


Lecture Notes in Computer Science 3718
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Victor G. Ganzha Ernst W. Mayr
Evgenii V. Vorozhtsov (Eds.)

Computer Algebra
in Scientific
Computing

8th International Workshop, CASC 2005
Kalamata, Greece, September 12-16, 2005
Proceedings

13



Volume Editors

Victor G. Ganzha
Ernst W. Mayr
Technische Universität München
Institut für Informatik
Garching, Germany
E-mail:{ganzha, mayr}@in.tum.de

Evgenii V. Vorozhtsov
Russian Academy of Sciences
Institute of Theoretical and Applied Mechanics
Novosibirsk, Russia
E-mail: vorozh@itam.nsc.ru

Library of Congress Control Number: 2005932112

CR Subject Classification (1998): I.1, F.2.1-2, G.1, I.3.5, I.2

ISSN 0302-9743
ISBN-10 3-540-28966-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28966-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11555964 06/3142 5 4 3 2 1 0



Preface

CASC 2005 continued a tradition — started in 1998 — of international con-
ferences on the latest advances in the application of computer algebra systems
(CASs) and methods to the solution of various problems in scientific computing.

The methods of scientific computing play an important role in research and
engineering applications in the natural and the engineering sciences. The signif-
icance and impact of computer algebra methods and computer algebra systems
for scientific computing has increased considerably in recent times. Nowadays,
such general-purpose computer algebra systems as Maple, Magma, Mathematica,
MuPAD, Singular, CoCoA and others enable their users to solve the following
three important tasks within a uniform framework:

(a) symbolic manipulation;
(b) numerical computation;
(c) visualization.

The ongoing development of such systems, including their integration and adap-
tation to modern software environments, puts them at the forefront in scientific
computing and enables the practical solution of many complex applied problems
in the domains of natural sciences and engineering.

Greece offers excellent infrastructures for hosting international conferences,
and this was a reason for us to choose the city of Kalamata, Greece, as the loca-
tion for CASC 2005, the eighth conference in the sequence of CASC conferences.
The seven earlier CASC conferences, CASC 1998, CASC 1999, CASC 2000,
CASC 2001, CASC 2002, CASC 2003, and CASC 2004 were held, respectively,
in St. Petersburg, Russia, in Munich, Germany, in Samarkand, Uzbekistan, in
Konstanz, Germany, in the Crimea (Ukraine), in Passau (Germany), and in
St. Petersburg, Russia, and they proved to be successful.

The Program Committee did a tremendous job reading and evaluating 75
submitted papers, as well as soliciting external reviews, and all of this in a very
short period of time. There were about three reviews per submission on average.
The result of this job is reflected in this volume, which contains revised versions
of the accepted papers. The collection of papers included in the proceedings
covers various topics of computer algebra methods, algorithms, and software
applied to scientific computing:

1. algebraic methods for nonlinear polynomial equations and inequalities;
2. symbolic-numeric methods for differential and differential-

algebraic equations;
3. algorithmic and complexity considerations in computer algebra;
4. algebraic methods in geometric modelling;
5. aspects of computer algebra programming languages;
6. automatic reasoning in algebra and geometry;
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7. complexity of algebraic problems;
8. exact and approximate computation;
9. parallel symbolic-numeric computation;

10. Internet accessible symbolic and numeric computation;
11. problem-solving environments;
12. symbolic and numerical computation in systems engineering and

modelling;
13. computer algebra in industry;
14. solving problems in the natural sciences;
15. numerical simulation using computer algebra systems; and
16. mathematical communication.

This workshop, like the earlier CASC workshops, was intended to provide
a forum for researchers and engineers in the fields of mathematics, computer
science, numerical analysis, and industry, to interact and exchange ideas. An
important goal of the workshop was to bring together all these specialists for
the purpose of fostering progress on current questions and problems in advanced
scientific computing.

CASC 2005 featured two satellite workshops

• Algebraic and Matrix Computation with Applications, organized by I.Z. Emiris,
B. Mourrain, and M.N. Vrahatis

• Kalamata Combinatorics, organized by I.S. Kotsireas and C. Koukouvinos

Researchers from France, Germany, Italy, Greece, Spain, Russia, Japan, USA,
Canada, Czech Republic, and Egypt participated in CASC 2005.

CASC 2005 wishes to acknowledge generous support from sponsors:

• Hellenic Ministry of Culture, Y ΠΠO, Athens, Greece
• Maplesoft, Waterloo, Ontario, Canada
• National and Kapodistrian University of Athens, Greece
• University of Patras, Greece
• Wilfrid Laurier University, Waterloo, Ontario, Canada

Our particular thanks are due to the CASC 2005 conference chairs and mem-
bers of the Local Organizing Committee I.Z. Emiris (Athens), I.S. Kotsireas
(Waterloo), and M.N. Vrahatis (Patras), who ably handled local arrangements
in Kalamata. We also thank the members of the General Organizing Commit-
tee, W. Meixner and A. Schmidt, in particular for their work in preparing the
conference proceedings.

Munich, July 2005 V.G. Ganzha
E.W. Mayr

E.V. Vorozhtsov
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Domingo Gómez, Jaime Gutierrez, Álvar Ibeas . . . . . . . . . . . . . . . . . . . . 196

Algebraic Topological Analysis of Time-Sequence of Digital Images
Rocio Gonzalez–Diaz, Belen Medrano, Pedro Real,
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On Regular and Logarithmic Solutions of

Ordinary Linear Differential Systems�

S.A. Abramov1, M. Bronstein2, and D.E. Khmelnov1

1 Dorodnicyn Comp. Center of the Russ. Acad. of Sciences, Moscow 119991, Russia
{sabramov, khmelnov}@ccas.ru

2 INRIA – Café, BP 93, 06902-Sophia Antipolis Cedex, France

Abstract. We present an approach to construct all the regular solutions
of systems of linear ordinary differential equations using the desingular-
ization algorithm of Abramov & Bronstein (2001) as an auxiliary tool.
A similar approach to find all the solutions with entries in C(z)[log z] is
presented as well, together with a new hybrid method for constructing
the denominator of rational and logarithmic solutions.

1 Introduction

Let C be an algebraically closed field of characteristic 0, z be an indeterminate
over C, and

L = Qρ(z)Dρ + · · ·+Q1(z)D +Q0(z), (1)

where D = d/dz and Qρ(z), . . . , Q0(z) ∈ C[z]. A regular solution of Ly = 0
(or of L) at a given point z0 ∈ C, is a solution of the form (z − z0)λF (z) with
F (z) ∈ C((z − z0))[log(z − z0)], where C((z − z0)) is the field of (formal) Lau-
rent series over C. If F (z) has valuation 0, then λ is called the exponent of
the regular solution (otherwise it is an exponent modulo Z). Using the change
of variable z̄ = z − z0, we can assume without loss of generality that z0 = 0.
The problem of constructing all the regular solutions is solved by the Frobenius
algorithm (1873, [8, Chap.IV],[9],[14, Chap.V]), which is based on the indicial
equation f(λ) = 0 of L at 0. Not only the roots of f(λ) = 0, each taken sepa-
rately, are substantial for the Frobenius algorithm, but also their multiplicities
and whether some roots differ by integers. Later, in 1894, L. Heffter proposed
another algorithm to solve the same problem ([10, Kap.II,VIII],[14, Chap.V]).
For a given root λ of the indicial equation, Heffter’s algorithm constructs a basis
(possibly empty) for all the regular solutions with exponent λ. Once λ is fixed,
that algorithm does not depend on the multiplicity of λ, nor on the existence of
another root at an integer distance from λ. It constructs a sequence E0, E1, . . .
of linear differential equations, whose right-hand side contains solutions of the
preceding equations. If

zλ

(
g0(z) + g1(z)

log z
1!

+ g2(z)
log2 z

2!
+ · · ·+ gm(z)

logm z

m!

)
� Work partially supported by the ECO-NET program of the French Foreign Affairs

Ministry, project No. 08119TG, and by RFBR grant No. 04-01-00757.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 S.A. Abramov, M. Bronstein, and D.E. Khmelnov

is a regular solution of (1) then gi(z) ∈ C((z)) is a solution of Ei for each i. All
the regular solutions of (1) with exponent λ have been found when we reach an
equation Em+1 that has no nonzero Laurent series solution.

To apply the original Frobenius or Heffter algorithm at an arbitrary sin-
gularity of a system of linear differential equations would require transforming
the system to a scalar differential equation (e.g. by the cyclic vector method).
That scalar equation usually has huge coefficients, making this approach quite
unpractical. If z = 0 is a regular singularity of a first-order system of the form

dY

dz
= A(z)Y (z), A(z) ∈ MatN (C(z)) (2)

then, it is possible in theory to use a variant of the Frobenius algorithm that can
be applied directly [8, p. 136, exercise 13], but this approach cannot be applied
to irregular singularities or higher-order systems.

A generalization of Heffter’s algorithm for constructing the regular solutions
of first order systems of the form (2) is described in [5, §5] (an extended version is
in [6, §3]). That algorithm is direct, i.e. it does not use any uncoupling procedure.
A necessary step is however to find all the Laurent series solutions of a given
system. For this task and for producing the indicial equation f(λ) = 0, the
algorithm of [6,5] transforms the system into its super-irreducible form (see [11]).

We describe in this paper another adaptation of Heffter’s algorithm to linear
differential system, which uses the desingularization algorithm of [2,3] instead of
transforming a system into its super-irreducible form. This allows us to handle
higher order systems, i.e. operators such as (1) where the Qi are matrices of
polynomials, directly, i.e. without converting them to larger first-order systems.
We study the efficiency of the approach both from the theoretical and practical
viewpoints, and it shows that solving them directly is more efficient.

In a similar way, we solve the related problem of finding all the solutions
with entries in C(z)[log z], which we call logarithmic solutions. This problem
is decomposed into first finding a universal denominator for the solutions, and
then finding solutions with entries in C[z][log z]. The latter problem is solved
by a slightly modified version of our algorithm for the regular solutions. For the
denominator, in addtion, we propose a new hybrid method that combines the
algorithm of [2] with a reduction algorithm specific to regular singularities [7].
The hybrid method is applicable to the case of first order systems, and in this
case it speeds up the computation quite often (see Sect. 5).

2 Desingularization of Linear Recurrence Systems

Linear recurrences with variable coefficients are of interest for many applications
(e.g. combinatorics and numeric computation). Consider a recurrence of the form

Pl(n)xn+l + Pl−1(n)xn+l−1 + · · ·+ Pt(n)xn+t = rn (3)

where l ≥ t are arbitrary integers, x = (x1, . . . , xN )T is a column vector of un-
known sequences (such that xi = (x1

i , . . . , x
N
i )T ), Pt(n), . . . , Pl(n) ∈MatN (C[n]),
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Pt(n) �= 0 �= Pl(n) and rn ∈ C[n]N . The matrices Pl(n) and Pt(n) are called
respectively the leading and trailing matrices of the recurrence. When Pt(n) and
Pl(n) are nonsingular, the roots of their determinants are important for deter-
mining the structure of the solution space, as they give bounds on the solutions
whose support is bounded above or below. It may happen however that Pt(n)
or Pl(n) is singular (or both). In that case, they do not yield bounds on the
solutions, but it is also difficult, from a computational standpoint, to use the
recurrence (3) to compute the sequence of vectors that it generates. A natural
solution in that case is to transform the recurrence system into an equivalent
one with either the leading or trailing matrix nonsingular. That transformation
may be a “quasi–equivalence”, in the sense that the eventual changes in the so-
lution space can be easily described. Such a transformation (the EG-algorithm)
was developed in [1] and later improved in [2]. In addition to the transformed
system, it also yields a finite set of linear constraints such that the solutions of
the original system are exactly those of the transformed system that also satisfy
the new constraints (each of the constraints is a linear relation that contains a
finite set of variables xj

i ).

3 Regular Solutions

We consider in this section the higher order system LY = 0 where L is of the
form (1) with Q0, . . . , Qρ ∈MatN (C[z]) and Qρ nonsingular.

3.1 Description of the Algorithm

Using the standard basis (zm)m≥0 of C[z], we construct (see [2, §2]) its associated
recurrence system Rc = 0, where R = Pl(n)El + · · · + Pt(n)Et, E is the shift
operator and Pj(n) ∈MatN (C[n]) for t ≤ j ≤ l. If detPl(n) is identically 0, then
it is possible (see Section 2) to transform the recurrence system into an equivalent
one (together with a finite set of linear constraints) with detPl(n) �= 0, so assume
from now on that ϕ(n) = detPl(n) �= 0. Let ψ(n) = ϕ(n − l) and n0, n1 be
respectively the minimal and maximal integer roots of ψ(n) (if there is no integer
root, then LY = 0 has no Laurent series solution). Any Laurent series solution of
LY = 0 has no term ckz

k with ck ∈ CN and k < n0. Using the recurrence Rc = 0
and the additional constraints, we can, by a linear algebra procedure, compute
a basis of the linear space of initial segments cn0z

n0 + cn0+1z
n0+1 + · · ·+ cMzM ,

where M is a fixed integer, chosen greater that n1 and all the indices appearing
in the linear constraints. Observe that if our differential system is inhomogeneous
with a Laurent series right-hand side (whose coefficients are given by a linear
recurrence system), then we can similarly construct a basis of the affine space of
its Laurent series solutions. If ψ(n) has a non-integer root λ, then the preliminary
change of variable Y = zλȲ produces a new system for Ȳ , hence a new recurrence
with a new ψ̄(n) = ψ(n − λ). Therefore, we can always work with the integer
roots of ψ. For any integer m ≥ 0, the result of applying L to g(z) logm(z)/m!
is clearly of the form

Lm,m(g)
logm z

m!
+ · · ·+ Lm,1(g)

log z
1!

+ Lm,0(g), (4)
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where the coefficients of the differential operators Li,j belong to MatN (C(z)).
Proofs of the following proposition can be found in [10] and [12, Sect. 3.2.1].

Proposition 1. The coefficients of all the Li,j in (4) belong to MatN (C[z, z−1]).
In addition, L0,0 = L and Li+j,j = Li,0 for any i, j ≥ 0.

Let Li = Li,0(= Li+j,j for any j ≥ 0). Using (4) and Proposition 1 we obtain

L

(
k∑

m=0

gk−m(z)
logm z

m!

)
=

k∑
m=0

⎛⎝k−m∑
j=0

Lj(gk−m−j)

⎞⎠ logm z

m!
.

Therefore,

Y =
k∑

m=0

gk−m(z)
logm z

m!
(5)

is a solution of LY = 0 if and only if (g0(z), . . . , gk(z)) is a Laurent series solution
of the inhomogeneous linear system

L0(gi) = −
i∑

j=1

Lj(gi−j) for 0 ≤ i ≤ k . (6)

When we find g0(z) using the first equation L0(g0) = 0 of (6), that solution con-
tains arbitrary constants. When we use g0(z) in the right-hand side of the next
equation L0(g1) = −L1(g0) of (6) those arbitrary constants appear linearly in the
right-hand side. Using the same technique as when solving such scalar paramet-
ric inhomogeneous equations (see for example [4]), we find together with g1(z)
linear constraints on the arbitrary constants appearing in g0 and g1. Repeating
this process, we find at each step that g0, . . . , gi depend on unknown constants
together with a linear system for those constants. In order for this process to
terminate, we need to ensure that we always reach an integer k such that (6)
has no Laurent series solution with g0 �= 0. Heffter proved this in the scalar case,
and his proof carries over to systems.

Proposition 2. The set K = {k ≥ 0 such that (6) has a solution with g0 �= 0}
is finite. If K is empty, then LY = 0 has no nonzero solution in C((z))[log z].
Otherwise, K = {0, . . . , μ} for some μ ≥ 0 and any solution in C((z))[log z] of
LY = 0 has the form (5) where (g0, . . . , gμ) is a solution of (6) with k = μ.
In addition, any solution of (6) with entries in C((z)) generates a solution of
LY = 0.

Proof. Let Gk be the linear space of all the (regular) solutions of the form (5) of
LY = 0, and Y ∈ Gk. Writing Y =

∑k+1
m=0 hk+1−m(z) logm(z)/m! where h0 = 0

and hi+1 = gi for 0 ≤ i ≤ k, we see that G0 ⊆ G1 ⊆ · · · ⊆ Gk ⊆ Gk+1 ⊆ · · ·.
Let k > 0 be in K and (g0, . . . , gk) be a solution of (6) with g0 �= 0. Then,
(g0, . . . , gk−1) is a solution of (6) with k − 1 and so on, which implies that
{0, . . . , k} ⊂ K and that dimC Gk ≥ k. This produces k linearly independent



On Regular and Logarithmic Solutions 5

solutions of the form (5) of LY = 0. On the other hand, since LY = 0 is
equivalent to a scalar equation of order at most ρN , dimC Gk ≤ ρN for all k, so
K is either empty or of the form {0, . . . , μ} for some μ ≤ ρN . Therefore, if we
compute G0, G1, . . . using (6), we eventually find an integer k ≤ ρN for which
the system (6) has a solution only for g0 = 0. At this point, Gk−1 contains all
the solutions of LY = 0 with entries in C((z))[log z].

Summarizing, our scheme for constructing regular solutions of LY = 0 is:

1. Construct its associated matrix recurrence in the form (3) and transform it
into an equivalent one with nonsingular leading matrix (see Section 2). Let

P ′
l (n)zn+l + P ′

l−1(n)zn+l−1 + · · ·+ P ′
t (n)zn+t = r′n (7)

be the resulting recurrence (it may include in addition a set of linear con-
straints). Compute all roots of ϕ(n) = det(P ′

l (n)), divide them into groups
having integer differences, and construct the set Λ consisting of one repre-
sentative for each groups.

2. For each λ ∈ Λ, compute regular solution whose exponent is λ:
(a) Compute a system Sλ by substituting Y = zλYλ and by following multi-

plication of the system by zρ−λ. This induces a transformation of (7). We
get a recurrence Rλ: P ′′

l (n)zn+l +P ′′
l−1(n)zn+l−1 + · · ·+P ′′

t (n)zn+t = r′n,
where P ′′

i (n) = P ′
i (n + λ), i = l, l − 1, . . . , t, and since P ′

l (n) is nonsin-
gular, so is P ′′

l (n) and no additional desingularisation is required. The
transformed recurrence Rλ may include a set of linear constraints which
are transformed correspondingly.

(b) Determine the number Mλ of required initial terms of Laurent series,
which is greater than all the integer roots of the determinant of the
leading matrix of Rλ as well as all the indices appearing in the additional
constraints.

(c) Successively solve systems (6) for the required number of terms of its
Laurent series solutions, using the recurrence Rλ while it is possible.
This yields regular solutions yλ of Sλ in the form (5).

3. Combine all the solutions into the general regular solution y =
∑

λ∈Λ z
λyλ.

Note that we construct regular solutions by representing all involved Laurent
series by truncated expansions until an appropriate terms, such that the number
of linearly independent solutions is determined correctly and computation of the
subsequent terms can be performed one by one by means of recurrenses {Rλ}.
3.2 Computing and Implementation Remarks

The Associated Recurrence System. The main part of the algorithm is
solving the individual systems from the sequence (6). Note however that all
those systems have in the left-hand side the same operator L0 = L. Therefore,
the associated linear recurrence systems also have the same left-hand sides, but
their right-hand sides are different. In order to desingularize the recurrence sys-
tem only once, we apply during the first desingularization (step 1 above) all the
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transformations to a generic right-hand side. As a result, we have the transformed
recurrence with a non-singular leading matrix, a finite set of linear constraints
and the transformed right-hand side in a generic form. Each component of this
generic transformed right-hand side is a linear combination of possibly shifted
components of the original right-hand side before desingularization. In this way
we can use the same transformed recurrence for solving any system from the
sequence (6) specifying the concrete right-hand side by substituting the corre-
sponding values into the generic right-hand side (such substitutions commute
with any elementary transformation that our desingularization algorithm uses).

Computing the Right-Hand Sides. This is not so simple since the right-hand
side for the i-th system in (6) is hi = −∑i

j=1 Lj(gi−j), where g0, . . . , gi−1 are
Laurent series solutions of the preceding systems. Since we represent (truncated)
Laurent series solution by segment of initial terms, we need to determine the
required numbers of initial terms of g0, . . . , gi−1. That number is determined
in an algorithmic way and depends on the number Mλ of initial terms of the
transformed right-hand side, which is determined in step 2b of the algorithm for
all the systems in the sequence (6), and ensures that the next terms of the series
are computed from the preceding ones by a simple use of the recurrence. So we
compute the transformed right-hand side in the following way:

1. Taking into account Mλ and the components of the transformed generic
right-hand side, compute the numbers of required initial terms of the com-
ponents of the right-hand side before transformation, to ensure that the
number of initial terms in the transformed right-hand side is equal to Mλ.

2. Taking into account the form of the operators L1, . . . , Li, compute the num-
bers of initial terms of g0, . . . , gi−1 required to ensure the needed numbers
of initial terms of the components of right-hand side before transformation.

3. Compute the corresponding initial segments of g0, . . . , gi−1.
4. Compute the initial segment of the right-hand side before transformation

substituting the initial segments of g0, . . . , gi−1 into hi.
5. Compute the initial segment of the transformed right-hand side substituting

the initial segment of the right-hand side before transformation into the
transformed generic right-hand side.

Extending Solution Components. Computing the transformed right-hand
side depends on computing the initial segments of g0, . . . , gi−1 (step 3 in Sec-
tion 3.2). Since the required number of initial terms of the solution component gk

may be greater than the number of the initial terms computed in the preceding
steps of the algorithm, we need to extend that component, which requires com-
puting additional terms using the associated recurrence. This means in turn that
we need to extend the corresponding transformed right-hand side, computing it
using the approach from Section 3.2 while replacing Mλ by the new number.
Note that this may again require extending other solution components, so this
procedure is recursive.
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Computing Initial Segments. When we compute the transformed right-hand
side of the recurrence, solving a system from the sequence (6) for the required
number of initial terms can be done step by step using the recurrence. In each
step one of the following options occurs:
- the next term is computed as a function of the previous terms;
- a linear constraint on the previous terms appears, which can be either solved
or inconsistent, in which case there is no Laurent series solution;
- the next term is a new arbitrary constant (which may be specified later in the
computation when solving constraints).
After all those steps, either all the initial terms have been computed (some of
them being arbitrary constants) or we have proven that there is no Laurent series
solution. Note that:

1. Since each of the g0, . . . , gi−1 may have arbitrary constants, the right-hand
side for the i-th system in the sequence (6) may have the same arbitrary
constants. This leads to the fact that, during the computation of the Lau-
rent series solution of the i-th system, some of the arbitrary constants may
be specified when resolving newly appearing constraints. This could turn
the current initial segment of g0 to zero. Since the number of terms in the
segment is such that all the remaining terms are computed by the associ-
ated recurrence whose leading matrix is non-singular, this implies that g0
is identically zero. As noted earlier, when this happens, then all the solu-
tion components have been computed and i-th system has no Laurent series
solutions with g0 �= 0.

2. As noted earlier, since Gk ⊂ Gk+1, we can use only the last solution found of
the form (5) with g0 �= 0 as the regular solution whose exponent is λ, since
it also contains all the previously found solutions of that form.

4 Logarithmic Solutions

Finding regular solutions is a local problem. We consider in this section the
analogous global problem of finding solutions whose entries are in C(z)[log z] of
the higher order system LY = 0 where L is of the form (1) with Q0, . . . , Qρ ∈
MatN (C[z]) and Qρ nonsingular. In the case of first-order systems Y ′ = AY , an
algorithm, based on super-irreducible forms, for computing such solutions was
presented in [5]. As for regular solutions, we present here an alternative that does
not require conversion to first order systems, and that uses desingularization
(see Section 2) instead of super-irreducible forms. Recall that finding rational
solutions of LY = 0 proceeds in two distinct steps: we construct first a universal
denominator, i.e. d ∈ C[z] such that dY ∈ C[z]N for any solution Y ∈ C(z)N

of LY = 0. We then search for the polynomial solutions of the system obtained
by the change of variable Ȳ = dY in L. As remarked in [5, §5.1], a universal
denominator for rational solutions is also valid for logarithmic solutions. As
described in [2, §8.1], the irreducible factors of a universal denominator must
all divide det(Qρ) and we can compute such a universal denominator using the
algorithm described there. This reduces our problem to finding solutions whose
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entries are in C[z][log z]. Before solving that problem in Section 4.2, we first
present a heuristic for accelerating the computation of universal denominators
in the case of first-order systems.

4.1 A Hybrid Heuristic for First-Order Systems

We restrict in this section our systems to be of the form (2). If all the finite
singularities of that system are known to be regular, then the reduction method
of [7] transforms all of them simultaneously into simple poles, that is, it returns
a change of variable that transforms the system into an equivalent one where the
denominator of A is squarefree. In that case, the exponents at all the singularities
can be easily computed as eigenvalues of the associated residue matrices, yielding
a fast way to compute a universal denominator. That algorithm repeats the
following single reduction step: as long as the denominator of A is not squarefree,
choose a row of A whose common denominator d ∈ C[z] is not squarefree. Using
only extended gcd computations, compute an invertible T ∈ MatN (C(z)) whose
rows form a C[z]-basis of the free C[z]-module C[z]1×N +C[z]ω where C[z]1×N

is the module of row-vectors and ω is the selected row of A multiplied by the
squarefree part of d. Apply then the change of variable Ȳ = TY to dY/dz = AY
and repeat this process, which is shown in [7] to yield a matrix with a squarefree
denominator after finitely many steps.

Not much is known about the behavior of that algorithm in the presence of
irregular singularities (except that it cannot terminate!) but we use it here as a
heuristic to separate the (proven) regular and (putative) irregular singularities
of the system. Since the proven regular singularities are transformed into simple
poles in this process, we use the eigenvalue approach to compute their exponents,
limiting the use of desingularization to the remaining ones. Note that wrongly
classifying a singularity as irregular does not affect the correctness of the hybrid
method, since going through the recurrence approach at such singularities yield
a correct bound. This yields the following hybrid heuristic for the universal
denominator, given a first-order system in the form (2):

1. Initialize the set of proven regular singularities to be R := ∅ and the universal
denominator to be U := 1.

2. Compute an irreducible factorisation of the denominator of A, the set F of
its irreducible factors and the subset F1 of factors having multiplicity 1.

3. Initialize the set S := F of “unclassified” singularities.
4. Repeat the following steps:

(a) For each factor in f ∈ F1 (proven regular singularities) compute its
exponent e ≥ 0 in the universal denominator by the classical approach
for simple poles. Update U := Ufe.

(b) Update R := R ∪ F1 followed by S := S\R.
(c) Repeat the single reduction step of [7] described above, limiting it to the

factors in S (see below), and get the transformed system with matrix
Ar until either (i) a new squarefree factor of the denominator of Ar is
found, or (ii) we have determined that all the elements of S correspond
to putative irregular singularities, using the following heuristic: for each
f ∈ S compute
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– mf — minimal positive multiplicity of f in the denominators of the
rows of the original A

– mf ′ — the same but for the rows of the transformed Ar

– sf — sum of the multiplicities of f in the denominators of the rows
of the original A

– sf ′ — the same but for the rows of the transformed Ar

We declare f to be a putative irregular singularity if one of the following
conditions hold:
– mf ′ > mf ;
– mf ′ = mf and sf ′ > sf ;
– mf ′ = mf , sf ′ = sf and this situation is repeated for the third

successive single reduction step (note that we count the number of
such successive stabilities of mf and sf and pass that count from
one reduction step to the next one)

If f has been declared to be a putative irregular singularity, then we
remove it from S for the next single reduction step.

(d) Let F1 ⊂ F\R be the set of factors of the denominator of Ar with
multiplicity 1. If F1 �= ∅, then go back to step 4a otherwise leave the
loop.

5. For each f ∈ F\R (putative irregular singularities) compute its exponent
e ≥ 0 in the universal denominator by the desingularization approach of [2]
(see Sect. 2). Update U := Ufe.

Note that the above algorithm is computing the exponent of factors reduced to
simple poles as soon as they appear during the reduction, so we can exclude
them from the following reductions. This is more efficient than computing them
at the end since each single reduction step increases the degrees and coefficients
of the entries of Ar. We can use the exponents computed using the transformed
matrix Ar at each step as the correct exponents in a universal denominator for
the original matrix A because the change of variables at each single step are
given by inverses of polynomial matrices [7, Theorem 2].

To limit the single reduction step to the factors in S ⊂ F at step 4c, we
adapt the single reduction step as follows: the denominator d of each row of A
can be factored as d =

∏
p∈S p

ep
∏

q/∈S q
eq . Choose a row of A for which ep > 1

for some p ∈ S, let ω be that row of A multiplied by
∏

p∈S p
min(ep,1)

∏
q/∈S q

eq

and compute a basis of C[z]1×N + C[z]ω as explained above.
A final remark about the hybrid method: there is some arbitrariness in select-

ing the row used in the single reduction step. In our implementation, we select
the row with the maximal sum of the multiplicities of the factors from S in its
denominator.

4.2 Solutions with Entries in C[z][log z]

Since our algorithm for finding regular solutions at z = 0 returns truncated
Laurent series, it can easily be adapted to return only the solutions with entries
in C[z][log(z)]. Only the following changes are needed:
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– Instead of dynamically bounding the number of terms of the series to com-
pute, we compute an upper bound of the degrees of the polynomial solutions
and use that number of terms. Such an upper bound is computed from the
roots of the determinant of the trailing matrix of the associated recurrence
system (see [1,2] for details).

– As we are not interested in the zλ factors, we skip the computation of the
set Λ of exponents modulo Z at z = 0.

This yields the following algorithm for solutions in C[z][log z]:

1. Construct its associated matrix recurrence in the form (3) and transform it
into an equivalent one R with Pt(n) nonsingular (see Section 2).

2. Compute an upper bound M on the degree of the polynomial solutions from
the integer roots of detPt(n).

3. Successively solve systems (6) for their polynomial solutions, using the re-
currence R while it is possible. This means setting all the coefficients of
the series with negative indices to 0 and computing truncated series up to
the degree bound. As we compute successive right-hand sides, we can refine
our degree bound. Since the polynomials are computed completely, there
is no need to extend them as we compute additional right-hand sides. As
we used a recurrence with nonsingular trailing matrix to bound the degree,
it is natural to use it again in this step to compute the coefficients of the
polynomials. So we compute them starting with the coefficients of highest
degree and work down to the constant coefficients. For regular solutions, we
used a nonsingular leading matrix to get the exponents and precisions, so
we obtained the coefficients in the reverse order.

5 Complexity and Experimental Comparisons

Consider the higher order system LY = 0 where L is of the form (1) with
Q0, . . . , Qρ ∈MatN (C[z]) and Qρ nonsingular. Let δ be a bound on the degrees
of the entries of the Qi’s. There is no known complete complexity analysis for
our method, nor for the method of [6]. However, since our method computes
only one desingularisation (see Sect. 3.1) and the method of [6] computes only
one super-irreducible form, we attempt here to compare those operations.

The basic operation for desingularisation is computing ranks and nullspaces
of matrices of polynomials. Using [15], this has a complexity of O∼(nωd) oper-
ations in C, where n is the size of the matrix, d a bound on the degree of its
entries, ω the exponent of matrix multiplication and theO∼ notation means that
we ignore logarithmic factors. The leading matrix of our recurrence is of size N
and its entries are of degree bounded by ρ (and not δ since the transformation
from differential equations to recurrences sends D to n), so the first nullspace
has a cost of O∼(Nωρ).

The basic operation for super-irreducible forms [11] is computing character-
istic polynomials of matrices of polynomials. Using [13] this has a a complexity
of O∼(nω+1/3d) operations in C. Since LY = 0 must first be converted to a
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first order system of size Nρ, the first characteristic polynomial has a cost of
O∼(Nω+1/3ρω+1/3δ).

In practice, we expect desingularization and super-irreducible forms to con-
verge quickly, i.e. to compute relatively few nullspaces or characteristic polyno-
mials. In theory, desingularization can require N(δ + ρ) nullspaces in the worst
case. Since we do not know the growth of the degrees of the entries, this only
yields the approximate complexity of O∼(Nω+1(δ + ρ)F (ρ)) where F (ρ) en-
codes the growth in the degrees. Similarly, super-irreducible forms can require
s(s+1)/2 characteristic polynomials in the worst case, where s is the polar order
of the matrix at z = 0, which can be as high as δ. This then yields an approxi-
mate complexity of O∼(Nω+1/3ρω+1/3G(δ)3) where G(δ) encodes the growth in
the degrees.

We have implemented our regular solution algorithm in Maple on top of
the package LinearFunctionalSystems, which contains solvers based on [2].
Our function returns the regular solutions with truncated Laurent series of a
linear differential system with polynomial coefficients. The number of terms of
the series is determined automatically to ensure that the remaining terms of the
series can be computed using the associated recurrences (i.e. its leading matrix
is invertible for all the remaining terms). In order to extend initial segments
of the Laurent series, another function is provided, which returns the regular
solution with the series extended to a given degree.

For comparison purposes, we used the Maple package ISOLDE, which imple-
ments the algorithm of [6]. We compared the two programs on several sets of
generated systems 1. Although our program is faster in the majority of examples,
the gains for first-order systems are only by a small constant factor. Moreover,
since the programs use different approaches, this comparison can only conclude
that the two methods are of comparable efficiency for first-order systems and
their weak and strong features are displayed on different systems. For exmaple,
for one of the sets, most systems were solved faster by our program, but ISOLDE
had a lower total CPU time for one of the subsets since it solved much faster a few
systems in that subset. Those results indicate as well the difficulty of developping
a polyalgorithm that would automatically detect the most efficient method to
use for each particular input. The main advantage of our method is however its
direct applicability to higher-order systems, where the experimental results con-
firm the better efficiency. For the comparison we generated a set of higher-order
systems and as well transformed all the systems in the set to corresponding first
order systems. Then we solved the higher-order systems directly by our program
and solved the corresponding first-order systems both by our program and by
ISOLDE. All systems in the set were solved faster by direct approach. To be fair,
we should remark that our program has been steadily improved by the recent up-
date of some modules, while ISOLDE has not been updated for a long time. So we
do not exclude the possibility that further improvements in ISOLDE could lead
to some changes in our comparisons. They nevertheless reflect accurately the

1 All comparisons are available at www.ccas.ru/sabramov/casc2005.html
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current status of those programs, as well as parallel similar conclusions obtained
by comparing them on the computation of rational solutions [3].

We have also implemented our logarithmic solution algorithm on top of the
package LinearFunctionalSystems, together with an option in the correspond-
ing procedure UniversalDenominator to allow the use of the hybrid heuristic.
Again we generated several sets of systems, and solved them with and without
the hybrid heuristic for the universal denominator. The results showed that the
hybrid method generally yields a significant speedup, though it might lead to
additional work without any gain sometimes.
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Abstract. We describe an algorithm for computing the zero-th and the
first Betti numbers of the union of n simply connected compact semi-
algebraic sets in Rk, where each such set is defined by a constant number
of polynomials of constant degrees. The complexity of the algorithm
is O(n3). We also describe an implementation of this algorithm in the
particular case of arrangements of ellipsoids in R3 and describe some of
our results.

1 Introduction

Arrangements of geometric objects in fixed dimensional Euclidean space are
fundamental objects in computational geometry [15]. Usually it is assumed that
each individual object in such an arrangement has a simple description – for
instance they are semi-algebraic sets defined by Boolean formulas involving a
constant number of polynomial inequalities, with the degrees of the polynomials
also bounded by a constant. Arrangements of semi-algebraic sets are distin-
guished from arrangements of lines or hyperplanes by the fact that the former
can be much more complicated topologically, compared to arrangements of affine
subspaces. For instance, a single algebraic hyper-surface or intersections of two
or more hyper-surfaces, can have non-vanishing higher co-homology groups and
thus sets defined in terms of such hyper-surfaces can be topologically complicated
in various non-intuitive ways.

An important topological invariant of arrangements are the Betti numbers,
bi(S), which are the ranks of Hi(S) (the i-th simplicial co-homology group with
coefficients in Q). Intuitively, bi(S) measures the number of i dimensional holes
in the set S. The zero-th Betti number, b0(S), is the number of connected com-
ponents. For example, if S is the sphere (or an ellipsoid) in R3, then b0(S) = 1,
b1(S) = 0, b2(S) = 1 and bi(S) = 0, i > 2.

There has been a significant amount of research into developing efficient algo-
rithms for dealing with such arrangements. For instance, Chazelle, Edelsbrunner,
Guibas and Sharir [11] showed how to decompose an arrangement of n objects
in Rk into O∗(n2k−3) simple pieces. This was further improved by Koltun in the
case k = 4 [16]. However, these decompositions while suitable for many applica-
tions, are not useful for computing topological properties of the arrangements,
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c© Springer-Verlag Berlin Heidelberg 2005
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since they fail to produce a cell complex. Global topological invariants of an ar-
rangement, such as the Betti numbers, contain important information about the
arrangement and computing them is an essential step in obtaining a thorough
understanding of the topology of the arrangement. From a more practical point
of view, the Betti numbers are increasingly being used in practice to characterize
geometric objects for purposes of recognition (see for example [10]) and hence
computing them in a general setting is an important problem.

The problem of computing Betti numbers of arrangements has been studied
before from a computational viewpoint. Arrangements of finitely many balls
in R3 have been studied by Edelsbrunner [13] from both combinatorial and
topological viewpoint, motivated by applications in molecular biology. However,
these techniques use special properties of the objects, such as convexity, and
are not applicable in the more general setting considered in this paper. The
problem of computing the homology groups of a given non-singular, orientable
real algebraic hypersurface in RP3, described by a single polynomial equation
has been considered in [14]. However, our setting is quite different, since we are
interested in computing the Betti numbers of the union of many such sets. In
particular, this union will have very high degree as a real algebraic set, and
will rarely be a non-singular hypersurface. Finally, the problem of computing
the Betti numbers of semi-algebraic sets in single exponential time is considered
to be a very important open problem in algorithmic semi-algebraic geometry.
Recent progress has been made in several special cases (see [8, 5, 6]). However,
in the setting of algorithmic semi-algebraic geometry one studies the dependence
of the complexity on the degrees of the input polynomials, in addition to the
dependence on their number. In our setting, both the degrees and the number
of variables are assumed to be bounded by fixed constants. The complexity of
algorithm described in this paper has a dependence on the degree d of the input
polynomials in Rk of the form d2O(k)

. However, this is still bounded by a constant
by our assumptions.

One basic ingredient in most algorithms for computing topological properties
of arrangements of semi-algebraic sets is an algorithm, called cylindrical alge-
braic decomposition [12, 7] which decomposes a given semi-algebraic set into
topological balls. Cylindrical algebraic decomposition can be used to compute
a semi-algebraic triangulation of an arrangement (see [7], page 163), and from
this triangulation one can compute the homology groups, Betti numbers etc.
One disadvantage of cylindrical algebraic decomposition is that it uses iterated
projections (reducing the dimension by one in each step) and the number of
polynomials (as well as the degrees) square in each step of the process. Thus,
the complexity of performing cylindrical algebraic decomposition with n sets in
Rk is O(n2k

) which makes it impractical in most cases for computing topological
information of arrangements.

One method of getting around this difficulty was suggested in [4], where an
algorithm was described for computing the first 
 Betti numbers of an arrange-
ment using O(n�+2) different triangulations each of at most 
+2 of the sets at a
time. This method avoids the double exponential (in the dimension) blow-up of
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cylindrical algebraic decomposition, and does not compute a triangulation of the
whole arrangement, but yet is able to compute the Betti numbers of the arrange-
ments. However, even computing these local triangulations can be prohibitively
expensive in practice.

In this paper, we consider arrangements of compact objects in Rk which are
simply connected. This implies, in particular, that their first Betti number is zero.
We describe an algorithm for computing the zero-th and the first Betti number
of such an arrangement, along with its implementation. For the implementation,
we restrict our attention to arrangements in R3 and take for our objects the
simplest possible semi-algebraic sets in R3 which are topologically non-trivial
– namely, each object is an ellipsoid defined by a single quadratic equation.
Ellipsoids are simply connected, but with non-vanishing second co-homology
groups. We also allow solid ellipsoids defined by a single quadratic inequality.
Computing the Betti numbers of an arrangement of ellipsoids in R3 is already a
challenging computational problem in practice and to our knowledge no existing
software can effectively deal with this case. Note that arrangements of ellipsoids
are topologically quite different from arrangements of balls. For instance, the
union of two ellipsoids can have non-zero first Betti number, unlike in the case
of balls.

In our algorithm we do not need to compute any triangulations. Instead, we
use cylindrical algebraic decompositions to identify the connected components of
the pairwise and triple-wise intersections of the input ellipsoids. For computing
these local cylindrical algebraic decompositions we use a package, QEPCAD B1,
which is currently the one of the best (for our needs) available packages for
computing cylindrical algebraic decomposition. We note that in our examples
QEPCAD B fails to produce a global cylindrical algebraic decomposition, while
it can produce all the local ones that we need.

Theoretically, our algorithm is similar to the one described in [8] for com-
puting the first Betti numbers of semi-algebraic sets in single exponential time.
The main difference is that we do not compute contractible covers. Instead, we
utilize the fact that the first co-homology groups of the input objects are trivial.
In order to prove the correctness of our algorithm, we show that the main math-
ematical result behind correctness of the algorithm in [8] is in fact valid with the
weaker assumption that the elements of the cover have vanishing co-homology
in dimension one (see Proposition 1 below). We include several examples of our
computations involving up to 20 ellipsoids in R3.

The main contribution of this paper is the following: We describe an algo-
rithm for computing the zero-th and the first Betti numbers of the union of n
simply connected compact semi-algebraic sets in Rk. The algorithm does not
use triangulations. The complexity of the algorithm is O(n3). We also describe
an implementation of this algorithm in the particular case of arrangements of
ellipsoids in R3.

The rest of the paper is organized as follows. In Section 2, we describe the
theoretical and practical techniques used to obtain our results. In Section 3, we

1 available at http://www.cs.usna/∼qepcad
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describe some results obtained using our implementation, and finally in Section 4,
we summarize our current and future work.

2 Techniques

2.1 Topological Preliminaries

We first prove a topological result that will play a fundamental role in our
algorithm.

Let A1, . . . , An be sub-complexes of a finite simplicial complex A such that
A = A1 ∪ · · · ∪ An. Note that the intersections of any number of the sub-
complexes, Ai, is again a sub-complex of A. We will denote by Ai0,...,ip the
sub-complex Ai0 ∩ · · · ∩Aip .

Let Ci(A) denote the Q-vector space of i co-chains of A, and C•(A), the
complex

· · · → Cq−1(A) d−→ Cq(A) d−→ Cq+1(A)→ · · ·
where d : Cq(A) → Cq+1(A) are the usual co-boundary homomorphisms. More
precisely, given ω ∈ Cq(A), and a q + 1 simplex [a0, . . . , aq+1] ∈ A,

dω([a0, . . . , aq+1]) =
∑

0≤i≤q+1

(−1)iω([a0, . . . , âi, . . . , aq+1]) (1)

(here and everywhere else in the paperˆdenotes omission). Now extend dω to a
linear form on all of Cq+1(A) by linearity, to obtain an element of Cq+1(A).

The generalized Mayer-Vietoris sequence is the following:

0 −→ C•(A) r−→
∏
i0

C•(Ai0 )
δ1−→

∏
i0<i1

C•(Ai0,i1)

· · · δp−1−→
∏

i0<···<ip

C•(Ai0,...,ip)
δp−→

∏
i0<···<ip+1

C•(Ai0,...,ip+1) · · ·

where r is induced by restriction and the connecting homomorphisms δ are
described below.

Given an ω ∈∏i0<···<ip
Cq(Ai0,...,ip) we define δ(ω) as follows:

First note that δ(ω) ∈ ∏i0<···<ip+1
Cq(Ai0,...,ip+1), and it suffices to define

δ(ω)i0,...,ip+1 for each (p + 2)-tuple 0 ≤ i0 < · · · < ip+1 ≤ n. Note that,
δ(ω)i0,...,ip+1 is a linear form on the vector space, Cq(Ai0,...,ip+1), and hence is
determined by its values on the q-simplices in the complex Ai0,...,ip+1 . Further-
more, each q-simplex, s ∈ Ai0,...,ip+1 is automatically a simplex of the complexes
Ai0,...,îi,...ip+1

, 0 ≤ i ≤ p+ 1.
We define,

(δω)i0,...,ip+1(s) =
∑

0≤i≤p+1

(−1)iωi0,...,îi,...,ip+1
(s),
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The fact that the generalized Mayer-Vietoris sequence is exact is classical
(see [4] for example).

The co-homology groups H0(Ai0,...,ip) are isomorphic to the Q-vector space
of locally constant functions on Ai0,...,ip and the induced homomorphisms, δp :
H∗(Ai0,...,ip)→ H∗(Ai0,...,ip+1) are then given by generalized restrictions, i.e. for

φ ∈ ⊕1≤i0<···<ip≤nH
0(Ai0,...,ip),

where each φi0,...,ip is a locally constant function on Ai0,...,ip ,

δp(φ)i0,...,ip+1 =
p∑

i=0

(−1)iφi0,...,îi,...,ip+1
|Ai0,...,ip+1

.

The following proposition is a slightly strengthened version of a similar propo-
sition appearing in [8]. We do not require that the complexes Ai be acyclic, but
only that their first co-homology group vanishes.

Proposition 1. Let A1, . . . , An be sub-complexes of a finite simplicial complex
A such that A = A1 ∪ · · · ∪An and for each i, 1 ≤ i ≤ n,

1. H0(Ai) = Q, and
2. H1(Ai) = 0.

Let the homomorphisms δ1, δ2 in the following sequence be defined as above.∏
i

H0(Ai)
δ1−→
∏
i<j

H0(Ai,j)
δ2−→

∏
i<j<�

H0(Ai,j,�)

Then,

1. b0(A) = dim(Ker(δ1)),
2. b1(A) = dim(Ker(δ2)) − dim(Im(δ1)).

Proof. See Appendix.

As a direct corollary of the above proposition we have,

Corollary 1. Let S1, . . . , Sn ⊂ Rk be compact semi-algebraic sets such that for
each i, 1 ≤ i ≤ n,

1. H0(Si) = Q, and
2. H1(Si) = 0.

Let the homomorphisms δ1, δ2 in the following sequence be defined as above (iden-
tifying H0(X) with the Q-vector space of locally constant functions on X).∏

i

H0(Si)
δ1−→
∏
i<j

H0(Si,j)
δ2−→

∏
i<j<�

H0(Si,j,�)

Then,
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1. b0(S) = dim(Ker(δ1)),
2. b1(S) = dim(Ker(δ2))− dim(Im(δ1)).

Remark 1. Recall that we only consider simply connected objects as our input
sets Si. Hence, we have b0(Si) = 1 and b1(Si) = 0 for all sets Si. In particular,
we consider arrangements of ellipsoids R3 which are simply connected as well.
Moreover, the assumption that b0(Si) = 1 is not necessary, but simplifies the
implementation.

The importance of Corollary 1 lies in the following observation. Given an
arrangement, {S1, . . . , Sn}, of n simply connected objects in Rk, suppose we are
able to identify the connected components of all pairwise and triple-wise intersec-
tions of these objects and their incidences (that is, which connected component
of Si∩Sj ∩S� is contained in which connected component of Si ∩Sj). Then this
information is sufficient to compute the zero-th and the first Betti number of the
arrangement. We only have to look at the objects of the arrangement at most
three at a time. Thus, the cost of computing the connected components and
incidences is O(n3). This is to be compared with having to compute a global tri-
angulation of the whole arrangement using cylindrical algebraic decomposition
which would have entailed a cost of O(n2k

).
We solve the problem of identifying the connected components of the pairwise

and triple-wise intersections using cylindrical algebraic decomposition, which we
describe next.

2.2 Cylindrical Algebraic Decomposition

In this section, we recall some facts about cylindrical algebraic decomposition,
which is used to identify the connected components of the pairwise and triple-
wise intersections of the input ellipsoids. For more details on this subject, see
[7, 1, 2, 3].

Definition 1. A Cylindrical Algebraic Decomposition (CAD) of Rk is a
sequence S1, . . . ,Sk, where, for each 1 ≤ i ≤ k, Si is a finite partition of Ri into
semi-algebraic subsets (cells of level i), which satisfy the following properties:

Each cell C ∈ S1 is either a point or an open interval.
For every 1 ≤ i < k and every C ∈ Si there are finitely many continuous

semi-algebraic functions

ξC,1 < · · · < ξC,�C : C → R

such that the cylinder C×R ⊂ Ri+1 (also called a stack over the cell C)
is a disjoint union of cells of Si+1 which are:
either the graph of one of the functions ξC,j, for j = 1, . . . , 
C :

{(x′, xj+1) ∈ C × R|xj+1 = ξC,j(x′)},
or a band of the cylinder bounded from below and above by the graphs of the

functions ξC,j and ξC,j+1, for j = 0, . . . , 
C, where we take ξC,0 = −∞
and ξC,�C+1 = +∞.
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Note that a cylindrical algebraic decomposition has a recursive structure, i.e.
the decomposition of Ri induces a decomposition of Ri+1 and vice-versa.

Definition 2. Given a finite set P of polynomials in R[X1, . . . , Xk], a subset S
of Rk is P-invariant if every polynomial P in P has constant sign on S. A
cylindrical decomposition of Rk adapted to P is a cylindrical algebraic
decomposition for which each cell C ∈ Sk is P-invariant.

The following example illustrate the above definitions.

Example 1 (CAD adapted to the unit sphere). Let be S = {(x, y, z) ∈ R3 | x2 +
y2+z2−1 = 0} (see figure 1). The decomposition of R (i.e. the line) consists of five
cells of level 1 corresponding to the points −1 and 1 and the three intervals they
define. The decomposition of R2 (i.e., the plane) consists of 13 cells of level 2.
For instance, the two bands to the left and right of the circle, the two cells
corresponding to the points (−1, 0) and (1, 0) and the cell that corresponds to
the set C3,2 = {(x, y) | − 1 < x < 1, y = −√1− x2}. The CAD of R3 consists of
25 cells of level 3. For instance, the two cells corresponding to the points (−1, 0, 0)
and (1, 0, 0) and the cell that corresponds to the set C3,2,2 = C3,2 × {0}. For a
more detailed description of this example see [7], Chapter 5.1.

An important piece of information that we require from the cylindrical algebraic
decomposition algorithm is that of cell adjacency [3]. In other words, we need
to know given two cells in a set Si, whether the closure of one intersects the
other. In the above example, for instance, we have that the cell corresponding
to the point (−1, 0, 0) is adjacent to the cell C3,2,2. More details on this matter
are given in Section 2.3.

Thus, via a cylindrical algebraic decomposition adapted to a finite set P of
polynomials in R[X1, . . . , Xk] we get a graph where the vertices correspond to
cells in Sk and edges correspond to adjacencies. Moreover, each cell in Sk is P-
invariant and we know the sign for each P in P on each such cell. Hence, given an

Fig. 1. A cylindrical algebraic decomposition adapted to the unit sphere in R3



20 S. Basu and M. Kettner

arrangement, {S1, . . . , Sn}, of n semi-algebraic sets in Rk, we are able to identify
the connected components of all pairwise and triple-wise intersections of these
objects and their incidences by computing a cylindrical algebraic decomposition
adapted to the families Pi,j,�, 1 ≤ i < j < 
 ≤ n, where Pi,j,� is the set of
polynomials used in the definition of Si, Sj , and S� and by performing a graph
transversal algorithm on the graph described above.

We now formally describe our algorithm for computing the zero-th and the
first Betti numbers of an arrangement of n simply connected compact objects
in Rk.

Algorithm 1 (Computing the zero-th and the first Betti number)
Input: compact sets Si ⊂ Rk, 1 ≤ i ≤ n, with b0(Si) = 1 and b1(Si) = 0.
Output: b0(S) and b1(S).
Procedure:
Step 1: For each triple (i, j, 
), 1 ≤ i < j < 
 ≤ n, do the following:

Compute a CAD adapted to the set {Si, Sj, S�}.
Identify the connected components of all pairwise and triple-wise in-
tersections and their incidences.

Step 2: Compute the matrices A and B corresponding to the sequence of homo-
morphisms:

⊕
iH

0(Si)
δ1 ��

⊕
i<j H

0(Si ∩ Sj)
δ2 ��

⊕
i<j<� H

0(Si ∩ Sj ∩ S�).

Step 3: Compute
b0(S) = d0 − rk(A), (2)

and
b1(S) = d1 − rk(B)− rk(A), (3)

where d0 is the dimension of
⊕

1≤i≤n H
0(Si), d1 is the dimension of⊕

1≤i<j≤n H
0(Si ∩ Sj), and the rank of a matrix is denoted by rk(·).

2.3 Practical Techniques

As noted previously, we use the package QEPCAD B (Version 1.27) for com-
puting the cylindrical algebraic decompositions, in Step 1 of Algorithm 1. There
are several other packages available for computing cylindrical algebraic decom-
positions, for instance REDLOG2. The main reason for using QEPCAD B is
that it provides some important information regarding cell adjacency, that is
not provided by the other systems. Even though QEPCAD B does not yet pro-
vide full information regarding cell adjacencies in dimension three, we are still
able to deduce all the needed cell adjacencies, making use of the fact that input
polynomials are quadratic. We use another system, Magma3 for post-processing
of the information output by QEPCAD B, in Steps 2 and 3 of the algorithm.

2 available at http://www.fmi.uni-passau.de/∼redlog
3 available at http://magma.maths.usyd.edu.au/magma
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Note that all computations performed are exact with no possibility of numerical
errors.

In order to describe our method for obtaining the needed cell adjacencies for
a cylindrical algebraic composition adapted to a finite set P of polynomials, we
need the following notation.

We distinguish between the inter-stack cell adjacency of level i, which
is the adjacency of cells of level i in two different stacks, and the intra-stack
cell adjacency of level i, which is the adjacency of cells of level i within the
same stack.

Moreover, we use the same intuitive labeling of cells as used by QEPCAD B
which we describe next.

A cell in R, i.e. a cell in the induced CAD (line) of the induced CAD (plane),
is denoted by (i), where the i ranges over the number of cells in the induced
CAD of R. Note that i1 < i2 if and only if the cell (i1) “occurs to the left”
of the cell (i2).

A cell in R2, i.e. a cell in the induced CAD of the plane, is denoted by (i, j),
where i ranges over the number of cells in the line and the j ranges over the
number of cells in the stack over the cell (i). Note that j1 < j2 if and only if
the cell (i, j1) “occurs lower in the plane” than the cell (i, j2).

A cell in R3 is denoted by (i, j, k), where (i, j) is a cell in the induced CAD
of the plane and the k ranges over the number of cells in the stack over the
cell (i, j). Note that k1 < k2 if and only if the cell (i, j, k1) “occurs lower”
than the cell (i, j, k2).

Furthermore, we distinguish among 0-cells, 1-cells, 2-cells and 3-cells of the
CAD, that are points, graphs and cylinders bounded below and above by graphs.
The adjacency between a 
-cell and k-cell will be denoted by {
,k}-adjacency.

We illustrate the above notation on Example 1 (CAD adapted to the unit
sphere)

Example 2 (cont.). For instance, the cell (2) and (4) correspond to the points
−1 and 1 (in the line), whereas the cells (2, 2) and (3, 2) correspond the point
(−1, 0) and the set C3,2 = {(x, y) | − 1 < x < 1, y = −√1− x2}. Moreover, the
cell (2, 2, 2) corresponds to the point (−1, 0, 0) and the cell (3, 2, 2) corresponds
to the set C3,2,2 = C3,2 × {0}.

In Figure 2, which shows the equivalent QEPCAD B output, the first (resp.,
second and third) column corresponds to the CAD of the line (resp. plane and
R3). Note that the signs accompanying the cells give the signs of projection
factors computed by QEPCAD B and the letter ”T” and ”F” corresponds to
true and false value of the cells, i.e. depending upon whether our input formula
is true or false on this cell.

The following cell adjacency information is either provided by QEPCAD B or
can easily be determined:

1. The intra-stack adjacency information. By labeling the cells in each stack
from the “bottom” to the “top” we get the the intra-stack adjacency in-
formation on every level. For instance, the cell (i, j) is adjacent to the cell
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()---(1)p1(-,-)---(1,1)p1(+)---(1,1,1)p1(+) F
---(2)p1(0,-)---(2,1)p1(+)---(2,1,1)p1(+) F

---(2,2)p1(0)---(2,2,1)p1(+) F
---(2,2,2)p1(0) T
---(2,2,3)p1(+) F

---(2,3)p1(+)---(2,3,1)p1(+) F
---(3)p1(+,-)---(3,1)p1(+)---(3,1,1)p1(+) F

---(3,2)p1(0)---(3,2,1)p1(+) F
---(3,2,2)p1(0) T
---(3,2,3)p1(+) F

---(3,3)p1(-)---(3,3,1)p1(+) F
---(3,3,2)p2(0) T
---(3,3,3)p1(-) F
---(3,3,4)p2(0) T
---(3,3,5)p1(+) F

---(3,4)p1(0)---(3,4,1)p1(+) F
---(3,4,2)p1(0) T
---(3,4,3)p1(+) F

---(3,5)p1(+)---(3,5,1)p1(+) F
---(4)p1(+,0)---(4,1)p1(+)---(4,1,1)p1(+) F

---(4,2)p1(0)---(4,2,1)p1(+) F
---(4,2,2)p1(0) T
---(4,2,3)p1(+) F

---(4,3)p1(+)---(4,3,1)p1(+) F
---(5)p1(+,+)---(5,1)p1(+)---(5,1,1)p1(+) F

Fig. 2. Output of a CAD adapted to the unit sphere using QEPCAD B

(i, j+1) (in the induced CAD of the plane) or the cell (i, j, k) is adjacent to
the cell (i, j, k + 1)

2. The {0,1}-inter-stack adjacency information of level 2. Together with the
intra-stack adjacency information we could determine all the other missing
adjacencies for the induced CAD of the plane, although it is not necessary
for our application.

3. The inter-stack adjacency information of level 3, if the induced cells are
within the same (induced) stack and the cells are part of the boundary of
the semi-algebraic sets Si. In other words, we get the adjacency information
for the stacks of the cells (i, j) and (i, j + 1).

Example 3 (cont.). For our example above, we get the following cell adjacency
information for the induced CAD: e.g.
intra-stack: ((3,2),(3,3)), inter-stack: ((2,2),(3,2))
and for the CAD of R3:
intra-stack: ((3,3,2),(3,3,3)), inter-stack: ((3,2,2),(3,3,2)) missing: ((2,2,2),
(3,2,2))

Unfortunately, there is also some missing adjacency information. For instance,
assuming that in the induced CAD of the plane the cells (i, j1) and (i + 1, j2)
are adjacent, then we do not get (directly) any adjacency information for the
corresponding stacks. But as we see next, we are able to construct the missing
adjacency information. It is worthwhile to mention that we do not determine the
whole inter-stack adjacency information for the complete CAD. Instead, we de-
termine the full adjacency information for the boundary of the semi-algebraic set
defined by the input formula.
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Recall that we consider only balls, ellipsoids and spheres as our semi algebraic
input sets Si , i.e., Si = {(x, y, z) ∈ R3 | Pi(x, y, z) ∗ 0} where deg(Pi(X,Y, Z)) =
2 and ∗ ∈ {≤,=}.

Moreover, assume that the 0-cell (i, j1) and the 1-cell (i+ 1, j2) are adjacent
in the induced CAD of the plane. We have the following two cases:

Case 1: The stack over the 0-cell (i, j1) contains exactly one 0-cell (i, j1, k).
Note, that the stack over 1-cell (i+ 1, j2) must contain two 1-cells (i+ 1, j2, l1)
and (i + 1, j2, l2) (corresponding to graphs), since the polynomial Pi is of total
degree equal to 2. Therefore, the 0-cell (i, j1, k) must be adjacent to both cells
(i+ 1, j2, l1) and (i+ 1, j2, l2), since the semi algebraic set Si is closed.

Case 2: The stack over the 0-cell (i, j1) contains two 0-cells (i, j1, k1) and
(i, j1, k2). As above, the stack over the 1-cell (i + 1, j2) must contain two 1-
cells (i + 1, j2, 
1) and (i + 1, j2, 
2). Remember that, both stacks are ordered
from the bottom to the top. Hence, the cells (i, j1, k1) and (i+ 1, j2, 
1) as well
as the cells (i, j1, k2) and (i+ 1, j2, 
2) must be adjacent for the same reason as
above.

Remark 2. Although there are several algorithms known for computing com-
plete cell adjacency information (see [2] and [3]), no algorithm is completely
implemented at the moment. Moreover, constructing the missing adjacency in-
formation as described above would fail for polynomials of total degree greater
than two.

3 Examples

To illustrate our implementation, we consider four examples where the ellip-
soids Si = {(x, y, z) ∈ R3 | Pi(x, y, z) = 0}, 1 ≤ i ≤ 27, are defined by the
following list of polynomials.

P1 = 8/9X2 + 1/64Y 2 + 1/6Z2 − 1
P2 = 1/64X2 + 8/9Y 2 + 8/9Z2 − 1
P3 = 8/9X2 + 8/9Y 2 + 1/64Z2 − 1
P4 = 8/9(X − 4)2 + 1/64(Y − 4)2 + 1/6Z2 − 1
P5 = 1/64(X − 4)2 + 8/9(Y − 4)2 + 8/9Z2 − 1
P6 = 8/9(X − 4)2 + 8/9(Y − 4)2 + 1/64Z2 − 1
P7 = (X − 1)2 + (Y − 2)2 + Z2 − 3

P8 = 5X2 + 1/9Y 2 + 2Z2 − 1
P9 = 1/9X2 + 5Y 2 + 5Z2 − 1
P10 = 5X2 + 5Y 2 + 1/9Z2 − 1
P11 = 5(X − 1)2 + 1/9(Y − 1)2 + 2Z2 − 1
P12 = 1/9(X − 1)2 + 5(Y − 1)2 + 5Z2 − 1
P13 = 5(X − 1)2 + 5(Y − 1)2 + 1/9Z2 − 1
P14 = 5(X + 1)2 + 1/9(Y − 1)2 + 2Z2 − 1
P15 = 1/9(X + 1)2 + 5(Y − 1)2 + 5Z2 − 1
P16 = 5(X + 1)2 + 5(Y − 1)2 + 1/9Z2 − 1
P17 = 5(X − 1)2 + 1/9(Y + 1)2 + 2Z2 − 1
P18 = 1/9(X − 1)2 + 5(Y + 1)2 + 5Z2 − 1
P19 = 5(X − 1)2 + 5(Y + 1)2 + 1/9Z2 − 1
P20 = 5(X + 1)2 + 1/9(Y + 1)2 + 2Z2 − 1
P21 = 1/9(X + 1)2 + 5(Y + 1)2 + 5Z2 − 1
P22 = 5(X + 1)2 + 5(Y + 1)2 + 1/9Z2 − 1
P23 = 6(X − 1/2)2 + 6Y 2 + 1/6Z2 − 1
P24 = 4X2 + 4(Y − 1/2)2 + 1/6Z2 − 1
P25 = 5(X + 2)2 + 5Y 2 + 1/6Z2 − 1
P26 = 1/6(X + 2)2 + 5(Y − 2)2 + 5Z2 − 1
P27 = 5(X + 2)2 + 1/6(Y − 2)2 + 5Z2 − 1
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We denote by A and B the matrices of the homomorphisms δ1 and δ2 with
respect to the obvious basis. The columns (respectively, the rows) of the matrix
A are labeled by ei (respectively, ep

i,j), while the columns (respectively, the rows)
of the matrix B are labeled by ep

i,j (respectively, ep
i,j,k), where ei corresponds

to Si, e
p
i,j corresponds to the p-th connected component of Si ∩ Sj and ep

i,j,�

corresponds to the p-th connected component of Si ∩ Sj ∩ S�.

Remark 3. In the examples described below, we have modified the matrix A
as follows. Since we know that each input set Si has exactly one connected
component, we can simplify the computation. We only need to check whether or
not the intersection Si∩Sj is empty. Therefore, we have exactly one row for each
intersection instead of one row for each connected component of each intersection
Si ∩ Sj , and this reduces the size of the matrix A without changing its rank.
For the matrix B we delete all rows containing only zeros which correspond to
empty triple intersections Si ∩ Sj ∩ S�.

Fig. 3. three ellipsoids

Example 4 (three ellipsoids). Let S be the union of the first three ellipsoids, i.e.
S = S1 ∪ S2 ∪ S3 (see Figure 3). Then,

A =

⎛⎜⎝ e1 e2 e3

−1 1 0
−1 0 1
0 −1 1

⎞⎟⎠ e1,2

e1,3

e2,3

and B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
1,2 e2

1,2 e1,3 e2,3

1 0 −1 1
1 0 −1 1
1 0 −1 1
1 0 −1 1
0 1 −1 1
0 1 −1 1
0 1 −1 1
0 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e1
1,2,3

e2
1,2,3

e3
1,2,3

e4
1,2,3

e5
1,2,3

e6
1,2,3

e7
1,2,3

e8
1,2,3

In this case,
b0(S) = d0 − rk(A) = 3− 2 = 1

b1(S) = d1 − rk(B)− rk(A) = (4 − 2)− 2 = 0
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Fig. 4. six ellipsoids

Example 5 (six ellipsoids). Let the set S be the union of the first six ellipsoids Si,
1 ≤ i ≤ 6, i.e. S = S1 ∪ . . . ∪ S6 (see Figure 4). Then,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6
−1 1 0 0 0 0
−1 0 1 0 0 0
0 0 0 0 0 0
−1 0 0 0 1 0
0 0 0 0 0 0
0 −1 1 0 0 0
0 −1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 1 0
0 0 0 −1 0 1
0 0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e1,2

e1,3

e1,4

e1,5

e1,6

e2,3

e2,4

e2,5

e2,6

e3,4

e3,5

e3,6

e4,5

e4,6

e5,6

and

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e11,2 e21,2 e11,3 e11,5 e21,5 e12,3 e12,4 e22,4 e14,5 e24,5 e14,6 e15,6

1 0 −1 0 0 1 0 0 0 0 0 0
1 0 −1 0 0 1 0 0 0 0 0 0
1 0 −1 0 0 1 0 0 0 0 0 0
1 0 −1 0 0 1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0 0 0
0 1 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1 1
0 0 0 0 0 0 0 0 1 0 −1 1
0 0 0 0 0 0 0 0 1 0 −1 1
0 0 0 0 0 0 0 0 1 0 −1 1
0 0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 0 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e11,2,3

e21,2,3

e31,2,3

e41,2,3

e51,2,3

e61,2,3

e71,2,3

e81,2,3

e14,5,6

e24,5,6

e34,5,6

e44,5,6

e54,5,6

e64,5,6

e74,5,6

e84,5,6
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In this case,

b0(S) = d0 − rk(A) = 6− 5 = 1

b1(S) = d1 − rk(B) − rk(A) = (12− 4)− 5 = 3

Fig. 5. seven ellipsoids

Example 6 (seven ellipsoids). Let the set S be the union of the first seven ellip-
soids Si, 1 ≤ i ≤ 7, i.e. S = S1 ∪ . . . ∪ S7 (see Figure 5). Then,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 e2 e3 e4 e5 e6 e7
−1 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 0 0 0 0 0 0
−1 0 0 0 1 0 0
0 0 0 0 0 0 0
−1 0 0 0 0 0 1
0 −1 1 0 0 0 0
0 −1 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −1 0 0 0 1
0 0 0 −1 1 0 0
0 0 0 −1 0 1 0
0 0 0 0 0 0 0
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1
0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e1,2

e1,3

e1,4

e1,5

e1,6

e1,7

e2,3

e2,4

e2,5

e2,6

e2,7

e3,4

e3,5

e3,6

e3,7

e4,5

e4,6

e4,7

e5,6

e5,7

e6,7

and



Computing the Betti Numbers of Arrangements in Practice 27

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e11,2 e21,2 e11,3 e11,5 e21,5 e11,7 e12,3 e12,4 e22,4 e12,7 e13,7 e14,5 e24,5 e14,6 e15,6 e15,7

1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e11,2,3

e21,2,3

e31,2,3

e41,2,3

e51,2,3

e61,2,3

e71,2,3

e81,2,3

e11,2,7

e21,2,7

e11,5,7

e21,5,7

e12,3,7

e22,3,7

e32,3,7

e42,3,7

e14,5,6

e24,5,6

e34,5,6

e44,5,6

e54,5,6

e64,5,6

e74,5,6

e84,5,6

In this case,
b0(S) = d0 − rk(A) = 7− 6 = 1

b1(S) = d1 − rk(B) − rk(A) = (16− 7)− 6 = 3

Fig. 6. twenty ellipsoids

Example 7 (20 ellipsoids). Let the set S be the union of the last 20 ellipsoids Si,
8 ≤ i ≤ 27, i.e. S = S8∪. . .∪S27 (see Figure 6). Thus, we get a 190×20-matrixA
of rank equal to 19, a 190×107-matrix B of rank equal to 55, and the dimension
of
⊕

i<j H
0(Si ∩ Sj) is equal to 107. In this case,
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b0(S) = d0 − rk(A) = 20− 19 = 1

b1(S) = d1 − rk(B)− rk(A) = 107− 55− 19 = 33

4 Conclusion and Future Work

We have shown that it is feasible to compute topological invariants of arrange-
ments of semi-algebraic sets using exact computations, provided one uses algo-
rithms with reasonable combinatorial complexity. In the future, we hope to en-
large the class of objects that we can deal with. This would require improvement
in the CAD software packages – namely implementation of the cell adjacency
algorithms. We hope to be able to handle polynomials of degree up to four, once
complete cell adjacency information is available in QEPCAD B.
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Appendix A

To prove Proposition 1, we consider the following bi-graded double complex
Mp,q, with a total differential D = δ + (−1)pd, where

Mp,q =
∏

i0,...,ip

Cq(Ai0,...,ip).

