e1, e2), max(e1, e2) )

for all triples (e0, e1, e2), such that (e0, e1) ∈ E2 and e2 ∈ E(e0, e1).

3.2 Algorithm

Given the result q0, q1, q2, q3 of four finger probes – we assume that they are
no three collinear and that the given order is counterclockwise – we proceed as
follows:

Step 1: Search R′ to report the points that lie in the 6-dimensional box

B = [−∞, d(q0, q1) + ε]× [d(q0, q1)− ε, ∞]×
[−∞, d(q0, q2) + ε]× [d(q0, q2)− ε, ∞]×
[−∞, d(q1, q2) + ε]× [d(q1, q2)− ε, ∞]

which determines the set S of triples (e0, e1, e2) such that (e0, e1, e2) is a
candidate triple of edges from some Ci w.r.t. q0, q1, q2, as membership in B
verifies condition (3’) above.
In other words, S consists of those triples (e0, e1, e2) of edges from some
polygon Ci ∈ C such that the image pj = t(qj), by some rigid transforma-
tion t, may approximately lie on ej , for j = 0, 1, 2.

Step 2: For each (e0, e1, e2) ∈ S, search R(e0, e1) to report the points that lie
in the 4-dimensional box

B(e0, e1) = [−∞, d(q0, q3) + ε]× [d(q0, q3)− ε, ∞]×
[−∞, d(q1, q3) + ε]× [d(q1, q3)− ε, ∞]

which determines the set S(e0, e1) of edges e3 such that (e0, e1, e3) is a can-
didate triple of edges from Ci (the polygon amongst whose edges are e0 and
e1) w.r.t. q0, q1, q3.
Let S denote the set of quadruples (e0, e1, e2, e3) such that (e0, e1, e2) ∈ S
and e3 ∈ S(e0, e1). Then S contains precisely those quadruples (e0, e1, e2, e3)
of edges from some polygon Ci ∈ C such that the image pj = t(qj), by some
rigid transformation t, may approximately lie on ej, for j = 0, 1, 2, 3.

Step 3: For each quadruple (e0, e1, e2, e3) ∈ S we must now verify if indeed the
image pj = t(qj), by some rigid transformation t, lies approximately on the
edge ej , 0 ≤ j ≤ 3.
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a: We first verify as follows if the triangle with vertices at q0, q1, q2 can be
mapped by some rigid transformation t so that the image of qj lies on
ej , j = 0, 1, 2:
Imagine placing the triangle T = q0q1q2 so that q0 lies on e0 and q1 on e1,
then “sliding” the base q0q1 of T so that q0 travels along e0 and q1 along
e1, and determining if there is (approximately) an intersection with e2

of the locus of the top q2 of T by the sliding motion. In fact, to allow
for approximation, we first construct a rectangle R2 of length l2 + 2ε
and width 2ε, where l2 is the length of edge e2 and ε is the earlier user-
specified constant, and place it centered about e2; next, we determine
if the locus A of q2, which is an arc of an ellipse (see, e.g., [7] for the
trammel construction of an ellipse), intersects R.
For example, Figure 1(c) shows q0 sliding along e0 from the position a
to a′, q1 sliding along e1 from b to b′, and q2 traveling along the arc A
of an ellipse from c to c′.
If A does not intersect R2, then the quadruple (e0, e1, e2, e3) is rejected ; if
it does intersect R2, in say the arc A′, then we proceed to the next stage.

b: Again, to allow for approximation, construct a rectangle R3 of length
l3 + 2ε and width 2ε, where l3 is the length of edge e3, and place it
centered about e2. Next, exactly as in the previous step, slide the base,
but this time precisely in the range so that the locus of q2 is is A′, and
determine if the locus of q3 for this range, which is again an elliptical
arc, say A′′, intersects R3.
If A does not intersect R3, then the quadruple (e0, e1, e2, e3) is rejected ;
if it does intersect R3, then (e0, e1, e2, e3) is accepted, and the polygon
Ci, amongst whose edges are ej , 0 ≤ j ≤ 3, is a possible match for the
target polygon C.
Let C′ be the subset of polygons of C that are declared as possible matches
for C by the preceding procedure.

We shall prove in the next section that if Ci ∈ C is, in fact, a match for C,
then, after the preceding procedure, with high likelihood, C′ will contain precisely
Ci.

4 Analysis

Our analysis is fairly heuristic, and we back it up with experiments reported in
the next section.

Proposition 2. Given a random triangle T and a random convex polygon C, the
number of different inscriptions of T in C (equivalently, the number of different
rigid-body transformations that inscribe T in C) is O(1) with probability 1.

Proof. Omitted in this version.



Preprocessing Convex Polygons Using Range Trees for Recognition 345

Corollary 1. Given a random convex quadrilateral Q and a random convex
polygon C, the the probability that Q can be inscribed in C (equivalently, that
there exists a rigid-body transformations that inscribes Q in C) is 0.

Proof. Let the Q = p0p1p2p3 and consider the triangle p0p1p2. Let F be the set
of distinct rigid-body transformations that inscribe triangle p0p1p2 in C. Clearly,
Q can be inscribed in C if and only if t(p3) lies on C for some t ∈ F . However,
by Proposition 2, the set F , and so also {t(p3) : t ∈ F}, is of cardinality O(1)
with probability 1. That the set {t(p3) : t ∈ F} of size O(1) intersects a random
convex polygon C is 0. The result follows.

Corollary 2. Given a random collection C of convex polygons, the probability
that a quadrilateral p0p1p2p3, inscribed in a Ci ∈ C, can be inscribed by rigid
transformation in another polygon Cj ∈ C (j �= i) is 0.

Proof. Follows easily from Corollary 1.

Proposition 3. A range tree on a set of N points in R
d (i.e., a d-dimensional

range tree) can be constructed in O(N logd−1 N) and it uses O(N logd−1 N)
space. Such a range tree can be queried to report the points in a d-dimensional
box in O(logdN + K) time, where K is the number of reported points.

Proof. Refer to [5].

Assume the number of edges in each polygon of C is O(n).

Proposition 4. The time to construct and space to store the data structures
required for the algorithm of Section 3.2 are both O(mn3 log5(mn3)). The time
to the query the structure and report a match, if there is one, is O(m log4 n) with
high probability.

Proof. The time to construct, as well as space to store R′, is O(mn3 log5(mn3)),
by Proposition 3, as R′ is a 6-dimensional range tree containing O(mn3) points.
This proves the claim for the construction time and space for our data structures.

As the cardinality of C is m, it follows, by Proposition 2, that the number of
points reported in Step 1 of the procedure is O(m) with high probability. How
close the probability actually is to 1 depends on two items (we omit details):

(i) The smallness of the user-specified constant ε.
(ii) The smallness of the length of each edge of the polygons in C relative to the

length of the boundary of the polygon to which the edge belongs.

Accordingly, the cardinality of the set S of triples created in Step 1 is O(m)
with high probability. Therefore, by Proposition 3, the time spent in Step 1 is
O(log6(mn3) + m) with high probability.

Arguing similarly (we omit details), with high probability, the time spent in
Step 2 is O(m(log4 n + O(1))) = O(m log4 n). Each verification in Step 3 takes
O(1) time, as it involves O(1) tests to detect the intersection between the arc of
an ellipse and a rectangle.

Totaling the time for Steps 1-3, the claim for the query time follows.
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5 Experimental Results and Conclusion

We wrote the data structures, as described in Section 3.1, in Java, using range
tree code from CGAL [3], and, as well, using kd-trees (another data structure
for orthogonal range searching [5], code from [9]), in place of range trees. In our
experiments the kd-tree, even though theoretically less efficient, was actually
quicker than the range tree.

We tested our algorithm on batches of 50 randomly-generated convex poly-
gons by randomly choosing one from each batch, probing it, and then using our
method to determine matches based on the probe outcomes. We started with
four probes, and, if this did not yield a unique match, increased the number of
probes, each time taking the intersection of the matches for each subset of four,
until we were left with a single polygon.

Owing to lack of space we summarize briefly our experimental results: 4
probes almost invariably resulted in a large number of matches – often nearly
20 out of 50 polygons – which we attribute to our method allowing for noise; 8
probes almost always resulted in a unique match.

We conclude that initial results are encouraging for our proposed approach
to the extremely practical problem of recognizing objects from a collection of
“suspects” using few probes. Obviously, much remains to done. Possibly, data
structures, other than for orthogonal range searching, can be applied. Most im-
portantly, methods must be extended to 3-dimensional objects for the majority
of practical applications.
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Abstract. Online learning for object detection is an important requirement for
many computer vision applications. In this paper, we present an iterative opti-
mization algorithm that learns separable linear classifiers from a sample of pos-
itive and negative example images. We demonstrate that separability not only
leads to rapid runtime behavior but enables very fast training. Experimental re-
sults underline that the approach even allows for real time online learning for
tracking of articulated objects in real world environments.

1 Motivation and Scientific Context

A general trend in present day computer vision research appears to be the integration
of machine learning techniques into visual processing. Especially in the case of ob-
ject detection in real world environments, the entanglement of vision and learning has
led to stunning results. Cascaded weak classifiers rapidly detect objects of constraint
shape and texture [1]. Taking aim at varying shape and texture, recent contributions
simultaneously learn lexica of salient object parts as well as global structures [2,3,4].
Cognitive approaches integrate reasoning and learning across and within several levels
of processing [5].

Robust as they are, the above techniques all require extensive training times. This
hampers their use in scenarios where online learning is mandatory, as in the case of vi-
sion systems that assist their users in real world tasks. Among the few current proposals
for such a scenario is a system that applies the Winnow algorithm for learning linear
classifiers to motion data [6]. Others propose the use of sequential principal component
analysis (PCA) and probabilistic tracking [7], or apply VPL classification, a technique
that combines vector quantization, PCA and locally linear maps [8]. However, although
they are fast, none of these methods reaches real time performance in online learning
for object recognition.

In this paper, we present a simple approach to very fast object learning which, nev-
ertheless, provides rapid runtime behavior and reliable detection. Based on positive and
negative example images, we propose an iterative least mean squares technique of learn-
ing separable linear classifiers. The method accomplishes input processing as rapidly
as the popular cascaded weak classifiers. Moreover, it copes with objects of consider-
ably varying shape and texture and is characterized by very short training times. Our
classifiers therefore enable real time online learning in object recognition.

The next section first discusses the benefits of linear classifiers for visual object de-
tection and then introduces our algorithm for learning separable classifiers. Section 3
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presents experimental results in online learning for object detection. Finally, a discus-
sion ends this contribution.

2 Separable Linear Classifiers for Object Detection

In their most basic form, binary linear classifiers compute the scalar product wT x of a
parameter vector w and a feature vector x. Their appeal for visual object detection lies
in the fact that they may be implemented as two-dimensional linear filters. This requires
writing parameters and features as matrices W and X and considering the Frobenius
product of matrices W � X =

∑
i,j WijXij . If X denotes a digital image and W a

suitable finite impulse response filter matrix of size m×n, a label yij characterizing the
visual content in the vicinity of each pixel (i, j) can be computed from the convolution
W ∗X

yij =
m/2∑

k=−m/2

n/2∑
l=−n/2

Wm−k,n−lXi−k,j−l = W � Xij (1)

where X ij denotes an image patch of size m× n centered at (i, j).
Note that if W is a m×n matrix, convolution requires O(mn) operations per pixel.

This may result in prohibitive computational costs even if m and n are set to moderate
values. However, if W was a separable matrix, i.e. W = uvT where u ∈ R

m and
v ∈ Rn, the two-dimensional convolution could be computed as a sequence of two
one-dimensional convolutions

(
X ∗u

)
∗vT . This would reduce the effort to O(m+n)

and therefore provide a fast linear approach to object detection. Next, we discuss how
to obtain separable classifiers from training examples.

2.1 Iterative Least Mean Square Learning of Separable Classifiers

Our approach to classifier training modifies an algorithm introduced by Venkatachalam
and Aravena [9]. In contrast to their work, we consider spatial convolutions instead of
frequency domain filter design. However, for proofs of some of the assumptions applied
below, the reader is referred to [9].

A convenient approach to binary classifier training applies the well-known method
of least mean squares (LMS) optimization. If we require the parameter matrix to be a
one term separable filter W = uvT and if we consider the equivalence

uvT � X =
∑
k,l

(uvT )klXkl =
∑
k,l

ukvlXkl = uT Xv, (2)

then we can write the LMS error function as:

E(u,v) =
1
2

∑
α

(
yα − uT Xαv

)2
(3)

where {Xα, yα}α=1,...,N is a sample of image patches of sizem×nwith corresponding
class labels. A solution for u and v can be determined as follows: Given an arbitrary
vector u ∈ R

m, we can compute xαT

u = uT Xα and then rewrite equation (3):
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E(u,v) =
1
2

∑
α

(
yα − xαT

u v
)2

(4)

which is of the form usually encountered in LMS optimization. Consequently, we can
determine the optimal set of weights v∗(u) by means of the usual approach of set-
ting ∇vE(u,v) = 0. A closed form solution for v∗ exists if the correlation matrix
C =

∑
α xα

uxαT

u is non singular. In this case, v∗ = C−1ỹ where ỹ denotes the cross
correlation vector between inputs and labels.

for i = 1, . . . , k
randomly initialize ui

normalize ui ← ui

‖ui‖
orthogonalize ui ← ui −

∑i−1
j=1

uT
j ui

uT
j uj

uj

repeat
uold

i ← ui

solve E(ui,vi) = 1
2

∑
α

(
yα − uT

i Xαvi

)2
for vi

orthogonalize vi ← vi −
∑i−1

j=1

vT
j vi

vT
j vj

vj

solve E(ui,vi) = 1
2

∑
α

(
yα − uT

i Xαvi

)2
for ui

normalize ui ← ui

‖ui‖
orthogonalize ui ← ui −

∑i−1
j=1

uT
j ui

uT
j uj

uj

until ‖uold
i − ui‖ ≤ ε

endfor

Fig. 1. Iterative algorithm to learn the parameter vectors ui and vi

of a k term separable linear classifier

Given v∗, we can
compute ∇uE(u,v∗)
and hence determine u∗.
As we started with an ar-
bitrary u, these two steps
have to be iterated until
a convergence criterion is
met. It can be shown that
the solution does not de-
pend on the length of u.
Therefore, we constrain
the vector u to be of
unit length ‖u‖ = 1.
On the one hand, this
introduces additional ef-
fort, because it requires
normalizing u after each
iteration. On the other
hand, as E(u,v∗) be-
comes a continuous, con-
vex function over the unit
ball in Rm, which is a
compact set, normaliza-
tion guarantees the con-
vergence of the proce-
dure. Moreover, the unit
length constraint provides a simple convergence criterion. In our implementation, we
use ‖ut − ut−1‖ ≤ ε, which proved to converge quickly.

Note that the classifier that results from this procedure only comes along with m+n
coefficients, whereas, in the non-separable case, one would have learned m · n param-
eters. In its current form, the separable classifier therefore seems less flexible than the
usual solution. However, having derived a solution for a one-term separable classifier,
we can construct a separable classifier such that its weight matrix is the sum of k rank
1 separable matrices: W =

∑k
i=1 uiv

T
i .

One can show that, if W k =
∑k

i=1 uiv
T
i is a k-term representation of the co-

efficient matrix of a classifier, a (k + 1)-term solution can be found by minimizing
E(uk+1,vk+1), if, for i �= j, the parameter vectors obey uT

i uj = 0 and vT
i vj = 0.
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Given the one-term solution, a binary classifier with an arbitrary k > 1 can be gener-
ated using recursion. The above optimization method simply has to be extended, such
that, after each iteration, the vectors vk+1 and uk+1 are orthogonalized with respect to
{vi}i=1,...,k and {ui}i=1,...,k, respectively. Orthogonalization can be done by applying
the Gram-Schmidt procedure.

Figure 1 summarizes the iterative algorithm for training a k-term separable linear
classifier. Next, we point out favorable characteristics of this approach, and then, we
present results obtained with our separable object detectors.

2.2 Benefits of the Separable Approach

It is interesting to note that any matrix W can be written as a sum of separable matrices.
This immediately results from the singular value decomposition W =

∑r
i=1 σiuiv

T
i ,

where r is the rank of W , the σi are its singular values, and ui and ui denote the
left and right singular vectors, respectively. Although the proof is omitted here, the
orthogonality of the singular vectors actually establishes why, in our iterative approach,
we must orthogonalize the coefficient vectors. However, this analytical, SVD-based
approach to classifier design has little appeal for practical application.

For a separable classifier resulting from the SVD of a given coefficient matrix, con-
volving an image will require O(r(m + n)) operations per pixel. As the gain in speed
depends on the rank r of W , there will be no speed benefit in many practical cases.
Dealing with the detection of elongated objects (see Fig. 2), W will be of rectangular
form so that its rank will most likely be r = min{m,n}. If, w.l.o.g, r = m, the convo-
lution effort will amount to m(m+ n) = m2 +mn > mn and separated classification
will be even more expensive. Of course, the number of terms in the SVD representation
of W can be reduced to k < r. However, although SVD yields the minimal Frobenius
norm ‖W −

∑k
i=1 σiuiv

T
i ‖F for any k, practical experience shows that the corre-

sponding classifiers perform worse than the original one. Using our learning algorithm,
both of these drawbacks can be avoided. As the separable classifier is derived directly
from data rather than from the optimal non-separable version, our algorithm guarantees
reasonable results, even in the case where k � r = rank(W ). Of course, choosing a
small k results in classifiers having fast runtimes.

Furthermore, the SVD approach requires knowledge of the m × n coefficient ma-
trix W of a given classifier. Training this classifier using least mean squares requires
the computation and inversion of a covariance matrix C with dimensions mn × mn.
For larger values of m and n and many training examples α = 1, . . . , N , this will be
very time consuming—even on modern computers. Therefore, in addition to the speed
benefit during runtime, our technique also significantly speeds up the training phase:
The covariance matrices Cu and Cv that appear in the learning algorithm for separable
classifiers are of considerably reduced sizes m×m and n× n, respectively.

Finally, note that fast training and operation times allow us to consider fairly large
values for m and n. The resulting linear classifiers thus can process data from very
high dimensional feature spaces. This actually guarantees reasonable reliability in ob-
ject detection. According to Cover’s theorem [10], the probability of finding a suitable
hyperplane that separates data of any class distribution increases with the dimension of
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Fig. 2. Exemplary detection results on the Coke sequence provided by Black and Jepson [11]

Fig. 3. Exemplary detection results on the desk sequence provided by Gorges et al. [12]

the embedding space. Even if our approach only considers linear discriminance between
classes, it can generally be expected to yield good performance.

The experimental results presented in the next section stress that these properties of
separable linear classifiers provide an auspicious avenue to online learning for object
detection.

3 Experiments in Online Object Learning

In our experiments, we considered several video sequences known from the literature
on tracking or scene reconstruction. All sequences show various moving objects in real-
world office environments.

In each experiment, the intended object was manually specified in the first frame
of a sequence. Then, 30 image patches were randomly selected from the neighborhood
of the object and were used as positive training examples (class label +1); 240 image
patches randomly selected from outside the neighborhood served as counter examples
(class label -1). Training and classification were carried out on simple grey-value in-
tensity information. The activation threshold θ was set to the minimum value resulting
from projecting the positive examples onto the normal of the hyperplane learned in the
training phase.

After training on the first frame of a sequence, the subsequent frames were con-
volved with the resulting classifiers. This was done in a brute force manner, where the
whole image was convolved and not merely the regions of interest. The intended ob-
ject was said to be detected where the resulting filter response exceeded the activation
threshold θ. Note that we applied a non-maximum suppression to the response map,
which reduced the number of false positives. After λ frames, the classifier was retrained
using the current image; we experimented with λ ∈ {3, 6, 9, . . . , 30}.

Next, we discuss our findings for two of our test cases in more detail.
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Fig. 4. Precision recall curves for the Coke sequence (left) and the desk sequence (right). The
diagrams show the performance of different k term separable classifiers; the free parameter that
was varied to generate the curves was the online update rate λ.

3.1 Coke Sequence

In the Coke sequence recorded by Black and Jepson [11], a tin can is moved in front of
a static camera (see Fig. 2). We used 115 × 59 images patches to learn an appearance
based model of the can. The diagram on the left in Fig. 4 shows precision recall curves
obtained for separable classifiers of different ranks k. The highest recall (100%) resulted
from a rank 4 classifier retrained every 21 frames. This classifier detected every instance
of the moving can, however, the rate of false positives was 20%. The best performance
was reached by a rank 6 classifier that was also retrained every 21 frames. Note that we
measure performance quality in terms of equal error rate (EER), which characterizes
the point where recall and precision are equal; for our best performing classifier we ob-
tained an EER of 96%. Therefore, updating the classifier every 21 frames best captures
the appearance variation due the the can’s movement. The poorer performance for more
frequent retraining appears to be an over-fitting phenomenon.

The diagram on the left in Fig. 5 plots recall and precision against operation fre-
quency of the tested classifiers. As one would expect, the 4-term classifiers perform
fastest. On a 3GHz Intel Xenon PC, the 155 frames, each of size 320× 240, were pro-
cessed at a frequency of approximately 10.5Hz, including file I/O and retraining. The
most reliable 6-term classifier was measured to operate at 7.4Hz.

3.2 Desk Sequence

Though the results obtained on the Coke sequence are encouraging and representative
for most of our experiments, a caveat remains concerning the feature space we consid-
ered for classification. The 86 frames of a resolution of 640× 480 of the desk sequence
provided by Gorges et al. [12] were recorded by a mobile camera panning across an
office desk (see Fig. 3). To detect the CD on the left of the scene, we used 121 × 121
windows. Since the image sizes are four times as large as those in the Coke sequence,
the operation frequencies of the resulting classifiers dropped to about a fourth of the
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Fig. 5. Precision and recall and corresponding operation frequencies measured for the 320 ×
240 images of the Coke sequence (left) and for the 640 × 480 images of the desk sequence
(right). Again, the performance of different k term separable classifiers is shown for varying
online update rates λ.

ones in the experiments above (see right hand side of Fig. 5). As shown in the digram
on the right in Fig. 4, for all rank k classifiers considered in our tests, an update rate λ
could be found that yielded high recall rates and reliable CD detection. However, the
problem with this sequence is that there are many false positives because the cover of
the magazine that is located behind the box becomes visible in the middle of the se-
quence. As it is very similar to shape and color of the intended object, the cover was
frequently classified to depict the CD. The exemplary results in Fig. 3 were obtained
with a 7 term separable classifier that was retrained every 18 frames and showed a recall
of 83% and a false positive rate of about 59%.

Obviously, online learning did not provide a remedy in this pathological case. How-
ever, the problems encountered here do not constitute an inherent shortcoming of our
technique. Rather, they are due to the type of features we considered in our experiments.
Although simple intensity values yielded satisfactory results in many cases, the desk se-
quence shows that, depending on the application scenario, other features might have to
be considered. To further improve our results, we are currently experimenting with an
image representation framework recently proposed by Koenderink [13].

4 Conclusion and Outlook

This paper presented a fast and conceptually simple approach to visual object detection.
We described an iterative, two-step optimization method for learning a binary, one-term
separable linear classifier from a set of positive and negative example images. Given
the optimal one-term classifier, classifiers of arbitrary higher ranks can be obtained
from a recursive scheme. By design, the resulting classifiers correspond to linear filters.
The classification process itself thus consists of convolving an input image. Since the
detectors are separable, their runtime is fast—even for large filter masks. Nevertheless,
the required training times are very short. While other recent contributions dealing with
online learning report update times of slightly more than a second [6,7,8], our approach
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reaches several Hz. Experimental results on image sequences known from literature
show that this allows for real online learning and adaption of the classifiers.

There are numerous promising directions for further research on our rapid
appearance-based approach to object learning. We will especially consider the follow-
ing ideas: it would be interesting to see if separable classifier matrices can be subjected
to affine transformations in order to reduce online update rates but nevertheless detect
objects while the camera zooms or rotates. Moreover, integrating separable classifiers
into tracking applications seems auspicious. One can imagine a particle filter for robust
tracking, where the object models are given as separable classifiers. The adaption step
of the filter would correspond to classifier retraining as in our current implementation.
Also, if, in the verification step of the particle filter, the classifiers are only applied to
small areas of the whole image, the resulting tracker should be fast and accurate.
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Abstract. We propose the algorithm for detecting great circles on im-
ages on a sphere using the Hough transform. Since our Hough transform
on images on a sphere is derived on the basis of the duality, the Hough
transform employs a dual sphere as the accumulator of the voting proce-
dure. Furthermore, we propose a robust algorithm based on three-point
Hough transform and the segmentation of points on the dual sphere using
the metric defined on a sphere.

1 Introduction

In this paper, we propose the detection of great circles on images on a sphere,
that is, spherical images, using the Hough transform. Images acquired using an
all-central omnidirectional camera system are transformed to spherical images
[1,2,3] when the appropriate camera factors of the camera systems, which are
generally given in the design phase, are known. Therefore, it is possible to adopt
the detection of lines by Hough transform as a preprocess to three-dimensional
scene reconstruction from omnidirectional images. It is also possible to analyze
the omnidirectional images directly and to develop algorithms based on it [3,4].
However, it is required to modify the developed algorithms depending on the
omnidirectional camera systems. For the establishment of unified theory to the
omnidirectional systems, we propose the image analysis on spherical images.

Lines in a space, for instance, edges of walls in a man-made environment, are
transformed to great circle arcs on a spherical images. The detection of edges in
a space from a spherical image is achieved by detection of great circle arcs. The
great circles and great arcs correspond to lines and line segments on a plane. This
geometrical correspondence implies that great circles on S2 are geometrically and
practically fundamental features for image analysis on a sphere. Therefore, the
aim of this study is to derive an algorithm for the detection of many great circles
on a sphere.

2 Hough Transform for Great Circle Detection

As illustrated in Fig. 1 (a), since a great circle on the unit sphere S2 ∈ R3

centered at the origin is the intersection of S2 and a plane passing through
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Fig. 1. (a) and (b) Duality of a great circle and a point on S2
+. (c) Duality of a line

on a plane and a point on S2
+.

the origin, a great circle defines a pair of antidirectional unit normal vectors.
Furthermore, as illustrated in Fig. 1 (b), the antidirectional unit normal vectors
define the same plane that passes through the origin. Therefore, a great circle
corresponds to a vector on the positive unit hemisphere which is defined as
S0

+ = [1], S1
+ = S1 ∩ H2

+ ∪ {s2}, s2 = (s, 0)�, s ∈ S0
+, H2

+ = {(x, y)|y > 0},
S2

+ = S2 ∩H3
+ ∪{s3}, s3 = (S1

+, 0)� and H3
+ = {(x, y, z)|z > 0}. We set x ∈ Rn

and ξ ∈ Pn−1. For n ∈ S2
+ and x ∈ R3, a great circle C is given as

C = {x|n�x = 0, |x| = 1}. (1)

Therefore, formally the transformation from C to S2
+ is expressed as

f(C) = λ
x× y

|x× y| , f−1(n) = {x|n�x = 0, |x| = 1,n ∈ S2
+}, (2)

where x,y ∈ S2 and λ ∈ {−1, 1} is selected so that vector f(C) lies on S2
+.

This transformation allows us to adopt the Hough transform for the detection
of great circles. As illustrated in Fig. 1 (c), there exist correspondences between
a line l on a plane and a point on S2

+,

g(l) = λ
ξ × η

|ξ × η| , g−1(n) = {x|n�ξ = 0, ξ = (x�, 1)�,n ∈ S2
+}, (3)

where ξ = (x�, 1)�, η = (y�, 1)� and x,y ∈ l. The transformation is based on
the embedding of projective plane P 2 into a unit sphere S2 in Euclidean space
R3. This duality provides the theoretical background of the traditional Hough
transform on the plane. We call this relation the Hough duality. As shown in Eq.
(2), the duality of great circles and points on the sphere has the same property
as the Hough duality. For a planar line and a point in the projective plane,
the function f(C) transforms points lying on a great circle to a point n. Using
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the transformation f(C) and S2
+ as the voting operation and the accumulator,

respectively, we can design the Hough transform for great circle detection based
on these duality.

Considering these geometrical properties, our task is described as follows.

Task 1. Extract n great circles from a collection of digitized sample points P =
{xi = (xi, yi, zi)}mi=1 on the unit sphere, that is, |xi| = 1, assuming that

1. n� m,
2. a collection of samples P contains samples from background and
3. elements of P involve noise.

For a unit vector a = (a, b, c)� on S2, a great circle on S2 is defined as

l = S2
⋃
{x|x�a = 0,x ∈ R

3}. (4)

Therefore, setting

u(a) =
{

1, a = 0,
0, otherwise, (5)

the classical Hough transform detects the peaks of the function [5,6], as illus-
trated in Figs. 2 (a) and (b).

v(a ∈ S2
+) =

∑
xi∈P

u(a�xi). (6)

It is possible to use the dual sphere S2
+, as the accumulator of detecting the

peaks of Eq. (6). The randomized Hough transform [5,7,8] detects the peaks of
the function, as illustrated in Figs. 2 (c) and (d),

v(a ∈ S2
+) =

∑
xi,xj∈P

u(a− aij), aij = λ
xi × xj

|xi × xj |
, λ ∈ {−1, 1}, (7)

for a randomly selected pair of vectors xi and xj on a sphere. λ is selected so
that vector aij lies on S2

+.
Next, we can evaluate the robustness of Hough transform on a sphere which

employs S2
+ as the voting space of a great circle l ∈ S2. Setting x̂i = xi + ε and

x̂j = xj +ε to be the points on a sphere that includes noise ε, the possibility of a

normal vector is computed as âij = λ
x̂i×x̂j

|x̂i×x̂j | = aij +εāij +O(ε2). If âij is voted
to the accumulator with finite resolution, the noise definitively affects the result
of estimation of the normal vector through the voting procedure. Our Hough
transform employs S2

+ as the voting space of a great circle l ∈ S2. Therefore, we
estimate the normal vector from the collection of points on S2. The estimation
from the collection of points {âij} enables us to reduce the noise influence, as
described in Section 3. Therefore, it is possible to compute the normal vector
aij robustly.

In both classical and randomized Hough transforms, the detection of peaks
{a∗

t }nt=1 enables to classify the sample points into clusters, respectively, using
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Fig. 2. (a) and (b) The classical Hough transform on a spherical image. (c) and (d)
The randomized Hough transform on a spherical image.

the relation xα ∼ xβ , if xα,xβ ∈ Pt for Pt = {xγ | |x�
γ a∗

t | ≤ τ}, since the peaks
{a∗

t }nt=1 on S2
+ yield lines

x�a∗
t = 0, t = 1, 2, · · · , n. (8)

3 Robust Algorithms for Hough Transform on a Sphere

3.1 Three-Point Hough Transform on a Sphere

In this study, we employ the randomized Hough transform in Eq. (7) for the
great circle detection in a spherical image. Since practical implementation of
the equi-grid on a sphere [9,10,11] is technically difficult and computationally
expensive, we directly use the geometrically defined sphere, which is the dual
space of the image on a sphere, as the voting space. This means all aij in Eq.
(7), which are the possible lines, are voted to the dual space, that is, the sphere
of the dual space.

Problem 1. Classify the mismatched selection in aij during the voting procedure.

Since aij is voted from all combinations of points on the spherical image, aij

implies noise resulting from mismatched selection of the points for great circle
detection. Solving this problem, we use the Hough transform using three points
[8]. We vote np to the voting space, that is, a sphere as the dual space, using
the following algorithm.

Algorithm 1. Three-Point Hough Transform on a Sphere

1. Set aij = λ
xi×xj

|xi×xj | as a possible normal vector which denotes a great circle
on a sphere.

2. If u(
∑m

k=1 a�
ijxk) ≥ 3, then select np = aij and vote {np}qp=1 to the voting

space.

This voting procedure also removes the points of background as outliers.
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3.2 Point Cloud Segmentation on a Sphere

The points {np}qp=1 on the dual sphere detected using Algorithm 1 described
in the previous section still includes the noise yielded by the sampling and dis-
cretization process. Therefore, the points {np}qp=1 are expressed as point clouds
on the dual sphere. We are required to segment point clouds to {P̄t}nt=1 and to
select the centroid of P̄t. For the collection of points segmented to {P̄t}nt=1, we
give the following definition.

Definition 1. The axis of the cone, which includes a collection of points P̄t, is
the centroid of P̄t.

The centroid of P̄t express the normal vector which denotes the great circle in
S2. Assuming that we have the cone axis as illustrated in Fig. 3 (a), which is
the centroid of P̄t, it is possible to extract P̄t from the point clouds {np}qp=1.
We define that θ, 0 ≤ θ ≤ π/2, is an opening angle which is the apex angle of
the cone. Setting

u∗(a) =
{

1, a ≥ 0,
0, otherwise, (9)

we have the function dp(θ) =
∑q

j=1 u
∗( θ

2 − | cos−1(n�
p nj)|). This function dp(θ)

evaluates the number of points in the cone, whose axis is np, with respect to
the changes of θ. As illustrated in Fig. 3 (b), when the opening angle of a cone
is large and small, the cone includes other collections of points and does not
include a collection of points P̄t, respectively. As illustrated in Fig. 3 (a), if we
select the first peak of the function dp(θ) with respect to np, it is possible to
define the opening angle of the cone which extracts a collection of points P̄t from
the point clouds {np}qp=1. We give the following definition.

Definition 2. The minimum opening angle θp of a cone, whose axis is np, is
derived by selecting the first peak of the function dp(θ).

Since we have no criterion for selecting np as the cone axis, we must select the
centroid np from {np}qp=1 and segment {np}qp=1 to {P̄t}nt=1 simultaneously.

np

θ

P̄tP̄t+1

P̄t−1

(a)

np

θ

P̄tP̄t+1

P̄t−1

(b)

npnp+1

np−1
np+2

np+3

(c)

np

np+1

np−1

(d)

Fig. 3. (a) and (b) Estimation of minimum opening angle. (c) and (d) Iterative se-
lection of a cone which includes the maximum number of points w.r.t the minimum
opening angle and removal of the points.
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For p = 1, 2, · · · , q, we compute the minimum opening angle θp with respect
to np, as illustrated in Fig. 3 (c). If the cone, whose axis is np, with the mini-
mum opening angle θp includes maximum numbers of points in the point clouds
{np}qp=1, we select the axis np as the center of a collection of points. For select-
ing other axes, that is, other great circles, the collection of points in this cone is
removed from {np}qp=1 as illustrated in Fig. 3 (d). If we iterate this procedure, it
is possible to segment the point clouds and, simultaneously, to select the centroid
of the point clouds. We summarize this algorithm as follows.

Algorithm 2. Segmentation of Point Clouds in the Voting Space

1. Set t := 1.
2. For {np}qp=1, compute the minimum opening angles {θp}qp=1.
3. For p = 1, 2, · · · , q, search the cone that includes the maximum numbers of

points, employing the minimum opening angles θp.
4. Set the points included in the cone as P̄t and set the cone axis np as a great

circle at.
5. Eliminate the points in P̄t from {np}qp=1 and update the numbers of points

q.
6. Set t := t + 1.
7. If t < tmax, then go to step 2, else exit.

In this algorithm, tmax is the number of great circles in the sphere. These pro-
cesses enable us to detect great circles on a image on a sphere robustly beyond
the resolution of the accumulator.

4 Numerical Examples

Figs. 4 (a) and (b) show the results of numerical experiments for the synthetic
data from two view angles. The blue dots are the input-data points on a unit
sphere. Our Hough transform detected small and large triangles colored in red
on a sphere from noisy input samples. For the numerical evaluation, we compute
the angles between each normal vector which denotes a line and the normal
vector of the grand truth obtained for generating the input data. Table 1 shows
the normal vectors and the angles for each line.

Applying our Hough transform to real omnidirectional images, we extract the
edges on an input original image using the standard image processing technique

Table 1. Numerical evaluation of synthetic data in Figs. 4 (a) and (b)

Grand Truth Detected Line Angles (rad)

1 (0.00578, 0.315, 0.949) (0.0157, 0.324, 0.946) 0.0139
2 (0.707, 0.707, 0.000) (0.713, 0.701, 0.0171) 0.0190
3 (-0.200, -0.194, 0.960) (-0.241, -0.146, 0.960) 0.0640
4 (0.316, 0.000, 0.949) (0.310, 0.0268, 0.950) 0.0276
5 (0.000, -0.500, 0.866) (-0.0107 -0.490, 0.872) 0.0156
6 (-0.866, 0.500, 0.000) (-0.861, 0.508, -0.0369) 0.0382
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Fig. 4. (a) and (b) Results of great circle detection for synthetic data from different
view angles. (c), (d) and (e) Results of great circle detection for the 1600 × 1200-
resolution fish-eye-lens camera image. (c) Input image and points, which are colored
blue, extracted by Canny operator [12]. (d) Blue points projected onto a sphere and
the 17 great circles, which are colored red, detected by our Hough transform. (e) The
extracted points using Canny operator and the 17 great circles detected by our Hough
transform in (d) are mapped to an image on a sphere.

[12] and then map the extracted points to a sphere. Fig. 4 (c) shows an input image
captured by a fish-eye-lens camera, which is Nikon Coolpix 950 and Nikon Fish-
eye converter FC-E8, and extracted points which are colored blue. 3818 points are
extracted as input samples from the 1600 × 1200-resolution fish-eye image. Our
Hough transform detected 17 great circles on a sphere. Figs. 4 (d) and (e) show the
sample points projected onto a sphere and the detected lines colored in red, and the
17 detected great circles mapped to an image on a sphere, respectively.

5 Conclusions

We introduced the Hough transform on a sphere as a practical application of
image analysis on a sphere. We showed the numerical accuracy and robustness
of the proposed algorithm through numerical experiments. Since we can detect
sufficient numbers of lines in a spherical image, it is possible to employ our Hough
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transform as a preprocessing for the three-dimensional scene reconstruction of a
wide field of view.
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Abstract. Extraction of craniofacial anatomical structures on cephalo-
metric radiographs is important for observing and predicting the growth
changes and evaluating the curative effect in orthodontic analysis. Due
to the natural of cephalograms, it is difficult for simplex image processing
approaches to exactly track both the soft tissue contours and the struc-
ture outlines of internal skull. In this paper, we address this problem by
recognizing 262 landmark points and then connecting them according to
the prior knowledge. Image processing, pattern matching, and modified
active shape model are combined to realize the landmark recognition;
subdivision curves are used to obtain the structure rendering.

1 Introduction

In orthodontic diagnosis and treatment, some advanced cephalometric analysis
(e.g., superimposition) are strongly dependent on the extraction of craniofacial
anatomical structures. Such structure based analysis allows orthodontists to ob-
serve and predict the overview of growth changes and evaluate the curative
effect. Since manual operation is time consuming and some subjective errors are
inevitable with human vision, computerized the structures extraction is signifi-
cant for automated orthodontic analysis.

However, as Romaniuk indicated [1], the detection of structure contour edges
by classical image processing techniques inevitably fails for some local configu-
rations where gradients are low or inverted. Moreover, these methods need the
fine tuning of numerous thresholds for a good detection result. To solve these
problems, a regional approach of type shortest path was proposed in [1] to com-
bine robustness and low algorithmic cost, but only the external cranial contour
(dome of the skull limited by the nose and the lowest point of the cranium) was
extracted. Actually, due to the nature of cephalograms, it is difficult for sim-
plex image processing approaches to extract both the soft tissue edges and the
structure outlines of internal skull exactly.

In this paper, we address this problem from a different point of view. Instead
of detecting the structure edges directly, we start with recognizing 262 landmark
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points situated on the structure contours, some of which are cephalometric land-
marks [2] and the others are selected according to the prior knowledge of struc-
tures. Subdivision curves are used to connect the located landmarks to trace out
all craniofacial structures. The structures and landmarks to be identified are
shown in Fig. 1.

Fig. 1. Craniofacial structures and landmarks to be recognized

2 Landmark Recognition

2.1 Method Overview

Early works [3][4][5] usually locate commonly-used cephalometric landmarks
based on edge detection techniques. After extracting relevant edges, landmarks
are located based on a set of pre-defined geometrical properties. Differing from
this strategy, our objective requires the recognition algorithm independent on
edge information. The statistical model approaches are applicable. Romaniuk
[6][7] and Sid-Ahmed [8][9] made substantial contribution in this field. In de-
signing our algorithm, we were also greatly influenced by Hutton’s work [10]
in which the active shape model (ASM) [11], being widely used in statistical
pattern recognition, was employed.

Classical ASM method consists of two steps. First, the mean shape model of a
training set and the gray models of landmarks are trained. Then, every landmark
in the mean shape is iteratively searched to its best matched position according
to the statistical gray profile. However, the number of located landmarks by this
method or any other existing work is no more than thirty, which is much less
than that in this study. Our previous work [12] has shown that the large-scale
point set poses great challenge. In the standard ASM search, the shape model
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is transformed between model space and input space by affine transformations
similar to

T

(
x
y

)
=
(

sx 0
0 sy

)(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
+
(

tx
ty

)
. (1)

Only the global optimization can be obtained in this way and there are still
some points which will be placed far from their matched ones. Meanwhile, lots
of landmarks have similar gray profiles because of the dense distribution and
the nature of cephalograms. The gray search, therefore, is error-prone or even
not convergent. The misplacement will also increasingly occur when the shape
similarity between the shape model and the input shape is low since (1) is a
similarity transformation.

To solve such problems, we select twelve landmarks as reference points and
use them to divide every training shape to ten independent regions according to
the anatomical knowledge. For each region, principal component analysis (PCA)
is applied to build its shape model and to extract the gray statistics of landmarks.
When an image is input, the reference landmarks are detected by edge detection
techniques and a pattern matching algorithm. Then each region is exactly lo-
cated by a modified ASM. In our method, the shape partition will decrease the
granularity of modeling and search, and the transformations could be extended
to more general form so that the majority of landmarks can be placed more
closely to their matched ones and avoid the interference with others.

2.2 Training

170 cephalograms, digitalized with a resolution of 600dpi and sized to 600×700
pixels, are provided by Peking University School of Stomatology as the training
materials. They have been located manually by human experts.

Craniofacial Shape Partition. Twelve landmarks are selected as Reference
Landmarks (see Fig.2). Based on them, every training shape is divided to ten
independent regions according to the anatomical knowledge of craniofacial struc-
tures, with each region being determined by three reference landmarks (see Table

Fig. 2. Reference Landmarks
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1). We can see that each craniofacial structure belongs to and only belongs to
one certain region.

Table 1. Craniofacial shape partition

Reference landmarks Associated structures

SOr, S, Se cranial base
S, Co, Se posterior cranial base
Co, Se, PNS pterygomaxillary fissure
Co, Go, PNS ascending ramus, sigmoid notch, coracoid
N, ANS, PNS infraorbital rim, maxillary sinus
PNS, ANS, UIE palate, maxillary central incisor
PNS, Go, UIE molars
Go, UIE, Me mandible
UIE, RGn, Me mandibular central incisor, chin
N, Prn, Me soft tissues

Shape Modeling. For each region, its training shapes are aligned by Pro-
crustes analysis [13]. Then PCA is employed to extract their common features.
Representing the ith training shape by its corresponding landmark vector xi,
the covariance matrix of the shape set is given by

C =
1
n

n∑
i=1

(xi − x̄) · (xi − x̄)T
. (2)

Its normalized eigenvectors, explaining the most principal variations of the shape
space, compose an orthonormal basis of the pattern Φ = (p1p2 . . . pn). Thus, the
difference between any shape x with the mean shape can be represented as a
linear combination of Φ. Then we have

x = x̄ + Φ · b. (3)

It means x can be regarded as the result of a series of transformations, deter-
mined by shape parameter b, on x̄. Ordering the eigenvectors in terms of non-
increasing eigenvalues, the dimension of Φ is set to the number of first t eigen-

vectors that sufficiently explain 95% of the total variance (
t∑

i=1

λi ≥ 95% ·
n∑

i=1

λi).

By this the shape variations of the region can be represented by x̄ and Φ.

Landmark Gray Profile. We sample every landmark to characterize its gray
profiles. Assume A is a landmark on image i, we sample the gray values of k
points along its normal on each side of A, including its own. In order to reduce
the effects of global intensity changes, r derivative points are sampled for each
sample point Aij(j ∈ [1, 2k + 1]) along the tangent direction of A on each side
of the normal (see Fig. 3).
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Fig. 3. Gray sampling of landmark A

The weighted average of these 2r + 1 points, noted as gAij , is recorded as
sample result of Aij . Obtaining 2k + 1 sample values (gAi1, gAi2, . . . , gAi(2k+1)),
we define the normalized gray profile of A as

yAi =
dgAi(2k)

2k∑
j=1

dgAij

(4)

where
dgAij = (gAi2 − gAi1, gAi3 − gAi2, . . . , gAi(j+1) − gAij). (5)

This is repeated on every image and we can obtain a set of normalized profiles
of A: (yA1, yA2, . . . , yAn). Applying PCA, the gray profile of A is built into ȳA

and ΦA.

2.3 Recognition

Reference Landmark Detection. As an image is input, Gaussian blurring is
applied to remove fine image detail and noise leaving only larger scale changes.
The Sobel operator is used to extract cranial contours edges. Then the rough
edges are thinned and traced. Reference landmarks UIE, Me, N, Go and Prn
can be located according to their geometrical properties.

A pattern matching algorithm is proposed to locate the other reference land-
marks. As shown in Fig.4, lines are drawn to connect the detected landmarks
and the centroid of polygon. Taking the direction of UIE -Go as x-axis, eighteen
features are extracted (see Fig.4), and each x-ray image can be represented by
a 18-dimension Feature Vector (l1, . . . , l10, c1, . . . , c5, θ1 . . . θ3). We normalize the
feature vector with l1 as the unit length. Then the training images whose dis-
tances to the input image are less than a pre-defined threshold are selected. The
distance between two images is given by the Euclidean distance between their
feature vectors. We can see that the matching process is insensitive to the differ-
ence of reference frames because of the selection of x-axis and the normalization.

For every remaining reference landmark, we project its positions on the se-
lected images to the input space and calculate their mean as the detection result.
While all reference landmarks are detected, the shape partition is carried out on
the input image according to Table 1.
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Fig. 4. Pattern extracted from UIE, Me, N, Go and Prn

ASM Recognition. For each region, we first project its mean shape from the
model space to the input image space by an affine transformation X = T (x). T
is given by

T

(
x
y

)
=
(

x · a1 + y · b1 + c1

y · a2 + y · b2 + c2

)
. (6)

Since the positions of three reference landmarks associated with this region are
known both in the model space and the image space, we can obtain the param-
eters (a1, b1, c1, a2, b2, c2).

Assume A is a landmark in the region, we search its best matched point A′

on the image along the normal, and update A to A′. Here A′ means the point
whose normalized gray profile yA′ has the minimal Mahalanobis distance to the
one obtained from training. The Mahalanobis distance is calculated as

M = (yA′ − ȳA)T · S−1
A · (yA′ − ȳA) (7)

where SA is the covariance matrix of the gray profiles of A. Then the reversed
transformation T−1 is used to map the new matching point set Y back to y in
the model space. The shape parameter b of y is updated by

b = ΦT (y − x̄). (8)

The constraint of |bi| ≤ 3
√

λi is applied to bi since it is assumed the variations
of shapes are distributed as a multivariate Gaussian on pi, where λi is the ith
largest eigenvalue. With the newly obtained shape parameter, the shape x in the
model space is updated according to (3), and the shape X in the image space is
updated by (6). The procedure of gray search and parameter update is iterated
until X is converged. The recognition of the input sample comes to an end when
this procedure is performed on all regions.

2.4 Experimental Results

The method was tested on fifty-four x-rays which were not used for training.
The mean difference between the results obtained by the algorithm and those



Computerized Extraction of Craniofacial Anatomical Structures 369

given by the human experts was 1.98 mm. It was primarily acceptable in clinical
treatment since the mean error of manual landmarking is about 1.26 mm [14].

3 Structure Rendering

An interpolation subdivision scheme is utilized to trace out the craniofacial
structures. First, the located landmarks are connected by lines according to
the prior knowledge of structures. Then for a series of landmarks P0, P1, . . . , Pn,
new points are interpolated in accordance with the following rules:{

P k+1
2i = P k

i i ∈ [−1, 2kn + 1]
P k+1

2i+1 = (1
2 + w)(P k

i + P k
i+1)− w(P k

i−1 + P k
i+2) i ∈ [−1, 2kn]

(9)

where w is a weight factor.
The interpolation process keeps all the original points and inserts new ones

in between. If the contour is not closed, we use each ending point twice at each
end; otherwise, point indices are circular. In order to generate smooth contours,
we apply this scheme twice or more according to the geometric properties of the
structures. Fig.5 shows two examples.

Fig. 5. Examples of structure extraction

4 Conclusion

In this paper we propose a two-level method to locate 262 landmarks on cephalo-
metric radiographs so that the extraction of all craniofacial structures can be
obtained. It is useful for automating the structure based advanced orthodontic
analysis such as superimposition. Experimental results preliminarily proves that
the method is applicable in orthodontic treatment. In the experiment we also
notice that the final results somewhat depend on the localization accuracy of the
reference landmarks. We will study this influence quantitatively in the future.
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Stability of the Eigenvalues of Graphs
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Abstract. The spectra of graphs has been widely used to characterise
and extract information from their structures. Applications include
matching, segmentation and indexing. One of the key questions about
this approach is the stability and representational power of the spectrum
under changes in the graphs. There is also a wide variety of graph matrix
representations from which the spectrum can be extracted. In this paper
we discuss the issue of stability of various graph representation meth-
ods and compare five main graph representations; the adjacency matrix,
combinatorial Laplacian, normalized Laplacian matrix, heat kernel and
path length distribution matrix. We show that the Euclidean distance
between spectra tracks the edit distance over a wide range of edit costs,
and we analyse the stability of this relationship. We then use the spectra
to match and classify the graphs and demonstrate the effect of the graph
matrix formulation on error rates.

1 Introduction

Graph structures have been used to represent structural and relational arrange-
ments of entities in many vision problems. The key problem in utilising graph
representations lies in measuring their structural similarity. The nodes of a graph
are not ordered or labelled, and therefore the node correspondence problem must
be solved before structural similarity can be assessed. Many authors have em-
ployed the concept of graph edit distance. The idea here is to perform elementary
editing operations on a graph, such as edge or node insertion and deletion, to
make pairs of graphs isomorphic. Each operation has an associated ‘cost’, and
the minimum total cost of the set of edit operations can be used to gauge the
similarity of the graphs. For example, Fu et al[7,11] have computed similarities
using separate edit costs for relabeling, insertion and deletion on both nodes
and edges. A search is necessary to locate the set of operations which have min-
imal cost. More recently, Bunke[2,3] has established a relationship between the
minimum graph edit distance and the size of the maximum common subgraph.
Torsello and Hancock[1] have exploited this relationship to cast the problem into
a continuous optimisation framework.

In recent work[12,13,6], we have shown how spectral features can be found
which can characterise a graph and which can be used for graph comparison.
This approach is based on spectral graph theory, which is a branch of mathemat-
ics that is concerned with characterising the structural properties of graphs using
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the eigenvectors of the adjacency matrix or the closely related Laplacian matrix
(the degree matrix minus the adjacency matrix) [4]. One of the well known suc-
cesses of spectral graph theory in computer vision is the use eigenvector methods
for grouping via pairwise clustering. Examples include Shi and Malik’s [9] itera-
tive normalised cut method which uses the Fiedler (i.e. second) eigenvector for
image segmentation and Sarkar and Boyer’s use of the leading eigenvector of
the weighted adjacency matrix [8]. Graph spectral methods have also been used
to correspondence analysis. Kosinov and Caelli[5] have used properties of the
spectral decomposition to represent graphs and Shokoufandeh et al[10] has used
eigenvalues of shock graphs to index shapes. We have previously shown[12,13]
how permutation invariant polynomials can be used to derive features which
describe graphs and make full use of the available spectral information.

A number of alternative matrix representations have been proposed in the
literature. These include the adjacency matrix, Laplacian and normalised Lapla-
cian. More recently, variations of the heat kernel on the graph have also been
used. The spectrum of all of these representations may be used to characterise
the graph, and each may reveal different graph properties. Some of these repre-
sentations may be more stable to perturbations in the graph. In this paper we
analyse these matrices and quantify the effect the matrix representation has on
the stability and representational power of the eigenvalues of the graph. In sec-
tion 2, we review the standard graph representations. In section 3, we describe
more recent graph matrices based on the heat kernel and path length distribu-
tions. Section 4 describes how we measure the stability and representative power
of the eigenvalues. Finally, section 5 details the experiments aimed at measuring
the utility of these representations.

2 Standard Graph Representations

In this section, we review the properties of some standard graph representations
and their relationships with each other. The graphs under consideration here are
undirected graphs. Whilst we do not consider weighted graphs here, these ideas
are straightforwardly extended to such graphs. We denote a graph by G = (V,E)
where V is the set of nodes and E ⊆ V × V is the set of edges. The degree of a
vertex u is the number of edges leaving the vertex u and is denoted du.

2.1 Adjacency Matrix

The most basic matrix representation of a graph is using the adjacency matrix
A for the graph. This matrix is given by

A(u, v) =
{

1 if (u, v) ∈ E
0 otherwise

(1)

Clearly if the graph is undirected, the matrix A is symmetric. As a consequence,
the eigenvalues of A are real. These eigenvalues may be positive, negative or zero
and the sum of the eigenvalues is zero. The eigenvalues may be ordered by their
magnitude and collected into a vector which describes the graph spectrum.
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2.2 Combinatorial Laplacian Matrix

In some applications, it is useful to have a positive semidefinite matrix repre-
sentation of the graph. This may be achieved by using the Laplacian. We first
construct the diagonal degree matrix D, whose diagonal elements are given by
the node degrees D(u, u) = du. From the degree matrix and the adjacency matrix
we then can construct the standard Laplacian matrix

L = D −A (2)

i.e. the degree matrix minus the adjacency matrix. The Laplacian has at least
one zero eigenvalue, and the number of such eigenvalues is equal to the number
of disjoint parts in the graph.

2.3 Normalized Laplacian Matrix

The normalized Laplacian matrix is defined to be the matrix

L̂ =

{ 1 if u = v
− 1√

dudv
if u and v are adjacent

0 otherwise
(3)

We can also write it as L̂ = D− 1
2LD− 1

2 . As with the Laplacian of the graph,
this matrix is positive semidefinite and so has positive or zero eigenvalues. The
normalisation factor means that the largest eigenvalue less than or equal to 2,
with equality only when G is bipartite. Again, the matrix has at least one zero
eigenvalue. Hence all the eigenvalues are in the range 0 ≤ λ ≤ 2.

2.4 Spectral Decomposition of Representation Matrix

The spectral properties,which embody all the information of the graph, can
be obtained from the eigendecomposition of the representation matrix. Take
Laplacian matrix as an example, the spectral decomposition of the Laplacian
matrix is L = ΦΛΦT where Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix
with the ordered eigenvalues as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix
with the ordered eigenvectors as columns. The spectrum is particularly useful
as a graph representation because it is invariant under the similarity transform
PLPT , where P is a permutation matrix. In other words, if we relabel the graph,
the spectrum is unchanged.

3 The Heat Kernel and Path Length Distribution

3.1 Heat Kernel

The heat kernel is based on the diffusion of heat across the graph. It is a repre-
sentation which as attracted recent interest in the literature. We are interested
in the heat equation associated with the Laplacian, i.e. ∂ht

∂t = −Lht where ht
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is the heat kernel and t is time. The solution is found by exponentiating the
Laplacian eigenspectrum, i.e. ht = Φ exp[−tΛ]ΦT . The heat kernel is a |V | × |V |
matrix, and for the nodes u and v of the graph G the resulting component is

ht(u, v) =
|V |∑
i=1

exp[−λit]φi(u)φi(v) (4)

When t tends to zero, then ht � I − Lt, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then ht � exp[−tλm]φmφT

m, where λm is the smallest non-zero eigenvalue and
φm is the associated eigenvector, i.e. the Fiedler vector. Hence, the large time
behavior is governed by the global structure of the graph. By controlling t, we
can obtain representations of varying degrees of locality.

3.2 Path Length Distribution

It is interesting to note that the heat kernel is also related to the path length
distribution on the graph. If Dk(u, v) is the number of paths of length k between
nodes u and v then

ht(u, v) = exp[−t]
|V |2∑
k=1

Dk(u, v)
tk

k!
(5)

The path length distribution is itself related to the eigenspectrum of the
Laplacian. By equating the derivatives of the spectral and the path-length forms
of the heat kernel it is straightforward to show that

Dk(u, v) =
|V |∑
i=1

(1− λi)kφi(u)φi(v) (6)

Hence,Dk(u, v) can be interpreted as the sum of weights of all walks of length
k joining nodes u and v.

4 Measuring the Stability and Representational Power of
Eigenvalues

Our aim in this paper is to assess the usefulness of the eigenvalues for repre-
senting the differences between graphs. In addition, we aim to determine which
matrix representation is most appropriate for this task.

4.1 Graph Distance

The fundamental structure of a pattern space can be determined purely from the
distances between patterns in the space. There are a number of ways to measure
the distance between two graphs, but the most appropriate in this case is the edit
distance[7,2]. The edit distance is defined by a sequence of operations, including
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edge and vertex deletion and insertion, which transform one graph into another.
Each of these operations has an associated cost, and the total cost of a sequence of
edits is the sum of the individual costs. The sequence of minimal cost which trans-
forms one graph into another is the edit distance between the graphs. In the exam-
ples here, we have assigned a cost of 1 to edge insertions and deletions.

Clearly, if the spectrum is to be a good representation in this sense, then the
requirement is that the distance between spectra should be proportional to the
edit distance between the graphs. In this context, the stability of the spectrum
is also an issue which we need to consider. Whilst it may be true on average that
the edit and spectral distances are related, the variation in individual graphs
may be very large. As a consequence we also need to consider the variance of
the spectral distance over large sets of graphs.

4.2 Classification

Classifying a large number of different kinds of graphs is also a common and
important task. Any representation which fails to do this well is not a particularly
good or practical one. Therefore, as well as determining the distance between
graphs, it is also important to be able to classify them using the representation.
If the spectrum is a good representation, then we should be able to identify the
class of a graph even under noisy conditions. In our second set of experiments, we
therefore investigate the classification of graphs when the graphs to be classified
are perturbed by edge deletion operations.

5 Experiments

In this section, we provide some experimental evaluation of the five graph repre-
sentation methods given in the previous sections. There are two aspects of this
study; first, we show that the more similar the two graphs are, the smaller the
Euclidean distance of the eigenvalues will become. We use both Delaunay graphs
and random graphs to demonstrate this. We also compute the relative deviation
of the Euclidean distance to assess the accuracy of this relationship. Second, we
compute the error rate for classification using random graph matching.

In the first experiment we compute the Euclidean distance between the vector
of eigenvalues of the Delaunay graph with thirty vertices and its altered graph,
modified by edge deletion from one to thirty edges, using five graph represen-
tation methods mentioned before. The edge to be deleted is chosen at random.
For each level of editing, we perform 100 trials in order to obtain an average
and deviation in the distance. The t in heat kernel equation is set to 3.5 and
the length of path is path length distribution is 2. We can obtain the mean
Euclidean distance and the standard deviation at each edge deletion of these
matrix representations. The results are shown in Figure 1

The second experiment is much the same as the first one. The only difference
is that this time we use random graphs. In this experiment, we generate random
graph with thirty vertices and seventy edges. The other parameters are identical
to the previous experiment.
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Fig. 1. Five kinds of matrix Euclidean distance of Delaunay graphs
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Fig. 2. Five kinds of matrix euclidean distance of random graphs

These plots show that all these representations give a spectrum which fol-
lows the edit distance closely, although the adjacency and Laplacian matrices
seem marginally less linear. In Tables 1 and 2 we give the relative deviation of
the samples for 5, 10, 20 and 30 edit operations. The relative deviation is the
standard deviation of the samples divided by the mean. This value gives an in-
dication of how reliably the spectrum predicts the edit distance. In this regard,
the heat kernel matrix is clearly superior to the other methods.
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Table 1. Relative deviation of Delaunay graphs

Methods 5 edge deletion 10 edge deletion 20 edge deletion 30 edge deletion

adjacency matrix 0.0918 0.0827 0.0716 0.0530

standard Laplacian matrix 0.0802 0.0727 0.0619 0.0498

normalized Laplacian matrix 0.0753 0.0676 0.0571 0.0414

heat kernel matrix 0.0358 0.0287 0.0193 0.0105

path length distribution matrix 0.0420 0.0313 0.0252 0.0127

Table 2. Relative deviation of random graphs

Methods 5 edge deletion 10 edge deletion 20 edge deletion 30 edge deletion

adjacency matrix 0.1164 0.1023 0.0805 0.0657

standard Laplacian matrix 0.1042 0.0930 0.0771 0.0592

normalized Laplacian matrix 0.0947 0.0830 0.0651 0.0558

heat kernel matrix 0.0582 0.0494 0.0299 0.0175

path length distribution matrix 0.0607 0.0523 0.0385 0.0225
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Fig. 3. Error rate of five methods of matrix for random graphs

We now construct a classification experiment using 50 graph classes. Each
class is represented by a single graph. We create graphs to be classified by per-
forming random edit operations on the class graphs. The graphs are classified
using a simple 1-NN classifier and the Euclidean distance between the spectra;
the aim here is to investigate the efficacy of the representation rather than the
classifier. Figure 3 shows the classification error rates over a range of numbers of
edit operations. Here the heat kernel matrix is the best method followed by the
path length distribution. The adjacency matrix is a poor representation whereas
the combinatorial and normalized Laplacian have the same performance.
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6 Conclusions

In this paper we have compared five main graph representation matrices re-
spectively by computing both the relationship to edit distance between graphs
and classification error rate for the spectra of these matrices. Our results show
that the heat kernel and path length distribution matrices are superior to the
other methods, with the heat kernel being slightly better than the path length
distribution.
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Abstract. In order to achieve precise, accurate and reliable tracking of human 
movement, a 3D human model that is very similar to the subject is essential. In 
this paper, we present a new system to (1) precisely construct the surface shape 
of the whole human body, and (2) estimate the underlying skeleton. In this work 
we make use of a set of images of the subject in collaboration with a generic an-
thropometrical 3D model made up of regular surfaces and skeletons to adapt to 
the specific subject. We developed a three-stage technique that uses the human 
shape feature points and limb outlines that work together with the generic 3D 
model to yield our final customized 3D model. The first stage is an iterative 
camera pose calibration and 3D characteristic point reconstruction-deformation 
algorithm that gives us an initial customized 3D model. The second stage re-
fines the initial customized 3D model by deformation via the silhouette limbs 
information, thus obtaining the surface skin model. In the final stage, we make 
use of the results of skin deformation to estimate the underlying skeleton. From 
our final results, we demonstrate that our system is able to construct quality 
human model, where the skeleton is constructed and positioned automatically. 

1   Introduction 

In the context of sports science, augmented reality and toward the future for free-
viewpoint video [2], 3D television and media production, precise and accurate track-
ing of the human’s movements are needed. To date many computer vision based hu-
man tracking systems had been proposed e.g. [5], [13], [19], [23]. However, all these 
methods employed a too generic model e.g. stick-figures, cylinders. 

The process of tracking is very sensitive to the shape model and animation used, 
with considerable amount of effort spent to tune these parameters [7]. In the work by 
[6], [9], they also stressed the importance in the quality of the 3D model used for 
tracking. Thus, it is inappropriate to use, for example, a generic “averaging human” 
model for accurate and precise tracking of human that come in different shapes and 
sizes. 

In this paper, we focus our attention on building a good customized model, since it 
is crucial to track the human subject using a very similar 3D human model. The sur-
face skin and the underlying skeleton will be built and fitted to our subject. The key 
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challenge to our system is to accomplish its task from a set of limited images acquired 
from the various wide baseline viewpoints. For reconstruction we use a maximum of 
6 images. The resultant model will maintain the correct object modeling topology, as 
this is important for future usage e.g. character skinning. In addition, our method does 
not need any special calibration tools. 

In section 2, we review some of the existing modeling systems. In section 3, we 
propose our modeling system framework, and in sections 4, 5 and 6 we describe our 
modeling system in detail. Finally we show our results in section 7. 

2   Existing Modeling Systems 

The existing vision-based reconstruction systems that mainly deal with constructing 
the surface skin model fall into the 2 categories: (1) 3D laser-scanner systems, and (2) 
passive multi-camera systems. 

The 3D laser-scanner systems [26], [27] capture the entire surface of the human 
body in about 15 to 20 seconds with resolution of 1 to 2mm. However the drawbacks 
of such a device are (1) highly priced at about few hundred thousands of dollars, and 
(2) require the subject to stay still and rigid for the whole duration of scanning (about 
15 seconds for full body coverage) which is quite constrictive in practice. 

On the other hand the passive multi-camera systems are much cheaper and video 
cameras are more easily available. Most of the existing methods e.g. [8], [22] make 
use of shape-from-silhouette related approaches requiring (1) the subject to be seg-
mented from the image background, and (2) the cameras to be calibrated beforehand 
using calibration tools. Shape-from-silhouette approaches also give rise to ‘blocky’ 
results if there are insufficient views (this can be seen from the theoretical proof in 
[12]). More recent approaches e.g. [16] propose 3D reconstruction from un-calibrated 
views, which uses feature correspondents, requires the subject to remain still and rigid 
for about 40 seconds during the video capturing of the whole body. Moreover, the 
reconstructed model could contain non-manifold problems e.g. holes and open edges. 

There are research that attempt to estimate more precisely the joint locations. They 
are usually done using optical, magnetic or mechanical motion capture system e.g. 
[14], [15], [20]. However, all these methods require tedious post-processing to clean 
up the motion capture data. More recent approach [21] attempted to estimate the 
skeleton from sequence of volume data of rigid bodies. However, the resultant skele-
ton is an estimated stick-figure-like structure. These structures do not contain suffi-
cient anatomical details for realistic character animation and skinning. 

Another alternative to acquire the human skeleton is via X-ray. However X-ray de-
vices are not easily available. In addition, tedious post-processing may be required to 
integrate the data from both the cameras and X-rays. 

3   Our Modeling System 

Our proposed human model construction starts from a generic human model in a 
stanza position (fig. 1). The generic 3D human model that we used is Ergoman, pro-
vided by MIRAGES, INRIA, France. The surface of our model is made up of about 
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17000 vertices and 34000 triangular faces. Inside this surface is the underlying ge-
neric skeleton. The anatomic measurement of the subject is used for deforming this 
generic model to produce a specific model. The strategy of our framework is moti-
vated by the method in [17], which was used for the construction of human faces. 

In our system, the subject’s body is used as the calibration tool. The 3D generic 
model guides the camera calibration, which, in turn, allows 3D point reconstruction to 
yield the camera poses and produces the customized 3D model. Our image acquisition 
for all the views is instantaneous. The inputs to the system are: 

1) 2D images from different views (ideally we should have good view coverage of 
the subject) i.e. wide baseline. This acquisition will be done at a single time in-
stance (using several gen-locked cameras). 

2) Generic 3D human model (i.e. surface and skeleton) and its 32 selected surface 
characteristic points (fig. 2). 

3) 2D/3D feature point matches in the image views and 3D human model points. 

The outputs of the system are: 

1) Calibrated camera poses of the different views. 
2) Customized 3D surface model with regular surface that will overlay nicely onto 

the images of the subject’s silhouette limb in all the views. This customized model 
has the geometry of the shape and size of our subject. 

3) Estimated position and reconstruction of the customized skeleton of the subject. 

 

Fig. 1. (a) Generic surface model, (b) generic skeleton, (c) overall generic model 

The block diagram of our model construction system is shown in fig. 3. This task 
can be realized on an off-line basis, comprised the three main stages: (1) camera cali-
bration and reconstruction of model characteristic points (section 4), (2) refinement of 
model via silhouette limbs deformation, as described in section 5, and (3) skeleton 
estimation (section 6). 

The testing data are the images acquired from different camera views provided by 
MIRAGES, INRIA, France. Fig. 2 shows the example of the selected feature points 
on the 2D images corresponding to the 3D points. These correspondences can be 
established via an interactive point-matching tool that we have developed. This en-
sures that the correspondences are 100% correct, so that the calibration is always 
stable. Although automatic body-part recognition had been studied in e.g. [24], how-
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ever in our wide-baseline and cluttered environment, automatic feature detection 
becomes highly ill posed. In our set-up, we utilized a set of 32 surface characteristic 
points. These characteristic points will provide an over-determined set of information 
and sufficient view coverage for camera calibration and reconstruction of points. 

 

Fig. 2. Example of features points on 3D generic model corresponding on the 2D image 

 

Fig. 3. Block diagram for model construction 

 

Fig. 4. Triangulation of projected rays, 
when the rays do not intersect images (R is 
the reconstructed point) 

 

Fig. 5. Example showing some of the 
deformation vectors 

4   Camera Calibration and Feature Reconstruction 

This section describes the first stage of our model adaptation system (first 3 blocks of 
fig. 3). Using the subject’s 2D characteristic points from the images in collaboration 
with their respective correspondents on the 3D generic model (Fig. 3), we iterate the 
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process comprising the camera calibration and 3D generic model point deformation 
(3D reconstruction) until convergence is attained. At the start the 3D characteristic 
points of the generic model do not project correctly during the early iterations. As the 
process iterates, these 3D characteristic points will converge together with the camera 
poses. We will obtain a set of sparse deformed 3D model points and calibrated camera 
poses. By using the sparse deformed model points, we complete our initial custom-
ized 3D model by interpolating the deformations using radial basis function (RBF). 

4.1   Camera Calibration 

In this module, we use the POSIT (pose iteration) algorithm [3] to calibrate the cam-
era extrinsic parameters. The intrinsic parameters can be obtained using simple cam-
era calibration software such as [25]. Another alternative that we study is to add an 
addition layer above POSIT in order to search for the intrinsic parameters. This is 
done by regarding POSIT as a function of the intrinsic parameters, which we will 
minimize using simplex minimization. 

4.2   Feature Points Reconstruction 

By using the calibrated camera parameters and the 3D/2D correspondences, we per-
form 3D point reconstruction to deform the 3D characteristic points toward the new 
positions. The 3D point reconstruction is achieved by triangulating the projected rays 
from the characteristic image points (fig. 4). This algorithm takes into account that 
the rays will not intersect when the calibration is not perfect by minimizing the sum 
of square of distances to the projected rays from all the possible views. We only 
reconstruct the respective points seen in more than one image. 

When the process converges, we obtained a final set of reconstructed 3D points Ri. 
We also have the original set of 3D points from the initial generic model Pi. Using Pi 

and Ri we form a set of deformation vectors iiRP  (see fig. 5 for example). 

4.3   Interpolating the Deformation 

Considering the deformed characteristic 3D model points, they are very sparsely dis-
tributed. These sparse points are not sufficient to represent the complete 3D model. 
Therefore, we make use of the sparse points in collaboration with the generic 3D 
model to complete the 3D model deformation via interpolation. The interpolation is 
done by using radial basis functions (RBF). Using RBF for data interpolation had 
been researched and used successfully in e.g. [4], [18]. 
We can write the equation of a linear system as: 
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where: 

1) PR  are the set of deformation vectors computed via 3D reconstruction of charac-

teristic points. P, R  are the original and reconstructed characteristic points. 
2) )( ji PP −σ  are the radial basis function. Here we use )( ji PP −σ  = 

ji PP − . 

3) A (i.e. Axi, Ayi, Azi) are the weights that we are seeking for. 
The weights A can be obtained by solving equation (1) using simple linear algebra 

method like the LU decomposition. After having obtained the deformation weights A, 
we can then use them to deform the rest of the model points using the equation (2) : 

∑
=

−•=
N

i
iziyixizyx PPAPF

1
,,,, )()( σ       ...(2) 

where P is the set of 3D points from the generic model that we need to deform. 

4.4   Initial Results of Customized Surface Model 

Up to this point, we have an initial customized surface model (fig. 6).  We can notice 
from the results that projected local model silhouette limbs of the initial customized 
model do not overlay exactly onto the images e.g. on the inner legs of the subject. 

Fig. 7 shows the results of the feature point reprojection error in pixels plotted 
against the number of iterations. It can be observed that the process converges after 
about 30 iterations. The reprojection mean-square error at convergence is about 1.1 
pixels with a standard deviation of 0.9 pixels. 

 

Fig. 6. Initial model – not precisely fitted  Fig. 7. Plotting reprojection error vs number of 
iterations 

5   Surface Model Refinement 

The deformation based on points enables us to restore the global surface geometry of 
the human subject. However, the more local elements such as the curves on the shoul-
ders and legs of the subject are not precisely reconstructed. To act on this set of local 
elements we design an algorithm to deform the human body based on his silhouette 
contours, called the limbs. For this stage, we will automatically extract the silhouette 
edges of the model from various views and will deform them so that they correspond 
exactly to the respective silhouette curves of images (fig. 8). 
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5.1   Silhouette Extraction 

5.1.1 Silhouette from Initial Model 
This process deals with the extraction of silhouette curve from the initial surface 
model from section 4. We follow the method as in [17] to extract the silhouette. We 
have sped up the process by (1) finding the contour edges [11] via an XOR operation, 
and (2) checking for the possibility of intersections between the contour edges as we 
traveling along the bounding silhouette (because our subject is highly concave). 

5.1.2 Silhouette from Images 
The segmentation and extraction of silhouette pixels from static 2D images may be 
done either in an (1) automatic way using edge detection, or (2) interactive way. 
Many edge detection algorithms for image segmentation had been proposed over the 
last decades e.g. [1]. However, using edge detection to segment out a continuous close 

 
Fig. 8. Model refinement via deformation of silhouette curves 

contour from any noisy image is very difficult. The only way to achieve this is to 
acquire the images in a very well controlled environment e.g. making the subject wear 
special colored cloth. 

If the well-controlled environment is unlikely, then we have to bring out the silhouette 
features interactively. We can make use of the curve digitizing tools (e.g. Bezier curves 
drawing) available from common commercial software like the Photoshop. 

We perform edge-linking after we have obtained the digitized contours using any 
one of the above-mentioned methods. This ensures that topological information is 
maintained when we have to match the two sets of silhouette curves. 
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5.2   Silhouette Curve Matching 

The aim of this module is to find a good correspondence for all projected silhouette 
vertices with respect to the image curves. We also have to make sure that the match-
ing takes place in a correct order. The bottom-left diagram of fig. 8 shows an example 
whereby if we simply search for the nearest point, the matching topology will be 
wrong. 

We will proceed with the matching by sub-dividing the model curve at half curve 
length and seek for the closest point on the image curve. When finding the closest 
point, we may impose some simple constraint e.g. maximum angle different in the 
curve directions. The sub-division and seeking for the closest points go on recursively 
until there are no more points left for matching. 

Since our curve matching is a one-pass algorithm, the outcomes may not minimize 
the energy between the 2 curves. However, we found that the matching is sufficient 
for us to complete the final deformation (for the next section). If one is not satisfied 
with the energy minimization between the 2 curves, one may use the active contours 
[10] to refine the registration. 

5.3   Reconstrction of Model via Silhouette Curves 

The matching of the correspondences between the model and image curves enables us 
to compute the refinements needed for the model. For each correspondence in the 2D 
matching, we are able to calculate its deformation vector in 3D (bottom-left diagram 
of fig. 8). Once we have computed all the deformation vectors from the curves match-
ing, we use them in addition with the reconstructed feature points (from section 4) to 
deform the whole model. We use RBF to complete the whole model as before. 

6   Skeleton Estimation 

Up till now we have constructed the surface of our subject. Here we will estimate the 
underlying skeleton of the subject. Once again we make use of the deformation vec-
tors of (1) the feature points (from section 4), and (2) silhouette points (from section 
5). These respective deformations from the generic model to the customized model 
were used to compute the RBF function. Finally, we used the RBF weight to deform 
the generic skeleton (fig. 1b) to yield the customized skeleton. We used the RBF so 
that the transition from the generic skeleton will give us a smooth customized  
skeleton. 

7   Results and Discussion 

In our system, we used at least 4 images for reconstruction. Our algorithm was im-
plemented using C++ (without optimization) running on a Pentium 4. The whole 
reconstruction process takes about 5 minutes. We had noticed that the bulk of the 
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computation time is due to the silhouette computation because we are processing a 
fairly dense 3D model of about 50000 edges. 

Fig. 9 shows the results of the final surface model. They are reprojected and over-
laid onto the testing images. As we can see from the results, refining the initial model 
by using silhouette curve improved the results tremendously. This is because the fea-
ture points alone are too sparse, hence they do not provide enough local information. 

Fig. 11 shows the visual results of the estimated skeleton inside the surface model. 
Fig. 10 shows the silhouette curve reprojection error in pixels plotted against the 

number of iterations. It took about 20 iterations to converge. The mean reprojection 
error of the final model reprojected onto the testing images is about 0.5 pixel. 

 

Fig. 9. Results for reconstruction of model surface 

 
Fig. 10. Result of mean reprojection vs number of iterations 
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8   Conclusions 

In this article, we proposed a new method to (1) construct the skin surface model, and 
(2) estimate the skeleton of the human from a set of limited images acquired from 
different views with wide baseline. We execute a 3-stages algorithm using a set of 
images in collaboration with a generic human model. In the first stage, we establish 
an initial model by a camera calibration/feature-point reconstruction loop and interpo-
lating the sparsely reconstructed points. The second stage consists of matching the 
silhouette edges of the initial model with the image silhouette to obtain a refinement 
for the final deformation. Finally, we combine the deformation results from stages 1 
and 2 to estimate the underlying skeleton. The final result is a regular-surface custom-
ized model incorporating its skeleton. In our future work, we will use this customized 
model to track the targeted subject. 

 

Fig. 11. Visual results of the estimated skeleton inside the surface model  
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Abstract. Magnitude and phase spectra of horizontal and vertical
movement of ankles in a normal walk are effective and efficient signatures
in gait recognition. An approach to use these spectra as phase-weighted
magnitude spectra is also widely known. In this paper, we propose an
integration of magnitude and phase spectra for gait recognition using
AdaBoost classifier. At each round, a weak classifier evaluates each mag-
nitude and phase spectra of a motion signal as dependent sub-features,
then classification results of each sub-feature are normalized and summed
for the final hypothesis output. Experimental results in same-day and
cross-month tests with nine subjects show that using both magnitude
and phase spectra improves the recognition results.

1 Introduction

Gait recognition is a task to identify or verify the identity of an individual from
the person’s gait. Compared to biometrics using other modalities, it has the
advantages of being unobtrusive, non-contact and executable from a distance. It
is a pattern recognition problem that deals with spatio-temporal patterns of gait
which are related to physiological and behavioral characteristics of individuals.

Studies on human gait perception using Moving Light Displays(MLDs)
showed that human can classify human motion [1], as well as identify their friends
from gaits [2]. However, there are several challenges to be overcome in automatic
gait recognition: (i)acquisition of gait, (ii)extraction of compact gait signatures
and (iii)the effects of covariates. This paper focuses on the extraction of compact
frequency domain gait signatures from foot motion dynamics, and evaluates the
recognition results under the effects of time covariates. It has been shown that
time, footwear type, walking surface type, briefcase carrying condition and view-
ing angle are important covariates that affect gait and its observations, and that
time covariate has the largest impact to gait recognition [3].

There are two prominent methods for gait recognition: model- and appear-
ance-based. In model-based approaches [4,5,6], the observation at each frame
is fitted into an explicit structural model of human body, and recognition is
achieved from the analysis of the trajectories of high-level body parts. Appear-
ance-based approaches [7,8,9,10,11,3] mostly use silhouette features, and are
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more sensitive to changes in clothing styles and noises from human segmentation
process.

We contend that foot motion are the primary artifacts of gait, and foot holds
individual specific characteristics. Furthermore, as a model-based approach, it is
not sensitive to changes in clothing style. In our investigation of the effectiveness
of foot motion at its best for gait recognition, we relied on a marker-based
data acquisition. This way, we can exclude the effects of other covariates as
well as possible noises introduced in gait acquisition by image processing. Gait
signatures are formed by concatenating the spectral features derived from foot
motion, without incorporating direct interrelationship between the signals. Gait
signatures in frequency domain facilitate efficient matching of periodic gaits, and
have been shown to be effective for classification of human periodic motion [12].

2 Previous Work

In our previous work [13], we proposed a gait recognition using spectral features
of foot motion, assuming that the horizontal and vertical trajectories of left
and right feet are accessible by a sensor system. The trajectories provide four
motion signals {hi(t), vi(t)}, i = 1, 2, which corresponds to the horizontal and
vertical displacement of left and right feet during a gait. By using Discrete
Fourier Transform(DFT), we can obtain the frequency domain representation of
the signals F = {Hi(ω), Vi(ω)}, i = 1, 2.

2.1 Spectral Features of Foot Motion

The spectral features from X(ω) ∈ F are defined as follows:

S1(X(ω)) = ||X̄(ω)||, (1)

S2(X(ω)) = ej arg(X̄(ω)), (2)
S3(X(ω)) = S1(X(ω)) · S2(X(ω)), (3)

where X̄(ω) is the normalized Fourier coefficient:

X̄(ω) =
1∫

||X(ω)||dωX(ω). (4)

Normalization of scale eliminates the need for depth compensation in different
gait acquisition setups. S1 is the magnitude spectrum, S2 is the phase spectrum
and S3 is known as the phase-weighted magnitude(PWM) spectrum [5]. Figure 1
shows the average and standard deviation of each spectra of an individual over
20 sequences.

For the phase spectra to be time shift invariant, we set a uniform phase for
the fundamental frequency component, which equals to shifting in time-space
domain. In other words, the phase spectra are defined as the relative phase of
the fundamental frequency component.
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The spectral features do not incorporate direct interrelationships between
motion signals. For example, the magnitude relationship(the ratio of total power
to motion signals) and the timing relationship(the phase difference of the fun-
damental frequency of two motion signals) are not represented in the spectral
features. However, our experiments showed that even by extracting only features
related to the dynamics of gait and excluding the shape structures of gait, we
can achieve a reliable recognition rate.

2.2 Spectral Features from Two Motion Signals

We also proposed the use of the geometrical mean of two spectra to extract
a more compact spectral feature for gait recognition. Using geometrical mean
based spectral features offers another simplification in that we do not need to
have strict correspondence between signals and their origins, such as signals from
left and right feet.

The following spectral features(binary T-operators) are defined as a function
of spectra of two signals:

T1(X(ω), Y (ω)) =
√
||X̄(ω)|| ||Ȳ (ω)||, (5)

T2(X(ω), Y (ω)) = (ej arg(X̄(ω)Ȳ (ω)))1/2, (6)
T3(X(ω), Y (ω)) = T1(X(ω), Y (ω)) · T2(X(ω), Y (ω)). (7)

2.3 Kyutech Foot Motion Gait Database

We evaluate the discriminatory capability of the proposed spectral features us-
ing a gait database acquired using Vicon optical motion capture system. Exper-
iments are based on gaits of 9 subjects (22–30 years old, 160–182 cm, 54–130kg),
which are captured at 60 Hz in four separate sessions. The first two sessions
were taken on the same day(same-day dataset), and the rest are taken in two
separate days three month after the first two(cross-month dataset). A part of the
database used in the experiments consists of 357 gait sequences, whose average
length is 150 frames.
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Fig. 1. Plot of average and standard deviation of magnitude, phase and phase-weighted
magnitude (PWM) spectra of an individual over 20 sequences taken on the same day
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2.4 Spectral Features in Logarithmic Scale

Gait recognition share the common properties with speech processing in that
gait is a spatial temporal pattern. In speech processing, the power spectra in
logarithmic scale are often used. Similarly, we can express spectra in logarithmic
scale:

S
(L)
1 (X(ω)) = logS1(X(ω)), (8)

S
(L)
3 (X(ω)) = S

(L)
1 (X(ω)) · S2(X(ω)). (9)

Improvement in correct classification rates(CCRs) has been observed when
magnitude and PWM spectra are in logarithmic scale, especially when magni-
tude spectra is used.

3 Integration of Magnitude and Phase Spectra

Previous experimental results suggested that both magnitude and phase spectra
of foot motion are effective gait signatures. In phase-weighted magnitude(PWM)
(S1"S2) spectra, both spectra are integrated as their products at each frequency
components. Instead of taking the product, we can also use information of both
spectra as phase-magnitude concatenation(PMC) (S1 ⊗ S2 � (S1, S2)) spectra.
However, since the concatenation consists of spectra of different metrics, we
cannot directly use it as a gait signature and examine its performance for gait
recognition using k-NN rule.

3.1 An AdaBoost Classifier for Multimodal Gait Signatures

We integrate the phase and magnitude spectra of motion signals using an Ada-
Boost classifier [14] of a summation-type weak classifier with a simple extension
for multi-class classification. A summation-type weak classifier consists of weak
sub-classifiers, each of which is based on a sub-feature. At each round in Ada-
Boost, all of weak sub-classifiers are trained simultaneously based on probability
density of features, which is calculated at the previous round. After this training
phase, summation of outputs of these sub-classifiers makes a weak classifier at
the round. This summation-type weak classifier contributes to a normalization
of sub-feature metric for classification since output of each weak sub-classifier
is normalized by the class-separation degree at corresponding sub-features. In
addition to that, created weak sub-classifiers are dependent each other because
they are trained on the same set of sample data (as each of them is trained on dif-
ferent sub-feature of the sample data), which leads to promotion of classification
accuracy.

The approach was originally proposed for robust face detection of partially
occluded face [15], by integrating results from sub-classifiers, each of which is
based on a local face region at each round of AdaBoost. In our case, the spectral
feature of different type corresponds to the feature of a different local face region.
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For each identity in the training data set, we create a two-class AdaBoost
classifier that separates samples belonging to the identity and samples belonging
to the other identities. In classifying a test sample, first we collect the similarity
scores from all the weak classifiers, each of which shows the similarity of the test
sample to the training samples of a certain identity in training data set. Finally,
the identity of the test sample is set to the identity represented by the classifier
with the highest similarity score. As the similarity scores for each identity may
not be of the same metric scale, choosing the identity of the highest similarity
score may not be the optimal approach, but it is shown to be sufficiently close
to results of k-NN rule classification.

Using the Adaboost classifier, we can also integrate the magnitude spectra
of vertical motion signals and the phase spectra of horizontal motion signals.

4 Experimental Results

Experiments on nine subjects showed that for the same-day test, in which the
grain data set includes the samples taken on the same day as the test sample,
a recognition rate over 95% can be achieved using only the concatenation of
magnitude spectra of motion signals as the gait signature. However, for cross-
month test, where there is a time gap of 3 months between the capture time of
training and test samples, the recognition rate dropped to 60%. In the following,
we will describe the recognition results of AdaBoost classifiers for cross-month
test.

4.1 Integration of Phase and Magnitude Spectra for Gait
Recognition

The following results are based on spectra in logarithmic scale. Figure 3 shows the
CCRs of recognition using magnitude(S1), phase(S2), PWM(magnitude"phase)
spectra, as well as PMC(magnitude⊗phase). Recognition results for spectra de-
rived from geometrical mean of two spectra in terms of T1, T2, T3 = T1 " T2,
and T1 ⊗ T2 are shown in Figure 2.

– The integration of magnitude and phase spectra as PMC(S1 ⊗ S2) gives
better performance than integrating the spectra into PWM(S1 " S2). This
also shows that the AdaBoost classifier works well in integration various gait
modalities, and that the simple extension to multiple-class classification is
also effective.

– Although both phase and magnitude spectra discriminates the gaits of indi-
viduals, for motion signals of different directions (h or v), the degree of dis-
criminatory capability is different. The difference may be dataset-dependent,
but for a personal identification in a known dataset, we should select the op-
timal combination of spectra for gait signature. The experimental results
on our dataset shown that integration of magnitude spectra of vertical foot
motion and phase spectra of horizontal foot motion provides the best recog-
nition rates.
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Fig. 2. Recognition results for spectra derived from geometrical mean of two spectra
in terms of magnitude(T1), phase(T2), PWM(T3 = T1 � T2), and PMC (T1 ⊗ T2)

Fig. 3. CCRs of recognition using magnitude(S1), phase(S2), PWM
(magnitude�phase) spectra, as well as PMC (magnitude⊗phase)
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– Under the effect of time covariate, spectra derived from geometrical mean
of two spectra (by the T-operators) shows significant advantages of using
PMC gait signature. The more compact representation of gait using Tj〈X, Y 〉
spectra even shows better performance than Sj〈X〉Sj〈Y 〉.

5 Conclusion

Magnitude and phase spectra derived from foot motion during a normal walk
has been shown to be effective cues to induce the identity of a person. This paper
proposedtheuseofbothmagnitudeandphase spectra together inphase-magnitude
concatenation for gait signatures. For gait recognition, we use a summation-type
AdaBoost classifier that evaluates magnitude and phase spectra of a motion signal
as dependent sub-features. In recognitionphase, each ofweak classifiers sum up the
normalized classification output at each sub-features(spectra).

Experimentsonninesubjectsshowedthatusingphase-magnitudeconcatenation
spectra in gait signatures is better than using the product of phase and magnitude
spectra. Furthermore, it is shown that a motion signal is often best represented
by either the phase or magnitude spectra. For example, integrating the magnitude
spectra of verticalmotion signals and thephase spectra of horizontalmotion signals
creates the best gait signature in our dataset.

The number of subjects in our experiment is only nine. We don’t think this
number is enough to evaluate effect of time covariate and to compare fitness of
features combinations for gait recognition. Although our result should be verified
under largedatabase like GaitChallenge [3], we don’t think outline of our resultwill
change so much.

Time covariate has been shown to have the largest impact on accuracy of gate
recognition [3]. In our cross-month experiments, recognition accuracy is about
65%. Accordingly, update of feature template should be done frequently in case of
using only gait signature as identification, or incorporation with face signatures
will be necessary to compensate degrade of each feature(gait and/or face feature).

The spectral features of gait we defined represents the transitional (dynamics)
of gait. In the future, we should extend our work into incorporating information
on gait structural(shape) characteristics into the gait signatures as well. Fur-
thermore, a method to acquire foot motion trajectories during a gait, especially
from video input is necessary for a practical gait recognition system.
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Abstract. The problem of detecting moving objects is very important in many 
application contexts such as people detection and recognition, visual surveil-
lance both in indoor and outdoor environments, and so on. In this paper we pro-
pose two additional modules for a generic motion detection algorithm. The first 
one regards the background updating procedure: the novelty of the proposed al-
gorithm is its capability, unlike traditional similar algorithms, to efficiently up-
date each point of the reference model, even if covered by a foreground object. 
The second one is a reliable algorithm for shadow removing: it is based on the 
correlation between regions selected from the reference image and the current 
one. In addition, with our approach, the artifacts detected in presence of sudden 
light changes are removed. The experiments have been performed on real image 
sequences acquired both in indoor and outdoor environments with natural and 
artificial lights. 

1   Introduction 

In the last years, motion detection has attracted great interest from computer vision 
researchers due to its promising applications in many areas, firstly visual surveillance. 
The most used approach in presence of still cameras is background subtraction 
[1,2,3,4]. These works implement a model of the background and compare the current 
image with this reference one. In this way the foreground objects present in the scene 
are detected. 

Background modeling is an active area of research and is not the focus of the work 
here. Any system capable of reliable detection of moving pixels can be used for the 
foreground detection phase. Here we introduce two additional modules that can be 
easily added to a generic motion detection system. The first one is able to correctly 
update the background model, even for the pixels covered by moving objects. The 
second one is a shadow removing algorithm that can also remove the artifacts due to 
the presence of sudden light changes. 

Some interesting works about shadows are presented in [10] (it works only on 
color images), [11] (similarly, it works on color images, but it uses HSV space) and 
[12] (it is based on a series of assumptions, some of them not applicable in indoor 
environments). A good review and comparison of shadow removing algorithms is 
proposed in [13]. The problem of handle sudden changes in light conditions has been 
treated in [5]. Some solutions are proposed in [7] (it uses many different background 
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models, acquired in different light conditions), [6] and [8] (they are based on the pres-
ence of discontinuities in the training set). A good treatment of this problem can be 
found in [9], where an interesting solution based on HMM is proposed. 

Another problem affecting the traditional background subtraction approaches is the 
updating of the background model. With standard updating procedures only the pixels 
corresponding to static points in the scene are correctly updated. If there are slowly 
moving objects in the scene, the intensity variation in correspondence with fore-
ground points is not exactly estimated, so in those regions the background model 
could lacking in consistency. 

In this paper we focus our attention on background updating and shadow removing 
algorithms. There are some new interesting points that will be introduced. First of all 
the background updating is carried out on all the pixels in the image, also the ones 
that are temporarily covered by foreground objects. The basic idea is that the intensity 
variation of each pixel is estimated by integrating all the variations exhibited by other 
pixels with the same intensity value, labeled as ‘static’ in the last frame. Then, a 
shadow removing algorithm based on the comparison of the correlation exhibited 
between regions selected from the reference image and the current one is proposed. In 
addition, the same algorithm permits to cope with the problems due to light switches: 
when there are sudden changes, the large number of false alarms is eliminated by 
comparing correlation between background and current regions in the same way of 
shadows removing. 

In the rest of the paper, after a brief presentation of the background model used 
(section 2), two innovative approaches for background updating (section 3) and 
shadow removing (section 4) are presented. Finally, the experimental results obtained 
on real image sequences are reported (section 5). 

2   Background Subtraction 

Foreground object segmentation is a primary and fundamental step of visual surveil-
lance systems. In order to correctly extract the moving objects it’s necessary to de-
velop very reliable motion detection algorithms, that should be adaptive to luminance 
variations and able to reduce the number of false alarms. In literature many back-
ground modeling algorithms have been proposed: our opinion is that they work well 
in standard conditions, but have same problems in particular situations, such as in 
presence of shadows and light switches. In addition, updating algorithm is crucial to 
assure good performance for long period of time. For these reasons, we have chosen 
to implement a standard background subtraction algorithm; then, we have improved it 
by our updating and shadow removing algorithms. 

The algorithm we have implemented is detailed explained in [3]; for each pixel 
value at time t, a running average ),( yxBt  and a form of standard deviation ),( yxV t  

are evaluated and maintained. A pixel ),( yx  is considered a foreground pixel if its 

intensity value differs from ),( yxB t  more than 2 times ),( yxV t . Formally, 

),(2),(),(1 yxVyxByxI ttt ∗>−+             (1) 
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A higher-level paradigm, based, for example, on the tracking information, or frame 
difference, is necessary to validate the results of this step, in order to avoid to detect 
as moving object any variation in the background objects. 

3   Background Updating 

Any background subtraction approach is sensitive to variations of the illumination, so 
each algorithm needs an updating procedure of the background model. In most of 
previous works, only the static pixels of the background model are correctly updated, 
while all other background points, masked by foreground regions, remain unchanged 
or are incorrectly updated. This is particularly evident in presence of slow moving 
objects, as a person staying in a certain region for a certain period of time. The nov-
elty of the proposed approach is that it allows all the pixels of the background to be 
correctly updated, even if they correspond to points that at time t are masked by fore-
ground objects: every background pixel can be updated even if currently invisible. 

The main idea of our approach is that the intensity variation of each pixel of the 
background model is not estimated by referring only to the corresponding pixel on the 
current image (as previous methods do), but considering the variations exhibited by 
all the pixels with the same intensity value. In other words, even if a pixel is covered 
by foreground object, it can be updated, accordingly to the variations observed at the 
other background pixels with the same intensity value. 

To validate this assumption, we have observed a scene for a period of time (about 
40 sec.), and we have registered the photometric gain average exhibited by all image 
pixels during this period, and their relative variances (fig. 1). For each gray level the 
value of the variance is very low, i.e. the pixels with the same intensity are varying in 
the same way. Then, we can generalize this trend, using the average photometric gain 
for updating of all the image pixels. If the registered values for the variances were not 
so low, this generalization will be not meaningful, and the corresponding updating 
could be incorrect. So, the updating value relative to each background model pixel 

),( yxBt  is not estimated on the basis of the corresponding pixel value ),( yxI t  on the 

current image alone, but by averaging all the photometric gains: 
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where { } niib ...1=  are the n different intensity values that a pixel can assume, and )( ibN  

is the number of pixels in the background image ),( yxBt  with intensity value ib . The 

iterative updating rule becomes: 

),(*)1()),((),(*),(1 yxByxByxByxB tttt αμα −+=+         (4) 
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In an analogous way the standard deviation is updated. With the proposed ap-
proach, all the pixels in the image are updated: this is a great advantage in presence of 
slowly moving objects, or objects that stay in a certain position for a great period of 
time. 

 

Fig. 1. The photometric gain variance exhibited by each intensity value over the whole current 
image with respect to an initial background model (i.e. 30 seconds ago) and with respect to the 
background model updated with the previous image 

4   Shadow Removing 

After the background subtraction, the resulting binary image contains only foreground 
objects, each of them with its own shadow. The presence of shadows is a great prob-
lem for a motion detection system: they drastically change the topological characteris-
tics of the objects in an unpredictable way. This problem is mostly remarked in indoor 
contexts, where shadows are emphasized by the presence of many reflective objects; 
in addition shadows can be detected in every direction, on the floor, on the walls but 
also on the ceiling, so typical shadow removing algorithms, that assume shadows in a 
plane orthogonal with the human plane, cannot be used. 

The shadow removing approach here described starts from the assumption that a 
shadow is an abnormal illumination of a part of an image due to the interposition of 
an opaque object with respect to a bright point-like illumination source. From this 
assumption, we can note that shadows have not a fixed texture, as real objects: they 
are half-transparent regions which retain the representation of the underlying back-
ground surface pattern. Therefore, our aim is to examine the parts of the image that 
have been detected as moving regions from the previous segmentation step but with a 
texture substantially unchanged with respect to the corresponding background. A 
segmentation procedure has been applied to recover large regions characterized by a 
constant photometric gain (2); then, for each region previously detected, the correla-
tion between pixels is calculated, and it is compared with the same value calculated in 
the background image: regions whose correlation is not substantially changed are 
marked as shadow regions and removed. In fig. 2 we can see the result of segmenta-
tion step: as evident, the shadow region is separated from the true shape of the human 
person. 
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(a) (b) 

Fig. 2. (a) Original image; (b) output of segmentation process 

At this point a further step is required to discriminate the real shadow regions, and 
remove them. All candidate shadow pixels are labeled and the regions with a notable 
percentage of these candidate shadow-pixels are removed. Candidate shadow pixels 
are detected as follows: their photometric gain has to be lower than unit; their correla-
tion values with neighbouring points are compared with the corresponding one ob-
tained at the same location on the reference background image; finally if the observed 
difference is too small, then the pixel is labelled as candidate shadow point. The reli-
ability of this approach improves by increasing the number of neighbouring points 
that are correlated with every pixel. However, a satisfying trade-off must be found 
with the computational time constraint. We have proved as the simple correlation 
between only two adjacent pixels belonging to the same region, i.e. their ratio, is 
sufficient for an efficient shadow detection. Formally, for each region FS: 
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If D is greater then a threshold experimentally selected, the pixel (i,j) is strictly cor-
related with its neighbour one, so they can be considered as shadow points. Other-
wise, they probably will be foreground points. All the regions containing a great 
number of shadow points are removed. The proposed method works very well both on 
indoor and on outdoor sequences. The two pixels ratio is a very fast shadow elimina-
tion algorithm, but in theory it could have problems removing not only the shadows, 
but also some points of people whose texture is similar to the background model. In 
practice, in our experiments on different situations, these cases have not been encoun-
tered. 

4.1   Sudden Light Changes 

The approach we propose for the shadow removing starts from the assumption that a 
shadow region presents about the same texture with respect to the reference image. In 
other words, the absolute intensity values change, but the relation between them re-
mains the same. This observation can be used to reduce the effects of light switches in 
indoor context. In this case, traditional motion detection algorithms, as explained in 
detail in section 1, fail due to the sudden and unpredictable illumination changes. The 
background updating rules (3) and (4) are able to adapt the background model to 
standard light changes, but cannot work in presence of a sudden variation of such 
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conditions. So, the resulting images seem totally unusable. However the successive 
application of the shadow removing algorithm produces surprising results, making the 
complete motion detection system more robust and reliable compared to similar ap-
proaches proposed in literature. Some works have tried to use supervised approaches 
including different background images acquired in several light conditions in the 
reference model. Their main drawback is that in indoor environments there are unpre-
dictable light variations for the simultaneous presence of both natural and artificial 
light sources. The possibility to cope with these sudden illumination changes in an 
unsupervised way make the proposed system very general and robust. 

5   Experimental Results and Future Works 

The experiments have been performed on real image sequences acquired with a static 
TV camera Dalsa CA-D6 with 528 X 512 pixels. We have chosen to test algorithms 
both in outdoor and indoor conditions; in particular, three sequences have been ac-
quired in a laboratory, in different light conditions, and in presence of sudden 
changes, due to light switches. The fourth test sequence has been acquired in an ar-
cheological site. In the follow, firstly results of shadow removing will be proposed, 
then the advantages obtained with the proposed updating procedure will be explained. 

Sequence 1 Sequence 2 Sequence 3 Sequence 4 

   

 

 

    

    

Fig. 3. The results obtained on the test sequences 

In fig. 3 a qualitative evaluation of the shadow removing algorithm is represented. 
We have chosen to report an image for each sequence, so each column shows the 
original image, the result of background subtraction, and the results of shadow remov-
ing algorithm. The aforementioned problem of multiple shadows is evident in first 
two images. Shadow regions are projected on the floor, on the near desks, and also on 
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the wall above the person. In the third column the image has been taken from a se-
quence after a sudden light change due to a light switched off. The image obtained 
after the background subtraction step is not meaningful since a large number of back-
ground pixels have not been removed. The final images produced after the shadow 
removing step become completely clear in every condition. The test sequences to-
gether with the corresponding sequences obtained with the proposed algorithm can be 
seen at the site "http://www.tnl.it/cnr".  

In order to have a quantitative estimation of the error, we have characterized the 
Detection Rate (DR) and the False Alarm Rate (FAR), as proposed in [14]: 

FNTP

TP
DR

+
=     

FPTP

FP
FAR

+
=          (6) 

where TP (true positive) are the detected regions that correspond to moving objects; 
FP (false positive) are the detected regions that do not correspond to a moving object; 
and FN (false negative) are moving objects not detected. In table 1 we can se the 
results obtained on the four test sequences. 

We can note that the FAR parameter is always under 6% in the first three test se-
quences (indoor environments, more sensitive to effects of shadows) and even under 
4% in the fourth test sequence (outdoor context, standard shadows). 

Table 1. Rates to measure the confidence 

Test sequence DR (%) FAR (%) 
1 87,46 5,72 
2 93,81 4,16 
3 89,12 5,83 
4 94,31 3,26 

In order to compare our algorithm with other consolidate approaches, we have 
tested it on the same sequences proposed in [13], available at the website 
http://cvrr.ucsd.edu/aton/shadow. In table 2 the results we have obtained are reported. 
It can be note that even on these test sequences, the results we have obtained appear to 
be acceptable. It should be noted that in [13] a modified version of (6) has been used 
for testing algorithms.  

Table 2. Experimental results obtained on the test sequences proposed in [13] 

Test sequence DR (%) FAR (%) 

Highway I 93,65 3,25 

Highway II 89,43 4,63 

Campus 88,91 6,36 

Laboratory 91,77 3,96 

Intelligent room 96,54 3,43 
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Finally, we have compared the results obtained with our background updating al-
gorithm with the one proposed in [3]. In order to correctly compare the results we 
have applied on all the resulting images our second step of shadow removing. It is 
important to note that the only goal of this comparison is to emphasize the goodness 
of the proposed updating algorithm: it can be seen that in region covered by persons, 
our results are lightly better with respect to the other ones. In fig. 4 the results are 
shown on two images of outdoor scenes. 

 

   

   

Fig. 4. The results obtained applying to a pair of images a traditional statistical background 
modelling [3] (2nd column) and the proposed algorithm (3th column) 

Now we are effecting intensive tests on other test sequences; in particular we are 
testing our algorithms on the PETS video sets. Future work will investigate the effec-
tive real time implementation of our algorithms in a motion detection system for vis-
ual surveillance. 
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Center for Machine Perception, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical University

{xfrancv,hlavac,navara}@cmp.felk.cvut.cz
http://cmp.felk.cvut.cz

Abstract. This paper contributes to the solution of the non-negative
least squares problem (NNLS). The NNLS problem constitutes a sub-
stantial part of many computer vision methods and methods in other
fields, too. We propose a novel sequential coordinate-wise algorithm
which is easy to implement and it is able to cope with large scale prob-
lems. We also derive stopping conditions which allow to control the dis-
tance of the solution found to the optimal one in terms of the optimized
objective function. The proposed algorithm showed promising perfor-
mance in comparison to the projected Landweber method.

1 Introduction

A common approach of fitting model parameters to data is formalized as the least
squares problem. There are situations in which additional constraints forcing the
fitted parameters to be non-negative are useful. This leads to the non-negative
least squares problem (NNLS). The non-negativity constraints are beneficial for
the problems in which the negative values of the fitted parameters do not corre-
spond to the physical reality, e.g., the problems dealing with pixel values in image
modeling. The non-negativity constraints can also be used to introduce regu-
larization for ill-posed problems. Examples of using NNLS in computer vision
include, for instance, object recognition with unknown lighting conditions [1], im-
age restoration [2] or tracking [3]. Learning of associative neural networks [5,6] is
another task which can be expressed as the NNLS problem. This work has been
motivated by the project COgnitive Systems using Perception-Action Learning
(COSPAL http:\\www.cospal.org) in which associative networks play a sub-
stantial role in modeling low-level signals of the designed robotic system.

The NNLS problem becomes challenging if a large amount of data is to
be processed, which makes standard optimization methods infeasible, e.g., the
method by Lawson and Hanson [7]. The projected Landweber method was pro-
posed to deal with large NNLS problems [6]. The projected Landweber method
is a gradient-based iterative algorithm which produces a sequence of solutions
converging to the optimal one. This paper proposes two contributions to the
solution of the NNLS problem: (i) stopping conditions for iterative algorithms

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 407–414, 2005.
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which allow to control the precision of the found solution in terms of the opti-
mized objective function and (ii) a novel sequential coordinate-wise algorithm
which is easy to implement and has promising performance on synthetical data.

The paper is organized as follows. The NNLS problem is defined in Section 2.
The stopping conditions suitable for iterative algorithms solving the NNLS prob-
lem are derived in Section 3. A novel sequential coordinate-wise algorithm which
solves the NNLS problem is proposed in Section 4. Section 5 describes an ex-
periment comparing the proposed sequential coordinate-wise algorithm to the
projected Landweber method. Conclusions are given in Section 6.

Notation used:
Upper-case bold letters denote matrices. Vectors are implicitly columns. Vectors
are denoted by lower-case bold italic letters. For instance, A = [a1, . . . ,an] is
a matrix made of n column vectors ai, i ∈ I, where I = {1, . . . , n} is a set of
entries. The non-bolded letters are used to denote indices of vectors and matrices.
For instance, x = [x1, . . . , xn]T is a column vector with n entries (coordinates).
The notation [Hx+f ]i stands for the ith entry of the vector defined by the term
Hx + f . The term x ≥ 0 is a shortcut for a set of inequalities xi ≥ 0, ∀i ∈ I.
The expression 〈x,f〉 stands for the dot (inner) product of vectors x and f .

2 Non-negative Least Squares Problem

Let A ∈ Rm×n be a matrix and b ∈ Rm a column vector. The non-negative least
squares (NNLS) problem is defined as

x∗ = argmin
x≥0

1
2
‖Ax− b‖2 . (1)

Without loss of generality, we may assume that all columns ai, i ∈ I = {1, . . . , n}
of the matrix A = [a1, . . . ,an] are non-zero. A particular instance of the NNLS
problem (1) arises when all entries of A are non-negative. This case matches the
problem of learning of associative networks. In this formulation, we are searching
for the optimum within an unbounded positive cone in Rn. It is important to
restrict the search to a bounded set by finding also an upper estimate of the
optimal solution x∗. In our case x∗ ≤ xo = [xo

1, . . . , x
o
n]T , where

xo
i = max

(
0,
〈ai, b〉
〈ai,ai〉

)
, ∀i ∈ I .

This condition is a result of [6, Theorem 7], where the maximum with 0 has
been omitted in [6, formula (41)]; however, the original proof works after this
correction. By e ∈ R

n we denote the vector with all coordinates equal to 1. We
have an upper bound of the sum of entries of x∗:

〈x∗, e〉 =
n∑

i=1

x∗i ≤
n∑

i=1

xo
i = 〈xo, e〉 . (2)

Inequality (2) will be important for stopping conditions of an iterative algorithm
introduced below.
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It can be seen that the NNLS problem (1) is a special instance of a more
general quadratic programming (QP) task with non-negativity constrains. The
quadratic objective function is

F (x) =
1
2
〈x,Hx〉+ 〈x,f〉 . (3)

The QP task with the non-negativity constraints reads

x∗ = argmin
x≥0

F (x) = argmin
x≥0

(
1
2
〈x,Hx〉+ 〈x,f〉

)
. (4)

The solution of the QP task (4) coincides with the solution of the NNLS prob-
lem (1) if the matrix H = AT A ∈ Rn×n and the vector f = −AT b ∈ Rn.

The form of task (4) cannot be arbitrary; due to the formulation of the
original task (1), H and f satisfy some special properties:

1. H = AT A is symmetric and positive semidefinite.
2. Hk,k = 〈ak,ak〉 > 0 for all k.
3. The task may have multiple solutions if 0 is an eigenvalue of H; however,

the positive solutions are bounded.

The rest of this paper deals with this special form of task (4).

