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Abstract. We present an OBDD-based Computer Algebra system for
relational algebra, called RelView. After a short introduction to the
OBDD-implementation of relations and the system, we exhibit its appli-
cation by presenting two typical examples.

1 Introduction

Since many years relational algebra has widely been used by mathematicians and
computer scientists as a convenient means for problem solving; see e.g., [12,3].
One main reason for the use of relational algebra is that it has a fixed and sur-
prisingly small set of operations all of which can efficiently and with reasonable
effort be implemented on finite carrier sets using, e.g., Boolean arrays, linked
lists, or ordered binary decision diagrams (OBDDs). Thus, a Computer Algebra
system for relational algebra can be implemented with reasonable effort, too. In
this paper, we want to give an impression of such a system, called RelView,
which has been developed at Kiel University since 1993 and is available free of
charge, see http://www.informatik.uni-kiel.de/˜progsys/relview.html.

RelView can be used to solve many different tasks while working with rela-
tional algebra, relation-based discrete structures, and relational programs. E.g.,
it can support relation-algebraic reasoning. In this field typical applications are
the search for counter-examples or the detection of new properties. For these
activities, “playing” and “experimenting” with relation-algebraic expressions is
essential and this is one of the purpose RelView has been designed for. In par-
ticular, the interactive nature of the system allows to add, change and remove
relations and their representations, and makes it possible to invoke computations
at every time within a working session. A further application domain is program-
ming. This not only concerns the implementation of relational algorithms using
the system’s programming language, but also typical tasks appearing in (formal)
program development like specification testing, detection of loop invariants and
other important properties necessary for correctness proofs, rapid prototyping,
and improving efficiency. Third, the advantages of the system when using it in
teaching and for visualization respectively animation should be mentioned. We
have recognized that visualizing advanced concepts of relational algebra (like re-
lational domain constructions) in RelView is very helpful. Furthermore, since
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RelView allows computations not only to be executed fully-automatically but
also in a stepwise fashion, it is a very good means to demonstrate how a certain
algorithm works. Finally, it should be mentioned that we found it very attrac-
tive to use RelView for producing good examples in teaching, which frequently
have been proven to be the key of fully understanding a concept. Of course, we
are not able to show all these aspects of RelView in this paper.

2 Relation-Algebraic Preliminaries

We write R : X ↔ Y if R is a relation with domain X and range Y , i.e., a
subset of X × Y . If the sets X and Y of R’s type X ↔ Y are finite, we may
consider R as a Boolean matrix. Since this Boolean matrix interpretation is
well suited for many purposes and also used as one possibility of RelView to
depict relations, in the following we often use matrix terminology and matrix
notation. Especially, we speak about the rows and columns of R and write Rxy

instead of (x, y) ∈ R. We assume the fundamentals of relational algebra to
be known, viz. RT (transposition), R (complement), R ∪ S (union), R ∩ S
(intersection), R S (composition), R ⊆ S (inclusion), and the special relations
O (empty relation), L (universal relation), and I (identity relation). A relation
R is univalent if RTR ⊆ I, total if RL = L, injective if RT is univalent, reflexive
if I ⊆ R, antisymmetric if R ∩ RT ⊆ I, transitive if RR ⊆ R, symmetric if
R = RT, and irreflexive if R ⊆ I. A univalent and total relation is a mapping, a
reflexive, antisymmetric, and transitive relation is a partial order, and a reflexive
and transitive relation is a quasi order.

By syq(R, S) := RTS ∩ R
T
S the symmetric quotient syq(R, S) : Y ↔ Z of

two relations R : X ↔ Y and S : X ↔ Z is defined. Many properties of this
construct can be found in [12]. In this paper we only need the equivalence

syq(R, S)yz ⇐⇒ ∀x : Rxy ↔ Sxz . (1)

Relational algebra provides some possibilities for modeling sets. The first mod-
eling which we will apply in this paper uses vectors . These are relations v with
v = vL. For v being of type X ↔ Y this condition means: Whatever set Z and
universal relation L : Y ↔ Z we choose, an element x ∈ X is in relationship
(vL)xz either to none element z ∈ Z or to every element z ∈ Z. Since for a vec-
tor the range is irrelevant, in the following we consider mostly vectors v : X ↔ 1
with a specific singleton set 1 = {⊥} as range and omit in such cases the second
subscript, i.e., write vx instead of vx⊥. Such a vector can be considered as a
Boolean matrix with exactly one column, i.e., as a Boolean column vector, and
represents the subset {x ∈ X | vx} of its domain X .