...
...

...�⏐⏐d
�⏐⏐d

�⏐⏐d

0 −→ ∏
i0

C3(Ai0)
δ−→ ∏

i0<i1
C3(Ai0,i1)

δ−→ ∏
i0<i1<i2

C3(Ai0,i1,i2) −→�⏐⏐d
�⏐⏐d

�⏐⏐d

0 −→ ∏
i0

C2(Ai0)
δ−→ ∏

i0<i1
C2(Ai0,i1)

δ−→ ∏
i0<i1<i2

C2(Ai0,i1,i2) −→�⏐⏐d
�⏐⏐d

�⏐⏐d

0 −→ ∏
i0

C1(Ai0)
δ−→ ∏

i0<i1
C1(Ai0,i1)

δ−→ ∏
i0<i1<i2

C1(Ai0,i1,i2) −→�⏐⏐d
�⏐⏐d

�⏐⏐d

0 −→ ∏
i0

C0(Ai0)
δ−→ ∏

i0<i1
C0(Ai0,i1)

δ−→ ∏
i0<i1<i2

C0(Ai0,i1,i2) −→�⏐⏐d
�⏐⏐d

�⏐⏐d

0 0 0
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There are two spectral sequences (corresponding to taking horizontal or ver-
tical filtrations respectively) associated with Mp,q both converging to H∗

D(M).
The first terms of these are ′E1 = HδM, ′E2 = HdHδM, and ′′E1 =
HdM, ′′E2 = HδHdM. Because of the exactness of the generalized Mayer-
Vietoris sequence, we have that,

′E1 =

...
...

...
...

...�⏐⏐d �⏐⏐0
�⏐⏐0
�⏐⏐0
�⏐⏐0

C3(A) 0 0 0 0 · · ·�⏐⏐d �⏐⏐0
�⏐⏐0
�⏐⏐0
�⏐⏐0

C2(A) 0 0 0 0 · · ·�⏐⏐d �⏐⏐0
�⏐⏐0
�⏐⏐0
�⏐⏐0

C1(A) 0 0 0 0 · · ·�⏐⏐d �⏐⏐0
�⏐⏐0
�⏐⏐0
�⏐⏐0

C0(A) 0 0 0 0 · · ·

and

′E2 =

...
...

...
...

...
...

H3(A) 0 0 0 0 0 · · ·

H2(A) 0 0 0 0 0 · · ·

H1(A) 0 0 0 0 0 · · ·

H0(A) 0 0 0 0 0 · · ·

The degeneration of this sequence at E2 shows that H∗
D(M) ∼= H∗(A).

The initial term ′′E1 of the second spectral sequence is given by,

′′E1 =

...
...

...

∏
i0

H3(Ai0)
δ−→ ∏

i0<i1
H3(Ai0,i1)

δ−→ ∏
i0<i1<i2

H3(Ai0,i1,i2) −→
∏

i0
H2(Ai0)

δ−→ ∏
i0<i1

H2(Ai0,i1)
δ−→ ∏

i0<i1<i2
H2(Ai0,i1,i2) −→

∏
i0

H1(Ai0)
δ−→ ∏

i0<i1
H1(Ai0,i1)

δ−→ ∏
i0<i1<i2

H1(Ai0,i1,i2) −→
∏

i0
H0(Ai0)

δ−→ ∏
i0<i1

H0(Ai0,i1)
δ−→ ∏

i0<i1<i2
H0(Ai0,i1,i2) −→
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The cohomology groups H0(Ai0,...,ip) occurring as summands in the bottom
row of ′′E1 are isomorphic to the Q-vector space of locally constant functions
on Ai0,...,ip and the homomorphisms, ′′d1 : ′′Ep,0

1 → ′′Ep+1,0
1 are then given by

generalized restrictions, i.e. for

φ ∈ ⊕1≤i0<···<ip≤nH
0(Ai0,...,ip),

where each φi0,...,ip is a locally constant function on Ai0,...,ip ,

′′d1(φ)i0,...,ip+1 =
p∑

i=0

(−1)iφi0,...,îi,...,ip+1
|Ai0,...,ip+1

.

Proof (Proof of Proposition 1:). Since, H1(Ai) = 0 for each i, clearly ′′d0,1
2 =

′′d1,0
2 = 0. Thus, ′′E1,0

∞ = ′′E1,0
2 and ′′E0,1

∞ = 0. Thus, H1(A) ∼= ′′E1,0
∞ ⊕ ′′E0,1

∞ ∼=
′′E1,0

2 .
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Abstract. The symbolic-numeric program SELFA for solving the the
2D boundary-value problem in self-consistent basis method is presented.
The corresponding algorithm of this program using a conventional pseu-
docode is described too. As example, the energy spectrum and wave
functions of E-type for generalized Henon–Heiles Hamiltonian were ob-
tained.

1 Introduction

As is known, one of the more elaborated and widely applied methods of solving
the eigenvalue problems describing the Hamiltonian systems is a diagonalization
method [1]. However, in the case of multidimensional systems having a potential
energy surface with few local minimuma[2], the efficiency of this method de-
creases in the energy region where in a classical limit a motion becomes chaotic
[3]. An accuracy of numerical calculations of the corresponding set of energy
levels of such type systems decreases drastically.

Usually one needs to diagonalize the Hamiltonian matrixes of a large dimen-
sion that leads to essential computer resource and run-time. In present paper the
eigenvalue problem for a two-parametric generalized Henon–Heiles Hamiltonian
corresponding to a non-integrable system is solved on the basis of a numeri-
cal method announced in [4]. In this method, the two-dimensional Schrödinger
equation is reduced to a set of ordinary differential equations. Then the corre-
sponding eigenvalue problem is solved directly instead of a rather cumbersome
diagonalization of the above 2D problem. Such an approach is more promising
due to an exact reduction by angular variable while numerical integration with
a controlled accuracy is applied by a radial variable. This reduction is done with
help of a self-consistent basis taking into account a discrete symmetry of the
Hamiltonian under consideration that leads to a separation of the Hilbert space
into the invariant subspaces and reduces the needed computer resources.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 32–39, 2005.
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On the basis of this method we have developed the algorithm and MAPLE
program SELFA for a symbolic-numeric solution of the two-dimensional Schrö-
dinger equation. In this paper we give a unified description using a conven-
tional pseudocode for the algorithm and program elaborated and present the
energy spectrum and wave functions obtained by the program SELFA for a two-
parametric generalized Henon–Heiles Hamiltonian.

2 Description of the Self-consistent Basis Method

We consider the stationary two-dimensional Schrödinger equation

Ĥ(x, y)ψ(x, y) = Eψ(x, y), (1)

with a two-parametric generalized Henon–Heiles Hamiltonian

Ĥ(x, y) = −1
2

(
∂2

∂x2
+

∂2

∂y2

)
+

1
2
(x2 + y2) + b(x2y − 1

3
y3) + c(x2 + y2)2, (2)

where b and c are the real-valued parameters. In a polar coordinate system,
x = r cosϕ, y = r sinϕ, Eqs. (1) and (2) take the form

Ĥ(r, ϕ)ψ(r, ϕ) = Eψ(r, ϕ), (3)

Ĥ(r, ϕ) = −1
2

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϕ2

)
+
r2

2
+
br3

2
sin 3ϕ+ cr4. (4)

A regular and bounded solution of the partial eigenvalue problem for Eqs. (3)–(4)
can be found in terms of the Fourier series

ψ(r, ϕ) =
A0(r)
2
√
r

+
1√
r

n∑
l=1

[Al(r) cos lϕ+Bl(r) sin lϕ]. (5)

Using the Galerkin projection of Hamiltonian Ĥ(r, ϕ) and the unknown solution
u(r, ϕ) onto basis functions, sin l′ϕ and cos l′ϕ (l′ = 0, ..., n),

1
π

∫ 2π

0

cos l′ϕ
(
Ĥ(r, ϕ)− E

)
u(r, ϕ) = 0, (6a)

1
π

∫ 2π

0

sin l′ϕ
(
Ĥ(r, ϕ)− E

)
u(r, ϕ) = 0, (6b)

we obtain the following infinite system of the differential equations of the second
order:

r2A
′′
0 + α0A0 − 2βB3 = 0,

r2A
′′
1 + α1A1 − βB2 − βB4 = 0,

r2B
′′
1 + α1B1 − βA2 + βA4 = 0,

r2A
′′
2 + α2A2 − βB1 − βB5 = 0,

r2B
′′
2 + α2B2 − βA1 + βA5 = 0,

r2A
′′
3 + α3A3 − βB6 = 0,

r2B
′′
3 + α3B3 − βA0 + βA6 = 0,

r2A
′′
l + αlAl + βBl−3 − βBl+3 = 0, 4 ≤ l ≤ n,

r2B
′′
l + αlBl − βAl−3 + βAl+3 = 0, Ak>n = Bk>n = 0.

(7)
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Here parameters αl and β are defined by αl = 2Er2 − 2cr6 − r4 − l2 + 1/4,
β = br5/3. One can see that the system of equations (7) separates to four
independent systems of the second-order ordinary linear differential equations
(ODEs). This fact is a consequence of a discrete symmetry, C3V , of the Henon–
Heiles Hamiltonian (2) and corresponds to three irreducible representations:

A1 : A6l, B6l+3, l = 0, 1, ...,
A2 : B6l, A6l−3, l = 1, 2, ...,
E1 : A6l+1, B6l+2, B6l+4, A6l+5, l = 0, 1, ...,
E2 : B6l+1, A6l+2, A6l+4, B6l+5, l = 0, 1, ....

The E-type states of the type are double degeneracy because the eigenvalue
problems for these two subsystems of the ODEs, (E1 and E2) have the same
energy spectrum.

As an example, below we consider only E2-type states. Using an appropriate
transformation

B6l+1 = z8l+1, B′
6l+1 = z8l+2, A6l+2 = z8l+3, A′

6l+2 = z8l+4,
A6l+4 = z8l+5, A′

6l+4 = z8l+6, B6l+5 = z8l+7, B′
6l+5 = z8l+8,

of the above functions, Ai(r), Bj(r) (i, j = 1, ..., n), to the new ones, zk(r)
r = 1, ..., 2N , where N is a number of equations of the ODEs of the second
order, we rewrite the truncated set of linear second order ODEs (E2) in the form
of the linear first order ODEs

z1
′ − z2 = 0, z2

′ + α1z1 − β(z3 − z5) = 0,
z3

′ − z4 = 0, z4
′ + α2z3 − β(z1 − z7) = 0,

z5
′ − z6 = 0, z6

′ + α4z5 + β(z1 − z9) = 0, ... .
(8)

To solve numerically the obtained eigenvalue problem one needs to reduce in-
finite interval r ∈ (0,∞) to a finite one r ∈ [h, r∞], divide it by two subintervals,
and construct the general solutions

z0
j (r) =

N∑
k=1

Ckz
0
j,k(r), r ∈ [h, rc],

z∞j (r) =
N∑

k=1

Ck+Nz
∞
j,k(r), r ∈ [rc, r∞].

(9)

Here Ck are arbitrary coefficients and z0
j,k(r), z∞j,k(r), j, k = 1, ..., 2N are indepen-

dent basis solutions satisfying the set of equations (8) with boundary conditions,

z0
j,k(h) = M0

j,k, z∞j,k(r∞) = M∞
j,k, (10)

where values M0
j,k and M∞

j,k are determined from asymptotic expansions of reg-
ular solutions. Then, the continuity conditions

z0
j (rc) = z∞j (rc),

lead us to the algebraic eigenvalue problem

TjkCk = EkCk,
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with a discrete spectrum Ek, i.e., at definite values of energy E = Es composing
a low part of spectrum, σ(E) = {E1, E2, ..., EN , ...}, of the eigenvalue problem
(1)-(2).

3 Program Description

Following the description of the method for solving the eigenvalue problem (1)–
(2), we present below the algorithm SELFA. The corresponding program SELFA
has been implemented in a Maple Package.

Input:
N is the number of the second-order ordinary differential equations of the E2

type;
b, c are the real-valued parameters;
h and Rend are boundary points;
rc is a central point.
Output:
{Es}Ns=1 is a low part the energy spectrum;
{us(r, φ)}Ns=1 is the wave function corresponding to the energy value Es in a
form of the Fourier series.
The description of the local variables:
u(r, φ) is the local function in a form of the Fourier series.
V (x, y) and V (r, φ) is the Henon–Heiles potential function in Cartesian and po-
lar coordinates;
n is the number of the harmonics;
Ak ≡ Ak(r), Bk ≡ Bk(r) (k = 0, 1, ..., n) are the coefficients of the Fourier series;
Baseq(r, φ) is the l.h.s. of the basic equation (Ĥ−E)u = 0 in polar coordinates;
BaseqAl, BaseqBl are the l.h.s. of the second-order ODEs (7);
Etype is the set of the second-order ODEs (7);
zj(r) are the unknown functions of the system of ODEs of the first order (8);
ds are the l.h.s. of the first-order ODEs (8);
dsys is the set of the first-order ODEs (8);
M0 is the set of the initial conditions (10) on the left boundary for construction
of sets of linear independent solutions of system of ODEs of the first order dsys;
SOLN is the set of the linear independent solutions (9) of the set of the ODEs
dsys;
M∞ is the set of values of the linear independent solutions (9) at the right
boundary point Rend;
T 0, T∞ are the sets of values of the linear independent solutions (9) at the cen-
tral point rc;
T is the matrix of the continuity conditions;
{Cj} and {Cj;s} are auxiliary eigenvectors;
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1: n := N +N/2− 1;

2: u(r, φ) :=
A0

2
√
r

+
1√
r

n∑
k=1

(Ak cos(k φ) +Bk sin(k φ));

3: V (x, y) :=
1
2
x2 +

1
2
y2 + b (x2 y − 1

3
y3) + c (x2 + y2)2;

V (r, φ) := subs(x→ r cos(φ), y → r sin(φ), V (x, y));

4: Baseq(r, φ) :=
(

1
r2

∂2

∂φ2
+ 2(E +

1
8r2
− V (r, φ))

)
u(r, φ);

for l from 0 to n do
BaseqAl := r2coeff(Baseq(r, φ), cos(lφ));
if l ≥ 1 then

BaseqBl := r2coeff(Baseq(r, φ), sin(lφ));
end if ;

end do;
5: for i from 0 to (n+ 1)/6− 1 do

Etype4i := BaseqB6i+1;
Etype4i+1 := BaseqA6i+2;
Etype4i+2 := BaseqA6i+5;
Etype4i+3 := BaseqB6i+4;

end do;
for i from 0 to N − 1 do
for j from 0 to (n+ 1)/6− 1 do

Etypei := subs({B6j+1 → z8j+1(r), A6j+2 → z8j+3(r),
A6j+4 → z8j+5(r), B6j+5 → z8j+7(r)}, Etypei);

end do;
end do;

6: for i from 0 to N − 1 do

ds2i+1 :=
dz2i+1(r)

dr
− z2i+2(r) = 0;

ds2i+2 :=
dz2i+2(r)

dr
+
Etypei

r2
= 0;

end do;
dsys := {ds1, ds2, ..., ds2N};

7: for i from 1 to N do
SOLN := dsolve({dsys, zj(h) = M0

i,j , (j = 1, ..., 2N)}, {zj(r)}2N
j=1);

T 0
ij := SOLN : zj(rc), (j = 1, ..., 2N);

SOLN := dsolve({dsys, zj(Rend) = M∞
i,j , (j = 1, ..., 2N)}, {zj(r)}2N

j=1);
T∞

ij := SOLN : zj(rc), (j = 1, ..., 2N);
end do;

8: for i from 1 to N do
for j from 1 to 2N do

Tij := T∞
ij − T 0

ij ;
end do;
end do;

9: TijCj = ECj → {Es, {Cj;s} }Ns=1

10: for s from 1 to N do
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SOLNs := dsolve({dsys, zj(h) = Cj;s, (j = 1, ..., 2N)}, {zj(r)}2N
j=1);

us(r, φ) := SOLNs :∑(n+1)/6−1
j=0

(
z8j+3(r) cos((6j + 2)φ) + z8j+5(r) cos((6j + 4)φ)

+z8j+1(r) sin((6j + 1)φ) + z8j+7(r) sin((6j + 5)φ)
)
;

end do;

Remark: This program involves the following sequence of the steps.
Steps 1–2. The wave function in the form of the Fourier series is presented.
Steps 3–4. Construction of the set of the second-order ODEs. At step 4 instead
of formula (6) the standard MAPLE procedure “coeff” for extracting coefficients
affecting cos(lφ) and sin(lφ) is used.
Steps 5–6. Construction of the set of the first-order ODEs.
Step 7. Construction of the linear independent solutions with help of the con-
ventional subroutine dsolve of a Maple package for numerical solving of a set of
the 2N first order ODEs.
Step 8. Construction of continuity conditions matrix.
Step 9. Evaluation of the energy spectrum.
Step 10. Evaluation of the eigenfunctions.

4 Examples of SELFA Program Runs

The eigenvalues and functions of E2-types were calculated by means of the pro-
gram SELFA for a generalized Henon–Heiles Hamiltonian. Values of the lowest
energy levels together with the ones obtained by the diagonalization method [5]
are presented in Table 1. The energy spectrum in Ref. [5] was obtained by a
direct diagonalization of the Hamiltonian 495× 495 matrix but in our approach
the same accuracy was achieved by solving system (8) of 2N = 16 differen-
tial equations of the first order. It is shown that in our approach one needs a
less computer resource and running time in comparison with the diagonalization
method. The program SELFA was also used to calculate the corresponding wave
functions, two of which are shown in Fig. 1. One can see that a symmetric struc-

Table 1. The energy spectrum of E-type for the Hamiltonian (2) at fixed values of

parameters b = 0.04416, c = 0.00015

s Ediag[4] E s Ediag[4] E

1. 1.999384 1.999372 7. 6.005955 6.005972

2. 2.999628 2.999641 8. 6.976317 6.976625

3. 3.992368 3.992439 9. 6.988910 6.989034

4. 4.990280 4.990394 10. 7.964477 7.964810

5. 5.002921 5.002935 11. 7.989611 7.989745

6. 5.980721 5.980968 12. 8.014769 8.014855
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Fig. 1. Isolines of the E2-type wave functions u9(x, y) (in left panel) and u11(x, y) (in

right panel) of the generalized Henon–Heiles Hamiltonian (2) at b = 4.416 · 10−2 and

c = 1.5 · 10−4 (dark and white domains correspond to negative and positive values,

respectively)

ture of isolines of the wave functions u9(x, y) and u11(x, y) reveals explicitly the
C3V symmetry of the generalized Henon–Heiles Hamiltonian (2).

5 Conclusions

A MAPLE program SELFA for a symbolic-numeric solution of the two-dimensi-
onal Schrödinger equation in self-consistent basis method is presented. An effi-
ciency of this program is shown on an example of the generalized Henon–Heiles
Hamiltonian (2) for which the lowest energy levels and wave functions were calcu-
lated and a comparison was made with the results obtained by diagonalization
method. The program SELFA may further be applied for studying the eigen-
problem for different Hamilton operators and, for example, for investigating the
avoiding crossing phenomena of eigenenergies, etc.

One of topical tasks here is a comparison of numeric and analytic results for
spectrum and wave functions in a vicinity of avoiding crossing of energy lev-
els with respect to parameters that can be performed with help of the above
algorithm SELFA and programs of normalization and quantization of the poly-
nomial Hamiltonians [6,7]. Such a comparison allows one to reveal the nature of
quantum chaos of the Hamiltonian systems that in quantum case has quantum
counterparts like a degeneracy of the energy levels and tunnelling through a
potential barrier with few local extrema and to determine various decay mech-
anisms of the quantum system under consideration. A study in the field will be
a subject of our further investigations.
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RelView – An OBDD-Based Computer Algebra

System for Relations

Rudolf Berghammer and Frank Neumann

Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität Kiel,

Olshausenstraße 40, D-24098 Kiel

Abstract. We present an OBDD-based Computer Algebra system for
relational algebra, called RelView. After a short introduction to the
OBDD-implementation of relations and the system, we exhibit its appli-
cation by presenting two typical examples.

1 Introduction

Since many years relational algebra has widely been used by mathematicians and
computer scientists as a convenient means for problem solving; see e.g., [12,3].
One main reason for the use of relational algebra is that it has a fixed and sur-
prisingly small set of operations all of which can efficiently and with reasonable
effort be implemented on finite carrier sets using, e.g., Boolean arrays, linked
lists, or ordered binary decision diagrams (OBDDs). Thus, a Computer Algebra
system for relational algebra can be implemented with reasonable effort, too. In
this paper, we want to give an impression of such a system, called RelView,
which has been developed at Kiel University since 1993 and is available free of
charge, see http://www.informatik.uni-kiel.de/˜progsys/relview.html.

RelView can be used to solve many different tasks while working with rela-
tional algebra, relation-based discrete structures, and relational programs. E.g.,
it can support relation-algebraic reasoning. In this field typical applications are
the search for counter-examples or the detection of new properties. For these
activities, “playing” and “experimenting” with relation-algebraic expressions is
essential and this is one of the purpose RelView has been designed for. In par-
ticular, the interactive nature of the system allows to add, change and remove
relations and their representations, and makes it possible to invoke computations
at every time within a working session. A further application domain is program-
ming. This not only concerns the implementation of relational algorithms using
the system’s programming language, but also typical tasks appearing in (formal)
program development like specification testing, detection of loop invariants and
other important properties necessary for correctness proofs, rapid prototyping,
and improving efficiency. Third, the advantages of the system when using it in
teaching and for visualization respectively animation should be mentioned. We
have recognized that visualizing advanced concepts of relational algebra (like re-
lational domain constructions) in RelView is very helpful. Furthermore, since

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 40–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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RelView allows computations not only to be executed fully-automatically but
also in a stepwise fashion, it is a very good means to demonstrate how a certain
algorithm works. Finally, it should be mentioned that we found it very attrac-
tive to use RelView for producing good examples in teaching, which frequently
have been proven to be the key of fully understanding a concept. Of course, we
are not able to show all these aspects of RelView in this paper.

2 Relation-Algebraic Preliminaries

We write R : X ↔ Y if R is a relation with domain X and range Y , i.e., a
subset of X × Y . If the sets X and Y of R’s type X ↔ Y are finite, we may
consider R as a Boolean matrix. Since this Boolean matrix interpretation is
well suited for many purposes and also used as one possibility of RelView to
depict relations, in the following we often use matrix terminology and matrix
notation. Especially, we speak about the rows and columns of R and write Rxy

instead of (x, y) ∈ R. We assume the fundamentals of relational algebra to
be known, viz. RT (transposition), R (complement), R ∪ S (union), R ∩ S
(intersection), RS (composition), R ⊆ S (inclusion), and the special relations
O (empty relation), L (universal relation), and I (identity relation). A relation
R is univalent if RTR ⊆ I, total if RL = L, injective if RT is univalent, reflexive
if I ⊆ R, antisymmetric if R ∩ RT ⊆ I, transitive if RR ⊆ R, symmetric if
R = RT, and irreflexive if R ⊆ I. A univalent and total relation is a mapping, a
reflexive, antisymmetric, and transitive relation is a partial order, and a reflexive
and transitive relation is a quasi order.

By syq(R,S) := RTS ∩ RT
S the symmetric quotient syq(R,S) : Y ↔ Z of

two relations R : X ↔ Y and S : X ↔ Z is defined. Many properties of this
construct can be found in [12]. In this paper we only need the equivalence

syq(R,S)yz ⇐⇒ ∀x : Rxy ↔ Sxz . (1)

Relational algebra provides some possibilities for modeling sets. The first mod-
eling which we will apply in this paper uses vectors . These are relations v with
v = vL. For v being of type X ↔ Y this condition means: Whatever set Z and
universal relation L : Y ↔ Z we choose, an element x ∈ X is in relationship
(vL)xz either to none element z ∈ Z or to every element z ∈ Z. Since for a vec-
tor the range is irrelevant, in the following we consider mostly vectors v : X ↔ 1
with a specific singleton set 1 = {⊥} as range and omit in such cases the second
subscript, i.e., write vx instead of vx⊥. Such a vector can be considered as a
Boolean matrix with exactly one column, i.e., as a Boolean column vector, and
represents the subset {x ∈ X | vx} of its domain X .

We will also use injective mappings for modeling subsets. Given an injective
mapping ı : Y ↔ X, we may consider Y as a subset of X by identifying it with
its image under ı. If Y is actually a subset of X and ı is the identity mapping
from Y to X , then the vector ıTL : X ↔ 1 represents Y as subset of X in the
sense above. Clearly, also the transition in the other direction is possible, i.e.,
the generation of an injective mapping
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inj(v) : Y ↔ X inj(v)yx :⇐⇒ y = x (2)

from a given vector v : X ↔ 1 representing the subset Y of X . We call inj(v)
the injective mapping generated by the vector v.

As a third possibility to model subsets of a given set X we will use the
set-theoretic membership relation defined by (2X is the power set of X)

M : X ↔ 2X MxY :⇐⇒ x ∈ Y . (3)

Using matrix terminology, a combination of injective mappings and membership
relations leads to a column-wise representation of sets of subsets. More specifi-
cally, if the vector v : 2X ↔ 1 represents a subset S of 2X in the sense above,
then for all x ∈ X and Y ∈ S we get the equivalence of x ∈ Y and (M inj(v)T)xY

due to (2) and (3). This means that the elements of S are represented precisely
by the columns of the relation C := M inj(v)T : X ↔ S. A further consequence
of this fact is that CTC : S ↔ S is the relation-algebraic specification of set
inclusion on S, that is for all Y, Z ∈ S we have that (CTC)Y Z iff Y ⊆ Z.

Using some well-known correspondences between certain logical constructions
and relation-algebraic operations (see e.g., [12]) it can easily be shown that if
R : X ↔ X is a quasi order and v : X ↔ 1 represents a subset Y of X , then
the set of greatest elements of Y with respect to R is represented by the vector

max (R, v) := v ∩RT
v : X ↔ 1 . (4)

In Section 5 we will apply (4) to compute maximum cliques. This means that
X is the power set 2V of the set V of vertices of the input graph g, the first
argument of the relational function max of (4) is the size-comparison relation

S : 2V ↔ 2V SAB :⇐⇒ |A| ≤ |B| , (5)

and the second argument of max is a vector representing the set of cliques of g.

3 Implementation of Relations Using OBDDs

Assuming the reader to be familiar with the basic facts of OBDDs (as e.g.,
presented in [5,13]), we sketch in the following how to implement relations with
their help. For a complete description we refer to the Ph.D. theses [10,11].

OBDDs are an efficient data structure to implement very large Boolean func-
tions. Our implementation of relation uses this fact. We will illustrate it by a
small example. Assume sets X := {a, b, c, d} and Y := {r, s} and the relation

R : X ↔ Y R := { (a, r), (c, r), (c, s) }.

By means of the canonical binary encodings cX : X → B2 and cY : Y → B

of X and Y , specified by cX(a) = 0, 0, cX(b) = 0, 1, cX(c) = 1, 0, cX(d) = 1, 1
respectively cY (r) = 0, cY (s) = 1, we can define a Boolean function fR : B3 → B
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1 0

2x

y1

1x

x2

Fig. 1. OBDD for the function fR

such that fR(x1, x2, y1) = 1 iff c−1
X (x1, x2) and c−1

Y (y1) are defined and related
via R. Then each satisfying assignment of the function fR corresponds to a pair
of the relation R and we obtain fR in disjunctive normal form as

fR(x1, x2, y1) = (x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1) ∨ (x1 ∧ x2 ∧ y1) .

Here, for instance, the first clause x1 ∧ x2 ∧ y1 expresses the fact that the two
elements c−1

X (0, 0) = a and c−1
Y (0) = r are related via the relation R. If we use

the fixed variable ordering x1 < x2 < y1, then we get the OBDD for the function
fR shown in Figure 1, where a continuous edge means that the value of its source
is 1 and a dotted edge means that this value is 0.

The implementation of relations in the shown way leads to the problem that
one OBDD can implement several relations. For instance, it is easy to check that
the Boolean function obtained from the relation

S : Y ↔ X S := { (r, a), (s, a), (s, b) }
coincides with fR. This means that R and S are implemented by the same
OBDD. However, the problem can be solved by additionally storing the sizes of
the carrier sets since R is the only relation of type X ↔ Y which leads to fR.

As general technique, using the two canonical binary encodings cX : X → Bm

and cY : Y → Bn (where m = �log |X |� and n = �log |Y |�) a relation R : X ↔ Y
is implemented by the two sizes |X | and |Y | and the OBDD of the Boolean
function fR : Bm+n → B, such that fR(x1, . . . , xm, y1, . . . , yn) = 1 iff the two
decodings c−1

X (x1, . . . , xm) and c−1
Y (y1, . . . , yn) are defined and related via the

relation R and the variable ordering is x1 < . . . < xm < y1 < . . . < yn.
Based on this implementation of relations, in the course of the Ph.D. theses

[10,11] many relation-algebraic operations (including, of course, those of Section
2) have been implemented as operations on OBDDs. Due to lack of space we can
not go into detail. However, it should be emphasized that the specific variable
ordering with the variables encoding the elements of the domain followed by
those encoding the elements of the range allows a very efficient implementation
of membership relations and size-comparison relations.

In the case of the membership relation M : X ↔ 2X of (3) we obtain a
Boolean function fM : Bm+n → B with m ≤ log |X | + 1 variables for encoding
the elements of the domain X and n = |X | variables for encoding the elements
of the range 2X . It is defined by
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fM(x1, . . . xm, y1, . . . , yn) =
{
yc+1 : c ≤ n− 1

0 : otherwise,

where c := c−1
X (x1, . . . , xm) is the decoding of the bitstring x1, . . . , xm.

Given a variable ordering such that the variables x1, . . . , xm are tested before
the variables y1, . . . , yn, the number of nodes of the OBDD of fM with respect
to this variable ordering is bounded by 2m− 1 +n+ 2, that is, by 3|X |+ 1. The
argument is that the x-variables are tested in a binary decision tree with at most
2m − 1 inner nodes and at most 2m leaves. (The case that |X | is a power of 2
leads to a complete binary decision tree with 2m−1 inner nodes and 2m leaves.)
Each leaf is replaced by a test of the corresponding y-variables if the number of
the binary representation is not greater than n− 1. All other leaves are deleted
and the incoming edges are directed to the sink 0. There may be reduction rules
applicable to this OBDD but this only reduces the number of nodes. The result
follows by adding 2 nodes for the sinks.

In the case that |X | is a power of 2, the Boolean function fM of the mem-
bership relation M : X ↔ 2X is the well-known direct storage access function
DSAn (see e.g., [13]). Here m x-variables address n = 2m y-variables which de-
cide about the output. For DSAn the fraction of variable orderings leading to a
non-polynomial OBDD size converges to 1, and this also holds for the function
fM. A lot of RelView programs work with membership relations, especially if
one deals with hard problems or uses the system for supporting the engineering
and validation of relational specifications. Therefore, the choice of our specific
variable ordering is justified. The large number of bad variable orderings also
suggests not to change the variable ordering during the computation process
when working with this relation. This has been confirmed by experimental stud-
ies showing that the use of different variable orderings and reordering techniques
leads in most cases to a much higher computation time in comparison to a com-
putation with our fixed variable ordering.

For the size-comparision relation S : 2X ↔ 2X of (5) an OBDD-implementa-
tion has been developed in [11] which exactly uses 2+ |X |(|X |+1) OBDD-nodes
for the proposed variable ordering.

4 The Computer Algebra System RelView

RelView (see [1,2]) is a totally interactive and completely graphic-oriented
“specific purpose” Computer Algebra system for dealing with relational algebra.
In it all data are represented as (of course, finite) relations. Especially when
applied for prototyping or to solve hard problems via enumeration, the system
often works on very large objects since, e.g., a membership relation appears dur-
ing a computation. Therefore, it uses a very efficient internal implementation of
relations via OBDDs following the approach sketched in Section 3. Externally,
relations are visualized in two different ways; see the snapshot of Figure 2. For
relations of type X ↔ X RelView offers a representation as directed graphs,
including sophisticated algorithms for drawing them nicely. Alternatively, arbi-
trary relations may be depicted as Boolean matrices. This second representation
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Fig. 2. The screen of RelView

is very useful for visually editing and also for discovering various structural
properties that are not evident from a representation of relations as directed
graphs. Although the detailed appearance of the windows of RelView depends
on specific conceptions of the users, typically the main windows (viz. evaluation
window, menu window, directory window, window of the relation editor, window
of the graph editor) look as in the screen snapshot of Figure 2.

The main purpose of RelView is the evaluation of relation-algebraic ex-
pressions which are constructed from the relations of the workspace using many
predefined operations (like -, ^, &, |, and * for complement, transposition, in-
tersection, union, and composition) and tests (like empty for testing emptiness)
on them, user-defined relational functions, and user-defined relational programs.
A relational function is of the form F(X1, . . . , Xn) = t, where F is the function
name, the Xi, 1 ≤ i ≤ n, are the formal parameters (standing for relations), and
t is a relation-algebraic expression over the relations of the workspace that can
additionally contain the formal parameters Xi. A relational program essentially
is a while-program based on the datatype of relations. It starts with a head line
containing the program’s name and a list of formal parameters. Then the decla-
ration part follows. The third part is its body, a sequence of statements which
are separated by semicolons and terminated by the return-clause.

5 A Graph-Theoretic Application: Maximum Cliques

Throughout this section, we fix an undirected graph g = (V,E) and assume that
it is represented by the symmetric and irreflexive adjacency relation R : V ↔ V .
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That is, we suppose for all x, y ∈ V that Rxy iff {x, y} is an edge from E. A clique
of g is a subset C of V in which every pair x, y of distinct vertices is connected
by an edge, i.e., {x, y} ∈ E. The clique C is called maximum if its cardinality is
maximum. The maximum clique problem is NP-hard. Moreover, it is even one
of the hardest problems with respect to polynomial-time approximability.

We want to compute maximum cliques of g using RelView. First we develop
a vector of type 2V ↔ 1, which represents the set of all cliques of g. Let X be an
arbitrary set of vertices. We decide whether X is a clique, using the predicate-
logic specification of X to be a clique, the definition (3) of the membership
relation M : X ↔ 2X , and some simple laws of predicate logic respectively well-
known correspondences between logical and relation-algebraic constructions:

X is a clique of g ⇐⇒ ∀x, y : x ∈ X ∧ y ∈ X ∧ y �= x→ Ryx

⇐⇒ ∀x : x ∈ X → (∀ y : y ∈ X → (y = x ∨Ryx))
⇐⇒ ∀x : MxX → (∀ y : MyX → (I ∪R)yx)
⇐⇒ ∀x : MxX → (¬∃ y : MyX ∧ I ∪Ryx)
⇐⇒ ∀x : MxX → ¬(MTI ∪R)Xx

⇐⇒ ¬∃x : MT
Xx ∧ (MTI ∪R)Xx

⇐⇒ ¬∃x : (MT ∩MTI ∪R)Xx ∧ Lx L : V ↔ 1

⇐⇒ (MT ∩MTI ∪R)LX

Next, we remove the subscript X from the last expression of the derivation
following the vector-representation of sets introduced in Section 2. To improve
efficiency, after that we apply symmetry of R in combination with some well-
known relation-algebraic laws to transpose only a “row vector” instead of a
relation of type V ↔ 2V , yielding

cliques(R) := LT(M ∩ I ∪RM)
T

: 2V ↔ 1 (6)

as relation-algebraic specification of the vector representing the set of all cliques
of g. (Using an OBDD-implementation of relations, transposition of a relation
with domain or range 1 is trivial. It only means to exchange domain and range,
the OBDD remains unchanged. See [11] for details.)

Now, let S : 2V ↔ 2V be the size-comparison relation on 2V as introduced
by (5). Then an application of the relational function max of (4) to S and the
vector cliques(R) immediately yields the following vector-representation of the
set M of all maximum cliques of g:

maxcliques(R) := max (S, cliques(R)) : 2V ↔ 1 . (7)

The column-wise representation of M by M inj(maxcliques(R))T : V ↔ M now
is a direct consequence of the technique explained in Section 2.

Each of the above relation-algebraic specifications can be easily translated
into the programming language of RelView. Especially, (4), (6), and (7) read
as RelView-code as follows:
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max(R,v) = -v & -(-R^ * v).
cliques(R)
DECL M
BEG M = epsi(O(R))

RETURN -(L1n(R) * (M & -refl(R) * M))^
END.

maxcliques(R) = max(cardrel(O(R)),cliques(R)).

The RelView tool automatically allows to generate uniform random rela-
tions, also of a specific kind and density; see [11] for details. We have applied
this feature to test the efficiency of our approach, where we used a Sun-Fire 880
workstation running Solaris 9 at 750 MHz. Figure 3 shows some experimental re-
sults for randomly generated symmetric and irreflexive adjacency relations. The
number of vertices N of the random graph is listed at the x-axis and the time
needed to execute maxcliques is listed at the y-axis. The four curves have been
obtained by varying N from 50 to 500 by steps of 50 vertices and the probability
of a pair {x, y} to be an edge of a graph from 10% to 25% by steps of 5%. We
performed at least 20 experiments for each N and each density and computed
in all cases the arithmetic mean of the execution times.

Because of lack of memory, in the case of 25% density we have not been
able to deal with N > 300 vertices. If, however, we restricted us to more sparse
graphs, larger numbers of vertices could be treated successfully. For example,
N = 700 and a density of 10% led to approximately 12 minutes execution time
and, for the same density, N = 1000 led to roughly 100 minutes.

Using the same environment, we have also tested maxcliques on some DI-
MACS benchmaks (see [7]) with up to 500 vertices. The results are shown in
Table 1, where the fourth column contains the sizes of the maximum cliques and
the sixth column shows the computation times in seconds. Apart from the size
of a maximum clique and the computation time it is very interesting to see the
number of maximum cliques for the considered benchmarks. For instance, in the
case of MANN a9 there are exactly 9540 maximum cliques.
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Fig. 3. Computational results on randomly generated instances
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Table 1. Computational results on DIMACS Benchmarks

Problem Vertices Edges Clique Size # Max. Cliques Time

c-fat200-1 200 1534 12 14 0.77

c-fat200-2 200 3235 24 1 0.68

c-fat500-1 500 4459 14 19 8.96

c-fat500-2 500 9139 26 19 7.92

johnson8-2-4 28 210 4 105 0.02

hamming6-4 64 704 4 240 0.81

MANN a9 45 918 16 9540 0.30

Of course, in view of efficiency our approach cannot compete with special pro-
grams and tools for the exact solution of the problems we dealt with (although
the complexities usually are the same). Compare, for example, our computation
times with the times given in [8]. Indeed, RelView is able to compute all maxi-
mum cliques within a reasonable time in the case of sparse graphs. As mentioned
before in the consideration of random instances, however, it has its difficulties if
density increases. But it should be emphasized that the system yields all solu-
tions . In some applications this may be helpful. For example, the enumeration
of maximum independent sets can be reduced to the enumeration of maximum
cliques. Using the edge adjacency relation construction (see [12]), thus, we are
able to enumerate all maximum respectively all perfect matchings of graphs. The
latter can be used to compute permanents of 0/1-matrices, since this number
equals the number of perfect matchings of a specific bipartite graph.

6 A Lattice-Theoretic Application: Cut Completion

Assume (X,R) to be a partially ordered set, that is, R : X ↔ X to be a partial
order on X . For a set Y ∈ 2X let Y ↓ denote the set of its lower bounds and

Fig. 4. Visualization of a cut completion
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Y ↑ denote the set of its upper bounds with respect to R. If Y = Y ↑↓, then this
set is called a Dedekind cut of (X,R). Obviously, for each element x ∈ X the
set [x] := {y ∈ X | Ryx} is a Dedekind cut of (X,R), called the principal cut
generated by x. Now, let C denote the set of all Dedekind cuts of (X,R) and
P be the subset of all principal cuts. Then (C,⊆) is a complete lattice. It is
called the cut completion (or Dedekind-MacNeille completion) of (X,R), since
it contains (P,⊆) as sub-order and the latter is order-isomorphic to (X,R) via
the injective function σ : X → C, mapping x to the principal cut generated by
x. The lattice (C,⊆) is the smallest complete lattice which embeds (X,R) as a
sub-order; for more details on cut completion see [6].

Again we start with the vector-representation of the decisive set C. Assume
Y ∈ 2X . If we formalize lower and upper bounds using predicate logic and apply
definition (3) of the membership relation M : X ↔ 2X , then we have

Y = Y ↑↓ ⇐⇒ ∀x : x ∈ Y ↔ x ∈ Y ↑↓

⇐⇒ ∀x : x ∈ Y ↔ (∀ y : y ∈ Y ↑ → Rxy)
⇐⇒ ∀x : x ∈ Y ↔ (∀ y : (∀ z : z ∈ Y → Rzy)→ Rxy)
⇐⇒ ∀x : Mx,Y ↔ (∀ y : (∀ z : MzY → Rzy)→ Rxy) .

Now, we apply the same strategy as in the case of cliques in combination with
property (1) to replace in the last formula all logical constructions by relation-
algebraic ones. Doing so, we arrive after some steps at

cuts(R) := (syq(M, RR
T
M) ∩ I)L : 2X ↔ 1 (8)

as relation-algebraic specification of the vector representing the set C of all
Dedekind cuts of (X,R), where I : 2X ↔ 2X and L : 2X ↔ 1. Using (8), the
column-wise representation of the set C by

cutslist(R) := M inj(cuts(R))T : X ↔ C (9)

is an immediate consequence of the remark of Section 2. The same holds for the
inclusion on the set of cuts, i.e., the partial order of the cut lattice (C,⊆). Here
we have the relation-algebraic specification

cutord(R) := cutslist(R)T cutslist(R) : C ↔ C . (10)

Also the embedding of (X,R) into its cut completion (C,⊆) can be formulated
quite easily using relational algebra. Given x ∈ X and Y ∈ C, we obtain

[x] = Y ⇐⇒ ∀ y : Ryx ↔ y ∈ Y ⇐⇒ syq(R, cutlist(R))xY ,

where the first step uses the definition of principal cuts and the second step
applies (1) and the equivalence of y ∈ Y and cutlist(R)yY . This leads to

sigma(R) := syq(R, cutset(R)) : X ↔ C (11)

as relation-algebraic version of the embedding function σ : X → C.
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Fig. 5. Visulization of the Hasse-diagram

It is trivial to translate (8) until (11) into RelView-code. This allows to com-
pute and visualize cut completions with the tool. Figure 4 graphically depicts the
relation C := cutord(R) : C ↔ C of the cut completion of an ordered set (X,R).
The embedding into (C, C) is visualized by boldface arrows, where the latter has
been obtained by two steps. First, the sub-relation S := sigma(R)TR sigma(R)
of C has been computed. Then, in the graph-representation of C the arrows
corresponding to elements of S have been marked using a specific command.

Layouts of partial orders as given in Figure 4 are neither economic nor easy
to comprehend since they contain many superfluous arrows. Therefore, it is cus-
tomary to depict only the Hasse-diagram as shown in Figure 5. To obtain this
picture, we have computed the Hasse-diagrams HC and HS of C and S, re-
spectively, via calls of a small RelView-program. Then we have marked the
arrows corresponding to elements of HS in the graph-representation of the union
HC ∪ HS . And, finally, we have emphasized the set of vertices represented by
the vector sigma(R)T

L : C ↔ 1 by drawing these vertices as squares.

7 Conclusion

We have presented the OBDD-based specific purpose Computer Algebra system
RelView for relational algebra, and have exhibited its use by two examples. The
novelty and real attraction of our approach is the combination of OBDDs, rela-
tional algebra, visualization, and animation in an efficient and flexible software
system. RelView uses only standard procedures for OBDD manipulation, which
are available in any OBDD-package. Hence, any improvement in the OBDD area
leads to a greater efficiency of RelView computations.

Experience has taught us that relational algebra is a powerful tool for deal-
ing with many problems on discrete structures. As the examples of Section 5
and 6 show, it is often possible to “calculate” concise algorithms from formal
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specifications, so that correctness is established by construction. Algorithms can
be executed and their results visualized with RelView. This allows to check
them against the specifications and to detect errors. Due to the shortness and
clearness of relation-algebraic expressions respectively RelView programs, the
user can easily play and experiment with them.

RelView has been combined with other tools, e.g., SniffAlyzer for view-
ing and analyzing software architectures facts (see [11]). We have isolated the
core functionality of RelView from the entire system and collected in a C-
library, called Kure. With this library at hand, relational algebra can efficiently
and easily be integrated into many other software systems. The PetRA tool for
the analysis of Petri nets is a first application of this approach; see [9] for details.
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Abstract. Some algorithmic properties are obtained related with the
computation of the elementary divisors and a set of canonical generators
of a finite abelian group, this properties are based on Gröbner bases
techniques used as a theoretical framework. As an application a new
algorithm for computing the structure of the abelian group is presented.

1 Introduction

Knowing structure of finite abelian groups has many applications on discrete
applied mathematics (see [15] and the references within for some applications).
Compute the structure of a finite abelian group can be reduced to computing
the Smith Normal Form (SNF) of integer matrices (see, for instance, [5]). There
are many works devoted to the computation of the SNF, the Hermite Normal
Form (HNF) and related problems (the standard algorithm is Gaussian elimina-
tion over the integers), some approaches (not an exhaustive list) can be found
in [9,7,10]. Some interesting current implementations of algorithms for comput-
ing the SNF can be found in [11]. The best known complexities seem to appear
in [13,14] for a deterministic algorithm or in [8] for a probabilistic algorithm
of Monte Carlo type. Finally, in [6] the authors give a number of algorithms
for computing with Abelian groups, such as computing kernels, inverse images,
images, quotients, extensions, etc; in each case, the authors choose the most suit-
able representation for the input and output, but the SNF is always around. In
the papers [4,16,17] there is another direction for computing the group structure,
which considers the group given in such a fashion that multiplication of elements,
computing inverses, and comparing elements are possible. Our contribution is
to clarify the relation of those problems with the shape and computation of a
certain Gröbner basis and to use that relation in order to efficiently compute
finite abelian group structures.
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2 Preliminaries

Let A be a finitely generated Abelian group (group for short in the sequel).
Let (Γ,M), be a presentation of A, i.e. a pair given by Γ := {α1, . . . , αn}, a
generating set of A, and M := {mij}, a k × n matrix, so that the following
sequence is exact:

Zk M−→ Zn Γ−→ A −→ 1.

A presentation of A can also be described in terms of a quotient of the
corresponding free abelian monoid, namely, let Γ−1 be the set of formal inverses,
then A is represented by:

〈
Γ ∪ Γ−1 | σ〉 =

〈
Γ ∪ Γ−1 |

n∏
j=1

β
|mij |
j = 1, i ∈ [1, k]; αjα

−1
j = 1, j ∈ [1, n]

〉
,

where βj = αj if mij ≥ 0 or βj = α−1
j if mij < 0. From σ it is usual derived

the following set of binomials:

P(σ) :=

⎧⎨⎩
n∏

j=1

β
|mij |
j − 1, i ∈ [1, k]; αjα

−1
j − 1, j ∈ [1, n]

⎫⎬⎭ .

On the other hand, given a subset S of A, we will denote by 〈S〉 (as usual)
to the subgroup generated by S. We will make use with the commutative poly-
nomial ring K[α1, . . . , αn, α

−1
1 , . . . , α−1

n ], where K is a field. In this context,
Ideal(F ) stands for the ideal generated by the subset of polynomials F . The
problem addressed in this paper is the following:

Problem 1 (Computing the structure of finite abelian groups.).
Given (Γ,M), a presentation of a finite Abelian group A �= {1},
Compute positive integers m1, . . . ,mk, with m1 > 1, mi | mi+1, 1 ≤ i < k and
an isomorphism φ : A −→ Z/m1Z×· · ·×Z/mkZ, which is given in terms of the
images of the generators.

Note that this is a much harder computational problem than just to deter-
mine the invariants (elementary divisors) of A, m1, . . . ,mk .In the general case,
it may be possible that either M does not represent a finite group or M stands
for the trivial group, but it can be possible to discard both situations as a part
of the algorithm devoted to solve the problem of group structure computation.

3 Gröbner Bases Associated to Finite Abelian Groups

The reader can find a basic background on Gröbner Bases in [3,12]. We will make
use the lexicographical term ordering induced by α1 ≺ · · · ≺ αn ≺ α−1

1 ≺ · · · ≺
α−1

n and defined as:

αa1
1 · · ·αan

n (α−1
1 )an+1 · · · (α−1

n )a2n ≺ αb1
1 · · ·αbn

n (α−1
1 )bn+1 · · · (α−1

n )b2n ⇐⇒
⇐⇒ ∃ j | aj < bj and ai = bi, for i > j.
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Definition 1 (Least Exponent). Let A �= {1} be a group; ξ1, . . . , ξr, δ ele-
ments of A. The least exponent of δ with respect to {ξ1, . . . , ξr} is the least
natural number m such that δm ∈ 〈{ξ1, . . . , ξr}〉.
We will represent m by LE(δ, {ξ1, . . . , ξr}). It is clear that

LE(δ, {ξ1, . . . , ξr, ξr+1}) | LE(δ, {ξ1, . . . , ξr}). (1)

Theorem 1 (Characterization of Finite Abelian Groups). Let A be a
group, (Γ,M) a presentation of A, P(σ) as in Section 2. Then A is finite if
and only if the reduced Gröbner basis of Ideal(P(σ)), with respect to ≺, has the
following shape:

rGb(P (σ)) :=

⎧⎨⎩αmi

i −
i−1∏
j=1

α
nij

j | i ∈ [1, n]

⎫⎬⎭⋃
⎧⎨⎩α−1

i −
i−1∏
j=1

α
kij

j | i ∈ [1, n]

⎫⎬⎭ ,

(2)
where nij , kij are not negative integers less than mj, m1 is the order of α1 and,
for all i ∈ [2, n],mi = LE(αi, {α1, . . . , αi−1}). Moreover, A is the trivial group
if and only if rGb(P (σ)) =

⋃n
i=1{αi − 1, α−1

i − 1}.

Proof (Sketch, details are left to the reader). The binomials αmi

i − ∏i−1
j=1 α

nij

j

and α−1
i −∏i−1

j=1 α
kij

j belong to Ideal(P (σ)); αmi

i and α−1
i are respectively the

maximal terms with respect to ≺. Furthermore, if we assume that a binomial
different from the above ones belong to rGb(P (σ)) and that the group is finite,
then either we will get a contradiction with the definition of mi or the binomial
can be reduced by means of the above set of binomials.

Remark 1.

1. Compute rGb(P (σ)) is in essence to compute the HNF of the initial matrix
M (See Section 4). In fact, it can be possible to compute the structure ofA by
means of typical Gröbner bases techniques, namely: Compute the Gröbner
basis of Ideal(P (σ)), for deciding whether A is a not trivial finite group; if
so, introduce systematically new “convenient” generators and corresponding
relations, then update the Gröbner basis (using the elimination property),
and so forth, until the “new” Gröbner basis “reveals” the structure. We do
give more details because this approach may lead to a more complex way
than the already known methods. Our intention is rather to use the shape
of the above Gröbner basis in order to devise an efficient way for computing
group structures.

2. In practical terms, we will not work from now on with the relations related
to the inverses (α−1

i −∏i−1
j=1 α

kij

j , i ∈ [1, n]).

Proposition 1 (Computing the least exponent). Let w :=
∏s

i=1 α
ki

i , with
ks �= 0, then LE(w, {α1, . . . , αs−1}) =

ms

GCD(ms, ks)
.
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Proof. Let t := ms

GCD(ms,ks) and m := LE(w, {α1, . . . , αs−1}). Let us take m =

qt+r, where q, r are integers and r ∈ [0, t−1]. Then, wm =
∏s−1

i=1 (αkim
i )αksqt

s αksr
s ,

which implies that αksr
s ∈ 〈{α1, . . . , αs−1}〉; hence r = 0 (t is the least natural

number such that ms | kst). Now, as m = qt and we are interested in the least
number, we infer that m = t.

4 Hermite Normal Form and Gröbner Bases

There is not a unique definition of HNF. The following definition is given in [10].

Definition 2 (Hermite normal form). A nonsingular square integer matrix
is in HNF if it is upper triangular with positive diagonal elements. Further, each
off-diagonal element is nonpositive and strictly less in absolute value than the
diagonal element in its column.

If the group is finite, the HNF could be assumed as square matrix. If it results
a k × n matrix (k > n), only the first n rows would be nonzeros. Given (mi j),
a HNF representation of a finite group, assume that the columns correspond
to the generators of the group in decreasing ordering (i.e. the first columns
corresponds to αn). Translating the HNF to the corresponding set of binomials
{αmi i

i −∏i−1
j=1 α

−mi j

j }, one can see that it has the form given in (2) for the reduced
Gröbner basis, removing the set of binomials corresponding to the inverse of
the generators (see Theorem 1). On the other hand, starting from the set of
binomials of rGb(P (σ)) related with the generators α1, . . . , αn, one can get the
associeted echelon form matrix that represents the group. The characteristic of
the exponents in (2) ensures that this matrix is in HNF.

In intermediate calculus of many algorithms a bound of the order of the group
is used in order to decrease the size of the coefficients. It is well known that the
order of the group is bounded by any determinant of an square submatrix of
a matrix that represent the group. Let us denote by d the determinant of the
main square submatrix of M (after an arranment of the order of the generators
if it were necessary). A bound for d is db = (

√
n ‖M‖)n, where ‖M‖ denotes the

maximum magnitud of entries in the initial matrix M .
From now on we will denote by σ1 the presentation of a finite group obtained

from the translation of the computation of the HNF. It is also enough for our
purpose to compute the upper triangular matrix, where the nij ’s do not have
to be reduced with respect to the corresponding mj but just with respect to
d. After the computation of σ1, it is easy to see that the order of A can be
computed as o(A) :=

∏n
i=1mi.

Example 1 (A HNF for a finite group and a presentation σ1). Given the finite
group A generated by a, b, c, d and presented by the matrix

M :=

10 −3 −3 0
30 6 −3 −9
20 −6 2 −6
70 −21 11 −6

, where the order of the generators is a ≺ b ≺ c ≺ d.

The HNF of M is given by
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H :=

10 −3 −3 0
0 15 −2 −3
0 0 8 −6
0 0 0 18

,
from where σ1 can be obtained as

σ1 := {a18 = 1, b8 = a6, c15 = a3b2, d10 = b3c3}.
The order of the group can be computed, o(A) = 18 · 8 · 15 · 10 = 21600.

In this case, d coincide with the order of the group. However db =
(√

4 70
)4

=
38416 · 104.

5 Elementary Divisors and Generators

Assume that we have already computed a presentation σ1 of A, generated by
α1, . . . , αn.

σ1 =

⎧⎨⎩αmi

i =
i−1∏
j=1

α
nij

j | i ∈ [1, n]

⎫⎬⎭ , (3)

where nij , kij are not negative integers less than mj , m1 is the order of α1 and,
for all i ∈ [2, n],mi = LE(αi, {α1, . . . , αi−1}). Let us assume we have computed
the firts s elementary divisors and a corresponding set of canonical generators
β1, . . . , βs. Then σs+1 will be the updated presentation of A with the same
characteristic of (3) but for the order β1 ≺ . . . ≺ βs ≺ α1 ≺ . . . ≺ αn.

In this section we show how to compute, given the presentation σs, the next
elementary divisor and a canonical generator βs associated. The shape of the
presentations σs’s will play an essential role in the proofs and procedures of this
section. By RF (α, σ) we denote the reduced form of the element α module σ . If
the presentation σ is clear from the context we will use just RF (α).

Definition 3 (Less canonical exponent). Given α ∈ A, we define 
s(α) :=
LE(α, {β1, . . . , βs}). The greatest canonical exponent is m(s) := max{
s(ξ) |
ξ ∈ A}.
In the Theorem below it is shown that m(s) is the s-th elementary divisor. In
order to compute the less canonical exponent of an element, the presentation σs

is needed. In the sequel these two procedures will be shown in details.

Theorem 2 (Computing the next canonical generator). Supose there are
given the first s canonical generators and the presentation σs+1 of A. Let m be
the least common multiple (LCM) of 
s(α1), . . . , 
s(αn). Then, if m = 1, the
s canonical generators already introduced generate the group A; otherwise, if
m �= 1, the following three propositions are satisfied:

i. There exists β∗
s ∈ A (β∗

s =
∏n

i=1 α
qi

i ) such that m = 
s(β∗
s ).

ii. For s = 0, β1 = β∗
0 is such that o(β1) = m = m(0).

iii. For s ≥ 1, let β∗
s

m =
∏s

j=1 β
aj

j , with 0 ≤ aj < o(βj), j ∈ [1, s]. Then, for
all j ∈ [1, s], m | GCD(o(βj), aj).
Moreover, the element βs+1 =

∏s
j=1 β

tj

j

∏n
i=1 α

qi

i , tj = (o(βj)−aj)
m , j ∈ [1, s],

satisfies the following conditions:
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1. o(βs+1) = m = m(s),
2. 〈β1, . . . , βs〉 ∩ 〈βs+1〉 = {1}.

Proof. If m = 1,for all i ∈ [1, n], we have that 
s(αi) = 1, i.e., the initial gener-
ators αi’s are already superfluous, which means that the group A is generated
by the set of canonical generators {β1, . . . , βs}.

Let m > 1. Let us prove first that for s = 0 the propositions of the theorem
are satisfied. Obviously, 
0(αi) corresponds to the order of each generator. It is
well known from the Group Theory (not only for abelian groups) that it can be
obtained an element β∗

0 of order m = LCM(
0(αi) | i = [1, n] ) (in Section 6
Algorithm 1 shows how to compute such an element). Note that this element β∗

0

satisfies the Proposition i, since with respect to the trivial subgroup, the least
exponent of any element coincides with its order (m = o(β∗

0 ) = LE(β∗
0 , {1}) ).

It is clear that wm = 1 (for all w ∈ A), therefore, o(w) | m (for any w ∈ A),
which implies that m(0) ≤ m. Analyzing Definition 3 for s = 0, it is obvious from
the construction of β∗

0 that o(β∗
0 ) = m = m(0). Thus β1 = β∗

0 ; and Proposition ii
is proved.

Now let us assume that the theorem holds for the first s canonical generators
(s ≥ 1); particularly, we have:

o(βj+1) = LE(βj+1, {β1, . . . , βj}) = LCM( 
j(αi) | i ∈ [1, n] ) = m(j),
for all j ∈ [0, s− 1], (4)

let us prove that the conditions are satisfied also for s + 1. We compute first

s(αi) (see Algorithm 2 in Section 6) for any non superflous αi such that we get:

α
�s(αi)
i =

s∏
j=1

β
kij

j . (5)

Following the same idea of the case s = 0, it can be proved that m = m(s).
Using the Algorithm 1 (see Sección 6) we get β∗

s such that:

β∗
s =

n∏
i=1

αqi

i , β∗
s

m =
s∏

j=1

β
aj

j , 0 ≤ aj < o(βj), j ∈ [1, s], (6)

where m = 
s(β∗
s ). It follows that condition i of the theorem holds; as well as

the equality m = m(s) of iii.1. On the other hand, the condition m | aj in iii is
a consequence of Lema 1 (see Section 6), whereas m | o(bj) follows from (1) and
(4).

Consider

βs+1 = β∗
s

s∏
j=1

β
(o(bj)−aj)/m
j (7)

It is easy to prove that βm
s+1 = 1, then o(βs+1) ≤ m; besides, β∗

s
k /∈ 〈β1, . . . , βs〉

if k < m, consequently, o(βs+1) = m.
Therefore, the chain of equalities of Proposition iii.1 are satisfied o(βs+1) =

m = m(s). In addition, note that from the equality o(βs+1) = m, we have that
LE(βs+1, {β1, . . . , βs}) = o(βs+1) and Proposition iii.2 follows.
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6 Others Results and Algorithms

In this section we show the results and algorithms which allow to compute the
canonical generators following the results in Theorem 2. First, Lemma 1 proves
that the tj ’s of 2.iii are well defined, as well as, Algorithm 1 compute β∗

s . In
Subsection 6.2, some comments are given to show how to compute σs+1, finally,
Algorithm 2 is presented in Subsection 6.3 in order to compute the lest canonical
exponents 
s(αi) for each initial generator αi of the group A.

Lemma 1. Let c be an element of A and β1, . . . , βs (s ≥ 1) a set of elements
of A that satisfy (4). Let k = LE(c, {β1, . . . , βs}), If we have the equality: ck =∏s

j=1 β
aj

j , then k | aj for all j ∈ [1, s].

Proof. Let us assume that for i elements (i < s) the lemma holds, and let us
prove that it holds for i = s.

Suppose, without lost of generality, that as �= 0. Let p be any prime factor
of k. By GP(m, p) we denote the greatest power of p which is a factor of m, in
the case p is not a divisor of m, GP(m, p) := 1 (p 0), on the other hand, for zero
we have GP(0, p) := p+∞.

Let GP(k, p) = ptc , GP(aj , p) = pbj GP(o(βj), p) = ptj , con j ∈ [1, s]. As a
direct consequence of Proposition 1, the number ks := o(βs)

GCD(as, o(βs))
is the least

exponent for ck and 〈β1, . . . , βs−1〉.
Lifting to ks in both sides of the equality of the lemma we get

cms =
∏s−1

j=1 β
asj

j , where ms = k ks = LE(c, {β1, . . . , βs−1})
and asj

= aj ks, j ∈ [1, s− 1].
If the set {β1, . . . , βs} satisfies (4), the set {β1, . . . , βs−1} satisfies also (4);

then, we can apply the induction over i = s− 1 obtaining:

ms | asj
, for all j ∈ [1, s− 1]. (8)

Taking into account (8), GP(ms, p) = GP(k ks, p) ≤ GP(ajks, p) for all j ∈
[1, s− 1], from where it is obtained that GP(k, p) ≤ GP(aj , p); consequently,

tc ≤ bj , for all j = [1, s− 1]. (9)

We have also that ms | m(s) = o(βs) (see (4)), then

GP(ms, p) ≤ GP(o(βs), p). (10)

With respect to as let us divide the analysis in two cases:

(1) GP(as, p) ≥ GP(o(βs), p), (2) GP(as, p) < GP(o(βs), p).
For case 1, we have GP(ms, p) = ptc , and because of (10) it follows that

tc ≤ bs. (11)

For case 2, GP(ms, p) = ptc + ts − bs . Due to (10) the following inequality holds

ptc + ts − bs ≤ pts ; (12)
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therefore, tc ≤ bs. Analyzing the previous inequality and (9), (11), it has been
obtained that:

tc ≤ bj j ∈ [1, s].
It means, for any prime factor p of k

GP(k, p) ≤ GP(aj , p), for all j ∈ [1, s],

As a consequence, k | aj , for all j ∈ [1, s].

Algorithm 1. (Computing β∗
s)

Input: σs and 
s(αi) i = 1, . . . , n.
Output: The element β∗

s and m(s) = LCM({
s(αi) |∈ [1, n]}).
1. k := max{i ∈ [1, n] | mi �= 1};
2. β∗

s := αk, m := 
s(αk); k:=k-1
3. While ( k ≥ 1 ) do
4. If (mk �= 1) then
5. p := GCD(m, 
s(αk))
6. If (p �= 
s(αk)) and (p �= m) then
7. p1 := p, t := m/p1, p2 := GCD(p1, t);
8. While (p2 �= 1) do
9. p1 := p1/p2, p2 := GCD(p1, t);
10. m := (m
s(αk))/p, β∗

s := β∗
s

p1 α
p/p1
k ;

11. else If (p = m) then β∗
s := αk, m := 
s(αk);

12. k := k − 1;
13. Return(RF (β∗

s),m)
Correctness: The algorithm is based on the following property of the LCM:

LCM(m, 
s(αk)) =
(m
s(αk))

GCD(m, 
s(αk))

which gives a recursive formula for the computation of m (see Step 5 and 10);
on the other hand, in Step 10 it is recomputed the element β∗

s such that its
least canonical exponent corresponds to the updated m. This new element β∗

s

is obtained as a product of a power of the former β∗
s (β∗

s
p1) and a power of αk

(αk
p/p1) such that their least canonical exponents are relative primes and their

product is equal to m; 1 the computation of the corresponding powers of β∗
s and

αk is done in the While of Step 8, which performs Step 9 iteratively.
If the generator αk is superfluous it is directly taken the next generator (see

the condition in Step 4 and Step 12).
If LCM(m, 
s(αk)) = 
s(αk), which means GCD(m, 
s(αk)) = m (see the

condition of Step 11), then m = 
s(αk) and β∗
s = αk (see Step 11). In the case

that LCM(m, 
s(αk)) = m, the values of m and β∗
s remain unchange, and the

next generator is taken.

1 The product of two elements whose least canonical exponents are relative prime, has
least canonical exponent equal to the product of those exponents.
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6.1 A Complete Example

Let A be the finite group defined in the Example 1. First, let us compute an ele-
ment β1 of maximum order. The element β∗

0 computed by Algorithm 1 is exactly
the first canonical generator β1 (see Theorem 2.ii), then we will use directly β1

instead of β∗
0 . Let us compute first 
0(αi) = o(αi), for αi ∈ { a, b, c, d }


0(a) = 18, 
0(b) = 24, 
0(c) = 60, 
0(d) = 400.

The algorithm starts with d (see Step 1), β1 := d, m := 
0(d) = 400.
The next generator c is taken, 
0(c) �= 1, so, the condition in Step 4 is satisfied

and the Steps from 5 to 10 are computed:
p := GCD(m, 
0(c)) = GCD(400, 60) = 20, as p �= m and p �= 
0(c) (see Step
6) then, p1 := p = 20, t := m/p1 = 20, p2 := GCD(p1, t) = 20, we have p2 �= 1
(see Step 8) therefore, following Step 9: p1 := p1/p2 = 1, p2 := GCD(p1, t) = 1.
When p2 = 1, the While at Step 8 has ended, now the values of m and β1 are
updated according to Step 10:
m := (m
0(c))/p = 400 · 3 = 1200, β1 := βp1

1 cp/p1 = β1 c
20 = d c20.

Taking now b, p := GCD(m, 
0(b)) = GCD(1200, 24) = 24, in this cases
p = 
0(b), thus b is not necessary in order to construct β1. 2

For awe have p := GCD(m, 
0(a)) = GCD(1200, 18) = 6, then, p satisfies the
condition of Step 6, thus we do p1 := p = 6, t := m/p = 200, p2 := GCD(p1, t) =
2, p2 �= 1; therefore, the While of Step 8 is performed. p1 := p1/p2 = 6/2 = 3,
p2 := GCD(p1, t) = 1; in Step 10 the new values of β1 and m are computed:
m := (m
0(a))/p = 1200 · 3 = 3600, β1 := β3

1 a
6/3 = (c20 d)3 a2 = a2c60d3,

RF (β1) = RF (a2c60d3) = a2 d3.
Now we compute σ2 with the order of the generators β1 ≺ a ≺ b ≺ c ≺ d.

In the subsection 6.2 we will give some comments about how to compute the
new presentation, meanwhile, let us assume we have computed σ2. Note that in
the context of the Buchberger Algorithm [3] it would be enough to compute the
reduced Gröbner basis of the ideal generated by P (σ1)∪{β1−a2d3} with respect
to the lexicographic ordering such that β1 ≺ a ≺ b ≺ c ≺ d. The resulting set of
binomials will correspond to P (σ2).

σ2 = {β3600
1 = 1, a2 = β2800

1 , c3 = β220
1 a}.

The generators b and d have been excluded from σ2 because they become supeflu-
ous. Then Algorithm 1 will be apply to obtain β∗

1 . Let us see first the expression
of the equalities defined in (5), corresponding to the computation of 
1(αi), for
αi ∈ {a, c}. The computation of the 
s(αi) is another subroutine needed for the
computation of the elementary divisors (see Section 6.3).

a2 = β2800
1 , c6 = β3240

1 = β−360
1 ,

Both equalities show the result stated in Lemma 1 (2 | 2800 and 6 | 3240).
2 In Step 6 there are only two situations in which some computations have to be

done: p �= m and p �= �0(b), and p = m (see Step 11). In the case p = �0(b) no
computation is done and therefore the next generator is taken, keeping β1 and m
already computed until this moment.
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Starting with the generator c, m = 6 and β∗
1 = c. In the next step we have

p = 
1(a), then the values of m and β∗
1 do not change (see the proof of the

correctness of Algorithm 1). Therefore, β∗
1 = c and the relation corresponding

to (6) is c6 = β3240
1 .

Applying Theorem 2.iii we can compute the canonical generator β2

β2 = β
(3600−3240)/6
1 c = β60

1 c.

Writting β2 depending of the initial generators we obtain β2 = a9b4c10. Note
that o(β1) · o(β2) = 3600 · 6 = 21600 = o(A), which implies that in the next
presentation σ3 all the initial generators will be superfluous; consequentely,

A = 〈a2 d 3〉 × 〈a9b4c10〉,

thus the canonical structure of A is (Z/3600Z) × (Z/6Z).