3 Stopping Conditions

The QP task (4) can be solved by iterative algorithms which produce a sequence
of solutions x(1), x(2), . . ., x(t) converging to the optimal solution x∗. There is a
need to stop the algorithm when the current solution x(t) is sufficiently close to
the optimal x∗. Two possible stopping conditions will be introduced. First, the
stopping conditions based on the Karush-Kuhn-Tucker (KKT) conditions will
be described in Section 3.1. Second, the stopping conditions based on lower and
upper bounds of the optimal value F (x∗) will be derived in Section 3.2.

3.1 Karush-Kuhn-Tucker Conditions

The objective function (3) is convex as the matrix H = AT A is symmetric and
positive semidefinite. The constraints x ≥ 0 define a convex feasible set. As
both the objective function and the feasible set are convex, the QP task (4) is
convex as well. In the case of a convex optimization task, the Karush-Kuhn-
Tucker (KKT) conditions are necessary and sufficient for the optimal solution
(see [4]). The KKT conditions for the QP task (4) have a particularly simple
form introduced below.

The Lagrange function for task (4) reads

L(x,μ) =
1
2
〈x,Hx〉+ 〈x,f〉 − 〈x,μ〉 , (5)

where μ ∈ R
n are Lagrange multipliers (or dual variables). We obtain conditions

∂L(x,μ)
∂x

= Hx + f − μ = 0 , x ≥ 0 , μ ≥ 0 , 〈x,μ〉 = 0 . (6)
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Any vector x which satisfies the KKT conditions (6) is an optimal solution of
the QP task (4) and vice versa.

Let X ∗ ⊂ Rn denote the set of vectors which satisfy (6), i.e., any x∗ ∈ X ∗ is
the solution of the task (4) for some μ. Notice that the set X ∗ is convex and it
contains just one vector if the matrix H is positive definite. Reasonable stopping
conditions for an iterative algorithm can be derived by introducing a relaxed
version of the KKT conditions. The ε-KKT conditions are defined as a set of
linear inequalities

x ≥ 0 ,
[Hx + f ]i ≥ −ε , for i ∈ I = {1, . . . , n} ,
[Hx + f ]i ≤ ε , for i ∈ I∅ = {i ∈ I:xi > 0} ,

(7)

where ε > 0 is a constant defining the precision of the solution. Let X ε ⊂ Rn be
the set of vectors which satisfy conditions (7). It is easy to show that X ∗ ⊆ X ε

holds in general and X ∗ = X ε holds for ε = 0.
The ε-KKT conditions are easy to evaluate and they can be used as an indi-

cator that the current solution is close to the optimal one. It is not immediately
seen, however, how the solution satisfying the ε-KKT conditions corresponds
to the optimal x∗ in terms of the optimized function F (x). This drawback is
removed after introducing a lower bound LB(x) of the optimal value F (x∗)
derived in the sequel.

3.2 Bounds of the Optimal Solution

In this section, we exclude the (possible) trivial solution x∗ = 0. If the optimum
is obtained at 0, we find it easily by a test of the inputs or after the first step
(starting from 0 as the initial estimate, we obtain it as the next approximation
and a fixed point).

Let the vector ∇F (x∗) be the gradient of the function F evaluated at x∗. It
follows from the convexity of the function F that

F (x∗) + 〈(x− x∗),∇F (x∗)〉 ≤ F (x) ,
1
2
〈x∗,Hx∗〉+ 〈x∗,f〉+ 〈(x− x∗), (Hx∗ + f)〉 ≤ 1

2
〈x,Hx〉+ 〈x,f〉 ,

which can be further rearranged to

〈x∗,Hx + f〉 − 1
2
〈x,Hx〉 ≤ 1

2
〈x∗,Hx∗〉+ 〈x∗,f〉 . (8)

Since the entries of the optimal vector x∗ are non-negative, the following in-
equality holds

〈x∗,Hx + f〉 ≥ 〈x∗, e〉min
i∈I

[Hx + f ]i . (9)

Inequalities (8) and (9) give a lower bound

〈x∗, e〉min
i∈I

[Hx + f ]i −
1
2
〈x,Hx〉︸ ︷︷ ︸

LB(x)

≤ 1
2
〈x∗,Hx∗〉+ 〈x∗,f〉︸ ︷︷ ︸

F (x∗)

. (10)
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Equality in (10) is obtained for the optimal solution vector x∗, i.e., LB(x∗) =
F (x∗) holds true which follows from the equalities

min
i∈I

[Hx∗ + f ]i = 0 and 〈x∗,Hx∗〉+ 〈x∗,f〉 = 0 ,

derived directly from the KKT conditions (6). (The former equality is based on
the fact that there is at least one i ∈ I such that [Hx∗ + f ]i = 0. Otherwise,
x∗ = 0; this case has been excluded by our assumption.)

The lower bound (10) is valid for an arbitrary optimization task (4). The
bound depends on a generally unknown term 〈x∗, e〉. However, the upper bound
of 〈x∗, e〉 can be derived for a special instance of task (4) which was specified
in Section 2. Provided the term 〈x∗, e〉 (or its upper bound) is known the lower
bound LB(x) can be evaluated and used as a stopping condition of an iterative
algorithm. A reasonable stopping condition reads

F (x)− F (x∗) ≤ δ , (11)

where δ > 0 is a constant which limits the distance between vectors x and x∗ in
terms of the optimized criterion. The stopping condition (11) is satisfied if the
inequality

F (x)− LB(x) ≤ δ , (12)

holds which could be evaluated provided the lower bound (10) is known.

4 Sequential Coordinate-Wise Algorithm

This section describes a novel (according to the authors’ knowledge) sequential
coordinate-wise algorithm for optimization of the task (4). Without the posi-
tivity constraint, our method coincides with the Gauss-Seidel method which is
known to converge if H is positive definite. The algorithm produces a sequence
of solutions x(0),x(1), . . . ,x(t) which converges to the optimal x∗. The idea is to
optimize in each iteration with respect to a single coordinate while the remaining
coordinates are fixed. The optimization with respect to a single coordinate has
an analytical solution, thus it can be computed efficiently.

Let xk ∈ R be the k-th coordinate of the vector x = [x1, . . . , xn]T ∈ Rn and
Ik = I \ {k}. The objective function F (x) can be equivalently rewritten as

F (x) =
1
2

∑
i∈I

∑
j∈I

xixjHi,j +
∑
i∈I

xifi

=
1
2
x2

kHk,k + xkfk + xk

∑
i∈Ik

xiHi,k +
∑
i∈Ik

xifi +
1
2

∑
i∈Ik

∑
j∈Ik

xixjHi,j

=
1
2
x2

kα + xkβ + γ ,
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where

α = Hk,k ,

β = fk +
∑
i∈Ik

xiHi,k = [Hx + f ]k −Hk,kxk ,

γ =
∑
i∈Ik

xifi +
1
2

∑
i∈Ik

∑
j∈Ik

xixjHi,j .

The optimization of F (x) with respect to a selected xk has an analytical solution

x∗k = argmin
xk≥0

1
2
x2

kα + xkβ + γ

= max
(

0,−β

α

)
= max

(
0, xk −

[Hx + f ]k
Hk,k

)
.

The iterative algorithm derived in the sequel updates a single variable xk in
each iteration, i.e.,

x
(t+1)
i = x

(t)
i , ∀i ∈ Ik . (13)

The formula for the update requires the gradient μ(t) = Hx(t) + f . We recom-
mend to update the vector μ(t) in each iteration instead of computing it from
the scratch. Thanks to (13) the update can be written as

μ(t+1) = μ(t) +
(
x

(t+1)
k − x

(t)
k

)
hk , (14)

where hk is the kth column of the matrix H = [h1, . . . ,hn]. (In fact, the orig-
inal formula for β has the same order of complexity, because we need only one
coordinate of the gradient. However, the latter formula allows to compute the
whole gradient which is needed for stopping conditions.) The proposed iterative
algorithm to solve task (4) is the following:

Algorithm 1: Sequential Coordinate-wise Algorithm for NNLS (abbrev. SCA)

1. Initialization. Set x(0) = 0 and μ(0) = f .
2. Repeat until the stopping condition is satisfied:

For k = 1 to n

x
(t+1)
k = max

(
0, x(t)

k −
μ

(t)
k

Hk,k

)
and x

(t+1)
i = x

(t)
i , ∀i ∈ Ik ,

μ(t+1) = μ(t) +
(
x

(t+1)
k − x

(t)
k

)
hk .
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Algorithm 1 requires O(n) computations for each update from x(t) to x(t+1).
The gradient vector μ(t) is known in each iteration, which can be employed
for the evaluation of the stopping conditions. The stopping conditions are eval-
uated after all n coordinates were updated. Section 3 describes two different
stopping conditions which can be used to halt the algorithm. It is obvious that
the objective function F (x(t)) decreases or remains unchanged in Algorithm 1,
however, we have not found a proof of its convergence yet. We have the following
observation at least:

Proposition 1. All fixed points of Algorithm 1 are optimal solutions of task (4).

proof: Suppose that x(t) is a fixed point of Algorithm 1, i.e., x(t+1) = x(t).
This means that for each k ∈ I either μ

(t)
k = 0 or (μ(t)

k > 0 and x
(t)
k = 0) hold.

Thus the KKT conditions are satisfied for x(t),μ(t).

5 Experiments

This section outlines an experiment carried out on synthetical data. The problem
selected is to train an associative network with channel-based representation of
input and output signals. We refer to [5,6] for more information about associative
networks. The adopted setting results into 10 training problems of the form (4)
with the number of n = 2500 variables.

The proposed sequential coordinate-wise Algorithm 1 (SCA) is compared
to the projected Landweber Algorithm [6] (LA). The Matlab implementation
was used in all experiments. The data matrix contains only positive entries,
which allows to evaluate the lower bound on F (x∗) and to use the stopping
condition (12). The stopping condition F (x(t)) − F (x∗) ≤ 10−6 was used. We
measured the speed of convergence in terms of (i) the number of updates required
for convergence and (ii) an estimate of the required CPU time on the common
PC with Intel Pentium IV 2.80GHz processor.

The comparison of the convergence speed can be seen in terms of the number
of iterations and the required CPU time can be seen in Figure 1. These values are
measured for all 10 problems separately. The SCA turned out to be on average
more than ten times faster compared to the LA.

6 Conclusions

This paper describes two contributions to the problem of solving the non-
negative least squares (NNLS) problem. First, stopping conditions suitable for
iterative algorithms solving the NNLS problem were proposed. The stopping
conditions allow to control the precision of the solution found in terms of the
optimized objective function. Second, a sequential coordinate-wise algorithm to
solve the NNLS problem was proposed. The algorithm is easy to implement and
showed promising performance. The proposed algorithm outperformed the pro-
jected Landweber method which has been used to solve the NNLS problem. The
methods were benchmarked on synthetical data.
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(a) Number of updates per variable (b) CPU time
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Fig. 1. Comparison between the projected Landweber method and the sequential
coordinate-wise algorithm on 10 different NNLS problems having 2500 variables each
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Abstract. A method dealing with recognition of partially occluded and
affine transformed binary objects is presented. The method is designed
for objects with smooth curved boundary. It divides an object into affine-
invariant parts and uses modified radial vector for the parts description.
Object recognition is performed via string matching in the space of radial
vectors.

1 Introduction

Recognition of objects under partial occlusions and deformations caused by
imaging geometry is one of the most difficult problems in computer vision. It
is required always when analyzing 2-D images of a 3-D scene. Although many
methods trying to solve this task have been published, it still remains open.
Clearly, there is no universal algorithm which would be ”optimal” in all cases.
Different methods should be designed for different class of objects and for dif-
ferent groups of assumed deformations. In this paper we assume the objects are
deformed by an unknown affine deformation. This assumption approximates real
photos with a week perspective deformation.

We introduce a method developed for the recognition of smooth curved ob-
jects. First, the shape is divided into parts which are defined by means of inflec-
tion points of the object boundary. Then the shape of each part is described by
a special kind of radial vector. Finally, the parameters of the affine deformation
are estimated and classification is performed by string matching in the space of
radial vectors. The performance of the method is demonstrated by experiments.

2 Overview of Current Methods

Current methods can be classified into two major categories. The methods of the
first group divide the object into affine-invariant parts. Each part is described
� Ondřej Horáček and Jan Kamenický were supported by the Czech Ministry of Ed-

ucation under the project No. 1M6798555601 (Research Center DAR). Jan Flusser
was supported by the Grant Agency of the Czech Republic under the project No.
102/04/0155.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 415–422, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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by some kind of ”standard” global invariants, and the whole object is then
characterized by a string of vectors of invariants. Recognition under occlusion
is performed by maximum substring matching. Since inflection points of the
boundary are invariant to affine (and even projective) deformation of a shape,
they become a popular tool for the definition of the affine-invariant parts. This
approach was used by Ibrahim and Cohen [3], who described the object by area
ratios of two neighboring parts. As a modification which does not use inflection
points, concave residua of convex hull can be used. For polygon-like shapes,
however, inflection points cannot be used. Instead, one can construct ”cuts”
defined by three or four neighboring vertices. Yang and Cohen [11] used area
ratios of the cuts to construct affine invariants. Flusser [2] further developed
their approach by finding more powerful invariant description of the cuts. Similar
method was successfully tested for perspective projection by Rothwell et al. [6].

Lamdan [4] used mutual position of four ”interesting” points for the recogni-
tion. To verify the received match, normalized concave areas were described by
radial vector.

The methods of the second group are ”intrinsically local” – they describe
the boundary in every point by means of its small neighborhood. In that way
they transform the boundary to so-called signature curve which is invariant to
affine/projective transform. Typical representatives of this group are differential
invariants. They were probably discovered by Wilczynski [10] and furthermore
developed by Weiss [9], [8]. These invariants are based on derivatives of orders
from four to eight. They have been experimentally proven to be extremely sensi-
tive to inaccurate segmentation of the boundary, discretization errors and noise.

Mokhtarian and Abbasi [5] used inflection points themselves to characterize
the boundary. They constructed so-called Curvature Scale Space and traced the
position of inflection points on different levels of image pyramid. The trajectories
of the inflection points then served as object descriptors. There have been also
methods based on wavelet transform of the boundary. E.g., Tieng and Boles [7]
introduced wavelet-based boundary representation, where affine invariance was
achieved by enclosed area contour parameterization. However, the use of the
wavelet-based methods in case of partial occlusions is questionable.

3 Definition of Affine-Invariant Parts

Both inflection points and central points of straight lines are affine invariant,
i.e. the properties ”to be an inflection point” and ”to be a central point of a
straight line” are preserved under arbitrary nonsingular affine transform. Thus,
we use these points for the construction of affine-invariant parts. We connect
each couple of neighboring cut points by a line. This line and the corresponding
part of the object boundary form a convex region which may or may not lie
inside the original object (in Fig. 1c). A sequence of such parts carry efficient
information about the object.

Detection of inflection points of discrete curves has been discussed in numer-
ous papers. Let us recall that, in the continuous domain, an inflection point is



Recognition of Partially Occluded and Deformed Binary Objects 417

defined by a constraint ẍ(t)ẏ(t)− ẋ(t)ÿ(t) = 0, where x(t), y(t) is a parameteri-
zation of the curve and the dots denote derivatives with respect to t. When this
definition is directly converted to the discrete domain, it becomes very sensi-
tive to sampling and noise. Thus, we propose a new robust method of curvature
estimation.

A circle with fixed radius is placed on each boundary point (in Fig. 1a). Ratio
of the whole circle area to its area being inside the object serves for estimation of
the curvature. When this ratio equals 0.5, the boundary has zero curvature and
the corresponding point is either an inflection point or it lies inside a straight
segment. We construct a curvature graph (in Fig. 1b), smooth it and define
cut points as zero-crossing points and middle points of approximately zero-value
segments. Furthermore, a request of sufficient part size is considered: the segment
of the curvature graph between two cut points should have sum of values above
some threshold, otherwise it is treated as a part of zero curvature.
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Fig. 1. Definition of affine-invariant parts

4 Description of the Parts

The object is represented by the parts, construction of which has been described
above. Describing the shape of the parts we get a description of the whole object
which is robust to occlusion. Robustness to occlusion means that if some part
of the object boundary is missing or changed, only few elements of the feature
vector are changed. This is an important attribute. Note that traditional global
methods, for instance description of the object by moment invariants or Fourier
descriptors, do not have this property.

It would be possible to describe each part individually and eliminate the im-
pact of the deformation by using proper affine invariants (moment invariants or
Fourier descriptors for instance). In such a case, however, we do not employ im-
portant information that all the parts were deformed by the same transformation.
Including this consistency information in the object description can significantly
increase the recognition performance. Thus, we propose the following description
of the parts by a modified radial vector, with included position of critical points.
See complete demo object description in Fig. 2a.

The spokes of the radial vector come from the middle of the cutting line
and they divide the part into subparts of equal area. For each part, they are
constructed as follows.
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1. Define the desired number n of the spokes (i.e. the length of the radial
vector).

2. Go through the outer boundary of the part.
3. For each step calculate the area of the triangle between the neighbor bound-

ary points and the midpoint of the cutting line.
4. If the cumulated area just steps over k/(n−1) fraction of the total part area,

the k-th spoke ends in the current boundary point.

The introduced modified radial vector divides the part invariantly under
affine transformation. Note that a classical radial vector with constant-angle
spokes distribution or constant-boundary length spokes distribution has not such
a favorable property.
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Fig. 2. Description and matching of the demo object

5 Matching

The image is classified by finding the longest and best matching part of the
boundary (in Fig. 2b). This is realized by comparing a parts sequences of the
image with a parts sequences of the database objects.

1. For each part of the database object and each part of the image do the
following:

2. Take a sequence of parts starting from the current part. A length of this
sequence is gradually incremented, it begins with the length of the previous
longest successful match (or equals one in case of the first trial).

3. Recover the affine transformation T between the database and sensed ob-
jects. Use the least square fit of the control points of all parts involved in
the sequence. Each part has three control points: two cut points and the
middle-spoke end-point.

4. Transform the database radial vectors by transformation T .
5. Compare the transformed database radial vector sequence with the current

one from the image. Similarity measure S is evaluated for this purpose – see
below. If S is smaller than required similarity threshold, this sequences are
considered not to match, and a start of next sequence is taken on the step 1.
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6. The current sequence of radial vectors was successfully tested for a match in
the previous step. If this sequence is longer than the previous best match,
or is equal and the similarity level S is higher, select this match as the best
one. Now try to make the matching sequence even longer – continue with
the step 2.

Similarity measure S is introduced for suitable comparison of the radial vec-
tors u, v. S = 1 only if u = v, S approaches zero for growing vector difference.
The single similarity measure si of the i-th spoke lengths ui, vi is a Gaussian
quantity of the ui − vi difference

si = e
− 1

σ2
i
(ui−vi

2 )2

, σi = k1 + k2

∣∣∣∣ui + vi

2

∣∣∣∣ .
The Gaussian dispersion σi absolute component k1 realizes a noise tolerance,
the constant k2 determines a tolerance relative to the value size.

We have the following requirements for combining single component si to
overall similarity measure S: S = si if all si are equal; S = 0 if some si = 0; S
needs to be sensitive to all si; moreover, we require S to be 0.75 if all but one si

equal 1 and one si equals 0.5. All these criteria are met for example by weighted
average with weights wi inversely proportional to si

S =
∑n

i=1 wi · si∑n
i=1 wi

, wi =
n− 2
si
− (n− 3).

6 Experimental results

The proposed method was tested on a set of 24 binary objects, which had been
previously segmented from color images. The objects were successively deformed
by various affine transforms, their various regions were occluded and then the
objects were matched against the database of the 24 originals. As a matching
criterion which should be maximized we took the number of those parts (cuts)
of the test object which match with the parts of the database object. This is in
fact a well-known principle of string matching.

For illustration, two examples are shown in Fig. 3. On the left-hand side, one
can see partially occluded and transformed objects. The corresponding database
objects (which were successfully found in both cases) are shown on the right-
hand side. The critical (inflection) points are highlighted, their connecting lines
define the division into parts. The spokes of the corresponding radial vectors are
drown inside the matched parts of the image.

The modified radial vector describes the boundary with a good precision,
the tolerance to a shape perturbations is controlled by user-defined parame-
ters/thresholds. This enables an optimization for various types of shapes. Inter-
estingly, the boundary does not need to be a smooth curve with well-defined
inflection points. The method finds critical points even on polygonal parts (see
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Fig. 3. Recognition samples and description of recognized database objects

Fig. 3a) and is able to construct radial vector even for non-convex parts (see
Fig. 3d).

The most problematic part of the presented method is the critical point de-
tection. Different positions of the critical points lead to different descriptions and
of course affect the matching. Instability of the critical points can be caused by
unsuitable shapes (without clear inflection points), affine transformation (affects
the curvature), or occlusion (inflection points originally ignored can become sig-
nificant). This situation is shown in Fig. 4. Although the database object (Fig.
4 top) was identified correctly in both cases (Fig. 4 bottom) one can see worse
match on the right when overlaying the test and the database objects (the over-
layed database object is drown by dotted line).

The results of our experiment depends on the object shapes, on the size of
the occlusion, on the deformation, and other conditions. The summary is in Ta-
ble 1. ”Image area” denotes the size of the visible part of the test object (in
per cent), ”Constant scale of details” indicates whether or not the same thresh-
olds were used for database and test objects when detecting inflection points,
and ”Transformation” means the significance of the deformation measured by
skewing. The table itself shows the maximum number of matching parts over all
database objects. In all instances where the maximum number of matching parts
is greater than 2 the test objects were recognized correctly. One or two matching
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Fig. 4. The impact of instability of the critical points

Table 1. Object recognition experiment. The number of matched boundary parts for
various occlusion and transformation. All numbers greater than 2 lead to correct match.

Image area 100% 90% 50% 50% 100% 100% 50%
Constant scale of details yes yes no yes yes yes yes
Transformation none none none none medium strong medium

Image 1 12 7 4 3 8 5 3
Image 2 11 8 1 4 4 6 2
Image 3 11 8 3 4 4 5 4
Image 4 11 9 3 4 2 1 3
Image 5 7 4 2 2 7 3 2
Image 6 13 8 2 2 2 1 1
Image 7 10 7 2 6 8 1 4
Image 8 9 6 4 4 9 1 4

parts does not ensure unique correct match, the classification can be wrong in
such cases. These bad situations were caused mostly by strong deformation or
big occlusion which lead to instability of critical points.

7 Conclusion

We presented a method for recognition of partially occluded binary objects de-
formed by affine transformation. The method uses local affine-invariant descrip-
tion of object boundary by means inflection points and radial vectors. When
working with digital boundary, the major limitation of the method is stability of
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inflection points. As the experiments demonstrated, if the curve has ”prominent”
inflection points, they are usually very stable under affine transformation and
the method works perfectly. On the other hand, in case of obscure boundary
the inflection points may be detected at different positions depending on the
particular transformation and/or occlusion and the recognition may fail.

Our experiment proved a good discrimination power of the method on a given
test set. We discovered that if the maximum number of matched boundary parts
between the unknown object and the database is greater than 2, it always indi-
cated a correct match. Thus, this threshold can be recommended for prospective
real experiments too.
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Abstract. We proposed a novel boosting algorithm - InfoBoost. Though 
AdaBoost has been widely used for feature selection and classifier learning, 
many of the selected features are redundant. By incorporating mutual informa-
tion into AdaBoost, InfoBoost fully examines the redundancy between candi-
date classifiers and selected classifiers. The classifiers thus selected are both ac-
curate and non-redundant. Experimental results show that InfoBoost learned 
strong classifier has lower training error than AdaBoost. InfoBoost learning has 
also been applied to selecting discriminative Gabor features for face recogni-
tion. Even with the simple correlation distance measure and 1-NN classifier, the 
selected Gabor features achieve quite high recognition accuracy on the FERET 
database, where both expression and illumination variance are present. When 
only 140 features are used, InfoBoost selected features achieve 95.5% accuracy, 
about 2.5% higher than that achieved by AdaBoost.  

1   Introduction 

Proposed by Freud and Schapire [1], AdaBoost has been successfully applied to ob-
ject detection [2;3] and face recognition [4]. The essence of AdaBoost is to learn a 
number of very simple weak classifiers, which are then linearly combined into a sin-
gle strong classifier. When the weak classifiers could perform just slightly better than 
random guessing, AdaBoost learning minimizes the upper bound on both training and 
generalization errors [5]. AdaBoost has been applied to select Haar-like features [3] 
for face detection, recognition [4] and select Gabor features [6] for classification. 
Since minimum error rate is the ultimate objective of AdaBoost learning, the weak 
learner with smallest weighted error is selected at each iteration. As a result, the 
learned classifiers are basically “individually” best. The strong classifier thus com-
bined may not necessary to be best [7]. For feature selection, classifiers using similar 
features are more likely to be selected and redundancy will exist among some selected 
features. Stanz. Li etc. [7] proposed a floating search based algorithm, named Float-
Boost, to eliminate those non-effective weak classifiers. A backtracking mechanism is 
applied to identify those unfavourable weak classifiers in terms of the error rate. The 
learned strong classifier thus consists of fewer weak classifiers and has better classifi-
cation performance. During the learning process, each of the previously selected clas-
sifiers is investigated (removed) for possible improvement in terms of the error rate. 
As a result, FloatBoost requires about 5 times longer training time than AdaBoost. 
When the number of features is huge, e.g., 163,840, which is normal when using 
Gabor features, the training process could be unmanageable. A boosting algorithm, 
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which is both effective in eliminating the non-effective classifiers and computation-
ally efficient, is required. 

We propose a novel method, namely InfoBoost, to address these issues. InfoBoost 
uses mutual information to eliminate redundancy. During the learning process, mutual 
information between the candidate weak classifiers and the selected weak classifiers 
is examined. As a result, the non-effective classifiers carrying information already 
captured by the selected feature/classifiers will be excluded. Since the process is for-
ward based, and the mutual information is checked for those candidate classifiers with 
small errors only, extra computation required is very low. In addition, mutual infor-
mation is statistically calculated, which enables our method classifier or decision 
method independent. The experimental results show that InfoBoost achieves lower 
training error rate with fewer classifiers. Better performance has also been observed 
when the selected Gabor features are used for face recognition. 

2   AdaBoost Learning 

For a two-class problem, a set of N labeled training samples is given as 
Niyx ii ,..,2,1),,( = , where { }1,0∈iy  is the class label associated with sample 

n

i Rx ∈ . A large number of weak classifiers }1,0{)( ∈xh  can be generated. A weak 

classifier could be very simple, e.g., a threshold function on the kth  coordinate axis 
of x  in the n-dimensional space. The algorithm focuses on difficult training patterns, 
increasing their representation in successive training sets. Over a number of T rounds, 
T weak classifiers are selected to form the final strong classifier. In each of the itera-
tions, the space of all possible weak classifiers is searched exhaustively to find the 
one with the lowest weighted classification error. The error is then used to update the 
weights such that the wrongly classified samples get their weights increased. The 
resulting strong classifier is a weighted linear combination of all T selected weak 
classifiers. Variants of the AdaBoost algorithm have been proposed. RealBoost is 
proposed to boost weak classifiers with real value outputs [8], AdaBoost.M1 and 
AdaBoost.MH [5] are developed to address the multi-class problem.  

3   InfoBoost Learning 

3.1   Entropy and Mutual Information (MI) 

As a basic concept in information theory, entropy )(XH  is used to measure the un-

certainty of a random variable (r.v.) X . If X  is a discrete r.v., )(XH  can be defined 

as below: 

==−=
x

xXpxXpXH ))(lg()()(        (1) 

Mutual information );( XYI  is a measure of general interdependency between two 

random variables X and Y : 

),()()();( YXHYHXHXYI −+=    (2) 
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Using Bayes rule on conditional probabilities, Equation 2 can be rewritten as: 
 )|()()|()();( XYHYHYXHXHXYI −=−=                           (3) 

Since )(YH  measures the priori uncertainty of Y and )|( XYH measures the condi-

tional posteriori uncertainty of Y after X is observed, the mutual information 
);( XYI  measure how much the uncertainty of Y  is reduced if X  has been observed. 

It can be easily shown that if X and Y  are independent, )()(),( YHXHYXH += , 

consequently their mutual information is zero. 
The estimate of MI requires the value of marginal distribution )(Xp , )(Yp  and 

the joint probability distribution ),( XYp . For a r.v. with discrete values, the prob-

ability could be estimated by simply counting the number of possible cases and divid-
ing that number with the total number of training samples. For a continuous r.v., its 
pdf could either be discretized by histograms estimation, or be approximated by 
Gaussian distribution.  

3.2   The Proposed Algorithm 

1) Input: N Training samples Niyx ii ,..,2,1),,( =  with m positive 

)1( =iy and l negative )0( =iy samples 

Initialization: weights =
sample negative a is  if  ,2/1

sample positive a is  if  ,2/1
,1 il

im
w i  

For t=1, …, T 
a) Normalize all weights 
b) Classifier selection and redundancy checking: 

For each candidate weak classifier jh , calculate classification error 

|)(|, iij
i

itj yxhw −=ε  

For (;;) 

Choose th ′  with lowest error t′ε from the candidate classifiers  

Calculate the MI )( thR ′ according to Eq. (4) 

If TMIhR t <′ )(  

The classifier found, th  = th ′ , tε = t′ε  

Go to c) Else 

Remove th ′ from the candidate list 

End loop 

c) Update weights: ie

titit ww −
+ = 1

,,1 β  with =
otherwise                       :0

classified correctly    :1 i

i

x
e  

and )1/( ttt εεβ −=  

4) Final strong classifier: 
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otherwise                          0

2/1)(        1   
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xH
αα

 with 

)/1log( tt βα =  

Fig. 1. The InfoBoost algorithm 
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InfoBoost incorporates the idea of MI to eliminate those non-effective weak classifi-
ers. Each weak classifier }1,0{)( ∈xh  is now considered as a r.v.. Before a new weak 

classifier is added, the MI between the new classifier and each of the selected ones are 
examined to make sure that the information carried by the new classifier has not been 
captured before. Given stage T where T-1 weak classifiers ,,{ )2()1( vv hh  })1( −Tvh  have 

been selected, the function to measure the MI )( jhR  between a candidate classifier 

jh  and the selected classifiers can be defined as: 

1,2,1),,(max)( )( −== TthhIhR tvjtj    (4) 

The value of )( jhR can be directly used to decide whether the new classifier is redun-

dant or not. The value is compared with a pre-defined Threshold Mutual Information 
(TMI), if it is larger than TMI, we say that the information carried by the classifier is 
already captured. Apart from MI, the error of the weak classifier is also taken into 
consideration, i.e., only those classifiers with small errors are selected. The classifiers 
thus selected will be both accurate and informative. When those non-redundant classi-
fiers are combined to form a strong classifier, better performance will be achieved.  

4   Application to Gabor Feature Selection 

Daugman presented evidence that such visual neurons could optimize the general 
uncertainty relations for resolution in space, spatial frequency and orientation [9]. 
From an information theoretic viewpoint, Okajima [10] derivedGabor functions as 
solutions for a certain mutual-information maximization problem. The work shows 
that the Gabor-type receptive field can extract the maximum information from local 
image regions. Researchers have also shown that Gabor features, when appropriately 
designed, are invariant against translation, rotation and scale [11]. Successful applica-
tions of Gabor filters in face recognition can be found in the FERET evaluation [12], 
where Elastic Bunch Graph Matching method [13] gave the best performance. More 
recent face verification competition 2004 [14] also  demonstrates the success of Ga-
bor filters: both of the top two approaches apply Gabor filters for feature extraction. 
For face recognition applications, the number of Gabor filters used to convolve face 
images varies with applications, but usually 40 filters (5 scales and 8 orientations) are 
used [13;15;16]. However, due to the large number of convolution operations, the 
computation cost is quite high. Even a parallel computer system has been used, it was 
reported in [15] that the convolution of a 128×128 pixel image with 40 Gabor filters 
took about 7 seconds. For global methods, the dimension of the feature vectors ex-
tracted is also incredibly large, e.g., 163,840 for image with size 64×64. Similar to the 
work of Viola and Jones [2], where AdaBoost was used to select Haar-like features 
for face detection, the task here is to select the most discriminative Gabor features for 
face recognition. 
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4.1   Gabor Features and the Personal Difference Space 
Given a bank of 40 Gabor filters ),,({ , yxvuϕ  }7,...0,4,...,0 == vu , image features at 

different location, frequency and orientation can be extracted by convolving the im-
age ),( yxI with the filters: 

),(),(),( ,, yxyxIyxO vuvu ϕ∗=     (5) 

The resultant Gabor feature set thus consists of the convolution results of an input 
image ),( yxI with all of the 40 Gabor filters: 

}7,...,0{},4,...,0{:),({ , ∈∈= vuyxOS vu    (6) 

Fig.  shows the magnitudes of Gabor representations of a face image with 5 scales and 
8 orientations. A series of row vectors vu ,O could be converted out of ),(, yxO vu by 

concatenating its rows or columns, which are then concatenated together to generate a 
discriminative Gabor feature vector: 

)   ()( 7,41,00,0 OOOO ==IG     (7) 

Take an image with size 64×64 for example, the convolution result will give 
64×64×5×8=163,840 features. Since the parameters of Gabor filters are chosen em-
pirically, we believe a lot of redundant information is included, and therefore a feature 
selection mechanism should be used to choose the most useful features for  
classification. 

         

 

Fig. 2. Convolution with 40 Gabor filters (magnitude and real parts)  

To apply InfoBoost algorithm, the difference space proposed in [17] is used here to 
convert the face recognition problem into a two classes problem. Two classes, dis-
similarities between faces of the same person (intra-personal space) and dissimilari-
ties between faces of the different people (extra-personal space) are defined. The two 
Gabor feature difference sets: CI  (intra-personal difference) and CE  (extra-personal 
difference) can be defined as: 

{ }
{ }qpIGIGCE

qpIGIGCI

qp

qp

≠−=

=−=

,)()(

,)()(
    (8) 
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where pI  and qI  are the facial images from people p  and q  respectively, and )(⋅G  

is the Gabor feature extraction operation as defined in (7). A set of M training sam-
ples in the difference space can now be described as { }),,),,(),,( 11 MMii ygygyg , 

=ig  ][ 21 Nn xxxx , }1,0{∈iy , where iy is the class label (intra-personal or extra-

personal) associated with sample ig , N is the dimension of extracted Gabor features 

and ( ) ( ) =−==
nqpnn IGIGgx )()(  ( )

nqp OO − . 

4.2   Weak Classifiers and Estimation of MI 

Since we are focusing on weak classifiers with discrete output only, a simple thresh-
old function is used here. The performance of learned strong classifier will be im-
proved if more sophisticated weak classifiers are designed, however we are more 
interested in feature selection here. The simple threshold function seems to be enough 
in this particular case. Given a sample N

Nn Rgxxxxg ∈= ],[ 21 , a weak classi-

fier )(gh j  simply compares the thj - coordinate of g with a threshold jt , i.e.:  

≥
<

=
jj

jj

j txif

txif
gh

                            ,0

                            ,1
)(    (9) 

As a result, totally N  weak classifiers are available. Each of them takes the difference 
of one of the Gabor features as input, while the output is decided by comparison of 
the difference against a threshold. As a result, the weak classifier selection process is 
equivalent with the feature selection process. In this paper, the threshold jt  is simply 

determined by the centre of intra-personal samples mean and extra-personal samples 
mean: 

( )( ) ( )( )=+==
==

l

q
pjq

m
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pjpj yg

l
yg

m
t

11

0
1

1
1

2

1
    (10) 

The estimate of MI between two classifiers ih  and 
jh requires information about the 

marginal distribution )( ihp , )( jhp and the joint probability distribution ),( ji hhp . 

Since the output of weak classifiers in this paper are restricted to discrete values only, 
i.e., }1,0{)( ∈gh , the probability could be estimated by simply counting the number 

of possible cases and dividing that number with the total number of training samples. 
For example, the possible cases will be )}1,1(),0,1(),1,0(),0,0{( for the joint probability 

of two binary r.v. ),( ji hhp . 

5   Experimental Results 

5.1   Datasets 

We analyse the performance of our algorithm using a subset of FERET database, 
which is a standard testbed for face recognition technologies [12]. 600 frontal face 
images corresponding to 200 subjects are extracted from the database for the experi-
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ments - each subject has three images of size 256×384 with 256 gray levels. The im-
ages were captured at different photo sessions so that they display different illumina-
tion and facial expressions. Two images of each subject are randomly chosen for 
training, and the remaining one is used for testing. We select the most discriminative 
Gabor features using the 400 (2 images each subject) training images, and use 200 test 
images. As a result, 200 intra-personal and 1600 extra-personal Gabor feature differ-
ence samples are randomly generated. Once a small set of discriminative Gabor fea-
tures are learned by applying AdaBoost or InfoBoost on the training samples, they are 
used for face recognition. 

5.2 Selected Gabor Features 

We firstly use AdaBoost on the training samples to select 200 Gabor features for 
intra-personal and extra-personal difference classification. To show the existence of 
redundancy among AdaBoost selected features (weak classifiers), the MIs )( jhR for 

each selected feature are shown in Fig. 3a. It can be observed from the figure that 
some of the features are highly redundant, e.g., the MI of features with number 149, 
177 and 180 are even bigger than 0.99. The redundancy among selected features in-
crease with the number of features. The larger the number of features, the higher 
redundancy introduced. We have also shown the MI for InfoBoost selected features in 
Fig. 3b (with TMI=0.1). Due to the introduction of TMI, all of them are less than 0.1, 
we can conclude that the features are informative and non-redundant. 

    
(a)      (b) 

Fig. 3. MI of features selected by AdaBoost a); InfoBoost b) 

   
        (a)             (b)              (c)              (d)              (e)             (f)                (g) 

Fig. 4. First five selected Gabor features (a)-(e); and the 200 feature points selected by Info-
Boost (f); and AdaBoost (g) 
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Fig. 4 (a)-(e) show the first five Gabor features selected by InfoBoost, with locations 
of the first 200 Gabor features selected by InfoBoost and AdaBoost shown in (f) and 
(g) respectively. The features are superimposed on a typical face image in the data-
base. It is interesting to see that most of the selected Gabor features are located 
around the prominent facial features such as eye brows, eyes, noses and chins, which 
indicates that these regions are more robust against the variance of expression and 
illumination. When almost all of the AdaBoost selected Gabor features are located in 
the eye region, InfoBoost selected features are more widely distributed. Some features 
located around the nose are also included.  

 

Fig. 5. Classification error rates on the training set 

To show the advantage of InfoBoost over AdaBoost, we also compared the perform-
ance of the strong classifiers learned by AdaBoost and InfoBoost, which is measured 
by the classification error on the training set (200 intra-personal and 1600 extra-
personal difference samples). As seen from Fig. 5, InfoBoost achieves lower error 
rates than AdaBoost on the same training set. 

5.3   Performance Comparison 

Once the most discriminant Gabor features are selected, we are now able to apply 
them for face recognition. In this experiment, 200 Gabor features selected by 
AdaBoost and InfoBoost (TMI=0.1) are directly used for similarity comparison, with-
out any further processing. Normalized correlation distance measure and the nearest 
neighbour classifier are used. Fig. 6 shows the recognition performance of both 
AdaBoost and InfoBoost selected Gabor features on the 200 test images. When 140 
features are used, the highest accuracy achieved by AdaBoost and InfoBoost are 93% 
and 95.5% respectively. Since the MIs of all the first 60 features are quite small, 
InfoBoost starts picking up the same features as AdaBoost. However, when the num-
ber of feature increases, AdaBoost start to pick up redundant features. The improved 
accuracy of InfoBoost selected features over AdaBoost proved the usefulness of 
InfoBoost in eliminating redundancy. 
 



 InfoBoost for Selecting Discriminative Gabor Features 431 

 

Fig. 6. Performance comparison 
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Abstract. Natural Human-Computer Interaction (NHCI) was hypo-
thesized in the nineties as a solution to close the gap between computers
and systems. It claims for interfaces that can be used in a natural and in-
tuitive way through non intrusive and invisible input sensors, exploiting
advances and results of pattern recognition, and image and speech un-
derstanding. This paper presents a multiuser natural interaction system
that supports cooperative interaction in the manipulation and manage-
ment of multimedia objects. The system uses a computer vision module
to recognize and analyze hand gestures made by several users over a
shared large display table.

1 Introduction

New technologies fling open a door on a world made of high-tech devices that
should make our life more agreeable, safe and pleasant. Some of the most im-
portant cognitive psychologist, such as Donald Norman, beware us of technology
paradox [9] asserting that innovation technology makes our life every day more
complex: a warning to make us conscious about the importance of the ”human
centered design”, first of all when we talk about Human-Computer Interaction.
The real aim of NHCI research is to create new interactive systems that inte-
grate human language into tech applications, focusing on the way we live, work,
play and interact each other. Such systems have to be easy to use, intuitive,
entertaining and non intrusive.

Recent examples of human-computer interfaces use integration of speech un-
derstanding, or computer vision-based solutions for eye tracking, lip reading or
gesture recognition [7], all overworking on natural and human communication
ways. Since hands are the most communicative part of human body [8], several
works address hand gesture commanded interfaces developing the basic func-
tions of defining and recognizing natural and human-like gestures, associating
them to appropriate interaction features. Several interaction methods are em-
ployed, based on different Gesture Recognition techniques. 3D data have been
used in systems where robust recognition of complex hand postures [1] is needed
(such as human-robot interfaces [3], Virtual 3D Environments [10], 3D objects

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 433–440, 2005.
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manipulating [6]). While accurate, 3D techniques have high price in terms of
computational complexity and need several calibrated cameras or special addi-
tional sensors to be worn. Cheaper solutions work with 2D data and use vision
based methods to perform colour or motion detection [5], and recognize gestures
through neural networks [4], or Hidden Markov models [11], or other techniques.
Natural interaction systems are particularly interesting and challenging when
several users take part simultaneously in the interaction as in real contexts: in
this case real-time processing gets duller, users can interfere each other and ac-
tions have to be recognized as independent.

In this paper we present a prototype system that supports a cooperative en-
vironment in which people can interact together with an intuitive graphical user
interface (GUI) through their own hand gestures (see sec.4).

Using 2D vision based techniques, we created a real-time system based on a
single PC station able to track users’ hands, recognize their position, shape and
motion and make the interface react to them. The gesture recognition method
developed, using simple background subtraction technique combining with the
use of a near-infrared webcam that solves problems of changing background’s
shape or color, allows the system to have enough computing resources to be
controlled by two or more users.

This paper is organized as follows. In Section 2, we describe the system
architecture and the methods used for recognizing and tracking human hands.
In Section 3, we explain our solving methods in order to develop a real-time
multiuser system and in section 4 we present our experimental results. Finally,
in Section 5, we present our conclusions.

2 Hands Recognition and Tracking

We built a collaborative table with an horizontal mat glass surface on which
a graphical user interface is projected from behind the table using an inclined
mirror placed as in fig.1.

Fig. 1. Structural system scheme

We placed a fixed standard webcam to watch the desk surface at 20 fps,
provided with an IR filter to make it impervious to visible light and projected
images. Two infrared illuminators next to the projector flood the surface of the
desk with infrared light that is reflected by the mirror.
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A 2.3 GHz computer is connected to acquire images from a webcam and to
visualize the real-time updated interface through the projector.

The processing chain develops from video processing phase that consists in
a segmentation done through background subtraction using a dynamic model of
the scene in order to cluster pixels into blobs through a connected components
algorithm [2]. Each blob (corresponding to one hand) is described with a col-
lection of statistical and morphological measures, including moments (up to the
third), bounding box, and color histogram.

In the second processing step, blobs’ shapes are discriminated as poses by a
recognition module that uses blob’s related information such as direction, size,
and perimeter length. In order to get that, once defined two different circular
finding windows sized in accordance with standard human-hand size, we devel-
oped the following algorithm.

1. Let O be the outmost point of blob A (according to the arm’s direction) and
let W1 and W2 be two circular finding windows respectively sized 20 and 3
cm in ray, both centered in A.

2. Let us consider set C(W)= {(x, y)|(x, y) ∈ ∂A ∩W}, and let N(C(W)) be
the number of elements in C(W);
- if N(C(W1))≥ N̂ , where N̂ is a fixed bound empirically determined, then

we consider the shape of A as an open hand pose.
- otherwise, let us denote by D(p1, p2) the distance between p1 and p2, where

p1, p2={C(W2)∩∂W2};
- if D(p1, p2)≤ M̂ , where M̂ is a fixed bound empirically determined,

then the shape of A is recognized as a pointing pose;
- otherwise the shape of A is recognized as an hybrid pose.

Fig. 2. Recognizing poses

Once recognized the pose, we associate to it a sensible point and a steady
time, both useful data for the interaction dynamics (see sec.4). We define the
sensible point of a pose as the fingertip in case of pointing pose and as the center
of the palm in case of open hand.

ystemSComputer
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The last processing step includes hand tracking in order to recognize and
analyze gestures of each individual user. In order to track all the hands of peo-
ple who are interacting on the table, in every frame we have to find for each
blob its sensible point position. First of all we define a circular tracking window
within which a point can reasonably move in 1/20 second (that is the time gap
between two different frames acquired at 20 fps). Considering a generic blob A,
the tracking window associated is centered in its centroid, defined as follow.

Firstable let us take into consideration the expression of the statistic mo-
ments referred to A:

mpq =
∑

x

∑
y

xpyqρ(x, y) (1)

where ρ(x, y) =
{

1 if (x, y) are into A
0 otherwise

Then, the centroid coordinates are defined by the first order moments as follow:

x̄ = m10
m00

ȳ = m01
m00

. (2)

The tracking algorithm proceeds as follow.
In every frame:

1. Let PA(f̂) correspond to the centroid of blob A at frame f̂ and let WA be
the circular tracking window centered in PA(f̂).

2. For every point S(f̂ + 1) s.t. S(f̂ + 1) ∈WA

- if S(f̂ + 1) is the centroid of a blob,
then S(f̂ + 1)≡ PA(f̂ + 1)

- otherwise blob A got out of the scenario.

Larger tracking windows allow faster gestures but increase risk of mistakes in
multiuser mode. In order to obtain an effective hands tracking in such situations,
after several testing sessions, we fixed the tracking window ray at
8 cm.

3 Multi-user System

Management of simultaneous activities of multiple users is made possible accord-
ing with specific solutions for hands identification (labelling) and for interference
between different users’ gestures.

To make different hands independent we associate to each of them their own
centroid ’id’ as their label: choosing a proper tracking window we avoid the risk
of wrong label assignments. This labelling technique works as long as there are
no total or partial blob overlaps, or rather when we assist to a blob merging. In
fact, in case of temporary overlapping, the blobs involved in the bump merge
into one blob and the system can be subjected to errors in hands tracking and
therefore in the association of the observed gestures to the right users.
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In order to obtain good results, we have employed some heuristics to detect such
cases. We define the following accidental bump model :

- there are two blobs involved;
- bump is an occasional accident;
- minimal portions of each blobs are merged.

Once defined the blob surface as the zero order statistic moments (m00, ac-
cording with def. 1), the system detects a merging case as follow:

- blobs in the current frame are less than them in the previous one;
- the larger one of them has a surface equal to at least 1.5 times the bigger

one in the previous frame.

Once such merging is detected, frames are not processed until the two involved
blobs detach so that there are no restrictions about the duration of the overlap-
ping. The system predicts the positions of the sensible points associated to the
involved blobs using a linear one-step-ahead predictor of the following form:

x̂(f) = x(f − 1), ŷ(f) = y(f − 1).

where (x(f),y(f)) are the coordinates of the sensible point at frame f (detach
frame). Under the reasonable hypothesis made in our accidental bump model,
a one step ahead predictor is enough to solve merging cases according with the
following three step algorithm.

1. Predict the two blobs’ sensible point positions they will have at the frame
in which they detach;

2. evaluate the prediction error associated to each blobs in term of distance
between predicted and real sensible points (see fig.3);

3. associate to each blob the ’id’ of that one which minimizes the prediction
error.

Fig. 3. Merging management and testing

Vision Based ystemSComputer
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4 Experimental Results

This experimental system is part of the project VICOM (Virtual Immersive
COMmunications), co-financed by the Italian Ministry of Education, Universi-
ties and Research (MIUR).

We created a particular gesture grammar in which hand gestures correspond
to actions through which users can interact simultaneously with some multimedia
objects (videos, images and sounds). We have developed an interface prototype
through which such objects can be manipulated in terms of visualization fea-
tures. This interface is designed for professor tutorship to students that interact
with the collaborative table asking questions about some didactic materials: the
professor answers them through a remote computer able to command the in-
terface as well. The associations chosen between gestures and actions are the
following:
Static actions.
selection/deselection: persistence of pointing pose on the object chosen
(steady time at least of 700 milliseconds) (see fig.4, a));
play/pause/stop: persistence of open hand on the video object chosen (steady
time at least of 500 milliseconds).
Dynamic actions.
drag & drop: pointing pose moving through the interactive scenario after an
object selection (see fig.4, a)) ;
roto-translation/resizing: two different pointing poses on the object chosen
(steady time at least of 800 milliseconds)(see fig.4, b));
clear: open hand pose moving from one side to the opposite side of the table.

Dynamic actions are realized by attaching the multimedia object to the sen-
sible point of the particular involved pose and making it move in a consistent
way with the hand that selected it (see fig.4, a)). Roto-translation with resizing

Fig. 4. Testing phases: in a) drag & drop and in b) roto-translation with resizing

is a particular action in which the visualization features of multimedia objects
are involved (see fig.4,b)). To achieve this function, the visualization system use
the following algorithm.

1. Referring to frame f̂ , let us consider the roto-translation with resizing of the
multimedia object M, with the following notations:
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M.scale(f̂) → visualizing scale of M;
M.rot(f̂) → inclination degree of M referred to the table;
M.x(f̂), M.y(f̂) → visualization coordinates of M;
P1(f̂)=(x1(f̂),y1(f̂)), P2(f̂)=(x2(f̂),y2(f̂)) → sensible points of the in-

volved blobs A and B;
x̄(f̂), ȳ(f̂) → sensible point of blob A referred to M.

2. Let us consider the motion vector V=P1(f̂)-P2(f̂) characterized by:

modulus ρ(f̂) =
√

(x1(f̂)− x2(f̂))2 + (y1(f̂)− y2(f̂))2

inclination θ(f̂ ) = arcsin (y2(f̂)−y1(f̂)

ρ(f̂)
).

3. In every frame f̂ , we have (see fig.5):

– M.scale(̂f) = M.scale(f̂ − 1) · ( ρ(f̂)

ρ(f̂−1)
);

– M.rot(̂f ) = M.rot(f̂ − 1) + (correct ·Δθ(f̂))
where Δθ(f̂) = 180

π · (θ(f̂ ) − θ(f̂ − 1)) and correct is a moltiplicative
factor depending on the position of the blobs A and B;

– M.x(̂f ) = M.x(f̂ − 1) + x1(f̂)− x̄(f̂);
M.y(̂f ) = M.y(f̂ − 1) + y1(f̂)− ȳ(f̂);

Fig. 5. Roto-translation with resizing

We tested our system with several users and the results reached are very
satisfactory.

Trascuring the edge effects that are easily solved by considering a cornice of
the table as a no-interaction zone, a good calibration lets the system to rightly
recognize poses with a precision of 99% (see fig.6).

Fig. 6. Testing Results table

Vision Based ystemSComputer
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Overlapping problems are solved in the 94% of accidental bump cases tested
whatever are the moving directions of the two hands involved, before and after
the bump. Cleaning gesture has a precision of almost 75% due to different users’
hand speeds.

All the experimental testing data refer to almost 15 full testing days.
The system works in real-time with up to 3 persons. In case of more users,

that interact simultaneously, more computing power than that available on a
single PC station is needed to support real-time image processing and interface
updating.

5 Conclusions

This work addresses a working implementation of a 2D hand gesture recognizing
system based on images segmentation through background subtraction. We have
developed an interactive environment in which more users can interact simultane-
ously with multimedia objects by performing object drag & drop, resizing, roto-
translating and video management. For hand tracking, in order to solve problems
due to overlapping of hands’ shapes, we have employed a predictor based method
that is able to discriminate (under reasonable hypotheses) between two hands of
distinct users even when they accidentally bump. Finally we have tested the system
with an interface prototype, and observed very good results.
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Abstract. This paper presents a technique for texture segmentation in images.
Providing a small template of a texture of interest results in the image being
segmented into regions with similar properties and background (non-similar) re-
gions. The core of the segmentation engine is based on the minimal cut/maximal
flow algorithm in the graph representing an image. The main contribution lies in
incorporating the template information (colour, texture) into the whole graph used
for segmentation. The method brings the possibility to locate textured regions in
the image having same property as the template patch and not only one-colored
regions (as in much existing work). The method is supervised since the user pro-
vides a representative template of an object being searched for. The object may
consist of several isolated parts. Experimental results are presented on some im-
ages from the Berkeley database.

1 Introduction

Fully automatic image segmentation is still an open research problem in computer vi-
sion. An ideal algorithm would take a single image as input and give the image seg-
mented into semantically meaningful, non-overlapping regions as the output. However,
the usual problem is over-segmentation or under-segmentation. Moreover, measuring
the goodness of segmentations in general is an unsolved problem and obtaining absolute
ground truth is difficult since different people produce different manual segmentations
of the same scene.

There are many papers dealing with automatic segmentation. We mention only the
work of Shi & Malik [12] based on normalized cuts which segments the image into
many non-overlapping regions. They introduced a modification of graph cuts, namely
normalized graph cuts, and provided an approximate closed-form solution. However,
the boundaries of detected regions often do not follow the true boundaries of the objects.
The work [13] is a follow-up to [12] where the segmentation is done at various scales.
The final segmentation is then glued together from partial ones.

One possibility to partially avoid the ill-posed problem of image segmentation is to
use additional constraints. Such constraints can be i) motion in the image caused either
by camera motion or by motion of objects in the scene [11,14,1], or ii) specifying the
foreground object properties [3,10,2].

� This work was supported by the Austrian Science Foundation (FWF) under grant SESAME
(P17189-N04), and the European Union Network of Excellence MUSCLE (FP6-507752).
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(a) (b) (c)

Fig. 1. Supervised segmentation. (a) Original image. Top image shows marked place from which
the template was cut. (b) The enlarged template patch. (c) binary segmentation with masked
original image.

In this paper we concentrate on an easier task than fully automatic segmentation. We
constrain the segmentation by using a small user-provided template patch. We search
for the segments of the image coherent in terms of colour with the provided template.
The texture of an input image is taken into account to correctly detect boundaries of
textured regions.

The proposed technique could be useful for segmentation and for detecting the ob-
jects in images with a characteristic a priori known property defined through a tem-
plate patch. Fig. 1 (top row) shows how a tiger can be detected in the image using a
small template patch from the same image. The same template patch can be used to
detect the tiger in another image even though lighting conditions are slightly different,
see Fig. 1 (bottom row).

In this paper we follow the idea given in [3] of interactive segmentation where the
user has to specify some pixels belonging to the foreground and to the background.
Such labeled pixels give a strong constraint for further segmentation based on the
min-cut/max-flow algorithm given in [4]. However, the method [3] was designed for
grayscale images and thus most of the information is thrown away. We improved the
method in [8] to cope with colour and texture images. However, both seeds for back-
ground and foreground objects were still needed. In this work we avoid the need of
background seeds and only seeds for the foreground object need to be specified.

In [15] the spatial coherence of the pixels together with standard local measurements
(intensity, colour) is handled. They propose an energy function that operates simultane-
ously in feature space and in image space. Some forms of such an energy function are
studied in [5]. In our work we follow a similar strategy. However, we define the neigh-
borhood relation through brightness, colour and texture gradients introduced in [6,7].
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Fig. 2. Combined boundary probability using colour+texture gradient of the tiger image. Black
points stand for high, white for low boundary probability.

In the paper [10] a similar idea to ours has been treated. In principle, the result is
the same, but the strategy to obtain it differs. The boundary of a textured foreground
object is achieved by minimization (through the evolution of the region contour) of
energies inside and outside the region. The Geodetic Active Region framework is used
to propagate the region contour. However, the texture information for the foreground
has to be specified by the user. In [9] the user interaction is omitted. At first number of
regions is estimated by fitting a mixture of Gaussians on intensity histogram and then
used to drive the region evolution. However, such technique cannot be used for textured
images. One textured region can be composed of many colours and therefore Gaussian
components say nothing about number of dominant textures.

The main contribution of this paper lies in incorporating the information included
in the template patch into the graph representing the image, leading to a reasonable
binary image segmentation. Our method does not need seeds for both foreground and
the background as in [3,8]. Only some representative template patch of the object being
searched for is required, see Fig. 1. Moreover, texture information is taken into account.

The structure of the paper is as follows. First, segmentation based on the graph cut
algorithm is outlined together with energy functions. Second, non-parametric compu-
tation of probabilities of points being foreground/background through histograms and
incorporating template patch information is described. Finally, the results and summary
conclude the work.

2 Segmentation

We used a segmentation technique based on the interactive graph cut method first intro-
duced in [3]. There exists a very efficient algorithm for finding min-cut/max-flow in a
graph [4]. At first we very briefly outline the boundary detection and then focus in more
detail on the construction of the graph representing the image.

2.1 Boundary Detection

Boundary detection is a difficult task, as it should work for a wide range of images, i.e.
for images of human-made environments and for natural images. Our main emphasis
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RF|q
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r

Wq,r

edge cost region

{q, r} Wq,r {q, r} ∈ N
{q, F} λRF|q ∀q
{q,B} λ RB|q ∀q

Fig. 3. Left: Graph representation for 9 pixel image. Right: Table defining the costs of graph
edges. λ is a constant described in the text.

is put on boundaries at the changes of different textured regions and not local changes
inside one texture. This is complicated since there are usually large responses of edge
detectors inside the texture. To detect boundaries in images correctly, the colour changes
and texturedness of the regions have to be taken into account like in work [6,7]. In this
paper we use as a cue the brightness, colour, and texture gradients introduced in [6,7]
to produce the combined boundary probability, see Fig. 2. For more details see also [8].

2.2 Graph Representing the Image

We introduced new penalties on edges in a graph based on a combined boundary prob-
ability image. The general framework for building the graph is depicted in Fig. 3. The
graph is shown for a 9 pixel image and an 8-point neighborhoodN . For general images,
the graph has as many nodes as pixels plus two extra nodes labeled F , B. In addition,
the pixel neighborhood is larger.

Neighboring Pixel Relation

The edge weights of neighborhood N are encoded in the matrix Wq,r,which is not
necessarily symmetric. The size and density of the neighborhood are controlled through
two parameters. We used a neighborhood window of size 21× 21 with sample rate 0.3,
i.e. only a randomly selected 30% of all pixels in the window are used. Using only a
fraction of pixels in the window reduces the computational demand and thus allows the
use of larger windows while preserving the spatial relations.

The neighborhood penalty of two pixels is defined as follows

Wq,r =
(
e−

g(q,r)2

σ2

)2

, (1)

where σ2 is a parameter (we used σ2 = 0.08 in all our experiments) and

g(q, r) = pb(q) + max
s∈Lq,r

pb(s) , (2)
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where pb(q) is the combined boundary probability mentioned in Sec. 2.1 and

Lq,r = {x ∈ R
2 : x = q + k(r− q), k ∈ (0, 1〉}

is a set of points on a line from the point q (exclusive) to the point r (inclusive). We
used the DDA line algorithm to discretize the line. The penalty in Eq. (2) follows the
idea that there is a large weight if the line connecting two points crosses the edge in
the combined boundary probability image. The value of the weight corresponds to the
strength of the edge. If there is no edge between the points the weight is zero.

Foreground / Background Nodes

Each node in the graph is connected to the two extra nodes F , B. This allows the
incorporation of the information provided by the template and a penalty for each pixel
being foreground or background to be set.

The regional penalty of a point as being foreground F or background B is defined
as follows

RF|q = − ln p(B|cq)
RB|q = − ln p(F|cq), (3)

where cq = (cL, ca, cb)� stands for a vector in R3 of L*a*b* values at the pixel q.
We use the L*a*b* colour space as this results in better performance. This color space
is approximately perceptually uniform and Euclidean distances in this space are per-
ceptually meaningful. To compute the posterior probabilities in Eq. (3) we used Bayes’
theorem as follows

p(B|cq) =
p(cq|B) p(B)

p(cq)
=

p(cq|B) p(B)
p(B) p(cq|B) + p(F) p(cq|F)

. (4)

We demonstrate it on p(B|cq), for p(F|cq) it is analogical.
We do not know a priori the probabilities p(F) and p(B) of the foreground and

background regions, i.e. how large the foreground region is compared to the background
one. Thus, we fixed them to p(F) = p(B) = 0.5 and Eq. (4) reduces to

p(B|cq) =
p(cq|B)

p(cq|B) + p(cq|F)
, (5)

where the prior probabilities are

p(cq|F) = fL
cL
· fa

ca
· f b

cb
, and p(cq|B) = bL

cL
· ba

ca
· bb

cb
,

where f
{L,a,b}
i , resp. b{L,a,b}

i , represents the foreground, resp. the background his-
togram of each colour channel separately at the ith bin.

All histogram channels are smoothed using one-dimensional Gaussians, i.e. f̄i =
1
G

∑N
j=1 fje

− (j−i)2

2σ2 , where G is the normalization factor enforcing
∑N

i=1 f̄i = 1. In
our case, the number of histogram bins, N = 64. We used σ = 1 since experiments
showed that it is a reasonable value. λ from the table in Fig. 3 was set to 1000.
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In an implementation one should take into account the possibility of a zero value of
p(B|cq) in Eq. (3) and thus avoid an overflow. In such a case RF|q = K , where K is
some “big” number (we use 10000).

The foreground histogram is computed from all pixels in the template patch. To
compute the background histogram is a little bit tricky. We know a priori neither the
colours nor a template patch of the background. We suggest to compute the back-
ground histogram from all image pixels. The basic idea behind this is the assumption
that the histogram computed from all points includes information on all colours (the
background and the foreground) in the image. Therefore, since

∑N
i=1 b̄i = 1, the proba-

bility p(cq|B) gives smaller values than p(cq|F) for the colours present in the template.
Thus, points more similar to the template are assigned in the graph more strongly to the
foreground than to the background node.

3 Experiments

The segmentation method was implemented in MATLAB. Some of the most time con-
suming operations (such as creating the graph edge weights) were implemented in C
and interfaced with MATLAB through mex-files. We used with advantage the sparse
matrices directly offered by MATLAB. We used the online available C++ implemen-
tations of the min-cut algorithm [4] and some MATLAB code for colour and texture
gradient computation [6].

The most time consuming part of the segmentation process is creating the weight
matrix W . It takes 50 seconds on a 250×375 image running on a Pentium 4@2.8 GHz.
The implementation of the texture gradient in C would dramatically speed up the com-
putation time. Once the graph is built, finding the min-cut takes 2 – 8 seconds.

In all our experiments we used images from the Berkeley database. We marked a
small “representative” part of the image and used it for further image segmentation of
the image. See Fig. 4 for the results. From the results it can be seen that very good
segmentation can be obtained even though only the colour histogram of the template
patch is taken into account.

It is also possible to apply the template patch obtained from one image for segment-
ing another one. In the case depicted in Fig. 1 small tiger patch encoding the tiger’s
colours obtained from one image is used for finding the tiger in another image. It can
be seen that most of the tiger’s body was captured but also some pixels belonging to
the background were segmented. Such “non-tiger” regions could be pruned using some
further procedure, which is not discussed in this paper.

It opens new possibilities for the use of the method, e.g., for image retrieval ap-
plications. Since some representative image template is available, images from large
databases coherent in colour and texture can be found.

4 Discussion

In the method presented in this paper, only colour histograms are used for description
of the texture of the template. Hence there are some limitations. First of all there is
a problem in the change of lighting conditions and the presence of shadows. Every
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Fig. 4. Results (we recommend to see a colour version of this Figure). 1st column: enlarged image
template patch. 2nd column: input image with marked area used as the template. 3rd column: bi-
nary segmentation. 4th column: segmentation with masked original image.
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image is usually captured under different conditions and to find one universal template
capturing all such changes is almost impossible.

However, other properties of the texture, e.g. inner texture structure, topology of
texture elements, should be taken into account to improve the robustness of the algo-
rithm to the change of lighting conditions and shadows. We are currently working on
this.

5 Conclusion

We suggested a method for supervised texture segmentation in images. The method is
based on finding the min-cut/max-flow in a graph representing the image to be seg-
mented. The paper described how to set the weights of graph edges to handle the in-
formation present in a small representative template patch provided by the user. We
proposed a new strategy to avoid the need for a background template or for a priori in-
formation of the background. Experiments presented on some images from the Berkeley
database show that the method gives reasonable results.
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Abstract. In this paper investigate how to preprocess method from input 
images for robust face recognition varying illumination environments. By 
training the different classifiers with different clusters of training data and 
adopting fusion method considering fitness correlation between clusters we 
found out better recognition performance than combining classifiers fed with 
same data. The proposed method tries to provide adaptive preprocessing as well 
as by exploring the filter selection and fusion based on illumination cluster. 
Illuminant based clustering is enhanced face recognition ratio. Face image is 
clustered several cluster unsupervised or statistical method and we adopt 
adaptive filter each cluster. In this paper, some cluster is preprocessed by single 
filter others and some cluster adopted preprocessing by filter fusion. We found 
that the performance of individual filtering methods for image enhancement is 
highly depending upon face image cluster. Also, in this paper we present the 
recognition system using the table of fitness correlations between clusters for 
combining the results from the individual clusters. We present examples from 
real applications for bad illuminant face images. 

1   Introduction 

Face recognition technologies have been motivated from the application area of 
physical access, face image surveillance, people activity awareness, visual interaction 
for human computer interaction, and humanized vision. Even though many algorithms 
and techniques are invented, the task of face recognition still remains a difficult 
problem yet, and existing technologies are not sufficiently reliable. Dynamically 
changing illumination in a real world application poses one of the most challenging 
problem in face recognition systems.  

There are many general algorithms for classifier fusion such as Bagging and 
Boosting [1]. In contrast to the huge amount of research in this active area [2, 3, 4], 
little work has been done on combining the specific classifier: the k nearest neighbor 
classifier (kNN) [4].  

First, the filter fusion guided by an evolutionary approach has been employed to 
adapt the system for variations in illumination. The proposed approach employs filter 
fusion. 
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Second, Classifier fusion methods for identification are illustrated their better 
reliance on recognition than single classifier and implemented in various ways. 
Clustering the data set into different regions is added value to recognition systems by 
finding specific sophisticated system for particular region in ways as selection and 
fusion of classifiers [5].  

In section 2, we present the previous illumination filter fusion methods. In section 
3, we present the proposed classifier fusion for identification using fitness correlations 
between clusters for clustered image and the architecture of the proposed face 
recognition. We give experimental results in section 4. Finally, we give concluding 
remarks. 

2   GA Based Filter Fusion in Preprocessing 

As discussed in session 2, adaptive preprocessing and identification is required for 
robust face recognition under uneven environments. We employ the method of 
context-awareness in order to provide the capability of adaptation in preprocessing 
and feature representation stages. The proposed context-aware preprocessing together 
with adaptive Gabor feature space can perform well under uneven environments. We 
use three preprocessing, histogram equalization, contrast stretching and retinex 
algorithm [6, 7]  for filter fusion.   

Clustering is researched many peoples [1, 2, 3]. In constrast to the huge amount of 
research in this active area [1], little work has been done on combining the specific 
classfifier: the k nearest neighbor classifier(kNN) [4]. 

In this paper, we generate the method filter fusion as Bayesian based method. The 
system learns changing environments in the context-awareness stage, and adapts itself 
 

Fig. 1. Face recognition architecture based on the context-aware preprocessing 
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by restructuring its structure and/or parameters. The adaptation is guided by 
evolutionary computing module, genetic algorithm here. We adopt Fuzzy ART [8] for 
achieving an optimal illumination clustering architecture. In this paper, the clustering 
performance is improved by iterative learning method. Fig. 7shows the clustering 
result of face images by Fuzzy ART. 

 

Fig. 2. Examples of face image clustered 

The system learns changing environments in the context-awareness stage, and 
adapts itself by restructuring its structure and/or parameters. The adaptation is guided 
by evolutionary computing module, genetic algorithm here. Filter fusion maded 
following figure. 

Fig. 3. GA based Filter fusion Architecture 
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3   The Proposed Classifier Fusion 

Classifier outputs are usually made comparable by scaling to interval [0,1]. We 
assumed the outputs are also measurable as similarity of feature to classes. By the 
Fig1 the features in same cluster are measured more similar by classifiers.. In this 
paper, it is assumed that combination of Classifiers, each fed by data in one cluster is 
more steady in recognition rate. Classifier fusion assumes that all classifiers are 
trained over the whole feature space, and are thereby considered as competitive rather 
than complementary. But some methods as bagging, boosting and adaboosting made 
the classifiers individual from each other by selecting different training data sets [9, 
10]. Thus, some solutions considered individualism between classifiers by correlation 
between them for making final decision. 

The assumption that classifiers perform independent of each other might be 
invulnerable. But methods related to Boosting as Bagging [4], Boosting [2], 
AdaBoosting [2, 3] considered create each classifier in an ensemble independently of 
the other classifiers. We can look in way the classifier is simply compares the Test 
data with trained data. Same idea is introduced here to create the classifiers 
independent from each other and make the ensemble method fitness correlation more 
considerable and reasonable. Fig 4 show the difference of independency of classifiers 
trained by different data set or whole. 

Fig. 4. Classifier Decision Architecture 

3.1   Training Fitness Correlation Table 

Let R0, R1 … RN are regions clustering the feature vector x  R^n data sets and D = 
{Dij}, i,j {1,2,3,…,N} are the classifiers. Call a classifier the mapping D: R^n  
{h, y}, y is one of {1,2,…,c} c classes and h, h [0,1] is fitness between x and y 
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measured by classifier. We can look in way the classifier simply compares the Test 
data set X with trained data set T. Dij is expert on comparing feature vector x, x Ri, 
x with training data t, t Rj. 

3.2   Classifying Method 

Simply combining method is making final decision when we received number of 
result from different classifiers. Addition information that we need is trueness of that 
result and fitness correlation table would help us to find them. The trueness of the 
classifiers’s result derivate next figure and equation.. 

Fig. 5. Decision result 

i = P(True | j ) = P(True | X)  = P(X | True) * P(True) / P(X) (1) 

P(X) = (P(X | True) * P(True)  + P(X | False) * P(False) (2) 

P(X | True) = exp(-0.5 * ((x - T)/ T)^2 ) / ( 2  * T ) (3) 

4   Experimental Results 

The feasibility of the proposed method has been tested using Inha, FERET[9], and 
Yale [10] database. Experiments have been carried out to compare the recognition 
performance of the filter fusion and identification based face recognition scheme and 
that of other methods. We used 1000 images of 100 persons from Inha DB, 60 images 
of 15 persons from Yale Face DB, and 2418 images of 1196 persons from FERET DB. 

As shown in Fig6 and 7, the proposed method based on adaptive feature space 
outperforms the performance of the non-adaptive methods for the integrated data set. 
Even though Retnix based method shows the highest performance using FERET fafc, 
it can not be used under normal illumination. Histogram equalization based method 
shows the highest performance under normal illumination, i.e. FERET fafb. If the 
working environment of the system can be controlled well, non-adaptive method may 
perform better than the proposed adaptive method. However, in general we can not 
predict or control the system working environment. Thus, we can say that the 
proposed method is better choice than the non-adaptive methods. 
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Fig. 6. Comparison of face recognition rates of the proposed adaptive method to those of non-
adaptive methods 

Table 1. Performance evaluation of the proposed system comparing with other approaches  

Table 2. Comparison results between classifier fusion (cluster number 5) 

Algorithm/Method FERET fafc FERET fafb FERET fafb + fafc 
arl_cor 0.052 0.827 0.4395 
ef_hist_dev_ml1 0.392 0.733 0.5625 
ef_hist_dev_ml2 0.309 0.772 0.5405 
Excalibur 0.216 0.794 0.505 
mit_mar_95 0.155 0.834 0.4945 
mit_sep_96 0.32 0.948 0.634 
umd_mar_97 0.588 0.962 0.775 
usc_mar_97 0.82 0.95 0.885 
Proposed method 0.83 0.95 0.89 

 

  Ferret Yale Our Lab 
Eigenface 60.35 58.91 94.2 
Gabor3 59.59 68.99 93.72 
Gabor13 64.96 77.83 94.44 
Gabor28 82.06 80.46 95.79 

Single 
Classifier 

Gabor30 82.06 80.46 95.79 
MV 84.58 82.17 98.41 
MX 84.66 80.46 97.14 
MN 8.38 10.07 8.73 
NB 85.16 83.1 97.77 
Product 78.62 82.63 90.94 
Avarage 83.74 84.03 97.22 

Fusion 
Method 

Proposed method 95.25 94.03 99.20 
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Table 1 and 2 show the comparison of the proposed method to other previous 
approaches. It becomes apparent that the proposed adaptive method not only shows 
the highest recognition performance, especially under bad illumination (FERET fafc), 
but also it shows good performance under normal illumination (FERET fafb). The 
proposed method shows the highest performance using the integrated data set of 
FERET fafb and fafc. We can conclude that the proposed adaptive method can 
operate best under uneven illumination environment.

5   Concluding Remarks 

In this paper, we proposed a filter fusion and identification similarity methods for 
efficient face recognition varying illuminant face images. By training the different 
classifiers with different clusters of training data and adopting fusion method 
considering fitness correlation between clusters we found out better recognition 
performance than combining classifiers fed with same data. From extensive 
experiment, we found that the performance of individual filtering methods for image 
enhancement is highly depending upon application environments. The proposed 
method image preprocessing and feature representation based on context-awareness 
performs well especially in changing illumination environments due to its 
adaptability. The proposed method can decide an optimal configuration of filter 
fusion and cluster’s correlation. We enhancement the performance,. 
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Abstract. We present two approaches for automatically segmenting the
spinal cord/canal from native CT images of the thorax region contain-
ing the spine. Different strategies are included to handle images where
only part of the spinal column is visible. The algorithms require one seed
point given on a slice located in the middle region of the spine, and the
rest is automatic. The spatial extent of the spinal cord/canal is deter-
mined automatically. An extended region-growing technique is suggested
for segmenting the spinal canal while active contours are applied if the
spinal cord is to be segmented. Both methods work in 2D and use prop-
agated information from neighboring slices. They are also very rapid in
execution, that means an efficient, user-friendly workflow. The methods
were evaluated by radiologists and were found to be useful (in reduc-
ing/eliminating contouring labor and time) and met the accuracy and
repeatability requirements for the particular task.

1 Introduction

In case of radiation treatment (RT) planning, CT imaging is generally used
because image voxel gray values (Hounsfield Units) are in direct function of
radiation absorption and therefore can be used directly in dose calculation. In
RT planning, clinicians (radiologists, dosimetrists or radiotherapists) must trace
the outline of a few critical structures on a large number of images. The time
and labor increases significantly with the number of image slices, and the num-
ber and sizes of the organs in the anatomical area of interest. The quality of
the contouring and then the produced 3D objects depend on the resolution and
contrast of the 2D images, and on the knowledge and judgment of the clini-
cian performing the segmentation. Using automated image segmentation could
� This work was supported by GE Medical Systems.
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save tremendous time and effort. Also, automated segmentation could increase
precision by eliminating subjectivity of the clinician.

One of the key regions that must be protected during the irradiation treat-
ment is the spinal cord/canal. The difficulty of the automatic segmentation is
caused partly by vertebrae that have open cross-sections in the image, partly by
the fact that below the level of pelvic bones the cord is no longer situated in the
spine.

There are several approaches in the literature to the segmentation of the
spinal cord from CT images. The segmentation approach of [1] is based on 2D
boundary tracking. It requires an initial point to start tracing the edge. The
initial point travels to the vertical or horizontal direction until an edge is reached.
Then the algorithm starts to examine the surrounding pixels of that edge and
check whether they belong to the current edge or not. The algorithm uses a
constant threshold selection which is hard to find (due to the partial volume
avaraging effect).

Another approach [2] relies on a knowledge-base which consists of an Anatom-
ical Structures Map and a task-oriented architecture, the Plan Solver. The
anatomical structures map contains a frame-like knowledge representation of
the macro-anatomy in the human thorax. The plan solver is responsible for
determining the position, orientation and size of the structures of interest to
radiation therapy. The plan solver relies on a number of image processing opera-
tors. However, a general decision making system like the Plan Solver, a method
using artificial intelligence could be far from being efficient.

2 Methods

The segmentation procedure described in this paper was devised to work on
native CT images of the thorax region containing the spine. Different strategies
are included to handle images where only part of the spinal column is visible.
The method comprises the following main steps:

1. Initialization: The purpose of seed point selection is to determine the starting
slice and to provide some localization hint for the segmentation algorithm.

2. Pre-processing: Determination of the extent of the cord in the spine between
the head and the pelvic bones yields a transaxial slice range, the region of
interest (ROI).

3. 2D segmentation on the starting slice: Cross-section of the spinal cord/canal
at the starting slice is segmented by either an active contour or a region
growing type algorithm.

4. Segmentation on other slices: Repeating propagation and constrain of the 2D
segmented region onto the subsequent slice and segmentation on that slice by
active contour or region growing, slice-to-slice in upward (toward the head)
and downward (toward the feet) directions within the extent yields the final
3D result.
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2.1 Determining the Extent of the Cord in the Spine

Seed point is given on a slice located in the middle region of the spine. The slice
should contain a ‘nice’ vertebra, i.e., consisting totally of bone and no cartilage
at all. Effectively this assures that the contour of the vertebra is sharp. The
extent of the spinal cord/canal is determined by finding the ‘upper’ end (in the
neck region) and the ‘lower’ end (in the pelvic region) if visible in the image
volume. Automatic recognition of the extent is reasonable. Different strategies
are used for the two ends.

Extent Towards the Head. Although in many images only the lower part,
the pelvic region of the spinal cord is visible there are situations when the upper
end is present in the image volume. Here the task is basically the separation
of the spinal cord from the brain. This can be reliably done using the bony
structures within the region as guides. The region contains the shoulder blades
and the collarbone, which are relatively large volumes of bone tissue. The neck
contains only a few vertebrae (small bone volume). The skull and jaw are again
of relatively large volume. The spinal cord is present in the shoulder and neck
region but is not present inside the skull; therefore the extent should be limited
to the level below the skull. This can be determined by computing the volume
of the bone tissue in each transaxial slice (e.g., by simple thresholding) starting
at the seed point level and proceeding toward the head. The level where the
bone volume starts to increase considerably after the major decrease indicates
the skull base.

Extent Towards the Pelvic Bones. One of the main problems in the auto-
matic segmentation of the spinal cord is to recognize the lower (inferior) end of
the spinal canal, where segmentation should be terminated to avoid undesired
behavior (e.g., leakage). The main idea of the method is to use the shape of the
spine to determine the extent of the cord in the pelvic region. First the apexes of
the vertebrae are located on each slice by using the image intensities and some
anatomical knowledge of the spine curve. The algorithm seeks for the location of
a specific curvature pattern in the spine to determine the lower end of the cord.
(see Fig. 1)

2.2 Active Contour Based Segmentation with Propagation

The idea of the active contour or ‘snake’ algorithm is that a closed curve will
best separate the object of interest from its surroundings when its placement
and shape is such that an energy function, defined over the boundary, is mini-
mized. [3,4] The contour is described parametrically by v(s), s ∈ [0, 1]. The snake
energy is

Esnake(v(s)) =
∫ 1

s=0

Einternal(v(s)) + Eimage(v(s)) + Econstraint(v(s)) ds,

where internal, the internal energy imposes curvature (smoothness) constraints,
Eimage, the image energy attracts the contour to the desired features (edges)
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(a) (b) (c)

Fig. 1. Spinal cord with marked apexes of the vertebrae (a) and determination of the
stopping angle (b), and the spine image superimposed on the curve function (c)

of the image, and Econstraint, the constraint energy allows other geometric con-
straints to be applied.

We chose to solve the discrete problem using a more or less discrete method
following some ideas of [5]. Instead of energy minimization, we prefer working
with the effects of the energies, i.e., we apply discrete forces on each boundary
point and look for equilibrium of these forces.

To obtain the segmented 3D object, first, the user selects a seed point in
one of the slices and 2D segmentation is performed on that particular slice.
The centroid of the enclosed shape is propagated to adjacent slices and the 2D
segmentation is performed on those slices also starting from the propagated seed
point.

Forces Used for the Active Contour. At each iteration step, various forces
are applied to each contour point p, until points stop moving considerably or
maximum number of iteration is reached:

F(p) = Fimage(p) + Fconstraint(p) + Finflation(p) + Fangle(p) + Fdistance(p).

Image force is used to attract the contour to edges. We compute the image
force as a smoothed gradient from the negative gradient norm of the image.
Constraint force is used to constrain the size and the shape (circular) of the
segmented region. The farther the current point is from the centroid of the
enclosed polygon, the larger force is applied to pull it back. Local inflation force
pushes the contour outwards. When a point does not move considerably (i.e., it
is stuck in a local minimum), this force pushes the point outward with a small
constant. Angle force is used to smooth the contour. We compute the deviation
from 180 degrees of the angle at each contour point and penalize large deviations
and concavities. Distance force aims at evenly distributing contour points. We
compute the deviation of the distance of two adjacent points from the average
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distance of the nearby (or all) adjacent points. This pulls the actual point into
its tentative middle position between the neighbors.

Cut and merge operations also aim at evenly distributing contour points and
at the same time refining the contour. If the length of an edge is too large, the
edge is cut and a new contour point is created. If the length of an edge is too
small, it is removed by merging its two endpoints.

Propagation to Other Slices. Since the method works in 2D and it requires
a seed point within the slice to start with, we need to provide seed points for the
object on each slice. To reduce the user interaction and facilitate automation,
user-defined seed point is required only on the initializing slice. For subsequent
slices the method automatically generates seed points based on the segmented
regions from neighboring slices. The centroid of the enclosed region is propagated
to adjacent slices. If it is detected to fall out of the spinal cord (by using image
intensity measures), the algorithm will correct for the bending of the spine by
extrapolation from the positions of the centroid on the actual slice and on the
previous slice.

2.3 Region Growing Based Segmentation with Propagation

This technique uses the standard ‘textbook’ region-growing algorithm with a
stopping criterion that combines local and global differences between gray values
of voxels, as well as a technique to add geometrical constraints based on the
anatomical knowledge about the organ being segmented.

The region growing method is prone to ‘leaking out’ if object boundaries are
not well defined in the image data. Also, since segmentation is done slice by slice
and subsequent iterations are initialized using results on preceding slices, one
bad slice could ruin all subsequent results. Our algorithm will mostly prevent
these failures.

Segmenting the First Slice. The user is required to select an initial slice
where the spinal cord is totally enclosed by a vertebra, thus guaranteeing that
the initial segmentation of this slice will not leak out. The object is roughly
segmented on the initializing slice, starting from the seed point, and following a
conservative thresholding strategy where the thresholds depend on the intensity
value of the seed point.

The criterion that is used to stop the region-growing algorithm depends on
local and global features, which describe the homogeneity of the segmented re-
gion. These are represented by parameters m and M :

m = max
v∈R
|I(S)− I(v)| M = max

v1,v2∈R
|I(v1)− I(v2)|,

where R is the segmented region, S is the seed point, and I(v) denotes the gray
value at voxel v.
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Segmenting the Other Slices. Although this variant of region growing oper-
ates in 2D, it can be used to extract a whole 3D volume by slice by slice starting
off at the slice containing the initial seed point, and traversing every transaxial
slice above and below the initial slice. This is realized by propagating a point to
be the new seed point, utilizing the statistical features of the initial slice, and
applying several constraints to the new region.

Seed propagation is performed analogously to that used with the active con-
tour method described above. The region growing criterion is set up that a voxel
v that is neighbor of a region boundary voxel b is included if

α
D

M
+ β

d

m
< T ,

where D = |I(v) − I(b)| and d = |I(v) − I(S)|, α and β are weights and T is a
pre-specified threshold.

Before the iteration continues, every segmented region must be evaluated
to detect leakage and to embed some a priori information about the organ in
question. The spinal canal has a tubular structure and in each slice it appears
almost circular, therefore, a circular mask of the approximate size of the spinal
canal is applied to the segmented region to reduce false positives.

3 Results

Note that the segmented ‘spinal canal’ is on average 18–20% larger than the
segmented ‘spinal cord’. Therefore, the two segmentations cannot be directly
compared. For radiotherapy planning, any segmented region falling between the
borders of cord and canal can be accepted as accurate. Figure 2 shows a few
transaxial cross-sections and a sagittal slice with the segmented spinal cord in-
dicated over the original CT images.

There were 27 image volumes included in our studies and three operators
performed manual contouring for producing the ‘gold standard’. The measure for
accuracy was computed by means of true positive volume fraction (TPVF), false
positive volume fraction (FPVF), and false negative volume fraction (FNVF)
using the ‘gold standard’ as the true volume.

Operator A performed the same segmentation task 3 times (A1, A2, A3).
For each pair (A1-A2, A1-A3, A2-A3), an overlap measure was computed. The
measure for intra-operator reproducibility was computed as the mean and the
standard deviation of the computed overlap measure among all performed tasks.
Inter-operator reproducibility was computed similarly. Three different operators
(A, B, C) performed the same segmentation task. Measures are computed for
each pair (A-B, A-C, B-C) and for each task and are pooled for statistics. Table 1
shows the results for accuracy and reproducibility.

Accuracy of the active contour method is approximately the same as that
of the manual outlining for the spinal cord. This automatic method also shows
higher intra- and inter-operator reproducibility. Accuracy and reproducibility of
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(a) (b) (c)

(d)

Fig. 2. Segmentation on the initial slice (a), on an additional slice with open vertebra
(b), and sagittal view of the entire segmented spinal canal (d). Segmentation on a slice
from a very noisy dataset (c).

Table 1. Accuracy, intra- and inter-operator reproducibility measures for the methods.
Mean values and standarad deviation of the measures are expressed in percents.

Region Method TPVF FPVF FNVF
Intra-

operator
Inter-

operator

Spinal Manual 97.94 (1.49) 2.06 (1.31) 2.06 (1.49) 93.35 (1.75) 91.90 (2.63)
cord Auto (AC) 97.59 (2.59) 2.62 (2.01) 2.41 (2.59) 94.77 (1.94) 94.53 (1.72)

Spinal Manual 97.27 (1.53) 2.73 (1.66) 2.73 (1.53) Not tested 89.62 (2.54)
canal Auto (RG) 95.83 (3.85) 8.79 (6.12) 4.17 (3.85) Not tested 86.69 (7.20)

the region growing based method is somewhat lower than that of the manual
outlining due to leakage in a few cases.

Selecting the initial slice and the seed point can be done in a few seconds
per data set. Running time for the semi-automatic segmentations was found to
be 25 seconds per study on average for the active contour method and a few
seconds per study less for the region growing method. This is much less than the
time needed for manual contouring.

4 Discussion

The simple method published in [1] has several drawbacks, which limit its accu-
racy and usability. It can be very sensitive to where the starting point is placed in
a slice image. Also, often images show cross-sections in which the vertebra is not
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closed, therefore the initial traverse to find a boundary point may fail. Due to the
partial volume averaging effect the contour of the spinal canal may not be sharp
and clearly identifiable in a slice image at all. It is hard to find proper threshold
of general use. Our method requires the selection of a reliable initial section but
afterwards it automatically propagates size, shape and intensity constraints.

The size and shape of organs, even the spine, vary a lot and their boundary
is not always visible. Thus detection is only possible with some prior informa-
tion. Instead of using probabilistic approaches (which are known to be not only
erroneous but also slow, even in case of a very simplistic model), we incorporate
anatomical knowledge into our method. After understanding how radiologists
work when they analyze images, we built the radiologists decision making pro-
cedure directly into our method.

Since our principal aim was to develop a real-time method that can be used
in daily routine work, we optimized on speed instead of generality, unlike the
Plan Solver [2]. Also, we use initial human interaction to guarantee the correct
starting off of the iterative, propagating procedure, in contrast with [2], where
the authors use fully automatic initialization and then try to determine failure
of initialization.

5 Conclusions

Both of our algorithms to segment the spinal cord/canal require only one point
to start, after that the segmentation is fully automatic and fast. This means a
highly efficient, user-friendly workflow (no need to trace a contour on a starting
slice, no need for initial model fitting, no need for ROI or slice range selection).
The methods were evaluated by radiologists and were found to be useful (in
reducing/eliminating contouring labor and time) and met the accuracy and re-
peatability requirements for the particular task. Since the active contour version
performed better of the two in terms of reproducibility and accuracy, that one
is currently incorporated into the product.
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Abstract. We present a vehicle segmentation method for still images
captured from outdoor CCD cameras. Our preprocessing process par-
titions the background images into a set of two-dimensional grids, and
then calculates the statistical feature values of the edges in each grid. For
a given vehicle image, we compare its feature values of each grid to the
statistical values of the background images to finally decide whether the
grid belongs to the vehicle area or not. To find the optimal rectangular
grid area containing the vehicle, we use a dynamic programming tech-
nique. Based on the statistics analysis and the global search technique,
our method is more systematic compared to the previous heuristic meth-
ods, and achieves high reliability against noises, shadows, illumination
changes, and camera tremors. Our prototype implementation performs
vehicle segmentation in average of 0.150 second, for each of 1280 × 960
vehicle images. It shows 97.03 % of successful cases from 270 images with
various kinds of noises.

1 Introduction

In this paper, we present a method of segmenting the vehicle area from the
road images. This vehicle segmentation problem actually removes unnecessary
visual information such as lanes, shadows and other noises from road images,
and enables other processes to concentrate on the vehicle area. As an example,
the license plate recognition and vehicle classification, which are used in various
applications including automatic toll fee collection systems, traffic monitoring
systems, and Intelligent Transportation Systems (ITS), use the vehicle segmen-
tation as one of their fundamental operations.

The background subtraction method is one of the most widely used one
for the vehicle segmentation. It compares a background and a vehicle image in
a pixel-by-pixel manner, to report a set of altered pixels as the vehicle area.
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Although it is intuitive and straightforward, it is sensitive to the illumination
changes, camera tremors, shadows and other noises. For the cases where the
vehicle color is similar to the background color or where shadows of the target
vehicle itself or other vehicles exist, it may fail to find the vehicle area. It also has
drawbacks that background images and threshold values should be dynamically
updated for deriving correct results[1,2,3,4].

To complement the drawbacks of the background subtraction, several re-
searchers combined edge detection techniques with it[2,3,5,6]. Fathy and
Siyal[2,3] developed a system that counts the number of vehicles using back-
ground subtraction and edge detection techniques. By restricting the vehicle
detection to a predefined window area, they could achieve high performance. Yu
et al.[6] applied the background subtraction method to the edge detected images
rather than the original ones.

Fathy and Siyal[2,3] and Yu et al.[6] attempt to apply their results to collect
traffic parameters such as the number of vehicles passed, so they focused on
detecting vehicles, rather than precisely finding the vehicle area. Compared to
their results, Lee and Kweon[5] find the vehicle area more precisely from the
background subtracted results, using symmetries in detected edges and intensity
values. Though it shows better performance, it has the limitation of assuming
the whole vehicle is neatly captured in the image, to use its symmetry.

In spite of various attempts at the vehicle segmentation, we have no general-
case solution yet. In some cases, previous vehicle segmentation methods may
be confused by various circumstances including unexpected shadows, irregular
illumination changes, and/or camera tremors. In this paper, we present a vehicle
segmentation method, aiming to an integrated vehicle recognition system with
the capability of license plate recognition, vehicle classification, and so on. Thus,
we use input images with comparatively high resolution of 1280× 960, and the
final result of vehicle area segmentation will be used as the input of those post-
processing processes.

To reduce the influence from various noises in the outdoor CCD camera
images, we use a grid-based approach: the input image is partitioned into a set
of grids, for more efficiency and more robustness, as explained in the following
sections. After calculating the statistical values of our feature metrics from a set
of background images, we use these statistical values to decide whether each grid
area is a candidate for the vehicle area or not. Compared to the previous ones,
our method has the following strong points:

Robustness to noises: our approach is more suitable for noisy images.
No assumption on the vehicle location: our method can handle the rapid

lane changes and/or partially captured vehicles.
Efficiency: our prototype implementation shows average of 0.150 second for

each vehicle image of 1280× 960 resolution. Considering relatively high res-
olution, its processing speed is acceptable for practical applications.

In Sect. 2, details of our vehicle segmentation method will be presented.
Sect. 3 contains the experimental results from the prototype implementation.
Conclusions and closing remarks will be followed in Sect. 4.
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2 Vehicle Segmentation Algorithm

To define our feature values for the vehicle segmentation, we start from convert-
ing the color images into grayscale ones for ease of edge detection process. Then,
we detect the edges in the grayscale image. In our prototype implementation,
we use Sobel’s edge detection value Edge(pxy) for each pixel pxy = (x, y).

We use the images captured from CCD cameras mounted on poles or other
tall structures, looking down on the traffic scene. Including these ones, outdoor
cameras almost always move slightly due to winds, shocks, etc. The images ad-
ditionally show different exposure and/or contrast due to the weather and other
circumstances. To overcome these derangements, we use a grid-based approach
rather than a pixel-based one.

A given image I would be partitioned into w× h grids, each of which can be
expressed as a set of pixels as follows:

Iij = {pxy| iw ≤ x < (i + 1)w and jh ≤ y < (j + 1)h} .

We will finally decide that which grid areas belong to the vehicle area. Since
the pixels may be slightly moved and/or have different pixel values for the same
object under different circumstances, the set of pixels in a grid area will be
treated as a unit. This grid-based approach, we think, would be a reasonable
way of overcoming the derangements in outdoor captured images.

For each grid area Iij , we need to summarize the Edge(pxy) values over the
whole grid area, as feature values. Since the grid area covers a two-dimensional
rectangular region, we accumulated Edge(pxy) values along the horizontal and
vertical directions. The sum of Edge(pxy)’s for each x- and y-coordinate can be
calculated as follows:

Sij(x) =
∑

y∈Iij

Edge(pxy) for each x ∈ Iij and

Sij(y) =
∑

x∈Iij

Edge(pxy) for each y ∈ Iij ,

where x ∈ Iij and y ∈ Iij mean all the x- and y-coordinates suitable for the
rectangular area of Iij .

As an example, Fig. 1(d) is the edge-detection result of a grid are in the orig-
inal image of Fig. 1(a). Its vertical and horizontal accumulation of Edge(pxy)
values for the grid area can be expressed as the graphs in Fig. 1(b) and 1(c),
respectively. These Sij(x) and Sij(y) graphs have peaks around the x- and
y-coordinates corresponding to the vertical and horizontal edges. The vehicle
boundaries and interior areas usually have clusters of vertical and horizontal
edges, and thus, we derive our feature values from these peak shapes.

To reduce the influence of various derangements, we use the idea of the his-
togram normalization and use Sij(x)/maxSij(x) and Sij(y)/maxSij(y) rather
than Sij(x) and Sij(y). Additionally, we focus on the ratio of maximum and
minimum values in the graph, and these ratio values are calculated as follows:
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(a) using 100 × 80 grids (b) Sij(x)/max Sij(x)

(c) Sij(x)/max Sij(x) (d) Edge(pxy) for a grid area

Fig. 1. Results of our vehicle area segmentation method

Rx
ij = max

x∈Iij

(Sij(x)/maxSij(x))− min
x∈Iij

(Sij(x)/maxSij(x)) and

Ry
ij = max

y∈Iij

(Sij(y)/maxSij(y))− min
y∈Iij

(Sij(y)/maxSij(y)) ,

where both max(Sij(x)/maxSij(x)) and max(Sij(y)/maxSij(y)) are actually
evaluated to 1. These Rx

ij and Ry
ij can be representative values for the Sij(x)

and Sij(y) graphs for each grid area Iij , and we use these ratios as the major
feature values.

The vehicle segmentation can also be achieved through removing background
areas, in an opposite manner. The background subtraction method is a typical
example and it removes corresponding pixels with the same color. Although we
have some previous works in this approach, they may show unacceptable results
due to unexpected shadows, camera tremor, etc. as shown in Fig. 2.

In this paper, the feature values Rx
ij and Ry

ij are used to decide whether its
corresponding grid area Iij may belong to the background region or not. Our
basic idea is considering the grid as the background region when it has similar
feature values comparing to the background images. Letting Ibg be the set of
background images, it has only the images captured when no vehicle is detected
on the loop sensor at the image capturing time.

Actually, most of background images in Ibg are somewhat defective due to
over-exposure, unexpected shadows, camera tremors, etc., as shown in Fig. 3. To
remove these defects, we use a statistical approach. We calculate the averages of
Rx

ij ’s and Ry
ij ’s over the whole background images in Ibg, and denote them as

μx
ij(Ibg) and μy

ij(Ibg), respectively. Similarly, we calculate σx
ij(Ibg) and σy

ij(Ibg)
as the standard deviations of Rx

ij ’s and Ry
ij ’s, respectively.
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(a) a background image (b) a vehicle image (c) the result

Fig. 2. An example of background subtraction with the unexpected shadow

Assuming that Rx
ij ’s and Ry

ij ’s for Ibg are normally distributed, the Rx
ij and

Ry
ij for the grid Iij in a vehicle image may be a candidate for the background

region when the following conditions are satisfied:

κx =

∣∣∣∣∣Rx
ij − μx

ij(Ibg)
σx

ij(Ibg)

∣∣∣∣∣ ≤ αx and κy =

∣∣∣∣∣R
y
ij − μy

ij(Ibg)
σy

ij(Ibg)

∣∣∣∣∣ ≤ αy , (1)

where αx and αy are parameters to estimate the confidence interval. For exam-
ple, αx = 2 and αy = 2 can be used for the confidence rate of 95.5%[7]. In
this paper, we use the conditions in Eq. (1) to discriminate candidates for the
background and vehicle region, after pre-calculating μx

ij(Ibg), σx
ij(Ibg), μ

y
ij(Ibg)

and σy
ij(Ibg) for Ibg. Our prototype implementation shows that this statistical

approach outperforms the previous background subtraction methods.
For given αx and αy values, each grid Iij can be classified into the following

four cases:

case A: κx > αx and κy > αy. The grid Iij has abnormally many vertical and
horizontal edges compared to the background and may belong to the vehicle
region with very high probability.

case B: κx > αx and κy ≤ αy.
case C: κx ≤ αx and κy > αy. Both cases B and C indicate high probability

for being contained in a vehicle region, due to abnormally many vertical or
horizontal edges, respectively.

case D: κx ≤ αx and κy ≤ αy. It may belong to the background region.

After this classification, we can expect that grids around the vehicle region
boundary will be classified into cases A, B or C. Almost all remaining grids would
be in case D, except some noisy ones. Notice that certain grids corresponding to
the interior of the vehicle region may be classified into case D, since they may
show wide flat areas without any particular edges.

Our strategy is to find the minimal area enclosing as many grids of cases A, B
and C, as possible, to finally report the area as the vehicle region. More precisely,
we will report a rectangular region, since most segmentation-related applications
usually start with rectangular areas.

Our sample data show that some vehicle images are captured even when the
vehicle only passes the boundary of the loop sensor, as shown in the top-middle
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(a) normal case (b) over-exposed (c) including shadows

Fig. 3. Background images used for our experiment

image of Fig. 4. Additionally, the vehicles can rapidly change the traffic lane, so
the direction of the vehicle can be slanted as shown in the bottom-left image
of Fig. 4. As the result, we removed any assumption for the vehicle location or
direction, and aim to find the rectangular area for the vehicle (or the partially
captured vehicle).

We use a dynamic programming approach to find out the most acceptable
candidate vehicle region. Letting WA, WB, WC and WD be the weights for
cases A, B, C and D, respectively, we find the minimum-size rectangular area
with a maximum sum of weights for the grid areas in it. Considering the charac-
teristics of our case classification, the weight values would have the relationship
of WA ≥WB,WC > WD. Additionally, we can suppress the inclusion of a case D
grid areas, through letting WD < 0.

Letting the weight value of Iij be wij , it will be one of WA, WB, WC and
WD, and the total weight of an m×n rectangular area with its top left grid area
Ipq can be expressed as follows:

wpqmn =
p+m−1∑

i=p

q+n−1∑
j=q

wij =

⎧⎪⎪⎨⎪⎪⎩
0, if m = 0 or n = 0
wpq, if m = 1 and n = 1
wpq + w(p+1)q(m−1)1 + wp(q+1)1(n−1)

+w(p+1)(q+1)(m−1)(n−1), if m > 1 or n > 1 .

Now, we evaluate all the possible wpqmn’s and report the m × n rectangular
region {Iij |p ≤ i < p + m, q ≤ j < q + n} with a maximum weight. The results
of our prototype implementation will be presented in the following section.

3 Experimental Results

To verify our method, we implemented our prototype system on a PC platform
with C++ programming language and Qt graphics library. We use 1280× 960
resolution color images captured in various circumstances from outdoor CCD
cameras. Total of 197 images captured without loop sensor responses are selected
as background images in Ibg. Using the grid size of 100×80, the statistics values
of μx

ij(Ibg), σx
ij(Ibg), μ

y
ij(Ibg) and σy

ij(Ibg) are calculated in the preprocessing
stage.
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(a) case 1 (b) case 2

Fig. 4. Results of our vehicle area segmentation method

We use 270 images for the verification of our vehicle segmentation method.
Some of them have only partially captured vehicles, and/or various noises such as
over exposures. Since almost all background and vehicle images contain various
noises, we use large values for the parameters αx and αy: αx = 6 and αy =
6. Although these values are extremely high for usual normal distributions, it
shows reasonable behavior for our sample images. Additionally, we use WA = 1,
WB = 2/3, WC = 1/3 and WD = −1/2 for the weight values. Our prototype
implementation shows 0.150 second of average processing time for vehicle images,
with Pentium4 3.0GHz CPU and 1 GB RAM.

The final vehicle segmentation results are manually classified into two cases:

case 1: The segmentation result and the manually-chosen minimum rectangular
region coincide, or the difference is within one row or one column width.

case 2: The difference is more than one row or one column width.

Fig. 4 shows some typical examples of each case. From 270 vehicle images, our
implementation scored 262 images for case 1. To check the validity of our method
seriously, our sample images include various noised ones: some images have very
dark areas around the vehicle boundaries mainly due to shades, and actually
they are hard to find the vehicle area even with human eyes. Thus, we treat
the difference of one row or one column as the successful cases. Additionally, we
originally aim to use the vehicle segmentation result as the input of the next
stage license plate identification and/or vehicle classification, and they usually
endure one row or one column differences.

Conclusively, our implementation finds the correct vehicle area with 97.03%
of success, even with various derangements. Notice that we used many abnormal
images as shown in Fig. 4, which are seldom used for the test of previous vehicle
segmentation methods. Considering these abnormal sample images, we expect
that our methods will be used as a practically stable system.
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4 Conclusions

In this paper, we presented a vehicle segmentation method from road images.
We partitioned the input images into a set of two-dimensional grids, and then
calculated feature values for each grid area. By using the statistical values derived
from sample background images, we could determine whether a grid area may
belong to the vehicle area or not. Based on the statistical approach and a global
search technique, our method has the following advantages:

More systematic: Our method is based on the statistical analysis, so it is more
systematic than the previous heuristic approaches.

Robust to noises: By using the grid-based feature values, our method is ro-
bust to various noises.

Reliable shadow removal: Experiments show that our method successfully
recognizes the vehicle area from the images even with somewhat serious
shadows.

Less constraints for input images: Our method can be applied to the input
images with various illumination and weather conditions. Even for the cases
where the vehicle is partially captured in the image or the vehicle rapidly
changes the lane, it shows a good performance.

For the vehicle images from outdoor CCD cameras, our method shows 97.03%
of successful results which are confirmed by human eyes. The average processing
time for the vehicle segmentation is 0.150 second per image. When some grid area
in the actual vehicle region shows no statistical difference to background images,
our method may fail. We will try to overcome this drawback by introducing more
powerful feature values, as a future work. We also plan to apply the proposed
method for other image processing applications.
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Abstract. The goal of the works described in this paper is to improve
results produced by an object detector operating independently on each
frame of a video document in order to generate a more robust index.
Results of the object detector are ”smoothed” along the time dimension
using a temporal window. For a given frame, we count the number of
occurrences of each object in the previous and next frames, and then
only the objects whose number of appearance is above a threshold are
validated. In this paper, we present a probabilistic approach for theoret-
ically computing these thresholds. This approach is well suited to limit
the number of false alarms provided by the static detector, and its prin-
ciple of detection generalization also allows some detections that can be
missed by the detector.

1 Introduction

In the context of video indexing and retrieval [1], object detection is an important
task. Many methods developed for still images could be used [2], by carrying out
the detection independently in each frame, without tracking nor propagation of
results. However, frame by frame detection produces many false alarms, which
can be avoided using the temporal information of the video documents.The use
of temporal information was proposed in [3] for robust face tracking, with the
Condensation algorithm [4] for prediction over time, and compared to frame
by frame methods. A similar approach is presented in [5], where static object
detections are computed in each frame, but each candidate detection is tracked
in subsequent frames, and validated only if the detection “survives”.

This topic is key issue in the domain of automatic video content indexing
when the goal is to identify temporal segments where a given object can be
seen. Most of evaluation campaigns evaluate the efficiency of an indexing tool
in terms of recall and precision rates [6]. In this paper, we propose a temporal
“smoothing” of object detection using a temporal window as a postprocessing
step in order to obtain higher rates.

In one hand, isolated detections are considered as false alarms (cf Fig. 1); in the
other one, when an object is detected in every frame excepted in an isolated one, a
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Fig. 1. Some examples of frame by frame face localization (first row), and frame by
frame player localization (second row). Each box represents a result of a detection.
In these sequences, the false alarms and the non-detections only occurs in one or two
single frames. This situation often occurs with noisy images.

miss-detection is inferred. This approach has been applied in [7] for costume detec-
tion, but the number of frames to validate a candidate was empirically chosen. In
this paper, we propose a generalization for this approach and a theoretical solution
to compute the number of frames, using probability computing.

In section 2, we present the temporal smoothing algorithm, and introduce the
probability law to be maximized in order to compute the optimal thresholds: a
way to solve this maximization is then presented in section 3. Section 4 presents
another probability law, combining the notions of precision and recall, and shows
that in a particular case, results are nearly the same. Finally, practical results
are presented in section 5.

2 Addition of Temporal Information

Object detection methods on still images are widespread in literature for different
kinds of objects, such as soccer players [2], faces [8], . . . Those methods can
be applied on video sequences, but a direct application will provide many false
alarms, and some miss-detections in a same shot, due to the noise or some local
variations of shooting conditions, as presented in Fig. 1.

In order to reduce these false detections, we propose to exploit persistence
properties of objects in a video sequence using a rather simple heuristic: in each
frame, all objects are detected using a static approach. Then, we consider a
temporal window (subsequence) of N frames. The number of each candidate
object occurrences in theN/2 previous frames, and in the N/2 next frames is
computed. Then, a candidate object is considered as an actual one if it appears
at least N2 times in this subsequence.

2.1 Hypothesis

This approach can be carried out under some hypothesis. First, we suppose that
objects we are looking for are present in N successive frames at least. Our frame-
work is the analysis of TVbroadcasts, and especially talk-showsand TVgames.On
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that kind of content, video cameras are quasi-static, and characters appearing in a
frame generally also appear in all the frames of the shot [6]. In this case, the hypoth-
esis of object persistence is always verified. We also suppose that N is lower than
the number of frames in a shot. On that kind of content, each shot has a duration
greater than 1.5 seconds, and so is composed of at least 30 frames.

Moreover, due to the noise variation from a frame to another one, we suppose
that all the detections are also independent inside a same shot.

2.2 Maximization

Let X be the variable which represents the number of correct detections in N
frames, and Y the one which represents the number of false alarms. As we want
to validate all the correct detections, and reject all the false alarms, then we
search N and N2 so as to maximize

arg max
N,N2

P [(X � N2) ∩ (Y < N2)] (1)

We can note that the term N does not appear directly in the expression (1).
However the probability distributions of X and Y depends on N , and so the
term N will indirectly appear in the expression (1).

We can suppose that in each frame the object detection is a Bernouilli trial [9,
p. 146], because there are only two possible outcomes: success (detection) or
failure (non-detection), and the probabilities remain the same throughout the
trials. As we suppose that all the detections are made independently from a frame
to another, then the variable X represents the number of successes produced in
a succession of N independent Bernouilli trials. So, the probability distribution
of X is a Binomial distribution B(N, pd) where N is the number of trials and pd

is the probability of success. Then, for an integer i in 0..N we have

P (X = i) = Ci
Npd

iqd
N−i (2)

where Ci
N = N !

i!(N−i)! is the binomial coefficient, and qd = 1−pd is the probability
of failure. In the same way, we can show that the probability distribution of Y
is a Binomial distribution B(N, pf ), where pf is the probability to have a false
alarm in a frame. If we note qf = 1−pf , then the probability of the event Y = i
can be computed by

P (Y = i) = Ci
Npf

iqf
N−i (3)

If we suppose that the variables X and Y are independent, which is realistic
since the probability of correct detections and the probability of false alarms are
independent, then using the equations (2) and (3) the expression (1) becomes

P [(X � N2) ∩ (Y < N2)] = P (X � N2)P (Y < N2) (4a)

=

(
N∑

i=N2

P (X = i)

)(
N2−1∑
i=0

P (Y = i)

)
(4b)

=

(
N∑

i=N2

Ci
Npd

iqd
N−i

)(
N2−1∑
i=0

Ci
Npf

iqf
N−i

)
(4c)
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Fig. 2. (a) Graphical representation of probability (1), with pd = 0.7 and pf = 0.05.
(b) Graphical representation of probability (10), with pd = 0.7, pf = 0.05 and α = 0.5.