We will also use injective mappings for modeling subsets. Given an injective
mapping ı : Y ↔ X, we may consider Y as a subset of X by identifying it with
its image under ı. If Y is actually a subset of X and ı is the identity mapping
from Y to X , then the vector ıTL : X ↔ 1 represents Y as subset of X in the
sense above. Clearly, also the transition in the other direction is possible, i.e.,
the generation of an injective mapping
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inj(v) : Y ↔ X inj(v)yx :⇐⇒ y = x (2)

from a given vector v : X ↔ 1 representing the subset Y of X . We call inj(v)
the injective mapping generated by the vector v.

As a third possibility to model subsets of a given set X we will use the
set-theoretic membership relation defined by (2X is the power set of X)

M : X ↔ 2X MxY :⇐⇒ x ∈ Y . (3)

Using matrix terminology, a combination of injective mappings and membership
relations leads to a column-wise representation of sets of subsets. More specifi-
cally, if the vector v : 2X ↔ 1 represents a subset S of 2X in the sense above,
then for all x ∈ X and Y ∈ S we get the equivalence of x ∈ Y and (M inj(v)T)xY

due to (2) and (3). This means that the elements of S are represented precisely
by the columns of the relation C := M inj(v)T : X ↔ S. A further consequence
of this fact is that CTC : S ↔ S is the relation-algebraic specification of set
inclusion on S, that is for all Y, Z ∈ S we have that (CTC)Y Z iff Y ⊆ Z.

Using some well-known correspondences between certain logical constructions
and relation-algebraic operations (see e.g., [12]) it can easily be shown that if
R : X ↔ X is a quasi order and v : X ↔ 1 represents a subset Y of X , then
the set of greatest elements of Y with respect to R is represented by the vector

max (R, v) := v ∩ R
T
v : X ↔ 1 . (4)

In Section 5 we will apply (4) to compute maximum cliques. This means that
X is the power set 2V of the set V of vertices of the input graph g, the first
argument of the relational function max of (4) is the size-comparison relation

S : 2V ↔ 2V SAB :⇐⇒ |A| ≤ |B| , (5)

and the second argument of max is a vector representing the set of cliques of g.

3 Implementation of Relations Using OBDDs

Assuming the reader to be familiar with the basic facts of OBDDs (as e.g.,
presented in [5,13]), we sketch in the following how to implement relations with
their help. For a complete description we refer to the Ph.D. theses [10,11].

OBDDs are an efficient data structure to implement very large Boolean func-
tions. Our implementation of relation uses this fact. We will illustrate it by a
small example. Assume sets X := {a, b, c, d} and Y := {r, s} and the relation

R : X ↔ Y R := { (a, r), (c, r), (c, s) }.

By means of the canonical binary encodings cX : X → B
2 and cY : Y → B

of X and Y , specified by cX(a) = 0, 0, cX(b) = 0, 1, cX(c) = 1, 0, cX(d) = 1, 1
respectively cY (r) = 0, cY (s) = 1, we can define a Boolean function fR : B

3 → B
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Fig. 1. OBDD for the function fR

such that fR(x1, x2, y1) = 1 iff c−1
X (x1, x2) and c−1

Y (y1) are defined and related
via R. Then each satisfying assignment of the function fR corresponds to a pair
of the relation R and we obtain fR in disjunctive normal form as

fR(x1, x2, y1) = (x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1) .

Here, for instance, the first clause x1 ∧ x2 ∧ y1 expresses the fact that the two
elements c−1

X (0, 0) = a and c−1
Y (0) = r are related via the relation R. If we use

the fixed variable ordering x1 < x2 < y1, then we get the OBDD for the function
fR shown in Figure 1, where a continuous edge means that the value of its source
is 1 and a dotted edge means that this value is 0.

The implementation of relations in the shown way leads to the problem that
one OBDD can implement several relations. For instance, it is easy to check that
the Boolean function obtained from the relation

S : Y ↔ X S := { (r, a), (s, a), (s, b) }
coincides with fR. This means that R and S are implemented by the same
OBDD. However, the problem can be solved by additionally storing the sizes of
the carrier sets since R is the only relation of type X ↔ Y which leads to fR.