6.2 Computing the Presentation σs+1

Suppose it is given the presentation σs with the generators β1 ≺ . . . ≺ βs−1 ≺
α1 ≺ . . . ≺ αn. Then, given a new element βs we want to compute the new
presentation σs+1 for the ordering β1 ≺ . . . ≺ βs ≺ α1 ≺ . . . ≺ αn. As we said in
the previous section σ′

s = σs ∪ {βs =
∏s−1

i=1 βbi

i

∏n
j=1 α

kj

j } is also a presentation
of the group A. In order to compute σs+1 it is enough to have an algorithm
for solving the following problem: “ Given the presentation σ′

s compute the
presentation σs+1”.

Note that there is one change of the order among the generators of both
presentations.The presentation σ′ corresponds to an upper triangular matrix,
if we move the last relation to position s and the rest of the ordering is kept
invariant, then the new corresponding matrix it is not upper triangular, and for
computing σs+1 it would be enough to apply an algorithm in order to compute
the corresponding HNF. Because there was just only one twist from an upper
triangular matrix, the algorithm for recovering the HNF should be simpler in
this case. In order to get benefit of the specific case for the starting matrix, the
following proposition would play an important role and shows how to compute
the new less exponent for the generators αi’s.

Proposition 2 (The new less exponent).
Let 
i := LE(βs, {β1, . . . , βs−1, α1, . . . , αi}) and β�i

s =
∏s−1

j=1 β
bij

j

∏i
j=1 α

kij

j

then

LE(αi, {β1, . . . , βs−1,βs, α1, . . . , αi−1}) = GCD(mi, kii).

6.3 Computing �s(αi)

Algorithm 2. (�s(αi))
Input: σs+1 = {βdi

i = 1 | i ∈ [1, s]} ∪ {αmi

i =
∏s

j=1 β
hj

j

∏i−1
j=1 α

nij

j | i ∈ [1, s]}.
Output: 
s(αi) i = 1, . . . , n.
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1. 
s(α1) = m1, i := 2;
2. While (i ≤ n) do
3. If mi �= 1 then
4. l := i− 1, 
s(αi) := mi, kj := nij for j = 1, . . . , i− 1;
5. While (l ≥ 1) do
6. t := GCD(kl,ml);
7. 
s(αi) := 
s(αi) · ml

t ;
8. kj := kj ·ml

t for 1 ≤ j ≤ l;
9. kj := kj + kl

ml
· nlj for 1 ≤ j ≤ l− 1;

10. l := l − 1;
11. i := i+ 1;
12. Return({
s(αi), i = 1, . . . , n}).

7 Computing the Structure of the Abelian Group

Algorithm 3. (Computing the elementary divisors and a set of cano-
nical generators)
Input: A presentation σ1 of the group A as it is given in (3).
Output: A set {m(i) | i ∈ [1, k]}, a set β1, . . . , βk of canonical generators of
the group A, a presentation σk+1 of A; such that, {m(i) = o(βi) | i ∈ [1, k]} are
the elementary divisors of the group (m(i+ 1) | m(i)), A = 〈β1 〉 × . . .× 〈βk 〉,
and σk+1 is the presentation for A corresponding to the generators {β1, . . . , βk,
α1, . . . , αn} for the ordering β1 ≺ . . . ≺ βk ≺ α1 ≺ . . . ≺ αn.

1. s := 0.
2. Apply Algorithm 2 to compute 
s(α1), . . . , 
s(αn).
3. Apply Algorithm 1 to compute m(s) and β∗

s .
4. If m(s) �= 1 then
5. Compute βs+1 by following Theorem 2.
6. s := s+ 1, compute the presentation σs+1.
7. Goto Step 2.
8. Return({m(s) | s ∈ [1, k]}, {βs | s ∈ [1, k]}, σk+1).

Some Complexity Analysis: One advantage of this algorithm is that after
the computation of σ1 the order of the group is known; thus the bound for
multiplication of integers of a bounded size can be improved, note that the
common bound used is db which can be considerable higher than the order of
the group (see Section 4). The loop of the algorithm, from Step 2 to Step 6, has
as many iterations as the number of elementary divisors. Let be κ the number
of such a divisors, it is obvious that n is a bound for κ but in many cases it
results higher; for example, a cyclic group have just one elementary divisor.
The basic operations of the algorithm are multiplication of integers (MULT),
addition (SUM), greatest common divisor and extended greatest common divisor
computation (GCD). Reduction of an integer module the order of the group
have the same complexity of the operation MULT, so this operation is not taken
into account because it does not increase the complexity. We use for this basic
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operations the complexity formulas given in [14], the complexity of computing
σ1 (equivalent to compute a HNF) is also taken from [14]. The complexity will
be given in word operations which means that multiplication of integers can
be done in constant time for the digits using a Residue Number System (RNS)
representation of the integers3, i.e. multiplying numbers of size bounded by d
would take O(log d) word operations. Let B(K) = M(K)log K, where M(K)
denotes the best complexity to multiply integers of size 2K , we will give the
complexity in terms of this function B(·).

To perform Step 1 can be done in O(nθlog db + n2log nB(log db)), where
O(nθ) denotes the best complexity for a matrix multiplication algorithm (it is
known that 2 < θ ≤ 3, see [14] for an asymtotically better result).

Proposition 3 (Complexity). Algorithm 3 computes the set of elementary
divisors, a set of canonical generators and the corresponding canonical presenta-
tion in O(κn3 log o(A) + κn2B(log o(A)) + κn log o(A)B(log o(A))) word ope-
rations.

An advantage of this approach is the computation with integers of smaller
size. The sizes of the integers in the computation of SNF are bounded by db

and they usually grow up until that bound. However, after computation of σ1,
Algorithm 3 work with integers of size bounded by the order of the group, and
o(A) db. On the other hand, the calculus is more connected with the inside of
the structure of the group since it depends on the number of elementary divisors.
The complexity of the algorithm in terms of n, db, and B(·) can be obtained by
considering that κ ≤ n and o(A) ≤ db, which will give a factor of n5 while in [14]
the best known complexity is given with a factor of nθ+1. Step 2 is the step of the
algortihm of the highest complexity, m(s) in Step 3 denotes the s-th elementary
divisor.

Table 1. Complexity analysis

basic operations word operations

Step 2 O(n2) GCD + O(n3) MULT O(n2 B(log o(A)) + n3 log o(A))

Step 3 O(n)(MULT + GCD) log m(s)) O(n B(log o(A)) log m(s))

Step 5 O(n2) MULT O(n2 log o(A))

Step 6 O(n2) MULT + O(n) GCD O(n2 log o(A) + n B(log o(A))

The main idea behind this algorithm is an iterative application of the elim-
ination property of the Lexicographic ordering, whenever it is used that if an
element β belongs to a certain subgroup 〈β1, . . . , βs〉, where βi ≺ β, i ∈ [1, s],
then the reduced form of this element depends only on the elements {β1, . . . , βs}.
The algorithmic properties of Gröbner bases allow us to obtain Algorithm 3 by
a strategic sequence of applications of this simple idea. Theorem 2, Lemma 1,

3 See [14], where it is given also a conversion from word operations to obtain the true
asymptotic bit complexity.
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Algorithms 1 and 2 can be applied out of context of computing the canonical
structure of the group; for example, in order to construct some subgroup when
the group is given by generators and a multiplication.
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Abstract. We consider a special case of the Euler–Poisson system de-
scribing the motion of a rigid body with a fixed point. It is the au-
tonomous ODE system of sixth order with one parameter. Among the
stationary points of the system we select two one-parameter families with
resonance (0, 0, λ,−λ, 2λ,−2λ) of eigenvalues of the matrix of the linear
part. For the stationary points, we compute the resonant normal form
of the system using a program based on the MATHEMATICA package.
Our results show that in cases of the existence of an additional first in-
tegral of the system its normal form is degenerate. So we assume that
the integrability of a system can be checked through its normal form.

1 Introduction

Let us consider an autonomous system of ordinary differential equations in a
neighborhood of its stationary point. The matrix of the linear part of the sys-
tem can be reduced to the Jordan form by a linear change of variables. After
that, the nonlinear part of the system can be reduced to the resonant normal
form by means of an invertible formal change of variables. The normal form has
resonant terms only and can be reduced to a system of lesser order [1]. Until
now the normal form was used to study stability of a stationary point in critical
cases of zero and pure imaginary eigenvalues and to find periodic solutions and
conditionally periodic solutions [3,5,7].

On the other hand, a lot of books and papers were devoted to integrable
systems and to methods for distinguishing them. The first author noted that all
normal forms of integrable systems are degenerated.

Here we study connection between normal forms and integrability of a system.
For that, we compute normal forms of the Euler–Poisson equations [6], which
describe the motion of a rigid body with a fixed point. It is the autonomous
system of the sixth order. The first attempt to compute normal form for the
Euler–Poisson system was made by Starzhinsky [9]. But without computer al-
gebra tools, he was unable to compute enough account of terms. We use the
program for analytical computation of the normal form [8]. This is a modifi-
cation of the LISP based package NORT [7] for the MATHEMATICA system.
Package NORT was created for the REDUCE system.
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We consider a special case when the system has only one parameter and has
a two-parameter family of stationary points. Among them we select two one-
parameter families with eigenvalues 0, 0, λ,−λ, 2λ,−2λ. For stationary points of
the families, we compute the normal form of the system up to fifth order and see
that it is degenerate in known integrable cases and it is not degenerate in known
nonintegrable cases. We have found four values of the parameter of the system
for which the normal form in one family is degenerate and in another family is
nondegenerate. In these cases the system can have local integrability near one
stationary point but the system is nonintegrable globally.

The paper consists of three Sections. In Sect. 1 we recall the definition of
the normal form and some its properties. In Sect. 2 we recall the Euler–Poisson
system, describe its special case, and select families of its stationary points. In
Sect. 3 we compute some coefficients of normal forms, describe them in graphics
and tables and discuss the results.

2 The Normal Form of a Nonlinear System

We recall the main aspects of the theory expounded in [1,2,3,4]. We consider the
system of the order n

dX/dt
def= Ẋ = AX + Φ(X), X

def= (x1, . . . , xn), (1.1)

in a neighborhood of the stationary point X = 0, supposing that the vector-
function Φ(X) is analytic at the point X = 0, and that its Taylor series does not
contain constant and linear terms.

Let the linear substitution X = TY transform the matrix A to its Jordan
normal form G = T−1AT , and the whole system (1.1) into the form

Ẏ = GY + Φ̃(Y ). (1.2)

Let the formal change of coordinates

Y = Z +B(Z), (1.3)

where B = (b1, . . . , bn) and bi(Z) are formal power series without constant and
linear terms, transform system (1.2) into the system

Ż = GZ + Ψ̃(Z) def= Ψ(Z). (1.4)

We write it down in the form

u̇j = ujgj(Z) def= uj

∑
gjQZ

Q, Q+ Ej ≥ 0, j = 1, . . . , n. (1.5)

Since G is a Jordan matrix, then its diagonal Λ = (λ1, . . . , λn) consists of eigen-
values of the matrix A.
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Definition 1. [1] System (1.4), (1.5) is called the resonant normal form, if:
a) G is a Jordan matrix;
b) in expansions (1.5) there are only resonant terms for which the scalar

product
〈Q,Λ〉 def= q1λ1 + . . .+ qnλn = 0. (1.6)

Theorem 1 (Theorem on the normal form[1,2,3]). There exists a formal
substitution (1.3), which transforms System (1.2) into the normal form (1.4),
(1.5), (1.6).

Property 1. If System (1.2) has a linear automorphism of the form t, Y →
δt, S̃Y , then the normal form (1.4)–(1.6) has the same linear automorphism
t, Z → δt, S̃Z.

Let us consider the case when n = 6, the matrix G is diagonal and

λ1 = λ2 = 0, λ3 = −λ4 �= 0, λ5 = −λ6 �= 0. (1.7)

Then among integer solutions Q = (q1, . . . , q6) of (1.6), there are solutions with

q3 = q4, q5 = q6. (1.8)

We will call resonant terms gjQZ
Q in (1.5) with that property as main ones.

If the number λ3/λ5 is not rational then the normal form (1.5) has the main
resonant terms only. If the number λ3/λ5 is rational then the normal form (1.5)
has also not main resonant terms.

If the system (1.5) has the linear automorphism

t, z1, z2, z3, z4, z5, z6 → t, z1, z2,−z3,−z4,−z5,−z6, (1.9)

then the sum k
def= q3 + q4 + q5 + q6 is even for all terms in the normal form (1.5).

If λ5/λ3 = 2, then (1.6) is

q3 − q4 + 2(q5 − q6) = 0. (1.10)

For k ≤ 4, there are following admissible solutions (q3, q4, q5, q6) of (1.10) without
property (1.8):

(2, 0,−1, 0), (0, 2, 0,−1) with k = 1,

(2, 0, 0, 1), (0, 2, 1, 0), (3, 1,−1, 0), (1, 3, 0,−1) with k = 3,

(−1, 3, 2, 0), (3,−1, 0, 2), (4, 0,−1, 1), (0, 4, 1,−1) with k = 4. (1.11)

3 The Euler–Poisson Equations

Motions of a rigid body with a fixed point are described by the Euler–Poisson
system of six equations [6]

Aṗ+ (C −B)qr = Mg(z0γ2 − y0γ3),
Bq̇ + (A− C)pr = Mg(x0γ3 − z0γ1),
Cṙ + (B −A)pq = Mg(y0γ1 − x0γ2),

(2.1)
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γ̇1 = rγ2 − qγ3,
γ̇2 = pγ3 − rγ1,
γ̇3 = qγ1 − pγ2,

(2.2)

where A,B,C,M, g, x0, y0, z0 are real constants, A,B,C are positive and satisfy
the triangle inequalities. System (2.1), (2.2) has three first integrals

F1
def= Ap2 +Bq2 + Cr2 + 2Mg(x0γ1 + y0γ2 + z0γ3) = const,

F2
def= Apγ1 +Bqγ2 + Crγ3 = const,

F3
def= γ2

1 + γ2
2 + γ2

3 = const.

(2.3)

We will consider system (2.1), (2.2) with

A = B, Mgx0/B = −1, y0 = z0 = 0. (2.4)

Let us introduce the parameter c = C/B. Then system (2.1) takes the form

ṗ = (1− c)qr,
q̇ = (c− 1)pr − γ3,
ṙ = γ2/c.

(2.5)

It has the single parameter c ∈ (0, 2]. System (2.5), (2.2) has an additional first
integral F4 = const in two following cases.

If c = 1 (the Lagrange–Poisson case), F4 = p = const. In that case there
exists one more additional analytic first integral F5 = const [6].

If c = 1/2 (the S. Kovalevskaya case), F4 = (p2− q2 +2γ1)2 +(2pq+2γ2)2 =
const and System (2.5), (2.2) is integrable in quadratures, but it has no fifth
analytic first integral. If was proven that system (2.5), (2.2) has no additional
analytic first integral for other values c ∈ (0, 2] [10].

System (2.5), (2.2) has the linear automorphism

t, p, q, r, γ1, γ2, γ3 → t, p,−q,−r, γ1,−γ2,−γ3. (2.6)

System (2.5), (2.2) has the two-parameter family of stationary points

p = p0 = const, q = q0 = 0, r = r0 = 0,
γ1 = γ0

1 = 1, γ2 = γ0
2 = 0, γ3 = γ0

3 = 0. (2.7)

Near each stationary point (2.7) we introduce the local coordinates

P = p− p0, q, r, Γ = γ1 − 1, γ2, γ3. (2.8)

System (2.2), (2.5) in the local coordinates (2.8) is

Ṗ = (1− c)qr,
q̇ = (c− 1)p0r − γ3 + (c− 1)Pr,
ṙ = γ2/c,

Γ̇ = rγ2 − qγ3,
γ̇2 = −r + p0γ3 + Pγ3 − rΓ,
γ̇3 = q − p0γ2 + qΓ − Pγ3.

(2.9)



Normal Forms and Integrability of ODE Systems 69

The characteristic equation of the matrix of linear part of system (2.9) is

λ6 + αλ4 + βλ2 = 0, (2.10)

where

α = p2
0 + 1 +

1
c
, β =

1
c

+ p2
0

(
1
c
− 1
)
. (2.11)

Equation (2.10) has two zero roots λ1 = λ2 = 0 and twin roots λ3 = −λ4, λ5 =
−λ6. Now in family (2.7) we want to select points where 2λ3 = λ5, i.e., 4λ2

3 = λ2
5.

From (2.10) we see that 2λ2 = −α±
√
α2 − 4β. Let

2λ2
3 = −α+

√
α2 − 4β, 2λ2

5 = −α−
√
α2 − 4β. (2.12)

Equality λ2
5 = 4λ2

3 means that

−α−
√
α2 − 4β = −4α+ 4

√
α2 − 4β. (2.13)

Cancelling similar terms, squaring and cancelling again, we obtain from (2.13)

25β = 4α2. (2.14)

Hence from (2.12) we have

2λ2
3 = −α+

3
5
α = −2

5
α, 2λ2

5 = −8
5
α

and
λ2

3 = −α/5, λ2
5 = −4α/5. (2.15)

According to (2.11), equality (2.14) selects points with

4
(
p2
0 + 1 +

1
c

)2

= 25
[
1
c

+ p2
0

(
1
c
− 1
)]

,

i.e.

p2
0 =

17− 33c+ 5δ2
√

9− 34c+ 41c2

8c
def= p2

0(δ2, c), (2.16)

where δ2 = ±1. Again according to (2.11) and (2.16)

α = 5
5(1− c) + δ2

√
9− 34c+ 41c2

8c
. (2.17)

Thus, from the two-parameter family (2.8) we have selected four one-parameter
families

F(δ1, δ2, c) : p0 = δ1

√
p2
0(δ2, c), δ1, δ2 = ±1, c ∈ (0, 2] (2.18)

with the resonance λ5 = 2λ3. Families (2.18) are intersected only at points where
p0 = 0, because the polynomial 9−34c+41c2 has no real root. Equation p0 = 0,
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i.e. (17− 33c)2 = 25(9− 34c+41c2) according to (2.16), has only one root lesser
than 2

c = c1
def= 1/4 = 0.25. (2.19)

Equality p0 = 0 for c = 1/4 takes place only for δ2 = −1. According to (2.15)
the eigenvalue λ3 = 0, if α = 0, i.e. 25(1− c)2 = 9 − 34c + 41c2 due to (2.17).
That equation has the single positive root

c = c2
def= (
√

5− 1)/2 ! 0.618034. (2.20)

Equality α = 0 for c = c2 takes place again only for δ2 = −1. Hence families
(2.18) with δ2 = 1 have no singular values of c, and with δ2 = −1 have two
singular values (2.19) and (2.20). In what follows we will consider only families
(2.18) with δ1 = 1, i.e. only two families

F(1, 1, c) and F(1,−1, c), c ∈ (0, 2]. (2.21)

On the family F(1, 1, c) the value p0 is real, and the eigenvalue λ3 is purely
imaginary. On the family F(1,−1, c) the value p0 is real for c < 1/4 and is
purely imaginary for c > 1/4, and the eigenvalue λ3 is purely imaginary for
c ∈ (0, c2) and is real for c ∈ (c2, 2].

4 Computation and Analysis of Normal Forms

Near stationary points of families (2.21) we computed normal forms (1.5) of
system (2.9) up to terms of some order m def= q1 + q2 + . . .+ q6. For that, we used
the program [8]. All calculations carried out in rational arithmetic and floating
point numbers are approximations of exact results in this paper.

Due to automorphism (2.6) and to property 1 of Section 1, the normal forms
(1.5) have the automorphism (1.9) and the sum k

def= q3 + q4 + q5 + q6 is even for
all its terms. We considered sums

g3(Z) + g4(Z) and g5(Z) + g6(Z). (3.1)

For the normal form (1.5), it appears that for m = q1 + q2 + k = 4

ĝ3 + ĝ4 = a
z3
4z

2
5

z3
− az

2
3z

2
6

z4
, ĝ5 + ĝ6 = b

z4
3z6
z5
− bz

4
4z5
z6

, (3.2)

and all other terms cancel. Terms in (3.2) have power exponents (1.11) and
their coefficients a(c), b(c) depend of δ2 and c. It appears that for δ2 = 1 both
coefficients a and b are purely imaginary, but for δ2 = −1 they both are purely
imaginary if c ∈ (0, c2) and are real if c ∈ (c2, 2].

For δ2 = 1 plots of functions Im a(c) and Im b(c) are shown in Fig. 1. Four
vertical lines in the Figs. correspond to c = 0.25, c = 0.5, c = c2 and c = 1. All
zeros of functions a and b are common and are situated at three points c:

c3
def= 0.252778, 0.5, 1. (3.3)
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Fig. 3. The coefficients Im a(c), Im b(c) for δ2 = −1 in a detailed scale

Functions Im a(c) and Im b(c) have two finite extrema each and near c = 0 their
asymptotics are −0.75c−2.5 and −0.4c−3.5.

For δ2 = −1 Figs. 2 and 3 show plots of functions Im a(c) and Im b(c) for
c ∈ (0, c2) and of functions a(c) and b(c) for c ∈ (c2, 2]. Fig. 3 has bigger scale
to better show small values of the functions. Near the singular point c2 these
functions tend to infinity as 103(c−c2)−4 and as−103(c−c2)−4. Near the singular
point c1 = 1/4 the function Im a(c) tends to infinity as hyperbola 1.45/(c−0.25)
but Im a(1/4) = 0.28125 . . . and the function Im b(c) tends to value −0.28125 . . .,
but Im b(1/4) = Im a(1/4) = 0.28125 . . . All zeros of functions a(c) and b(c) are
common and are situated at five points c:

c4
def= 0.04522, c5

def= 0.189372, 0.5, c6
def= 0.512902, 1. (3.4)

Functions Im a(c) and Im b(c) have five finite extrema together and near c = 0
their asymptotics are −1.5c−1.5 and −0.2c−0.5.

In c = 1 for δ2 = ±1 we computed normal forms up to order m = 8. Sums
(3.1) for them are zeros. We assume that they are zeros in all orders m and that
it is a consequence of the existence of five independent first integrals of system
(2.9).

In c = 1/2 for δ2 = ±1 we computed normal forms up to order m = 6. It
appears that sums (3.1) are
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ĝ3 + ĝ4 = ξ1(z4
3z

2
6 − z4

4z
2
5) + (ξ2z1 + ξ3z2+

+ξ4z2
1 + ξ5z1z2 + ξ6z

2
2)
(
z3
4z

2
5

z3
− z3

3z
2
6

z4

)
+ ξ7

(
z3
4z

3
5z6
z3

− z3
3z5z

3
6

z4

)
,

ĝ5 + ĝ6 = η1(z4
3z

2
6 − z4

4z
2
5) + (η2z1 + η3z2+

+η4z
2
1 + η5z1z2 + η6z

2
2)
(
z4
3z6
z5
− z4

4z5
z6

)
+ η7

(
z5
3z4z6
z5

− z3z
5
4z5
z6

)
,

(3.5)

where values of coefficients ξl/i and ηl/i are in Table 1, i.e. all sums do not vanish.
So we assumed that vanishing sums (3.2) in order m = 4 is a consequence of the
existence of one additional analytic first integral.

Table 1.

δ2 λ3 l 1 2 3 4 5 6 7

1 −i ξl/i −7.31 −0.914 1.29 1.69 −0.266 −2.55 −1.37
ηl/i −0.328 −0.219 0.309 0.569 0.490 −0.336 1.75

−1
−i

2
ξl/i 10.4 21.3 −32.1 58.5 −313. −328. −27.7

ηl/i 0 0 0 1.14 2.30 6.10 0

The zero points cj , j = 3, 4, 5, 6 of the functions a(δ2, c) are known only
approximately. So to study in them sums (3.1) in the order m = 6, we replaced
each point cj by two close points cj1, cj2 with properties

cj1 < cj < cj2, Im a(δ2, cj1) · Im a(δ2, cj2) < 0, j = 3, 4, 5, 6,

where δ2 = 1, if j = 3, and δ2 = −1, if j = 4, 5, 6. At these eight points cjk

we computed the normal form up to the order m = 6. Values of coefficients ξl
and ηl in sums (3.5) at each pair of points cj1, cj2 coincide in first two digits.
Hence we conclude that at points c3, c4, c5, c6 the normal forms are nondegen-
erate in the order m = 6 . It is possible that in some neighborhoods of the
points F(1, 1, c3), F(1,−1, c4), F(1,−1, c5) and F(1,−1, c6) system (2.9) has
local additional analytic first integrals. But for c = c3, c4, c5, c6 system (2.9) has
no global additional analytic first integrals [10] and may be that near the points
F(1,−1, c3), F(1, 1, c4), F(1, 1, c5) and F(1, 1, c6) there are no local additional
integrals.

5 Conclusion

If the considered system has an additional global first integral then its normal
form is degenerate for both families of stationary points. In the contrary cases
the normal form has not such a degeneracy. It is either nondegenerate for both
families or degenerate for one family only. There are four cases of such partial
degeneracy. We assume that in these four cases the system has local first integrals
near the places of degeneracy of its normal form.

At the moment we have also produced the analysis as above for resonances
other than 1:2.
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Abstract. We present an algorithm for solving polynomial equations,
which uses generalized eigenvalues and eigenvectors of resultant matri-
ces. We give special attention to the case of two bivariate polynomials
and the Sylvester or Bezout resultant constructions. We propose a new
method to treat multiple roots, detail its numerical aspects and describe
experiments on tangential problems, which show the efficiency of the ap-
proach. An industrial application of the method is presented at the end
of the paper. It consists in recovering cylinders from a large cloud of
points and requires intensive resolution of polynomial equations.

1 Introduction

We present an algorithm, which uses generalized eigenvalues and eigenvectors,
for solving systems of two bivariate polynomials p(x, y) = q(x, y) = 0 in R,
with p, q ∈ R[x, y]. Such a problem can be viewed as computing the intersection
points of two implicitly defined plane algebraic curves, which is a key operation
in Computer Aided Geometric Design. Several methods already exist to solve
this problem, and we refer the interested reader to [7] for a general overview. The
one that we present is based on a matrix formulation and the use of generalized
eigenvalues and eigenvectors of two companion matrices built from the Sylvester
or Bezout matrix of p and q, following methods initiated by Stetter (see [6,
chapters 2] for a nice overview), which allows us to apply a preprocessing step
and to develop efficient solvers for specific applications. A new improvment that
we propose is the treatment of multiple roots, although these roots are usually
considered as obstacles for numerical linear algebra techniques; the numerical
difficulties are handled with the help of singular value decomposition (SVD) of
the matrix of eigenvectors associated to each eigenvalue.

Similar methods, based on eigen-computations, have already been addressed,
in particular in the papers [13,4,3]. Both methods project the roots of the system
p(x, y) = q(x, y) = 0, say, on the x-coordinates, using a matrix formulation, and
then lift them up, as well as their multiplicity. We follow the same path, but im-
prove these results. Indeed, in [3] two multiplication maps have to be computed
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to project the roots on the x-coordinates, whereas we only need one such map;
in [13], the lifting of the x-coordinates of the roots is done by solving simul-
taneously two univariate polynomials, with approximate coefficients, obtained
by substitutting the x-coordinnates by an approximation of an eigenvalue. This
procedure is numerically very delicate. In our approach, we gather both the pro-
jection and the lifting step into a single eigen-problem and propose a stable way
to treat multiple roots.

The paper is organized as follows. In section 2, we recall the needed tools. In
section 3, we briefly give an overview of Bezout’s theorem and explain how to
use generalized eigenvalues and eigenvectors for solving two bivariate polynomial
systems. Then, in section 4 we describe the numerical problems, how we remedy
to them by using SVD, and give the algorithm. Finally, in section 5, we give
some examples and show an industrial application.

2 Preliminaries

In this section, we first recall how a univariate polynomial can be solved via
eigenvalue computations. The algorithm we provide in this paper can be seen
as a generalization of this simple but important result. Then we briefly survey
the very basic properties of the well-known Sylvester resultant. Finally we recall
some elementary definitions of generalized eigenvalues and eigenvectors.

2.1 A Univariate Polynomial Solver

Let K be any field and f(x) := fdx
d + fd−1x

d−1 + · · ·+ f1x + f0 ∈ K[x]. Using
the standard Euclidean polynomial division it is easy to see that the quotient
algebra A = K[x]/I, where I denotes the principal ideal of K[x] generated by the
polynomial f(x), is a vector space over K of dimension d with canonical basis
{1, x, . . . , xd−1}.

Consider Mx : A → A, the multiplication by x in A. It is straightforward to
check that the matrix of Mx in the basis {1, x, . . . , xd−1} is given by

Mx =

⎡⎢⎢⎢⎢⎣
0 · · · 0 −f0/fd

1
. . .

...
... 0

...
0 1 −fd−1/fd

⎤⎥⎥⎥⎥⎦ ,
(the column on the far right corresponds to the Euclidean division of xd by f).
The characteristic polynomial of Mx equals (−1)d

fd
f(x) and the roots of the poly-

nomial f can be recovered, with their corresponding multiplicities, by computing
the eigenvalues of the multiplication map Mx. See e.g. [12].

2.2 The Sylvester Resultant

Let A be a commutative ring, which is assumed to be a domain, and suppose
we are given two polynomials in A[x] of respective degree d0 and d1

f0(x) := c0,0 + c0,1x+ · · ·+ c0,d0x
d0 ,

f1(x) := c1,0 + c1,1x+ · · ·+ c1,d1x
d1 .



Resultant-Based Methods for Plane Curves Intersection Problems 77

The Sylvester matrix of f0 and f1 (in degree (d0, d1)) is the matrix whose columns
contain successively the coefficients of the polynomials f0, xf0, . . . , x

d1−1f0, f1,
xf1, . . . , x

d0−1f1 expanded in the monomial basis {1, x, . . . , xd0+d1−1}. More pre-
cisely, it is the matrix of the A-linear map

σ : A[x]<d1 ⊕A[x]<d0 → A[x]<d0+d1

(q0, q1) "→ f0q0 + f1q1
(1)

in the monomial bases {1, . . . , xd1−1}, {1, . . . , xd0−1} and {1, . . . , xd0+d1−1}, where
A[x]<k denotes the set of polynomials in A[x] of degree lower or equal to k − 1.
It is thus a square matrix of size d0 + d1 which has the following form:

d0+d1︷ ︸︸ ︷
f0 · · ·xd1−1f0 f1 · · ·xd0−1f1

S :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0,0 0 c1,0 0
...

. . .
...

. . .
c0,0 c1,0

c0,d0

... c1,d1

...
. . .

...
. . .

...
0 c0,d0 0 c1,d1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
x
...
...
...
xd0+d1−1

Proposition 1. If A is a field, then we have dim ker(S) = deg(gcd(f0, f1)).

Proof. Let d(x) := gcd(f0, f1). We easily check that the kernel of (1) is the
set of pairs

(
r(x)f1(x)

d(x) ,−r(x)f0(x)
d(x)

)
where r(x) is an arbitrary polynomial in

A[x]<deg(d). See also [11, corollary 5.3] for another description of this kernel.

Definition 1. The resultant of the polynomials f0 and f1, denoted Res(f0, f1),
is the determinant of the Sylvester matrix of f0 and f1.

The resultant Res(f0, f1) is thus an element in A. It has been widely stud-
ied in the literature, as it provides a way to eliminate the variable x from the
polynomial system f0(x) = f1(x) = 0. Indeed,

Proposition 2. Res(f0, f1) = 0 if and only if either c0,d0 = c1,d1 = 0, or either
f0(x) and f1(x) have a common root in the algebraic closure of the quotient field
Frac(A) of A (or equivalently f0 and f1 are not coprime in Frac(A)[x]).

Proof. See e.g. [12, IV §8].

Another matrix, called the Bezout matrix, can be used to compute Res(f0, f1).
We now suppose, without loss of generality, that d1 ≥ d0.

Definition 2. The Bezoutian of the polynomials f0 and f1 is the element in
A[x, y] defined by

Θf0,f1(x, y) :=
f0(x)f1(y)− f1(x)f0(y)

x− y =
d1−1∑
i,j=0

θi,jx
iyj,

and the Bezout matrix is Bf0,f1 := (θi,j)0≤i,j≤d1−1.
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The matrix Bf0,f1 is a d1 × d1-matrix which is symmetric. It is thus a smaller
matrix than the Sylvester matrix, but has more complicated entries, and its
determinant still equals the resultant of f0 and f1 (up to a power of c1,d1):

Proposition 3 ([11] §5.4). We have

det(Bf0,f1) = (−1)
1
2 d1(d1−1) (c1,d1)

d1−d0 Res(f0, f1).

Moreover, if A is a field then dimker(Bf0,f1) = deg(gcd(f0, f1)).

2.3 Generalized Eigenvalues and Eigenvectors

Let A and B be two matrices of size n × n. A generalized eigenvalue of A and
B is a value in the set

λ(A,B) := {λ ∈ C : det(A− λB) = 0}.

A vector x �= 0 is called a generalized eigenvector associated to the eigenvalue
λ ∈ λ(A,B) if Ax = λBx. The matrices A and B have n generalized eigenvalues
if and only if rank(B) = n. If rank(B) < n, then λ(A,B) can be finite, empty,
or infinite. Note that if 0 �= μ ∈ λ(A,B) then 1/μ ∈ λ(B,A). Moreover, if
B is invertible then λ(A,B) = λ(B−1A, I) = λ(B−1A), which is the ordinary
spectrum of B−1A.

Recall that an n×n matrix T (x) with polynomial entries can be equivalently
written as a polynomial with n×nmatrix coefficients. If d = maxi,j{deg(Tij(x))},
we obtain T (x) = Tdx

d + Td−1x
d−1 + · · ·+ T0, where Ti are n× n matrices.

Definition 3. The companion matrices of T (x) are the two matrices A, B given
by

A =

⎛⎜⎜⎜⎝
0 I · · · 0
...

. . . . . .
...

0 · · · 0 I
T t

0 T t
1 · · · T t

d−1

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎝
I 0 · · · 0

0
. . .

...
... I 0
0 · · · 0 −T t

d

⎞⎟⎟⎟⎟⎠ .

And we have the following interesting property:

Proposition 4. With the above notation, the following equivalence holds:

T t(x)v = 0⇔ (A− xB)

⎛⎜⎜⎜⎝
v
xv
...

xd−1v

⎞⎟⎟⎟⎠ = 0.

Proof. A straightforward computation.
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3 The Intersection of Two Plane Algebraic Curves

From now on we assume that K is an algebraically closed field and that p(x, y)
and q(x, y) are two polynomials in K[x, y]. Our aim will be to study and compute
their common roots. This problem can be interpreted geometrically. Polynomials
p and q define two algebraic curves in the affine plane A2 (having coordinates
(x, y)), and we would like to know their intersection points.

Hereafter we will consider systems p(x, y) = q(x, y) = 0 having only a finite
number of roots. This condition is not quite restrictive since it is sufficient (and
necessary) to require that polynomials p and q are coprime in K[x, y] (otherwise
we divide them by their gcd).

In the case where one of the curve is a line, i.e. one of the polynomial has
degree 1, the problem is reduced to solving a univariate polynomial. Indeed,
one may assume e.g. that q(x, y) = y and thus we are looking for the roots of
p(x, 0) = 0. Let us denote them by z1, . . . , zs. Then we know that

p(x, 0) = c(x− z1)μ1(x − z2)μ2 · · · (x− zs)μs ,

where the zi’s are assumed to be distinct and c is a non-zero constant in K. The
integer μi, for all i = 1, . . . , s, is called the multiplicity of the root zi, and it turns
out that

∑s
i=1 μi = deg(p) if p(x, y) does not vanish at infinity in the direction

of the y-axis (in other words, if the homogeneous part of p of highest degree
does not vanish when y = 0). This later condition can be avoid in the projective
setting: let ph(x, y, t) be the homogeneous polynomial obtained by homogenizing
p(x, y) with the new variable t, then we have

p(x, 0, t) = c(x− z1t)μ1(x− z2t)μ2 · · · (x− zst)μs tμ∞ ,

where μ∞ is an integer corresponding to the multiplicity of the root at infinity,
and μ∞ +

∑s
i=1 μi = deg(p). Moreover, it turns out that the roots z1, . . . , zs and

their corresponding multiplicities can be computed by eigenvalues and eigenvec-
tors computation (see section 2.1).

In the following we generalize this approach to the case in which p and q
are bivariate polynomials of arbitrary degree. For this we first need to recall the
notion of multiplicity in this context. Then we will show how to recover the roots
from multiplication maps.

3.1 Intersection Multiplicity

Let p(x, y), q(x, y) be two coprime polynomials in K[x, y], Cp and Cq the corre-
sponding algebraic plane curves, I := (p, q) the ideal they generate in K[x, y] and
A := K[x, y]/I the associated quotient ring. We denote by z1 = (x1, y1), . . . , zs =
(xs, ys) the distinct intersection points in A2 of Cp and Cq (i.e. the distinct roots
of the system p(x, y) = q(x, y) = 0).

A modern definition of the intersection multiplicity of Cp and Cq at a point
zi is (see [8, §1.6])

i(zi, Cp ∩ Cq) := dimKAzi <∞,
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where the point zi ∈ A2 is here abusively (but usually) identified with its cor-
responding prime ideal (x − xi, y − yi) in K[x, y], Azi denoting the ordinary
localization of the ring A by this prime ideal. As a result, the finite K-algebra A
(which is actually finite if and only if p(x, y) and q(x, y) are coprime in K[x, y])
can be decomposed as the direct sum

A = Az1 ⊕Az2 ⊕ · · · ⊕ Azs

and consequently dimKA =
∑s

i=1 i(zi, Cp ∩ Cq).
The intersection multiplicities can be computed using a resultant. The main

idea is to project “algebraically” the intersection points on the x-axis. To do this
let us see both polynomials p and q in A[y] where A := K[x], that is to say as
univariate polynomials in y with coefficients in the ring A which is a domain; we
can rewrite

p(x, y) =
d1∑

i=0

ai(x)yi, q(x, y) =
d2∑

i=0

bi(x)yi. (2)

Their resultant (with respect to y) is an element in A which is non-zero, since p
and q are assumed to be coprime in A[y], and which can be factorized, assuming
that ad1(x) and bd2(x) do not vanish simultaneously, as (see proposition 2)

Res(p, q) = c

r∏
i=1

(x− αi)βi (3)

where the αi’s are distinct elements in K and {α1, . . . , αr} = {x1, . . . , xs} (as
sets). For instance, if all the x′is are distinct then we have r = s and αi = xi for
all i = 1, . . . , s. Moreover, we have (see e.g. [8, §1.6]):

Proposition 5. For all i ∈ {1, . . . , r}, the integer βi equals the sum of all the
intersection multiplicities of the points zj = (xj , yj) ∈ Cp ∩Cq such that xj = αi:

βi =
∑

zj=(xj,yj)|xj=αi

i(zj , Cp ∩ Cq).

As a corollary, if all the xi’s are distinct (this can be easily obtained by a linear
change of coordinates (x, y)) then i(zi, Cp ∩ Cq) is nothing but the valuation of
Res(p, q) at x = xi (i.e. the exponent of the largest power of (x−xi) which divides
Res(p, q)). Another corollary of this result is the well-known Bezout theorem for
algebraic plane curves, which is better stated in the projective context. Let us
denote by ph(x, y, t) and qh(x, y, t) the homogeneous polynomials in K[x, y, t]
obtained from p and q by homogenization with the new variable t.

Proposition 6 (Bezout theorem). If p and q are coprime then the alge-
braic projective plane curves associated to ph(x, y, t) and qh(x, y, t) intersect in
deg(p) deg(q) points in P2, counted with multiplicities

Proof. It follows directly from the previous proposition and the well-known fact
that Res(ph, qh) is a homogeneous polynomial in K[x, t] of degree deg(p) deg(q)
(see e.g. [12], [17]).



Resultant-Based Methods for Plane Curves Intersection Problems 81

3.2 Intersection Points

We take again the notation of (2) and (3). We denote by S(x) the Sylvester
matrix of p(x, y) and q(x, y) seen in A[y] (assuming that both has degree at
least one in y); thus det(S(x)) = Res(p, q). From (3), we deduce immediately
that det(S(x)) vanishes at a point x0 ∈ K if and only if either there exists y0

such that p(x0, y0) = q(x0, y0) = 0 or ad1(x0) = bd2(x0) = 0 (in which case the
intersection point is at infinity). Therefore one may ask the following question:
given a point x0 such that det(S(x0)) = 0, how may we recover all the possible
points y0 such that p(x0, y0) = q(x0, y0) = 0 ?

Suppose we are given such a point x0, and assume that ad1(x0) and bd2(x0)
are not both zero. If ker(S(x0)t) is of dimension one, then it is easy to check that
there is only one point y0 such that p(x0, y0) = q(x0, y0) = 0, and moreover any
element in ker(S(x0)t) is a multiple of the vector [1, y0, · · · , yd1+d2−1

0 ]. Therefore
to compute y0, we only need to compute a basis of ker(S(x0)t) and to compute
the quotient of its second coordinate by its first one. In case of multiple roots,
this construction can be generalized as follows:

Proposition 7. With the above notation, let Λ1, · · · , Λd be any basis of the
kernel ker(S(x0)t), Λ be the matrix whose ith row is the vector Λi, Δ0 be the d×d-
submatrix of Λ corresponding to the first d columns and Δ1 be the d×d-submatrix
of Λ corresponding to the columns of index 2, 3, . . . , d+1. Then λ(Δ1, Δ0) is the
set of roots of the equations p(x0, y) = q(x0, y) = 0 (i.e. the set of y-coordinates
of the intersection points of Cp and Cq above x = x0).

Proof. Let g(y) := gcd(p(x0, y), q(x0, y)) ∈ K[y] and k1 = deg(p(x0, y)), k2 =
deg(q(x0, y)). By proposition 1, we know that d = deg(g(y)). Consider the map

remx0 : K[y]<k1+k2 → K[y]<d

t(y) "→ remainder(t(y), g(y)),

which sends t(y) on the remainder of its Euclidean division by g(y). Observe that,
for all i = 0, . . . , k1 + k2 − 2, remx0(y

i+1) = remx0(y remx0(y
i)). Consequently,

remx0(yi+1) = Myremx0(yi), where My is the operator of multiplication by y in
the quotient ring K[y]/(g(y)) (see section 2.1). Let Δ be the matrix of remx0

in the monomial basis of K[y]<k1+k2 , Δ0 a submatrix of Δ of size d × k and
Δ1 the submatrix obtained by shifting the index of columns of Δ0 in Δ by 1.
Then by the previous remark, we have Δ1 = MyΔ0. In particular, if we choose
the first d columns of Δ, we have Δ0 = Id so that λ(Δ0, Δ1) are the roots of
g(y) = p(x0, y) = q(x0, y) = 0.

Now, S(x0) is the matrix in the monomial bases of the map (1), denoted here
σx0 . By construction remx0◦σx0 = 0 and dim ker(σx0) = deg(g) = dim Im(remx0),
which shows that the rows of the matrix of remx0 form a basis of ker(S(x0)t) ≡
K[y]<d. Since by any change of basis of ker(S(x0)t) the equality MyΔ0 = Δ1

remains true, the claim is proved.

Remark 1. In this theorem, observe that the construction of Δ0 and Δ1 is al-
ways possible, that is to say that Λ has at least d + 1 columns, because we
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assumed that both polynomials p and q depend on the variable y which implies
that the number of rows in the matrix S(x0) is always strictly greater than
deg(gcd(p(x0, y), q(x0, y))).

The previous theorem shows how to recover the y-coordinates of the roots
of the system p = q = 0 from the Sylvester matrix. However, instead of the
Sylvester matrix we can use the Bezout matrix to compute Res(p, q) ∈ A[x] (see
section 2). This matrix has all the required properties to replace the Sylvester
matrix in all the previous results, except in proposition 7. Indeed, the Bezout
matrix being smaller than the Sylvester matrix, the condition given in remark
1 is not always fulfilled; using the Bezout matrix in proposition 7 requires that
for all roots x0 of Res(p, q),

max(deg(p(x0, y), deg(q(x0, y)) > deg(gcd(p(x0, y), q(x0, y)).

This condition may fail: take for instance x0 = −1 in the system{
p(x, y) = x2y2 − 2y2 + xy − y + x+ 1
q(x, y) = y + xy

Note that the use of the Bezout matrix gives, in practice, a faster method
because it is a smaller matrix than the Sylvester matrix, even if its computation
takes more time (the savings in the eigen-computations is greater).

3.3 The Algorithm

We are now ready to describe our resultant-based solver. According to proposi-
tion 4, we replace the computation of the resultant, its zeroes, and the kernel of
St(x0) (or the Bezout matrix) for each root x0 by the computation of general-
ized eigenvalues and eigenvectors of the associated companion matrices A and
B. This computation can be achieved with the QZ algorithm [9].

Algorithm 1. exact arithmetic version

1. Compute the Bezout matrix B(x) of p and q.
2. Compute the associated companion matrices A and B (see proposition 4).
3. Compute the generalized eigenvalues and eigenvectors of (A,B). The eigen-

values give the x-coordinates of the intersection points, and their multiplic-
ities give the sum of the intersection multiplicities of the points above them
(see proposition 5). The eigenvector spaces give bases of ker(B(x0)) in propo-
sition 7; their dimensions give the degree of the gcd of p and q at these points.

4. For each value x0,
(a) If the number of associated eigenvectors is at least max(deg(p(x0, y)),

deg(q(x0, y))), which is the size of B(x0), compute Δ0 and Δ1 by using
a basis of ker(S(x0)t),

(b) if not, then compute Δ0 and Δ1 by using the eigenvectors associated to
x0.

5. Compute the eigenvalues of (Δ1, Δ0) which give the y-coordinates of the
intersection points above x0 (see proposition 7).
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4 Numerical Difficulties

The following difficulties are found in numerical computations:

a. In order to compute the x-coordinates of intersection points, it is necessary
to compute the real generalized eigenvalues of (A,B). Numerically, some of
these values can contain a nonzero imaginary part. Generally such a problem
is encountered for multiple eigenvalues.

b. What do we mean by a numerical multiple x-coordinate?
c. How do we choose the linearly independent vectors among the computed

eigenvectors?

In order to solve these problems, we need the singular value decomposition
(SVD for short).

4.1 SVD as Remedy

Let us recall known results on the singular value decomposition.

Theorem 1 ([9]). For a real matrix A of size m×n, there exist two orthogonal
matrices

U = [u1, · · · , um] ∈ Rm×m, and V = [v1, · · · , vn] ∈ Rn×n

such that

U tAV = diag(σ1, · · · , σp) ∈ Rm×n, p = min{m,n}, and

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

σi are called the ith singular value of A, ui and vi are respectively the ith left
and right singular vectors.

Definition 4. For a matrix A, the numerical rank of A is defined by:

rank(A, ε) = min{rank(B) :
∥∥∥∥ A

‖A‖ −B
∥∥∥∥ ≤ ε},

where ‖ · ‖ denotes either ‖ · ‖2, the spectral norm, or ‖ · ‖F , the Frobenius norm.

Theorem 2. ([9]) If A ∈ Rm×n is of rank r and k < r then

σk+1 = min
rank(B)=k

‖A−B‖.

Theorem 2 shows that the smallest singular value is the distance between A
and all the matrices of rank < p = min{m,n}. Thus if rε = rank(A, ε) then

σ1 ≥ · · · ≥ σrε > εσ1 ≥ σrε+1 ≥ · · · ≥ σp.

As a result, in order to determine the rank of a matrix A, we find the singular
values (σi)i so that

rank(A, ε) = max{i :
σi

σ1
> ε}.
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For difficulty “a” we choose a small ε ∈ R and consider as real any eigenvalue
whose imaginary part is of absolute value less than ε.

For difficulty “b”, we choose possibly a different small ε ∈ R and gather the
points which lay in an interval of size ε. According to the following proposition,
the proposed algorithm remains effective:

Proposition 8. Assume that {ξ1 · · · ξn} ⊆ λ(A,B) with corresponding general-
ized eigenvectors v(1)

1 , · · · , v(1)
k1
, · · · , v(n)

1 , · · · , v(n)
kn

such that
∑n

i=1 ki < d1 + d2.

We define Λ to be the matrix whose rows are v(1)
1 , · · · , v(1)

k1
, · · · , v(n)

1 , · · · , v(n)
kn

and
Δ0 (resp. Δ1) to be its first (resp. second) left (k1+· · ·+kn)×(k1+· · ·+kn) block.
Then, the generalized eigenvalues of Δ1 and Δ0 give the set of y-coordinates of
the intersection points above ξ1 · · · ξn; in other words, clusters of x-coordinates
are thus gathered and regarded as only one point whose multiplicity equals the
sum of the multiplicities of the gathered points.

Proof. We define Λi as the matrix corresponding to eigenvectors of ξi, it is a

matrix of size ki× (d1 + d2), then Λ =

⎡⎢⎣Λ1

...
Λn

⎤⎥⎦. For Λi, we take Δ(i)
0 the first left

ki×(k1+ · · ·+kn) block, and Δ(i)
1 the second block. Then, according to the proof

of proposition 7, Δ(i)
1 = My,ξiΔ

(i)
0 , where My,ξ is the matrix of multiplication

by y in the quotient ring K[y]/gcd(p(ξi, y), q(ξi, y)). It follows that Δ1 = MyΔ0

where

My =

⎛⎜⎝My,ξ1 0

. . .

0 My,ξn

⎞⎟⎠.
Moreover, Δ0 is invertible and thus λ(Δ1, Δ0) = λ(My) = {λ(My,ξi), i =
1 · · ·n}.

For difficulties “c”, it is necessary to use the singular value decomposition:
If x a generalized eigenvalue of A and B, and E the matrix of the associated
eigenvectors, then the singular value decomposition of E is

E = UΣV t, with Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

. . .
σr

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and r is the rank of E. Let

E′ = E · V = U ·Σ = [σ1u1 · · ·σrur 0 · · · 0] = [e′1 · · · e′r 0 · · · 0].

The matrix E′ is also a matrix of eigenvectors, because the changes are done on
the columns, and V is invertible. Hence E′ and E have the same rank r, and
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E′′ = [e′1 · · · e′r] is a matrix of linearly independent eigenvectors. Consequently
E′′ can be used to build Δ0 and Δ1.

We now give the complete algorithm which can be used in the presence of
singular points:

Algorithm 2. Numerical approximation of the roots of a bivariate
polynomial system.

1. Compute the Bezout matrix B(x) of p and q, and compute the matrices A
and B.

2. Compute the generalized eigenvalues and eigenvectors of (A,B).
3. Eliminate the imaginary eigenvalues and the values at infinity, and gather

the close points (with the input ε).
4. For each of all the close points represented by ξ, take the matrix E of the

associated eigenvectors.If their number ≥ d1 + d2 then E gives a basis of
kerSt(ξ)

5. Do a singular value decomposition of E.
6. Calculate the rank of E by testing the σi until σr+1 < σrε is found (the rank

is thus determined to be r).
7. Let E′′ be the r first columns of E′ = E · V . Define Δ0 as the first r × r

block in E′′, and Δ1 as the second r × r block in E′′.
8. Compute the generalized eigenvalues of (Δ1, Δ0).

Remark 2. On step 3, there are very often eigenvalues at infinity, because the
size of A and B is larger than the degree of the resultant. Therefore, generally one
obtains more eigenvalues than roots, some of the eigenvalues being at infinity.

5 Numerical Experiments and Application

Our algorithm1 is implemented in C++, in the library C++ called “SYNAPS”
(SYmbolic and Numeric ApplicationS)2. It uses the linear algebra library ”LA-
PACK” (in FORTRAN), for approximate computation of eigenvalues and eigen-
vectors. The following computations were done on a Pentium4, 3.06 Ghz com-
puter.

5.1 Examples

Example 1:
{
p = y2 − x2 + x3

q = y2 − x3 + 2x2 − x
1 http://www-sop.inria.fr/galaad/logiciels/synaps/

html/bivariate res 8H-source.html
2 http://www-sop.inria.fr/galaad/logiciels/synaps/
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The intersection points are: (epsilon=10^-6).
(x1, y1) = (0,0) of multiplicity 2
(x2, y2) = (0.5, -0.35) of multiplicity 1
(x3, y3) = (0.5,0.35) of multiplicity 1
(x4, y4) = (1, -8.2e-25) of multiplicity 2
Execution time = 0.004s

Example 2:
{
p = x4 − 2x2y + y2 + y4 − y3

q = y − 2x2

0
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The intersection points are: (epsilon=10^-6).
(x1, y1) = (1.6e-09,0) of multiplicity 4
(x2, y2) = (-0.5,0.5) of multiplicity 2
(x3, y3) = (0.5,0.5) of multiplicity 2
Execution time = 0.005s

Example 3:

⎧⎨⎩
p = 400y4 − 160y2x2 + 16x4 + 160y2x− 32x3 − 50y2 + 6x2

+10x+ 25
16

q = y2 − x+ x2 − 5
6 − 1

6
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–1.5 –1 –0.5 0.5 1 1.5 2

x

the intersection points are: (epsilon=10^-6).
(x1, y1) = (1.4e-16, -0.25) of multiplicity 1
(x2, y2) = (1.4e-16,0.25) of multiplicity 1
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(x3, y3) = (-0.03, -0.16) of multiplicity 1
(x4, y4) = (-0.01,0.18) of multiplicity 1
(x5, y5) = (1.64,0.70) of multiplicity 1
(x6, y6) = (1, -0.21) of multiplicity 1
(x7, y7) = (1.25,1.5e-08) of multiplicity 2
Execution time = 0.007s

Example 4:
{
p = x6 + 3x4y2 + 3x2y4 + y6 − 4x2y2

q = y2 − x2 + x3
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–0.5

0

0.5

1

y

–0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

the intersection points are: (epsilon=10^-3).
(x1, y1) = (-3e-16,2e-17) of multiplicity 8
(x2, y2) = (-0.60,-0.76) of multiplicity 1
(x3, y3) = (-0.60,0.76) of multiplicity 1
(x4, y4) = (0.72, -0.37) of multiplicity 1
(x5, y5) = (0.72,0.37) of multiplicity 1
Execution time = 0.011s

Example 5:
{
p = x9 + y9 − 1
q = x10 + y10 − 1

–2

–1

1

2

y

–2 –1 1 2

x

The intersection points are: (epsilon=2.10^-2).
(x1, y1) = (-0.01,1) of multiplicity 9
(x2, y2) = (1,0) of multiplicity 9
Execution time = 0.111s

5.2 Table of Comparison

We give here a table3 comparing our method (called GEB below), with two
other algorithms implemented in SYNAPS for solving the curve intersection
3 See http://www-sop.inria.fr/galaad/data/curve2d/
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problem. The first uses Sturm-Habicht sequences [10], the second uses normal
form computations (the “Newmac” method) [14], [15].

Ex. Degree N.s Execution time M
GEB Sturm Newmac

ex001 3,3 4 0.004 0.002 0.029 1.1e-16
ex002 4,2 3 0.005 0.005 0.026 8.8e-16
ex003 4,2 7 0.007 0.010 0.029 6.8e-10
ex004 6,3 5 0.011 0.005 0.041 1.7e-15
ex005 9,10 2 0.111 0.130 1.705 6.6e-15
ex006 6,4 4 0.013 0.010 0.063 1.8e-10
ex007 8,7 41 0.089 0.211 0.306 1.7e-05
ex008 8,6 27 0.085 0.091 0.283 2.1e-05
ex009 6,4 2 0.006 0.003 0.032 3.2e-11
ex010 4,3 5 0.005 0.003 0.033 2.5e-13
ex011 4,3 3 0.004 0.003 0.030 7.1e-15
ex012 5,4 2 0.008 0.010 0.053 4.7e-14
ex013 6,5 5 0.021 0.02 0.058 1.7e-11
ex014 11,10 5 0.083 0.194 0.332 4.4e-06
ex015 6,5 4 0.015 0.01 0.049 2.6e-15
ex016 8,7 41 0.088 0.208 0.305 1.7e-05

(N.s denotes the number of solutions and M denotes the number
max(maxi |p(xi, yi)|, maxi |q(xi, yi)|) where (xi, yi) are the computed solutions.

5.3 Cylinders Passing Through Five Points

An important problem in CAD modeling is the extraction of a set of geometric
primitives properly describing a given 3D point cloud obtained by scanning a
real scene. If the extraction of planes is considered as a well-solved problem, the
extraction of circular cylinders, these geometric primitives are basically used to
represent “pipes” in an industrial environment, is not easy and has been recently
addressed. In this section, we describe an application of our algorithm to this
problem which has been experimented by Thomas Chaperon from the MENSI4

company.
In [2], the extraction of circular cylinders was done in two steps: after the

computation of estimated unit normals of the given 3D set of points, their Gaus-
sian images give the possible cylinders as great circles on the Gaussian sphere.
In order to avoid the estimation of the unit normals another approach was pre-
sented in [1]. First, being given 5 points randomly selected in our 3D point cloud,
the author gave a polynomial system whose roots correspond to the cylinders
passing through them (recall that 5 is the minimum number of points defining
generically a finite number of cylinders, actually 6 in the complex numbers).
Then the method consists in finding these cylinders, actually their direction, for
almost all set of 5 points in the whole point could, and extract the “clusters of
4 http://www.mensi.fr/
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directions” as a primitive cylinder. In [5], motivated by another application in
metrology, the authors carefully studied the problem of finding cylinders passing
through 5 given points in the space; in particular they produce two polynomials
in three homogeneous variables whose roots corresponds to the expected cylin-
ders. In the sequel, using the same polynomial system that we will briefly recall,
we show that our new solver can speed-up the solving step.

Modelisation. We briefly recall from [5] how the problem of finding the 6
complex cylinders passing through 5 (sufficiently generic) points can be trans-
lated into a polynomial system. We actually only seek the direction of these
cylinders since their axis and radius follow then easily (see e.g. [2][appendix A]).
We will denote by p1, p2, p3, p4, p5 the five given points defining six cylinders.
We first look for the cylinders passing only through the first four points that
we can assume, w.l.o.g., to be p1 = (0, 0, 0), p2 = (x2, 0, 0), p3 = (x3, y3, 0) and
p4 = (x4, y4, z4). We also denote by t = (l,m, n), where l2 + m2 + n2 = 1, the
unitary vector identifying a direction in the 3D space; note that t also identified
with the projective point (l : m : n) in P2.

Let π be the plane passing through the origin and orthogonal to t and let
(X,Y, Z) be a coordinate system such that the two first axes are in π and the
third one has direction t. Among all the coordinate changes sending (x, y, z) onto
(X,Y, Z) we choose the one given by the following matrix, where ρ = m2 + n2 :⎛⎝ρ − lm

ρ −nl
ρ

0 n
ρ −m

ρ

l m n

⎞⎠ .

The orthogonal projection qi of pi on π has coordinates, in the system (X,Y, Z) :

(Xi, Yi, Zi) :=
(
ρxi − lm

ρ
yi − nl

ρ
zi,

n

ρ
yi − m

ρ
zi, 0
)
.

The points p1, p2, p3, p4 belong to a cylinder of direction t if and only if the
points q1, q2, q3, q4 are cocyclic in π, i.e. if and only if∣∣∣∣∣∣∣∣

1 1 1 1
X1 X2 X3 X4

Y1 Y2 Y3 Y4

X2
1 + Y 2

1 X2
2 + Y 2

2 X2
3 + Y 3

3 X2
4 + Y 2

4

∣∣∣∣∣∣∣∣ = 0.

We denote this previous determinant by Cp1,p2,p3,p4(l,m, n). The coordinates of
q1 and q2 satisfy X1 = Y1 = 0, X2 = ρx2, and Y2 = 0. Moreover, for i = 3, 4 we
have

X2
i + Y 2

i = |qi|2 = (t.t)|pi|2 − (t.pi)2.

Therefore, by developing the determinant Cp1,p2,p3,p4(l,m, n) one can show that
it equals (see [5] for more details)

x2
2(m

2 + n2)

∣∣∣∣∣∣
l x3 x4

m y3 y4

n 0 z4

∣∣∣∣∣∣− x2

∣∣∣∣∣∣
m y3 y4

n 0 z4
0 (t.t)|p3|2 − (t.p3)2 (t.t)|p4|2 − (t.p4)2

∣∣∣∣∣∣ .
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Seeing t as a projective point in P2, this equation thus defines an algebraic curve
of degree 3 in P2.

We deduce that a cylinder of direction t = (l,m, n) goes through the 5 points
p1, p2, p3, p4, p5 if (a necessary condition)

Cp1,p2,p3,p4(l,m, n) = 0 and Cp1,p2,p3,p5(l,m, n) = 0. (4)

These two equations define two algebraic curves in P2 and hence intersect into
exactly 9 points (counted with multiplicity) from the Bezout theorem. But the
directions p1p2, p1p3 and p2p3 are solutions of (4) but correspond to a cylinder
if and only if they are of multiplicity at least 2. Consequently the system (4)
gives us the 6 solutions we are looking for and three extraneous solutions that
we know by advance and that we can easily eliminate after the resolution of (4).

For instance, there are exactly 6 real cylinders passing through the 5 following
points:

x1 := 0, y1 := 0, z1 := 0,
x2 := 1, y2 := 0, z2 := 0,
x3 := 1

2 , y3 :=
√

3
2 , z3 := 0,

x4 := 1
2 , y4 := 1

2
√

3
, z4 :=

√
2√
3
,

x4 := 1
2 , y4 := 1

2
√

3
, z4 := −

√
2√
3
.

By applying our algorithm we obtain the 6 directions:

(-0.81722,-1.8506e-17) of multiplicity 1
(-0.40929,-0.70721) of multiplicity 1
(-0.40929,0.70721) of multiplicity 1
(0.40929,-0.70721) of multiplicity 1
(0.40929,0.70721) of multiplicity 1
(0.81722,-1.8506e-17) of multiplicity 1

Experimentations. We now turn to the experimentation of our method. We
took 1000 sets of 5 random points, with integer coordinates between −100 and
100 and computed the 6 (complex) corresponding cylinders. Comparing the pre-
viously mentioned methods, we obtained the following timing:

method GEB Sturm Newmac
time (sec.) 0.67 1.83 1.61

which shows a significant improvement, in the context of intensive computation.

6 Conclusion

In this paper, we presented a new algorithm for solving systems of two bivariate
polynomial equations using generalized eigenvalues and eigenvectors of resultant
matrices (both Sylvester and Bézout types). We proposed a new method to
treat multiple roots, described experiments on tangential problems which show
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the efficiency of the approach and provided an industrial application consisting
in recovering cylinders from a large cloud of points. We also performed a first
numerical analysis of our approach; we plan to investigate it further following
the ideas developed in [16], in order to control a posteriori the error on the roots.
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Abstract. The stability of cylindrical precession of the dynamically
symmetric satellite in the Newtonian gravitational field is studied. We
consider the case when a center of mass of the satellite moves in an elliptic
orbit, while the satellite rotates uniformly about the axis of its dynami-
cal symmetry that is perpendicular to the orbit plane. In the case of the
resonance 3 : 2 (Mercury type resonance) we have found the domains of
instability of cylindrical precession of the satellite in the Liapunov sense
and domains of its linear stability in the parameter space. Using the infi-
nite determinant method we have calculated analytically the boundaries
of the domains of instability as power series in the eccentricity of the
orbit. All the calculations have been done with the computer algebra
system Mathematica.

1 Introduction

It is well known that celestial mechanics and cosmic dynamics are just the fields
where using computers for doing symbolic calculations turned out to be not only
very productive but necessary as well [1]. Many problems in these fields require
extremely bulky calculations for their solving. And the problem of motion sta-
bility is just a typical example. In the present paper we study the stability of
stationary motion of dynamically symmetrical satellite in the Newtonian gravi-
tational field. The case of cylindrical precession [2] is considered when a center
of mass of the satellite moves in the elliptic orbit, while the satellite rotates
uniformly about the axis of its dynamical symmetry that is perpendicular to the
orbit plane. A particular case of the satellite motion without rotation was inves-
tigated in detail in [3]. Here we consider the resonance case β = T0/Trot = 3/2
(Mercury type resonance), where T0 and Trot are periods of the orbital motion
and rotation, respectively. Note that the case of β = 1 is discussed shortly in [4].

It should be emphasized that the study of stability is the most complicated
problem of qualitative theory of differential equations. Usually it starts from

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 93–104, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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analysis of the linearized differential equations of the disturbed motion and de-
termination of the domains of linear stability and instability of the system in the
parameter space. Further analysis of the system stability in the Liapunov sense
implies using both the classical stability theory of Liapunov–Poincaré and the
methods of Kolmogorov–Arnold–Moser (KAM) theory [5]. The second approach
is connected with construction of a sequence of canonical transformations, re-
ducing the Hamiltonian of the system to the normal form, and application of
Arnold–Moser and Markeev theorems [6]. This procedure implies rather bulky
analytical calculations which can be reasonably done only with the help of mod-
ern computer algebra systems such as Mathematica, for example [7].

Here we focus on studying the stability of the satellite motion in linear ap-
proximation. Note that usually such problem is solved by means of calculating
the characteristic exponents for the corresponding system of linear differential
equations of the disturbed motion [8]. But in the considered case such calcu-
lations are so bulky that we can get the stability boundaries only in the first
approximation in a small parameter [3], [4]. However, using the algorithm based
on the infinite determinant method [9], [10], [11], we can quite easily find the
boundaries between the domains of stability and instability in the parameter
space in higher approximations. In the present paper we compute the stability
boundaries with accuracy up to the sixth order in a small parameter. And al-
though we consider here the resonance case β = 3/2, all the calculations may be
easily re-done for any value of this parameter.

2 Equations of the Disturbed Motion

Let us consider the satellite as a rigid, dynamically symmetric body whose center
of mass moves along an elliptic orbit in the central Newtonian gravitational field.
We assume that its linear sizes are sufficiently small in comparison with the orbit
size and, hence, the satellite motion about the center of mass is independent of
its orbital motion [2]. In order to describe the satellite motion we introduce
two coordinate systems: the system Oxyz being rigidly attached to the satellite,
with the Oz axis pointing along the satellite axis of dynamical symmetry, and
the orbital system OXY Z whose axes OZ and OY are directed along the radius
vector of the satellite center of mass O and along the normal vector to the orbital
plane, respectively. Orientation of the Oxyz frame with respect to the orbital
frame OXY Z is specified by the Euler angles ψ, θ and ϕ. Then equations of
motion of the satellite are just the canonical equations with the Hamiltonian
function of the form [2]

H =
1

2(1 + e cos ν)2

(
p2

ψ

sin2 θ
+ p2

θ + α2β2(1− e2)3 cot2 θ

−2αβ(1− e2)3/2pψ
cos θ
sin2 θ

)
− pψ cot θ cosψ − pθ sinψ +

+αβ(1− e2)3/2 cosψ
sin θ

+
3
2
(α− 1)(1 + e cos ν) cos2 θ , (1)
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where pψ, pθ are the momenta canonically conjugated to the angles ψ, θ, respec-
tively; the satellite inertia parameter α is defined as the ratio of its polar and
equatorial moments of inertia (0 ≤ α ≤ 2); parameter β is equal to the ratio of
periods of the satellite orbital motion T0 and its proper rotation T with respect
to an absolute frame of reference (note that T is just an integral of the motion);
ν is the true anomaly, and e is an eccentricity of the satellite orbit.

It may easily be shown that the Hamiltonian equations of motion

ψ̇ =
∂H

∂pψ
, θ̇ =

∂H

∂pθ
, ṗψ = −∂H

∂ψ
, ṗθ = −∂H

∂θ
, (2)

where a dot means a differentiation with respect to the true anomaly ν, have a
solution

ψ = π , θ =
π

2
, pψ = 0 , pθ = 0 . (3)

It describes a stationary motion when the satellite rotates uniformly about its
axis of dynamical symmetry that is perpendicular to the orbit plane. This kind
of the satellite motion is known as the cylindrical precession [2].