3 Optimal Values for N and N2

The maximization of expression (4c) would be too complex to be analytically
solved, because of the binomial expression presence: a derivation using N and
N2 as variables would lead to a very complex expression. A good way to easily
solve it would be an approximation of the binomial distribution by a normal
distribution, using the central limit theorem [9, p. 174]. However, in our case
the number of samples would be too small for the approximation: for a binomial
law B(N, p) , where N is the number of samples and p is the probability of
appearance, approximations are practically used when Np(1 − p) > 10, which
would lead to a value N > 40 (because p(1 − p) � 1

4 ), whereas in our problem
the value of N can be much lower.

So, we propose a numerical resolution for the maximization of the expres-
sion (4c). As N and N2 can take discrete values in a limited range, we can find
the maximum by an exhaustive search, for fixed pd and pf estimations. Fig. 2
gives a graphical example of produced results.

We can see on Fig. 2 that we do not have a global maximum, but a set of
solutions, represented by a plateau of the distribution. In fact, all the points on
the plateau correspond to different probabilities, but the difference is insignifi-
cant (less than 10−4 for the given parameters). So, we can consider that any of
those points can be considered as a good approximation of the solution to the
maximization of expression (1).

As far as we made the hypothesis that N has to be lower than the number of
frames in a shot, the lower is N , the greater are the chances to verify this hypoth-
esis. Moreover, the larger will be N , the longer will be the computational time.
For those reasons, the minimal value of N on the plateau has to be preferred.

As the optimal solution relies on pd and pf , we could think that every appli-
cation has its own optimal values for N and N2. However, as the set of solutions
is a plateau, we can find a solution which can be shared by various applications.
In fact, we can note that when pd decreases and pf increases, the optimal values
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for N and N2 increase. But this new solution is still on the plateau of detectors
with highest pd and lowest pf . So, if we can find “critical” probabilities for pd

and pf , i.e. probabilities pdc and pf c such as for all the considered detectors
pd � pdc and pf � pf c, then we can determine a single couple (N , N2) for all
the applications.

We made many experiments with face detectors (some of them are described
in section 5), and we took pdc = 0.8 and pf c = 0.1 as limits for pd and pf , which
provide N = 11 and N2 = 5. The experiments description (cf section 5) will
show how these values yield correct results for all the tested applications.

4 Recall Versus Precision

The maximization of expression (1) is motivated by the suppression of both
false alarms and non-detections. However, in some applications, the importance
associated to false alarms and non-detections can differ [6]. For instance, in video
surveillance, some false alarms can be tolerated if no detection is missed. In
order to reach a compromise between these two parameters, we propose another
approach which uses the notions of precision and recall, in order to weight their
influence. These notions are defined by

recall =
number of correct detected objects

number of objects to find
(5)

precision =
number of correct detected objects

number of detected objects
(6)

Then, a natural way to find the optimal values N and N2 is, for a given α,
to maximize the expression

α× recall + (1 − α)× precision (7)

As we suppose that a given object is present in all the frames of the shot,
then n frames of the shot infer n occurrences of the object. So, the recall can be
computed by

recall =
nP (X � N2)

n
(8a)

= P (X � N2) (8b)

The detected objects are the correct detections plus the false alarms. So the
precision is

precision =
nP (X � N2)

n (P (X � N2) + P (Y � N2))
(9a)

=
P (X � N2)

P (X � N2) + P (Y � N2)
(9b)

=
P (X � N2)

1 + P (X � N2)− P (Y < N2)
(9c)
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Table 1. Results with frame by frame detection (N = 1, N2 = 1)

pd pf Frames Recall Precision

Video 1 0.987 0.008 1409 0.987 0.983
Video 2 0.975 0.025 5845 0.975 0.975
Video 3 0.961 0.011 5276 0.961 0.989

The expansions for P (X � N2) and P (Y < N2) were given in equation (4). The
maximization of expression (7) becomes

arg max
N,N2

αP (X � N2) + (1− α)
P (X � N2)

1 + P (X � N2)− P (Y < N2)
(10)

This expression is well suited to change the influence of recall or precision. We can
note that for α = 0.5, the results are nearly the same than with the maximization
of expression (1). An example is given in Fig. 2, which shows that the set of
solutions is similar for both expressions.

5 Experiments

In order to test the validity of those theoretical results, we made several tests on
actual video data with a face detection algorithm. We took three video sequences
of TV broadcasts, with contents providing different probabilities for pd and pf

for the same detector. We only took sequences with exactly one face per frame.
For our experiments, we consider that two faces are identical if they are roughly
at the same location, with the same scale. The face detector that we used is the
one proposed by Viola and Jones [10], freely available in the OpenCV library [11].

The first video sequence is extracted from a TV talk-show, the second one
is extracted from a CNN news program, from the TRECVID 2004 corpus [12],
and the third one from a televised debate. The results with a frame-by-frame
detection are given in table 1.

Results with different values for N and N2 are presented in Fig. 2. We can
notice an improvement with the temporal smoothing on each video. The values
N = 11 and N2 = 5 computed in section 3 provide good results, that seem to be
usable in a really general case. Fig. 4 shows the variation of expression (10) with
N2, for N fixed to 11: we verified that for both videos, N2 = 5 is an optimal
value when N = 11.

Both the number of false alarms and the number of non detections decrease
when N and N2 grow. Recall that we search the minimum values for N and
N2 such as the number of false alarms and non-detections stalls, as explained in
section 3.

In order to have an exhaustive vision of the results with all the possible values
for N and N2, we ran the detection on the video 1 with all the possible values,
with N � 41 (we made the hypothesis that we will never keep a value for N
greater than 41). The comparison with theoretical values is illustrated by Fig. 3.
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Table 2. Results with temporal smoothing, with various scales

Video N N2 Non detection False alarms Recall Precision

1 1 18 24 0.987 0.983
1 3 2 16 7 0.987 0.995

7 3 7 5 0.995 0.996
11 5 2 2 0.998 0.998

1 1 148 148 0.975 0.975
2 3 2 156 132 0.973 0.977

7 3 125 150 0.978 0.974
11 5 139 128 0.976 0.977

1 1 204 58 0.961 0.989
3 3 2 167 32 0.968 0.993

7 3 90 31 0.982 0.994
11 5 85 27 0.983 0.995
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Fig. 3. Graphical representation of probability (1), for the video 1. (a) is the theoretical
density, (b) is the true density computed with the data. The big black point represents
the value of probability for N = 11 and N2 = 5.
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6 Conclusion

We proposed in this paper a system for improving results of a frame-by-frame
detection of objects in video sequences. The thresholds are theoretically fixed for
given probabilities of correct detection and false alarms of the static detector.

In this paper, we only dealt with the case where there is exactly one object
per frame. The expression (1) remains correct for more than one object, or for
zero object, but the expression related with the precision leads to a more complex
expression, which then depends on the number of frames. Future works will lead
to take into account in the model empty frames as well as frames with many
objects.
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Abstract. Tracking the head and hand in real-time are important tasks for de-
veloping an intuitive interaction system. We present a system for robust proba-
bilistic tracking that integrates face detection, face and hand color tracking and
foot tracking in a uniform way by using particle filters. The advantages of dif-
ferent cues like motion, color and face detection are combined to yield robust
2D and 3D position estimates in spite of difficult varying lighting conditions and
cluttered background. The system enables a user to navigate in the virtual scene
by walking around and pointing towards objects by a simple hand gesture. The
environment is a 3-sided CAVE with 1-sided stereo back projection.

1 Introduction

Fig. 1. The interaction area

Interacting with virtual environments is be-
coming increasingly important. Spatially im-
mersive displays offer a comprehensive way
to visualize and surround a person with a
virtual environment, e.g. the blue-c system
[4]. For a correct perspective visualization the
user’s head position must be known at all
times. The goal in our environment is to give
the user the possibility to interact with the vir-
tual environment in an intuitive way without the need to wear special hardware, but
simply by hand gestures or by walking around. Tracking the user’s head and hand po-
sitions in real-time is therefore a necessary task for developing an intuitive interaction
system. We present a system which enables the user to navigate in a scene simply by
walking around, allowing other persons to stand in the cluttered background. The image
processing and the position estimation of the person’s head and hand is based on prob-
abilistic methods using Bayesian estimation. In addition we rely on standard hardware,
i.e. low cost pan-tilt-zoom cameras. A general problem in interaction environments is,
that the interaction area should be well lighted for better camera images with less noise,
while the display screens should not receive any additional light. The compromise be-
tween both is usually a rather dimly lighted environment, as shown in figure (1), where
the displayed scene is clearly visible in spite of the light from the ceiling.

Another problem to deal with is, that the lighting varies rapidly in our environment
as a certain amount of light is reflected from the displays and changes when the dis-
played scene changes. A three sided cave gives the opportunity for spectators to observe
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the scene from the background. However, this gives another problem to deal with as the
background becomes cluttered and incorporates additional persons, who may distract
the face tracking.

A lot of work is devoted to tracking peoples’ faces and hands in image sequences.
Color cues are often used to localize or detect faces by their skin color. In [12] an
overview of face detection methods is given, which also includes a part about skin
color. Face tracking methods can basically be divided in Bayesian approaches and non-
Bayesian. Bayesian approaches often include particle systems or Monte Carlo methods
like [6,8]. A recent work on non-Bayesian face and hand tracking [1] uses hysteresis
like thresholding of skin color to detect and track both hands and the face by assuming
ellipsoidal projections in monocular images.

The main contribution of this work is the presentation of the system and the inte-
gration of different sensors within a unifying probabilistic framework. Due to the inte-
gration of multiple cues and the stochastic nature of the sensor fusion we achieve very
robust position estimates. The system is designed to be easily extendable to increase the
accuracy and robustness with more cameras or other cues.

2 System Overview

The interaction environment consists of a twelve square meters area, which is sur-
rounded by 3 displays, as shown in figure 1. The central display is used for stereo visual-
ization with polarized filters. The area is observed by three cameras,

RS232

RS232

interaction

face tracking

face tracking

foot tracking

data:
type of scene graph

head position
viewing ray/foot pos

sensor fusion

display
server

projectors

audio

Fig. 2. Data transmission in the system

one static camera at the ceiling and two
cameras able to pan, tilt and zoom, which
are mounted at the left and right side of the
center display. The data flow and the con-
nections of all parts of the system are shown
in figure 2. On the right side are the face and
foot tracking modules for the image pro-
cessing. The results are fused by the sensor
fusion module. On the left and bottom side
are the rendering and audio modules. The
interaction server receives the head posi-
tion and adapts the scene view accordingly.
The scene data is sent to the display servers,
which are connected to one projector each. The scene graph and the correct perspective
visualization for a multi-display environment is part of the OpenSG library [9].

3 Foot Tracking

The user’s foot positions are estimated based on a difference image algorithm with an
adaptive threshold. This approach was already described in [3]. The camera mounted at
the ceiling views the planar floor, therefore we can use four known points on the floor
to compute a homography Hfloor that relates ground floor scene coordinates and image
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coordinates. A segmented image with the user as foreground is computed by thresh-
olding a difference image. To deal with the varying lighting conditions the threshold is
adapted to the noise and the mean in the difference image. Therefore the segmentation
is invariant to small changes in the image brightness. It can be assumed that the feet
move on a plane, namely the floor, so the above mentioned homography Hfloor from
the camera coordinates to the floor coordinates is applied to get the position of the user’s
feet on the floor.

4 Probabilistic Combination of Measurements

Particle filters are used in this work for face tracking and in the sensor fusion mod-
ule. For details we refer to Isard [6], who introduced particle filters to computer vision
tracking tasks in 1998, or to [2] for an introduction. Particle filters estimate the con-
ditional probability p(θt|Mt) that a system is in a specific state θt at time t given
measurements Mt. The posterior p(θt|Mt) is calculated from the likelihood probabil-
ity p(Mt|θt), which is the probability to make measurement Mt given that the system
is in state θt, this probability will be called the measurement probability in this work.
When applying a particle filter to a specific problem the sensible task is how to model
the measurement probability and the transition probability (prediction), which reflects
the system’s motion model and the increase in uncertainty without measurements.

Combining different sensor measurements. In this work the probability that the system
is in a specific state is assumed to be proportional to the probability that this position in
the state space is occupied by the object of interest. Also we derive the inverse measure-
ment model instead of directly taking p(M |θi). The inverse model gives the probability,
that a specific state space belongs to the object or is occupied by that object. The mea-
surement probabilities of our sensors are therefore designed to give a probability that
the specific state space is occupied. That means if a sensor’s measurement does not give
any information for one position the probability should be 50%, while a probability of
95% indicates a very likely occupied state space and 10% means it is very likely unoc-
cupied. For the probability that a specific state space is occupied we write p(φ[θ]) and
that it is not occupied p(nφ[θ]). By definition p(φ[θ]) + p(nφ[θ]) = 1. In the latter
p(φ) is written instead of p(φ[θ]) as only one position θ is discussed in this section.

To combine two measurements at the same position p(M1
t |φ) and p(M2

t |φ), we take
the joint probability p(φ|M1

t ∧M2
t ). We will give here only the resulting combining

formula. For the derivation see the work about occupancy grids of Moravec, e.g. [7]. If
we assume M1

t and M2
t to be statistically independent, the combining formula can be

derived from Bayes’ law:

f(φ) =
p(M1

t |φ)
p(M1

t |nφ)
p(M2

t |φ)
p(M2

t |nφ)
p(nφ)
p(φ)

and p(φ|M1
t ∧M2

t ) =
f(φ)

1 + f(φ)
(1)

where p(φ) is a possible known prior probability that φ is occupied by the object, in our
work 50% for all states.

Modeling sensor characteristics. When combining different sensor measurements,
whose measurement probabilities where designed separately, it was seen to be very
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practical to alter them in the following way. To model a sensor’s ability of how well it
can detect the object of interest in comparison to other competing sensors, the original
measurement probability p(M i

t |φ[θt]) ∈ [0..1] of sensor i is shifted and scaled:

p̃(M i
t |φ[θt]) = (1− ri

fp − ri
fn)p(M i

t |φ[θt]) + ri
fn (2)

The probability p̃(M i
t |φ[θt]) is in [ri

fn..(1 − ri
fp)]. The values ri

fn, r
i
fp may be inter-

preted like the false positive and false negative detection rates of the specific sensor. If
a sensor is more important or there is more belief into the measurements of a sensor
these values will be lower than for a less important sensor.

5 Face Tracking

Face tracking in our system utilizes two separate methods, namely face detection [10]
and a color histogram tracking algorithm [8]. The detection part is robust against light-
ing changes in brightness and color, but detects faces more reliably if seen directly from
the front. To track the user’s face, when he doesn’t look in the direction of the camera,
the detection part is combined with a color histogram tracking approach.

Fig. 3. Particle distribution

To detect faces we use an implementation from
the OpenCV library [5], which comes with a
trained classifier for faces and worked well within
our environment. We optimized the detection
method for the special application of tracking by
applying the classifier not to the whole image in
different sizes, but only to the particles’ image po-
sition and sizes. This way we achieve a reduction
in computation time of 50% while keeping the de-
tection rate at the same level.

The color histogram tracking is similar to that
of Perez [8]. We optimized the histogram calcu-
lations by the use of an integral histogram image.
The integral histogram image holds at each pixel position the complete histogram from
the top left corner of the image up to the pixel position. That way a histogram from
(tlx, tly) to (brx, bry) can be computed by only for lookups in the integral histogram
image. Also the integral histogram can be computed very efficiently by incrementally
adding new pixels. See [11] for more details. The integral histogram image makes the
computation almost invariant with respect to the number of particles. Without the inte-
gral histogram more than 500 particles will slow the computation down too much for
real-time purposes. In [8] about 200 particles were used, while we can calculate 2000
histograms each frame and achieve more than 20 fps on a 3Ghz Pentium 4.

The combination of the color tracking and the face detection is just a matter of
calculating the joint probability p(θt|M c

t ∧ Md
t ), where Mf

t is the color histogram
measurement and Md

t the detection. The false positive rate and the detection rate of the
face detection method is principally known from the training of the cascade. However
in our environment the detection quality is different, therefore we chose rd

fp = 0.02
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and rd
fn = 0.2, the false negative rate, significantly higher. For the color histogram

probabilities we estimated from experiments rc
fp = 0.1 and rc

fn = 0.001. The false
positive rate is rather high, because all objects that have a skin color like appearance give
significant responses. Comparing the detection and the color histogram values, it can
be seen, that the detection method is given more importance for the ability to measure
where the face is, while the the color histogram method is given more importance for
the ability to measure where the face not is. The transition probability used in face
tracking is a second order motion model, which involves the position and velocity of
the object. The final estimate of the face’s position is calculated as the weighted mean
of the particles’ positions. Using the known projection matrix of the camera a viewing
ray is calculated and a distance to the face is derived from the face size in the image.
Together with the weighted variance this is transmitted to the sensor fusion module.

The cameras follow the user by panning and tilting, such that the user is always
visible in the middle part of the image. The cameras can not be moved constantly, as
their response time is too high. It takes up to 250ms from sending a movement command
until the cameras start moving. Therefore the cameras only move if the localized face
leaves the innermost central image area, which is set to be half the image size.

Each time a camera moves, the particles have to be moved accordingly. To change
the particles’ positions, the camera’s movement is predicted for each frame, calculated
from the response time and the rotation speed of the camera.

6 Sensor Fusion and 3D Position Estimation

The basic idea of the sensor fusion is to combine different sensor data dependent on their
certainties. For example a camera that views the face from the side, may be very likely

foot

Fig. 4. 3D position probability

distracted by the background clutter. To achieve this it
is necessary to detect situations where one cue, e.g. the
color histogram in the face tracking, gives no or multiple
position estimates. Instead of explicitly describing these
situations, we handle the advantages and disadvantages
of different cues implicitly by the probabilistic approach
described here. As the face trackers use a particle filter
to evaluate the face position in the image, a value for the
certainty of each face tracker is given by the weighted
variance, that is transmitted together with the viewing ray
to the fusion module.

In the sensor fusion module the final 3D head posi-
tion of the user is estimated by taking into account the
measurements from the foot and face trackers. Again a particle filter is used to fuse the
different measurements and evaluate a 3D position, which has following advantages:

– The accuracy of sensor readings is taken into account.
– The history of previous measurement’s is accumulated over time by the Bayesian

nature of the particle filter.
– Different sensors with arbitrary probability functions can be easily combined.
– Multiple hypotheses are tracked if sensors do not agree.
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The sensor fusion module estimates a new 3D position each time new 2D estimates
arrive. The viewing rays from the face trackers are modeled as a Gaussian distribution,
that is extended very far in depth and has a variance perpendicular to the depth direction
equal to the weighted variance estimated in the 2D face tracking module. The Gaussians
for the viewing rays as seen from the top are visible in figure (4), which shows a slice of
the probabilities space in 1.70m height, not a projection. The user’s head was in about
that height, therefore the rays are visible in the slice. Based on the 2D foot position it
can be assumed, that the head is somewhere above it, so we model this measurement as
a Gaussian that is extended in height and extended parallel to the floor according to the
known inaccuracy of the foot tracker. The blob on the left in figure (4) is a slice of the
Gaussian representing the foot position, which means that the left foot was detected by
the foot tracker.

Additionally, the Gaussians, which model the single measurement probabilities
from the face and foot trackers, are scaled and shifted to take the different characteristics
of the sensors into account. The normalization factor of the Gaussian is altered, such
that the resulting values are in [0..1] for a user defined minimum variance. For higher
variances, that reflect larger uncertainties, the Gaussian is shifted and scaled, such that
the resulting values are centered around 0.5. This way we can apply the modeling of the
sensor characteristics from section 4. We know from experiments, that the head position
derived from the foot position is not very accurate, but it is very robust, that means the
false positive and false negative rate is very low rfp = rfn = 0.001. This is basically
because there is no clutter for the overhead camera to distract it, as it views the floor
from the top. The face trackers’ estimates are much more accurate, which is modeled
by a very narrow Gaussian. On the other hand they sometimes get distracted by other
objects in the background, therefore we set their rfp = rfn = 0.1.

7 Hand Tracking

An estimate of the user’s hand position is necessary for interaction tasks like pointing
gesture detection or arm movement. In addition to the face we track one of the user’s
hands by similar techniques. The hand is assumed to have the same skin color as the
face. Therefore the median hue value of the detected face is taken for color blob tracking
with a particle system.

The movement of people always includes movement of their hands (with regard to
the world coordinate system). Therefore we also take into account motion cues, which
stabilizes the tracking for cluttered background with skin colored objects. Both cues are
scale and rotation invariant and are therefore well suited for fast and robust tracking.

The size of the projected hand in the image is assumed to be approximately half the
size of the face in width and height. Therefore the state for the particle system is just the
image position θ = (x, y). This assumption reduces the necessary amount of particles
significantly in contrast to a histogram tracking method with variable sizes. The blob
size is updated in each frame, depending on the detected face size. As the position of
the face is known, it is omitted for the hand tracking. The measurement probability for
the hand color blob tracking is the sum of similar colors over the assumed hand size in
the image, while the similarity is a sigmoidal weighted Gaussian difference between the
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Fig. 5. Left:Measured z-position of the head (depth) Right: Measured x-position

current pixel’s hue value and the mean hue value of the skin color. The variance of the
Gaussian is the assumed variance of the skin color and the sigmoid function is centered
at an assumed minimum saturation.

The motion cue is computed as the difference of the current image with the mean
of the last n images and summed over the expected hand size. Both probabilities are
combined by calculating the joint probability as above.

The final 2D estimate of the hand’s position is calculated as the weighted mean and
is transmitted together with the weighted variance to the 3D position estimation module.
The 3D position estimate is performed in the same way as for the head, but only from
two sensors.

8 Results

The processing of the head position requires sensor data from the face and the foot
tracker. New estimates arrive in about 20-25Hz, such that each 50ms a new 3D position
can be estimated. The used image size is 320x240 for all modules. The rendering part
is running asynchronously and its speed depends only on the scene complexity.

The user can move around in the virtual scene by walking to the edges of the
interaction area. Standing at the front means moving forward, at the left side means
rotating left etc. with a center area in the middle, which causes no movement.
In our experiments we had about 20 persons, who didn’t know the system,

Fig. 6. Measured height (y-position)

didn’t know the system, navigating in the
scene, while the other 19 were sitting in the
background watching. Most of them under-
stood the way of moving very fast without
much explanation.

To measure the accuracy of the head po-
sition estimates a person had to place its head
at three known positions in space. The first
was standing straight, with the eyes at 1.78m,
the second at 1.27m and the third at 0.98m.
Figure (6) shows the estimated height with
the weighted variance of the particle system,
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which reflects the certainty of the estimated height. The ground truth was measured by
hand, therefore an uncertainty of 3cm must be assumed. The height estimated by the
system is within that uncertainty. Around frame 150, the variance gets very high, due
to lost tracking of the face. About 30 frames later the system recovers and measures the
height of 0.98m correctly.

Figure (5) shows the estimated distance to the front display and the estimated posi-
tion parallel to the display. The head’s position was measured during a sequence where
the user followed a rectangular path beginning at 2.6m distance (frame 0-150), walking
to the display up to one meter (frame 170-210), walking parallel to it (frame 210-250),
back to 2.6m distance (frame 250-330) and finally to the center before the display at
2.6m distance. As can be seen in the figures, the depth estimation is not as accurate as
in the other directions. This is due to the setup of the 3 cameras, which are all looking
from the front into the interaction space.

In addition to the user’s head position the position of one hand is estimated, while
the other hand should not be visible. A pointing ray is computed as the difference be-
tween head and hand position and is projected into the virtual scene. The point where
the ray is hitting the scene is marked with a yellow ball as shown in figure (1). Please
note, that the pointing ray is not the extension of the arm, but the line of sight over the
fingertip. However, due to the nature of the blob tracking method and the small number
of 2D hand estimates (two) the estimated 3D hand position was seen to be too noisy
and not accurate enough, while the hand was tracked very robustly in the images. Be-
cause the 3D position is triangulated only from two rays, small inaccuracies in a single
estimate have large effects on the 3D estimate. For manipulation of small objects in the
scene, the accuracy of the hand estimation is not good enough. An estimation of the
fingertip position as seen from the top would overcome this problem.

9 Conclusion and Outlook

We presented a system for immersive exploration of a virtual scene, which tracks the
user’s feet, head and one hand by the use of standard cameras and standard lighting in
real-time. The combination of different tracking and detection methods within a prob-
abilistic sensor fusion framework leads to robust and accurate head estimation even
under difficult lighting conditions and cluttered background, where other persons are
allowed to watch the user, who can point towards specific objects in the scene by a
simple hand gesture. Future work has to increase the accuracy of the depth estimation
and of the hand position estimate, which can be easily achieved by adding additional
cameras. For example an additional camera at the ceiling could provide such an esti-
mate. The hand tracking should also be supported by at least one additional camera to
increase the accuracy, such that object manipulation gets possible.
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Abstract. This paper presents a novel approach for automatic person
labelling in video sequences using costumes. The person recognition is
carried out by extracting the costumes of all the persons who appear in
the video. Then, their reappearance in subsequent frames is performed
by searching the reappearance of their costume. Our contribution in this
paper is a new approach for costume detection, without face detection,
that allows the localization of costumes even if persons are not facing
the camera. Actually face detection is also used because it presents a
very accurate heuristic for costume detection, but in addition in each
shot mean shift costume localization is carried out with the most rele-
vant costume when face detection fails. Results are presented with TV
broadcasts.

1 Introduction

Our framework is the analysis of costume as a feature for video content indexing,
and especially its automatic extraction. Some experiments made on automatic
video summarization showed that the costume feature is one of the most signifi-
cant clue for the identification of keyframes belonging to some given excerpt [1].
Authors justify this property by the fact that costumes are attached to char-
acter function in the video document. Costume is already used as an entity for
audiovisual production description scheme [2,3], but only for a theoretical point
of view, without automatic detection. Only recently an automatic application
using costume was introduced [4].

However, the costume detection remains a problem, because at the moment
it is only based on face detection, and so is dependant of the face detector and
fails when the faces are too small in the frame. We can find papers in literature
where clothes are used to help the recognition [5,6], but in each of them the
costume detection is based on face detection. Our contribution in this paper is
a new approach for costume detection, without face detection, that allows the
localization of costumes even if persons are not facing the camera. Actually face
detection is also used because it presents a very accurate heuristic for costume
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Class 1 Class 2 Class 3

Fig. 1. Classification of character framings

detection, but in addition in each shot, when face detection fails, mean shift
costume localization is carried out with the most relevant costume.

In section 2 we introduce the application of person labelling using costumes.
Section 3 presents the costume detection algorithm. Results are presented in
section 4.

2 Person Labelling Using Costume

The goal of this application is to automatically create an index which gives, for
each frame, all the persons who are present. The application described in this
paper is automatic: the first time a character appears, it is added in a costume
database with an automatic label. At the end of the processing, the user can
update the index by giving a real name to each label.

2.1 Concepts of Shot and Character Framing

In this application, we use the notion of shot. It roughly corresponds to a set of
continuous frames taken with an uninterrupted recording of a video camera. As
we work on video sequences extracted from TV talk shows, there are only slight
camera motions during a same shot, and no person appear or disappear during
a shot, the number of persons remains constant. So, in a same shot we can run
the costume detection only with some frames, and generalize the results with
the remaining frames. Fig. 2 presents examples of propagations.

We call “character framing” the significance of the person according to his
position and size in the frame. We considered three classes of framing: the first
one corresponds to a character who is centered, and has a sufficient size to be
the most important visual interest in the frame. The second one corresponds
to characters who are important components of the frame, among several oth-
ers. The third one corresponds to background characters, or characters who
are not easily identifiable. Fig. 1 shows an example. This classification will be
significant for the shot propagation (section 2.2), and for the experiment part
(section 4).
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Fig. 2. Propagation of person detections. The white and black boxes represent the
automatic detection provided by the face detector. For each color, the dark box rep-
resents the validated faces, the others are the propagated faces. Actually the faces are
not directly propagated, this example is only here to better understand the principle,
in our real application we only propagate the labels of the detected characters.

2.2 Algorithm of the Application

The goal of the application is to detect and recognize all the persons that appear
in each frame. The following algorithm is applied in each shot of the video.

The first step is the detection of faces in the first frames of the shot. Character
framing have here an interest: if a first class face is detected (at the moment we
consider a centered face as a first class face), then we consider that we have
detected the only useful information, so we stop the detection, and propagate
(backward and forward) the results to all the frames of the shot. If no face is
detected, or only second or third class faces, the search goes on within next
frames, because we consider that we could have missed some faces. If this new
search does not provide any face, then we consider that the face detector failed.

If faces are detected at any step, then the costume of each person is extracted
(from the frame where the face was detected) according to the face locations.
The features of each costume are extracted, and compared to the ones of the
database. If a costume corresponds, then the person wearing it is recognized.
Else, the new costume is added in the database with an automatic label. In both
cases this person is considered as present in all the frames of the shot.

When the face detector fails, we add a new step, which is costume localiza-
tion without face detection. This step will be detailed in section 3.3. With this
additional step we can deal with the frames where the face is not detected. Due
to computational time, this detection will be carried out in only one frame. If no
costume is detected in spite of this step, we finally consider that no character is
present in the shot.

2.3 Shot Boundary Detection

Shot boundary detection can be a challenging task, if the boundaries are gradual.
However as our application process only TV talk-shows, we do not have the
problem of gradual transitions, because the transitions have at most two frames,
so a very simple detector is sufficient. Moreover, we need a very fast preprocessing
tool, providing exploitable results with a minimum cost of the system resources,
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in order to keep some for the costume processing, and be able to have real-time
processing on a modest computer.

We subsample the frame with a ratio of eight (for both rows and columns),
and we take only one channel out of three. Then, we compare each pixel to the
same pixel in the previous frame. We consider that the two frames belong to
different shots if the mean difference is over a threshold. Under this threshold
we consider that the two frames are in the same shot. This algorithm allows
exploitable results on our kind of contents, with a very fast processing.

3 Costume Detection

We can find many methods in literature to detect people presence in images,
however there are all focused on some special content. First, pedestrian detection
focuses on detecting persons, but the context of the applications is often for
future driving assistance systems [7], with specific conditions. Some applications
dedicated to surveillance allow the detection of persons with different scales [8],
but under restricting hypothesis, like fixed video cameras. These methods would
not be usable for our application, because our video corpus contains various
framings, such as close shots, as well as global views, with mobile cameras.
Moreover, it is very common that the whole body does not appear in the frame,
just the upper part, which is problematic for these methods.

3.1 Face-Based Costume Detection

Recently, face was used as a visual clue for person detection [4,6]. The main idea
is the use of face detection algorithms to detect human presence. Nowadays, face
detection is not yet a solved problem, but the existing algorithms produce good
results when the input images are not very complex, which is often the case in
our corpus of TV broadcasts.

Thus, the first step of our costume detection is the run of a face detection
algorithm, so as to detect the different possible characters who are present in
the current frame, and their approximate position and scale. Then, the costume
of each character is extracted from the image according to the location and the
scale of his face.

There are many methods for face detection in literature (see [9] for a recent
review), but we do not use a specific one. We intend to make an application
which is independent of the face detector, when this one is able to produce some
results of at least a given minimal quality. We used the method presented in [10],
because a fast implementation is available in the Intel library OpenCV [11].

The costumes are extracted according to the localization and the scale of the
detected faces. At the moment, we estimate the costume by the area under the
face. The size of this area is proportional to the one of the face. In our examples,
we used a width size of 2.3 times the one of the face, and for the height size a
ratio of 2.6. We chose experimentally these coefficients by taking the ones which
give the best fitting of the box in our learning images.
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3.2 Face Detection Improvement

The algorithm of costume localization is based upon face detection. However,
frame by frame face localization introduce many false alarms, due to some noise
present in the data. Only one false detection in a frame is enough to involve a
false alarm on costume detection.

In order to reduce these false detections, we must exploit the properties of a
video sequence by using a temporal approach. For each frame, we detect all the
faces using a static approach. Then, we take a temporal window (subsequence)
of 2N +1 frames. For each candidate face, we count its number of occurrences in
the N previous frames, and in the N next frames. Recall that all these detections
are made independently. Then, we keep a candidate face if it appears at least
N2 times in this subsequence. In our application, we took N = 2 (which leads
to a subsequence of 5 frames) and N2 = 4.

We consider that two detected faces correspond to the same face if there
are roughly at the same location. The position parameters may slightly vary
considering camera works or character motions. So, a small variation of these
parameters is borne to take into account these effects. Moreover, to avoid the
detection of faces in dissolves we consider that two faces correspond to the same
face if the costumes detected from these faces are also identical (in terms of
features, cf section 3.4).

3.3 When the Face Detector Fails

Even if face detection is robustified (cf. section 3.2), there are many frames where
the face is occluded, where the person is shot from behind, or where the face
detection fails. In order to deal with the case where the persons are not detected
using face detection, we added a costume detection step which is not based on
face detection.

Costume Classification. Unlike face-based costume detection, we do not have
any prior information about the costume location in the frame. So, searching for
each model of costume can be very computationally expensive. In order to reduce
this cost, we will only search for the costume which is the most likely to be in
the frame.

We suppose that if a costume is present in a frame with the same scale, then
its histogram hc is included in the histogram of the frame hf . So, the histogram
intersection [12] with non-normalized histograms would provide as a result the
costume histogram hc

n∑
i=1

min
(
hi

c,h
i
f

)
=

n∑
i=1

hi
c (1)

So as to deal with the case where the costume does not have the same scale in the
frame, and to obtain a fractional match value between 0 and 1, the intersection
is normalized by the number of pixels in the model histogram, and compared to
the sum of the costume histogram. So for each costume the coefficient Chf

(hc)
is computed by
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Each costume is tested to see if its colors are present in the frame, and then
the costumes of the database are sorted by relevant color. Then, we only search
in the frame the localization of the most relevant costume.

Costume Localization. Now we have a unique model of costume to find in the
frame, the problem reduces to detect its presence or not in the frame, and if so to
find its location. To quickly find its location using only its color histogram, we use
the object detection approach presented in [13]: using the costume histogram, an
image of weights is created from the frame, which represents the repartition of
the most probable pixels to be part of the object. This image of weights is called
backprojected image, and is based on the ratio histogram [12] rk = min

(
hc

hf
, 1
)
.

Since the ratio histogram emphasizes the predominant colors of the costume
while diminishing the presence of clutter and background colors, the backpro-
jected image represents a spatial measure of the costume presence.

From this image of weights, the problem is to find if there is a “group” of
likely pixels, and if so to detect it. Considering this image as a cluster in R2,
the “group” of pixels can be considered as the cluster global mode. Then, a
statistical method, the mean shift procedure [14], is used to detect it.

If we note {xi}i=1...n the set of points of the cluster, andw(xi) the weight asso-
ciated to pixel xi, then the mean shift vector for the point x is computed by

Mh(x) =

∑
xi∈Sh(x) w(xi) xi∑

xi∈Sh(x) w(xi)
− x (3)

where Sh(x) is the sphere centered on x, of radius h and containing nx data
points. More information about the mean shift procedure and mean shift vector
can be found in [14]. The mean shift vector has the direction of the gradient of
the density estimate at x. The mean shift procedure is obtained by successive
computations of the mean shift vector Mh(x), and translation of the sphere
Sh(x) by Mh(x). The procedure is guaranteed to converge [14] to a local mode.
Actually, as costumes do not have the same size for height and width, we use a
scale h = (hx,hy), with hx > hy, as presented in Fig. 3.

Mean shift iterations guarantee convergence to a local mode, but we are only
interested in the global mode. In order to find the global mode, we take many
initializations in the frame (cf Fig. 3), and then we only keep the convergence
point which brings the largest density. The density is estimated using the Parzen
window [15, ch. 4]

f̂(x) =
1

nh2

n∑
i=1

K

(
x− xi

h

)
(4)

with an Epanechnikov kernel [14]
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model frame initialization initialization initialization Detected costume
(40, 30) (60, 40) (80, 60) (80, 60)

Fig. 3. Mean shift costume detection. The two first frames are the input data. The two
next represent the initialization of the mean shift procedure, with the corresponding
scale (hx, hy). The last frame is the detected costume, with the optimal scale.

KE(x) =
{

2
π (1− ‖x‖2) if ‖x‖ < 1
0 otherwise (5)

The Epanechnikov kernel was chosen because it was used to derivate the mean
shift vector in equation 3 (justifications can be found in [13]).

To give up this prior information about the scale h of the costume, we run
the detector many times with various scales, as shown in Fig. 3. Then, we keep
the scale that provides the largest density.

Use of this Blind Approach. Using mean shift detection in addition to face-
based detection can be computationally expensive if these two approaches are
used in each frame, because it is carried out with various scales and several
initializations. As we need mean shift detection only when the face detector fails,
we apply it only one time in each shot, when the face detector provides no face
in the whole shot. Thus, the processing time for blind detection is insignificant
relatively to the processing time of a whole shot.

Table 1. Recognition rates for both videos

Video Class Number of characters Face-based approach + Blind approach

1 19 692 18 587 (94.39%) 18 659 (94.75 %)
1 2 34 978 2226 (6.34%) 2 865 (8.19 %)

3 56 857 3 755 (6.60 %) 3 755 (6.60 %)

1 5 588 4 897 (87.63%) 5 005 (89.57 %)
2 2 14 797 6 529 (44.12%) 6 529 (44.12 %)

3 21 539 1 129 (5.24 %) 1 129 (5.24 %)

3.4 Similarity Measure

The feature that we use is a three-dimensional RGB color histogram. The similar-
ity measure used to compare histograms is the Bhattacharyya coefficient, which
is closely related to the Bayes error [16, p. 38]. If we note q̂ = {q̂u}u=1...m and p̂ =
{p̂u}u=1...m the color histograms of the two costumes (m is the number of bins)
the Bhattacharyya coefficient can be estimated by [17] ρ (p̂, q̂) =

∑m
u=1

√
p̂uq̂u.

The coefficient interval is the real interval [0, 1]. A value of 1 means a perfect
match, whereas a value of 0 means a mismatch.
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Table 2. Recognition errors for the first video. For the number of miss-classified char-
acters, the percentage is relative to the total number of detected persons.

Face-based approach + Blind approach

Video 1 false alarms 329 329
misclassified characters 0.56% 0.54%

Video 2 false alarms 514 593
misclassified characters 1.44% 1.43%

4 Experiments

Experiments have been carried out on different video sequences extracted from
TV programs, especially TV talk-shows. We present here numerical results for
two different TV talk-shows. The format of the videos is MPEG1, with a frame
size of 352× 288. The first video has a duration of thirty minutes, and contains
46 680 frames. The second one lasts twelve minutes, and has 18 243 frames. We
manually indexed these video sequences: for each frame, we noted all the persons
that appear as well as their character framing.

We compared the results for the traditional approach, only based on face
detection, with our blind approach. Computational time are roughly the same
for both methods: the frames were processed at a mean rate of 37 fps for the first
video and 30 fps for the second one. Results are summed up in tables 1 and 2.

5 Conclusion

We proposed in this paper an approach for automatic person labelling in video
sequences using costumes. We showed that on our kind of content the clothes
of a person are relevant for recognition. This approach for costume detection,
which is not based on face detection, allows a fast localization of the costumes
when the face detector fails. We showed that results are improved when this
blind approach is used in addition to face-based costume detection. However,
the face-based detector is still essential, because the blind approach can only
find costumes of the database, it cannot find new ones.

Moreover, we would like to significantly improve the results for the second
and third class characters. A separation of the clothes in different parts (tie,
jacket, hat, trousers,. . . ) would perform a better description of the costumes,
and could be used to improve the detection.
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Abstract. 3D facial synthesis has been frequently used in model based video 
coding applications and became popular in various multimedia applications. In 
this paper a 3D face model, its adaptation algorithm and a texture mapping 
method using two orthogonal photos are presented to solve several 3D 
estimation problems in model based video coding. We are successfully 
estimating the frames between the front and the side views of the face. The 
experimental results show that the proposed Rotation Adaptive Texture 
Mapping (RATM) technique increases the visual quality of the synthesized face 
during rotations of the head, while achieving a PSNR value up to 33dB.  

Keywords: 3D face model, model adaptation, texture mapping, facial synthesis, 
model based video coding, video compression. 

1   Introduction 

Model based video coding techniques have attracted considerable interest in 
multimedia applications such as teleconferencing and videophones where bandwidth 
considerations are of utmost importance. Very low bit rate coding is achieved by first 
generating the 3D model of the face to be coded in image sequences, and then coding 
the model parameters for the rest of the image sequence. Thus, 3D face synthesis 
plays a crucial role in the visual quality of the system. 

In 1983, Forchheiner proposed a model-based videophone system that uses a 
computer-animated head model for the transmission of head and shoulder scenes 
[1],[2]. Since then, many researches have worked on this concept [3-6]. One of the 
most important works done is the face model created by Stromberg. This model, 
named CANDIDE, and its versions are very popular in many research labs [8]. But 
the problem of estimating 3D information from 2D images still remains to be solved. 

This paper presents a new face model proposed for the model based video coding. 
The proposed face model is compatible with MPEG-4 and consists of about 8000 
vertices. In addition, an algorithm is presented for the adaptation of face model to a 
given face. Finally, a texturing method, Rotation Adaptive Texture Mapping 
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(RATM), is proposed to solve the problem of estimating 3D information from two 
orthogonal 2D face images. The developed model along with the proposed RATM 
approach produces encouraging results by achieving  PSNR values up to 33dB. 

2   The Generic Model 

It is a well known fact that, different people have the same basic face structure, such 
as the eyes, nose and mouth. Each decoder under MPEG-4 has its own face model 
called “generic model”. However, everyone has different facial features that 
distinguish one from the others. A generic model should be a structural one for facial 
animation. 

According to MPEG-4 standard specifications, a human head is a synthetic visual 
object whose representation is based on VRML standard [7]. Our generic model 
shown in Fig. 1 was implemented using 3DMAX and modified to conform to MPEG-
4. Currently, the Face Model includes a group of five standard-conforming objects 
(skin, eyes, pupils, teeth, tongue) up to 8,000 vertices and 13,500 triangles in total. In 
MPEG-4 Calibration profile generic model adaptation to the prototype person is 
required. According to MPEG-4, there are 84 feature points defined on a neutral face 
that provide referenced space for defining facial animation parameters (FAPs). These 
points are sufficient for identifying the proper shape of a facial model. Feature points 
are divided into several groups such as lips, eyes, mouth and so on.  

The human face possesses specific regions that are dedicated for communication of 
information and expression on emotions obviously these regions need to be well 
defined. In this study we concentrated our efforts on giving a great level of detail in 
the most expressive regions of the generic model. In order to have more control on the 
polygonal structure, we subdivided the generic model surface into specific areas 
which corresponds to the feature points affected by the FAPs. This subdivision was 
necessary to define and control the displacements of polygonal vertexes induced by 
the FAPs applied in various feature points. Subdivision into specific areas and their 
classification are shown in Fig. 2. 

                                   
        (a)            (b)                         (c)   

Fig. 1. (a) Generic model, front grid view  (b) internal anatomic components and (c) generic 
model, side grid view 
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         (a)      (b) 

Fig. 2. Subdivision of generic model into specific areas, front and side views 

3   Image-Based Model Adaptation  

The generic model undergoes a model matching procedure to adapt the 3D model 
parameters according to the input images. Our adaptation algorithm takes 22 facial 
features from the two orthogonal pictures and is based on the transformation of 
distances between feature points, from the neutral model domain to image domain. As 
expected the number of facial feature points improves the adaptation greatly in terms 
of the exactness of the face shape. However, increasing the number of feature points 
also increases the computational complexity of feature points’ edition. Therefore there 
is a tradeoff between the number of feature points and editing time. The 22 feature 
points chosen from the feature points defined in MPEG-4 are shown in Fig. 3. 

To make the head size of side and front views equal, we measure the heights of the 
face in two views. Then we use scale transformation to normalize the two pictures.  

After editing the feature points, the whole size of the individual head is estimated. 
The height and the width are determined by the front view using points 1, 2 and 3, 4 
Fig. 3a respectively, and the depth is determined by the side view using points 20,22 
Fig. 3b. Then the corresponding distances on the neutral face model are transformed 
in to the image domain and the necessary coefficients are calculated to match the 
input image features accordingly. The adaptation process continues with the updates  
 

                                             
         (a)          (b) 

Fig. 3. (a) Feature points from front view (b) Feature points from side view 
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of the coordinates for the critical regions of the face, which are the nose, mouth and 
eyes. The width and the height of the nose are estimated from the front view using 
points 5, 6 and 7, 8 respectively; the depth of the nose is estimated from the side view 
using points 21,22 . The position of the nose with respect to the eyes is calculated 
using points 8 and 17. The vertices are shifted along y-axis to place the nose properly 
on the face. A similar approach is followed for the adaptation of mouth and eyes 
except the calculation of the depth and displacement of eyes as they are fixed in the 
face position. 

Let the 3D wire frame model be represented by triangles, 

( ),1 ,2 ,3, , ,  1...m m m mT V V V m n= , where ,1 ,2 ,3, ,m m mV V V  are the vectors 

representing three vertices of the triangle mT , and n indicates the total number of 

triangles   in Eqs. (1-2). 

3D wire frame model, ),,(_3 3,.2,1,
0

mmm

n

m
m VVVTMD

=

=  (1) 

[ ]T
imimimim zyx

VVVV ,,,, =  (2) 

For the regional adaptation, consider the overall 3D model as in four parts 
consisting of triangles: Silhouette, nose, mouth and eyes. After subdivision, Eq. (1) 

takes the form in Eq. (3), where iTs , iTn , iTo  and iTe  stands for triangles of 

silhouette, nose, mouth and eyes respectively. The number of triangles for silhouette, 
nose, mouth and eyes are represented by n1, n2, n3 and n4 respectively.  
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While transforming the model feature points into image domain, the 

coefficients,α , β , γ and mI  are calculated for adapting silhouette, nose, mouth 

and eyes explicitly. α , β and  γ  are used to scale the regions of the model to match 

the input image features and mI is used to shift the y-axis positions of the mouth and 

nose relative to eyes as shown in Eq. (5). The overall transformation algorithm used is 
described below.  
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READ facial feature point coordinates 

NORMALIZE two orthogonal images 

TRANSFORM model feature points into image domain 

CALCULATE error between model feature points and image feature 
points, generate coefficients for silhouette adaptation and adapt 
silhouette 

CALCULATE error between model feature points and image feature 
points, generate coefficients for nose adaptation and adapt nose 

CALCULATE error between model feature points and image feature 
points, generate coefficients for mouth adaptation and adapt mouth 

CALCULATE error between model feature points and image feature 
points, generate coefficients for the adaptation of the eyes and 
adapt eyes 

FIX nose position according to the position of the eyes 

FIX mouth position according to the position of the eyes 

FIX the position of frontal texture frame according to the position 
of the eyes on the adapted frame 

FIX the position of side texture frame according to the position of 
the chin position on the adapted frame 

SCALE the resultant textured frame 
 

Fig. 4. Adaptation algorithm used to modify 3D model to fit the facial features extracted 

4   Rotation Adaptive Texture Mapping (RATM) 

As discussed in the previous section, the generic mapping of the face model results in 
the 3D wire frame model representing the shape of a head. Texture mapping should 
be applied to the model in order to give a more realistic view. Otherwise it can be a 
synthetic texture for a talking head application. Alternatively, a texture map obtained 
by two orthogonal images can be used to give more realistic appearance to the 
rendered frame.  

The Proposed RATM method overcomes the deformations in the texture due to 
rotations of the head by moving the side image texture along the whole textured frame 
as illustrated in Fig. 5. For the rotation adaptation, the two orthogonal texture maps, 
which are the frontal and side images, are combined dynamically. Here the aim is to 
estimate the face textures during the rotations. This is done by starting with the frontal 
image and moving the side image across the whole frame until the side image 
captures the whole texture.  

RATM method results in very realistic face images for the front and side views 
since the information used at these views for texture mapping is obtained from the 
original front and side images.  



 Face Modeling and Adaptive Texture Mapping for Model Based Video Coding 503 

 

 

Fig. 5. A half rotation and the corresponding texture maps of the 3D face model 

 

Fig. 6. Front and side profile views of the Rotation Adaptive textured frame 

5   Performance Analysis 

The performance of our approach is analyzed and the results are shown for a given 
person’s facial orthogonal images with resolution of 256 by 256 pixels per view. The 
resolution of the generic facial model is about 8000 vertices in the whole 3D wire 
frame model. Fig. 6 shows the results of the matching from the generic model to the 
individual orthogonal photos. Fig. 7 shows the generated 3D individual face in 
different views of a half rotation. It can be clearly observed that the appearance of the 
generated individual 3D model looks natural and has a good visual effect on the 
human eyes. Corresponding Peak Signal to Noise Ratio (PSNR) values calculated for 
a half rotation are given in Fig. 8.  

 

 

Fig. 7. The real image sequence (1st row) and the resultant adapted frames (2nd row) 

+ 

+ =
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Fig. 8. PSNR graph illustrating the visual quality of our approach for half rotation 

The maximum PSNR quality of 33dB is achieved for the front view. The PSNR 
value is still quite high at 30dB for the side view. The slightly lower PSNR value for 
the side image compared to that of the frontal image can be explained by the fact that 
the number of facial feature pointes used for the latter is less, as explained before. The 
lowest visual quality is obtained for 45 degree of rotation where almost half of the 
face is covered with the frontal image and the remaining half is covered with the 
profile image texture. This degradation is expected as it is obvious that the frontal and 
profile images contain illumination differences due to the changing direction of 
illumination. The overall visual quality of the synthesized face at varying degrees of 
rotation is within the acceptable quality of 27dB on the average.  

6   Conclusion 

In this paper we proposed a new face model, its adaptation and a texture mapping 
method (RATM) for model based video coding. Our experimental results show that 
the visual quality of the synthesized face image is within the acceptable quality. The 
average PSNR is around 27 dB for the rotations between the front and the side views 
and higher values for front and side views support our visual results. The quantitative 
and visual results clearly suggest that the developed model along with the proposed 
RATM approach produces encouraging results and opens a new direction for high 
quality 3D face synthesis.  
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Abstract. This paper presents a methodology and results for multispec-
tral integration in chromosome images by learning disparate models from
each channel for pixel classification. The objective is the classification of
pixels to identify each of the individual chromosomes. The methodology
is based on a modular structure consisting of multiple classifiers, each of
which solves the problem independently based on its input observations.
Each classifier module is trained to detect distinct regions and a higher
order decision integrator collects evidence from each of the modules to
delineate a final region. A Bayesian realization of the framework is devel-
oped, where each classifier module represents the conditional probability
density function. Results of classification on a public database are pre-
sented.

1 Introduction

Chromosomal aberrations are a variation from the normal, either in structure
or number of chromosomes, which result from an exchange of genetic material
between two or more chromosomes or from a rearrangement of genetic sequences
contained in a single chromosome. The analysis of such aberrations can be use-
ful both in a clinical and in a toxicological context. In the former, it serves
to carry out pre-natal diagnoses, tumor diagnoses and treatment monitoring.
In the latter, it helps to determine the biologically significant dose of specific
genotoxic agents to which an individual is exposed. In order for chromosomes
to be visualized and for aberrations to be identified and analyzed, chromosomes
need to be stained. Different staining techniques allow analysis of different kinds
of abnormalities. A particularly useful cytogenetic technique for the analysis of
aberrations is Fluorescence in situ Hybridization (FISH)[1]. FISH technique is
used to achieve a direct visualization of specific chromosomes or nonchromosomal
regions in metaphase cells. Moreover, FISH allows us to analyze only those aber-
rations in which exchanges between hybridized chromosomes are involved. Over
the years, many attempts have been made to automate chromosome image anal-
ysis. Successful automated systems for segmentation of grayscale chromosome
images have been developed that can decompose about 80-90% of touching and
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(a) (b)

Fig. 1. (a)Example M-FISH Image and (b)Overlapped Chromosomes in M-FISH Image

overlapping chromosomes[2,3]. Most automated procedures rely on chromosome
shape and texture.

In the 1990’s, new techniques were developed to dye chromosomes with mul-
tiple colors so that each chromosome class appears to be a distinct color. This
makes analysis of chromosome images easier, not only for human inspection,
but also for computer analysis. One such dying technique is M-FISH (multiplex
fluorescence in-situ hybridization). M-FISH uses five color dyes that attach to
various chromosomes differently to produce a multi-spectral image[4,5], and a
sixth dye that attaches to all chromosomes to produce a grayscale image. An
example of an M-FISH image is shown in figure 1(a). Segmentation techniques
for M-FISH images range from entropy based estimators[6] to probabilistic nave
classifiers[7]. While having access to multispectral source of information for each
pixel simplifies the task of segmentation, inherent problems still exist in over-
lapped chromosome within the images. If one observes the example in figure 1(b),
it is not clear what the proper segmentation of the cluster is. It is not apparent,
even to many human observers, whether there is an overlap involved or even how
many chromosomes are included in this cluster. In practice, fluorophore absorp-
tion is not binary and there is significant overlap between each of the fluorophore
absorptions along with variability in signal strength. This leads to a non-trivial
classification problem, especially in the context of overlapping regions. Since
chromosomes are somewhat opaque, each pixel will include information from all
overlapping chromosomes. This could lead to a pixel being classified as the same
type as any of the overlapped chromosomes.

The increased dimensionality of such multispectral data greatly enhances
the data information content, but provides a challenge to the current techniques
for analyzing such data. The complexity of high dimensional data has been
known for many years and its impact varies from one field to another. In order
to build a system that can succeed in a realistic environment, certain simplifi-
cations and assumptions about the environment and the problem domain are
generally made. The use of a priori information is critical. Sensor fusion tech-
niques which alleviate the limitations of a single sensing modality also need to
be developed. Good representations of objects and background are needed that
provide descriptive and robust signatures to environmental variations. Further,
the ability of the system to dynamically adapt to the changing environment is
also important.
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This paper present a Bayesian methodology in which each mapping between
local pixel statistics to the pixel’s class is characterized by the probability density
function of the image statistics/features. Individual class statistics are used to
design the classifiers and the distribution of the class region is modeled as a
mixture of Gaussians. An adaptive Expectation-Maximization (EM) algorithm
is used to find the parameters of the normal distribution and a supra-Bayesian
scheme is used for decision integration at the highest level. Rest of the paper
is organized as follows: Section 2 describes our proposed data model and the
maximum likelihood framework for characterizing class signatures. Section 3
presents the design of Bayesian classifiers, along with the final stage decision
integration. Results of the developed methodology on publicly available database
of M-FISH images are presented in section 4. Finally, conclusions and a summary
of this study are presented in section 5.

2 Data Modeling

To achieve optimum performance from any classification/clustering system, it is
essential that its design exploits the specific characteristics of the data. Given
that, the simplest model would be a two-class discrimination where the class
region is easily separable from rest of the classes. In realistic situations, due
to the complexity of the sample, simple models would not suffice in classifying
the region of interest and identifying all the segments across each chromosome.
Further, due to varying fluorescence intensities and the presence of noise, the
data characteristics may change drastically.

We propose to model the class signatures by using a bank of features com-
puted for each pixel in the multispectral image. Rather than using the direct
color values for each of the images, the color space is transformed by the non-
linear diffeomorphism to the (H,S,V) representation. A texture measure is also
obtained by computing a simple cooccurence matrix in a three-by-three window.
A measure of structural entropy is also computed by analyzing the spatial dif-
ference in four orientations, thereby characterizing the presence of regularized
boundaries. Principal components of the aggregated features are examined and
the first five values used to represent each of the classes. Each of the images in
the multispectral dataset is examined separately and used as input to individual
classifiers. Due to the complex and non-Gaussian distribution of the object fea-
tures, we model the data using a mixture of Gaussians. Modeling of data is an
important consideration in designing statistical classifiers. The simplest way to
model non-Gaussian data is to use the histograms of the training data. However,
classification based on this method does not generalize well from the training
data to the test data. The Parzen density estimate[8] is a well established method
to establish density estimates for multivariate models. However, the Parzen win-
dows approach is computationally expensive and has problems when the data
is large and sparsely distributed. Maximum likelihood estimators[9] compute
piecewise estimates of one-dimensional density functions. This approach can be
regularized by introducing a penalty term. Such methods are attractive, but rely
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on a predefined model of the density function. They also do not generalize well
in the case of mixture models unless coupled with other optimization techniques

We use the Expectation-Maximization (EM) algorithm[10] to determine the
parameters for the mixture of Gaussians model to estimate the density function.
Considering Y to be the data, we pose the parameter estimation as a maximum
likelihood problem. The general form of the density function for the measured
feature can be given as:

P (Y |t) = P (Y |θ) =
c∑

i=1

p(Y |t, θi)αi (1)

where, t is the conditioning variable (class signature), c represents the number
of component density functions p(Y |t, θi) that make up the mixture, αi rep-
resents the weight associated with each of the density functions (also called
mixing parameter), and θi represents the parameter vectors for each component
density function. θ, α, and c are unknown, and have to be estimated from the
data. We assume the component densities to be normal distributed. That is
p(Y |t, θi) ≈ N(μi,Σi), and θi = (μi,Σi), where μi and Σi represent the multi-
variate mean and covariance matrix of the normal distribution. To model each
cluster, the values of μi, Σi, and αi have to be estimated. At the start of the
process, the number of components densities (c), the density means (μi), covari-
ance matrices (Σi), and the mixing weights (αi) have to be known. In doing so,
we use the K-Means algorithm iteratively with the EM algorithm to determine
all the parameters. A stagewise K-Means procedure is used, where the initial
guess for the cluster centroids is obtained by splitting the centroids resulting
from the previous stage. Given a set of features Ym = [Ym,1, Ym,2, . . . , Ym,d] for
m = 1, . . . , c, the number of kernels or components is set to one. The centroid of
all training points is computed and a measure of the mean and in-class deviation
is computed as:

μ =
1
M

n∑
u=1

n∑
v=1

Y (u, v) (2)

s2 =
1
M

n∑
u=1

n∑
v=1

(Y (u, v)− μ)2 (3)

Now, for each cluster, a normalized index is computed as:

I = (
1
M

n∑
u=1

n∑
v=1

(Y (u, v)− μ))/s (4)

The normalized index gives a point measure of deviation from the cluster center.
The component weights αi are computed as a ratio of the number of data points
in the corresponding component and the total points. Denoting Yik as the k-th
feature sample belonging to cluster i and using the EM approach, the following
equations are obtained for the estimates of μi, Σi, and αi:

αi=
1
n

n∑
k=1

P (t|Yik, θi) (5)
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μi=
∑n

k=1 P (t|Yik, θi)Yik∑n
k=1 P (t|Yik, θi)

(6)

Σi=
∑n

k=1 P (t|Yik, θi)(Yik − μi)(Yik − μi)T∑n
k=1 P (t|Yik, θi)

(7)

If the normalized index is greater than a set threshold, a new mean is initial-
ized and the nearest neighbor partition is computed. A new estimate of the
means, variances, and the distortion are computed. These equations are itera-
tively solved until convergence of the parameter values is achieved.

3 Bayesian Classifiers

It is a well known result from decision theory that Bayesian classifiers are optimal
due to minimization of the error probability[11]. Given the extracted features from
the image, we design a classifier for each band. For simplicity, we discuss the design
for a single classifier, as the rest follow the same principles.The transformed feature
space is denoted by Y , where each pixel y is sampled from the space of features S.
As we are interested in modeling the class signatures, a set of training features are
used that are extracted from known classes in the image. Thus the distribution of
the features is given as the class conditional density function p(y|t), where t comes
from the true class space T , with a priori distribution p(t).

In the Bayesian framework, the decisions are made by evaluating the a poste-
riori probability for each class and choosing the one with the highest probability
as the true class. We are interested in a two class formulation, where each classi-
fier discriminates one region from the background. Given the a priori probability
of any class pixel P (t) and the conditional density p(y|t), we can compute the
posterior probability of the observed feature being a particular class pixel using
the Bayes rule. We are interested in distinguishing a region from the background,
and we have modeled the class signature. Thus, in a two case discrimination the
posterior probability given by the classifier is:

P (t|y) =
p(y|t)P (t)

p(y|t)P (t) + p(y|b)P (b)
(8)

where, p(y|b) is the conditional density function of the background distribution
and P (b) is the prior probability of observing the background feature. Now, as
each of the conditional densities are computed as a mixture of Gaussians, the
likelihood is

p(y|t) =
c∑

i=1

p(y|θi)αi (9)

where each component is a multivariate Gaussian. The only remaining unknown
parameter is the prior probability of observing a class region. This is calculated
from the training set of sites. As we are performing detection based on individual
pixels, the prior probability is computed by:

P (t) =
# of object pixels

total # of image pixels
(10)
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A single classifier is designed for each of the object features. Given the pos-
terior estimates from the individual classifiers, the goal of the combining stage is
to produce a single estimate that maximizes the probability for localized object
detection while reducing clutter and false alarms. Various integration methods
have been proposed in the past[12]. We formulate a supra-Bayesian integration
in which the posterior estimates from each classifier are assumed to have a prob-
ability distribution and, based on the means and variances of the outputs, we can
formulate an optimal decision scheme. Strictly speaking, Bayesian theory holds
true only for individual decision makers, but if the group decision is viewed as a
collaborative effort, the effect is externally Bayesian. As in the case of individual
classifiers, the integration module is estimating the probability of observing an
object pixel. So, given n individual classifiers, where each P (t|y) is providing a
measure of subjective probability of observing a particular class pixel, and that
the posteriors are Gaussian distributed, then the integrated posterior decision
simplifies to:

PI(t|y1, y2, . . . , yn) =
[
∏n

i=1
P (t|yi)

P (t)

wi

]P (t)

[
∏n

i=1
P (t|yi)

P (t)

wi

]P (t) + [
∏n

i=1
P (b|yi)

P (b)

wi

]P (b)
(11)

where, wi weights the contribution of each of the features. As each of the clas-
sifiers is designed to identify single class pixels, we know that there is sufficient
diversity and complementarity within the estimates. Thus the weight associated
with each of the classifiers plays an important role in deciding the contribution
from each estimate. This is mainly due to the fact that the integrator mod-
ule does not have the same information that is seen by each of the classifiers.
Evaluating the log likelihood of equation 11 and assuming that the combined
probability ratios provide the final probability as

P (ln(
P (t|y1)

1− P (t|y1)
), . . . , ln(

P (t|yn)
1− P (t|yn)

)|t) (12)

and

P (ln(
P (b|y1)

1− P (b|y1)
), . . . , ln(

P (b|yn)
1 − P (b|yn)

)|b) (13)

and, if the joint distributions are multivariate normal densities with mean μt

and μb and covariance Σtb, then the weights for the individual classifiers can be
computed by:

w = Σ−1
tb (μt − μb) (14)

This result provides an intuitive insight to the integration of decisions. In general,
when all the classifiers provide similar estimates, the combining results in the
peaking of that estimate. On the other hand, and more importantly, when the
classifiers do not agree on an estimate, their reliability has to be considered.
According to the weight assignment in equation 14, the reliability associated
with each of the classifiers will depend on how different its estimate is from rest
of the classifiers, and how much diversity exists within the estimates.
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4 Results

We tested our approach on selected images from a public database of 200 hand-
segmented M-FISH images. The database is available from Advanced Digital
Imaging Research at http://www.adires.com/05/Project/MFISH DB/MFISH
DB.shtml. On an individual chromosome basis, the database contains over 9000
individual chromosomes. We divided the dataset into training and testing where
100 images were used to estimate all the parameters of the proposed classifier
and the remaining 100 images were used for testing. Images used for test resulted
in pixel accuracy rates of 96%. These results were based on applying a threshold
of 0.7 on the assessed probabilities. In a parallel experiment, the lower level of
individual classifiers was merged into one classifier and the decision integration
module was removed. Thus, the features were concatenated to give just a sin-
gle feature vector. The same experiments were then repeated. This was done to
verify the advantage of the proposed methodology. Results of the same test data
resulted in pixel classification accuracy of 88%. Figure 2(a) shows an example
M-FISH image that contains several overlapping chromosomes and the results
of the aggregated classification scheme and the integrated classifier is seen in
figures 2(b) and 2(c), respectively.

(a) (b) (c)

Fig. 2. (a)Example M-FISH Image with Several Overlapping Chromosomes,
(b)Corresponding Result of Aggregated Pixel Classifier, and (c)Corresponding Result
of Integrated Classifier showing Improved Pixel Classification

5 Summary and Conclusions

In this paper we have presented a methodology for chromosome segmentation in
M-FISH images. Image attributes from all the available spectral bands is used
independently based on local pixel characteristics. A modular computational
structure consisting of multiple classifiers, each trying to solve the global prob-
lem based on its input observations is introduced and applied to the problem
of classification. A higher level decision integrator oversees and collects evidence
from each of the individual modules and combines it to provide a final deci-
sion while considering the redundancy and diversity of individual classifiers. A
Bayesian realization of the methodology is presented. Each classifier module
models the class signature probability density function based on the computed
image statistics and the final integration is achieved in a supra-Bayesian scheme.
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Results obtained are also compared with classification obtained using a single
classifier and the advantage of integration is demonstrated.
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Abstract. The bit-rate control algorithm allowing ROI encoding in a
video sequence has been presented in this paper. The algorithm dis-
tributes available bit budget among image layers taking into consider-
ation both the distance from ROI and the local image complexity. It
improves the image quality in ROI by lowering the image quality outside
ROI with the preservation of the global constraint of the encoded stream
bit-rate and the gradual quality degradation outside ROI.

1 Introduction

The trade-off between compression ratio and the quality of the reconstructed
signal is the main issue in a video coding. It is obvious that better quality can
be achieved with smaller compression ratio and higher encoded stream bit-rate.
The optimal coder control, that is the selection of appropriate set of coding pa-
rameters, that will guarantee the demanded bit-rate with minimal loss in fidelity
of the reconstructed video sequence requires the knowledge of the rate-distortion
(R-D) model for the particular coding scheme. The R-D model is usually build
in such a way that the quality of the whole frames in a video sequence is taken
into account. However in many applications, e.g. video monitoring and surveil-
lance, telemedicine, some areas in the consecutive frames of the video sequence
are more important than the others. It is desirable to encode those areas, called
region of interest (ROI) with smaller distortion than the rest of the sequence
(background).

The algorithm presented in this paper is based on the linear rate-distortion
(R-D) model in ρ-domain [1]. It distributes the available bit budget among level
sets in the encoded frame taking into consideration both their distance from
ROI and local image complexity. ROI is encoded with higher bit-rate ensuring
better image quality and the image quality gradually decreases outside ROI.
The algorithm has been integrated and tested with the H.264/MPEG-4 AVC [2]
reference software JM 8.2 [3].

2 R-D Model in ρ-Domain

In a typical transform image/video coding both rate R and distortion D depend
on the quantization parameter denoted here by q. The main task in designing a
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Fig. 1. RY (ρ) functions for selected frames of the Carphone sequence

rate control algorithm is to find functions R(q), D(q), called R-D functions, for
the particular coding scheme.

Methodology of our ROI bit budget allocation technique is based on the
ρ-domain algorithm [1], which in turn is running on a top of the JVT-G012
proposal [4]. It has been shown [5,6] that for typical coding algorithms the R-D
functions can be expressed by linear equations in the new domain of parameter ρ,
which is the percentage of insignificant (quantized to zero) transform coefficients.

We assume that generated bit count values for intra and non-intra frames in
encoded sequence satisfy the linear model in ρ-domain:

R(ρ) = θ(1− ρ) (1)

Context in which ρ is computed depends on data source encoding options. It
can be defined for frames or basic units of type I, P and B in one dimension or
in color components Y , Cb, Cr respectively. In presented method such context
was defined for P frames and Y color component. Linear character of the R(ρ)
function is clearly visible in Fig. 1 showing RY (ρ) functions obtained for four
selected frames of the Carphone sequence.
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Fig. 2. Level sets in the first frame of the Foreman sequence

The slope θ is modeled on the base of the previous context and is given by
the formula:

θ =
rprev

1− ρprev
(2)

Parameters rprev and ρprev denote the bit-rate and zero fraction in the previous
context, accordingly.

Such modeling scheme makes application of ρ-domain methodology imprac-
tical for I type frames since time interval between them is large. Thus the scene
view can change drastically during this period and the slope θ calculated for the
previous frame of this type can be inadequate for the current frame encoding.

The mapping from ρ to quantization index q is straightforward, having a
lookup table build on the basis of a histogram for zero quantized coefficients
obtained for all possible indices q. While model parameter θ depends strongly
on the local data, the relationship between ρ and q is less dependent on the data
prediction errors.

2.1 ROI Bit-Rate Control

ROI in encoded sequence can be defined as one connected area or a set of con-
nected components [6]. It is composed of macroblocks for which at least one pixel
intersects with ROI (Fig. 2). Let us denote all such macroblocks by L1. Then we
can define level sets Li (for i > 1) as sets of macroblocks which are 8-neighbors
of macroblocks in Li−1 and are not included in Lj for all j < i. All such level
sets defined in a frame based on its ROI structure are further characterized by
Ni = |Li| - number of macroblocks on the given level set, ρi - zero fraction on
Li and ri - bit-rate for Li.



Bit-Rate Control Algorithm for ROI Enabled Video Coding 517

In order to distribute bit budget, allocated for the frame by ρ-domain algo-
rithm, we decided to increase the fraction of zeros in consecutive level sets Li by
Δρ γi such that:

ρi = ρi−1 + Δρ γi i = 2, . . . , imax (3)

where

γi =

{√
1 + vara−vari

vara
if var1 > vara

1.0 if var1 ≤ vara

(4)

In the above equations imax is the number of level sets, vari denotes image signal
variance on ROI level set Li and vara is the whole frame variance. Variance is
calculated on a motion compensated image and gives us information about an
image complexity on consecutive level sets.

Assuming that global frame bit-rate is distributed to level sets Li propor-
tionally to their sizes we have:

r =
imax∑
i=1

wiri (5)

ρ1 = 1− r

θ
−Δρ

imax∑
i=2

⎛⎝wi

i∑
j=2

γj

⎞⎠ (6)

where wi = Ni

N , N is the number of all macroblocks in a frame and r denotes
the bit-rate (in bits per pixel) for the frame.

Hence for the fixed Δρ we compute ρ1 by the formula (6) and next ρi for
all i > 1 using (3). Having ρi we can use further steps of ρ-domain algorithm,
i.e. getting the quantization index qi from lookup table ρ[q], establishing the
encoding mode for each macroblock in Li and model updating.

Value of ρi on all level sets except ROI is modified by γi, which is equal to
1.0 when variance of ROI signal is below or equal to variance of the whole frame
and is greater than 1.0 in other cases. Such formulation causes that quantization
index qi on level set Li (i > 1) increases more if the ROI is more complex then
the rest of the image. We can cut more bits from outside ROI and allocate more
to ROI as less complex signal generates lower error during reconstruction, in
PSNR sense.

Proposed ROI bit allocation scheme works well on P frames. For I frames
similar technique as in JVT-G012 proposal was applied. On each level set Li

we calculate a sum Si
pq of quantization indices qi for all P frames in a group of

pictures (GOP). Then quantization indices for ROI level sets on I frame in given
GOP were calculated using the formula:

qi =
Si

pq

Np
−min

(
2,

Ngop

15

)
(7)

where Np denotes the number of P frames in the previous GOP and Ngop is the
size of GOP. Also the change between current I type frame quantization index
and previous one on appropriate level set should not be greater then 2.
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The same methodology as for P frames can be applied to B type frames.
However, our experiments showed its drawbacks. In B type frames vast amount
of macroblocks is encoded using motion vectors where resulting coefficients are
all equal to zero after DCT transform and quantization. Sometimes, B frames oc-
cur with all coefficients equal to zero, and these extreme results cause ρ-domain
model inconsistency. Therefore for B frames the solution inspired by the JVT-
G012 algorithm is proposed in this work. For consecutive B frames in a sequence
ROI level sets Li are defined in similar way as for P frames. Values of quan-
tization indices on ROI level sets Li are then determined on the basis of cor-
responding quantization indices for level sets on surrounding P frames. One of
the surrounding frames could be of type I at the GOP start, so in such case
quantization indices from ROI level sets on this frame are used instead.

The formula for determining quantization indices values on B frames is as
follows:

qk
B,i =

{
1
2

(
q

kprev

i + qknext

i + 2
)

if qkprev

i �= qknext

i

q
kprev

P,i otherwise
(8)

where k is the B frame index, kprev, knext are indices of the closest two P/I
frames and i is the level set number.

In the proposed schema there is no direct allocation of bits for B frames. Bit-
rate control algorithm is based mainly on P frames complexity and estimations
of supposed bit budget for the following B frames.

The described ROI bit budged allocation scheme based on consecutive in-
crease of zero fraction by Δργi takes into account an image complexity measured
as frame pixels variance after motion compensation. It gives much better results
for images in which ROI is more complex than the rest of the image. However,
in images in which ROI is less complex than background this assumption led to
equalization on PSNR on all level sets. Therefore, in such case we decided to
increase ρi by constant Δρ in order to preserve a higher image quality in the
ROI and gradually lower it on level sets with increased distance from the ROI.

3 Experimental Results

The proposed algorithm was evaluated on several standard test sequences. The
ROI definitions were loaded to the encoder from external files. These files were
created manually by test sequence browsing. The GOP composed of 30 frames
with 2 B frames between I/P frames were used. The algorithm works correctly
on all sequences recorded with CIF and QCIF resolutions and at different bit-
rates. The required bit-rate is preserved with very high accuracy for all GOPs
in test videos while at the same time quality of the ROI is better with respect
to the original JVT-G012 implementation in JM 8.2.

Figure 3 presents PSNR measures for the Foreman sequence encoded with
the proposed bit allocation algorithm and the JM 8.2 with JVT-G012 algorithm.
The PSNR values for the JM 8.2 were calculated in the same macroblock sets as
level sets defined for the proposed ρ-domain algorithm. Comparing two diagrams
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figures, we can observe, that PSNR measure on ROI is more stable for bit allo-
cation method working in ρ-domain. Also quality of the ROI is better for almost
all frames by more than 1,5 dB. The periodicity visible on this two diagrams is
typical for sequences encoded with B-frames, which have slightly lower quality
than surrounding I/P-frames.

Quality on level sets L1 and L2 is comparable in both implementations. Only
on the last level set quality in JM 8.2 is better than in ROI ρ-domain algorithm,
where more bits were allocated to the area of interest.

We proposed to divide all frame macroblocks into level sets in our bit allo-
cation algorithm to avoid strong quality change on the border between the ROI
and the rest of the image. Such solution allows to gradually decrease the image
quality on consecutive level sets lying farther from ROI.

Table 1 compares the performance of the proposed algorithm with the per-
formance of the original JM 8.2. It contains values averaged over the whole test
sequences PSNR values on level sets. Results for Foreman, News and Mobile &
Calendar are presented. Each sequence contained 90 frames. For all sequences
quality on ROI - level set L1, is better by more then 1 dB compared to the orig-
inal JM 8.2/JVT-G012 proposal. This quality improvement in ROI is controlled
by the value of Δρ parameter. Greater Δρ values give better quality in ROI,
which decreases smoothly on macroblocks laying farther from defined area of
interest.

The PSNR at L1 level set (ROI) was slightly lower than on level set L2

on almost all frames in the News test sequence. This was a result of the video
sequence content, which presents a scene with two speakers in the foreground, a
dancing pair in the middle distance and a very dark background.

On the Mobile & Calendar sequence the quality difference between proposed
method and the original JVT implementation is most visible in the defined ROI

Table 1. Averaged PSNR (in dB) on level sets in the proposed ρ-domain algorithm
and the original JM 8.2

Sequence Level set ρ-domain JM-8.2

Foreman L1 39.07 37.75
L2 38.62 38.07
L3 38.10 38.40
L4 36.69 37.93

News L1 40.40 39.13
L2 41.44 41.83
L3 39.88 42.66
L4 37.40 42.75

Mobile & Calendar L1 32.70 31.38
L2 31.88 31.40
L3 30.66 31.06
L4 28.08 30.34
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Fig. 3. PSNR for the Foreman CIF sequence a) in the proposed algorithm with Δρ =
1/80, b) for the original JM 8.2; bit-rate 270 kbit/s. The PSNR values were calculated
in both cases for macroblock collections L1, . . . , L4 used as level sets in the proposed
ρ-domain algorithm.
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when we encoded it at a low bit-rate. The ROI which was defined on the calendar
stays readable even at a bit-rate of 180 kbit/s, which is not possible to achieve
for the whole frame encoding implemented in JM 8.2. Average bit-rate for all
GOPs (309,30 kbit/s) is below the desired value (312 kbit/s) in the ρ-domain
method, while it is slightly above (313,87 kbit/s) in the case of the JM 8.2.

The algorithm described in this paper has also better performance than the
algorithm presented in our previous paper [7]. The increase of the PSNR in the
ROI for the News video sequence was improved by approximately 1 dB by taking
into consideration the local image complexity.

4 Conclusions

The modified version of the bit-rate control algorithm presented in [7] for video
sequence with ROI has been presented in this paper. The algorithm guaran-
tees higher quality of the reconstructed video in the ROI and gradual video
quality degradation outside the ROI. The available bit budget was distributed
among level sets in the consecutive frames by increasing the fraction of zero
quantized coefficients by a constant value multiplied by the factor depending on
the local image complexity. The algorithm performance was improved when the
complexity of ROI is higher than the complexity of the background by taking
into consideration the image complexity in the bit budget distribution.
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ropean Network of Excellence (http://www.visnet-noe.org), funded under the
European Commission IST FP6 programme.
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Abstract. This paper describes a method of categorizing the moving objects 
using eigen-features and support vector machines. Eigen-features, generally 
used in face recognition and static image classification, are applied to classify 
the moving objects detected from the surveillance video sequences. Through 
experiments on a large set of data, it has been found out that in such an 
application the binary image instead of the normally used grey image is the 
more suitable format for the feature extraction. Different SVM kernels have 
been compared and the RBF kernel is selected as the optimal one. A voting 
mechanism is employed to utilize the tracking information to further improve 
the classification accuracy. The resulting labeled object trajectories provide 
important hints for understanding human activities in the surveillance video. 

1   Introduction 

Video surveillance technology is gaining more and more interest from both the 
government and industrial institutes as an effective way of protecting public security. 
The research efforts on object classification in video surveillance can be reviewed 
from two perspectives: what features are extracted for classification and how to 
discriminate between these features. 

In [2], two object classification algorithms were developed. The first one used the 
features like dispersedness and area, and a three-layer neural network to categorize 
the image blobs into three object classes: human, vehicle, and human group. The 
second one used the shape and color moment features and the linear discriminant 
analysis to distinguish the vehicles into finer types like van, truck, and sedan.  The 
algorithms in [3] [4] combined the motion feature and the appearance feature such as 
the silhouette similarity to generate the categories of vehicle, animal, human, human 
group, and others. The support vector machine was used as the classifier. In [5], 
Fourier descriptors for the object shapes and a feed-forward neural network were used 
to determine the object classes among human, vehicle and background clutters. 

In this paper, we present an algorithm to categorize the moving objects detected 
from the surveillance video into three classes: human with a bag, human without a 
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Ability initiative, in part through the Australian Research Council. 
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bag and the unknown class. The purpose of choosing these classes is for further re-
search in the future on detecting unattended objects from surveillance video. Instead 
of using the features as those in the above references, the eigen-features, which are 
often used in the face and static image recognition applications [6] [7] [8], are ex-
ploited and the SVM classifier is chosen because of its proved performance in many 
papers. Different image formats for feature extraction and different SVM kernels are 
compared to select the most appropriate ones for the classification. Furthermore, the 
tracking information is taken into account to reduce the random misclassification of 
moving objects in consecutive frames.  

The structure of this paper is arranged as follows: section 2 describes the process of 
the proposed object classification algorithm, including the moving object detection, 
the eigen-feature extraction, and the support-vector classification; section 3 explains 
the combination of the object tracking with on-line classification through a voting 
mechanism; section 4 describes the experiment results; and section 5 summarizes the 
findings and describes some further work in the future. 

2   Moving Object Classification 

Our framework of the moving object classification, Figure 1, has two parts: one is 
performed off-line to collect and label the training and test object images, extract 
eigen-features and train the support vector machine classifier; the other part is per-
formed continuously on-line to detect the individual moving object, extract its eigen-
feature, and categorize into the predefined classes. A large set of video sequences was 
recorded to collect training and test data. In total we used 37 sequences for training 
and 13 video sequences for testing, which were produced in different dates with dif-
ferent groups of people.  

On-line

Off-line

Input 
Video 

Extract 
Features 

On-line Object 
Classification 

Detect 
Moving 
Object 

Object 
Tracking 

Collect Training 
and Test Images 

Construct 
SVM 
Classifier 

 

Fig. 1. Framework of the proposed moving object classification algorithm 

2.1   Moving Object Detection 

For detecting the moving objects in the surveillance video, background subtraction 
and temporal differencing are two popular and efficient approaches [2]. By gradually 
updating the pixel values in the background, the impact of lighting changes can be 
significantly reduced. For a more dynamic environment, the Gaussian mixture model 
(GMM) has been proposed to model the background changes [9].  In this paper, since 
the video sequences are generated in an indoor environment with a relatively static 
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background, an adaptive background modeling method similar to that in [2] is used, 
instead of the computation-intensive GMM method. The motion detection result 
achieved (see figure 2 as an example) is reliable and satisfactory. In the face 
recognition, the grey images are used to extract the eigen-features. Here both grey and 
binary images in the bounding boxes are taken as candidates. The comparison result 
in section 4 shows that the binary image is actually more suitable for such an 
application as moving object classification, because the grey image contains extra 
unwanted information.  

 

Fig. 2. Example of moving object detection using adaptive background modeling 

2.2   Eigen-Feature Generation 

The eigen-feature is generated by projecting the image of a moving object into the 
eigenspace using the principal component analysis (PCA) [6] [7]. Here is the brief 
description of the feature extraction method we use in the paper. First, the average 
image  is calculated: 

∑
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1
 , where M is the number of training images. 

Then, the difference between the average and each object image is calculated i = i 
- , and the difference images form a matrix A = [ 1 2 … M]. Then the covariance 
matrix C is computed as:  
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Next, the eigen-vectors of this matrix are calculated and ranked according to their 
associated eigen-values. An eigen subspace is constructed by selecting a subset of K 
eigen-vectors with the largest eigen-values. Finally, for a new object image, we calcu-
late the difference image  and project it to the eigen subspace. The resulting vector, 
that is the so-called “eigen-feature”, provides a compact representation of the original 
image in a much lower dimensional space. 

In the face recognition, grey-scale images are generally used to extract the eigen-
feature rather than the binary images, because the grey-scale images contain more 
information about the human face. When used to classify the moving objects in the 
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Fig. 3. Example grey-scale and binary images in three classes: a human without a bag, a human 
with a bag, and the unknown class 

surveillance video, the grey-images may possibly introduce some unwanted 
disturbance due to the additional background information and the variety of the 
human’s clothes. To compare the performance, we collected object images in both 
formats and performed the classification. In total, we collected and labeled 1724 grey-
scale and 1745 binary images for training data, and 1505 grey-scale and 1333 binary 
images for test data. Figure 3 shows some examples.  

2.3   Support Vector Classification 

The basic idea of the SVM classification [10][11] is to find an optimal hyperplane to 
separate the feature vectors that belong to two classes, so that on either side of this 
plane there are the largest possible portion of vector points of the same class, while 
the distance from the hyperplane to either class is maximized.  

Because different kernel functions have different performance for a specific fea-
ture, three SVM kernels have been tested and compared in this paper: 

• Dot product: k(xi, xj) = xi 
T xj  

• Radial basis function (RBF): k(xi, xj) = exp(- ||xi -
  xj ||

2),   >0 
• Polynomial: k(xi, xj) =(  xi 

T xj + r)d, >0 

The SVM library LIBSVM [1], provided by Chang and Lin, is used in the paper to 
perform the SVM classification. To achieve a better classification result, several use-
ful techniques have been adopted. The first one is to normalize the input feature vec-
tors before the classification. The purpose is to reduce the computation difficulty 
caused by the arbitrary vector value in a large data set. The second one is to perform 
the n-fold cross-validation on training data, where the training data are divided into n 
subsets and each subset is used as test data to test the classifier trained by the rest of 
the data. This method reduces the risk of the overfitting problem. The third one is to 
perform a grid-search on the parameter(s) in the kernel function. For example, instead 
of using a fixed value for the parameter  in the RBF kernel, a series of values in-
creased exponentially, such as 2-5, 2-3, 2-1,…, 211, are tested.   

3   On-Line Tracking and Labeling 

The SVM classifier trained in section 2 is applied to the moving objects detected and 
tracked by the motion detection and tracking models in the system (figure 1). Here a 
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region-based tracking algorithm with the Kalman-filtering is used in the tracking 
model. In most indoor surveillance video sequences, we can assume the status of the 
moving human will not change frequently within a few frames, which means in most 
cases the object class for a moving object should be the same in neighboring frames. 
A voting mechanism, utilizing this status consistency and the object tracking 
information, is applied to further improve the accuracy of the moving object 
classification. As illustrated in Figure 4, the classification is applied on a tracked 
object, one vote is cast for the resulting object class; votes are counted after five on-
line classifications; the object class receiving the largest number of votes decides the 
object’s class in this period. If there is a tie for first place, the human with a bag is 
given the highest priority, then the human without a bag, then the unknown class. This 
voting mechanism reduces the number of the random misclassifications in the video 
sequence caused by the temporal occlusion of a bag by its carrying people or other 
reasons such as imperfection in motion detection. 

 

Fig. 4. Voting on the tracked and classified object 

4   Experimental Results 

The proposed algorithm has been tested on a 2.4 GHz Intel XeonTM based PC using 
the RedHat Linux operating system. The algorithm, without specific optimization, is 
able to run 5 frames per second at size of 320x240. Figure 5 shows the significant 
difference in the classification accuracy of the binary motion images and the grey-
scale ones. The RBF kernel is used in both groups of tests. This suggests that, al-
though the grey-scale images contain more information about the target objects, such 
as the complete shapes, than the binary images, some unwanted information are also 
included, like the background and human clothing details. Unless a very big library of 
grey-scale object images has been collected from a large number of scenes under 
varying illumination conditions and different environments, the property of being 
insensitive to background and object details makes the binary image a better choice 
for the purpose of moving human classification in this paper. 

Figure 6 shows the classification results using three different SVM kernels: the 
RBF, the dot product, and the polynomial kernel. The binary images are used here. 
The ranking of the best classification accuracies are 89.65% with the RBF kernel, 
89.35% using the polynomial kernel, and 86.42% with the dot product kernel. As the 
number of eigen-vectors increases, the classification accuracy using the polynomial 
kernel drops more noticeably than those using the RBF and the dot product kernel. 
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Fig. 5. Classification accuracies using binary and grey-scale images 
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Fig. 6. Classification accuracies with different SVM kernels 

Table 1 shows one classification result on the three pre-defined classes using bi-
nary images and the RBF kernel. The table reveals the classification accuracy for a 
human with a bag is much lower than other classes. This reflects the same difficulty 
experienced by the human eye: due to the partial occlusion on the bag, sometime it is 
hard to tell whether a person is carrying a bag or not. Similar classification accuracy 
was achieved in additional experiments performed on five pre-defined classes. 

Table 1. One classification result for three pre-defined classes 

Target class Human 
w. a bag 

Human 
w.o. a bag 

Unknown 
Class 

Total 

Test Images 431 646 256 1333 
Misclass. 80 38 20 138 
Correct 351 608 236 1195 
Accuracy 81.44% 94.12% 92.19% 89.65% 
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Figure 7 shows the labeled object trajectories. First, as shown by the right trajec-
tory (red), object A appeared from the bottom as a human with a bag, moved to the 
center of the image, where it changed to a human without a bag. At this moment, an 
unknown object (green) appeared. After that, object A wandered around in the mid-
dle-right of the scene. Then, as shown by the left (blue) trajectory, object B appeared 
as a human without a bag from the bottom left, moved to the center, changed to a 
human with a bag and walked out of the scene. From these labeled trajectories, we 
can get some understanding about the activities in this video: a bag was dropped 
down by person A and was then picked up and taken away by person B. Note that 
during the entering and exiting periods, person A and B were classified as the un-
known class, because only part of the body was detected. During the pick-up and 
drop-down periods, person A and B were also labeled as “x”, because we include a 
bending-person as the unknown class. In the future, extra classes like a bending or 
crouching person will be added to understand more details about the human activities.  

 

Fig. 7. Labeled object trajectories, where a square “ ”, triangle “ ”, and cross “x” represent a 
human with a bag, without a bag and the unknown class respectively 

5   Conclusion 

In this paper, we describe a method to classify the moving humans in the surveillance 
video using the eigen-feature and the support vector machine classification. The per-
formance of different image formats for feature extraction and different SVM kernels 
are compared and analyzed. The result shows that when using the binary images and 
the RBF kernel, an accuracy of almost 90% can be achieved in a large set of test im-
ages. A voting method is introduced to utilize the tracking information to further 
improve the classification accuracy and generate the labeled tracking trajectories, 
which can help understand the human activities in a surveillance sequence. Further 
efforts are being carried out to improve the motion detection and object tracking algo-
rithms, in order to detect moving objects from a dynamic outdoor environment and 
track the objects under heavy occlusions. The final goal is to automatically understand 
the human activities and detect various meaningful events from the surveillance 
video.  
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Abstract. In this paper, we propose an efficient implementation of order
independent anchored skeletons. It is based on a series of queue data
structures and enables the processing of large images. An application
to the reduction of thick river networks to their medial axis is briefly
described.

1 Introduction

A widely used approach for computing discrete skeletons consists in iteratively
thinning the input pattern with a series of homotopic structuring elements until
no further pixels can be removed. However, an issue which has not been often
investigated when developing thinning algorithms is order independence. When
this property is satisfied, the computed skeleton is the same no matter the order
in which the image pixels are processed. Recently, Ranwez and Soille [1,2] have
introduced the concept of order independent homotopic thinning and shown that
it leads to order independent skeletonisation when iterated until no more pixels
are modified. In this paper, we propose an efficient implementation based on a
series of queue data structures.

The paper is organised as follows. Section 2 details background notions about
skeletonisation while emphasising issues related to order independence. The pro-
posed algorithm is described in Sec. 3 and its extension to grey tone images is
presented in Sec. 4. Finally, results and conclusions are given in Sec. 5.

2 Background Notions

Except for coding applications where skeletons defined by the centre of max-
imal discs are of interest, a desired property of a skeletonisation procedure is
the preservation of the homotopy of the original image. Two binary images are
homotopic if and only if they have the same homotopy tree [3]. This tree is de-
fined as a graph whose vertices correspond to the foreground and background
connected components and whose edges represent the adjacency relations be-
tween these components. Usually, it is assumed that the image is surrounded by
a background connected component which uniquely defines the root of the tree.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 530–537, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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One of the most popular approaches to skeletonisation is based on sequential
thinning [4] which removes pixels iteratively until the input image is reduced to
its own skeleton. In case of homotopic thinning, only simple pixels are removed.
A simple pixel is defined as a pixel which can be removed without changing the
homotopy of the image. Rosenfeld [5] has shown that a pixel p is simple if and
only if the following two conditions hold (in this paper, 8-connectivity is used
for the foreground and 4-connectivity for the background):

1. the set of 8-connected foreground neighbours of p is non-empty and 8-
connected;

2. the set of 4-connected background neighbours of p is non-empty.

A skeleton resulting from the iterative deletion of all simple pixels does not
reflect all structures of the input pattern. For example, an object without holes
(a simply connected set) is reduced to a single pixel while the block letter ’R’
has the same skeleton as the letter ’P’, i.e. the closed loop surrounding the hole
of these letters. In order to get more control on skeletonisation, anchor skeletons
[6,7,8,9] have been introduced so that a series of pre-defined points, called anchor
points, are flagged as non deletable during the thinning process. Anchor points
are usually defined by the maxima of the distance function which are greater
than a given threshold value.

Typical order dependent thinning algorithms for anchored homotopic skele-
tons proceed as follows:

Algorithm 1 Order dependent binary anchor skeleton
call: OrderDependentSkel(I,A)
I input binary image
A anchor image: A(p) = 1 if p is an anchor pixel, A(p) = 0 otherwise
S temporary image for marking the simple pixels

1. do
2. deleted ← false
3. for each pixel p of I do
4. if IsSimple(p, I) = true and A(p) = 0 then
5. S(p) ← 1 else S(p) ← 0
6. for each pixel p of I do (arbitrary sequential scanning order)
7. if S(p) = 1 and IsSimple(p, I) = true then
8. I(p) ← 0 ; deleted ← true
9. while deleted = true

The function IsSimple (lines 4 and 7) indicates whether a pixel p of an image
I is simple or not according to Rosenfeld’s conditions. To accelerate this test, an
indicator look-up-table with 256 entries is used to determine once for all whether
any given neighbourhood configuration is homotopic or not.

The skeleton resulting from Alg. 1 depends on the scanning order of the im-
age pixels (line 6). When computing an order independent skeleton only those
simple pixels which would be removed by Alg. 1, no matter the chosen arbi-
trary sequential scanning order, should be removed. Such pixels are called order
independent simple pixels [2]. They are detected by a detailed analysis of the
dependence relationships between each simple pixel and its simple neighbours.
A simple pixel not adjacent to any other simple pixel is a trivial example ofan
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order independent simple pixel. Figure 1 shows a small pattern containing con-
figurations of order dependent and independent pixels.

Fig. 1. Order dependent (dark grey) ver-
sus order independent (light grey) sim-
ple pixels. Black pixels are the non-simple
pixels.

We present hereafter a condensed version of the developments proposed in
[2,10]. Let p an q be two simple neighbour pixels. Then, p is independent from
q if and only if there is another foreground pixel within the intersection of the
8-neighbourhoods of p and q and, in addition, if p and q are 4-adjacent, p has a 4-
adjacent background neighbour which is 4-adjacent to a 4-adjacent background
neighbour of q. If these conditions are not satisfied, p is dependent on q, which
means that p will be deleted or not depending on the selected scanning order.
Consequently, it should not be removed by an order independent algorithm. In-
dependence of p from q is not a sufficient condition for asserting that p will be
removed by all scanning orders. This happens however, when p is strictly inde-
pendent from all of its simple neighbours. A simple pixel p is strictly independent
from a simple pixel q if and only if they are independent and there exists a non
simple foreground pixel in the intersection of their 8-neighbourhoods. If pixels
are independent, but not strictly (p has only background foreground simple or
background neighbours) further neighbourhood analysis is necessary. It is then
checked whether there are any foreground pixels among the 8-neighbours of p
which are not 8-neighbours of q. If this is the case, p cannot be removed. Oth-
erwise, the whole connected component of foreground pixels to which p belongs,
denoted by CC8(p), must be tested. If CC8(p) is strongly 8-deletable [11,12],
there exists a scanning order where p is not removed. Therefore p should only be
removed by an order independent algorithm if CC8(p) is not strongly 8-deletable.
A connected component is strongly 8-deletable if and only if two conditions are
fulfilled: all its pixels are simple and there exists a sequential scanning order
such that all scanned pixels can be removed without modifying the homotopy
of the connected component. This latter condition is fulfilled if and only if the
connected component is simply connected.

3 Queue-Based Implementation

3.1 The Main Body

The main body of the algorithm for binary anchored order independent skele-
tonisation (Alg. 2) consists of two parts. The first part (lines 1–4) initialises the
queue Qmain by inserting all simple pixels of the input image I which are not
anchor points. These pixels are simultaneously flagged in an auxiliary image S
to indicate that they are potentially deletable. To mark the end of the insertion
of simple pixels in the queue, a control value ’−1’ is inserted since a negative
value cannot correspond to the position index of a pixel.
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The second part (lines 5–21) is executed while pixels are deleted. Initially,
a flag named deleted is set to false (line 6). Then (lines 7–10), simple pixels
previously inserted in the queue Qmain are retrieved and passed on to the function
IsDeletable which returns true if they are order independent simple pixels (this
function is described in Sec. 3.2). In this latter case (see line 9), they are inserted
in the queue Qdel while the flag deleted is reset to true. Order independent
simple pixels are inserted in the Qdel queue because their deletion on the fly
could influence the result of the IsSimple test performed on the subsequent
simple pixels. Then (lines 11–20), all order independent simple pixels are set
to 0 (lines 13–14) and their simple neighbours are inserted on the queue Qmain

(lines 15–19). Again, to mark the end of the insertion of simple pixels, a control
value ’−1’ is inserted (line 20). If no pixel was deleted, the algorithm stops (line
21) otherwise it starts again from line 5.

Algorithm 2 Binary order independent anchored skeletonisation
call: OrderIndependentSkel(I,A)
I input image
A anchor image: A(p) = 1 if p is an anchor pixel, A(p) = 0 otherwise
S temporary image for flagging simple pixels
p, q pixels
I(p) value of p on the input image I
N8(p) a set of 8-neighbours of p
Qmain the main FIFO queue
Qdel the supplementary FIFO queue used for deleting pixels
deleted flag indicating that at least one point is qualified for deletion

1. for each pixel p do
2. if IsSimple(p, I) = true and A(p) = 0 then
3. fifo add(Qmain, p) ; S(p) ← 1 else S(p) ← 0
4. fifo add(Qmain,−1)
5. do
6. deleted ← false
7. while (p ← fifo retrieve(Qmain)) �= −1 do
8. if IsDeletable(p, I, S) = true then
9. fifo add(Qdel, p) ; deleted ← true
10. else fifo add(Qmain, p)
11. if deleted = true then
12. fifo add(Qdel,−1)
13. while (p ← fifo retrieve(Qdel)) �= −1 do
14. fifo add(Qdel, p) ; I(p) ← 0 ; S(p) ← 0
15. while fifo empty(Qdel) = false do
16. p ← fifo retrieve(Qdel)
17. for all q ∈ N8(p) do
18. if IsSimple(q, I) and A(q) = 0 and S(q) = 0 then
19. fifo add(Qmain, q) ; S(q) ← 1
20. fifo add(Qmain,−1)
21. while deleted = true

3.2 To Remove or Not to Remove?

Algorithm 3 describes the deletability test (in the sense of order independent
deletability) of a pixel p of a binary image I and given a binary image S where
all simple pixels of I are set to 1, all other pixels being set to 0. The function
implementing this algorithm is called IsDeletable and is called from line 8 of
Alg. 2. For an input pixel p the algorithm investigates all its simple neighbours
(lines 1–2). For every simple neighbour q the following tests are performed. At
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first, the property of being independent simple is investigated (lines 3–4). If
pixelsp and q are not independent simple, p cannot be deleted and false is re-
turned without investigating other neighbours. In case the pixel p is independent
from its currently analysed neighbour q, non-strict independence between p and
q is tested for at line 6. If the test is positive, the last two tests (lines 7–8) are
performed. The test on line 7 checks whether pixel p has within its 8-connected
neighbourhood a pixel of value 1 which does not belong to the 8-neighbours of
q. If true, p cannot be removed. The final connected component test (CCtest)
returns true if and only if the connected component p belongs to (CC8(p)) is
strongly 8-deletable. This test is described in the next section.

Algorithm 3 Deletability test

call: IsDeletable(p,I,S)
description of variables used: see Alg. 2

1. for all q ∈ N8(p) do
2. if S(q) = 1 then
3. if ∀ r ∈ N8(p) ∩ N8(q) : I(r) = 0 then return false
4. if ∃ r, s ∈ N8(p) ∩ N8(q) : I(r) = I(s) = 1 and r /∈ N8(s) then
5. return false
6. if ∀ r ∈ N8(p) ∩ N8(q) : I(r) = 0 or S(r) = 1 then
7. if ∃ r ∈ N8(p) \ N8(q) : I(r) = 1 then return false
8. if CCtest(p, I, S) = true then return false
9. return true

3.3 Connected Component Test

The connected component test described by Alg. 4 investigates a connected com-
ponent to which a given pixel p belongs, in order to check its strong 8-deletability.
The algorithm consists of three parts. In the first part (lines 1–9) all the pixels
of a given connected component are analysed using the queue propagation. All
pixels belonging to this component are scanned to check whether they are simple
(i.e. have the value 1 in the auxiliary image S). If a non-simple pixel is found, it
means that the connected component is not strongly 8-deletable and therefore
false is returned (line 5). During the simpleness checking all the simple pixels
belonging to the current connected component are marked with a value 1 in the
auxiliary image B.

In the second part (lines 10–14) the external border marking is performed.
Marking begins from the first external border point detected in the first part of
the algorithm (stored in firstex variable) and propagates along the boundary
using the 4-connected neighbourhood propagation. Finally a 4-connected path
containing firstex is considered to be the external boundary of the given con-
nected component. This boundary is marked by the value 2 in the auxiliary
image B.

The third part of the algorithm (lines 15–23) processes again all the pixels
belonging to the currently analysed connected component (similar to the first
part). This time however another feature is investigated: the existence of a non-
marked external boundary points. If such a pixel is found, it indicates that the
connected component contains at least one hole and therefore is not simply
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connected. In such a case, it is not strongly 8-deletable and false is returned
at line 20. Otherwise, the algorithm returns true.

Since the property of strong 8-deletability is a property of a whole connected
component to which the pixel belongs (not a property of a single pixel), CCtest
can be performed only once for each component (alternative implementation not
shown in pseudo-code). To make the result of this test accessible for the other pix-
els of the connected component, a supplementary connected component marking
must be performed. Depending on the result of the test, all pixels belonging to
the currently analysed component are set to ’deletable’ or ’not-deletable’. When
the next pixel belonging to the already marked component is tested, instead of
going through all steps of CCtest, true or false is directly returned depending
on whether the pixel was flagged ’deletable’ or ’not-deletable’.

Algorithm 4 Connected component test
call: CCtest(p,I,S)
B supplementary image used for marking (all pixels initially set to 0)
bnm “border not marked” - a flag indicating marking the external borders
firstex first external border pixel found
Qcc FIFO queue used in this algorithm
N4(p) a set of 4-neighbours of p

for the other variables - see Alg. 2

1. bnm ← true
2. fifo add(Qcc, p) ; B(p) ← 1
3. while fifo empty(Qcc) = false do
4. r ← fifo retrieve(Qcc)
5. if S(r) = 0 then return false
6. for all q ∈ N8(r) do
7. if I(q) = 1 then
8. if B(q) = 0 then fifo add(Qcc, q) ; B(q) ← 1
9. else if bnm = true then bnm ← false ; firstex ← q
10. fifo add(Qcc, firstex) ; B(s) ← 2
11. while fifo empty(Qcc) = false do
12. s ← fifo retrieve(Qcc)
13. for all t ∈ N4(s) do
14. if B(t) = 0 and ∃u ∈ N4(t) : B(u) = 1 then fifo add(Qcc, t) ; B(t) ← 2
15. fifo add(Qcc, p) ; B(p) ← 3
16. while fifo empty(Qcc) = false do
17. r ← fifo retrieve(Qcc)
18. for all q ∈ N8(r) do
19. if I(q) = 0 then
20. if B(q) = 0 then return false
21. else if B(q) = 1 then
22. fifo add(Qcc, q) ; B(q) ← 3
23. return true

4 Extension to Grey Tone Images

To extend the order independent homotopic thinning to grey tone images, one
has to consider a definition of homotopy suitable to these images. Serra [3] pro-
posed the following definition based on the image cross-sections (binary images
obtained by thresholding the grey tone image for each successive grey level): two
grey tone images are homotopic if and only if their corresponding cross-sections
are homotopic. A transformation applied to a grey tone image is then homotopic
if the homotopy of input and output images are the same. We assume that grey
tone levels correspond to nonnegative integer numbers. As for the binary case,
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we consider here 8-connectivity for the foreground and 4-connectivity for the
background. A set of background (resp. foreground) neighbours of a given pixel
p, denoted by N<(p) (resp. N≥(p)) consists of its neighbours with lower (resp.
higher or equal) grey value. A pixel p of a grey tone image I is simple if and
only if its set of background 4-adjacent neighbours is nonempty and if, in addi-
tion, the image obtained by decreasing the value of this pixel from its original
value I(p) to the maximum value of its background 8-adjacent neighbours, i.e.
max{I(p′) | p′ ∈ N<

8 (p)}, is homotopic to the original image. In other words, a
pixel p of an image I is simple if and only if the two following conditions hold:

1. the set of foreground 8-neighbours of p, N≥
8 (p), is nonempty and 8-connected;

2. the set of background 4-neighbours of p, N<
4 (p), is nonempty.

The pseudo-code for an order dependent grey tone anchored skeletonisation algo-
rithm is similar to that presented in the binary case. One just needs to substitute
I(p)← 0 in line 8 of Alg. 1 with I(p)← max{I(p′) | p′ ∈ N<

8 (p)}.
An order independent algorithm requires the detection of order independent

simple pixels. They are detected like in the binary case by considering the pixels
with a lower value as background pixels, those with a greater value as anchor
foreground pixels, and those with the same value as additional foreground pixels
while some of them may belong to the set of predefined anchor points. Sim-
ilarly to the algorithm proposed for binary images (Alg. 2), grey tone order
independent skeletonisation is performed in two main steps, repeated until sta-
bility. During the first step, order independent simple pixels are detected. In
the second step, the detected pixels are set to the maximal value of their lower
8-neighbours.

5 Results and Conclusions

Figure 2 illustrates the use of the proposed skeletonisation algorithm for the
extraction of the medial axis of river networks. The graytone skeletonisation has
been applied to the Euclidean distance function of the binary mask of the rivers
using its maxima as anchor points. In contrast to the developments detailed in
[2] and which required numerous scans of the whole image definition domain,
the proposed queue based algorithm allows for the fast computation of order in-
dependent skeletons with or without anchor points. We are currently using it for
extracting relevant morphological information from geospatial raster data such
as satellite images and digital elevation models. Its extension to the computation
of order independent watersheds will be detailed in a forthcoming paper.
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Abstract. This paper describes a method to improve a given segmen-
tation result in order to produce a new, refined and more accurate seg-
mented image. The method consists of three phases: shrinking of the
input partitions, filtering of the input imagery leading to a mask image,
and expansion of the shrunk partitions within the filtered image. The
concept is illustrated for the enhancement of a land cover data set using
multispectral satellite imagery.

1 Introduction

Segmentation is one of the key tasks of digital image processing. Its goal is to
detect and mark uniform areas visible in the input image. There are however
situations where a segmentation result is a priori known but must be improved
so as to exactly match the object boundaries. For example, geographic infor-
mation systems often contain vector data sets representing objects derived by
manual photo-interpretation means. Therefore, boundaries following precisely
the image objects could be obtained by using the knowledge stored in this data
when processing imagery representing the same area. The proposed method re-
quires two input images: given segmentation result (partition, labeled image)
and an image which is segmented referred to as underlying image. The approach
consists of three principal steps: shrinking of a given partition (e.g. areas of a
rasterised vector data set), mask preparation which transforms the underlying
image, and expansion which reconstructs the regions of the input partition while
precisely following the image boundaries. All are based on mathematical mor-
phology [1,2]. The results of segmentation improvement are validated using the
modified gradient measurement which is also described in the paper.

In remote sensing where image objects are often marked manually by a photo-
interpreter, the quality of the contours depends strongly on non-measurable fac-
tors, like interpretation skills of a human operator. An example of manual seg-
mentation is a pan-European land cover map (known as CORINE Land Cover
or CLC) which was produced using various sources, the main one being Landsat
satellite imagery. By means of the proposed method, the shape of the regions
occurring in the CLC map is refined so that they precisely follow the boundaries
of the image objects.
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The paper is organised as follows. Section 2 describes three principal steps
of the method: shrinking, mask preparation, and expansion. Section 3 presents
a method of validating the improvement. In section 4, an application of the
method to improve the CORINE land cover map is presented. Conclusions are
given in Section 5.

2 Methodology

The approach consists of three principal steps: shrinking, mask preparation,
and expansion. The aim of the first step is to process the labeled image (input
segmentation result) by transforming it into the markers which are later used
as the seeds in the region growing segmentation process. The mask preparation
deals with the underlying image (to be segmented) and is based on filtering
techniques which simplify the image. Images created in the first two steps become
the input for the third, expansion phase, which is a segmentation process that
produces the final result. All three steps are described in the following sections.