As general technique, using the two canonical binary encodings cX : X → B
m

and cY : Y → B
n (where m = �log |X |� and n = �log |Y |�) a relation R : X ↔ Y

is implemented by the two sizes |X | and |Y | and the OBDD of the Boolean
function fR : B

m+n → B, such that fR(x1, . . . , xm, y1, . . . , yn) = 1 iff the two
decodings c−1

X (x1, . . . , xm) and c−1
Y (y1, . . . , yn) are defined and related via the

relation R and the variable ordering is x1 < . . . < xm < y1 < . . . < yn.
Based on this implementation of relations, in the course of the Ph.D. theses

[10,11] many relation-algebraic operations (including, of course, those of Section
2) have been implemented as operations on OBDDs. Due to lack of space we can
not go into detail. However, it should be emphasized that the specific variable
ordering with the variables encoding the elements of the domain followed by
those encoding the elements of the range allows a very efficient implementation
of membership relations and size-comparison relations.

In the case of the membership relation M : X ↔ 2X of (3) we obtain a
Boolean function fM : B

m+n → B with m ≤ log |X | + 1 variables for encoding
the elements of the domain X and n = |X | variables for encoding the elements
of the range 2X . It is defined by
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fM(x1, . . . xm, y1, . . . , yn) =
{

yc+1 : c ≤ n − 1
0 : otherwise,

where c := c−1
X (x1, . . . , xm) is the decoding of the bitstring x1, . . . , xm.

Given a variable ordering such that the variables x1, . . . , xm are tested before
the variables y1, . . . , yn, the number of nodes of the OBDD of fM with respect
to this variable ordering is bounded by 2m − 1 + n + 2, that is, by 3|X |+ 1. The
argument is that the x-variables are tested in a binary decision tree with at most
2m − 1 inner nodes and at most 2m leaves. (The case that |X | is a power of 2
leads to a complete binary decision tree with 2m−1 inner nodes and 2m leaves.)
Each leaf is replaced by a test of the corresponding y-variables if the number of
the binary representation is not greater than n − 1. All other leaves are deleted
and the incoming edges are directed to the sink 0. There may be reduction rules
applicable to this OBDD but this only reduces the number of nodes. The result
follows by adding 2 nodes for the sinks.

In the case that |X | is a power of 2, the Boolean function fM of the mem-
bership relation M : X ↔ 2X is the well-known direct storage access function
DSAn (see e.g., [13]). Here m x-variables address n = 2m y-variables which de-
cide about the output. For DSAn the fraction of variable orderings leading to a
non-polynomial OBDD size converges to 1, and this also holds for the function
fM. A lot of RelView programs work with membership relations, especially if
one deals with hard problems or uses the system for supporting the engineering
and validation of relational specifications. Therefore, the choice of our specific
variable ordering is justified. The large number of bad variable orderings also
suggests not to change the variable ordering during the computation process
when working with this relation. This has been confirmed by experimental stud-
ies showing that the use of different variable orderings and reordering techniques
leads in most cases to a much higher computation time in comparison to a com-
putation with our fixed variable ordering.

For the size-comparision relation S : 2X ↔ 2X of (5) an OBDD-implementa-
tion has been developed in [11] which exactly uses 2+ |X |(|X |+1) OBDD-nodes
for the proposed variable ordering.

4 The Computer Algebra System RelView

RelView (see [1,2]) is a totally interactive and completely graphic-oriented
“specific purpose” Computer Algebra system for dealing with relational algebra.
In it all data are represented as (of course, finite) relations. Especially when
applied for prototyping or to solve hard problems via enumeration, the system
often works on very large objects since, e.g., a membership relation appears dur-
ing a computation. Therefore, it uses a very efficient internal implementation of
relations via OBDDs following the approach sketched in Section 3. Externally,
relations are visualized in two different ways; see the snapshot of Figure 2. For
relations of type X ↔ X RelView offers a representation as directed graphs,
including sophisticated algorithms for drawing them nicely. Alternatively, arbi-
trary relations may be depicted as Boolean matrices. This second representation
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Fig. 2. The screen of RelView

is very useful for visually editing and also for discovering various structural
properties that are not evident from a representation of relations as directed
graphs. Although the detailed appearance of the windows of RelView depends
on specific conceptions of the users, typically the main windows (viz. evaluation
window, menu window, directory window, window of the relation editor, window
of the graph editor) look as in the screen snapshot of Figure 2.