In order to investigate the stability of cylindrical precession, we introduce
small perturbations q1, q2, p1, p2 of the stationary solution (3), so that

ψ = π + q1 , θ =
π

2
+ q2 , pψ = p1 , pθ = p2 , (4)

and expand the Hamiltonian function (1) in powers of q1, q2, p1, p2. Then (1)
takes a form

H = H2 +H4 + . . . , (5)

where

H2 =
1

2(1 + e cos ν)2
(
p2
1 + p2

2 + 2αβ(1 − e2)3/2p1q2 + α2β2(1− e2)3q22
)

+q1p2 − q2p1 +
3
2
(α− 1)(1 + e cos ν)q22 +

1
2
(1− e2)3/2αβ(q21 − q22) , (6)

H4 =
1

6(1 + e cos ν)2
(
3p2

1q
2
2 + 5(1− e2)3/2αβp1q

3
2 + 2(1− e2)3α2β2q42

)
+

1
6
(
3p1q

2
1q2 − p2q

3
1 − 2p1q

3
2 − 3(α− 1)(1 + e cos ν)q42

)
− 1

24
(1− e2)3/2αβ(q41 − 6q21q

2
2 + 5q42) . (7)

The linearized equations of the disturbed motion are easily obtained from
(2) if we take into account only quadratic term (6) in the expansion (5). They
can be written in the form

q̇1 =
1

(1 + e cos ν)2
(
p1 + (1− e2)3/2αβq2

)
− q2 ,
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q̇2 = q1 +
p2

(1 + e cos ν)2
, ṗ1 = −p2 − (1− e2)3/2αβq1 ,

ṗ2 =
(

1− (1− e2)3/2αβ

(1 + e cos ν)2

)
p1 − (1− e2)3α2β2

(1 + e cos ν)2
q2

+(1− e2)3/2αβq2 − 3(α− 1)(1 + e cos ν)q2 . (8)

3 Determination of Linear Stability Domains

The canonical equations (8) form a system of four linear differential equations
with periodic coefficients of the period 2π. Note that general properties of such
systems have been studied quite well (see, for example, [8]). The right-hand
sides in (8) are analytic functions of e at the point e = 0. Hence, the behaviour
of solutions of (8) for sufficiently small e is determined by its characteristic
exponents calculated for e = 0. And the system may be linearly stable only if for
e = 0 all its characteristic exponents λj are different purely imaginary numbers
which satisfy the following inequality:

λj ± λk �= iN (j, k = 1, 2, 3, 4; N = 0, ±1, ±2, . . .) , (9)

where i is the imaginary unit (i2 = −1).
In the case of e = 0 (8) is reduced to the system of four linear differential

equations with constant coefficients. Its characteristic exponents are easily found
and can be written in the form

λ1,2 = ±iσ1, λ3,4 = ±iσ2 , (10)

where

σ1,2 =
1√
2

(
−1 + 3α− 2αβ + α2β2 ± ((−1 + 3α− 2αβ + α2β2)2 −

−4(4 + α2β(3 + β)− α(3 + 5β))
)1/2
)1/2

. (11)

Let us analyse the parameters σ1,2 defined in (11) for β = 3
2 . If the inertia

parameter α belongs to the interval

0 < α <
8
9
, (12)

then parameter σ2 is a complex number. Hence, one of the characteristic expo-
nents λ3 or λ4 has a positive real part, and the system (8) is unstable for e = 0.
As the characteristic exponents are continuous functions of e then there will ex-
ist at least one characteristic exponent with a positive real part for sufficiently
small e > 0 as well. According to Liapunov theorem on linearized stability [12],
we can conclude that for β = 3/2 the solution (3) is unstable for sufficiently
small value of the eccentricity e and α, belonging to the interval (12).



Studying the Stability of Dynamically Symmetric Satellite Motion 97

The parameters σ1,2 are different real numbers only if the inertia parameter
α belongs to the interval

8
9
≤ α ≤ 2 . (13)

This can be readily seen from Fig. 1, where the graphics of functions σ2
1,2(α)

are shown. Nevertheless, there are ten points in the interval (13), where the
inequality (9) is not fulfilled. Actually, at points

α0 =
8
9
, 1,

4
3
,

1
9
(28−

√
241),

1
3
(−7 +

√
145),

1
39

(−28 +
√

11041) (14)

we have
2σ2 = 0, 1, 2; 2σ1 = 3, 4, 5 , (15)

respectively (see Fig. 2). Besides, at points

α0 = 0.895178, 1.16676, 1.60055, 1.79656 (16)

the following equalities are fulfilled

σ1 + σ2 = 1, 2, 3; σ1 − σ2 = 1 . (17)

Thus, the domains of instability of the solution (3) in the α− e plane can arise
only in the vicinity of the points (14), (16).

2
������
3

8
������
9

1.2 1.4 1.6 1.8
Α

1

2

3

4
Σ1

2

Σ2
2

Fig. 1. Parameters σ1,2(α) for β = 3/2

Note that in the cases (15) the corresponding characteristic multipliers ρ =
exp(2πσi) for the system (8) are equal to ρ = 1 or ρ = −1. The important
and significant point here is that the cases ρ = 1 and ρ = −1 are characterized
by the existence of periodic solutions of the system (8) with periods 2π and
4π, respectively (see, for example, [13] [14]). Thus, the boundaries between the
domains of stability and instability in the α− e plane are some curves α = α(e)
which are characterized by the presence of periodic solutions with the periods
2π or 4π and cross the α-axis in the points (14).
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Fig. 2. Dependence of 2σ1, 2σ2, σ1 ± σ2 on α (β = 3/2)

In order to find the stability boundaries, let us rewrite (8) in the form of two
second-order differential equations

(1 + e cos ν)2(q̈1 + q̇2)− 2e(1 + e cos ν) sin ν(q̇1 + q2) +

=
(

1− 3
2
(1− e2)3/2α+ 2e cos ν + e2 cos2 ν

)
(q1 − q̇2) ,

(1 + e cos ν)2(q̈2 − q1) + 2e(1 + e cos ν) sin ν(q1 − q̇2) =

=
(

1− 3
2
(1− e2)3/2α+ 2e cos ν + e2 cos2 ν

)
(q̇1 + q2)−

−3(α− 1)(1 + e cos ν)q2 . (18)

Now we can attempt to seek a solution of the system (18) in the form of Fourier
series

q1 = a0 +
∞∑

k=1

(
ak cos

(
kν

2

)
+ bk sin

(
kν

2

))
,

q2 = p0 +
∞∑

k=1

(
pk cos

(
kν

2

)
+ qk sin

(
kν

2

))
. (19)

Note that (19) correspond to Fourier series for the periodic functions q1 =
q1(ν), q2 = q2(ν) with the period 4π. But they can also be used to obtain the so-
lution with period 2π by setting to zero the Fourier coefficients corresponding to
k being an odd integer. On substituting (19) into (18) and equating coefficients
of cos(kν/2) and sin(kν/2) to zero we obtain four infinite sequences of linear
algebraic equations for the coefficients of Fourier series (19). The first sequence
of equations determines the even coefficients a2k, q2k and can be written in the
form (

1 + 1
2e

2 − 3
2 (1− e2)3/2α

)
a0 + ea2 − eq2 + 1

4e
2a4 − 1

2e
2q4 = 0 ,

...
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− 1
4e

2(k − 1)2a2k−4 + 1
2e

2(k − 1)q2k−4 − e(1− k + k2)a2k−2 +

+e(2k − 1)q2k−2 + 1
2

(−2− 2k2 − e2(1 + k2) + 3(1− e2)3/2α
)
a2k +

+k
2

(
4 + 2e2 − 3(1− e2)3/2α

)
q2k − e(1 + k + k2)a2k+2 +

+e(2k + 1)q2k+2 − 1
4e

2(k + 1)2a2k+4 + 1
2e

2(k + 1)q2k+4 = 0 ,
1
2e

2(k − 1)a2k−4 − 1
4e

2(k − 1)2q2k−4 + e(2k − 1)a2k−2 +

+ 1
2e(−5 + 2k − 2k2 + 3α)q2k−2 + k

2

(
4 + 2e2 − 3(1− e2)3/2α

)
a2k +

+ 1
2

(−8− 2k2 − e2(1 + k2) + 6α+ 3(1− e2)3/2α
)
q2k + e(2k + 1)a2k+2 −

− 1
2e(5 + 2k + 2k2 − 3α)q2k+2 + 1

2e
2(k + 1)a2k+4 −

− 1
4e

2(k + 1)2q2k+4 = 0 , . . . (20)

The second sequence of equations determines the even coefficients b2k, p2k and
is given by (

3α− 4− 1
2e

2 + 3
2 (1− e2)3/2α

)
p0 − eb2 +

+ e
2 (3α− 5)p2 − 1

2e
2b4 − 1

4e
2p4 = 0 ,

...
− 1

2e
2(k − 1)b2k−4 − 1

4e
2(k − 1)2p2k−4 − e(2k − 1)b2k−2 +

+ 1
2e(−5 + 2k − 2k2 + 3α)p2k−2 − k

2

(
4 + 2e2 − 3(1− e2)3/2α

)
b2k +

+ 1
2

(−8− 2k2 − e2(1 + k2) + 6α+ 3(1− e2)3/2α
)
p2k − e(2k + 1)b2k+2 −

− 1
2e(5 + 2k + 2k2 − 3α)p2k+2 − 1

2e
2(k + 1)b2k+4 − 1

4e
2(k + 1)2p2k+4 = 0 ,

− 1
4e

2(k − 1)2b2k−4 − 1
2e

2(k − 1)p2k−4 − e(1− k + k2)b2k−2 −
−e(2k − 1)p2k−2 + 1

2

(−2− 2k2 − e2(1 + k2) + 3(1− e2)3/2α
)
b2k −

−k
2

(
4 + 2e2 − 3(1− e2)3/2α

)
p2k − e(1 + k + k2)b2k+2 −

−e(2k + 1)p2k+2 − 1
4e

2(k + 1)2b2k+4 − 1
2e

2(k + 1)p2k+4 = 0 , . . . (21)

The third sequence of equations is for the odd coefficients a2k−1, q2k−1 and can
be written as

1
2

(− 5
2 − 3

2e− 5
4e

2 + 3(1− e2)3/2α
)
a1 − 1

4e
(
7 + 1

4e
2
)
a3 −

− 9
16e

2a5 +
(
1 + 1

2e
2 − 3

4 (1− e2)3/2α
)
q1 +

(
2e+ 1

4e
2
)
q3 + 3

4e
2q5 = 0 ,(

1 + 1
2e

2 − 3
4 (1− e2)3/2α

)
a1 +

(
2e− 1

4e
2
)
a3 + 3

4e
2a5 +(− 17

4 + 9
4e− 5

8e
2 + 3α− 3

2eα+ 3
2 (1− e2)3/2α

)
q1 +

+
(− 13

4 e+ 1
16e

2 + 3
2eα
)
q3 − 9

16e
2q5 = 0 ,

...
− 1

16e
(
e(3− 2k)2a2k−5 + 4(7− 8k + 4k2)a2k−3 + (12 + 16k2)a2k+1+

+e(2k + 1)2a2k+3 − 4e(2k − 3)q2k−5 − 32(k − 1)q2k−3 − 32kq2k+1 −
− 4e(2k + 1)q2k+3) + 1

4 (2k − 1)(4 + 2e2 − 3(1− e2)3/2α)q2k−1 +

+ 1
8

(−10 + 8k − 8k2 + e2(−5 + 4k − 4k2) + 12(1− e2)3/2α
)
a2k−1 = 0 ,
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− 1
16e
(
4e(3− 2k)a2k−5 + e(3− 2k)2q2k−5 − 32(k − 1)a2k−3 − 32ka2k+1 −

−4e(2k+ 1)a2k+3 + 4(13− 8k + 4k2 − 6α)q2k−3 + (36 + 16k2 − 24α)q2k+1 +
+ e(2k + 1)2q2k+3

)
+ 1

4 (2k − 1)(4 + 2e2 − 3(1− e2)3/2α)a2k−1 +

+ 1
8

(−34 + 8k − 8k2 + e2(−5 + 4k − 4k2) + 24α +

+ 12(1− e2)3/2α
)
q2k−1 = 0 , . . . (22)

At last, the fourth sequence of equations is for the odd coefficients b2k−1, p2k−1

and is given by(− 5
4 + 3

4e− 5
8e

2 + 3
2 (1− e2)3/2α

)
b1 − 1

4e
(
7− 1

4e
2
)
b3 −

− 9
16e

2b5 +
(−1− 1

2e
2 + 3

4 (1− e2)3/2α
)
p1 +

(−2e+ 1
4e

2
)
p3 − 3

4e
2p5 = 0 ,(−1− 1

2e
2 + 3

4 (1− e2)3/2α
)
b1 −

(
2e+ 1

4e
2
)
b3 − 3

4e
2b5 +(− 17

4 − 9
4e− 5

8e
2 + 3α+ 3

2eα+ 3
2 (1− e2)3/2α

)
p1 −

− ( 13
4 e+ 1

16e
2 − 3

2eα
)
p3 − 9

16e
2p5 = 0 ,

...
− 1

16e
(
4e(3− 2k)b2k−5 + e(3− 2k)2p2k−5 + 32(k − 1)b2k−3 + 32kb2k+1 +

+4e(2k + 1)b2k+3 + 4(13− 8k + 4k2 − 6α)p2k−3 + (36 + 16k2 − 24α)p2k+1 +
+ e(2k + 1)2p2k+3

)− 1
4 (2k − 1)(4 + 2e2 − 3(1− e2)3/2α)b2k−1 +

+ 1
8

(−34 + 8k − 8k2 + e2(−5 + 4k − 4k2) + 24α+ 12(1− e2)3/2α
)
p2k−1 = 0 ,

− 1
16e
(
e(3− 2k)2b2k−5 + 4(7− 8k + 4k2)b2k−3 + (12 + 16k2)b2k+1+

+e(2k + 1)2b2k+3 + 4e(2k − 3)p2k−5 + 32(k − 1)p2k−3 + 32kp2k+1 +
+ 4e(2k + 1)p2k+3)− 1

4 (2k − 1)(4 + 2e2 − 3(1− e2)3/2α)p2k−1 +
+ 1

8

(−10 + 8k − 8k2 + e2(−5 + 4k − 4k2)+

+ 12(1− e2)3/2α
)
b2k−1 = 0 , . . . (23)

Each of the sequences (20)-(23) is just an infinite system of linear homoge-
neous equations. It is known that such a system has a non-trivial solution only
if determinant of the corresponding matrix of the system is equal to zero. This
condition gives the equation determining the stability boundaries in the α − e
plane. Obviously, these boundaries must reduce to (14) when e→ 0.

Of course, it is impossible to calculate a determinant of the infinite matrix.
So, in order to find the stability boundaries α = α(e) we should truncate the
infinite sequences of equations (20)-(23) after the kth term, where k is a suitably
large number. The corresponding determinant for the system determining the
coefficients a2k, q2k , for instance, can be written as (k = 1)

Dk =

∣∣∣∣∣∣∣∣∣∣
−1− 1

2e
2 + 3

2μ −e e

−2e −2− e2 + 3
2μ 2 + e2 − 3

2μ

2e 2 + e2 − 3
2μ −5− e2 + 3α+ 3

2μ

∣∣∣∣∣∣∣∣∣∣
, (24)

where μ = (1− e2)3/2α.
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Equating determinant of the form (24) to zero, we obtain an algebraic equa-
tion giving an approximation for the stability boundary α = α(e). An exact
expression for the boundary is obtained when k → ∞. This approach giving
the equation for the stability boundary is known as the infinite determinant
method [9].

It can be readily seen from (24) that in the case of e = 0 determinants of
systems (20)-(23) will be equal to zero when α takes values from (14). It means
that the stability boundaries cross the e = 0 axis in the α−e plane at the points
(14). For sufficiently small e we can represent the corresponding curves α = α(e)
in the vicinity of the points (14) as power series

α = α0 + α1e+ α2e
2 + . . . , (25)

where α0 is equal to one of the values from (14).
Now we should substitute (25) into the expressions for Dk and expand them

in powers of e. Afterwards, equating coefficients of ek (k = 1, 2, 3, . . . ) to zero,
we obtain a system of algebraic equations determining the coefficients αk in the
expansion (25). As a result we have found the following curves

α =
8
9
− 4

27
e2 +

1
2349

e4 − 1051835
15122862

e6 , (26)

α = 1 , (27)

α =
4
3
− e2 +

1215
112

e4 − 537502421
3951360

e6 , (28)

α =
4
3
− 5

3
e2 +

5773
336

e4 − 334463897
1317120

e6 , (29)

α = 1.68053 + 3.26683e2− 14.7417e4 + 97.2646e6 , (30)

α = 1.68053 + 3.26683e2− 22.2214e4 + 217.149e6 , (31)

α = 1.3862+0.615632e2±1.24701e3+1.26813e4±1.12375e5−1.32848e6 , (32)

α = 1.97631− 2.79566e2 + 15.4468e4 ± 0.678768e5− 120.102e6 . (33)

It should be emphasized that all coefficients in the expansions (26)-(33) are
calculated exactly. But in (30)-(33) they are quite cumbersome and so their ap-
proximations are written. We have used here the determinants D8. If we increase
the order of the matrix whose determinant we have calculated in order to find
the coefficients in the expansion (25) then we’ll find the higher order corrections
in (26)-(33). The coefficients αk that we have already found in (26)-(33) will be
the same.

Let us remember now that at points (16) the inequality (9) is also not sat-
isfied. But in these cases there are no periodic solutions of system (18) having
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the form (19). Nevertheless, according to the Floquet–Liapunov theory (see, for
example, [15]), there must exist a solution of the form

q1 = exp(λν)

(
a0 +

∞∑
k=1

(ak cos(kν) + bk sin(kν))

)
,

q2 = exp(λν)

(
p0 +

∞∑
k=1

(pk cos(kν) + qk sin(kν))

)
. (34)

Characteristic exponents λ depend on the parameter ε and in the neighborhood
of the points (16) can be represented in the form

λ1,2 = ±i (σ1 + σ11e+ σ12e
2 + . . .) ,

λ3,4 = ±i (σ2 + σ21e+ σ22e
2 + . . .) . (35)

Now the boundaries between the domains of stability and instability in the α−e
plane are determined from the conditions that coefficients in expansions (35) are
real numbers and the following equalities are satisfied

λ1 + λ3 = i, 2i, 3i; λ1 − λ3 = i , (36)

It can be readily seen that these equalities reduce to (17) for e → 0. Again
for sufficiently small e we can represent the stability boundaries α = α(e) in
the neighborhood of the points (16) as power series (25). In order to find the
corresponding curves we should substitute (25) and (35) into (18) and taking
into account (36) repeat all the calculations we have done above. It should be
noted that the calculations in these cases are much more bulky and we can do
them only with the modern computer algebra system such as Mathematica, for
example. As a result we have found the following curves

α = 0.895178± 0.068858e+ 0.122736e2± 0.0683111e3−
−0.559085e4± 0.748201e5− 0.510311e6 , (37)

α = 1.16676− 0.528825e2 + 12.5091e4 , (38)

α = 1.16676 + 0.370905e2− 3.48835e4 , (39)

α = 1.60055− 0.103666e2− 65.6796e4 , (40)

α = 1.60055 + 2.51269e2− 21.5334e4 , (41)

α = 1.79656± 0.377688e− 2.47355e2± 64.3954e3 + 991.319e4 . (42)

Remind that the values of α0 in (37)-(42) are determined as solutions of
(17). Using approximate values of α0 and σ1, σ2, we have found approximate
values of the corresponding coefficients αk in (23) as well. But using the system
Mathematica we can calculate them with arbitrary precision.
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4 Conclusion

In the present paper we study the stability of cylindrical precession of the dy-
namically symmetric satellite in the Newtonian gravitational field. In the case
of the resonance 3 : 2 (Mercury type resonance) we have shown that cylindrical
precession of the satellite may be stable only if the inertia parameter α belongs
to the interval (13). It turned out that there are ten values of the parameter α
in the interval (13) where conditions of the second order resonance

σj ± σk = N (j, k = 1, 2; N = 0, ±1, ±2, . . .) (43)

are fulfilled and the domains of instability can arise in the vicinity of these points
in the α − e plane. Using the infinite determinant method, we have developed
the algorithm of analytical calculation of the boundaries of the domains of in-
stability and found these boundaries analytically in the form of power series in a
small parameter e that is just the eccentricity of the satellite orbit. The obtained
results show that a bandwidth of the domains of instability is O(eN ) and de-
creases very fast if the number N is growing up. These results are in agreement
with the general theory of parametric resonance (see, for example, [16]). All the
calculations and visualization of the obtained results have been done with the
computer algebra system Mathematica.

References

1. Gerdt, V.P., Tarasov, O.V., Shirkov, D.V.: Analytic calculations on digital com-
puters for applications in physics and mathematics. Usp. Fiz. Nauk 130, No. 1
(1980) 113–147 (in Russian)

2. Beletskii, V.V.: The motion of an artificial satellite about its center of mass in a
gravitational field. Moscow Univ. Press (1975) (in Russian)

3. Markeev, A.P., Chekhovskaya, T.N.: On the stability of cylindrical precession of a
satellite on the elliptic orbit. Prikl. Math. Mech. 40 (1976) 1040–1047 (in Russian)

4. Churkina, T.E.: On stability of a satellite motion in the elliptic orbit in the case of
cylindrical precession. Mathematical Modelling 16, No. 7 (2004) 3–5 (in Russian)

5. Markeev, A.P.: The stability of hamiltonian systems. In: Nonlinear mechan-
ics, V.M.Matrosov, V.V.Rumyantsev, A.V.Karapetyan (Eds.). Fizmatlit, Moscow
(2001) 114–130 (in Russian)

6. Markeev, A.P.: The libration points in celestial mechanics and cosmic dynamics.
Nauka, Moscow (1978) (in Russian)

7. Wolfram, S.: The Mathematica Book. 4th edn. Wolfram Media/Cambridge Uni-
versity Press (1999)

8. Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic
Coefficients. John Wiley, New York (1975)

9. Lindh, K.G., Likins, P.W.: Infinite determinant methods for stability analysis of
periodic-coefficient differential equations. AIAA J. 8 (1970) 680–686

10. Prokopenya, A.N.: Studying stability of the equilibrium solutions in the restricted
many-body problems. In: Challenging the Boundaries of Symbolic Computation,
Proc. 5th Int. Mathematica Symposium (London, Great Britain, 2003), P.Mitic,
Ph.Ramsden, J.Carne (Eds.). Imperial College Press, London (2003) 105–112



104 C. Cattani, E.A. Grebenikov, and A.N. Prokopenya

11. Prokopenya, A.N.: Determination of the stability boundaries for the hamiltonian
systems with periodic coefficients. Math. Modelling and Analysis 10, No. 2 (2005)
191–204

12. Liapunov, A.M.: General problem about the stability of motion. Gostekhizdat,
Moscow (1950) (in Russian)

13. Merkin, D.R.: Introduction to the Theory of Stability. Springer-Verlag, Berlin, New
York (1997)

14. Grimshaw, R.: Nonlinear Ordinary Differential Equations. CRC Press (2000)
15. Cesari, L.: Asymptotic behaviour and stability problems in ordinary differential

equations. 2nd edn. Academic Press, New York (1964)
16. Landau, L.D., Lifshits, E.M.: Theoretical Physics, Vol. 1. Mechanics. 4th edn.

Nauka, Moscow (1988) (in Russian)



Generation of Orthogonal Grids on Curvilinear
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Abstract. We propose a new algorithm for the generation of orthogonal
grids on regions bounded by arbitrary number of polynomial inequalities.
Instead of calculation of the grid nodes positions for a particular region,
we perform all calculations for general polynomials given with indeter-
minate coefficients. The first advantage of this approach is that the cal-
culations can be performed only once and then used to generate grids on
arbitrary regions and of arbitrary mesh size with constant computational
costs. The second advantage of our algorithm is the avoidance of singu-
larities, which occur while using the existing algebraic grid generation
methods and lead to the intersection of grid lines. All symbolic calcula-
tion can be performed with general purpose Computer Algebra Systems,
and expressions obtained in this way can be translated in Java/C++
code.

1 Motivation and Introduction

Advanced computer technologies and parallel architectures allow one to solve
time dependent problems with 109 and more unknowns on rectangular regions
in realistic time using hierarchical and adaptive approaches [3,13]. In order to
handle problems of such order of computational complexity on arbitrary regions
and, in particular, with moving boundaries, we are interested to have efficient
grid generation techniques, which would support hierarchical approach to com-
puting and provide the possibility of adaptive grid refinement without additional
computational costs.

Grid generation techniques may be subdivided into two big classes:
(a) techniques based on the numerical solution of certain PDEs;
(b) algebraic techniques [8,12].

Among the techniques belonging to class (a), the grid generation techniques
based on the solution of elliptic partial differential equations (PDEs) have gained
the most widespread acceptance. We should, however, mention the following two
shortcomings of these techniques.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 105–114, 2005.
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Fig. 1. Adaptivity of transfinite interpolation

• They require an iterative solution of finite difference equations approximat-
ing the elliptic PDEs. This may require a CPU time comparable with the
CPU time needed for the solution of the fluid dynamics problem on the
generated curvilinear grid.
• The intersections of grid lines of the same family may occur near the sharp

corners of the boundary or the boundary intervals with high curvature. This
is inadmissible from the viewpoint of the subsequent solution of fluid dy-
namics equations on such a grid.

The numerical grid generation techniques based on the numerical solution of
hyperbolic [8,12,11,10] and parabolic [8,9] equations indeed belong to the march-
ing techniques of grid generation. Therefore, these techniques are very fast com-
pared to methods that require solving second-order elliptic systems. There are,
however, limitations inherent in hyperbolic and parabolic grid generation. These
methods apply only to unbounded domains, i.e., the outer boundary cannot be
specified in advance.

In contrast to PDE’s based grid generation methods, the algebraic grid gener-
ation (AGG) makes possible the hierarchical and adaptive methods. AGG meth-
ods can be described as polynomial mappings from unit square to the region of
interest built from boundary polynomials. Therefore, the AGG techniques have
two main advantages:

– since the analytic mapping for a particular region is derived only once, com-
putational costs are independent of the number of grid nodes

– for the same reason, hierarchical adaptive refinement is supported in a nat-
ural way (Fig. 1)

The algebraic grid generation techniques are much faster than the techniques
based on the numerical solution of elliptic PDEs. The most well known represen-
tative techniques in this class are the multi-surface method [6,7] and the method
of transfinite interpolation [8,12]. The shortcoming of the multi-surface method
[6,7] is that it involves many adjustable parameters controlling the distribution of
grid nodes on the spatial region boundaries. It is impossible in practice to guess
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the values of these parameters in such a way that the generated curvilinear grid
would be orthogonal or nearly orthogonal.

A shortcoming of the grid generation by transfinite interpolation is that this
technique does not incorporate any check-up of the grid orthogonality.

One of further disadvantages of AGG are possible singularities, which lead
to overspill phenomenon shown in Fig. 2.

In the present paper, we propose a new algorithm for numerical grid genera-
tion, which belongs to the class of marching techniques and which incorporates
explicitly the orthogonality property of the curvilinear grid. In addition, our
algorithm, as will be shown by the examples, is applicable both to bounded
and unbounded domains. Since our algorithm belongs to the class of the AGG
techniques, it preserves all the above mentioned advantages of AGG.

We present namely an algorithm that computes an orthogonal grid on the
region, whose boundaries are given by N parametric curves [x(j)(t), y(j)(t)], t ∈
[0, 1] of degree deg ≤M with symbolic coefficients bji :

x1(t) =
∑M

i=1 a
(1)
i ti y1(t) =

∑M
i=1 b

(1)
i ti

...

xN (t) =
∑M

i=1 a
(N)
i ti yN (t) =

∑M
i=1 b

(N)
i ti

(1)

We desrcribe in Section 2 how starting from these equations, the grid lines
can be calculated using the notion of envelope. The fundamental problem in
this approach is the efficient localization of singularities, which result in self-
intersection of grid lines. In [5], the Groebner Bases were used to find the sin-
gularities of envelopes. However, in the presence of symbolic coefficients in (1)
this approach becomes computationally too expensive. For example, we have
started the calculation of Groebner Bases for the localization of singularities
of envelopes according to [5], but with symbolic coefficients, in Maple and in-
terrupted it after 72 hours of computation without any result. In Section 3 we
will show how this task can be solved in realistic time using the resultants. The
well-known problem is that the resultants tend to become very large and may
contain many thousands of terms even in the case of 3 equations in 2 variables
of degree 2. Therefore, we describe a way to represent the resultants arising in
grid generation problem in a compact way.

2 Our Approach

In the present section, we show how the orthogonal grid can be generated using
algebraic methods. Let the region Ω (Figs. 1, 2) be bounded by the roots of
polynomials fi(x, y). The so-called Tarski formula describing the set of points,
which belong to this region can be written as follows:

Ω(x, y) ≡
∧
i

fi(x, y) ≥ 0

We propose to calculate the lines of the curvilinear grid in the following way.
We contact a circle C(x, y) = x2 + y2 − r2 ≥ 0 with Ω and move C along the
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Fig. 2. Overspill phenomenon

Fig. 3. Calculating of envelopes by quantifier elimination

boundary of Ω keeping them in contact. The motion of a circle can be produced
by shifting it by x0, y0 units:

C(x − x0, y − y0) ≥ 0.

The circle moving along some boundary curve fi(x, y) = 0 describes a curve
gi(x, y) = 0 called envelope (Fig. 3). More precisely, the envelope in our case is a
curve, whose tangent at each point coincides with the tangent of a moving circle
at each time of its motion. Connecting contact points of C with fi and gi with
C for some x0, y0 produces a line segment, which is orthogonal to both curves.
Proceeding in this way the orthogonal grid lines can be calculated.

The contact of C and fi can be expressed in terms of common roots of
bounding polynomials. The gi corresponds also to such shifts x0, y0 of C, where
polynomial fi and C have common roots. This can be formalized with Tarski
sentences involving only equations as follows:

{(x0, y0)|∃x, y : f(x, y) = 0 ∧ C(x− x0, y − y0) = 0.} (2)
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Eliminating ∃-quantifiers with existing methods described below produces
the point set, which corresponds to the envelope g (Fig. 3). After g(x, y) is
calculated, the points distributed along them should be connected with those of
f(x, y) in such a way the connecting line segment is normal to both curves.

2.1 Grid Generation by Elimination of Variables

In this section we shall describe how the well known approach to the elimination
of variables from the following first-order formulas (so-called existential first-
order theory over the reals) with the aid of resultants can be used to generate
orthogonal grids:

∃x1, ..., xM :
∧
i

∨
j

fi,j(x1, ..., xM , ..., xN ) = 0.

For example, the curve described by a circle rolling along parametric curves (1)
can be described with the following formula:

∃t :
N∨

i=1

C(x(i)(t)− xc, y
(i)(t)− yc, r) = 0, (3)

where C is the circle equation with indeterminate radius r and center position
xc, yc. Given a polynomial f(x) of degree n with roots αi and a polynomial g(x)
of degree m with roots βj , the resultant is defined by

ρ(f, g) =
∏
i,j

(αi − βj).

ρ(f, g) vanishes iff ∃a : f(a) = 0∧g(a) = 0. The resultant can be computed as the
determinant of the so-called Sylvester Matrix [5]. In the multivariate case, the
computation of resultant can be reduced to the univariate one by considering the
polynomials f, g ∈ K[x1, ..., xN ] as univariate polynomials in K[x1] with unknown
coefficients in K[x2, ..., xN ] ( denoted as K(x2, ..., xN )[x1]). In the following we
call the resultant of f, g ∈ K(x1, ..., xi−1, xi+1, ..., xN )[xi] as resxi(f, g).

In order to eliminate t from (2) and find the envelope h of the circle and (1)
we may calculate

h(xc, yc, r) = rest

(
C(x(t) − xc, y(t)− yc, r),

∂

∂t
C(x(t) − xc, y(t)− yc, r)

)
(4)

In this way the first family of grid lines, namely parallel to the boundary, can
be calculated symbolically. Note that the resultant for a curve (1) with symbolic
coefficients has already 2599 terms even if the degree is equal to 2. As will be
described in Section 3, in order to find a self-intersection of grid lines further
resultants of such large expressions will be needed. Therefore, we will present in
Section 3.1 a much more efficient way to localize the self-intersections of such
curves without computing resultants completely based on polynomial remainder
sequences.
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In order to generate the second family of grid lines, which are perpendicular
to the first family, we discretize each of the curves (1) with step size Δt = 1

N and
obtain a number of points pj = (xj , yj), j = 1..N . This can be done with symbolic
N by substitution of t = j

N , j = 1, . . . , N in (1). We place the circle center in each
pj and compute the intersection of C(x−xj , y−yj) with h(x, y, r). Let us denote
the common roots of the both polynomials as V(C(x − xj , y − yj), h(x, y, r)).
Thus, the second family of grid lines v(j, r) perpendicular to h(x, y, r) = 0 can
be obtained by computing

v(j, r) = V(C(x − xj , y − yj), h(x, y, r)). (5)

Since h(x, y, r) is a large symbolic expression, as mentioned previously, comput-
ing (5) in a direct way by elimination of variables using resultants becomes a
very expensive task.
Therefore, we use the following simple result, which gives the intersection of a
circle with middle point (xj , yj) ∈ [x(t), y(t)] and radius r and h(x, y, r) given
by (4):

Proposition 1. Let h(xc, yc, r) be envelope of a family of circles C(x−x(t), y−
y(t), r) with radius r given by (4). Then for any tj ∈ R the following is satisfied:

V(C(x − x(tj), y − y(tj), r), h(x, y, r)) =⎛⎝x(tj)± r dy
dt |tj√

dy
dt |tj + dx

dt |tj

, y(tj)∓
r dx

dt |tj√
dx
dt |tj + dx

dt |tj

⎞⎠ .

Proof. According to (4) V(C(x−x(tj), y−y(tj)), h(x, y, r)) = V(C(x−x(t), y−
y(t), r), ∂

∂tC(x− x(t), y − y(t), r)) for some t. Note that

∂

∂t
C(x− x(t), y− y(t), r) =

∂C

∂x

dx

dt
+
∂C

∂y

dy

dt
= −2(x− x(t))dx

dt
− 2(y− y(t))dy

dt
.

This means that all solutions of V(C(x − x(tj), y − y(tj), r), h(x, y, r)) lie on a
line xdx

dt |tj + y dy
dt |tj − x(tj)dx

dt |tj − y(tj)dy
dt |tj = 0 independently of r. Thus, we

are interested to find the intersections of circle C(x− xj , y − yj , r) and this line
going through the middle point of C. Using a bit of elementary mathematics we
obtain the statement of this proposition. ♦
Now we are able to find the points (xh, yh) on envelope h(x, y, r), which cor-
respond to the particular position (xb, yb) of a circle on the boundary of the
region. For example, when the bounding curve (1) is of degree 3 with unknown
coefficients a1, ..., a4, b1, ..., b4 we obtain using Proposition 1:

xb = a1 + a2tj + a3tj
2 + a4tj

3

yb = b1 + b2tj + b3tj
2 + b4tj

3

xh = a1 + a2tj + a3tj
2 + a4tj

3 +
r(b2+2 b3tj+3 b4t2j)√

b22+4 b2b3tj+4 b32tj
2+a22+4 a2a3tj+4 a32tj

2

yh = b1 + b2tj + b3tj
2 + b4tj

3 − r(a2+2 a3tj+3 a4t2j)√
b22+4 b2b3tj+4 b32tj

2+a22+4 a2a3tj+4 a32tj
2
.

(6)
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Fig. 4. Generated Grid

The line segment connecting points (xb, yb) on the boundary and points
(xh(r), yh(r)) on h(x, y, r) which is orthogonal to boundary curve as well to
h(x, y, r) for all r can now be obtained using (6). For example, the grid shown
in Fig. 4 has been generated in this way.

So far we have considered successive generation of grid cells for an individual
boundary curve by computing two families of grid lines: perpendicular and par-
allel to this curve. Since the given region is bounded by several trimmed curves,
it is convenient to provide a method guaranteeing that the edges of grid cells
generated for both curves do not intersect or even coincide in their nodes. As can
easily be seen, the initial distribution of points (xb, yb) on the boundary is critical
for this purpose. Therefore, we propose the following approach that guarantees

Fig. 5. Generated grid for NACA-00t′ profiles: complete C-grid (on the left), partial

view (on the right)
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that mesh cells generated along two given intersecting curves [x1(t), y1(t)] and
[x2(t), y2(t)] do not intersect and, so far the angles are suitable, coincide in their
nodes.

We start from any initial distribution of boundary points p(1)
j ∈ [x1(t), y1(t)]

and compute such points p(2)
k ∈ [x2(t), y2(t)] that the generated cells coincide in

their nodes using (6).
Using this approach we have computed the so-called C-grids about the aero-

foil profiles of the popular family NACA-00t′.
In the next section we shall show how possible intersections of obtained line

segments, which lead to the self-intersection of grid lines, can be detected and
avoided.

3 Handling Self-intersections

As shown in Fig. 2, the fundamental problem of the AGG methods is the self-
intersection of grid lines. In this section we propose the way to overcome this
difficulty.

Let h(x1, ..., xn, r) : Rn+1 → R be a family of grid lines calculated in the
previous section. Consider the Jacobian at point p = (x1, ..., xn) ∈ Rn:

J|p =
(
∂h(x1, ..., xn, r)

∂x1
|p, ..., ∂h(x1, ..., xn, r)

∂xn
|p
)
.

Recall that the critical points p = (x1, ..., xn, r) ∈ Rn+1 of h, which include
selfintersection points, are characterized by J|p = 0. The set of critical points of
h(x1, ..., xn, r) = 0, denoted Cr , can also be described as common roots of h and
its derivatives

Cr = V(h(x1, ..., xn, r),
∂h(x1, ..., xn, r)

∂x1
, ...,

∂h(x1, ..., xn, r)
∂xn

) (7)

Unfortunately, the solution of (7), where h(x1, ..., xn, r) of degree at least
6 has symbolic coefficients and many thousands of terms, as in our case, is a
computationally expensive task. In order to solve this problem in an efficient
way we propose the following method based on polynomial division. First of
all observe that the selfintersections of the envelope h are exactly the points,
where C(x1−x1(t), ..., xn−xn(t), r) = h(x1, ..., xn, r) for more than one t. Thus,
in order to find selfintersection it is sufficient to examine for which values of
x1, ..., xn the following system of equations has more than one solution with
respect to t ([2]):

C(x1 − x1(t), ..., xn − xn(t), r) = 0
∂

∂t
C(x1 − x1(t), ..., xn − xn(t), r) = 0

For this purpose we shall use Polynomial Remainder Sequences (PRS ) that
generalizes the notion of resultants. If f(x) and g(x) are polynomials, let the
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PRS of f and g be denoted by r0, r1, . . . , rM , where r0(x) = f(x), r1(x) = g(x)
and the intermediate remainders are computed via

ri+1 = qiri − ri−1,

where qi is the quotient of the polynomial division of ri−1 by ri. ([4], [1]). It is
obvious that PRS has finitely many non-zero elements.

Let SC(f, g, v) denote the number of sign changes in the sequence r0(v), . . .,
rM (v). Let SC(f, g, a, b) be the quantity SC(f, g, b)− SC(f, g, a). The classical
Sturm theorem states that SC(f, ∂f

∂x , a, b) is equal to the number of real roots of
f(x) = 0 in interval [a, b]. In this way the selfintersection points of the envelope
of (1) can be characterized by SC(C, ∂

∂tC, 0, 1) ≥ 2. Computing this can be done
as described, for example, in [1]. In this way, polynomial remainders can be used
in order to localize and prevent self-intersections of grid lines.

4 Conclusion

We have presented the grid generation algorithm that allows us to generate an
orthogonal grid on curvilinear trimmed regions bounded by polynomial equa-
tions given with symbolic coefficients. In contrast to existing approaches to grid
generation, our method supports at the same time exact boundary representa-
tion as well as the possibility of adaptive computation. A hierarchical refinement
of the grid does not change already generated grid. Furthermore, because of the
use of symbolic coefficients in boundary polynomials, all computational work is
performed only once, and the generated symbolic expressions are used to obtain
the orthogonal grid on any particular region in constant time by simple sub-
stitution of coefficients of bounding polynomials. One of the advantages of our
method is the avoiding of singularities resulting in self-intersection of grid lines.
In order to localize and remove the self-intersection of curves given with inde-
terminate coefficients in realistic time and space we have presented a number of
optimized symbolical techniques based on polynomial division.

The requirement of polynomial boundary curves is a limitation for grid gen-
eration by the above proposed method. It is, however, to be noted that there
are many applied problems in which the boundaries are described by polynomial
functions.

The future work will be concerned with further optimization of used symbolic
algorithms from computational point of view in order to allow a very efficient
grid generation in higher dimensions.

It is also to be noted that the above presented method can be extended for
the case of non-polynomial boundary curves. In this case one has, however, to
check after the determination of each new grid line segment whether it has the
intersections with all already available grid line segments, so that this procedure
can take too much computer time at the numerical generation of fine orthog-
onal grids. This suggests a direction for future work: a search for the way to
circumvent this laborious procedure.
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Abstract. In the present paper we discuss single-electron states in a
quantum dot by solving the Schrödinger equation taking into account
spatial constraints, in which the confinement is modeled by a spherical
potential wall (particle-in-a-sphere model). After the separation of vari-
ables we obtain second order ordinary differential equations, so that auto-
matic methods for finding a closed-form solution are needed. We present
a symbolic algorithm implemented in Maple based on the method of
indeterminate coefficients, which reduces the obtained equations to the
well-known differential equations. The latter can be solved in terms of hy-
pergeometric or Bessel functions. The usage of indeterminate coefficients
allows one to obtain the solution of the problem equations in terms of
control parameters, which can then be choosen according to the purposes
of a nanotechological process.

1 Introduction

Nanotechnology is based on creating artificial structures containing a reduced
number of atoms in comparison to the bulk materials. The characteristic dimen-
sion of a nanostructure may become smaller than the extension of the electronic
wavefunction, at least along some directions. In such cases, the energy of the
system is quantized (size quantization), and the system’s dimensionality may be
reduced, which significantly changes many properties of a nanoobject as com-
pared to its bulk-world counterparts. In the classical language, one can say that
nanostructures are in general characterized by a very high surface-to-volume
ratio, which results in the evanescent separation between bulk and surface phe-
nomena. For instance, when linear dimensions of a nanostructure become smaller
than 10 nm, more than 10 per cent of atoms may be regarded as surface-located.
As a result, the physical properties of such nanostructures can be rather extraor-
dinary: a nanostructure typically behaves as a large molecule or even as an atom
whose electronic spectrum is determined by its size, shape, composition and, in
general, interaction with the environment.

During recent years, a number of research groups have started computational
projects aimed to simulate nanodevices and nanotechnological components ([7],
[8], [9], [10]). Computational modeling in nanotechnology has readily employed
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molecular dynamics methods or semiclassical methods aimed to find phase tra-
jectories. However, to study electronic and optical properties of nanostructures,
fully quantum mechanical calculations are needed. In this paper we attempt to
perform such calculations for zero-dimensional nanostructures - quantum dots,
using computer algebra methods as a mathematical tool. In particular, we make
use of the following symbolic algorithms

– rewriting techniques to perform the change of variables ([2])
– reduction of the problem to a second order ODE by separation of variables

([2])
– solving the second order ODE by the reduction to the hypergeometric equa-

tion using the method of indeterminate coefficients

In the recent years a number of interesting approaches to symbolic solution
of second order ODEs has been proposed ([1], [5], [6]). As will be described in
Section 2, for nanotechnological purposes it is helpful to model the quantum sys-
tems with ODEs whose coefficients include certain control parameters. Thus, the
methods are needed, which would allow one to express the solution of paramet-
ric ODEs in terms of special functions depending e.g. on external technological
parameters. Therefore we present in the Section 3.1 an approach based on the
method of indeterminate coefficients and symbolic computation, which would
help us to express the solution of a second order ODE in terms of hypergeomet-
ric functions containing combinations of external parameters. For example, one
can try to interactively model the states of an individual electron in a quantum
dot using the classes of potential functions defined in terms of some parameters,
such as e.g. with the help of the generalized Hulthén potential (see Section 2).

2 Exploring Spatial Constraints on Electronic States in
Quantum Dots

The progress of highly precise nanotechnology made it possible to fabricate quan-
tum dots of lateral dimensions of 10 - 100 nanometers and even smaller (down
to 3 nm). Quantum dots (QD) can be produced as single objects within a bulk
material or arranged in arrays. It is often said that quantum dots may be consid-
ered as artificial atoms, with energy level spacings being quite substantial due
to small dimensions. The number of mobility electrons determining electronic
and optical properties is typically rather small in a quantum dot ( 1 − 104)
as compared to the bulk material electronic ”sea”. Therefore, quantities de-
scribing electronic and optical properties of a dot exhibit large fluctuations (or
oscillations) as functions of applied (gate) voltage. Such oscillations manifest a
sequence of resonances between electronic energy levels and the Fermi energy of
the attached leads, which is the physical basis for a controllable and operable
nanotechnological systems. With the progress of nanotechnology, the spacing Δ
between the electronic energy levels tends to grow together with the temper-
ature region (kT ≤ Δ) necessary for effective control, which may reach room
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temperatures. This fact provides realistic expectations for practical application
of nanotechnology on a mass scale.

To explore the role of spatial constraints, let us consider a system of electrons
confined in a spherical quantum dot with the radius a. We shall not consider
electron-hole pair states at first, although for optical response computations ex-
citonic effects may be crucial. The eigenstates and energy eigenvalues for a single
electron in the quantum dot are determined from the Schroedinger equation:

(Δ+ k2)ψ = 0, k2 =
2m(U(r, a)− E)

�2
, (1)

where E is the particle energy, U is the quantum dot potential, m is the particle
mass. The latter may be understood as the effective mass, bearing in mind that
quantum dots can be fabricated from the crystalline material and within the
crystal matrix, so that electrons moving in the crystal lattice lose the properties
of a particle in the free space and become quasiparticles subordinated to the
translational symmetry of the lattice and described by the Bloch waves. In fact,
however, one can assume that the energy zones are not considerably modified by
the quantum confinement, so that the effective mass approximation may be still
valid in the quantum dot system. In order to explore the spatial constraints, we
approximate the quantum dot with different potential functions U(r, a), which
will be discussed bellow.

Using Maple command PDEchangecoords from the package DETools, we can
rewrite equation (1) by simple substitution in spherical coordinates:

Δ =
∂2

∂r2
+

2
r

∂

∂r
+
L2

r2
, (2)

where

L2 =
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2
, (3)

is operator depending only on (θ, ϕ). Separating variables in the traditional way

ψ(r, θ, ϕ) = R(r)Θ(θ, ϕ), R(r) =
χ(r)
r

, (4)

we obtain the radial equation in the form

− �2

2m

(
d2χ

dr2
− λ

r2
χ

)
+ U(r, a)χ = Eχ (5)

and the angular momentum equation

L2Θ + λΘ = 0. (6)

It is well-known that physically meaningful solutions of (6) exist only for λ =
l(l+ 1), l = 0, 1, 2, .. Thus, the radial equation can be rewritten as follows:

− �2

2m

(
d2χ

dr2
− l(l + 1)

r2
χ

)
+ U(r, a)χ = Eχ (7)
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Fig. 2. The generalized Hulthén potential for σ = −1,−1.2,−3

Solving (7) means finding χ, that is the function of variables r, a, U0 and E,
where U0 = max|U((r))|, i.e. the implicit equation of the form f(χ(a, U0, E)) = 0
leads to the dispersion relation of the form E = E(U0, a), thus determining the
energy eigenvalues and the respective eigenfunctions in terms of the quantum dot
radius and potential. From the nanotechnological point of view, it means that
one can control electronic states in a quantum dot by modifying its size and
depth. In the next section we shall show how such calculations can be performed
using symbolic techniques.

We are interested in a charachterization of the electronic states as a functional
of the potential function U(r, a) by solving (7) and imposing the appropriate
boundary (supplementary) conditions. This gives us the possibility to explore the
role of spatial constraints in the states of electron in a quantum dot. For example,
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the following simple potential function models a sharp transition between a
quantum dot and its environment:

U(r, a) =
{U0 r < a

0 otherwise

In this case the equation (7) reduces to the following equation inside the dot

− �2

2m

(
d2χ

dr2
− l(l + 1)

r2
χ

)
+ U0χ = Eχ (8)

and outside the dot

− �2

2m

(
d2χ

dr2
− l(l + 1)

r2
χ

)
= Eχ (9)

A slightly more realistic approach to the calculation of particle states in
a quantum dot can be based on approximating the latter not by the hard-wall
potential, but by that reflecting the finite thickness of the dot surface layer. There
may be a number of models taking into account the boundary smear of quantum
dots. One of the simplest models of this kind may be based on the Woods-Saxon
potential, which was rather popular for constructing nuclear models (and to some
extent, by analogy, for models of high-temperature superconductivity in cuprate
materials). Another well-used approximation of quantum dot is the generalized
Hulthén potential (GHP):

U(r, a) =
U0

eq(r−a) − σ (10)

where σ is a parameter to produce potentials with different characteristics, a
may be interpreted as the quantum dot effective radius and the dot is assumed
to have a shell with thickness q−1. For large q, the surface layer is very thin and
for q →∞ the quantum dot is described by the hard-wall potential.

By introducing the dimensionless variable

z =
1

eq(r−a) − σ , (11)

the radial equation (7) can be transformed to the following form

z2(1− σz)2 d
2χ

dz2
+ [z(1− σz)(1− 2σz)]

dχ

dz
+
κ2

0z − κ2

q2
χ = 0, (12)

where

κ2 =
2m|E|
h2

, κ2
0 =

2mU0

h2
. (13)

In the next section, we shall describe a method how equations such as, for ex-
ample, (8),(9), (12) can be reduced to the hypergeometric equation

z(1− z)φ′′ + ((2β + 1)− 2z(α+ β + 1))φ′ − (α+ β)(α + β + 1)φ = 0 (14)

that is solvable in terms of the hypergeometric functions ([3]).



120 D. Chibisov et al.

2.1 Symbolic Solution of the Radial Equation Using Maple

In this section, we shall consider how the second order ODE’s modelling elec-
tronic states can be solved using computer algebra, in particular, with the aid
of Maple.Firstly, we consider equations (8) and (12), which can be expressed in
terms of Bessel and Hankel functions. After that we shall present an approach
based on symbolic computation that allows us to reduce equation (12) to the
well-known hypergeometric equation.

Solution of Radial Equations in Terms of Bessel and Hankel Functions.
Let us introduce the quantities κ2 = 2mE

�2 μ2 = 2m(U0−E)
�2 . Then the solution

of the radial equation inside the dot (8) can be obtained in terms of the Bessel
functions:

χ (r) = C1

√
πμr

2
Jl+1/2 (rμ) + C2

√
πμr

2
J−(l+1/2 ) (rμ)

or, in terms of spherical Bessel functions,

jl(z) =
(πz

2

)1/2

Jl+1/2(z), nl(z) = (−1)l+1
(πz

2

)1/2

J−(l+1/2 ) (z) , (15)

the radial solution of the Schroedinger equation inside the quantum dot reads:

R(r) =
C1

r
jl(μr) (16)

The spherical function nl(μr) leads to a singularity of R(r) and, hence, must be
disregarded. Here the spherical functions are defined in such a way, as to produce
the standing plane wave asyptotic values for z = μr' l:

jl(z) ≈ sin(z − πl

2
), nl(z) ≈ −cos(z − πl

2
)

and the following expansions near r = 0, i.e. for z = μr  l + 1/2:

jl(z) ≈ 2ll!
(2l + 1)!

zl+1, nl(z) ≈ − (2l)!
2ll!

z−l.

We are primarily interested in the confined states with E < 0. In this case, the
only solution of equation (9) outside the dot that is disappearing for r ' a is
the one corresponding to the spherical Hankel function h(1)

l (z) with imaginary z

χl(r) = C2h
(1)
l (iκr), r > a, i.e. R(r) =

C2

r
h

(1)
l (κr), (17)

The constants C1 and C2 can be determined by the normalization condition
together with that stemming from matching the logarithmic derivatives (con-
tinuity/smoothness requirement) at r = a, which gives the size quantization
condition in the quantum dot:
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Fig. 3. Solution of (18) for l = 0

μaj′l(μa)
jl(μa)

= iκa
h

(1)′

l (iκa)

h
(1)
l (iκa)

. (18)

Here the prime symbol denotes the differentiation with respect to the whole ar-
gument of spherical Bessel functions. The transcendental equation (18) relates
the quantities μ and κ, i.e. the implicit equation of the form f(μ, κ) = 0 leads
to the dispersion relation of the form E = E(U0, a), thus determining the energy
eigenvalues and the respective eigenfunctions in terms of the quantum dot ra-
dius and potential. From the nanotechnological point of view, it means that one
can control electronic states in a quantum dot by modifying its size and depth.
For l = 1/2, 3/2, ..., the special functions in the equation (18) reduce to trigono-
metric functions. For example, for l = 0, we obtain the following transcendental
equation

amE cos
(√

mEa
)

√
mE sin

(√
mEa

) = −
√
mU0 −mEa,

which expresses the relationship between the energy E and potential U0 as a
function of the quantum dot radius a (Fig. 2).

Symbolic Solution of the Radial Equation in Terms of Hypergeometric
Function. In this section we shall present an algorithm, which allows us to solve
(7) for more complex potential functions U(r, a) such as, for example, (10).
Let us re-write the equation (7) in the following general form with polynomial
coefficients:

a(r)
d2

dr2
χ (r) + b(r)

d

dr
χ (r) + c(r)χ (r) = 0 (19)

where a(r), b(r), c(r) are polynomials of the form
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a (r) = (a1 + a2r)
2 (a3 + a4r)

2 ; b (r) = (a1 + a2r) (a3 + a4r) (b2 + b3r) ;
c (r) = c2r + c1

with indeterminate coefficients a1, a2, a3, a4, b2, b3, c1, c2. In order to reduce the
equation (19) to the hypergeometric one, we prove the following statement:

Proposition 1. The coordinate transformation given by

χ(r) = φ(r)(a1 + a2r)α(a3 + a4r)β , (20)

reduces equation (19) to the equation

(a1 + a2r)(a3 + a4r)φ′′+
(2 ((α+ β) a4a2 + 1/2 b3) r + 2 a2a3α+ b2 + 2 a4a1β)φ′+
(a2a4α+ a2a4β + b3 − a2a4) (α+ β)φ = 0

(21)

Proof. Cooridnate transformation (20) applied to (19) leads after some simpli-
fications to :

(f1r
2 + f2r + f3)φ+ (a1 + a2r)2(a3 + a4r)2φ′′+

(2 ((β + α) a4a2 + 1/2 b3) r + 2αa3a2 + b2 + 2 a4a1β)
(a1 + a2r)(a3 + a4r)φ′ = 0,

(22)

where

f1 = a2a4 (β + α) (a2a4α+ a4a2β − a2a4 + b3) ,
f2 = 2 a1β (α− 1 + β) a2a4

2+(
b2 (β + α) a2 + 2αa3 (α− 1 + β) a2

2 + a1β b3
)
a4+

c2 + αa3b3a2,
f3 = a1

2β (β − 1) a4
2 + 2 a1β (1/2 b2 + α a3a2) a4 + αa3

2 (α− 1) a2
2+

αa3b2a2 + c1.

Obviously, equation (22) can be reduced to (21) if the coefficient at φ in (22)
can be written in the following form :

f1r
2 + f2r + f3 = (a1 + a2r) (a3 + a4r) (a2a4α+ a4a2β − a2a4 + b3) (β + α)

(23)
This can be done by expanding the term on the right hand side and collecting
coefficients by powers of r:

(a1 + a2r) (a3 + a4r) (a2a4α+ a4a2β − a2a4 + b3) (β + α) = g1r
2 + g2r + g3

where

g1 = a2a4 (β + α) (a2a4α+ a4a2β − a2a4 + b3) ,
g2 = (a1a4 + a2a3) (a2a4α+ a4a2β − a2a4 + b3) (β + α) ,
g3 = a1a3 (a2a4α+ a4a2β − a2a4 + b3) (β + α) .

Since f1 = g1, the necessary condition for the factorisation (23) is the existence
of a solution of the system of equations {f2 = g2, f3 = g3}. Using Maple, we
obtain the conditions on α and β

β =
RootOf

(
a4c1 − a3c2 +

(−a1a4
2 + a4b2 + a3a2a4 − a3b3

)
Z + a4Z 2

)
−a2a3 + a1a4

(24)
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α =
RootOf

(−a1c2 + a2c1 +
(−a2a1a4 + a1b3 − b2a2 + a2

2a3

)
Z + Z 2a2

)
−a2a3 + a1a4

(25)
where RootOf(f(Z)) denotes the complex roots of a polynomial f(Z). In this
way equation (19) can be reduced to (21) for α, β given by the above
conditions. ♦
Using this result, we can solve equation (12) depending on the potential param-
eter σ. In the particular case σ = 1, coefficients in (19) become a1 = 0, a2 =
1, a3 = 1, a4 = −1, b2 = 1, b3 = −2, c1 = k2

0/q
2, c2 = k2/q2. Equation (21) is

then reduced to :

z(1− z)φ′′ + ((2α+ 1)− 2z(α+ β + 1))φ′ − (α+ β)(α + β + 1)φ = 0,

where α, β can be obtained by solving quadratic equations (24), (25) symboli-
cally. The obtained expressions are too large to be reproduced here. The complete
solution depends on σ and is given by

φ(r) = C1 hypergeom ([α+ β, α+ β + 1], [1 + 2 β], 1− r)+
C2 (1− r)−2 β hypergeom ([α− β,−β + α+ 1], [1− 2 β], 1− r) ,

where hypergeom([a, b], [c], r) in Maple notation denotes hypergeometric func-
tion ([3]).

3 Conclusion and Outlook

In the present paper a number of symbolic tehchniques has been proposed, which
allows one to model quantum dots by solving the second order ODEs using sym-
bolic methods. With regard to nanotechnological purposes, such technique al-
lows one to explore the impact of spatial constraints on electronic states. In this
way, one can control electronic states in a quantum dot by modifying its size and
depth, in particular by modeling this process interactively. The symbolic method
implemented in Maple reduces the model equations to the well-known differen-
tial equations. The latter can be solved in terms of hypergeometric or Bessel
functions. The solutions obtained by the described techniques can be readily
used to compute the electromagnetic (optical) response of quantum dots, with
the corresponding integration also being performed by making use of computer
algebra methods.
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Abstract. The behavior of the Cayley-Dixon resultant construction and
the structure of Dixon matrices are analyzed for composed polynomial
systems constructed from a multivariate system in which each variable is
substituted by a univariate polynomial in a distinct variable. It is shown
that a Dixon projection operator (a multiple of the resultant) of the
composed system can be expressed as a power of the resultant of the outer
polynomial system multiplied by powers of the leading coefficients of the
univariate polynomials substituted for variables in the outer system. The
derivation of the resultant formula for the composed system unifies all
the known related results in the literature. A new resultant formula is
derived for systems where it is known that the Cayley-Dixon construction
does not contain any extraneous factors. The approach demonstrates
that the resultant of a composed system can be effectively calculated by
considering only the resultant of the outer system.

1 Introduction

Problems in many application domains, including engineering and design, graph-
ics, CAD-CAM, geometric modeling, etc. can be modelled using polynomial
systems [1–8]. Often a polynomial system arising from an application has a
structure. Particularly in engineering and design applications and in geometric
modeling, a polynomial system can be expressed as a composition of two distinct
polynomial systems, each of which is of much lower degree in comparison to the
original system. Furthermore, if the structure of given polynomials is not known
a priori, one can efficiently check if they can be decomposed [9].
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This paper addresses the resultant computation for such composed poly-
nomial systems [10–14]. The resultant of a polynomial system with symbolic
parameters is a necessary and sufficient condition on its parameters for the poly-
nomial system to have a common solution1. Resultant computations have been
found useful in many application domains including engineering and design,
robotics, inverse kinematics, manufacturing, design and analysis of nano devices
in nanotechnology, image understanding, graphics, solid modeling, implicitiza-
tion, CAD-CAM design, geometric construction, drug-design, and control theory.

The focus in this paper is on the Cayley-Dixon formulation for multivari-
ate resultants which have been shown to be efficient (both experimentally and
theoretically) for computing resultants by simultaneously eliminating many vari-
ables from a polynomial system [16]. The behavior of the Cayley-Dixon resultant
construction is analyzed for composed polynomial systems constructed from a
multivariate system in which each variable is substituted by a univariate polyno-
mial in a distinct variable, referred to as multi-univariate composition in [9]. It
is shown that the resultant of the composed system can be expressed as a power
of the resultant of the outer polynomial system, multiplied by powers of the
leading coefficients of the univariate polynomials substituted for variables in the
outer system. It is important to point out that the techniques used for deriving
resultant formulas in the current paper are different from the techniques used in
previous works (such as [10–13,17,18]), which seemed not applicable.

A new resultant formula is derived for multi-univariate composed polyno-
mials where it is known that the Cayley-Dixon resultant formulation does not
produce any extraneous factors for the outer system. The derivation unifies all
known related results in the literature [18,19]. Such systems include n-degree
[8], bivariate corner cut [20] and generalized corner cut systems [21]. Even when
extraneous factors are present, a similar formula is derived showing that the ex-
traneous factor of the outer system will be “amplified” in the extraneous factor
of composed system. Hence exploiting the composed structure of a polynomial
system can reduce the extraneous factors in the resultant computation. Further-
more, it demonstrates that the resultant of a composed system can be effectively
calculated by considering only the resultant of the outer system. For practical
applications, that is what is needed.

Below, we first state the main result of the paper. This is followed by a section
on preliminaries and notation; the generalized Cayley-Dixon formulation as pro-
posed by Kapur, Saxena and Yang [8] is briefly reviewed. Since the Cayley-Dixon
formulation involves two disjoint sets of variables, the bilinear form representa-
tion of a polynomial in disjoint sets of variables is useful. In section 2, we discuss
how bilinear forms are affected by polynomial operations, particularly when two
polynomials are multiplied, a polynomial is composed with other polynomials
by substituting variables by polynomials etc. To express these relations among
bilinear forms, a series of matrix operations is introduced.

We assume that the reader is familiar with the notion of resultant with respect
to a given variety (see for example [15]). This notion includes classic resultants

1 Resultant depends on an algebraic set for which solutions are sought [15].



Cayley-Dixon Resultant Matrices of Multi-univariate Composed Polynomials 127

like the projective (Macaulay) resultant where the variety is projective space and
more recent generalizations like toric resultants where the varieties are suitable
toric varieties.

1.1 Main Results

Consider a polynomial system F = (f0, f1, . . . , fn) with symbolic coefficients,
where F ⊂ K[c][y1, . . . , yn] and

fi =
∑

α∈Fi

ci,αyα for i = 0, . . . , n,

where yα = yα1
1 , . . . , yαn

n and Fi is the set of exponent vectors corresponding
to the terms appearing in fi, also called the support of fi. The list c consists
of “other” variables in terms of which polynomial coefficients ci,α ∈ K[c] are
defined. They are also sometimes referred as the parameters of the polynomial
system.

A polynomial system is called generic if there is no algebraic relation among
coefficients ci,α of F .

Let G = (g1, . . . , gn) be a univariate polynomial system where

gj(xj) = dj,kjx
kj

j + dj,kj−1x
kj−1
j + · · ·+ dj,0, for j = 1, . . . , n.

Let k = (k1, . . . , kn) be the degree vector of G.
We consider composed polynomial system of F with G, written as F ◦ G,

which is the list of polynomials obtained from the list F of polynomials by replac-
ing each yj by gj respectively. The operator ◦ is called functional composition
on polynomial systems.

The main results of this paper are:

(i) The Dixon matrix ΘF◦G of a composed system F ◦ G is shown to be a
product of 3 matrices:

ΘF◦G = AL ×Diagk1···kn
(ΘF )×AR,

where ΘF is the Dixon matrix of the outer system F and AL as well as
AR are triangular matrices which contain only polynomials in terms of the
coefficients of the polynomials in G. The matrix Diagk1···kn

(ΘF ) is block
diagonal, where ΘF is repeated k1 · · · kn times along the diagonal.

(ii) If F is a polynomial system for which the determinant of Dixon matrix is
Res(F ), then

Res(F ◦G) = dε1
1,k1
· · ·dεn

n,kn
Res(F )δ,

where εj’s depend on the degrees of G as well as F but δ depends only on
the degrees of G.

(iii) Even if ΘF is not square or is singular, the rank submatrix construction
(RSC) introduced in [8] (see also [15]) also works for composed systems.
In particular, the projection operator extracted from ΘF is a factor of the
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projection operator extracted from ΘF◦G raised to the appropriate power;
in addition to the leading coefficients dj,kj of polynomials in G, there are
also additional factors introduced in the projection operator extracted from
ΘF◦G.

(iv) The resultant of composed n-degree system, with degrees (m1, . . . ,mn), is

Res(F ◦G) =
(
dm1
1,k1
· · · dmn

n,kn

) (n+1)!
2 m1···m2 k1···kn

Res(F )k1···kn .

2 Cayley-Dixon Formulation and Bilinear Form

2.1 The Cayley-Dixon Formulation

In [22], Dixon extended the Bezout-Cayley’s construction for computing the
resultant of two univariate polynomials to the bivariate case for three polynomi-
als. Kapur, Saxena and Yang [8] generalized this construction to the multivariate
case. The concepts of a Dixon polynomial and a Dixon matrix were introduced.
Below, the generalized multivariate Dixon formulation for simultaneously elimi-
nating many variables from a polynomial system and computing its resultant are
briefly reviewed. Let πi(yα) = yα1

1 · · · yαi

i y
αi+1
i+1 · · · yαn

n , where i ∈ {0, 1, . . . , n},
and yi’s are new variables; π0(yα) = yα. πi is extended to polynomials in a
natural way as: πi(fj(y1, . . . , yn)) = fj(y1, . . . , yi, yi+1, . . . , yn).

Definition 1. Given a n-variate polynomial system F = (f0, f1, . . . , fn), where
f ⊂ K[c][y1, . . . , yn], define its Dixon polynomial as

θ(F ) =
n∏

i=1

1
yi − yi

det

⎛⎜⎜⎜⎝
π0(f0) π0(f1) · · · π0(fn)
π1(f0) π1(f1) · · · π1(fn)

...
...

. . .
...

πn(f0) πn(f1) · · · πn(fn)

⎞⎟⎟⎟⎠ = Y
T × ΘF × Y,

where Y = [yβ1 , . . . ,yβk ] and Y = [yα1 , . . . ,yαl ] are column vectors. Hence,
θ(f0, f1, . . . , fn) ∈ K[c][y1, . . . , yn, y1, . . . , yn], where y1, . . . , yn are new vari-
ables. The k × l matrix ΘF is called the Dixon matrix, and its entries are
in K[c].

The order in which original variables in y are replaced by new variables in y is
significant in the sense that the computed Dixon polynomial can be different for
two different orderings. See [22,8,21,15].

As shown in [8] and [15], ΘF is a resultant matrix, i.e., the resultant can be
computed from the determinant of ΘF . If ΘF singular, for example for certain
nongeneric polynomial systems, then the resultant is extracted from the deter-
minant of some maximal minor of ΘF ; this determinant is called a projection
operator [8,15].
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2.2 Operations on Bilinear Forms

It is easy to see that a multivariate polynomial in terms of two disjoint sets
of variables, e.g., the Dixon polynomial above, can be represented in a bilinear
form. For analyzing how the functional composition of two polynomial systems
affects the Dixon polynomials and Dixon matrices of the polynomial systems,
bilinear form representations turn out to be useful. Below, we discuss various
polynomial operations and their effect on bilinear forms.

A bilinear form of a polynomial p in two disjoint sets of variables is expressed
as a matrix, post and pre-multiplied by monomial vectors. That is

p(x1, . . . , xk, x1, . . . , xl) =
∑
α,β

pα,β xαxβ = Xp
T × Mp × Xp,

where Xp and Xp are vectors with entries being monomials in terms of variables
{x1, . . . , xl} and {x1, . . . , xk}, respectively. Mp is a matrix with the coefficients
pα,β of terms in p as its entries.

The matrix Mp in the above definition depends on the monomial ordering
used. We will assume a total degree ordering on power products, and state
explicitly if it is otherwise. Also, implicit in the above definition of Mp are the
row labels Xp and column labels Xp.

Let P be the ordered set of the exponent vectors corresponding to Xp; P is
also called the support of the polynomial p w.r.t variables {x1, . . . , xk}. Simi-
larly, let P be the support of p w.r.t. variables {x1, . . . , xl}. Let P +Q stand for
the Minkowski sum of the supports P and Q. [23]

As stated above, the Dixon polynomial can be conveniently represented in
bilinear form using the original variables and the new variables, highlighting the
Dixon matrix. Let ΔF and ΔF be the supports of the Dixon polynomial θ(F )
in terms of variables y and y, respectively.

Below, we derive the bilinear matrix form of the product of two polynomials
in terms of their bilinear matrix forms. For this purpose, we first define the
so-called “left” and “right” operators on bilinear forms.

Definition 2. Given two polynomials p and q admitting bilinear form, i.e, p =
Xp×Mp×Xp and q = Xq×Mq×Xq, consider the following polynomial products

p′ = p · ∑
eq∈Q

zeqxeq = Xp′ ×Mp′ ×Xp′ ,

q′ = q · ∑
ep∈P

zepxep = Xq′ ×Mq′ ×Xq′ ,
and

where z1, . . . , zn and z1, . . . , zn are new variables. Define two matrix operators

LQ(Mp) = Mp′ and RP(Mq) = Mq′ ,

where columns of Mp′ ordered first by some monomial order on {z1, . . . , zn}
and then by some monomial order on {x1, . . . , xn}. Similarly rows of Mq′ first
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ordered by {x1, . . . , xn} and then by {z1, . . . , zn}. To make matrices Mp′ and Mq′

“compatible” with each other, we require that monomial order used for columns
of Mp′ on variables [{z1, . . . , zn}, {x1, . . . , xn}] be same as for rows of M ′

q on
variables [{x1, . . . , xn}, {z1, . . . , zn}].

The above matrix operators are defined in such a way that matrix multipli-
cation would coincide with polynomial multiplication. New variables z1, . . . , zn

and z1, . . . , zn are auxiliary variables for creating block matrix structure, as well
as ensuring that the resulting matrix rows and columns are in matching order.
Notice that the row indices of LQ(Mp) are P + Q and the column indices are
Q×P , coming from monomials zeqxep for eq ∈ Q and ep ∈ P .