2.1 Shrinking Phase

The shrinking phase reduces the size of the partitions of a given segmentation in
order to generate an ’empty space’ between regions, which can be further used in
the expansion phase. The input segmentation is an image where pixel values refer
to labels describing the class to which a particular point belongs. This labeled
partition is obtained e.g. by rasterising a vector data set representing the same
area as the input image. We assume that label values are represented by positive
integer values ≥ 1 so that the value 0 can be used as background value in the
sequel. We also denote by l the largest label value. Shrinking operators process
the given labeled partition by processing it label value by label value. The set of
pixels with the same label is considered as a separate binary image and treated
by an anti-extensive operator of shrinking. Finally, the results of this treatment
are merged in a single output image. The thresholding operator T for the label
i is defined as a function which sets to 0 all pixels which are not equal to i:

Ti(F )[p] =
{
i if F (p) = i,
0 otherwise. (1)

where F stands for the labeled image. The shrinking of F based on an anti-
extensive flat operator S is then defined as the point-wise maximum of the
output of the operator S applied to the successive thresholds of the labeled
image:

l∨
i=1

S(Ti(F )) (2)

The choice of the operator S depends on the features of the input image F
which should be preserved. In the simplest case, an erosion of a given size can
be used. However, if there exist regions relatively small compared to the size of
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(a) (b) (c) (d)

Fig. 1. Shrinking phase: (a) original labeled image, (b) erosion, (c) ultimate eroded set
of a given size, and (d) homotopic shrinking. The same size has been considered for
three all operations.

the selected structuring element, some regions would disappear in the output
partition. This problem can be solved by considering the ultimate eroded set of
each threshold:

ULT (X) =
∞⋃

i=1

{
ε(i)(X) \Rδ

ε(i)

[
ε(i+1)(X)

]}
(3)

where ε(i)(X) stands for erosion of size i of X , Rδ is the morphological recon-
struction by dilation of its argument while the subscript indicates the considered
geodesic mask. It can be shown [2] that the ultimate eroded set is equivalent to
a set containing the maxima of a distance function: ULT (X) = RMAX [D(X)].
In case of shrinking the goal is to shrink the partitions not until idempotence
as in the Eq. 3 but within the required extent only. In order to reach this goal,
successive erosions in Eq. 3 should be stopped at a given level, which defines an
ultimate eroded set of a given size n:

ULT (n)(X) =
n⋃

i=1

{
ε(i)(X) \Rδ

ε(i)

[
ε(i+1)(X)

]}
= ε(n)(X) ∪ ULT (X) (4)

It may also be required, that the homotopy of the labeled regions should be
preserved. In such a case, the ultimate eroded set of a given size is not the
desired solution because it can change the homotopy of segments. Homotopic
transformations such as skeletonisation based on homotopic thinning and anchor
points [3,4] should be considered. Anchor points are the points which cannot
be removed during the thinning process. For defining the skeletonisation based
shrinking operator, the set of anchor points is equal to the ultimate eroded set.
Hence, the resulting shrinking operator can be written as follows:

S(n)(X) = ε(n)(X) ∪ Skel(X, ULT (X)) = Skel(X, ULT (n)(X)) (5)

where Skel(X, Y ) stands for the anchored skeleton of image X with anchor
points defined by Y . Since the operation defined by Eq. 5 preserves homotopy
of the input set, we call it homotopic shrinking. Results of shrinking using all
three proposed approaches are shown in Fig. 1.
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2.2 Mask Preparation

The refinement of the input partition (labeled image) is based on the propaga-
tion of the shrunk labeled regions within an underlying input image so as to
improve the position of the boundaries of each labeled region that was present
in the input partition. Since the propagation may be sensitive to the presence of
structures that are smaller than the smallest segment of the input partition, as
well as small variations of pixel values (noise), which can result in disturbances
in the final region boundaries, the underlying image should be filtered before
starting the propagation. Filtering must be applied while preserving boundaries
on the filtered image because accuracy in the segmentation result is of utmost
importance. Mathematical morphology offers a range of tools for efficient filter-
ing suitable for this purpose: reconstruction filtering [5], self-dual filtering [6],
area filters [7], or area flat-zone filters [8,9]. Filtered underlying image is a mask
used during the expansion phase as a reference image for propagation.

2.3 Expansion Phase

In this step, labels stored in the marker image are propagated inside non-labeled
areas (’gaps’) created during the shrinking phase. The propagations are per-
formed using the priority queue: pixels with higher priority are removed before
those with lower priority. Pixels with the same priority are removed using the
FIFO rule. In the propagation algorithm the priority of any pixel put into the
queue depends on the value of this pixel on the underlying mask image. A generic
region growing algorithm is described by Algorithm 1.

Algorithm 1 Generic region growing algorithm
call: grow(M,U)
M input marker image and output (result of segmentation)
U input underlying mask image
p,q image pixels
N(p) neighborhood of pixel p
bglabel background label (for pixels not belonging to any of partitions, set to 0)
inqueue pseudo-label indicating that a pixel is in the queue (set e.g. to −1)
pq-add(p,v) adding a pixel p into the priority queue with priority v
pq-remove removing a pixel from the priority queue
pq-empty boolean test returning TRUE if the queue is empty and FALSE otherwise

1. for all p do
2. if M(p) = bglabel and ∃q ∈ N(p) : M(q) �= bglabel ∧ M(q) �= inqueue then
3. M(p) ←inqueue
4. v ←priority(p,U)
5. pq-add(p,v)
6. while pq-empty = FALSE do
7. p ←pq-remove
8. M(p) ←get-label(p,M)
9. for all q ∈ N(p) do
10. if M(q) = bglabel then
11. v ←priority(q,U)
12. M(q) ←inqueue
13. pq-add(q,v)

The choice of functions priority and get-label depend on a type of propagation
which is performed. In particular, the first of these two functions influences
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the propagation itself. In case of morphological watershed operation [10], the
priority is inversely proportional to the gradient of the underlying image. This
simulates the flooding starting from markers. In case of seeded region growing
approach [11], the priority depends on the measure indicating the difference
between the pixel value and the average value of pixels belonging to the region.
The priority is inversely proportional to this measure. The second function get-
label(p,M) returns a label which should be assigned to pixel p on image M . The
label is chosen after the analysis of the neighborhood of p in M .

3 Validation of Improvement Results

In order to validate the improvement, the statistical measure of modified gradient
is used. The idea is based on an assumption that the better segmentation result
is, the more homogenous are the grayvalues of pixels from the underlying image
within the regions from the segmented one. The homogenity of image pixels
can be measured by means of image gradient. The morphological gradient G of
underlying image U is defined as a difference between image dilation and erosion,
both of a minimal size 1: G = δ(1)(U)− ε(1)(U).

When using the gradient to measure the quality of segmentation, the high
gradient values along the boundaries of segmented image should not be con-
sidered. In order to exclude them, the following procedure is applied. First, a
region mask is computed in two steps. Initially, the segmentation image M is
being shrunk using the erosion operator of a given size k. Finally, this image
is thresholded in such a way that boundary areas are set to 0, while the inner
regions to a maximal image value (usually equal to 255):

R =
{

0 if
∨l

i=1 ε(k)(Ti(M)) = 0
255 otherwise

(6)

The image R is, in the next step, applied to hide (set to 0) all the parts on the
gradient image, which refer to boundary areas of the segmented image. This is
done by point-wise minimum (inf) of the gradient image G and region mask R so
that a modified gradient is obtained: G′ = inf {G,R}. Final image G′ contains
only gradient values of underlying image inside regions from the segmented one.
Image G′ is then computed for different segmentation result (different images
M). Better segmentation results, which fits better the boundaries, will result in
lower number of pixels with high values of gradient on image G′. This is due to
the fact that high boundary gradient values are masked by R and therefore set
to 0 on image G′. In case of a segmentation which doesn’t follow precisely the
borders of objects on the underlying image, the image G′ will contain more high
valued pixels, since some of high boundary gradient pixels will not be hidden by
R. The variability is measured using statistical parameters of mean value μ and
standard deviation σ of the image G′:

μ =
1
m

∑
∀p

G′(p) ; σ =
√

1
m

∑
∀p

(G′(p)− μ)2 (7)
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where m stands for the number of pixels of the image. Improvement of a given
segmentation will be reflected in above parameters: improved segmentation will
result in lower values comparing to the initial segmentation.

4 Application to CORINE Land Cover Improvement

The proposed methodology was motivated by the need to improve the the
CORINE Land cover Map of year 2000 (CLC 2000) [12] so as to match it with
the images from the Image 2000 database of Landsat 7 imagery [13]. CLC 2000
is a digital land cover map produced based on a variety sources, including satel-
lite multispectral images. The resulting manual segmentation is a mosaic of land
cover classes (44 in total) describing the land use. The CLC 2000 project was
supported by most European countries (including all the EU members). The
manually marked regions refer to real entities on the terrain, being somewhat
generalised. According to the project specifications, only the objects having a
surface larger than 25 ha were mapped. Most region boundaries were simpli-
fied, especially for more complex shapes so that they do not precisely follow the
content of the satellite image. The mask was prepared from the original multi-
spectral image (a part of it, of size 502x424 pixels, is shown on Fig. 2a) using the
flat-zone area filter [6,9]. This filter removes quasi-flat zones of an area smaller
than the given value (in this example the area value was set to 10 pixels). The
contrast of quasi flat-zones was equal to 1 which means that the difference be-
tween two adjacent pixels of a flat-zone was equal to 1 (in all 7 channels). The
filtered image is shown in Fig. 2b. This color picture was created from channels
1,2, and 3 by considering them as color components B,G, and R respectively.

Table 1. Validation of improvement - mean values (standard deviations in brackets)

band original segm. improved segm. original segm. improved segm.
- original U - original U - filtered U - filtered U

1 27.53 (30.08) 13.26 (26.55) 23.15 (28.24) 9.15 (21.45)
2 27.31 (27.37) 14.34 (27.16) 22.16 (24.78) 9.35 (19.89)
3 32.15 (28.54) 12.17 (22.99) 27.77 (28.04) 8.54 (18.69)

The initial segmentation shown in Fig. 2c was subjected to homotopic shrink-
ing of size 5 in 4-connected grid. Owing to that, the regions shrunk without
loosing their homotopy. Shrunk particles were used as the markers for the re-
gion growing segmentation of the reference, mask image (shown in Fig. 2b). The
propagation of the labels was done using the seeded region growing method.
The priority of pixels added to the queue was computed as a difference between
the (vector) value of the currently considered pixel and the average value of the
closest adjacent region. The get-label function (sec. 2.3) was based on the rule,
according to which the label assigned to a pixel was set to the label value of
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Fig. 2. The original underlying image (a), the image filtered using flat-zone area fil-
tering, the mask (b), the original rasterised CLC map - initial segmentation (c), the
improved CLC segmentation (d)

the preceeding pixel. Processing results are shown in Fig. 2. Compared to the
original segmentation (Fig. 2c) the computed new one (Fig. 2d) matches much
better to the underlying image (Fig. 2a). The results of improvement has been
validated using the method described in section 3 (the k parameter was set to
2). The mean value and standard deviations (see Table 1) has been computed for
both initial and improved segmentation (M) using two underlying images U as a
reference - original one, and filtered one (with the same filter as the one used in
mask preparation step). The mean values computed for improved segmentation
are much lower than those for original one. The decrease is visible even better
for filtered image used as a reference one. Standard deviation values are decreas-
ing as well, but the difference is not as remarkable as the one of mean values.
All these values confirm that the proposed method improves the segmentation
results and regions on the improved segmented image fits better the boundaries
of object on the underlying image1.

5 Conclusions

This paper presented the generic schema for the improvement of existing seg-
mentation results which consists of three steps: shrinking, mask preparation and
expansion. The first phase aims at preparing the markers necessary in the ex-
pansion phase and consists in shrinking the regions of an existing segmentation.
Three tools capable of reaching this goal were proposed: erosion, ultimate eroded
set of given size and homotopic shrinking. The second step transforms the under-
lying image by removing trivial details which can influence the final segmentation
result. The expansion phase performs region growing from the markers obtained
by shrinking, using a mask produced from the underlying imagery. The method
was applied to improve the CORINE land cover map, which is a required step
for obtaining an improved pan-european information layer. The improvements
1 Due to space limitations, in Table 1 only values of visible bands are given. Similar

results are also measurable on the rest of bands.
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was measured using the method based of modified gradient also described in
the paper. The proposed schema can also be applied to improve other kinds of
segmentation results, also when a given segmentation does not cover the whole
underlying image (i.e. there are some unsegmented regions). For example, in
medical imaging, the position and shape of some organs or structures may be
approximately known so that their actual outline can be inferred using this a
priori knowledge.
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Abstract. The medaka, Oryzias latipes, is a small, egg-laying, freshwater, bony 
fish which is native to Asian countries. We were continuously investigated 
behavioral sequences of the medaka through an automatic image recognition 
system in increasing temperature from 25˚  to 35˚C. The observation of 
behavior through the movement tracking program showed many patterns of the 
medaka. Behavioral patterns could be divided into basically 5 patterns: ‘active-
smooth’, ‘active-shaking’, ‘inactive-smooth’, ‘inactive-shaking’, and ‘not 
determined’. These patterns were analyzed by 3 features: ‘high-speed Ratio’, 
‘FFT to angle transition’, and ‘product of projections to x-axis and y-axis’. 
Each pattern was classified using a devised decision tree after the feature 
choice. The main focus of this study was to determine whether the decision tree 
could be useful in interpreting and classifying behavior patterns of the medaka.  

1   Introduction 

Ecological data are very complex, unbalanced, and contained missing values. 
Relationships among variables may be strongly nonlinear and involving high-order 
interactions. The commonly used exploratory and statistical modeling techniques 
often fail to find meaningful ecological patterns from such data [1], [2], [3]. The 
behavioral or ecological monitoring of water quality is important regarding bio-
monitoring and risk assessment [4], [5]. An adaptive computational method was 
utilized to analyze behavioral data in this study. Decision tree is modern statistical 
techniques ideally suited for both exploring and modeling such data. It is constructed 
by repeatedly splitting the data, defined by a simple rule based on a single explanatory 
variable.  

The observation of the movement tracks of small sized animals has been separately 
initiated in the field of searching behavior in chemical ecology [6] and computational 
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behavior [7], [8]. For searching behavior, the servometer and other tools were used 
for investigating the continuous movement tracks of insects including cockroaches, in 
characterizing the effects of wind [9], pheromone [10], [11], relative humidity [12], 
and sucrose feeding [13]. These computational methods convey useful mathematical 
information regarding similarities presented in data of the movement tracks, for 
instance, correlation coefficients or fractal dimensions.  

The medaka, Oryzias latipes, is a small, egg-laying, freshwater, bony fish which is 
native to Asian countries (primarily Japan, Korea, China). It is a eurythermal fish, and 
can survive in outdoor containers (ponds) even under unfavorable environmental 
conditions [14]. In this paper, we utilized the decision tree for the classification of 
response behaviors of medaka and attempted to explain the shapes of the movement 
tracks through feature extraction in increasing temperature. Realizing there is a limit 
to observing with the naked eye, computational methods were used to conduct our 
research more effectively. This research can help the biosensor field in detecting de-
fects in fish, or in finding out chemical toxicants that exist in the water by observing 
specific behavior patterns of fish.  

2   Experimental Conditions 

The specimens of medaka (Oryzias latipes) used in our experiment were obtained 
from the Toxicology Research Center, Korea Research Institute of Chemical Tech-
nology (KRICT; Taejon, Korea). Only the specimens six to twelve months from birth 
were used. The medaka is about 4cm long and lives for about 1-2 years.  

A day before experimentation, the medaka was put into the observation tank and 
was given approximately twelve hours to adjust. In order to achieve image processing 
and pattern recognition effectively, stable conditions were maintained in the monitor-
ing system. Any disturbances to observation tanks and changes in experimental condi-
tions were minimized. Aeration, water exchange and food were not provided to test 
specimens during the observation period and the light regime was kept consistent.  

The observed aquarium size was 40cm×20cm×10cm in volume. The temperature 
was adjusted by using the circulator. The heated water from the circulator flows into 
the tank and then flows back into the circulator. The analog data captured by the cam-
era set in front of the aquarium were digitized by using the video overlay board every 
0.25 seconds and were sent to the image recognition system to locate the target in 
spatial time domains.  

After giving the experimenting specimen approximately twelve hours to adjust to 
the observation aquarium, the experiment was started. The initial temperature was 
25˚ . After 2 hours, the setting temperature was increased to 35˚  using the water 
circulatory system. Depending on the day and external temperature, the time it took 
for the aquarium to elevate to 35˚  varied. 90 minutes for the temperature of 25˚  
and 35˚ , 30~60 minutes for the transition period were used as data. Each data from a 
movement pattern had an interval of a minute, and were overlapped every 30 seconds 
for analysis. The main focus was whether the medaka would be able to adapt quickly 
to the changing temperatures and show little or none or whether the increase in tem-
perature would serve as a stress factor and change movement patterns. 
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3   Feature Choice 

In this paper, the movement patterns of the medaka were classified into shaking and 
smooth patterns as shown in Fig. 1. The behavior of the medaka in a minute period of 
time was used to classify them into 5 patterns: active-smooth, active-shaking, inac-
tive-smooth, inactive-shaking, and not determined in each case. “Not determined” are 
patterns that were not classified into any one of these four categories. By the observa-
tion of an expert in fish behavior to initiate pattern isolation, the features were ob-
served and the following three feature variables could be defined: high-speed ratio, 
FFT (Fast Fourier transformation) to angle transition, and projection to x- and y-axes. 
Fig. 2 shows the schematic diagram of the movement analysis in one minute for the 
process of extracting three distinctive characteristics from the data we acquired and 
classifying 5 patterns based on this information. 

     
(a) Shaking patterns                                     (b) smooth patterns 

Fig. 1. Example of shaking and smooth patterns in one minute (•: start, *: end) 

 

Fig. 2. Schematic diagram for automatic pattern isolation  

In order to know the activeness of a medaka, speed information was used to define 
high-speed ratio. Speed of the medaka shows whether an active movement or inactive 
movement occured. The formula of speed is as following: 
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Where, xn and yn are the position values of the medaka in a sampled time. The ratio 
that exceeded the calculated average speed of the overall 7 data sets, 21mm/sec, was 
used as the first feature variable. High-speed ratio is calculated as the following equa-
tion. 

(%)100
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A2 above samples ofNumber ×=ratioS  (2) 

The change of direction is represented as an angle transition to classify the move-
ment behavior of medaka. Angle transition between two sampled times denoted as H 
is calculated in the following equation. Where xn and yn shows the coordinate value 
for the x and y axes.  
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Fourier transformation is used to transform signals in the time domain to signals in 
the frequency domain [19].  We apply the Fast Fourier transform (FFT) to the signal 
of angle transition to calculate energy. The FFT for a given discrete signal x[n] is 
calculated through the following equation: 
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After applying the FFT to angle transition, the power of FFT (PF) is calculated in 
the following equation for the amplitudes above a median. 
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Where xi  is the amplitudes above a median. We use all sets to find median in 
experiments. We are used to FFT power because of the calculation in qualified angle 
transition. The PF is employed as a second feature variable for pattern isolation. 

In this paper, the method of projection was used to observe and understand the 
movement route of the medaka in a two-dimensional space. The projection to the x-
axis and the projection of the y-axis were calculated and then multiplied to figure out 
the area of the movement track of the medaka. The calculated area tells whether the 
medaka moved broadly all over the tank or in a restricted area of the tank. The area 
calculated was used as the third variable to classify smooth and shaking patterns.  

4   Pattern Classification Based on Decision Tree 

A decision tree is a graph of decisions and their possible consequences, used to create 
a plan to reach a goal. It has interpretability in its own tree structure. Such interpret-
ability has manifestations which can easily interpret the decision for any particular 
test pattern as the conjunction of decisions along the path to its corresponding leaf 
node [3], [18].  

Many people related to artificial intelligence research has developed a number of 
algorithms that automatically construct decision tree out of a given number of cases, 
e.g. CART [1], ID3 [15], C4.5 [16], [17]. The C4.5 algorithm, the successor and re-



550 S. Lee et al. 

 

finement of ID3, is the most popular in a series of “classification” tree methods. In it, 
real-valued variables are treated the same as in CART. 

A decision tree consists of nodes(N) and queries(T). The fundamental principle un-
derlying tree creation is that of simplicity. During the process of building the decision 
tree, we seek a property query T at each node N that makes the data reaching the im-
mediate descendent nodes as “pure” as possible. It turns out to be more convenient to 
define the impurity, than to define the purity of a node. Several different mathematical 
measures of impurity have been proposed, i.e. entropy impurity (or occasionally in-
formation impurity), variance impurity, Gini impurity, misclassification impurity in 
equation (6), (7), (8), (9) respectively.  
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Where i(N) denote the impurity of a node and P(wi) is the fraction of patterns at node 
N that are in category wj.  

)()()( 21 ωω PPNi =  (7) 

−==
≠ j

j
ji

ji PPPNi )(1)()()( 2 ωωω  (8) 

)(max1)( j
j

PNi ω−=  (9) 

All of them have basically the same behaviors. By the well-known properties of 
entropy, if all the patterns are of the same category, the entropy impurity is 0. A vari-
ance impurity is particularly useful in the two-category case. A generalization of the 
variance impurity is the Gini impurity in equation (8). This is just the expected error 
rate at node N if the category label is selected randomly from the class distribution 
present at N. The misclassification impurity measures the minimum probability that a 
training pattern would be misclassified at N. Of the impurity measures typically con-
sidered, this measure is the most strongly peaked at equal probabilities.  In order to 
drop in impurity, we used the equation (10) 

)()1()()()( RLLL NiPNiPNiNi −−−=Δ  (10) 

Where NL and NR are the left and right descendent nodes, i(NL) and i(NR) are their 
impurities, and PL is the fraction of patterns at node N that will go to NL when prop-
erty query T is used. Then the “best” query value s is the choice for T that maximizes 

i(T). 
If we continue to grow the tree fully until each leaf node corresponds to the lowest 

impurity, then the data have been typically overfitted. Conversely, if splitting is 
stopped too early, then the error on the training data is not sufficiently low and hence 
performance may suffer. To search sufficient splitting value, we used cross-validation 
(hold-out method).  

The decision tree is employed and programmed to express the classification in the 
form of a tree and as a set of IF-THEN rules. In order to classify the patterns into 
active smooth, active shaking, inactive smooth, and inactive shaking divided by ex-
perts in fish behavior, the following features were used: high speed ratio (HSR), 
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power of FFT (PF), and area of projection product (APP). These 3 features were used 
as input variables to decision tree. The training data for the decision tree are consisted 
of 30 data in each patterns. The decision tree gives a rough picture of the relative 
importance of the features influencing movement tracks of the medaka. We continue 
splitting nodes in successive layers until the error on the validation data is minimized. 
The principal alternative approach to stopped splitting is pruning. Fig. 6 shows the 
decision tree applied to evaluated pruning.  

HSR<49.3776

APP<1214

PF<106.206 PF<124.389PF<109.974

APP<1375.5

PF<117.776

Not D Inactive
smooth

Not D
Inactive
shaking Not D

Active
shaking

Active
smooth

Not D

Not D

APP<1564.5

 

Fig. 3. The decision logic for pattern classification generated by decision tree applied to prun-
ing. (HSR: high-speed ratio, APP: area of projection product, PF: power of FFT) 

5   Pattern Analysis and Discussion 

We developed models based on the classification and regression tree (CART) in order 
to classify and recognize movement tracks of medaka in different temperatures. 
Results were calculated for the decision logic for 90 minutes at a temperature of 25˚ . 
This was the same for the temperature at 35˚ . Also, a time period of 30~60 minutes 
was calculated for the transition period, in which the temperature was raised from 
25˚  to 35˚ . The total number of specimens used in the experiment was 7. The 
recognition is calculated by 4 patterns over 5 patterns that includes “not determined.” 
“Smooth” means that “active smooth” patterns and “inactive smooth” patterns 
appeared in the decision tree logic. “Shaking” means that “active shaking” patterns 
and “inactive shaking” patterns appeared in the decision tree logic. “Not determined” 
means that neither “smooth” nor “shaking” appeared in the decision tree logic.  

Fig. 4 shows the ratio of smooth and shaking patterns. Each specimen is 
represented by bar graphs. The first bar graph shows the ratio of smooth and shaking 
patterns in 25˚ , and the second bar graph shows the ratio in 35˚ . Most specimens 
showed an increase in smooth patterns detected by the decision tree logic in 35˚ .  

The problem that arouses from this experiment is that biological specimens such as 
the medaka show too many different types of movement patterns. This makes 
selecting certain characteristics for a certain pattern difficult. This is why so many 
artificial systems such as neural networks and fuzzy are being used [20], [21]. 
However, although neural networks are sufficiently able to differentiate patterns, it is 
impossible to interpret exactly how much a certain pattern that the specimen shows.  

The results revealed that after differentiating smooth and shaking patterns through 
a decision tree, temperature increase caused the smooth ratio to increase. This can be 
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seen as a pattern that appears in response to a new environment, such as change of 
temperature, and is a process of adaptation. Shaking patterns show many changes of 
angle and can be seen as a pattern right before adaptation, and it can be said that it 
appears the most frequently. Speed ratio of the medaka shows whether it is an active 
movement or inactive movement as shown in Fig. 3. Also, the area of projection prod-
uct interprets smooth or shaking pattern. Power of FFT distinguishes specific patterns 
from unknown patterns. 

Though this research, decision tree logic was devised using 4 characteristic pat-
terns and “not determined” for the patterns that could not be defined, based on the 
knowledge of experts. The decision tree was able to differentiate the 4 patterns based 
on the observation of three variables. However, more research must be done in order to 
define the patterns that were “not determined.” Also, in order to better observe the many 
movement patterns of the medaka, more data sets should be examined and studied.  

0.0%
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80.0%

100.0%

a b c d e f g
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Fig. 4. Smooth ratio vs shaking ratio 

6   Conclusions 

The complex movement data were used to construct a decision tree with 3 features 
that could represent movement tracks of medaka: speed ratio, power of FFT, and x- 
and y-axes projection product. As new input data were given to the decision logic, it 
was possible to recognize the changes of pattern in increasing temperature. It is possi-
ble that for medaka treated with sub-lethal chemicals, there might be patterns that 
cannot be classified. However, in these cases, a new analysis can be done to add new 
patterns and update the decision tree. The results of the decision tree revealed that 
medaka was interpretable in different temperature as speed, angle, area of projection 
to x- and y-axes. If this is applied to more sets of data, it is thought that more distinc-
tive and accurate methods of differentiating the behavior patterns can be created. 
Also, this research in differentiating patterns may help in the field of research for the 
special characteristics of living organisms. This research can help the biosensor field 
in detecting defects in fish, or in finding out chemical toxicants that exist in the water 
by observing specific behavior patterns of fish.  
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Abstract. This paper presents a novel two-pass algorithm constituted by Linear 
Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search 
(HEXBS) for block base motion compensation. On the basis of research from 
previous algorithms, especially an on-the-edge motion estimation algorithm 
called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass 
Algorithm (TPA). We introduced hashtable into video compression. In this 
paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) 
in the picture. Motion Vectors (MV) are then generated from the first-pass and 
are used as predictors for second-pass HEXBS motion estimation, which only 
searches a small number of MBs. The evaluation of the algorithm considers the 
three important metrics being time, compression rate and PSNR. The 
performance of the algorithm is evaluated by using standard video sequences 
and the results are compared to current algorithms. Experimental results show 
that the proposed algorithm can offer the same compression rate as the Full 
Search. LHMEA with TPA has significant improvement on HEXBS and shows 
a direction for improving other fast motion estimation algorithms, for example 
Diamond Search. 

1   Introduction 

In this paper, we propose a Linear Hashtable Motion Estimation Algorithm (LHMEA) 
and a Two-Pass Algorithm constituted by LHMEA and Hexagonal Search (HEXBS) 
to predict motion vectors for inter-coding. The objective of our motion estimation 
scheme is to achieve good quality video with very low computational complexity.  
There are a large number of motion prediction algorithms in the literature. This paper 
is only concerned with one class of such algorithms, the Block Matching Algorithms 
(BMA), which is widely used in MPEG2, MPEG4, and H.263. In BMA, each block 
of the current video frame is compared to blocks in reference frame in the vicinity of 
its corresponding position. The one with the least Mean Square Error (MSE) is con-
sidered as a match, and the difference of their positions is the motion vector of the 
block in the current frame to be saved in the corresponding position on the motion 
map. Motion estimation is quite computationally intensive and can consume up to 
80% of the computational power of the encoder if the full search (FS) is used. It is 
highly desired to speed up the process without introducing serious distortion.  



 Linear Algorithm and Hexagonal Search Based Two-Pass Algorithm 555 

In the last 20 years, many fast algorithms have been proposed to reduce the ex-
haustive checking of candidate motion vectors (MV). Fast block-matching algorithms 
(BMA) use different block-matching strategies and search patterns with various sizes 
and shapes. Such as Two Level Search (TS), Two Dimensional Logarithmic Search 
(DLS) and Subsample Search (SS) [1], the Three-Step search (TSS), Four-Step 
Search (4SS) [2], Block-Based Gradient Descent Search (BBGDS) [3], and Diamond 
Search (DS) [4], [5] algorithms. A very interesting method called HEXBS has been 
proposed by Ce Zhu, Xiao Lin, and Lap-Pui Chau [6]. There are some variant 
HEXBS methods, such as Enhanced Hexagonal method [7], Hexagonal method with 
Fast Inner Search [8] and Cross-Diamond-Hexagonal Search Algorithms [9]. The fast 
BMA increases the search speed by taking the nature of most real-world sequences 
into account while also maintain a prediction quality comparable to Full Search. Most 
algorithms suffer from being easily trapped in a non-optimum solution.  

Our LHMEA method attempts to predict the motion vectors using a linear algo-
rithm and Hashtable [10]. In this paper we propose the LHMEA and the TPA. In the 
first-pass coding, we employ LHMEA to search all Macroblocks (MB) in picture. 
Motion Vectors (MV) generated from first pass will be used as predictors for second-
pass HEXBS motion estimation, which only searches a small number of the MBs. 
Because LHMEA is based on a linear algorithm, which fully utilizes optimized com-
puter’s structure based on addition, its computation time is relatively small. Mean-
while HEXBS is one of best motion estimation methods to date. The new method 
proposed in this paper achieves the best results so far among all the algorithms inves-
tigated. 

Contributions from this paper are: 
(1) It achieves the best results among all investigated BMA algorithms. (2)First 

time, hashtable concept is used in the search for motion vectors in video compression. 
(3) Linear algorithm is used in video compression to improve speed and allow for 
future parallel coding. (4) The Two Pass Algorithm (TPA) is proposed. LHMEA is 
used for the first pass while HEXBS is used for a second pass. MVs produced by the 
first pass will be used as predictors for the second pass and this makes up for the 
drawback of the coarse search in the hexagonal search. This can also be used and 
leave space for research of nearly all kinds of similar fast algorithms for example 
Diamond Search etc. (5) Invariant moments are added into hashtable to check how 
many coefficients work best for hashtable. We also prove that the more information 
hashtable has the better result the table will have. (6) Spatially related MB informa-
tion is used not only in coarse search but also inner fine search.  

The rest of the paper is organized as follows. Section I continues with a brief intro-
duction to HEXBS and varieties. The proposed LHMEA and LAHSBTPA are dis-
cussed in Section II. Experiments conducted based on the proposed algorithm are 
presented in Section III. We conclude in Section IV with some remarks and discus-
sions about the proposed scheme. 

1.1   Hexagonal Search Algorithm 

The Hexagonal Search Method is an improved method based on the DS (Diamond 
Search). HEXBS has shown significant improvement over other fast algorithms such 
as DS. In contrast with the DS that uses a diamond search pattern, the HEXBS adopts 
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a hexagonal search pattern to achieve faster processing due to fewer search points 
being evaluated. The motion estimation process normally comprises of two steps. 
First is a low-resolution coarse search to identify a small area where the best motion 
vector is expected to lie, followed by fine-resolution inner search to select the best 
motion vector in the located small region. The large central 5x5 search pattern used in 
HEXBS, can provide fast searching speed. It gives consistently better motion esti-
mates and directions due to larger size. Another relief of reducing checking points is 
to have successive search patterns can be overlapped. HEXBS requires only three 
extra points to be evaluated in each step. Most fast algorithms focus on speeding up 
the coarse search by taking various smart ways to reduce the number of search points 
to identify a small area for inner search. There are two main directions to improve the 
coarse search: 

usage of predictors [8], [11]  
early termination [11] 

A new algorithm [11] was introduced on HEXBS, which is similar as Motion Vector 
Field Adaptive Search Technique (MVFAST) [12] based on DS. The algorithm has 
significantly improved the preexisting HEXBS both in image quality and speed up by 
initially considering a small set of predictors as possible motion vector predictor can-
didates. Then a modified Hexagonal pattern uses the best motion vector predictor 
candidate as the center of search. Another prediction set is proposed in the literature 
[13], [14]. In general, Search blocks correlated with the current one can be divided 
into three categories as in Figure.1.: 

 

Fig. 1. Blocks correlated with the current one 

(1) Spatially correlated blocks (A0, B0, C0, D0), 
(2) Neighboring blocks in the previous frame (A1, B1, C1, D1, E1, F1, G1, H1)  
(3) Co-located blocks in the previous two frames (X2 and X3), which provide 

the Acceleration motion vector (MV).  

Except for coarse search improvement, Inner search improvement includes: 
4 points [8]; 8 points [9]; Inner group search [9] 

2   Linear Algorithm and Hexagonal Search Based Two-Pass 
Algorithm ( LAHSBTPA) 

Most of the current Hexagonal search algorithms are predictive methods that focus on 
relations between current frame and previous frames. They approach the global 
minimum on assumption that local minimum is global minimum which may not al-
ways be the case. What we want to do is to find a fast method which discovers the 
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predictor from the current frame information by using spatially related MB or pixel 
information. The method can avoid trapping in local minimum, fast, accurate and 
independent on finding right predictors. So we have designed a vector hashtable 
lookup and block matching algorithm. It is more efficient method to perform an ex-
haustive search. It uses global information in the reference block. The block-matching 
algorithm calculates each block to set up a hashtable. By definition hashtable is a 
dictionary in which keys are mapped to array positions by a hash function. 

We try to find as few as possible variables to represent the whole macroblock. 
Through some preprocessing steps, “integral projections” are calculated for each 
macroblock. These projections are different according to each algorithm. The aim of 
these algorithms is to find the best projection function. The algorithms we present 
here have two projections, one of them is the massive projection, which is a scalar 
denoting the sum of all pixels in the macroblock. It is also DC coefficient of 
macroblock. Another is A of Y=Ax+B (y is luminance, x is the location.) Each of 
these projections is mathematically related to the error metric. Under certain 
conditions, the value of the projection indicates whether the candidate macroblock 
will do better than the best-so-far match.  The major algorithm we discuss here is 
linear algorithm. 

2.1   Linear Hashtable Motion Estimation Algorithm (LHMEA)  

In previous research methods, when people try to find a block that best matches a 
predefined block in the current frame, matching was performed by SAD (calculating 
difference between current block and reference block). In Linear Hashtable Motion 
Estimation Algorithm (LHMEA), we only need to compare two coefficients of two 
blocks. In the current existing methods, the MB moves inside a search window 
centered on the position of the current block in the current frame. In LHMEA, the 
coefficients move inside the hashtable to find the matched blocks. If coefficients are 
powerful enough to hold enough information of the MB, motion estimators should be 
accurate. So LHMEA increases accuracy, reduces computation time and may allow 
for a new era of video encoding. The Linear Algorithm is the easiest and fastest way 
to calculate on a computer because the constructions of computer arithmetic units are 
based on additions. So if most of calculations of video compression are done on linear 
algorithm, we can save lots of time on compression. It is also very easy to put on 
parallel machines in the future, which will benefit real time encoding. In the program, 
we try to use polynomial approximation to get such result y=mx+c; y is luminance 
value of all pixels, x is the location of pixel in macroblocks. The way of scan y is 
from left to right, from top to buttom. Coefficients m and c are what we are looking 
for to put into hashtable. 
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According to experience of our research in the encoder, we changed m to keep its 
value around 100-1000. This improves a lot on previous research result whose m is 
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always zero in hashtable, in which case there is only c in hashtable. In this way, we 
initially realized the way to calculate the hashtable. 

2.2   The Proposed Two-Pass Algorithm 

In order to take advantages of the two different schemes of LHMEA and HEXBS, 
meanwhile, in order to strike a compromise between efficiency of LHMEA and per-
formance of HEXBS in the estimation, we develop an efficient TPA [15], where 
HEXBS’s problem is solved by LHMEA. Within the TPA, first-pass, LHMEA will 
generate a set of MVs. The second-pass, which is the HEXBS, will use MVs from 
first-pass for coarsely search as predictors, thereby further improving the efficiency of 
HEXBS while these predictors are different from all previous predictors. They are 
based on full search and current frame only. Because LHMEA is linear algorithm, it is 
fast. Because the predictors generated are accurate, it improves HEXBS without too 
much delay. 

The original HEXBS is moved step by step, maximum two pixels per step, but in 
our proposed method, in second-pass, the LHMEA motion vectors are used to move 
hexagon pattern directly to the area close to the pixel whose MB distortion is smallest. 
This saved computation in the low-resolution coarse search and improved accuracy. 
 

 
            (a)                   (b) 

Fig. 2. Original HEXBS Coarse Search [6](a) and proposed HEXBS Coarse Search(b) 

3   Experimental Result 

In the Fig.4 we compare our method to other method. The method listed are Full 
Search (FS), Linear Hashtable Motion Estimation Algorithm (LHMEA), Subsample 
Search (SS), Two Level Search (TLS), Logarithmic Search (LS), Hexagonal Search 
(HEXBS) and Linear Algorithm and Hexagonal Search Based Two-Pass Algorithm 
(LAHSBTPA). LAHSBTPA used 6-side-based fast inner search [11] and early termi-
nation criteria [12] mentioned in this paper. The reason of choice of other algorithms 
is that they are most famous algorithms in the field. The video data are common video 
data, and the experimental results are average case. The LAHSBTPA was found to be 
the fastest of all the current algorithms tested when compression rate and PSNR re-
main a priority. In Fig.4, LAHSBTPA is fastest algorithm when compression rate is 
best and PSNR is high being 23% faster than the Logarithmic Search. In the tables of 
Football, LAHSBTPA is the fastest algorithm when compression  rate is near  same as 
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Fig. 3. Comparison of compression rate and time among FS, LS, SS, TLS, LHMEA, 
LAHSBTPA, HEXBS (based on 150 frames of Flower Garden)  

 

Fig. 4. Comparison of compression rate and time among FS, LS, SS, TLS, LHMEA, 
LAHSBTPA, HEXBS (based on 125 frames of Football)  

 (a) Flower Garden            (b) Football 

Fig. 5. Comparison of PSNR among FS, LS, SS, TLS, LHMEA, LAHSBTPA, HEXBS (based 
on 150 frames of Flower Garden and Football) 

 
             (a) Flower Garden          (b) Football        (c) Table tennis 

Fig. 6. MVs distribution of different video steams: Flower Garden (a), Football (b), Table 
tennis (c). (based on P frames) 
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Fig. 7. Motion vectors and MB analysis in frames from Table Tennis, Football and Flower 
Garden by LAHSBTPA 

the Full Search while the PSNR is same and is 27% faster than the Logarithmic 
Search. LAHSBTPA is better than HEXBS on compression rate, time and PSNR. If 
we can find better coefficients in the hashtable to represent MB, the hashtable may 
show great promise. 

The FS, HEXBS, LAHSBTPA are certain center biased algorithms. This is also 
basis of several other algorithms. It means that most of MVs are equal to each other as 
demonstrated in the figures below. As the center-biased global minimum motion 
vector distribution characteristics, more than 80% of the blocks can be regarded as 
stationary or quasi-stationary blocks and most of the motion vectors are enclosed in 
the central area (as depicted in Fig. 8). Based on the fact that for most sequences mo-
tion vectors were concentrated in a small area around the center of the search, it sug-
gests that, instead of initially examining the (0,0) position, we could achieve better 
results if the LHMEA predictor is examined first and given higher priority with the 
use of early termination threshold. It avoids to be trapped in local optimum around the 
central point of the search window which is also the problem of most fast algorithms 
as previously mentioned. It also avoids producing wrong motion vectors for the 
blocks undergoing large motion. 

In Fig. 8. we randomly picked frames from Flower Garden, Football and Table 
Tennis MPEG clips generated by LAHSBTPA. We analyzed MB types and displayed 
value of MVs in the pictures. These pictures show our method made excellent deci-
sion on MB types. 

3   Summary 

In the paper we proposed a new two-pass algorithm called Linear Algorithm and 
Hexagonal Search Based Two-Pass Algorithm (LAHSBTPA) in video compression. 
In our algorithm, a preprocessing pass uses linear algorithm to set up hashtable. The 
algorithm searches in hashtable to find motion estimator instead of by FS.  Then the 
motion estimator it generated will be sent to second-pass HEXBS, which is best mo-
tion estimation algorithm, as predictor. So TPA is obtained by applying motion esti-
mation twice, which we call two-pass algorithm. The result of LAHSBTPA is much 
better than LHMEA or HEXBS used alone in motion estimation and also best in all 
survey algorithms. No matter in coarse search or fine inner search, new method used 
lots of spatial related MB or pixels’ information.  In this way, it is improved both in 
quality and speed of motion estimation. The key point in the method is to find suitable 
coefficients to represent whole MB. The more information the coefficients in 
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hashtable hold about pictures, the better result LAHSBTPA will get. At the same 
time, this TVP will improve other similar fast motion estimations. This leaves space 
for future development. 
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Designing Mathematical Morphology Algorithms

on FPGAs: An Application to Image Processing

Damien Baumann and Jacques Tinembart

Ecole d’Ingénieurs de Genève, HES-SO, 1202 Geneva, Switzerland

Abstract. Mathematical morphology is a well-known image and signal
processing technique. However, most morphological tools such as Matlab
are not suited for strong real-time constraints. We address this problem
through hardware implementation on FPGAs. A library of VHDL basic
modules was built to allow the implementation of complex algorithms.
We also propose an environment for generating VHDL code from a high-
level description of a user-defined algorithm. We then integrate morpho-
logical algorithms in more complex applications: vision-based robots or
real-time processing and displaying of video flows. In order to facilitate
this integration, a development board as well as an interface between a
FPGA and Matlab were realized.

1 Introduction

Mathematical morphology (see [3]) is an image processing technique based on
shape criteria within the framework of set theory. Unlike traditional approaches
which consider an image as a set of pixels, mathematical morphology analyses
images in terms of objects. Applications of mathematical morphology are found
mostly in image/signal processing and analysis. Most morphological algorithms
can be solved on a PC, typically with Matlab. However, when including strong
real-time constraints, such an approach becomes ineffective.

In this paper, we aim at optimizing performances of morphological algorithms
with respect to high throughput real-time execution. We address this prob-
lem through hardware implementation on highly parallel reconfigurable chips,
namely FPGAs. To this end, we built a library of VHDL basic modules imple-
menting morphological operators and auxiliary modules for combining them. We
also propose an environment for developing morphological algorithms with this
library and thereon generating FPGA configuration files. We actually integrated
these algorithms in more complex systems. In order to facilitate this integration,
a development board as well as a FPGA / Matlab interface were realized.

This article is an extended version of [1]. In particular, the previous results
are improved using different techniques such as multiple pixel per clock cycle.

2 Designing Morphological Algorithms on a FPGA

Here the main idea for designing morphological algorithms consists in the selec-
tion, according to morphological theory, of some basic modules. These modules

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 562–569, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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can be combined into morphological operators. Complex algorithms are then
built using these operators. Two basic blocks were thus developed. Both can use
structuring elements of any size.

2.1 Type 1 Basic Block: Dilation

Basic Concept and Architecture. The type 1 basic block implements a
fundamental morphological operation, known as dilation, defined by

δ(F )(x) := [δ(F, SE)] (x) = max
b∈SE

F (x + b) ,

where F represents the processed image, x a pixel, and SE the structuring
element, i.e. the shape used for the analysis. Traditional processor approaches
successively centre SE on each pixel of the image and replace the pixel at the
centre with the maximum value of the image in the window defined by SE. To
compute a single pixel, processors must therefore read many nonadjacent pixels
from the memory. This method is not adapted to high throughput real-time
execution, because several clock cycles are needed. Conversely, FPGA approaches
move the processed image (not the structuring element) in such a way that SE
is centred on a new pixel at each clock cycle. This can be realized using shift
registers and a maximum detection unit. Figure 1(a) depicts the type 1 basic
block for a 3-pixel-wide cross-shaped structuring element. Three shift registers1

align the image on SE, while another one propagates a second image G required
for some morphological operators such as geodesic dilation:

[δG(F )] (x) = [δ(F ) ∧G] (x) = min {δ(F )(x), G(x)} .

Figure 1(b) shows the state of the shift registers at time t and t+ 1 for a 3 x 3

(a) (b)

Fig. 1. Type 1 basic block

image and the same structuring element as above. To ensure an identical treat-
ment of every pixel, we add an external zero-valued border to the original image.
The border values are designated by B. With this technique and considering a
one-pixel-per-clock cycle flow, the process has the following features:
1 This number depends on the SE height.
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– Pixel-by-pixel processing.
– The same incoming and outgoing rate. However, the first resulting pixel will

come after a short latency time2. It is thus possible to achieve a one-pixel-
per-clock cycle throughput no matter what the algorithmic complexity is, as
long as only type 1 basic blocks are used.

– High operating frequency, limited by the maximum detection unit.
– Ability to easily combine modules into more complex operators.
– No need to store the whole image.
– FPGA independent architecture.

Multiple Pixel per Clock Cycle. To reduce computing time, we subdivide
the original image into M regions, each subimage being processed in parallel, but
in a totally interdependent way. Thus, the type 1 basic block has been modified.
It is now able to compute M pixels per clock cycle. Let P1 to PN be the N
successive pixels of the source image. At time t, PtM+1 to P(t+1)M enters the
block in parallel. PtM+1 will be computed by the first processing unit, PtM+2

by the second and so on.

Estimation of the Computing Time. Let A be a morphological algorithm
composed of K successive type 1 basic blocks, named B1 to BK . Let Li be
the latency of block Bi when processed with one pixel per clock cycle, Ltot the
latency of A, Ti the computation time3 of Bi and Ttot the computation time
of A. For Ltot, Ti and Ttot, M pixels are processed at each clock cycle. The
following relations are satisfied:

Ltot =
1
M

K∑
j=1

Lj and Ttot
∼= Ltot +

1
νmax ·M

·Npix ,

where Npix represents the number of pixels in the processed image and νmax

the maximum frequency at which FPGA can operate. Since the computation is
pipelined, Ttot is much smaller than

∑K
j=1 Tj, because Bi (i = 2, ...,K) does not

have to wait until the completion of Bi−1. Therefore, the K successive blocks
form a huge pipeline.

2.2 Type 2 Basic Block: Reconstruction by Dilation

Basic Concept and Architecture. Some operators, often used in practice,
perform iterations until a stability criterion is reached. Reconstruction by dila-
tion is one of them:

RG(F ) = δ
(i)
G (F ) ,

2 Latency is the time difference between the moment the first pixel enters the block
and the moment where it leaves it.

3 Including first pixel latency.



Designing Mathematical Morphology Algorithms on FPGAs 565

where i, not known a priori, is such that δ
(i)
G (F ) = δ

(i+1)
G (F ) and δ

(0)
G (F ) =

δ(F ) ∧G. The image F (resp. G) is called the marker (resp. mask) image.
In order to implement this kind of operators, named operators with recon-

struction, a new basic block, more complex because it includes iteration mecha-
nisms, was developed. Figure 2 depicts this basic block for the same structuring
element as in Fig. 1. Two datapaths must be considered:

1. F image (black arrows): Image centring on SE, maximum computation,
minimum computation ([δ(F ) ∧G] (x)), idempotence detection (module ’=’
in Fig. 2), storage of the iteration being computed and resynchronisation of
the last iteration in order to use it in the current iteration computation.

2. G image (grey patterned arrows): propagation, minimum computation, sto-
rage and resynchronisation.

Fig. 2. Type 2 basic block

Different ν and M for the Source and the Processing Unit. The compu-
tation time of a reconstruction by dilation depends on the number of iterations.
Let Tmax be the theoretical maximum computation time:

Tmax
∼=

1
M · νmax

· S ·Nit
∼=

1
2 ·M · νmax

· S2 ,

where M represents the number of pixels processed per clock cycle, S the image
size, Nit the maximum number of iterations and νmax as above. Assuming M = 1
and a reasonable νmax of 50MHz, Tmax is therefore equal to 3.68 s for a 160 x
120 image: this is clearly unacceptable. Beware that Nit has been replaced by S

2
which corresponds to the theoretical worst case. In practice, the average number
of iterations is much smaller.

In order to improve the throughput of our type 2 basic block, we will assume
that νmax and M are different for the source and the processing unit (i.e. the
basic block). Let νS and MS characterize the source, νT and MT the processing
unit. The following relations are, most of the time, satisfied: MS = 1, MT > 1
and νT > νS . Therefore, considering a 160 x 120 image with MT = 40 and
νT = 100MHz, Tmax is equal to 46ms which is 80 times faster than before. In
order to implement this concept in VHDL, we have to bufferize data from the
source in order to change ν and M .
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2.3 Morphological Compiler and Development Environment

The combination of both basic blocks together with auxiliary modules leads
to the realization of most morphological operators defined in [3], e.g. gradients,
opening, top-hats, hit-or-miss transformations, thinning, top-hats by reconstruc-
tion, regional extrema, extended extrema and double threshold.

So as to design morphological algorithms by combining operators, we built a
compiler. It generates FPGA-independent optimized VHDL code from a script
language providing more than 40 morphological operators. This compiler is in-
cluded in a specific Win32-like development environment, named BTMorph,
within which it is possible to develop morphological algorithms and thereon
generate FPGA configuration files by calling a VHDL simulator as well as syn-
thesis and place-and-route (PAR) tools. A program consists of an incoming flow,
expressions and an outgoing flow. An expression corresponds to either a struc-
turing element or a morphological operator. In its current version, the compiler
syntax does not include any control statements such as if, for or while.

3 Results

The test environment, unless otherwise specified, was the following:

• PC Pentium IV 1.4GHz with 768MB RDRAM (400MHz) run-
ning Windows 2000 with Matlab Release 13.

• Matlab SDC morphology toolbox compiled for x86.
• FPGA tools Synplify Pro 7.7.1 and Xilinx ISE 6.3.03i.
• FPGA Xilinx Virtex II XC2V2000-BG575-6.
• Image 160× 120 with 8 bits per pixel.
• SE 3-pixel-wide cross-shaped structuring element.
• M One-pixel-per-clock cycle.

Basic Blocks. Both basic blocks (with M = 1, 10) were synthesized, then
placed and routed. The results are shown in Table 1. The maximum frequency
decreases as M grows because of design complexity and maximum combinatorial
path.

Table 1. Results for the PAR of the two basic blocks (M = 1 and M = 10)

Type 1 Type 2
M = 1 M = 10 M = 1 M = 10

fmax 283 MHz 220 MHz 216 MHz 210 MHz

LUTs 344 (1.6%) 1289 (6%) 643 (3%) 1903 (9%)

Flip Flops 133 (0.6%) 981 (4.5%) 256 (1.2%) 1495 (7%)

RAM blocks 0 0 20 (35%) 24 (43%)
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Algorithms without Reconstruction. In order to illustrate results obtained
with algorithms using only type 1 basic blocks, we implemented a multi-scale
gradient operator (see [3] p. 127). After PAR, it occupies 2740 LUTs (12.7%) and
1144 (5.3%) flip-flops when N = 2, where the parameter N is related to the size
of the structuring element used. For example, considering a basic 3-pixel-wide
cross-shaped structuring element, the structuring element used for multi-scale
gradient will be a cross-shaped structuring element of width 2N + 1.

A multi-scale gradient combines 2N dilations, 3N−1 erosions4, 2 subtractions
and 1 threshold. Figure 3 gives an example of a multi-scale gradient application.

Fig. 3. Example of a multi-scale gradient application

We will now compare our results with Matlab. First of all, we assume νmax

is constant no matter what the parameter values are. However, beware that this
is not true. In fact, a larger design will normally run with a lower frequency. Let
THMatlab and THFPGA be the throughputs of a multi-scale gradient execution
respectively with Matlab and the FPGA. In Fig. 4(a-b), we plot the throughputs
as a function of N . As mentioned in section 2.1, the throughput of an algorithm
without reconstruction is constant independently of its complexity and is equal to
νmax. A 160 x 120 image will be therefore processed at 14’000 frames per second.
Conversely, Matlab is not able to process images in parallel. It has to compute
them one after the other. Thus, Fig. 4(a) shows the throughput decreasing with
algorithmic complexity. Figure 4(c-d) shows the same throughputs for different
image sizes. Images are in 4/3 format and N = 2. FPGA throughput is linear
relative to image size and therefore quadratic relative to image line length as for
Matlab. Figure 4(e-f) shows ratio between FPGA and Matlab throughputs first
as a function of N and then as a function of the image size. The ratio grows
with N and reaches 400 for N = 20. When increasing the image size, the ratio
remains constant near 125 except for small images where it is bigger.

All these results assume that only one pixel is processed per clock cycle. With
M pixels per clock cycle, assuming νmax is constant, FPGA throughput has to
be multiplied by M .

Algorithms with Reconstruction. It would also be interesting to compare
our results with Matlab as we did for algorithms without reconstruction. How-
ever, up to now, no comparison was performed for the following reasons:

– Algorithms used by Matlab [5] are totally different from our FPGA approach
and no information was found about morphological algorithm complexity in
Matlab.

4 Defined as [ε(F, SE)](x) = minb∈SE F (x + b).
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Throughput of a multi-scale gradient

– Finding average iterations number is really hard for FPGA algorithms.
– Worst case, average case and best case are totally different for Matlab and

our FPGA approach.

4 Validation

A development board, named ezPC104, was designed to implement morphologi-
cal algorithms. PC104-Plus5 compliant, it includes a Xilinx Virtex II XC2V2000-
BG575 FPGA, static, dynamic and flash memories, as well as many interfaces:
ethernet, USB, serial, camera, JTAG and LCD. Moreover, in order to validate
the results obtained with the FPGA, a communication interface between Matlab
and the ezPC104 board, which uses JTAG Boundary-Scan, was developed. Mat-
lab emulates this protocol by calling C functions. These routines communicate
with the JTAG port on the ezPC104 through the parallel port of the PC. Via
this interface, Matlab is then able to load algorithms into the FPGA as well as
provide test images, read the results and verify them.

5 Integration in Complex Systems

Our mathematical morphology implementations in VHDL can easily be inte-
grated in more complex systems, such as video preprocessing. After preprocess-
ing, data should often be transmitted to the PC. We therefore developed a VHDL
USB 2.0 core which can be combined in the FPGA with the morphological al-
gorithm in order to transmit data via the USB bus.
5 PCI standard for embedded systems.
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Some morphological algorithms were implemented on the ezPC104 board
in order to illustrate integration capabilities. A demonstration application was
also realized. A 160 x 120 camera provides monochrome images with 8 bits per
pixel. This flow is processed by an FPGA. The resulting flow is stored in a
framebuffer which is then continuously read by the FPGA and displayed on a
LCD. The camera has to be configured using the I2C protocol. This is achieved
using an embedded Leon2 processor. Mathematical morphology algorithms were
also integrated on a FPGA-based robot in our research lab.

6 Conclusion

In this work, we built a VHDL morphological library and an environment named
BTMorph. In combination with Matlab, these tools allow us to implement mor-
phological algorithms without writing a single line of VHDL. More precisely,
BTMorph is able to generate VHDL code from a morphological script and to
create a configuration file which can be loaded using Matlab into a FPGA. In
addition, we developed a FPGA-based board as well as an interface with Mat-
lab in order to validate our methodology. A demonstration application using a
camera and a LCD was also realized.

Mathematical morphology finds many applications to image analysis and
pattern recognition. Nowadays, much attention is given to real-time image and
video processing. This raises the problem of performance in terms of through-
put to which the intrinsic parallelism of FPGAs can offer a solution. However,
programming morphological or signal processing algorithms on a FPGA still
remains a tedious task. Hence, we plan to further develop our framework and
methodology by using the synchronous programming language Esterel.

Finally, the authors would like to thank Paul Albuquerque for his help.
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à architecture programmable, PhD Thesis, Ecole des Mines de Paris, France, 1992.

3. P. Soille. Morphological Image Analysis, 2nd ed. Springer, Berlin, 2003.
4. M. Van Droogenbroeck, H. Talbot. Fast Computation of Morphological Operations

with Arbitrary Structuring Elements. Patt. Recogn. Lett., 17(14):1451-1460, 1996.
5. L. Vincent. Morphological Grayscale Reconstruction in Image Analysis: Applications

and Efficient Algorithms, IEEE Trans. on Image Processing, 2:176-201, 1993.



 

A. Gagalowicz and W. Philips  (Eds.): CAIP 2005, LNCS 3691, pp. 570 – 578, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Object Detection in Multi-channel and Multi-scale 
Images Based on the Structural Tensor 

Bogusław Cyganek 

AGH – University of Science and Technology, 
Al. Mickiewicza 30, 30-059 Kraków, Poland 

cyganek@uci.agh.edu.pl 

Abstract. The paper presents theory and practical aspects of the detectors of 
characteristic objects in multi-channel images. It is based on the scale-space 
version of the structural tensor, adapted to operate on multi-channel signals. 
The method allows for object detection in N×2D signal space with additional 
respect to the scale-space. Responses of the structural tensor are composed in a 
linear weighted sum that allows for better signal discrimination. In such a 
unified tensor framework different feature detectors were defined for detection 
of lines, corners, lines in the Hough space, structural places, etc. Although the 
presented method was developed for road sing recognition is can be also used 
for detection of other regular shapes. The sought objects are defined by a 
syntactical description of building line segments and their connection type. The 
paper presents also experimental results and implementation details. 

1   Introduction 

Detection of objects in images is one of the fundamental tasks of image processing. 
However, the variety of objects and image acquisition parameters makes this process 
not trivial. There are many types of filter based feature detectors for lines and corners 
[14] model based, such as the Hough transform [12], or statistical [1][16], just to 
name a few. The task gets even more troublesome in a case of noise, distortion, and 
multi channel signals. There are many attempts to overcome these problems and 
define a general framework for multi channel and scale processing. An original idea 
of such a framework comes from Sochen et al. [15]. They propose to treat multi 
channel and scale images as surfaces in a coordinate-value space. The derived metric 
of such a space has very similar properties (i.e. the same eigenvalues) to the structural 
tensor which modifications and applications are presented in this paper.  

The paper begins with a short description of the multi channel and scale space 
structural tensor with some further propositions of its modifications, as well as 
discrete realizations. Then we present an overview of a class of feature detectors that 
all operate in the multi tensor domain. These are: line, corner, and Hough detectors, as 
well as image structural segmentation. The detectors can be further joined to work 
together for detection of more complex objects. In our case we were interested in 
detection of road signs. The presented grammar rules allow for syntactical description 
of such compounds. The paper ends with experimental results and conclusions. 
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2   The Multi-channel Scale Space Structural Tensor 

The concept of the structural tensor was proposed by Bigün et al. [3], then 
investigated by many authors [2][13][14]. It allows for analysis of local structures, as 
well as their strength and orientations in local neighborhoods of pixels. In such a 
neighborhood U(x0) centered at a point x0, a dominant directional vector w is sought 
that would represent all other directional vectors qi in this neighborhood. The vectors 
qi usually are local intensity gradients. Vectors are compared by computation of their 
inner product. Thus, the vector w at a point x0 is an estimator of an average orientation 
in a neighborhood U(x0) that maximizes a certain functional Ω, given as follows: 
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where the structural tensor T is defined by the following formula:   
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The square of the inner product in (1) fulfils the invariant assumption on rotation of π 
radians. Otherwise parallel and anti-parallel configurations of vectors would cancel 
out. In turn, the outer product q(x)qT(x) in (2) determines dimension of the tensor T. 

In a case of multi-channel images, such as color images, the question arises on 
definition of the gradient vector q(x). In this paper we follow an approach proposed 
by Di Zenzo [10][8], used also in a work by Sochen et al. [15]. It assumes summation 
of the partial gradient components throughout image channels. To find the structural 
tensor for images with M channels we employ this idea to (2), as follows: 
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Thus the summation in (3) spans all gradient fields, each computed independently for 
every intensity channel of a given image. This important extension allows for 
computation of local structures in multi dimensional images such as multi-spectral 
(e.g. color) images. It is also possible to employ (1) and (3) to analyze structures in 
other physical data than images. 

In this paper we propose a further extension of the multi channel structural tensor 
(3) and form a linear combination of the component tensors Tk, as follows: 

=

=
M

k
kk xcx

1
00 )()( TT , (4) 

where ck are multiplicative constants. This way we can control an influence of each 
channel separately. We can go even further and propose a general function as follows: 

( ))()( 00 xx kTT =  , (5) 

where Γ is a function operating in a space of component tensors Tk. 
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There are also at least two different space dimensions involved in (1) and (3)-(5). 
The first dimension is connected with a dimension of T which comes directly from 
dimension of the gradient vector: It is 2D for single images (T is 2×2) or 3D for video 
sequences (3×3). The second dimension follows the number of image channels; given 
by M in (3) and (4). There are also two scale-spaces involved in (3)-(5): 

1. The scale associated with the input images (computation of tensors qi). 
2. The scale imposed by the averaging (computation of components Tij). 

Discrete realization of (3) was presented in [13]. In this paper we extend this 
concept to comprise the aforementioned scale-space parameters as follows: 

)(),(ˆ )()( ξξ
ρξρ jiij RRFT = , (6) 

where
)(ξ

iR is a ξ-tap discrete directional operator (i.e. an order the corresponding filter 

is ξ-1), Fρ is a smoothing kernel of scale ρ (this is a second discussed type of a scale). 

3   Multi Structural Tensor for Object Detection 

There are many ways to employ the structural tensor for feature detection. For 
example it can be used for detection of corners and oriented structures [8], image 
partitioning into structural regions, feature and area stereo matching [7][9], motion 
analysis [13], optical flow [3][4], or direct computation of the Hough transform [14]. 
In this paper we propose to apply the extended multi channel and scale structural 
tensor, given by (4) and(5), to the aforementioned and many other object detectors. 

To find a local phase ϕ of features in local neighborhoods of an image we need to 
find a phase of the vector w in (1), which corresponds to an eigenvector of the greatest 
eigenvalue of T. In 2D case w can be found analytically [13]: 

[ ] [ ]Txyyyxx
T TTTww 221 −==w . (7) 

For corner detection the eigenvalues of T can be analyzed [2][8]. They are as follows: 

( ) ( ) +−±+= 22
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It was shown [2][8] that the structure analysis can be based solely on the analysis of 
the local eigenvalues (8). However, the two eigenvalues can be joined together in a 
form of the coherence component c=(λ1-λ2)

2/(λ1+λ2)
2 [3]. Coefficient c takes on 0 for 

ideal isotropic areas or structures with constant intensity value, and up to 1 for ideally 
directional structure. An analysis of the coefficient c and magnitude of w by non-
linear operators can be used for image partitioning into structural and quasi-constant 
intensity places [7]. Similarly, the local phase ϕ of w (7) can be used for more 
efficient than classical computation of the Hough transform, as follows [14]: 

p=nx  pxx =+ ϕϕ coscos 21  , (9) 

where x=(x1,x2), n is a normal vector to the line, ϕ is an angle of this line to the x axis 
(a slope of w), p is a (scalar) distance from the center of the image coordinate system. 
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For detection of more complex objects the simple feature detectors can be joined 
and their binary output can serve as a space for fast template matching [12]. Formal 
specification of such a compound detector that describes a sought object can be done 
e.g. with trees or simple LR-grammars [5]. In our implementation of the road sign 
detection the latter approach was used. The productions describe expected local 
structure configurations that can form a sign. For example the SA and SD,E,F,T 
productions define silhouettes of the “A” and “D”, “E”, “F”, or “T” groups of road 
signs, respectively: They are made of concatenations of line segment Li, as follows: 

  321 LLLS A →  ,    43,,, LLS TFED →  . (10) 

The line segments Li are defined by the following productions: 

  ( )iiii pLL κπη ,,→ ,  HS LLL |→  ,  (11) 

where Li defines a local structure segment with a slope π/ηi±pi which is returned by 
the detector L controlled by a set of specific parameters κi. The segment detector L, 
described by the second production in (11), can be either an oriented structure (7) or a 
Hough detector (9) build upon (4). The parameters ηi are as follows: η1=1/3, η2=2/3,  
η3=0, and η4=1/2; Parameter pi describing slope variation was set to pi=5%. 

4   Experimental Results 

The discrete realization of the multi channel and scale structural tensor requires 
computation of its components from (6) which are then composed according to (4) or 
(5). Choice of gradient and smoothing filters in (6) influences precision of feature 
detection. Many filters were tested [7] and the best results were obtained with the 
Simoncelli directional filters with ξ=5 taps [11], followed by the Gaussian smoothing 
filter of size determined by scale ρ. Moreover, the both filters have separable masks. 
The directional filter is composed of the smoothing prefilter p5 and differentiating d5: 

 [ ]
[ ]107663.0282671.00282671.0107663.0

035697.0248874.0430855.0248874.0035697.0

5

5

−−=
=

d

p   (12) 

The computational platform was composed from the IBM PC with Pentium 4, 3.4 
GHz, 2GB RAM, implementation was done in C++ Microsoft Visual 6.0. The 
implementation directly follows (4), (6), and (12). 

The experiments were performed on color images with six channels available 
(RGB and HSI). However, the presented technique allows for many other signal 
channels to be used in computation of the structural tensor (e.g. infrared, etc.). 
Influence of each channel is controlled by a pertinent parameter ck in (4). Different 
scales of the structural tensor, as described by (6), were also applied and tested. 
Simultaneously, with each of the presented detectors, the segmentation detector was 
used as well. This allowed for feature detection only in areas with rich texture (not 
addressed in this paper, see [7][9] and Fig. 5b). Presented experimental results show 
variety of detection techniques in the multi tensor domain which are harnessed to the 
road signs detection. 
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a b c d 

Fig. 1. Discriminating properties of the multi channel structural tensor: original RGB color 
lines (a), detected lines with ci={1,1,1} (b), detected lines for ci={1,0,0} (c), detection in larger 
scale ρ in (6) 

The discriminating search of regular structures (lines) was tested in a three-channel 
colour image in Fig. 1a (i.e. 3×300×300). The RGB coordinates of the lines are: 
{5,62,165}, {252,66,228}, {248,121,104}. Detection of structural places [7][9] was 
performed with the tensor (4) with 3-tap directional filters [11] and Gaussian 
smoothing in (6). Fig. 1b presents results of detection with all channels equivalent, i.e. 
ci={1,1,1} in (4), whereas Fig. 1c for ci={1,0,0}, i.e. only the R channel. This way we 
can amplify detection in selected channels, what will be also presented for more 
complex detections. Execution time was 0.3s (bc) and for larger scale 0.6s (Fig. 1d). 

Fig. 2 depicts a 640×480 color image of a road intersection and its color channels 
(RGB and HSI). Fig. 2b-e contain binary masks outputted by the directional detectors 
L1-L4, respectively, as defined in (10)-(11). The combined output presents Fig. 2f 
where two silhouettes of road signs were detected. The three RGB+SI channels were 
employed, i.e. ci={1,1,1,0,1,1} in this case. It shows that we have to examine a priori 
which channels are best for detection. In this case the H channel was not appropriate 
for the detection task. Execution takes 5.6 s (detectors L1-L4 worked in a series). 

The detections for the “A9” road sign presents Fig. 3; Parameters ci={1,1,1,0,0,0}, 
the 5-tap directional filter (12) and the binomial smoothing were chosen. The latter 
filter is easier in implementation (especially for hardware) and results are comparable 
to the detection of the “A7” sign. Execution time was 5.1 s (serial detection). 

 

     
a b c d e f 

     
R G B H S I 

Fig. 2. The road sign “A7”: original (a), binary masks after L1-L4 detectors (b-e), combined 
masks, RGB channels, HSI channels (second row) 
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R G B H S I 

Fig. 3. The road sign “A9”: original color image (a), binary masks after L1-L4 detectors (b-e), 
combined masks, RGB channels, HSI channels (second row) 

  
a b c d 

Fig. 4. The Hough space (vertical axis – angle 0-π, 512 discrete levels, horizontal – distance 
from origin, 512 discrete levels): for the “A7” sign (a, b-filtered), the “A9” sign (c, d-filtered) 
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Fig. 5. Detection of the “B20” (STOP) sign: color image (a), structural places (b), HSI 
representation of components Tij (c), detected silhouettes for different sets of ci (d-i) 
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Fig. 4 presents results of the Hough detector, operating in a tensor field, in 
accordance with (9), for detection of the signs “A7” (Fig. 2a) and “A9” (Fig. 3a). The 
Hough accumulators are shown with vertical axis containing angle ϕ  (0-π, divided 
into 512 levels), horizontal – distance p from origin (also 512 discrete levels). The 
sought lines were correctly detected, although some inaccuracies are visible in non 
filtered spaces (Fig. 4a,c). However, this is caused by discrete values of the x and y 
coordinates in (9), rather than precision of detection with tensor. Execution time is 1.2 
s, what is very attractive when compared to the classical algorithms of Hough 
computations. 

For detection of other objects we need to define a proper detector. For example to 
detect the “B20” sign (Fig. 5a) we used the following grammar rule: SB20→ L3L4L5L6, 
where parameters ηi (11) are: η5=1/4, η6=3/4. Detection results are visible in Fig. 5. 

Fig. 5b depicts binary output of the segmentation detector that partitions an image 
into structural places (see [7][9] for details) – all further detections are restricted only 
to places with sufficient texture (depicted in white in Fig. 5b). Fig. 5c visualizes the 
three tensor components Txx, Tyy, and Txy from (2)-(6) as HSI channels. Detection 
results present Fig. 5d-i, for each channel RGB-HSI separately. The other parameters 
and execution time are similar to those already presented in Fig. 2 and Fig. 3. 
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Fig. 6. Detection of the silhouette of the “D6b” road sign for different image scales and tensor 
scales. Six input channels: RGB and HSI. Parameters ci={1,1,1,0,0,0}. 
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Fig. 6 presents detection of the silhouette of the “D6b” sign for different image 
scales (from octave pyramid 1:1, 1:2, and 1:4) and tensor scales controlled by the 
parameter ρ from (6), which corresponds to the Gaussian smoothing with σ=0.5 and 
σ=2, respectively. The 6×640×480 (RGBHIS) channels constitute the input space. 
The detection rule is: SD6b→ L3L4 (10). It is interesting to observe that application of 
the coarsest scale (smaller) images with coarser tensor scale allows for much faster 
image detection. This way of guided hierarchical detection in the finer scales can be 
used for precise detection of an already spotted object. However, since the time 
complexity of computation is proportional to the square of pixels in an image, then 
image reduction by factor of four allows for about order of magnitude speed 
improvement. This was verified in our realisation where execution times were: 5.58 s 
(coarsest scale), 0.77 s, and 0.21 s (finest scale). For the directional detectors in (6) 
the ξ=5 tap filters (12) were employed. 

5   Conclusions 

This paper presents the unified framework for computation of the scale space 
structural tensor operating in a domain of multi-dimensional signals. It was shown 
that such representation allows for simultaneous and very efficient detection of local 
features such as lines, corners, structural places, etc. The presented method can be 
applied at different stages of feature detection in images – e.g. the tensor can be used 
for direct line detection or it can return supporting points for subsequent line search 
by the Hough method. Detection of more complex objects involves combination of 
many basic detectors, operating however on only once pre-computed tensor field what 
greatly shortens detection time. It was also presented that such a compound detector 
can be formally described by simple grammar productions. The presented techniques 
were applied to the task of road signs detection. The input came from color images 
and the sign silhouettes were described as syntactical productions operating on simple 
structure detectors. The experimental results show that this is a very versatile 
technique which can be quite fast and does not require cumbersome thresholds. Using 
only simple filters it can be implemented in hardware, as well. 

This paper was supported by the grant no. 3T11C 045 26 of the Polish Committee 
of Scientific Research (KBN). 

References 

1. Amit, Y.: 2D Object Detection and Recognition, MIT Press (2002) 
2. Aubert, G., Kornprobst, P., Mathematical Problems in Image Processing. Springer (2002) 
3. Bigün, J., Granlund, G.H., Wiklund, J., Multidimensional Orientation Estimation with 

Applications to Texture Analysis and Optical Flow. IEEE PAMI 13(8), (1991) 775-790 
4. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised Segmentation 

Incorporating Colour, Texture, and Motion. INRIA Technical Report No 4760 (2003) 
5. Bunke, H.: Structural and Syntactic Pattern Recognition. Handbook of Pattern Recognition 

& Computer Vision, Chen C.H., et al., World Scientific (1993) 163-209 



578 B. Cyganek 

 

6. Carson, C., Belonge, S., Greenspan, H., Malik, J.: Blobworld: Image Segmentation Using 
Expectation-Maximization. IEEE PAMI 24(8), (2002) 1026-1038 

7. Cyganek, B.: Novel Stereo Matching Method That Employs Tensor Representation of 
Local Neighborhood In Binary Images, Machine Graphics & Vision, (2001) 289-316 

8. Cyganek, B.: Combined Detector of Locally-Oriented Structures and Corners in Images 
Based, in Springer LNCS 2658 (2003) 721-730  

9. Cyganek, B.: Depth Recovery with an Area Based Version of the Stereo Matching Method 
with Scale-Space Tensor Representation, in LNCS 3037 (2004) 548-551 

10. Di Zenzo S.: A note on the gradient of a multi-image. Computer Vision, Graphics and 
Image Processing, 33: (1986) 116-125 

11. Farid, H., Simoncelli, E.P.: Differentiation of discrete multidimensional signals. IEEE 
Trans. Image Proc. 13(4) (2004) 496-508 

12. Forsyth, D.A., Ponce, J.: Computer Vision. A Modern Approach, Prentice-Hall (2003) 
13. Hauβecker, H., Jähne, B.: A Tensor Approach for Local Structure Analysis in Multi-

Dimensional Images. Technical Report, University of Heidelberg (1998) 
14. Jähne, B.: Digital Image Processing, Springer-Verlag (1997) 
15. Sochen, N., Kimmel, R., Malladi, R.: A General Framework for Low Level Vision. IEEE 

Transactions on Image Processing, 7(3) (1998) 310-318 



Evaluating Minimum Spanning Tree Based

Segmentation Algorithms�

Yll Haxhimusa, Adrian Ion, Walter G. Kropatsch, and Thomas Illetschko

Pattern Recognition and Image Processing Group 183/2,
Institute for Computer Aided Automation, Vienna University of Technology, Austria

{yll, ion, krw, illetsch}@prip.tuwien.ac.at

Abstract. Two segmentation methods based on the minimum spanning
tree principle are evaluated with respect to each other. The hierarchical
minimum spanning tree method is also evaluated with respect to human
segmentations. Discrepancy measure is used as best suited to compute
the segmentation error between the methods. The evaluation is done
using gray value images. It is shown that the segmentation results of
these methods have a considerable difference.

1 Introduction

In [8] it is suggested to bridge and not to eliminate the representational gap, and
to focus efforts on region segmentation, perceptual grouping, and image abstrac-
tion. The segmentation process results in “homogeneous” regions with respect to
the low-level cues using some similarity measures. Problems emerge because i)
homogeneity of low-level cues will not map to the semantics [8] and ii) the degree
of homogeneity of a region is in general quantified by threshold(s) for a given
measure [2]. The union of regions forming the group is again a region with both
internal and external properties and relations. The low-level coherence of bright-
ness, color, texture or motion attributes should be used to come up sequentially
with hierarchical partitions [12]. It is important that a grouping method has the
following properties [1]: i) capture perceptually important groupings or regions,
which reflect global aspects of the image, ii) be highly efficient, running in time
linear in the number of pixels, and iii) creates hierarchical partitions [12].

Low-level cue image segmentation cannot produce a complete final “good”
segmentation [11]. This lead researchers to look at the segmentation only in the
context of a task, as well as the evaluation of the segmentation methods. However
in [9] the segmentation is evaluated purely as segmentation by comparing the seg-
mentation done by humans with those done by the normalized cuts method [12].
As can be seen in Fig. 1, there is a high degree of consistency of segmentation
done by humans (already demonstrated empirically in [9]), even thought humans
segment images at different granularity (refinement or coarsening). This refine-
ment or coarsening could be thought of as a hierarchical structure on the image,
i.e. the pyramid. Therefore in [9] a segmentation consistency measure that does
� Supported by the Austrian Science Fund under grant FSP-S9103-N04.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 579–586, 2005.
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#35 #17 #2 #12 #18

Fig. 1. Images from the Berkley image database with human segmentation [9]

not penalize this granularity difference is defined (see Sec. 4). Note that the seg-
mented image #35 in row 2 can be coarsened to obtain the image in row 4 (and
vice versa), this is called simple refinement; whereas to obtain image in row 3
from row 2 (or vice versa) we must coarsen in one part of the image and refine in
the other (notice the chin of the man in row 3), this is called mutual refinement.

In this paper, we evaluate two segmentation methods based on the minimum
spanning tree (MST ) principle. The segmentation method based on Kruskal’s
algorithm [1](KrusSeg) and a parallel, hierarchical one, based on Bor̊uvka’s al-
gorithm [6](Bor̊uSeg) (Sec. 2). We compare these two methods following the
framework of [9] i.e. comparing the segmentation results of these methods with
each other. The Bor̊uSeg is also evaluated with respect to the human segmenta-
tions. The results of the evaluation are reported in Sec. 4.

2 Segmentation Methods

A graph-theoretical clustering algorithm consists in searching for a certain com-
binatorial structure in the edge weighted graph, such as an MST [1,4], a mini-
mum cut [14,12] and a search for a complete subgraph i.e. the maximal clique [10].
Early graph-based methods [15] use fixed thresholds and local measures in find-
ing a segmentation, i.e MST is computed. The segmentation criterion is to break
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#35 #17 #2 #12 #18

Fig. 2. Segmentation produces by Bor̊uSeg(k = 300) in row 1-3 (from coarser to
finer segmentation), in row 4 KrusSeg(k = 300, σ = 1.5) and in row 5 KrusSeg(k =
30000, σ = 1.5)

the MST edges with the largest weight, which reflect the low-cost connection be-
tween two elements. To overcome the problem of a fixed threshold, Urquhart [13]
normalizes the weight of an edge using the smallest weight incident on the ver-
tices touching that edge. The methods in [1,4,6] use an adaptive criterion that
depends on local properties rather than global ones.

We evaluate segmentations of the well known method [1] based on Kruskal’s
algorithm, with the one [6] based on Bor̊uvka’s algorithm. Since, for both meth-
ods there is a threshold dependent on the size of the connected component used
(k/|CC|1 see [1,6] for more details.) in the merging criteria, the segmentation
inclusion trees are different, because of the way the data is processed, the first
one does it in serial and the other one in parallel. Setting this threshold to zero

1 |CC| cardinality of the connected component.
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both of the methods would produce the MST of the image, independent of the
way the data is processed.

Some samples of the segmentation results, obtained by applying these meth-
ods to gray value images are shown in Fig. 2. The Bor̊uSeg method is capable of
producing a hierarchy of images, the pyramid (see the images in Fig. 2, where
row 1 represent lower levels of the pyramid, row 2 the middle levels, and row
3 the higher levels). The methods use only local contrast based on pixel inten-
sity values. We smoothed the images before segmenting them with the KrusSeg2

method (Gaussian with parameter σ = 1.5), whereas Bor̊uSeg worked with non
smoothed images. As expected, and seen from Fig. 2, segmentation methods
which are based only on low-level local cues can not create results as good as
humans. The overall number of regions in rows 1 and 4 in each column of Fig. 2,
are almost the same, and this condition is required in [9] to perform the evalua-
tion in Sec. 4. Both of the methods are capable of segmenting the face of a man
satisfactory (image #35). The Bor̊uSeg method did not merge the statue on the
top of the mountain with the sky (image #17), compared to humans which do
segment this statue as a single region (see Fig. 1). Both methods have problems
segmenting the sea creatures (image #12). Note that the segmentation done by
humans on the image of rocks (image #18), contains the axis of symmetry, even
thought there is no “big” local contrast, therefore both of the methods fail in
this respect.

3 Evaluating Segmentations

There are two general methods used to evaluate segmentations: (i) qualitative
and (ii) quantitative methods. Qualitative methods involve humans, meaning
that different observers would give different evaluations about the segmenta-
tions (e.g. [7]). Quantitative methods are classified into analytic methods and
empirical methods [16]. Analytical methods study the principles and properties
of the algorithm, like processing complexity, efficiency and so on. For references
on the analytic studies of methods based on minimum spanning tree see Sec. 2.
The empirical methods study properties of the segmentations by measuring how
“good” a segmentation is close to an “ideal” one, by determining this “good-
ness” with some function of parameters. Both of the approaches depend on the
subjects, the first one, in coming up with the reference (perfect) segmentation3

and the second one, in defining the “goodness” function. The difference between
the segmented image and the (ideal) reference can be used to asses the perfor-
mance of the algorithm [16]. The reference image could be a synthetic image
or be manually segmented by humans. Higher value of the discrepancy means
bigger error, signaling poor performance of the segmentation method. In [16],
it is concluded that evaluation methods based on “mis-segmented pixels should
be more powerful than other methods using other measures”. In [9] the error
measures used for evaluating segmentation counts the mis-segmented pixels.
2 The method is very sensitive to noise [1].
3 Also called a gold standard [3].
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In this paper we use the framework given in [9] to evaluate qualitatively the
result of the KrusSeg [1] with Bor̊uSeg [6] and of the Bor̊uSeg with respect to
humans using the discrepancy measures defined in the next section.

4 Benchmarking Segmentations

In [9] segmentations made by humans are used as a reference and basis for bench-
marking segmentations produced by different methods. The concept behind this
is the observation that even though different people produce different segmenta-
tions for the same image, the obtained segmentations differ, mostly, only in the
local refinement of certain regions. This concept has been studied in [9] on a hu-
man segmentation database (see Fig. 1) and used as a basis for defining two error
measures, which do not penalize a segmentation if it is coarser or more refined
than the other. In this sense, in an image P a pixel error measure E(S1, S2, p),
between two segmentations S1 and S2 containing pixel p ∈ P , called the local
refinement error, is defined as:

E(S1, S2, p) =
|R(S1, p)\R(S2, p)|

|R(S1, p)|
(1)

where \ denotes set difference, |x| the cardinality of a set x, and R(S, p) is the
set of pixels corresponding to the connected component in segmentation S that
contains pixel p. Using the local refinement error E(S1, S2, p) the following error
measures are defined in [9]: the Global Consistency Error (GCE), which forces
all local refinements to be in the same direction, and is defined as:

GCE(S1, S2) =
1
n

min

⎧⎨⎩∑
p∈P

E(S1, S2, p),
∑
p∈P

E(S2, S1, p)

⎫⎬⎭ (2)

and the Local Consistency Error (LCE), allowing refinement in different direc-
tions in different parts of the image:

LCE(S1, S2) =
1
n

∑
p∈P

min {E(S1, S2, p), E(S2, S1, p)} (3)

n is the number of pixels in the image. Notice that LCE ≤ GCE for any two seg-
mentations. GCE is tougher measure than LCE, because GCE tolerates simple
refinements, while LCE tolerates mutual refinement as well.

We have used the GCE and LCE measures presented above to evaluate the
Bor̊uSeg method [6] using the human segmented images from the Berkley humans
segmented images database [9]. Also, the evaluation of Bor̊uSeg with respect to
KrusSeg is done.

4.1 Evaluation of Segmentations on the Berkley Image Database

As mentioned in [9] a segmentation consisting of a single region and a segmen-
tation where each pixel is a region, is the coarsest and finest possible of any
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Human vs. human Bor̊uSeg vs. human Bor̊uSeg vs. KrusSeg
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Fig. 3. The LCE (above) and GCE (below), error measure results for 100 images

segmentation. In this sense, the LCE and GCE measures should not be used
when the number of regions in the two segmentation differs a lot. So, taking
into consideration that the Bor̊uSeg produces a whole hierarchy of segmenta-
tions with different number of regions (from coarser to finer), we have selected
for the evaluation two levels of this pyramid. In the first case, we have taken for
each image the segmentation level produced by the Bor̊uSeg with the number of
regions closest to the average number of regions produced by the humans (for
the same image). When evaluating the KrusSeg we have chosen for the Bor̊uSeg
the segmentation level that had the number of regions closest to the number of
regions produced by the KrusSeg method. In all the cases this meant going lower
in the pyramid and taking a level which is basically a refinement of the one used
when comparing to the humans. Also, as recommended by Felzenszwalb etal [1],
the images given to the KrusSeg method have been smoothed with a Gaussian
filter (e.g. σ = 1.5). Because the KrusSeg still produced much more regions than
the human segmentations in the database have, an evaluation of the KrusSeg
vs. the humans would have been unfair.

As data for the experiments, we take 100 gray level images from the Berkley
Image Database4. For each of the images in the test, we calculate the GCE and
LCE using the results produced by the KrusSeg and the corresponding level from
the hierarchy produced by Bor̊uSeg, and the human segmentations for the same
image together with the corresponding level from the Bor̊uSeg pyramid. In the
case of humans and Bor̊uSeg, having more than one pair of GCE and LCE for
each image, we calculate the mean and the standard deviation. The results are
summarized in Fig. 3. As a reference point, in the same figure, you can see the
4 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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Human vs. human Bor̊uSeg vs. human Bor̊uSeg vs. KrusSeg
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Fig. 4. Histograms of LCE (above) and GCE (below) discrepancy measure

results for calculating the GCE and LCE values for pairwise two segmentations
made by humans, for the same image. We can see that the humans did very
good and proved to be consistent when segmenting the same image, and that
the Bor̊uSeg produces segmentations that obtained higher values for the GCE
and LCE error measures.

In Fig. 4 one can see the histograms of the GCE and LCE values obtained
([0 . . . 1], where zero means no error), humans vs. humans, Bor̊uSeg vs. humans,
and Bor̊uSeg vs. KrusSeg. Notice that the humans are consistent in segmenting
the images and the humans vs. humans histogram shows a peak very close to 0.
Also, the results show that there is a considerable difference (GCE mean value
0.4) between the segmentations produced by the Bor̊uSeg and KrusSeg methods.

5 Conclusion and Outlook

In this paper we have evaluated segmentation results of two methods based on
the minimum spanning tree principle. The evaluation is done using discrepancy
measures that do not penalize segmentations that are coarser or more refined
in certain regions. We use gray scale images to evaluate the quality of results.
In the case of Bor̊uSeg, this evaluation can be used to find classes of images for
which the algorithm has segmentation problems, corresponding to higher GCE
and LCE values. We have observed that the results produced by the Bor̊uSeg
vs. KrusSeg methods have shown a considerable difference. We plan to use a
larger image database to confirm the quality of the obtained results, and do the
evaluation with additional low level cues (color and texture) as well as different
statistical measures.
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Abstract. Linear Discriminant Analysis (LDA) is widely known feature
extraction technique that aims at creating a feature set of enhanced dis-
criminatory power. It was addressed by many researchers and proved to
be especially successful approach in face recognition. The authors intro-
duced a novel approach Dual LDA (DLDA) and proposed an efficient
SVD-based implementation controlled by two parameters. In this paper
DLDA is analyzed from the feature space reduction point of view and
the role of the parameters is explained. The comparative experiments
conducted on facial database consisting of nearly 2000 individuals show
superiority of this approach over class of feature selection methods that
choose the features one by one relying on classic statistical measures.

1 Introduction

LDA in face recognition was inspired by the classic monographs on statistical
pattern recognition [7] and [6], where different criteria of class separability were
investigated given that elements xj of the training set X are labelled. One of
these measures was the ratio of between-class scatter matrix Sb determinant to
within-class scatter matrix Sw determinant. As the determinants are calculated
in an unknown linear subspace Rr, the problem of finding the transformation
matrix W from an input space RN , N > r to that space was formulated assum-
ing the separability criterion is maximized. Then columns of the solution matrix
are eigenvectors of matrix S−1

w Sb corresponding to its greatest eigenvalues [6]:

S−1
w SbW

′ = W ′Λ⇒W ′ = argmax
W

|W tSbW |
|W tSwW |

(1)

This result usually cannot be directly adopted to the face recognition area
due to singularity of the matrix Sw, which is the case whenever dimension of
the input space N is greater than number of face examples L in the training
set. Therefore a good number of proposals was published on how to avoid this
problem. In [12] and [1] a preliminary PCA was applied to the input data X to
first reduce dimensionality to at least N − J thus ensuring non-singularity Sw

and then apply LDA to the reduced data. Here J stands for the overall number
of classes.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 587–595, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In [5] authors reduce the dimensionality by pixel grouping technique but
search for the solution within the Sw null space maximizing only the nominator
of (1) by means of the conventional PCA. They use the result formulated in
[9] that replacement of a denominator in (1) with the expression |W tSTW |,
where ST is the total scatter matrix, i.e. the input data covariance matrix,
leads to the equivalent goal function. This approach is accelerated in [4], where
the observation is proved that the orthogonal projection of every input vector
belonging to the same class onto the Sw null space gives the same result. Hence
the maximum of |W tSbW | in the Sw null space can be sought among vectors
arbitrarily selected from each class. These vectors are called the common vectors.

In [14] authors propose to invert the criterion (1) and search for its minimum
point. In this approach the solution matrix W found by means of two eigenvalue
decompositions diagonalizes both Sw and Sb whereas Sw is additionally whitened
[7].

Alternatively to the criterion (1) in [16] the criterion based on within-class
and between-class variances is addressed:

W ′ = argmax
W

tr(W tSbW )
tr(W tSwW )

(2)

Its solution is also based on simultaneous diagonalization of Sw and Sb in the
subspace orthogonal to the Sw null space assuming unit within-class variances in
the output space. The complete theory justifying the optimality of the solution
with respect to the criterion (2) is presented in [17], where also the minimiza-
tion of the inverted criterion is introduced as the Dual LDA (DLDA) method.
Both LDA and DLDA algorithms are parameterized in terms of subspace di-
mensions that result from the eigenvalue decompositions of matrices Sw and Sb

respectively.
In section 2 of this paper, the DLDA approach is thoroughly investigated and

the role of its parameters in face recognition is explained. The stress is put on
the feature space reduction aspect that can be controlled by these parameters
thus effectively supporting the feature extraction process. Section 3 contains
comparative experiments as far as recognition performance and computational
complexity is concerned, conducted on the base of above 10000 facial images
belonging to nearly 2000 individuals. Section 5 summarizes the paper.

2 Dual Linear Discriminant Analysis

Dual Linear Discriminant Analysis (DLDA) finds a matrix W of linear transfor-
mation from RN to Rr that separates the input data vectors X = [x1, . . . , xL]
belonging to J different classes in terms of minimizing the within-class variance
to the between-class variance ratio. More precisely, DLDA seeks for a optimal
point Wopt of a goal function f(W ) defined as follows:

f(W ) =
tr(W tSw(X)W )
tr(W tSb(X)W )

=
varw(W tX)
varb(W tX)

(3)
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It utilizes concepts of the within-class scatter matrix Sw and the between-class
scatter matrix Sb defined below:

Sb(X) =
1

J − 1

J∑
j=1

Lj(xj − x)(xj − x)t (4)

Sw(X) =
1

L− J

J∑
j=1

1
Lj

∑
i∈Ij

(xi − xj)(xi − xj)t (5)

Here L1, . . . , LJ stand for corresponding class populations whose index sets are
denoted by I1, . . . , IJ and xj , x are mean of j-th class and global mean, respec-
tively.

Assuming lack of correlation in both, within and between class contexts as
well as condition of unit within class variances searching for Wopt is a problem
of quadratic constrained optimization:

Wopt � arg min
W tSbW=I,W tSwW is diagonal

tr(W tSw(X)W ) (6)

The solution is found using two subsequent Eigenvalue Decompositions (EVD):

Wopt = [w1, . . . , wr] = [Avr0 , . . . , Avr0−r+1] (7)

A � Uq0Λ
−1/2
q0

, Sb
EVD= Uq0Λq0U

t
q0
, q0 = rank(Sb) (8)

AtSwA
EVD= Vr0Σr0V

t
r0
, r0 = rank(AtSwA), 1 ≤ r ≤ r0 (9)

The scatter matrices Sb and Sw defined in (4) and (5) can be expressed as
outer products of matrices Xb and Xw respectively:

Sb(X) = XbX
t
b, Xb �

[
x1 − x√
J − 1

, . . . ,
xJ − x√

J − 1

]t

(10)

Sw(X) = XwXt
w, Xw �

[
x1 − xj(1)

√
L− J

, . . . ,
xL − xj(L)

√
L− J

]t

(11)

Matrix Xb contains weighted between-class errors which may be expressed in
alternative base formed by eigenvectors u1, . . . , uq0 of matrix Sb corresponding
to its eigenvalues λ1, . . . , λq0 sorted in non-descending order. The eigenvalues
are, in fact, between-class variances in corresponding directions. The same rea-
soning cannot be strictly applied to variances of data vectors from Xb because
of non-zero mean of these vectors. However, Fig. 1 shows that associating an
interpretation of greatest Xb variance directions with subsequent vectors from
Uq0 is reasonable in face recognition.

It follows from (9) and (11) that minimizing the expression
tr(V t

r0(A
tSwA

t)Vr0) is equivalent to minimizing variance of data AtXw after
projection onto subspace spanned by columns of Vr, what may be perceived
as inverted PCA problem. It is true, because mean of data vectors from Xw
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Fig. 1. Exemplary weighted between-class errors (upper row) and first five directions
of greatest between-class variability (lower row)

is zero. Here, r is a parameter of the method that controls dimension of the
output DLDA feature space. The data matrix AtXw = Λ−1/2(U t

q0
Xw) contains

weighted within-class errors that are first orthogonally projected onto subspace
spanned by directions of greatest variance of weighted within class error, then
whitened by diagonal matrix U

−1/2
q0 .

In DLDA, q0 which is determined by the input data X is replaced with
variable q ≤ q0, i.e. the parameter of the method. Therefore, weighted within-
class errors from Xw are projected onto orthogonal subspace covering only part
of the total variance of the weighted between-class errors. In Fig. 2 exemplary
input and reconstructed facial vectors of such a projection for different values of
q are presented.

Whitening matrix Λ
−1/2
q0 ensures satisfying one of the imposed constraints

i.e. data vectors from X have unit between-class variances after projection onto
subspace spanned by columns of matrix A.

DLDA does not calculate matrices Sb and Sw but operates directly on
weighted error matrices, between-class Xb and within-class Xw using a fact that
for any matrix C EVD of CCt can be performed through Singular Value De-
composition (SVD) of C [8]. Essential steps of the algorithm are as follows:

Fig. 2. The weighted within-class errors for one class (top row) and their reconstruc-
tions for the projection onto subspace of weighted between-class errors at q = 50
(middle row) and q = 500 (bottom row)
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1. Calculate Xb and Xw due to formulas (10) and (11).
2. Perform SVD of Xb, obtaining left singular vectors Uq0 and singular values

Λ
1/2
q0 .

3. Select first q ≤ q0 columns of Uq0 and Λ
−1/2
q0 obtaining Uq and Λ

−1/2
q respec-

tively.
4. Perform a projection of vectors from Xw onto subspace spanned by columns

of Aq = UqΛ
−1/2
q .

5. Perform SVD of AtXw, obtaining left singular vectors Vr0 of matrix
(AtXw)(AtXw)t.

6. Select last r ≤ r0 columns of Vr0 thus obtaining Vr and return DLDA matrix
W = AVr.

The final number of selected features is controlled by parameter r in step 6 of
the above algorithm but the results of this selection depends on reduction step 3
controlled by the parameter q as the second SVD works on the subspace whose
dimension is q. Thus by allowing q to have values smaller than rank of the input
between-class scatter matrix Sb an additional degree of freedom is introduced in
the feature extraction process.

The time complexity of the DLDA algorithm evaluated as the number of
floating-point multiplications is dominated by SVDs (steps 2 and 5) and matrix
multiplications in steps 4, 5 and 6.

TDLDA = O(J3 + q3 + qN + Lq2 + qNr) = O(q2(L + q) + J3 + qNr) (12)

3 Face Recognition Experiments

DLDA is compared here with Maximum Significant Difference and Independence
algorithm (MSDI) [13]. MSDI represents a group of feature selection methods
that choose a sub-optimal subset of the given feature set by choosing one by one
members of the target set. The MSDI criterion of choice combines two factors,
a significant difference (sd) that measures ability of the given feature to dis-
tinguish between different classes and independence (ind) of given feature from
already selected features. The former is simply F-statistics whereas the latter is
a transformation of the Pearson correlation coefficient.

To compare the ability of DLDA and MSDI methods to create a compact
set of discriminative features for face recognition, the collection of five facial
databases is used, namely Altkom, Extended MPEG-7, MPEG-7 testset in
Xm2vts [10], MPEG-7 testset in Banca [3] and Feret [11]. The resulting base is
the same as used during the MPEG-7 Video Group Core Experiment on face
recognition descriptor [15], [2].

The base has 11845 images of 1937 persons in total. The images are nor-
malized to the size 46x56 based on fixed eye centers positions that have been
marked manually. The halves of Altkom, MPEG-7 and Xm2vts compose the
training set consisting of 3655 images of 504 persons, the rest, i.e. 8190 images
of 1433 persons having full bases Banca and Feret inside forms the testing set.
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Every image from the training set is processed by some feature extraction
algorithm, in extreme case pure pixel intensity values may be features. Then
pre-processed training set X ∈ RN×L is provided at the input of DLDA or
MSDI algorithm to select an output set of such features. In case of DLDA it
takes a form of matrix W ∈ RN×r and in case of MSDI a subset of input feature
indices k1, . . . , kr to be used. Finally, the descriptors y1, . . . , yL of all images
from the testing set are calculated due to formulas y = W tx for DLDA and
y(1, . . . , r) = x(k1, . . . , kr) for MSDI respectively.

The recognition performance evaluation of a given method relies on a subse-
quent choice of an every descriptor from the testing set to become a query and
excluding it from the testing set which forms a gallery. For each query descriptor
the person identity corresponding to the nearest descriptor from the testing set
is compared with the actual query identity. If they match a success is registered
hence giving rise to Success Rate SR for each person j = 1, . . . , J and Average
SR (ASR) performance measures:

SRj =
number of successes

Lj
, ASR =

1
J

J∑
j=1

SRj (13)

First experiment (Fig. 3) illustrates the influence the parameters q and r has
on the recognition performance in case of applying DLDA directly on the inten-
sity images from the database. Two things are observed, firstly the best recogni-
tion performance is achieved for intermediate values of q parameter, namely 200
for r = 20, 40 and 400 for r = 120. Secondly, the more output features is taken
into consideration the better recognition performance is, what is expected, but
also a desired property of graph saturation for relatively small values of r may
be noticed. For different but established q values relation between ASR and r
behaves almost identically.

Fig. 4 presents the comparison between DLDA and MSDI when the input fea-
tures are PCA coefficients. Regardless of number N of PCA features considered
both algorithms select constant number of r = 48 output features.
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The best q value for DLDA algorithm is chosen in course of similar analy-
sis as presented in Fig. 3, what means that the whole algorithm has to be run
approximately ten times. Additionally, recognition performance for PCA fea-
ture vector consisting of N features is placed. The results show that MSDI is
unable to benefit from increasing size of an input feature space because it effec-
tively chooses the output features only from its small subset. Contrary to MSDI,
DLDA, thanks to combining the reduction and extraction, utilizes all available
information. In terms of time complexity, it turns out that DLDA, even applied
ten times, outperforms MSDI too due to a high computational burden introduced
by the independence step in the latter.

The result of changing the preliminary extraction method from PCA to Dis-
crete Fourier Transform (DFT) or Discrete Cosine Transform (DCT) is shown
in Fig. 5. Here, N indicates a number of frequency coefficients cut out from the
whole spectrum. The quite large independence of DLDA method from the type
of input feature space may be noticed whereas MSDI performance is better in
case of DCT features.

In the last experiment (Fig. 6) MSDI is applied to the input feature set
returned by DLDA algorithm operating on intensity images with q = 400 and
r = 120 (cf. Fig. 3). Thus MSDI selecting r′ out of r = 120 DLDA features
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Fig. 5. DLDA and MSDI comparison for DFT (left) and DCT (right) N-dimensional
input feature space and r = 48
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Fig. 6. DLDA and MSDI comparison for DLDA 120-dimensional input feature space

is compared with DLDA producing directly the set of r′ output features. The
results confirm that MSDI can hardly improve the selection performed by DLDA
algorithm.

4 Conclusions

In this paper DLDA algorithm was presented as the method that can effectively
incorporate the feature space reduction into the extraction process. The role
of the parameters controlling DLDA algorithm was explained. It was shown
how they affect the feature extraction process and how they can be adjusted
to give the excellent face recognition performance at a relatively small number
of the output features. The experiments conducted on a very challenging facial
database proved the DLDA is stable against various types of input feature spaces.
Additionally, the comparison with MSDI method that performs selection on
extracted features set shown the superiority of DLDA both in terms of the
recognition performance and the computational complexity.
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Abstract. In this paper, we use inexact graph matching to detect
changes between spatial features coming from different data sources, e.g.
image derived information versus a GIS layer. Corresponding features in
the data sources need to be matched taking into account outliers and
spatial inaccuracy. We discuss the notion of consistency in inexact graph
matching to be able to correctly determine the optimal solution of the
matching problem. A condition based on the expected graph error is pre-
sented which allows to determine the bounds of error tolerance and in
this way characterizes acceptable over inacceptable data inconsistencies.

1 Introduction

Graphs are a powerful data structure to represent objects and concepts in various
domains. In geographic information systems (GIS), attributed graphs form a nat-
ural way to represent spatial objects together with its features and relationships
to other objects. In our work, graph matching is used to find correspondences be-
tween the detected image information and the geospatial vector data, like digital
road maps. The query process, based on attributed graph matching, is driven by
the spatial relations between the features and takes into account different errors
that can occur (e.g. spatial inaccuracy, data inconsistencies between image and
vector data). Error-tolerant graph matching can be used to find correspondences
between the detected image information and the vector data. Spatial constraints
between objects are used to find a reliable object-to-object mapping. Spatial re-
lations between objects prove to be more reliable for detecting change compared
to local object features which cannot always be detected with high enough relia-
bility. We derive an expression, based on the notion of consistency as introduced
in [1], which characterizes the bounds where an image feature is identified as part
of the object model or as a noise structure. This condition which maps a feature
on the null label is a difficult constraint to model and has been traditionally set
using heuristic rules-of-thumb. We show how the expected graph error of the
object model can be used to determine this constraint.

The remainder of this paper is organized as follows. Section 2 introduces
error-tolerant graph matching and derives the error bound to characterize ac-
ceptable over inacceptable inconsistencies. Section 3 gives experimental results
on synthetic data which validate the derived bounds. Section 4 concludes the
paper.
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Fig. 1. Overview of the system for change detection

2 Error-Tolerant Graph Matching

The problem can be represented as finding the correspondence between two
sets of features: one set originating from the geographic database and one set
originating from the image. Given these features an abstract representation can
be built as an attributed graph. The vertices of the graph represent image fea-
tures and the vertex attributes can contain measurements on these features. The
edges of the graph represent relations between features and the edge attributes
can contain measurements on spatial relations. A similar graph can be built on
the vector data, using data objects as vertices and relations between objects
as edges. The problem of registration is represented as a graph matching prob-
lem, which seeks the correspondence of similar vertices between two attributed
graphs.

2.1 Constraint Satisfaction Using Relaxation Labeling

The matching problem can be defined as a graph labeling problem, which consists
out of the following elements:

1. a set of objects i ∈ Ωi, corresponding to image features;
2. a set of labels λ ∈ Ωλ, corresponding to GIS features;
3. a neighbour relationship over the objects;
4. constraints on possible labels between pairs of neighbouring objects.

Relaxation labeling techniques use an iterative process to determine the prob-
abilities of each object. Different update rules have been proposed. In [1], the
relation between different update rules is analytically shown. The problem of
finding consistent solutions is shown to be equivalent to solving a variational
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inequality which is based on the mathematical concept of ”consistency”. This
concept, which is defined below, is interesting because by using it, the label-
ing process can be redefined as a quadratic optimization process. This offers
guidance in determining good compatibility coefficients.

To each object i a probability distribution {pi(λ)}λ∈Ωλ
is associated that

expresses that object i has label λ:

0 ≤ pi(λ) ≤ 1,
∑

λ∈Ωλ

pi(λ) = 1 (1)

A labeling for the problem is specified by p = {pi(λ)}i∈Ωi,λ∈Ωλ
. For each

pair of neighbouring objects i and j and for each pair of labels λ and λ′, a
compatibility coefficient rij(λ, λ′) is defined. These coefficients express the com-
patibility of assigning label λ to object i in combination with assigning label λ′

to object j. Negative values express incompatibility, positive values compatibil-
ity. Given these quantities, the support of a label λ for the object i given by the
correspondence p is defined as

si(λ) = si(λ,p) =
∑
j∈Ωi

∑
λ′∈Ωλ

rij(λ, λ′)pj(λ′) (2)

Given a non-ambiguous solution p (i.e. pi(λ) = 0 or 1), with λ1, ..., λn the
labels which are given to the resp. object i,...n, then p is a consistent solution
iff

si(λi,p) ≥ si(λ,p), ∀λ, i = 1...n (3)

For a non-ambiguous solution p, this can be extended to the weighted sum
of the support functions. p is a consistent solution iff∑

λ∈Ωλ

pi(λ)si(λ,p) ≥
∑

λ∈Ωλ

vi(λ)si(λ,p), i = 1...n (4)

for all labelings v.
Eq. 4 defines the solution p through a system of n inequalities. Hummel and

Zucker have shown that if the compatibility matrix rij(λ, λ′) is symmetric, the
solution can be calculated as maximizing the average local consistency, given by

A(p) =
∑
i∈Ωi

∑
λ∈Ωλ

pi(λ)si(λ,p) (5)

This is a quadratic function in the variables pi(λ), which can be optimized using
a constrained gradient descent method taking into account the restrictions of
Eq.(1).

2.2 Parameter Condition

To guarantee a good solution of the matching problem, the compatibility matrix
rij(λ, λ′) needs to be determined correctly. In most applications, the value of
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these coefficients are determined using heuristics which basically impose a rela-
tive order on the constraints. Strong constraints receive a higher absolute value
then weak constraints. The specific ratio between the constraints is usually de-
termined through trial-and-error. For the null assignment it is however difficult
to determine a correct value for the compatibility coefficient rij(λ∅, λ′). Since
each object is a priori a possible null object, every assignment is consistent with
the null assignment. The problem is to assess the relative importance of the null
assignment with respect to the other constraints. It should be avoided that the
null solution is the most consistent solution of the system. On the other hand,
false correspondences of spurious points should be less consistent than the null
assignment.

The definition of consistency can be used to determine the correct values.
The definition not only determines the optimal solution of the labeling problem,
it also determines what values the compatibility coefficients should take for an
”ideal” solution to become the optimal solution of the system. The ideal solution
is the matching we wish to find given the noise properties of the detection. For
a correct null assignment, we need to determine when the errors, which occur
in the neighbour structure of a node, are acceptable and when the number of
errors becomes too large so that the null label should be assigned. To analyse
this, we should look at the support of the different assignments. In the case of
the null assignment, the support can be written as:

si(λ∅,p) =
∑
j∈Ωi

∑
λ′∈Ωλ

rij(λ∅, λ′)pj(λ′)

= w∅
∑
j∈Ωi

∑
λ′∈Ωλ

pj(λ′)

= w∅d(i)

(6)

with d(i) the degree of node i (i.e. the number of neighbours). We have simplified
rij(λ∅, λ′) = w∅ if j ∈ Ωi (else rij(λ∅, λ′) = 0). The constant factor w∅ is
reasonable in the absence of prior knowledge of assignments.

The support for a non-null label can be split up into three classes Ω+
i , Ω−

i and
Ω0

i , namely positive coefficients which express compatibility, negative coefficients
which express incompatibility and negative coefficients which control the null
assignment. If we consider the first two classes of coefficients constant (resp. w+

and w−) within the neighbourhood of node i then the support for λi can be
simplified to

si(λi) =
∑

j∈Ω+
i

r+
ij(λi, λj) +

∑
j∈Ω−

i

r−ij(λi, λj) +
∑

j∈Ω0
i

r0
i

= w+n+ + w−n− + w∅n0

(7)

Here n+ is the number of compatible neighbours, n− the number of incompat-
ible neighbours and n0 the number of null-neighbours, with n+ +n−+n0 = d(i).
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Eq.(6) and (7) give the following condition which holds in the optimal solution:

w+n+ + w−n− + w∅n0 > w∅d(i) (8)

or equivalently
(1− f0)w∅ < f+w+ + f−w− (9)

where f+, f− and f∅ are the fraction of compatible, incompatible and null
assignments in the neighbourhood of object i for the ideal mapping.

Eq. 9 can be used to determine the weights for the compatibility matrix
given the expected relational graph error. It allows to make a distinction between
points showing small distortions, which should find a correspondent in the other
dataset, and points showing severe distortions, which should be assigned the
null label. As previous research usually relied on rules-of-thumb to determine
these weights (e.g. [4]), the importance of this equation is that it allows precise
definition of the weights of the graph matching problem with respect to the
expected graph error of the system.

3 Experimental Results

A set of experiments has been performed on images containing randomly scat-
tered points. Each image is generated twice: one copy which serves as a reference
and one copy which contains perturbations on the scattered points (e.g. noise on
the position, added spurious points). The aim is to find the corresponding points
between the two copies using graph matching while ignoring the spurious points
in the data. The experiment is an abstraction of the correspondence problem be-
tween image and GIS data after features like road junctions have been detected
in the image.

To apply the technique to matching sets of points, we need to introduce the
constraints which define similarity. For road junctions several possibilities exist.
However, the quality of detection of road junctions that can be achieved is not
of sufficient quality to use object features, like number of incoming roads, as in-
formation for the correspondence process [3]. Fragmentation and false detections
can frequently occur in the detected road network and are difficult to control. We
therefore opt to use geometric invariants between subsets of corresponding junc-
tions. The most simple constraints are binary relations like geometric relations
(e.g. angle, distance) between a junction and its neighbours to find correspon-
dences. These are much more stable features, given the detection quality which
can realistically be expected from road detection. In these experiments we rely
only on the relative angle between pairs of points. In mapping a pair of points
i and j on λ and λ′ the relative angle between the lines ij and λλ′ does not
exceed a given 'α. (e.g. π/4). If this constraint is violated, the compatibility
coefficient rij(λ, λ′) is assigned a negative weight w−.