The main purpose of RelView is the evaluation of relation-algebraic ex-
pressions which are constructed from the relations of the workspace using many
predefined operations (like -, ^, &, |, and * for complement, transposition, in-
tersection, union, and composition) and tests (like empty for testing emptiness)
on them, user-defined relational functions, and user-defined relational programs.
A relational function is of the form F(X1, . . . , Xn) = t, where F is the function
name, the Xi, 1 ≤ i ≤ n, are the formal parameters (standing for relations), and
t is a relation-algebraic expression over the relations of the workspace that can
additionally contain the formal parameters Xi. A relational program essentially
is a while-program based on the datatype of relations. It starts with a head line
containing the program’s name and a list of formal parameters. Then the decla-
ration part follows. The third part is its body, a sequence of statements which
are separated by semicolons and terminated by the return-clause.

5 A Graph-Theoretic Application: Maximum Cliques

Throughout this section, we fix an undirected graph g = (V, E) and assume that
it is represented by the symmetric and irreflexive adjacency relation R : V ↔ V .
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That is, we suppose for all x, y ∈ V that Rxy iff {x, y} is an edge from E. A clique
of g is a subset C of V in which every pair x, y of distinct vertices is connected
by an edge, i.e., {x, y} ∈ E. The clique C is called maximum if its cardinality is
maximum. The maximum clique problem is NP-hard. Moreover, it is even one
of the hardest problems with respect to polynomial-time approximability.

We want to compute maximum cliques of g using RelView. First we develop
a vector of type 2V ↔ 1, which represents the set of all cliques of g. Let X be an
arbitrary set of vertices. We decide whether X is a clique, using the predicate-
logic specification of X to be a clique, the definition (3) of the membership
relation M : X ↔ 2X , and some simple laws of predicate logic respectively well-
known correspondences between logical and relation-algebraic constructions:

X is a clique of g ⇐⇒ ∀x, y : x ∈ X ∧ y ∈ X ∧ y �= x → Ryx

⇐⇒ ∀x : x ∈ X → (∀ y : y ∈ X → (y = x ∨ Ryx))
⇐⇒ ∀x : MxX → (∀ y : MyX → (I ∪ R)yx)
⇐⇒ ∀x : MxX → (¬∃ y : MyX ∧ I ∪ Ryx)
⇐⇒ ∀x : MxX → ¬(MTI ∪ R)Xx

⇐⇒ ¬∃x : MT
Xx ∧ (MTI ∪ R)Xx

⇐⇒ ¬∃x : (MT ∩ MTI ∪ R)Xx ∧ Lx L : V ↔ 1

⇐⇒ (MT ∩ MTI ∪ R)LX

Next, we remove the subscript X from the last expression of the derivation
following the vector-representation of sets introduced in Section 2. To improve
efficiency, after that we apply symmetry of R in combination with some well-
known relation-algebraic laws to transpose only a “row vector” instead of a
relation of type V ↔ 2V , yielding

cliques(R) := LT(M ∩ I ∪ RM)
T

: 2V ↔ 1 (6)

as relation-algebraic specification of the vector representing the set of all cliques
of g. (Using an OBDD-implementation of relations, transposition of a relation
with domain or range 1 is trivial. It only means to exchange domain and range,
the OBDD remains unchanged. See [11] for details.)

Now, let S : 2V ↔ 2V be the size-comparison relation on 2V as introduced
by (5). Then an application of the relational function max of (4) to S and the
vector cliques(R) immediately yields the following vector-representation of the
set M of all maximum cliques of g:

maxcliques(R) := max (S, cliques(R)) : 2V ↔ 1 . (7)

The column-wise representation of M by M inj(maxcliques(R))T : V ↔ M now
is a direct consequence of the technique explained in Section 2.

Each of the above relation-algebraic specifications can be easily translated
into the programming language of RelView. Especially, (4), (6), and (7) read
as RelView-code as follows:
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max(R,v) = -v & -(-R^ * v).
cliques(R)
DECL M
BEG M = epsi(O(R))

RETURN -(L1n(R) * (M & -refl(R) * M))^
END.

maxcliques(R) = max(cardrel(O(R)),cliques(R)).