Matrix LQ(Mp) is quite sparse and its entries are either 0 or the coefficients
of the polynomial p. In fact, the entry of LQ(Mp) indexed by row xep+eq and
column zeqxep+eq is equal to pep,ep . All other entries are 0. Also it has a block
matrix structure: LQ(Mp) = RowStackα∈Q(Nα × Mp), where Nα is a matrix
which adds zero rows to Mp (depending on α, Q and P), and operator RowStack
stacks matrices columnwise. RP(Mq) also admits a similar block decomposition.

Using the above operators, we can express bilinear form of the polynomial
product, pq = Xpq ×Mpq ×Xpq as matrix multiplication.

Lemma 1. Mp q = LQ(Mp)× RP (Mq) .

Proof. Directly from the polynomial product of polynomials p and q,

(Mp q)α,β =
∑

α=ep+eq,

β=ep+eq

pep,epqeq,eq ,

for ep ∈ P , eq ∈ Q, ep ∈ P and eq ∈ Q. On the other hand,(
LQ(Mp)× RP(Mq)

)
α,β

= Rowα

(
LQ(Mp)

) ·Colβ (RP(Mq))

=
∑

eq∈Q,

ep∈P

p′α,eqep
· q′eqep,β ,

where p′α,eqep
is the coefficient of monomial xαzeqxep of p′. But

p′α,eqep
=

{
pep,ep if α = ep + eq

0 otherwise
, and q′epeq,β =

{
qeq,eq if β = ep + eq

0 otherwise
.

where ep ∈ P , ep ∈ P , q ∈ Q and eq ∈ Q. Therefore∑
eq∈Q,

ep∈P

p′α,eqep
·q′eqep,β =

∑
α=ep+eq,

β=ep+eq

p′α,eqep
·q′eqep,β =

∑
α=ep+eq,

β=ep+eq

pep,epqeq,eq

. )*

One of the useful properties of L operator is that the application on matrix
product results in the application on one of the matrices times a block diagonal
matrix of the other factor.
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Lemma 2. Given a product of two matrices A×B,

LP(A×B) = LP(A)×DiagP(B) ,

where matrix DiagP(B) is block diagonal with B repeated |P| times along the
diagonal.

Proof. By definition,

LP(A×B) = RowStackα∈P(Nα × (A×B)) = RowStackα∈P((Nα ×A)×B)
= RowStackα∈P(Nα ×A)×DiagP(B) = LP(A)×DiagP(B) . )*

Note that if |P +Q| = |P| × |Q|, for example when p and q are in terms of
different variables, then LQ(Mp) = DiagQ(Mp).

Definition 3. Given a support P and the set of univariate polynomials G =
(g1, . . . , gn), where each gi is in xi, let

s =
∑
α∈P

xαGα = Xs ×Ms ×Xs,

where Gα =
∏n

i=1 g
αi

i . Define operator SP(G) = Ms.

SP(G) is thus the matrix whose rows are indexed by P and whose columns
are indexed by the union over α ∈ P of the supports of

∏n
j=1 g

αj

j . Note that
the monomial vector, with support P composed with G can be expressed as
Yp ◦G = SP(G) ×Xs, where Xs is union of all monomials in Gα for all α ∈ P .
Matrix SP(G) is also very sparse and it is “step”-triangular (i.e., where in each
row, first non-zero entry comes later than in the previous row), i.e.,

(SP(G))es,es
=

{
(d1,k1 , . . . , dn,kn)es if (es)i = ki(es)i, ∀i,
0 if ∃ i s.t. ki(es)i < (es)i.

(1)

Lemma 3. Let p be a polynomial in the variables y, y, and G a set of univariate
polynomials gi in variable xi, for i = 1, . . . , n. Then

Mp ◦ (G, G) = SP
(
G
)T × Mp × SP(G) ,

where G = (g1, . . . , gn), and gi = gi(xi).

Proof. Since p = Y p×Mp×Yp, we have p ◦ (G, G) = (Y
T

p ◦G)×Mp× (Yp ◦G)
and Yp ◦G = SP(G)×Xs by definition. )*

A very useful property of operators L and S is that in combination, they produce
step-triangular matrices2. Square step-triangular matrices are triangular.

2 See the expanded version of this article [24] for many examples illustrating the
structure of of these matrices.
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Proposition 1. Let Q be the support of
∏n

i=1
gi−gi

xi−xi
, that is eq ∈ Q iff 0 ≤

(eq)i < ki for all i = 1, . . . , n. Then for any support P, the matrix LQ
(
SP
(
G
)T)

is (after column reordering) is zero above the step diagonal; moreover, entry in
column eqep (i.e. indexed by monomial zeqxep) and row α is

LQ
(
SP
(
G
)T)

α,eqep

=

⎧⎪⎪⎨⎪⎪⎩
(d1,k1 , . . . , dn,kn)ep if α = ep + eq and (ep)i = ki(ep)i,(
SP
(
G
)T)

ep,ep

if α = ep + eq and ∀i, (ep)i < ki(ep)i,

0 otherwise,

i.e., in every column, first non-zero entry is the product of leading coefficients of
G, and all these leading non-zero entries are in different rows.

Proof. Note that the columns of SP
(
G
)T

are labelled by P and rows by Xs,
which is the set of all monomials in G

α
= gα1

1 · · · gαn
n for all α ∈ P .

Consider the following polynomial,

s = Xs × SP
(
G
)T ×Xs, and let s′ = s ·

∑
eq∈Q

zeq xeq ,

as in definition 2 of LQ(Mp). As in the proof of Lemma 1, coeffxαzeq xes (s′) =
ses,es iff α = es + eq, and 0 otherwise. Since the support of s is P , we will use
labels ep instead of es. Equation (1) and the above observation gives us

coeffxαzeqxep (s′) =

⎧⎪⎨⎪⎩
(d1,k1 , . . . , dn,kn)ep if α = es + eq and (es)i = ki(ep)i,

ses,ep if α = es + eq and ∀i, (es)i < ki(ep)i,

0 otherwise. )*
In the next section, we use the above operators in expressing the manip-

ulations of bilinear forms of various polynomials arising in the Cayley-Dixon
construction to show that Dixon matrix of composed system can be decomposed
as a matrix product.

3 Dixon Matrix Decomposition

The Cayley-Dixon Construction of the composed polynomials F ◦ G is a
generalization of the Cayley-Bézout construction from the univariate case. The
Dixon polynomial of the composed system

θF◦G =

det

⎡⎢⎣f0 ◦ (π0(G)) . . . fn ◦ (π0(G))
...

. . .
...

f0 ◦ (πn(G)) . . . fn ◦ (πn(G))

⎤⎥⎦
∏n

i=1 (gi − gi)
×
∏n

i=1 (gi − gi)∏n
i=1 (xi − xi)

= θF ◦ (G,G) ×
n∏

i=1

gi − gi

xi − xi
. (2)
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Let p = θF ◦ (G,G) and q =
∏n

i=1
gi−gi

xi−xi
, where P is the support of p with

respect to the variables x1, . . . , xn and Q is the support of q with respect to the
variables x1, . . . , xn. Using Lemmas 1, 2 and 3 to equation (2) above, we get

ΘF◦G = LQ
(
SΔF

(G)T
)
×DiagQ(ΘF )× (DiagQ(SΔF (G))× RP(Mq)

)
.

Theorem 1. For a polynomial system F = (f0, f1, . . . , fn) and a list of univari-
ate polynomials G = (g1, . . . , gn), the Dixon matrix ΘF◦G is

AL ×Diagk1···kn
(ΘF )×AR,

where AL and AR are step triangular matrices with diagonal entries being the
product of the leading coefficients of the polynomials in G. Specifically,

AL =LQ
(
SΔF

(
G
)T)

, and AR =DiagQ(SΔF (G))× RP(Mq) ,

where q=
∏n

i=1
gi−gi

xi−xi
is the product of the divided differences of G, Q and Q are,

respectively, the supports of q in the variables x and x.

More importantly, for a generic n-degree polynomial system F and a generic
system G of n polynomials used to substitute for variables y1, · · · , yn in F , the
factors, AL, AR and ΘF can be proved to be square and non-singular matrices
[8]. We investigate this in Section 4.

More generally, if the factors are square in the above theorem, then we can
derive precise expression for the determinant of the Dixon matrix.

Lemma 4. If |ΔF | ·
∏n

j=1 kj = |ΔF◦G|, i.e., AL is square, then

det(AL) = ± (d1, k1 , . . . , dn, kn)(
∑

α∈ΔF
α) k1···kn ;

if |ΔF | = |ΔF |, i.e., ΘF is square, then

det
(
Diag|Q|(ΘF )

)
= (det(ΘF ))k1···kn ;

and if |ΔF | ·
∏n

j=1 kj = |ΔF◦G|, i.e., AR is square, then

det(AR) = ± (d1, k1 , . . . , dn,kn)(|ΔF |+∑β∈ΔF
β)k1···kn .

Proof. When AL is square, it is triangular with diagonal entries

(AL)α,eq.ep = (d1,k1 , . . . , dn,kn)ep

in column eqep, where ep ∈ P = ΔF , by Proposition 1. Since the size of Q is
k1 · · · kn,

det(AL) =
∏

ep∈ΔF
eq∈Q

(d1,k1 , . . . , dn,kn)ep=(d1, k1 , . . . , dn,kn)(
∑

α∈ΔF
α) k1···kn .
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Also, for AR = DiagQ(SΔF (G)) × RP(Mq), let s = Zs × SΔF (G) × Xs,
AR = Msq, as in the univariate case. Also note that Mq is triangular, where

qeq,eq =

{
d1,k1 · · · dn,kn if ∀i s.t. (eq)i + (eq)i = ki − 1,
0 if ∃i s.t. (eq)i + (eq)i > ki − 1,

and entries of SΔF (G) by equation 1 are

ses,es =

{
(d1,k1 , . . . , dn,kn)es if ∀ i s.t. (es)i = ki(es)i,

0 if ∃ i s.t. ki(es)i < (es)i,

for es ∈ ΔF and es in support of Gα for all α ∈ ΔF . Therefore

(s · q)eseq,es+eq =

⎧⎪⎨⎪⎩
(d1,k1 , . . . , dn,kn)es+1 if es = ki(es), eq + eq = k − 1,
0 if ∃ i s.t. ki(es)i < (es)i

or (eq)i + (eq)i > ki − 1,

i.e., in row eseq the diagonal element is (d1,k1 , . . . , dn,kn)es+1. Since es ∈ ΔF and
eq ∈ Q, where |Q| = k1 · · · kn, we have the determinant of AR

det(AR) =
∏

es∈ΔF
eq∈Q

(d1, k1 , . . . , dn,kn)es+1 = (d1, k1 , . . . , dn,kn)(|ΔF |+∑β∈ΔF
β) k1...kn .

)*
By Theorem 1 and the above proposition, we have the following main result.

Theorem 2. Let F be a polynomial system for which the Cayley-Dixon resul-
tant formulation leads to a square and nonsingular resultant matrix ΘF whose
determinant is Res(F ). Then under the multi-univariate composition F ◦G,

Res(F ◦G) = (d1, k1 , . . . , dn, kn)(
∑

α∈ΔF
α+|ΔF |+∑β∈ΔF

β)k1···kn Res(F )k1···kn .

3.1 Rank Submatrix Construction

In case when the Dixon matrix of the composed polynomials (or any of its
factors in Lemma 4) is not square or when the Dixon matrix is rank deficient,
one can extract a projection operator from the Dixon matrix by computing the
determinant of any maximal minor [8,15]. Since the Dixon matrix ΘF◦G can be
factored into a product one obtains a similar factorization of a maximal minor,

det
max

[
AL ×Diagk1···kn

(ΘF )×AR

]
= det

[
ML ×Diagk1···kn

(ΘF )×MR

]
,

by selecting appropriate rows ML of AL and columns MR of AR. Furthermore,
the well-known Cauchy-Binet formula allows us to expand the determinant of the
minor into a sum of products of the form l ·s ·r, where l ranges over determinants
of minors of ML, s ranges over determinants of minors of Diagk1···kn

(ΘF ) and r
ranges over determinants of minors of MR.

This leads to a formula similar to the square case (Theorem 2). For details,
see the expanded version of this paper [24].
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Theorem 3. For a polynomial system F = (f0, f1, . . . , fn), composed with uni-
variate polynomials G = (g1, . . . , gn),

det
max

(ΘF◦G) = dε1
1,k1
· · ·dεn

n,kn
E
(
gcd det

max
(ΘF )

)k1···kn

,

where E is an extraneous factor dependent on the coefficients of G and F .

The above implies that whenever a resultant can be computed by the Cayley-
Dixon construction, the resultant also will be decomposable in a similar fashion.

It is an open question what the values of ε1, . . . , εn are in general and whether
the factor E is constant for all selections of maximal minors in ΘF◦G.

4 Resultant of Composed n-Degree Polynomial System

In this section, we generalize the McKay and Wang formula [19] for the univariate
polynomials to n-degree polynomials systems.

Consider the (m1, . . . ,mn)-degree generic polynomials f0, f1, . . . , fn where

fj =
m1∑

i1=1

· · ·
mn∑

in=1

cj,i1,...,iny
i1
1 · · · yin

n , for j = 0, 1, . . . , n,

with generic coefficients cj,i1,...,in and variables y1, . . . , yn. The composed poly-
nomials fi ◦ (g1, . . . , gn), i = 0, 1, . . . , n, are (m1k1, . . . ,mnkn)-degree as well.

For α ∈ ΔF , we have 0 ≤ αi < (n − i + 1)mi, and for β ∈ ΔF , we have
0 ≤ βi < imi for i = 1, . . . , n, [21]. Therefore |ΔF | = |ΔF | = n!m1 · · ·mn.

To apply Lemma 4, in the above support, the sum of all points in the support
for a particular coordinate i ∈ {1, . . . , n} is∑

α∈ΔF

αi = n!m1 · · ·mn
(n− i+ 1)mi − 1

2
,

∑
β∈ΔF

βi = n!m1 · · ·mn
imi − 1

2
.

Substituting into Lemma 4, det
[
DiagQ(ΘF )

]
= (det(ΘF ))k1···kn , and

det [AL] =
n∏

i=1

d
n! m1···mn

(n−i+1)mi−1
2 k1···kn

i, ki
,

det [AR] =
n∏

j=1

d
(n! m1···mn + n! m1···mn

imi−1
2 ) k1···kn

j, nj
.

Note that if F and G are generic, then the coefficients of F ◦G will still not have
any algebraic relations, and therefore the system F ◦G is generic. By Theorem
2 and the fact that the Dixon matrix is exact for generic n-degree systems [8],
we have another main result of the paper.

Theorem 4. For the unmixed n-degree case,

Res(F ◦G) =
(
dm1
1,k1
· · · dmn

n,kn

) (n+1)!
2 m1···m2 k1···kn

Res(F )k1···kn .
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5 Conclusion

This paper studied the behavior of the Cayley-Dixon construction of resultants
for multi-univariate composed polynomials. It gave a factorization of the Cayley-
Dixon matrix induced by the structure of the composed polynomials and it
showed how to efficiently extract the Dixon projection operator utilizing the
factorization of the Cayley-Dixon matrix.

In a special case, when polynomials substituted for the variables are
gi = xk

i , the composition problem in the context of Cayley-Dixon construction
was analyzed in [18], where it was studied as support scaling. Under this setting,
the main result of that paper coincides with Theorem 2. Results presented here
are thus a strict generalization.

A new resultant formula has also been derived for multi-univariate composi-
tion of n-degree systems.
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Abstract. The Descartes method is an algorithm for isolating the real roots of
square-free polynomials with real coefficients. We assume that coefficients are
given as (potentially infinite) bit-streams. In other words, coefficients can be ap-
proximated to any desired accuracy, but are not known exactly. We show that a
variant of the Descartes algorithm can cope with bit-stream coefficients. To iso-
late the real roots of a square-free real polynomial q(x) = qnxn + . . .+ q0 with
root separation ρ , coefficients |qn| ≥ 1 and |qi| ≤ 2τ , it needs coefficient approx-
imations to O(n(log(1/ρ)+ τ)) bits after the binary point and has an expected
cost of O(n4(log(1/ρ)+ τ)2) bit operations.

1 Introduction

The isolation of the real roots of a real univariate polynomial q(x)∈ IR[x] is a fundamen-
tal task in computer algebra: given a polynomial q, compute for each of its real roots an
interval with rational endpoints containing it and being disjoint from the intervals com-
puted for the other roots. One of the best approaches to root isolation is the Descartes
method. It is a bisection method based on the Descartes Rule of Signs to test for roots.
Its modern form goes back to Collins and Akritas [1]. It can be formulated to operate
on polynomials given in the usual power basis or in the Bernstein basis. For integer co-
efficients, it typically outperforms other methods. We review it in Section 3. We assume
that the coefficients of our polynomials are given as potentially infinite bit-streams, i.e.,
coefficients are known to arbitrary precision, but, in general, never exactly.

We are the first to make a variant of the Descartes algorithm work in this setting.
Our main tools are a sharper analysis of the rule of signs (Lemmas 5 and 6) and ran-
domization (Sections 4.2 and 4.3). Our main result is as follows:

To isolate the real roots of a square-free (= no multiple roots) real polynomial
q(x) = qnxn + . . .+q0 with root separation (= minimal distance between any two roots)
ρ , coefficients |qn| ≥ 1 and |qi| ≤ 2τ , our algorithm needs coefficient approximations to
O(n(log(1/ρ)+τ)) bits after the binary point and O(n4(log(1/ρ)+τ)2) bit operations
in expectancy.

The cost statement ignores the cost of computing the approximations of the coeffi-
cients with the required quality. Observe that the quantities n, ρ and τ are determined

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 138–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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by the roots of our polynomial, i.e., the geometry of the problem, and hence the running
time of our method is a function of the geometry of the problem.

The restriction to square-free inputs is inherent in the bit-stream setting, since de-
tecting multiple roots is equivalent to testing for zero (cf. x2−a) and hence impossible.

The paper is structured as follows. In Section 2 we put our work into context and
in Section 3 we review the Descartes method. Section 4 is the heart of the paper. We
describe and analyze a variant of the Descartes method for polynomials with bit-stream
coefficients. In Section 5 we report on some experimental observations.

2 Comparison to Related Work

The Descartes method can be formulated for polynomials in the usual power basis
[2,1,3,4] and for polynomials in the Bernstein basis [5–8]. The early work concen-
trated on polynomials with integer coefficients. More recent work [9,4,8] points out
that the Descartes method can be combined with interval arithmetic for increased ef-
ficiency and to also handle some, but not all, polynomials with bit-stream coefficients
[9, p. 152]. We are the first to exhibit a variant of the Descartes method handling all
square-free polynomials with bit-stream coefficients.

Beyond the Descartes method, there is substantial work in numerical analysis on ap-
proximating the roots of a real polynomial [10]. Many algorithms were proposed for the
simultaneous approximation of all complex roots of a polynomial with bit-stream coef-
ficients. Most algorithms come without a guarantee of convergence. Weyl [11] exhibited
the first complete algorithm and Pan [12] surveys the development till about 1995. The
currently best algorithm is due to Pan [13]. It applies to polynomials with bit-stream
coefficients. Given a polynomial p(x) = ∑i pixi = pn ∏i(x− zi) of degree n and a pre-
cision parameter b, his method computes approximate roots z∗i such that after suitable
renumbering |z∗i − zi| < 22−b/n. Here b must be at least n logn and the computational
cost is O(n log2 n(log2 n + logb)) arithmetic operations (additions and multiplications)
on O(b)-bit numbers. It is assumed that all roots lie in the unit disk. The algorithm is, in
the author’s own words, quite involved, and would require non-trivial implementation
work, and we are not aware of any implementation. Pan’s algorithm can be used to iso-
late real roots. Thus it solves a more general problem (isolation of all roots and not only
real roots) and is asymptotically much faster than our algorithm (quadratic dependence
on n instead of quartic and linear dependence on log(1/sep(p)) instead of quadratic).
Does this make our contribution obsolete? We believe not: First, because our algorithm
is very simple and easily implemented. Second, we expect the algorithm to be superior
for small to medium degree polynomials.

3 The Descartes Method in the Bernstein Basis

Fix an integer n ≥ 0 and boundaries c < d of an interval [c,d]. The Bernstein basis
[14,15] of the vector space IR[x]≤n of polynomials of degree at most n consists of the
Bernstein polynomials Bn

0, Bn
1, . . . , Bn

n, where:

Bn
i (x) = Bn

i [c,d](x) =
(

n
i

)
(x− c)i(d− x)n−i

(d− c)n , 0≤ i≤ n . (1)
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If p(x) = ∑n
i=0 biBn

i [c,d](x), we call b = (bn, . . . ,b0) the Bernstein representation of
p with respect to interval [c,d] and b0 the first and bn the last coefficient. We have
p(c) = b0 and p(d) = bn. The Bernstein polynomials form a non-negative partition
of unity, meaning that ∑n

i=0 Bn
i (x) = 1 and Bn

i (x) ≥ 0 for all x ∈ [c,d]. This is helpful
in bounding error propagation: If p(x) = ∑n

i=0 biBn
i (x) and p̃(x) = ∑n

i=0 b̃iBn
i (x) with

|b̃i−bi| ≤ ε for all i, then for all x ∈ [c,d] it holds that

|∑
i

b̃iB
n
i (x)−∑

i
biB

n
i (x)| ≤ ε ∑

i
|Bn

i (x)|= ε ∑
i

Bn
i (x) = ε . (2)

The most important property for our purposes is the Descartes Rule of Signs. Let
a = (a0, . . . ,an) be a finite sequence of real numbers. The number of sign variations
in a, denoted var(a), is the number of pairs (i, j) of integers with 0 ≤ i < j ≤ n and
aia j < 0 and ai+1 = . . .= a j−1 = 0.

Theorem 1 (The Descartes Rule of Signs). Let p(x) = ∑n
i=0 biBn

i [c,d](x) be a poly-
nomial. Then var(b) exceeds the number of zeroes of p in the open interval (c,d) by an
even non-negative integer.

This rule is traditionally stated for the power basis and the interval (0,∞); see [16]
for a proof with historical references. The Bernstein formulation appears in [5–8].

Theorem 1 is the basis for a bisection method for root isolation in exact arith-
metic. We start with an interval I guaranteed to contain all real zeroes of p and call
Descartes(p, I). The procedure Descartes(p, I) works as follows: Let I = (c,d), p(x) =
∑n

i=0 biBn
i [c,d](x) the Bernstein representation of p with respect to the interval (c,d),

and v = var(b). If v = 0, return. If v = 1, report I as an isolating interval and return. If
v≥ 2, choose a point m = αc +(1−α)d with 1/4≤ α ≤ 3/4. (Any α ∈ (0,1) would
work, but a choice near the middle guarantees linear convergence.) If p(m) = 0, report
the exact root m. Call Descartes(p,(c,m)) and Descartes(p,(m,d)).

The Bernstein representations b′ and b′′ of p with respect to intervals I′ = [c,m]
and I′′ = [m,d] are readily computed from b by de Casteljau’s algorithm depicted in
Figure 1. It operates on a triangular array of numbers. The top row (b0,0, . . . ,b0,n) is
initialized to b = (b0, . . . ,bn). For 1≤ j ≤ n, the j-th row (b j,0, . . . ,b j,n− j) is computed
according to

b j,i :=αb j−1,i +(1−α)b j−1,i+1 . (3)

The result sequences are given by the two sloped sides b′ = (b0,0,b1,0, . . . ,bn,0) and
b′′ = (bn,0,bn−1,1, . . . ,b0,n) of the triangle; see, e.g., [14, 3.2/3.3] and [15, Lemma 4.2].

The Descartes method terminates iff the polynomial p is square free. Termination
proofs rest on partial converses of Theorem 1 such as the following.

b0,0 b0,1 b0,2 . . . b0,n−2 b0,n−1 b0,n
b1,0 b1,1 . . . b1,n−2 b1,n−1

b2,0 b2,1 . . . b2,n−3 b2,n−2
b3,0 . . . b3,n−3

. . . . .
bn,0

Fig. 1. The de Casteljau triangle in which b j,i = αb j−1,i +(1−α)b j−1,i+1
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Theorem 2 (Ostrowksi). Consider a polynomial p and its roots in the complex plane
C. Let I be an interval with midpoint m and width |I| and let v = var(b) be the number
of sign variations in the Bernstein representation of p with respect to I.

If the disc bounded by the circle C centered at m passing through the endpoints of I
does not contain any root of p, then v = 0 (one-circle theorem).

If the union of the discs bounded by the circles C and C centered at m± i(
√

3/6)|I|
and passing through the endpoints of I contains precisely one simple root of p (which
is then necessarily a real root), then v = 1 (two-circle theorem).

For a proof see [16]. The circle theorems allow us to bound the depth of the Descartes
recursion tree, depending on the distance between the roots. Let p be a non-zero poly-
nomial with roots ξ1 to ξn. We define its root separation sep(p) = min{|ξi−ξ j|

∣∣ i �= j}
as the minimum distance between any two roots; sep(p)> 0 iff p is square-free.

Corollary 3. The Descartes method applied to any square-free polynomial p and start
interval I0 terminates. The interval at any internal node of the recursion tree has width
at least (

√
3/2)sep(p), the interval at a leaf has width at least (

√
3/8)sep(p). Given

σ ≤ sep(p), recursion depth is at most D(σ) := ,log(|I0|/σ)/ log(4/3)+ 3/2-.
Proof. Consider any interval I for which the Bernstein representation has two or more
sign variations. The contrapositive of Theorem 2 tells us: If p has no root in I then there
must be a pair of conjugate roots ξ , ξ in the disc bounded by C. The diameter of C is
|I|, hence |I| ≥ |ξ − ξ | ≥ sep(p). If p has exactly one root ξ ′ in I, then p has a pair
of conjugate roots ξ , ξ in the discs bounded by C and C. The diameter of C and C is
(2/
√

3)|I| ≥ |ξ−ξ ′| ≥ sep(p). If p has two roots ξ , ξ ′ in I, then |I| ≥ |ξ−ξ ′| ≥ sep(p).
In all three cases, Descartes(p, I) generates recursive calls only if |I| ≥ (

√
3/2)sep(p).

The interval at a leaf is at least one fourth the length of the interval at its parent. Since
the interval length is multiplied by 3/4 or less in each step, the depth k of an internal
node satisfies |I0|(3/4)k ≥ (

√
3/2)sep(p) or k≤ log(|I0|/sep(p))/ log(4/3)+1/2. )*

Proposition 4. A Descartes recursion tree for a polynomial of degree n has at most n
nodes at any depth.

In the Bernstein basis, this easily seen from the well-known variation diminishing prop-
erty of repeated linear interpolation. A proof appears in [7, Thm. 10.38].

4 The Descartes Method for Polynomials with Bit-Stream
Coefficients

We present an algorithm Descartesapprox to isolate the real roots of p(x) = ∑n
i=0 biBn

i (x)
in (0,1). We assume that the coefficients are given as bit-streams; in particular, for any
fixed ε > 0, we can compute an approximate coefficient vector b̃ = (b̃0, . . . , b̃n) with
|b̃i− bi| ≤ ε for all i. We call b̃ an ε-approximate Bernstein representation of p. The
pair (b̃,ε) specifies an interval polynomial p(x) = ∑n

i=0 biBn
i (x) such that p⊇ {p}.

We start with a thought experiment. Consider executions of Descartes in exact arith-
metic both on the exact Bernstein representation b and on its approximation b̃. The only
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computation Descartes ever does with the coefficients is repeated forming of averages
as in Eq. (3). The absolute error in the result of such a convex combination is no larger
than it is in the inputs. Hence the absolute errors in the de Casteljau triangles in all nodes
of the Descartes tree for b̃ are ε-approximations of their counterparts in the tree starting
from exact coefficients b. The shape of the exact Descartes tree depends on decisions
based on the signs of exact entries. Can we mimic these decisions with intervals?

We call an interval positive (+), if it contains only positive numbers; negative (−), if
it contains only negative numbers; and indeterminate (?), if it contains zero. A positive
or negative interval is also called determinate. For a sequence of coefficient intervals
a = (a0, . . . ,an), we define its set of potential numbers of sign variations as var(a) ={

var((a0, . . . ,an))
∣∣ ai ∈ ai for 0≤ i≤ n

}
. For example, we have var(([2,3], [−1,1])) =

{0,1}, var(([2,3], [−1,1], [2,3])) = {0,2}, and var(([2,3], [−1,1], [−2,−1])) = {1}.
The fact that some ai is indeterminate does not imply that var(a) contains more than
one value, as the third example shows.

Consider any node in the approximate Descartes tree. We have an approximate co-
efficient sequence b̃. Each b̃i stands for an interval b̃i = [b̃i−ε, b̃i +ε]. Define varε (b̃) =
var(b̃0, . . . , b̃n). Observe that varε(b̃) contains var(b). If varε (b̃) is a singleton or disjoint
from {0,1}, we know what the exact algorithm would do and can do the same.

But what should we do if varε(b̃) is not a singleton and contains a number less
than two? The first solution that comes to mind is to switch to a smaller ε . This will
not always solve the problem: Assume we start with a degree-2-polynomial with Bern-
stein representation (1,−β ,β ) with respect to (0,1) where β is any positive irrational
number less than one. We split the interval at 1/2 and obtain ((1−β )/4,0,β ) for the
right subinterval. For any approximation of β , the 0 will turn into an interval straddling
zero and hence the potential sign variations are {0,2}. A second solution that comes to
mind is to perform recursive calls whenever the set of potential sign variations contains
a number larger than one. However, then the procedure might not terminate, namely,
when ε is so large that p contains a non-square-free polynomial. Furthermore: what if
the set of potential sign changes contain both zero and one? What if, after subdivision,
the last coefficient of b′ (first coefficient of b′′) is indeterminate, i.e., our polynomial
may be zero at the split point?

The last two problems disappear when first and last coefficients are determinate.
All problems disappear when first and last coefficients are large. We call b̃i large if
|b̃i|>Cε and small otherwise. We will fix the constant C > 1 later and prove that if b̃0

and b̃n are large and varε(b̃)∩{0,1} �= /0 then varε(b̃′),varε(b̃′′) ∈ {{0},{1}}.

Lemma 5. Let C ≥ 4n+1 and consider subdivision at α ∈ [1/4, 3/4]. If b̃0 and b̃n are
large and positive and 0 ∈ varε(b̃) then all elements of b̃′ and b̃′′ are determinate and
positive, i.e., varε (b̃′) = varε(b̃′′) = {0}.

Proof. Replace the b̃i by modified inputs ci where ci = b̃i if b̃i is determinate and ci = 0
otherwise. This is a change by at most ε . As all entries of the modified de Casteljau
triangle c j,i are convex combinations of the inputs, they are all non-negative, and not
modified by more than ε . Due to the contribution of c0 or cn, resp., any element in the
modified output sequences c′ and c′′ is greater than 4−nCε ≥ 2ε . Thus any element of
b̃′ and b̃′′ is greater than ε and thus determinate and positive. )*
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Lemma 6. Let C ≥ 16n and consider subdivision at α ∈ [1/4, 3/4]. If b̃0 is large and
positive, b̃n is large and negative, b̃′n = b̃′′0 at the tip of the de Casteljau triangle is large
and negative, and 1 ∈ varε(b̃) then varε (b̃′) = {1} and varε (b̃′′) = {0}.
Proof. As above, we replace all indeterminate elements of b̃ by 0 and denote the ele-
ments of the so modified de Casteljau triangle by c j,i. The modified input sequence c
consists of non-negative followed by non-positive numbers. It is easy to see inductively
that all rows of the modified de Casteljau triangle consist of zero or more non-negative
elements followed by one or more non-positive elements. Once some row consists en-
tirely of non-positive elements, the same holds for all further rows.

We first prove the claim about c′′. The lower tip of the modified triangle is less than
−(C−1)ε . A node cannot be less than the minimum of its parents, so there is a path P
of elements less than −(C−1)ε from row 0 to row n. The elements right of P are non-
positive. Now consider the rightmost element c′′n−i in row i of the triangle, for arbitrary
i. Go up 0 ≤ k ≤ i times to the left parent until you reach an element of P in row i− k
or end up in row 0 right of the path (with k = i). In either case, the last k + 1 elements
of row i− k are non-positive, one of them, say c∗, is less than −(C− 1)ε (namely the
path element or cn), and c′′n−i is a convex combination of them. Due to the contribution
of c∗, we have c′′n−i <−4−k(C−1)ε <−2ε and thus b̃′′i <−ε holds for all i.

We turn to c′. It begins with c′0 >Cε and ends with c′n <−(C−1)ε . Let

i = min
{

i ∈ {0, . . . ,n} ; c′i ≤ 0 or |c′i| ≤ |c′i−1|/16
}
. (4)

Since c′n is negative, i exists. By minimality of i, we have for all j < i that c′j > 0 and

c′j > c′j−1/16> c′0/16 j > (C/16n−1)ε > 2ε . Thus c′0, c′1, . . . , c′i−1 > 2ε .
Next we will show c′i+1, . . . ,c

′
n < −2ε . For c′n, this is already known, so assume

i≤ n−2. By choice of i, we have c′i ≤ c′i−1/16. From c′i = αc′i−1 +(1−α)ci−1,1 follows
then ci−1,1 = (c′i−αc′i−1)/(1−α) ≤ (1− 16α)/(16− 16α)c′i−1. This is negative for
all α ∈ [1/4, 3/4], hence ci−1,2 ≤ 0 as well. Now consider

c′i+1 = α2c′i−1 + 2α(1−α)ci−1,1 +(1−α)2ci−1,2

≤ α2c′i−1 +(α/8)(1−16α)c′i−1 = (−α2 + α/8)c′i−1 .

The first factor, seen as a function of α ∈ [1/4, 3/4], takes its maximum −1/32 at
α = 1/4. Hence c′i+1 ≤ −(1/32)c′i−1 < −(1/32)c′0/16i−1. All entries in rows i + 1
to n are negative and each c′j from row i + 2 on receives α j−(i+1) from c′i+1. Thus
c′j ≤ 4i− j+1c′i+1 <−4i− j+132−1161−iCε =−2(C/22i+2 j)ε ≤−2ε for all j ≥ i+ 1.

We modified b̃ by at most ε to get c. Hence b̃′0, . . . , b̃
′
i−1 > ε and b̃′i+1, . . . , b̃

′
n <−ε ,

and thus varε(b̃′) = {1}. )*
Let us now fix C :=16n, satisfying the premises of both lemmas for α ∈ [1/4, 3/4].

Based on these lemmas, we formulate the following exact but yet incomplete procedure
Descartesapprox(p̃, [c,d],ε): Let p̃(x) = ∑n

i=0 b̃iBn
i [c,d](x) be an ε-approximate Bern-

stein representation of p with respect to the interval I = [c,d]. If b̃0 or b̃n is small, abort
and signal failure. Otherwise compute V = varε (b̃), the set of potential values of var(b).
If V = {0}, return. If V = {1}, report I as an isolating interval and return. Otherwise,
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choose a split point m ∈ (c+ d−c
4 , d− d−c

4 ) and invoke de Casteljau’s algorithm on b̃ to
compute approximate Bernstein representations b̃′ and b̃′′ for p with respect to intervals
[c,m] and [m,d]. Call Descartesapprox(p̃, [c,m],ε) and Descartesapprox(p̃, [m,d],ε).

Observe that Descartesapprox recurses whenever V contains a value larger than 1. We
have shown that whenever Descartesapprox cannot distinguish whether var(b) is less than
two or more than one, this branch of the computation ends in the next recursion step, be
it because the tip of the de Casteljau triangle is small or because both new coefficient
sequences b̃′ and b̃′′ have varε equal to {0} or {1}. We conclude that Descartesapprox ap-
plied to an ε-approximation of p always terminates (either successfully or by signalling
failure) and that the internal nodes of its recursion tree form a subtree of the (exact)
Descartes tree. Moreover, if the algorithm terminates successfully, it has determined
isolating intervals for the real roots of p.

How can we guarantee that first and last coefficients are large? Key are the obser-
vations that first and last coefficients are the values of our polynomial at the interval
endpoints, that a polynomial can be small only close to one of its complex roots (see
Section 4.1), and that randomization can keep interval endpoints away from the roots
(see Section 4.2). We describe two ways of randomization: a local one that selects each
split point at random (procedure DescartesrndL) and a global one that selects split points
deterministically but runs the entire procedure on a random translate of our input poly-
nomial (procedure DescartesrndG).

4.1 The Smith Bound

We make the link between the complex roots of p and the magnitude of its values
through a corollary to the following theorem by Smith [17]. (We state a special case
of his result. For its direct proof, see, e.g., [18, Thm. 13].) For a polynomial f , lcf( f )
denotes the absolute value of the leading coefficient (= the coefficient of xn).

Theorem 7 (Smith bound). Let g be a polynomial of degree n and let ξ1, . . . , ξn be
pairwise distinct complex numbers. Then for any root z of g there is a ξi such that

|z− ξi| ≤ n |g(ξi)|
lcf(g) ·∏ j �=i|ξ j− ξi| . (5)

Corollary 8. Let f be a square-free polynomial of degree n with complex roots ξ1 to
ξn and σ ≤ sep( f ). Let f̃ (x) = f (x)+ e(x) be an approximation of f with error term
e(x) = ∑n

i=0 εiBn
i [c,d](x) where |εi| ≤ ε for all i and some fixed ε ≥ 0. Let γ ≥ 0 and

z ∈ [c,d]. If | f̃ (z)| ≤ γ , then there is a root ξi of f such that

|z− ξi| ≤ n(γ + ε)
lcf( f ) ·∏ j �=i|ξ j− ξi| ≤

n(γ + ε)
lcf( f ) σn−1 . (6)

Proof. Let g(x) = f (x)− f (z) so that lcf(g) = lcf( f ) and g(z) = 0. By Theorem 7, there
is a root ξi of f satisfying (5). From (2), we can deduce |g(ξi)|= | f (z)| ≤ | f̃ (z)|+ε . )*
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4.2 Algorithm DescartesrndL

We obtain DescartesrndL from Descartesapprox by specifying the choice of split point.
In each recursive call, we select the split point m as m = αc +(1−α)d with α = u/K,
K = 2�5+logn�, and u ∈ {K/4,K/4 + 1, . . .,3K/4} chosen uniformly at random.

We will show that for at least seven eighth of the possible values of u, m has dis-
tance at least L := L(ε) := n(C + 1)ε/(lcf(p)sep(p)n−1) from every root of p. By the
contrapositive of Corollary 8 applied with γ = Cε , this guarantees that the approximate
value of p at m is greater than Cε in absolute value. Consider a fixed root ξ of p. Any
two adjacent potential split points have distance (d− c)/K and hence there are at most
�2L/((d− c)/K)� values of u for which the distance of m and ξ is less than L. Thus all
n roots of p exclude at most n + 2LKn/(d− c) values of u. Since d− c> sep(p)/8 by
Corollary 3, this is less than K/16 and hence at most one eighth of the possible values
for u if n + 16LKn/sep(p) ≤ K/16 or 16L/sep(p) ≤ 1/(16n)− 1/K. Since K ≥ 32n,
this is fulfilled if 16L/sep(p)≤ 1/(32n) or

ε ≤ lcf(p) · sep(p)n

512n2(C + 1)
. (7)

However, sep(p) is unknown. Hence we maintain an estimate s for sep(p). We ini-
tialize s a negative power of two, to be specified later, and double log(1/s), i.e., replace
s by s2, whenever we have indication that s is still too big. For fixed s, we choose ε sat-
isfying (7) by setting log(1/ε) = �n log(1/s)+4n+2logn+10�= O(n log(1/s)); this
assumes lcf(p) ≥ 1. We use two indicators for s being too big: First, we stop when the
recursion depth exceeds the bound D(s) from Corollary 3 by more than 1. Second, we
call a choice of u and hence m a failure if the last coefficient of the resulting b̃′ (= first
coefficient of b̃′′) is small. Whenever a choice of u fails, we repeat it. We keep global
counters of all choices and failed choices. Whenever the fraction of failed choices is
more than half and we have tried at least twelve times, we stop, double log(1/s) and
start over. Once s≤ sep(p), the bound on the recursion depth is no longer a constraint,
and the probability of a restart is less than 1/8. To see this, notice that more than half of
r random choices failing has probability at most

( r
�r/2�
)
(1/8)�r/2� ≤ 2−r/2, and as we

try at least twelve times, the probability of restart is at most ∑r≥12(21/2)−r ≤ 1/8.

Initialization. Let q(x) = ∑n
i=0 qixi be a square-free polynomial in power representa-

tion normalized to qn ∈ [1,4). (The obvious normalization would be qn ∈ [1,2), but
with inexact data we need to avoid boundary cases.) We view the coefficients as infinite
bit-strings. Let τ be the maximum number of bits before the binary point in any co-
efficient. All roots of q are bounded by 1 + maxi|qi| in absolute value (Cauchy bound,
[19, Lemma 6.7]) and hence are contained in the open disc of radius M :=2τ+1 about the
origin of the complex plane. In particular, the real roots of q are contained in the interval
(−M,+M). Let p(x) = q(4Mx−2M)/(4M)n. Then p has its real roots in (1/4,3/4) and
hence the first and last coefficient of its Bernstein representation with respect to [0,1]
are large, sep(p) = sep(q)/2τ+3, and lcf(p) = lcf(q).

We want to compute an ε/2-approximate Bernstein representation of p with respect
to [0,1]. (Halving ε is motivated later on.) We compute in fixed-point notation with
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log(1/δ ) bits after the binary point; δ to be determined later. Addition of two such
numbers and multiplication with an integer can be done exactly. We start from approx-
imations of the qi’s with error at most δ , compute p in power basis and then convert to
Bernstein representation. We have

p(x) = ∑
j

p jx
j = q(4Mx−2M)/(4M)n = (4M)−n ∑

0≤ j≤n

x j ∑
j≤i≤n

(
i
j

)
(−2)i+ jMiqi .

The factor
(i

j

)
is an integer less than 2n and (4M)−n2i+ jMi = 2i+ j+i(τ+1)−n(τ+3) is a

non-positive power of two (since i ≤ n and j ≤ n). Hence the p j’s have O(τ + n) bits
before the binary point and error at most (n + 1)2nδ . (To see this, note that the error in
each

(i
j

)
qi is at most 2nδ ; the shifts do not increase the error; each p j is the sum of at

most n + 1 terms; and the additions do not introduce errors.) We have pn = qn ∈ [1,4).
The Bernstein representation of p with respect to [0,1] is given (see [14, 2.8]) by:

n

∑
l=0

blB
n
l [0,1](x) =

n

∑
l=0

Bn
l (x)

l

∑
k=0

(l
k

)(n
k

) pk =
n

∑
l=0

Bn
l (x)

l

∑
k=0

l(l−1) · · ·(l− k + 1)(n− k)!
n!

pk .

To avoid divisions other than by powers of two, we compute n!bl instead bl and later
scale as to bring the leading coefficient back to [1,4). We have l(l−1) · · · (l−k+1)(n−
k)! ≤ n! ≤ 2n logn. The leading coefficient of ∑l n!blBl(x) is in [1,4)n!. It is brought
back into [1,4) by shifting all coefficients to the right by r ∈ log(n!qn)±1 = O(n logn)
bits. The results are the coefficients b̃l for use in DescartesrndL. The error in each b̃l

is bounded by the sum of the errors of the p j’s multiplied by a small power of two
accounting for the discrepancy between 1/n! and 2−r. Hence the error is at most (n +
1)22n+3δ . We want this to be at most ε/2 and therefore choose δ as largest power of
two such that (n+1)22n+3δ ≤ ε/2. Thus log(1/δ )= log(1/ε)+O(n) = O(n log(1/s)).

The conversion requires O(n2) additions and multiplications. The coefficients have
at most O(τ +n+ log(1/δ )) = O(τ +n log(1/s)) bits. Multiplications are with numbers
of at most n logn bits and hence the bit complexity of conversion (using high-school
multiplication) is O(n2n logn(τ +n log(1/s)). This is O(n4 logn log(1/s)), since we will
choose s0 = 2−max(1,τ/n).

Complexity Analysis. The estimate log(1/s) runs through the values 2i log(1/s0),
i ≥ 0. For each s, we set ε such that log(1/ε) = O(n log(1/s)) = O(n2i log(1/s0)).
We compute an ε/2-approximate Bernstein representation of p with respect to (0,1)
and call DescartesrndL(p,(0,1),ε). Its recursion tree has depth at most D :=D(s)+1 =
O(log(1/s)) (Corollary 3), and there are at most n nodes on each level (Prop. 4). We
perform the arithmetic with log(1/δ2) bits after the binary point; δ2 fixed as follows.
In each node, there are n(n + 1)/2 = O(n2) operations, namely averages, that each
introduce an additional error δ2 but do not add bits before the binary point. The ac-
cumulated error in any value is at most ε/2 + n(n+1)

2 Dδ2. With n(n+1)
2 Dδ2 ≤ ε/2 or

log(1/δ2) = log(1/ε)+ log(n(n+1))+ log(D) = O(n log(1/s)), any error is at most ε .
Each averaging operation has bit complexity dominated by the multiplication cost

O(logn(τ +n+n log(1/s)))= O(n logn log(1/s)) and hence for any fixed s, the O(n3D)
operations in total have bit complexity O(n4D logn log(1/s)) = O(n4 logn log2(1/s)).
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The i-th estimate of log(1/s) is 2i log(1/s0), and running DescartesrndL for this
value of s costs O(4i) ·h(n,s0) where h(n,s) = O(n4 logn log2(1/s)). Let i1 ≥ 0 be min-
imal such that s1 :=2i1 log(1/s0)≥ log(1/sep(p)). The probability that the i-th estimate
of s is used is at most (1/8)i−i1 since a call of DescartesrndL fails with probability less
than 1/8 whenever s≤ sep(p). Hence the expected overall bit complexity is(

∑
i≤i1

4i + ∑
i>i1

(1/8)i−i14i) ·h(n,s0) = O(4i1) ·h(n,s0) = h(n,s1) .

This means that, asymptotically, the last iteration alone determines the expected cost.
Since log(1/s1) = O(τ/n+ log(1/sep(p))) and log(1/sep(p)) = O(τ + log(1/sep(q)),
we have thus shown

Theorem 9. Let q = ∑n
i=0 qixi with |qn| ≥ 1 and |qi| ≤ 2τ for all i. The expected bit cost

of DescartesrndL to isolate the real roots of q is is O(n4 logn(τ + log(1/sep(q)))2).

4.3 Algorithm DescartesrndG

Let us now consider another variant of Descartes in which we fix α := 1/2 globally,
meaning that always the interval midpoint is chosen as split point. To keep them away
from the roots of p, we replace p = p0 by a random translate pβ (x) = p(x + β ).

We can tighten the recursion depth bound of Corollary 3 to D(σ) :=,log(1/σ)+2-;
and Lemma 6 already holds for C :=8n. (For a proof, replace 8 by 16 in Eq. (4).)

As before, we maintain an estimate s of sep(p), starting from s0 := 2−max(1,τ/n).
The interval (0,1) decomposes into 2D = 4/s intervals of width s/4 which we call ele-
mentary intervals. Any interval I considered by DescartesrndG is a union of elementary
intervals (modulo the left endpoint). We call the endpoints of all elementary intervals
the elementary endpoints. Our goal is to choose β such that any root of pβ has distance
greater than L (as defined in Section 4.2) from both endpoints of the elementary interval
containing it, so that the approximate value of pβ at all elementary endpoints is greater
than γ = Cε in absolute value, so that DescartesrndG is successful. We choose β from{

u
K
· s

4

∣∣∣∣ u ∈ {0,1, . . . ,K−1}
}

(8)

uniformly at random, where the integer K is still to be determined. Consider a fixed root
ξi of p0. It excludes at most 1+(2L/(s/4))K values of u. Thus all n roots of p0 exclude
at most n +(8L/s)nK values of u. We want that at least 7/8 of the values are good and
hence require n + (8L/s)nK ≤ K/8 or 8L/s ≤ 1/(8n)− 1/K. With K := 2�4+logn� we
obtain the condition 8L(ε)/s≤ 1/(16n), or equivalently,

ε ≤ lcf(p0) · sn

128n2(C + 1)
. (9)

We set log(1/ε) = �n log(1/s)+ 3n + 2logn + 8�= O(n log(1/s)) and limit the recur-
sion depth to D := D(s)+ 1. Whenever Descartesapprox aborts with failure, we double
log(1/s) and start again, making a fresh choice for β . Once s ≤ sep(p), every further
call to Descartesapprox has success probability at least 7/8.
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Initialization. This is very similar to the initialization of DescartesrndL. One can com-
pute pβ from p using only addition, multiplication by integers, and bit shifts, without
introducing errors. The complexity stays at O(n4 logn log(1/s)).

Complexity analysis. Also very similar to DescartesrndL. However, the bit complexity
of Descartesapprox is O(n4 log2(1/s)) and hence better by a factor of logn, since α =
u/K with numerator length O(logn) is replaced by α = 1/2. This shows

Theorem 10. Let q = ∑n
i=0 qixi with |qn| ≥ 1 and |qi| ≤ 2τ for all i. The expected bit

cost of DescartesrndG to isolate the real roots of q is is O(n4(τ + log(1/sep(q)))2).

5 Some Experiments

We are in the process of conducting experiments3 on various classes of polynomi-
als with our algorithms DescartesrndL and DescartesrndG, implemented in fixed-point
arithemtic as detailed in their respective complexity analyses. Some preliminary find-
ings are as follows.

The random choice of the bisection parameter α in DescartesrndL is quite costly
in practice when compared to bisection at α = 1/2, because the latter does not require
multiplication with weights in the averaging step of the de Casteljau algorithm (addition
and shift suffice). Hence we suggest to try small denominators of α first, starting with
α = 1/2, and increasing them in each try up to the original value K. The resulting
variant of DescartesrndL, called Descartesbias

rndL, can be one order of magnitude faster in
practice.

Compared to the Bernstein Descartes method implemented with exact integer coef-
ficients and subdivision at α = 1/2, Descartesbias

rndL and DescartesrndG tend to be faster
for long coefficients.

As expected, experiments also indicate that the running time of our methods, unlike
approaches with exact arithmetic, is mostly unaffected by the irrationality of coeffi-
cients.

References

1. Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descartes’ rule of signs.
In Jenks, R.D., ed.: Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation, ACM Press (1976) 272–275

2. Uspensky, J.: Theory of Equations. McGraw-Hill (1948)
3. Krandick, W.: Isolierung reeller Nullstellen von Polynomen. In Herzberger, J., ed.: Wis-

senschaftliches Rechnen. Akademie-Verlag (1995) 105–154
4. Rouillier, F., Zimmermann, P.: Efficient isolation of a polynomial’s real roots. J. Computa-

tional and Applied Mathematics 162 (2004) 33–50
5. Lane, J.M., Riesenfeld, R.F.: Bounds on a polynomial. BIT 21 (1981) 112–117
6. Mourrain, B., Vrahatis, M.N., Yakoubsohn, J.C.: On the complexity of isolating real roots

and computing with certainty the topological degree. J. Complexity 18 (2002) 612–640
7. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer (2003)

3 See http://www.mpi-inf.mpg.de/∼sschmitt/Descartes



A Descartes Algorithm for Polynomials with Bit-Stream Coefficients 149

8. Mourrain, B., Rouillier, F., Roy, M.F.: Bernstein’s basis and real root isolation. Rap-
port de recherche 5149, INRIA-Rocquencourt (2004) http://www.inria.fr/rrrt/
rr-5149.html.

9. Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical algebraic de-
composition. J. Symbolic Computation 34 (2002) 143–155

10. Henrici, P.: Applied and Computational Complex Analysis. Volume 1. Wiley (1974)
11. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik II: Fundamentalsatz der

Algebra und Grundlagen der Mathematik. Math. Z. 20 (1924) 131–152
12. Pan, V.: Solving a polynomial equation: Some history and recent progress. SIAM Review

39 (1997) 187–220
13. Pan, V.: Univariate polynomials: Nearly optimal algorithms for numerical factorization and

root finding. J. Symbolic Computation 33 (2002) 701–733
14. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer (2002)
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Abstract. We propose exact, complete and efficient methods for 2 prob-
lems: First, the real solving of systems of two bivariate rational polynomi-
als of arbitrary degree. This means isolating all common real solutions in
rational rectangles and calculating the respective multiplicities. Second,
the computation of the sign of bivariate polynomials evaluated at two
algebraic numbers of arbitrary degree. Our main motivation comes from
nonlinear computational geometry and computer-aided design, where bi-
variate polynomials lie at the inner loop of many algorithms. The meth-
ods employed are based on Sturm-Habicht sequences, univariate resul-
tants and rational univariate representation. We have implemented them
very carefully, using advanced object-oriented programming techniques,
so as to achieve high practical performance. The algorithms are inte-
grated in the public-domain C++ software library synaps, and their
efficiency is illustrated by 9 experiments against existing implementa-
tions. Our code is faster in most cases; sometimes it is even faster than
numerical approaches.

1 Introduction

Our motivation comes from computer-aided geometric design and computational
geometry on curved objects, where predicates rely on the real solving of small al-
gebraic systems and on computing the sign of polynomials evaluated at solutions
of such systems. These are crucial in software libraries such as esolid ([15]), ex-
acus (e.g. [12]), and CGAL (e.g. [8]). Predicates must be decided exactly in all
cases, including degeneracies. We focus on bivariate polynomial systems of arbi-
trary degree. Efficiency is critical because such systems appear in the inner loop
of most algorithms, including those for computing the arrangement of algebraic
curves or surfaces, the Voronoi diagrams of curved objects, e.g. [6,12] and kinetic
data-structures ([11]).

Solving polynomial systems in a real field is an active area of research. There
are several algorithms that tackle this problem, cf. e.g. [1,25] and the references
therein. Every method designed for the real-solving of algebraic systems could be
compared against ours. We focus on those that, in the best of our knowledge, have
efficient implementations, enumerated below, and perform experiments against
them. Note that we aim at fully accurate computation, in the sense that we
avoid any numerical computation and thus we do not compare against software

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 150–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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based on homotopies, interval arithmetic or Newton-like methods. Besides our
software, only GbRs achieves this goal completely, among the examined imple-
mentations. Of course many generalizations of Gröbner bases can lead to solution
of this problem, but we chose GbRs and normal forms (solver newmac below)
as representatives of them. We also do not test against computer algebra sys-
tems, like maple or reduce, or against algorithms for the related but different
question on parametric polynomials ([23]).

Our methods are exact, in the sense that they provide rational isolating rect-
angles for all common roots and calculate their multiplicity. We concentrate on
solvers that output this representation. Our methods are also complete, since
they can handle all cases, including degeneracies. And they are efficient as tes-
tified by their implementation and experiments.

In an earlier paper ([7]), in order to solve quadratic bivariate systems, without
assuming generic position, we precomputed resultants and static Sturm-Habicht
sequences in two variables ([9]) and we combined the rational isolating points
with a simple version of rational univariate representation. Here we generalize
that approach and use Sturm-Habicht sequences, in a dynamic setting since the
polynomial degree is not bounded. Our approach is based on projecting the
roots along the two coordinates axes using univariate resultants. We combine
the rational isolating points, computed around the resultants’ roots, using a
specialized version of rational univariate representation, in order to lift them to
two dimensions.

Additionally we compute the ordinates of the solutions as algebraic numbers
in isolating interval representation, avoiding computations of minimal polynomi-
als. This is important since further computations with the solutions of a system
is often required. For example in [13], where computations of Eggers singularities
and Milnor numbers are required, or [24], where projections of the roots on three
lines are computed, as well as interval refinement in order to compute the criti-
cal points of a curve. Our approach allows us to compute the sign of a bivariate
polynomial function evaluated over algebraic numbers, all of arbitrary degree.
Our approach is similar to [22] and can be easily extended to polynomials with
an arbitrary number of variables. However, our approach is more efficient since
we use Sturm-Habicht sequences.

The main contribution of this paper is a package for solving bivariate systems
and computing the sign of bivariate polynomials evaluated at algebraic numbers,
as part of the synaps software library ([5]), which is developed in C++. For
this we use modern object-oriented programming techniques, such as partial
specialization and traits classes, so as to achieve high performance in practice.

We performed experiments against existing methods and implementations.
mapc ([14]) had used Sturm sequences, but did not handle degeneracies. Since
mapc is no longer maintained, we do not compare against it. In our tests, we
compared against other solvers in synaps 1, namely newmac, which is based on
normal forms ([19]), sth, which also uses Sturm-Habicht sequences but uses a
double approximation in order to compute the second coordinate of the solutions

1 www-sop.inria.fr/galaad/logiciels
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and is based on the work of [10], and res, which is based on computing the
generalized eigenvalues of a Bézoutian matrix ([2]). Additionally, we test against
GbRs 2, through its maple interface, which uses Gröbner bases and rational
univariate representation ([21]).

A more recent work is the one of [16], where sparse resultant, rational uni-
variate representation and certified numerical approximations are used so as to
solve polynomial systems, with arbitrary number of variables and equations.
Their code is not yet freely available. From the running times that they provide
it seems that our approach for bivariate systems is faster.

We show that our code compares favourably with other software on most
instances. Sometimes it is even faster than methods using some numerical com-
putation; such methods may compromise the accuracy of the output. This shows
that for specific instances of real solving, namely when the problem dimension
is small, a careful implementation of the Sturm-Habicht approach can be very
competitive and even the method of choice.

This paper is organized as follows. The next two sections survey some neces-
sary notions on root multiplicity, and on the theory of Sturm-Habicht sequences.
Section 4 presents computations with real algebraic numbers. Section 5 presents
our two variants for solving bivariate polynomial system. The following section
describes our implementation and experiments. We conclude with open ques-
tions.

2 Root Multiplicity

The results of this section can be found for example in [3,1,25]. We follow the
approach and the terminology of [13] and [2].

In what follows D is a ring, F is a commutative field of characteristic zero
and F its algebraic closure. Typically D = Z, F = Q and F = Q. Moreover,
f, g are bivariate polynomials in F[X,Y ] and Cf and Cg are the corresponding
affine algebraic plane curves. By deg(f) we denote the total degree of f , while
by degX (f) (respectively degY (f)) denotes the degree of f considered as a
univariate polynomial in X (resp. Y ) with coefficients in F[Y ] (resp. F[X ]).

Let f, g ∈ F[X,Y ] be two coprime polynomials and Cf , Cg be their corre-
sponding affine algebraic plane curves, over the field F, defined by the equa-
tions (Σ) : f(X,Y ) = g(X,Y ) = 0. Let I =< f, g > the ideal that they
generate in F[X,Y ] and so the associated quotient ring is A = F[X,Y ]/I.
Let the distinct intersection points, which are the distinct roots of (Σ), be
Cf ∩ Cg = {ζi = (αi, βi)}1≤i≤r, where ζi ∈ F

2
.

The multiplicity of a point ζi is

mult(ζi : Cf ∩ Cg) = dimFAζi <∞
where Aζi is the local ring obtained by localizing A at the maximal ideal I =<
X − αi, Y − βi > ([3]).
2 http://fgbrs.lip6.fr
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If Aζi is a finite dimensional vector space over F, then ζi = (αi, βi) is an
isolated zero of I and its multiplicity is called the intersection number of the
two curves. The finite F-algebra A can be decomposed as a direct sum A =
Aζ1 ⊕Aζ2 ⊕ · · · ⊕ Aζr and thus dimFA =

∑r
i=1 mult(ζi : Cf ∩ Cg).

A polynomial f ∈ F[X,Y ] or a curve Cf , is called y−regular if deg(f) =
degY (f).

Proposition 1. Let f, g ∈ F[X,Y ] be two coprime curves, and let p ∈ F
2

be a
point. Then

mult (p : fg) ≥ mult (p : f)mult (p : g)

where equality holds if and only if Cf and Cg have no common tangents at p.

Real-solving of (Σ) is equivalent to finding the intersections of Cf and Cg
in the real plane. We assume that Cf and Cg are y−regular and that (Σ) is
in generic position, meaning that every solution has a distinct x−coordinate.
This is without loss of generality, since we can achieve this by a linear change
of coordinates. A generic linear transformation (shear) of coordinates puts the
points of Cg ∩ Cg in one to one correspondence with roots of the resultant of f
and g with respect to Y .

3 Sturm–Habicht Sequences

In this section we present some results for Sturm-Habicht sequences. For more
information the reader may refer to [1,10,25].

Let P,Q ∈ Z[X ] such that deg(P ) = p and degQ = q and P
=
∑p

k=0 akX
k, Q =

∑q
k=0 bkX

k. If i ∈ {0, . . . , inf (p, q)} we define the poly-
nomial subresultant associated to P and Q of index i, as follows:

Sresi(P,Q) =
i∑

j=0

M j
i x

j

where every M j
i is the determinant of the matrix built with columns 1, 2, . . . , p+

q − 2i− 1 and p+ q − i− j in the matrix:

mi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ap . . . a0

. . . . . .
ap . . . a0

bp . . . b0
. . . . . .

bp . . . b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the coefficients of P and Q are repeated q− i and p− i times respectively.
The determinant M i

j(P,Q) is called the i−th principal subresultant coefficient
and denoted by sresi.
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Definition 1. Let P be polynomials in Z[X ] with p = deg(P ). If we write

δk = (−1)
k(k+1)

2

for every integer k, the Sturm-Habicht sequence associated to P is defined as in the
list of polynomials {StHaj(P )}j=0,...,p, where StHap(P ) = P,StHap−1(P ) =
P ′, and for every j ∈ {0, . . . , p− 2}:

StHaj(P ) = δp−j−1Sresj(P, P ′)

For every j ∈ {0, . . . , p} the principal j−th Sturm-Habicht coefficient is de-
fined as:

sthaj(P ) = coeff
j

(StHaj(P )),

i.e. the coefficient of xj in the polynomial StHaj(P ).

It is important to mention that the polynomial stha0, modulo its sign is the
discriminant of P .

Moreover the greatest common divisor of P and P ′ is obtained as a by-
product of the Sturm-Habicht sequence, together with the following equivalence:

StHai(P ) = gcd(P, P ′)⇔
{

stha0(P ) = · · · = sthai−1(P ) = 0
sthai(P ) �= 0

The Sturm-Habicht sequence has very nice specialization properties. Let P
and Q be two polynomials with parametric coefficients, such that their degree
does not change after a specialization in the parameters. If we compute their
Sturm-Habicht sequence before we specialize the coefficients, the obtained se-
quence is guaranteed to be valid under every specialization. We use this property
so as to compute such a sequence for polynomials in Z[X,Y ], regarding them
either as polynomials in (Z[X ])[Y ] or in (Z[Y ])[X ]. The last polynomial in the
sequence is the resultant with respect to X or Y , respectively.

Theorem 1. [1,10] Let f, g square-free and coprime polynomials, such that Cf
and Cg are in generic position. If

Hj(X,Y ) = StHaj(f, g) = hj(X)Y j + hj,j−1(X)Y j−1 + · · ·+ hj,0(X)

then if ζ = (α, β) ∈ Cf ∩ Cg then there exists k, such that

h0(α) = · · · = hk−1(α) = 0, hk(α) �= 0, β = −1
k

hk,k−1(α)
hk(α)

Note that k is the multiplicity of the solution point.
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4 Real Algebraic Numbers and Sign Evaluation

The real algebraic numbers, i.e. those real numbers that satisfy a polynomial
equation with integer coefficients, form a real closed field denoted by Ralg = Q.
From all integer polynomials that have an algebraic number α as root, the one
with the minimum degree is called minimal polynomial. The minimal polynomial
is unique, primitive and irreducible ([25]). In our approach, since we use Sturm-
Habicht sequences, it suffices to deal with algebraic numbers, as roots of any
square-free polynomial and not as roots of their minimal ones.

In order to represent a real algebraic number we chose the isolating interval
representation.

Definition 2. The isolating-interval representation of real algebraic number α ∈
F is α ∼= (P (X), I), where P (X) ∈ D[X ] is square-free and P (α) = 0, I = [a, b],
a, b,∈ Q and P has no other root in I.

Let P denote the Sturm-Habicht sequence of P and P ′. For a Sturm-Habicht
sequence P , VP (a) denotes the number of sign variations of the evaluation of the
sequence at a. By VP,Q(a) we denote the sign variations of the Sturm-Habicht
sequence of P and Q, evaluated over a.

Theorem 2. [25] Let P,Q ∈ D[x] be relatively prime polynomials and P square-
free. If a < b are both non-roots of P and γ ranges over the roots of P in [a, b],
then

VP,Q[a, b] := VP,Q(a)− VP,Q(b) =
∑

γ

sign (P
′
(γ)Q(γ)).

where P
′
is the derivative of P .

We can use Sturm-Habicht sequences in order to find the sign of a univariate
polynomial, evaluated over a real algebraic number (cf. [9] for degree ≤ 4).

Corollary 1. LetQ(X) ∈ D[X ] and a real algebraic number where α ∼= (P, [a, b]).
By th. 2, sign(Q(α)) = sign(VP,Q[a, b] ·Q′

(α)).

Corollary 2. Th. 2 holds if in place of Q we use R = prem(Q,P ), where
prem(Q,P ), stands for the pseudo-remainder of Q divided by P .

Corollary 3. Using th. 2 we can compare two real algebraic numbers in isolating
interval representation.

Proof. Let two algebraic numbers γ1
∼= (P1(x), I1) and γ2

∼= (P2(x), I2) where
I1 = [a1, b1], I2 = [a2, b2]. Let J = I1 ∩ I2. When J = ∅, or only one of γ1 and
γ2 belong to J , we can easily order the 2 algebraic numbers. If γ1, γ2 ∈ J , then
γ1 ≥ γ2 ⇔ P2(γ1) ·P ′

2(γ2) ≥ 0. We can easily obtain the sign of P
′
2(γ2), and from

th. 2, we obtain the sign of P2(γ1). )*
The previous tools suffice to compute the sign of a bivariate polynomial

function evaluated over two algebraic numbers. Consider F ∈ D[X,Y ] and α ∼=
(A(x), I1) and β ∼= (B(X), I2) where I1 = [a1, b1], I2 = [a2, b2]. We wish to
compute the sign of F (α, β).
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– Consider F as a univariate polynomial with respect to X and compute the
Sturm-Habicht sequence of A and F . Note that the polynomials in the se-
quence are bivariate.

– Taking advantage of the good specialization properties of Sturm-Habicht
sequences, specialize X in the sequence by a1 and b1, thus producing two
sequences, that contain univariate polynomials.

– For each sequence, for every polynomial in each, compute its sign evaluated
at β.

– Finally, count the sign variations for each sequence and the required sign is
the difference of these sign variations.

We can extend this approach to polynomials with arbitrary numbers of vari-
ables, similar to [22]. However the usage of Sturm-Habicht sequences, instead
of generalized Sturm sequences, improves both the theoretical (cf. [1]) and the
practical complexity (cf. [4,25]).

5 Two Variants of Bivariate Real Solving

We can make use of th.1, following [10], so as to compute the solution of bivariate
polynomial systems. We consider polynomials f, g ∈ Q[X,Y ], such that Cf , Cg
are in generic position and we compute the resultant of f, g with respect to Y ,
which is a polynomial in X . The real solutions of the polynomial correspond
to the x−coordinates of the solution of the system. Then, using th.1, we lift
these solutions in order to determine the y−coordinates, as a rational univariate
function evaluated over an algebraic number.

Even though the previous approach is straightforward, it has one main dis-
advantage. The y-coordinates are computed implicitly. If this is all that we want
then this is not a problem. However in most cases we want to further manipulate
the solutions of the system, i.e. to compare two y−coordinates or to count the
number of branches of each curve above or below this ordinate. Of course we
can always find the minimal polynomial of these algebraic numbers, but this is
quite expensive. Thus we chose an alternatively way.

We compute the resultant, using the Sturm-Habicht Sequence, both with
respect to Y andX , Rx and Ry respectively. We solve the univariate polynomials
Rx and Ry using Sturm sequences (a faster solver like the one in [20], may also
be used). Let α1 < · · · < αk and β1 < · · · < βl be the real roots of Rx and Ry,
respectively. For the real roots of Ry we compute rational intermediate points,
q0 < β1 < q1 < · · · < ql−1 < βl < ql where qj ∈ Q, 0 ≤ j ≤ l. We can easily
compute the intermediate points, since the algebraic numbers are in isolating
interval representation.

For every root αi, 1 ≤ i ≤ l, using th.1, we compute a rational univariate
representation of the corresponding y-coordinate, which is without loss of gen-
erality, of the form γi = A(αi)

B(αi)
. Since have already computed the real solutions

of Ry, it suffices to determine to which βj , γi equals to, that is to find an index
j such that
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qj <
A(αi)
B(αi)

< qj+1

or, if we assume that B(αi) > 0, this can be checked using cor. 1, then

qjB(αi) < A(αi) < qj+1B(αi)

Actually what we really want is to determine the sign of univariate poly-
nomials of the form U(X) = qjB(X) − A(X) evaluated over the real algebraic
numbers that are solutions of Rx = 0. This can be done with cor. 1.

However the previous approach works only with the assumption of generic
position. This is without loss of generality, since we can apply a transformation of
the form (X,Y ) "→ (X+aY, Y ), where a is a random number before the execution
of the algorithm, or we can detect non-generic position during the execution
([10,1]), then apply a transformation of the form (X,Y ) "→ (X + Y, Y ) and
start the algorithm recursively. However if such a transformation is performed
then it is a very hard computational task to apply the inverse transformation so
as to represent the solutions to the original coordinate system. Moreover such
transformations destroy the sparsity of the system.