The graph representation of the data is of course not restricted to angles and
can be readily generalized to incorporate other measurements like connectivity,
distance or other topological relations. In our case, the angle between junctions
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was chosen because it could be reliably measured in the image. Other measure-
ments like connectivity between junctions are more difficult to measure in the
image due to the degree of fragmentation in road detection. Nevertheless, the
graph matching technique is generic and applicable once image and GIS infor-
mation are described in terms of attributed graphs. In the experiments, points

Fig. 2. Example of a 30-to-100 correspondence: (left) original set of points with white
boxes showing spurious points, (right) points with added noise σ = 4 pixels. Correct
matches are shown with grey lines; wrong matches with a black line; wrong spurious
matches with a dashed line.

are randomly scattered within an image of 512 × 512 pixels. The first set of
points contains 30 points and the second set contains 100 points. Both sets have
20 points in common with a perturbation on their position using gaussian noise
with a standard deviation between one and eight pixels. The matching result
needs to make a distinction between points which are common between the two
datasets (so called ”real” points) and spurious points. Figure 2 shows an exam-
ple of this dataset with the first and second set displayed in resp. the left and
right frame, and the correspondence computed with graph matching. In this ex-
ample, the gaussian noise on the position has a standard deviation σnoise = 4
pixels. The white rectangles in the left frame are added spurious points, which
should be assigned the null label. The grey lines show the points which have
been correctly associated. The black lines show points which have been incor-
rectly associated. The dashed black lines show spurious points which have been
incorrectly associated.

To determine the optimal weights of the graph matching process, Eq. 9 is
used. In these experiments, the parameters of RL have been set at 'α = π/16
and w− = −0.5. Compatible matches are not awarded, meaning that w+ = 0.
The data contains a ratio of 10:30 outlier points so that f∅ = 1/3. Eq. 9 can



602 S. Gautama, W. Goeman, and J. D’Haeyer

then be used to determine the weight w∅, which varies over the experiments since
the graph label error f− increases as more noise is added to the position. An
added difficulty is that the label error f− is a stochastic variable. To use Eq. 9,
we need to determine the value of f− which optimally makes the distinction
between real distorted points and spurious points. This can be done by modeling
the exhibited graph errors of real and spurious points as normal distributions
with a certain mean and standard deviation, and taking the maximum likelihood
estimate (MLE) as the optimal decision boundary f−

opt. Label errors f− below
this threshold are then regarded as acceptable errors belonging to real points.
Label errors f− above this threshold are regarded as severe errors belonging to
spurious points.

We measured the mean and standard deviation of the graph label error over
a selection of 10 image pairs for a given amount of noise σnoise. For real points,
the ideal mapping is known and the graph label error for these points can be
measured. Table 1 gives a summary of the label error statistics (m1, σ1) for the
different amounts of noise. For spurious points, we selected the best matching
corresponding point in the second dataset. Since this is a combinatorial problem,
the match is approximated under the condition of a near ideal mapping, i.e. the
real points are mapped on the correct correspondents, the other spurious points
are mapped on the null label. Under these conditions, finding the best match
for a point is a linear search. For this match, we measure the graph label error
that would occur if a spurious point is mapped on his most likely candidate.
Measured over the dataset, this gives an mean label error mn = 38.5% with
standard deviation σn = 16%. Using MLE on these statistics, the threshold f−

opt

can be calculated and consequently wopt
∅ using Eq. 9.

Table 1 gives the calculated wopt
∅ . These calculated weights are compared to

the measured optimal weights wmeas
∅ . The weights wmeas

∅ have been determined
by plotting the ”receiver operating characteristic” (ROC) curve by varying w∅.
For this curve, sensitivity and specificity are defined as follows:

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

(10)

where {TP, FP,TN,FN} stands for true positive, false positive etc. If sensi-
tivity is plotted along the X-axis and specificity along the Y-axis, the optimal
performance is defined as the point on the ROC curve closest to the upper right
corner (1, 1). The weight associated with this sample is taken as the optimal
measured weight wmeas

∅ .
Table 1 shows a good correspondence between the predicted optimal weight

wopt
∅ and the measured optimal weight wmeas

∅ . There is a slight overestima-
tion with respect to the measured weight wmeas

∅ which becomes more apparent
at higher noise levels. This can be due to ambiguous points which are intro-
duced by adding spatial noise. The ground truth which is used to determine
true and false positives does not take into account the possibility of optimal
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Table 1. Determining the null weight based on maximal likelihood with respect to the
expected graph error. Noise statistics mn = 38.5% and σn = 16%

stdev [pix] m1 σ1 wopt
∅ wmeas

∅

1 0.5% 1.1% 0.05 0.05
2 2.3% 2.8% 0.09 0.07
4 7.8% 6.2% 0.19 0.15
8 21.7% 10.4% 0.32 0.25

point matches changing. Especially at high spatial noise levels this is possible
in dense point clouds, since the spatial error can interchange the position of
neighbouring points. For the constraint satisfaction problem, this interchange is
not detected as the constraints will not be violated, but the ground truth will
penalize the found match. Nevertheless, it remains relevant to use Eq. 9 to tune
the graph matching process based on the expected graph error, as in many appli-
cations like road networks such interchanges do not occur often. If it does occur,
a minimum point density should be applied to avoid this ambiguous mapping.

4 Conclusion

We have presented a condition based on the expected graph error which allows to
determine the bounds of error tolerance in the matching process. The condition
allows to characterize acceptable over inacceptable data inconsistencies. The
derivation is based on the notion of consistency in inexact graph matching, and
is useful to determine the optimal weights of the cost function given the expected
graph label error. Experiments on synthetic point sets have shown the relevancy
of this condition with respect to the specification of the null weight, which is
typically been determined using rules-of-thumb. Although some problems still
need to be solved concerning ambiguous points, the condition allows more control
over the desired behaviour of the graph matching problem. This is essential for
a reliable use of inexact graph matching in change detection applications.
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Abstract. The article is dealing with the automated extraction of branching 
structures in 3D medical images. A generic object-oriented programming 
framework is proposed, in which most existing iterative algorithms for 
centerline extraction in tubular objects can be efficiently implemented, and the 
bifurcations can be handled. New algorithms can thus easily be derived. We 
describe a simple algorithm for fast extraction of the 3D structure of the 
vascular tree, which has been implemented within this framework. The 
algorithm recursively tracks the branches and detects the bifurcations by 
analyzing the binary connected components on the surface of a sphere that 
moves along the vessels. It assumes that the vessels can locally be separated 
from the background by an appropriate adaptive threshold. The originality of 
the algorithm resides in the analysis of the evolution of the connected 
components during the sphere growth that allows it to cope with local abrupt 
changes of the vessel diameter and shape. It was successfully tested in 16 
magnetic resonance angiography images. Its accuracy was assessed by 
comparing the resulting axes with those extracted by a reference algorithm. The 
distance between them was less than one voxel except in bifurcations, where the 
maximum distance was 3.8 voxels. 

1   Introduction 

Our work is dealing with the segmentation of 3D vascular images for computer-aided 
diagnosis, treatment planning and follow-up of arterial diseases. We are aiming at the 
segmentation of the local structure of the vascular tree, so that the segmented vessels 
can be used as input for the simulation of the blood flow patterns, to predict the 
outcome of surgical intervention. The first step towards this goal is the extraction of 
the vascular tree skeleton, i.e. of the axes of each branch and of the bifurcation points. 

Many algorithms have been proposed to extract the vascular axes from 3D images 
(e.g. see overviews [1-4]). Most of them are based on a cylindrical model of the 
vascular segments and are designed to extract only one interactively selected segment, 
while ignoring its branches. Bifurcations are not handled by the axis-extraction 
process, but may be detected by an additional algorithm run along the previously 
extracted axis, or only at locations where the data do not fit the cylindrical model [5]. 
Alternatively, several interactively initialized branches can first be separately 
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extracted, then appropriately connected, in order to recover the tree structure [6]. As 
the acquisition of the vascular images is usually based on physical processes that 
enhance the image intensity within the circulating blood lumen, the vessels can be 
seen as intensity ridges. In [7] all possible ridges are first detected in the image 
volume by an ordered region-growing algorithm, then connections between 
interactively selected endpoints are found. A powerful method has recently been 
proposed in [8], which uses a criterion based on the eigenvalues of the Hessian to 
assess the geometric flow and thus find the vascular pathways. However, like in the 
previously quoted method, the criterion is calculated in each point of the volume, 
which is computationally expensive. The remaining algorithms devised to directly 
handle the branching structures often use a threshold-based preprocessing, so that the 
actual axis extraction is carried out within a binary volume. In practice, the threshold 
is often set manually [9-11], although an adaptive histogram-based global threshold 
has also been used in this context [12]. The skeleton of the binary volume can be 
extracted by morphological thinning [9]. However, this approach is noise-sensitive 
and requires a careful pruning of spurious branches. Other authors preferred a step-
by-step approach, which simulates a wave-front propagation [10] or moves along the 
vessels a small volume of interest (cell): a parallelepiped [12] or a sphere [11]. 
Consecutive points are recursively added to the axes, and the bifurcations are detected 
by counting the connected components of the wave-front or of the cell surface. 

Our method falls within the latter category and uses a spherical cell both to detect 
the bifurcations and to predict the location of the next point of the current axis. 
Compared to [11, 12], two main differences are to be noted: 1) strategy of cell-size 
adaptation to abrupt diameter variations in pathologic segments, which is based on the 
analysis of the evolution of the connected components (CCs) on a growing spherical 
surface and 2) threshold-value determination, which is automatic and local. This 
adaptive strategy was devised for magnetic resonance angiography (MRA) images. 

2   Method 

Many axis-extraction algorithms (e.g. [5, 11-13]) can be modeled by an iterative 
process represented in Fig.1: 1) for each candidate point taken from a stack of points 
to be processed, the correction of its location is done if the point is not close enough 
to the center of the vessel axis defined as the center of the local cylindrical structure, 
2) the point is added to a graph representing the vascular tree axis, 3) several 
(typically between zero and two) new candidate points are predicted and pushed into 
the stack to be processed later. The process begins with a user-selected point or an 
automatically detected seed, and finishes when there are no more points in the stack to 
be processed. This general structure can include the bifurcation handling. Various 
methods can be constructed by modifying some components of this structure, mainly 
the prediction and the correction. We therefore implemented this structure in an 
object-oriented programming framework, where each component can easily be 
replaced by deriving appropriate classes. In the sequel we describe one particular 
algorithm implemented within this framework. The correction and prediction 
processes based on the analysis of binary CCs is described in Section 2.1. The actual 
binarization scheme depends on the image acquisition technique. Section 2.2 
describes the adaptive local thresholding strategy used in MRA images.  
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Fig. 1. General framework for recursive axis extraction 

   

Fig. 2. Connected components: (left) volumetric, (middle) intersection sphere-surface/vessel 
(NV = 3), (right) intersection sphere-surface/background (NB = 1) 

The sphere grows starting from a minimum radius that is a parameter of the 
algorithm. Only the volumetric component connected to the sphere center is kept: all 
its voxels are assigned the label “vessel”, while the remaining ones receive the label 
“background”, which eliminates the possible other objects contained in the sphere or 
intersecting it. The intersection between the vessel and the sphere surface is analyzed: 
the number of CCs of the vessel (NV) and of the background (NB) is calculated (Fig.2). 
During the growth of the sphere, each increase or decrease of NV or of NB can be 
interpreted as a change of the local position of the sphere surface with respect to the 
vessel boundary (inside or outside). This information is used to assess whether or not 
the sphere is correctly centered within the vessel, and to stop its growth. 
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Fig. 3. Point correction in various configurations. In each case are represented: the small sphere 
that first reached the vessel boundary, its radius R1, the larger sphere that subsequently reached 
the vessel boundary at the opposite side, and the correction Δ. 

 
  

Fig. 4. Point prediction. (left) vessel end, NV = 1, no point predicted, (remainder) bifurcation, 
NV = 3, one point in already segmented vessel pathway, and two points predicted. 

When the sphere is well centered (close enough to the center of the vessel axis), its 
surface simultaneously reaches the opposite boundaries of the vessels. Else, the 
sphere first reaches one boundary (its radius at this moment is called R1), then it 
grows (radius R2) and reaches another boundary. Bad centering is detected when the 
difference between the corresponding radii R1 and R2 is greater than the value used as 
radius increment. In this case, the center of the sphere, which is actually the current 
point of the axis, is corrected by moving it away from the vessel boundary reached at 
first. The point is moved by the amount Δ = ½|R2-R1| (see Fig.3). 

At each change of the number of surface CCs a counter is reset which is used to 
stop the growth of the sphere. If no new change occurs before the counter reaches a 
fixed maximum value, the growth ceases. This maximum value is equal to the number 
of radius increments that occurred between the last two changes of the number of 
surface CCs. At that moment, if NV < 2 the end of the current branch is detected and 
no new point is predicted (Fig.4 left). Otherwise the algorithm switches back to the 
smallest sphere having the same NV, then the masses, and the centers of gravity of 
each one of the vessel CCs on that sphere surface are calculated. We need to make 
difference between the components that are located in the already segmented vessel 
pathway, and the remaining ones that correspond to the continuation of this vessel and 
to its branches, if any (Fig.4). To that purpose the track of the vessel segmented in the 
previous iterations is kept by constructing the union of the volumetric CCs (Fig.5). 
The gravity centers of the vessel CCs that do not remain inside this union are ordered 
by mass and pushed onto the stack of candidate points to be processed, so that the 
bigger vessels are then processed first. 

Δ 
R1 Δ R1 R1 Δ
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Fig. 5. Several iterations of vascular tree segmentation: axes and union of connected volumetric 
components 

We assume that the local contrast between the vascular lumen and the background 
is sufficient so that a threshold value separating them can be found. Experimental 
studies showed that in MRA images this value can be estimated as a percentage of the 
local maximum intensity [14]. Namely, in gadolinium-enhanced MRA a good 
approximation of the vessel boundaries is located about half this local maximum [15]. 
In our algorithm, the threshold value is re-calculated for each radius of the sphere, as 
half the maximum intensity within the sphere. 

3   Experiments 

The algorithm was applied to 16 MRA 3D images from patients, representing the 
neck (carotid, vertebral, basilar arteries, etc.) and the aorto-iliac region (with renal, 
mesenteric arteries, etc.). This first qualitative evaluation aimed at verifying the 
algorithm’s capability of extracting all the branches perceptible in the image volume, 
and of avoiding spurious detections. Additionally, to assess the efficiency of the local 
thresholding strategy in MRA images, we visually compared the unions of volumetric 
CCs with segmentations obtained by a global threshold equal to half the maximum 
intensity within the whole image. Furthermore, for each of these datasets the axis of 
the main arterial trunk was quantitatively compared to that extracted by a reference 
algorithm [13], the accuracy of which had already been clinically validated. This 
algorithm processes one vascular segment at a time. We calculated the distances 
between the axes extracted by the two algorithms. 

3.1   Results 

The algorithm detected all the principal branches of the vascular tree and the 
bifurcations in which the cross-sectional area of the secondary branch was at least 5% 
of that of the main branch. As expected, our method detects more arterial branches 
than global thresholding (Fig.6). However, this figure also shows that some branches 
were not extracted owing to a strong local signal drop in severe stenoses (see also 
Fig.7). The algorithm detected a few false bifurcations, where two vessels were very 
close to each other (Fig.7 right). 

The mean distance (in 1000 points) between the axes extracted by our algorithm 
and by the reference one, was 0.76 mm, with a standard deviation of 0.46 mm and a 
maximum of 3.82 mm. The algorithm was tested on a Pentium 4 1.8GHz computer 
with 1GB RAM. It calculated on average 50 points every second, depending on the 
diameter of the vessels: the bigger the vessel the longer it takes. 
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Fig. 6. Global vs. local thresholds: (left) arteries segmented using a threshold equal to half the 
global intensity maximum, (right) union of CCs extracted using a local threshold equal to half 
the maximum intensity within an adaptive moving sphere 

  

Fig. 7. Failures of our algorithm: (left) missing connection in a severe stenosis, (right) false 
bifurcation 

3.2   Discussion and Conclusions 

Our algorithm was designed for quick approximate extraction of complex branching 
structures. The distance between the consecutive axis-points is always slightly larger 
than the local radius of the vessel, which determines both speed and precision. 
Compared to the reference algorithm, the largest distances between the axes were 
observed in bifurcations. However, the reference algorithm does not handle 
bifurcations, and actually should be used as reference only beyond the branching 
regions. Our algorithm cannot detect very small branches and the severely stenosed 
branches, i.e. vessels with a strong pathological narrowing, particularly when the 
stenosis is located near a bifurcation. In both cases the local intensity of the vessels 
falls below the adaptive threshold based on the maximum intensity of the main 
branch. Automated detection of low-intensity branches would require a lower 
threshold. This may be problematic if other structures are present near the vessel of 
interest. A pragmatic solution is to interactively add a seed point within the missing 
branch. False bifurcations were detected in regions where the initial assumptions did 
not hold, i.e. two neighboring vessels could not be separated by a threshold at half the 
local maximum of intensity. Although the local thresholding strategy may be 
improved, there will always remain images where thresholding is not sufficient to 
separate neighboring vessels closer than the image resolution. This problem may be 
solved by adding a priori knowledge to the segmentation of the contents of the 
spherical cell. As the vessels are expected to be globally cylindrical, a classification 
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can be implemented combining photometric and geometric criteria. Moreover, our 
approach may be considered as a first step that can be subsequently refined according 
to the application. In our application, i.e. simulated flow-dynamics computation, the 
actual segmentation method can be devised using a deformable model initialized by 
the structure extracted with our simple algorithm. Other important applications in 
which our algorithm can be useful are: 1) measuring the length of vascular segments, 
2) intra- and inter-patient registration of vascular trees, based on bifurcations as 
landmarks, 3) recognition and labeling of the vascular segments, 4) various 
visualization techniques such as 2D images perpendicular to the vessel axis, 
maximum intensity projection or volume rendering limited to the vicinity of the 
vascular axes, etc. 

In conclusion, we presented a simple and fast algorithm capable of extracting the 
axes and the approximate shape of the vascular lumen of the vascular tree connected 
to a seed point. According to our first evaluation in MRA images, the algorithm 
efficiently detects and manages the bifurcations, provided that the branches are large 
enough to have the intensity larger than half the intensity of the main branch. An 
evaluation of this algorithm in computed tomography angiograms is ongoing, which 
uses the adaptive thresholding strategy described in [16]. 
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Abstract. This paper describes a system to extract salient regions from an 
outdoor image and match them against a database of previously acquired 
landmarks. Region saliency is based mainly on color contrast, although 
intensity and texture orientation are also taken into account. Remarkably, color 
constancy is embedded in the saliency detection process through a novel color-
ratio algorithm that makes the system robust to illumination changes, so 
common in outdoor environments. A region is characterized by a combination 
of its saliency and its color distribution in chromaticity space. The newly 
acquired landmarks are compared with those already stored in a database, 
through a quadratic distance metric of their characterizations. Experimentation 
with a database containing 68 natural landmarks acquired with the system 
yielded good recognition results, in terms of both recall and rank indices. 
However, the discrimination between landmarks should be improved to avoid 
false positives, as suggested by the low precision index. 

1   Introduction 

The extraction of reliable visual landmarks in outdoor unstructured environments is 
still an open research problem. Our motivation for working on it comes from robot 
navigation, but the main issues concern also other fields, such as scene analysis and 
image indexing and retrieval from databases. Most existing feature extraction 
approaches are not adequate for this type of environments, since they rely on either 
structured information from non-deformable objects [3, 8], or a priori knowledge 
about the landmarks [1]. 

We have been pursuing a saliency-based approach to spot image regions with 
potential to represent good landmarks [13, 14], following biologically-inspired works 
on visual attention [7]. In [14], we introduced a way to embed color constancy within 
saliency computation, which showed to be faster and more stable than ensuring such 
constancy at a pre-processing stage. The present work builds on these previous studies 
to accomplish the next step, namely landmark characterization to support subsequent 
recognition under different illumination conditions and viewpoints. 
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2   Saliency Detection Based on Color Contrast 

A region in an image is considered salient if it ranks high in a given feature and its 
surround ranks high in the opposite feature. The color features considered are based 
on the opponent colors proposed by Hering [9]. 

From the input image, Gaussian pyramids corresponding to intensity, orientation 
and color opponency images are constructed, each with eight spatial scales. A pixel at 
a fine scale corresponds to a center region, whereas the respective pixel at a coarser 
scale corresponds to its surround. This multiscale approach is advantageous in that it 
permits extracting landmarks of varied sizes.  

Three sets of partial saliency maps are constructed, corresponding to the intensity, 
color and orientation features. The partial saliency maps should be combined to obtain 
one global saliency map. They cannot simply be added, because salient regions 
present in only a few maps can be masked by noise or less salient regions present in a 
larger number of maps. The process of combining the partial saliency maps is 
structured in two stages. In the first stage, the partial saliency maps are normalized by 
the maximum saliency value obtained at all center-surround scales. In the second 
stage, the maps are weighted by their information content. The information content of 
an image is based on their zero-order entropy [11]. Finally, the partial saliency maps 
are subject to exponentiation and added to compose the global saliency map. 

The modifications introduced to the original visual saliency algorithm [7], to 
improve the color constancy properties, resulted in the color-ratio visual saliency 
algorithm [14], described next. 

With the purpose of obtaining contour images with good color constancy 
properties, Gevers and Smeulders [5] developed a color space based on the color ratio 
between neighboring pixels. This differential version of color constancy gave us the 
idea of generalizing the concept of gradient between neighboring pixels to that of 
center-surround opposition. Thus, invariance of color gradients would turn into the 
desired invariance of center-surround oppositions. Under this approach, one pixel is 
replaced by the center region and the other pixel by the surround region. Moreover, 
the ratios no longer relate color bands, but color opponents, as follows: 

/c s c s

o o o o
RG R G G R=  (1) 

/s c s c

o o o o
GR R G G R=  (2) 

where c

o
R  and c

o
G  are opponent red and green components at center regions and s

o
R  

and s

o
G are opponent red and green at surround regions. The same is valid for the yel-

low and blue components. According to the unichromatic reflection model, assuming 
that center and surround regions have a locally constant illuminant, the same surface 
normal and uniform albedo, and the use of narrow-band sensors, we have [14]: 

( , ) ( ) ( )
b c b c

C m n s e cλ λ=  (3) 

where C is the light sensor response corresponding to a surface patch illuminated by 
an incident light e(λ), λ is the light wavelength, mb is the body geometric dependency, 
n  is the surface normal, s  is the direction of illumination source, and cb(λ) is the 
body spectral reflection property. Combining (3) and (1), we have: 
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which is only dependent on the sensors and the surface albedo. The same can be done 
for Equation (2) and the blue-yellow components. A key feature of these color ratios 
is their invariance to both intensity and color normalizations, which makes them 
intrinsically invariant to lighting intensity and illumination color changes. The ratios 
have a local nature, avoiding the distorting effects possibly introduced by global nor-
malizations. The logarithmic spaces (Ro/Go) and (Yo/Bo) permit the computation of the 
ratio opponencies by simple differences of logarithms across the scales. 

3   Delimiting Landmark Regions 

Since the extracted salient regions are not necessarily bounded by well-defined 
contours, nor associated to single elements in the scenes, a refinement step is 
necessary in the process of determining the boundaries of landmark candidates. As an 
initial approximation (Figure 1), a minimal rectangular bounding box (Figure 2) is 
computed for each segmented saliency spot. The objective of the next two processing 
steps is to get a better fitting of the bounding boxes to the salient features. 

In the next step, the colors appearing in each saliency-selected region are 
identified, and a corresponding backprojection map is built, emphasizing where the 
same colors appear in the whole image. This is performed using histogram 
backprojection [12]. 

After this, the size and position of all bounding boxes are adjusted (Figure 2), 
taking into account the color feature spatial distribution and the respective visual 
saliency. This is achieved using the continuously adaptive mean shift algorithm [2]. 
This is a non-parametric technique that climbs the gradient of a probability 
distribution to find the nearest dominant mode, with the capability to adapt the 
window size. To increase the amount of information associated with the bounding 
boxes, their immediate surrounding region is also analyzed (Figure 2), giving 
additional context information to the recognition process. 

4   Landmark Characterization 

After the determination of the bounding boxes, region descriptors are extracted. These 
descriptors should be appropriate to characterize the bounding boxes as signatures of 
the landmarks and should make the comparison between them possible. Color has 
proven to be the most suitable of the considered low-level features for outdoor 
unstructured environments, where most objects have deformable shapes. The way 
color features are represented and color descriptions are compared using the adopted 
representation are described below. 

The most common representation of color in image retrieval and recognition is the 
color histogram, which captures the global color distribution in an image or region 
[12, 6]. They are simple to compute and have the properties of invariance to 
translation, invariance to rotation about an axis perpendicular to the image, and they 
change smoothly with rotation about other axes, occlusion, and variations in scale. In 
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Fig. 1. The process of delimiting the landmark regions. From the source image a saliency map 
is computed, then this map is segmented, generating the seeds of the landmark regions. These 
seeds are enclosed by bounding boxes, which are adjusted to the salient elements in the image 
using color histogram backprojection and mean-shift algorithms. Finally, the landmark bound-
ing boxes are expanded, encompassing the immediate surrounding regions. 

 

Fig. 2. Initial (left), adjusted (center) and expanded (right) landmark bounding boxes 

order to remove the dependency on the number of pixels that comprise the histogram 
by comparing histograms of images of different sizes, the histogram can be normal-
ized by dividing each bin count by the total number of pixels. The normalized histo-
gram corresponds to a color probability distribution function. 

Taking this considerations into account, the following descriptors to characterize 
the landmarks were proposed: 

1. Normalized chromaticity histogram of salient region inside bounding box. 
2. Normalized chromaticity histogram of adjusted bounding box. 
3. Normalized chromaticity histogram of expanded bounding box. 
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4. Normalized saliency histogram of adjusted bounding box 
5. Mean saliency of adjusted bounding box. 

5   Landmark Matching 

Once the feature representation has been defined as a histogram space, the similarity 
between two images or regions i and j is described as the distance between their cor-
responding points hi and hj in the histogram space [12]. 

There are several metrics to evaluate histogram distances. The most common are 
histogram intersection and Minkowski distances [12]. These distance metrics are 
quick to compute, but they only compare corresponding bins of the two histograms, 
disregarding any kind of similarity between colors. This characteristic makes these 
distance metrics strongly sensitive to slight changes in the distributions. In contrast 
with Minkowski and intersection distances, the quadratic form metric allows for simi-
larity matching between different colors, and it is defined as follows [6]: 

2

1 2 1 2 1 2
( , ) ( ) ( )T

hist
d h h h h h h= − −A  (5) 

where h1 and h2 are N-dimensional color histograms, and A  is the similarity matrix, 
whose elements aij denote similarity between bins i and j. The similarity of landmarks 
is evaluated with quadratic-form distance by combining the distances between each of 
the three color histograms stored in the landmark representation. The distances are 
combined using the root of the sum of the three squared distances. 

6   Experimental Results 

From eleven sample scenes in outdoors, 68 landmarks were extracted. To evaluate the 
retrieval performance of the system, each landmark was taken out of the database, and 
matched against all other landmarks. Then, the distances to all other landmarks were 
sorted in ascending order. In image retrieval systems, the quality of matching is usu-
ally qualified in terms of recall and precision figures [4]. Recall is defined as the ratio 
between the number of relevant images retrieved and the number of all relevant im-
ages in the database. Precision is defined as the ratio between the number of relevant 
images retrieved and the number of retrieved images. 

/
K

Recall C M= ,   /
K

Precision C K=  (6) 

where K is the number of retrievals, CK is the number of relevant matches among all 
the K retrievals, and M is the number of total number of relevant matches in the data-
base. Another metrics used to quantify the performance of a retrieval system is the 
success of target search index (STS). It measures the rank of the first retrieved rele-
vant image (target) in the database with respect to the query, defined as [10]: 

1
1

1

rank
STS

N

−
= −

−
 

(7) 

where rank is the retrieval position of the first retrieved image, and N is the number of 
images in the database. 
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The recall score (Table 1) obtained was acceptable, considering that the recogni-
tion was based solely on color distribution information. This recall score indicates 
few false negative errors. Also the rank of the first (best) retrieved similar landmark 
was very significant, with the STS score near one. The precision score obtained is 
low, indicating the presence of false positives in the retrieval process. This occurs due 
to the similar color distributions of some detected salient features in different scenes, 
and since histograms do not provide spatial information about their arrangement, very 
different images can have similar color distributions, that could mislead into false 
evaluation of their dissimilarity. 

The combined distance form (squared sum of the three region type distances) im-
proves significantly the recall and precision metrics, because of the union of saliency-
oriented information with surround information. 

Table 1. Recall, STS and precision for the described landmark matching experiment. Resultant 
measures are shown for each region type individually, and then for a combined form of them. 

 Recall STS Precision 

Spot of saliency bounding box 0.62 0.98 0.24 
Adjusted bounding box 0.60 0.99 0.21 
Expanded bounding box 0.53 0.98 0.17 
Combined histograms 0.70 0.99 0.26 

The computational time of the main tasks (Table 2) were evaluated using a stan-
dard PC computer (Pentium III 900MHz, 256Mb DRAM, Microsoft Windows XP). It 
can be observed that the saliency detection is the task that demands more computa-
tional time, and that the histograms are computed very quickly. In the landmark com-
parison phase, although the quadratic-form histogram distances could take a lot of 
time to be computed, the small size of the histograms (16x16 bins) keeps computa-
tional time low for this task. 

Table 2. Computational complexity and execution times of the main tasks related to landmark 
characterization and matching. N is the number of pixels in the input image and M is the 
number of bins in the histograms. Data is shown with two significant digits. 

Task Computational 
complexity 

Seconds 

Visual saliency with color ratios (512x512 pixels) O(N) 0.81 

256-bin histogram (16x16 bins) O(N) 0.00015 

Landmark characterization  O(N+M) 0.039 

Quadratic-form histogram distance O(M) 0.0085 

Landmark matching O(M) 0.028 

7   Discussion 

In a pioneering work on image indexing, Swain and Ballard [12] pointed out that, for 
real-time object recognition, color-based algorithms were especially promising, due to 
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their fast performance and their capability to deal with viewpoint changes, object de-
formations, and inaccurate segmentation. They considered a challenging problem to 
identify the region from which to extract the histogram to be used as object signature 
for recognition purposes.  

This is exactly the first contribution of the current research, proposing a novel sali-
ency detection algorithm with embedded color constancy properties, and using this in-
formation to identify and delimit image regions that can be used as landmarks. 

A second contribution is the landmark characterization that, going beyond the sin-
gle histogram, combines saliency and chromaticity into a robust and stable signature, 
as confirmed by experimentation. 

Indeed, the results show good recognition performance, in terms of both recall and 
rank indices. However, the discrimination between landmarks requires improvement 
to avoid false positive mistakes, i.e., retrieving landmarks from the database that do 
not correspond to the query landmark. This shortcoming is not a critical one in our 
application, since a rough knowledge of the robot trajectory can help to disambiguate 
between landmarks with similar appearance. 
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Abstract. In autonomous indoor navigation some number of localiza-
tions and orientations of the vehicle can be learned in advance. No ar-
tificial landmarks are required to exist. We describe and compare the
detection of several global features of color images (sensor data). This
constitutes the measurement process in a self-localization approach that
is based on Bayes filtering of a Markov environment - the posterior prob-
ability density over possible discrete robot locations (the belief) is recur-
sively computed. The approach was tested to provide robust results under
varying scene brightness conditions and small measurement errors.

1 Introduction

The localization process of an autonomous robot takes as input a previously
acquired map, an estimate of the robot’s current pose, and a set of sensor data
acquired in current pose, and it produces as output a new estimate of the robot’s
pose [1,5,7]. Obviously, any input data for the localization process may be in-
complete and distorted by noise or errors. In generally, pose means the position
and orientation of the robot in the world coordinates or global map.

The vision data is acquired by a passive sensor, i.e. a camera does not in-
fluences the environment by its measurement process. This kind of sensor is
especially applicable for indoor navigation in environments, that are populated
by humans, i.e. offices, hospitals, museums, etc. [3]. Additionally, image pro-
cessing methods can rely on natural landmarks, whereas this case for the active
sensor devices has started to be studied only recently [2]. The use of image anal-
ysis methods in robot navigation has been intensively studied over the past 30
years [8,9,10]. In this paper we focus on general image features, that could be
relatively insensitive to changing lighting conditions, but at the same time, can
be relatively easy computed, to be obtained in real-time by a simple processing
unit.

In theoretical terms the localization process is equivalent to a Bayes filtering
of a finite environment satisfying the Markov condition, i.e. past and future
data are conditionally independent if one knows the current state. During the
localization process the posterior probability density over possible discrete robot

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 620–627, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Global Color Image Features for Discrete Self–localization 621

locations (the belief) is recursively computed. We describe a detailed algorithm
for the discrete self-localization scheme and we propose and test different global
features of monochromatic images (if the brightness of observed scene is constant
or it can be compensated) and another (more robust) set of image features, based
on color information and localization ques.

2 The Self-localization Algorithm

A typical state recursive estimation can be performed in terms of a Kalman
Filter [11]. It can be shown that a normal distribution of the measurement error
induces a Gaussian distribution of the state’s pdf provided by the Kalman Filter.
This is a unimodal distribution and as a direct consequence there is always one
best state estimated. Hence KF is suitable for tracking a single hypothesis but
not many possibly competitive hypotheses, unless we use many instances of the
filter.

2.1 The Method of State Condensation

The general discrete self-localization scheme [13], based on Bayes filtering of a
Markovian environment, is also called state condensation or particle filtering [6],
[7]. It assumes, that the number of states can be limited to a finite number. Only
then it is computationally feasible to estimate the probability distribution over
states.

By belief we denote the pdf of states upon the condition of a sequence of
observations (measurements mt):

∀sk : Belt(sk) = p(sk
t |mt,mt−1, . . . ,mt−n) (1)

In the learning phase the system should acquire two a priori pdf’s:

1. The a priori conditional pdf of measurement upon state, i.e. for each discrete
state s ∈ S and possible measurement vector m to determine the pdf:
p(m|s);

2. The a priori pdf of state transition

p(sk
t+1|sl

t, . . . ,s
i
0) = p(sk|sl) (2)

where sl
t, . . . , s

i
0 is the history of past best belief states. In autonomous

navigation the action performed by the vehicle or camera are usually known,
due to the odometry. Hence, this knowledge can be incorporated into the
state condensation scheme - for each pair of states sk, sj and each possible
action a to determine the pdf of state transition with respect to action:
p(sk|sj ,a).

The discrete self-localization algorithm consists of the initialization step and
a main iterative belief ”refinement” step with sub-steps of : belief prediction,
stochastic diffusion, measurement and modification of belief (the reaction onto
the measurement) [13].
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2.2 The Algorithm of the Self–localization Process

1. Get the goal state.
2. Initialization of a default belief state at t = 0 (for example by a uniformly

distributed pdf) Bel0(sk) = p(sk
0 |H0).

3. REPEAT until the goal state is not reached:
(a) t = t + 1;
(b) find the current best state: s∗t−1 = arg max p(st−1|Ht−1), where

Ht−1 = (st−1,mt−1, st−2,mt−2, . . . , s0,m0)
is the history of past belief states and measurements;

(c) determine and perform the next action resulting from minimization of
the distance between current best state and the goal state;

(d) as the current action at and the a priori pdf p(st|st−1, at) are known the
predicted belief state at time t can be computed
B̂elt(sk) =

∑
s[p(s

k
t |st−1, at)p(st−1|Ht−1)]

(e) acquire the measurement mt at new position.
(f) with the a priori pdf p(mt|st) modify the belief state at time t:

Belt(sk) = p(sk
t |Ht) = ctp(mt|st)B̂elt(s),

where ct is the current normalization coefficient (the sum of belief state
distribution should be equal to 1).

3 Global Image Features

Due to the iterative approach, exhibited by the self-localization procedure, in-
dividual image measurements need not to be unique for all states - they can be
similar for many states. Hence, we expect that easy computable, general-nature
image features that are combined with a Gaussian-like belief state filtering should
already lead to robust navigation. We also expect that changes of the measure-
ments between the learning phase and the active phase of self-navigation (due
to change of scene illumination or inaccurate position of the vehicle) can be
compensated by a longer belief state refinement sequence.

In this section we propose different color feature detection schemas, obtained
in the RGB, HSV and Y CbCr color spaces. A complete feature vector for a single
image consists of features obtained for several sub-images. In this way we add
some general feature localization information to a state’s measurement vector.

3.1 Image Feature Detection Methods

The following global features are computed for every sub-image:

1. MeanVar6 - the three mean and three standard deviation values of every
color component (i.e. for H, S and V channels of the HSV color space);

m = [m1,m2,m3, std
2
1, std

2
2, std

2
3].
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2. Hist6 - the three dominating color components in the image with their den-
sity values.

m = [Ic1, Ic2, Ic3, den(Ic1), den(Ic2), den(Ic3)].

Ick - the dominating value of the k-th color component, den(Ick) - the number
of pixels with color Ick in relation to the total number of pixels.

3. FFT6x2 - the modules of first 6 components of a Fourier transform of the
image components H(hue) and S(saturation).

m = [|F(0,0)|, |F(0,1)|, |F(1,0)|, |F(0,2)|, |F(1,1)|, |F(2,0)|].

For a square image of size NN, the two-dimensional FFT is given as:

F(k,l) =
1
N2

N−1∑
i=0

N−1∑
j=0

I(i, j)e−i2π(ki/N+lj/N) ,

where I(i, j) is the image in the spatial domain; the exponential term is
the basis function - one such function corresponds to one Fourier coefficient
F(k,l). The first coefficient F(0,0) represents the DC-component of the image
and the F(N−1,N−1) represents the highest frequency component.

Obviously above vectors MeanVar6 and Hist6 are sensitive to scene illu-
mination changes. For the HSV and Y CbCr schemas we perform a Y-driven
normalization of the color (and we can omit the Y-components from further
consideration). The RGB color scheme requires an other intensity normalization
scheme - in this caase we scale the color components in such a way, that the sum
of intensities of all pixels is equal to some fixed reference value.

3.2 Learning the a Priori Pdf

The a priori pdf p(m|s) should be computed during the learning phase. But the
number of possible measurement vectors is infinite, usually there are continuous-
valued components of m. In practice this pdf can be made explicit only during
the active work. In the learning phase we compute and store the feature vectors
associated with each discrete state.

During the active work the feature vector of current view is detected (assum-
ing a previous normalization of the scene illumination or camera contrast).

The a priori pdf p(mk+1|s) is implicitly defined, as we can compute for each
state sk the value of a Gaussian distributed pdf, with mid point equal to zero, for
the distance of w|mk+1 −m(sk)|2 (where w is a weighting vector that adjusts
the intervals of particular components to some common interval).

The a priori pdf p(mk+1|s) is defined according to the difference of both
measurement vectors: the current measurement mk+1 at time k+1 and the stored
measurement ms for ∀s ∈ s. The conditional probability density is modelled by
a 1–D Gaussian normal distribution, with its mid point corresponding to the zero
value of a weighted difference

∑N×p
i=1 wi|mi

k+1 −mi
s|2 (where w is a weighting

vector that scales the expected ranges of particular feature elements to some
common level).
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3.3 Test Scenes

In our experiments the camera was mounted on a mobile platform [14] (Fig. 1).
The on-board processor with clock frequency of 900 MHz was able to process
around 2 images per second. Three degrees of freedom of the vehicle were allowed:
a translation along the X and Z axes by pre-defined unit steps and a rotation
around its Y axis by an angle of ±45o. The ”on-ground” locations of states and
of possible directions in three test scenes are shown in Fig. 2 and 3.

Fig. 1. An image is divided
into 9 sub-images - a sepa-
rate feature vector is com-
puted for every sub-image

Office - Seminar room - Corridor -
112 states. 200 states. 222 states.

Fig. 2. The distribution of mobile platform positions dur-
ing the learning phase for 3 test scenes

(a) (b)

Fig. 3. The possible orientations: (a) for the Office and Seminar room, and (b) for the
Corridor

Three scenes with different illumination conditions, spatial distributions and
different colors were available for testing (Fig. 4). Obviously, we expect that the
camera holds the white color balance properly both during learning and active
localization work. As we measure intensity-normalized color coefficients, some
changes in illumination are not significantly disturbing the data if only the color
balance remains to be constant.



Global Color Image Features for Discrete Self–localization 625

[9, 1] [9, 3] [9, 5] [9, 7]
The office scene

[23, 1] [23, 3] [23, 5] [23, 7]
The seminar room scene

[4, 13] [4, 15] [4, 1] [4, 3] [4, 5]
The corridor scene

Fig. 4. Examples of images acquired in different states and scenes and states

4 Test Results

4.1 Statistics of Features

An exemplary distribution of features over states is shown in Fig. 5. It is visible
that the particular feature values are very often the same for different states,
i.e. a single use of feature can not fully differentiate between two states. An-
other question is, how much sensitive these features are with respect to errors
in robot’s position/orientation and to scene illumination changes. The p-value
of two distributions expresses the correctness of a hypothesis, that both dis-
tributions are statistically equivalent. If the p-value is equal to zero, then the
above hypothesis is wrong and both features can be treated as being different.
We computed the p-value for all pairs of feature vectors, where the first element
of the pair corresponded to the state of the original scene, and the second ele-
ment - to the compatible state in the real scene. Usually, the compatible views
are displaced by several pixels and their illumination conditions are also slightly
different. The feature set FFT6x2 performed best of all, i.e. the other two sets
were more more sensitive to changes in state positions.

4.2 Test Runs

For every test scene and for each measurement method we have run the self-
localization process 100 times, with randomly chosen start and goal states. A 99-
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Fig. 5. The distribution of 2 measurement features over state from the MeanVar6-set
of HSV color space for the Office scene
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Fig. 6. Illustration of belief-state propagation - the belief state distribution after 1-st,
3-th and 10-th iteration

100 success rate appeared (i.e. the final goal state was reached) if color features
expressed in the HSV and Y CrCb color spaces were used. A particular self-
localization process is illustrated on Fig. 6. At the start point the belief state
distribution is an uniform distribution. After 3-4 steps the appropriate state,
that corresponds to the real position, can already be selected as the belief value
for such state dominates already the beliefs of remaining states. We assume that
obstacles or moving persons in front of the vehicle will be detected by other
sensors than vision. In order to limit their influence onto the measurement data
we expect to ”observe” higher wall sections instead of the floor.

5 Summary

Three different color image feature detection schemas were proposed and their
use as the measurement step in a discrete self–localization process was experi-
mentally verified. It was shown that even for natural scenes with changing illu-
minations and small perturbations of the odometry data, the use of even a small
set of features, expressing only global information of a particular view, allows a
robust and error-free self-localization (according to our test runs).
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Abstract. In radiation treatment (RT) planning, clinicians must trace
the outline of a few critical structures on a large number of images. Using
automated image segmentation could save tremendous time and effort.
Segmentation of the organs near the pubic bone (prostate and bladder)
is an important and challenging task: Some of the neighboring organs
have similar density values in the CT images and the border between
the different organs is hardly visible.

In a segmentation framework, transforming a CT study to a common
reference frame is used in two tasks: For statistical atlas (model) gen-
eration, and in the clinical application, establishing the voxel-to-voxel
correspondence between the study and the model. In these cases pre-
cise alignment of all anatomical structures is not crucial, the focus is on
proper alignment of the pubic bone area and fast execution. Our pro-
posed method solves this by a new, two step process based on a voxel
similarity-based registration algorithm.

1 Introduction

During clinical diagnosis, the patient’s internal anatomy is imaged to determine
how a disease has progressed. Several modalities are used to generate images
of patient’s anatomy or functionality, suitable for diagnostic purposes or ra-
diotherapy treatment, or for surgical planning. In case of radiation treatment
(RT) planning, CT imaging is generally used because image voxel gray values
(Hounsfield Units) are in direct function of radiation dose calculation.

There are several regions of interest in radiation treatment planning either tar-
gets to radiation (e.g., tumor) or regions that should be avoided during radia-
tion (e.g., healthy tissues and vital organs). Manually drawing the individual con-
tours on a contiguous set of 2D slices then combining them is very time consuming
and labor intensive. Using automated image segmentation could save tremendous
time and effort that would otherwise be needed if using manual tracing. Also, au-
tomated segmentation could increase precision (intra-operator repeatability and
inter-operator reproducibility) by eliminating subjectivity of the clinician.

Segmentation of prostate and bladder is an important and challenging task.
E.g., the contour of the prostate in CT images is very poor and its interface with
� This work was supported by GE Medical Systems.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 628–635, 2005.
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other structures, such as the bladder, seminal vesicles, rectum, and urethra is not
always clearly defined. There are a few methods published about segmentation
of pelvic organs. Philips already has a RT planning product containing model-
based segmentation of pelvic organs [1] based on deformable models. Their model
building process starts from a representative training set of segmented organs
delineated by clinical experts. The surface of an organ is triangulated and aligned
to the shapes in the remaining segmented datasets by rigid and nonrigid regis-
tration. A point distribution model is generated by computing the mean shape
and the shape variation modes. The segmentation is performed by interactively
positioning the model and then the deformable model is adapted to the image
data using energy minimization.

In our proposed approach, the CT images of different patients are trans-
formed to a common reference frame, thus besides the organ shapes, the vari-
ability of their positions in this frame can also be taken into account. The de-
formable model is described in this frame. In the clinical application, this model
can be initialized automatically by applying the inverse of the transformation
taking the study to be segmented to the reference frame. If necessary, this can
be refined by the clinician interactively. By optimizing a cost function, the de-
formable model is adopted the image data. The scope of this paper is limited
to the registration of the studies to a common reference frame and automatic
initialization of the deformable segmentation process, which can be considered
as a preprocessing step of a segmentation framework.

2 Methods

Registration of 3D medical data has been in focus of research for decades, sev-
eral algorithms have been developed [2]. In our project manual and interactive
registration algorithms are not convenient enough – the more automatic the
method is the better. Fully automatic methods utilize geometric features, such
as points, outlines or surfaces, or image intensities directly, computing statis-
tical, information theory-based or correlation-based similarity of corresponding
intensity values. Many of these methods can be used to register the pubic bone
area. Methods based on voxel similarity measures provide fast and reliable re-
sults without any user interaction. Surface registration could also be used. The
bone surface can be segmented automatically and the registration can be even
faster than that of voxel based methods. Outliers (bone structures that can be
found only in one of the studies) can cause problems though.

Another important part of the registration algorithm is the type of trans-
formation to consider. Here the anatomy non-rigidly differs from patient to pa-
tient, the goal of registration is to bring the anatomic structures “close” to each
other. Since an approximate result is satisfactory and fast execution is required,
rigid-body or affine transformations can be utilized. Deformable registration can
take too much time, and it is hard, if not impossible, to adequately model the
anatomical differences between patients. Furthermore, since both organ position
and shape are taken into account during model creation, too much deformation
of the organs is not welcome at this point.
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A previous work on pelvis registration focuses on precise bone alignment for
bone atlas creation [3]. Such an application requires deformable registration due
to the large differences between patient anatomies, since the size and shape of
pelvises can vary widely. On the other hand, precise alignment of all bone struc-
tures is not crucial as a preliminary step in model-based segmentation of prostate
and bladder, the focus is on acceptable alignment of the pubic bone. In addition,
deformable registration requires more computing time, in our case fast registra-
tion is important. Furthermore, better bone alignment does not guarantee better
soft tissue alignment.

In model-based segmentation, transforming the CT studies to a common
reference frame is a useful step before two tasks. For model making, when the
studies are registered, the assumption is that the anatomic regions of different
studies can be found nearly in the same voxel regions. By transforming the
hand-segmented ground truth segmentations of the organs of interest to this
common reference frame together with the CT studies a deformable organ model
can be calculated in the reference frame. In the clinical program, automatic
alignment of the organ model to the patient study — via applying the inverse
of the transformation that takes the study to the reference frame — can reduce
the necessary user input to initialize the model-based segmentation.

Although the registration methods applied in these steps are almost the
same, the requirements are different. The model generation is not part of the
actual segmentation process thus the registration can be performed in “batch
mode”, i.e., one after the other without user interaction. More precise alignment
is preferred to fast execution time. On the other hand, in the clinical program,
the execution must be as fast as possible, even sacrificing some precision.

We propose an extension not addressed by previous algorithms. The idea is
that after an affine transformation which gives global optimal alignment, a re-
finement step is performed. Global registration prefers alignment of body parts
of big volume, like spine or pelvis causing slight or big differences in the pubic
bone area (Fig. 1, top row). It is assumed that scale parameters are satisfacto-
rily determined by this global part. During refinement, scale parameters are kept
from the global part, then an optimal rigid-body transformation is searched in
the pubic bone region only (Fig. 1, bottom row). Many methods could be ex-
tended this way [4]. In our actual implementation, we used a general registration
method utilizing normalized mutual information [5].

3 Materials

Our test database consists of 33 pelvic CT images provided by General Elec-
tric Medical Systems Company. The chosen reference image has 83 2D slices of
512x512 voxels. The in-slice resolution is 0.936562 millimeters, while the slice
distance is 3.00 millimeters. Most of the other studies have 60–100 slices, but in
some extreme cases 33 or 189 slices are present. The spatial in-slice resolution is
in the [0.60-0.98] interval, the slice distance is usually 2.5–3.00 mm. Studies are
of varying quality, some are distorted by artificial (metallic) objects.
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Fig. 1. Top row: The optimal global registration of a study (dotted outline) against the
reference volume (filled shape) — a coronal (left) and a sagittal cross section (right). It
is well visible that the organs of the two studies are close to each other, but the over-
lapping region e.g., of the prostate, is small. Bottom row: The optimal local rigid-body
refinement following the global registration of a study against the reference volume
— a coronal (left) and a sagittal cross section (right). The result of the registration
provides a good starting point for a segmentation algorithm. The figures are derived
from real data.

Three clinical experts manually segmented prostate in 26 and bladder in
all the 33 studies independently. The experts visually checked the result of the
majority vote segmentation (if a voxel was identified as the given organ by
at least two experts) together, and accepted it or made some modifications.
This final segmentation is used as the gold standard. After visual inspection of
the registration results, three studies were omitted from the database because
of unacceptable misregistrations. In one of these cases the patient orientation
was wrong (a preprocessing step is necessary to solve this), in another case the
bladder was filled with contrast material. Note that there are some more studies
of this kind and even heavily distorted ones where the registration gave good
results. Table 1 summarizes the properties of the studies we use in this paper.

Our proposed registration method requires the manual selection of the local
neighborhood of the pubic bone in the reference study. This region of interest
is used in the local refinement step of the algorithm. During local refinement,
voxel intensity values inside this neighborhood only are taken into account. This
region should contain the pubic bone, the lower part of ischium, and some soft
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Table 1. Study database. The last three columns show the size of the gold standard
prostates. The volume is given in pixels and cm3, the last column shows the diameter
if a perfect spherical prostate shape is assumed.

Study ID Slices Slice spacing Slice Thick. Prostate Gold Standard
(mm) (mm) (pixels) (cm3) Sp. diam. (cm)

cd2pa2 (reference) 83 0.976562 3 7121 20.37 3.39

cd2pa3 70 0.976562 3 9927 28.40 3.79

cd2pa4 73 0.976562 3 6020 17.22 3.20

cd2pa5 68 0.976562 3 14267 40.82 4.27

cd2pa6 81 0.976562 3 11165 31.94 3.94

cd2pa7 64 0.976562 3 8936 25.57 3.66

cd1prostate1 86 0.9375 2.5 42501 93.39 5.63

cd1prostate2 149 0.820312 1.25 31181 26.23 3.69

cd1prostate3 81 0.9375 2.5 11269 24.76 3.62

cd3pa4st1se1 67 0.976562 2.5 13526 32.25 3.95

cd4pa5st1se1 112 0.976562 2.5 23520 56.08 4.75

cd4pa7st1se1 78 0.976562 2.5 8958 21.36 3.44

cd4pa8st1se1 83 0.976562 2.5 8402 20.03 3.37

cd4pa10st1se1 73 0.976562 2.5 15323 36.53 4.12

cd6pa5st1se2 84 0.976562 3 1570 4.49 2.05

cd6pa8st1se2 73 0.976562 3 15677 44.85 4.41

cd6pa9st1se2 55 0.976562 3 8642 24.72 3.61

cd6pa10st1se2 78 0.976562 3 13652 39.06 4.21

cd8pa8st1se1 39 0.9375 5 24620 108.19 5.91

cd8pa9st1se2 104 0.976562 2.5 33800 80.59 5.36

cd14anon10 49 0.98 5 5157 24.76 3.62

cd14anon14 46 0.976562 3 6362 18.20 3.26

cd14anon21 189 0.9375 5 8124 35.70 4.09

tissue region around them. This selection must be done only once and only for
the reference study (Fig. 2).

4 Tests and Results

From the nature of the problem it is evident that ground truth information on
the expected registration results is not available. What we have is the expert
segmented gold standard database, and we expect that after spatial normaliza-
tion, the organs will be “close” to each other. Since the sizes and shapes of the
bladders vary too much and our database is too small to be able to select enough
full, normal, and empty segmented bladders, only the prostate data is used for
the evaluation of the global and local refinement methods.

We conducted three different tests to find out whether the method utilizing
local refinement is significantly better, i.e., brings organs, in this case prostates,
closer to each other than the method using global registration only.
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Fig. 2. Surface model (left) and manually selected neighborhood in a transaxial slice
(right) of the pubic bone selected for local refinement

Let N denote the number of the studies and PROSTi ⊆ Z3(1 ≤ i ≤ N) the
voxel positions classified as prostate in the ith study after transforming to the
common reference frame.

In the first test we assume that the prostates are spherical. For each study, the
centroid of the prostate (COGi =

∑
x∈PROSTi

x/|PROSTi|) is computed. The
centroid of this set of centroids (COGglobal), and for each study the Euclidean
distance between COGi and COGglobal are computed. The second and third
columns of Table 2 show these.

The second and third tests utilize a so called probability atlas (PROB)
which is defined as follows. By transforming the hand-segmented ground truth
segmentations of the organs of interest to the common reference frame together
with the CT studies for each voxel, the probability that the given voxel belongs to
a specific organ can be assigned. E.g., the value is 0 if that voxel was not classified
as part of the organ in any of the studies, 0.5 indicates that this happened in
half of the studies.

The second test determines the average probability belonging to the voxels
of the transformed gold standard prostates of each study,

prob1i =

∑
x∈PROSTi

PROB(x)
|PROSTi|

.

The third test shows the summed probability of the prostate region of a study
relative to the whole probability map,

prob2i =

∑
x∈PROSTi

PROB(x)∑
x PROB(x)

.

For each method and test, statistical parameters (mean, standard deviation
and paired two-tailed t-Test) were computed. Table 2 shows the results of the
three tests for the global registration only and global registration followed by
the local refinement, respectively.
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Table 2. Results showing Euclidean distances of the centroids, and prob1
i and prob2

i

values

Study ID Centroid Test Probability Test 1 Probability Test 2
Global Refined Global Refined Global Refined

cd2pa3 8.08 2.92 0.5635 0.6790 0.3837 0.4588

cd2pa4 3.80 7.12 0.6439 0.6689 0.2970 0.3015

cd2pa5 9.81 7.14 0.4937 0.5685 0.4890 0.5400

cd2pa6 10.30 8.94 0.4853 0.5297 0.4143 0.4470

cd2pa7 4.75 4.95 0.5934 0.6263 0.4268 0.4466

cd1prostate1 9.90 11.19 0.3188 0.3290 0.7591 0.7819

cd1prostate2 3.73 5.51 0.5576 0.5995 0.4752 0.5229

cd1prostate3 3.64 6.64 0.6274 0.6400 0.4220 0.4157

cd3pa4st1se1 12.66 6.14 0.4028 0.6082 0.3012 0.4737

cd4pa5st1se1 11.40 14.82 0.3350 0.3160 0.5391 0.5020

cd4pa7st1se1 8.74 7.61 0.4867 0.5931 0.2622 0.3451

cd4pa8st1se1 22.95 18.07 0.1870 0.3049 0.1112 0.1805

cd4pa10st1se1 2.75 4.00 0.5299 0.5678 0.5515 0.5857

cd6pa5st1se2 8.77 8.18 0.6395 0.8404 0.0811 0.1077

cd6pa8st1se2 10.50 6.69 0.4588 0.5254 0.5451 0.6245

cd6pa9st1se2 17.95 8.65 0.3148 0.4205 0.4175 0.5553

cd6pa10st1se2 18.22 4.41 0.2792 0.4886 0.3284 0.5906

cd8pa8st1se1 22.49 18.99 0.2164 0.2501 0.6947 0.7987

cd8pa9st1se2 19.04 17.69 0.2661 0.4325 0.0165 0.0266

cd14anon10 2.57 3.39 0.6212 0.6734 0.4101 0.4652

cd14anon14 16.09 10.15 0.3897 0.6070 0.2036 0.3128

cd14anon21 13.19 7.04 0.4180 0.5325 0.4290 0.5514

Average 10.97 8.65 0.4468 0.5364 0.3890 0.4561

Std.Dev. 6.30 4.73 0.1435 0.1449 0.1836 0.1903

t-Test 0.0213 8.3513E-06 0.0001

5 Discussion

The results in Table 2 indicates that after the refinement step the prostate regions
are significantly (P < 0.05) closer to each other compared to the global registra-
tion.Registrationswereperformedona3GhzPentiumIVdesktopPC.The running
time is about two minutes for a study. It is acceptable for the model creation pro-
cess since this must be done only once. In the clinical application, fast execution is
crucial especially since the registration is only a preprocessing step in the segmen-
tation process which is time consuming by itself. Utilizing several optimizations
(e.g., by using only the coarser levels of a hierarchical representation), the running
time is currently between 20–40 seconds. It can be further reduced to nearly its half
by reducing the number of voxels in the reference volume removing the unnecessary
parts (e.g., using the bounding box of the patient data). Visual inspection and pre-
liminary statistical results show that although the precision is slightly reduced, the
result is acceptable in most cases.
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6 Conclusions

In this paper we focused on a preprocessing step of a segmentation framework.
Before model generation, transforming the studies of different patients to a com-
mon reference frame is useful. In the clinical application, initial organ model
placement can be established automatically. Note that automatic registration
does not guarantee acceptable results, so visual inspection is necessary. In our
database the failure rate of registrations was low (three out of 26) even though
the studies were “real-life”, many of them distorted by metallic objects, or not
satisfying the assumed protocol (e.g., wrong patient position, contrast agent is
visible in the images).
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Abstract. Performance of conventional snake models tends to decrease
in the case where the target object is overlapped with other objects and
where the bias between the initial snake and the target object is large.
To solve these problems, this paper proposes an extended snake model
including the energy dissipation function in the external energy, which is
defined as a function of the variation rate of the target object’ area and
the target object’s velocity obtained by the modified SSD algorithm. In
the experiment, it is shown that the proposed snake model renders the
mobile robot with a camera follow the moving target successfully even
when it is occluded or overlapped temporarily by other objects.

1 Introduction

As the mobility of robots is improved, more intelligent functions are required for
mobile robots to possess. One of them is the ability of tracking or following a
moving target. In order for a mobile robot to follow a moving object, it is essential
to detect the object in the input image and to measure its position first. Since
both the target and the robot are moving, both the shape of the target and the
background in the input image can be changed. In this case, the shape of a 3D
moving object projected on a 2D image can be interpreted as a deformable 2D
object depending on the viewing direction of the mobile robot[1,2].

For the purpose of detecting the target and determining its position, the
snake, an active contour model has been widely used to extract the boundary of
the target in the image[3,4]. However, when a target object is overlapped with
other ones or when an input image is influenced by noise, the performance of
the snake model is deteriorated. To solve this problem, Peterfreund[5] presented
a Kalman-filter based snake model, where the velocity measurement which is
not consistent with the estimated velocity is rejected during the update step of
the system state. Since it discriminates the target object using the optical flow
and edge-based potential field, it can detect the object boundary even when the
target object is partially overlapped with other ones moving toward different
directions. However, because the image flow is obtained with the background
fixed, this approach is difficult to use for tracking the moving object while the
camera moves too. Jiang et. al.[6] presented a modified snake model, which
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includes a new external force that makes the active contour be attracted to a
shape similar to the one in the previous frame. It predicts the contour to be
appeared in the next frame and uses the predicted contour as the reference.
Although this approach prevents the contour from shrinking inside the object,
it still does not provide a clear solution for the overlapped objects.

Another case where the snake model does not work well occurs when the
positional difference, so called a bias between the object to be detected and
the initial snake curve is large. To solve this problem, Kim[7] introduced a new
snake model using image flow, which applies different algorithms depending on
the amount of bias. It tracks the target in the rolling mode when the bias is small
enough, otherwise in the jump mode. In the rolling mode, the snake approaches
to the optimal shape as the conventional algorithm does. Instead, in the jump
mode, the template found in the previous frame is discarded and the snake jumps
to the new position reinitializing itself with the estimated radius of the object.

This paper proposes an extended snake model which can handle those prob-
lems mentioned above. The problem caused by the overlap of objects can be
solved by introducing the momentum which will preserve the shape of the snake
contour. The momentum added to the energy dissipation function which is used
for damping the kinetic energy forbids the snake from fast expanding to neigh-
boring objects while making the process robust to the image noise. For solving
the large bias problem, the proposed new snake model takes the predicted ve-
locity of the target into account to determine the position of the initial snake
contour. The velocity of the target is estimated by the modified SSD (Sum of
Square Difference) algorithm. So, even when the bias is somewhat large, the pro-
posed snake model can stably track the target in a dynamic environment where
both the camera and the target object move simultaneously.

2 New Snake Model with an Energy Dissipation Function

To exactly determine the match between the template and the detected object’s
contour, a modified SSD algorithm is provided. Once the target object is found
in the next frame, then the velocity of the target object can also be estimated.

2.1 Prediction of the Moving Target’s Velocity Using SSD
Algorithm

SSD algorithm is used for finding the position of the best matching area in the
(k)th frame corresponding to the given template, and returning the displacement
of the object in the (k)th frame from the (k-1)th frame[8]. This algorithm is
usually used for tracking a target in the case where its shape does not change
in the images, thus it is modified in such a way that the template is updated in
every frame as the shape of the target object found by using the snake model in
the previous frame.

Let’s assume that the template in the image represented by pi(k − 1) is a
rectangle whose width and height are respectively M and N, and that its position
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in the (k-1)th frame is (xi(k − 1), yi(k− 1)). Then, the SSD algorithm finds the
object pi(k − 1) in the searching range Ψ , which minimizes the dissimilarity
measure given in Eq.(1).

Z (pi(k),'x) =
∑

m∈M,n∈N

[
Ik−1 [xi(k − 1) + m, yi(k − 1) + n]

−Ik [xi(k − 1) + m + u, yi(k − 1) + n + v]

]2

,

(1)

where u, v ∈ Ψ , and m and n represent the pixels inside the template. Also, Ik is
the (k)th frame image and (xi(k − 1), yi(k − 1)) is the center of the template in
the (k-1)th frame. Thus, in Eq. (1), represents the dissimilarity between pi(k)
and pi(k − 1) and they become more similar if its value gets smaller. Then the
positional difference Δx = [u, v]T between them is defined as the displacement
of the target from (k-1)th frame to (k)th frame. Once the target object is found
in the new frame, its displacement from the previous frame is approximated as
the velocity of the object, vt ≡ ∂x

∂t , as follows , if the image sampling time is T.

vp
t
∼= lim

T−→0

[ u
T
,
v

T

]T
(2)

2.2 Extended Snake Model with an Energy Dissipation Function

A snake can be expressed by the deformable closed curve v(s,t) where s is the
spatial parameter and t is the time parameter, as given in the following equa-
tion(Eq.(3)). The length of the closed curve is normalized.

v(s, t) = (x(s, t), y(s, t)) : s ∈ [0, 1], t ∈ T (3)

The potential energy of a snake v(s,t) is defined as the sum of the internal
potential energy Eint and the external energy Eext as shown in Eq.(4).

Esnake(v) = 1
2

∮ [
Eint(v) + Eext(v)

]
ds (4)

The internal energy Eint constrains the bending and stretching force of the
snake curve and expressed by Eq. (5).

Eint(v) = α|vx|2 + β|vss|2, (5)

where vs = ∂v/∂s constrains the stretching of the snake like physical spring
and vss = ∂2v/∂s2 constrains the bending of the snake like physical rod. The
constant α and β are weights that control the tension and rigidity of the snake
curve, respectively. The external energy Eext is expressed in different ways de-
pending on the applications of the snake, and it makes the points on a snake,
called snaxels (snake elements), converge to the boundary of the object. The
external potential function is usually defined as follows:

Eext(v)(≡ P (v, t)) = −|∇Gσ(x) ∗ I(x, t)|, (6)
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where I(x, t)denotes the image intensity of the sample at time t, Gσ(x) denotes
Gaussian kernel with the standard deviation σ, and ∇ is the gradient operator.
To find the optimal contour of the object, the snake changes its shape so that
its potential energy Esnake can be minimized. For this purpose, the potential
energy should be transformed into a kinetic energy in order to reach a new
lower equilibrium. And the kinetic energy must be reduced by damping to reach
the rest state (vt = 0). Since the motion of the snake curve to reach the rest
state is generated using the potential energy of the snake curve itself, it can be
interpreted as the movement of energy conservative system. This relationship is
well expressed by Euler-Lagrangian equation, where Lagrangian L(v) is given
by Eq. (7):

L(v) = T (v)− U(v) (7)

where T(v) and U(v) denote the kinetic energy and potential energy of the snake
curve v, respectively. The kinetic energy is defined as follows:

T (v) = 1
2

∮
μ|vt|2ds, (8)

where vt = ∂v/∂t . Since the potential energy is expressed by Eq. (1), La-
grangian L(v) can be rewritten as Eq. (9):

L(v) = 1
2

∮ [
μ|vt|2 − Eint(v(s)) − Eext(v(s))

]
ds. (9)

To keep the conservative system at a rest state, the kinetic energy must
be dissipated by damping only. That is, the motion of the snake curve must be
described by a non-conservative system with an energy dissipation function. The
dissipation function used here is represented by the following equation:

D(vt) = 1
2

∮
γ|vt|2ds. (10)

This function is generalized here considering the dynamic environment where
both the camera and the target object move simultaneously. It considers the
variation rate of the area enclosed by the snake curve and the difference between
the snake velocity and the object velocity. Then Eq. (10) can be expressed by
Eq. (11) as follows:

D(vs,vt,v
p
t ) = 1

2

∮ [
γ|A(vt,vs)|2ds + 1

2

∮
κ|vt − vp

t |2
]
ds (11)

where the constant γ and κ are the weight of the variation rate of the snake’s
area and that of the velocity difference, respectively. The first term dissipates the
kinetic energy by generating the inner force that minimizes the time variation
rate of the snake’s area, where the snake’s area is given by Green theorem in Eq.
(12):

A(v(s, t)) = 1
2

∮
{x(s, t)ys(s, t)− y(s, t)xs(s, t)}ds (12)
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Then, the variation rate of snake’s area is derived from the time derivative
of Eq. (12) as follows:

At(vt,vs) = d
dtA(v(s, t)) = 1

2

∮ {−xst(s, t)y(s, t) + x(s, t)yst(s, t)
+yst(s, t)x(s, t) − y(s, t)xst(s, t)

}
ds

=
∮ ∣∣∣xt xs

yt ys

∣∣∣ds, (13)

where xt = dx/dt, xst = dxt/ds, yt = dy/dt, and yst = dyt/ds.
As shown in Eq. (13), the variation rate of snake’s area is the function of

the temporal and spatial velocities of the snake. That is, minimization of the
variation rate of snake’s area will make the inner force conserve the shape of the
snake contour, and cause the effect of frictional forces on the velocities of snaxels.
The second term in Eq. (11) is the velocity difference between the snake contour
and the object’s velocities that should be minimized. Because the velocity of
the target object is not exactly derived, here the velocity vp

t defined in Eq. (2)
and predicted by SSD algorithm is used. Incorporating these forces into Euler-
Lagrange equation of motion, Eq. (14) is obtained as follows:

∂L
∂x −

∂
∂t

(
∂L
∂xt

)
− ∂

∂s
(

∂L
∂xs

)
+ ∂2

∂s2

(
∂L

∂xss

)
= −γAt − κ(vt − vp

t ). (14)

By substituting Lagrangian given in Eq. (9) into Eq. (14), Euler-Lagrange
equation of motion is finally written as Eq. (15):

μvtt + γAt + κ(vt − vp
t )− ∂

∂s(αvs)− ∂2

∂s2 (βvss) = −∇P (v, t), (15)

where vtt = ∂2v/∂t2, vs = ∂v/∂s, vss = ∂2v/∂s2. Once the appropriate initial
condition at t=0 and boundary conditions at the extremities of the interval Ω are
given, the solutions of the above differential equation can be obtained. Compared
to the conventional snake model, the proposed algorithm has a couple of major
advantages in dynamic environment where both the camera and target object
move. The first one is that the proposed one can track the moving target even
if the part of the target is missed by overlapping or by noise, because it has the
momentum to preserve the shape of snake contour. The second one is that the
proposed one solves the bias problem by making the snake velocity converge to
the predicted velocity vp

t of the target object. Since the snake velocity can be
slower than the target’s velocity, the bias between the snake and the target object
may increase a lot. This large bias will result in tracking the object located near
the target object not the target object itself. The proposed one prevents this type
of problem from occurring. These observations are proved by the experiments in
the following section.

3 Experiments and Discussion

In the experiment, a monochrome CCD camera is mounted on a Nomad Scout
Robot , and On-Air TV card is used to capture a 320 x 240 eight bit per pixel
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(a) (b) (c)

(d) (e) (f)

Fig. 1. The target object is overlapped with a moving object. The upper three pictures
show the case of using the proposed snake model and the lower ones show the case of
using the conventional one. A moving object is approaching in (a) and (d), overlapping
in (b) and (e), leaving in (c) and (f).

image at 12 sampling frame rate. The algorithm has been implemented with
Visual C++ 6.0 and installed in a PC with Pentium CPU (700MHz). A small
car robot is used as the target object and a small airplane robot is used as an
obstacle. The experiments have been performed to test whether the mobile robot
follows the target with keeping the distance in 1m and keeps in around the center
of the input image. The performance is compared with that of the conventional
algorithm. To compare the performance of the proposed snake algorithm with
that of the conventional one, two situations are considered. One is that the target
object occludes temporarily another moving object, and the other one is that
the target object is occluded by a man passing by the camera.

The results of the experiments for the case where the target is overlapped
with the airplane robot are given in Fig. 1. A toy car is used as the target object,
and a toy airplane is used as the overlapping object. In Fig. 1, (a) and (d) show
the fifteenth frame where the moving object is approaching to the target object,
(b) and (e) show the fifty-seventh frame where the moving object is passing
behind the target object resulting in an overlapped input image, and (c) and (f)
show the ninety-fourth frame where the moving object leaves the overlapping
situation. Fig. 1(e) shows that the rectangle begins getting larger and (e) shows
that the size of the rectangle is already out of the control, if the conventional
algorithm is used. Instead, Fig. 1(b) and (c) show that the size of the rectangle
is maintained stably in the case of using the proposed snake model. The results
of the experiment in the case where the target object is occluded temporarily by
a passing person are given in Fig. 2. When using the conventional algorithm, the
contour shrinks abruptly as soon as the target object is completely occluded, as
shown in (e). Above all, the snake is attracted by the neighboring shadow formed
by noise after the target is appeared again, as shown in (f). However, when using
the proposed snake model, the snake’s contour is well preserved even when the
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(a) (b) (c)

(d) (e) (f)

Fig. 2. The target object is completely occluded by a passing person. The upper three
pictures show the case of using the proposed snake model and the lower ones show the
case of using the conventional one. The target object moving in (a) and (c), occluded
in (b) and (e), reappearing in (c) and (f).

Table 1. Performance comparison of the proposed algorithm with conventional one

Experiment Case
Variance of average

error(pel2)
Number of

missed frames

Maximum Position
Error(pels)

Conventional 3.20 6.20 > 8.00

Case 1 Proposed 2.02 0 3.85

Conventional 4.35 8.50 > 8.00

Case 2 Proposed 2.17 0 4.16

target is completely occluded and when the occluded target is appeared again,
as shown in (a) and (c).

Table 1 summarizes the results of the experiments performed on the above
two situations. For each situation, 5 tests are executed to acquire the statistical
results. To tell the performance of the algorithm, three measures are used. The
variance of average error shows the reliability and the number of missed frames
shows how many images the algorithm could not find the contour among total
110 frames. The maximum position error shows the worst case performance. As
can be found in the Table 1, the proposed algorithm never misses the target while
the conventional algorithm does from time to time. It is because the maximum
error between the desired and current position of the target object always exists
in effective searching area. Table 1 also shows that the variances of average error
in the situation 1 are larger than those in the situation 2. It is because the
density of the car robot is similar to the density of background. And the reason
why the variances of average error in situation 2 are larger than those in another
situation is that the overlap between two objects is occurred.
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4 Conclusion

This paper proposed a new extended snake model to solve the overlap and bias
problems occurring in tracking a moving target with a mobile robot having a
camera on it. The dissipation function of the snake model includes the variation
rate of snake’s area for generating the momentum to preserve the shape of snake’s
contour during the consecutive images, and the velocity error between the snake
velocity and the predictive velocity from the SSD algorithm. The extended snake
model also solves the large bias problem by making the snake velocity converge
into the predictive velocity of the target. The comparative experiments have
shown that it is able to stably track the moving target and robust to the image
noise in the dynamic environment.
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Neighborhood Decomposition of 3D Convex Structuring 
Elements for Morphological Operations*1 
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Department of Computer and Information Engineering, 

Seoul, Korea 
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Abstract. Morphological operations with 3D images require a huge amount of 
computation. The decomposition of structuring elements used in the morpho-
logical operations such as dilation and erosion greatly reduces the amount of 
computation. This paper presents a new method for the decomposition of a 3D 
convex structuring element into a set of neighborhood structuring elements. A 
neighborhood structuring element is a convex structuring element consisting of 
a subset of a set consisting of the origin voxel and its 26 neighborhood voxels. 
First, we derive the set of decomposition conditions on the lengths of the origi-
nal and the basis convex structuring elements, and then the decomposition prob-
lem is converted to linear integer optimization problem. The objective of the 
optimization is to minimize a cost function representing the optimal criterion 
for the implementation of morphological operations. Thus, our method can be 
used to obtain the different optimal decompositions minimizing the amount of 
computation in different cases.  

Keywords: mathematical morphology, dilation, erosion, structuring element, 
decomposition, convex polyhedron.  

1   Introduction 

Mathematical morphology provides powerful tools in the fields of image processing 
and computer vision. The basic operations of mathematical morphology are dilation 
and erosion, which stem from Minkowski addition and subtraction. An image pro-
cessing task can be achieved by arranging set operations as well as dilation and 
erosion operations suitably for the goal of the task. The structuring elements used in 
morphological operation play the important role of the probe to detect and extract the 
geometrical characteristics of an input image, and one should choose the structuring 
element with the size and the shape appropriate for the purpose of the operation[1], 
[2]. If a large structuring element is decomposed into a set of smaller structuring 
elements, the dilation of an image by the original structuring element can be achieved 
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by a sequence of the dilation operations by the set of smaller structuring elements[3]. 
Generally, such decomposition reduces the amount of computation required to 
perform dilation. Erosion can be benefited by decomposition similarly. In the rest of 
this paper, we discuss the decompositions for dilation only since an analogous 
discussion can be made for erosion. 

The decomposition of 2D structuring elements was first investigated by Zhuang 
and Haralick[4]. Xu[8] and Park[9] developed the methods to decompose a 2D 
convex structuring element into a set of neighborhood structuring elements. However, 
their methods cannot be extended to decomposition of 3D structuring elements. 

3D mathematical morphology is shown to be effective in the areas of medical 
image processing and shape analysis[10]. Also, numerous 3D parallel image pro-
cessors have been proposed and implemented for fast processing of 3D images. As in 
the 2D case, it is desirable and often inevitable to decompose 3D structuring elements 
for effective and efficient computations of 3D morphological operations. Much 
research efforts are concentrated on the 2D decomposition problems. Furthermore, the 
amount of 3D image data is generally much larger than that of 2D image data, and the 
fast image operations are indispensable. However, 3D decomposition problems are 
yet to be explored.  

In this paper, we present the conditions for decomposition of a digital convex 
polyhedron into a set of basis digital convex polyhedra and propose a new technique 
for the neighborhood decomposition of 3D convex structuring elements. The 
structuring elements in a neighborhood decomposition are neighborhood structuring 
elements, each of which is a subset of a set consisting of the origin voxel and its 26 
neighborhood voxels. Convex structuring elements are often used in morphological 
image processing because of its good geometric characteristics[8].  

The optimal decomposition of a structuring element depends on how a dilation op-
eration is implemented. In case that there are many possible decompositions for a 
structuring element, one should choose the decomposition that not only provides a 
feasible implementation of dilation but also requires the minimum amount of compu-
tation on the implementation. In this paper, we defined cost function, which repre-
sents the total amount of computation or time required to perform a sequence of dila-
tions by the structuring elements in a decomposition. By minimizing the cost func-
tions representing the different optimal criteria for different implementations, the 
optimal decompositions for different cases can be obtained. 

This paper is organized as follows. In Section 2, the terminologies and notations on 
3D digital geometry are provided, and a digital convex polyhedron which is also a 3D 
convex structuring element is defined. In Section 3, we present the conditions for the 
decomposition of a digital convex polyhedron into the set of basis convex polyhedra. 
In Section 4, we propose the new technique for the neighborhood decomposition of 
3D convex structuring element and show example decompositions. Finally, Section 5 
presents our conclusion 

2   Preliminaries  

In this section, the geometrical terms on 3D Euclidean space are introduced, and their 
3D digital counterparts are analogously defined. In the following, E3 is the 3D Euclid-
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ean space, and Z3 is the 3D digital space in which each component of the position 
vector of a point is an integer. Z3 is the 3D image space in which an image is repre-
sented as a set of the voxels in the volume occupied by objects. 

3D Euclidean hyperplane H normal to non-zero vector d and translation t is the set 
of points x such that d x = t. H divides the entire 3D Euclidean space into two half 
spaces. The set of points in H and the half space in the direction of -d forms the 
closed half space L with outward normal d and translation t.  L is the set of points x ∈ 
E3 such that d x ≤ t. If closed convex set K ⊂ E3 exists only in L and H ∩ K ≠ ∅, then 
H is called a supporting hyperplane of K with outward normal d, and  L is called the 
supporting half space of K with outward normal d. The closed bounded set K is called 
a convex polyhedron if it can be represented as the intersection of the set of closed 
half spaces. 

The geometrical terms on 3D digital space is defined as follows. First, we define 
26 principal directions, each of which is a non-zero 3D vector consisting of  3 com-
ponents having the values of 1, -1, or 0, and they are denoted as di, i = 1, …, 26. Fur-
thermore, the principal directions are categorized into type 1, 2, and 3 depending on 
the number of non-zero components in the vectors representing principal directions. 
For example, principal direction (1, 0, 0)/(1, 0, -1)/(1, 1, -1)   is type 1/2/3. 

The digital hyperplane normal to principal direction di and translation t ∈ Z is the set 
of digital points in the analogous Euclidean hyperplane. The digital hyperplane is the set 
of points x ∈ Z3 such that di x = t. Note that a digital hyperplane sweeps the whole digi-
tal space while t ∈ Z varies from minus infinity to plus infinity. Also, the digital half 
space with outward normal principal direction di and translation t ∈ Z is the set of digi-
tal points in analogous Euclidean half space. Similarly, digital supporting half space and 
hyperplane are the sets of points in the analogous Euclidean counterparts.  

3D chain code directions are defined on each of 26 hyperplanes with outward nor-
mal di. 8/6/4 chain code directions are defined on type 1/2/3 hyperplanes, and they are 
ordered in clockwise sense by their orientations. The j th chain code directions on the 
hyperplane with outward normal di are denoted as D(i,j). See Fig. 1 for the examples of 
the chain code directions. The sets of the voxels covered by polygons A, B, and C 
forms the faces. The principal directions of the faces shown are d1 = (0, 0, 1), d13 = (1, 
0, -1), and d19 = (1, 1, 1). The face denoted as A/B/C is type 1/2/3 face. The set of 
arrows on each face represents the chain code directions on the face. The chain code 
directions are denoted as D(i,1), D(i,2),…, D(i,m) in a clockwise sense starting with the 
directions marked with *. The number of chain code directions defined on type 1/2/3 
face is 8/4/6.  

The digital face of a set of points S ⊂ Z3 with outward normal principal direction di,  
denoted as F(S, di), is the set of the points shared by both S and the digital supporting 
hyperplane of S with outward normal di. The digital half spaces, hyperplanes, and 
faces are also categorized into type 1, 2, and 3 depending on their outward normal 
principal directions.  

The set of digital points P ⊂ Z3 is called a digital convex polyhedron (DCPH), which 
is also a 3D convex structuring element, if P satisfies the following two conditions. 

i) P is the intersection of 26 digital half spaces with outward normal principal di-
rection di = 1, …, 26 

ii) The boundary of each face of P, F(P, di), where i = 1, …, 26, can be represented 
with a chain code in the form of 
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where lj represents the number of repetition of chain code D(i,j)  and m = 8/4/6 for di of 
type 1/2/3 direction.  

Fig. 1 shows an example of a DCPH. Since a DCPH is the intersection of 26 digital 
supporting half space, it is bounded by 26 digital supporting hyperplane and enclosed 
by 26 faces. The face with outward normal principal direction di of DCPH P, repre-
sented as F(P, di),  is a digital convex polygon on the supporting hyperplane of the 
DCPH with outward normal di. A line segment or a vertex can be regarded as a de-
generate form of a face.  

The jth edge of the face with outward normal principal direction di on DCPH, de-
noted as E(P, di, j), is the set of points corresponding to the chain code run of D(i,j)  in 
the boundary chain code of the face including the starting and ending points of the 
chain code run. Furthermore, |E(P, di, j)| denotes the length of digital edge E(P, di, j).  
i.e. |E(P, di, j)| = lj, where 1 2

( ,1) ( ,2) ( , ) ( , )... ...j m
l ll l

i i i j i mD D D D  is the chain code representation of 

the boundary of P. 

3   Decompositions of 3D Digital Convex Polyhedrons 

In this section, decomposition condition of a DCPH is derived. First, the condition for 
a DCPH to be decomposed into two basis DCPH’s is derived in terms of their faces, 
each of which in turn forms a digital convex polygon. Then the relationships of the 
faces are further converted into the relationships on the lengths of edges in each face. 
We ignore the positions of DCPH’s in the discussion of decomposition and only con-
sider the shapes of DCPH’s. The considerations on the position will be added later. 

Suppose P = Q ⊕ R, where P, Q, and R are DCPH’s. Consider the i th face of P 
and the i th faces of Q and R, where the i th face of DCPH A denotes the face of A 
outward normal di. If we further suppose that the i th face of Q consists of the subset 
of the points on the hyperplane with outward normal principal direction di with trans-
lation tq, then the points u on the face satisfies di u = tq, where u = (xu, yu, zu) denotes a 
digital point. Similarly, for the points v on the i th face of R, di v = tr. Since the dila-
tion of two sets are defined as the set of the vector sums between the elements from 
each sets, the dilation of the i th faces of Q and R consists of only the points w such 
that di w = tq + tr. Furthermore, di x ≤ tq + tr for the points x ∈ Q ⊕ R, and the dilation 
of the i th faces of Q and R is on the supporting hyperplane with outward normal 
principal direction di and translation tq + tr, Therefore, the i th face of Q ⊕ R is 
equivalent to the i th face of P, and  

F(P, di) = F(Q, di) ⊕ F(R, di)                                               (2) 

for i = 1, …, 26. 
(2) is only a necessary condition for decomposition. It is not a sufficient condition 

since the dilations of some combinations of DCPH’s result in the images shaped like a 
DCPH but with holes inside. 

Since each face of a DCPH forms a digital convex polygon on a hyperplane, the 
condition for F(P, di) to be decomposed into F(Q, di) and F(R, di) can be represented 
in terms of the lengths of the edges of the faces as follows. 
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|E(P, di, j)| = |E(Q, di, j)| + |E(R, di, j)|                                       (3) 

for j = 1, …, m and m = 8/4/6 for di of type 1/2/3 direction. The decomposition condi-
tion for a convex polygon to be decomposed into two basis convex polygon can be 
proved similarly to the case of a convex polyhedron. In [8] and [9], such decomposi-
tion condition is exploited to decompose 2D convex structuring elements. In case of 
type 1 faces, the dilation of the two images shaped as diagonal line segments in dif-
ferent directions results in a rhombus-shaped image with holes inside and such an 
image is not a face of a DCPH. The condition to prevent the decomposition with such 
combinations of diagonal line segments is added in the case of type 1 faces. 

4   Decomposition of Convex Structuring Element into 
Neighborhood Structuring Elements 

The decomposition condition of a DCPH can be extended to a linear combination 
form. The condition for DCPH P to be decomposed into the combination of  a1 Q1’s, 
a2 Q2’s,  …, an Qn’s as  

P = a1Q1 ⊕ a 2Q2⊕…⊕ a nQn ,                                         (4) 

where P, Q1, Q2, …, and Qk  are  DCPH’s, and akQk represents ak-fold dilation of Qk, is  

|E(P, di, j)| = a1|E(Q1, di, j)| + a 2|E(Q2, di, j)|  +… + a n|E(Qn, di, j)|           (5) 

for i = 1, … , 26,  j = 1, …, m, and m = 8/4/6 for di of type 1/2/3 direction. Also, in the 
case of type 1 principal directions, the condition to prevent the decomposition with 
the combination of only diagonal line segment shaped images in different orientations 
is added in the case of type 1 faces.  The above condition is called boundary condition 
for decomposition. 

However, the dilations of some combinations of DCPH’s result in convex shaped 
volumes with holes inside. For example, the dilation of two DCPH’s each consisting 
of the set of the points on a hyperplane with outward normal principal directions (1, 1, 
1) and (1, -1, 1) does not results in a DCPH but a convex shaped volume with holes 
inside. To prevent such a combination in a decomposition, a condition on the connec-
tivity of voxels is added as follows. First, a DCPH is defined to be f-connected if two 
of the voxels in the DCPH share a face. Then the connectivity condition is that at least 
one f-connected DCPH should be included in the decomposition of an f-connected 
DCPH. For an f-connected DCPH, the boundary condition along with the connectivity 
condition serves as necessary and sufficient conditions for the DCPH to be composed 
into a set of basis DCPH’s. For a DCPH which is not f-connected, the connectivity 
condition is not necessary. 

Finally, the positions of DCPH’s in a decomposition is considered. Suppose A, B, 
and C to be the sets of 3D digital points such that C = A ⊕ B. Then minx(C) = 
minx(A) + minx(B), where minx(C)  denotes the minimum x-coordinate of the volume 
occupied by C, and similarly for y- and z-coordinates. Thus, if P = a1Q1 ⊕ a2Q2⊕…⊕ 
anQn , then minx(P) = a1minx(Q1) + a2minx(Q2) + … + anminx(Qn), and similarly for y- 
and z-coordinates.  
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Since the boundary, position, and edge conditions are the necessary and sufficient 
conditions for decomposition, the n-tuple (a1, a2, …, an) which satisfies the three 
conditions decides a decomposition of DCPH P into the set of bases {Q1, Q2, …, Qn}, 
and the solution space of the n-tuples satisfying the three conditions contains all the 
possible decompositions of P into the set of bases. 

The decomposition conditions for DCPH presented in the above can be immedi-
ately applied to the decomposition of a 3D convex structuring element into a set of 3D 
neighborhood structuring elements. A neighborhood structuring element is a 3D con-
vex structuring element which can be contained in the window of size 3×3×3 centered 
on the origin. There are altogether 16,678 neighborhood structuring elements (B1, 
B2…, B16678).  

A cost function which represents the total processing cost or time required to per-
form the sequence of dilation operations with structuring elements of a1 Q1’s, a2 Q2’s,  
…, an Qn’s can be formulated as 

1

n

k k
k

a c
=

,                                                             (6) 

where ck is the processing cost to perform a dilation operation with structuring ele-
ment Qk with an input image. Generally, it is reasonable to assign a constant cost to 
each structuring element since the processing time for a dilation operation does not 
depend on the contents of an input image but on the size. A cost function can be used 
to represent the optimal criterion of decomposition for different implementation 
methods of dilation operation. The optimal decomposition for a particular implemen-
tation of dilation is the one that minimizes the computation time or cost to perform 
dilation by the implementation, and different optimal decompositions can be obtained 
for different implementation methods. 

On a general-purpose computer with single CPU, dilation can be performed by 
ORing the set of translated input images.  In this case, the cost to perform a dilation 
operation with a structuring element is proportional to the number of the OR opera-
tions required to perform the dilation operation, which is equal to the number of the 
origin voxel’s 26 neighbors having value 1 in the structuring element. In case of par-
allel processing architectures, different optimal decomposition criteria can be 
obtained according to the modes of parallelism that the architectures exploit.  

The solution n-tuple that minimizes a cost function and satisfies the three decom-
position conditions at the same time can be found by linear integer programming 
technique[11]. The objective function to be minimized is a cost function representing 
the optimal criterion for an implementation method of dilation operation. The con-
straints of the linear integer programming are the set of linear integer equations gen-
erated by the three decomposition conditions involving the original structuring ele-
ment and the set of bases. 

The optimal decompositions of example convex structuring elements in Fig.1 and 2 
for general-purpose computers are shown in Table 2. 3D neighborhood structuring 
elements in the decompositions are listed in Table 1. Also, in Table 2, the costs for 
performing dilations with the sequence of the structuring elements in the optimal 
neighborhood decompositions are compared to the costs with the original structuring 
elements. 
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Fig. 1. Example DCPH P and chain code directions on some faces 
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Fig. 2. Example DCPH Q and R. The arrows represent x, y, z directions and the voxels marked 
with 0 represent the origins. 

Table 1. Neighborhood structuring elements used for the optimal neighborhood decomposition. 
Each matrix shows a slice of a structuring element on a plane z = i. The y/x -coordinate of the 
first row/column of each matrix is 1, the second 0, and the third -1. 

 B2 B30 B34 B42 B190 B281 B294 B480 B931 B1646 

plane 
z = 1 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  1 
0  0  0 

0  0  0 
1  0  0 
0  0  0 

0  0  0 
1  0  0 
0  0  0 

0  1  0 
0  1  1 
0  0  0 

0  0  0 
0  0  0 
0  1  0 

0  0  0 
0  0  0 
0  0  0 

plane 
z = 0 

0  0  0 
0  0  0 
0  1  0 

0  0  0 
0  1  0 
0  1  0 

0  1  0 
0  1  0 
0  0  0 

0  0  0 
1  1  0 
0  0  0 

0  0  0 
0  1  1 
0  0  0 

0  0  0 
1  1  0 
0  0  0 

1  0  0 
1  1  0 
0  0  0 

0  1  1 
0  1  1 
0  0  0 

0  0  0 
0  1  0 
0  1  0 

0  0  0 
0  1  0 
0  0  0 

plane 
z = -1 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  0  0 
0  0  0 
0  0  0 

0  1  0 
1  1  1 
0  1  0 

Table 2. Optimal neighborhood decompositions of  P, Q, R and the comparison of the number 
of OR operations required to perform dilation 

 Optimal Decomposition Original Decomposition 

P 2B34 ⊕ 2B190 ⊕ 3B480 124 O 24 ORs 

Q  3B1646 B2 ⊕ 4B30⊕ 5B42⊕ B281⊕ B294⊕ 2B931 258 O 19 ORs  
R 3B1646 43 O 15 ORs 

5   Conclusion 

In this paper, a new method to decompose 3D convex structuring element used in 
morphological operation is proposed. First, the decomposition condition for digital 

Rs 

Rs 
Rs 
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convex polyhedron is derived in terms of the length of edges of original and basis 
convex polyhedrons. The condition is applied to the decomposition of a convex struc-
turing element into the set of neighborhood structuring elements. Furthermore, we 
defined cost function to represent the different optimal criteria on the decomposition 
for different implementations of morphological operations. The optimal decomposi-
tions which satisfy the decomposition condition and minimize the cost function at the 
same time can be found by linear integer programming. Thanks to the cost function, 
our method can be used to obtain different optimal neighborhood decompositions for 
different cases. 
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Abstract. Classifying video elements according to some pre-defined on-
tology of the video content is the typical way to perform video anno-
tation. Ontologies are built by defining relationship between linguistic
terms that describe domain concepts at different abstraction levels. Lin-
guistic terms are appropriate to distinguish specific events and object
categories but they are inadequate when they must describe video enti-
ties or specific patterns of events. In these cases visual prototypes can
better express pattern specifications and the diversity of visual events.
To support video annotation up to the level of pattern specification en-
riched ontologies, that include visual concepts together with linguistic
keywords, are needed. This paper presents Pictorially Enriched ontolo-
gies and provides a solution for their implementation in the soccer video
domain. The pictorially enriched ontology created is used both to directly
assign multimedia objects to concepts, providing a more meaningful def-
inition than the linguistics terms, and to extend the initial knowledge
of the domain, adding subclasses of highlights or new highlight classes
that were not defined in the linguistic ontology. Automatic annotation
of soccer clips up to the pattern specification level using a pictorially
enriched ontology is discussed.

1 Introduction

Semantic annotation of video content is performed by using appropriate domain-
specific ontologies that model the video content domain. Ontologies are formal,
explicit specifications of the knowledge domain: they consist of concepts, concept
properties, and relationships between concepts. Ontologies typically represent
concepts by linguistic terms. However, also multimedia ontologies can be created,
that assign multimedia objects to concepts.

Standard description languages for the expression of concepts and relation-
ships in domain ontologies have been defined, like Resource Description Frame-
work (RDF) [1], Resource Description Framework Schema (RDFS) and the XML
Schema in MPEG-7. In this way metadata can be tailored to specific domains
and purposes, yet still remaining interoperable and capable of being accessed by
standard tools and search systems.

Semantic annotation is either performed manually, by associating the terms
of the ontology to the individual elements of the video, or, more recently and
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effectively, automatically, by exploiting results and developments in Pattern
Recognition and image/video analysis. In this latter case, the terms of the ontol-
ogy are put in correspondence with appropriate knowledge models that encode
the spatio-temporal combination of low-intermediate level features. Once these
models are checked, video entities are annotated with the concepts of the on-
tology; in this way, for example, in the soccer sport video domain, it is possible
to classify highlight events in different classes, like shot on goal, counterattack,
corner kick, etc.

Examples of automatic semantic annotation systems have been presented re-
cently, most of them in the application domain of sports video. Among these,
in [2] MPEG motion vectors, playfield shape and players position have been
used with Hidden Markov Models to detect soccer highlights. In [3], Ekin et al.
have assumed that the presence of soccer highlights can be inferred from the
occurrence of one or several slow motion shots and from the presence of shots
where the referee and/or the goal post is framed. In [4] Finite State Machines
have been employed to detect the principal soccer highlights, such as shot on
goal, placed kick, forward launch and turnover, from a few visual cues. The ball
trajectory has been used by Yu et al. [5] in order to detect the main actions
like touching and passing and compute ball possession by each team; a Kalman
filter is used to check whether a detected trajectory can be recognized as a ball
trajectory. In all these systems model based event classification is not associated
with any ontology-based representation of the domain. Domain specific linguistic
ontology with multilingual lexicons, and possibility of cross document merging
has instead been presented in [6]. In this paper, the annotation engine makes
use of reasoning algorithms to automatically create a semantic annotation of
soccer video sources. In [7], a hierarchy of ontologies has been defined for the
representation of the results of video segmentation. Concepts are expressed in
keywords and are mapped in an object ontology, a shot ontology and a seman-
tic ontology. However, although linguistic terms are appropriate to distinguish
event and object categories, they are inadequate when they must describe spe-
cific patterns of events or video entities. Consider for example the many different
patterns in which an attack action can occur in soccer. We can easily distinguish
several different subclasses that differ each other by the playfield zone, the num-
ber of players involved, the player’s motion direction, the speed. Each of these
subclasses specifies a specific pattern of attack action that could be expressed
in linguistic terms only with a complex sentence, explaining the way in which
the event has developed. Despite of the difficulty of including pattern specifica-
tions into linguistic ontologies, classification at the pattern description level is
mandatory, in many real operating contexts. Think for example, in the soccer
domain, of a coach that is interested in the analysis of the ways in which the
attack actions of his team have developed. In this case, it is important that the
highlight patterns that share similar spatio-temporal behaviours are clustered
and described with one single concept that is a specialization of the attack ac-
tion term in the video ontology. These requirements motivate the possibility that
events that share the same patterns are represented by visual concepts, instead
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of linguistic concepts, that capture the essence of the event spatio-temporal de-
velopment. In this case, high level concepts, expressed through linguistic terms,
and pattern specifications represented instead through visual concepts, can be
both organized into new extended ontologies, that will be referred to as picto-
rially enriched ontologies. The basic idea behind pictorially enriched ontologies
is that the concepts and categories defined in a traditional ontology are not
rich enough to fully describe the diversity of the plethora of visual events that
normally are grouped in a same class and cannot support video annotation up
to the level of detail of pattern specification. To a broader extent the idea of
pictorially enriched ontologies can be extended to multimedia enriched ontolo-
gies where concepts that cannot be expressed in linguistic terms are represented
by prototypes of different media like video, audio, etc. Visual concepts of pic-
torially enriched ontologies, like linguistic concepts, can be expressed in RDF,
and therefore used in a search engine to perform content based retrieval from
video databases or to provide video summaries. This paper discusses pictorially
enriched ontologies and provide a solution for their implementation for soccer
video automatic annotation of highlight patterns. The highlights detected by
the annotation engine define the initial linguistic ontology. In order to distin-
guish specific patterns of the principal highlighs additional visual features are
added to the ontology. A clustering algorithm is used to create new subclasses
of highlights representing specific patterns of the event and to group the clips
within highlights subclasses according to their visual features. The visual con-
cepts of the patterns of recognized highlights are automatically obtained as the
centers of the clusters in which the video clip instances of the highlight are
grouped. Once detected, visual concepts are added as prototypes in the ontol-
ogy, to represent visually the appearance of the pattern category and integrate
the semantics described by the linguistic terms. The ontology created is used
both to directly assign multimedia objects to concepts and to extend the ini-
tial knowledge of the domain, adding subclasses of highlights or new highlight
classes that were not defined in the linguistic ontology. Pictorially enriched on-
tologies are then used to support video annotation up to very specialized levels of
pattern specification. The possibility of extending linguistic ontologies with mul-
timedia ontologies, although with a different idea, has also been suggested in [8]
to support video understanding. Differently from our contribution, the authors
suggest to use modal keywords, i.e. keywords that represent perceptual concepts
in the several categories, such as visual, aural, etc. A method is presented to
automatically classify keywords from speech recognition, queries or related text
into these categories. Multimedia ontologies are constructed manually ([9]): text
information available in videos and visual features are extracted and manually
assigned to concepts, properties, or relationships in the ontology. In [10] new
methods for extracting semantic knowledge from annotated images is presented.
Perceptual knowledge is discovered grouping images into clusters based on their
visual and text features and semantic knowledge is extracted by disambiguating
the senses of words in annotations using WordNet and image clusters. In [11]
a Visual Descriptors Ontology and a Multimedia Structure Ontology, based on
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MPEG-7 Visual Descriptors and MPEG-7 MDS respectively, are used together
with domain ontology in order to support content annotation. Visual prototypes
instances are linked to the domain ontology. In this paper an improvement to
this approach is proposed, including visual features in the domain ontology and
using a clustering algorithm that extends the domain ontology through visual
features analysis. The paper is organized as follows: in Sect. 2 we present a proto-
type system for automatic semantic video annotation and discuss visual feature
extraction. Creation of pictorially enriched ontologies for the representation of
highlight patterns are discussed in Sect. 3. In Sect. 4 we discuss the preliminary
results of the proposed system applied to soccer videos. Finally in Sect. 5 we
provide conclusions and some future works.

2 Soccer Highlight Automatic Video Annotation

The annotation system performs semantic annotation of MPEG videos, by de-
tecting attack actions and placed kicks and whether or not they are terminated
with a shot on goal. Highlights are detected by using a limited set of visual fea-
tures that are extracted respectively: i) from the compressed domain: motion
vectors (used to calculate indexes of camera motion direction and intensity);
YUV color components (used to extract and evaluate the playfield shape that
is framed); ii) from the uncompressed domain (uncompressed I and P frames):
the ratio between the pixels of the players of the two teams (by exploiting the
a-priori knowledge of team colors); the playfield lines filtered out on the ba-
sis of their length and orientation (used to recognize the playfield zone that is
framed). Frames are classified as close-, medium- and long-view, depending on
the image-playfield ratio; long-view frames are further distinguished into left,
central and right part of the playfield. Evidences and inferences of highlights
are computed for each MPEG GOP (typically 12 frames, about 1/2 second in
PAL video standard). Four Bayes networks are used to predict highlights: two
networks are used to predict (left, right) attack actions and two networks to
predict (left, right)placed kicks. If the highlight is predicted, in the following 6
seconds (12 GOPs) the video is processed by two different Bayesian validation
networks that check the presence of a shot on goal. Conditional probabilities are
updated every 2 secs.

The system has been tested on MPEG-1 and MPEG-2 videos recorded at
25 frames per second (PAL standard) and with a resolution of 360 × 288 and
720 × 576, respectively. 268 case examples (∼ 90 min) collected from World
Championship 2002 and European Championship 2004 have been used to test
the annotation system; the test set was composed by:

– 172 highlights that have been concluded with a shot on goal (SOG): 134
attack actions (AA) and 38 Placed kicks (PK)

– 54 highlights that have not been concluded with a shot on goal (NSOG): 51
attack actions and 3 Placed kicks

– 42 Other Actions (OA)

Figures of precision and recall that have been measured over the test set are
reported in Table 2.



656 M. Bertini et al.

Table 1. Performance figures of the highlight annotation engine for Attack Action
(AA), Placed Kick (PK), Shot on Goal (SOG), Not Shot on Goal (NSOG) and Other
action (OA)

Highlight Precision Recall

AA 0.98 0.88

PK 0.63 0.91

SOG 0.96 0.88

NSOG 0.74 0.80

OA 0.77 0.95

Table 2. Precision and recall of clip clustering

Cluster Elements Relevant Non rel. Precision Recall

1 6 (15%) 5 1 0.83 0.83

2 4 (10%) 4 0 1 0.8

3 6 (15%) 5 1 0.83 0.83

4 11 (28%) 9 2 0.82 0.9

5 4 (10%) 4 0 1 0.8

6 2 (5%) 1 1 0.5 1

7 6 (15%) 5 1 0.83 1

8 1 (3%) 1 0 1 0.5

3 Pictorially Enriched Ontologies

The linguistic ontology (see Fig. 1) is composed by the video and clip classes,
the actions class and its highlights subclasses and an object class with its related
subclasses describing different objects within the clips. Highlights, players and
playground objects that are recognized by the annotation engine are associated
with the concepts of the linguistic ontology.

In order to distinguish the specific patterns of the principal highlights de-
tected by the annotation engine we use 6 additional visual features that are not
per se useful for highlight classification but have instead enough discriminatory
power to distinguish highlight sub-classes:

– the playfield area;
– the number of players in the upper part of the playfield;
– the number of players lower part of the playfield;
– the motion intensity;
– the motion direction;
– the motion acceleration.

In more detail, the playfield area is divided in twelve zones, using playfield
lines and shape (see [4]). The estimation of the number of players in the up-
per and lower portion of the playfield (according to the playfield area that is
framed) is obtained by applying a template matching of players’ blobs; motion
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Fig. 1. Pictorially enriched ontology

intensity and direction are extracted as described in Sect. 2; camera acceleration
is computed from motion data. For each clip we create a feature vector V of
6 distinct components, each of which is a vector U that contains the changes
within the clip of one feature. The length of feature vectors U may be different
in different clips, depending on the duration and content of the clips. Vectors
U are quantized, and smoothed to eliminate possible outliers. Prototypes of the
highlight patterns are obtained by clustering vectors V and taking the centers of
the clusters as representatives of the patterns. They are regarded as visual con-
cepts that visually represent the specific development pattern of the highlight.
Pictorially enriched ontologies are hence created by adding the prototype clip
as a specialization of the linguistic concept that describes the highlight. Visual
concepts in the pictorially enriched ontology are abstractions of video elements
and can be of different types:

– Seqs : the clip at the center of the cluster;
– keyframes: the key frame of the clip at the center of the cluster;
– regions : parts of the keyframe e.g. representing players;
– visual features: e.g. trajectories, motion fields, computed from image data. . .

Different visual concepts can be added, incrementally, as specializations of each
highlight class so as to account for the visual diversity of the highlight patterns.
As a new clip is presented to the annotation system, the clustering process
determines whether it belongs to existing clusters or if a new cluster must be
generated. We have employed the fuzzy c-means (FCM) clustering algorithm,
[12], to take into account the fact that a clip could belong to a cluster, still being
similar to clips of different clusters. The maximum number of clusters for each
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highlight has been heuristically set to 10. The distance between two different clip
instances has been computed according to the Levenshtein edit distance between
the U components of the feature vector V of the clips, to take into account
the differences in the duration and the temporal changes of the feature values.
The clustering process generates the pictorially enriched ontology providing the
creation of subclasses for each highlight and the creation of new highlight classes
that were not defined in the initial linguistic ontology as well as the visual
concepts related to each class and subclass including the visual features in the
ontology. At the same time annotation of clips up to the pattern specification
level is achieved by grouping clips in highlight subclasses that represent a specific
visual concept.

4 Experimental Results

We have performed experiments of automatic generation of pictorially enriched
ontologies from video clips of soccer highlights that are automatically annotated.
We have employed 40 video sequences taken from the latest Soccer World Cham-
pionship. Each sequence contains number of clips variable from 3 to 8, for a total
number of 258 clips. Each clip has been automatically annotated. We have fo-
cused on attack action highlights that can be terminated with a shot on goal,
in that they present the largest variability of highlight patterns. Each time that
a new clip is analyzed, according to the fuzzy C mean clustering algorithm, the
system checks whether to assign it to an existing visual concept (the center of
the clusters already detected) or if a new visual concept has to be added as a
new subclass of the attack action highlight (a cluster splitting is needed).

The generation of visual concepts that represent prototypes of highlight pat-
terns has been analyzed by comparing the results obtained with the manual
classification of the same highlight patterns by three human testers. Precision
and recall for each cluster are reported in Table 2 where clips are considered
as non relevant if they have not been assigned to the cluster by human testers.
Differences in the clustering between the system and human testers are in that
cluster 6 contains 2 clips that should have been split instead into two classes of
1 clip each. Similarly, cluster 8 has only 1 clip instead of 2.

Average values of precision and recall calculated over all the clusters are 0.85
and 0.83, respectively. Fig. 2 shows an example of clip clustering. We have put
into evidence the clip that has been chosen as the visual concept of the highlight
pattern represented by the cluster (cluster 2 of table 2), two other clips of the
cluster and one clip (enclosed in the rounded rectangle) that should have been
associated with the cluster but was instead assigned to a different cluster.

5 Conclusions

This paper presents pictorially enriched ontologies as an extension of linguistic
domain ontologies with visual features and provides a solution for their imple-
mentation in soccer video domain. A clustering algorithm has been proposed in
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Fig. 2. Cluster 2 with its prototype clip (the cluster center), three clips of the cluster
and one clip (enclosed in the rounded rectangle) that has been associated with a dif-
ferent cluster although it should belong to cluster 2. Distances w.r.t. the cluster center
are indicated.

order to create new subclasses of highlights representing specific patterns of the
events and to group the clips within highlights subclasses according to their vi-
sual features. Results for automatic generation of pictorially enriched ontologies
have been presented in terms of precision and recall for each highlights subclasses
generated by our prototype. Experiments have shown that with pictorially en-
riched ontologies it is possible to extend the initial knowledge of the domain,
adding subclasses of highlights or new highlight classes that were not defined in
the linguistic ontology, and support automatic clips annotation up to the level
of detail of pattern specification. Directions for future works are improving vi-
sual features and metrics for clustering and introducing reasoning for subclass
creation and ontology enrichment.
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Abstract. In this paper, we describe the use of graph-spectral techniques and
their relationship to Riemannian geometry for the purposes of segmentation and
grouping. We pose the problem of segmenting a set of tokens as that of parti-
tioning the set of nodes in a graph whose edge weights are given by the geodesic
distances between points in a manifold. To do this, we commence by explaining
the relationship between the graph Laplacian, the incidence mapping of the graph
and a Gram matrix of scalar products. This treatment permits the recovery of the
embedding coordinates in a closed form and opens up the possibility of improv-
ing the segmentation results by modifying the metric of the space in which the
manifold is defined. With the set of embedding coordinates at hand, we find the
partition of the embedding space which maximises both, the inter-cluster distance
and the intra-cluster affinity. The utility of the method for purposes of grouping
is illustrated on a set of shape silhouettes.

1 Introduction

Many problems in computer vision can be posed as ones of pairwise clustering. That
is to say, they involve grouping objects together based on their mutual similarity rather
than their closeness to a cluster prototype. Such problems naturally lend themselves to
a graph-theoretic treatment in which the objects to be clustered are represented using
a weighted graph. Here the nodes represent the objects to be clustered and the edge-
weights represent the strength of pairwise similarity relations between them.

One of the most elegant solutions to the pairwise clustering problem comes from
spectral graph theory, i.e. the characterisation of the eigenpairs of the graph Laplacian
and the adjacency matrix. Along these lines, some of the earliest work was done by Scott
and Longuet-Higgins [11] who developed a method for refining the block-structure
of the affinity matrix by relocating its eigenvectors. In a related development, Sarkar
and Boyer [10] presented a spectral method which locates clusters that maximise the
average association. Perona and Freeman [8] have a similar method which uses the
second largest eigenvector of the affinity matrix. The method of Shi and Malik [12], on
the other hand, uses the normalised cut, which balances the cut and the association.

Whereas eigenvectors have been traditionally viewed in combinatorial terms from
the characteristic polynomial perspective, its relationship with eigenfunction expan-
sions in differential geometry has been often overlooked for the purposes of segmenta-
tion and grouping. Nonetheless, there has recently been renewed interest in the use of
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manifold learning theory for the purposes of graph embedding [9, 6], classification [1]
and visualisation [13].