The RelView tool automatically allows to generate uniform random rela-
tions, also of a specific kind and density; see [11] for details. We have applied
this feature to test the efficiency of our approach, where we used a Sun-Fire 880
workstation running Solaris 9 at 750 MHz. Figure 3 shows some experimental re-
sults for randomly generated symmetric and irreflexive adjacency relations. The
number of vertices N of the random graph is listed at the x-axis and the time
needed to execute maxcliques is listed at the y-axis. The four curves have been
obtained by varying N from 50 to 500 by steps of 50 vertices and the probability
of a pair {x, y} to be an edge of a graph from 10% to 25% by steps of 5%. We
performed at least 20 experiments for each N and each density and computed
in all cases the arithmetic mean of the execution times.

Because of lack of memory, in the case of 25% density we have not been
able to deal with N > 300 vertices. If, however, we restricted us to more sparse
graphs, larger numbers of vertices could be treated successfully. For example,
N = 700 and a density of 10% led to approximately 12 minutes execution time
and, for the same density, N = 1000 led to roughly 100 minutes.

Using the same environment, we have also tested maxcliques on some DI-
MACS benchmaks (see [7]) with up to 500 vertices. The results are shown in
Table 1, where the fourth column contains the sizes of the maximum cliques and
the sixth column shows the computation times in seconds. Apart from the size
of a maximum clique and the computation time it is very interesting to see the
number of maximum cliques for the considered benchmarks. For instance, in the
case of MANN a9 there are exactly 9540 maximum cliques.
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Fig. 3. Computational results on randomly generated instances
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Table 1. Computational results on DIMACS Benchmarks

Problem Vertices Edges Clique Size # Max. Cliques Time

c-fat200-1 200 1534 12 14 0.77

c-fat200-2 200 3235 24 1 0.68

c-fat500-1 500 4459 14 19 8.96

c-fat500-2 500 9139 26 19 7.92

johnson8-2-4 28 210 4 105 0.02

hamming6-4 64 704 4 240 0.81

MANN a9 45 918 16 9540 0.30

Of course, in view of efficiency our approach cannot compete with special pro-
grams and tools for the exact solution of the problems we dealt with (although
the complexities usually are the same). Compare, for example, our computation
times with the times given in [8]. Indeed, RelView is able to compute all maxi-
mum cliques within a reasonable time in the case of sparse graphs. As mentioned
before in the consideration of random instances, however, it has its difficulties if
density increases. But it should be emphasized that the system yields all solu-
tions . In some applications this may be helpful. For example, the enumeration
of maximum independent sets can be reduced to the enumeration of maximum
cliques. Using the edge adjacency relation construction (see [12]), thus, we are
able to enumerate all maximum respectively all perfect matchings of graphs. The
latter can be used to compute permanents of 0/1-matrices, since this number
equals the number of perfect matchings of a specific bipartite graph.

6 A Lattice-Theoretic Application: Cut Completion

Assume (X, R) to be a partially ordered set, that is, R : X ↔ X to be a partial
order on X . For a set Y ∈ 2X let Y ↓ denote the set of its lower bounds and

Fig. 4. Visualization of a cut completion
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Y ↑ denote the set of its upper bounds with respect to R. If Y = Y ↑↓, then this
set is called a Dedekind cut of (X, R). Obviously, for each element x ∈ X the
set [x] := {y ∈ X | Ryx} is a Dedekind cut of (X, R), called the principal cut
generated by x. Now, let C denote the set of all Dedekind cuts of (X, R) and
P be the subset of all principal cuts. Then (C,⊆) is a complete lattice. It is
called the cut completion (or Dedekind-MacNeille completion) of (X, R), since
it contains (P,⊆) as sub-order and the latter is order-isomorphic to (X, R) via
the injective function σ : X → C, mapping x to the principal cut generated by
x. The lattice (C,⊆) is the smallest complete lattice which embeds (X, R) as a
sub-order; for more details on cut completion see [6].