In order to overcome such barriers we suggest one more variant for bivariate
polynomial system solving. As before we compute the two resultants Rx and
Ry and their real solutions αj and βj , 1 ≤ i ≤ k, 1 ≤ j ≤ k, respectively.
Then for every pair (ai, bj) we test if both f and g vanish. If so, then this pair
is the solution. Actually, we do not need to test every pair, since we can take
into account the multiplicities of αi and βj . The sign of a bivariate polynomial
evaluated over two algebraic numbers can be computed using the results of the
previous section. This variant is more generic than the previous one, but as one
can easily imagine, in most of the cases it is clearly slower. However, it is useful,
since a combination of both variants can be used, for example when a non-generic
position is detected.

6 Implementation and Experimentation

6.1 Implementation

We have implemented a software package in C++, as part of library synaps
[5,18] inside the namespace ALGEBRAIC, for dealing with algebraic numbers and
bivariate polynomial system solving, which is optimized for small degree. Our
implementation is generic in the sense that it can be used with any number
type and any polynomial class that supports elementary operations and eval-
uations and can handle all degenerate cases. We used various advanced C++
programming techniques, such as template specialization, traits classes for num-
ber types, etc. Additionally we have precomputed various quantities, and factor
several common expressions so as to minimize the computational effort.

In what follows root of<RT> is a class that represents real algebraic numbers,
computed as roots of polynomial in isolating interval representation. UPoly<RT>
is a class for univariate polynomial while BPoly<RT> is a class for multivariate
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polynomials (for our approach we need only the bivariate ones). All classes are
parametrized by a ring number type (RT).

We present a portion of the functionality that we provide. Actually the pre-
sentation is very abstract since various parameters can be determined. For ex-
ample the univariate solver that can be used and operations between algebraic
numbers are not presented here (see [18]). The full description of the function-
ality, as well as various design and optimization techniques, will be part of a
future presentation. The interesting reader may refer to the documentation of
synaps for additional details.

– Seq<root of<RT> > solve(UPoly<RT> f)
Solves a univariate polynomial and returns a sorted sequence of real alge-
braic numbers. For degree up to 4 all the quantities are precomputed using
the algorithms of [9]. For higher degrees we use an algorithm for real root
isolation based on Sturm-Habicht sequences [4,1,25].

– int compare(root of<RT> α, root of<RT> β)
Compares two algebraic numbers and returns −1, 0 or +1, depending on the
order. For degree up to 4 we use precomputed sequences ([9]). For higher de-
gree we use dynamic (that is computed on the fly) Sturm-Habicht sequences.
We use cor. 3 in order to compare them.

– int sign at(UPoly<RT> f, root of<RT> α)
Computes the sign of a univariate polynomial evaluated over an algebraic
number returns −1, 0 or +1. Both the polynomial and the real algebraic
number can be of arbitrary degree. We implemented this by using cor. 3.

– int sign at(BPoly<RT> f, root of<RT> γx, root of<RT> γy)
Computes the sign of a bivariate polynomial evaluated over two real alge-
braic numbers and returns −1, 0 or +1. The total degree of the bivariate
polynomial, as well as the degree of the algebraic number may be arbitrary.
We use cascaded Sturm-Habicht sequences. For total degree of the bivariate
polynomial up to 2 and if at least one of the algebraic numbers is of degree
less than 5 we use precomputed sequences ([9]).

– Seq < pair<root of<RT> > > solve(BPoly<RT> f1, BPoly<RT> f2)
Computes the real solutions of a bivariate polynomial system and returns a
sequence of pairs of real algebraic numbers sorted lexicographically. If the
total degree of the polynomials is less than 3, we use precomputed sequences
([9]). In all the other cases we use the algorithm described in sec. 5.

6.2 Experiments

In order to test our implementation we solved the following systems:

(R1)
{

1 + 2X − 2X2Y − 5XY +X2 + 3X2Y = 0
2 + 6X − 6X2Y − 11XY + 4X2 + 5X3Y = 0

(R2)
{
X3 + 3X2 + 3X − Y 2 + 2Y − 2 = 0
2X + Y − 3 = 0

(R3)
{
X3 − 3X2 − 3XY + 6X + Y 3 − 3Y 2 + 6Y − 5 = 0
X + Y − 2 = 0
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(M1)
{
Y 2 −X2 +X3 = 0
Y 2 −X3 + 2X2 −X = 0

(M2)
{
X4 − 2X2Y + Y 2 + Y 4 − Y 3 = 0
Y − 2X2 = 0

(M3)
{
X6 + 3X4Y 2 + 3X2Y 4 + Y 6 − 4X2Y 2 = 0
Y 2 −X2 +X3 = 0

(M4)
{
X8 − Y 8 − 1 = 0
X10 + Y 10 − 1 = 0

(D1)
{
X4 − Y 4 − 1 = 0
X5 + Y 5 − 1 = 0

(D1)
{−312960− 2640X2 − 4800XY − 2880Y 2 + 58080X + 58560Y = 0
−584640− 20880X2 + 1740XY + 1740Y + 274920X − 59160Y = 0

where systems R{1,2,3} are from [16] and systems M{1,2,3,4} are from [2]. The
results are on table 1, where times presented are in msec and are the average of
100 runs. We performed all tests on a 2.6GHz Pentium with 512MB memory,
running Linux, with kernel version 2.6.10. We compiled the programs with g++,
v. 3.3.5, with option -O3.

We test against newmac ([19]). It is a general purpose polynomial system
solver. sth, in synaps, is based on Sturm-Habicht sequences and subresultants,
following [10]. res is a bivariate polynomial solver based on the Bézoutian matrix
and lapack ([2]). For GbRs ([21]) we use its maple interface with 10 digits
accuracy, since the source code is not available. S2 refers to our solver using only
the sign at functions, S2-rur is our algorithm based the on rational univariate
representation.

We have to emphasize that our approach is exact, i.e. it outputs isolating
boxes with rational endpoints containing a unique root whose multiplicity is
also calculated. This is not the case for sth and res. sth, uses a double ap-
proximation in order to compute the ordinate of the solution. res works only
with doubles, since it has to compute generalized eigenvalues and eigenvectors.
These approximations is the reason why they both failed on some tests. newmac
also relies on the computation of eigenvalues but in addition computes all the
complex solutions of the system.

S2 is competitive on all data sets, while S2-rur is almost always faster than
any other solver, even from those that they use double arithmetic. However the
system of interest is system M4. Note that this system is very sparse. Sturm-
Habicht sequences do not take advantage of the sparsity of a problem. This partic-
ular system, is not in generic position, so a linear transformation is applied. Then,
at one hand, the sparsity is destroyed and, on the other, the Sturm-Habicht se-
quences become quite long. We noticed that most of the time is spent for the real
solution of the two resultants. This is a strong indication, that a more sophisti-
cated solver for univariate polynomials, like the one in [20], must be adopted.

As for the approach of [16], they quote that, on a faster machine with 3GHz
CPU, the timings for solving system R1, R2 and R3 are 2590, 86.5 and 103 msec
respectively. So it seems that our approach for bivariate systems is faster. Of
course all these are only indications and a more subtle study is required.
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Table 1. Experiments on bivariate system solving

msec R1 R2 R3 M1 M2 M3 M4 D1 D2

S2 10 1 1 2 3 433 5010 50 1

S2-rur 1 1 0.1 1 1 44 1010 11 1

newmac 6 2 3 3 3 20 1020 20 20

res 0.3 0.3 0.6 0.6 01.2 8.4 150 - 0.5

sth 1 0.2 0.2 0.5 0.4 1.3 - 280 0.4

GbRs 24 22 21 18 23 28 25 25 27

7 Conclusions and Future Work

We are currently working on better bounds on the bit complexity of our algo-
rithms. We expect this investigation to identify possible bottlenecks and lead
to better performance in practice. We plan to apply our tools in computing the
topology of algebraic curves in 2D and 3D, as well as the topology of surfaces in
3D. Other possible approaches, to be implemented and compared at a practical
level, include the adoption of fast Cauchy-index computations ([17]) and Thom’s
encoding ([1]). Last but not least, we intend to use arithmetic filtering to handle
cases that are far from degenerate, so as to improve the speed of our software
for generic inputs.

Acknowledgements. The second author thanks Bernard Mourrain, for his contin-
uing help during the implementation of the package. Both authors acknowledge
partial support by Kapodistrias, project 70/4/6452 of the Research Council of
National University of Athens, by PYTHAGORAS, project 70/3/7392 under
the EPEAEK program funded by the Greek Ministry of Educational Affairs and
EU, and IST Programme of the EU as a Shared-cost RTD (FET Open) Project
under Contract No IST-006413-2 (ACS - Algorithms for Complex Shapes).

References

1. S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real Algebraic Geometry, vol-
ume 10 of Algorithms and Computation in Mathematics. Springer-Verlag, 2003.
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Abstract. Let f1, . . . , fp be polynomials in C[x1, . . . , xn] and let D =
Dn be the n-th Weyl algebra. The annihilating ideal of fs = fs1

1 · · · fsp
p

in D[s] = D[s1, . . . , sp] is a necessary step for the computation of the
Bernstein-Sato ideals of f1, . . . , fp.

We point out experimental differences among the efficiency of the
available methods to obtain this annihilating ideal and provide some
upper bounds for the complexity of its computation.

1 Introduction

Fix two integersn ≥ 1, p ≥ 1 and two sets of variables (x1, . . . , xn) and (s1, . . . , sp).
Let us consider f1, . . . , fp ∈ C[x] = C[x1, . . . , xn] and let D = Dn be the n-th
Weyl algebra. A polynomial b(s) ∈ C[s] = C[s1, . . . , sp] is said to be a Bernstein-
Sato polynomial associated to f if the following functional equation holds for a cer-
tain P (s) ∈ D[s]:

b(s)fs = P (s)fs+1,

where 1 = (1, . . . , 1). These polynomials form an ideal called the Bernstein-Sato
ideal Bf , or simply B to abbreviate. Analogous functional equations with respect
to vectors different to 1 yield other different Bernstein-Sato ideals (see for example
[Ba1]).

In [L1] it is proved that B is not zero. This fact is a generalization of the
classical proof of Bernstein ([Be1]) for the case p = 1, in which the generator of
B is called the Bernstein-Sato polynomial, bf(s). The analytical work was made
in [Bj1] for p = 1 and in [Sa1],[Sa2] for p > 1.

The roots of bf(s) encode important algebro-geometrical data (see [Mal1],
[H1] or [BS1] to mention only a few) and a complete understanding of all roots
for a general f is open. For the case p > 1 there is a lot of work to do yet: there
are conjectures on the primary decomposition of B, on the conditions over f for
B to be principal, to be zero-dimensional, etc.

In [O1] was presented the first algorithm to find the Bernstein-Sato polyno-
mial, and alternative methods have been proposed to obtain B in the general case
� All authors partially supported by MTM2004-01165 and FQM-333.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 162–173, 2005.
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in [OT1], [Ba1] and [BM1]. All these methods have a feature in common: their
first step is the computation of the annihilating ideal of fs in D[s], AnnD[s]f

s.
We recall here some experimental evidences in favor of the method of Briançon-
Maisonobe [BM1] with respect to the method of Oaku-Takayama [OT1].

Then we will give upper bounds of the complexity of computing AnnD[s]f
s,

the previous requirement for both algorithms. To obtain this bounds we use
—as far as possible— the techniques and results of [Gr1] on the complexity
of solving systems of linear equations over rings of differential operators (that
extend the classical polynomial case treated in [Se1]). In particular, we show
that the construction of Grigoriev can not be directly generalized to any non-
commutative algebra, including the algebra proposed by Briançon-Maisonobe.
We prove that the complexity of computing AnnD[s]f

s using the method of
[BM1] is that of the calculation of a Gröbner basis in the n-th Weyl algebra
with some extra p commutative variables (2n+p variables at most), while in the
case of the method [OT1] is the calculation of such a basis in a (n+ p)-th Weyl
algebra with some extra 2p variables (so 2n+ 4p variables in all).

We are very grateful to the referees for helping us to clarify our initial version.

2 Preliminaries

In this section we just remind briefly some details of the methods of Briançon-
Maisonobe and Oaku-Takayama, respectively.

2.1 Method of Briançon-Maisonobe

In this case the computations are made in the non-commutative algebra

R = Dn[s, t] = Dn[s1, . . . , sp, t1, . . . , tp],

an extension of the n-th Weyl algebra D in which the new variables s, t satisfy
the relations [si, tj ] = δijti. It is a a Poincaré-Birkhoff-Witt (PBW) algebra:

Definition 1. A PBW algebra R over a ring k is an associative algebra gener-
ated by finitely many elements x1, . . . , xn subject to the relations

Q = {xjxi = qjixixj + pji, 1 ≤ i < j ≤ n},

where each pji is a finite k-linear combination of standard terms xα = xα1
1 · · ·xαn

n

and each qji ∈ k with the two following conditions:

1. There is an admissible1 order ≺ on Nn such that exp(pji) ≺ exp(xjxi) for
every 1 ≤ i < j ≤ n.

2. The standard terms xα, with α ∈ Nn, form a k-basis of R as a vector space.

1 Here admissible means a total order among the elements of Nn with 0 as least
element.
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It is possible to compute Gröbner bases in PBW algebras. The book [BGV1]
is a good introduction to the subject of effective calculus in this fairly general
family.

The following algorithm computes B, starting from

I := AnnR(fs) = 〈sj + fjtj , ∂i +
∑

j

∂fj

∂xi
tj , 1 ≤ i ≤ n, 1 ≤ j ≤ p〉.

Algorithm 1. You have to:

1. Obtain J = AnnDn[s]f
s = 〈G1 ∩ Dn[s]〉 where G1 is a Gröbner basis of I

with respect to any term ordering with variables tj greater than the others
(that is, an elimination ordering for the tj .)

2. B = 〈G2∩C[s]〉, where G2 is a Gröbner basis of J+(f1, . . . , fp) with respect
to any term ordering with xi, ∂j greater than the sl.

2.2 Method of Oaku-Takayama

All the computations are made in Weyl algebras. More precisely, starting from

I ′ = 〈tj − fj,

p∑
j=1

∂fj

∂xi
∂tj + ∂i, i = 1, . . . , n, j = 1, . . . , p〉

Algorithm 2. You have to:

1. Obtain J ′ = I ′
⋂

C[t1∂t1 , . . . , tn∂tn ]〈x, ∂x〉.
2. J = AnnDn[s](fs) = J ′′, where J ′′ denotes the ideal generated by the gen-

erators of J ′ after replacing each ti∂ti by −si − 1.
3. B = 〈G2∩C[s]〉, where G2 is a Gröbner basis of J+(f1, . . . , fp) with respect

to any term ordering with xi, ∂j greater than the sl.

The second step above2 is again the elimination of all the variables but
(s1, . . . , sp). The computation of

I ′ ∩C[t1∂t1 , . . . , tn∂tn ]〈x, ∂x〉
uses 2n + 4p variables, as new variables uj , vj for 1 ≤ j ≤ p are introduced.
More precisely, the first calculation is an elimination of these new variables for
the ideal

〈tj − ujfj ,

p∑
j=1

∂fj

∂xi
uj∂tj + ∂i, 1− ujvj , 1 ≤ i ≤ n, 1 ≤ j ≤ p, 〉,

and some more technical steps must be followed (see [OT1, Procedure 4.1.]).
2 Often the bottleneck to obtain the Bernstein-Sato ideal is this step. As far as we

know, the example for p = 2 with f1 = x2 + y3, f2 = x3 + y2 is intractable for the
available systems.
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3 Experimental Data

Here we give some examples for the cases p = 1, 2 and p > 2 for which it is
clear the superiority of Briançon-Maisonobe’s method. They have been tested3

using Singular::Plural 2.1 (see [GLS1]) in a PC Pentium IV, 1Gb RAM and
3.06GHz running under Windows XP.

Singular::Plural 2.1 is a system for non-commutative general purpose, so
the calculations in our algebras are not supposed to be optimal. We present the
following data only for the sake of comparing both methods in the same system.
In the case of [BM1] method we have used a pure lexicographical ordering, while
for [OT1] we have used typical elimination ordering. These are the orderings
with best results for each case.

The typical input for Singular::Plural 2.1 looks like this for [BM1] method:

ring r = 0,(t(1..3),s(1..3),x,y,z,Dx,Dy,Dz),lp;

matrix C[12][12]=0;

C[1,4]=t(1);C[2,5]=t(2);C[3,6]=t(3);C[7,10]=1;C[8,11]=1;C[9,12]=1;

system("PLURAL",1,C);

poly f1 = x*z+y ; poly f2 = x*y+z; poly f3 = y*z+x;

ideal i =s(1)+t(1)*f1,s(2)+t(2)*f2,s(3)+t(3)*f3, Dx +
t(1)*diff(f1,x)+t(2)*diff(f2,x)+t(3)*diff(f3,x), Dy +
t(1)*diff(f1,y)+t(2)*diff(f2,y)+t(3)*diff(f3,y), Dz +
t(1)*diff(f1,z)+t(2)*diff(f2,z)+t(3)*diff(f3,z);

ideal I = std(i);

And this one for [OT1] method:

ring r = 0,(u,v,x,y,z,t,Dx,Dy,Dz,Dt),(a(1,1),dp);

matrix C[10][10]=0;

C[3,7]=1;C[4,8]=1;C[5,9]=1;C[6,10]=1;

system("PLURAL",1,C);

...

3 The CPU times must be considered as approximations: as it is explained in the
Singular::Plural 2.1 Manual, the command timer is not absolutely reliable due
to the shortcomings of the Windows operating system.
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1. Case p = 1: In the following examples f ∈ C[x, y] or f ∈ C[x, y, z]. They
have been chosen taking into account Arnold’s classification of singularities.
E means the memory was exhausted and the system reported an error.

Table 1. CPU times for the computation of Annfs

f Briançon-Maisonobe’s method Oaku-Takayama’s method

x3 + xy2 + z2 < 0.01s 0.39s

x4 + y3 + z2 < 0.01s 0.39s

yx3 + y3 + z2 0.06s 3.97s

x3 + y2 + z2 < 0.01s 0.02s

x5 + y2 + z2 < 0.01s 4.66s

x7 + y2 + z2 < 0.01s 298.56s

x4 + y5 + xy4 0.56s E (> 12h)

2. Case p = 2: In Table 2 the examples f1, f2 are in C[x, y] or C[x, y, z].

Table 2. CPU times for the computation of Annfs1
1 fs2

2

f1 f2 Briançon-Maisonobe’s method Oaku-Takayama’s method

x3 + y2 x2 + y3 0.72s 6363.97s

x5 + y3 x3 + y5 3.53s E (> 6h)

x7 + y5 x5 + y7 11.84s E (> 6h)

x3 + y2 xz + y < 0.01s 9.73s

x5 + y2 xz + y < 0.01s 1568.59 s

x11 + y5 xz + y 3s E (> 6h)

3. Case p > 2: In Table 3 we have some examples for more than two functions.

Table 3. CPU times for the computation of Annfs1
1 · · · fsp

p

f1 f2 f3 Briançon-Maisonobe’s method Oaku-Takayama’s method

x + y x − y x2 + y < 0.01s 29.46s

x + y x2 + y x + y2 2.64s E

x + y x2 + y x2 + y3 116.24s E

x + y x2 + y x3 + y2 1728.41s E

When the single functions f1, . . . , fp are “simple” enough (for example, lin-
ear) it is possible to obtain AnnD[s1,...,sp]f

s1
1 · · · fsp

p for p rather big (say 15
or 20). This ideal can be related to the annihilating ideal of f = f1 · · · fp.
This idea has been exploited with success in [GHU1] to compute annihilating
ideals for f , where f defines very hard examples of arrangements of hyper-
planes of theoretical interest. In Table 4 we compare the results of applying
this idea in Singular::Plural 2.1 with obtaining directly AnnD[s]f

s using
the powerful system Asir (see [N1]).
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Table 4. Some arrangements of hyperplanes

Briançon-Maisonobe’s method Asir computing
f = f1 · · · fp computing AnnD[s1,...,sp]f

s1
1 · · · fsp

p AnnD[s]f
s

xyz(x + y)(x − y)(x − 2y − z) 0.62s 0.93s

xyz(x− y)(x + y)(x − 2y) 0.05s 0.03s

xyz(x + y)(x− y)(x + y − z) 0.06s 3.54s

xyzu(x + y + z + u) 0.01s 6.99s

xyzuv(x + y + z + u + v) 0.02s 1691.31s

xyzuvw(x + y + z + u + v + w) 0.05s > 3 days

4 Complexity

In [Gr1] a bound for the degree of the solutions of a general system of linear
equations over the Weyl algebra is given, with a procedure somewhat similar to
the one of the commutative case of [Se1]. In this section we study how far the
work of Grigoriev is applicable to our PBW algebra R of 2.1. His construction
has two different steps: in the first, the given system is reduced to another system
in a diagonal form. In the second, it is shown how to normalize the new system
in order to eliminate, successively, the variables.

4.1 Diagonalization

We need three technicals lemma to reduce the system to a diagonal form. They
generalize analogous lemmas of Grigoriev’s paper (see [Gr1, Lemma 1]) and their
proofs are, more or less, straightforward. Here deg means the total degree of a
term, that is, the sum of the exponents of all its variables.

Lemma 1. Let A be a (m− 1)×m matrix with entries in a Poincaré-Birkhoff-
Witt algebra S with a basis of p elements. If deg(aij) ≤ d, there exists a nonzero-
vector f = (f1, . . . , fm) ∈ Sm such that Af = 0 and deg(f) ≤ 2p(m− 1)d = N .

If we work in a noetherian domain (eventually non-commutative), we can
always define the rank of a finite module as in [St1]. Given a square matrix in a
Poincaré-Birkhoff-Witt algebra we say that it is non-singular if it has maximal
rank, and in this case we can obtain a left quasi-inverse with the precedent
lemma:

Lemma 2. Given a m ×m matrix B over a PBW algebra S as in Lemma 1,
non-singular, it has a left quasi-inverse matrix G over S, such that deg(G) ≤ N .

Lemma 3. Given a system of linear equations over a PBW algebra S, it is
defined by a m × s matrix A of rank r, with its elements deg(aij) ≤ d we can
always construct a matrix C, which defines an equivalent system, such that
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CA =
(
C1 0
C2 E

)
A =

⎛⎜⎜⎜⎝
a1 0

. . .
0 ar

"

0 0

⎞⎟⎟⎟⎠ (1)

where E is the identity matrix.

Due to this lemma, we can assume that our system is equivalent to a system
in diagonal form:

akVk +
∑

r+1≤l≤s

ak,lVl = bk, 1 ≤ k ≤ r, deg(ak), deg(ak,l), deg(bk) ≤ 2pmd.

4.2 Normalization

Once the system is in diagonal form, we need to normalize it. To do this, we con-
struct some syzygies, applying Lemma 1 to the submatrix of the first r columns
and the column l > r. There always exist h(l), h

(l)
1 , . . . , h

(l)
r such that:

akh
(l)
k + ak,lh

(l) = 0, 1 ≤ k ≤ r deg(h(l)), deg(h(l)
i ) ≤ 4p2m2d

The result that gives the normalization in the Weyl algebra is the following one:

Lemma 4 ([Gr1], Lemma 4). Given g1, . . . , gt ∈ Dn a family of elements,
there is a nonsingular linear transformation of 2n-dimensional space with basis
x1, . . . , xn, ∂1, . . . , ∂n under which:

xi → Γxi =
n∑

j=1

γ
(1,1)
i,j xj +

n∑
j=1

γ
(1,2)
i,j ∂j ;

∂i → Γ∂i =
n∑

j=1

γ
(2,1)
i,j xj +

n∑
j=1

γ
(2,2)
i,j ∂j

such that the following relations hold:

ΓxiΓ∂i = Γ∂iΓxi − 1; ΓxiΓxj = ΓxjΓxi

Γ∂iΓ∂j = Γ∂jΓ∂i Γ∂iΓxj = ΓxjΓ∂i i �= j,

and if we denote by Γgi the transformed of gi with the indicated linear transfor-
mation, we have Γgi = ∂

deg(gi)
n + Γ̃gi .

Remark 1. The main fact in the proof of the last Lemma 4 is that the matrices
of the linear transformations defined by the relations in the Weyl algebra are a
transitive group.
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Let {g1, . . . , gt} be a set of elements in R = C[s, t, x1, . . . , xn, ∂1, . . . , ∂n]. Let
us see why we can not assure the existence of a linear transformation Γ that
produces

Γgi = vdeg(gi) + Γ̃gi ,

where v is a single variable.
A general linear transformation as the one postulated in Lemma 4 has the

form:

s → Γs = α1s+ β1t +
∑n

j=1 γ
(s,1)
j xj +

∑n
j=1 γ

(s,2)
j ∂j

t → Γt = α2s+ β2t +
∑n

j=1 γ
(t,1)
j xj +

∑n
j=1 γ

(t,2)
j ∂j

xi → Γxi = α
(1)
i s+ β

(1)
i t +

∑n
j=1 γ

(1,1)
i,j xj +

∑n
j=1 γ

(1,2)
i,j ∂j

∂i → Γ∂i = α
(2)
i s+ β

(2)
i t +

∑n
j=1 γ

(2,1)
i,j xj +

∑n
j=1 γ

(2,2)
i,j ∂j

and it has to verify the following relations:

(1) ΓsΓt = ΓtΓs + Γt; (2) ΓsΓxi = ΓxiΓs; (3) ΓsΓ∂i = Γ∂iΓs;
(4) ΓtΓxi = ΓxiΓt; (5) ΓtΓ∂i = Γ∂iΓt; (6) ΓxiΓ∂i = Γ∂iΓxi − 1;

(7) ΓxiΓxj = ΓxjΓxi ; (8) Γ∂iΓ∂j = Γ∂jΓ∂i ; (9) ΓxiΓ∂j = Γ∂jΓxi

From relation (1), we obtain α2 = γ
(t,1)
j = γ

(t,2)
j = 0 for all j, so Γt = β2t. The

change must be nonsingular, so we have β2 �= 0, and again using relation (1) we
deduce that α1 = 1. Using relation (4), we obtain that α(1)

i = 0 for all i, and
with relation (5) that α(2)

i = 0 for all i.
By relation (2) (Γs commutes with Γxi) we have β(1)

i = 0, and relation (3)
gives β(2)

i = 0. So Γ must verify:

s → Γs = s+ β1t +
∑n

j=1 γ
(s,1)
j xj +

∑n
j=1 γ

(s,2)
j ∂j

t → Γt = β2t

xi → Γxi =
∑n

j=1 γ
(1,1)
i,j xj +

∑n
j=1 γ

(1,2)
i,j ∂j

∂i → Γ∂i =
∑n

j=1 γ
(2,1)
i,j xj +

∑n
j=1 γ

(2,2)
i,j ∂j

.

Due to relations from (6) to (9) (between Γxi and Γ∂j ) we have that the subma-
trix (

γ
(1,1)
i,j γ

(1,2)
i,j

γ
(2,1)
i,j γ

(2,2)
i,j

)
verifies the relations of Lemma 4, and in addition, from the relations with Γs it
verifies∑

γ
(s,1)
i γ

(1,2)
i,i =

∑
γ

(s,2)
i γ

(1,1)
i,i

∑
γ

(s,1)
i γ

(2,2)
i,i =

∑
γ

(s,2)
i γ

(2,1)
i,i .

Anyway if we take for example tx1, the requirements for Γ produce

Γtx1 = β2tΓx1 �= v2 + Γ̃tx1 .

Thus we can not repeat the second step of the process in our PBW algebra
in the same way that appears in [Gr1].
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Problem 1. Find a general bound for the solutions of a general linear system
over any PBW algebra or, at least, give such a bound for R.

We will not treat this general problem: with the aim of obtaining a bound
for the complexity of the annihilating ideal of fs, we will consider only the
particular case of one equation of the type that would produce the definition of
the ideal I in section 2.1 or I ′ in section 2.2. In both cases we are interested in
the complexity of computing their Gröbner bases (in different rings), and we do
it considering the equivalent problem of computing the syzygies of the generators
of our respective ideals.

Note 1. In the algorithm of [OT1] the calculations are computed in a Weyl al-
gebra of 2n+ 4p variables in all, or more precisely in a commutative polynomial
ring with n+ 3p, (x, u, v, t) commutative variables extended with n+ p, (∂x, ∂t)
“differential” variables. Let us denote by A this algebra. The complexity of com-
puting the annihilating ideal of fs is bounded by the complexity of computing
a Gröbner basis in A.

Recall that the complexity in the Weyl algebra is given by the following
theorem:

Theorem 3 (Th. 6,[Gr1]). Given a solvable system in the Weyl algebra Dn:∑
1≤l≤s

uk,lVl = wk, 1 ≤ k ≤ m

with deg(uk,l), deg(wk) ≤ d. There exists a solution with deg(Vl) < (md)2
O(n)

As we said before in the Briançon-Maisonobe ring R we can not construct a
similar algorithm to bound the degree of a solution for a system in general. But
in our very special case, our problem is equivalent to computing the solutions of
the equation:

(s1 + f1t1)V1 + . . .+ (sp + fptp)Vp+

(∂1 +
∑

j

∂fj

∂x1
tj)Vp+1 + . . .+ (∂n +

∑
j

∂fj

∂xn
tj)Vp+n = 0

To simplify notation we write the precedent equation as∑
l

QlVl = 0 (2)

Theorem 4. Given f = (f1, . . . , fp), the complexity of the computation of the
annhilating ideal of fs in the Briançon-Maisonobe algebra R = Dn[s1, . . . , sp, t1,
. . . , tp] is bounded by the complexity of the computation of the syzygies of the
elements ∂i +

∑
j

∂fj

∂xi
tj in the Weyl algebra Dn[t1, . . . , tp].
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Proof. We follow the notations of [Gr1] in this proof. We first compute h(l)
1 , h(l)

for 2 ≤ l ≤ n+ p such that:

(s1 + f1t1)h
(2)
1 + (s2 + f2t2)h(2) = 0

...
(s1 + f1t1)h

(p)
1 + (sp + fptp)h(p) = 0

(s1 + f1t1)h
(p+1)
1 + (∂1 +

∑
j

∂fj

∂x1
tj)h(p+1) = 0

...
(s1 + f1t1)h

(p+n)
1 + (∂n +

∑
j

∂fj

∂xn
tj)h(p+n) = 0.

The aim of these h(l) is to reduce any solution V = (V1, . . . , Vp+n) of equation
(2) to another one without s1 from which you can recover V . The process will
be repeated for s2, . . . , sp.

It is easy to see that

[si + fiti, sj + fjtj ] = 0

[si + fiti, ∂j +
∑

l

∂fl

∂xj
tl] = si(

∑
l

∂fl

∂xj
tl) + fiti∂j − ∂jfiti − (

∑
l

∂fl

∂xj
tl)si =

= tisi
∂fi

∂xj
+ ti

∂fi

∂xj
+
∑
l �=i

tlsi
∂fl

∂xj
+ tifi∂j − tifi∂j − ti ∂fi

∂xj
−
∑

l

∂fl

∂xj
tlsi = 0.

Let us define h(l) = s1 + f1t1 for all l ≥ 2. We make the division of the Vl of
equation (2), l ≥ 2 by h(l) with respect to a lexicographical ordering with s1
greater than any other variable. We obtain a remainder V̄l such that degs1

(V̄l) <
degs1

(h(l)) = 1, so it has no s1. So Vl = h(l) ¯̄Vl + V̄l, and adding the relation
Q1h

(l)
1 +Qlh

(l) = 0 multiplied by − ¯̄Vl to equation (2), we obtain:

Q1V̄1 +Q2V̄2 + · · ·+Qn+pV̄n+p = 0

with Qi, V̄i without s1 for i ≥ 2, so V̄1 = 0, where V̄1 = V1 − h
(2)
1

¯̄V2 − · · · −
h

(n+p)
1

¯̄Vn+p, and we have the new equation:

Q2V̄2 + · · ·+Qn+pV̄n+p = 0

in a Briançon-Maisonobe algebra C[s2, . . . , sp, t1, . . . , tp, x, ∂].
Repeating the process for Q2, . . . , Qp, we reduce our problem to solving:

(∂1 +
∑

j

∂fj

∂x1
tj)Vp+1 + . . .+ (∂n +

∑
j

∂fj

∂xn
tj)Vp+n = 0

in the Weyl algebra Dn[t1, . . . , tp].
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As a consequence of 4, the bound for the complexity of computing the anni-
hilating ideal of fs in R is bounded by the complexity of computing a Gröbner
basis in a Weyl algebra with 3p variables less that the one required by the
method of [OT1]. Although the complexity of computing these objects in any
case is known to be double exponential (with respect to the number of variables
and the total degree of the generators of the ideal) by Theorem 3, it is clear that
the reduction of 3p variables of [BM1] is a significant advantage in practice as
it is shown in the examples (see section 3). The theoretical superiority of the
method of [BM1] is an open problem.

Problem 2. Is the bound proposed in this work is reached a la Mayr-Meyer
([MM1])? (that is to say, find an example of annihilating ideal with this worst
complexity).
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Abstract. In this paper we introduce a new type of monomial division
called Janet-like, since its properties are similar to those of Janet di-
vision. We show that the former division improves the latter one. This
means that a Janet divisor is always a Janet-like divisor but the converse
is generally not true. Though Janet-like division is not involutive, it pre-
serves all algorithmic merits of Janet division, including Noetherianity,
continuity and constructivity. Due to superiority of Janet-like division
over Janet division, the algorithm for constructing Gröbner bases based
on the new division is more efficient than its Janet division counterpart.

1 Introduction

In [1] we introduced the concept of involutive division as an underlying notion
for theory of involutive Gröbner bases and designed algorithms for their con-
struction. Then, a modified concept of involutive division was introduced in [2]
together with another form of involutive algorithms based on this concept.

For a given finite polynomial set and a monomial order, an involutive divi-
sion partitions the variables into two disjoint subsets called multiplicative and
nonmultiplicative. One of such partitions was invented by French mathematician
M.Janet in his study [3] of algebraic partial differential equation by means of
their transformation (often called completion) to an involutive form 1. This par-
tition generates Janet division [1] which is one of the most widely used among
known involutive divisions. Janet division and related involutive algorithms for
completion of polynomial or/and differential systems to involution have been
implemented in Reduce, C/C++ [4], Mathematica [5], MuPAD [6], Maple [7],
Aldor [8].

One of the main motivations for use of Janet division is its practical compu-
tational efficiency. Our present day algorithms [4,9], being optimized versions of
those in [1] and implemented for Janet division, demonstrate their superiority
over the best implementations 2 of the Buchberger algorithm [10]. Some of the
related efficiency aspects are discussed in [9].
1 This is where the term “involutive” came from.
2 See our Web page http://invo.jinr.ru for experimental comparison with Singular

and Magma.
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It should be noted, however, that the indicated superiority takes place for most
of standard benchmarks, but not for all of them. In addition, there is a class
of polynomial systems for which any Janet division algorithm is to be highly
inefficient because of a very large Gröbner redundancy of Janet bases. The last
means much larger cardinality of Janet bases than that of the reduced Gröbner
bases. For those examples the degrees of variables which occur in the leading
monomial set of a Gröbner basis form a sparse set in the resulting range of the
degrees. It generates a large number of nonmultiplicative prolongations that are
involutively head irreducible, and, by this reason, present in the the output Janet
basis.

Among such polynomial systems are those generating toric ideals as we al-
ready demonstrated in [11]. By the maximality arguments [2], one can expect
that any other involutive division will also be inefficient for those systems.

In the given paper we introduce another monomial division which also re-
stricts the conventional division (cf. [9]) and is very similar to Janet division.
By this reason we call it Janet-like. The new division, however, is not involutive.
Nevertheless, it possesses all merits of Janet division. Moreover, it improves the
last division by optimizing the number of operations needed to construct the
output Gröbner bases called Janet-like. Janet-like bases and their algorithmic
construction are considered in a separate paper [12].

2 Basics

Let R = K[X] be the polynomial ring over the field K in the indeterminates
X = {x1, . . . , xn}. By M we denote the monoid of monomials in {xi1

1 · · ·xin
n |

ik ∈ N≥0, 1 ≤ k ≤ n} in R. By degi(u) we denote the degree of xi in u ∈M and
by deg(u) =

∑n
i=1 degi(u) the total degree of u. An admissible monomial order

such that
x1 / x2 / · · · / xn (1)

will be denoted by /.
As usual, the conventional divisibility of monomial v by monomial u will be

denoted by u | v. If u | v and deg(u) < deg(v), i.e. u is a proper divisor of v, we
shall write u � v.

For a polynomial f ∈ R\ {0} its leading monomial, leading term and leading
coefficient will be denoted by lm(f), lt(f) and lc(f), respectively. Given a poly-
nomial set F ⊂ R\ {0} and an order /, lm(F ) will denote the leading monomial
set of F . For the ideal in I ∈ R generated by a polynomial set F ⊂ R we shall
write I = Id(F ).

Definition 1. Gröbner basis [10]. Given an order /, a finite subset G ⊂ R is
called a Gröbner basis of ideal I = Id(G) ∈ R if

∀f ∈ I, ∃g ∈ G : lm(g) | lm(f) . (2)
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The basic idea behind the involutive division approach [1,2] is to replace the
conventional division in (2) by its certain restriction called involutive. In the
present paper, we need, however, more general concepts defined as follows.

Definition 2. (Restricted division [9]). A restricted division r on M is a reflexive
transitive relation, denoted by u |r v (u, v ∈ M), such that u |r v =⇒ u | v. If
u |r v, then u is r−divisor of v and v is r-multiple of u, respectively.

Definition 3. (r-basis [9]). Given an order / and a restricted division r, a finite
subset G ⊂ R is called r−basis of ideal I = Id(G) ∈ R if

∀f ∈ I, ∃g ∈ G : lm(g) |r lm(f) .

Note, that the whole class of restricted divisions includes the conventional di-
vision as well. From Definition 2 it follows that a r−basis, if exists, is always a
Gröbner basis. It is also easy to reformulate the concept of Gröbner reduction
and normal form [10] in terms of the restricted division [9].

A natural way to introduce a restricted monomial division r is to indicate a
certain subset X(u) ⊆ X of indeterminates for a monomial u ∈M and to define
for v ∈ M

u |r v ⇐⇒ v = u · w,
where w belongs to the monoid of power products constructed from the inde-
terminates in X(u). Besides, Definitions 1 and 3 deal with r-divisors taken from
a certain finite monomial set. By this reason, for algorithmic purposes of con-
structing Gröbner bases, it suffices to define an r-division for an arbitrary finite
set of possible monomial divisors.

Involutive divisions [1,2] form an algorithmically interesting class of this sort
of restricted divisions. Our concept of involutive division is given by the folowing
definition. 3

Definition 4. (Involutive division [1]). We say that an involutive division L is
defined on M if for any nonempty finite monomial set U ⊂M and for any u ∈ U
there defined a subset ML(u, U) ⊆ X (possibly empty 4) of indeterminates whose
power products generate submonoid L(u, U) of M such that the following holds

1. v ∈ U ∧ uL(u, U) ∩ vL(v, U) �= ∅ =⇒ u ∈ vL(v, U) ∨ v ∈ uL(u, U).
2. v ∈ U ∧ v ∈ uL(u, U) =⇒ L(v, U) ⊆ L(u, U).
3. u ∈ V ∧ V ⊆ U =⇒ L(u, U) ⊆ L(u, V ).

Indeterminates in ML(u, U) are called L−multiplicative for u and the remaining
indeterminates in NML(u, U) := X \ML(u, U) are called L−nonmultiplicative
for u, respectively. If w ∈ uL(u, U), then u is called L−(involutive) divisor of w.

3 Another concept [2] also satisfies conditions 1 and 2 for any given monomial set but
not necessarily condition 3.

4 If ML(u, U) = ∅, then L(u, U) = {1}.
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A typical and computationally good [9] representative of involutive division is
Janet division.

Definition 5. Janet division [1]. Let U ⊂M be a finite set. For each 0 ≤ i ≤ n
partition U into groups labeled by non-negative integers d0, . . . , di

5

[d0, d1, . . . , di] := {u ∈ U | d0 = 0, d1 = deg1(u), · · · , di = degi(u)}. (3)

Indeterminate xi is J(anet)-multiplicative for u ∈ U if u ∈ [d0, . . . , di−1] and
degi(u) = max{degi(v) | v ∈ [d0, . . . , di−1]}.

Below, in accordance to the notations used in Definition 4, we shall write
MJ(u, U) andNMJ(u, U) for the sets of J-multiplicative and J-nonmultiplicative
indeterminates for monomial u ∈ U , and write u |J w if u is a J−divisor of w.

3 Janet-Like Division

In this section we introduce a non-involutive restricted division which improves
algorithmic properties of Janet division. In the following, unless mentioned, the
monomial subsets of M are assumed to be finite and nonempty, and polynomial
subsets of R are also assumed to be finite and without zero polynomials.

Definition 6. (Nonmultiplicative power). Let U ⊂ M be a monomial set and
its elements be partitioned into groups as in (3). For every u ∈ U and 1 ≤ i ≤ n
consider hi(u, U) ∈ N≥0 given by

hi(u, U) := max{degi(v) | u, v ∈ [d0, . . . , di−1]} − degi(u).

If hi(u, U) > 0, then the power xki

i where

ki := min{degi(v)− degi(u) | v, u ∈ [d0, . . . , di−1], degi(v) > degi(u)}
will be called a nonmultiplicative power for u.

We shall denote by NMP (u, U) the set of all nonmultiplicative powers for u ∈ U .

Definition 7. (Janet-like division). Given a set U ⊂M and u ∈ U , elements of
the monoid ideal

NM(u, U) := {v ∈M | ∃w ∈ NMP (u, U) : w | v} (4)

will be called J -nonmultipliers for u ∈ U . Elements inM(u, U) := M\NM(u, U)
will be correspondingly called J -multipliers for u. Element u ∈ U will be called
a Janet-like divisor or J−divisor of w ∈ M (denotation u |J w) if w = u ·v with
v ∈ M(u, U).

Remark 1. From comparison of Definitions 5 and 7 it follows immediately that
every nonmultiplicative power is nothing else then the power of J−nonmultiplica-
tive indeterminate. The following example illustrates this obvious fact.

Example 1. U = {x5
1, x

2
1x

2
2x3, x

2
1x

2
3, x

4
2x3, x2x

2
3, x

5
3} ⊂ K[x1, x2, x3].

5 Note that U = [0].
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Table 1. Comparison of Janet and Janet-like divisions

Element Division
in U Janet Janet-like

MJ NMJ NMP

x5
1 x1, x2, x3 − −

x2
1x

2
2x3 x2, x3 x1 x3

1

x2
1x

2
3 x3 x1, x2 x3

1, x
2
2

x4
2x3 x2, x3 x1 x2

1

x2x
2
3 x3 x1, x2 x2

1, x
3
2

x5
3 x3 x1, x2 x2

1, x2

Proposition 1. Let U ⊂ M be a set, u ∈ U be its element and w ∈ M be a
monomial. Then Janet-divisibility of w by u implies its Janet-like divisibility,
i.e.

u |J w =⇒ u |J w .

The converse is generally not true.

Proof. By Definition 5, w/u is a power product of J−multiplicative variables for
u. Since any element inNMP (u, U) is a power of a J−nonmultiplicative variable,
w is J−multiplier. On the other side, if xki

i ∈ NMP (u, U) and ki > 1, then, in
accordance with Definition 7, u |J u · xki−1

i whereas xi ∈ NMJ(u, U). �

In the rest of this paper we show that Janet-like division, whereas providing a
wider divisibility then Janet division, as the Proposition 1 states, possesses all
algorithmic merits of the last division. First, we show that as well as a Janet
divisor, a Janet-like divisor is unique.

Proposition 2. A monomial w cannot have two distinct J−divisors in any
monomial set.

Proof. Suppose there are two J−divisors u, v ∈ U and u �= v. Let i be the lowest
index such that degi(u) �= degi(v). Without the loss of generality assume that
degi(u) < degi(v). Then u, v ∈ [d0, . . . , di−1] and, in accordance with Defini-
tion 6, xki

i ∈ NMP (u, U) where 0 < ki ≤ degi(v) − degi(u). Since v | w, w/u is
a multiple of xki

i , and u cannot J−divide w, a contradiction. �

Definition 8. (Completeness). A monomial set U is called J−complete if the
equality

CJ (U) = C(U) (5)

holds, where

CJ (U) := {u · v | u ∈ U, v ∈ M(u, U)} , (6)
C(U) := {u · w | u ∈ U,w ∈M} . (7)
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Equality (5) means that any element in the monoid ideal (7) generated by ele-
ments in the complete set U has a J−divisor in U . If U contains only distinct
monomials, then, by Proposition 2, this ideal is partitioned into the disjoint
subsets generated by J−multiples of elements in U .

Lemma 1. Let u, v ∈ U and u |J v · p, p ∈ NMP (u, U). Then u /lex v where
/lex is the lexicographical monomial order induced by (1).

Proof. Assume that p = xki

i (1 ≤ i ≤ n, ki > 0). If i = 1, then deg1(u) > deg1(v).
Indeed, if d1 := deg1(u) = deg1(v), then u, v ∈ [d0, d1]. Since p ∈ NMP (v, U),
by Definition 6, p ∈ NMP (u, U) what contradicts J -divisibility v · p by u.
If deg1(u) < deg1(v), then again, by Definitions 6 and 7, xdeg1(v)−deg1(u)

1 �∈
M(u, U). Thus, for i = 1 u >lex v.

Let now i > 1 and 0 ≤ j < i will be the minimal such that degj(u) < degj(v).
Then x

dj

j ∈ NMP (u, U) where 0 < dj ≤ degj(v) − degj(u). Since (v · p)/u is

multiple of such x
dj

j , u cannot J−divide v · p. Thereby, both u and v belong to
the same monomial group [d0, . . . , di−1]. Then one can apply the same reasoning
as for i = 1 to show that degi(u) > degi(v). �

4 Algorithmic Properties

The following theorem gives an algorithmic characterization of completeness
for Janet-like division much like that for Janet and other involutive divisions.
Thereby, it establishes a property of Janet-like division which we shall call con-
tinuity by analogy with that for involutive divisions [1].

Theorem 1. (Continuity). A monomial set U is J−complete iff

∀u ∈ U, ∀p ∈ NMP (u, U), ∃v ∈ U : v |J u · p. (8)

Proof. (5) =⇒ (8) is trivial since the equality (5) is equivalent to

∀u ∈ U, ∀t ∈M, ∃v ∈ U : v |J u · t .
(8) =⇒ (5) Consider u · t with u ∈ U and t ∈ NM(u, U) as defined in (4). Then
∃q1 ∈ NMP (u, U) : q1 | t. From (8) it follows that ∃u1 ∈ U : u1 |J q1. By
Lemma 1, u1 /lex u. Thus we have u · t = u1 · t1. If t1 ∈M(u1, U) we are done.
Otherwise, ∃q2 ∈ NMP (u, U) : q2 | t1. Again we deduce that u1 · t1 = u2 · t2
where u2 |J q2 and u2 /lex u1. Repeating this reasoning we obtain the chain of
elements in U satisfying

u · t = u1 · t1 = u2 · t2 = · · ·
and, by Lemma 1, such that

u ≺lex u1 ≺lex u2 ≺lex · · ·
Since U is finite, the last chain is terminated with a J−divisor of u · t. �
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Show that Janet-like division satisfies also a property which is the straightfor-
ward analogue of property 3 in Definition 4.

Proposition 3. For every U ⊂ M and u ∈ U , the set of J−nonmultipliers
NM(u, U) introduced in Definition 7 satisfies the condition

∀v ∈ M : NM(u, U ∪ {v}) ⊇ NM(u, U). (9)

Proof. From Definition 6 it follows that NMP (u, U) �= NMP (u, U ∪ {v}) only
if there is 1 ≤ i ≤ n such that u, v ∈ [d0, . . . , di−1] and degi(v) > degi(u). Now,
if degi(u) = max{degi(w) | w ∈ [d0, . . . , di−1]} we have

NMP (u, U ∪ {v}) = NMP (u, U) ∪ {xdegi(v)−degi(u)
i } ,

and, hence, NM(u, U) ⊂ NM(u, U ∪ {v}).
Next, if degi(v) < ki where ki defined as in Definition 6, then

NMP (u, U ∪ {v}) = NMP (u, U) ∪ {xdegi(v)
i } \ {xki

i }.

This implies again NM(u, U) ⊂ NM(u, U ∪ {v}).
At last, if degi(v) ≥ ki the enlargement of U with v does not change the set

NMP (u, U). �

Definition 9. (Completion). For a given set U , a J−complete set Ū will be
called J−completion of U if U ⊆ Ū and

CJ (Ū) = C(U) . (10)

Definition 10. (Prolongation). The product u · v where u ∈ U ⊂ M and v ∈
NMP (u, U) will be called a nonmultiplicative prolongation of u. Similarly, the
product u · v with v ∈M(u, U) will be called a multiplicative prolongation of u.

Remark 2. Exactly as in the theory of involutive polynomial bases [1], the above
defined notion of prolongation is extended to polynomial sets. Given a monomial
order / and a polynomial set F ⊂ R, the product p ·v is called nonmultiplicative
(multiplicative) prolongation of p if it is such for lm(p) ∈ lm(F ).

The following theorem extends the property of constructivity of Janet division [1]
to Janet-like division.

Theorem 2. (Constructivity). A nonmultiplicative prolongation u · t, u ∈ U, t ∈
NMP (u, U) satisfying u · t �∈ CJ (U) and

∀v ∈ U, ∀s ∈ NMP (v, U) such that v · s � u · t : v · s ∈ CJ (U) (11)

belongs to Ū , a J−completion of U .
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Proof. Assume for a contradiction that u·t �∈ Ū . This implies ∃v ∈ Ū : v |J u·t.
From Proposition 3 it follows that v �∈ U and u ·t ∈M(v, U ∪{v}). Then v � u ·t
and ∃u1 ∈ U ∧ ∃v1 ∈ M(u1, U) : v = u1v1 . Since extension of a monomial
set U with J−multiplicative prolongation v of u1 does not affect the group
partition (3) of elements in U , it follows that u ·t = u1 ·w1 where w1 ∈M(u1, U)
and w1 �∈ M(u1, Ū). We deduce that ∃t1 ∈ NMP (u1, Ū) : t1 | w1. Completeness
of Ū implies ∃u2 ∈ Ū : u2 |J u1 · t1. In the obtained equality

u · t = u1 · w1 = u2 · w2

u2 /lex u1 /lex u, by Lemma 1. Again, ∃t2 ∈ NMP (u2, Ū) : t2 | w2, and
∃u3 ∈ Ū : u3 |J u2 · t2. By repetition of this reasoning, we obtain the infinite
chain of elements in Ū satisfying

u ≺lex u1 ≺lex u2 ≺lex u3 ≺lex · · · ,
a contradiction. �

The next important property of Janet division - Noetherianity [1,9] is also
easily extended to Janet-like division.

Theorem 3. (Noetherianity). Every set U ∈ M admits a J−completion.

Proof. Follows trivially from the observation that every Janet complete set is
also a Janet-like complete, and from Noetherianity of Janet division [1]. The
observation is a consequence of Definitions 5, 6 and Janet conditions of com-
pleteness. Indeed, for a Janet complete set all the J−nonmultiplicative power
products are just J−nonmultiplicative indeterminates. An explicit completion
of a set U is as follows

Ū := {u · xi1
1 · · ·xin

n | u ∈ U, 0 ≤ ij ≤ hj(u, U), 1 ≤ j ≤ n} , (12)

where hj(u, U) are as in Definition 6. Set Ū is both J - and J−complete since
∀v ∈ Ū : hi(v, Ū) ≤ 1, and if hi(v, Ū) = 1, then ∃w ∈ Ū : w = v · xi. �

Now we are going to show that among different J -complete sets generating
the same monomial ideal in R there is minimal such set.

Proposition 4. Let U, V ⊂ M be J -complete sets such that Id(U) = Id(V ).
Then the set W := U ∩ V is also J -complete.

Proof. Since both sets U and V generate the same monomial ideal, W also gen-
erates this ideal and U, V are J−completions of W . Assume that W is not J -
complete. This implies ∃u ∈ W, t ∈ NMP (u,W ) : u · t �∈ CJ (W ). Choose such
a pair of u, t without proper divisors among all other nonmultiplicative prolonga-
tions that are not in CJ (W ). Then Theorem 2 asserts that u · t must belong to
any J -completion of W . Thus, u · t ∈ U and u · t ∈ V , a contradiction. �

As an immediate consequence of Proposition 4 we have the following result.
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Corollary 1. Given a monomial set U , there exists a minimal J -completion of
U , that is, such that it is a subset of any other J -completion of U .

The next definition is used in [12] for defining Janet-like bases and for proving
correctness of the underlying algorithm.

Definition 11. (Compactness). A monomial set U will be called J−compact if
U ⊆ V where V is a minimal J−completion of the reduced Gröbner basis of
Id(U).

5 Conclusion

In this paper we give an explicit receipt of improvement of Janet division. Though
the improvement breaks the properties of Janet division as involutive one, the
new division called Janet-like inherits all the attractive features of Janet division.
At the same time the new division decreases Gröbner redundancy of the output
bases.

Recently we analyzed [9] some issues of practical superiority of our Janet di-
vision algorithms over the Buchberger algorithm. All those issues are apparently
preserved by Janet-like division too. In particular, the new division also admits
a tree structure providing a very fast search of Janet-like divisor. Moreover, trees
for the new division are more compact than Janet trees.

Our Janet-like division algorithm in its simplest form presented in [12] to-
gether with some examples demonstrating its superiority over Janet division
algorithms.

We are planning to experiment on Janet-like division to find heuristically best
strategies for selection of nonmultiplicative prolongations. For the Buchberger
algorithm such a strategy is well-known [13]. For Janet division we already de-
tected some good strategies mentioned in [9]. However, a strategy being good
for Janet division may be not always that good for Janet-like division, since the
latter provides generally another sequence of intermediate reduction than the
former. This important aspect needs further experimental study.

We see also another, pure theoretical, direction of research. Namely, to for-
mulate general properties of a restricted monomial division providing its algo-
rithmic applicability to construction of Gröbner bases. We expect that axioms
for involutive division given in Definition 4 or in [2] can be properly modified to
characterize such good, though noninvolutive, divisions as Janet-like.

Acknowledgements

The first author thanks A.S.Semenov for useful remarks relating to the proof
of Theorem 2. The research presented in this paper was partially supported by
the grants 04-01-00784 and 05-02-17645 from the Russian Foundation for Basic
Research and the grant 2339.2003.2 from the Russian Ministry of Science and
Education.



Janet-Like Monomial Division 183

References

1. Gerdt, V.P. and Blinkov,Yu.A.: Involutive Bases of Polynomial Ideals. Math-
ematics and Computers in Simulation 45 (1998) 519–542, http://arXiv.org/
math.AC/9912027; Minimal Involutive Bases. Ibid., 543–560, http://arXiv.org/
math.AC/9912029.

2. Apel, J.: Theory of Involutive Divisions and an Application to Hilbert Function
Computations. Journal of Symbolic Computation 25 (1998) 683–704.
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Abstract. We define a new type of Gröbner bases called Janet-like,
since their properties are similar to those for Janet bases. In particular,
Janet-like bases also admit an explicit formula for the Hilbert function
of polynomial ideals. Cardinality of a Janet-like basis never exceeds that
of a Janet basis, but in many cases it is substantially less. Especially,
Janet-like bases are much more compact than their Janet counterparts
when reduced Gröbner bases have “sparce” leading monomials sets, e.g.,
for toric ideals. We present an algorithm for constructing Janet-like bases
that is a slight modification of our Janet division algorithm. The former
algorithm, by the reason of checking not more but often less number of
nonmultiplicative prolongations, is more efficient than the latter one.

1 Introduction

In [1] we introduced the concept of noninvolutive monomial division called Janet-
like due to its similarity to Janet division studied in [2]. Having possessed all
merits of the latter division, the former division is algorithmically better for
constructing Gröbner bases. This is because every Janet divisor is also a Janet-
like divisor, and the converse may not hold.

We refer to paper [1] for the basic notations and definitions including those
related to Janet-like division and its properties. In the present paper we define
Janet-like bases and show that their Gröbner redundancy never exceeds that of
Janet bases, but in some cases is considerably less. This effect is illustrated by a
number of examples, including toric ideals, which are “unconvenient” for Janet
division. We present also the underlying algorithm in its simplest form that is a
straightforward modification of our involutive algorithm [3].

2 Janet-Like Bases

In this section we introduce Janet-like bases for polynomial ideals in accordance
with general Definition 3 of r−bases in paper [1] specified for Janet-like division.
However, unlike our more general definition of involutive bases [2], we restrict
ourselves to consideration of minimal bases only.

First, we define the corresponding Janet-like reduction and normal form.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 184–195, 2005.
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Definition 1. (J−reduction). Given a monomial order /, a finite set F ∈ R \
{0} of polynomials and a polynomial p ∈ R \ {0}, we shall say that:

(i). p ∈ R is J−reducible modulo f ∈ F if p has a term t = a u (a ∈ K, u ∈M, a �=
0) whose monomial u is J -multiple1 of lm(f). It yields the J−reduction p→
g := p−(a/lc(f)) f ·v where v is J−multiplier for u (v ∈M(lm(f), lm(F ))).

(ii). p is J−reducible modulo F if there is f ∈ F such that p is J−reducible
modulo f .

(iii). p is in J−normal form modulo F (denotation p = NFJ (p, F )) if p is not
J−reducible modulo F .

It follows that the normal form NFJ (g, F ) (g ∈ R) can be presented as the
finite sum

h := NFJ (g, F ) = g −
card(F )∑

i=1

fi

∑
j

αijmij , (1)

where ∀i, j : αij ∈ K, mij ∈ M(lm(fi), lm(F )), lm(fi)mij 0 lm(p), mij �=
mik, (j �= k), and polynomial h is J−irreducible modulo F .

Definition 2. (J−autoreduction). A polynomial set F will be called J−auto-
reduced if

1. The leading monomial set lm(F ) contains distinct elements.
2. Every f ∈ F has no (tail) terms t = a u (0 �= a ∈ K, u ∈ M, u �= lm(f))
J−reducible modulo F .

Now we can define Janet-like bases.

Definition 3. (Janet-like basis). Let I ⊂ R be a nonzero ideal and / be a
monomial order. Then a finite J -autoreduced subset G ⊂ R such that I = Id(G)
is called Janet-like basis or J−basis of I if

∀f ∈ I, ∃g ∈ G : lm(g) |J lm(f) , (2)

and set lm(G) is J−compact in accordance with Definition 11 in [1].

Theorem 1. (Existence). A Janet-like basis exists for any nonzero ideal I ⊆ R

and for any admissible monomial order.

Proof. Let G be a reduced Gröbner basis of I. Let U := lm(G) be the leading
monomial set of G. By Corollary 1 in [1], there exists a minimal J− completion
Ū ⊇ U of U .

If Ū = U , then G is also a Janet-like basis. First, it is J−autoreduced, since
it is conventionally autoreduced. Second, in accordance to conditions (2) and
(10) of paper [1], lm(f) ∈ CJ (U) for all f ∈ I.
1 As noted in Remark 2 of paper [1], J−division for F is defined in terms of the

monomial set lm(F ).
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Otherwise, consider V := Ū \ U . For every v ∈ V there is u ∈ U such that
v = u · w. Note, that w belongs to the monoid ideal NM(u, U) defined in (4)
of paper [1]. For every such v, u, w enlarge G with g · w (g ∈ G, lm(g) = u).
Denote the enlarged set by G1. Now, if a tail term in G1 is J -reducible modulo
G1, then perform its J -reduction as described in part (i) of Definition 1. This
reduction process obviously terminates in a finite number of step, and we obtain
J -reduced set Ḡ such that lm(Ḡ) = lm(G1) = Ū . Since, by the construction,
{lm(f) | f ∈ I} = C(U) = CJ (Ū), the obtained set Ḡ is a Janet-like basis. �

From the above proof we immediately have the next result just as in theories
of Gröbner bases [4] and involutive bases [2,3,5].

Corollary 1. Given an ideal I and a monomial order, the following is equiva-
lent:

(i). G is a Janet-like basis of I.
(ii). G is J−autoreduced, the set lm(G) is J−compact and

∀f ∈ I : NFJ (f,G) = 0 . (3)

Remark 1. The above proof contains, in fact, one of possible algorithms for con-
structing Janet-like bases via reduced Gröbner bases. This algorithm, however,
needs an algorithm for construction of the reduced Gröbner basis. Below we
present another algorithm based on the characterization 3 which computes also
reduced Gröbner bases as subsets of Janet-like bases.

As any r−basis, a Janet-like basis is a Gröbner basis since J -reducibility
implies the conventional reducibility (i.e. reducibility with respect to the con-
ventional division). But the converse is not true in general. By this reason,
Janet-like bases, similarly to involutive bases, are generally redundant as the
Gröbner one.

The following corollary establishes interrelation between (minimal) Janet,
Janet-like and reduced Gröbner bases.

Corollary 2. Given a minimal Janet basis (abreviation JB), a Janet-like (abre-
viation JLB) and a reduced Gröbner basis (abreviation GB) of the same ideal,
their cardinalities satisfy inequality

card(GB) ≤ card(JLB) ≤ card(JB) . (4)

Moreover, if all these bases are monic than

GB ⊆ JLB ⊆ JB . (5)

The strict inequalities in (4) and, repectively, strict inclusions in (5) also take
place for some ideals and orders.
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Proof. If one considers the leading monomial sets of the three bases, then inequal-
ity (4) follows from Proposition 1 in [1] and from already shown fact that both
Janet and Janet-like bases are Gröbner bases. The proof of inclusion GB ⊆ JLB
is contained in the proof of Theorem 1. As to inclusion JLB ⊆ JB, it is an easy
consequence the same Proposition 1 and of the fact that Janet division satisfies [2]
to property 3 in Definition 4 of paper [1]. The last implies that J−autoreduced
elements of a Janet-like basis cannot become Janet reducible after extension (com-
pletion) of the Janet-like basis to the Janet basis. At last, we illustrate below the
strict inequalities and inclusions by some explicit examples. �

Example 1. Consider ideal Id({x6y3−y, x3y4−y}) ∈ Q[x, y]. Its lexicographical
(x / y) bases are

JLB = GB = {x3y−y2, y5−y} , JB = {x3y−y2, xy5−xy, x2y5−x2y, y5−y} .

3 Algorithm

In this section we present the simplest version of an algorithm for constructing
Janet-like polynomial bases and illustrate its work by Example 1. The algorithm
is a straightforward modification of its involutive counterpart [3] and based on
the below theorem that gives an algorithmic characterization of Janet-like bases.

To prove the theorem we need the following lemma.

Lemma 1. For any J−autoreduced polynomial set F , the J−normal form sat-
isfies the linearity condition

∀p1, p2 ∈ R \ {0} : NFJ (p1 + p2, F ) = NFJ (p1, F ) +NFJ (p2, F ) , (6)

Proof. First, we claim that NFJ (p, F ) = 0 iff p admits representation as a finite
sum of the form

p =
card(F )∑

i=1

fi

∑
j

βijmijfj , (7)

where βij ∈ K, mij ∈ M(lm(f), lm(F )), mij �= mik, (j �= k). If NFJ (p, F ) = 0,
then applying a sequence of elementary J−reduction given in Definition 1, which
is obviously terminates by admissibility of order /, we obtain representation (7)
for p. Note, that Proposition 2 in [1] asserts uniqueness of every elementary
reduction. Apparently, this implies uniqueness of the representation2.

Let now p3 := p1 + p2 and h1 := NFJ (p1, F ), h2 := NFJ (p3, F ), h3 :=
NFJ (p3, F ). Then, by Definition 1, NFJ (h3 − h1 − h2, F ) = h3 − h1 − h2 since
h1, h2, h3 have no terms whose monomials belong to CJ (lm(F )). On the other
hand, from (1) it follows that p := h3−h1−h2 admits representation (7). Thus,
NFJ (h3 − h1 − h2, F ) = 0. �

2 It implies also uniqueness of (1) exactly as in the case of involutive divisions [2].
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Algorithm: Janet-like Basis (F,≺)

Input: F ∈ R \ {0}, a finite set; ≺, an order
Output: G, a Janet-like basis of Id(F )
1: choose f ∈ F with the lowest lm(f) w.r.t. /
2: G := {f}
3: Q := F \G
4: do
5: h := 0
6: while Q �= ∅ and h = 0 do
7: choose p ∈ Q with the lowest lm(p) w.r.t. /
8: Q := Q \ {p}
9: h := NormalForm(p,G,≺)

10: od
11: if h �= 0 then
12: for all {g ∈ G | lm(h) � lm(g)} do
13: Q := Q ∪ {g}; G := G \ {g}
14: od
15: G := G ∪ {h}
16: Q := Q ∪ { g · t | g ∈ G, t ∈ NMP (lm(g), lm(G)) }
17: fi
18: od while Q �= ∅
19: return G

Theorem 2. (Algorithmic characterization). An J−autoreduced set F ∈ R sat-
isfies (3) for I = Id(F ) iff

∀f ∈ F ∀p ∈ NMP (lm(f), lm(F )) : NFJ (f · p, F ) = 0 . (8)

Proof. Implication (3) =⇒ (8) is obvious.
(8) =⇒ (3) By Lemma 1, it suffices to show that

∀u ∈M, ∀f ∈ F : NFJ (f · u, F ) = 0 . (9)

Assume, without the loss of generality, that all polynomials in F are monic.
Then conditions (9) together with Theorem 1 in [1] imply J−completeness of
lm(F ). Thus, f · u can be rewritten as

f · u = g · v +
card(F )∑

i=1

fi

∑
j

vij , (10)

where g ∈ F is uniquely defined by f and u, v ∈ M(lm(g), lm(F )), vij ∈M, and
∀i, j : lm(f)u = lm(g)v / lm(fi)vij . Similarly, we can further rewrite every
fi · vij in (10) until we obtain for the right-hand side of (10) representation (7).
Admissibility of / provides termination of this rewriting procedure. �
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The above algorithm is an adaptation of our general involutive division algo-
rithm [3] to Janet-like division. Its input consists of a polynomial set F and a
monomial order /. To output a minimal and J−autoreduced set, in accordance
to Definition 2, the intermediate polynomial data are separated into subsets G
and Q.

Set G contains a part of the intermediate basis. It is initialized at step 2 as a
set with the single element f ∈ F selected at step 1. The rest of the input basis
is contained in the set Q initialized at step 3 as F \ {f}.

When the outer do-while loop 4-18 is executed, set Q can be enlarged with
some elements of G at step 13 and with nonmultiplicative prolongations of poly-
nomials inG. The algorithm terminates whenQ becomes empty during execution
of the inner while loop that signals that all conditions (8) satisfied, and the last
J−normal form h computed at step 9, if nonzero, does not have proper divisors
of lm(h) in lm(G). This condition is verified at step 12.

The choice made at steps 1 and 7 and execution of the for loop 12-13 pro-
vide correctness of the algorithm. To show this and to show also the algorithm
termination, first, consider subalgorithm Normal Form. It is invoked in line 9
of the main algorithm and computes J−normal form in the full correspondence
with Definition 1 and formula (1). Its termination is an obvious consequence of
that for the conventional reductions [4].

Algorithm: Normal Form(p,G,≺)

Input: p ∈ R \ {0}, a polynomial; G ⊂ R \ {0}, a finite set; ≺, an order
Output: h = NFJ (p,G), the J−normal form of p modulo G
1: h := p
2: while h �= 0 and h has a term t J−reducible modulo G do
3: take g ∈ G such that lm(g) |J t
4: h := h− g · t/ lt(g)
5: od
6: return h

Show now termination of algorithm Janet-like Basis. By the choice done
at steps 1 and 7 and by displacement of elements from G to Q at step 13, the
elements in lm(G) occurring right before execution of step 15 have no proper
divisors in lm(Q). Thereby, when the leading monomial lm(p) of the nonmul-
tiplicative prolongation g · t ∈ Q with (g ∈ G, t ∈ NMP (lm(g), lm(G)) chosen
at step 7 has no J−divisor in lm(G), the constructivity property (11) in [1]
implies that lm(p) = lm(h) belongs to any completion of lm(G). Noetherianity
ascertained by Theorem 3 of paper [1] guarantees termination of this completion
process.

There are finitely many cases when an element of the input polynomial set
F is selected from Q at step 7. Besides, there can only be a finitely many cases
when a J−head reducible polynomial p taken from Q has 0 �= h = NFJ (p,G)
computed at step 9. This is because in every such case lm(h) �∈ C(lm(G)).
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Indeed, assume that there are g ∈ G and v ∈ NM(lm(g), lm(G)) satisfying
lm(g) · v = lm(h). In that case all nonmultiplicative prolongations of the form
g · t with t ∈ NMP (lm(g), lm(G)), t | v, lm(g) · t �∈ CJ (lm(G)) must be added to
Q at step 16 of a previous run of the main loop. But then, since lm(h) ≺ lm(p),
all these prolongations must be selected at step 7 and further processed earlier
than p. As a result, the leading monomials of these prolongations must belong to
CJ (lm(G)) when p is under processing. However, the same arguments as we used
in the proof of Theorem 1 in [1], bring us to a contradiction with the assumption
made.