In this paper, we draw on the field of mathematics known as spectral geometry,
which aims to characterise the properties of operators on Riemannian manifolds using
the eigenvalues and eigenvectors of the Laplacian matrix [3]. We commence by viewing
the weight for the edge between each pair of nodes as a squared distance in a Euclidean
space. Viewed in this way, the graph Laplacian can be related to a Gram matrix of scalar
products. This, in turn, allows the use of matrix factorisation techniques to recover the
coordinates for the embedding of the nodes in the graph into a metric space. With the
embedding coordinates at hand, the clustering process is posed as a recursive partition
of the space based upon a set of functions which bisect the embedding so as to minimise
the distance between members of the same cluster and maximise the distance between
elements of different clusters.

2 Clustering via Graph Embedding

We cast the problem of clustering into a graph-theoretic setting where the set of objects
to be clustered are abstracted using a weighted graph. The problem is characterised by
the set of nodes V that represent the objects and the set of edge weights, which are
the affinities or “distances” between them. Viewed in this way, the goal of computation
is then to partition the weighted graph G = (V,E,W ), with index-set V , edge-set
E = {(v, w)|(v, w) ∈ V × V, v �= w} and edge-weight function set W : E →
[0, 1], into disjoint and disconnected subgraphs. Since the aim is to recover disconnected
subgraphs, we can perform a recursive bipartition of the node-set V . In this section, we
motivate the relationship between the graph Laplacian, the incidence mapping and the
embedding of graphs into metric spaces. This treatment leads naturally to the clustering,
as presented in the next section, via the sign of a vector of cluster membership functions.

To commence, we note that the weight matrix W is related to the normalised Lapla-
cian L = D− 1

2 (D −W )D− 1
2 = I − D− 1

2LD− 1
2 , where D is a diagonal matrix such

that D = diag(deg(1), deg(2), . . . , deg(|V |)). Consider the mapping I of all functions
over the set of vertices V to the functions g(e) over the set of edges E. The incidence
mapping I is then an operator such that Ig(e) = f(e+) − f(e−), where the nodes
v = e+ and w = e− are the head and tail, respectively, of the edge e ∈ E. As a result,
I is a | V | × | E | matrix which satisfies

L = IIT (1)

The expression in Equation 1 opens-up the possibility of relating the graph Lapla-
cian L to a matrix H = JJT , which can then be viewed as a matrix of scalar products.
We view the scalar products as the sums of squared, geodesic pairwise distances on a
manifold. Hence, the problem of embedding the graph reduces itself to that of finding
the coordinates that satisfy, in an optimum manner, a set of known scalar products. We
solve the problem in two stages. First, we find the matrix H = JJT , which is the matrix
of pairwise sums of squares and scalar products. Second, we factorise it to find J .

With this in mind, we write the matrix H in terms of the graph Laplacian L as
follows
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H = −1
2
BLB (2)

Further, by introducing the vector c, whose entries are the diagonal elements of JJT ,
and the all-ones vector e, i.e. a vector whose coefficients are all unity, into the equation
above, we can write

H = −1
2
B
[
ceT + ecT − 2JJT

]
B (3)

Note that, in order to have H = JJT , the vectors (eT B)T and Be must be null and
BJJT B = JJT . If B is a centering matrix, this is the case and then the matrix H
becomes the double-centered graph Laplacian. Double centering is a standard procedure
in classical scaling [14, 5] which introduces a linear dependency over the columns of
the matrix H [2]. As a result, the element indexed v, w of the matrix H is given by

H(v, w) = −1
2
[L(v, w)2 −A 2 −B2 + C 2], (4)

where

A =
1
| Υv |

∑
w∼v

L(v, w) , B =
1

| Υw |
∑
v∼w

L(v, w) , C =
1
| V |2

∑
w,v∈V

L(v, w)

and Υv is the set of first-neighbours of the node v ∈ V . From the above equations,
A f(v) can be regarded as the average value of the functions Ig(e) = f(e+) − f(e−)
over those nodes w adjacent to the node v. Similarly, Bf(w) is the average value of the
functions −Ig(e) = f(e−) − f(e+) over those nodes v ∼ w. The average value over
the set of functions Ig is given by C f .

In order to obtain a matrix of embedding coordinates J from the matrix H, we
perform an eigenvector analysis on H. The validity of this procedure is based upon
the Young-Householder factorisation theorem [15]. The Young-Householder theorem
states that if J is of the form J = [ψ1 | ψ2 | . . . | ψk] for all i = 1, 2, . . . , k, we have
(JJT )φi =

√
λiψi, where ψi is the eigenvector corresponding to the ith eigenvalue λi.

Let φi be the ith eigenvector scaled so its sum of squares is equal to λi (i.e. φi =√
λiψi). Since Hφi = λiφi and (JJT )φi = Hφi, it follows that H = JJT . As a result,

the vector of coordinates ϕ(v) for the node v ∈ V is given by ϕ(v) = [φ1(v) | φ2(v) |
. . . | φ|V |(v)]T , where the eigenvalues λi of the matrix H are arranged according to
their magnitude order so as to satisfy the condition | λ1 |≥| λ2 |≥ · · · ≥| λ|V | |> 0.

3 Partitioning of the Embedding Space

There are a number of important consequences that result from both, the double-
centering operation on the graph Laplacian, and the Young-Householder theorem itself.
In this section, we use the properties of the embedding to recover the cluster member-
ship functions x(v) : v ∈ V (→ ). The cluster membership functions are such that a
pair or nodes v, w belong to the ith cluster ωi if and only if sgn(x(v)) = sgn(x(w)),
where sgn(·) is the sign function. We recover the cluster membership functions as fol-
lows. Firstly, we show that the leading eigenvector of the double-centered Laplacian H
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maximises the intra-cluster affinity. We then show that the leading eigenvector of the
double-centered Laplacian also minimises the inter-cluster proximity. At this point, is
also worth noting that, in order to be able to recover the set of membership functions
x(v) ∀ v ∈ V in a closed form and, following Fiedler [4], we impose the constraints∑

v∈V x(v) = 0 and
∑

v∈V x(v)2 = 1 on the elements of the vector of cluster mem-
bership functions x.

3.1 Maximising Intra-cluster Affinity

Recall that, in the previous section, we commenced by relating the embedding coordi-
nates to the graph Laplacian using the matrix of scalar products H = JJT . As a result,
the scalar product between the vectors of coordinates for the nodes v and w ∈ V is
given by

〈ϕ(v), ϕ(w)〉 =
|V |∑
l=1

λlφl(v)φl(w) (5)

whereas the squared distance between the same pair of nodes is

‖ ϕ(v) − ϕ(w) ‖2=
|V |∑
l=1

λl(φl(v)− φl(w))2 = H(v, v) + H(w,w) − 2H(v, w) (6)

It is also worth noting that, from Equations 5 and 6, it follows that 〈ϕ(v), ϕ(v)〉 ≡ 0 for
any node v ∈ V . This, in turn, implies that H(v, v) ≡ 0.

With these ingredients, the problem of finding the functions x(v) such that the dis-
tances between members of the same cluster is minimum can be viewed as that of
minimising the quantity

ε =
∑

ωi∈Ω

∑
v,w∈ωi⊂V

∥∥x(v)ϕ(v) − x(w)ϕ(w)
∥∥2

(7)

where Ω is the set of all clusters ωi. Thus, only pairwise distances corresponding to
nodes in the same cluster contribute to the quantity ε. To take our analysis further, we
use Equation 6 and, after some algebra, write

ε =
∑

v,w∈V

(
x(v)2H(v, v) + x(w)2H(w, w) − 2x(v)x(w)H(v,w)) (8)

but, since H(v, v) ≡ 0, the equation above can be rewritten, in matrix notation, as
follows

ε = −2xHx (9)

where x is the vector of order | V | whose ith element is given by x(v). Thus, min-
imising ε is equivalent to maximising xHx and, therefore, x is given by the leading
eigenvector of H, i.e. x = φ1.

3.2 Minimising Inter-cluster Proximity

Having shown that the leading eigenvector of the double-centered Laplacian H is the
maximiser of intra-cluster affinity, we now proceed to prove that it also minimises the
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inter-cluster proximity. We do this by making use of Lagrange multipliers to show that
the distance between the centers of mass for the clusters ωi and ωj is maximised when
the set of nodes in the graph are partitioned using the leading eigenvector of H. We
commence by noting that the squared distance between cluster mass centers is given by

ρ(ωi, ωj) =
∥∥∥∥ 1
| ωi |

∑
v∈ωi⊂V

ϕ(v) − 1
| ωj |

∑
w∈ωj⊂V

ϕ(w)
∥∥∥∥2

(10)

At this point, we note that, as a consequence of the matrix H being double-centered,
we have 1

|V |
∑

v∈V ϕ(v) ≡ 0. In other words, the center of mass for the embedding is
at the origin and, therefore, the squared distance ρ(ωi, ωj) can be expressed in terms of
the embedding coordinates as follows

ρ(ωi, ωj) = 2

|V |∑
l=1

{
λl

| V |2
( ∑

v∈ωi⊂V

φl(v) +
∑

w∈ωj⊂V

φl(w)

)2}
(11)

The importance of this observation resides in the fact that it enables us to make use
of the cluster memberships to introduce the weighted squared distance

�(ωi, ωj) = τ

|V |∑
l=1

{
λl

( ∑
v∈ωi⊂V

x(v)φl(v) +
∑

w∈ωj⊂V

x(w)φl(w)

)2}
(12)

where τ = 2
|V |2 . The quantity above is the one we aim to maximise. Through the use of

Lagrange multipliers, we can use the norm constraint ‖x‖2 = 1 for the vector of cluster
membership functions and write

τ
∂ (ωi, ωj)
∂x(w)

= ζ
∂‖x‖2
∂x(w)

(13)

where ζ is a Lagrange multiplier. After some algebra, it can be shown that the system
of equations obtained in this manner can be cast as an eigenvalue problem of the form

τHx = ζx (14)

Therefore, the maximum of  (ωi, ωj) is reached when x corresponds to the leading
eigenvector of the double-centered Laplacian H.

4 Deforming the Embedding Space

In this section, we explore a means to improve the clustering results by modifying the
intrinsic geometric properties of the embedding space S for the graph G. The goal
of computation here is, therefore, to compute an improved matrix of edge weights Ŵ
that is both, representative of the space in which the nodes of the graph G are to be
embedded and, most importantly, better suited for the purposes of clustering. We do this
by requiring the embedding space to have constant positive curvature. This approach
hinges in the properties of spherical spaces. On a sphere, the optimum separation of the
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space corresponds to the hyperplane bisecting the sphere through the equator, i.e. the
centers of mass for the clusters are at either opposite pole of the sphere.

To this end, we view the embedding space S as an n-dimensional Riemannian man-
ifold M and express the weight W (v, w) as the energy E(pv, pw) over the parametric
geodesic curve γ : t ∈ [α, β] (→ M intersecting the pair of points pv, pw ∈ M . To
establish a relationship between the energy E(pv, pw), the geodesic γ and the curva-
ture tensor, we employ the theory of Jacobi vector fields [3]. A Jacobi field along γ is
the differentiable vector field Y in the tangent space to M , orthogonal to γ′, satisfying
Jacobi’s equation, i.e. ∇2

tY + R(γ′, Y )γ′ = 0. With these ingredients, we can obtain
a bilinear form, i.e. the sectional curvature, from the curvature tensor R(γ′, Y )γ′. The
sectional curvatureK(γ′, Y ) along γ is, hence, given by

K(γ′, Y ) =
〈R(γ′, Y )γ′, Y 〉

| γ′ |2| Y |2 −〈γ′, Y 〉 (15)

Because Y is orthogonal to γ′ and, due to the fact that Y is a Jacobi field, i.e. it satisfies
the condition∇2

tY = −R(γ′, Y )γ′, we can write

K(γ′, Y ) =
〈−∇2

tY, Y 〉
〈Y, Y 〉 (16)

where we have set | γ′ |= 1.
This suggests a way of formulating the energy over the geodesic γ ∈M connecting

the pair of points corresponding to the nodes indexed v and w. Consider the geodesic γ
subject to the Jacobi field Y . The energy over the geodesic γ can be expressed making
use of the following equation

E(pv, pw) =

∫
γ

| γ′ + ∇2
tY |2 dt =

∫
γ

| γ′ −K(γ′, Y )Y |2 dt (17)

In practice, as stated at the beginning of the section, we will confine our attention
to the problem of embedding the nodes into a manifold of constant sectional curvature.
For such a manifold, the sectional curvature is constant i.e. K(γ′, Y ) ≡ κ. Under this
restriction, the Jacobi field equation becomes∇2

tY = −κY . With the boundary condi-

tions Y (0) = 0 and | ∇tY (0) |= 1, the solution is given by Y (t) = sin(
√

κt)√
κ

η, where

the vector η is in the tangent space of M at pv and is orthogonal to γ′ at the point in-
dexed v, i.e. η ∈Mpv and 〈η, γ′ |pv 〉 = 0. Further, by rescaling the parameter t so that
| γ′ |= a, we can express the element of the improved weight matrix Ŵ a the energy
over the geodesic connecting the points pv and pw as follows

Ŵ (v, w) =
∫ 1

0

(
a2

v,w + κ

(
sin(
√

κav,wt)
)2)

dt (18)

where av,w = W (v, w) is the Euclidean distance between each pair of nodes when they
have been embedded into a “flat” space, i.e. av,w =|| pv − pw || for κ = 0.
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Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6

Shape 7 Shape 8 Shape 9 Shape 10 Shape 11 Shape 12

Shape 13 Shape 14 Shape 15 Shape 16

Fig. 1. From left-to-right: Set of silhouettes used in our experiments, matrix of raw similarities
for the shapes in the left-hand panel and matrix Ŵ computed from the raw similarities

5 Experiments
In this section, we demonstrate the utility of the algorithm for purposes of unsupervised
learning of shape-categories by means of grouping. This involves the abstraction of
2D binary shapes using shock-trees. Commencing from a data-base of silhouettes, the
Hamilton-Jacobi skeleton is extracted and shocks, which correspond to singularities in
the evolution of the object boundary under the eikonal equation, are located. The simi-
larity of the shapes is then computed using the weighted tree edit distance developed by
Luo et al. [7]. This is a structural method which hinges in augmenting the information
given by the skeleton topology and the relative time of shock formation with a measure
of feature importance based upon the rate of change of boundary length with respect to
the overall distance along the skeleton. The problem of computing distances between
pairs of shapes is then cast as that of finding the tree edit distance between the weighted
graphs for their corresponding shock graphs.

In the left-hand panel of Figure 1, we show the shapes used in our experiments.
The remaining two panels show the matrix of raw similarities, as computed using the
algorithm of Luo et al. and the matrix Ŵ obtained by setting κ = 5. Here, the row and
column indexes for both matrices have been set to those in the left-hand panel of Figure
1. The clusters recovered by the algorithm are the following

Cluster 1:

Cluster 2:

Cluster 3:

Cluster 4:

Cluster 5:

Cluster 6:

Cluster 7:

From the matrices in Figure 1, we can conclude that the block-diagonal structure
of the matrix of raw shape similarities has been enhanced in the the matrix Ŵ . Fur-
thermore, the shape classes recovered by the algorithm are in good accordance with the
silhouette categories in the database.

6 Conclusions
In this paper, we have cast the clustering problem in a graph theoretical setting. This
opens up the possibility of embedding the objects to be clustered, abstracted as nodes
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in the graph, into a metric space. We have shown how the incidence mapping and the
graph Laplacian can be used to pose the problem of embedding as that of recovering
a Gram matrix of scalar products. Further, we have illustrated how the topology of the
embedding space can be altered to improve the separation between clusters and, hence,
the grouping results. We illustrated the utility of the method for purposes of grouping a
set of shape silhouettes.
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Abstract. This paper presents two visual registration solutions for a
mobile augmented reality system. The first one is a marker based solution
whereas the second one is a hybrid approach. The hybrid method com-
bines a coded marker technique for the initialization in the first frame,
and a markerless registration in the next frames thanks to a 3-D model
based tracking method. Because this mobile augmented reality system is
designed for use in the industrial context of maintenance assistance for
instance- robustness, accuracy, real-time and user comfort are the main
concerns. For the different stages of the proposed solutions, various algo-
rithms were evaluated to determine which one offers the best robustness
and efficiency.

1 Introduction

The registration is a necessary step in any interactive augmented reality appli-
cation. In the case of an optical see-through system, the operator looks, through
glasses, at annotations and virtual models which must be correctly aligned with
his view. A video see-through system mixes the real and virtual worlds in the
video stream. Since there is relative motion between the camera and the object,
the object must be temporally and accurately registered.

The main technical issues concern:

a) the required accuracy, essential for a correct alignment of the model with
the object in the image,

b) the robustness: the registration system must be able to track objects with
a high variability of appearance, with possible occlusions and changes in
lighting conditions,

c) the real time constraint,
d) the high level of automation.

Finding a generic solution to these issues is still a challenge.
Popular approaches for solving the registration problem include marker based

methods ([1], [2], [3] based on the ARToolKit, the cybercode described in [4])
and feature based methods ([5], [6], [7], [8]). In the first case, markers are well
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defined in order to facilitate their detection in the image and ensure speed, stabil-
ity and robustness of the registration system independently of the environment.
The main drawback of these approaches concerns the preliminary installation of
markers which may not be an allowable constraint. The second type of methods
consists in visually tracking object features. Since features change in appearance
with the point of view, these techniques generally use high complexity algo-
rithms. The speed versus robustness trade-off must be found. Moreover, these
techniques are usually specific to a type of feature such as lines [9], textured ob-
jects [7] or geometric primitives [6]. The model based tracking methods are the
most generic, as they only rely on the object model ([8], [6]). Another drawback
of these approaches is the need a pose initialization, which is done manually in
most of the cases.

In the context of an AR system for train maintenance, we have developed two
registration solutions. The first one is a marker based method which addresses
all the mentioned technical issues. The second one is a hybrid method combining
the marker based solution to initialize the system and a model based tracking
method.

2 Overview of the Registration Procedure

The main steps of the registration system are:

1. the object recognition: the algorithm automatically identifies the object in
the image and selects the corresponding 3-D model,

2. the model-image correspondence: 2-D features are detected and matched to
3-D known features,

3. the camera pose estimation which outputs a 3-D rigid transform between
the camera and the object coordinate systems. This transform is composed
of rotation R and a translation t.

In the first proposed algorithm, we use feature points extracted from visual
markers to compute the camera pose. The second algorithm starts with an initial
pose estimation using a single marker, and then performs a markerless tracking
of the object edges.

3 Marker Based Registration

Two type of markers were implemented: color coded markers and simple markers
(white spots over a black background) as shown in Fig. 1.

The color coded markers enable to i) automatically identify the equipment
from the code, ii) compute a first estimate of the camera pose by providing five
feature points (the four corners and the center) and an orientation. The simpe
markers are used to refine the pose parameters. These markers are easy to set
up and can be efficiently detected in the image.

An overview of the algorithm is presented in fig. 2.



A Practical Guide to Marker Based and Hybrid Visual Registration 671

Fig. 1. Markers used in the registration process

3.1 Coded Marker Detection

The proposed marker system was originally developed for photogrammetry pur-
poses (camera calibration and as-built reconstruction of plants). It was adapted
to perform real time registration in AR applications.

A coded marker is characterized by a colored ring that can be detected by the
connected component extraction algorithm proposed in [10] combined with a fast
color classification method [11]. The candidates are then filtered with different
shape criteria such as the elliptic variance. The efficiency and robustness of the
detection process come from the association of color and shape information in
cascade filters.

The corner points of a marker are then localized by computing the intersec-
tion of four lines interpolating high gradient points lying on the marker sides.
The line determination is performed in a robust estimation framework [12].

The identification of the marker is straightforward, because it relies on a bar
code like technique described in [13].

This new marker was compared to the ARToolkit marker system, which is
widely used and considered as a reference in AR applications. The proposed
system appeared to be more efficient, since the processing time of ARToolKit
code identification is linearly dependent on the number of possible codes, whereas
our system realizes this task in a constant time. Concerning the robustness, we
observed a lower false-identification rate with our system than ARToolkit.

3.2 Iterative Pose Estimation

For each detected coded marker, five points are available to compute an ini-
tial estimate of the pose. If the coded markers are out of the field of view or
temporarily occluded, a 0-order or a 1-order prediction gives an estimate of the
current camera pose.

A more accurate value of the pose parameters can be obtained if additional
points like the center of the detected simple markers are inputted to the pose
estimation process. Thus it is possible to iteratively refine R and t, as more
and more new simple targets can be detected. These markers are searched in
small regions around the 2-D re-projection locations, using a fast multiresolution
template matching technique.

The Fig.2 illustrates marker detection.
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Fig. 2. Marker detection - The coded marker feature points and the simple markers
center points are denoted by crosses.The squares represent the search areas for the
simple markers detection.

Five camera pose estimation algorithms were evaluated in terms of robustness
and efficiency. The two first algorithms are the linear method proposed by Quan
et al [14] and POSIT [15]. The two next ones are extensions of the previous ones,
where the pose is refined by a nonlinear minimization of the 2-D re-projection
error upon the pose parameters. This nonlinear resection procedure is denoted
NLR. The last tested algorithm implements POS [15] as an initialization step,
followed by the NLR.

This comparative study was performed on synthetic scenes where the coded
marker feature points were simulated with four coplanar points which are rela-
tively close one to each other in the image coordinate system.

The simulation showed that in the specific geometry configuration mentioned:

– POSIT and the nonlinear algorithms outperform the linear pose method,

0

5

01

51

02

52

03

53

2.521.510.50

Re
p

ro
je

ct
io

n
 e

rr
o

r 
RM

S

Quan

POSIT

Quan + NLR

POSIT+ NLR

POS   + NLR

Noise standard deviation

Fig. 3. Noise effect on reprojection error. The pose used by reprojection error compu-
tation is evaluated on noised data. Reprojection error is evaluated on the four coplanar
points.
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– POSIT, POS+NLR and POSIT+NLR performances are equivalent,
– POSIT is more efficient than all other linear and nonlinear algorithms.

Consequently, POSIT was selected for the pose estimation stage.

3.3 Using the 3-D Model Geometry to Improve Robustness

Depending on the point of view, all the markers are not always visible. The
hidden markers must be identified because they can generate false detections
and outliers for the pose estimation. Moreover, the registration will be faster
because their detection can be avoided.

To determine which markers are visible or not at the actual pose, two point
occlusion tests were considered: Z-buffer and space partition techniques. The
Z-buffering method appeared to be more time consuming and was characterized
by a poor precision. We thus chose a space partitioning method of the 3-D
mesh in octrees to perform accurate point occlusion tests. In addition, because
CAD models are usually locally complex (most of the data are localized in small
regions), an octree decomposition enables to dramatically reduce the number
of tests. The simplification of the mesh geometry can also significantly improve
performances.

4 Feature Based Registration

This method combines the previously described coded marker method as an ini-
tial step to identify the object and compute the model-image correspondence
in the first frame, and a feature based method to track the object edges. An
overview of the algorithm is presented in Fig. 4.

The tracking technique is an adaptation of the method proposed by Drum-
mond and Cipolla [8], based on a Lie group formalism. In each new image, the
model is rendered in order to get the position of the visible edges according to
the current estimate of object pose. The new position of an edge is searched in
the direction of its normal. The result measurement vector corresponding to the
2-D motion, is then used to estimate the inter frame motion and retrieve the
object pose.

Due to the hypothesis of small motion, tracking errors may arise when there
are large inter frame motions. To overcome this difficulty, we propose a multires-
olution implementation of the method.

5 Results

The Fig. 5 shows results obtained with the marker based registration. The re-
quired visual precision is achieved with a very good alignment of the 3-D model
on the image.

The registration algorithm runs at about 30 frames per second on a Pentium
IV 3.0 GHz with 1 Gb of memory.
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Fig. 4. Algorithm 2 - 2-D tracking in the registration process

Fig. 5. Results of the marker based registration. A simplified 3-D model is displayed
in wireframe representation.

The Fig. 6 shows results obtained with the feature based registration in the
table experiment. This method performs a robust tracking of the table. After
a coarse initialization of the pose given by the marker based algorithm, the
algorithm estimates the camera pose and projects the 3-D model onto the image
successively throughout the sequence. Note that the marker that can be seen
on top of the table in the images serves only for the initialization and not for
the tracking that is based on the contours of the 3-D model. The introduced
multiresolution approach significantly improves the performance of the tracking
when the inter frame motion is large (Fig. 7).
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(a) pose at frame t = 0 (b) pose at frame t = 20 (c) pose at frame t = 40

Fig. 6. Results of the feature based registration

(a) (b) (c)

(d) (e) (f)

Fig. 7. Results of the tracking algorithm - a,b,c : sequence without the multiresolution
scheme. d,e,f : same sequence using the multiresolution approach

6 Conclusion and Future Research Direction

The proposed solutions respect the robustness, accuracy and real-time require-
ments of common industrial context. Because the marker based system implies
instrumentation of the environment, this approach is mainly dedicated to appli-
cations in a controlled environment. This solution was validated with a mobile
augmented reality application for train maintenance training.

The hybrid approach is a first step toward a markerless system. The need
of a unique marker offers a wider field of applications than the marker-based
method.
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In order to achieve a complete markerless augmented reality system, our cur-
rent research concerns an initial step without marker. We are currently devel-
oping a markerless method based on CAD model knowledge to directly identify
the object and its pose (image-model correspondence).
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Abstract. This paper presents a method for fusing multiple images of a static 
scene and shows how to apply the proposed method to extend depth of field. 
Pattern selective image fusion provides a mechanism for combining multiple 
monochromatic images through identifying salient features in the source images 
and combining those features in to a single fused image. The source images are 
first decomposed using filter subtract decimate (FSD) in laplacian domain. The 
sum-modified-Laplacian (SML) is used for obtaining the depth of focus in the 
source images. The selected images are then blended together using monotoni-
cally decreasing soft decision blending (SDB), which enables smooth transitions 
across region boundaries. The resulting fused image utilizes focus information 
that is greater than that of the constituent images, while retaining a natural veri-
similitude.  Experimental results show the performance of the depth of focus 
extension using consumer video camera outputs. 

1   Introduction 

Recently, image fusion has become an important research topic in image analysis and 
computer vision [1, 2, 3]. Image fusion refers to the image processing techniques that 
produce a new, enhanced image by combining images from one or more sensors. The 
fused image is then made more suitable for human/machine perception, and for further 
image processing tasks such as segmentation, feature extraction and object recognition.  

In this paper we propose a new pattern selective image fusion method that extends 
the depth of field of the sensor through the manipulation of multiple images at the 
same scene. An interesting observation motivating this approach is that, even though 
any single image may not have the entire scene in focus, the settings of the sensor and 
sensor optics can usually be adjusted so that at least some portion of the scene has the 
desired visual quality. The challenge, therefore, is to generate a set of images with 
varying apertures and focus settings, then to combine these images in to a single result 
where each scene feature has maximal focus.  

                                                           
∗This work was supported by Korean Ministry of Science and Technology under the National 
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Prior work on the image fusion process has focused on operating on multiple inten-
sity images based on wavelet and discrete cosine transformations [4, 5, 6] or use of a 
know camera point spread function (PSF) [5]. Other methods use pyramid based rep-
resentation to decompose the source image in to different spatial scales and orienta-
tions [7]. Similar results, although with more artifacts and less visual stability can be 
achieved with the use of other basis functions [8]. Another technique similar to pyra-
mid representation, have been based on wavelet transform as a means to decompose 
the image in to various sub bands [5, 6]. From the decomposed sub- bands the output 
is generated through selecting the sub bands that have maximum energy and recon-
structing the fused sub-band. This representation, however, has an inherent limitation 
due to the sensitivity of the wavelet transform to translation and rotation and therefore 
is not particularly suitable for the fusion of images where, even after registration, 
residual motion is present. 

Pattern selective image fusion method proposed in this paper is mainly composed 
of four step process: pyramid construction, feature saliency computation, blending 
function, and reconstruction of the fused images. This four-step process provides an 
overview of how images can be fused with maximum flexibility. The rest of the paper 
is organized as follows. Existing techniques and problem formulation are described in 
Section 2. The proposed pattern selective fusion algorithm is described in Section 3. 
Simulation results and comparisons are shown in Section 4. Finally, concluding re-
marks are outlined in Section 5. 

2   Problem Formulation 

The basic crux of the problem is deciding which portions of each image are in better 
focus than their respective counterparts in the associated frames and combining these 
regions to form the synthesized extended depth of focus image. In short, due to low 
pass filtering nature of the modified Bessel function present in the defocused images, 
the discrimination method of choice invariably involves quantification of high 
frequency content [1, 3].  

Scenes containing large local changes in illumination and objects at greatly varying 
distances are impossible to image with high image quality throughout the scene [2, 4]. 
Known methods for adjusting a sensors integration time and aperture, including 
methods such as automatic gain control and automatic iris selection, are commonly used 
to adjust for overall illumination in a scene, but cannot compensate for large local 
variations in the scene brightness. Likewise, physical limitation in standard sensor 
optics result in finite depth of field, which enables features within the depth of field to 
be in focus while scene contents outside the depth of field suffer from progressively 
increased blurring as the features are further and further from the depth of focus [9].  

Another optical phenomenon which presents a possible obstacle to the fusion of 
differently focused images is image misalignment due to magnification or 
misregistration. The former occurs when the sensor plane, is moved between frames, 
thereby changing the effective magnification of the imaged object. On a related note, 
misregistration can also occur as a result of slight camera movement between frames. 
In this paper we will focus on the fusion issue and the source images are assumed to 
be already registered.  
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3   Proposed Pattern Selective Fusion Algorithm 

The problem is solved as follows: Given N images of a static scene obtained at differ-
ent depth of focus using a stationary camera, it is required to combine the images in to 
a single image that has the maximum information content without producing details 
that are non-existent in the given images. The approach proposed here selects the 
most informative image for each local area and blends the selected images to create a 
new image. The foundation for combining multiple images into a single, enhanced 
result is the pattern selective fusion process itself. To simplify this discussion, we 
assume the fusion process is to generate a composite image C from a pair of source 
images denoted with A and B.  

3.1   Pyramid Construction for Image Fusion 

The pyramid representation can be used both for assessing the salience of the source 
image features, and for the reconstruction of the final image result. The following 
definitions for the pyramid are used. The fusion method described within this paper 
use a Laplacian pyramid representation. Laplacian pyramids are constructed for each 

image using the filter subtract decimate (FSD) method [8]. Thus the thk  level of the 

FSD Laplacian pyramid,
k

L , is constructed from the corresponding Gaussian pyramid 

level k  based on the relationship.  

(1 ),
k k k k

L G wG G w= − = −  (1) 

where w  represents a standard binomial Gaussian filter, usually of 5 5×  spatial pix-
els extent. When constructing the FSD Laplacian, due to the decimation process and 
the fact that w is not an ideal filter, a reconstruction of the original image based on the 
FSD Laplacian pyramid incurs some loss of information. To partially correct for this 
effect, an additional correction term is added to the Laplacian. This term is obtained 
by subtracting the filtered Laplacian from the original Laplacian, and results in the 
corrected FSD Laplacian given by, 

(1 ) (2 )(1 ) .
k k K k

L L w L w w G= + − = − −  (2) 

The addition of this term allows the reconstruction to restore some of the frequency 
information that would be otherwise lost. Throughout this paper, while referring to 
Laplacian representation of the image, the corrected FSD Laplacian defined above 
should be assumed.  

3.2   Feature Saliency Computation 

The feature saliency computation process, expresses a family of functions that operate 
on the pyramids of both images yielding saliency pyramids. In practice, these func-
tions can operate on the individual pixels or on a local region of pixels within the 
given pyramid level. The saliency function captures the importance of what is to be 
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fused. When combining images having different focus, for instance, a desirable sali-
ency measure would provide a quantitative measure that increases when features are 
in better focus. Various such measures, including image variance, image gradients, 
have been employed and validated for related applications such as auto focusing [3, 4, 
5]. The saliency function only selects the frequencies in the focused image that will be 
attenuated due to defocusing. Since defocusing is a low pass filtering process, its 
effects on the image are more pronounced and detectable if the image has strong high 
frequency content. One way to high pass filter an image is to determine its Laplacian 
or second derivative in our case.  

2 2

2

2 2
,k k

K

L L
L

x y

∂ ∂
∇ = +

∂ ∂
 

(3) 

Also we know that in the case of Laplacian the second derivatives in the x  and y  

directions can have opposite signs and tend to cancel each other. In the case of tex-
tured images, this phenomenon may occur frequently and the Laplacian at times may 
behave in an unstable manner. We overcome this problem by defining absolute Lapla-
cian as  

2 2

2

2 2
,k k

K

L L
L

x y

∂ ∂
∇ = +

∂ ∂
 

(4) 

Note that the modified Laplacian is always greater or equal in magnitude to the 
Laplacian. In order to accommodate for possible variations in the size of texture ele-
ments, we computer the partial derivative by using a variable spacing between the 
pixels used to compute the derivatives. Hence a discrete approximation to the modi-
fied Laplacian is given by, 

( , ) ,2 ( , ) ( 1, ) ( 1, ) 2 ( , ) ( , 1) ( , 1)ML i j I i j I i j I i j I i j I i j I i j= − − − + + − − − +  (5) 

Finally, the focus measure at a point ( , )i j is computed as the sum of modified Lapla-

cian values, in a small window around ( , )i j , that are greater than a threshold value.  

1
( , ) ( , ) ( , ) .

j Ni N

x i N y j N

k kF i j M x y forM x y T
++

= − = −

= ≥  
(6) 

The parameter determines the window size used to compute the focus measure. In 
contrast to auto focusing methods, we typically use a small window of size, i.e. 

1N = . The above equation can be referred to as sum modified Laplacian (SML).  

3.3   Soft Decision Blending and Reconstruction  

The reconstruction process, operates on each level of the pyramid of the original im-
ages in conjunction with sum modified Laplacian to generate the composite image C. 
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The reconstruction process iteratively integrates information from the lowest to the 
highest level of the pyramid as follows:  

. (1 ) ,
ck k Ak K Bk

L F L F L= + −  (7) 

[ 1] 2.
k ck k

C L w C= + + ↑  (8) 

Where
k

C  represents the reconstructed image from level N , the lowest level, to level 

k  and 2↑  refers to the expand process. The expansion process consists of doubling 
the width and height of the image by introducing columns and row in the original and 
then convolving the resulting image by the w  filter. A typical problem that can occur 
with any type of image fusion is the appearance of unnatural borders between the 
decisions regions due to overlapping blur at focus boundaries. To combat this, soft 
decision blending (SDF) can be employed using smoothing or low pass filtering of the 

saliency parameter
k

F . In this paper Gaussian smoothing has been used for obtaining 

the desired effect of blending. This creates weighted decision regions where a linear 
combination of pixels in the two images A and B are used to generate corresponding 
pixels in the fused image C. Then we have, 

. (1 )

, ,

, ,

, .
k Ak K Bk

Ak k

ck Bk k

F L F L

L F l

L L F h

otherwise+ −

<

= >  

(9) 

where 
k

F  is now a smoothed version of its former self.  

4   Experimental Results  

In this section we experimentally demonstrate the effectiveness of the pattern selec-
tive fusion algorithm. Experiments were performed on a 256-level image of size 
640x480. Here, each image contains multiple objects at different distances from the 
camera. Thus one or more objects naturally become out of focus when the image is 
taken. For example, the focus in on the clock in fig 1(a), while that in fig 1(b) is on 
the student. 

Fig 1 and 2 shows the result of image fusion applied to two images having differ-
ent depth of focus. The resulting composite merges the portions that are in focus from 
respective images. The result of salient focus measure is given in fig 1 (c), (d). The 
SML salient operator enhances the sharp edges and textures and makes them pre-
dominant for further selection and reconstruction. Fig 1(e) and 2(c) give the result of 
the patter selective fusion algorithm. The arbitrary threshold value in the range [0, 
30], provides acceptable results in most cases. It can be seen the all objects are in 
focus in the final fused image and any undesired discontinuities at the region bounda-
ries are prevented by soft decision blending function.  
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(a)                                                                       (b) 

   

(c)                                                                      (d) 

 

(e) 

Fig. 1. The “Lab” source images and fusion results: (a) focus on the clock; (b) focus on the 
student; (c), (d) focus measure using sum-modified-Laplacian; (e) fused image with all objects 
in focus 
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(a)                                                                       (b) 
 

 

(c) 

Fig. 2. The “Disk” source images and fusion results: (a) focus on the left; (b) focus on the right; 
(c) fused image 

5   Conclusions 

In this paper we proposed a pattern selective fusion algorithm for the synthesis of 
extended depth of focus imagery. The pyramid structure followed by sum-modified-
Laplacian and soft decision blending make the algorithm effective and easy to imple-
ment.  Also, no particular characteristics of the imaging is need to be known a priori; 
the main requirements are that underlying assumptions governing the fusion process. 
A natural extension to the work presented here will include the application of pattern 
selective fusion to image sequences and also for dynamic range enhancement.  
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Abstract. In this paper, a new learning method is proposed to build
Support Vector Machines (SVM) Binary Decision Function (BDF) of re-
duced complexity, efficient generalization and using an adapted hybrid
color space. The aim is to build a fast and efficient SVM classifier of
pixels. The Vector Quantization (VQ) is used in our learning method
to simplify the training set. This simplification step maps pixels of the
training set to representative prototypes. A criterion is defined to evalu-
ate the Decision Function Quality (DFQ) which blends recognition rate
and complexity of a BDF. A model selection based on the selection of
the simplification level, of a hybrid color space and of SVM hyperpa-
rameters is performed to optimize this DFQ. Search space for selecting
the best model being huge. Our learning method uses Tabu Search (TS)
metaheuritics to find a good sub-optimal model on tractable times. Ex-
perimental results show the efficiency of the method.

1 Introduction

Pixels classification is commonly used as an initial step in color image segmenta-
tion schemes [1,2] for the extraction of seeds. As for any classification problem,
the choice of an inducer which produces efficient Decision Functions (DF) hav-
ing good generalization performances is critical. Working with machine learning
algorithm for pixel classification involves to take into account not only the recog-
nition rate of the base inducer but also the processing time needed to perform a
single pixel classification. In this paper, we are interested in SVMs and for those
ones the processing time is only related to the complexity of the BDF. When a
DF has an efficient recognition rate, but with a huge computing time per pixel,
it cannot be directly used within the framework of pixel classification, expecially
when processing time is critical. SVMs are powerful classifier having high gen-
eralization abilities [3]. However the BDF provided by SVM has a complexity
which increases with the size of the training set [4,5]. Therefore using SVMs on

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 685–69 , 2005.
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a huge pixel set is not directly tractable for pixel classification. To this aim we
propose a new learning method which makes it possible to use SVMs within the
pixel classification framework. This method uses the VQ principle [6] to simplify
the training set and thus permits to reduce the complexity of the BDFs built
by SVMs. the DFQ for the pixel classification depends on two terms: the DF
recognition rate and the DF complexity. For pixel classification the DF complex-
ity depends on the color space used and the number of Support Vectors (SV)
(cf. section 5). The classical color space representation of a pixel is denoted by
its RGB values, however, depending on the application, another more adapted
color space can be chosen (XY Z,L∗a∗b∗,L∗u∗v∗,. . . ). This choice is difficult and
subjective, therefore it is more reliable to define a hybrid color space [1] which
will be more adapted to the definition of a proper DF. For this reason, it is essen-
tial that our learning method selects a hybrid color space adapted to each BDF
produced by the SVM. This hybrid color space is built by selecting a set of color
components which can belong to any of the different classical color spaces [1].
The mechanism used in our method for the selection of the color components
is similar to that usually used within the features selection framework [7]. For
each BDF produced by SVM, our learning method must thus choose the values
of the SVM hypermarameters, the simplification level of the training set and the
hybrid color space in order to optimize the DFQ. Exhaustive search for model
selection is not tractable, so we decided for this model selection to use TS meta-
heuristic because of it efficiency [8]. The combination of SVM, a simplification
step by using VQ, a hybrid color space, a new criterion for the DFQ and a TS
metaheuristic enables us to define a new learning method which produces in
tractable times a efficient BDF which have a reduced complexity.

2 Support Vector Machines

The SVMs were developed by Vapnik and al. They are based on the structural
risk minimization principle from statistical learning theory [3]. SVMs express
predictions in terms of a linear combination of kernel functions centered on
a subset of the training data, known as support vectors. Given the training
data (xi, yi) , i = {1, . . . ,m}, xi ∈ Rn , yi ∈ {−1,+1}, SVM maps the in-
put vector x into a high-dimensional feature space H through some mapping
functions φ : Rn → H, and builds an optimal separating hyperplane in this
space. The mapping φ(·) is performed by a kernel function K(·, ·) which de-
fines an inner product in H. The separating hyperplane given by a SVM is:
w · φ(x) + b = 0. The optimal hyperplane is characterized by the maximal dis-
tance to the closest training data. The margin is inversely proportional to the
norm of w. Thus computing this hyperplane is equivalent to minimize the follow-
ing optimization problem: V (w, b, ξ) = 1

2‖w‖2+C (
∑m

i=1 ξi) where the constraint
∀m

i=1 : yi [w · φ (xi) + b] ≥ 1 − ξi , ξi ≥ 0 requires that all training examples are
correctly classified up to some slack ξ and C is a parameter allowing trading-off
between training errors and model complexity. This optimization is a convex
quadratic programming problem. Its whole dual [3] is to maximize the following
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optimization problem: W (α) =
∑m

i=1 αi − 1
2

∑m
i,j=1 αiαjyiyjK (xi, xj) subject

to ∀m
i=1 : 0 ≤ αi ≤ C ,

∑m
i=1 yiαi = 0. The optimal solution α∗ specifies the

coefficients for the optimal hyperplane w∗ =
∑m

i=1 α
∗
i yiφ (xi) and defines the

subset SV of all SVs. An example xi of the training set is a SV if α∗
i ≥ 0 in the

optimal solution. The SVs subset gives the BDF h:

h(x) = sign(f(x)) , f (x) =
∑

i∈SV

α∗
i yiK (xi, x) + b∗ (1)

where the threshold b∗ is computed via the unbounded SVs [3] (i.e. 0 < α∗
i < C).

An efficient algorithm SMO [4] and many refinements [9,10] were proposed to
solve dual problem. SVM being binary classifiers, several binary SVM classifiers
are induced for a multi-class problem. A final decision is taken from the outputs
of all binary SVM [11].

3 Vector Quantization

The VQ is a classification technique used in the compression field [6]. VQ maps
a vector x to another vector x′ that belongs to m′ prototypes vectors which is
named codebook. The codebook S′ is built from a training set Sa of size m (m >>
m′). The algorithm must produce a set S′ of prototypes x′ which minimizes the
distorsion d′ which is defined by: d′ = 1

m

∑m
i=1 min1≤j≤m′ d(xi, xj) (d(., .) is a

#2 norm). LBG is one of those algorithms [6] which can build this codebook. It is
an iterative algorithm which produces 2k prototypes after k iterates.

4 Hybrid Color Spaces

The pixels of a color image are digitized in (R, G,B) color space. However, this
color space is not always the more appropriate for image processing problems and
especially for pixel classification. There are many different color spaces and each
one presents specific colorimetric, physical and physiological properties [1]. For
our study, we have retained the most commonly used color spaces1: (X, Y,Z),
(L∗, a∗, b∗), (L∗, u∗, v∗), (L1,C,H1), (Y2,Ch1,Ch2), (I1, I2, I3), (H2, S, L2),
(Y3,Cb,Cr). Moreover, in some experiments, it was shown that by combining
color components from several color spaces, it is possible to build a hybrid color
space more suitable than initial ones [1].
Let E be the space which regroups all nE distinct color components from e
different classical color spaces. By definition a hybrid color space Hβ

E is composed
of a set of nβ components from E and the vector β indicates which components
from E are used (i.e. i ∈ [1, . . . , nE ], βi = 1 if the ith color component of the space
E is used in Hβ

E and βi = 0 in the other case). For our study, e = 9, nE = 25 and
E = (R, G,B,X, Y1,Z, L

∗, a∗, b∗, u∗, v∗, C,H1, Y2,Ch1,Ch2, I1, I2, I3,H2, S, L2,

Y3,Cb,Cr). Then, the objective of our method is to find a hybrid color space Hβ
E

(the value of β) which improves the DFQ produced by SVM.
1 We have added indices for some color components to differentiate them when being

denoted by the same letter but not being identically computed.
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5 Decision Function Quality

The DFQ q for a given model θ depends on the recognition rate RR but also on
the complexity CP of the DF hθ when processing time is critical. The DFQ q can
be modelled by: q(hθ) = RR(hθ)−CP (hθ). When the DF is built by SVM with a
fixed kernel, the complexity of this DF depends on nSV and β (Hβ

E) . We chose
to model CP (hθ) by: CP (hθ) = cp1 log(nSV ) + cp2 log(cost(β)). Constants cp1

and cp2 are weighting coefficients which respectively represent the importance
of the number of SVs and the choice of the hybrid color space (cost(β)) in the
complexity of hθ. The ith color components (i > 3) of a pixel are computed by
linear or not linear transformation of the first three RGB components [1]. The
time cost to compute a given color component is more or less expensive as regards
the kind of transformation (linear or not, software or hardware). Let κi denote
the transformation cost to compute the value of ith color components, the value

of cost(β) linked to the hybrid color space Hβ
E is defined by: cost(β) =

nE∑
i=1

βiκi.

6 Tabu Search

TS is a metaheuristic for difficult optimization problems. The roots of tabu search
go back to the 1970s; it was first presented in its actual form by Glover [12]. TS
belongs to iterative neighbourhood search methods. The general step, at the it
iteration , consists in searching from a current solution θit a next best solution
θit+1 in the neighbourhood. This new solution may be less efficient than the
previous one, however it avoids local minimum trapping problems. That is why,
TS uses short memory to avoid creating cycles. The use of this short memory is
helpful to avoid moves which might led to recently visited solutions (tabu solu-
tions). Although the basic idea of TS is straightforward, the choice of solutions
coding, objective function, neighbourhood, tabu solutions definition depends on
the application problem.

Our problem is to choose an optimal model (solution) θ which can be repre-
sented by a set of integer variables θ = (θ1, . . . , θn′) with : foralli ∈ [1, . . . , n′],
θi ∈ [min(θi), . . . ,max(θi)] (cf. section 7). The objective function q to be opti-
mized represents the quality of the BDF hθ. One move in TS corresponds to adding
Δ ∈ [−1, 1] to the value of θi, while preserving the constraints of the model which
depends on it. From these constraints, the list of all possible neighboorhood solu-
tions is computed. From these possible solutions the one which has the best DFQ
and which is not tabu is chosen. The set of all Θit

tabu solutions θ which are tabu at
the it iteration step of TS is defined as follow: Θit

tabu = {θ ∈ Ω | ∃i, t′ : t′ ∈
{1, . . . , t}, θi = θit−t

i ∧ θit−t
i �= θit−t+1

i } with Ω the set of all solutions and t an
adjustable parameter for the short memory used by TS.

7 New Learning Method

When studying the SVM algorithm, one notices that processing time for SVM
training quickly grows according to the size of the training base. For SMO algo-
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Table 1. The Simplification algorithm (left) and the synopsis of SVM DFQ (right)

Simplification(S,k) SVM-DFQ(θ,Sa)

S′ ⇐ ∅ (Se, Sv) ⇐ Split(Sa)
FOR c = 1 TO nc S′

e ⇐ Simplification(Se,kθ)
| T = {x | (x, c) ∈ S} hθ ⇐ TrainingSVM(S′

e,Kβθ
,Cθ ,λθ)

| IF 2k < |T | THEN T ′ ⇐ LBG(T, k) RR ⇐ 1− EmpiricalError(hθ ,Sv)
| ELSE T ′ ⇐ T CP ⇐ Complexity(hθ)
| S′ ⇐ S′ ∪ {(x, c) | x ∈ T ′} DFQ ⇐ RR − CP

RETURN S′

rithms, it is between O(m1,6) and O(m2,1) [4]. Moreover the number of SVs used
by the BDF increases with the problem size. As the objective of our learning
method is to produce a BDF of optimal qualitie (section 5), the increase in the
number of SVs is only interesting if it is linked to a significant improvement of
the recognition rate. The idea of our method is to train a SVM from a small data
set representative of the initial one, in order to reduce the complexity of the BDF
and consequently training time. The LBG algorithm has been used to perform
the simplification (reduction) of the initial data set. Algorithm in Tab. 1 gives the
details of this simplification. As the level of simplification k cannot be easily fixed
in an arbitrary way, a significant concept in our method is to regard k as variable.
The optimization of SVM DFQ thus requires for a given kernel function K the
choice of: the level of simplification k, the hybrid color space Hβ

E , the constant
of regularization C and the kernel parameters λ of K. The search of the values
of these variables is called model search. Let θ be a model and kθ, βθ, Cθ, λθ be
respectively the values of previous variables obtained from the model θ. The re-
search of the exact value θ∗ which optimizes the DFQ not being tractable, we de-
cided to use tabu search as metaheuristic. To have a model θ easily usable by the
TS, it must correspond to a vector of n′ integer values. We have used the follow-
ing equivalence: (θ1, . . . , θn′) = (β1, . . . , βnE , k,C

′, λ′
1, . . . , λ

′
|λ|) with Cθ = 2C′

,
C′ ∈ [−5, . . . , 15] [9]. From this model θ, the function q which must be optimized
by TS is = q(hθ). The synopsis in Tab. 1 gives the details of the estimation of
DFQ from a model θ and a training set Sa with = q(hθ) = SVM-DFQ(θ, Sa).
Se, Sv which is produced by Split function (|Se| = 2

3 |Sa|, |Sv| = 1
3 |Sa|) re-

spectively indicates the base used for training SVM and the estimate of the
recognition rate. This dissociation is essential to avoid the risk of overfitting
when the empirical error is used for the estimate of RR. The SVM training step
is made by using a SMO algorithm version present in the library Torch [10].
The kernel functions Kβ used for training SVM are defined from a distance

dβ : dβ(xi, xj) =

√
nE∑
l=1

βl(xl
i − xl

j)2. It is identical to use #2 norm in the hybrid

color space Hβ
E for the design of BDF. For this study, only kernel: KL

β = dβ
2

and KG
β = exp(−dβ

2/λ1
2) are used (in TS model: λ′

1 ∈ [−10, . . . , 10] and
λ1θ = 2λ′

1 [9]).
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8 Experiments

We applied our learning method for pixel classification of microscopic images of
bronchial tumors [2]. The training and testing set Sa and St are built from four
ground-thruth microscopic color images (RGB, 574*752 pixels). For each image,
a manual segmentation is made by an expert: background (class 1), cytoplasm
(class 2), nucleus (class 3). As the number of pixels in each class is not balanced
in the images (1: 89%, 2: 7%, 3: 4%), only a subset of the pixels of classes 1 and
2 was selected by random to build Sa and St, so that each class has the same
number of examples (≈ 60000 by class). Three training sets Si

a (testing sets Si
t)

are built from the Sa (St) in order to produce binary decision problems (method
one against all [11]). For each binary problem a model θi and BDF hi

θ is built
with our learning method. To avoid any biais for model selection the recognition
rate of a BDF hi

θ is evaluated from testing set Si
t.

Figures 1(a) and 1(d) illustrate for each BDF hi
θ with a kernel KL

β (optimal
value of C is searched) the evolution of the recognition rate and of the number
of SVs according to the level of simplification k. That is done for all the classical
color spaces retained. One can notice that improvement of RR is obtained only
for small values of k. Moreover, the choice of a color space which optimizes the
DFQ depends to the trade-off between complexity and recognition rate. These
remarks corroborate the choices which were made in the definition of our learn-
ing method.

Tables 3 illustrate results obtained with our learning method by using a ker-
nel KL

β and KG
β . Table 2 gives the values of

constants for all the configurations used. The
column κi represents two cases: the first one
is a microship transformation (κi = 1) and
the second one is a software transformation
(κi = Ti/T with Ti the time to compute the
color component i and T =

∑
i∈[1,...,nE] Ti).

configuration cp1 cp2 κi

A 0.0001 0.01 1
B 0.01 0.01 1
C 0.03 0.03 1
D 0.01 0.01 T i/T

Table 2. Values of constants

In tables 3 HCS indicates hybrid color spaces used by the BDF, Δt the training
time, and in column DF is mentioned after θ the configuration which is used.
These results show that our learning method produces BDF with reduced com-
plexity and efficient in generalization. The choice of a specific hybrid color space
for each BDF generally improves the recognition rate. The improvement with
the use of kernel KL

β is very significant (≈ 5%) with h2
θ. For this problem, the

choice to use a kernel KG
β in comparison with KL

β does not improve the recog-
nition but increases the BDF complexity. Indeed, h(x) = dβ(x∗, x)2 + b∗ with
x∗ =

∑
i∈SV α∗

i yixi when kernel KL
β is used, then the number of SVs does not

penalize the BDF complexity. However, although it seems logical to choose zero
or very low values for cp1 , results (Tab. 3: left, configuration A and B) show a
significant increase in time for the selection of a model without significant im-
provement of the recognition rate. Those results (Tab. 3: configuration B and
D) also show that the uses of κi constants allow to select a hybrid color space
according to its cost. In particular, in the case of software implementation the
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(a) h1
θ: RR. (b) h1

θ: nSV .

(c) h2
θ: RR. (d) h2

θ: nSV .

Fig. 1. Recognition rate and number of SVs in function of simplification level

Table 3. Results with a microscopic image pixels set by using a kernel KL
β (left) or a

kernel KG
β (right)

DF RR nSV HCS k Δt

h1
θ,A 96.44 2 ZCr 2 144

h2
θ,A 85.99 48 Bb∗L2H1CH2SCb 5 26574

h3
θ,A 90.48 63 Y1L

∗a∗u∗ 6 29540

h1
θ,B 96.50 2 Cr 2 140

h2
θ,B 84.98 18 L∗b∗u∗CI2S 4 2352

h3
θ,B 89.79 2 Gu∗Cb 1 147

h1
θ,C 96.50 2 Cr 2 140

h2
θ,C 82.82 3 SCr 1 179

h3
θ,C 89.73 2 v∗ 1 140

h1
θ,D 95.66 2 R 2 151

h2
θ,D 83.53 2 RBb∗SL2Cr 2 397

h3
θ,D 90.09 4 GB 2 197

DF RR nSV HCS k Δt

h1
θ,B 96.08 5 RH1 3 865

h2
θ,B 85.90 10 RXa∗H1Y2Y3 3 1239

h3
θ,B 90.43 4 BY u∗v∗ 2 708

h1
θ,C 95.66 2 R 1 482

h2
θ,C 85.17 10 RH1Y2Y3 3 1223

h3
θ,C 89.47 2 b∗ 0 434

h1
θ,D 95.66 2 R 1 440

h2
θ,D 85.78 10 RY1Ch1Y3Cr 3 1174

h3
θ,D 90.45 5 GB 2 409
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R, G, B components are mostly used and those requiring a nonlinear transfor-
mation lesser used, but the recognition rate still is as efficient.

As actually the whole process of microscopic images segmentation is software
performed, then we have used the BDFs produced with the configuration D and
a kernel KL

β .

9 Conclusions

A new learning method is proposed to build SVM binary decision functions
which are efficient for pixel classification. This learning method produces BDF
whose advantages for pixel classification problems are threefold: high general-
ization ability, low complexities and definition of a adapted hybrid color space.
Future works will have to test this method on other pixel classification prob-
lems. It will also have to check the influence of several combination schemes of
BDF, especially when the number of classes is higher. Later, it will also have
to quantify the influence of other simplification methods and to compare other
metaheuristics for model selection.
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Abstract. This paper presents a visual tracking algorithm that is based
on CamShift. Both the face and upper body are utilized simultaneously
to perform tracking. They are first tracked independently by applying
two separate CamShifts which continue tracking from the locations de-
termined in the last time step and use only color probability images.
Next, the candidate locations are subjected to CamShift which operates
on distributions reflecting additionally geometrical relations between the
face and the body. The aim of the CamShift-based searching in the joint
color-spatial space is to find the mode. Experimental tracking results
on meeting video recordings are presented. They demonstrate that this
algorithm is superior over traditional CamShift. Furthermore, it is very
simple and computationally fast.

1 Introduction

The goal of tracking is to establish a stable track for each object of interest in
successive frames. It can be seen as a problem of assigning consistent identities to
objects of interest. The tracking of people is very important component of many
present and near-future applications of computer vision. A number of authors
have previously considered the problem of tracking objects in video [1][2][3][8].

There are several computationally inexpensive visual techniques for face
tracking. One of earliest attempts to track the face in live video sequences was
made by Yang and Waibel [11]. They limited the number of CPU cycles needed
for realization of efficient tracking by using color information to extract desir-
able skin-like regions. Bradski’s CamShift is very interesting because it is very
fast and requires minimal training. It can deal with irregular object motion aris-
ing due to perspective, uncalibrated lenses, image noise and so on. The major
advantage of the algorithm is that it can work with cheap desktop cameras.
The algorithm is representative of a group of algorithms that exploit the color
cue to locate and subsequently track a human face in a video sequence. It is
based on a robust non-parametric technique called Mean Shift to seek the near-
est mode of probability distribution. A Mean Shift-based tracker by Comaniciu
et al. [3] also exploits color distributions. The algorithm requires that the new
target center remains within the kernel centered on the previous location of the
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target. A relatively computationally inexpensive tracker of Birchfield [1] simul-
taneously utilizes a gradient-based elliptical outline fitted to the oval shape of
the head and the color distribution enclosed. The algorithm operates through a
deterministic searching in 3D space. The particle filter-based tracker [9] utilizes
color information. The filter performs a random seeking guided by a probabilis-
tic motion model to estimate the posterior probability density distributions of
general non-linear and non-Gaussian systems. The algorithm uses a multi-part
color modeling to take into account a rough spatial layout. The discussed work
demonstrates that splitting of considered entity into two parts with specific color
models improves tracking performance.

In this work we present a CamShift-based tracking algorithm. The face and
upper body are utilized simultaneously to improve the tracking performance.
They are first tracked independently by applying two separate CamShifts to final
positions determined in the last time step. The candidate locations of rectangles
with the interior color distributions most similar to distributions of the color
models of face and body are determined. The final face location is then computed
by CamShift acting on joint color-spatial distributions. The algorithm has been
tested using the PETS-ICVS-03 meeting recordings.

The paper is organized as follows. The next section contains a review of the
CamShift algorithm. In section 3. we describe our algorithm and present some
tracking results which were obtained on meetings recordings. Some conclusions
are drawn in the last section.

2 Object Tracking Using CamShift

The Continuously Adaptive Mean-Shift (CamShift) algorithm has been devel-
oped to perform efficient tracking of head and face in a perceptual user interface
[2]. The algorithm is a generalization of the Mean Shift algorithm [5], which can
only deal with static distributions. The Mean Shift algorithm provides a way to
find the density modes without estimating the density. The CamShift is designed
for dynamically changing distributions. The size and location of the probability
distribution changes during tracking due to object movement, changing illumi-
nation conditions, viewing angle, shadows, etc. The algorithm uses color infor-
mation to generate a probability distribution which is utilized to locate and then
to subsequently track an object in a video sequence. It finds the mean (mode) of
the distribution by iterating in the direction of maximum increase in probability
density. The probability density is recomputed in each frame on the basis of the
histogram back-projection [10][2]. Each pixel in the probability image represents
a probability that the color of the considered pixel from an input image belongs
to the object of interest. Spatial moments are used during iterations towards the
mode of the distribution. This differs the CamShift algorithm from the conven-
tional Mean Shift where the target and the candidate distributions are used to
iterate towards the mode.

A variety of parametric and non-parametric statistical methods can be uti-
lized to represent color distributions of homogeneous colored areas. The his-
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togram is the oldest and most widely applied non-parametric density estimator.
It is computed by counting the number of pixels in a region of interest that
have a given color. The colors are quantized into bins. This operation allows
similar color values to be clustered as single bin. The quantization into bins re-
duces the memory and computational requirements. The unweighted histogram
is computed in the following manner:

qu =
n∑

i=1

δ[c(xi)− u] (1)

where the function c : )2 → {1, ...,m} associates the value of pixel at location
xi to the bin number, n is the number of pixels, and δ is the Kronecker delta
function. Due to their statistical nature color histograms can only reflect the
content of images in a limited way [10]. Therefore such characterization of an
object is tolerant to the noise. Histogram-based techniques are effective only
when the number of bins can be kept relatively low and where sufficient data
amounts are available.

The color distribution of an object represents a feature that is relatively
stable under object rotation and scaling. It is also robust to partial occlusions
while edge-based methods are ineffective. The major drawback with modeling
the color distribution with histograms is the lack of convergence to the true
density if the data set is small. In certain applications the color histograms are
invariant to object translations and rotations. They vary slowly under change of
angle of view and with the change in scale.

The original implementation of the CamShift algorithm uses the HSV color
space [2]. A shadow cast does not change significantly the hue color component.
Shadow decreases mainly the illumination component and changes the saturation
component. Since the algorithm is intended to spend the lowest number of CPU
cycles as possible, the color model is created by taking only a 1-D histogram of
the hue component. This algorithm may fail to track the object when hue alone
cannot be sufficient to distinguish the targets from the background.

The probability density image P (x, y) is extracted on the basis of the his-
togram back-projection. This operation replaces the pixel values of the input
image with the value of corresponding bin of the histogram. The value of each
pixel in the probability image represents the probability that the pixel belongs
to the object of interest. In order to provide the range of probability values be-
tween 0 and 255 the histogram bin values are linearly rescaled according to the
following formula:

pu = min
(

255
qmax

qu, 255
)
, u = 1, ...,m, qmax = {max (qu)}mu=1 . (2)

The mean location of the distribution within the search window is computed
using moments [6][2]. It is given by:

x1 =

∑
x

∑
y xP (x, y)∑

x

∑
y P (x, y)

, y1 =

∑
x

∑
y yP (x, y)∑

x

∑
y P (x, y)

(3)
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where x, y range over the search window. The eigenvalues (major length and
width) of the probability distribution are calculated as follows [6][2]:

l = 0.707
√

(a + c) +
√
b2 + (a− c)2, w = 0.707

√
(a + c)−

√
b2 + (a− c)2 (4)

where

a = M20
M00
− x2

1, b = 2M11
M00
− x1y1, c = M02

M00
− y2

1 , M00 =
∑

x

∑
y P (x, y),

M20 =
∑

x

∑
y x

2P (x, y), M02 =
∑

x

∑
y y

2P (x, y).

The object orientation can be estimated as follows:

θ = 0.5 ∗ arctan
b

a− c
. (5)

The algorithm repeats the computation of the centroid and repositioning of
the search window until the position difference converges to some predefined
value, that is, changes less than some assumed value. Relying on the zero-th
moment M00 the CamShift adjusts the search window size in the course of its
operation. It requires the selection of the initial location and size of the search
window. The algorithm outputs the position, dimensions, and orientation of an
object undergoing tracking. It can be summarized in the following steps [2]:

1. Set the search window at the initial location (x0, y0).
2. Determine the mean location in the search window (x1, y1).
3. Center the search window at the mean location computed in Step 2, set the window

size to zero-th moment M00.
4. Repeat Steps 2 and 3 until convergence.

The CamShift algorithm has been tested using the PETS-ICVS-03 meeting
recordings. For cameras 1 and 2 in scenario C there are maximum of 3 people
sitting in front of each camera, see Fig. 1. The images of size 720x576 have been
converted to size of 320x240 by subsampling (consisting in selecting odd pixels in
only odd lines) and bicubic-based image scaling. The tracker has been initialized
in frame #10949 with the number of bins m equals 30, Smin=10 and Vmin=10.
In frames #11224, #11233, and #13669 we can observe how the window size is
influenced by skin colored pixels from outside of the face. In frame #13670 the
track was lost and the algorithm started tracking an other head which influenced
the size and the location of the window.

Fig. 1. Head tracking using CamShift. Frames #10969, #11224, #11233, #13669.
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3 Tracking in Joint Color-Spatial Distributions

The tracking algorithm we present here follows the idea of person tracking
through considering face-body relations, which has been presented in our pre-
vious paper [7]. The algorithm works by applying two probabilistic detectors of
person’s face and shirt colors. The probability images have been used to segment
the candidates of person’s face and shirt from the background. The ratio of ar-
eas, coordinates of gravity centers and geometrical relations between the labeled
skin-like regions and shirt-like regions have been then used in extraction of the
person from the background. The Kalman filter has been utilized to perform
tracking the person within an image sequence.

In this work both the face and upper body are also utilized simultaneously to
perform tracking. The face and body are first tracked independently by applying
two separate CamShifts which continue tracking from the locations determined
in the last time step. This operation finds the candidate locations of rectan-
gles where the interior color distributions are most similar to distributions of
the color models of face or body. A refined face location is then computed by
CamShift which operates on distributions reflecting also geometrical relations
between the face and the body.

Denote by Xf = (xf , yf ) and Xb = (xb, yb) the position of the rectangles
surrounding the face and body, respectively. The difference Xf −Xb = (xf − xb,
yf −yb) = (xfb, yfb) reflects the configuration between face and body. The prob-
ability that Xf − Xb represents the human H can be expressed by product of
two Gaussians:

p (Xf −Xb | H) = G(xf − xb, μx,σx)G(yf − yb, μy,σy) (6)

where μx, σx, μy, σy can be determined in advance from training samples.
Denote by ρ(Xf ) and ρ(Xb) the similarity of the model color distributions

of face and body to the candidate face or body color distributions, which are
surrounded by rectangles at positions Xf and Xb, respectively. In order to com-
pare two color distributions we need a metric of similarity or dissimilarity. In the
discussed algorithm we have implemented the histogram intersection technique
[10]. For a given pair of histograms I and M , each containing n values, the inter-
section of the histograms is defined as follows: ρ =

∑N
i=1 min(Ii,Mi). The terms

Ii, Mi represent the number of pixels inside the i-th bin of the current and the
model histogram, respectively, whereas N the total number of bins. The result
of the intersection of two histograms is the number of pixels that have the same
color in both histograms. To obtain a similarity measure with values between
the zero and one the intersection has been normalized.

Bayes rule states that:

p (H | ρ(Xf ), ρ(Xb), Xf − Xb) ∝ p (ρ(Xf | H)) p (ρ(Xb | H)) p (Xf − Xb | H) p(H)(7)

The best location corresponding to the local maximum of the probability can
be obtained through a time-consuming search in the 4D space S = (Xf ,Xb) =
(xf , yf , xb, yb):

S∗ = arg max
Si∈S

p (ρ(Xf | H)) p (ρ(Xb | H)) p (Xf −Xb | H) . (8)
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Instead of time consuming deterministic searching in the space S in order to
find the extremum, we construct in each step a joint color-spatial distributions
and apply the CamShift alternately to distributions in order to find two modes.
The joint color-spatial distributions are created as the product of color probabil-
ity images and Gaussian distributions reflecting the final face-body configuration
in the last time step. The aim of CamShift iterations is to find such locations of
two 2D Gaussians in the color probability images, where two successive locations
of the face or body mode in joint color-space distribution differ less than some
predefined value.

Having the candidate face location Xf = (xf , yf) we can extract the prod-
uct of corresponding raw probability image of the body Pb and a 2D Gaussian

G(μb,Σb), where μb = (xf−xfb, yf−yfb), Σb =
(

σ2
x 0
0 σ2

y

)
, xfb and yfb are deter-

mined by face-body configuration from the last time step. Using such a modified
body probability image we utilize CamShift in order to find the mode. Next,
taking the location Xb corresponding to this mode we can extract the product
of the raw probability image of the face Pf and a 2D Gaussian G(μf ,Σf ), where

μf = (xb +xfb, yb +yfb), Σf =
(

σ2
x 0
0 σ2

y

)
. Finally, using the modified probability

image of the face with joint color-spatial information we utilize CamShift to find
the mode. At the end of each step we have a new candidate face location Xf

which has been found by CamShift operating on joint color-spatial distributions.
Using the raw probability images and the new face location Xf we repeat such
recomputing of the raw probability images as well as CamShift-based searching
until a distance between two successive face locations computed by CamShift
converges to some predefined value.

Starting from the candidate body location Xb = (xb, yb), which has been
determined by one of the CamShifts working independently, a similar searching
has been conducted. The upper images in Fig. 2. depict the locations of the face
and body that were obtained with the searching initialized from Xf , whereas
the images in the middle row show the locations which were obtained with the
initialization at Xb. Having in disposal two face-body locations we computed the
similarities of color distributions to the original face or body distributions and
chosen the more similar face-body. The locations of face and body extracted in
such a way estimate the locations S∗ given by (8). The images which consti-
tute the bottom row in the Fig. 2. demonstrate the locations of the rectangle
surrounding the tracked face. The frames #11233 and #13669 demonstrate im-
proved tracking capabilities of the proposed approach, see also Fig. 1.

To deal with situations where the evidence of one component of the face-
body structure is weak or even missing, we generated additional Gaussian sub-
distributions in the raw probability images. They have been constructed using
information about the location of the corresponding face or body component as
well as face-body geometrical configuration, which had been determined in the
last frame. Due to such recovery parts in the distributions the algorithm can
continue the tracking, even when the evidence of only one part of the face-body
structure is relatively strong. Experiments demonstrated that such complemen-
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tary distributions improve also the overall performance of tracking. The men-
tioned above operation has been realized before the computations in the joint
color-spatial distributions.

Figure 3. depicts the number of iterations which were needed for convergence
in each time step. Typically, the average number of iterations in each call of
CamShift is less than four. The picture (a) reported in Fig. 4. demonstrates the
candidate rectangles on the image with maximal number of iterations, whereas
the picture (c) shows the candidate rectangles on the last image in the sequence.
The locations of the rectangles have been then refined using CamShift operating

Fig. 2. Tracking using joint color-spatial distribution

Fig. 3. Number of iterations versus frame number

#11233 #13669 #13695 #13720
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a) b) c) d)

Fig. 4. Convergence of the algorithm. Frame #13746 (a), (b). Frame #13763 (c), (d).

on joint color-spatial distributions, see pictures (b) and (d).The processing time
is 100 msec on average for 320x240 images on an ordinary Pentium III PC.

4 Conclusion

The superiority of CamShift-based tracking using joint color-spatial distributions
over the traditional CamShift tracking arises because the geometrical relations
between face and body yield useful information. As a consequence we developed
the modified CamShift tracking method. The method is computationally fast.
Further improvements to the algorithm could be made through integrating the
tracking algorithm with the background subtraction.
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Abstract. In this paper an algorithm for music staves detection is presented. 
The algorithm bases on horizontal projections in local windows of a score 
image and farther processing of resulting histograms and their connections. 
Experiments carried out, proved high efficiency of presented algorithm and its 
robustness in case of non-ideal staff lines: skew and with barrel and pincushion 
distortions. The algorithm allows for usage of acquisition devices alternative to 
scanner such as digital cameras. 

1   Introduction 

Optical Music Recognition (OMR) is the process of converting digitized sheets of 
music into an electronic form that is suitable for further processing such as editing 
and performing by computer. More sophisticated areas of applications are automatic 
accompaniment, music transposing, extracting parts for individual instruments and 
musicological analysis of the music. The OMR systems are also the tools used for 
information retrieval process that takes place in creation of music digital libraries.  

The OMR systems have already been developed for almost forty years that has 
lead to the state of high accuracy of music recognition process. Many researchers 
have reported the recognition efficiency over 90% of their systems [1-8]. Also several 
commercial systems are available on the market. In most cases, those systems operate 
properly only with well scanned documents of high quality. Using a scanner to digi-
tize flat score pages assures that the only geometric distortion presented in a scanned 
image could be a small slant that is easily corrected by many of presented algorithms 
[1-10]. Only few attempts have been made to deal with scanned 3D score sources 
(like book pages) with non-linear bowing near the page edges [9] or with scores digi-
tized with other optical devices [7]. 

The rapid growth of digital cameras’ technology in last years caused that they can 
be considered as alternative devices for acquiring of digital images. Their essential 
advantages over popular scanners are high mobility and low destruction effects over 
digitized documents. Unfortunately, digital cameras have also several shortcomings 
preventing them from broad using in this domain. The main disadvantages of digital 
cameras are problems with picture exposure and non-linear distortions (barrel and/or 
pincushion) introduced to acquired images by their optics (Fig. 1).  
                                                           
∗ This paper is sponsored by the Polish Government’s research funds for the years 2005-2008 

as a research project No 3 T11C 027 28. 
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Fig. 1. Original score document taken by digital camera (5Mp) and converted to grayscale. 
Dotted rectangle marks the region shown as an example in Fig. 2 and 4. 

In general, it is not possible to create an universal algorithm compensating geomet-
rical distortions in images regardless of camera type and zoom settings. Fortunately, 
acquiring images with some regular patterns e.g. squared or with staff lines, gives a 
good opportunity for creation of algorithms that could detect their true shapes giving 
sufficient information for distortion removal. This paper concerns that aspect of 
staves detection in musical score images The presented algorithm enables to locate 
staff-lines with high precision giving all needed information for further image proc-
essing and recognition. The algorithm is fast and efficient for different kinds of distor-
tions in analyzed score images. 

2   Staves Location by Matching Local Histograms 

The correct detection and processing of staves is fundamental to OMR process. The 
staff lines create a two dimensional coordinate system for interpretation of other mu-
sical symbols. The theoretically equal distance between any two subsequent lines 
within the same stave (and on the same page) gives the basic measure unit (called Dist 
in this paper) for other musical symbols within the same score. Finally, due to its 
regular linear shape, staff lines are also ideal determinant for any geometric distor-
tions of digitized scores. Though, in most cases staff lines are removed from musical 
document’s image, their positions are remembered for further usage during the recog-
nition and interpretation processes. 
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Staves localization is not an easy task because of frequent disturbances and 
distortions of staff lines. Disturbances may be caused by low quality of original 
documents and also by other musical symbols coincident with determined lines. 
Geometric distortions of images are usually result of optical faults or not flat scanned 
surface (like books). Numerous tests proved that staff lines in digitized musical 
documents not always are parallel, horizontal, equidistant, of the same width or  even 
straight! 

In this section, the staves detection algorithm is presented. This algorithm bases on 
horizontal projections in narrow vertical strips and on farther analysis of created 
histograms. Many staves detection algorithms analyze original image searching for 
five equally spaced and sized run-lenghts of black pixels in [6,7,10] or straight lines 
using the Hough transform or mathematical morphology [4]. Unlike them, the 
presented algorithm operates on histograms what results in its low computational 
complexity. Additionally processing histograms of local projections gives it greater 
flexibility comparing with algorithm operating on global projections [1,2,5]. This 
flexibility allows to efficiently detect skew, bowed and spherically distorted staves. 

Finally, the detected staff lines are approximated as piece-linear lines or by 
polynomial curves. These exact approximations allow for optional image unwarping 
and farther staves removal from analyzed image.  

2.1   Local Horizontal Projections and Processing of Resulting Histograms  

In the first stage, the analyzed image is vertically sliced into the narrow vertical strips 
VSi of width equal to 2·Dist, numerated from 1 to N (Fig.2a). For each vertical strip 
VSi, the horizontal projection’s histogram Hi of black pixels is counted (Fig.2b). In the 
next step all histograms Hi are preprocessed in the following way: 

1. Clearing histograms entries containing small values (region A in Fig. 2b-c).  
2. Successive breaking of histogram columns that are wider then 1·Dist. Columns are 

broken near the local minimum values (region B in Fig. 2b-c). 
3. Locating of distinct local maximum values (peaks) in histograms. Neighboring 

columns are cleared (region C in Fig. 2b-c).  
4. All histograms are filtered in order to find five consecutive peaks within the dis-

tant of about 1·Dist. Unlike other stave filters (e.g. [6]), in this algorithm a greater 
level of tolerance is assumed allowing to detect lines lying in an average distance 
of Dist±1 pixel with variation of ±2 pixels for particular lines. After this stage all 
histograms contain mainly peaks representing pieces of proper staff lines (Fig. 
2d).  

2.2   Creating of Connection Arrays and Staves Detection 

The next stage of the algorithm is creation of connections’ arrays between histogram 
peaks k

iHP  and l
iHP 1+  in every successive pair of histograms Hi and Hi+1, where k 

and l are vertical coordinates of histograms entries k
iHP  and l

iHP 1+  (Fig.3). In each 

pair of histograms Hi-1 and Hi, for each connection j
iHP 1−  and k

iHP , the linear ap-
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proximation of predicted vertical position ypred of the peak l
iHP 1+ in the next histogram 

Hi+1 is determined. Two histograms peaks k
iHP  and l

iHP 1+  are then connected if their 

vertical distance Distyl pred ⋅≤− 25.0  (gray region (a) in Fig. 3). If no histogram 

peak is found in this range, ypred coordination is replaced by the last vertical coordi-
nate, i.e. k value (range b) in Fig. 3).  

Fig. 2. Stages of histograms completing: part of original image (Fig. 1) sliced into vertical 
strips (a), local histograms Hi of horizontal projections (b), local histograms after pre-
processing (c) and after final filtering (d) 

 
 
 
 
 
 
 
 

Fig. 3. Searching for connection between histograms peaks 
k

iHP  and 
l

iHP 1+ using predicted 

vertical coordinate ypred (a) or the last coordinate k (b) as a center for vertical range 
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Fig. 4. Stages of stave processing: determined connections (a), final staff lines (b) and image 
after staves removing 

As a result, an initial piece-linear approximation of staff lines (and some other 
symbols) is achieved (Fig. 4 a). In the next step the array of connections is processed 
in order to remove redundant parallel connections and to link broken connections due 
to locally lower quality of image or some errors in histograms processing. Further 
processing covers removing of short lines, gathering staff lines into staves and remov-
ing of other lines. The final result is presented in Fig. 4b. Recognized staff lines can 
be farther approximated by polynomial curves. Staves removing algorithm uses line 
parameters to efficiently remove staff lines from the image (Fig. 4c). 

3   Evaluation 

To validate the results of stave detection by presented algorithm 30 full-page scores 
had been taken by digital camera1. The resulting 200DPI resolution of acquired im-
ages is sufficient2 for OMR processing [8]. The main drawbacks are serious irregular 
barrel distortions near the corners of the images (Fig. 1). These distortions are well 
visualized as curvature of detected staff lines (Fig. 5). 

The described algorithm was implemented in the ScoreExplorer OMR system [8]. 
All experiments carried out proved very high efficiency of staves detection algorithm 
(100%). Each staff line was properly localized and its run was properly routed        
that was confirmed by accurate staff lines removing and farther interpretation of  
 

                                                           
1  For all tests the 5Mp Sony FX-717 camera was used, in full automatic exposure mode, with 

no flash light. 
2  A good measure of score image’s quality is an average staff line width. For all tested images 

it was 3 pixels per line. 

a) 

 
b) 

 
c) 
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Fig. 5. Staff lines extracted from score image presented in Fig.1 

recognized musical symbols (e.g. pitch of notes). The only drawback of the algorithm 
of stave detection is a problem with the ends of staff lines, which are too easily ex-
tended beyond staves limits, e.g. over an accolade. In fact this problem is solved later 
on in OMR process when vertical elements, such as bars, are located. 

The algorithm based on local projections is characterized by low computational 
complexity due to processing rather histograms than pixels. The average staves detec-
tion time on 4.4Mp A4 image is about 0.3s including partial visualization of detection 
process3. The processing time is short enough not to influence the whole recognition 
process. The algorithm could obviously be sped up by several improvements includ-
ing recoding it in assembler and using every second or even every third vertical strip. 
Some savings may also be achieved by setting the strips width to 8 or its even multi-
ple (16, 32, ..). 

Experiments with ScoreExplorer proved that, despite good staves localization, the 
overall system’s recognition efficiency decreased from 95% (for scanned images) to 
about 80% (for distorted images). The obvious reason is lack of tolerance for image 
deformations in system’s recognition algorithms. The detected staves (Fig.5) could be 
used to eliminate distortions present in score images possibly increasing the recogni-
tion rate. Unfortunately, at the moment only simple vertical-unwarping algorithm is 
implemented in the ScoreExplorer. It corrects only vertical positions of musical sym-
bols whereas slight slant of vertical primitives still remains (Fig. 6). 

Detected staff lines can be represented as piece-linear lines or as polynomial 
curves. The first representation is very exact but consumes a bit more memory for all 
vertical coordinates of nodes (about 70 for each staff line in tested images). Experi-
ments carried out for scanned scores proved that quadratic polynomial approximation 
of lines is sufficient but it is not so in the case of images acquired by digital camera. 
In fact irregular distortions cause that it is impossible to exactly approximate staff 

                                                           
3 All experiments were carried out on a PC with Athlon 2.2 GHz processor. 
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lines with cubic or greater degree polynomial curves. The problem usually arises near 
the ends of lines which curvature is usually stronger then in the middle parts. Fortu-
nately, in most cases the approximations errors are perceptible at the very ends of 
lines and do not affect recognition of other musical symbols (Fig.7). 

Fig. 6. The result of simple unwarping of the example image from Fig.1 

Fig. 7. An example of staff lines’ approximation errors: a) part of original image with approxi-
mating cubic curves and b) staff lines removing errors (circled) 

4   Summary 

Incessant development of digital optical devices creates new possibilities of images 
acquiring for digital documents processing. These high-resolution devices cover not 
only digital cameras but in near future also Internet cameras, video cameras, hand-
helds and even phones. Though, the quality of their optics is generally not sufficient 
for pattern recognition it is possible to use them in some particular domains such as 
OMR. 

The algorithm presented in this paper is fast and efficient for images scanned and 
taken by digital camera. It combines low computational complexity of histograms 

a) b)
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processing with flexibility of local methods allowing detection of straight, bowed and 
spherically distorted staff lines. By exactly determining the shapes of staff lines it is 
possible to efficiently remove them from score images enabling farther OMR process-
ing and also to position on staves all recognized musical symbol. The experiments 
carried out proved that staff lines’ approximation by polynomial curves is not suffi-
cient in case of non-linear geometrical distortions of images. In that cases piece-linear 
approximation suits better. 

Though, exact staves localization is a precondition for efficient recognition of mu-
sical documents it is not the sufficient condition in case of serious geometric distor-
tions of source images. In that case, advanced de-bowing algorithms have to be used 
[9] or recognition algorithms have to be modified to take into account various defor-
mations of recognized symbols. Developing of such algorithms will make possible to 
effectively use digital cameras in Optical Music Recognition. 
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Abstract. Illusory contours occurring in the various perceptual phe-
nomena are essentially accompanied with illusory surfaces. Accordingly,
we propose a novel approach for the perception of illusory surface arising
from illusory contours. The proposed method uses a hierarchical neural
network model. It is likely done in the visual cortex domain in a cas-
cade manner, and uses the response properties of neuron cells found in
the visual pathways. The stimuli for forming the illusory contours are
induced by modelling the end-stopped cell, and the induced stimuli for
the surface perception is then formed from the extracted illusory con-
tours. Finally, the surface perception is completed by restoring surface
successively from the induced contour stimuli. The proposed model was
demonstrated on a variety of illusory contour figures, and experimental
results showed that the perception of illusory surface is a very successful.

Keywords: illusory contours, illusory surface, visual cortex domain, in-
duced stimuli, surface restoration

1 Introduction

An illusory contour variously called subjective contours, cognitive contours, am-
biguous contours, anomalous contours, contours without gradients, and quasi-
perceptive margins, is occurred in a wide variety of circumstances in nature.
And, this illusory is an important cues in the various perceptual phenomena
such as occlusion, transparency, depth sensations, brightness contrast and ob-
ject recognition[1].

Object boundaries and surface discontinuities in the image exist as the phys-
ical changes generally such as intensity, wavelength, depth, and luminance. How-
ever, if the boundaries are not made explicit by the physical changes, illusory
contours is very useful in that case, because it is seen when a stimulus configu-
ration produces the perception of an edge in an area where there is no physical
changes.

Many computational models have been proposed to describe the formation of
illusory contours, including Ullman(1976), Brady and Grimson(1982), Grossberg

� This research was supported by the Yeungnam University research grants in 2004.
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and Mingolla(1985), Nitzberg and Mumford(1990), Guy and Medioni(1992),
Heitger and von der Heydt(1993), Grossberg(1994), Williams and Hanson(1994),
Kellman and Shipley(1995), Williams and Jacobs(1995)[1]. However, it is still an
open challenge to achieve the perception of an illusory contour and surface.

Accordingly, we propose a novel approach for the perception of illusory sur-
face arising from illusory contours that uses a hierarchical neural network model.
The proposed approach focuses on extracting the induced stimuli, such as simi-
larity and proximity, concavities, closure, direction of line-endings, for perception
of an illusory contour. Also, as these stimuli for the illusory contours are always
accompanied with illusory surfaces essentially, the task of surface perception
should be performed.

The proposed method is likely done in the visual cortex domain in a cascade
manner, and uses the response properties of neuron cells found in the visual
pathways. Thus, the stimuli for forming the illusory contours are induced by
modelling the end-stopped cell, and the induced stimuli for surface perception
is then extracted by applying the models of simple cell to the induced illusory
contours. Finally, the surface perception is completed by restoring surface using
a complex cell successively.

2 The Visual Pathways: Hubel and Wiesel’s Hierarchical
Hypothesis[2]

The mammalian visual system receives input in the form of visible light. Pho-
toreceptors in the retina absorb this light, emitting neural signals on the process
which, in turn, stimulates bipolar and retinal ganglion cells. The center-surround
nature of these cells’ receptive fields causes them to respond strongly to differen-
tial illumination. In the foveal region of the retina, where visual acuity is at its
highest, there is a one-to-one correspondence between photoreceptors and reti-
nal ganglion cells. Elsewhere, the outputs of many photoreceptors converge on
single ganglion cells, significantly compressing the neural representation of our
visual environment. Information from each retina passes along the optic nerves,
though the optic chasm and into the LGN(: lateral geniculate nucleus). The cells
within the LGN do not appear to exert any profound transformation upon the
neural information they receive other than organizing retinal signals into right
and left visual field components.

From the LGN, information is topographically mapped onto the visual cortex
where it is further processed by simple, complex, and hypercomplex cells. The
terms ”simple”, ”complex” etc. refer to the types of stimuli that elicit responses
from these cells. In a serial model of vision processing, the visual input required to
activate a cell within the cortex becomes progressively more complicated further
along the visual pathway.

The hypothesis made by Hubel and Wiesel was that information was
processed by a cascade of cells: LGN to simple cells, simple cells to complex
cells, complex cells to hypercomplex cells, and hypercomplex cells to another
hypercomplex cells. Though there have been some different opinions to Hubel
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Fig. 1. A hierarchical Neural Network Model proposed in our approach

and Wiesel’s serial model in the visual pathway, the architecture of the proposed
model is still based on the ideas developed by Hubel and Wiesel.

Accordingly, as mentioned, a spatial filtering neural network in our approach
is proposed according to the Hubel and Wiesel’s hierarchical hypothesis. Each
Layer in neural network refers to the response properties of neuron cells in the
visual pathways. The receptive field corresponding to the response properties of
those cells is then modeled as the spatial filters, which respond to the function
of spatial features extraction from an image.

3 A Hierarchical Neural Network Model

As shown in Fig. 1, we propose a hierarchical neural network model for illusory
surface perception. The proposed model is referring to the responses of cortical
cells in the visual cortex domain, and consists of the following three stages:
preprocessing, illusory contours perception, illusory surface restoration.

3.1 Preprocessing

U0 Image Acquisition Layer: The mammalian visual system classifies color
information, which is an important task in visual information processing. How-
ever, since the illusory contour figures, which is seen as lying on top of the
remaining parts of patterns, is represented with white and the others usually are
different colors, the color classification in illusory contour figures is not of great
significance. Thus, for simplicity, we can remove the process of color classification
by using a binary image.
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U1 Contrast Extraction Layer: In order to extract the contrast information
from the binary image, a set of two dimensional circular symmetric DOG(: Dif-
ference Of two Gaussians) filters is used. This filter corresponds to an on-center
and off-surround receptive field of ganglion cells found in mammal’s retina[3], as
follows:

d1(x, y) =
1

2πσ2
e

exp
(
− r2

2σ2
e

)
− 1

2πσ2
i

exp
(
− r2

2σ2
i

)
(1)

where r represents distance from the origin, σe and σi represent the space con-
stants of excitatory and inhibitory regions, respectively, and the ratio of space
constants σe/σi = 1.6. The ratio yields a good approximation to the ideal Lapla-
cian operator[4]. The output u1(x, y) of layer U1 can be expressed as follow-
ing;

u1(x, y) = ψ
[ ∫ ∫

A

d1(ξ, η)u0(x + ξ, y + η)dξdη − θ1

]
(2)

where A denotes the area of receptive field (ξ, η), and θ1 is the threshold value
for a step function ψ[ ]. U1 layer of Eq. (2) is practically implemented as the
discrete form for image convolution processing.

3.2 Illusory Contours Perception

An illusory surface arises from the perception of illusory contours. Thus, the
induced stimuli for forming illusory contours must extract. This task is performed
by detecting the end-stopped points in an image, and it refers to the response
properties of hypercomplex cells in the visual cortex domain.

U2 Orientation Selectivity Information Extraction Layer: Simple cells
are excellent at detecting the presence of simple visual features, such as lines and
edges of a particular orientation. In consideration of the orientation selectivity
property of simple cells, a set of asymmetrical two dimensional DOG filters for
eight preferred orientations is used. The filter with a preferred orientation φ is
defined by

d2(x′, y′, φ) =
(

exp(− x′2

2σ2
e

)− σe

σi
exp(− x′2

2σ2
i

)
)
· exp(− y′2

2σ2
en

) (3)

u2(x, y, φ) = ψ
[ ∫ ∫

A

d2(ξ, η, φ)u0(x + ξ, y + η)dξdη − θ1

]
(4)

where (x′, y′) = (x cos φ+y sin φ,−x sin φ+y cosφ) are rotated coordinates, and
σen determines the sensitivity of preferred orientation of the filter. This filter
corresponds to a simple cell receptive field found in mammal’s visual cortex
domain[3]. The output of layer U2 can be expressed in the form of Eq. (4).
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U3 Orientation Selectivity Information Restoration Layer: An complex
cell responds to stimuli such as lines and edges of a particular orientation. How-
ever, the exact location of the stimulus is of no concern to a complex cell, as
long as it is within that cell’s receptive field. Therefore, complex cells are very
effective for restoring of the declined information. In order to apply a complex
cell to the information restoration, a set of two dimensional Gaussian filters with
a preferred orientation φ is used, as defined bellow:

d3(x, y, φ) = exp(− x′2

2σ2
x

) · exp(− y′2

2σ2
en

) (5)

This filter corresponds to a complex cell receptive field found in mammal’s
visual cortex domain[3]. The output of layer U3 is likely to do that of layer U2.

U4 Induced Stimuli Extraction Layer for an Illusory Contour: The
sorts of visual features that appear to elicit response from hypercomplex cells
are light-dark stimuli containing corners, curves and broken lines. The hypothet-
ical arrangement of complex cells can implement an end-stopped hypercomplex
receptive field found in mammal’s visual cortex domain[5].

Accordingly, an extracting of the induced stimuli is performed for the percep-
tion of an illusory contour in this layer, and then the induced stimuli correspond
to end-stopped points in image. Consequently, the output of layer U4 can be
expressed in the form of Eq. (6).

u4(x, y) =
7∏

φ=0

u3(x, y, φ) (6)

This layer corresponds to the synapse connection of complex cells that recover
the information according to the orientation selectivity. This means that the
common factor in all preferred orientation regards as end-stopped points.

U5,6 Information Restoration Layer: The role of layer U5 is to recover the
weaken or reduced stimuli while the induced stimuli is extracted. It is achieved
by using a set of two dimensional circular symmetric Gaussian filters form of
Eq. (5). However, The layer U5 yields not only the information restoration, but
also the unnecessary information. Thus, To remove unnecessary noises, the U6

layer performs a boolean operation with the image u1, as follows:

u6(x, y) = u5(x, y) ∧ u1(x, y) (7)

where ∧ represents a logical AND operation in an image.

3.3 Surface Perception from Illusory Contours

After a completion of the illusory contours, the surface perception can be formed
form illusory contours. This task consists of the extracting induced stimuli for
surface perception, and the surface restoration from induced stimuli.
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(a) (b) (c) (d)

Fig. 2. 2D profile of spatial filter used in our approach (a) Ganglion cell, (b) Simple

cell (c) Complex cell, (d) Hypercomplex cell

U7 Induced Stimuli Extraction Layer for Illusory Surface: In order to
perceive an illusory surface, this layer extracts the induced stimuli from responses
between the induced stimuli of illusory contours. The spatial filter in this layer
is a set of off-center even-symmetrical filter with eight preferred orientations. It
is defined by using two dimensional three Gaussian function, as follows:

g(σ, x) = exp(− x2

2σ2 )

d7(x′, y′, φ) =
(
g(σe, x

′ − l)− g(σi, x
′) + g(σe, x

′ + l)
)
· g(σen, y′)

(8)

where l denotes the space constant between excitatory and inhibitory region,
and as the distance between two positive peaks in this filter, corresponding to
the interval of induced stimuli. The profile of this filter is similar to another type
of simple cell receptive field found in mammal’s visual cortex domain.[5]

U8 Information Restoration Layer: As mentioned in layer U3, U5, this
layer responds to recover the induced stimuli of a particular orientation. Thus,
the filters used in this layer are the very same as the that of layer U3, U5.

U9 Illusory Surface Formation Layer: The formation of illusory surface is
achieved from the extracted stimuli using the boolean operation of image and the
successive feedback process. However, although the surface perception is com-
pleted by the successive restoration of illusory surface, the results of restoration
include an outer region of illusory contours. Thus, the surface restoration in this
layer is restricted within the inner region of illusory contours.

The output of layer U9 can be expressed as following:

un+1
9 (x, y) = un

9 (x, y) +
7∑

φ=0

ψ
[ ∫ ∫

A

d3(ξ, η, φ)un
9 (x + ξ, y + η)dξdη − θ1

]
(9)

where, u0
9(x, y) =

( 7∑
φ=0

u8(x, y, φ)
)

+ u6(x, y)
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Fig. 3. Experimental Results in all Layers (a) U0 Image acquisition layer, (b) U1 Con-

trast extraction layer, (c) U2 Orientation selectivity information extraction layer, (d)

U3 Orientation selectivity information restoration layer, (e) U4 Induced stimuli extrac-

tion layer for an illusory contour, (f) and (g) U5,6 Information restoration layer, (h)

U7 Induced stimuli extraction layer for illusory surface, (i) U8 Information restoration

layer for induced stimuli, (j) U9 Illusory surface formation layer

where + represents a logical OR operation in an image. The feedback(fulfilling)
processing in layer U9 is performed successively until removing the gap between
the induced stimuli and forming surface.

4 Experimental Results

In order to show the performance of the proposed model, experiments have been
carried out using various Kanizsa-type illusory contour figures. The proposed
neural network was implemented using the C language under the X-Window en-
vironment in a SUN SPARC workstation. It should be note that the color clas-
sification of layer U0 is omitted for simplicity. Because the color classification in
perceiving occluded surfaces from illusory contours is not of great significance,
the binary image was merely used in experiment.

As a results, the proposed model was demonstrated on a variety of illusory
contour figures, and experimental results showed that the proposed neural net-
work model is a very successful and sufficiently general. Fig. 2 illustrates a 2D
profile of the spatial filters corresponding to neuron cell receptive field imple-
mented in the proposed neural network, and examples of the experimental result
are shown in Fig. 3 and Fig. 4.

5 Conclusions

We propose a novel approach for the perception of illusory surface arising from
illusory contours that uses a hierarchical neural network model. The focus of our
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modelling is to use the response properties of neuron cells in a cascade manner,
and to implement spatial filters corresponding to a variety of cell receptive field
found in mammal’s visual cortex domain.

However, some problems remain for future works. It is an unsupervised prob-
lems such as the size of spatial filter, the interval of induced stimuli and threshold
value determination. Nonetheless, experimental results showed that the proposed
neural network model is a very successful and sufficiently general. Therefore, our
approach has potential application in several other areas of vision, such as oc-
cluded surface perception, grouping, segmentation.

(a) (b)

(d)(c)

Fig. 4. Another Experimental Results (a) Some examples of illusory figure, (b) In-

duced stimuli for illusory contours perception, (c) Induced stimuli for illusory surface

perception, (d) Surface perception results
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Abstract. In this paper, a new watermarking algorithm using 2D bar-
code is proposed. The 2D barcode means 2-dimensional barcode that
contains more information than conventional 1-dimensional barcodes.
For error correction, 2D barcode allow the recognition of barcodes that
are up 60% damaged. Therefore, the 2D barcode as watermark can be
survived when it used in highly noisy environment. In this paper, a new
wavelet based watermarking algorithm using 2D barcode as watermark
is proposed. Dynamically generated 2D barcode is inserted as watermark
in wavelet domain. From the experimental result, the proposed algorithm
shows better invisibility and robustness comparing with the conventional
methods using plain image as watermark.

1 Introduction

Digital watermark denotes information that is imperceptibly and robustly em-
bedded within still images or moving pictures for protect copyrights[1]. So wa-
termarking in the wavelet domain allows precisely to control the location of
the watermark, it is very useful in the invisibility and robustness aspect. In the
wavelet transform based watermark technique, the watermark is embedded in
the subbands that except the lowest frequency band[2]. However, because the
image compression is usually lossy compression that eliminates all the high fre-
quency components, the studies that the watermark is embedded in the lowest
frequency band have been preceded for high image compression. But this elas-
tic change by the watermark embedding in the lowest frequency band causes
damages of the original image.

To resolve this problem, wavelet based digital watermark algorithm using 2D
barcode is suggested in this research. The 2D barcode means 2-dimensional bar-
code that contains more information than conventional 1- dimensional barcodes.
Since a letter, numbers, text and actual bytes of data can be encoded in the 2D
barcode, it can encode just about anything. For error correction, ECC200 sup-
ports advanced encoding and error checking with Reed Solomon error correction
algorithms in 2D barcode[3]. These algorithms allow the recognition of barcodes
that are up 60% damaged. Therefore, the 2D barcode as watermark can be sur-
vived when it used in highly noisy environment. In this paper, a new wavelet
based watermarking algorithm using 2D barcode as watermark is proposed.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 717–723, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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This paper is organized as follows; In section 2, a watermark creation using
2D barcode is explained. The watermark embedding and detection is described
in section 3. The improvements of the proposed algorithm over the conventional
algorithm are demonstrated by the experiment result in section 4. Finally section
5, the results are summarized, some technical issues are discussed, and some
suggestions and further studies are discussed.

2 Watermark Creation

In general, a logo, seal or signature is used for watermark to prove copyright and
these are presented as a binary image. A 2D barcode image is used for watermark
in this research

2.1 Overview of 2D Barcode

The 2D barcode means 2-dimensional barcode that contains more information
than conventional 1- dimensional barcodes. Conventional barcode gets wider as
more data is encoded, but 2-dimenstioanl barcodes make use of the vertical di-
mension to pack in more data shown in Fig.2. DataMatrix is an efficient 2D
barcode symbol that uses a unique square module perimeter pattern that helps
the barcode scanner determine the cell locations Since a letter, numbers, text
and actual bytes of data can be encoded in the 2D barcode, it can encode just
about anything. It is commonly used to encode data from a few digits to several
hundred digits. The symbol is square and can range from 0.001 inch per side
up to 14 inches per side. For error correction, ECC200[3] is mainly used. It sup-
ports advanced encoding and error checking with Reed Solomon error correction
algorithms. These algorithms allow the recognition of barcodes that are up 60%
damaged. Therefore, the data encoded using DataMatrix can be survived when
it used in highly noisy environment.

Fig. 1. Several kinds of 2D barcodes

2.2 Watermark Creation

Let M1 ×M2 be the 2D barcode image’s size. For the prevention of deforma-
tion or detection of watermark, a watermark is scrambled using pseudo-random
sequence that has deterministic random characteristics and statistical measure-
ments such as Equation (1).
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w = {w(k), k = 1, 2, ..., N,N = M1 ×M2}. (1)

Where k is relocated by pseudo-random sequence and w is 2D barcode image
sequence for watermark and N is the size of watermark sequence.

3 Watermark Embedding and Detection

3.1 Watermark Embedding

Early watermarks are embedded in the perceptually insignificant coefficient re-
gion for preventing recognition of their existence. But these watermarks are
easily damaged or eliminated by image compressions or other image processing
techniques. On that account, watermark has to be embedded in the perceptually
significant coefficient region and the significant coefficient selecting process has
to be concerned for watermark embedding. Moreover, this watermark has to be
embedded over fullbands within the limit of original image quality for robust-
ness. In the proposed algorithm in this research, watermark embedding process
is composed as following sequences; the wavelet transform of original image,
coefficient selection, watermark embedding and inverse wavelet transform (Fig.
2.).

Original Image

Coefficients

embedding

c*=c(1+ w)

Watermarked 
Image

Pseudo
Random
Number

Watermark
sequence

DWT

     IDWT

2D barcode
(DataMatrix)

Fig. 2. Watermark embedding processing using wavelet transform and 2D barcode

First of all, input image is decomposed using the Haar wavelet filter by 2-
level. The watermark is embedded in large coefficients of the high and middle
frequency band (detail subbands). The LL subband does not carry any wa-
termark information. Watermark is embedded to the wavelet coefficient using
Equation (2).

c∗ = c(1 + αw) (2)
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c∗ is the watermarked wavelet coefficient and is an embedding weight and a
constant which controls the amplitude of the watermark signal. Equation (2) is
used for embedding watermark adaptively based on the selected wavelet coeffi-
cient. That is, in case of large wavelet coefficients, a large α value is embedded
and in case of small wavelet coefficients, a small α value is embedded. Watermark
robustness generally increase with the watermark signal amplitude, α. As a next
stage, after watermark embedded coefficient is transformed by inverse wavelet
packet transform, watermark embedded image is accomplished[5].

4 Watermark Detection

Overall watermark detection is a reverse process of embedding process. That is,
after watermarked audio signal is wavelet transformed, watermark information is
analyzed and extracts watermark by pseudo-random sequence. The criterion of
detection is defined by comparing similarity between watermark and extracted
watermark such as Equation (3)[4].

Similarity(w,w∗) =
w · w∗
√
w∗ · w∗ (3)

In the Equation (4), w is watermark sequence and w∗ is extracted watermark.
Especially, because a noise is not intensely inserted into logo or signature image
as a watermark, after similarity between abstracted watermark and original wa-
termark is smaller than 0.95, median filter is applied to abstracted watermark
and recalculates similarity between two images

5 Experimental Results

In this section, experimental results for 512 x 512 aerial photograph images,
Fresno (see Figure 3) and standard test image, Lena, sample-2 (see Figure 4) are
summarized in Table 1 for comparing other result. Aerial photograph is collected
from www.spaceimaging.com web site, which has supplied most advanced satel-
lite and aerial images. These kind images are usually composed simplified and
recursive geometrical structures such as rectangular, circles, lines and groups of
points by high altitude view. A 2D barcode, as shown in Figure 5, is used for
watermark image. This image includes the information such as IP, login user,
and downloads time of the network server (Fig. 6.). This information is used for
protecting the copyright from unauthorized copying. And two-dimensional Haar
wavelet filters are used for wavelet decomposition. Invisibility and robustness of
watermark is used for measurement of performance in this research. PSNR is
used for performance of the invisibility after embedding watermark. Similarity
using equation (3) is used for performance of the robustness. A plain image is
used for comparing performance at the same condition with proposed algorithm
(Fig. 6.).
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Fig. 3. Satellite image (Fresno) Fig. 4. Lena image

Fig. 5. 2D barcode image for watermark

5.1 Invisibility

Fig. 7 and Fig. 8 are watermark embedded images using the proposed algo-
rithm. As shown in the two figures, it is impossible to distinguish in perceptually
whether watermark is embedded in these images. After embedding watermark
to original images, PSNR are calculated for observing image distortion as shown
in Table 1. From PSNR in the Table 1, damages of image qualities are not
recognized after applying the proposed algorithm for watermark.

Fig. 6. Plain image for watermark
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Fig. 7. Watermark embedded image
of Fresno

Fig. 8. Watermark embedded image
of Lena

Table 1. PSNR of watermark embedded images

2D barcode wateramrk Plain image watermark

Fresno 44.2037 33.3349

Lena 50.7383 45.0139

5.2 Robustness

JPEG and conventional wavelet image compression are applied to proposed
watermark-embedded image for robustness check against image compression.
During compression, a preliminary work to obtain the information about the
start position of watermarking was done. SPIHT is used for wavelet image com-
pression in this experiment. Experimental result of robustness is shown in Table
2. As shown in Table 2, over 90% of watermark image is survived from high image
compression. As represented in Table 2, the proposed watermarking algorithm
demonstrates good robustness.

Table 2. similarity of JPEG/SPIHT lossy compression

JPEG Fresno Lena SPIHT Fresno Lena

25% 0.952392 0.989231 25% 0.962561 0.983287

50% 0.975924 0.999431 50% 0.991024 0.997024

75% 0.996100 0.999911 75% 0.999325 1.00000
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6 Conclusions

In this paper, a new watermarking algorithm using 2D barcode is proposed.
The 2D barcode allow the recognition of barcodes that are up 60% damaged.
Therefore, the 2D barcode as watermark can be survived when it used in highly
noisy environment. In this paper, a new wavelet based watermarking algorithm
using 2D barcode as watermark is proposed. Dynamically generated 2D barcode
is inserted as watermark in wavelet domain. From the experimental result, the
proposed algorithm shows better invisibility and robustness comparing with the
conventional methods using plain image as watermark. Over 90% of watermark
image is survived from high image compression. A new wavelet based watermark
algorithm using 2D barcode is concerned for digital audio and moving picture
as further study.
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Abstract. We describe a technique for 4D-reconstruction of coronary
arteries from a sequence of monoplane X-ray angiograms. An initial
3D model of coronary centerlines is reconstructed from two appropriate
views. A 3D-2D registration framework is formulated in which the model
deforms in space to best fit the given angiograms. The 3D motion model
is hierarchical and includes rigid, affine and B-spline transformations.
The registration is guided by a sum of energy terms which measures
the goodness of the 3D-2D mapping and constrains the deformation of
the model. The method is tested on three sequences of patient data,
each containing 248 frames. The registration time for one frame varies
between one and four minutes.

1 Introduction

The early detection and correction of aberrations of coronary vessels is of high-
est medical importance. The 3D–reconstruction of the moving vessels of interest
will lead to an improvement of the treatment. Image data of the beating heart
are usually acquired with cardiac C-arm devices. Given a sequence of monoplane
angiograms 3D-reconstruction is mostly reduced to the reconstruction from two
views of the same electrocardiogram (ECG)-state. Including all views requires
heart motion estimation and compensation [1,2]. Heart motion computation can
be formulated as a registration problem. Shechter et al. [3] presented a method
for 3D motion tracking of arteries over a sequence of biplane cienangiography
images. At each acquisition time two simultaneous orthogonal views of the same
heart state were available. We applied the Shechter’s method to monoplane an-
giography sequences. We had to extend the method at several levels:

– 3D-model reconstruction: The ECG data was not used. We present several
criteria that revealed to be sufficient to test the method on the monoplane
sequences.

– 3D-2D-registration: we propose an approach to reduce the number of motion
parameters and to optimize the search strategy

– performance: we reached a high decrease in application time (1-4 min/frame)
which was not only due to the implementation of the method in C++.

Further details of the method are described in Section 2. Section 3 represents
experiments on real patient data. Section 4 concludes and describes future work.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 724–731, 2005.
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2 Method

The camera is part of a C-arm which is rotated around the patient with known
motion parameters. The acquisition geometry is characterized by a projective
mapping P l ∈ IR3×4 for the lth image fl, where l = 1 . . .nf . The projection
matrices are computed during a geometrical calibration step [4].

The method is based on three steps: preprocessing, 3D-model reconstruction
out of two appropriate views and the 3D+t reconstruction. The goal of the
preprocessing–step is to enhance the vessels from the background. We applied
the method of Frangi et al. [5] to compute a multi-scale response map. Each
filter response rl(x, y) for a pixel (x, y)T is a value that describes how likely the
current pixel belongs to an artery. The result of this step is illustrated in figure 1.

Fig. 1. Left: original X-ray image. Right: the corresponding response map. The vessels

are clearly enhanced from the background.

2.1 3D-Model Reconstruction

In order to construct an anatomically correct 3D Model of arteries it is necessary
to find two views of the same ECG state to apply epipolar geometry. In [3] this
was not necessary because at each time two simultaneous orthogonal views were
captured. The ECG data was not available in our case. So we propose to select
two appropriate views m and n based on following criteria:

1. Orthogonality: the two C-arm positions of the views of interest should
be orthogonal to assure a high numerical stability of the 3D-reconstruction.
This criterium is formulated in terms of the known geometry of the C-arm:

null(P m)·null(P n) ≈ 0 (1)

2. Position within the Sequence: the reconstructed model is expected to
have most similarity with the rest of the sequence if it is reconstructed out
of two views in the middle of the sequence. This is formulated in eq. 2.

m ≈ nf − n (2)
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3. ECG-State: if available, this information should necessarily be taken into
consideration. Let η denotes the ECG-state, then

ηm ≈ ηn (3)

Once two appropriate views are found, a semi-automatic graphical tool is
developed to select corresponding points on the arteries of interest. For each
selected point on the left frame, the epipolar line is drawn on the right one and
vice versa. This should help the user to select points, which are consistent with
the epipolar constraint. The path between two marked points in one frame is
followed automatically based on the intensities of the response map and applying
a hysteresis threshold similar approach. This results in centerlines having pixel-
precision. The centerlines are represented by 2D B-splines [6]. A B-spline curve
(BSC) c(u) is defined in terms of three parameters: an order p, a set of n model
control points (MCP) vi and a knots vector k = (k1, k2, . . . , kn+p) of length
n + p. The definition domain D of the curve is restricted by the knots vector. A
location on a B-spline curve for a parameter u ∈ D is given by:

c(u) =
n∑

i=1

Bi,p(u | k) vi (4)

where Bi,p(u | k) is the DeBoor-recursion. In this paper we use third order B-
splines (p = 3). We also use uniform, open knots vectors, i.e. the first and last p
elements are equal, the knots values are equally spaced and kp ≤ u ≤ kn+1. We
normalize the knots-values between 0 and 1 i.e D = [0, 1].