Again we start with the vector-representation of the decisive set C. Assume
Y ∈ 2X . If we formalize lower and upper bounds using predicate logic and apply
definition (3) of the membership relation M : X ↔ 2X , then we have

Y = Y ↑↓ ⇐⇒ ∀x : x ∈ Y ↔ x ∈ Y ↑↓

⇐⇒ ∀x : x ∈ Y ↔ (∀ y : y ∈ Y ↑ → Rxy)
⇐⇒ ∀x : x ∈ Y ↔ (∀ y : (∀ z : z ∈ Y → Rzy) → Rxy)
⇐⇒ ∀x : Mx,Y ↔ (∀ y : (∀ z : MzY → Rzy) → Rxy) .

Now, we apply the same strategy as in the case of cliques in combination with
property (1) to replace in the last formula all logical constructions by relation-
algebraic ones. Doing so, we arrive after some steps at

cuts(R) := (syq(M, R R
T
M) ∩ I)L : 2X ↔ 1 (8)

as relation-algebraic specification of the vector representing the set C of all
Dedekind cuts of (X, R), where I : 2X ↔ 2X and L : 2X ↔ 1. Using (8), the
column-wise representation of the set C by

cutslist(R) := M inj(cuts(R))T : X ↔ C (9)

is an immediate consequence of the remark of Section 2. The same holds for the
inclusion on the set of cuts, i.e., the partial order of the cut lattice (C,⊆). Here
we have the relation-algebraic specification

cutord(R) := cutslist(R)T cutslist(R) : C ↔ C . (10)

Also the embedding of (X, R) into its cut completion (C,⊆) can be formulated
quite easily using relational algebra. Given x ∈ X and Y ∈ C, we obtain

[x] = Y ⇐⇒ ∀ y : Ryx ↔ y ∈ Y ⇐⇒ syq(R, cutlist(R))xY ,

where the first step uses the definition of principal cuts and the second step
applies (1) and the equivalence of y ∈ Y and cutlist(R)yY . This leads to

sigma(R) := syq(R, cutset(R)) : X ↔ C (11)

as relation-algebraic version of the embedding function σ : X → C.
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Fig. 5. Visulization of the Hasse-diagram

It is trivial to translate (8) until (11) into RelView-code. This allows to com-
pute and visualize cut completions with the tool. Figure 4 graphically depicts the
relation C := cutord(R) : C ↔ C of the cut completion of an ordered set (X, R).
The embedding into (C, C) is visualized by boldface arrows, where the latter has
been obtained by two steps. First, the sub-relation S := sigma(R)T R sigma(R)
of C has been computed. Then, in the graph-representation of C the arrows
corresponding to elements of S have been marked using a specific command.

Layouts of partial orders as given in Figure 4 are neither economic nor easy
to comprehend since they contain many superfluous arrows. Therefore, it is cus-
tomary to depict only the Hasse-diagram as shown in Figure 5. To obtain this
picture, we have computed the Hasse-diagrams HC and HS of C and S, re-
spectively, via calls of a small RelView-program. Then we have marked the
arrows corresponding to elements of HS in the graph-representation of the union
HC ∪ HS . And, finally, we have emphasized the set of vertices represented by
the vector sigma(R)T

L : C ↔ 1 by drawing these vertices as squares.

7 Conclusion

We have presented the OBDD-based specific purpose Computer Algebra system
RelView for relational algebra, and have exhibited its use by two examples. The
novelty and real attraction of our approach is the combination of OBDDs, rela-
tional algebra, visualization, and animation in an efficient and flexible software
system. RelView uses only standard procedures for OBDD manipulation, which
are available in any OBDD-package. Hence, any improvement in the OBDD area
leads to a greater efficiency of RelView computations.

Experience has taught us that relational algebra is a powerful tool for deal-
ing with many problems on discrete structures. As the examples of Section 5
and 6 show, it is often possible to “calculate” concise algorithms from formal
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specifications, so that correctness is established by construction. Algorithms can
be executed and their results visualized with RelView. This allows to check
them against the specifications and to detect errors. Due to the shortness and
clearness of relation-algebraic expressions respectively RelView programs, the
user can easily play and experiment with them.

RelView has been combined with other tools, e.g., SniffAlyzer for view-
ing and analyzing software architectures facts (see [11]). We have isolated the
core functionality of RelView from the entire system and collected in a C-
library, called Kure. With this library at hand, relational algebra can efficiently
and easily be integrated into many other software systems. The PetRA tool for
the analysis of Petri nets is a first application of this approach; see [9] for details.
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