To prove correctness of algorithm Janet-like Basis it suffices to show that
the following is a do-while loop invariant:

1. lm(G) is J−compact,
2. The tail monomials in G are not in CJ (lm(G)).

G trivially satisfies both conditions at the initialization step 2. Suppose that
this is true after execution of the while loop 6-10, and let G1 := G ∪ {h} be a
set obtained at step 15.

If lm(p) = lm(h), as we already seen, lm(G1) is compact. Furthermore, by
property (9) in [1], the elements in G remain J−reduced after enlargement of
G with h. As to the last polynomial, it is in the normal form modulo G, by its
construction at step 9.

Consider now the case when h �= 0 and lm(p) / lm(h). Let G0 be the value
of the intermediate set G right after execution of the while loop 6-10, and G1

be the set obtained at step 15.
Assume that lm(G1) is not compact. Then G1 has a proper subset G2 ⊂ G1

with compact lm(G2). Then, for any f ∈ G1 there exists g ∈ G2 such that
lm(g) |J lm(f) with respect to the set G2. At all that g �= h in accordance to the
displacement condition in line 12. Since Id(lm(G2) = Id(lm(G1)), polynomial f
might only had been added to G as a result of processing a head irreducible
nonmultiplicative prolongation of a polynomial s ∈ G0 which has been displaced
at step 13. In this case, however, polynomial f must be also displaced to Q since
lm(h) | lm(s) | lm(f). The obtained contradiction shows compactness of lm(G1).

Similarly, if a tail monomial u ∈ M of a polynomial g ∈ G1 became J−
reducible modulo lm(G1), then it could happen only if u were a nonmultiplicative
prolongation u = lm(f)·t ≺ lm(g) where polynomial f has been moved from G to
Q. But in such a case, by the selection strategy of steps 1 and 7, the prolongation
f · t must be processed earlier than the nonmultiplicative prolongation of the
element in Q whose processing created g. Then, processing of g would lead
to J−reduction of u. Thus, J−reducible tail monomials cannot occur in G1.
As to the polynomial h itself, the impossibility of its tail J−reduction after
the displacement follows also from the fact that lm(h) cannot divide its tail
monomials.

As an illustration to the internal processing in algorithm Janet-like Basis,
Table 1 shows intermediate polynomial data for Example 1. The second column
of the table contains elements of setG. Their J−nonmultiplicative powersNMP
are shown in the third column. The set Q is given in the fourth column. Rows
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of the table contain these values obtained at the initialization and after every
interation of the do-while loop. In this case at steps 1 and 7 we selected the
lexicographically smallest elements.

Table 1. Intermediate basis elements for Example 1

Steps of Sets G and Q
algorithm elements in G NMP Q

initialization x3y4 − y − {x6y3 − y}
iteration x6y3 − y −

x3y4 − y x3 {x6y4 − x3y}
x3y − y2 − {x3y4 − y, x6y3 − y}
x3y − y2 −
y5 − y x3 {x3y5 − x3y, x6y3 − y}

x3y − y2 −
y5 − y x3 { }

In spite of often redundancy of Janet-like bases as Gröbner ones, as well as
in the case of involutive bases [5,6], just this redundancy provides more accessi-
bility to information on polynomial ideals and modules. In particular, Janet-like
bases also give explicit formulae for the Hilbert function (cf. [5]) and Hilbert
polynomial (cf. [3]) of a polynomial ideal I in terms of binomial coefficients. If
G is a J− basis of I, then the (affine) Hilbert function HFI(s) and the Hilbert
polynomial HPI(s) are

HFI(s) =
(
n+ s
s

)
−

s∑
i=0

∑
u∈lm(G)

d1−1∑
i1=0

· · ·
dk−1∑
ik=0

(
i−∑j ij − deg(u) + μ(u)− 1

μ(u)− 1

)
,

HPI(s) =
(
n+ s
s

)
−

∑
u∈lm(G)

d1−1∑
i1=0

· · ·
dk−1∑
ik=0

(
s−∑j ij − deg(u) + μ(u)

μ(u)

)
.

Here, if NMP (u, lm(G)) �= ∅, then NMP (u, lm(G)) := {xd1
1 , . . . , xdk

k } with
dj �= 0 (1 ≤ j ≤ k) and μ(u) := n − k. Otherwise, k := 1, d1 := 0, μ(u) := n.
The first term in the right hand sides of these formulae is the total number of
monomials in M of degree ≤ s. The sum in the expression for HFI(s) counts
the number of monomials of degree ≤ s in the set CJ (lm(G)) defined in (6) of
paper [1]. In accordance to the completeness condition (5) in [1], this number
coincides with the number of such monomials in the monoid ideal C(lm(G)) as
defined in (7) of paper [1].

4 Illustrative Examples

In this section we consider four more nontrivial examples than small Example 1.
Our goal is to compare their Janet-like bases with minimal involutive Janet bases
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and reduced Gröbner bases. We present these examples in the increasing orderwith
respect to the cardinalities of Janet bases. Two of examples generating toric ideals
we took from [7] and [8] and already used in [9] to show limitations in applicability
of Janet bases. In the last paper we also shortly noted the approach described in
the present paper. One more toric ideal was taken from [10] where it was presented
already in the Gröbner basis form. One of the examples [11] is not toric ideal, but
also demonstrates deficiency in application of Janet bases to certain problems.

The below examples have compact input and comparatively compact (re-
duced) Gröbner bases whereas their Janet bases are much larger. For all the
examples we used the degree-reverse-lexicographical monomial order induced by
the explicitly indicated order on the variables.

Computations were performed with our C++ code implementing Janet di-
vision algorithm [3]. We extended the package with our first implementation of
Janet-like division. The actual algorithm that has been implemented is an im-
proved version of the above algorithm Janet-like Basis. The improvement is
similar to that described in [3] for involutive division.

The reduced Gröbner bases given explicitly whereas Janet and Janet-like
bases given only for the first rather small example. In addition, for the listed ex-
amples we computed their Hilbert polynomials via Janet-like bases (see Sect.5).

Example 2. ( Toric ideal I ) [7] { x7−y2z, x4w−y3, x3y−zw } (x / y / z / w).
Gröbner basis: { x7 − y2z, x4w − y3, x3y − zw, y4 − xzw2 } .
Janet-like basis: { x7 − y2z, x4y − xzw, x4w − y3, x3y − zw, y4 − xzw2 } .
Janet basis: { x7− y2z, x6y− x3zw, x6w− x2y3, x5y− x2zw, x2y4− x3zw2,

x5w − xy3, x4y − xzw, x2zw2 − xy4, x4w − y3, x3y − zw, y4 − xzw2 } .
Hilbert Polynomial :

39
6
s2−21

2
s+5 .

Example 3. ( Polynomial ideal ) [11] (w / x / y / z)

{ z20 + z10 − x2, z30 + z10 − x y3, w40x4 − y6 } .
Gröbner basis:

{ 16w40z10 − 16w40x2 + y18 − x12 + 9x9y3 − 24y12 − 33x10 + 150x7y3 + 8z10

−219x8 + 627x5y3 − 470 ∗ x6 + 690x3y3 + 16y6 − 502x4 + 188xy3 − 196x2,

16w40y9 − 16w40x3 − y27 + 32y21 + x16y3 − 12x17 + 98x14y3 − 374x15 +
1875x12y3 − 160y15 − 3778x13 + 13743x10y3 − 17179x11 + 45923x8y3

−41148x9 + 74362x6y3 + 120y9 − 57702x7 + 60452x4y3 − 1760xy6 − 45324x5

+18416x2y3 − 16728x3, w40x4 − y6, 8w40xy3 − 8w40x2 + y18 − x12 + 9x9y3

−22y12 − 33x10 + 150x7y3 + 8xy9 − 221x8 + 631x5y3 − 472x6 + 688x3y3 +
8y6 − 506x4 + 192xy3 − 192x2, z20 + z10 − x2, xy12 − x9 + 6x6y3 + 2y9

−13x7 + 41x4y3 − 8xy6 − 24x5 + 28x2y3 − 22x3, 2y3z10 + 2xz10 − xy6 + x5

−3x2y3, x2z10 + 2z10 − xy3 − x2, x2y6 − x6 + 3x3y3 − 2x4 + 2xy3 − 2x2 } .
Hilbert Polynomial: 2980 s− 76460 .
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Example 4. ( Toric ideal II ) [8,9] (x0 / x1 / x2 / x3 / x4)

{ x0x1x2x3x4 − 1, x29
2 x

5
3 − x14

1 x20
4 , x39

1 − x25
2 x14

3 } .

Gröbner basis:

{ x0x1
2x3x4

281 − x2
280, x2

281 − x1x4
280, x0x3

2x4
221 − x1x2

218,

x1
2x2

219 − x3x4
220, x0x3

3x4
161 − x1

4x2
156, x1

5x2
157 − x3

2x4
160,

x0x3
4x4

101 − x1
7x2

94, x1
8x2

95 − x3
3x4

100, x0x1
4x4

61 − x2
61,

x2
62x3 − x1

3x4
60, x0x3

5x4
41 − x1

10x2
32, x1

11x2
33 − x3

4x4
40,

x0x2
26x3

15x4 − x1
38, x1

39 − x2
25x3

14, x0x1
15x4

21 − x2
28x3

4,

x2
29x3

5 − x1
14x4

20, x0x3
10x4

21 − x1
24x2

3, x1
25x2

4 − x3
9x4

20,

x0x1x2x3x4 − 1 } .

Hilbert Polynomial :
3905

2
s2−177005

2
s+178805 .

Example 5. ( Toric ideal III ) [10] (x / y / z / w)
Gröbner basis:

{ y250 − x239z11, x150z12 − y161w, y89z − x89w x61z13 − y72w2,

x33z27 − y55w5, z55 − x23y21w11, x5z41 − y38w8, y17z14 − x28w3 } .

Hilbert Polynomial :
1229

2
s2−73855

2
s+546272 .

Table 2. Cardinalities of bases in Examples 2-5

Example Cardinality
Gröbner basis Janet-like basis Janet basis

2 4 5 11
3 9 14 983
4 19 190 7769
5 8 18 37901

In Table 2 we show cardinalities of Gröbner, Janet-like and Janet bases for
the above examples. As one sees, Janet-like bases are much more compact than
Janet bases. In other words, they have much less Gröbner redundancy. This
higher redundancy of Janet bases has an effect on the running times.

The timings for construction of Janet bases for Examples 3, 4 and 5 3, as
measured on a AthlonXP 1600 computer with 256 Mb RAM running under
Gentoo Linux 2004.3, are 0.04, 3.73 and 427.52 seconds, respectively. As to the
3 Example 2 is too small for our code.
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timings for Janet-like bases, because of their very small value (certainly less that
0.01 second) we were not able to measure them.

It is clear that for the case of Janet bases those computing times are wasted
for constructing, analyzing and adding to the output basis a large number of
J−head irreducible nonmultiplicative prolongations. Janet-like division is much
more optimized in this respect.

5 Conclusion

It should be noted that, given a Janet-like basis G of a polynomial ideal I :=
Id(G), the set

{ tg | g ∈ G, t ∈M(lm(g), lm(G)) } (11)

can be considered as a staggered linear basis of I as K−vector space. Simi-
larly, any involutive basis G generates a staggered linear basis if one replaces
M(lm(g), lm(G)) in (11) by L(lm(g), lm(G)) in accordance with Definition 4
in [1].

The notion of staggered linear basis was introduced in [13] (see also [14]) to-
gether with the appropriate modification of the Buchberger algorithm for com-
puting Gröbner bases. Based upon relation (11), one can consider algorithm
Janet-like Basis, as well as involutive algorithms [2,5,3], as improvements of
the Gebauer-Möller staggered linear basis algorithm [13]. Another and very ef-
ficient imrovement of the last algorithm is the Faugère algorithm F5 described
in [15] for the case of homogeneous input polynomials. The most impressive fea-
ture of F5 is detecting practically all useless, i.e., zero-redundant critical pairs.

The radical distinction of algorithm Janet-like Basis and involutive algo-
rithms from the Gebauer-Möller staggered linear basis algorithm and the Faugère
algorithm F5 is partition of monomials for every of intermediate polynomials into
two disjoint sets: multiplicative and nonmultiplicative. These two sets play fun-
damentally different algorithmic role. Whereas nonmultiplicative monomials are
used for construction of prolongations including critical pairs, the multiplica-
tive ones are used for reduction only. As a result, both intermediate and output
bases generally have some extra Gröbner redundant elements that are nonmul-
tiplicative prolongations of other elements in the basis. In doing so, the reduced
Gröbner basis is the internally fixed subset of the output basis, and can be output
without any extra computational costs.

On the other hand, experimental study of Janet division presented in [3]
shows that the presence of extra polynomials provided by the partition of mono-
mials smoothes growth of intermediate coefficients, and thereby increases prac-
tical efficiency of computation. Other efficiency aspects of the partition observed
in [3] are: weakened role of the Buchberger criteria, fast search of a reductor,
natural and effective parallelism. By its similarity to Janet division, Janet-like
division preserves all these efficiency issues. The experimental evidence of this
fact will be described elsewhere.

There are grounds to believe that the new criterion of paper [15] can be
adopted to our algorithms too.
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Abstract. It is known that there exists a Minimum Distance Diagram
(MDD) for circulant digraphs of degree two (or double-loop computer
networks) which is an L-shape. Its description provides the graph’s di-
ameter and average distance on constant time. In this paper we clarify,
justify and extend these diagrams to circulant digraphs of arbitrary de-
gree by presenting monomial ideals as a natural tool. We obtain some
properties of the ideals we are concerned. In particular, we prove that
the corresponding MDD is also an L-shape in the affine r-dimensional
space. We implement in PostScript language a graphic representation
of MDDs for circulant digrahs with two or three jumps. Given the ir-
redundant irreducible decomposition of the associated monomial ideal,
we provide formulae to compute the diameter and the average distance.
Finally, we present a new and attractive family (parametrized with the
diameter d > 2) of circulant digraphs of degree three associated to an
irreducible monomial ideal.

1 Introduction

Let Γ be a finite group and S = {j1, . . . , jr} a subset of Γ . The Cayley digraph of
Γ with respect to S is a digraph whose vertex set is Γ and such that (g, h) is a
directed edge if and only if g−1h ∈ S. Let N be a positive natural number
and ZN the integers modulo N ; we denote by CN (S) = CN (j1, . . . , jr) the
Cayley digraph of the cyclic group ZN . CN (j1, . . . , jr) is called the circulant
digraph of jumps j1, . . . , jr. If S is a subset of ZN verifying: for every j ∈ S,
also −j ∈ S, then CN (S) is called (undirected) circulant graph. CN (j1, . . . , jr)
is a vertex-symmetric graph of degree r. And it is connected if and only if
gcd(j1, . . . , jr, N) = 1.

Circulant digraphs or multi-loop computer networks have a vast number
of applications in telecommunication networking, VLSI design and distributed
computation. Their properties, such as diameters and reliabilities, have been the
focus of many research in computer network design, see for instance [3,5,6,10,11].

The particular case r = 2, this is, circulant digraphs of degree two or double-
loop networks, has been extensively studied, see the surveys [2,4]. WhenCN (j1, j2)
is connected, we can define a Minimum Distance Diagram (MDD) as an array with
vertex 0 in cell (0, 0) and vertex c in cell (x, y) (x is the column and y the row
index), for an instance making j1x+ j2y ≡ c mod N and x+ y minimum.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 196–207, 2005.
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Fig. 1. C33(5, 14)

The classical work by Wong and Coppersmith (1974) [10] presents an algo-
rithm to construct an MDD of CN (j1, j2) on O(N2) steps and showing it is an L-
shape. They also gave a general idea to construct an MDD of CN (1, s1, . . . , sr−1).

Two notable parameters in a graph are the diameter d(CN ) and the average
distance d̄(CN ). The diameter represents the worst delay in the communication
between two nodes and the average distance the average delay. Given an L-shape
it is easy to recover both quantities.

On the other hand, if we denote by dr(N) = min{d(CN (j1, . . . , jr) : j1, . . . , jr
∈ ZN}, an important problem in circulant digraph theory is determining dr(N)
and finding CN (j1, . . . , jr) which attains this minimum diameter. The network
CN (j1, . . . , jr) is said to be optimal if d(CN ) = dr(N). In some cases, it is difficult
to obtain such networks; however, one can find general simple functions lbr(N)
and upbr(N) which are for every N a lower and an upper bound for dr(N), see
[2]. The paper [10] showed lb2(N) =

√
3N−2 and presented a family of circulant

digraphs having diameter 2
√
N − 2.

In this article we present the monomial ideals as a natural tool to study MDDs
for general circulant digraphs of arbitrary degree. Given a graded monomial
ordering and a circulant digraph CN (j1, . . . , jr) we build a monomial ideal in the
polynomial ring K[X1, . . . , Xr], where K is an arbitrary field. We obtain some
properties of this ideal, in particular, we prove that the corresponding MDD is
also an L-shape in the affine r-dimensional space. We implement in PostScript
language a graphic representation of a MDD for circulant digraphs of degree
two or three. Given a minimal system of generators of the monomial ideal we
provide formulae to compute d(CN ) and d̄(CN ) for the corresponding circulant
digraph CN (j1, . . . , jr). We also show a family of circulant digraphs of degree
two, which basically coincides with the family obtained in paper [10]. Finally,
given a natural number d > 2 we build a circulant digraph of degree three with
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diameter d, average distance d/2 and having an irreducible monomial ideal for
any graded monomial ordering.

The paper is divided into six sections. In Section 2 we collect several known
facts about monomial ideals, presenting examples and fixing notation for later
use. Section 3 regards the key idea of associating circulant digraphs to monomial
ideals in order to obtain a MDD. Section 4 is dedicated to provide formulae to
find the diameter and the average distance. Then (Section 5) we show families of
circulant graphs of degree two and degree three. We conclude with a discussion
of open questions.

This is an extended abstract. A detailed version may be consulted at http://
personales.unican.es/ibeasaj/circula.

2 Monomial Ideals

Monomials ideals form an important link between commutative algebra and com-
binatorics. Here we review several basic related results and definitions concerning
monomial ideals, see for instance [1,9]. We will apply these results several times
along the paper.

Let K be an arbitrary field and K[X1, . . . , Xr] the polynomial ring in the
variables X1, . . . , Xr. Throughout the paper, we very often identify monomials
of K[X1, . . . , Xr] with vectors of Nr and we use the following notation:

xa = Xa1
1 · · ·Xar

r ←→ a = (a1, . . . , ar).

xa|xb ⇐⇒ a = (a1, . . . , ar) ≤ b = (b1, . . . , br) ⇐⇒ ∀i = 1, . . . , r, ai ≤ bi.

ei = (0, . . . ,
i

�
1 , . . . , 0).

a = (Xai

i / ai > 0)

A monomial ideal is an ideal generated by monomials, i.e., I ⊂ K[X1, . . . , Xr]
is a monomial ideal if there is a subset A ⊂ Nr such that:

I = (xa / a ∈ A) =: (A).

We deal with two ways of describing an arbitrary monomial ideal:

– via the minimal system of generators, I = (xa1 , . . . ,xas), we have:

xu ∈ I ⇐⇒ ∃ i ∈ {1, . . . , s} / ai ≤ u,

– via the (unique) irredundant irreducible decomposition, I = b1 ∩ · · · ∩ bn ,
we have:

xu �∈ I ⇐⇒ ∃ i ∈ {1, . . . , n} / u < b̂i, where b̂i,j :=
{
bi,j , if bi,j > 0
+∞, if bi,j = 0 .
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An algorithm for finding a primary decomposition of a monomial ideal is
based on the Alexander duality (see [7]). An irreducible component a can be
associated with lcm(Xa1

1 , . . . , Xar
r ) = xa. On the other hand, if K[X1, . . . , Xr]/I

is an artinian ring then the monomial xa associated with the irreducible compo-
nent a must coincide with the least common multiple of a subset of the minimal
generators of I. The following is a straight-forward result:

Theorem 1. Let I be a nontrivial monomial ideal given by the minimal system
of generators I = (xa1 , . . . ,xas) and by the irredundant irreducible decomposition
I = b1 ∩ · · · ∩ bn. The following are equivalent:

1. K[X1, . . . , Xr]/I is an artinian ring.

2. ∀i = 1, . . . , r, ∃j ∈ {1, . . . , s}, ∃e ∈ N / aj = (0, . . . ,
i

�
e , . . . , 0).

3. ∀i = 1, . . . , n, ∀j ∈ {1, . . . , r} / bi,j > 0.

We conclude this section by illustrating these facts by an example:

Example 1. Let I2 be the following monomial ideal (see Figure 2):

I2 = (x8, x4y2, y5, y3z, z5, x3z4, x7z, x3y2z2) =

= (x8, y2, z) ∩ (x7, y2, z4) ∩ (x4, y3, z2) ∩ (x4, y5, z) ∩ (x3, y3, z5).

8,0,0 4,2,0 0,5,0

7,0,1 3,2,2

0,3,1

3,0,4

0,0,5

8,2,1

7,2,4

3,3,5

4,3,2

4,5,1

Fig. 2.

In [8], a planar graph is associated to every monomial ideal in three dimen-
sions. Whenever the K-dimension of the ideal is finite, the associated monomial
xb to an irreducible component b is identified with a bounded connected com-
ponent is the graph’s complement and can be obtained as the least common
multiple of generators in its boundary.

The description of those relations will permit simplifying several computa-
tions on the monomial ideals associated with circulant digraphs.
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3 Minimum Distance Diagram (MDD)

Monomial ideals also arise in graph theory. Given a graph G with vertices
X1, . . . , Xr; it is associated with the monomial ideal generated by the quadratic
monomials XiXj such that Xi is adjacent to Xj (see for instance [9]). In this
section we propose a different approach to study circulant digraphs: we also
associate a circulant digraph with a monomial ideal.

The set of paths can be identified with Nr, being a = (a1, . . . , ar) the path
formed by joining ai jumps of type ji, (1 ≤ i ≤ r). So, each path becomes a
monomial and conversely.

Given a connected circulant digraphCN (j1, . . . , jr) we are looking for a short-
est path from node 0 to node c for all c ∈ ZN : a minimum distance diagram
(MDD). We can construct the routing function R:

R : Nr −→ ZN

a � a1j1 + · · ·+ arjr.

Thus, we need to find a right inverse map of R:

D : ZN −→ Nr ,

such that

R(D(c)) = c, ∀c ∈ ZN ∧ ‖D(c)‖1 = min{‖x‖1 / x ∈ R−1(c)}.
In general the map D is not unique. This happens when the set R−1(c)

contains two or more elements with minimum 
1 norm, for some c ∈ ZN .
In circulant digraphs of degreee two we can characterize this situation in

terms of lattices. Let R̄ be the extended map of R from Nr to Zr and, L the
kernel of the map R̄.

Proposition 1. With the above notation, and given an MDD D, we have that
CN (j1, j2) has more than one MDD if and only if there exists a vector (T,−T ) ∈
L with T > 0 and T ≤ max{a1, a2}, for some a = (a1, a2) ∈ D(ZN ).

In the introductory example C33(5, 14):

(T,−T ) = α(−16, 1) + β(−1,−2) ∈ L ⇐⇒ α =
−A

11
, β =

5T

11
∈ Z ⇐⇒ T ∈ (11).

In consequence, this graph admits exactly four MDDs, the L-shape given in
the Introduction section, and the three ones shown in Figure 3.

However, only two of them are L-shapes and they correspond with the only
two graded monomial orderings in K[X,Y ]. So, according with the previous
discussion in order to determine a unique MDD we need a well-order relation in
Nr, for instance a monomial ordering. Since the norm 
1 equals the monomial
degree, the monomial ordering should be graded. Fixing a graded monomial
ordering 0, then the associated MDD is:

D : ZN −→ Nr

c � min(R−1(c)).
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Fig. 3. Different MDD’s for the same graph

For each monomial ordering we can associate the bijective map p : N −→ Nr,
such that n < m⇒ p(n) ≺ p(m). That is, verifying

p(i) = min (Nr\{p(j) / j < i}) .

This map provides a method for constructing the MDD with respect to the
fixed monomial ordering. The method consists on visiting (through p) the points
(paths)of Nr until cover all nodes (ZN ).

We have implemented in PostScript language a graphic representation of the
MDD associated to a circulant digraph of degree two or three and a graded
lexicographic (reverse or not) ordering. The implementation uses the function s:

s : Nr −→ Nr

a � p(p−1(a) + 1) .

Algorithm 2 (MDD construction). We have as input the circulant digraph
and the map s corresponding with a graded lexicographic monomial ordering 0:

a ≺ s(a), (a ≺ b⇒ s(a) 0 b)

INPUT j1, . . . , jr, N ∈ N, gcd(j1, . . . , jr, N) = 1; s
OUTPUT D(c), c = 0, . . . , N − 1
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Fig. 4. Two L-shapes for C37(3, 14, 25)

– D[0, . . . , N − 1] := ∅̄, S := 0, a := 0
– while (S < N)
• c := R(a)
• if D(c) = ∅,

D(c) := a, S := S + 1

• a := s(a)

Definition 1. With the above notation and results, let CN (j1, . . . , jr) be a con-
nected circulant digraph and 0 a graded lexicographic ordering. The monomial
ideal

IC := (Nr\D(ZN ))

is the ideal associated with CN (j1, . . . , jr) and the monomial ordering.

In the examples shown in Figure 4, we have two monomial ideals J1 and
J2 associated with C37(3, 14, 25) and with respect graded lex x < z < y and
x < y < z respectively:

J1 = (x5, x4y, y2, yz4, z5, x4z) = (x5, y, z) ∩ (x4, y, z5) ∩ (x4, y2, z4).

J2 = (x5, x4y, x3y2, x2y4, xy6, y8, y7z, y5z2, y3z3, yz4, z5, xz) =

= (x, y7, z2) ∩ (x, y5, z3) ∩ (x, y3, z4) ∩ (x, y, z5) ∩ (x5, y, z)∩
∩(x4, y2, z) ∩ (x3, y4, z) ∩ (x2, y6, z) ∩ (x, y8, z).

Proposition 2. With the above notations, we have(
Nr\D(ZN )

) ∩ Nr = Nr\D(ZN ).

Obviously D is an injective map and, the cardinal of D(ZN ) is N <∞. So,
the monomial ideal IC always contains generators of the formXa1

1 , . . . , Xar
r , that

is, the quotient polynomial ring K[X1 . . . , Xr]/IC is artinian, see Theorem 1. We
say that an MDD built from a graded monomial ordenring is degenerate if
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IC is an irreducible ideal, that is, if the minimal system of generators of IC only
contains such that generators. In general it is not the case as is illustrated in
the above examples. The paper [10] constructed a MDD in L-shape of circulant
digraphs of degree two (i.e., r = 2). The following concept is the generalization
of L-shape to arbitrary dimension:

Definition 2. Let I be a monomial ideal and let A be the minimal system of
generators of I. We say that I is an L-shape if at most there exists one xa =
Xa1

1 · · ·Xar
r ∈ A such that ai > 0, for all i = 1, . . . , r.

We say that an MDD built following Algorithm 2 is an L-shape if the asso-
ciated monomial ideal is an L-shape.

We will prove that any MDD built as in Algorithm 2 is an L-shape. First we
need the following technical result:

Lemma 1. With the above notation, let A be the minimal system of generators
of IC . If a ∈ A such that ai > 0 for some i, then bi = 0 where D(R(a)) = b =
(b1, . . . , br).

Now, we state the main result of this section:

Proposition 3. For any circulant digraph and graded monomial ordering, Al-
gorithm 2 returns an L-shape.

4 Diameter and Average Distance

Two notable parameters in a digraph are the diameter and the average dis-
tance. The diameter represents the worst delay in the communication between
two nodes and the average distance the average delay. In this section we show
formulae to compute those parameters in a circulant digraph given by the irre-
dundant irreducible decomposition of the monomial ideal IC .

4.1 Diameter

Given an MDD of a circulant graph CN (j1, . . . , jr) it is easy to obtain the di-
ameter:

d(CN ) = max{‖a‖1 / a ∈ D(ZN )}.
The description of the monomial ideal IC in terms of irreducible components

permits a simplification:

Proposition 4. Let b1 ∩· · ·∩ bn be the irredundant irreducible decomposition
of the ideal IC . Then

d(CN ) = max{‖bi‖1 − r / i = 1, . . . , r}.
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4.2 Average Distance

Again, given an MDD of a circulant graph, it is easy to obtain the average
distance:

d̄(CN ) =

N−1∑
c=0

‖D(c)‖1

N
=

∑
xu �∈IC

‖u‖1

N
.

The following result provides a formula for computing d̄(CN ) for degenerate
MDD.

Lemma 2. Let IC = a+1̄ = b. Then

∑
xu �∈IC

‖u‖1 =
b1 · · · br

2
(b1 + · · ·+ br − r) =

a1 + · · ·+ ar

2

r∏
i=1

(ai + 1).

Note 3. In the above case, that is, when IC is an irreducible ideal we have

d̄(CN ) =
d(CN )

2
.

To discuss the general case we will introduce some new notation. Let b1 ∩
· · · ∩ bn be the irreducible decomposition of the monomial ideal IC , we let

dΔ := exponent
(
gcd(xbi / i ∈ Δ)

)
, ∀Δ ⊆ {1, . . . , n}, Δ �= ∅.

σ(u) :=
u1 · · ·ur

2
(u1 + · · ·+ ur − r).

Our next goal is to find a formula for the average distance. We will apply the
general Inclusion-Exclusion Principle, as follows:

Proposition 5. Let I = b1∩· · ·∩ bn the irreducible decomposition of the ideal
IC . We have: ∑

xu �∈I

‖u‖1 =
∑

∅�Δ⊆{1,...,n}
(−1)#Δ+1σ(dΔ).

Considering the ideal I1 = (x4, x2y2, y3) (see Figure 5),∑
xu �∈I1

‖u‖1 = σ(2, 3) + σ(4, 2)− σ(2, 2) = 9 + 16− 4 = 21.

The several results introduced in Section 2 permit a strong reduction in the
number of sums term that we need to consider in the expression of Proposition
5. For instance, we consider the Example 1:

I2 = (x8, y2, z) ∩ (x7, y2, z4) ∩ (x4, y3, z2) ∩ (x4, y5, z) ∩ (x3, y3, z5)
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Fig. 5.

The Proposition 5 solves:

∑
xu �∈I

‖u‖1 = σ(8, 2, 1) + σ(7, 2, 4) + σ(3, 3, 5) + σ(4, 3, 2) + σ(4, 5, 1)−

−[σ(7, 2, 1) + σ(3, 2, 1) + σ(4, 2, 1) + σ(4, 2, 1) + σ(3, 2, 4) +
+σ(4, 2, 2) + σ(4, 2, 1) + σ(3, 3, 2) + σ(3, 3, 1) + σ(4, 3, 1)] +
+σ(3, 2, 1) + σ(4, 2, 1) + σ(4, 2, 1) + σ(3, 2, 1) + σ(3, 2, 1) +
+σ(4, 2, 1) + σ(3, 2, 2) + σ(3, 2, 1) + σ(4, 2, 1) + σ(3, 3, 1)−
−[σ(3, 2, 1) + σ(3, 2, 1) + σ(4, 2, 1) + σ(3, 2, 1) + σ(3, 2, 1)] +

+σ(3, 2, 1) =
= σ(8, 2, 1)+ σ(7, 2, 4)+ σ(3, 3, 5) + σ(4, 3, 2) +σ(4, 5, 1)+ σ(3, 2, 2)

−[σ(7, 2, 1) + σ(3, 2, 4) + σ(4, 2, 2) + σ(3, 3, 2) + σ(4, 3, 1)] =
= 454

Clearly if b ∈ Nr has a zero coordinate then σ(b) = 0. This fact produces
several cancelations in the formula of Proposition 5: + for faces, − for edges and
+ for nodes.

In circulant digraphs of degree two the associated monomial ideal only has
one or two irreducible components (see Proposition 3), then the computation of
the average distance is immediate. For circulant digraphs of degree three we can
follows this strategy (see Figure 2):

– Construct the Miller-Sturmfels’ graph G as in the previous examples such
that each irreducible component corresponds with the least common multiple
of some generators of the minimal system of generators.

– Let E be the set of all edges, F the set of faces and N the set of vertices of
G ∑

e∈F

σ(e)−
∑
e∈E

σ(e) +
∑
e∈N

σ(e).
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5 Degenerate L-Shapes

We recall that an MDD is degenerate if the associated monomial ideal is
irreducible, that is, generated by monomials of the form

(
Xα1

1 , . . . , Xαr
r

)
. In

general, graphs with this property do not need to present a low diameter. In
this section we present two families of circulant graph of degree two and three
having an degenerate MDD and with a relatively small diameter.

Proposition 6. Let a, s, k natural numbers such that gcd(a, s) = 1 and a < s.
The monomial ideal associated with Csk(a, s) is IC = (xs, yk) for any monomial
ordering.

The Proposition 6 provides a family with diameter d and O(d2) nodes for
each natural number d > 1:

C
( d+2

2 )2

(
1,

d + 2

2

)
, if d ≡ 0 mod 2 and C (d+1)(d+3)

4

(
1,

d + 1

2

)
, if d ≡ 1 mod 2.

Basically, this family was discovered in the paper [10]. However, determining
d2(N) and finding the optimal CN (j1, j2) is an open problem. For circulant
digraphs of degree three, we can prove a similar result than Proposition 6:

Proposition 7. Leta, s, k, j benatural numbers such thatk > 1, j > 1,gcd(a, s) =
1 and a < s. The monomial ideal associated with Cskj(a, s, sk) is I = (xs, yk, zj).

For the case of undirected circulant graph of degree four, that is, CN (j1,−j1,
j2,−j2) several papers showed that the lower bound 1

2

(√
2N − 1− 1

)
can be

achieved by taking j1 = 1
2

(√
2N − 1− 1

)
and j2 = 1

2

(√
2N − 1− 1

)
+ 1, (see

the survey [2]). In the middle, that is, between circulant digraphs of degree two
and circulant graphs of degree four, Proposition 7 provides a very attractive
family of circulant graph of degree 3. Let d > 2 be a natural number:

C( d+3
3 )3

(
1,
d+ 3

3
,

(
d+ 3

3

)2
)

, if d ≡ 0 mod 3.

C (d+2)2(d+5)
27

(
1,
d+ 2

3
,

(
d+ 2

3

)2
)

, if d ≡ 1 mod 3.

C (d+4)2(d+1)
27

(
1,
d+ 4

3
,

(
d+ 4

3

)2
)

, if d ≡ 2 mod 3.

They have diameter d and average distance d/2.

6 Conclusions

In this paper we have proposed monomial ideals as a natural tool to study
circulant digraphs. We have generalized the L-shape concept in the plane to L-
shape in the r-dimensional affine space. We think that this new point of view may



Circulant Digraphs and Monomial Ideals 207

shed a light on problems in circulant graph theory. Many interesting questions
remain unsolved. Unfortunately, we do not know how to compute efficiently a
minimal system of generators of the associated monomial ideal. From a more
practical point of view, it should be interesting to investigate the reliabilities of
the family of circulant graphs of degree three in computer networks such that
routing, fault tolerance etc.
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ence grant MTM2004-07086.
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Abstract. This paper introduces an algebraic framework for a topo-
logical analysis of time-varying 2D digital binary–valued images, each of
them defined as 2D arrays of pixels. Our answer is based on an algebraic-
topological coding, called AT–model, for a nD (n = 2, 3) digital binary-
valued image I consisting simply in taking I together with an algebraic
object depending on it. Considering AT–models for all the 2D digital
images in a time sequence, it is possible to get an AT–model for the 3D
digital image consisting in concatenating the successive 2D digital im-
ages in the sequence. If the frames are represented in a quadtree format,
a similar positive result can be derived.

1 Introduction

In [6,7], a method for computing cohomology aspects of three–dimensional digital
binary-valued images is described. That work is mainly based on two facts: (1)to
consider a simplicial model K(I) for a digital image I using a (14, 14)–adjacency
relation between voxels; and (2)to apply an “algebraic homological process” in
which an algebraic artifact c (a special type of chain homotopy equivalence [11])
connecting the chain complex canonically associated to the simplicial version
of the digital image with its homology is constructed. An AT -model (algebraic-
topological model) for the 3D digital image I is the couple (I, c). Roughly speak-
ing, an AT-model is an extra algebraic-topological information of the image. This
particular description for digital images used there for solving a problem of topo-
logical interrogation, is used in this paper for solving a problem of topological
analysis. We are interested here in understanding the topological nature of a
time-sequence of 2D digital binary-valued images. There are two ways for han-
dling this question: (1) [the intraframe approach] to determine the ”topology”
of each frame and to try to adequately join these pieces in order to give a cor-
rect three–dimensional topological interpretation, or (2) [the 3D approach] to
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directly obtain the topological information from the 3D image consisting in con-
catenating the successive 2D images of the sequence. Using AT-models, we will
see here that both strategies lead us to the same result. This is also valid in the
case in which the 2D-images are represented under a quadtree format. To extend
these positive results to time-sequences of 3D digital binary–valued images is an
extremely interesting challenge which seems to be affordable.

2 Digital Images and Simplicial Representations

In this paper, a nD (n = 2, 3) digital binary-valued image is a nD array of
elements (pixels in 2D, voxels in 3D) whose positions are represented by integer
coordinates and whose values can only be 1 (black) or 0 (white). Given a pixel
(x1, x2), its 6-adjacent pixels are (x1−1, x2), (x1+1, x2), (x1, x2+1), (x1+1, x2+
1), (x1, x2 − 1), (x1 − 1, x2 − 1). It is immediate to define another 6-connectivity
if we favour the direction 135o for determining adjacent pixels instead of 45o.
The 6-connectivity in 2D digital images satisfies the Jordan curve property.
This ensures that a black simple closed curve (that is, a set of black pixels C
such that each pixel in C have exactly two 6-neighbours in C) will separate the
background into two non-6-adjacent white regions, the interior and the exterior.
Given a voxel (x1, x2, x3), its 14-neighbour voxels are showed in Figure 1. It is
possible to define other types of 14-adjacency, favouring other directions. The
14-adjacency in 3D defined by the neighbour relations given in Figure 1, is an
appropriate generalization of the 6-adjacency in 2D previously defined.

In [7], the 14-adjacency relation is used in order to be able to naturally
associate a three-dimensional simplicial complex K(I) to any 3D digital binary–
valued image I. K(I) is called a simplicial representation of I and is defined as a
subcomplex of the infinite simplicial complex K obtained by the decomposition
of the 3D euclidean space into unit cubes (which vertices are the points (a, b, c) ∈
Z3), and the decomposition of each cube into six tetrahedra as shown in Figure
2 (the six tetrahedra are: 〈1, 3, 4, 8〉, 〈1, 2, 4, 8〉, 〈1, 2, 6, 8〉, 〈1, 3, 7, 8〉, 〈1, 5, 7, 8〉,
〈1, 5, 6, 8〉.) Two digital images, I1 and I2, are isomorphic if and only if their
simplicial representations K(I1) and K(I2) are homeomorphic.

In order to give a formal definition of simplicial representation, we need to
give some preliminaries. Our terminology follows [12]. Considering an ordered

Fig. 1. The 14–neighbours of a voxel p (on the left) and the decomposition of a unit

cube into six tetrahedra (on the right)
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Fig. 2. A digital binary image and its simplicial representation using 14-adjacency

relation between voxels

vertex set V , a q–simplex with q + 1 affinely independent vertices v0 < · · · < vq

of V is the convex hull of these points, denoted by 〈v0, . . . , vq〉. If i < q, an
i–face of σ is an i–simplex whose vertices are in the set {v0, . . . , vq}. A simplicial
complex K is a collection of simplices such that every face of a simplex of K is
in K and the intersection of any two simplices of K is a face of each of them or
empty. The set of all the q–simplices of K is denoted by K(q).

Let K and L be simplicial complexes and let |K| and |L| be the subsets of
Rd that are the union of simplices of K and L, that is, the geometric realizations
of K and L, respectively. We say that K and L are homotopic if its respective
geometric realization are homotopy equivalents. It is known that if two spaces
are homeomorphic then they are homotopy equivalent.

Given a nD (n = 2, 3) digital binary–valued image I and considering the
lexicographical ordering on Z3, a simplicial representation K(I) of I is the sim-
plicial complex described as follows: the i–simplices of K(I) (i ∈ {0, 1, 2, 3}) are
constituted by the different sorted sets of (i+1) 14–neighbour black voxels of I.
Moreover, let I be a 2D digital binary–valued image embedded in the 3D digital
space. The simplicial representation K(I) of I is the two-dimensional simplicial
complex whose i–simplices (i ∈ {0, 1, 2}) are constituted by the different sorted
sets of (i+ 1) 6–neighbour black pixels of I.

3 An AT-Model for a Digital Image

In this section we briefly recall the notion of AT-model for digital images given
in [6,7]. For explain it, we first define the concept of chain contraction that is
an exotic notion in the field of Digital Topology but it is a common resource in
Algebraic Topology (see, for example, [11]).

Since the objects considered in this paper are embedded in R3 then the
homology groups vanish for dimensions greater than 3 and they are torsion–
free for dimensions 0, 1 and 2 (see [1–ch.10]). Therefore, for simplicity, we can
consider that the ground ring is Z/Z2 throughout the paper. Nevertheless, all
the procedure we explain here, is valid for any commutative ring.



Algebraic Topological Analysis of Time-Sequence of Digital Images 211

Fig. 3. Two 2D images embedded in the 3D digital space and its respective simplicial

representations

Let K be a simplicial complex. A q–chain a is a formal sum of simplices of
K(q). We denote σ ∈ a if σ ∈ K(q) is a summand of a. The q–chains form a group
with respect to the component–wise addition; this group is the qth chain group
of K, denoted by Cq(K). There is a chain group for every integer q ≥ 0, but for
a complex in R3, only the ones for 0 ≤ q ≤ 3 may be non–trivial. The boundary
of a q–simplex σ = 〈v0, . . . , vq〉 is the collection of all its (q − 1)–faces which is
a (q − 1)–chain: ∂q(σ) =

∑〈v0, . . . , v̂i, . . . , vq〉, where the hat means that vi is
omitted. By linearity, the boundary operator ∂q can be extended to q–chains.
The collection of boundary operators connect the chain groups Cq(K) into the

chain complex C(K) canonically associated to K: · · · ∂2→ C1(K) ∂1→ C0(K) ∂0→ 0.

In a more general framework, a chain complex C is a sequence · · · d2−→ C1
d1−→

C0
d0−→ 0 of abelian groups Cq and homomorphisms dq, indexed with the non–

negative integers, such that for all q, dqdq+1 = 0 . A chain a ∈ Cq is called
a q–cycle if dq(a) = 0. If a = dq+1(a′) for some a′ ∈ Cq+1 then a is called a
q–boundary. Define the qth homology group to be the quotient group of q–cycles
and q–boundaries, denoted by Hq(C). Let C = {Cq, dq} and C′ = {C′

q, d
′
q} be

two chain complexes. A chain map f : C → C′ is a family of homomorphisms
{fq : Cq → C′

q}q≥0 such that d′qfq = fq−1dq .

Definition 1. [11] A chain contraction of a chain complex C to another chain
complex C′ is a set of three homomorphisms c = (f, g, φ) such that: (i) f : C → C′
(called projection) and g : C′ → C (called inclusion) are chain maps. (ii) fg is
the identity map of C′. (iii) φ : C → C is a chain homotopy of degree +1 of the
identity map idC of C to gf , that is, idC + gf = φd+dφ, where d is the boundary
operator of C.

Important properties of chain contractions are: (a) C′ has fewer or the same
number of generators than C; (b) C and C′ have isomorphic homology groups
[12–p. 73].

Now, we are ready to define an AT-model for a digital image.
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Definition 2. [7] An algebraic topological model (more briefly called AT-model)
for a nD (n = 2, 3) digital image I is the couple MI = (I, (fI , gI , φI)) where
cI = (fI , gI , φI) is a chain contraction of the chain complex C(K) to a chain
complex H,being K a simplicial complex homotopic to the simplicial representa-
tion K(I) and H a chain complex isomorphic to the homology of I.

It is necessary to emphasize that an AT- model is non–unique. First, K can
be any simplicial complex homotopic to the simplicial representation K(I) and
H any chain complex isomorphic to the homology of I. Second, the morphisms
fI , gI and φI can admit different formulas, all of them allowing to define different
cI of C(K) to H.

Proposition 1. Let I be a nD (n = 2, 3) digital binary–valued image. There is
an algorithm calculating an AT-model for I.

We construct the desired chain contraction adequately modifying the classical
algorithms for computing homology (matrix, incremental,. . . ) existing in the
literature. For example, the matrix algorithm [12] is based on the reduction of the
matrices defining the boundary operator to Smith normal form, from which one
can read off the homology groups of the complex. A chain homotopy equivalence
version of this process is given in [4]. An algebraic homological output for an
incremental algorithm [3] for computing homology is given in [6]. The complexity
of both algorithms computing AT-models isO(r3), where r is the number of black
pictures elements (pixels or voxels).

Example 1. The algebraic–topological model of the image J showed in Figure 4
is:

〈1〉 〈2〉 〈3〉 〈4〉 〈1, 2〉 〈2, 3〉 〈2, 4〉 〈3, 4〉 〈2, 3, 4〉
f 〈1〉 〈1〉 〈1〉 〈1〉 0 0 0 0 0
g 〈1〉
φ 0 〈1, 2〉 〈2, 3〉 〈2, 4〉 0 0 0 〈2, 3, 4〉 0

+〈1, 2〉 +〈1, 2〉
H has only one generator in dimension 0 represented by the simplex 〈1〉. Since
H is isomorphic to H(J) we get that H(J) has only one generator, too.

Let us suppose that we have computed an AT-model MI = (I, (fI , gI , φI) for
a digital image I. We are interested here in a full understanding of the structures
and morphisms involved in MI. Interesting properties of the morphisms fI , gI

Fig. 4. The black points of the image J and its simplicial representation
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and φI are that for all x ∈ C(K) and z ∈ H: (1) fI∂(x) = 0; (2) ∂gI(z) = 0;
In fact, gI(z) is a representative cycle of the homology generator z; (3) ∂(x) =
∂φI∂(x); (4) If ∂(x) = 0, then x + gIfI(x) = ∂φI(x); (5) If x = ∂(y), then
x = ∂φI(x).

It is possible to simplify the definition of an AT-model for a nD digital image.

Proposition 2. An AT-model for a nD (n = 2, 3) digital image I can be rep-
resented by a couple MI = (I, φI) where φI : K → C(K) is a linear map of
degree 1 such that φφ = 0, φ∂φ = φ and ∂φ∂ = ∂, where ∂ is the boundary
operator in C(K(I) and K is a simplicial complex homotopic to the simplicial
representation K(I).

Proof. The proof of the previous result is mainly based on two well-known facts.
First, given a chain contraction c = (f, g, φ) from C to C′, it is possible to
construct another contraction c′ = (f, g, φ′) from C to C′ such that the chain
homotopy φ′ satisfies the following additional conditions: (iv)φ′φ′ = 0; (v)φ′g =
0; (vi)fφ′ = 0. In fact, the formula for φ′ is

φ′ = (∂φ+ φ∂)φ(∂φ + φ∂)∂(∂φ+ φ∂)φ(∂φ + φ∂),

being ∂ the boundary operator of C. Second, a chain contraction c = (f, g, φ)
from C to C′ satisfying (i)−(vi) conditions is equivalent to give a map φ′ : C → C
(called splitting homotopy) satisfying the following conditions: (1) φ′ is a linear
map of degree +1; (2) φ′φ′ = 0; and (3) φ′∂φ′ = φ′, being ∂ the boundary
operator of C. Let c = (f, g, φ) be a chain contraction c = (f, g, φ) from C to C′
satisfying (i)− (vi) conditions. Applying φ to (iii) and using the other identities
shows that φ∂φ = φ. Then, the desired φ′ is φ. Conversely, let φ′ : C → C be a
map satisfying (1) − (3). Let π = idC − ∂φ′ − φ′∂. Then, C = im(π) ⊕ ker(π).
We define the chain contraction c′ = (f ′, g′, φ′) from C to im(π), where f ′ is the
corestriction of π and g′ is the inclusion. Then, using the equality π2 = π and
the condition (3), it is easy to prove that c′ = (f ′, g′, φ′) is the desired chain
contraction.

Now, we are going to prove the proposition. Let MI = (I, (f, g, φ)) be an
AT-model for a nD digital image. Then, c = (f, g, φ) is a chain contraction from
C(K) to H, being H a chain complex isomorphic to the homology of I. Using the
result previous, we can suppose that the contraction satisfies (i)− (vi) and then
we have a splitting homotopy φ′ from C(K) to C(K) satisfying (1)− (3). From
φ′, we have the new chain contraction c′ = (f ′, g′, φ′) from C(K) to im(π). Let
us now show that im(π) has null boundary operator. If x = π(y) ∈ im(π), then
∂(x) = ∂π(y) = ∂g′f ′(y) = g′∂f ′(y) = 0 since H is a chain complex isomorphic
to the homology of I. Using this last result and applying the operator ∂ to
condition (iii) of c′, we get the equality ∂ = ∂∂φ′ + ∂φ′∂. Since ∂∂ = 0, we
finally obtain that ∂φ′∂ = ∂. Conversely, let φ : C(K)→ C(K) be a linear map
of degree 1 such that φφ = 0, φ∂φ = φ and ∂φ∂ = ∂. We now construct the
chain contraction c = (f, g, φ) : C(K) → im(π). We are going to show that c
defines a AT-model for the digital image I. Let d be the boundary operator of
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im(π). We have to prove that d = 0. Applying ∂ to condition (iii) of c and using
that ∂∂ = 0 and ∂φ∂ = ∂, we obtain ∂ − ∂gf = ∂. Therefore, ∂gf = gdf = 0.
Since f is onto and g is one-to-one, we show that d = 0.

Briefly, the additional algebraic-topological information showed in a AT-
model for a nD (n = 2, 3) digital binary–valued image I can be then codified
in terms of a chain homotopy satisfying certain conditions. From that algebraic
germ, one can form a chain contraction determining the homology of the simpli-
cial complex K(I).

4 Determining AT-Models Using Other Representation
Schemes of Digital Images

It is possible to compute an AT-model for a digital image using other represen-
tation schemes. As an example, let us see how to compute this model using the
quadtree representation of a 2D digital binary–valued image.

A quadtree representation (see, for example, [14]) of an image I is a tree
whose leaves represent quadrants of the image and are labelled with the color
of the corresponding area, i.e, black or white. In order to obtain the quadtree
representation of a digital image, first the whole image is decomposed into four
equal–sized quadrants. If one of the quadrants does not contain a uniform region
(black or white), it is again subdivided into four quadrants. The decomposition
stops if only uniform quadrants are encountered. The recursive decomposition is
then represented in a data structure known as tree. Each leaf node of a quadtree
representation can be assigned a unique locational code corresponding to a se-
quence of directional codes that locate the leaf node along a path starting at the
root of the tree. A black node of a digital image is encoded as A = (A1A2 . . . An)
with digits in the set S = {1, 2, 3, 4} for Ai, where each digit in the sequence
represents the quadrant subdivision from which it originates (see Figure 5). The
quadrant is defined as the collection of all black node descriptions.

In order to construct the simplicial complex K(Q(I)) associated to the
quadtree representation Q(I) of the 2D digital image, we need first to find the
neighbours of each leaf node of the quadtree Q(I).

Node B is said to be a neighbour of node A in direction D if B corresponds
to the block adjacent to A in direction D of size equal, larger or smaller than
the block corresponding to A. Hence a node can have no neighbour, one or more
neighbours in a chosen direction. Using a method similar to that given in [15]
and considering 6-adjacency in a 2D digital image I, it is a simple exercise to
compute the neighbours of a leaf of the quadtree representation Q(I).

Fig. 5. The quadrant subdivision
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Now, starting from the quadtree representation Q(I) of a digital image I, we
construct a simplicial complex K(Q(I)) as follows: the vertices (or 0–simplices)
of K(Q(I)) are the leaves of Q(I). The i–simplices of K(Q(I)) (i ∈ {1, 2}) are
constituted by the different sorted sets of i+ 1 neighbour leaves of Q(I).

Now, it is immediate to see that the geometric realization |K(Q(I))| can be
obtained from |K(I)| continuously ”deforming” black nodes of I into points.

Proposition 3. The simplicial representation K(I) of a digital image I is ho-
motopic to the simplicial representation K(Q(I)) of the quadtree representation
Q(I) of I.

Since K(Q(I)) have, in general, much less number of simplices than K(I),
the computation of an algebraic topological model for I using K(Q(I)) may be
much faster that using K(I).

5 The Topological Complexity of a Time-Sequence of 2D
Digital Images

We show here that the AT-model technique is well fitted to the problem of
analysing the topology of a time-sequence of 2D digital images. Let us recall
that there are two ways for handling this question: the intraframe and the 3D
approaches.

Let (I1, I2, . . . , Is) be a time-sequence of 2D digital binary–valued images.
Let Vr, with 1 ≤ r ≤ s, the 3D digital image resulting of concatenating the
successive 2D images I1, I2, . . . , Ir. This fact is noted by Vr = I1 + I2 + . . .+ Ir .
Let us define an AT-model for a time-sequence of 2D digital images as an AT-
model for the volume Vs. One method is to directly apply a known algorithm

Fig. 6. Several frames of a simple time-sequence and the associated 3D binary image
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Fig. 7.

for computing an AT-model for the simplicial representation of Vs. On the other
hand, starting from the respective AT-models {MI1 ,MI2 , . . . ,MIs} for all the
frames in the sequence, it is possible to adequately ”gluing” them in order to
form an AT-model for the ”concatenated” 3D image Vs. Let us suppose that
we have constructed an AT-model MVr for the 3D image Vr (with r < s).
Starting from MVr and MIr+1 , it is possible to generate an AT-model for Vr+1.
The chain complex C(K(Vr ∪ K(Ir+1))) coincides with the direct sum of the
chain complexes C(K(Vr))⊕C(K(Ir+1)). It is immediate to construct the chain
contraction cVr ⊕ cIr+1 from C(K(Vr + Ir+1)) to H(K(Vr)))⊕H(K(Ir+1))). Let
f r, gr and φr be the morphism of that chain contraction and let hr be the
set of all the representative homology generators of H(K(Vr)⊕H(K(Ir+1). Let
{τ1, . . . , τ�} be the simplices ”connecting” the simplicial complexes K(Vr) and
K(Ir+1) such that {simplices of K(Vr)} ∪ {simplices ofK(Ir+1))}∪ {τ1, . . . , τr},
with r ≤ 
 is a subcomplex ofK(Vr+1)). These simplices are perfectly determined
for each voxel in frame r + 1. As an example, it is showed to the left of Figure
7, the frame 5 (consisting in one voxel in red) and frames 4 and 6 (consisting
respectively in nine voxels in green) of a sequence and to the right we have the
simplicial representation of these frames using 14-adjacency relations.

Now, let us use an incremental algorithm for computing an AT-model for a
time-sequence of 2D digital binary-valued images knowing AT-models for the
frames.

Algorithm 1. Input: The sorted set of simplices {τ1, . . . , τ�} ofK(Vr+1)
Output: a splitting homotopy defining an AT-model for the volume Vr+1

Initially,falg(σ) :=f r(σ), φalg(σ) := φr(σ) ∀σ∈K(Vr) ∪K(Ir+1);and h:=hr

For i = 1 to i = 
 do
If falg∂(σi) = 0 then

h := h ∪ {σi}
falg(σi) := σi.

Else take any one σj of falg∂(σi), then
h := h− {σj},
For k = 1 to k = m do

If σj appears in falg(σk) then
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falg(σk) := falg(σk) + falg∂(σi)
φalg(σk) := φalg(σk) + σi + φalg∂(σi)

End if.
End for.

End if.
End for.
Output: the splitting homotopy φ′ obtained from the homotopy φalg.

Therefore, we have

Theorem 1. Given a time-sequence I1, . . . , Is of 2D digital binary–valued im-
ages represented as 2D pixel arrays, it is possible to compute an AT-model for
the sequence from the information given by the AT-models for all the frames.

If we deal with quadtree representations for the 2D digital images of the
sequence, the AT-model technique works well. The key idea is to understand
how the simplicial representation K(Vs) based on 14-adjacency relations be-
tween voxels of Vs is deformed in such a way that each frame Ij (j = 1, . . . , s) is
represented now by the quadtree simplicial representation K(Q(Ij)). The result-
ing simplicial complex of this process is denoted by KQ(Vs). Determining that
this simplicial complex is homotopic to the simplicial representation K(Vs) is an
elementary question. The intraframe approach here gives the desired AT-model
for the volume Vs. Let us start from AT-models for all quadtree frames in the
sequence and take into account that neighbour nodes in frame j+1 of a node in
frame j are perfectly determined by the 14-adjacency relations. Then, an similar
algorithm to the previous one can be applied to this situation.

Theorem 2. Given a sequence I1, . . . , Is of 2D digital binary–valued images
represented under quadtree format, it is possible to compute an AT-model for the
sequence from the information given by the quadtree AT-models for all frames.

6 Conclusions

In this paper, we are interested in providing an algebraic solution to the prob-
lem of topologically analysing a sequence of 2D digital binary-valued images The
method is based on the notion of AT-model for a nD (n = 2, 3) digital image and
both the intraframe and 3D approaches give rise to the same positive results. It
seems possible to extend this method to sequences of 3D digital binary–valued
images taking into consideration a 30-adjacency relation between tetraxels (el-
emental picture elements of dimension 4). In positive case, another interesting
question is if the octree representation for 3D digital images could be success-
fully used in our algebraic-topological setting. On the other hand, an AT-model
for a 4D digital image would allow the computation of highly abstract algebraic
invariants such as cohomology operations [5] in an efficient way. These new com-
putational tools in the setting of Digital Imaging may be used to facilitate the
topological classification problem in 4D.
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It is possible to take advantage of temporal coherence of time-varying 2D dig-
ital binary-valued images (coherence between consequent time frames) to obtain
a more efficient version of Algorithm 1. Having a time-sequence {I1, . . . , Is},
the idea is to take a ”differential” coding of this sequence as, for example,
{I1, D2, D3, . . . , Ds}, where Di = Ii−1xorIi, for all i = 2, . . . , s. From an AT-
model for the first frame I1, it is possible to gradually generate AT-models for
Ir and Vr (r = 2, . . . , s) by means of a similar method to Algorithm 1. An
interesting question would be to determine the complexity of this process.

The results of the previous section show us in particular that an AT-model for
a digital image is essentially a reusable datum. In general, from AT-models for
simple images, it seems to be possible to directly ”manipulate” them in order to
obtain an AT-model for a more complex image. To confirm this intuition would
be an important result for this theory.

The idea of constructing an ”continuous analog” (a polyhedron in this case)
reflecting the topology of the digital image as Euclidean subspace goes back to
the origin of Digital Topology (see [13,9] for an introduction to the topics in this
area). In order to develop a mathematical theory with high computational and
combinatorial flavour, a fundamental goal in this area has been to try to derive
purely combinatorial algorithms from the previous algebraic topological scenario.
Our method is based on a pure algebraic notion (a chain homotopy equivalence)
which is fundamental for both describing the topological complexity of a digital
image and enriching the list of digital topological invariants. Further research
must be made in order to design an appropriate ”digital topology theory” taking
as main notion a combinatorial version of a chain homotopy equivalence.

Finally, the application of algebraic topology-based machinery to the field
of digital images could be of interest in problems of topological control in Solid
Modeling and Computer Aided Geometric Design. An interesting challenge is to
know if the AT-model is well adapted to control the topological complexity of a
digital image transformed by a digital (local or global) operation.
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8. González–Dı́az R., Medrano B., Real P., Sánchez–Peláez J.: Topological control in
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1 Introduction

Let T = (T1, . . . , Tm) be the parameters, X = (X1, . . . , Xl) be the unknowns
and F = {f1, ..., fr} be a set of polynomials in K[T,X], where K is a field. The
problem to solve is the determination (whatever it means — it is clarified below)
of the solution set of the polynomial system of equations:

F = F (T,X) = {f1(T,X) = · · · = fr(T,X) = 0}

Two different questions arise naturally in this context: first, to get the conditions
the parameters must satisfy for the considered system to have a solution and,
second, to describe in some way the solutions, i.e. the dependency between every
unknown and the parameters.

Various methods are present in the Computer Algebra literature for this
general problem: in the following works one can find some necessary background.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 220–235, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Hilbert Stratification and Parametric Gröbner Bases 221

– Comprehensive Gröbner bases [17,18]. − Dynamic Evaluation Method [4].
– Multivariate resultants [16].
– Triangular sets (see [13] and references therein).
– DISPGB algorithm [12].
– Specific Linear Algebra tools for parametric linear systems [14].

The method of comprehensive Gröbner bases is the most general and powerful
one, but is also the most difficult to apply in its full generality, because of its
great complexity. The other ones are limited in their applications, but more
practical and feasible, and the present work tries to follow this philosophy. We’ll
describe a procedure to obtain some semialgebraic sets in the parameter space,
whose union gives a “good” set of sufficient condition for specialization.

2 Gröbner Bases and Specializations

Let K ⊆ K̃ be fields, X = (X1, . . . , Xl), T = (T1, . . . , Tm) be sets of variables.

Definition 1. A specialization is an algebra homomorphism ϕ : K[T]→ K̃ The
specialization associated with a point t ∈ K̃m is defined by ϕt(p(T)) := p(t), for
p(T) ∈ K[T] ⊆ K̃[T].

In the paper we’ll use the following variant, which fits our needs.

Definition 2. A specialization is an algebra homomorphism ϕ : K[T,X] →
K̃[X] such that ϕ(K[T]) ⊆ K̃ and ϕ(Xi) = Xi , i = 1, . . . , l. The specialization
associated with a point t ∈ K̃m is defined by ϕt(p(T,X)) := p(t,X).

Let I = 〈f1(T,X), . . . , fr(T,X)〉 ⊆ K[T,X] be an ideal, let < be a term
ordering in K[T,X] and G = {g1(T,X), . . . , gs(T,X)} be a Gröbner basis (GB)
of I with respect to <.

The most practical question is to find W ⊆ K̃m such that t ∈W if and only
if its associated specialization ϕt has the property that ϕt(G) is a GB of ϕt(I).
Computationally speaking this is the most interesting aspect, because, once W
is computed, every time we have a particular parameter vector we simply test if
it belongs to W to verify if we have a GB or not.

There are at least three possible approaches: perform the initial Gröbner
basis computation in K(T)[X] (see [3], pp. 277, exercises 5 to 9), in K[T][X] (see
[9]) or in K[T,X] ([7]). In the present work, the third one is chosen. Among the
known results we cite Gianni’s, Kalkbrener’s and Montes’ ones, which are briefly
exposed below. We substantially adopt a mix of their global settings.

Gianni’s approach: Given ϕ, we say a term ordering > for (T,X) is ϕ-
admissible if it is a block ordering with respect to T and X, and X > T,
i.e., if >X (resp. >T ) is the restriction of > to the X-variables (resp. to the
T-variables), then for all A,C ∈ Nl and for all B,D ∈ Nm:

TBXA > TDXC ⇐⇒ XA >X XC or (XA = XC and TB >T TD)



222 L. Gonzalez-Vega, C. Traverso, and A. Zanoni

For K ⊂ K[T,X], Lt(K) = 〈lt(f) | f ∈ K〉, where lt is the leading term. Let

f(T,X) =
∑

β=β1,β2

aβTβ1Xβ2 =
∑

α

uα(T)Xα ∈ K[T,X]

where in the second sum the power products of X are collected, when possi-
ble, and uα are the corresponding polynomial “coefficients” in T. Here lt1(f)
will denote uA(T)XA where XA is the biggest (according to >X) X-term in
f , and Lt1(K) = 〈lt1(f) | f ∈ K〉.

Theorem 1. ([7]) Let I ⊂ K[T,X] be an ideal, ϕ a specialization and G a
GB for I with respect to a ϕ-admissible ordering. If

Lt(ϕ(I)) = ϕ(Lt1(I)) (1)

then ϕ(G) is a GB for ϕ(I).

Note that being G a GB of I, we can write Lt1(I) = 〈lt1(g1), . . . , lt1(gs)〉 and
therefore we know the generators of the ideal on the right of (1), ϕ(Lt1(I)):

ϕ(Lt1(I)) = 〈ϕ(lt1(g1)), . . . , ϕ(lt1(gs))〉
However, we lack a finite representation of the ideal on the left Lt(ϕ(I)),
unless we know a priori a GB of ϕ(I), but finding it is indeed our purpose.
In the zero-dimensional, univariate case ϕ(G) is always a GB of ϕ(I).

Kalkbrener’s approach: he proposes a slightly different approach. The spe-
cialization map is ϕ : R → K, where R is a noetherian commutative ring
(K[T] in our case), and G a GB of I in R[X] with respect to any term or-
dering of R[X] (note that this approach requires the computation of a GB
in K[T][X]). The question is then: when is ϕ(G) a GB of ϕ(I) ? The answer
is related to Gianni’s approach. In [9] it is shown that (1) is equivalent to:

Assume that the gi are ordered in such a way that there exists one r ∈
{0, . . . , s} with ϕ(ltϕ(gi)) �= 0 for i ∈ {1, . . . , r}, and ϕ(ltϕ(gi)) = 0 for
i ∈ {r+1, . . . , s}. Then, for every i ∈ {r+1, . . . , s} the polynomial ϕ(gi)
is reducible to 0 modulo {ϕ(g1), . . . , ϕ(gr)}.

Montes’ approach: in [12] the author describes DISPGB algorithm (working
in R[T][X], R unique factorization domain) which computes all the reduced
GB corresponding to the different possible cases for the parameters. It’s a
recursive procedure which branches when a “critical” (head) coefficient may
be zero or not. A computation tree carrying on Buchberger calculations and
current parameter conditions is constructed and analyzed. For every leaf
the simplified corresponding condition (when it is not inconsistent) and the
particular GB is presented. An important component is the procedure to
successively simplify the conditions, both to detect as soon as possible an
eventual inconsistency and to obtain a “normalized” presentation of them.
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3 Using Hilbert Functions

Let J ⊆ K[Y0, . . . , Yn] = K[Y] be an ideal. J is homogeneous if f ∈ J implies that
its homogeneous components are in J . Let K[Y]v denote the set of homogeneous
polynomials of total degree v (including the zero polynomial). It’s a K-vector
space of dimension θ(n, v) =

(
n+v

v

)
. If J is homogeneous, Jv = J ∩K[Y]v.

Definition 3. The Hilbert function of J , HJ : N → N, is defined by
HJ(v) = dimK(K[Y]v/Jv). The Hilbert (Poincaré) series of J is the formal
power series

HJ(y) =
∞∑

v=0

HJ(v) yi

It is proved it can be expressed as a rational function, with denominator
D = (1− y)n. The numerator is the Hilbert numerator of J , HNJ (simply HN
if J is clear from the context). If J is embedded in a polynomial ring with k more
variables, HJ changing concerns only D. It becomes (1−y)n+k. An efficient way
to test Hilbert functions equality is simply to test equality on Hilbert numerators.

It is possible to define Hilbert function etc. for inhomogeneous ideals, too.
Just replace K[Y]s with K[Y]≤s, the set of polynomials in K[Y] of total degree
at most s (including the zero polynomial).

3.1 The Homogeneous Case

Following [15] and [8], we can use the Hilbert function to check if the special-
ization of a GB of J ⊆ K[T,X] with respect to a block ordering for X and T
variables is a GB of the specialized ideal. The main tools are the below reported
theorem and its corollary, which are the starting point to tackle the problem.

Theorem 2. ([15]) Let J ⊆ K[Y] be an ideal, < a degree-compatible term or-
dering and G = {g1, . . . , gs} ⊆ J . If HLt<(J) = HLt<(G) then G is a GB of J
with respect to <.

Corollary 1. ([8]) Let J be a (X)-homogeneous ideal in K[T,X], G its GB
with respect to a block X-degree-compatible ordering < in K[T,X] and ϕ the
specialization map giving values to the parameters T. Let <X be the restriction
of < to K[X], HLt<X

(G) the Hilbert function of the ideal generated by the X-
leading power products of G and HLt<X

(ϕ(G)) the Hilbert function of the ideal
generated by the leading power products of ϕ(G). If HLt<X

(G) = HLt<X
(ϕ(G))

then ϕ(G) is a GB of ϕ(J) with respect to <X.

In [8] the key point was to compute a ‘generic’ GB G of J ⊆ K[T,X]
with respect to a X-degree-compatible term ordering and use G to derive the
“generic” Hilbert function H1 of J considering only X variables. Substituting
specific values for the parameters T, the specialization of G is a GB if its Hilbert
function H2 agrees with H1. Viewing it graphically:

F −→ G −→ ϕ(G)
⇓ ⇓
H1 H2
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3.2 The Inhomogeneous Case

The above results are no longer true when applied to non X−homogeneous ideals
J , but they may be extended. Instead of changing the definition of Hilbert func-
tion as indicated above, we keep it as it is, but consider enlarged working rings
K[T,X, H ] and K[X, H ], where H is a new variable to homogenize polynomials.