A B-spline curve ca(u) is associated to each vessel-branch a. Thereby it
should be guaranteed that the curves have the same start and end points to
ensure the continuity of the artery tree. This representation for the two 2D cen-
terlines has two advantages. First the skeletons have subpixel-precision. Second
since the arteries are acquired from different points of view, the projected physi-
cal length may be different. Matching points for the 3D-reconstruction becomes
difficult. By using open, non-uniform B-spline representation, the length of the
curves is unified by the knots vector to be in [0, 1]. Both advantages are crucial
for the 3D-reconstruction.

Finally a 3D-model should be reconstructed out of two corresponding B-
spline curves. We need to each point on the left curve to find a corresponding
point on the right one. Our algorithm in a nutshell is described in table 1,
where L(cm) is the length of the left curve, θn3D is a threshold and F is the
fundamental matrix determined by their projection matrices [7].

2.2 4D-Heart Reconstruction

This part is strongly based on the work of Shechter et al. [3]. In this section we
will stress our changes and extensions. The temporal tracking of the 3D-model
is formulated as a 3D-2D registration problem. The goal is to find for each frame
l a transformation T l : IR3 → IR3 that, when projected, best fits to the given
angiograms. So the registration is realized as an optimization problem.
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Table 1. Algorithm to reconstruct a 3D-B-spline out of two 2D-B-spline curves

compute number of 3D points to reconstruct n3D = L(cm)
θn3D

compute discretization step for sampling the knot vector of cm(u): u3D = 1
n3D

FOR each point cm(u3D), . . . , cm((n3D − 1)u3D)

look for corresponding point on cn that fulfills the epipolar constraint:

|c̃n(ux)T F c̃m(x u3D)| ≈ 0 with 1 ≤ x ≤ n3D − 1

reconstruct the 3D point using triangulation [7]

B-spline fitting: convert the discrete set of 3D points to a 3D B-spline curve[6]

A hierarchy of transformation models with increasing number of degrees of
freedom (dof) is used. It contains a rigid transform T l

R with 6 dof, an affine
transform T l

A with 12 dof and a B-spline transform T l
B with much more dof al-

lowing a non-rigid and local transformation of the 3D model. The transformation
for each type is computed using eq. 5.

T l
R/A/B [c(u)] =

n∑
i=1

Bi,p(u | k)T l
R/A/B(vi) (5)

B-splines are invariant to rigid and affine transform so the transformation is
exact when the function is applied just on the MCP. However, the B-spline
transform computed in this way is only an approximation of the real one. It is
more efficient to compute and is more accurate the more control points are used.

A B-spline transform (BST) is defined in a similar way as the BSC. Each
BST has an order p, a nx × ny × nz grid of 3D-control points (TCP) sijk and
three knot-vectors: kx = (kx

1 , kx
2 , . . . , kx

nx+p) , ky = (ky
1 , ky

2 , . . . , ky
ny+p) and kz =

(kz
1 , kz

2 , . . . , kz
nz+p), which define a (nx + p)× (ny + p)× (nz + p) knot-grid. The

transformation of a point q = (qx, qy, qz)
T is given by q + b(q) where

b(q) =
nx∑
i=1

ny∑
j=1

nz∑
k=1

Bi,p(qx | kx)Bj,p(qy | ky)Bk,p(qz | kz) sijk. (6)

The three DeBoor terms control the weighting of the control points. The sum of
the weights of all TCP sijk is always 1. The parameters we are looking for during
the registration are the coordinates of TCP. The rest of parameters must be set
priorly. So we used third order BST with open knot vectors whose domains are
set so that they cover the volume spanned by the bounding box of the 3D-model.
The number of TCP is 8×8×8. This leads to a search space of 1536-dimensions
because each control point has three coordinates. Searching for T l

B in such a
space is almost infeasible We propose the following for parameter reduction:

C1 The motion of a TCP has influence just on the MCP lying within an p×p×p
area of the knot-grid. An initial configuration is computed using the 3D-
model as reconstructed in section 2.1, more precisely its bounding box. The
knots vectors are computed such that they cover the whole bounding box,
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and a grid of reference control points (RCP) rijk is placed around the model.
This grid will serve as a reference grid ; all transformations will take place
with respect to it. Each RCP whose motion does not influence any of the
MCP in this initial configuration is irrelevant and thus discarded.

C2 Since the sum of the weights of all TCP controlling one MCP is one, we
can eliminate those which have a very small weight (≤ θinfluence) because
their contribution is minimal. These points are also chosen using the initial
configuration.

C3 The resulting set of TCP will be split into groups, each controlling θgroup of
MCP. This means that the transformation will be stepwise optimized. This
requires many runs for the searching algorithms, but reduces enormously
the number of parameters. Indeed, depending on the 3D-model segment, the
search space ranges between 36 and 90 dimensions.

For each frame T l
R is determined first. The best result is used to initialize T l

A.
The best result is again used to initialize T l

B. To ensure temporal continuity T l+1
R

is initialized with the best T l
B. The registration is guided by a sum of energy

terms that measures the goodness of the 3D-2D mapping and constrains the
deformation of the Model.

etotal(T
l) = −ω1eexternal(T

l) + ω2earteries(T
l) + ω3etranslate(T

l). (7)

The best transformation is

T̂ l = argmin
T l

etotal(T
l) . (8)

The external and arterial energy were defined in Shechter et al.[3]. The first
measures the goodness of the backprojection of the transformed model on the
2D-frame. It is computed by integrating the values of the response map along
the backprojected transformed model segment. The arterial energy prevents a
big change in the length of the 3D-model by computing the difference of arc
length before and after transformation. Shechter used in addition to that a B-
solid energy which avoids strong changes in the TCP-grid. But this was here not
necessary due to the optimization performed in C3. Instead we defined a trans-
lation energy which should avoid that the projections of MCP vary too much
from the coordinates they had at the begin of the search. After initialization of
T l

R with T l−1
B the 3D-model is transformed and projected with P l on the l-th

frame. Its 2D coordinates are denoted ḡa
i for each segment a. The translation

energy is defined as the sum of Euclidian distances between the initial and the
current projections of the 3D-model and is given by:

etranslate(T
l) =

1
ncp

na∑
a=1

n∑
i=1

‖ga
i − ḡa

i ‖ (9)

where ncp is the number of all MCP and ga
i (given by eq. 10) are the 2D-

coordinates of the backprojected MCP of the a-th segment after transformation:
v̂a

i = T l(va
i ).
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ga
i =

P lv̂
a
i

Pl 3,1v̂a x
i + Pl 3,2v̂

a y
i + Pl 3,3v̂a z

i + Pl 3,4
. (10)

3 Experiments

We applied the proposed approach on three monoplane sequences (seq1, seq2,
seq3) captured by a Siemens AXIOM Artis system, each containing 248 views
over an angular range of 200◦. The angiograms were of low to very low quality.
Despite the enhancement of the vessels, not all views were suitable for the 4D
reconstruction. So we had to discard some of them manually. All 3D-models
were reconstructed with θn3D = 2. The parameters of the registration were also
the same for all sequences:θinfluence = 0.01, (ω1 = 1.0),(ω2 = 0 for T R, 0.5 for
T A and 0.01 for T B) and (ω3 = 0.01 for T R/A and 0 for T B). We categorized
the results visually in three classes: very good (vg) if the backprojected model
fit to the vessels on the angiogram and followed their motion; good (g) if the
backprojection fit just on some segments, but it followed the motion and bad
(b) if the backprojected model neither fit the vessels nor correctly followed the
motion. Figures 2, 3, 4 show some examples.

seq1-f37: vg seq1-f99: g seq1-f112: b

Fig. 2. Registration results from the first sequence. Both frame number and judgment

of the frame are given.

Table 2 summarizes all results. It records the two reference views m and n,
the average registration time per frame (artpf), the selected frames for 4D re-
construction and the visual evaluation.
Discussion: The results presented in table 2 show the effectiveness of the ap-
proach, especially for seq1 where we had a success rate of ca. 80% of good
to very good registrations. However several factors influences the results nega-
tively. First, frames which are far from the reference views were mostly badly
registered. Problems arose especially in the middle of the sequences. This is due
to the order we chose for registration. We start from each reference frame and go
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seq2-f118: b seq2-f137: b seq2-f243: vg

Fig. 3. Registration results for several frames from the second sequence

seq3-f86: b seq3-f120: b seq3-f163: vg

Fig. 4. Registration results for several frames from the third sequence

in two directions. Some frames in the middle are registered twice. The resulting
3D transforms are linearly interpolated before backprojection. The effect can be
accentuated by complex anatomy like crossing vessels (seq1-f99 and seq1-f112).
Second, vessels which were near the left brighter border were mostly lost during
registration (seq2-f118). Border’s response values after preprocessing were very
high, so the algorithm stuck there and propagated the errors in the following
frames (seq2-f137). Third, due to the lack of ECG data, the 3D model was not
always conform to the anatomy even if this last was relatively simple (just one
artery in seq3). This was due to the very fast beating heart in this sequence.

Table 2. Registration results for three sequences of real monoplane angiograms

m,n artpf (sec) selected frames vg (%) g (%) b (%)

seq1 57,161 232 29–198 64.12 16.47 19.41

seq2 85,214 53 35–247 51.17 0.0 48.43

seq3 63,179 173 67–179 15.04 12.39 75.22
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The structure could be maintained for some views and just the motion was lost
(seq3-f86). But both form and motion were lost in other frames (seq3-f120).

The rtpf (s. table 2) was measured on an AMD Athlon 1600+ with 512 MB
RAM. It varies for each frame between 53 and 320 sec. The preprocessing step
was not excluded. The estimation of T R and T A were not time consuming (5-
10sec/frame). The rtpf depends on: First, the number of selected arteries. The
more vessels were tracked the more computational time was need for computing
the arc length for the arterial energy. The arc length is changing over time to
adapt to the anatomy. Second, the arc length of the selected arteries. Depending
on this data the number of MCP was determined. This number influences the
optimization strategy C3. The more MCP are available the more optimization
steps are necessary (compare artpf for seq1 and seq2). Third, the number of
iterations needed for the downhill simplex. This number differs even from vessel
to vessel and is constrained by a maximum number of iterations.

4 Conclusion

In this contribution we adapted the method of Shechter [3] for 4D heart recon-
struction to monoplane angiograms with up to 248 frames per sequence. Pre-
sented results showed the effectiveness of the approach. Future work will con-
centrate on amelioration of the preprocessing step, usage of global optimization
algorithms for the rigid and affine transform, better choice for the free parame-
ters, accurate examination of the processing sequence and a more quantitative
evaluation of the method.
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3. Shechter, G., Coste-Maniére, E., McVeigh, E.R., Devernay, F.: Temporal tracking
of 3d coronary arteries in projection angiograms. In: SPIE- Medical Imaging. (2002)

4. Luong, Q.T., Faugeras, O.D.: The geometry of multiple images. MIT Press (2001)
5. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel en-

hancement filtering. In: MICCAI. (1998)
6. Rogers, D.F.: An Introduction to Nurbs. Morgan Kaufmann Publishers, Inc (2000)
7. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cam-

bridge University Press (2000)



 

A. Gagalowicz and W. Philips  (Eds.): CAIP 2005, LNCS 3691, pp. 732 – 739, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Temporal Video Indexing Based on Early Vision 
Using Laguerre Filters 

Carlos Joel Rivero-Moreno and Stéphane Bres 

LIRIS, UMR 5205 CNRS, Lab. d'InfoRmatique en Images et Systèmes d'information, 
INSA de Lyon, Bât. Jules Verne, 17 av. Jean Capelle, 

Villeurbanne Cedex, 69621 France 
{carlos.rivero-moreno, stephane.bres}@liris.cnrs.fr 

Abstract. Visual information of videos is based on spatial and temporal extents. 
However, most of video indexing techniques work in the spatial extent. Thus, 
spatial features are extracted from individual frames and then temporal 
information is introduced by their temporal evolution or tracking in order to 
construct motion vectors that serve as temporal features. In this paper we 
present a novel approach for video indexing based on temporal features 
extracted basically from the temporal extent. The approach is based on 
Laguerre filters of the Laguerre transform, which is a polynomial transform, 
that preserve the causality constraint in the temporal domain and model the 
early vision stages (V1 and MT) in the visual system for extraction and 
representation of visual motion (temporal events). The motion pathway is 
constructed by subsampling the spatial low-pass versions of frames (spatial 
integration) and by decomposing subsequently local temporal vectors at spatial 
positions. Results encourage our model for video indexing and retrieval. 

1   Introduction 

Video is a rich source of information that provides visual information about scenes. 
Visual information is one of the most important features that dominates and populates 
increasingly multimedia information systems and several of their applications. Since 
visual media require large amounts of memory and computing power for storage and 
processing, there is a need to efficiently index, store, and retrieve the visual 
information from multimedia databases. A digital video (video sequence) is a series of 
sequentially ordered (in time) images or frames, so it has both spatial and temporal 
extents. Hence a good video index should capture the spatio-temporal contents of the 
scene represented using spatial and/or temporal features. 

Early vision, also known as preattentive vision, includes those mechanisms that 
subserve the first stages of visual processing for detecting the most basic visual 
features. In early vision, spatial features of images are related to colour, texture and 
shape content, whereas temporal features are mainly related to motion content due to 
independently moving objects in the scene (e.g., in the form of their trajectories) 
and/or camera operations within the set of images. 

Visual motion perception has been the subject of extensive research in the fields of 
perceptual psychology, visual neurophysiology, and computational vision. It was 
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argued [10] that the brain contains mechanisms specifically devoted to the processing 
of motion, which occur in a motion pathway consisting of at least two stages. The 
primary visual cortex (area V1), where main spatial attributes are processed, 
constitutes the first stage. Information passes from there to the middle temporal (MT 
or V5) visual area. [10] [11]. On the basis of these assumptions, some models of the 
early vision stages for extraction and representation of visual motion (temporal 
events) have been proposed [11] [4] [12]. Among these models, we focus on the 
Laguerre transform since it adheres to the causality condition of the temporal extent. 

On the other hand, several content-based video retrieval (CBVR) techniques have 
been proposed in the literature. A survey and a review of these techniques can be 
found in [5] [6] [2]. In these approaches, the signatures (index terms) serve to encode 
the content of the sequence of images based on spatial and/or temporal features. 
However, most of the techniques proposed in the literature extract features in the 
spatial extent. This means that, in a first step, spatial features are extracted and then, 
in a second step, temporal information is introduced by the temporal evolution or 
tracking of spatial descriptors. Temporal descriptors are based on global and local 
motion vectors constructed from temporal tracking of objects defined by their spatial 
features (contours and/or regions). 

In this paper we present a novel approach to construct video signatures for 
indexing and retrieval purposes. Unlike most of CBVR approaches, our approach 
consists on extracting temporal features from the temporal extent. The approach is 
based on Laguerre filters of the Laguerre transform [4], which is a polynomial 
transform [9]. In general, a polynomial transform decomposes locally a signal into a 
set of orthogonal polynomials with respect to the window used for localizing the 
signal. This process is equivalent to filtering the signal with the set of filters that arise 
in the analysis stage of the polynomial transform. These filters depend on the set of 
orthogonal polynomials time derivatives of the window. We only need the analysis 
part of such a transform since it encodes the required visual information. Moreover, 
Laguerre filters preserve the causality constraint in the temporal domain and model 
the early vision stages (V1 and MT) in the visual system, which allow extraction and 
representation of visual motion (temporal events). The motion pathway is constructed 
by subsampling the spatial low-pass versions of frames (spatial integration) and by 
decomposing subsequently local temporal vectors at spatial positions. Last but not 
least, we present the discrete representation of Laguerre filters, which corresponds to 
Meixner filters. Furthermore, we present their normalized recurrence relation, which 
is useful for their efficient implementation. 

The paper is organized as follows. In section 2, we give the definition of Laguerre 
filters and their discrete representation: Meixner filters. In section 3, we present our 
approach for the construction of temporal video signatures, which is based on 
temporal feature extraction. Section 4 shows some results of our approach. Section 5 
concludes the paper. 

2   Laguerre and Meixner Filters 

The Laguerre transform is a polynomial transform that uses a monomial-modulated 
exponential function as localization window. There is psychophysical evidence that 
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the early visual processing of temporal stimuli in the human visual system (HVS) is 
described by this transform and channel responses resemble those of Laguerre filters 
[4]. Due to these properties, Laguerre filters will be used as a temporal feature 
extractor. Furthermore, an efficient implementation for video indexing purposes can 
be achieved by their discrete equivalent representation, i.e. Meixner filters. 

Temporal and spatial processing differ essentially in that the temporal domain must 
adhere to the causality condition that stem from the nature of temporal signals. It 
means that we can only use what has occurred in the past or, equivalently, we cannot 
use future values of the signal such as in the case of real-time applications. Hence, 
characterizing temporal events up to a specified time, t0, involves their integration 
over time from the past (t → –∞). This one naturally supposes, on the one hand, that 
events closer time t0 should have more weight than past events (which tend to vanish), 
and on the other hand, variations of such events along time might be measured by 
time derivatives or, which is equivalent, to fit some oscillatory function with the same 
weight contribution. In such a way, these suppositions lead to a kind of event 
localization from the past up to present time t0, i.e. a smoothing causal kernel or causal 
localization window is applied to the signal. As it was argued in [8], the only primitive 
scale-space kernels with one side support are the truncated exponential functions. 
However, we prefer to use here the term “exponential-like” since functions involving 
exponentials modulated by a time polynomial is a generalized case of such kernels. 

2.1   Generalized Laguerre Filters 

Generalized Laguerre filters dn(t) decompose a localized temporal signal lv(t-t0) = 
v2(t-t0) l(t) by a gamma window (monomial-modulated exponential-like window) v(t), 
with order of generalization α≥0 and spread σ>0, which is defined as [1]: 

/ 2 / 2( ) ( ) ( )tv t t e u tα σσ σ= − −  . (1) 

where u is the Heaviside function (u(t)=1 for t≥0, u(t)=0 for t<0), into a set of 
generalized Laguerre orthogonal polynomials Ln

(α)(–σt). Coefficients ln(t0) at different 
times t0∈R are then derived from the signal l(t) by convolving with the generalized 
Laguerre filters. These filters are equal to time derivatives of the analysis window 
modulated by a monomial of order n, where n is the derivative order, for n=0,…,D. 
Thus, the three parameters of generalized Laguerre filters are the maximum derivative 
order D (or polynomial degree), the scale σ , and the order of generalization α. Time-
invariant filters, i.e. exponential decreasing filters, are obtained for α=0. For α>0, 
these filters have a non-symmetric bell-shaped envelope, i.e. a gamma-shaped 
window. It also implies that analyzed events correspond to those in a close past of t0. 
In this case, temporal information is more on the basis of past events than on current 
ones. Besides, for large α the window v(t) increasingly resembles a Gaussian window. 
These 1-D filters are then defined as: 

( ) ( )( ) !/ ( 1) ( ) ( ) ( )t
n nd t n n t e L t u tα σ αα σ σ σ−= Γ + +  . (2) 

where Γ is the gamma function [1]. The generalized Laguerre polynomials Ln
(α)(t), 

which are orthogonal with respect to the weighting function tα⋅e–t, are defined by 
Rodrigues’ formula [7] as: 
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From (3) one can see that generalized Laguerre filters are related to time derivatives 
of the localizing window v(t) defined in (1). Hence, filters of increasing order analyze 
successively higher frequencies or temporal variations in the signal. 

2.2   Meixner Filters 

Meixner filters are the discrete equivalent of generalized Laguerre filters [3]. They are 
equal to Meixner polynomials multiplied by a square window v2(x) = ( ) / !x

xc b x , 

which is the discrete counterpart of a gamma window and it behaves similarly to a 
Poisson kernel [8]. (b)x is the Pochhammer symbol defined by (b)0 = 1 and (b)x = 
b(b+1)(b+2)…(b+x–1), x=1,2,… . Parameters b and c are equivalent to parameters of 
the generalized Laguerre filters α and σ, respectively. However, for the discrete case, 
b>0 and 0<c<1. The equivalent time-invariant case (α=0) arises for b=1. The 
Meixner polynomials are orthonormal with respect to this window and they are 
defined as [7]: 

0

(1 )
( ) ( ) ( 1) (1 1/ )

!( )

n b n

n n n
n

c c
M x C b x c

n b
τ τ

τ τ
τ

τ τ−
=

−= + − + −  . (4) 

for x=0,1,2,…,∞ and n=0,…,D. In general, one fixes the maximum value of x to N. 
In order to achieve fast computations, we present a normalized recurrence relation 

of Meixner polynomials to compute these filters: 

[ ]1 1

1
( ) ( 1) ( ) ( 1)

( 1)( )
n n nM x c x n n b c M nc n b M

c n n b
+ −= − + + + − + −

+ +
 . (5) 

for 0n ≥ , ( )n nM M x= , and with initial conditions 1( ) 0M x− = , / 2
0 ( ) (1 )bM x c= − . 

For the case in which the window length is set to a finite value N, important care 
then must be taken when selecting parameters b and c since they modify the 
orthogonality of polynomials. Fig. 1 shows two Meixner filter sets for different 
parameter values. One can then see that b controls the window shape and c the 
number of temporal samples involved in the analysis process. The larger c is the more 
past events are considered. A trade-off exists in choosing b and c since both of them 
shift the time t0, found at the window’s maximum, where the signal is estimated. 
Another parameter is the maximum order expansion, D, which defines the number of 
filters (primitives of the signal) for characterizing temporal events at time t0 (last 
samples within the window). There will then be one (Laguerre) coefficient for each of 
the filters. Thus, there will be (D+1)⋅P coefficients, where P is the number of 
positions of the localizing window. Experiments have shown that a good signal 
interval reconstruction is achieved for N=30, D=4, b=12, and c=0.4 (fig. 1-(a)). 
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 (a) (b) 

Fig. 1. Meixner (Laguerre) filters up to order D=4 and length N=30 (a) b=12, c=0.4 (b) b=2, 
c=0.7. Notice that b controls the shape of filter envelopes and c their time lag t0 at their 
maxima. 

3   Temporal Feature Extraction and Indexing 

We use 1-D Meixner filters, by applying the equation (5) times the localizing discrete 
gamma window, to extract temporal events from a video sequence and used them as 
temporal descriptors. These descriptors, which correspond in such a way to motion 
trajectories of independent moving objects, serve to construct the signature necessary 
to index the video. For that doing, we construct a set of temporal vectors to which the 
Laguerre transform will be applied. There will then be as much temporal vectors as 
spatial positions in the analyzed frames and the length of each vector is equal to the 
length of the localizing discrete gamma window. We have set this length to N=30 
samples according to the parameter values of Meixner filters. For a given spatial 
position, there will then be as much temporal vectors as temporal localizing positions 
(at the window’s maximum) of the analysis window. Filtering is then performed by 
convolution between temporal vectors and Meixner filters. For each localized set of 
frames and for each filter there will be only one coefficient value. 

In order to integrate spatial information, as area V1 does, the number of spatial 
positions is reduced to a fixed number K. It allows reducing the dimensionality of 
features and thereby the volume of descriptors used for the signature. This one is 
indeed a requirement of indexing systems. For our approach we have used 
K=16×12=192 or K=32×24=768 spatial positions. Each position is obtained by 
integrating spatial information within its neighborhood. This is achieved by low-pass-
filtering (by a Guassian kernel) and subsampling at the desired positions. The size 
(scale) of the filter is selected so there is always a half spatial filter overlapping 
between two adjacent positions. Temporal information is integrated, as area MT does, 
by the Laguerre transform. As a result, the spatio-temporal signature consists of 
(D+1)⋅P⋅K values, where D is the maximum degree decomposition, P is the number of 
temporal positions of the localizing window, and K is the number of spatial positions. 
Fig 2 shows samples of a localized video consisting of N=30 frames. Fig. 3 shows the 
temporal descriptors, which correspond to spatial regrouping of Laguerre coefficients. 
The signature is the set of all coefficients up to the order D. 
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Fig. 2. Sample frames (one out of four) of a localized input image sequence of N=30 frames, 
containing a moving toy car and a still car (the sequence runs from left to right) 

(a)            
 

(b)            

Fig. 3. Laguerre coefficients (temporal descriptors) up to order D=4 (from left to right) of the 
30 frames of the sequence in fig. 2. They are regrouped according to the spatial position of their 
respective temporal vectors. Spatial positions correspond to (a) all pixel positions (b) 16×12 
spatial neighborhoods, which result from low-pass filtering and subsampling of original frames. 

 

Fig. 4. Temporal descriptors extracted by applying the Laguerre transform to temporal vectors 
at each spatial position of the lower-pass filtered and subsampled version of input frames. 
Spatial regrouping of Laguerre coefficients yields the spatio-temporal signature. 

Fig. 4 shows the framework of our feature extraction and indexing approach. 
Indexing is achieved by the construction of the video signature based on the extracted 
features and by introducing a similarity measure. We simply used a sigmoid function 
of the sum of the absolute value of the difference between two signatures p and q: 

( )
1

( , )
1 exp ( )

SIG

k k

S p q
a p q μ

=
+ ⋅ − −

. (6) 

where a and μ are positive parameters of the sigmoid function and k=0,…,(D+1)⋅P⋅K. 
A video query could be any sub-sequence lasting one or more seconds. 

4   Experimental Results 

In this study, features are extracted from either gray-scale or luminance-based pixel 
values. Let Y be the luminance of an image frame, then it can be obtained from RGB 
components by the transformation Y = 0.299R + 0.587G + 0.114B. Images under 
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consideration are previously adapted to match their central part to video format 4:3. 
For our experiments, we have constructed a video database by gathering some 
sportive videos such as broadcasted tennis matches or athletics meetings. We have 
then implemented in C/C++ and VirtualDub1 the set of filters and the modules for the 
stages of feature extraction, signature construction, indexing, and similarity retrieval. 
We have extracted some video sequences from the whole videos. These sequences 
have been used as video queries and they correspond to simple sequences that have 
several very similar occurrences in the video database like special kinds of tennis 
points (serve-volley for example) or athletics movement (high jump, weight throw, 
etc). A fixed camera captures in general these scenes and thus the movement by itself 
is characteristic and not the camera motion. Fig. 5-(a) shows an example of query. It 
is a video sequence, lasting 4 seconds, that presents a serve-volley point. The best 
answer given by our indexing system is the query itself. The second best answer is a 
very similar sequence, presented on fig. 5-(b), which differs from the query only by 
the end of the movement (the player turns on the right and not on the left). The 7 next 
best answers are sequences of the same kind taken from different matches. 

We obtained the same results with queries of weight throws and high jumps. At the 
moment, we examine by hand the whole database to establish a correct ground truth 
for different queries like the ones we tried already. We want to have a real statistic on 
the possible good sequences we miss (the first answers are correct answers). For 
instance, in the case of high jumps we obtained 75% of correct answers in the top ten 
answers representing the 1% of best similar answers for un hour of athletics video. 

(a)        
 

(b)        

Fig. 5. (a) Example of a query sequence taken from a tennis match. This query last 4 seconds 
and represents a serve-volley point. It is itself the first best answer to the query. (b) Second best 
answer of our system to the preceding query. 

5   Conclusion 

We presented an approach for temporal early vision video indexing based on 
Laguerre (Meixner) filters. The motion pathway (V1 and MT areas) is modeled by the 

                                                           
1 http://www.virtualdub.org/ 



Temporal Video Indexing Based on Early Vision Using Laguerre Filters 739 

 

way these filters extract temporal information from spatial information. Temporal 
(event) features are extracted by applying the Laguerre transform to time vectors at 
pixel or spatial region positions. Spatial information is then included by the spatial 
arrangement of such features. Dimensionality reduction is achieved by low-pass 
filtering and subsampling in the spatial domain and by integrating information 
through a localizing window in the time domain. The results we obtain are quite 
promising and validate the interest of our polynomial descriptors for signature 
computation and video indexing. 
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Abstract. friendly–user interactivity while permanently eyeing towards
3D display technologies. As such, 3D face generation, modelling and an-
imation techniques are in the frontline to design realistic animated 3D
talking faces. Simple, reliable and economic, 2D image processing tech-
niques have been widely used to reconstruct 3D faces. This paper fo-
cuses on the comparison of different 2D imaging techniques for 3D face
generation. Stereo Vision techniques, using either automatic stereo cor-
respondence algorithm or manual feature points location, Orthogonal
Views and Photometric Stereo approaches are introduced and applied to
acquire face 3D data. In addition, generated reconstruction results are
compared qualitatively and quantitatively.

1 Introduction

Nowadays, research is actively conducted to create highly performant and reli-
able human-computer interface systems. As an essential component, face mod-
elling has been a hot topic, recently receiving much attention [1]. Special char-
acteristic face feature areas such as the eyes, mouth, nose, etc, are especially
important as they carry most of the audiovisual information expressed by hu-
mans. Although many approaches (such as laser range scanner devices) may be
used to generate 3D faces, 2D imaging techniques have been the most widely
researched as they do not require extensive budget or special hardware equip-
ment. For all these reasons, this paper solely focuses on the study of 2D imaging
technologies for 3D face generation.

As widely acknowledged to provide satisfactory results while maintaining
low complexity computation, Stereo Vision, Orthogonal Views, and Photometric
Stereo methods are studied in this paper.

Stereo vision can be either automatic or interactive. Automatic stereo vision
requires stereo images placed parallel in a line wise correspondent position (also
called epipolar position). Corresponding pixels between both images are then
searched automatically along the same lines in both images to generate a dense
disparity map (or a depth map for display purpose) [2].

The interactive approach requires to manually (or automatically) chose a
subset of corresponding pixels in the stereo images pair. If cameras are calibrated,
the pixel 3D world coordinates are obtained using back-projection techniques to
provide a sparse depth map of the stereo system common field of view.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 740–747, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Comparative Study of 3D Face Acquisition Techniques 741

Orthogonal views have already been used to detect facial features and infer
their 3D positional values [3]. Using either one or two camera(s), two images are
taken, one from the front and the other from the side of the face. The front-view
image provides the X- and Y-coordinates, while the side-view provides the Z-
coordinate of the pixel corresponding to the same feature in both images. This
provides 3D information for all the pixels present in both front and side images.

Photometric stereo [4], is based on the way images of 3D objects are formed.
Objects can be seen because they reflect light. The surface normal and other
characteristics of the surface (e.g. depth) can be obtained using prior knowledge
of the scenes’ illumination geometry and the nature of surface reflection.

In this paper we test the above introduced 3D face techniques and compare
their strengths and weaknesses introducing a new 3D surface comparison ap-
proach using Radial Basis Function (RBF) interpolation to normalize 3D faces.

In Section 2, four image-processing techniques are described in the context of
3D face generation. In section 3, 3D surface comparison and results are presented.
The final section summarizes the paper and presents our future work.

2 Facial Reconstruction Techniques

In this section, Image processing techniques such as binocular stereo, orthogonal
views and photometric stereo are discussed in detail.

2.1 Binocular Stereo Using Automatic Stereo Correspondence
Algorithms

Binocular Stereo is the process of obtaining dense depth information from a
pair of images. Often these two images (stereo images) are related by the epipo-
lar geometry. First, stereo images are rectified to be placed in epipolar position
[2]. Next, stereo matching finds the correspondence between stereo images (usu-
ally using Pixel to Pixel, correlation windows, surface constraint or Dynamic
Programming matching techniques) and produces a dense disparity map.

Stereo Matching. Previous studies proved that for faces simpler stereo algo-
rithms tend to produce marginally lesser results while being much faster than
more complex algorithms in favour today [5]. For this reason, SAD has been
used in this paper. SAD, is a correlation algorithm, which uses the sum of ab-
solute difference to find the correspondences between stereo images. Correlation
functions are evaluated over a ‘window’ of neighbouring pixels in each image.
For each point on the reference image (left for instance), all correlations with a
sliding window - for all disparity values - in the right image for the whole dis-
parity range are computed and the best value is chosen, defining the matching
pixels.

Experiment. Firstly, the stereo images are rectified. Then, image matching is
performed using SAD. Studies of this stereo algorithms against noise [5] suggests
that a window radius of 4 is most suitable. Since the disparity map is retrieved,
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a depth map can be generated using both the camera focal length obtained by
the calibration technique, and the image pixel size.

2.2 Interactive Binocular Stereo

Here, three main steps are involved in this approach. First, the cameras are
calibrated to attain the physical and optical properties of the acquisition system.
Next, correspondence between a subset of the stereo-pair image pixels is achieved
by finding similarities (usually by clicking on stereo corresponding pixels). The
last step is to calculate the 3D coordinates of the corresponding points in the
images by triangulation technique.

Calibration. Camera calibration is the process of estimating the intrinsic and
extrinsic parameters of a camera. These coefficients allow a 3D point from the
world reference frame to be transformed into its corresponding point in the
image reference frame and vice versa. Extrinsic parameters, such as the rotation
and translation coefficients, define the location and orientation of the camera
axis with respect to a known world reference frame. Intrinsic parameters link
the pixel coordinates of an image point with its corresponding points in the
camera reference frame. In this project, Tsai’s calibration algorithm is applied
due to its simplicity and sufficient accuracy. Tsai’s calibration is defined as a
“two-step” calibration method [6] involving the direct computation of most of
the calibration parameters while an iterative approach estimates the remaining
parameters (namely the depth component of the translation vector, the focal
length and the first order radial distortion parameter).

Two Sony EVI-D100P video cameras, a tripod with a horizontal bench and a
calibration box are the main equipment used in this experiment. The video cam-
eras are fixed on a tripod 20 centimetres apart. Two images of the calibration
cube with 150 non-coplanar 3D reference points are taken simultaneously. Nine
calibration parameters, namely six external (rotation angles and translation vec-
tors) and three intrinsic (e.g. the focal length, the uncertainty scale factor and
the radial distortion factor) coefficients, are then estimated [6].

In order to find the optimal distance between the cameras and the calibration
object, tests on calibration accuracy at varying distance between the camera and
the calibration object were performed. Experimental results indicate that given
the current setup, calibration error is minimal at 115 cm.

Experimental results show that 86% of the reference points’ calibration error
is less than 1.2 mm with maximum error on average 2.2 mm.

Experiment. After both cameras are calibrated, a stereo pair of images is taken
for each test subject.

Next, corresponding points between the images are found manually in this ex-
periment as small white dots are put on test subject’s face as markers. Once the
camera calibration parameters are known, these 2D image points are back pro-
jected into real world and the real 3D coordinates are obtained by
triangulation.
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3D coordinates of the feature points are calculated and mapped to a generic
3D face model (1808 vertices) inspired from CANDIDE3 [7] (see Fig 1 first
image). Its encapsulated MPEG-4 standard defines vertices according to the
MPEG4 Face Feature Points(FFP)[1]. Second image of Fig 1 shows an example
of the reconstruction result.

2.3 Photometric Stereo Method (PSM)

The theory of Photometric Stereo for Lambertian surfaces was developed by
Woodham [4]. It calculates surface normal and other surface information by
employing prior knowledge of the illumination geometry and the nature of surface
reflection. For Lambertian surfaces, a surface normal can be determined if the
considered surface point is illuminated from three or more light sources using the
albedo-independent PSM method. Three consecutive images are taken with light
sources being switched on from three different directions in our experiments (see
left and middle left Figure 1) while a fourth one with all lights on is acquired
for texture mapping.

A depth map or a 2.5-D model is then reconstructed by the Photometric
Stereo method (See Figure 1). The reconstruction accuracy depends on the
quality of the generation of the surface normal and the transformation from
the surface normal to the depth map. Further details can be found in [8].

Experiment. In our experiment, Photometric Stereo has been developed by
[8]. The experiment took place in a dark room where all external light sources
were blocked as uncertain illumination can affect the experimental results. The
equipment used for this experiment includes a JVC CCD camera, three halogen
light bulbs used as light sources and a serial box, which connects all the hardware
with the computer.

The first procedure of PSM is to calibrate the light source direction. A sphere
has been chosen as the calibration object due to its reflecting properties as well
as its concave shape. Three images of the test subject are then acquired and
processed to reconstruct the face depth map. The application also allows the
mapping of the test subjects’ texture on to the depth map, which is then pre-
sented in VRML format. Fig 1 shows some of our reconstruction results obtained
via PSM.

Fig. 1. From left to right: first 2 images: Interactive Binocular Stereo; Next 2 images:
PSM results; last 2 images: Reconstruction results by Orthogonal Views
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2.4 Orthogonal Views

To reconstruct a 3D face model from orthogonal view images, two images are
required, the first from the front of the face, the other from the side. 3D coordi-
nates of the face points, visible in both images, are then captured using the X,Y
coordinates of the front view, while their Z values (depth) are attained from the
side view.

Facial features such as the eyes, eyebrows, lips, nose and mouth can be ex-
tracted using image processing techniques [9]. These features are mapped to a
3D generic face model to reconstruct a 3D face. In our experiment, the frontal
image is taken with test subject facing directly to the camera. Then, the camera
is placed orthogonally (90 degree) and a side image of the face acquired. Fig 1
images show an example of orthogonal images for a test subject.

In this experiment, tiny white dots are placed on test subject’s face as fea-
ture points. 29 facial feature points are extracted from the test subject’s face
manually. These points are then interpolated into the predefined face model.

3 3D Face Comparison

The goal of this project is to find the optimal 3D face reconstruction solution
for 3D face analysis and synthesis. Therefore, it is necessary to determine which
technique has the most accurate reconstruction. To do so, 3D Surface Compar-
ison is investigated in the following section.

3.1 3D Surface Comparison

3D Surface comparison allows finding the surface differences from individual
reconstruction results by different image processing techniques. In addition, sur-
face comparison can show the variances on areas between the reconstructed face
surfaces. The overall surface differences for the whole test subject’s population
are computed. In order to find the optimal solution for 3D face analysis and syn-
thesis in term of reconstruction accuracy, a surface comparison with the same
vertices in surfaces generated by three image-processing techniques is performed.

There are a few factors that make the comparison extremely difficult in this
experiment. Firstly, each system obtains results with different orientation and
scaling. Secondly, benchmarks of each test subject are unavailable. In order to
solve this problem, surface normalization is required, which involves rotation,
scaling and translation of data. In this comparison approaches, we intend to
apply RBF data interpolation technique to scale the 3D surfaces. After the
normalization process, surface distances between reconstruction results are com-
puted. In this experiment, we assumed the results from PSM as benchmark as
it generates a complete face dense depth map and contains a large amount of
vertices.

3D Surface Normalization. Research into 3D face comparisons from different
systems is at an exploratory stage and no methodology has been defined for this
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particular type of comparison. Therefore, the approach applied in this experi-
ment is a new idea and may not be the optimal method. In this project, depth
maps of 3D faces generated from different systems are used for this compari-
son approach. Distances between the 3D surfaces are computed and compared.
However, normalization is required for the 3D data, so that all 3D face meshes
have the same orientation and scale.

Surface normalization is made up of three stages: rotation, scaling and trans-
lation. Rotation is for adjusting all the surfaces to face the same direction. Scaling
adjust all the 3D surfaces with all primary facial features are located approxi-
mately the same area. The last procedure of normalization is to translate all the
face surfaces to the minimum distance apart.

Rotation. The aim of this step is to have all the face surfaces sitting in the same
coordinate setting and facing the same direction. Depth maps of face surfaces
are used and the face should point upward. Figure 2 shows three 3D face surfaces
after the rotation process. Each face dense map has the same size (500 x 500)
and sits on the same coordinate system.

Fig. 2. Reconstruction Results after Rotation

Scaling. It is irrelevant to scale the whole face meshes by using just a few fa-
cial feature points. Ideally, all facial feature points should be used and these
facial feature points should be distributed over the whole face surface. In this
experiment, a new approach is investigated to scale 3D face surfaces. We intend
to use Radial Basis Function (RBF), a data interpolation technique, for scaling
3D face surfaces. In this experiment, 18 points mostly located on the primary
facial features are chosen in this normalization procedure. 3D data of these 18
points from the PSM result is extracted and interpolated into the Orthogonal
Views’ and Binocular Stereo with Triangulation’s result. Since these 18 points
are distributed over the whole 3D face, the whole face surfaces reconstructed
by Orthogonal Views and Binocular Stereo with Triangulation technique is then
deformed and scaled accordingly.

The Radial Basis Function (RBF) is a classical approximation function, de-
fined as a weighted sum of translations of a radially symmetric basis function
augmented by a polynomial term, and is widely used in surface reconstruction,
image morphing, etc [10].

Translation. To simplify the comparison process, all these surfaces are translated
as close as possible. In theory, the nose tip is the highest point among the whole
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face surface. In this normalization step, all the face surfaces are translated as the
nose tips of all face surfaces are shifted to the centre of the depth map (250,250).
Since all face surfaces are properly scaled, the location of facial features on each
face surface such as the eyebrows, the eyes, nose and mouth should be located
approximately in the same position. In addition, all the face surfaces are pulled
to the same height. Again, the nose tip is used as the reference and all the face
surfaces are translated until their nose tips are shifted to the same level.

Comparison Result. After all reconstructed 3D face surfaces are normalized,
comparison can be made. All the face surfaces should have a uniform scaling,
orientation and unit. The surface comparison is performed where the distances
between the 3D surfaces are computed. Table 1 shows the depth map comparison
result of the test population using the percentage of vertices having less than 5,
between 5 and 10, between 10 and 15, and between 15 and 20 pixels variation be-
tween two surfaces. It indicates that 3D surface generated from Binocular stereo
using Triangulation is closer to the 3D surface generated from PSM (benchmark)
than any others. It has higher proportion of vertices (51.76% and 26.79%) with
5 and 10 pixels difference against PSM than Orthogonal Views.

Table 1. Overall Comparison Result on different 3D surfaces

≤ 5 ≤ 10 ≤ 15 ≤ 20 ≥ 20 Max. Mean Variance Std Dev.

PSM vs OV 49.3 26.1 13 4.7 6.8 80.9 9.2 111.5 26.3

PSM vs Tri 51.7 26.7 10.4 5.4 5.5 80.2 8.4 136.2 10.5

OV vs TRI 74 18 4.5 1.6 1.9 36.0 4.1 26.2 4.6

Table 1 also shows that the 3D faces generated by Orthogonal Views and
Binocular Stereo using Triangulation are very similar. 74 % of the vertices are
less than 5 pixels between these two face surfaces. This result was expected since
both techniques interpolate the extracted 3D data from the test subjects into
the same predefined face model.

In order to investigate which areas on the face surfaces has the biggest and
smallest difference to the benchmark, we tend to display the pixel difference
between two surfaces graphically. Result shows that there is much less vertex
differences between Binocular Stereo using Triangulation and Orthogonal Views’
results than others. However, further work is required to work out the vertices
difference for particular areas on the 3D face surface for all test subjects. Areas to
investigate would be mainly around primary facial features such as the eyebrows,
eyes, nose and mouth.

4 Conclusion

In this paper, stereo vision, photometric stereo, and orthogonal views are com-
pared for the purpose of 3D face analysis and synthesis. For sake of comparison,
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we assumed 3D faces generated by PSM as benchmarks since PSM generates
denser depth map. 3D surface comparison indicates that results generated from
Binocular Stereo using Triangulation are closest to PSM.

We are currently investigating a proper method to perform a face model
comparison of accuracy using laser scan of a test subject as a benchmark. We
are also investigating Binocular Stereo using Stereo Correspondence Algorithm
with USB driven digital cameras. Currently we use PSM and Binocular stereo
to generate animatable 3D faces for realistic expressions generation.
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Abstract. For a complex writting as egyptian hieroglyphs, combin-
ing the works done in hierarchical modelizations and fuzzy grammar
definitions seems natural. This paper introduce the hierarchical-fuzzy-
attributed graph (FHAG), extended from fuzzy-attributed graph, which
modelize attributes by fuzzy-tree grammar. We give a formal definition
of FHAGs and explain the building process. Some results are given with
a recognition system based on single models comparisons.

1 Introduction

The handwritten character recognition problem is studying since many decades
[1]. In general, the character recognition systems consist of two steps : features
extraction and classification of the feature vectors into a number of class. Then
the classification can be done reffering to a learning base if such a base exists or
reffering to single models if it does not. The models can furthermore come from
an expert or from a clustering phase of prototypes (see [2] for exemple).

In this article, we are presenting a new approach for describing complex hand-
written patterns as egyptian hieroglyphs. This work is integrated in a recogni-
tion system based on single models comparison. According to the complexity of
egyptian hieroglyphs and the huge variations between models and characters to
recognize (figure 1), a fuzzy structural description has been adopted.

As explained by L.A.Zadeh ([3],[4]), fuzzy logic is a very powerfull tool for de-
scribing uncertainty, ambiguity and vagueness. Moreover structural approaches
for pattern recognition have improved pattern descriptions by introducing topo-
logical and contextual informations. That is why combining structural technics
and fuzzy logic became natural. We can cite Chan & Cheung ([5]) who first used
Fuzzy-Attributed Graphs (FAG) for chinese character recognition. An other very
interesting work on character description by combining fuzzy and structural in-
formations is the one made by Malaviya & Peters ([6], [7]). They built a complete
fuzzy language for the syntactic description of on-line handwritten symbols. The
characters are decomposed into semantic features and fuzzy logic techniques are
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used to describe their syntactic relations. The power of such a language lies in
the possibility to fine tune uncertainty. Nevertheless such a description is limited
to on-line writings (temporal aspects) or at least simple characters.

Our approach, presented in this article, is to consider an egyptian hieroglyph
as a set of pattern primitives. Each primitive is described not only by classical
fuzzy attributes but also, following the idea of Malaviya & Peters, by linguistic
fuzzy trees. Then a FAG is built with primitives as vertices and relations between
them as arcs.

This paper is structured as follows. At the beginning, a formal definition
of Fuzzy Hierarchical Attributed Graphs (FHAG) is given. Then our character
decompositions and primitive descriptions are explained in a second section.
Finally we quikly explain the recognition process and give some results and
conclusions.

(i) (ii) (iii) (iv)

Fig. 1. Handwritten Hieroglyphs

2 Fuzzy Hierarchical Attributed Graph

Attributed graph (AG) was introduced by Tsai and Fu for pattern analysis [8].
The vertices of the graph represent pattern primitives describing the pattern
while the arcs are the relations between these primitives. A FAG can be defined
as a generalization of the AG since a crisp set can always be represented as a
special case of a fuzzy set ([5]). Starting from the FAG definition, our description
introduces a hierarchy and the attributes become trees.

Let us take an example. In figure 2 (a) the primitive attribute “TYPE”
of objects 1 and 2 can take values in ÃS1 = {circle,ellipse} or Ã′

S1
= {circle,

left ellipse, right ellipse}. For an object comparison both value sets will give
completly different results. Actually the first description will give objects 1 and
2 similar, but the second description will give them different. A more intuitive
description can be given by a linguistic fuzzy tree as shown in figure 2 (b).

A linguistic fuzzy tree can be performed as a sample of a fuzzy tree grammar
([9],[10]).

Definition 1. 1. A tree t is a set of nodes satisfying :
(a) a unique node is called the root of tree t;
(b) other nodes are divided into disadjoining sets t1, ..., tn where ti is called

a subtree of tree t.
2. A fuzzy tree t̃ is t̃ = (t, μ), where t is a tree and μ ∈ [0, 1].
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(a) (b)

Fig. 2. Linguistic Fuzzy Tree Illustration

Definition 2. 1. A fuzzy tree grammar is a 4-tuple Gt = (VN , VT , P, S), where
(a) VN is a finite set of nonterminals;
(b) VT is a finite set of terminals;
(c) P is a set of productions of the form : ti

μ→ tj, where ti, tj are trees,
μ ∈ [0, 1] is called the membership of the production.

(d) S ∈ VN is a starting symbol.
2. The Language L(Gt) generated by Gt is defined as L(Gt) = {(t, μ)|S ∗⇒ t}.

For a FHAG, each vertex may take hierarchical attributes from a set Ẑ =
{ẑi|i = 1, ..., I}. For each hierachical attribute, ẑi will have possible samples
taken from a set Gvi = {ŝij|j = 1, ..., Ji}, where Gvi is a fuzzy tree grammar
and ŝij are linguistic fuzzy trees. L̂v = {(ẑi, ŝij)|i = 1, ..., I; j = 1, ..., Ji} denotes
the set of possible attribute-linguistic fuzzy tree value pairs of vertices. A valid
pattern primitive is just a subset of L̂v in which each attribute appears only
once, and Π̂ is the set of all those valid pattern primitives. Thus each vertex will
be represented by an element of Π̂ .

Similarly, we define F̂ = {f̂i|i = 1, ..., I ′}, Gai = {t̂ij |j = 1, ..., J ′
i}, L̂a =

{(f̂i, t̂ij)|i = 1, ..., I ′; j = 1, ..., J ′
i} and Θ̂i for the arcs. And finaly :

Definition 3. A FHAG Ĝ over L̂ = {L̂v, L̂a} with an underlaying graph struc-
ture H = (N,E), is defined to be an ordered pair (V̂ , Â) where V̂ = (N, σ̂) is
called a hierarchical fuzzy vertex set and Â = (E, δ̂) is called a hierarchical fuzzy
arc set. The mappings σ̂ : N → Π̂ and δ̂ : E → Θ̂ are called hierarchical
fuzzy vertex and hierarchical fuzzy arc interpreters, respectively.

3 Character Decomposition and FHAG Construction

The decomposition of a character into a FHAG is made in two steps. First the
character is skeletonized and singular (intersections and end points) and inflexion
points are extracted. Then the primitives are selected and the FHAG is built.

3.1 Skeletonization and Singular Points Extraction

A skeleton is a synthetic representation of a shape ([11]) set up with unit-
thickness strokes. Among the numerous skeletonization and thinning methods
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([12]), only the strictly 8-connected results are interesting for a fast and simple
forward computing. We choosed the algorithm proposed by Zhang and Wang
[13] because of its good properties and speed.

The singular points are extracted with simple morphological “hit or miss”
transforms ([14]). Figure 3 ((1) is the skeleton, (2) is the skeleton and the sin-
gular points (grey and black)) illustrates those operations on the first character
from figure 1.

(1) (2) (3)

Fig. 3. Skeleton, singular points and inflexion points

3.2 Inflexion Points Detection

After singular points detection, the shape can be divided into a first set of primi-
tives which are parts between two singular points. Then, for a better description,
a second cut has to be made by extracting inflexion points.

The inflexion points calculation is made on each primitive of the first set.
The principle is to parametrize the curve for a simple inflexion points detection
where D = (x′′ × y′ − x′ × y′′) = 0.

This problem is easily solved by using a Bezier interpolation. The control
points of the De Casteljo algorithm are calculated by a progressive Ramer polyg-
onalization. The figure 4 depicted the process on a simple example :

– (a) is the orinal image,
– (b) is the skeleton (grey) with singular points (black),
– (c) is the skeleton (grey) with control points from the polygonalization phase

(black),
– (d) is the skeleton (grey) with the sampled bezier curve (black),
– (e) is the skeleton (grey) with inflexion points calculated without the polyg-

onalisation phase (black),
– (f) is the skeleton (grey) with inflexion points calculated with the polygo-

nalisation phase (black).

The poligonalization phase for selecting the control points is in fact a smooth-
ing operation of the bezier curve. The comparison between (e) and (f) in figure
4 attests the importance of such a smoothing. The FHAG is built from the fi-
nal image of skeleton with singular and inflexion points (on figure 3-(3) there is
only one inflexion point on the right arm). A primitive is delimited by two black
points (which can be the same for a loop).
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(a) (b) (c) (d) (e) (f)

Fig. 4. Inflexion Points

3.3 FHAG Construction

Vertices Hierarchical Attributes Calculation. Each vertex of the FHAG
stands for a primitive and is associated with two hierarchical attributes. The first
one, called V TYPE, details the type of the primitive. The second one, called
V LENGTH, details its length.

The fuzzy tree grammar of V TYPE is outlined in figure 5, the terminals
set VT = {Stroke (ST ), Simple Curve (SC), Complex Curve (CC), Positive
Stroke (PS), Negative Stroke (NS), Vertical Stroke (V S), Horizontal Stroke
(HS), C-like Curve (C), D-like Curve (D), A-like Curve (A), U-like Curve
(U), Loop(LOO), Others (OTH), Circle (CIR), Ellipse (ELL), Positive Ellipse
(PE), Negative Ellipse (NE), Vertical Ellipse (V E), Horizontal Ellipse (HE)}.

The μi
0 are calculated with a fuzzification of arcness=

√
(1− d/l), where d

is the distance between the end points of the primitive and l is its length (figure
6-(a)). Then, the μi

1 are obtained with a fuzzification of the slope function. For
the μi

2, we use the slope of the stroke defined by the mean point of the curve
and the middle of end points. The fuzzification is made on its slope (figure 6-(b)
where θ is the angular slope). The μi

3 come from a fuzzification of the correlation
between the curve and its first order Fourier reconstruction. The μi

4 are simply
extracted from the fuzzyfication of the ratio between the big and the little axis
of the shape. And finally, the fuzzification of the big axis slope gives the μi

4.
V LENGTH is a 1-depth attribute which describes the length/total length ratio

Fig. 5. V TYPE representation
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(a) (b)

Fig. 6. (a) Fuzzification of the arcness; (b) Fuzzification of the simple curve type

where the total length is the sum of the lengths of all the primitives of the graph.
The description is made by using the linguistic terms of Malaviya and Peters
([6]) and the terminals set VT ={ Zero Z, Very Very Low V V L, Very Low L,
Low L, Medium M , High H , Very High VH , Very Very High V V H , Excellent
E} (figure 7-(d)). Its tree representation is given in figure 7-(a).

Arcs Hierarchical Attributes Calculation. The arcs describe the relations
between primitives. For a better topological representation, we use oriented arcs.
As a matter of fact, the relation between two primitives is always described by
a pair of arcs (a and ab with oposite orientations). Then the graph underlaying
from definition 3 is overwritten into H ′ = (N,E′) where E′ = E × Eb, E is the
set of arcs from Vi to Vj , i ≤ j, and Eb is the set of arcs from Vj to Vi. And
finally AG, FAG and FHAG are called oriented AG, FAG and FHAG.

Two hierarchical attributes are associated to an arc. E POS defines the rel-
ative position of the two primitives. E PROX defines its proximity.

(a)-(b)-(c) (d)

Fig. 7. (a) V LENGTH; (b) E POS; (c) E PROX; (d) Fuzzification of
length/total length

.
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E POS is a 1-depth attribute with VT ={ Above AB, On the left LE, Under
UN , On the right RI}. The tree representation is illustrated in figure 7-(b). The
μi are calculated with the fuzzy relative position calculation of Bloch ([15]).

E PROX is a 1-depth attribute with VT ={0-Proximity 0P , 1-Proximity 1P ,
2-Proximity 2P , 3-Proximity 3P}. The tree representation is illustrated in figure
7-(c). The proximity is the fuzzy connectivity of primitives. The μi are obtained
by a fuzzification of the distances between end points of both primitives.

4 Results

The recognition process is based on a similarity measurement between the un-
known hieroglyph and one model standing for a class. An inexact graph matching
algorithm ([16]) gives the monomorphism between both graphs. Some tests have
been computed with a model basis of 296 handwritten hieroglyphs. Figure 8 gives
some examples of similarity measurements which illustrate the interest of our ap-
proach. The models were written by an egyptologist and the unknown characters
were extracted from a handwritten document made by another egyptologist. The
interest of our system is its capability to classify big families (“Man”, “Calvary”,
“Bird” in figure 8).

Fig. 8. Results of some queries. Unknown glyphe is on the left, the two most similar
glyphes returned are on the right.

5 Conclusions

In this paper we propose an extension to the fuzzy-attribute graph by introducing
a hierarchy on the attributes. The fuzzy-tree grammars give the possibility to
modelize complex structures in a natural way. We explain the building process
of FHAG for egytian hieroglyphs and introduce some encouraging results with
a recognition system based on single models comparisons.
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Abstract. Textual information present in images can help to achieve the aim of
automatic content based annotation and retrieval of images. In this paper, we ad-
dress the problem of text segmentation (TS) in images with complex background
for recognition purposes. The proposed TS method takes as input the localized
text and proceeds as follows: First, the number of initial clusters is determined by
analyzing the colors of the image. Second, the image pixels are clustered using
the number of clusters defined in the first step. The compactness of the clusters is
evaluated in each step and improved iteratively to avoid possible oversegmenta-
tion of characters. Finally, an algorithm based on a rating scheme is proposed to
determine the cluster where the text pixels are classified. The proposed method
is evaluated on the basis of recognition results instead of visual segmentation re-
sults. Comparative experimental results using a test set of 2684 characters are
reported.

1 Introduction

Text appearing in images can be classified into two groups: scene text and artificial text
[12]. Scene text is part of the image (scene) and appears accidentally (e.g. traffic signs in
an outdoor scene), whereas artificial text is laid over the image in a later stage (e.g. the
name of somebody in an interview). Text embedded in images and video sequences, es-
pecially artificial text, provides important information about the content. Text extraction
and recognition, which includes text detection, localization, segmentation, binarization
and recognition, is an important component towards achieving automatic text-based
image/video indexing. Often, text is superimposed over a complex background and its
successful recognition by a commercial optical character recognition (OCR) engine is
very difficult, although the text may be correctly localized. In this context, text segmen-
tation methods which include the separation of the text from the background and the
binarization of the text are crucial. Thus, the application of text segmentation methods
on the localized text is the last step before before proceeding further with an OCR.

The idea of segmenting the localized text from complex background employing
unsupervised learning methods was already presented in our previous work [9]. In this
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paper, we further explore and extend this idea by introducing the following new aspects:
I) a flexible number of clusters, which depends on the image colors; II) unsupervised
fuzzy classification of image pixels using the number of clusters defined in the first
step; III) evaluation of the compactness of the clusters and their iterative improvement;
IV) determination of the cluster where the text pixels are classified and its binarization.
All candidates are rated based on the geometric and spatial properties of their con-
nected components. Finally, the image with the highest overall rating is identified as the
correct binary text image. The character/word recognition rate is used to evaluate our
method. The performance of our approach is demonstrated by presenting comparative
experimental results for a dataset of 441 words or 2684 latin characters.

The paper is organized as follows. Section 2 gives a brief overview of related work
in the field. Section 3 reviews the fuzzy c-means algorithm and introduces the individual
steps of our text segmentation approach in detail. Section 4 describes our experimental
results obtained for two sets of images and compares them to other text segmentation
methods. Section 5 concludes the paper and outlines areas for future research.

2 Related Work

In [1], the average grayscale value of the pixel in the text box is considered as the
optimal global threshold. In [13], a 16-bin normalized histogram of the grey level values
is computed first. Then, by scanning the bins backward, bin k corresponding to the
first valley in front of the first peak is located. Finally, a threshold with a value of
16 ∗ (k − 1) is used to binarize the text image. Wu et al. [22] use a low pass Gaussian
filter to first smooth the image and then compute an intensity histogram. The first peak
from the left on the smoothed histogram is choosen as the optimal threshold for the
binarization process. After enhancing the image using Shannon up-sampling, Li et al.
[11] apply a local thresholding method to binarize the enhanced image. A block is
marked as background only if its standard deviation is smaller than a fixed threshold. In
[21], an adaptive local threshold based on a combination of proposals of Niblack [14]
and Sauvola [19] is calculated for each block of the image to binarize it. Lienhart and
Wernicke [12] first estimate the possible text and background color. After a geometrical
analysis of the connected components, a binarization process follows where a global
threshold is calculated as the mean of the estimated text and background color.

Odobez and Chen [15] have presented a multi-hypotheses approach based on a
Markow random field (MRF) and on grayscale consistency constraints for text segmen-
tation. The grey level distribution in text images is modeled as a mixture of Gaussian
distributions. The assignment of each pixel to one of the Gaussian layers is based on
prior contextual information, which is modeled by a MRF. Each layer is considered as a
binary text image and is fed into the OCR system as one segmentation hypothesis. The
text image which gives the best recognition performance is considered as the output
of the system. Gllavata et al. [9] regard the text segmentation problem as a clustering
process. As in [12], the possible text and background color is defined. Then, K-Means
is employed to cluster the pixels into two clusters ”text” and ”background” based on
their texture and color features. In [23], an unsupervised learning method is proposed.
Samples of text pixels are extracted based on the heuristic that they lie between an edge
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couple. Then, a Gaussian Mixture Model (GMM) is used to model the intensity of text
pixels and is trained with the extracted samples. Finally, text pixels are extracted from
the background using the trained GMM and spatial connectivity properties of text. In
[17], two histogram based clustering algorithms are presented for text extraction from
color documents. The first is based on the RGB space while the second also uses the
spatial information.

3 Adaptive Fuzzy Text Segmentation and Binarization

The proposed method is designed to segment text strings of arbitrary font, size and
color. No assumption is made about the text color polarity in contrast to most of the
existing text segmentation methods, which assume that the text has a specific color po-
larity (text color is always dark or light), finding thus limited application in segmenting
real video texts that have various appearances and complex backgrounds. In this work it
is assumed that the text string consists of a homogeneous color and aligns horizontally,
which normally is the case for artificial text. The input of the method is the original
image and the coordinates of the text bounding boxes, which can be generated using
the algorithm in [7]. The excerpt shown in Figure 1 consisting of three images extracted
from the test sets used in this paper illustrates various complex backgrounds where
text is embedded. The proposed method overcomes the difficulties for finding the op-
timal global/local threshold [12,22,11,21] or the request for different training samples
in [15,4] by applying unsupervised fuzzy clustering. In the following, a short review
of the fuzzy c-means algorithm is given before proceeding further by explaining its
application in our text segmentation technique.

Fig. 1. Example of the inputs of the proposed text segmentation algorithm

3.1 Fuzzy C-Means

Fuzzy c-means (FCM) is a data clustering technique where each data point belongs to a
cluster to some degree, which is called a membership grade. Let X = {x1, x2, .., xN}
be a data set of N elements in a d-dimensional Euclidian space Rd with a norm ‖∗‖ and
let C be a positive integer larger than one. C shows the number of clusters in which the
data set X should be partitioned. The FCM clustering is based on the minimization of
the objective function: Jm =

∑N
i=1

∑C
j=1u

m
ij ‖xi − cj‖2, where m is the fuzzification

constant, which can have influence on the clustering performance of FCM (m = 2), uij

is the degree of membership of xi in jth cluster (clusterj), xi is the ith element in the
data set X , cj is the center of the clusterj . Fuzzy partitioning is carried out through an
iterative optimization of the objective function Jm, where the membership uij and the

cluster centers cj are updated using: uij = 1
C
k=1 (

‖xi−cj‖
‖xi−ck‖ )

2
m−1

where cj =
N
i=1 um

ij∗xi

N
i=1 um

ij

.
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This iteration is stopped when maxij{|uk+1
ij − uk

ij |} < ε, where ε is a termination
criterion between 0 and 1, whereas k are the iteration steps.

3.2 Resolution Enhancement

First, the image resolution is enhanced up to 300 dpi using a cubic interpolation. It
has been demonstrated in [9] that the segmentation and the subsequent steps perform
better on a higher resolution than on the original video frame resolution of 72 dpi.
Furthermore, the segmentation algorithm performs better, if the text is not too small.

3.3 Feature Extraction

Several color and texture features are considered in order to find the best ones to clas-
sify pixels as text or background. The basic color features consist of the pixel color
components. Generally, raw color data are expressed in the RGB color space. However,
the RGB color space and its linear derivates do not constitute uniform color spaces. In
contrast, the CIE L*a*b* color space [3] is perceptually an uniform color space, which
means that the Euclidean distance between two color points in the CIE L*a*b* color
space corresponds to the perceptual difference between the two colors by the human vi-
sion system. Therefore, color features are considered on both the RGB or CIE L*a*b*
color space. Furthermore, to consider the texture of the pixels, the wavelet coefficients
in the high frequency subbands (e.g. LH and HL) and their standard deviations are also
included in the set of possible features. The standard deviation feature for a given pixel
is calculated as the standard deviation of the wavelet coefficients in a small neighbour-
hood of the pixel. Before proceeding further, all feature components are scaled to the
range [0, 1]. Additional details about the feature extraction process can be found in [9].

3.4 Adaptive Fuzzy Pixel Clustering

Due to the fact that color groups do not have hard boundaries and similarity measures
between color data are relative, a fuzzy similarity measure is more appropriate than a
hard one. Thus, fuzzy c-means is chosen to cluster the pixels of the text image. However,
there are two major difficulties in applying the fuzzy clustering algorithm introduced in
section 3.1: (1) the determination of the number of clusters C; (2) the initial fuzzy
partition of objects into clusters (cluster centroids). Solutions are proposed for both of
these problems in the following two paragraphs.

Determination of the Initial Number of Clusters. In contrast to the method presented
in [9] where the number of clusters is fixed to two (”text” and ”background” clusters),
in this approach the number of clusters is defined at run time and is adaptive depend-
ing on the image that will be segmented. This solution is motivated by the fact that the
background under the text is often multicolored and can show different texture proper-
ties from image to image. The number of clusters is defined using a heuristic approach
which consists of the following steps: (1) a certain number of significant pixels from the
input image is selected (e.g. the pixels that lie on the middle row); (2) then, the extracted
pixels are divided into sets of pixels with similar colors. The Euclidean distance (in the
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selected color space) is used to measure the similarity between two different colors. If
the difference between the colors of two pixels is below a threshold (thsimilar), then the
pixels are considered to be similar. The output of this stage are groups of pixels which
have similar colors. It is assumed that the number of generated groups of colors is an
indirect indicator about the possible different colors in the image. Thus, this number is
used as the initial number of clusters C for the fuzzy c-means algorithm.

Initialization Method. There is no generally accepted approach for the initialization
of the fuzzy clustering algorithm. The initialization step is important because different
selections of the initial cluster centroids can potentially lead to different partitions. The
proposed initialization method uses the groups of colors generated in the previous step.
It works as follows: (1) a representative color is calculated for each group as the mean
color of all colors that belong to the group. It is assumed that the set of estimated colors
cj for j = 1..C composes the representative colors of the input image and are used
as centers for the initial fuzzy partitioning during the next step. (2) the membership
function of color uij between a color xi and a center color cj is defined as originally
proposed in [10] using the formula 1:

uij =

⎧⎪⎨⎪⎩
1.0 if δ(xi, cj) = 0 ,

0.0 ∃k �= j fulfilling δ(xi, ck) = 0,

(
∑C

k=1 ( δ(xi,cj)
δ(xi,ck) )

λ)−1 otherwise

(1)

where λ is a weighting parameter for the membership of xi to cj usually with the same
value as the fuzziness parameter m (m = λ = 2) and δ(xi, cj) is the Euclidean distance
between the colors xi and cj .

Adaptive Fuzzy Clustering (AFC). The FCM algorithm is applied to cluster the pixels
of the text image into C clusters, where C and the initial membership matrix u are
determined as in the previous paragraphs. The Euclidean distance is used to measure the
similarity between the features that represent each pixel. After the clustering process has
converged, the algorithm continues as follows: (1) the fuzzy membership is converted
into a hard membership based on the maximum criterion, i.e. each pixel is classified
to belong to the cluster with a maximum membership value; (2) the mean (meanj) of
the degrees of membership uij of the objects xi in each clusterj is calculated using

the equation: meanj = i uij

|clusterj | , ∀i | xi ∈ clusterj . As the membership degree
uij provides a measure of the similarity between the point xi and the center of the
clusterj , the value of meanj will offer an aproximate information how compact the
clusterj is; (3) if the condition: ”meanj >= thcompact, ∀ clusterj” is not fulfilled,
then the number of clusters is decremented:C = C−1. The two clusters with the lowest
value of meanj are melted into one and a new center is calculated as the mean of the
old centers. However, other criteria could be also considered, e.g. merging the cluster
with the lowest value of meanj with its closest cluster in the color space. After the
initialization with the new centers is done, the pixels are clustered again. The clustering
process is repeated until the aforementioned condition is fulfilled or C = 2. In this way,
possible oversegmentation of the text characters is avoided. In Figure 2, an example
is shown how the segmentation result is improved when applying the presented AFC
algorithm instead of a simple FCM.
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Fig. 2. The impact of AFC. From left to right: (a) the input image; the segmented image (b)
without the AFC, the number of clusters C = 6; (c) with AFC, the number of clusters C = 4.

Fig. 3. The segmentation and OCR results for the images in Fig. 1. OCR results from left to right:
(a) Ricarda Stoller-Party-Service Offenbach; (b) Antires Martin Velasco; (c) ABDUL MAJEED.

3.5 Binarization, Text Identification and Enhancement

After applying the steps explained above, C clusters of pixels are created. To proceed
further, the correct cluster, i.e. the cluster containing text pixels should be found. For
this purpose, a rating algorithm is proposed. It makes use of the fact that connected
components (cc) and their bounding rectangles in the text image will show similar spa-
tial and geometric properties compared to those of the other candidate images. A binary
image, bImagej is generated for each clusterj marking all pixels which belong to the
clusterj with black and the rest with white. After the extraction of cc (using the method
in [5]) in each bImagej , features that characterize their size distribution and spatial
distribution are extracted. The same features are extracted even for their bounding rec-
tangles (e.g. the standard deviation (stDevY CCj) of the y coordinates of the lower
right corner of the bounding rectangles). The density of blanks in the vertical projec-
tion (densityBlankj) and the mean of the degrees of membership (meanj) for each
bImagej is also taken into consideration. First, all candidate images that do not fulfill
the minimal criteria e.g. ((densityBlankj > 0) and (densityBlankj < 0.7)). are ex-
cluded from further evaluations. Afterwards, an evaluation process consisting of several
steps takes place, where each of the remaining candidates is rated based on the values of
each of the extracted features. The maximum value for a feature rating is max = C−1,
where C is the number of candidate images. Within an evaluation step, the candidate
with the best feature value will be given the maximum feature rating, whereas the next
best candidate will be given a feature rating of max − 1, and so on. For example, for
the feature stDevY CCj , the respective step of the rating algorithm will proceed as
follows: the image which has the lowest standard deviation of the y will be given the
maximum feature rating and the image which has the highest standard deviation of the
y will be given the minimum feature rating. This is motivated with the fact that the cc
(characters) in a text image often lie on a straight line. After each bImagej is rated for
each of its features, the image with the highest overall rating is identified as the correct
binary text image. Finally, an enhancement process takes place. All cc that: 1) are too
small; or 2) lie on the boundaries of the text image and their bounding rectangles have
an intersection with other bounding rectangles will be removed. The application of a
morphological ”open” operation for breaking the possible bridges across the characters
concludes the operation.
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4 Experimental Results

We have tested our text segmentation algorithm on two different test set of images.
The first test set (TS1) is the public MPEG-7 test set [6] which consists of 45 im-
ages. There are 265 words or 1481 characters in this test set. The second test set
(TS2) consists of 18 video frames with about 176 words or 1203 characters, which
are chosen randomly from a set of video frames kindly provided to us by Lienhart
[12]. Both test sets are selected in order to cover a wide variety of background com-
plexity and different text color, font, size and polarity. In total, there are 441 words
or 2684 latin characters. To evaluate the performance of the proposed text segmenta-
tion method (AFTS Method), character recognition experiments have been conducted.
The recognition rate is used as an objective measure of the algorithm’s segmentation
performance. We have used a demo version of the commercial OCR software AB-
BYY FineReader 7.0 Professional [2] for recognition purposes. After segmentation,
the segmented binary text image was fed manually into the OCR software and the
correct recognized characters/words are counted. This evaluation is done on the OCR
level in terms of character (word) recognition rate which are defined using the formula:
WRR(CRR) = #CorrectRecognizedWords(Chars)

TotalNumberofWords(Chars) .
All the parameters used in the proposed method are evaluated experimentally, and

the values that gave the best results on the average are used throughout these ex-
periments. The following values of parameters are used during the text segmentation
process: in the RGB color space thsimilar = 60, thcompact = 0.7 and the sliding win-
dow size (in 3.3) was set to 3 x 3 pixels. The wavelet 5/3 filter bank evaluated in [20]
was used with the low-pass filter coefficients -0.176777, 0.353535, 1.06066, 0.353535,
-0.176777 and the high-pass filter coefficients 0.353535, -0.707107, 0.353535. In order
to find the features which give the best results, different combinations were investi-
gated:

- RGB or CIE La*b* Color Components;
- RGB or CIE La*b* Color Components + Wavelet Coefficients;
- RGB or CIE La*b* Color Comp. + Standard Deviation of Wavelet Coeff.;
- RGB or CIE La*b* Color Comp. + Wavelet Coeff. + Stand. Dev. of Wavelet Coeff.

The best results in terms of both CRR and WRR were achieved using the com-
ponents of the RGB color space and the value of wavelet coefficients. Two groups of
experiments are conducted in order to evaluate the proposed method. In the first group,
the ground truth data are used as the input of the segmentation methods in order to
avoid the impact of the localization algorithms on their accuracy, whereas in the second
group the text boxes generated by the text localization method presented in [7] are used
instead of the ground truths. For comparison purposes, two other methods, namely a
thresholding-based [16] and an unsupervised text segmentation [9] method, were se-
lected. For the second method, the same value of parameters as indicated in [9] are
used.

The results obtained during the first group of experiments are listed in Tab. 1. The
first number shows the WRR while the number in brackets shows the CRR. Our method
has achieved an overall CRR of 90.4% and an overall WRR of 78% outperforming the
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Table 1. Word (character) recognition performance comparison of three algorithms

Test Set AFTS Method K-means (k=2)[9] Method in [16]

TS1 78.1 % (90.7 %) 65.7 % (78.1 %) 68.0 % (79.7 %)
TS2 78.0 % (90.0 %) 54.0 % (70.0 %) 52.0 % (70.0 %)

Overall 78.0 % (90.4 %) 59.9 % (74.1 %) 60.0 % (74.9 %)

other two methods. In Fig. 3, the segmentation and the OCR results for the images in
Fig. 1 are shown. In the second group of experiments, evaluations were conducted only
on TS1, and the text boxes generated by the text localization method presented in [7]
are used as the input of the three different segmentation algorithms. The method in
[7] has localized 88.88% of the text pixels present in TS1 (see [8]). The combination
of [7] with the AFTS method using the OCR engine [2] has achieved an overall CRR
of 77%. When the AFTS method is substituted by the Otsu method [16] (or k-means
[9]), an overall CRR of 50% (or 41.4%) was obtained. Even in this case the proposed
AFTS method has shown a better performance than the methods introduced in [16] and
[9]. Fig. 4 shows an example of how the different text segmentation methods perform.
We would like to point out that a performance measure such as CRR/WRR not only
depends on the accuracy of the used segmentation methods but also on the quality of
the OCR engine. During the experiments it was observed that in some cases, despite
good segmentation results, the OCR fails to recognize the text image correctly.

The AFTS algorithm has a complexity of O(NC2k), since the maximum number
of iterations for the AFTS is bounded by C, whereas the methods in [16] and in [9]
have complexities of O(N) and O(NCk + N1/3) respectively. Considering that the
initial number of clusters in [9] has a value of two and in AFTS it depends on the
image colors, the AFTS algorithm is computationally more expensive. However, the
AFTS method has shown a better performance than the methods in [9,16] in terms of
CRR/WRR, and it usually takes place offline, since the purpose of this method is the
text-based indexing of the images.

Fig. 4. The extraction results. From left to right: (a) the result of the localization alg. in [7]; the
segmentation results (b) using Otsu [16]; (c) using k-means [9]; (d) using the proposed AFTS.

5 Conclusions
In this paper, an adaptive fuzzy algorithm (AFTS) for automatic text segmentation from
complex images for recognition purposes has been proposed. Experimental results have



764 J. Gllavata and B. Freisleben

shown the very good performance of the proposed method with an overall WRR of 78%
and an overall CRR of 90.4% when using the ground truth data as input of the AFTS.

There are several areas for future work. For example, adapting the method for text
strings that do not fulfill the assumption of having a homogeneous color will be our
focus in the near future. The integration of a freely available OCR system will be also
investigated to support the whole processing chain from the input image to the ASCII
text in the end.
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Abstract. Digital distance functions and metrics based on neighbor-
hood relations play important role in many applications in digital image
processing. In this paper we summarize our results about the investiga-
tion of structural properties of neighborhood sequences and their possible
applications in medial axis transformation.

1 Introduction

Motions in the digital space play an important role in several parts of discrete
mathematics, including discrete geometry and digital image processing. The
most important motions in Z2 are based upon the classical 4-neighborhood and
8-neighborhood relations. More detailed description about these neighborhood
relations can be found in [13]. The alternate use of these neighborhood relations
gives rise to the octagonal distance. These motions and the induced distance
functions were systematically investigated in the classical paper of Rosenfeld and
Pfaltz [18]. By allowing any periodic mixture of the 4- and 8-neighborhood rela-
tions, Das et al. [2] introduced the concept of periodic neighborhood sequences.
They also extended this notion to Z

n. Several papers are devoted to the de-
scription of the properties of such sequences, see e.g. [2]-[4] and the references
given there. Later, Fazekas et al. (see [7]) extended the theory to the general
case, i.e. when any (not necessary periodic) sequences are considered. The use
of such sequences provide a more flexible tool than the previous ones. For exam-
ple, A. Hajdu and L. Hajdu could obtain digital metrics on Z

2 based upon such
sequences, which yield the best approximation to the Euclidean distance [11].

In this paper we give a short overview on the main results of the investigation
of neighborhood sequences based on classic neighboring relations and their ap-
plications in image processing. Section 2 generalizes the concept of neighborhood
sequences (allowing not periodic sequences only). We overview the results of Das
[4] and Fazekas [6] about ordering the set of periodic neighborhood sequences,
and their extension to arbitrary dimension. Furthermore, we list the result about
the structure of the set and some subsets of these generalized neighborhood se-
quences in nD under this ordering. Unfortunately, in several cases we obtain
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negative results: some of the structures considered do not have nice properties.
Instead of this ”natural” partial ordering we propose another relation, which is
in close connection with the original one. More precisely, the ”natural” ordering
is a refinement of the relation introduced here. This ordering has nicer structural
properties. The results related to this ordering can be found in Section 3, too.
The proofs of the propositions can be found in [7], [9].

Digital distance measurement plays an important role in several branches of
discrete mathematics, e.g. in discrete geometry or digital image processing. In
Section 4 we perform an overall analysis on some properties of neighborhood
sequences which induce metrics on Z

n.
Section 5 demonstrates the dependency of medial axis transformation on the

used distance function generated by a given neighborhood sequence. It is the first
experimental results to show the selection the proper distance function based on
neighborhood sequences in the applications can be important.

2 Basic Definition

In order to reach the aims formulated in the introduction, we give the basic
definitions and notations in this chapter. From now on, n will denote an arbitrary
positive integer.

Definition 1. Let p and q be two points in Zn. The ith coordinate of the point
p is indicated by Pri(p). Let m be an integer with 0 ≤ m ≤ n. The points p and
q are m-neighbors, if the following two conditions hold:

– |Pri(p)− Pri(q)| ≤ 1 for 1 ≤ i ≤ n,
–
∑n

i=1 |Pri(p)− Pri(q)| ≤ m.

Definition 2. The infinite sequence B = {b(i) : i ∈ N and b(i) ∈ {1, 2, . . . , n}}
is called a generalized nD-neighborhood sequence. If for some l ∈ N, b(i) = b(i+l)
holds for every i ∈ N, then B is called periodic, with a period l, or simply l-
periodic. In this case we will use the abbreviation B = {b(1), . . . , b(l)}.

We note that the above concept of the generalized nD-neighborhood se-
quences is actually a generalization of the notion of neighborhood sequences
introduced in [4].

Definition 3. Let p and q be two points in Zn and B = {b(i) : i ∈ N} a
generalized nD-neighborhood sequence. The point sequence Π(p, q;B) – which
has the form p = p0, p1, . . . , pm = q, where pi−1 and pi are b(i)-neighbors for
1 ≤ i ≤ m – is called a path from p to q determined by B. The length |Π(p, q;B)|
of the path Π(p, q;B) is m.

Definition 4. Let p and q be two points in Zn and B a generalized nD-neigh-
borhood sequence. Clearly, there always exist paths from p to q, determined by
B. The distance between p and q is defined as the common length of the shortest
paths, and is denoted by d(p, q;B).
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3 Neighborhood Sequences in nD

It is a natural question that what kind of relation exists between the distance
functions generated by two given neighborhood sequences B1 and B2. The com-
plexity of the problem can be characterized by the following 2D periodic example
from [4]. Let B1 = {1, 1, 2}, B2 = {1, 1, 1, 2, 2, 2}. Choose the points o = (0, 0),
p = (3, 1) and q = (6, 3). In this case we obtain that d(o, p;B1) = 3 < 4 =
d(o, p;B2), but d(o, q;B1) = 7 > 6 = d(o, q;B2). So the distances generated by
B1 and B2 cannot be compared.

Definition 5. Let Sn, S′
n, S′

n(l≥) and S′
n(l) be the sets of generalized, periodic,

at most l-periodic and l-periodic (l ∈ N) nD-neighborhood sequences, respectively.
For any B1, B2 ∈ Sn we define the relation *∗ in the following way:

B1 *∗ B2 ⇔ d(p, q;B1) ≤ d(p, q;B2).

It is evident that *∗ is a partial ordering relation on Sn, hence also all on its
subsets. Moreover, this relation *∗ in 2D and 3D, is clearly identical to those
introduced by Das [4] and Fazekas [6], respectively. Beside Sn, we investigate
the structure of all those sets which were studied by Das [4] in the periodic case,
like S′

n, S′
n(l≥) and S′

n(l) under *∗. Unfortunately, in most cases the above sets
with respect to this relation do not form nice structures. The only ”positive”
result in this direction is the following.

Proposition 1. (S2,*∗) is a complete distributive lattice.

The above proposition does not hold in higher dimensions.

Proposition 2. (Sn,*∗) is not a lattice for n ≥ 3.

Concerning some special sets of periodic sequences, we show that similar
unkind properties of *∗ also occur. In what follows we list these ”negative”
results.

Proposition 3. (S′
n,*∗) is not a lattice for n ≥ 2.

In [4] Das proved that the set S′
2(l) for any l ≥ 1 forms a distributive lattice

with respect to *∗. However, this is not true for S′
2(l≥), in general.

Proposition 4. (S′
2(l≥),*∗) is not a lattice for any l ≥ 5.

Proposition 5. (S′
n(l≥),*∗) and (S′

n(l),*∗) are not lattices for any l ≥ 2,
n ≥ 3.

The above results show that under the relation *∗ we cannot obtain a
nice structure neither in Sn, nor in various subsets of it. Now we introduce
a new ordering relation, which is in close connection with *∗. Moreover, Sn and
its subsets considered above, will form much nicer structures under this new
relation.
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Definition 6. For any B1 = {b(1)(i) : i ∈ N}, B2 = {b(2)(i) : i ∈ N} ∈ Sn we
define the relation * in the following way:

B1 * B2 ⇔ b(1)(i) ≥ b(2)(i), for every i ∈ N.

It is clear that *∗ is a proper refinement of * in Sn, S′
n, S′

n(l≥) and S′
n(l).

We examine the structure of Sn, S′
n, S′

n(l≥) and S′
n(l) with respect to *. As we

will see, the structures we get will be much nicer than in the case of *∗.

Proposition 6. (Sn,*) and (S′
n,*) are distributive lattice.

However, the ordering relation * has worse properties in S′
n than in Sn. This

is shown by the following ”negative” result.

Proposition 7. For n ≥ 2, (S′
n,*) is not a complete lattice.

The forthcoming proposition shows that S′
n(l≥) is not a ”good” subset of Sn,

in the sense that it does not form a nice structure even under *. Of course, it is
not surprising in view of the following observation: if A1 and A2 are in S′

n(l≥),
then A1 ∨A2 and A1 ∧A2 defined in Sn, does not belong to S′

n(l≥) in general.

Proposition 8. (S′
n(l≥),*) is not a lattice for n, l ∈ N with n ≥ 2 and l ≥ 6.

Proposition 9. (S′
n(l),*) is a distributive lattice for every n, l ∈ N.

4 Lattices of Metrical Neighborhood Sequences

In this section we summarize the investigation of the structural behavior of the
set of metrical neighborhood sequences with respect to both *∗ and *.

In [7] the authors introduced * to obtain better structural results for Sn than
with *∗. The following result shows the slightly surprising fact that Mn (set of
nD-neighborhood sequences which generate metrics on Zn) does not form a nice
structure under *.

Proposition 10. (Mn,*) is not a lattice for n ≥ 2.

The situation for (Mn,*∗) is similar to (Mn,*) at least when n ≥ 3. How-
ever, this is not that surprising, since it was shown in [7] that (Sn,*∗) is also
not a lattice in this case.

The following theorem shows that contrary to the higher dimensional case,
metrical 2D-neighborhood sequences form a nice structure with respect to *∗.

Proposition 11. (M2,*∗) is a complete lattice.

5 Medial Axis Transformation

Distances have significant role in shape representation and analysis. In discrete
spaces, distances are defined on selected neighborhoods. As it has been shown,
they can be defined by neighborhood sequences as well.
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(a) (b)

(c) (d)

Fig. 1. Medial Axis Transformations. MATB1 (a), MATB2 (b), MATB3 (c), and
MATB4 (d).

Medial Axis Transformation (MAT) [16], [17] is a special representation of a
binary image. It contains the centres and radii of the maximal inner circles of
the foreground. An inner circle is called maximal, if there is no such other inner
circle that covers it entirely. An appropriate way for creating MAT is using the
Distance Transformation of the image.

Distance Transformation (DT) of a shape of a binary image is a grey-scaled
image, which assigns a value to each pixel of the shape representing its minimal
distance from the boundary of this shape. Essentially, such a value is exactly
the radius of the greatest inner circle with the given pixel as its centre. Thus,
selecting the circles that are not covered by others, one can get actually the
MAT of the shape.

Clearly, the DT and also the MAT of a shape can be created by using the
distance function defined by a neighborhood sequence. It is easy to see, that these
transformations differ from those derived from regular distances (e.g. 4-distance
or 8-distance).

Let us define the following neighborhood sequences: B1 = {1} (4-distance),
B2 = {2} (8-distance), B3 = {1122}, B4 = {1212}, B5 = {211121211211}. Based
on the definition of neighborhood sequences (see [7]), B1 generates the 4-distance
and B2 the 8-distance.

One can select an l-period sequence B, which contains some 1’s and some 2’s.
The MAT of an image created by using B is a transition from the MAT defined
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(a) (b)

Fig. 2. Differences between MATB3 and MATB2 (a), MATB3 and MATB4 (b)

(a) (b)

Fig. 3. The MAT defined by sequences B5 (a), and the difference between MATB3 and
MATB5 (b)

by 4-distance to that defined by 8-distance. Let MATBi denote the MAT defined
by the sequence Bi.

This first experiment shows the results of several image processing methods
based on generated distance function can depent on selected neighborhood se-
quences. For example, to get the best approximation of the Euclidean distance
we can apply the neighborhood sequence given in [11]. Our next step to continue
the study of Medial Axis Transformation based on neighborhood sequences.

It can be seen on the figures, that the non-regular sequences give a better ap-
proximation of arcs of the shape than either the B1 or B2 sequence. In addition,
they contain smaller splits than the 8-distance, and gives softer connections and
less unnecessary branches than the 4-distance. The quality of MAT’s depends
on the sequences. The pixel-level differences between the MAT’s can be seen in
Figure 2 and Figure 3b. The white pixels in MAT are defined by the first and
not by the second given sequence. The black pixels are on the contrary.

A. Hajdu and L. Hajdu gave a sequence, which is the best approximation of
the Euclidean distance [11]. The MAT resulted from its 12-period prefix (i.e. B5)
is depicted in Figure 3a. The difference between the MAT defined by sequence
B3 and B5 is shown in Figure 3b.
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Abstract. Real time classification algorithms are presented for visual
mouth appearances (visemes) which correspond to phonemes and their
speech contexts. They are used at the design of talking head application.
Two feature extraction procedures were verified. The first one is based on
the normalized triangle mesh covering mouth area and the color image
texture vector indexed by barycentric coordinates. The second procedure
performs Discrete Fourier Transform on the image rectangle including
mouth w.r.t. a small block of DFT coefficients. The classifier has been
designed by the optimized LDA method which uses two singular subspace
approach. Despite of higher computational complexity (about three mil-
liseconds per video frame on Pentium IV 3.2GHz), the DFT+LDA ap-
proach has practical advantages over MESH+LDA classifier. Firstly, it is
better in recognition rate more than two percent (97.2% versus 99.3%).
Secondly, the automatic identification of the covering mouth rectangle
is more robust than the automatic identification of the covering mouth
triangle mesh.

1 Introduction

This research refers to a development of software tools supporting animation of
human face models integrated with Polish speech generator.

With a gradual performance progress of computer systems w.r.t. comput-
ing and transmission speed the talking head applications show higher realism in
speech and dynamic visual face appearance (viseme).

Except the performance of speech generator, the synchronization between
the spoken content and facial visual content, is of high importance. The visual
content should not only provide the time correspondence of face image and re-
lated sound but also respect the semantic context of the speech, and the internal
emotions of the speaker.

One of the main tasks in talking head system is the design of a correspondence
table between visemes and phonemes (CTVP table). This correspondence is of
one to many relational type. We can convert this relation to a mapping if we
consider a speech context for the particular phoneme. In practice to get a unique
viseme to speech context, it is enough to take into account three phonemes for
such context: the current phoneme, the previous one, and the next one.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 773–780, 2005.
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Fig. 1. Representative images for six major viseme classes – the 16 minor classes are

obtained by discrimination between small, medium, and high degree of mouth opening

within the first five major classes

In case of Polish speech patterns stored in the CORPORA database [2],
the design of phoneme context to viseme mapping requires recording of video
and audio material lasting about 1000 seconds. Therefore we get more than
25000 visemes to be classified and assigned to recognized phonemes context. This
amount excludes manual implementation. Both, an automatic viseme classifier
and phoneme classifier are necessary to complete the design of CTVP table.

For the phoneme classifier we have used a speech recognition engine based on
HTK toolkit (cf. [7]). As a side effect the speech recognition program produces
the phoneme and diphone transcription labelled by time information. Having
such timing we could segment the video sequence into phoneme related groups.
From each group this video frame was selected for viseme classification which
was closest in time to the middle of phoneme time interval, i.e. to the beginning
of diphone interval. The recognized viseme class (cf. Fig.1) was joined to the
phoneme context list. At the end, from each phoneme list the class id was selected
using the majority rule.

This work explains how the viseme classifier had been designed to support
the creation of CTVP table. To this goal the classification performance of 80%
could be sufficient. However, we are going to use our viseme classifier to animate
the human head model on the basis of live video. Therefore the real time and
the high performance of the classifier are the main objectives of our research.

2 Image Normalization

The realistic visual speech can be achieved by integrating the person specific
face model with mouth model optionally augmented with the model of chin and
cheeks. Using a triangle mesh (cf. Fig.2), we can cover those speech sensitive
areas and try to get the model for at least two goals: viseme classification and
mouth animation.

Alternatively we can approximate the mouth area by a least rectangle touch-
ing lips from outside (cf. Fig.3 upper part). Obviously, the triangle mesh ap-
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Fig. 2. Triangle mesh for mouth with MPEG-4 FAP points depicted (left), and its

neighbourhood (right)

proximation of mouth area is more exact than rectangular one and therefore a
texture vector built from the rectangle includes components hard for matching.
In this case change to 2D Discrete Fourier Transform (DFT) domain enables cor-
rect matching of mouth images normalized to reference mouth rectangle. As the
vertical variability of the mouth image dominates the horizontal one, we expect
that out of three corner blocks (cf. Fig.3 lower part) in DFT domain (usually
considered at DFT based feature extraction) only the one corresponding to the
least frequencies (without conjugated part) will be important for classification.
Our expectation has been confirmed by the experiments.

In mesh approach we deal with variations of the mesh shape and of the
mesh texture (appearance). In order to make comparable two meshes we have to
normalize them with respect to a reference mesh.

We perform the nonlinear normalization of the mesh by mapping each tri-
angle in the current image onto the corresponding triangle in the reference im-

Fig. 3. The rectangle including mouth area (upper), and channel subdivision for 2D

DFT (lower)
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age.Each local mapping is affine, but globally we obtain the mapping which is
piecewise affine.

Let the i-th triangle Δi(P0, P1, P2) in the reference mesh M be mapped by
the affine mapping Ai(P ) = BiP + ti onto the triangle Δ′

i(P
′
0, P

′
1, P

′
2) in the

current mesh M′, where Bi is the square matrix, ti is the vector, P ∈ Δi,
P ′ ∈ Δ′

i, i = 1, . . . , K. Then we have the following properties:

1. The piecewise affine mappings A1, . . . , AK are continuous mappings of M
ontoM′ in geometric space

2. If P = α0P0 + α1P1 + α2P2 has the barycentric coordinates α0, α1, α2 w.r.t.
the triangle Δi(P0, P1, P2) then the point Ai(P ) = α0P

′
0 + α1P

′
1 + α2P

′
2,

i.e. it has the same barycentric coordinates with respect to the triangle
Δ′

i(P
′
0, P

′
1, P

′
2) :

Ai(P ) = BiP + ti = Bi(α0P0 + α1P1 + α2P2) + (α0P0 + α1P1 + α2)t
= α0(BiP0 + t) + α1(BiP1 + t) + α2(BiP2 + t) = α0P

′
0 + α1P

′
1 + α2P

′
2

3. If f ′ : Δ′
i(P

′
0, P

′
1, P

′
2) → CRGB is the texture mapping in the current mesh

then the mapping f : Δi(P0, P1, P2) → CRGB is defined by the barycentric
coordinates for i = 1, . . . , K as follows:

f(P ) = f(α0P0 + α1P1 + α2P2) � f ′(α0P
′
0 + α1P

′
1 + α2P

′
2) (1)

The above substitution transfers the texture from the current mesh onto the
reference mesh with possible deformation of linear segments which intersect
at least two triangles in the mesh.

3 LDA for Mouth Classification

The advantage of having all texture classes (in mesh case) or DFT coefficients
classes (in rectangular case) in common space RN allows us to use the Linear
Discriminant Analysis (LDA) to design the extremely fast classifier of linear
complexity O(N).

Before we reached LDA feature vector of dimension five, the general Fisher
LDA criterium (cf. [3,5,6]) had been used for K dimensional training feature
vector yi = W txi, xi ∈ RN , i = 1, . . . , L, y ∈ RK , W ∈ RN×K :

Wopt = arg max
between class variance for {yi}
within class variance for {yi}

=
tr(W tSbW )
tr(W tSwW )

(2)

where Sb, Sw are the between and within class scatter matrices.
The above criterium has points of singularity if W is arbitrary. Therefore

Fisher imposed the following constraints on the domain of W :

W tSwW = I, W⊥ker(Sw) (3)

This leads us to the following steps to obtain the optimal W described in details
as two singular subspace method in [1] with tuning parameters q equal to the
dimension of the intra-class singular subspace (cf. [4]):
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1. Class mean shifting of the training sequence: X = [x1, . . . , xL];
2. Grand mean shifting for class means: M = [m1, . . . , mC ];
3. Singular Value Approximation for X with subspace dimension equal to q :

[Uq,Σq] := sva(X, q); Aq = UqΣ
−1
q ;

4. Whitening of columns in M : M = At
qM ;

5. Singular Value Approximation for M with subspace dimension equal to r :

Vr := sva(M, q); W = AqVr;

6. Return W;

Fig. 4. Recognition rate versus LDA tuning parameter q when r = 5 : for MESH+LDA

(upper graph) and DFT+LDA (lower graph)

In case of mesh based feature vector (MESH+LDA) and DFT based feature
vector (DFT+LDA), the Fig.4 shows the expected behavior of recognition rate
versus the tuning parameter q.

The vector LDA features with maximum possible value r = C − 1 = 5 gives
the best results.
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The LDA feature y = W tx for the texture vector x is classified by the
distance to LDA features yi = W txi representing the mouth appearance classes
i = 1, . . . , 6 :

iopt = arg min
1≤i≤6

‖y − yi‖2 (4)

Fig. 5. Recognition rate versus LDA tuning parameter q when r = 5 : for different

choice of DFT channels (in upper graphs block 1 contains coefficients of LL frequencies,

2 – L̄L, 3 – LL̄) and different combinations of real, imaginary and amplitude parts in

DFT (lower graphs)

4 Experimental Results

For the training of models for feature extraction, 497 mouth image were selected
with unbalanced distribution in the classes what corresponds to the distribution
in the whole recorded video sequence:

L1 = 127, L2 = 123, L3 = 42, L4 = 89, L5 = 37, L6 = 79

For the testing stage, 152 frames were selected independently of training frames.
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In mesh texture case the best result (97.2% – cf. Fig.4 upper part) is achieved
for lower resolution image with subsequent subsampling of texture vector. Since
in case of LDA, the extraction time is independent of q, we accept higher values
of q giving higher generalization of the classifier even if the recognition rate is
slightly higher for lower values of q.

In rectangular DFT case the best recognition result (equal to 99.3%) is
achieved for the following setup of parameters:

1. DFT block LL for horizontal frequencies 0−4 and vertical frequencies 0−19
(cf. Fig.3 at lower part and graphs of Fig.5 at upper part)

2. DC component is skipped
3. imaginary and real parts of all coefficients in blok LL are stacked in one

vector of size 198 (contrary to the face classifier used in our system, the
amplitude of DFT coefficients for mouth classifier has appeared to be in-
significant – cf. graphs of Fig.5 at lower part)

4. intra-class singular subspace dimension equals to 67 (cf. Fig.4 lower part)
5. inter-class singular subspace dimension equals to 5

It appears that mouth images which were wrongly classified are only from the
class of slightly opened mouth with visible upper teeth, without visible tongue.
They were confused with opened mouth, visible upper teeth and visible tongue.
However, by eye view (the important measure in talking head application) the
difference between such two images is not annoying while watching the mouth
animation.

5 Conclusion

Two real time algorithms MESH+LDA and DFT+LDA for visemes classification
were compared.

Both algorithms benefit of optimization stage when the optimal first singular
subspace dimension is selected in our LDA design. LDA matrix in mesh has about
30 times more elements than LDA matrix in DFT case. However this advantage
at matrix computation is absorbed by dominating DFT computational time.

Preliminary feature extraction for MESH+LDA is slightly faster but less
robust in case of automatic mesh identification.

DFT+LDA method is better than MESH+LDA in recognition rate more
than two percent (97.2% versus 99.3%). Therefore for talking head applications,
DFT+LDA technique is recommended.
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Abstract. This paper describes enhancements on example-based super-
resolution. Example-based super resolution has the advantage that only one 
observation of the low-resolution image is required but reconstruction requires 
long processing time. We propose techniques to achieve faster operation and/or 
better quality by several modifications of previous techniques. We show some 
typical data as quantitative results also including video in electronic version. 

1   Introduction and Previous Works 

To generate high-resolution images from low-resolution observations there are several 
different approaches but basically three main groups can be defined: 

• Special image filtering and zooming techniques e.g. [4,7,9]. These techniques are 
faster than those of the other two categories. 

• Methods using several observations (i.e. video frames) to generate one enhanced 
frame e.g. [3]. 

• Methods using a learnt statistical database of high-frequency patches to enhance 
images [2,5].  

[8] describes a method where image filtering is combined with example-based 
super-resolution. In our paper with deal with the example-based approach and our 
proposed algorithms can be applied also in the combined mode. 

The main idea of example-based techniques is that the high- and medium-
frequency representation of the patches of an image are statistically not independent 
from each other and adding high-frequency content to the medium frequency part of 
an image can be done on example bases (see Figure 1 for block schemes). In 
implementations of [2,5] each medium-frequency patch is a vector of length 3x7x7 = 
147 (pixels of 3 color channels defined on patches of size 7x7). In [2] this 
dimensionality is reduced to 20 with PCA, and then a KD-tree [1,6] database is built 
up from medium and high-frequency image pairs with a technique to be able to run 
fast searches in it since training data comprises at least 200.000 patches taken from 
several training images. To enhance a low-resolution image for its medium-frequency 
patches high-frequency patches are looked up from the KD-tree. To get visually 
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satisfactory results high-frequency patches need to overlap each other, to assure 
coherence, so choosing the optimal high-frequency patch requires a certain 
optimization. However, due to the very fast convergence of “belief propagation” 
algorithms a fast one-pass energy optimization algorithm is reported by [2,5] to be 
suitable for the task. This optimization considers two energy terms: the first term (E1) 
is responsible to find a similar mid-frequency patch in the database the other (E2) is to 
assure that the high-frequency patch, to be inserted, fits well its neighbors (spatial 
coherence by overlapping):  
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where the following notations are used: LRPQuery: low-resolution query patch; LRPDB: 
low-resolution patch in the database; HRIREC: already reconstructed neighboring edge 
pixels; HRPDB: edge pixels of a high-resolution patch in the database (pair of LRPDB); 

 is a design parameter (typically around 0.1), N is the size of a patch on the 
reconstruction frame. 

In [2] the extension for video sequences can be found. Major differences are 
introduced because the original still image version leads to strong flickering when 
applied to consecutive image frames. To reduce this flickering effect two new energy 
terms are added to the cost function to evaluate a high-frequency patch candidate: one 
additional term increases the probability that at an image location the same high-
frequency patch is chosen as in the previous frame; the other new term considers 
adaptive new dictionaries (set of medium/high-frequency image pairs) over moving 
image areas. Example videos of Bishop’s method can be downloaded from [10]. 

Finding and optimal solution for the reconstruction problem would need a lengthy 
algorithm, which would consider both all neighbors of a patch for local consistency 
and all  data  stored in  the database to find the most  similar  example.  MRF (Markov 

 

Fig. 1. Learning mid- and high-frequency patch pattern pairs (left) and reconstruction of an 
image (right). LPF: Low Pass Filtering. 
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Random Field) solutions with iterative relaxation algorithms can solve the first 
requirement while exhaustive search the second. However, Freeman reported that a 
one-pass, raster scan order repainting of the image is visually satisfactory and spares 
much computation time. Searching for appropriate patterns in the database still 
requires a long time since the database typically stores 200.000-1.000.000 records. To 
reduce retrieval time non-exhaustive (sub-optimal) searching methods are used to 
obtain good approximations. Freeman and Bishop both use KD-tree for indexing the 
learnt patterns. KD-trees arrange the data in a special tree-like structure and thus lead 
to faster query algorithms [1,6]. If we are satisfied with close-to-optimum searches 
then best-branch search can be applied as proposed by Freeman. Best-branch search 
runs down directly to the leaves of the tree always moving to the most probable 
branch direction. Bishop proposes an alternative technique to find the best candidates 
by indexing only the mid image band and so evaluating only E1 during the tree search. 
A so-called candidate list is maintained (based only on E1) during the tree search 
storing only some (typically 100-200) best candidates found. Those branches of the 
tree are not visited which contain patches with larger E1 than the worst element in the 
candidate list already found. Then only the elements of this candidate list are 
evaluated by the fitting of the high-resolution candidate to the already rendered left 
and upper neighbor (E2). This technique shortens the searching time. In our 
implementation we follow Bishop’s solution by maintaining a candidate list and by 
evaluating E2 only on the elements of this list when the tree search is finished. 

2   Enhancements 

2.1   Purpose of Enhancements 

The purpose of our research is to investigate the use and behavior of the previously 
proposed techniques and to make the reconstruction faster and also to develop 
techniques which give better quality at the same cost or result in similar quality at 
lower cost (where cost can be measured by speed and by the database size). 
Unfortunately, neither [2] nor [5] gives objective comparisons with conventional 
interpolation. In this paper we give some objective and subjective comparisons either. 

2.2   Modified Overlapping of Mid Band Images 

Methods proposed in [2,5] all uses overlapping patches of size 7x7 defined on the 
mid-frequency band. In case of color images (with 3 channels) this means data 
vectors of size 7x7x3 to be indexed in the KD-tree data structure. The indexing and 
usage of databases of such high dimension is usually very slow, that is why in [2] 
PCA (Principal Component Analysis) was used to reduce the vector size or in [5] only 
best-branch search is run within respectable time. We tested three types of patches on 
the down-sampled mid band as illustrated on the left of Figure 2 (from left to right) 
and in Table 1: proposal of Freeman and Bishop (Type 1); 1 pixel overlapping in 
three colors (Type 2); 1 pixel overlapping only in gray channel (Type 3); no-
overlapping (Type 4). The advantage of using non-overlapping patches of size 2x2 
defined on the down-sampled mid band is that it leads to much smaller dimension 
(2x2x3 in case of color images) with minimal or no quality loss. Down-sampling 
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reduces the number of components and basically loses no important information since 
the mid-frequency band is the difference of smooth images. Smaller dimension means 
smaller database and faster searching process. Typical data for the effect of different 
patch models are in Table 1. 

Table 1. Typical data for different overlapping to enhance (2x zoom) the Bush (400x400) 
image with a database of 460.000 records 

Type Down-
sampl. 

Overlapping Dimension Size [MB] 
(example) 

Reconstruction 
time [sec] 1 

PSNR 
[dB]2 

1.[2,5 ] No Yes (Color) 3(ch.)x7x7=147 NA NA NA 

2. Yes Yes (Color) 3(ch.)x4x4=48 550+100  571/7; 3700/19 
30.24/29.84; 
30.33/30.08 

3. Yes Yes (Gray) 
3(ch.)x2x2 
+1(ch.)x12=24 

550+50 270/6; 1740/16 
30.35/30.14; 
30.39/30.27 

4. Yes No 3(ch.)x2x2=12 285+27 29/6; 85/14 
30.29/30.2; 
30.3/30.29 

2.3   Transforming Query Blocks for Finding Better Matches and Simultaneous 
Search for Transformed Queries 

A straightforward way to increase the possibility of finding better matches in the 
example database for a query patch without increasing the number of stored samples 
is to rotate and mirror the query patch itself and to search for all these new variations 
either. This step is based on the general fact that the degradation process, from a high-
resolution image into a low-resolution image, is isotropic and acts the same way on 
mirrored and rotated images. That is if we don’t find good examples for a query patch 
we can easily generate 7 new alternatives by rotating and mirroring as shown in 
Figure 2. Naturally, we should apply the inverse geometrical transformation when 
inserting the high-frequency patch. Typical improvement (0.01-0.5dB) depends on the 
database size: greater improvement can be achieved when the database contains less 
data. In the example of Table 1 the improvement ranges from 0.01dB to 0.13dB. 
Basically, looking for transformed queries increases the searching time by 8 times but 
we propose a method to avoid such amount of computation overload with the help of 
maintaining only 1 candidate list for all variations. In our mechanism we take each 
geometrical variation, circulating one after the other in a predefined order, and search 
similar patterns simultaneously: We take Query No.1, start at the root of the KD-tree 
then go one step down and make the decision: which branch to enter first or which 
branch to enter at all. Then we take Query No.2 (transformed version of Query No.1) 
and make also one step from the root on the tree independently of the other query 
patterns. In each step we update the shared candidate list. Since the candidate list 
contains the already found best matches of all 8 queries it makes the different queries 
to race with each other to fill the shared candidate list. The shared list has a strong 
effect in making a decision whether to enter a new branch of the tree or not. As in this 
case 8 variations are racing some variations have much less chance to wander most of 

                                                           
1  Reconstruction (searching) time (on 3.2GHz P4 with 2GB RAM): full/best branch search 

without geometrical transforms and full/best search with 8 transforms. 
2  PSNR is the difference of the original high-resolution and the downscaled then reconstructed 

image. 
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the KD-tree branches since other variations already found better candidates than those 
being on the unexplored branches. Finally, by racing all variations on one shared 
candidate list leads to less movement in the tree saving time considerably: at least 
40% time reduction is experienced in different experiments.  

 

Fig. 2. Different overlapping and 1 non-overlapping sampling of the mid-band (left); 
generation of rotated and mirrored versions of a 2x2 patch (right). Pixel cells are numbered. 

2.4   New Searching Method for Balancing Between Best-Branch Search and Full 
Search 

Since example-based super-resolution techniques are far from real-time operation it is 
a question how to find faster reconstruction methods. Freeman used the best-branch 
search technique, which is far from finding an optimal solution but can be 10-100 
times faster than exhaustive search. We propose a balancing technique, called 
“tolerance search”, to enable a search between exhaustive (optimal but very slow) and 
best-branch (fast but not optimal) modes. By a simple parameter (epsilon) we can 
tune our algorithm to find a solution between the two extreme cases. Epsilon (epsilon 

 0) defines a range around the vector components of the query vector: a hypercube 
around the query. In tolerance search, we investigate the KD-tree branches in the 
following manner: 

1. if there is no intersection of the space spanned by the branch and the space 
defined by the query hypercube then we go to the closer branch; 

2. if there is intersection we enter the branch. 

If epsilon is 0 then we get the fastest best-branch search algorithm but as we increase 
epsilon more and more branches are investigated, due to having more intersections, 
and finally we reach the full search mode. According to our tests we can reach about 
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95% of the quality of exhaustive search with at least 50% speed up with the rough 
setting of epsilon. 

2.5   Filtering of the High-Frequency Band for Reducing Artifacts 

Applying different smoothing kernels on the high-frequency band it is possible to 
balance between strong visual sharpness of the reconstructed image and strict high 
fidelity results. The subjective and objective evaluation of a reconstructed image is 
not always the same. We can generate images which look sharper for the human 
observer but in real contain noise reducing the image quality measured in PSNR, 
especially when the database size is limited around 200.000 patterns or below. 
Moreover, previous works with general databases contain strong artifacts on test 
images [2,5]. We found that these artifacts can be reduced or removed by smoothing 
the high-frequency image band (before reconstruction). By applying different 
smoothing kernels we can balance between stronger visual sharpness and high fidelity 
(see Figure 3 for illustration). Since the high-frequency image band is the difference 
of an image and its smoothed version it contains positive and negative values located 
close to each other. Statistically, by strong smoothing this difference image moves 
toward a zero plain (in extreme case, by applying a very strong smoothing operation, 
we get no resolution enhancement at all since a zero image is to be added). We found 
that slightly smoothing the high-frequency image band can reduce the reconstruction 
error and increases PSNR (between 0.01-0.2dB). Typical smoothing kernels giving 
the best results in PSNR are given below: 

0.05 0.1 0.05    1/9 1/9 1/9 
0.1 0.4 0.1   1/9 1/9 1/9 
0.05 0.1 0.05   1/9 1/9 1/9 

       gives a sharper reconstruction           results in a less sharp image. 

 

 
Fig. 3. (from left to right) Bi-cubic interpolation, SR with stronger high-band smoothing, SR 
with weaker high-band smoothing. While the 3rd image seems a bit sharper it contains artifacts 
around the left ear on the blue background. 
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3   Still and Video Examples 

Due to the limited length of the paper only two test images are given (see Figure 4 
and Figure 5). Please, refer to [11] for electronic test images and video. We applied 
our method also to Bishop’s test video, downloadable from the Internet [10], for 
comparison. Without using “motion prior”, proposed by Bishop, and also without 
knowing the degradation model (no original ground truth is known for us for teaching 
the SR algorithm with other similarly degraded images) we produced visually better 
results with a simpler and more effective algorithm (see [11]). 

 

Fig. 4. Bi-cubic interpolation (29.85dB) and super-resolution enhancement (30.12dB) of half-
sized Boat image 

  

Fig. 5. Part of the Peppers image with bicubic interpolation (left, 31.93dB) and example-based 
SR (right, 32.34dB) 
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4   Conclusion and Future Work 

In this paper we proposed improvements of example-based reconstruction methods. 
Example-based reconstruction can be useful when an image degradation process is 
difficult to be modeled or to be estimated by conventional methods and is known only 
by image examples or when only one observation is available. All proposed 
modifications resulted in improvement of PSNR (0.1-0.5dB), subjective visual quality 
or reconstruction time (typically 50% speedup).  After all, example based methods are 
still too slow for real-time applications. In [8] 36 classes of image primitives were 
used as a first step of pattern classification when looking up high-frequency patterns. 
In our latest experiments we tested pre-classification of patches using the following 
2x2 convolution kernels: 
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corresponding to diagonal edges (4 classes). Horizontal and vertical edges (4 classes 
altogether) are detected if two neighboring diagonal filters respond with similar 
values. If none of the filters responded above a given value then we classified the 
patch into the 9th group otherwise the filters acts as compass filters. This pre-
classification resulted in approximately 40% time speedup (with no quality loss) when 
exhaustive search was carried out, however further research is needed to build up 
statistics of 2x2 image patterns and to get better results. The application of Maximum 
Likelyhood super-resolution for those areas, not having strong responses to edge 
filters, is also promising. 
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Abstract. In this paper, we present an experimental work using a MO-
CAP system and an iterative minimization technique to compute damp-
ing parameters and to measure their contribution for the simulation of
cloth in free fall movement.

Energy damping is an important phenomenon to consider for the 3D
simulation of warp and weft materials, since it has a great influence on
the animation realism.

This phenomenon can be generated either by friction between moving
cloth and air, or by friction between the warp and the weft threads of
the fabric.

The contribution of this paper is to determine viscous parameters of
cloth using precise trajectory data of a real cloth.

1 Introduction

A great deal of work on simulating the motion of cloth, and generally of fabric,
has already been done [1][2][3] and several cloth simulators have been developed
[4][5][6].

The motion of fabric is determined by its resistance to bending, stretching,
shearing, by aerodynamic effects such as friction and collisions [7].

Realism of a simulation is usually used as a criterion to evaluate the accuracy
of simulation and energy damping plays an important role in this search of
realism [8].However, the viscous model parameters used in previously developed
cloth simulators have not been estimated experimentally.

Authors mentioned the use of damping models but do not present the method
to compute these parameters. [8] has developed an algorithm based on per-
ceptually motivated metric, to estimate cloth damping parameters from video.
However, [8] also estimates cloth parameters from video which is a less precise
method than using a MOCAP sytem.

2 Fabric and Damping Model

We model fabric (limited to warp/weft textile materials) using the mass-spring
system developed by Provot [9] and improved by Baraff & Witkin [4].The springs

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 789–798, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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have to be fed with correct parameters to meet the realism that we look for
simulation. We use the Kawabata Evaluation System [10] to get the parameters
to fed the springs with. The damping model used is the Rayleigh damping model.
Its mathematical formula is :

[C] = α[M ] + β[K] (1)

where [C] is the damping matrix (n x n), [M ] is the mass diagonal matrix (n x
n), [K] is the stiffness matrix (n x n), α and β are the damping constants, and
n is the total number of masses used to model the fabric.

However, our mechanical model uses 3 different types of springs. So, the
stiffness matrix [K] is decomposed as the sum of 3 stiffness matrices modeling
bending, shear and tensile :

[K] = [Kb] + [Ksh] + [Kt]

Equation (1) becomes :

[C] = α[M ] + βb[Kb] + βsh[Ksh] + βt[Kt] (2)

The linearity of Rayleigh’s model makes it possible to derive the equation above.
The total damping force is :

Fdamp = [C]V (3)

where V is the velocity vector of all masses.

3 Experimental Setup

The experiment consists in dropping a piece of fabric in free fall and measuring its
trajectory using a motion capture system (MOCAP).(see figure 1) The viscous
parameters are then obtained by the adjustment of the simulated trajectory of
this fabric computed by our simulator, to the real trajectory. A sample of 50cm
by 50cm of a fabric (woven in warp/weft) with reflective round markers stuck on
its both sides is thrown in a free fall and the MOCAP system starts recording
the successive positions of the markers.

4 Damping Parameters Identification

Given the data collected by the MOCAP, it is possible to compute the speed of
each mass i and its acceleration (by finite differences). The fundamental principle
of dynamics (F.P.D) is then written for each mass

∀i,miAi = Fi

where Fi is the sum of external forces applied on mass i.



Determination of Fabric Viscosity Parameters 791

Fig. 1. 12 cameras of the Motion Capture System (MOCAP)

4.1 Global Minimization

We use global minimization in order to compute the best damping parameters
that fit our data.

Let Ferror = [M ]A− [M ]g − Fsprings − Fdamp (4)

where Fsprings is the springs total force on masses. Damping parameters are
obtained by minimizing the norm of Ferror.

Φ(α, βb, βs, βt) = FT
error.Ferror (5)

Φ(α, βb, βs, βt) is a definite positive quadratic form, so we can find its min-
imum by computing its partial derivatives and making them equal to zero. We
obtain a linear system.

M

⎛⎜⎜⎝
α
βb

βs

βt

⎞⎟⎟⎠ = b (6)

We could compute the conditioning number of matrix M to evaluate the solution
stability using :

κ(M) =‖M ‖ . ‖M−1 ‖ (7)
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κ(M) can also be computed as the ratio between the greatest eigenvalue and the
smallest one, since M is symmetric definite positive.

The diagonal terms of M are ”proportional” to the square of the damping
forces corresponding to air viscosity, bending, shear and tension which have se-
quentially values with an order of magnitude greater than the previous one. So,
M is a largely diagonal dominant matrix and its determinant can be approxi-
mated by the product of its diagonal elements. So :

κ(M) ≥
trace(M)

4
4
√
det(M)

- 1 (8)

We notice that the conditioning is very large, so the system is ill-conditioned and
the solution will not be stable.Thus, we propose to compute damping parameters
using iterative minimization.

4.2 Iterative Minimization

The aspect of M suggests us to estimate α first, then βb, βs and finally βt as
the corresponding damping forces increase in this order.

Identification of the Parameter of Viscous Damping with the Air. In
order to make this identification, all springs are omitted. In fact, the viscous
damping force between fabric and air is applied only on masses (springs have a
null weight).

Writing the F.P.D for each mass i, we obtain the following equation :

miAi = mig + F air
damp

where g is the gravity and F air
damp the viscous damping force of the air.

F air
damp = αimiVi

Let F air
error = miAi −mig. We have to compute the α that minimizes

Φ(α) =‖ F air
error − F air

damp ‖2

αi =
(F air

error.Vi)
mi ‖ Vi ‖2

(9)

So, for each mass and for each frame, we obtain an αi. As the textile material is
homogeneous, all αi are equal and do not depend on the speed. So, we compute
αf for each frame as the mean of the αi of this frame and then, we compute α
as the mean of the αf in the viscous part of the movement.

In fact, let’s analyze the example shown in figure 2. The part of the move-
ment between the frames 0 and 40 corresponds to the beginning of the free fall
movement. The speed of the fabric is still very low and the movement of the
fabric is still polluted by the launch (very noisy data).
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Beyond frame 100, the fabric has a chaotic turbulent movement and the
interaction type between the air and the fabric can no longer be modeled using
the Rayleigh model.

So, we compute α as the mean of the αf in the viscous part of the movement,
ie between the frames 40 and 100.

Indeed, in this part of the movement, the fabric has already acquired a min-
imum speed that enables us to measure more reliably a force of viscous friction
with the air (since this force is proportional to the speed of the masses).

In addition, we observe that the movement of the fabric on the video is slowed
down in this part without having turbulent or chaotic movements, and we know
that αf does not depend on the frame, so we have to restrict the computation
to the horizontal part of figure 2.

Identification of the Parameter of Viscous Damping of Bending
Springs. After computing the viscous friction parameter α between the fabric
and the air, we include the bending springs in the simulation. Hence, the model
evolves and allows to take into account forces between two adjacent facets.

A bending spring connects 2 adjacent facets (4 masses) and models the re-
action of fabric to bending. Bending forces are very weak compared to tension
forces or shearing forces, so errors induced by bending springs are much smaller
as well. That is why we have added these springs first to the model (and omit
shearing and tensile springs).

We write the F.P.D for each mass i:

miAi = mig + αmiVi + F b
i + F b

damp(i)

where F b
damp(i) is the viscous damping force of the bending springs.

F b
damp(i) = βb

i (KbV )(i) (10)

where Kb = dF b

dP , F b is the vector of forces produced on masses by the bending
springs and P is the position vector of all masses.
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Let F b(Pi) be the vector of forces produced on mass i by the bending springs.
F b =

∑
i F

b(Pi) and F b(Pi) =
∑

r F
b
r (Pi) where F b

r (Pi) is the vector of forces
produced on mass i by the bending springs r connected to mass i.

F b
r (Pi) =MKaw

r

dθ

dPi

whereMKaw
r is the torque intensity produced by the spring, given by Kawabata

and θ is the angle between the two facets of the bending spring r. So, Kb is a
3n by 3n matrix whose (i, j) bloc (3 by 3) is:

dF b(Pi)
dPj

=
∑

r

dF b
r (Pi)
dPj

(11)

where
dF b

r (Pi)

dPj
= MKaw

r
∂2θ

∂Pi∂Pj
+

∂MKaw
r

∂θ

(
dθ

dPi

)(
dθ

dPj

)T

(12)

Equation (10) shows that the computation of the damping force of a bending
spring on a mass i uses properties of other masses (its neighbors). Thus, we will
directly search for a βb for each frame.

Let F b
error = MA−Mg−αMV −βbKbV −F b where F b is the bending force

vector.
We search for βb that minimizes Φ(β) =‖ F b

error − F b
damp ‖2

βb =
(Ferror.KbV )
‖ KbV ‖2

(13)

Figure 3 shows the βb value found for each frame. βb is computed as before, as
the mean of βb in the viscous part of the movement, ie between frames 40 and
100. (see figure 3)

Identification of the Parameter of Viscous Damping of Shearing
Springs. we use the already determined parameters α and βb to compute the
air and bending springs damping forces. We include the shearing springs in the
fabric model. We write the F.P.D for each mass i:

miAi = mig + αmiVi + F b
i + βb(KbV )(i) + F sh

i + Fdamp(i)

where Fdamp(i)sh is the viscous damping force of the shearing springs.

F sh
damp(i) = βsh

i (KshV )(i) (14)

where Ksh = dF sh

dP , F sh is the vector of forces produced on masses by the shearing
springs and P is the position vector of all masses.

Let F sh(Pi) be the vector of forces produced on mass i by the shearing
springs. F sh =

∑
i F

sh(Pi) and F sh(Pi) =
∑

r F
sh
r (Pi) where F sh

r (Pi) is the
vector of forces produced on mass i by the shearing springs r connected to
mass i.
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F sh
r (Pi) = FKaw

r

ds

dPi

where FKaw
r is the spring force intensity given by Kawabata and s is the stretch

of the spring r. So, Ksh is a 3n by 3n matrix whose (i, j) bloc (3 by 3) is:

dF sh(Pi)
dPj

=
∑

r

dF sh
r (Pi)
dPj

(15)

dF sh
r (Pi)

dPj
= F Kaw

r
∂2s

∂Pi∂Pj
+

∂F Kaw
r

∂s

(
ds

dPi

)(
ds

dPj

)T

(16)

We will use the same approach as that one used for computing βb. We start
by computing a βsh for each frame.

Let F sh
error = F b

error − βshKshV −F sh. We search for the βsh that minimizes
Φ(β) =‖ Ferror − Fdamp ‖2

βsh =
(F sh

error.KshV )
‖ KshV ‖2

(17)
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Fig. 5. Viscous damping parameter of
tensile springs

Figure 4 shows the βsh value found for each frame. We compute βsh as the
mean of βsh in the viscous part of the movement, i.e. between frames 40 and
100.

Identification of the Parameter of Viscous Damping of Tensile Springs.
We use the same approach as that one used for computing βsh

βt =
(F t

error.KtV )
‖ KtV ‖2

(18)

Figure 5 shows the βt value found for each frame. As for the shearing part,
we compute βt as the mean of βt in the viscous part of the movement, i.e.
between frames 40 and 100.
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5 Results

Using the optimized parameters found, we can evaluate the improvement of
the simulation. We can compute the error force without taking into account
damping Fwithout−damp

error at each step of the identification, and compare it with
Fwith−damp

error . All results are summed up in tables 1 and 2 (fabric 11).

5.1 Air Damping

Results shows that the norm of Fwith−damp
error is smaller than the norm of

Fwithout−damp
error , which validates our work. We notice that damping due to viscous

friction with the air allows to decrease the error by about 50% on average for
this example.

5.2 Bending Spring Damping

We use the already determined parameter α. We compute the error force taking
into account the bending spring damping and compare it with the error force
without damping. The difference between the two error forces is very small. So,
we can neglect the bending springs viscous damping while simulating the fabric
movement in order to decrease the simulation time.

5.3 Shearing Spring Damping

On average the Fwith−damp
error norm is smaller than Fwithout−damp

error norm. Shearing
spring viscous damping decreases the error by 3%.

5.4 Tensile Spring Damping

Results show that tensile spring viscous damping decreases the error almost for
each frame between frames 40 and 100.

The error decrease is most important between frames 50 and 90. On average,
tensile spring viscous damping decreases the error by 9%.

5.5 Other Results Summary

The same experiments have been done with other types of fabrics. The results
are summed up in tables 1 and 2.

5.6 Simulation

We have used the damping parameters found for our study fabric, and we have
simulated a free fall movement using a cloth simulator. Then we have compared
the position of the simulated piece of fabric with the real one.

We observe that in the viscous part of the movement, the simulated cloth
follows faithfully the trajectory of the real cloth.
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Table 1. Damping parameters

α βbend βshear βtensile

mean std mean std mean std mean std

fabric 11 -7.0 1.9 -6.8e-3 2.0e-2 -3.1e-4 2.9e-4 -3.9e-6 4.2e-6

fabric 12 -5.9 2.4 -5.2e-3 1.5e-2 -4.0e-4 4.0e-4 -2.7e-6 3.0e-6

fabric 13 -7.2 2.2 -3.1e-4 2.0e-3 -1.8e-4 4.6e-4 -4.0e-6 5.3e-6

fabric 21 -7.2 2.3 -2.0e-4 5.7e-4 -4.3e-4 6.7e-4 -4.6e-7 5.7e-7

fabric 31 -7.4 1.1 -8.4e-4 3.1e-3 -1.1e-3 6.1e-4 -2.2e-8 6.0e-8

Table 2. Error decrease using optimized parameters

α βbend βshear βtensile

error decrease error decrease error decrease error decrease

fabric 11 50% 0.3% 3% 9%

fabric 12 45% 0.3% 1.1% 6%

fabric 13 51% 0.1% 1.4% 3.3%

fabric 21 48% 0% 2.3% 0.5%

fabric 31 72% 0.2% 36% 0.8%

6 Discussion

This paper describes experiments allowing the measurement of damping param-
eters for cloth simulation, in the case of warp and weft materials. We captured
the behavior of pieces of fabric in a free fall movement using a MOCAP sys-
tem. Then an optimization framework was used in order to compute damping
parameters of the fabric. The validation of these measurements was performed
by comparing real and simulated fabric free falls.

1. Air damping: results obtained for the damping parameter α of the fabric
with the air show that we can use an average value equal to −7. When using
an optimal α, we can decrease the error (numerical error made by ignoring
air damping) by 50%.
So, air damping has an important influence on the realism of cloth simula-
tion.

2. Bending damping: results obtained for bending damping parameter βbend

show that bending damping does not decrease the error. So, there is no
difference if we add bending damping or not in the simulation. Thus, we will
ignore bending damping in future cloth simulation which allows some gain
in computing time.

3. Shear and Tensile damping: These parameters model an inner phe-
nomenon in the fabric, so they depend on the mechanical properties of the
fabric. Fabric 11, 12 and 13 in tables 1 and 2 are three experiments with
the same fabric. We notice, that the computed (βshear) and (βtensile) have
almost the same value.
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Shear and tensile damping decrease the error force, so they add some realism
to coth simulation. However, the amount of error decrease depends on the
experiment.
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Abstract. In this paper we present a novel and efficient approach for off-line 
signature verification and identification using Support Vector Machine. The 
global, directional and grid features of the signatures were used. In verification, 
one-against-all strategy is used. The true acceptance rate is 98% and true 
rejection rate is 81%. As the identification of signatures represent a multi-class 
problem, Support Vector Machine’s  one-against-all and one-against-one 
strategies were applied and their performance were compared. Our experiments 
indicate that one-against-one with 97% true recognition rate performs better 
than one-against-all by 3%.  

1   Introduction 

Handwritten signature recognition is a behavioral biometric technique for personal 
identification. Signatures are usually composed of special characters and picture-like 
patterns. In contrast to the unique and stable biometric features such as fingerprint and 
iris, even the sequentially signed signatures of a person can vary. Nevertheless as 
signatures are the primary mechanism both for authentication and authorization in 
legal transactions, the need of efficient automated solutions for signatute recognition 
is important.  

In biometric applications, there are two types of identity recognition methods: 
verification (authentication) and identification. For the signature recognition, 
verificiation is the decision about whether the signature is genuine or forgery and 
identification is finding the owner of the signature. In the decision phase, the forgery 
images can be classified as random, simple and skilled [1]. In random forgeries, the 
signatures are signed without knowledge about the name and genuine signature of the 
owner. Simple forgeries define the signatures where the name of the signature owner 
is known and finally in skilled forgeries the aim is to make an almost exact copy of 
the genuine signature by using an existing sample.  

Signature Recognition systems are categorized as on-line and off-line systems 
according to their applications. In the off-line systems, signature images are obtained 
by a scanner and usually shape characteristics are examined for the recognition. In the 
online systems data are obtained by a digitizing tablet. In addition to shape of the 
signature dynamic features as speed, stroke, pen pressure and signing duration are 
also analyzed.  
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There are several implementations for signature recognition and verification. 
Justino, Bortolozzi and Sabourin proposed an off-line signature verification system 
using Hidden Markov Model [2]. Zhang, Fu and Yan (1998) proposed handwritten 
signature verification system based on Neural ‘Gas’ based Vector Quantization [3]. 
Vélez, Sánchez and Moreno proposed robust off-line signature verification system 
using compression networks and positional cuttings [4]. Arif and Vincent (2003) 
concerned data fusion and its methods for an off-line signature verification problem 
which are Dempster-Shafer evidence theory, Possibility theory and Borda count 
method [5]. Chalechale and Mertins used line segment distribution of sketches for 
Persian signature recognition [6]. Sansone and Vento (2000) increased performance 
of signature verification system by a serial three stage multi-expert system [1].  

In this paper  a novel approach to off-line signature verification and identification 
using Support Vector Machine(SVM) is proposed. Support Vector Machine is a new 
learning method introduced by V.Vapnik and his co-workers [7] [8]. With a set of 
training examples belonging to two classes, Support Vector Machines finds the 
optimal separating hyperplane, which maximizes the minimum distance from either 
class to the hyperplane. Therefore the misclassification error of unseen data is 
minimized. The training points on the border are support vectors. Even with many 
features present, only support vectors are used for classification. In practice, the data 
may not be linearly separable. In this case, data map into a higher dimensional feature 
space by a kernel function and construct an optimal hyperplane in this space [9]. The 
commonly used kernel functions are polynomial, radial basis, and sigmoidal.   

2   Preprocessing 

The operations in preprocessing phase make signatures normalized and ready for 
feature extraction. The preprocessing steps are binarization, noise reduction, width 
normalization and skeletonization. An example of preprocessing is shown in Fig. 2. 

Binarization: The signatures are scanned in gray level. To separate signatures from 
background, p-tile thresholding is applied. The pixels belonging to signature are 
changed to black and background is changed to white.  

Noise Reduction: The  small noises in the image is eliminated by a simple noise 
reduction filter. For each black pixel, if the the number of neighbors in white is more 
than number of neighbors in black, the pixel color is changed to white. 

Width Normalization: Signature size may have interpersonal and intrapersonal 
differences. To compare two signatures their length must be the same. To provide 
this, the signature width is set to a default value and the height is changed with respect 
to height-to-width ratio[10]. 

  

          (a)                                (b)                        (c)                              (d)                 (e) 

Fig. 2. Preprocessing steps: (a) scanning, (b) background elimination, (c) noise reduction, (d) 
width normalization, (e) skeletonization applied signature 
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Skeletonization: The thickness of the signature is irrelevant for recognition. To 
reduce thickness into single pixel thickness and have base shape of the signature, 
Hilditch's skeletoniziation algorithm is applied to the binary image [11].  

3   The Feature Extraction Phase 

The features in this system are global features, mask features and grid features. Global 
features provide information about specific cases of the signature shape. Mask 
features provide information about directions of the lines of the signatures. Grid 
features provide overall signature appearance information. The feature extraction 
steps of an example signature are shown in Fig. 3. 

 

Fig. 3. Feature extraction steps: (a) preprocessed signature and (b) height, (c) maximum 
vertical histogram, (d) maximum horizontal histogram,  (e) horizontal center, (f) vertical center, 
(g) horizontal local maxima numbers,  (h) vertical local maxima numbers, (i) edge points, (j) 
grid features of the signature 

3.1   Global Features 

The following global features were used in the proposed system :  1) signature area, 
2) signature height-to-width ratio, 3) maximum horizontal projection and maximum 
vertical projection, 4) horizontal and vertical center of the signature, 5) local maxima 
numbers of the signature 6) edge point numbers of the signature.  

Signature area is the number of black pixels belonging to the signature. Height to 
width ratios of signatures belonging to the same person are approximately equal. The 
horizontal projection of the row with the highest value defines the maximum 
horizontal projection and analogously the vertical projection of the column with the 
highest value gives the maximum vertical projection. Horizontal and vertical centers 
of the signature are calculated using the formulas in[10]. The number of local maxima 
of the vertical and horizontal projections correspond to local maxima numbers of the 
signature. Finally the number of signature pixels having only one neighboring pixel in 
a 3x3 neihborhood matrix give the edge point numbers of the signature.  

3.2   Mask Features 

Mask features provide information about directions of the lines in the signatures. The 
angles of the signatures have interpersonal differences. The 8  direction masks used in 
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this system are given in Figure 4. Each mask is applied all around the signatures and 
the number of 3x3 parts of the signature, which are same as the mask, is calculated.   

1 0 0  0 0 1  0 1 0  0 0 0 
0 1 0  0 1 0  0 1 0  1 1 1 
0 0 1  1 0 0  0 1 0  0 0 0 

 

0 0 1  1 0 0  1 0 1  0 0 0 

0 1 0  0 1 0  0 1 0  0 1 0 

0 0 1  1 0 0  0 0 0  1 0 1 

Fig. 4. The direction masks used in this system 

3.3   Grid Features 

Grid features are used for finding the densities of signature parts [10].  In this system, 
60 grid features are used. Each signature is divided into 60 equal parts and the image 
area in each divided part is calculated.  

4   Constructing the SVM Classifiers 

Off-line signature recognition systems are generally preffered for authentication. In 
this paper, both verifiaction and identification with SVM are discussed.  

4.1   Verification 

Verification is a two class problem. One class is for person to ask for authentication 
and the other class is for the rest of the people. To implement this we used one-
against-all approach of SVM. The features are labeled as +1 for the one class and -1 
for the other class. For n different person in signature database, n different SVM 
classifiers are needed. In authentication, query image is only compared to the claimed 
SVM classifier. If the comparing result is positive, the authentication is successful. 

In Figure 5, A1 shows the positive class which consists of the signatures of a 
person, A2 shows the signatures of the other persons in the signature database.  

 
 
 
 
 
 

Fig. 5. An example verification 

 

person 1 vs rest person x vs rest ..... ..... person n vs rest 
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4.2   Identification 

Signature identification is a multi-class problem. The query image must be checked 
with the all of the signatures in the database. We examined two different algorithms, 
one-against-all and one-agaist-one (pairwise) for multiclass recognition in SVM.  

For identification with one-against-rest approach, the training strategy of  the SVM 
classifier is the same as in the verification system. For n different classes, each classifier 
trained with one class vs the other classes in the database.  But in testing phase, the 
query signature is compared with all of the classifiers instead of the claimed one. The 
positive class which has the greatest vote is the owner of the signature. 

In one-against-one approach, each SVM classifier is constructed by a pair of 
persons signature. If there are n classes for n people, n*(n-1)/2 SVM classifiers are 
needed. Suppose there are 8 classes as in Fig. 7., the query image is first compared 
with 1-2, 3-4, 5-6 and 7-8 SVM classifiers. For each comparison the class with 
positive result is the winner. In the second stage the query image is compared with 
these winner class pairs. In this case, the winners are 1,4,5 and 7. At the last step there 
is only one positive class which is the owner of the queried signature. 

 
 
 
 
 
 

Fig. 6. An example of the one-against-all identification 
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Fig. 7. An example of the one-against-one identification method used in this system 

person 1 vs. rest person x vs. rest ..... ..... person n vs. rest 
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6   Experimental Results 

To train and test the proposed signature verification and identification system, a 
signature database consisting of 1120 signature from 70  distinct person is 
constructed.  Signatures from 70 person were used to train the system, where each of 
these 40 persons signed 8 genuine signatures whereas  the other 30 persons were 
asked to imitate and forge the genuine signatures. For each person 4 forgery 
signatures were signed, thus the training set consisted of 480 signatures. For each 
person 16 test sihnatures are used and totally (16 x 40) 640 test signatures are 
used..Each example has 9 global, 8 mask and 60 grid features which are normalized to 
[0,1] interval.  

Learning in one-against-all approach, we constructed 40 SVM classifiers using 40 
persons from the signature database.  In each classifier,  we choose 8 genuine 
signature for the positive class.  For the negative class we used 78 (39x2) signatures 
of other persons and 4 skilled signatures of the person in the positive class.    

Learning in one-against–one approach, only genuine signatures were used. For 
each classifier 8 positive and 8 negative example were used.  

Linear, polynomial, sigmoid and radial basis functions were experimented as SVM 
kernel functions. The best result was obtained with the radial basis function. 

Table 1 shows the verification performance of  proposed system. The possible 
cases in verification are true acceptation (TA), false rejection (FR), true rejection 
(TR), false acceptation (FA).  Table 2 shows the identification performance of the 
system.  One-against-one approach outperforms one-against-all approach.  

Table 1. Verification results of proposed system 

TAR FRR TRR FAR 
0.98 0.02 0.89 0.11 

Table 2. Comparing the recognition results 

 
True Recognition 

Ratio 
True Recognition 

Number 
False Recognition 

Ratio 

False 
Recognition 

Number 
one-against-one 0.98 627 0.02 13 
one-against-all 0.95 608 0.05 32 

7   Conclusion 

This paper proposes a novel off-line signature verification and identification approach 
using Support Vector Machine. The performance of the system is promising. In 
verification, the system is trained by one-against-all strategy whereas identification  
both one-against-all and one-against-one strategies are used  and their performances 
are compared. In a database consisting n persons, one-against-all approach needs n 
classifiers, while one-against-one approach needs n*(n-1)/2 classifiers for training.  
Although training in one-against-one approach is  slower, the recognition 
performance  is better than one-against-all.  
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Abstract. This paper proposed a novel scheme for combined contour
extraction and deformable object tracking. In order to track fast moving
objects, we first add the motion estimation term to the energy function of
the conventional snake. Then, a hierarchical approach using wavelet anal-
ysis is applied. Although the proposed wavelet-based method can track
objects with large motion, the proposed method requires less computa-
tional load than the conventional one. By using a training procedure, the
proposed method overcomes occlusion problems and local minima due to
strong edges in the background. The proposed algorithm has been tested
for various images including a sequence of human motion to demonstrate
the improved performance of object tracking.

1 Introduction

Recently, many researchers have developed various algorithms for non-rigid ob-
ject tracking. Among various approaches, active contour models known as snakes,
have been extensively used as an edge-based segmentation method. Snake is an
active contour model for representing image contours. An energy functional of
the snake is defined as

E =
∫

[α(s)Econtinuity + β(s)Ecurvature + γ(s)Eimage]ds, (1)

where the parameters α, β and γ control the relative influence of the correspond-
ing energy term. The energy function is computed at vi, which represents the
i-th point of the contour (called snaxel), and its eight neighbors. Two points
adjacent to vi on the contour are used in computing the continuity constraints.
The Eimage continuity force Econtinuity = |d−|vi−vi−1|| tends to distribute the
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Korea Research Foundation Grant funded by Korean Government (MOEHRD)(R08-
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points on the contour evenly spaced, where d represents the average distance
between points. The curvature force Ecurvature = |vi−1 − 2vi − vi+1|2 gives a
reasonable, quick estimate of the curvature. The location having the smallest
Eimage is chosen as the new position of vi. At the end of each iteration, the
curvature at each point on the new contour is determined. The snake algorithm
performs iteration until when a certain percentage of the snaxels do not change.
At the end of each iteration, the curvature at each point on the new contour is
determined.

After the original snake model [1] was proposed, a greedy algorithm that
searches local neighborhoods instead of performing global optimization was de-
veloped to reduce the computational complexity of the snake model [2]. Gen-
erally, the active contour model for object tracking suffers from three major
problems: (i) it may fail when the motion between frames is large because the
energy function of the snake model does not include the motion information of
objects, (ii) it is vulnerable to glitches such as occlusion with other objects or
strong edges in the background, and (iii) it relatively take a long time to con-
verge because of the iterative minimization process. Therefore, it is not easy to
track deformable objects in real-time.

In order to improve the performance of the snake, we propose a novel scheme
that combines contour extraction and tracking. Compared with conventional
snakes, the proposed algorithm has three technical improvements: (i) We add the
motion estimation term to the energy minimization process of the conventional
snake for improving the performance of fast moving object tracking. (ii) The
hierarchical approach using wavelet analysis is adapted for tracking fast moving
objects and low computational complexity. (iii) By using a training procedure,
the proposed method overcomes occlusion problems and local minima due to
strong edges in the background.

The rest of this paper is organized as follows. In section 2, we propose a mod-
ified snake model for object tracking with motion estimation. Section 3 describes
model fitting using the PCA algorithm. In section 4, we propose the hierarchical
approach based on wavelet transform. Finally, we present the experiment results
and conclusions in sections 5 and 6, respectively.

2 Modified Snake Model with Motion Estimation

In the conventional snake-based tracking, accurate, stable tracking cannot be
ensured when the size of object motion between two consecutive frames is large.
Therefore, the energy function of the conventional snake algorithm should be
modified by considering inter-frame information such as motion. The modified
method finds a node (x, y) in the image at t = t1 which is most similar to the
snaxel (x′, y′) in the image at t = t1. Using correlation between two blocks,
minimum distance measure is obtained as

Emotion =
n∑

i=−n

n∑
i=−n

[I(i + x′, j + y′, t2)− I(i + x, j + y, t1)]2, (2)
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where n represents the block size, I the intensity, (x′, y′) the position of the next
image at t = t2, and (x, y) the position of the previous image at t = t1.

Adding the minimum distance measure, given in (2), to the original snake en-
ergy function in (1) significantly improves the accuracy and stability of tracking.
More specifically the distance measure term enables smooth, robust tracking of
fast moving object and environment. The modified snake energy function con-
tains the addition motion energy term as

E =
∫

[α(s)Econtinuity + β(s)Ecurvature + γ(s)Eimage + λ(s)Emotion]ds,

(3)
where constraint λ can be chosen depending on the existence of the temporally
differential image, which can be calculated as

Dt1,t2(x, y) =

{
1, if I(x, y, t1)− I(x, y, t2) > T

0, otherwise
. (4)

Dt1,t2 represents the existence of object’s movement. If we add a motion term
to the snake energy function, where no object movement exist, the corresponding
snake’s node may fall into the local minima in the direction of motion to the
new positions of the target object in the next image. So, the constraint λ should
be set to zero when Dt1,t2(x, y) is zero.

3 Hierarchical Approach Using Wavelet Transform

In this section, we deal with the hierarchical extension of the active contour
model using wavelet transform. The discrete wavelet transform used in this paper
is identical to a hierarchical subband system, where the subbands are logarithmi-
cally spaced in frequency and represent an octave-band decomposition. To begin
the decomposition, the image is divided into four subbands and critically subsam-
pled. Each coefficient represents a spatial area corresponding to 0 < |ω| < π/2,
whereas the high frequencies represent the band from π/2 < |ω| < π. The four
subbands arise from separable application of vertical, horizontal and diagonal
filters. The subbands labeled LH1, HL1, HH1 represent the finest scale wavelet
coefficients. To obtain the next coarser scale of wavelet coefficients, the subband
LL1 is further decomposed and critically subsampled as shown in Fig. 1. The
process continues until the pre-specified final scale is reached. In order to achieve
both hierarchical search and the use of the gradient direction information, we
propose a hierarchical subband system using the wavelet transform. The input
image frame is decomposed by the Daubechies 9/7 wavelet transform. Energy of
each wavelet transform coefficients are used as image force in the snake energy
function. The idea of the hierarchical method is to calculate the snake in a coarse
image and then the result of the snake is used as an initial contour to fit the
finer snake. This fine-tuning process is repeated until the highest level is reached.
This method is a process that tracks the best solution from coarse to finer in a
scale-space representation of an image. The search stated at the lowest resolution
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Fig. 1. A two-scale wavelet decomposition: Each coefficient in the subbands LL2, LH2,

HL2, HH2 represents a spatial area corresponding to approximately a 4 × 4 area of

the original picture

is then initiated one level below using the search output of the previous level.
Such coarse-to-fine updates repeat until the original image level is reached. In
order to perform the search in each level, we should be equipped with informa-
tion about the gray level image in each level. This requires the application of
each wavelet subband coefficient to image force in the snake’s energy function
according to each snaxel’s orientation. For example, if the normal orientation of
a snaxel is in the horizontal direction in level n, we perform the snake calculation
with the wavelet coefficient of the HLn subband. In the same manner, vertical
and diagonal snaxels’ are fit in LHn, and HHn, respectively, as shown in Fig. 1.

Fig. 2. Flow chart of the wavelet-based active contour model for object tracking

The criterion to change the search level in wavelet decomposition is as follows.
Move to a lower level when a certain percentage of the snaxels do not change
considerably, for example when 95 % of the snaxels move only within the central
50 % of the search mask size.



810 J. Shin, H. Ki, and J. Paik

4 Model Fitting by the PCA Algorithm

There are two major problems in the snake-based tracking. First, the existence of
strong edges outside the target object results in tracking failure because tracking
error is propagated to the consecutive frame. Second problem is occlusions, which
is one of the main reasons to lose the object being tracked. To solve the occlusion
problem, we applied model fitting procedure to the snake algorithm as shown in
Fig. 3.

Fig. 3. Flow chart of a proposed PCA-based snake fitting algorithm

4.1 Model Training by PCA Algorithm

Suppose we have m shapes in the training set. A set of n snake’s nodes, which is
a member of the training set, represents the shape of an object as a 2D outline.
Instead of using all nodes in a member of the training set, the PCA technique
helps to model the shape of the object using a reduced number of parameters.
Suppose there are m members in the training set and xi, i = 1, ...m, represents
each member. Given a set of feature points, the input shape can be modeled by
using PCA as summarized in [5,6].

4.2 Model Fitting

The best set of parameters that represents the optimal location and the shape
of the object can be obtained by matching the shape of models in the training
set to the real object in the image. The matching is performed by minimizing
the error function as

E = (y −Mx)T W (y −Mx), (5)
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where x represents the coordinate of the model, y represents the coordinate of
the real object. W is a diagonal matrix whose diagonal elements are the weight
for each landmark points. M is a matrix for the geometrical transform which
consists of rotation θ, transition t, and scaling factor S. The weight decides the
distance between the previous and new feature points.

The geometrical transformation matrix for a point (x0, y0)T can be repre-
sented as

M

[
x0

y0

]
= s

[
cos θ sin θ
− sin θ cos θ

] [
x0

y0

]
+
[
tx
ty

]
. (6)

Once the set of geometrical parameters (θ, t, s) is determined, the projection
of y to the frame of model parameters is given as

xp = M−1y. (7)

5 Experiment Results

In this section, we present some experimental results to demonstrate the perfor-
mance of the proposed algorithm for object tracking. We used a SONY 3-CCD
DCR-TRV900 video camera to capture the set of input experimental images
with the size of 320× 240 pixels. A discrete Snake contour consists of 42 nodes,
and 56 shapes were used as the training set for PCA. Motion estimation in the
modified snake algorithm is based on block matching algorithm, with size 7× 7
and search range 15× 15.

The contour of the first frame is manually located near the boundary of the
object as shown in Fig. 4(a). Figs. 4(b) and 4(b) respectively show modeling
result of the conventional algorithm and the proposed algorithm for the first
sequence. We can see that conventional snake algorithm has local minima in
the region of the pedestrian’s leg and the head part due to strong edges on the
background. On the other hand, the proposed algorithm avoids local minima
in tracking non-rigid object due to the successive model fitting by the PCA
algorithm. Experimental results for the successive frames are shown in Fig. 5.
In case of the conventional snake, contour error by strong edge in background
accumulates every frame because error correction and motion information are
not considered. However, the proposed snake algorithm successively tracks fast
moving objects because of the additional motion estimation term in the snake
energy function and model fitting by the PCA algorithm.

Fig. 6 shows the plot of total snake energy as a function of the number of
iterations. Conventional snakes need a number of iteration for convergence as
shown in Fig. 6(a). However, in the proposed snake, the number of iterations
significantly decreased at finer scales. Therefore, the proposed wavelet-based
hierarchical approach reduces the computations by decreased iteration number.

Another important reason to use model fitting by the PCA algorithm for
tracking is to follow the shape of an occluded object. In Fig. 7, the proposed
tracking scheme showed almost perfect reconstruction in occluded area. One
property of the training-based method is that only small shape variations are
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(a) (b) (c)

Fig. 4. Modeling results of the first frame; (a) initial contour, (b) conventional snake

algorithm, and (c) the proposed algorithm

(a) (b) (c) (d) (e) (f)

Fig. 5. Tracking results for the successive frames using the conventional snake ((a)

15th, (b) 31st, and (c) 52nd frames) and the proposed snake ((d) 15th, (e) 31st, and

(f) 52nd frames)

(a) (b)

Fig. 6. The plot of Esnake as a function of iteration; (a) the conventional snake and

(b) the proposed snake
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(a) (b) (c)

Fig. 7. Tracking results with a partially occluded object

allowed. Thus, the shape will not be distorted significantly although some parts
of the tracked object are occluded.

6 Conclusions

We have proposed a framework for a wavelet-based active contour model. This
framework has two main parts: wavelet-based hierarchical active contour model
and model fitting by the PCA algorithm. The modified active contour model
enables robust tracking of fast moving objects. Model fitting by the PCA algo-
rithm can track the object’s shape more robustly under occlusion. Experimental
results using video sequences show that the proposed method successfully tracks
deformable objects with large motion and partial occlusions.
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Abstract. Reliable tracking has been an active research field in the computer 
vision. This paper presents a probabilistic face tracking method that uses 
multiple ingredients and integrates tracking from multiple cameras to increase 
reliability and overcome the occlusion cases. Color and edge ingredients are 
fused using Bayesian Network and context factors are used to represent the 
significance of each modality in fusion. We extend our multi-modal tracking 
method to multi-camera environments where it is possible to track the face of 
interest well even though the faces are severely occluded or lost due to handoff 
in some camera views. Desirable tracking results are obtained when compared 
to those of other tracking method.  

1   Introduction 

Face tracking is of interest for a variety of applications such as video surveillance and 
monitoring systems. The tracking system should cope with the changing object 
appearances and occlusions associated with both static and dynamic occluding 
objects. To increase reliability, it is desirable to fuse multiple cues because no single 
cue is generally robust enough to deal with complex environments. To overcome the 
occlusion cases, it is essential to combine tracking results from multiple overlapping 
field of view cameras. 

Various researchers have attempted to develop face tracking methods. Birchfield 
[1] used intensity gradient around ellipse’s perimeter and color information in 
ellipse’s interior for elliptical head tracking. Toyama and Horvitz [2] proposed 
Bayesian network based multi-modal fusion method. Color, motion and background 
subtraction modalities are fused together for real-time head tracking. Liu et al. [3] 
suggests a multi-modal face tracking method using Bayesian network. It integrates 
color, edge and face appearance likelihood models into Bayesian networks for robust 
tracking. Nummiaro et al. [4] proposed a face tracking system in multi-camera 
environments. They showed that best view would be selected automatically for a 
virtual classroom application.  

In this paper, we reformulate particle filtering into flexible Bayesian network for 
multi-modal fusion. Bayesian networks provide such a framework which enable 
multi-modal fusion to be considered in a consistent and probabilistic manner. We also 
extend this scheme in multiple overlapping field of view camera environments. The 
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novelty of the proposed approach mainly lies in its adaptation of complex 
environments and occlusions. 

The paper is organized as follows. Section 2 discusses multi-modal face tracking in 
multi-camera environments using Bayesian network. Section 3 presents learning 
method for context factors. Section 4 shows experimental results of our proposed 
method. 

2   Multi-modal Face Tracking in Multi-camera Environments 

2.1   Multi-camera Environments 

To solve occlusion problems in face tracking, we use multiple cameras. Each camera 
has limited field of views (FOV) and the FOVs are overlapped. Fig. 1 shows multiple 
camera environments. In this paper, we use three cameras (left, center, right). 

If a face is detected in one camera, we try to find corresponding object in other 
cameras using epipolar geometry. We compute epipolar lines between cameras and 
corresponding object’s position is estimated along the epipolar lines. 

Epipolar Constraint

Epipolar Constraint

 

Fig. 1. Multi-camera environments 

2.2   Bayesian Modality Fusion 

In this paper, we present a particle filter-based face tracker that fuses two cues such as 
color and edge. We use color distributions because they achieve robustness against 
non-rigidity, rotation and partial occlusion. Since the shape of objects to be tracked is 
known a priori in face tracker, edge information is also important. Fig. 2 shows color 
and edge information. 

Bayesian network allows a probabilistic way to determine a target object state in 
each frame by fusing modalities such as the prior model of reference state, color and 
edge likelihoods. Fig. 3 shows the Bayesian network structure in multi-camera 
environments. The target object candidates (Ot1 ~ Otn) are generated from previous 
object state Ot-1. Observations Ct and Et represent color and edge likelihoods, 
respectively. 
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The posterior probability for each object candidate is evaluated through the 
integration of multiple cues using Bayesian Network. In other words, the posterior 
probability of the candidate is evaluated as 

),,|( 1−tt OECOP                                                     (1) 

where Ot and Ot-1 are the target object state  and previous object state, respectively. C 
and E are the color and edge measurements, respectively. The posterior probability is 
interpreted as 

)|()|()|(),,|( 11 −− ∝ tttttt OOPOEPOCPOECOP              (2) 

(a) (b)  

Fig. 2. Color and edge information.(a) color, (b) edge. 

2.3   Likelihood Models 

The color likelihood )|(log tOCP  is defined as 
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where )(u
ip  is the ith object candidate’s color distribution and )(uq  is color 

distribution of target object. 
We use the edge likelihood as the one proposed by Nishihara [5]. The edge 

likelihood is computed as 

                              ⋅=
jp

t jgjn
N

OEP )()(
1

)|(log                          (4) 

where 
pNiin ,...,1)}({ =  is the unit vector normal to the ellipse (object) at pixel j and 

pNiig ,...,1)}({ =  is the intensity gradient at perimeter pixel j of the ellipse, and Np is 

the number of pixels on the perimeter of an ellipse.  
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1
tO 2

tO
Epipolar
Constraint

Camera #1 Camera #2  

Fig. 3. Bayesian Networks in Multi-camera Environments 

2.4   Estimation of Target Object 

The prior model for target object state is computed from )|( 1−tt OOP  where Ot-1 is 

the previous object state. It describes how the state evolves over time. In this paper, 
we only consider a first-order Markov process. Here, we define sample state vector O 
as  

                                            },,,,{ kllbaO ba=                                           (5) 

where a, b designate the location of the ellipse, la , lb the length of the half axes and k 
the corresponding scale change. The dynamic model can be represented as  

                                              11 −− += ttt rAOO                                               (6) 

where A defines the deterministic component of the model and rt-1 is a multivariate 
Gaussian random variables.  

The significance of each modality is not the same in every frame. When the tracked 
object’s color distribution is similar to the background color distribution, we increase 
the importance weight of edge information. Otherwise, it is desirable to increase the 
importance weight of color information. So, we use the context factor to deal with the 
significance of each modality. 

Given the context factors cfe and cfc, the candidate evaluation is computed as 
follows: 

                              
),|(),|(             
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As in [3], we assumed that Eq. (5) can be written as 
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The log posterior is 
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Our proposed tracker is based on the particle filtering method [6]. In other words, it 
selects the samples from the sample distribution of the previous frame, and predicts 
new sample positions in the current frame. After that, it measures the observation 
weights of the predicted samples. The weights are computed from color and edge 
likelihoods like Eq.(3) and Eq.(4), respectively. The estimated target object state is 
computed by 
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3   Learning Context Factors 

We classify the context of the frame into four classes as shown in Fig. 4. To classify 
frames into four classes, we use a cascade Support Vector Machines (SVM). To 
classify the frames into four classes, we compute another measures such as edge 
density (ED) and uniformity of edge density (UED) because the edge likelihood 
cannot show whether the background is cluttered or not. To measure it, we compute 
the edge density. The edge density is computed as      

                                      
•

=
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yxE
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ED
,

|),(|
1

                                  (9) 

where M is  the maximum intensity value, Ns is the number of pixels in search area, 
and E(x,y) is the edge intensity value at (x,y). 

If the edge density is low but distributed only on a small area, the value of edge 
context factor decreases because edge information is not reliable. So, in the case of 
low edge density, it is desirable to compute the uniformity of edge density. To 
compute the uniformity of edge density in the search window, we divide the search 
window into 4 sub-windows. So, we define another measure UED to calculate the 
uniformity of edge density. It is computed as 
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where Ek(x,y) is the maximum edge density among four sub-windows, Nbk is the 
number of pixels in the maximum edge density sub-window. To detect color 
similarity between object and background, we compute color similarity as 

                                              =
u

uubqCS
α
1

                                          (11) 

where α represents normalizing factor, qu is the object’s color distribution, bu is the 
color distribution of background. 
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Fig. 4. Context Classification 

At the first stage in Fig. 4, edge likelihood, UED and edge density are used to 
determine whether the frame is cluttered or not. Then, we classify the cluttered and 
non-cluttered frames into two cases using color similarity and color likelihood: 
similar color background frame and non-similar color background color. The training 
samples that are used in learning cascade SVMs are collected from the various 
sequences. From classified frames, we can learn context factors for each case using 
Perceptron algorithm. Four sets of context factors are obtained. The learned context 
factor is important in computing log posterior like Eq. (7). 

4    Experimental Results 

We made several experiments in a variety of environments to show the robustness of 
our proposed method. The camera topology is shown in Fig. 1. Three cameras (left, 
center, and right) have limited overlapping FOVs. For face tracking, we detect faces 
from each camera input using Viola and John’s method [7]. Color and edge 
likelihoods for face object are computed. To learn context factors, we first classified 
frames into four cases as stated in Section 3 using cascade SVM. The SVM is trained 
with 5 sequences and tested with other sequences. When the kernel function is radial 
basis function, the best classified accuracy like 97.2 is obtained. Then, context factors 
are learned from the classified frames. In the multi-camera environments, if a face is 
detected in one camera, we try to find corresponding object in other cameras using 
epipolar geometry. We compute epipolar lines between cameras and corresponding 
object’s position is estimated along the epipolar lines. If more than one face is 
detected in more than one camera, we determine whether these faces are the same 
face or not by intersecting epipolar lines.  

Two sequences are used. One sequence is that one person is sitting in the chair and 
turn around in his office. He occludes his face by waving his hands. In Fig. 5, our 
proposed face tracking shows good performance in comparison with particle filter 
method regardless of waving hands in front of face because our method uses multi-
modal features. In left camera, virtual face position is estimated from the intersection 
of epipolar lines during occlusion. Another sequence is that one person’s face is 
occluded by another person. The result of proposed tracker is promising as shown in 
Fig. 6. The error result is shown in Fig. 7.  
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Fig. 5. Experimental Result of Sequence 1. (a)proposed, (b) particle filter. 

 

Fig. 6. Experimental Result of sequence 2. (a) proposed, (b) particle-filter. 

 

Fig. 7. Error Result of sequence 2 (proposed method- solid line, particle filter-dotted line) 
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5   Conclusions 

In this paper, we proposed a multi-modal face tracking method that integrates color 
and edge cues in multiple camera environments. The proposed method used a 
Bayesian network that embeds context factors. The incorporation of context factors 
into the tracker enables the tracker to adapt itself to different situations. We have 
presented results on realistic scenarios to show the validity of the proposed approach. 
Compared with other algorithms, our proposed system shows a better and more robust 
tracking performance. 
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Abstract. The Images and video are currently predominantly handled in com-
pressed form. Block-based compression standards are by far the most wide-
spread. It is thus important to devise information processing methods operating 
directly in compressed domain. In this paper we investigate this possibility on 
the example of simple facial feature extraction method based on the H.264 AC 
Transformed blocks. According to our experiments, most horizontal informa-
tion of face images is mainly distributed over some key features. After applying 
block transform and quantization to the face images, such significant informa-
tion become compact and obvious. Therefore, by evaluating the energy of the 
specific coefficients which are representing the horizontal information, we can 
locate the key features on the face. The approach is tested on FERET database 
of face images and good results is provided despite its simplicity. 

1   Introduction 

Facial features detection is nowadays a classical area with a huge amount of 
knowledge which has been collected over the years. It is defined as the process of 
locating specific points or contours in a given facial image. Human face and its 
feature detection is much significant in various applications as human face 
identification, virtual human face synthesis, and MPEG-4 based human face model 
coding [1]. Many research works have been conducted over this topic. [2], [3], [4] 

The features detection is a highly overdimensioned problem which is seen easily if 
one would try to consider images as matrices in NxN space. Only extremely limited 
sets of such matrices carry useful information. Therefore, it is advisable to extract the 
key features by highly effective preprocessing to limit the amount of input informa-
tion in the first place.  

Currently great majority of pictures and video are available in compressed form 
with compression based on block transform. Compression has a goal of minimizing 
the amount of information while preserving perceptual properties. This goal is fully 
compatible with and desirable for pattern recognition and feature extraction. The 
problem is – how to utilize the efficiency from compression to benefit the feature 
extraction task, in order to achieve best extraction results? Indeed one could think that 
elimination of perceptually redundant information should be very beneficial for the 
efficiency of feature extraction process. In addition, this topic is also related to our 
parallel research about extracting the feature information from DCT domain [5]. 
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In this paper, a novel features detection method based on information extracted 
from compressed domain is proposed. First, the 4x4 transform from H.264 standard 
[6] is utilized to remove the redundancy. Second, the quantization and luminance 
normalization are performed to further control the precision of the information 
extraction. Third, the most significant coefficients are selected and thresholded in 
specific bin positions. Finally, some detection procedures are performed with some 
prior geographical knowledge about the features on the human faces. The example 
results are shown based on some face images from the well-known public face 
recognition database – FERET [7]. The proposed methods can achieve a good result 
with low computation complexity. 

2   4X4 H.264 AC Transform and Quantization 

The transform we used in this research is introduced from the H.264 standard. This 
transform is a 4x4 integer transform, which is originally used to encode the 
coefficients of inter blocks. Overall, this transform performs in a similar way with the 
widely-used DCT. They can both make the information compact, which greatly 
facilitates the information extraction. Different from DCT, the integer transform used 
here allows rapid process.  

The first uppermost coefficient after transform is called DC and it corresponds to 
average light intensity level of a block. Other coefficients are called AC coefficients; 
they correspond to components of different frequencies. The AC coefficients provide 
us some useful information about the texture detail of this block. Such information is 
essential for the following feature detection.  

The forward transform matrix of H264 AC Transform is Bf and the inverse trans-
form matrix is Bi. 
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For simplicity, here we removed the ‘1/2’ in the matrix. The 4x4 pixel block P is 
forward transformed to block H using (1), and block R is subsequently reconstructed 
from H using (2). The ‘T’ means linear algebraic transpose here. 

T
ff BPBH ××=  (1) 

i
T
i BHBR ××=  (2) 

We perform 4x4 H.264 block transforms over more than thousand different blocks, 
and the results are further averaged. After applying the transform, one could see from 
Fig. 1(a) that the main energy is distributed around the DC coefficient. Since there are 
big differences between the values of different coefficients, the natural logarithm is 
used here to express the data.  
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Fig. 1. (a) Natural logarithm of averaged distribution of energy after transform (b) Natural 
logarithm of averaged distribution of energy after quantization (QF=100) 

However, from the feature detection point of view, using the whole AC 
information seems to be redundant. Therefore, a quantization factor (QF) is used to 
scale down each coefficient during the subsequent quantization process.  As the 
energy is mostly presented at the upper-left corner, quantization can make most of the 
high-frequency coefficients to zero. This is shown by Fig. 1(b). After the 
quantization, the remaining high-frequency coefficients, which are non-zero, indicate 
the existence of a strong edge in this block area. Through this way, the redundant data 
is removed and the important data is preserved.  

Furthermore, coefficients in different bin positions are representing different 
directional information. Given a 4x4 transformed block: 

1. The AC coefficient in first line are corresponding to vertical information 
2. The AC coefficient in first column are corresponding to horizontal information 
3. The AC coefficient in diagonal direction are corresponding to diagonal information 

 

Fig. 2. Directional information represented by different coefficient 
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Fig. 3. Coefficient Distribution Map (QF=100) 

This can be known from Fig. 3, which shows the energy distribution of these 15 
AC coefficients (when the quantization factor is 100), from two example face images. 
We call it Coefficient Distribution Map (CDM). After quantization, all the 
coefficients are binarized into zero and non-zero. Non-zero points are the white points 
in Fig.3.  As we can see, after quantization, some coefficients are mostly distributed 
and compact around key features, such as mouth, eyes and nose. A good example is 
the 12th coefficient according to the order in Fig. 2. Based on above observation; one 
may think to detect the facial features according to the distribution of these 
coefficients.  

3   Luminance Normalization 

The overall luminance condition has direct effect on the final detection performance. 
Same quantization will produce different coefficients from a scene taken at low lumi-
nance than from the same scene at higher luminance. To eliminate this impact, we 
normalize the luminance of images by rescaling the coefficients according to the 
average luminance level. The average luminance level is calculated based on the DC 
coefficients of the transformed blocks. 

Assume there are N transformed blocks in an image j, and the DC value for each 
block is denoted by DCi(j) , 1 i N. From these DC values, we can calculate the mean 
DC value for this image 

)(
1

)(
1

jDC
N

jDC
N

i
imean

=

=  
(3) 

Next, in similar way the average luminance DCall  of all images in a database is cal-
culated based on (4). The ratio of luminance rescaling for image j is calculated 
through: 
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)( jDC

DC
R

mean

all=  
(4) 

Next the, AC coefficients of a block are rescaled by 

MjNiRACAC jiji ≤≤≤≤×= 1,1,,,  (5) 

After normalization, all the coefficients are then quantized by the QF 

MjNi
QF

AC
AC ji

ji ≤≤≤≤= 1,1,,
,  

(6) 

We found that system performance is not sensitive to the exact value of rescaling 
so whenever images are of perceptually tolerable quality (not strongly under- or over-
exposed) the rescaling works well. 

4   Feature Detection 

In order to detect these key features, a small block is moved on the binarized images 
and the sum of non-zero coefficients is calculated and displayed as a histogram. After 
that, the peak of histograms is detected which indicate the position of features. In 
order to keep the most important information, while removing the irrelevant 
information, the coefficients are binarized according to a threshold. On the other 
hand, different coefficients can be used to generate the CDM. Through our test, we 
found that the horizontal information is more robust than vertical information for 
detection, and the 12th AC coefficient is more robust than others. 

 
             (a)                (b)                 (c)                 (d)                (e)                        (f) 

Fig. 4. Feature Detection Process 

Fig. 4 is an example of using the 12th AC coefficient to detect the feature.  

1. (b) is obtained by applying a larger threshold to the 12th AC coefficients. This 
threshold is set to 2/3 of the maximum value of 12th AC coefficients. The number 
of non-zero coefficients (after threshold) are summed, first horizontally, then verti-
cally, as shown in (a) and (b). The rough locations of eyes are detected.  
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2. We evaluate the small block around these rough locations, using another threshold 
to keep the blocks with darkest DC values. The black color shows the locations of 
eyeballs. Finally, the location parameters are obtained from these black points. 
This process is shown in (c) 

3. A rough location between nose and mouth can be obtained from the locations of 
left and right eye. They are forming an equilateral triangle. We will search the area 
arounding this point. The width of this searching window is the horizontal distance 
between the eyes. This area is shown in (d) and (e). 

4. (e) is also obtained from the 12th AC coefficient, but the threshold is set to 1. This 
is because the eye areas usually contain the largest horizontal energy, while the 
nose and mouth areas contain smaller energy.  

5. A similar way to step 1 is performed over (e) and the peaks of histograms indicate 
the vertical positions of nose and mouth. Presuming that the position of nose and 
mouth is in the middle of eyes, we can calculate the horizontal positions of them.  

Above detection method is tested over 360 images from a public face recognition 
database – FERET. These images are the first 360 images of the FERET database, 
without glasses. They have different size, different light condition and other proper-
ties. They are quantized at QF=100. The correct detection rate is 91.4%. Some exam-
ple results are shown as in Fig. 5. 

Of course, since such detection is based on blocks, it is less precise than the detec-
tion result from pixel-domain. However, for some application which only require less 
precision, our method is still a good choice. It can also serve as a pre-process step for 
pixel-based detection. Furthermore, one should also notice that no color information 
is used here. One may also noticed that some faces with dense beard or exaggerated 
expression may are likely to have poor detection results, as well as the strongly ro-
tated faces (e.g., Fig.5 (i)). 

 
                 (a)              (b)                  (c)                (d)                  (e)                (f) 

 
                (g)               (h)                  (i)                 (j)                  (k)                (l) 

Fig. 5. Some Example Detection Results 

5   Conclusions 

In this paper, it is shown that facial feature detection using the Coefficients Distribu-
tion Map in compressed domain can provide a good performance. The 4x4 H.264 AC 
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block transform is used to extract the energy which is representing the key features. 
Some prior geographical knowledge about the features on the human faces is used to 
evaluate the coefficients, in order to detect the positions of key features. Such method 
is carried directly in compressed-domain, which requires low computation. Further-
more, no color information is used in this process. In the future works, this method is 
expected to be used. Such structural information, combined with statistical informa-
tion, is expected to provide good performance in the future works of face image re-
trieval in compressed-domain. 
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Abstract. This paper presents a framework to deal with occlusions when 
detecting people for the tracking in the image sequences of a stationary 
surveillance video camera. Unlike the cases of most existing techniques, people 
are in low-resolution and the detected foreground images are noisy. As the 
small sizes of target people make it difficult to build statistical shape or motion 
models, techniques proposed use simple features of the bounding boxes of 
target people such as position and size. Each foreground region in a bounding 
box is identified in independent, partially occluded, or completely occluded 
state, and the state is updated during tracking. Proposed technique is tested with 
an experiment of counting the number of pedestrians in a scene. 

1   Introduction 

Video surveillance (VS) is currently attracting a lot of attention in the computer vision 
community. In VS, people are important targets but difficult to process due to non-
rigid shape and motion. Detection, tracking, and activity analysis are three key issues 
in the research of VS targeting people. Collins et al [1] claimed that the activity 
analysis is the most important area of future research. However, activity analysis is 
heavily depends on the other two processes and there are a number of difficult 
problems in practical people detection and tracking. The most obvious problem that is 
often encountered is occlusion. Occlusions occur by fixed objects in a scene such as 
trees and construction. This situation can be predicted by registering the fixed objects 
in advance. Occlusions among people in motion, however, are difficult to be tackled. 

In recent years, plenty of new techniques have been proposed for detecting and 
tracking people in video image sequences. Pfinder [2] is a real-time system for 
tracking a single indoor person. Body parts of a person are represented by blobs 
characterized by position and color. The system proposed by Khan and Shah [3] also 
used position and color cues for indoor tracking. But, unlike Pfinder, multiple people 
could be detected and tracked dealing with occlusions among them. When occlusions 
occur and a person is no longer visible, the statistics of pixels belong to the person 
occluded are retained while statistics of other pixels are updated. Upon re-appearance 
of the occluded region, pixels belong to the region get back to their original identity 
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as it maximizes the likelihood if the position and color of the region has not changed 
significantly during the occlusion. W4 [4] was developed to track body parts of 
multiple people in the outdoor scenes of monocular grayscale image sequences. It 
used a combination of shape analysis and template matching for the tracking. W4 is 
capable of tracking people who re-appear after occlusion using two-step matching, 
view-based first and, if it fails, intensity-based. The indoor people tracking system of 
Sindhu and Morris [5] finds occlusion when multiple people are predicted to be 
located within the same segmented region in the new frame. When de-occlusion event 
occurs, the color values are compared for restoring the identification. All techniques 
discussed so far use relatively high-resolution images. However, if a VS camera is 
fixed at a far distance from the scene monitored to cover a large area, the image 
resolution is low and detailed information of the target people is not available. Sizes 
of detected target people are too small to build a reliable statistical model and many of 
above techniques are difficult to be applied.  

In this paper, we address a framework to deal with occlusions among people in 
motion. The scope includes detection and tracking issues but does not reach activity 
recognition [6]. The video images are taken in far distance and the image resolution is 
quite low. Thus people detected as foreground are noisy and their sizes are small. Fig 
1 shows an example. A minimum bounding box is found for each independent target 
detected. When two people are in partial occlusion and in the same box, they are seg-
mented into each independent person by analyzing the shape of the foreground in the 
box. Each box is then assumed in the one of three states, Independent Person (IP), 
Partial Occlusion (PO), and Complete Occlusion (CO). The transition of states is 
identified by monitoring the features of bounding boxes.  

 

Fig. 1. Target people in a low-resolution image: (a) Original image, (b) Foreground detection 

2   Segmentation of Partially Occluded People by Draping  

When two or more people are in close distance, even if they are not actually overlap 
one another, a partial occlusion occurs in the detected foreground as shown in Fig. 
2(a) and (b). In [5], when people merged into the same bounding box, the box was 
given all the labels of constituent people but segmentation of the box was not tried. In 
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[3], the partially occluded people were segmented by using a pixel-level model of sta-
tistics. On the other hand, people images in this paper are in low-resolution and the 
number of pixels belong to people detected are not large enough to build a statistical 
model.  

Our technique for the vertical segmentation of people bounded in a box is based on 
the following assumption and observation: 

- People in the scene are in roughly upright postures. This assumption is acceptable in 
most practical situations if the camera angles are set properly and people walk in 
normal way,  

- The upper parts (head and torso) of a person have less variation than the lower parts 
(legs) in image sequences. This observation hints that processing with the informa-
tion given from upper body parts may be more reliable than that from lower parts.  

For a foreground binary image region within a bounding box, top pixels of col-
umns are connected resulting in a line – we name it ‘draping line’. As shown in Fig. 
2(c), the draping line is different from contour. The foreground region is vertically 
segmented at the local minima of the draping line as shown in Fig. 2(d).  

 

Fig. 2. Dividing a group of people into individuals by draping: (a) Original image, (b) Detected 
binary foreground, (c) Draping line, (d) Division at the local minima of the draping line 

3   Analysis of Occlusions 

One of following three states is assigned to each region detected as foreground and 
Fig. 3 shows examples:  

- IP (Independent Person) if a single person is believed within a bounding box, 
- PO (Partial Occlusion) if two or more people are believed within a bounding box but 

they can be separated by a method like that using draping line, 
- CO (Complete Occlusion) if two or more people are believed within a bounding box 

but they cannot be separated. This occurs not only when actually one is behind the 
other but also when people are in close distance one another in very low-resolution 
images.  

In our program, features of each region  inside  a  bounding  box of current  image 
frame is registered in the variables of C_rect while those of a region of the previous 
image frame is registered in the variables of P_rect like 
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Fig. 3. States assigned to bounding boxes: (a) IP, (b) PO, (c) CO 

P_rect or C_rect  

.coor = box coordinates 

.connect = 1 if connected to an adjacent box 

.state = IP, PO, or CO 

.pat = identity of parents box for tracking 

.num = estimated number of people within the box  

For the initial image frame, a box is assigned to IP or PO depending on the value of 
C_rect.connect. Specifically, C_rect.state=IP if C_rect.connect=0, otherwise 
C_rect.state=PO. From the second frame, three cases are considered. First, if the num-
ber of boxes in current image frame is the same to that of previous image frame, the 
state assignment is done by the procedure of Fig. 4. Boxes in the previous image 
frame and current image frame is paired by comparing the positions and widths of 
boxes. Heights of boxes are used only for finding boxes wrongly drawn. In the figure, 
#(⋅) is used to mean ‘the number of (⋅)’. If fewer boxes are found in current image 
frame than those of previous image frame, the procedure of Fig. 5 is used for state as-
signment. To detect the merging of two boxes, i.e. complete occlusion, the width of a 
box in current image frame, CW, and that in previous image frame, PW, are compared 
to a threshold th_M like Eq. (1). If more boxes are found in current frame, the proce-
dure of Fig. 6 is used. The re-appearance of a box is detected by Eq. (2) for a thresh-
old th_D. 

2_ ( ) [ ( ) ( 1) ( )] _fn mrg i PW i PW i CW i th M= + + − <  (1) 

where 1 #( _ )i C rect≤ ≤ , 

2_ ( ) [ ( ) ( ) ( 1)] _fn div i PW i CW i CW i th D= − − + <  
(2) 

where 1 #( _ )i P rect≤ ≤ . The threshold _th D is initially set to a small value and in-
creased until the number of total segmented regions equals to (#(C_rect)-#(P_rect)).  
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Fig. 4. Identifying the states of regions when the numbers of regions in previous and current 
image frames are the same  

––

 

Fig. 5. Identifying the states of regions when the number of regions of current image frames is 
less than that of previous image frame 
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––

 

Fig. 6. Identifying the states of regions when the number of regions of current image frame is 
more than that of previous image frame 

4   Experiments 

We applied the proposed framework to the experiment of counting people in a scene. 
Finding the number of pedestrians passing an outdoor area is often required for traffic 
monitoring but currently done manually in most cases. A computer vision technique 
was proposed for automating this task using Quasi-Topological Codes (QTC) [7] but 
hard to be used for the low-resolution people images of this paper.  

We processed video image sequences in the size of 240 × 320 pixels. First, the 
foreground image was detected by the adaptive background subtraction technique 
proposed by Fujiyoshi and Lipton [8]. Then, each detected region is bounded by a 
box. If a box is smaller than a predefined size, it is regarded as a wrong segmentation 
and ignored. The threshold we used in the experiment was 19 × 6 pixels. For the re-
maining boxes of foreground regions after size checking, the occlusion analysis 
framework proposed was applied to the tracking of the state transitions of people re-
gions. Experiments were done for four video sequences and the results are summa-
rized in Table 1. Basic processes such as foreground detection, draping, and drawing 
bounding boxes were done on-line and the results were stored. The interval between 
processed image frames was thus rather long and irregular depending particularly on 
the number of people in the image frame. The occlusion analysis and people counting 
were done later with the stored images and data. In all cases shown in the table, we 
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could get correct counting. Note that, in the video of 5 people, 47 of 49 image frames 
contained complete occlusions but we could get a correct counting. Fig. 7 shows ex-
ample images of this case. A group of people walked away and they occluded se-
verely in smaller resolution in  later  image  frames.  However,  our  program kept the 
correct counting resulted from initial two frames. 

Table 1. Results of experimental people counting 

Real #(people) 2 3 4 5 
Result of counting 2 3 4 5 

#(Total image frames) 38 45 32 49 
#(Excessively 
segmented images) 

8 0 1 0 

#(Insufficiently 
segmented images) 

0 13 12 47 
Segmentation 
using  draping 
lines #(Exactly 

segmented images) 30 32 19 2 

Maximum 33×16 51×29 42×21 47×22 Size of  
a person Minimum 19×7 22×7 20×7 19×6 

[PO(14)  PO(20)  PO(9)  PO(15)  PO(13)]: count=5

[CO(20)  PO(8)  PO(10)  PO(10)]: count=5

[CO(17)  CO(14)  PO(10)]: count=5

...
...

[PO(14)  PO(20)  PO(9)  PO(15)  PO(13)]: count=5

[CO(20)  PO(8)  PO(10)  PO(10)]: count=5

[CO(17)  CO(14)  PO(10)]: count=5

...
...

 

Fig. 7. Counting people by tracking state transition of occlusions. The number in parenthesis 
indicates the width of each bounding box. 

5   Conclusions 

A framework has been presented for dealing with the occlusion problem in people 
tracking. Work of this paper is different from most existing techniques in three impor-
tant aspects: First, target people are in low-resolution. It is thus difficult to build sta-
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tistical shape and motion models. Detected binary foreground image is quite noisy. 
Secondly, occlusions are identified and tracked in image sequences using simple fea-
tures of the bounding boxes of detected targets such as position and width. Thirdly, a 
draping line is used as a simple and quick way to partition a box of people in partial 
occlusion.  

We tested the proposed framework in a people counting experiment, which is often 
needed for traffic monitoring. The image resolution of people was too low to use any 
existing techniques. The proposed system, however, could successfully track the tran-
sitions of occlusion states in image sequences and counted the exact number of people 
in the scene. We believe that this technique can be useful for many practical VS cam-
era applications where the image resolution is sacrificed for a large field of view.  
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Abstract. In this paper, we present an easy method for automatic 3D garment 
pre-positioning. Given a digital 3D mannequin and a set of 2D patterns, the 
problem consists in sewing automatically the patterns around the mannequin 
and give an initial position of the garment that the mannequin has to wear. Our 
method is based upon the use of a figurine. A figurine of a virtual garment, 
which is always present in the garment design, is associated to the 2D patterns 
used for producing the garment. This figurine is a 2D drawing which gives the 
flavor and the style of the future garment. The figurine is the key element of the 
technique presented in this paper. It can be stored in a 2D CAD file with the 2D 
patterns of garments or in a database. In this method, we use two figurines, cor-
responding to the front and the back view of the future garment and a standard 
silhouette. The designer just needs to work once on the garment construction to 
allow the automatic pre-positioning. Once the designer has specified the links 
between the 2D garments and the figurine, he has just to take some simple ac-
tions on the figurine to complete the pre-positioning. Our method provides a 
mapping algorithm from the standard silhouette to a silhouette of a future client, 
which is the starting point of the pre-positioning. When finalized the automatic 
pre-positioning will help the designer to see directly the garment he invented on 
a “real” body. 

1   Introduction  

In most recent years, many papers in the area of virtual garment design have been 
published, from simplified cloth models, [5], [11], to more accurate ones, [2], [4], 
some surveys and comparisons of recent researches are available in [7], [9]. Virtual 
garment is normally represented by its two-dimensional patterns. It can be used for 
sewing machines in cloth industry (CAD systems), or produced by a fashion designer. 
More information is needed to be added to the 2D patterns in order to produce gar-
ments. The automatic garment pre-positioning is a very difficult and challenging 
problem as we have to sew the different pieces correctly and the garment must be 
worn by a virtual human. This is equivalent to the problem we are faced to every 
morning when we have to dress up. Some approaches for dressmaking have been 
proposed. We could think of sewing the garment together and form a virtual garment, 
and then put it onto the virtual human by simulating the real human behavior, but that 
seems to be very difficult. Another approach has been introduced in the literature [1], 
[8], [10]. In this approach, 2D patterns are positioned by hand around the body and 
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then, sewing is performed automatically. Depending on how the garments are treated 
in the pre-positioning, we can classify them into three main methods: 2D manipula-
tion, 3D manipulation and hybrid: 2D-3D manipulation.  

The method in [8] uses 2D manipulation. The authors place the 2D patterns 
directly onto the front plane or the back plane. The sewing lines are adjusted to tell to 
the simulator how to sew these 2D patterns together. In their method, the user has to 
make sure that the sewing lines do not pass through the body. This technique is 
normally found in animation systems, where clothes are very simple and the precision 
of the garments is not required ([3], [6]), else it can take a long computing time with a 
complex cloth. In [10], they propose a 3D manipulation method. The patterns are 
manipulated interactively. Some points are clipped on both the patterns and their 
destination locations on the puppet and bending directions are specified on the 
patterns in order to allow them to be wrapped around the puppet body. The user 
stitches each garment interactively directly onto the respective positions on the human 
body. This method is normally used for applications when the cloth is very special, 
However it is not easy to use and has the drawback to be interactive. The technique 
described in [1] seems to be the most advanced. Only one point is specified 
interactively on the front pattern and in the location where it has to appear on the 
mannequin. The front pattern is positioned in front of the mannequin first and then 
connected patterns are sewed apart from it and are simultaneously bent around the 
body with no lateral deformations. This method works well with different  types of 
clothes, but for some complex clothes, it becomes difficult to keep the patterns around 
the body due to the “rigidity” constraint. 

We want to develop a virtual dressing system which can be used easily by a normal 
user who can try garments using some very simple actions. In this paper, we will 
present a 2D manipulation method which will be coupled in the future to a 3D map-
ping technique allowing to reach the final pre-positioning required. 

The main idea of the proposed technique is to assign an interaction part to the 
designer, but to produce a completely automatic pre-positioning for the client. 
Nowadays, designers already manipulate 2D patterns numerically and use a figurine 
which  produces a 2D outlook of the future garment. The new contribution of the 
designer will be to assign interactively all 2D patterns to they final position in the 
figurine. It we be a simple 2D manipulation as the designer knows perfectly the 
design of the garment and this interaction will be done only once, for a given size, for 
each type of garment. Then, the designer will have to place the figurine on a generic 
2D silhouette to indicate how the garment will be placed on the generic 2D silhouette. 
When this operation will be done, the result will be transferred to a data base for a 
final automatic 3D pre-positioning. 

Our system starts with a generic 2D silhouette model that is to be dressed. The two 
figurines (showing the front view and the back view) of the future garment are either 
provided by the garment designer or will be selected from a database. The use of the 
generic silhouette and the figurines allows the designer to specify naturally in 2D how the 
various patterns will appear on the front and the back of the puppet when the garment 
will be on the puppet. The figurines have to be  placed over the generic silhouette. After 
specifying the sewing informations on the figurines interactively, the designer will have 
finished his work which will be done only once for a specific garment. We have also to 
create an easy-to-use interaction software to provide to the designer. The remaining task 
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will consist in deriving these informations when we replace the generic silhouette by the 
silhouette of a future client. This task will have to be automatic and will give the future 
front view and back view of the client wearing the garment.  

In this article, we introduce our data definitions in section 2. In section 3, we de-
scribe how we do the transformation between a generic and a real silhouette model. 
Finally, we present our results in section 4 where we detail the designer work on the 
generic silhouette and we show how the equivalent one will be automatically per-
formed on the silhouette of a future client before discussing some of our future works. 

2   Preliminaries 

2.1   Human Model  

Our system starts with a 3D human model. An acceptable model has two extended 
arms. The angles between these extended arms and the body should be large enough 
so that there will be no collision when the garment will be added  to the silhouette. In 
our work, we start with a normalized 3D human model which will serve as a generic 
silhouette for the designer. 

 

Fig. 1. 3D Human model 

2.2   Garments 

Fig. 2a presents a real very simple garment imported from a DXF file. It contains 
some holes corresponding to  garment darts. In order to simplify the digitization, we  
 

 

 

 

 

Fig. 2. Cloth garments (a,b). Front and back figurines (c,d) and base points defining their  
contours. 

a)b) c) d) 
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need to suppress the holes. This can be done by simply creating two virtual cuts (we 
do not see them) from the hole to the garment bound. The line cutting direction is 
selected by the user (fig. 2b). 

The sewing information of the 2D patterns is provided by the designer, who will 
specify how two patterns are sewn together (sewing type, direction …). 

2.3   The Figurine 

2D figurines (front and back) are used as key element in our method (fig. 2c, 2d). The 
figurines should be provided with the garments or be selected from a database.  
In general, some clothes can use the same figurine, if they are from the same kind and 
design type (shirt, trousers or skirt of various sizes…). 

2.4   Figurine Manipulation 

First, the figurines are placed over the generic silhouette. They can be edited to al-
ways be “larger” than the silhouette. Next, a mapping between the garment patterns 
and the points in the figurine is done to initiate the pre-positioning. 
 

 
 
 
 
 
 
 

 

 

Fig. 3. Designer interface of Virtual Garment Pre-positioning program, a) editing a patron;  
b) editing a figurine 

We developed software to do the pre-positioning. Fig 3a shows how the program 
works. We can see a list of 2D patterns in the left panel. Each 2D pattern has its own 
name (number by default or named by the designer). 

The 2D pattern selected by the user is shown in work space. After an editing stage 
(correcting the contour, dividing 2D pattern to create new virtual 2D patterns …), the 
2D pattern will be assigned to the correspond one in the figurine (front or/and back). 

In addition, we set a specific color for a segment type (green for a virtual, red for a 
real and purple for a free segment). Fig 3b shows how to edit a figurine to adapt it to 
the generic silhouette. In this case, the segments of the figurine are marked as 
assigned (yellow). The designer moves segments or/and control points to perform this 
task. 

a) b)
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3   2D Pre-positioning 

3.1   The Silhouette 

Firstly, the input client model is projected into the front plane to obtain its silhouette. 
Since the figurines are placed over a generic silhouette, we need an automatic trans-
formation to place the figurines over the real silhouette as well. 

3.2   Silhouette Mapping 

A figurine can be represented by some closed splines shapes. The figurine can be 
modified by changing the control points of its spline representation. On the other 
hand, the figurine may be created by a set of control points and knots. We define the 
base points {Pi} (i=1...N (see figure 2c, 2d).  

Editing a figurine is to change the position of its base points {Pi} in order to match 
it to the generic silhouette. The input human models come with different poses and 
sizes e.g. from fat to thin, tall to short. Our transformations have to ensure that the 
base points of the real and standard silhouette correspond. 

To perform the task, we use a local region mapping. A silhouette is divided into 
basic regions, so that corresponding parts are consistent and stable. 
 

 

Fig. 4. Regions (in red) on the standard silhouette are mapped on the real one (in green) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Triangular mapping 
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There are some feature points in the silhouette that our system can identify auto-
matically. These feature points can be located at e.g. the hip, waist …etc. The local 
regions are created from the feature points. A region is normally a quadrangle (fig. 4). 
There are many ways to do these mappings. The simplest way is to map triangles to 
triangles. However, for our application, using triangle mapping is not enough. 

Let us consider the region ABCD which contains two triangles ABD and CBD that 
are used for mapping (fig. 5). When the point A is transformed to the point A’, all the 
points in ADB will be mapped to A’DB. But a point M on the triangle CBD will not 
be transformed correctly onto the surface of the region ABCD, which is not what we 
want. To overcome this problem, we choose to use quadrangle mappings 

For quadrangle mappings, we want to find for any point M in the quadrangle 
ABCD its correspond M' in the quadrangle A’B’C’D’. We may represent our map-
ping using projective plane transformation. 
In matrix form: 
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or x’ = Hx, where H is 3x3 non-singular homogeneous matrix. 
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Each point of ABCD and A’B’C’D’ generates two linear equations from (2) and (3): 

x’(h31x + h32y + h33) = h11x + h12y + h13 

y’(h31x + h32y + h33) = h21x + h22y + h23 
(4) 

Therefore, H can be determined by the equation: 
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(5) 

The equation can be rewritten in the form: TH = 0 and we can solve it using any 
least-square minimization method such as the SVD [12 ]. 

3.3   Figurine Mapping Algorithm 

From the former section, we dispose of the mapping from each quadrangle of the 
generic silhouette to its corresponding one of the real client silhouette. 
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For each point pi of the generic figurine P we compute what is the quadrangle of 
the generic silhouette which is the closest to pi, then we transform pi into its corre-
sponding one p’i by using the mapping applied to this quadrangle. We denote by Gs 
the set of quadrangles of the generic silhouette and by Gr, its corresponding one on 
the client silhouette. 

The algorithm is summarized as follows: 

 
for each p

i
 ∈ P do 

    min_distance  MAX_DISTANCE ; 
    for each r

j
 ∈ G

S
 do 

       if  p
i  
in r

j 
  then 

min_id  j ; 
break ; 

       end if ;  
       distance  d(p

i
, r

j
) ; 

       if distance < min_distance then 
min_distance  distance ; 
min_id  j ; 

end if   
    end for  

/* find mapped point p’
i
 of p

i
 on real region      

r
min_id

∈G
r
 corresponding to the g

min_id
∈G

s
 */ 

 
    p’

i  
= map( p

i
, r

min_id
 , g

min_id 
) ; 

end for  
return P’ ; 
 

3.4   Collisions 

A point p’i of the obtained client figurine may be located inside the client silhouette 
which produces a collision. This occurs when the angles between the arms and the  
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Collision processing by adding regions. M: initial point (may be a figurine location). 
M’: collision point  M’’: correct point by adding regions between the arms and the body. 
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body or the legs are too small, especially when there is a large shape and size differ-
ences between the generic and actual silhouette.  

When two regions share a common edge, collision cannot happen. In order to 
avoid collision, we create additional regions for the silhouette models (fig.6):  be-
tween the arms and body, and between the legs. 

4   Implementation and Results 

Our garment pre-positioning algorithm is implemented in C++ on a Windows envi-
ronment. Computing is done in real-time. 

Fig. 7 shows the result of using quadrangle mapping from the generic to the real sil-
houette. The green curve represents the generic silhouette, the red curve comes From the 
points mapped onto the real silhouette and the blue  curves show the differences  between 

 
 
 
 
 
 
 
 
 
 
 
 

a)                                             b) 

Fig. 7. Mapping result a) Standard silhouette. b) Real silhouette. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        Fig. 8. Various examples of the mapping with different poses 
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the mapped points and the real ones. From this result, we can show that quadrangle 
mapping can be used. 

Fig. 8 shows some examples of our final garment pre-position results. With 
different poses, the figurine is automatically positioned onto the model. 

5   Conclusion and Future Work 

In this paper, we presented a method for pre-positioning of a virtual garment. It is 
simple to implement and easy to use. All the computations are done in 2D so the 
program runs very quickly. We have still to transform the figurine from the real 
silhouette to the final 3D reconstruction around the 3D mannequin. It has the potential 
to be used for e-commerce or also in fashion software, where a user-friendly 
interaction can be furnished for garment virtual prototyping. 

Our future work will focus on the transformation of the figurine onto the real 3D 
human puppet which is the continuation of the mapping step from generic silhouette 
to a specific one. The virtual garments will be digitized and placed close around the 
real model. This will reduce the computation time for our garment simulator. 
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Abstract. We propose a real-time procedure for performing topology
modifications on finite element models of objects with linear elastic be-
haviour. For a 3D tetrahedral model, it requires the inversion of a 6 × 6
matrix and the weighted multiplication of a thin matrix with its trans-
pose. We exemplify with an implementation in our surgical simulator,
where we impose the tight computational constraints of haptic feedback.
Our experimental results show that we can obtain response times of un-
der one second for objects represented by tetrahedral meshes with more
than 2000 nodes.

1 Introduction

Haptic Virtual Environments are complex, multisensory simulators, which en-
hance the virtual experience by adding a feeling of touch to the visual interaction.
The addition of tactile component comes with computational challenges of its
own: typically, haptic devices need to be updated at rates in the range of 300
to over 1000 Hz, otherwise they might provide degraded mechanical experience,
such as bumpy motion or unpleasant vibrations.

The realism of the interaction with virtual objects depends on the type of
models used to describe them. Non-physical models are simpler representations
and therefore easier to update in real-time, but provide less realistic simulations.
Physically-based models are more complex representations, allowing for simula-
tions of increased realism, but involve more sophisticated computation. They are
generally derived directly from the physical equations governing the evolution of
the modelled system. The degree of fidelity needed in a simulation is generally
dependent on the application. If a high level of fidelity is necessary – like in
a surgical simulator to be used for training medical students and practitioners
– the design has to address the challenge of a critically tight balance imposed
by real-time response and computational complexity. In such situations, Finite
Element (FE) models can provide an optimal solution.

Bro-Nielsen and Cotin [2] have described the explicit construction of the
FE models based on tetrahedral meshes with linear elasticity and used them
in the context of surgical simulation. Typically, a static FE deformable model
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is described by a stiffness matrix K, which encompasses the geometrical and
physical properties of the object.

The interaction is governed by the equilibrium relation between forces and
displacements: Ku = f , where u and f are the vectors of displacements and
forces at the (discrete) set of nodes of the object. In early versions of simulators,
this equation was rewritten as K−1f = u and used for driving the simulation of
the deformation, based on the assumption that the field of external forces acting
on the object was known.

With the arrival of haptic devices, it was noticed that none of the above forms
for the equilibrium equation can be used to drive an accurate, realistic simula-
tion. In most realistic simulation scenarios, neither the forces acting on touched
nodes, nor the global vector of deformations can be known. A good paradigm of
interaction is to drive the simulation by the values of the imposed displacements
on the touched nodes [5], [7]. From these displacements, both the forces on the
touched nodes (needed for haptic feedback) and the other displacements on the
non-touched nodes (needed for the global deformation) can be found. The ba-
sic idea is to block-partition the inverse stiffness matrix K−1, according to the
touched and untouched nodes, and rewrite the equilibrium equation as:

K−1f =
[

A B
C D

] [
ft

0

]
=
[

ut

ug

]
= u. (1)

Because K−1 is positive definite, the central matrix A is always non-singular, so
one finds ft = A−1ut. If the size of the touched area is small, which is typically
the case, this is a low cost operation. Then, knowing the force vector, one easily
finds the displacement vector needed to update the deformation.

The above mechanism is accurate (within the limits of linear elasticity) and
efficient. The main issue is that it requires the inverse of the stiffness matrix,
K−1. For objects represented by larger meshes (of more than 1000 nodes) the
inversion of the matrix K, even using fast iterative methods, requires execution
times of minutes or even hours [3]. This is not a problem as long as it is a once-
only operation: if no topology change is required, the inverse of the stiffness
matrix can be precalculated. However, when topology change is needed, like
simulating cuts for a surgical procedure, any algorithm relying on the inversion
of the stiffness matrix is unsuitable for real-time simulation. A paradigm shift
towards a dynamical system can avoid the calculation of the inverse matrix
altogether, but introduces new problems related to the stability of real-time
numerical integration [6].

A better alternative to direct computation of the inverse stiffness matrix is
to update the already recalculated inverse matrix K−1. The core idea, based on
the Sherman-Morrison-Woodbury formula [4], is that if the matrix K is modified
by a “small” amount such that it remains nonsingular, then a lower complexity
modification is needed to update the inverse matrix. Bro-Nielsen has suggested
such an update based on a non-symmetric decomposition of the local stiffness
matrix to be removed, and the inversion of a 12 × 12 matrix [1]. Update times
for larger meshes (1000 or more nodes) using this method were around 1 minute.
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Based on a similar formulation, Zhong et al. [8] have proposed a fast method of
cumulative topology update. However, their method requires the external forces
as primary input for updating the deformation and cannot be used in the context
of haptic feedback.

In this paper, we present a topology update procedure based on a symmetric
decomposition of local stiffness matrices and requiring the inversion of a 6 × 6
matrix. We show that the procedure can achieve acceptable update times (under
one second) for meshes of sizes in the range of 2000 nodes.

2 The Update Procedure

We consider the case of a 3D tetrahedral mesh of n nodes, made up of tetrahedra
indexed by an index spanning the set I. The local stiffness matrix corresponding
to tetrahedron i is:

Ki = viB
T
i CiBi (2)

where vi is the volume of the tetrahedron i, Bi is a 6 × 12 matrix depending
only on the geometry of the tetrahedron, and Ci is a 6 × 6 matrix describing
the physical attributes of the tetrahedron. For details on the construction of the
matrix Bi, see [2]. The matrix Ci is defined as:

Ci =

⎡⎢⎢⎢⎢⎢⎢⎣
λi + 2μi λi λi 0 0 0

λi λi + 2μi λi 0 0 0
λi λi λi + 2μi 0 0 0
0 0 0 μi 0 0
0 0 0 0 μi 0
0 0 0 0 0 μi

⎤⎥⎥⎥⎥⎥⎥⎦ (3)

where λi and μi are the two local Lamé parameters.
A global 3n× 3n stiffness matrix K ′ for an object is obtained by adding the

globalised versions of the local stiffness matrices:

K ′ =
∑
i∈I

GT
i KiGi =

∑
i∈I

K̄i. (4)

We have denoted by K̄i the global version of matrix Ki. Here Gi is a “globali-
sation” matrix of size 12 × 3n: Gi(u, v) = 1 if the coordinate corresponding to
position u in the local matrix Ki corresponds to position v in the global set of
coordinates, and equals 0 otherwise. The matrix K ′ is singular; a typical pro-
cedure to remove the singularity is to fix, or “anchor” some of the mesh nodes.
This is equivalent to obtaining a slightly smaller nonsingular stiffness matrix K,
by removing the rows and columns corresponding to the fixed nodes. In what
follows we shall always refer to this reduced matrix K and its inverse K−1.

It is easy to check that we can extract a “symmetric square root” from the
matrix Ci, that is, find a 6× 6 matrix Γi such that Γ 2

i = Ci and Γi = Γ T
i if we

define:
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Γi =

⎡⎢⎢⎢⎢⎢⎢⎣
ai bi bi 0 0 0
bi ai bi 0 0 0
bi bi ai 0 0 0
0 0 0 ci 0 0
0 0 0 0 ci 0
0 0 0 0 0 ci

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

with ai = 1
3 (
√

3λi + 2μi + 2
√

2μi), bi = 1
3 (
√

3λi + 2μi −
√

2μi) and ci =
√

μi.
If we denote by Ui the 6× 12 matrix Ui =

√
viΓiBi, from Eq. (4) we get for

a global K̄i:
K̄i = GT

i UT
i UiGi. (6)

We now wish to perform an incision into the object, by removing one of the
constituent tetrahedra. We use a particular form of the Sherman-Morrison-
Woodbury formula for updating the inverse of a matrix, for the case when the
subtracted low-rank matrix is positive semidefinite, i.e. can be written in the
form V T V :

(K − V T V )−1 = K−1 + K−1V T (I − V K−1V T )−1V K−1 (7)

The second term from the right side of Eq. (7) is the “update” that needs to be
performed on the inverse matrix. If we wish to remove the effect of K̄i from the
global K−1, according to Eq. (6) we substitute V = UiGi and find the update
matrix to be:

M = K−1GT
i UT

i (I − UiGiK
−1GT

i UT
i )−1UiGiK

−1

= K−1GT
i UT

i A−1UiGiK
−1. (8)

with A = I −UiGiK
−1GT

i UT
i a symmetric matrix of size 6× 6. We remark that

in practice all multiplications with the Gi or GT
i are not actually performed;

multiplications with globalisation matrices only involve the extraction of the
rows or columns corresponding to the subset represented by the G-matrix. For
example, in order to compute the matrix A, one extracts from K−1 the 12× 12
matrix situated at the intersection of the rows and columns corresponding to the
nodes in tetrahedron i. This is then multiplied to the left with the precomputed
Ui and to the right with UT

i and finally subtracted from the 6×6 identity matrix.
Because A is symmetric, it can be decomposed as A = RT ΛR with Λ the

diagonal matrix of the eigenvalues, and R a rotation matrix (RT = R−1) formed
with the eigenvectors of A. It can be shown that A and K−K̄i are simultaneously
singular or nonsingular, that is, testing the eigenvalues of A is sufficient to assess
if the object remains stable after cutting, e.g. there is no piece that falls off. If
A is non-singular, then the update matrix M of Eq. (8) becomes:

M = K−1GT
i UT

i RT Λ−1RUiGiK
−1 = WT Λ−1W. (9)

The computation of W = RUiGiK
−1 requires the extraction of 12 rows corre-

sponding to tetrahedron i from K−1 and the multiplication by the 6×12 matrix
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RGi. It results in a “thin”, 6 × 3n matrix W . The update M of Eq. (9) now
requires the multiplication of WT and W , weighted through the 6 inverses of the
eigenvalues. Obviously, because of the symmetry, the actual computation of the
lower-diagonal values is unnecessary. Our procedure improves on the state-of-the
art found in the literature, by reducing the size of the matrix to be inverted to
6× 6 from 12× 12, and by requiring only one 6-thin matrix at the last multipli-
cation step.

3 Simulator Structure

The cutting procedure described in the previous section has been integrated into
our surgical simulator, which is a prototype system for evaluating and testing
simulation algorithms. Fig. 1 shows a diagram of the system. The real-time exe-
cution runs two interactive and asynchronous loops: a graphics loop for rendering
deformable virtual organs at 30 Hz, and a haptics loop, at 1 kHz, for rendering
force feedback.

Cut event

Node displacements

Graphics Loop

−Local deformation

−Haptic Feedback

Haptics Loop

−Collision Detection
−Global Deformation
−Graphics Feedback

Coefficients for
calculating deformation

Initialise matrices
from tetrahedra

Tetrahedron to delete
Matrices

Mesh Data Tetrahedron to delete

Deformable Object

Triangles to draw
on initialisation and

cut event

30Hz

1kHz

Fig. 1. Structure of our surgical simulator based on two asynchrounous loops

3.1 Interactive Modules

Indentations on the touched nodes are used as input for the simulation. The
haptics loop calculates haptic feedback at 1kHz based on data from the inverse
of the stiffness matrices. This loop communicates with the graphics loop at
30Hz; on each iteration of the graphics loop, the more expensive global node
displacements of the mesh are calculated, as well as the collision detection.
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3.2 Data Structures

The tetrahedral mesh is stored using a custom mesh data structure. A key part
of this structure is that every face in the mesh stores a current list of its parent
tetrahedra. The outer surface hull of the mesh can be determined by extracting
the faces which have only one parent tetrahedron. The graphics loop can then be
quickly updated when there are changes in topology occurring from tetrahedron
removal.

The individual matrices Ui defined in Section 2 are cached in memory along-
side K−1 when the matrices are initialised from the mesh data. On a cut event,
they are used to construct an update matrix M , as shown in Eqs. (8) and (9),
which is then added to K−1. Simultaneously, the surface model is recomputed,
and sent to the graphics loop for display.
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Fig. 2. Time necessary to delete a tetrahedron from a mesh,on a 3Ghz AMD64 running

a 2.6 series Linux kernel

4 Results

The deletion time of a tetrahedron from a mesh was recorded and repeated 30
times for meshes of varying complexity, as shown in Fig. 2. This time scales
quadratically with respect to the number of mesh nodes and is independent
of topological complexity (i.e number of faces and tetrahedra). The quadratic
nature of the timing graph is explained by the O(N2) calculation in Eq. (9).

The simulator is written in C++, is built on top of VTK and makes use of
the CVMlib and ATLAS libraries for the linear algebra routines. Experiments
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for timing the algorithm were run on a 3 GHz AMD64 machine, running a 2.6
Linux kernel. The multi-threaded code was compiled and optimised with GCC
3.3. We expect better results when the matrix and graphics update routines are
separated into individual threads and run on a multi-processor machine.

Fig. 3 demonstrates a simple surgical tool interacting and cutting a de-
formable model of a liver.

Fig. 3. Top row: Tool next to a deformable organ (left); Tool touching a deformable

organ (right). Bottom row: Tool cutting a deformable organ (left); tool peeling aside

tissue in a deformable organ (right).

5 Conclusion

We have presented a procedure for real-time topology modification of virtual
deformable elastic objects, which can be used in the context of simulators with
haptic feedback. The update procedure of the inverse of the stiffness matrix is
based a symmetric version of Sherman-Morrison-Woodbury formula. It requires
the inversion of a 6× 6 symmetric matrix and the weighted multiplication of a
6-thin matrix with its transpose. Our procedure still displays an O(N2) compu-
tational complexity. However, we have demonstrated that cutting in real-time is
feasible for medium complexity linear elastic meshes; the experimental results
in our simulator show that update times of under 1 second can be obtained for
object meshes with more than 2000 nodes.
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A Hierarchical Face Behavior Model for a 3D

Face Tracking Without Markers

Richard Roussel and Andre Gagalowicz

INRIA Rocquencourt, France

Abstract. In the context of post-production for the movie industry, lo-
calization of a 3D face in an image sequence is a topic, with a growing
interest. Its not only a face detection (already done!), but an accurate 3D
face localization, an accurate face expression recognition, coupled with
the localization, allowing to track a real ”living” faces (with speech and
emotion). To obtain a faithful tracking, the 3D face model has to be
very accurate, and the deformation of the face (the behavior model) has
to be realistic. In this paper, we present a new easy-to-use face behav-
ior model, and a tracking system based upon image analysis/synthesis
collaboration. This tracking algorithm is computing, for each image of
a sequence, the 6 parameters of the 3D face model position and rota-
tion, and the 14 behavior parameters (the amount of each behavior in
the behavior space). The result is a moving face, in 3D, with speech and
emotions which is not discriminable from the image sequence from which
it was extracted.

1 Introduction

One of the greatest challenges in the field of post-production and special effects
generation, is the 3D rotoscopy of real objects in an image sequence. In order
to manipulate them, they should be located precisely. Previously manual, this
search or tracking is more and more automated. Several tracking techniques of
rigid and deformable object exist. Some are based only on information resulting
from images, such as 2D contours or snakes. Others use 2D or 3D models to guide
the tracking algorithms. The technique presented here enters into the framework
of 3D model-based tracking. We use a 3D textured face as a tracking tool; this
3D face is projected in the image to compute, and the difference between the
pixels of this synthetic image and the pixels of the real image is computed. This
matching error drives a minimization algorithm with respect to the degrees of
freedom of the system (6 for the position and rotation of the 3D model and 14
for its behavior parameters). We experienced that the 3D model needs to be
very realistic and accurate in order for the tracking to be effective. Thats why,
the face model has to be ani-mated like a real face in order to be really close to
the face to track.

A. Gagalowicz and W. Philips (Eds.): CAIP 2005, LNCS 3691, pp. 854–861, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 State of the Art

In the field of tracking of deformable and/or articulated objects, many pub-
lications are available. One can quote the seminal articles of Terzopoulos and
Witkin[DTK88], of Pentland[APS91], and the reference work of Blake[BI98]. We
are interested in techniques allowing to accurately locate a 3D deformable ob-
ject in an image.Coarse localization has already been largerly studied problem
(see for example work by Gee and Cipolla [GC96]) or Mr. Malciu, F Preteux, V
Buzuloiu[MM]), but tracking of expressive faces with strong rotations / defor-
mations is still an open problem. Precision is required for 3D rotoscopy The use
of explicit 3D models already exists in the rigid case of objects (see Lowe[Low92],
P. Gerard[PG99] or Drummond[DC99]), but the articulated or deformable case
remains a problem. Current approaches, containing not very robust scattered
primitives (points, contours) or differential computing, are not very reliable in
complex environments, a fortiori on classes of objects with strong variability
of aspect like faces. The current operational solutions require the use of easily
detectable markers[Vtr], who allow to recover the trajectories of some points
of interest of the face (like the movement of the lips). It still remains to the
user the difficult task of matching these animated elements with those on a 3D
synthesis face. Our approach clearly aims at tracking the face in only one stage,
and without preliminary marking, thanks to an analysis/synthesis approach pro-
posed by A. Gagalowicz in the past and which already proved its reliability on
other applications[Gag94].

3 Dynamic Model of the Face

The tracking algorithm (the minimizer) has to easily control a deformation model
of the face. We first use the MPEG-4 points defined over the face to create local
deformations. Then, this deformation may be interpolated on the whole face.
This set of points created for the animation of face in 3D, allows credible ani-
mations of avatars, and makes it possible to be coded with quite few animation
parameters and to be sent at low cost through the network. On the other hand,
the lack of control between these deformation points does not ensure the pos-
sibility to create precise face deformations due to its sparsity. Indeed, it is not
possible, given only this set of points, and a very well known interpolation tool
like the RBFs, to recreate accurate realistic facial expressions, compared with
the real expressions of a speaking actor.

3.1 Hierarchical Deformation Model

Biology of the Face. In the realization of a model of facial deformations, it
is obvious that the study of the muscles of the face is of primary importance.
We can thus determine which muscles really are activated during the speech
and producing the facial expressions, starting from boards of anatomies and
especially thanks to works such as those of Parke and Waters[PW96] in their
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reference book, which lists the muscles that create emotions. These muscles have
very different characteristics.

– Their attach points can be, as for the majority of the muscles, on the bone
structure for one of their ends and be connected to the skin at the other end.
For example, zygomatic muscles acting on the width of the mouth and the
height of the lips, or even the forehead muscles, which raise the eyebrows.

– Some are connected exclusively to the skin, as the sphincter muscles of the
mouth.

Fig. 1. Anatomical board showing the activated muscles (and their direction), during
facial expressions

In all cases, these muscles have visible actions, like Ekman and Friesen[PW78]
studied with the FACS. Thus, on the anatomical board of figure1, while taking
as a starting point the work of[GBP01], we add, the visual action generated and,
moreover, the direction of the action of the muscle, and its principal attach point
on the skin.

Hierarchical Model. We thus combined this information, with the MPEG4
model, enabling us to create a complete model of de-formation. This model
comprises 4 levels.

Level 1: the low-level deformers At this level, the deformations are applied to the
3D mesh. We thus choose the deformation tool based upon RBFs [JS01], which
makes it possible to diffuse the de-formations that are applied only to some
deformation centers on all the mesh. This deformation tool is well-known for
its very smoothness, and well controlled interpolations. Duchon[Duc77], which
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Fig. 2. MPEG-4 Subset point used by
our deformation model

Fig. 3. Choice of the centers of defor-
mation of RBFs (in yellow) among the
points of the grid, along the Bzier curve
(in red)

studied several types of Radial Basis Functions, showed that the choice of the
function of interpolation makes it possible to control the locality of the effect,
(its attenuation with the distance). In order to get a very smooth interpolation,
distributed uniformly between the various centers of deformation, we choose the
LINEAR Radial Basis Function.

Level 2: The high-level deformers We have defined two types of high level de-
formers on the face :

The ”Point deformers:” are a sub-set of the MPEG-4 point set. (figure 2). the
”Curve deformers:” are defined on the surface of the face, which allows, thanks
to the control which they induce with their tangents, an increased flexibility for
the creation of the deformations (figure 3).

These two types of deformers, ”point” and ”curve”, will both control a low
level deformer. In the specific case of the point deformers, it is obvious that they
control one low level deformer. For the curves, it is different. A low level deformer
will be defined in each point of the mesh close to the curve, in the direction of
the curve, as indicated on figure 5. The idea is to represent the maximum of
deformations, with less curves as possible. Thus, we have three great groups of
curves: eyes, forehead and chin-mouth zone. Finally, we have a 3d model on
which was placed two types of deformers, (see figure 4). These deformers must
follow the deformation laws imposed by the behaviors. This is described at the
next hierarchical level.

Level 3: The behaviors We defined, at the preceding hierarchical level, two types
of deformers, points and curves. We define now, on the third level controllers,
which are producing behaviors (we give the names of behaviors to these con-
trollers); they are acting simultaneously on a subset of the deformers of the
second level. Each deformer receives a basic deformation from the controller
which will depend on the type of action that the controller wants to produce
(i.e. its behavior).

To allow the 3D model to create phonemes with its mouth and to produce
many facial expressions, we defined 14 behaviors which must, at this level of
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Fig. 4. The complete deforming model including curve deformers

the hierarchy, remain very basic. i.e., each behavior should carry out only one
action, as for the FACS. For example, to raise or lower the corners of the lips,
or to lower an eyelid. The 14 behaviors we have designed are the following:

In order to be used in a very easy way by a minimization algorithm, each behavior
will be associated to a value standardized between -1 and 1, representing its level
of deformation.

Level 4: Expressions The last hierarchical level is the space in which we will find
combinations of the 14 behaviors. This space is open to any type of expressions,
but must at least contain the 6 universal expressions, that we generated on
figure 5 by acting on the various behaviors. The tracking algorithm minimizes
an error image where the degrees of freedom are precisely these 14 behaviors.
In fact, the tracking algorithm finds, for each frame, the vector of behaviors
producing the best expression of the filmed actor with respect to our criterion.
We will see, now how the tracking algorithm works.
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Fig. 5. The 6 universal expressions

4 3d Tracking

The global idea of the tracking is to use a 3d textured model as a tool in order
to locate very accurately the face in the consecutive images. The 3d model is
projected in the image to compute, with a given pose, and a given expression. The
objective of the tracking is to find, for each image of the sequence, the optimal
parameters of the system, in order to minimize the error between the projected
model in the image and the part of the image cut by the model (figure 6).

4.1 Initialization of the System

In the initialization phase, we need to texture the model first. To do it properly,
the 3D model must be placed by hand on the first image to compute, not only
with the correct camera calibration, but also with the correct facial expression.
This task is largely facilitated by the use of POSIT, which calibrates a camera
when at least five 3D points and their 2D projection are known, and with our
behavior parameters edition window, for the initialization of the initial facial
expression.

4.2 Texturing the Mesh

The 3D model being positioned on an image, each 3D vertex is then projected
in the image. We can thus compute the texture coordinates (u,v) of each 3D
vertex. This texture is carried out with each change of image, thus limiting to
the maximum, the nuisances depending on the changes of illumination, or the
appearance of new 3D facets, for a rotation of the 3D mesh, for example. Once
the mesh is textured with the image N, we can move to the N+1 image, and
compute the new location and the new expression automatically.

4.3 Minimization Tool

The minimization uses the matching error between the projected pixels of the
textured 3D mesh, and the pixels of the real image. The system consists of 20
degrees of freedom: 6 degrees of freedom for the position and rotation of the 3D
mesh of face and 14 others corresponding to the 14 behaviors defined for the face.
In order not to be wedged in local minima, we utilize a simulated annealing that
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drives a simplex. It was applied success-fully in very similar cases for rigid track-
ing based upon a loop of analysis/synthesis identical to our approach[PG99].
The minimization has a problem common to a lot of minimization tools: it can
not optimize, in reasonable time, more than 8 parameters simultaneously. This
is why, we cut out the minimization task in 4 independent tasks: Rigid tracking,
Mouth tracking, eye (eyelids) tracking and Forehead (eyebrows) tracking.

This is justified by the fact that these parts are rather independent in the face
(except the rigid transform that has to be minimized first!) The first tracking
locates the face in position and rotation, in the image. Once the face is positioned
in an optimal way in the image, we act on the various groups of behaviors
separately to find the real expression. Also, it should be noted that, on top of
avoiding gigantic computing time, separating DOFs in small groups allows the
algorithm minimization to be less sensitive to local minima traps, and thus allows
to converge towards the global minimum corresponding to the real image. New
DOFs calculated are then injected again into the system with the N+1 image,
as an initialization state.

Fig. 6. On (a), the 3D mesh is badly
placed. The difference between the real
pixels and those of the model is signifi-
cant and visible. On (b), the 3D face is
well positioned, and the error in image
is close to 0.

Fig. 7. Tracking resulst on a talking
andsmiling head

5 Results

This algorithm was tested on different faces, in many conditions. In all cases, the
results were very convincing. We tested scenes of speaking heads, but also of very
expressive faces, such as for example the big smile of figure 7. The computation
time of our algorithm is about 15 minutes for the 3D model building, and the
tracking time is close to 1 minute by frame.
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Jankó, Zsolt 240
Jiang, Chunyan 264
Jiang, Xiaoyue 288
Joly, Philippe 472, 489
Joshi, Bhautik 846
Jung, Eui-Hyun 717
Jung, Ho Gi 231

Kamenický, Jan 415
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Máté, Eörs 456, 628
Megson, Graham 554
Meinel, Christoph 264
Meurie, C. 685
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Şentrük, Tülin 799
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