Definition 4. Let Y = {Y1, . . . , Yn}:
1. For a polynomial f ∈ K[Y] with deg(f) = d, its homogenization is the

homogeneous polynomial fh ∈ K[Y, H ] such that

fh(Y, H) = Hdf(Y1/H, . . . , Yn/H)

2. For a homogeneous polynomial f ∈ K[Y] and a variable Yi ∈ Y, its deho-
mogenization gives hf ∈ K[Y′] = K[Y1, . . . , Yi−1, Yi+1, . . . , Yn] such that

hf(Y′) = f(Y1, . . . , Yi−1, 1, Yi+1, . . . , Yn)

It is easy to see that f = h(fh), if the dehomogenization is done with respect to
the homogenizing variable. Our idea is what we call the Hilbert test:

Step I: Compute a GB G of J with respect to a block X-degree-compatible
ordering < in K[T,X].

Step II: Homogenize with respect to X the polynomials in G using H variable
(smaller than X variables, bigger than T ones), letting Gh be this new set
of polynomials. Let H1 be the Hilbert function of Lt<′

X
(G) with <′

X as in
corollary 1, but opportunely extended to consider also H .

Step III: Specialize the parameters T using ϕ on Gh, obtaining ϕ(Gh). Let H2

be the Hilbert function of Lt<′
X

(ϕ(Gh)). If H2 = H1 then ϕ is good.

Proposition 1. The Hilbert test is a sufficient condition for ϕ to be good.

Proof. Gh is a homogeneous system, therefore if H1 = H2 then ϕ(Gh) is a
GB thanks to the homogeneous case results. Dehomogenization preserves the
Gröbner properties, therefore hϕ(Gh) = ϕ(G) is Gröbner. )*

A specialized basis may be Gröbner but not necessarily reduced. Note that,
because of the block X-degree-compatible term ordering condition, G and Gh

have the same X-heads, and is therefore possible to compute HNJ indifferently
before or after homogenizing, because adding H variable gives no problem. View-
ing everything graphically,

H1 ⇐ Gh−→ ϕ(Gh)⇒ H2

↑ ↓
F −→ G hϕ(Gh) = ϕ(G)

To simplify notation, we define a new
set of variables Z as follows:

Z =
{

X if F is X-homogeneous
(X, H) otherwise

Multindexes exponents αi,j length changes accordingly, and the number
of variables eventually increases by one, but will still be indicated with l.
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3.3 Computing a Good Specialization Conditions Set

Let J be an ideal in K[T,Z], G = {g1, . . . , gs} its GB with respect to a block
Z–degree–compatible ordering < in K[T,Z]. Every polynomial gi has the
following structure

gi(T,Z) =
mi−1∑
j=0

ui,j(T)Zαi,j , αi,0 >Z αi,1 >Z . . .

with <Z restriction of < to K[Z]. For notational convenience we define
ui,mi(T) = 1, Zαi,mi = 0 for each i = 1, . . . , s. Let L = [n1, . . . , ns] be a
list of s integers with 0 ≤ ni ≤ mi, L[i] = ni, L the set of all such lists and
L0 = [0, . . . , 0]. We introduce a partial ordering ≥ in L:

[n1, . . . , ns] ≥ [k1, . . . , ks] ⇐⇒ n1 ≥ k1, . . . , ns ≥ ks

The specialization condition defined by L is given by the T satisfying

{ui,0(T) = 0, . . . , ui,ni−1(T) = 0 , ui,ni(T) �= 0, 1 ≤ i ≤ s}

We call C(L) = C(ui,j) this set. The notation permits to express conditions as
lists of common length s, such that there is at least one “ �= 0” component.

Using proposition 1, for any specialization ϕ verifying C(L), if the Hilbert
functions HL of ZL = 〈Zαi,ni : 1 ≤ i ≤ s〉 and H0 of Z0 = 〈Zαi,0 : 1 ≤ i ≤ s〉
coincide, then ϕ(G) is a GB of ϕ(J) (with respect to <Z).

Definition 5. A condition list L = [n1, . . . , ns] is good if HL = H0, bad other-
wise. It is empty if C(L) = ∅.

This suggests a nice way to build a set of conditions giving good specializa-
tions for the GB of J , already computed in K[T,X]: namely, non empty ones
given by good lists.

There are in general M =
s∏

i=1

(mi + 1) cases, but it is often possible to avoid

some of them. It is in fact evident that if there are some m̃ij ≤ mi − 1 such
that ui,m̃ij

(T) is (a not zero) constant, the ith entry in any condition list will
be necessarily � m̃i = min{m̃ij}. In this way it is possible to reduce the total
number of cases from M to M̃ , substituting the factors in the expression for M
with (m̃i + 1). If m̃i  mi (for example 0) the advantage is relevant.

In any case, L0 surely provides a good specialization condition. Next, the
vanishing of some T–coefficients into only one gj polynomial is analyzed, then
in two polynomials at the same time, and so on.

Let mi = min{m̃i,mi}. We can schematically represent the part of the
generic GB which is interesting for our analysis as follows, with ui,mi(T) not
zero constant for each i.
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g1(T,Z) : u1,0(T) u1,1(T) u1,2(T) . . . u1,m1(T)
g2(T,Z) : u2,0(T) u2,1(T) u2,2(T) . . . u2,m2(T)
g3(T,Z) : u3,0(T) u3,1(T) u3,2(T) . . . u3,m3(T)

...
...

...
...

...
...

gs(T,Z) : us,0(T) us,1(T) us,2(T) . . . us,ms(T)

We must analyze all com-
patible possibilities selecting
X-terms among the boxed
“coefficients” in a combina-
toric way - one per line -
performing Hilbert functions
comparisons and keeping
lists giving good conditions.

Later we may discard the empty (unsatisfiable) ones and simplify the presenta-
tion of non empty ones.

For example, with F = {x4, y4, bx3y+cx2y2+dxy3, ax2y2}, where X = {x, y}
and T = {a, b, c, d}, using a block DRL ordering the resulting good lists in L
are

[0,0,0,0,0,0,0] (1) [0,0,0,0,1,1,0] E [0,0,2,0,0,2,0] E

[0,0,0,0,0,0,1] (2) [0,0,0,0,1,1,1] E [0,0,2,0,0,2,1] E

[0,0,0,0,0,1,0] (3) [0,0,0,0,1,2,0] E [0,0,2,0,1,0,0] E

[0,0,0,0,0,1,1] E [0,0,0,0,1,2,1] (5) [0,0,2,0,1,0,1] E

[0,0,0,0,0,2,0] E [0,0,2,0,0,0,0] E [0,0,2,0,1,1,0] (6)

[0,0,0,0,0,2,1] E [0,0,2,0,0,0,1] E [0,0,2,0,1,1,1] E

[0,0,0,0,1,0,0] (4) [0,0,2,0,0,1,0] E [0,0,2,0,1,2,0] E

[0,0,0,0,1,0,1] E [0,0,2,0,0,1,1] E [0,0,2,0,1,2,1] E

where E=empty and numbers in brackets correspond to the following conditions

(1) a, b, c2 − bd, c, d �= 0
(2) d = 0; a, b, c �= 0
(3) c = 0; a, b, d �= 0
(4) c2 − bd = 0; a, b, c, d �= 0
(5) c, d = 0; a, b �= 0
(6) c, b = 0; a, d �= 0

The possible combinations are not at
all trivial, even in very easy cases.
Generalizing the approach, to com-
pute good specialization conditions
one may choose among two “dual”
possibilities, considering the order in
which exclusion criteria are analyzed.

(Z,T) Look for good lists and among them for non empty ones (above example).
In this case we first use the Hilbert test to discard bad lists, and then apply
simplification techniques to discard the empty ones. Here the work has to be
done first in the domain of Z variables, and eventually in K[T].

(T,Z) Vice versa, look for compatible specialization conditions, and for each
non empty one, test if it’s good.

The two approaches lead to exactly the same result, but which is the best one ?
In a completely general situation, (Z,T) requires the computation of say M
Hilbert tests, and Lg calls to our procedure for conditions simplification, one
for each good list. (T,Z) requires instead the computation of all CL possible
C(L), and of Hilbert tests for all the Eg non empty ones. CL is easily obtained
considering that each coefficient may be equal to or different from zero, and
therefore there are 2mi possibilities for each polynomial in the basis.

It is very difficult to give general estimates (apart trivial ones) for Lg and
Eg. For what concerns complexity, indicating the maximum computational cost
of a condition simplification with CS and of a Hilbert test with CH , we have
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C(Z,T) = CH ·
(

s∏
i=1

(mi + 1)

)
+ CS · Lg ; C(T,Z)= CS · 2

∑s
i mi + CH · Eg

Or, more roughly, if m̂ = max{mi},
C(Z,T) = CH · (m̂+ 1)s + CS · Lg ; C(T,Z)= CS · 2sm̂ + CH · Eg

However, in real-life systems the situation is never so general: the number
of parameters is much smaller than M , and some Z−term is divisible by other
ones. These facts often contribute to reduce the number of cases to be treated.
We propose two criteria to prune the tree of possible configurations to analyze.

4 Pruning Criteria

We indicate in this section two criteria to limit the number of cases to be treated.
The former refers to Z variables, the latter to T. Both remove many lists using
informations concerning a single one, and can be defined as global.

Unfortunately, the very interesting sentence “if L is bad and L′ > L then L′

is bad, too” is generally false. In fact, consider the ideal I = 〈F 〉 for the above
introduced F . Its GB is G = F ∪ {(c2 − bd)x2y3, cx3y2 + dx2y3, dx3y3}, with
“generic” Z-monomial ideal 〈x4, y4, x2y2, x3y〉. The generic Hilbert numerator
for the condition list L = [0, 0, 0, 0, 0, 0, 0] is HN(x) = x6 + 2x5 − 4x4 + 1.

Consider a specialization ϕ1 such that ϕ1(a) �= 0, ϕ1(b) = 0, ϕ1(c) �=
0, ϕ1(d) �= 0 (condition list L′ = [0, 0, 1, 0, 0, 0, 0]). Then ϕ1(Lt<Z (I)) =
〈x4, y4, x2y2〉, and we have HN ′(x) = 2x6−3x4 +1. Here HN �= HN ′, therefore
L′ is bad.

Now take ϕ2 such that ϕ2(a) �= 0, ϕ2(b) = ϕ2(c) = 0, ϕ2(d) �= 0 for L′′ =
[0, 0, 2, 0, 1, 1, 0]. Then ϕ2(Lt<Z (I)) = 〈x4, y4, x2y2, xy3〉, and for symmetry with
respect to the “generic” situation it is clear that HN ′′ = HN , then L′′ is good.

We then have L < L′ < L′′, with L and L′′ good and L′ bad. Note that,
when there are repetitions, substituting a term with a smaller one does not
necessarily lower the Hilbert function: in general everything can happen. Moral:
the above sentence indicates a local condition.

First criterion A very simple consideration: let L be an indexes list and

– dL = min{deg(Zαi,L[i]) | i = 1, ..., s} the smallest degree of the Z-terms
indicated by L.

– GL the set of polynomials of Gh with Z-degree dL, and sL its cardinality.
– GL

dL
the GB of ZL ∩K[Z]dL , and hL (≤ sL) its cardinality.

where d0, H0, G0, s0, G0
d0

, h0 correspond to dL0 , HL0 , GL0 , sL0 , G
L0
dL0

, hL0 .

If 0 < v < d0, then HL(v) = H0(v) =
(
l+v−1

v

)
for each possible list L (no

monomial enters the game yet). The case v = d0 is the first one for which the
Hilbert function depends on the monomial ideal, and we have
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H0(d0) =
(
l+ d0 − 1

d0

)
−h0

(the only monomials to be discarded are
exactly the ones in G0

d0
)

For v > d0 the computation is more involved, and we won’t detail more. It
is however clear that if we want to have HL = H0 it is necessary that (at least)
HL(d0) = H0(d0), and the only way to make it happen is that GL

d0
(the GB of

ZL ∩ K[Z]d0) has hL = h0 elements. Due to possible repetitions it may happen
that GL

d0
has less or more elements. If it is so, we already know the Hilbert test

will fail, and it is useless to continue analyzing the L case.
Summing all up, #GL

d0
�= #G0

d0
⇒ L is bad.

Suppose that L is bad because of this criterion. Then we can discard all lists
in L with indexes corresponding to polynomials in F0 equal to those in L.

Second criterion It uses the ui,j(T). Each condition except C(L0) is like:

{p1(T) = 0, . . . , pz(T) = 0, q1(T) �= 0, . . . , qnz (T) �= 0} (2)

where z, nz ≥ 1 and pi, qi ∈ K[T] are non constant. We refer to the polynomials

– pi as components of the zero part Z = Z(L) = Z(p1, . . . , pz),
– qj for the non zero part NZ = NZ(L) = NZ(q1, . . . , qnz).

Definition 6. A list L ∈ L is inappropriate if C(Z(L)) = ∅.

It is clear that (good or bad) inappropriate lists are of no interest at all, and we
can avoid to consider them. We are now ready to state the following

Lemma 1. If L is an inappropriate condition list for G then every condition
list L′ such that L′ > L is also inappropriate.

Proof. Let Z = Z(L) = Z(p1, . . . , pk) be the zero part of L. For L′ > L we
have Z ′ = Z(L′) = Z(p1, . . . , pk, pk+1, . . . , pk′) = Z ∩ Z(pk+1, . . . , pk′) = ∅ ∩
Z(pk+1, . . . , pk′) = ∅. )*

As soon as an inappropriate list is found, we can then directly discard it and
all the greater ones, avoiding to consider many cases. The drawback is that one
may have to compute incrementally various intermediate Gröbner bases.

5 Conditions Simplification

As we have described in the previous section, we have a set of good specialization
conditions in the non trivial case (ϕ(I) �= 〈1〉). In the following paragraphs
we’ll show how to simplify a condition or recognize that it is empty. Obviously
(Z(1), NZ(q1, ..., qm)) = ∅.

How much can a simplified condition be complicated? In other words, which
are the limitations for z = #Z and nz = #NZ in a simplified condition ?
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[ NZ ] at most one coefficient for each polynomial may be imposed to be differ-
ent from zero (when it is not constant). Therefore the number of polynomials
in G is an upper bound for nz . We obtain 0 ≤ nz ≤ s.

[ Z ] Let δ = max{deg(pi) | pi ∈ Z}: suppose the pi are a GB for Z. The worst
possible case is that for all Tβ with |β| = δ there is pj with lt(pi) = Tβ –
this means all pi have degree δ. The limitation is then 0 ≤ z ≤ (m+δ−1

δ

)
= z.

5.1 One Parameter Case

It stands out because it is possible to eliminate NZ. Let T = t: the following
propositions justify the basic steps of an algorithm for conditions treatment.

Proposition 2.

1. (p, q) = 1⇒ (Z(p), NZ(q)) ≡ Z(p)
2. (p, q) = d, deg(d) > 0 ⇒ (Z(p), NZ(q)) ≡ (Z(p/d),NZ(q)) ≡ (Z(p/d),

NZ(d,q/d))
3. p = (p1, . . . , pk) ⇒ (Z(p1, . . . , pk), NZ(q1, . . . , qm)) ≡ (Z(p),

NZ(q1, . . . , qm))
4. (p, q1) = 1⇒ (Z(p), NZ(q1, q2, ..., qm)) ≡ (Z(p), NZ(q2, ..., qm)).

(p, q1) = d �= 1⇒ (Z(p), NZ(q1, ..., qm)) ≡ (Z(p/d), NZ(d, q1/d, ..., qm)).

Proof. 1. Suppose p and q are co-prime. Then, by Bezout’s identity, there are
a(t), b(t) ∈ K[t] such that 1 = a(t)p(t) + b(t)q(t). Let p(r) = 0. Setting t = r

1 = a(r)p(r) + b(r)q(r) = a(r) · 0 + b(r)q(r) = b(r)q(r)

That is, q is automatically not zero on Z(p): NZ(q) can be removed.
2. We have p(t) = p1(t)d(t) and q(t) = q1(t)d(t), where p1 and q1 are the

cofactors. Now p(t) = 0⇔ (d(t) = 0 or p1(t) = 0), and q(t) �= 0⇔ (d(t) �= 0
and q1(t) �= 0). Then it is not possible that d(t) = 0, and we can substitute
p with p1 (and eventually q with its found partial factorization).

3. Obvious, from the fact that r is a root of p1, . . . , pk if and only if it is a root
of p. If p(t) = 1 the condition is clearly empty.

4. Simply apply cases 1 and 2. )*
Applying case 3 we obtain a singleton zero part, and (if it is not Z(1)) we

may repeatedly apply 4 (possibly 1) either to cancel a polynomial in NZ or to
lower degrees. Both conditions make the algorithm terminate, and at the end, if
the condition was not discarded, it simply becomes Z(pfinal).

5.2 Several Parameters Case

When dealing with many parameters, the above approach cannot be straightfor-
wardly followed. If there are by chance polynomials which contain one variable,
we can follow the above explained approach, but in general proposition 1 and
consequently the first of proposition 4 are no more true. A possible strategy may
be a cycle with the following steps, ending when there are no more modifications.
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1. Compute a GB of the zero part Z (which we call again Z). If it is trivial,
the condition is discarded, otherwise...

2. Compute the normal forms (with respect to Z) qj of polynomials in NZ.
3. Perform the following tests and actions: if one of the qj is a non zero constant

it is removed from NZ, because it’s redundant. If it is 0, the whole condition
is discarded for incompatibility, otherwise...

4. Continue using proposition 2 for all pairs p ∈ Z, q ∈ NZ for which it applies.
If there is at least one such pair, repeat step 3 taking into account the new
introduced polynomials d, p/d and q/d, otherwise terminate.

If the coefficients represent (hyper-)surfaces in generic position, every time we
add one of them to Z the dimension of the associated variety lowers by at least
one. In this fortunate case z ≤ m, but the general bound remains z.

6 Analysis Refinement and Hilbert Stratification

Thanks to the previous sections results, we can partition the parameter space
into two sets: the good one - values satisfying the conditions corresponding to
good lists - and its complement. Note that, Hilbert test giving a sufficient condi-
tion, may be that some points out of the good set have associated specializations
mapping G into a GB, but this still has to be verified.

In order to refine the obtained results, we have to continue and see what really
happens for every bad list. More precisely, the idea is to proceed as follows.

– Let L be a bad list for Gh with C(L) �= ∅, and H1 as specified in the Hilbert
test. Specialize (partially, in general) Gh setting to zero all the ui,j(T) ∈
Z(L) and reducing the others modulo the GB of Z(L). We can see this as
the application of a certain specialization ϕ, which in general we cannot
associate to a well determined point of C(L).

– Let ϕ(Gh) be the result, H2 the Hilbert function computed using its head
Z-terms, (H1 �= H2 by hypothesis). Up to now, we don’t know if ϕ(Gh) is a
GB or not, and we apply Buchberger algorithm again, obtaining G′.

– Let H3 = HLt<Z
〈G′〉. Then

" H3 = H1 ⇒ ϕ(Gh) is not Gröbner, discard L (but ϕ preserves Hilbert
function).

" H3 = H2 ⇒ ϕ(Gh) is Gröbner. Then C(L) is a conditions set good for
specialization. The obtained basis will have a different Hilbert function
with respect to the “generic” case, but it remains Gröbner. We could
refer to this as a lucky case in an unlucky environment.

" H3 �= H1 , H3 �= H2 ⇒ ϕ(Gh) is not Gröbner, discard L.

At this point one could be interested to see what happens to Hilbert function. It
is possible to continue, performing recursively the complete analysis of section
3.3. Replace Gh with G′ and H1 with H3, taking also care of the conditions
C(L). Identify new good and bad lists, etc.

Graphically, we can represent everything as:
↓ |
Gh −→ ϕ(Gh) −→ G′

⇓ ⇓ ⇓
H1 H2 H3
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6.1 A More General View

In a more general setting, the above approach, slightly modified, can be used to
compute effectively the so-called Hilbert stratification of the variety as seen in Z
variables and parametrized by T. Having L, it becomes almost natural to use a
divide-and-conquer approach, in which every list is empty or corresponds to a
certain value of the Hilbert function. It is then possible to partition the whole
parameter space into subsets Si such that the Hilbert function is constant over
each one. More precisely, the complete output that can be obtained is a sequence
of pairs O = {(Hi, Ci) : i ∈ I} such that a specialization associated to a point
satisfying conditions Ci produces a specialized ideal with Hilbert function Hi.

Figures 1 and 2 show the main functions. The code can clearly be optimized,
but we don’t expose here all the technical details. The functions isGood(L,G)
and isGood(G1, G2) check for equality for HL, H(G), H(G1), H(G2), respec-
tively.

Input : F = {f1, ..., fr} ∈ K[T,X]r

Output : A pairs list O = {(Hi, Ci)}
G = computeGBOf(F );
if ( isNotHomogeneous(F ) )

G = homogenizeWithRespToX(F );
O = completeAnalysis(G, (0, 1));
output O;

Fig. 1. Stratification algorithm

Input : F = {f1, ..., fr} ∈ K[T,X]r

: A condition C
Output : A list of pairs O = {(Hi, Ci)}

O = ∅; L = setOfAllPossibleLists(F );
while ( isNotEmpty(L) ) do
L = extractAnElement(L);
C′ = C(L) ∧ C;
if ( isInappropriate(C′) )
L = removeAllListsGreaterThan(L, L);

else
if ( isGood(L, F ) )

O = O ∪ (HL, C′);
else

Fspec = specializeAccordingTo(F , C′);
F ′ = computeGBOf(Fspec);
if (isGood(F , F ′) or isGood(Fspec, F ′))
O = O ∪ (H(F ′), C′);

else
O = O∪ completeAnalysis(F ′, C′);

output O;

Fig. 2. completeAnalysis function

removeAllListsGreaterThan(L,L) realizes lemma 1; specializeAccordingTo(F ,
C) maps F into ϕ(F ), where ϕ has the behaviour explained above. If C1, C2

are two conditions, their conjunction is indicated with C1 ∧ C2 = (Z(C1) ∩
Z(C2), NZ(C1) ∩NZ(C2)).

This is very close to the approach in [17,18] where Comprehensive Gröbner
bases are defined and computed, and in [12], where you can find an algorithm
to obtain the conditions and the corresponding specialized bases (see 2).
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7 Conclusions

We have shown how to analyze parametric polynomial systems using as main
tool the properties of GB under specialization.We presented a technique based
on Hilbert function use and simplification of the result in an efficient way. The
Hilbert stratification of a parametric variety may be computed avoiding many
GB computations, and this permits to obtain efficiently many informations on
the structure and topology of the specialized varieties.
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Appendix: Examples

We present here some example for good conditions searching. Two used in [17],
other two regarding ellipsoids intersection and finally a “skew” application on
the kruppa system [10]. The term ordering is always a block DRL on unknowns
and parameters.

A.1 Weispfenning’s Tests

F = {vxy + ux2 + x, uy2 + x2}, u, v parameters: we obtain the conditions

C1 = {v = 0 , u �= 0} , C2 = {u, u3 + v2, v �= 0}

F = {X4−(a4−a2), X1 +X2+X3+X4+(a1+a3+a4), X1X3 +X1X4+X2X3+
X3X4 − (a1a4 + a1a3 + a3a4), X1X3X4 − a1a3a4}, a1, a2, a3, a4 parameters:

C1 = {a2 − a4 = 0 , a1a3a4 �= 0} , C2 = {a2 − a4 �= 0}

A.2 Ellipsoids

The first example represents the intersection of two fixed ellipsoids E1 and E2

centered in the origin having axes parallel to the principal ones, with a third one
E3. It has the same properties, but its center and eccentricities are parametric.
For each ellipsoid, the canonical form of the equation (x−a)2

A2 + (y−b)2

B2 + (z−c)2

C2 = 1
is transformed into fi(x, y, z)/A2B2C2 = 0, and just the numerator is considered.

Obviously, in this one and in the following example A,B,C �= 0, and this
fact – not codified in the equations – can be used to simplify the conditions.

F =
{
f1 = x2 + 4y2 + 4z2 − 4 f3 = (x− a)2B2C2 + (y − b)2A2C2+
f2 = 4x2 + y2 + z2 − 4 (z − c)2A2B2 −A2B2C2

}
We obtain three final conditions:

A(B2 − C2) �= 0: as we may have expected looking at f1, f2, “problems” (from
a 0-dimensional to 1-dimensional system) arise when even E3 has equal co-
efficients (B = ±C) for y2 and z2.

b, a, B2 − C2 = 0 ; cAC �= 0: similarly as above. Note that the center third co-
ordinate value is critical.
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aB, cA, bA, aA,A(B2 − C2) = 0 ; C(5A2C2 − 4A2 − 4B2) �= 0 : that is a, b, c,
B2−C2 = 0; 5A2C2 �= 4(A2 +C2). With the center in the origin, particular
relations concerning eccentricities must be satisfied.

In the second example we distribute the parametrization over the last two
ellipsoids: eccentricity parameters referring to x, z and the y coordinate of the
center are parametric for f2 while the “dual” happens for f3.

F =

⎧⎨⎩
f1 = x2 + y2 + 4z2 − 1
f2 = x2C2 +A2C2(y − b)2 +A2z2 −A2C2

f3 = (x− a)2B2 + y2 + (z − c)2B2 −B2

Here #G0
2 = 3, and the first criterion sometimes applies. For L1 = [1, 1, 0, 0]

(GL1
2 = 〈xH, z2, y2, x2〉) we have 4 terms, while for L2 = [0, 1, 1, 0] (with GL2

2 =
〈z2, x2〉) we instead have just 2. There are also other lists satisfying the criterion.

The conclusion is that if ϕ is such that one of the following holds

3A2B2C2 −A2B2 +B2C2 +A2 − 4C2 , B2 − 1 , C(A2 − 1) �= 0 (3)

B2 − 1 = 0 , C(A2 − 1) �= 0 (4)

C(A2 − 1) = 0 , A2 − 4C2 �= 0 , B2 − 1 �= 0 (5)

4C2 − 1 , B2 − 1 , A2 − 1 = 0 , b �= 0 (6)

bc , ab , b(B2 − 4) , c(A2 − 4C2) , bA , a(A2 − 4C2) , cB(4C2 − 1) = 0
aB(4C2 − 1) = 0 , 3A2B2C2 −B2(A2 − C2) +A2 − 4C2 = 0
C(A2 − 1) , B2 − 1 , A2B2 − 3A2C2 − 4B2C2 −A2 + 7C2 �= 0

(7)

a , b(B2 − 4) , bA , 3A2B2C2 −B2(A2 − C2) +A2 − 4C2 = 0
c(A2 − 4C2) , B2 − 1 , C(A2 − 1) �= 0 (8)

then ϕ(G) is a GB. It may be interesting to examine things deeply: here G is

g1 = 3A2B2C2z2 − A2B2z2 + B2C2z2 + A2z2 − 4C2z2 + 2aA2B2C2x − 2aB2C2x+
2bA2B2C2y − 2bA2C2y + 2cA2B2C2z − 2cB2C2z − a2A2B2C2 − b2A2B2C2−
c2A2B2C2 + b2A2C2 + a2B2C2 + c2B2C2 + A2B2C2 − A2C2 − B2C2 + C2

g2 = B2y2 − y2 + 3B2z2 + 2aB2x + 2cB2z − a2B2 − c2B2

g3 = A2C2y2 − C2y2 + A2z2 − 4C2z2 − 2bA2C2y + b2A2C2 − A2C2 + C2

g4 = x2 + y2 + 4z2 − 1

With values (1, 2, 3, 2,−2, 1), satisfying condition 3, we obtain

ϕ(G) :

⎧⎪⎪⎨⎪⎪⎩
ϕ(g1) : 3 (12z2 + 8x + 16y + 24z − 53)
ϕ(g2) : 3y2 + 12z2 + 8x + 24z − 40
ϕ(g3) : 3y2 − 16y + 13
ϕ(g4) : x2 + y2 + 4z2 − 1

G′ :

⎧⎨⎩
g′
1 : 12z2 + 8x + 16y + 24z − 53

g′
2 : 3y2 − 16y + 13

g′
3 : x2 + y2 + 4z2 − 1
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We can see that: ϕ(G) is not reduced, G′ has strictly less polynomials, and for G,
ϕ(G) and G′ (as it should be) the Z–monomial ideal is generated by {x2, y2, z2}.
With (1, 2, 3, 2, 1, 1), values satisfying condition 4, we have

ϕ(G) :

⎧⎪⎨⎪⎩
ϕ(g1) : 3 (3z2 + 2x + 6z − 10)
ϕ(g2) : 3z2 + 2x + 6z − 10
ϕ(g3) : 3y2 − 16y + 13
ϕ(g4) : x2 + y2 + 4z2 − 1

G′ :

{
g′
1 : 3z2 + 2x + 6z − 10

g′
2 : 3y2 − 16y + 13

g′
3 : 3x2 − 8x + 16y − 24z + 24

Specializations corresponding to the other conditions behave similarly.

A.3 The Kruppa System

The last example [10] is a system coming from a calibrating problem in vision
with not exact coefficients of 6 quadratic equations in 5 unknowns {x1, . . . , x5}
with a single solution. Being over-determined and approximated, practically all
the efforts to obtain directly the solution using floating point GB fail. One can

1. solve five equations and substitute the found roots in the remaining one,
2. stop Buchberger’s algorithm just before 1 appears in the basis and solve the

linear system that is obtained,
3. use hybrid coefficients with an appropriate mod-p-driven zero test [19].

We propose a different approach, that seems a bit more systematic: substitute
the constant term v = 6.9769247755906706053 in the first polynomial with a
parameter a, to have 6 variables. Do the computation with floating point coef-
ficients with 850 binary digits of precision (to overcome algorithmic error prop-
agation) obtaining G = {p0(a), x1 − p1(a), . . . , x5 − p5(a)} with deg(p0) = 32,
deg(p1) = · · · = deg(p5) = 31. It happens, as expected, that v is a (approxi-
mated) root of p0(a), and it is therefore possible to obtain the desired solution
with a simple substitution x1 = p1(v) , . . . , x5 = p5(v).



Investigation of the Stability Problem

for the Critical Cases of the Newtonian
Many-Body Problem

E.A. Grebenicov1, D. Kozak-Skoworodkin2, and M. Jakubiak2

1 Computing Center of RAS, Moscow, Russia
2 University of Podlasie, Poland

Using the computer algebra methods, different authors have proved the existence
of new classes of the homografic solutions, in the Lagrange–Wintner sense [1],
in the Newtonian many-body problem [2–6]. E.A. Grebenicov has also shown
that any homographic solution of the n-body problem generates a new dynam-
ical model, namely, “the restricted Newtonian (n + 1)-body problem”. These
problems are similar to the famous ”restricted three-body problem” which was
proposed for the first time by K. Jacobi [7]. Then the theorems of the existence of
stationary solutions (the equilibrium positions) for some fixed values of the pa-
rameter n were proved [8–10], and the problem of studying the stability of these
solutions in the Lyapunov sense was formulated. The study of this problem can
be done only on the basis of the KAM-theory [11–13] and only for the dynami-
cal systems with two degrees of freedom it can be realized. We have shown that
all the planar restricted n-body problems belong to this class for any n. The
situation is essentially complicated for the critical (resonance) cases, when the
eigenvalues of the linearized system of differential equations in the neighborhood
of the stationary solution are rationally commensurable. In these critical cases
the stability problem for hamiltonian dynamics may be studied only on the basis
of Markeev and Sokolsky theorems [14,15]. These theorems contain mathemat-
ical estimations of the influence of so-called “non-annihilable resonance terms”
in the Poincaré–Birkhoff normalizing transformations, which must be taken into
account in the theorems on the stability of stationary solutions of hamiltonian
equations in critical cases [16].

At first let us formulate the Arnold–Moser’s theorem on the stability of hamil-
tonian systems with two degrees of freedom [14] and Markeev’s theorem on the
stability of stationary solutions in the critical (frequency resonances) cases.

Let us consider the fourth-order Hamiltonian system{ dpk

dt = − ∂H
∂qk

, dqk

dt = ∂H
∂pk

,

k = 1, 2,
(1)

where the Hamiltonian H(p1, p2, q1, q2) is an analytical function in the domain
G4 of 4-dimensional phase point

p1 = p2 = q1 = q2 = 0. (2)

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 236–243, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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It means that the Hamiltonian H may be represented in G4 as the following
expansion:

H = H2 +H3 +H4 + ..., (3)

where Hm is the mth order homogeneous function with respect to p1, p2, q1, q2.
Besides, let the phase point (2) be a stationary solution of system (1). Then,

replacing the Hamiltonian H(p, q) in equations (1) with the function H2(p, q),
we obtain the system { dpk

dt = −∂H2
∂qk

, dqk

dt = ∂H2
∂pk

,

k = 1, 2,
(4)

which is just a linear system with constant matrix.
Let us assume also that, using the Birkhoff normalizing algorithm [16], we

have succeeded in transformation of the Hamiltonian (3) in the domain G4 into
the normal form

H(p1, p2, q1, q2) ≡ H∗(τ1, τ2, ϕ1, ϕ2) =
= σ1τ1 − σ2τ2 + c20τ

2
1 + c11τ1τ2 + c02τ

2
2 +H∗

5 (τ1, τ2, ϕ1, ϕ2) + ...,
(5)

where τ1, τ2, ϕ1, ϕ2 are new canonical variables and

τk =
p2

k + q2k
2

, k = 1, 2. (6)

Note that the Birkhoff normal form (5) can be obtained only in the case when
the eigenvalues of matrix standing in the right-hand side of system (4) are not
resonant. Then the following Arnold–Moser theorem holds [14].

Theorem 1. If the Hamiltonian (5) satisfies the following conditions:
1) the eigenvalues of matrix (4) are purely imaginary numbers,
2) k1σ1 +k2σ2 �= 0, where k1, k2 are integer numbers satisfying the inequality

0 < |k1|+ |k2| ≤ 4, (7)

3)
c20σ

2
2 + c11σ1σ2 + c02σ

2
1 �= 0, (8)

then the stationary solution (2) of system (1) is stable not only in linear approx-
imation but in Lyapunov sense as well.

The condition 2) of the theorem just means that the third and the fourth
order critical cases are absent [19].

Now let the frequencies of system (4) be connected by the third order res-
onance relation [19] σ1 = 2σ2. Assume that using the Birkhoff normalizing al-
gorithm [16] we have transformed the Hamiltonian (3) in the neighborhood of
phase point (2) into the form

H(p1, p2, q1, q2) ≡ H∗(τ1, τ2, ϕ1, ϕ2) =
= 2σ2τ1 − σ2τ2 + c20τ

2
1 + c11τ1τ2 + c02τ

2
2−

−√σ2(x2
1002 + y2

1002)τ2
√
τ1 sin(ϕ1 + 2ϕ2) +H∗

5 (τ1, τ2, ϕ1, ϕ2) + ...,
(9)
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where τ1, τ2, ϕ1, ϕ2 are new canonical variables. According to the Poincaré–
Birkhoff theory of normal forms, the sixth term in expression (9), which cor-
responds to the critical case, is just their invariant and it is always present in
the normal forms being similar to (9). The following theorem takes place [14].

Theorem 2. If the inequality x2
1002 + y2

1002 �= 0 in the Hamiltonian (9) is sat-
isfied then the stationary solution (2) is unstable. But if x2

1002 + y2
1002 = 0 and

c20 + 2c11 + 4c02 �= 0, then it is stable in the Lyapunov sense.

Let the frequencies of the system (4) be connected by the fourth-order reso-
nance relation σ1 = 3σ2. Assume that using the Birkhoff normalizing algorithm
[16] we have transformed Hamiltonian (3) in the neighborhood of phase point
(2) into the form

H(p1, p2, q1, q2) ≡ H∗(τ1, τ2, ϕ1, ϕ2) =
= 3σ2τ1 − σ2τ2 + c20τ

2
1 + c11τ1τ2 + c02τ

2
2 +

+ 1
3σ2

√
3(x2

1003 + y2
1003)τ2

√
τ1τ2 cos(ϕ1 + 3ϕ2) +H∗

5 (τ1, τ2, ϕ1, ϕ2) + ...,
(10)

where τ1, τ2, ϕ1, ϕ2 are new canonical variables, and the sixth term in (10) is just
the fourth-order resonance term. Let us denote

a = c20 + 3c11 + 9c02, b = 3σ2

√
(x2

1003 + y2
1003). (11)

Then the following Markeev’s theorem takes place [14].

Theorem 3. If parameters (11) of the Hamiltonian (10) are such that | a |< b
then the equilibrium position (2) is unstable. But it is stable in the Lyapunov
sense if | a |> b.

Using the theorems above, we can investigate the stability of the equilibrium
positions in new dynamical models for n > 3 bodies. Note that we can use
theorems 1–3 only after transforming the Hamiltonian of the studied system to
the Birkhoff normal form with accuracy up to the third or fourth order with
respect to the local coordinates.

Let us now consider the stability problem for the equilibrium positions in the
restricted problems of n > 3 bodies in the case of the fourth-order resonance. Let
a point S with phase coordinates (x∗, y∗, px∗ = −ωny

∗, py∗ = ωnx
∗) be stable in

linear approximation [8].
Angular velocity of the gravitational polygon P1...Pn attracting a body of

infinitesimal mass is not arbitrary and is determined uniquely by the following
general formula [8]:

ω2
n =

1
a3
0

[
m0 +

m

4

n∑
k=2

(
sin

π(k − 1)
n

)−1
]
, (12)

a0 is a radius of the circle circumscribed about the regular polygon,
m is a mass of every body P1, ..., Pn being in the vertices of the polygon,
m0 is a mass of the body being in the center of the polygon.
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Differential equations of the restricted many-body problem in the four-di-
mensional canonical phase space of local Lagrangian coordinates and momenta
(X,Y, PX , PY ), (the origin of the local reference frame is in any equilibrium
position (x∗, y∗, px∗ , py∗), so (X = x − x∗, Y = y − y∗, PX = px − px∗ , PY =
py − py∗)) may be written in the canonical form{

dX
dt = ∂H

∂PX
, dPX

dt = −∂H
∂X ,

dY
dt = ∂H

∂PY
, dPY

dt = −∂H
∂Y ,

(13)

where the Hamiltonian is [19]

H(X,Y, PX , PY ) =
1
2
(P 2

x + P 2
Y ) + ωn(XPY − Y PX)− U(X,Y ), (14)

⎧⎪⎪⎨⎪⎪⎩
U(X,Y ) = f

(
m0
Δ0

+m
n∑

i=1

1
Δi

)
,

Δ0 =
√
X2 + Y 2,

Δi =
√

(X −Xi)2 + (Y − Yi)2, i = 1, ..., n.

Differential equations (13) obviously have a particular solution (equilibrium
point)

X = Y = PX = PY = 0, (15)

which corresponds to any of the stationary phase points being investigated.
Using vector notation we can rewrite the linear part of system (13) in the

form [
dX̃

dt
,
dỸ

dt
,
dP̃X

dt
,
dP̃Y

dt

]T

= A ·
[
X̃, Ỹ , P̃X , P̃Y

]T
, (16)

where A is a 4×4 matrix whose elements are obtained by means of differentiating
the quadratic terms in the expansion of the Hamiltonian (14) in the neighbor-
hood of point (15). Let us denote the absolute values of the eigenvalues of the
matrix A as

|λ1| = |λ2| = σ1, |λ3| = |λ4| = σ2. (17)

They are equal in pairs because the matrix A is symplectic. Assume that we
have the critical case σ1 = 3σ2.

As the Hamiltonian H(X,Y, PX , PY ) in (14) is an analytic function in the
neighborhood of the point (0, 0, 0, 0), then with the help of the computer algebra
system “Mathematica” [17] we can easily find its representation in the form (3)
as

H = H2(X,Y, PX , PY ) +H3(X,Y ) +H4(X,Y ) + ..., (18)

where Hk(k = 2, 3, ...) is the kth order homogeneous form of phase coordinates,
in particular,

H2 =
1
2
a20X

2 +
1
2
a02Y

2 +
1
2
(P 2

X + P 2
Y ) + a11XY + ωn(Y PX −XPY ), (19)
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H3 = a30X
3 + a03Y

3 + a21X
2Y + a12XY

2, (20)

H4 = a40X
4 + a04Y

4 + a31X
3Y + a13XY

3 + a22X
2Y 2. (21)

As the second-order expression H2(X,Y, PX , PY ) defined in (19) contains the
term ωn(Y PX −XPY ) which is not a positive definite quadratic form then the
Hamiltonian H has no properties of the Lyapunov function [18]. Hence, the first
problem is to construct such a linear non-degenerate canonical transformation
which reduces a quadratic part of the Hamiltonian to the Birkhoff normal form
[16]

H2 ≡ K2 =
1
2
(p2

1 + σ2
1q

2
1)−

1
2
(p2

2 + σ2
2q

2
2), (22)

where the products of coordinates and momenta of the form
(q1p1, q1p2, q1q2, q2p1, q2p2, p1p2) are absent. We shall look for such a linear trans-
formation (X,Y, PX , PY )→ (q1, q2, p1, p2) in the form⎡⎢⎣

X
Y
PX

PY

⎤⎥⎦ = B4 ·

⎡⎢⎣
q1
q2
p1

p2

⎤⎥⎦ , (23)

where B4 is an unknown 4× 4 transformation matrix. According to the theory
of canonical transformations it is known that the matrix B4 must be symplectic,
i.e., its elements must satisfy the following identity:

BT
4 I4B4 = I4, I4 =

⎡⎢⎣
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤⎥⎦ , (24)

where BT is a matrix transposed with respect to B.
After some necessary matrix transformations given in [8], the entries bij

(i, j = 1, 2, 3, 4) of matrix B4 are determined as solutions of the following system
of linear homogeneous algebraic equations:

C16 · z = 0, (25)

where z is the 16-dimensional vector whose components are just the elements of
the matrix B4 : zT = (b11, b12, ..., b44). C16 is the 16× 16 matrix of the form

0 0 σ2
1 0 ωn 0 0 0 1 0 0 0 0 0 0 0

0 0 0 −σ2
2 0 ωn 0 0 0 1 0 0 0 0 0 0

-1 0 0 0 0 0 ωn 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 ωn 0 0 0 1 0 0 0 0

−ωn 0 0 0 0 0 σ2
1 0 0 0 0 0 1 0 0 0

0 −ωn 0 0 0 0 0 −σ2
2 0 0 0 0 0 1 0 0

0 0 −ωn 0 -1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 −ωn 0 1 0 0 0 0 0 0 0 0 0 1

−a20 0 0 0 −a11 0 0 0 0 0 σ2
1 0 ωn 0 0 0

0 −a20 0 0 0 −a11 0 0 0 0 0 −σ2
2 0 ωn 0 0

0 0 −a20 0 0 0 −a11 0 -1 0 0 0 0 0 ωn 0
0 0 0 −a20 0 0 0 −a11 0 1 0 0 0 0 0 ωn

−a11 0 0 0 −a02 0 0 0 −ωn 0 0 0 0 0 σ2
1 0

0 −a11 0 0 0 −a02 0 0 0 −ωn 0 0 0 0 0 −σ2
2

0 0 −a11 0 0 0 −a02 0 0 0 −ωn 0 -1 0 0 0
0 0 0 −a11 0 0 0 −a02 0 0 0 −ωn 0 1 0 0
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The calculations have shown that determinant of the matrix C16 and all its
fifteenth, fourteenth, and thirteenth order minors are equal to zero. But there
are some nonzero minors of the twelfth order. Hence, the algebraic system (23)
has nonzero solutions, and these solutions form a four-parametric family.

Four elements of the matrix B4 must be chosen in such a way that quadratic
form of the transformed Hamiltonian has the Birkhoff normal form (22). It means
that among the infinite set of matrices B4 we have to choose a symplectic matrix,
i.e., it must be such a solution of the system (23) which satisfies the identity (24).

Doing a transformation (23) of functions (19)–(21) with matrix B4, we obtain
a new Hamiltonian in the form

K(q1, q2, p1, p2) = K2 +K3 +K4 + ... = 1
2 (p2

1 + σ2
1q

2
1)− 1

2 (p2
2 + σ2

2q
2
1)+

+
∑

ν1+ν2+μ1+μ2=3
kν1ν2μ1μ2q

ν1
1 qν2

2 pμ1
1 pμ2

2 +

+
∑

ν1+ν2+μ1+μ2=4

kν1ν2μ1μ2q
ν1
1 qν2

2 pμ1
1 pμ2

2 + ....
(26)

Thus, we have realized the first step which is necessary for investigation of the
Lyapunov stability of the equilibrium positions in the critical case σ1 = 3σ2.

In order to reduce the new Hamiltonian K(q1, q2, p1, p2) = K2 +K3 +K4 + ...
to the form which is convenient for applying the second Birkhoff transformation,
let us do the following canonical transformation [14]:{

q1 = 1
2q11 + i

σ1
p11, q2 = − i

2q22 + 1
σ2
p22,

p1 = 1
2 iσ1q11 + p11, p2 = − 1

2σ2q22 + ip22
(i2 = −1). (27)

As result the Hamiltonian K(q1, q2, p1, p2) takes the form

F (q11, q22, p11, p22) = F2 + F3 + F4 + ... = iσ1q11p11 + iσ2q22p22+
+

∑
ν1+ν2+μ1+μ2=3

fν1ν2μ1μ2q
ν1
11q

ν2
22p

μ1
11p

μ2
22+

+
∑

ν1+ν2+μ1+μ2=4
fν1ν2μ1μ2q

ν1
11q

ν2
22p

μ1
11p

μ2
22 + ....

(28)

Here we use the Markeev’s notation [14]: fv1v2μ1μ2 = xv1v2μ1μ2 + iyv1v2μ1μ2 .
Applying now one more Birkhoff transformation which was written by A.P.

Markeev in a very convenient form, we cancel all the third-order terms in the
Hamiltonian F (q11, q22, p11, p22) and reduce the fourth-order terms to the fol-
lowing form [14]:

W4(Q1, Q2, P1, P2) = −c20Q2
1P

2
1 + c11Q1Q2P1P2 − c02Q2

2P
2
2 +

+(x1003 + iy1003)Q1P
3
2 +

(
−σ2

2
12 (x1003 − iy1003)

)
Q3

2P1.
(29)

where

c20 = −f2020 − 27
8 σ

2
2(x2

0030 + y2
0030)− 3

2 (x2
1020 + y2

1020)− 9
10 (x2

0120 + y2
0120)+

+ 1
2 (x2

1011 + y2
1011) + 9

56σ
2
2(x2

0021 + y2
0021),

c11 = f1111 − 2
3 (x2

1002 + y2
1002) + 3

10σ
2
2(x

2
0012 + y2

0012)− 9
14σ

2
2(x2

0021 + y2
0021)−

− 18
5 (x2

0120 + y2
0120) + 2(x0111x1020 + y0111y1020)−

− 4
σ2

(x0201y1011 + x1011y0201),
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c02 = −f0202 + 3
8σ

2
2(x2

0003 + y2
0003) + 6

σ2
2
(x2

0201 + y2
0201)− 1

6 (x2
1002 + y2

1002)−
− 1

2 (x2
0111 + y2

0111)− 3
40σ

2
2(x2

0012 + y2
0012),

x1003 = u1003 − 9
5 (x0120x0012 + y0120y0012)− 1

σ2
(x1002y1011 + x1011y1002)+

+ 4
σ2
2
(x1002x0201 + y1002y0201) + 3

2 (x0003x0111 + y0003y0111),

y1003 = v1003 − 9
5 (x0120y0012 − x0012y0120)− 1

σ2
(y1011y1002 − x1011x1002)+

+ 4
σ2
2
(x0201y1002 − x1002y0201) + 3

2 (x0111y0003 − x0003y0111),

and
u1003 =

1
2
σ1k0013 +

1
2σ3

2

k1300 − 1
2σ2

k1102 − σ1

2σ2
2

k0211,

v1003 = − σ1

2σ2
k0112 − 1

2
k1300 +

1
2σ2

2

k1201 +
σ1

2σ3
2

k0310.

Now we can calculate the parameters

a = c20 + 3c11 + 9c02, b = 3σ2

√
(x2

1003 + y2
1003),

which have been introduced in Theorem 3. Comparing the values of | a | and b
we can answer the question whether the equilibrium position (0, 0, 0, 0) is stable
or unstable in the Lyapunov sense. This may be demonstrated in the best way
for some fixed value of the main dynamical parameter m.

Example.
For the point S with the phase coordinates

x∗ = 0.809543..., y∗ = 0.588167...,

which have been calculated for n = 5 and m = 0.001752581289231607... (i.e., in
the restricted problem of seven bodies in the case of the fourth-order resonance
(σ1 = 0.944354...)), the matrix B4 has the form [19]:

B4 =

⎡⎢⎣
0 0 1.65822... 3.82824...

−1.52333... 0.659837... −1.20056... −4.68026...
0.0463528... −0.281294... 1.20201... 4.68591...
1.07067... −0.463764... 0.136895... 3.17302...

⎤⎥⎦ .
Doing all the calculations, as a result we obtain the Hamiltonian in the form

H̃(T1, T2, ϕ1, ϕ2) = 3σ2T1 − σ2T2 − 1.11118T 2
1 − 11.9648T1T2 − 7.88667T 2

2+
+34.4172

√
3

3 σ2T2

√
T1T2 cos(ϕ1 + 3ϕ2) + ...,

which is necessary for using the main Theorem 3 formulated at the beginning of
the present paper, and the parameters a and b are given by

| a |=| c20 + 3c11 + 9c02 |= 107.986, b = 3σ2 · 34.4172 = 32.502.

Comparing the values of | a | and b, we see that | a |> b. Hence, the equilib-
rium position S is stable in the Lyapunov sense in the case of the fourth-order
resonance.
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le problème des n corps. Celestial Mech. and Dynamical Astron. 4 No. 1 (1988)
131–151

3. Grebenicov, E.A.: The existence of the exact symmetrical solutions in the planar
Newtonian many-body problem (in Russian). Mathematical Modeling 10, No. 8
(1998) 74–80.

4. Zemtsova, N.I.: Stability of the stationary solutions of the differential equations of
restricted Newtonian problem with incomplete symmetry.In: Nonlinear Dynamics
and Systems Theory, Kiev 3(1) (2003) 105–116

5. Bang, D., Elmabsout, B.: Configurations polygonales en equilibre relative. C.R.
Acad. Sci., Série Iib. 329 (2001) 243–248

6. Grebenicov, E.A., Prokopenya, A.N.: On the existence of a new class of the exact
solutions in the planar Newtonian many-body problem (in Russian). In: The Ques-
tions of Modeling and Analysis in the Problems of Making Decision, V.A. Bereznev
(Ed.), Computing Center RAS, Moscow (2004) 39–57

7. Jacobi, K.: Gesammelte Werke, Bd. 1-7, Berlin (1881–1891)
8. Grebenicov, E.A., Kozak-Skoworodkin, D., Jakubiak, M.: Methodes of Computer

Algebra in Many-Body Problem (in Russian), Ed. of UFP, Moscow (2002)
9. Siluszyk, A.: Problem on linear stability of stationary solutions of restricted 8-body

problem with incomplete symmetry (in Russian), BRDU, Brest, No. 2 (2004) 20–26
10. Ikhsanov, E.V.: Stabilty of equilibrium state in restricted 10-body problem for

resonance case of 4th order. In: The Questions of Modeling and Analysis in the
Problems of Making Decision (in Russian), V.A.Bereznev (Ed.), Computing Center
RAS, Moscow (2004) 16–23

11. Kolmogorov, A.N.: General theory of dynamical systems and classical mechanics
(in Russian). In: Int. Math. Congress in Amsterdam, Physmatgiz, Moscow (1961)
187–208

12. Arnold, V.I.: About stability of equilibrium positions of Hamiltonian systems in
general eliptic case (in Russian). DAN USSR 137 (1961) 255–257

13. Moser, J.K.: Lectures on Hamiltonian Systems. Courant Institute of Mathematical
Science, New York (1968) 295

14. Markeev, A.P.: Libration Points in Celestial Mechanics and Cosmodynamics (in
Russian), Nauka, Moscow (1974)

15. Sokol’sky, A.G.: About stability of Hamiltonian autonomy system with the reso-
nance of first order (in Russian). J. Appl. Math. and Mech. 41 (1977) 24–33

16. Birkhoff, G.D.: Dynamical Systems (in Russian), GITTL, Moscow (1941)
17. Wolfram, S.: The Mathematica – Book, Cambridge University Press, Cambridge

(1996)
18. Lyapunov, A.M.: General Problem on Stability of Motion (in Russian), Academy

of Sciences of the USSR, Moscow 1 (1954)
19. Kozak-Skoworodkin, D.: The Stability of Equilibrium Points In Case of Resonance

σ1 = 2σ2 in the Restricted Seven-Body Problem (in Russian), BRDU, Brest, No.
1(38) (2004) 15–22



Symbolic-Numerical Algorithm for Solving the
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Abstract. A new computational approach is proposed for the solution
of the time-dependent Schrödinger equation (TDSE), in which a symbolic
algorithm named GATEO and a numerical scheme based on the finite-
element method (FEM) are effectively composed. The GATEO generates
the multi-layer operator-difference scheme for TDSE and evaluates the
effective Hamiltonian from the original time-dependent Hamiltonian by
means of the Magnus expansion and the Pade-approximation. In order
to solve the TDSE with the effective Hamiltonian thus obtained, the
FEM is applied to a discretization of spatial domain which brings the
difference scheme in operator form to the one in algebraic form. The
efficiency and accuracy of GATEO and the numerical scheme associated
with FEM is confirmed in the second-, fourth-, and sixth-order time-step
computations for certain integrable atomic models with external fields.

1 Introduction

The modern laser physics experiments have stimulated computer simulations for
the time-dependent dynamics of few-body Coulomb systems (including exotic
ones) in a train of laser pulses [1] and the time-dependent Schrödinger equation
(TSDE) for the control problems of quantum systems [2]. For such subjects, the
unitary splitting algorithms have been developed, for example, [3,4].

For any numerical method, a pair of requirements are always made: one is
stability, and the other is accuracy. From the viewpoint of these requirements,
the unitary splitting methods have a big advantage: the unitarity of the evolution
operators applied in the methods preserves the norm of the wave functions, so
that the conservation of probability density and robustness of the methods are
guaranteed. In spite of the advantage due to the unitary preserving property, the
unitary splitting methods still have had the following problem to be settled: At
each time step associated with the splitting, a solution with a certain accuracy
has to be determined. As a conventional method to this problem, the expansion
of the wave packet of TDSE in a globally defined basis has been considered.
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Instead of this expansion method, the finite-element method (FEM) [5,6] is ap-
plied together with using suitable interpolation technique connecting solutions
given on neighboring spatial grids [7,8].

In this paper, a new computational method is proposed to solve the TDSE,
in which the unitary splitting algorithm with uniform time grids [9] is combined
with an application of FEM and an interpolation method. The second-, fourth-,
and sixth-order approximations with respect to the time step are derived for
a numerical computation. As for the spatial step, the FEM is applied to con-
struct the numerical schemes with a required accuracy with respect to the spa-
tial step [7,8], in which a special gauge transformation of effective Hamiltonian
is fixed to ensure a high applicability of the FEM. The efficiency and accuracy
of the developed numerical algorithms is confirmed in certain integrable atomic
models in external fields.

The organization of this paper is outlined as follows. In section 2, a general
formulation and the operator-difference multi-layer scheme for solving TDSE in
a finite time interval are given. The algorithm GATEO is presented in the con-
ventional pseudo-code and is implemented in Maple package, which evaluates
the effective operators for the given Hamiltonian and the weights of the scheme
with a required order of the accuracy. In section 3, unitary schemes for partial
splitting of evolution operator are proposed that provide a symmetric matrix
representation in the local support functions of the FEM. In section 4, a back-
ground of the algorithm for generating matrix problem in framework of the FEM
is presented. In section 5, stability and efficiency of the developed schemes and
algorithms are confirmed in certain integrable atomic models in external fields.
Section 6 is devoted to concluding remarks and perspectives of further studies.

2 General Formulation and Calculation Schemes

Let us consider the Cauchy problem (the initial-value problem),

i
∂ψ(x, t)
∂t

= H(x, t)ψ(x, t), ||ψ||2 =
∫
|ψ(x, t)|2dx = 1, (1)

ψ(x, t0) = ψ0(x), ψ(x, t) ∈ H1(Rn ⊗ [t0, T ]), ψ0(x) ∈ H1(Rn),

of the multi-dimensional TDSE on the time interval t ∈ [t0, T ] with initial state
ψ0(x), which describes an atomic model in an external (electromagnetic) field 1.

We rewrite (1) for an unitary operator U(t, t0, λ) carrying the initial state
ψ(x, t0) to the solution ψ(x, t) in the form

i
∂U(t, t0, λ)

∂t
= λH(x, t)U(t, t0, λ), U(t0, t0, λ) = 1,

where λ is the formal parameter for an expansion given below.
Let us consider the uniform grid,

Ωτ [t0, T ] = {t0, tk+1 = tk + τ, (k = 0, 1, ...,K), tK = T } (2)

with time step τ , in the time interval [0, T ].
1 The atomic units are applied throughout this paper.
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Table 1. Range of the summation indexes (n, q, l1, ..., lq, j) at step 1: of GATEO

n q l1 l2 l3 j n q l1 l2 l3 l4 j n q l1 l2 l3 l4 l5 j n q l1 l2 l3 l4 j

1 0 1 1 1 4 5 1 1 5 6 2 1 4 6
1 1 1 2 1 2 3 1 5 1 2 4 1 6 2 2 3 1 6
2 0 2 1 2 2 2 5 1 2 3 2 6 2 2 2 2 6
1 1 2 3 1 2 1 3 5 1 2 2 3 6 2 2 1 3 6
1 2 1 1 3 1 3 2 1 1 5 1 2 1 4 6 2 3 2 1 1 6
2 1 1 3 1 3 1 2 1 5 1 3 3 1 1 6 2 3 1 2 1 6
3 0 3 1 3 1 1 2 5 1 3 2 2 1 6 2 3 1 1 2 6
1 1 3 4 1 4 1 1 1 1 5 1 3 1 3 1 6 2 4 1 1 1 1 6
1 2 2 1 4 2 1 3 5 1 3 2 1 2 6 3 1 3 6
1 2 1 2 4 2 2 2 1 5 1 3 1 2 2 6 3 2 2 1 6
1 3 1 1 1 4 2 2 1 2 5 1 3 1 1 3 6 3 2 1 2 6
2 1 2 4 2 3 1 1 1 5 1 4 2 1 1 1 6 3 3 1 1 1 6
2 2 1 1 4 3 1 2 5 1 4 1 2 1 1 6 4 1 2 6
3 1 1 4 3 2 1 1 5 1 4 1 1 2 1 6 4 2 1 1 6
4 0 4 4 1 1 5 1 4 1 1 1 2 6 5 1 1 6

5 0 5 1 5 1 1 1 1 1 6 6 0 6

We express the unitary operator U(tk+1, tk, λ) carrying the solution ψ(tk) ≡
ψ(x, tk) at t = tk to the one ψ(tk+1) at t = tk+1 in the form [9]

ψ(tk+1) = U(tk+1, tk, λ)ψ(tk), U(tk+1, tk, λ) = exp{−ıτAk(t, λ)}. (3)

Before going to the pseudo-code representation of the algorithm GATEO
(Generation of Approximations of the Time-Evolution Operator) for the opera-
tor-difference scheme, we present what is be made in GATEO in a theoretical
way.

Step 1: We start with the power-series expansion,

Ak(t, λ) =
1
τ

∞∑
j=1

λjA(j)k(t), (4)

of Ak(t, λ) in terms of the formal parameter 2 λ, where the operator-valued
coefficients A(j)(t) ≡ A(j)k(t) are evaluated from the operator-identity [10]

− ıλH(t) =
∞∑

n=1

∞∑
q=0

∞∑
l1,...,lq=1

λn+Σq
i=1li [A(l1)(t), [..., [A(lq)(t),

.
A(n) (t)]...]]

(q + 1)!
, (5)

where the ranges of the summation indices in (5) are given in Table 1. Note
that the dot over the operator A(n)(t) means the partial derivation,

.
A(n) (t) =

∂tA(n)(t), in t.

2 The λ will be replaced to be λ = 1 later.
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Steps 2-3: Equating the coefficients at the same powers of λ in both sides of (5),
we obtain a set of the first-order differential equations. Solving sequentially the
set of equations thus obtained, we are led to the effective Hamiltonian Ak(t) ≡
Ak(t, λ = 1) connected with the original one H(t) via the Magnus expansion [10]

Ak(tk+1) =
1
τ

∫ tk+1

tk

dtH(t) +
ı

2τ

∫ tk+1

tk

dt′
∫ t′

tk

dt′′[H(t′′), H(t′)] + · · · . (6)

Step 4: Under a sufficient smoothness of H(t) in t, we can obtain the unitary
scheme,

U(tk+1, tk; τ) = exp(−iτA(M)
k ) +O(τ2M+1), A

(M)
k ≡ A

(M)
k (tk+1, λ = 1) (7)

with truncation error O(τ2M ), where A(M)
k (t, λ) is the abbreviation of the trun-

cation,

A
(M)
k (t, λ) =

1
τ

M∑
j=1

λjA(j)k(t), (8)

of the expansion (4).

Steps 5-6: We wish to express the truncation A(M)
k given by (8) in terms ofH(t),

its partial derivative in time and the higher ones. Putting the Taylor expansion
of H(t) made in a vicinity of t = tk +τ/2 into the integrals in (6), one can find an
analytical (meaning non-numerical) expression of operators, A(1)

k , A
(2)
k , ..., A

(M)
k ,

in principle: For A(1)
k , we have only to calculate the coefficient of λ0, and then

obtain A(1)
k =

∫ 1

0
dξ0H(tk +ξ0τ) = H(tk +τ/2)+O(τ2), without any difficulties.

However, in the case of A(M)
k with large M , rather cumbersome calculations

are required to fix all the coefficients of the power of λ in A
(M)
k “by hand”.

Our algorithm GATEO (Generation of Approximations of the Time-Evolution
Operator) is thereby motivated by the difficulty of calculation pointed out above,
that provides the set of the generators A(M)

k (tk+1) required in the operator-
difference scheme derived in (15). To show the complexity of calculations, we
present the first three approximations of Eq. (7) obtained after applying GATEO
implemented in MAPLE package:

A
(1)
k = H, (9)

A
(2)
k = A

(1)
k + τ2

(
1
24

..
H − ı

12
[
.
H,H ]

)
, (10)

A
(3)
k = A

(2)
k + τ4

(
1

1920

....
H − 1

720
[[
..
H,H ], H ]− 1

240
[
.
H, [

.
H,H ]]

+
ı

480
[
..
H,

.
H ]− ı

480
[
...
H ,H ]− ı

720
[[[

.
H,H ], H ], H ]

)
, (11)

where H ≡ H(tk+1/2),
.
H≡ ∂tH(x, t)|t=tk+1/2

,
..
H≡ ∂2

tH(x, t)
∣∣
t=tk+1/2

, . . ., and
[·, ·] indicates the commutator. In the pseudo-code representation given subse-
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Table 2. Real and imaginary parts of coefficients α
(M)
ζ , M = 1, 2, 3, ζ = 1, ..., M

M ζ �αζ αζ

1 1 0 −1.0

2 1 −0.57735026918962576450914878050 −1.0
2 2 +0.57735026918962576450914878050 −1.0

3 1 −0.81479955424892281841473623156 −0.85405673065166346526579940886
3 2 +0.0 −1.29188653869667306946840118228
3 3 +0.81479955424892281841473623156 −0.85405673065166346526579940886

quently, expressions, tk = tin, tk+1/2 = tk + τ/2 = tc and tk+1 = tk + τ = tout,
are adopted.

Steps 7-8: We wish to make further approximation of the unitary scheme (7).
Application to the exponential operator on the rhs of (7) of the generalized
[M/M ] Padé approximation yields

exp(−iτA(M)
k ) =

M∏
ζ=1

Tζk +O(τ2M+1), Tζk =
I + τ

2M α
(M)
ζ A

(M)
k

I + τ
2M α

(M)
ζ A

(M)
k

, (12)

where the overline indicates the complex conjugate operation. The coefficients,
α

(M)
ζ (ζ = 1, . . . ,M , M ≥ 1), stand for the roots of the polynomial equa-

tion, 1F1(−M,−2M, 2Mı/α) = 0, where 1F1 is the confluent hypergeometric
function. Table 2 lists the values of the coefficients, α(M)

ζ for M = 1, 2, 3, calcu-

lated at step 7 in GATEO. The coefficients α(M)
ζ have the following properties:

6α(M)
ζ < 0 and 0.6 < |α(M)

ζ | < μ−1, where μ ≈ 0.28 is the root of equation

μ exp(μ + 1) = 1. Note that the condition τ < 2Mμ||A(M)
k ||−1 guarantees the

validity of the approximation (12) for any bounded operator A(M)
k .

We are now in a position to obtain the transition from ψ(tk) to ψ(tk+1), by
using the approximation (12) of the evolution operator in (3). To make it, we
rewrite the transition in terms of the auxiliary functions defined by

ψk+ζ/M = Tζkψ
k+(ζ−1)/M , ζ = 1, ...,M. (13)

The fact that 6α(M)
ζ < 0 yields the operators, Tζk, to be isometric, so that all

the ‖ψk+ζ/M‖ have an equal norm;

‖ψk‖ = ‖ψk+1/M‖ = . . . = ‖ψk+1‖. (14)

Putting (13) at each kth time step of the grid Ωτ into an approximate solution
of the TDSE (1), we are led to the operator-difference scheme [9],

ψ0 = ψ(t0),(
I +

τ

2M
α

(M)
ζ A

(M)
k

)
ψk+ζ/M =

(
I +

τ

2M
α

(M)
ζ A

(M)
k

)
ψk+(ζ−1)/M , (15)

ζ = 1, 2, . . . ,M and k = 0, 1, . . . ,K − 1,
ψ(T ) = ψK .
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Hence, the auxiliary functions ψk+ζ/M (ζ = 1, ...,M − 1) in Eq. (15) can be
treated as a kind of approximate solutions on a set of the fractional time steps
tk+ζ/M = tk + τζ/M, ζ = 1, ...,M − 1 in the time interval [tk, tk+1]. The scheme
(15) is an implicit one of order 2M preserving the norm of the difference so-
lution(14), so that this scheme is stable. Further, the scheme (15) provides an
approximation of the order O(τ2M ) in the sense of [11], while any individual
equation in (15) only provides an approximation of degree not higher thanO(τ2).
Note that in the case M = 1, i.e., [1/1] Padé approximation of exponential op-
erator (12), the scheme (15) reduces to the well-known Crank-Nicholson scheme
[12].

Algorithm GATEO(Generation of Approximations of the TEO)

Input:
M is an order of approximation of the TEO with respect to the time variable;
t is the time variable;
τ = tout − tin is a step of the uniform grid Ωτ [t0, T ] with respect to t;
tin, and tout are boundary points of time interval t ∈ [tin, tout = tin + τ ];
H(t) ≡ H(x, t) is the Hamiltonian;
ψ(tin) is a wave packet at time t = tin;
Output:
A

(M)
tc

is a generator of the M -order approximation of the TEO;
ψ(tout) is a wave packet at time t = tout;
α

(M)
ζ , ζ = 1, ...,M , are weights of the operator-difference scheme (15);

Local:
eqj , j = 1, ..., L are auxiliary equations (L = 2M);
A(j)(t), j = 1, ..., L, is a generator of the j-order approximation of the TEO;.
A(j) (t), j = 1, ..., L, are the partial derivatives of the A(j)(t) with respect to t;
F (j)(A(i)(t), 1 ≤ i ≤ j − 1;H(t)), j = 1, ..., L, are auxiliary functional solutions;
ti, i = 0, ..., L, are auxiliary time variables;
tc = tin + τ/2 is a middle point of time intervals;
∂j

tH(tc) ≡ ∂j
tH(x, t)

∣∣∣
t=tc

, j = 0, ..., L, are the partial derivatives of the order j

of the H(t) with respect to t at t = (tc);
ψζ/M at ζ = 0, ...,M are auxiliary functions;

1: for j:=1 to L do

eqj :=
j∑

n=1

j−n∑
q=0

n+Σq
i=1li=j∑

l1,...lq≥1

[A(l1)(t), [A(l2)(t), [..., [A(lq)(t),
.
A(n) (t)]...]]]

(q + 1)!
;

end for;
eq1 := eq1 +

√−1H(t);
2: eqj = 0, j = 1, ..., L →

.
A(j) (t) = F (j)(A(i)(t), 1 ≤ i ≤ j − 1;H(t));

3: for j:=1 to L do
H(tj−1) := subs(t→ tj−1, H(t));
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A(j)(tj) :=
∫ tj

tin

dtj−1F
(j)(A(i)(tj−1), 1 ≤ i ≤ j − 1;H(tj−1));

if L > 1 then
for i := j + 1 to L do
A(j)(ti) := subs(tj → ti, A(j)(tj));

end for
end if

end for;

4: A(L)(tL) :=
∑L

j=1
A(j)(tL);

5: A(L)(tL) := subs(H(ti) →
L∑

j=0

(ti−tc)j

j!
∂j

tH(tc), i = 1, ..., L− 1,
1
τ
A(L)(tL));

6: A
(M)
tc

:= subs(tL → tout, A(L)(tL));
7: 1F1(−M,−2M, 2Mı/α) = 0 → α

(M)
ζ , ζ = 1, 2, . . . ,M ;

8: ψ0 := ψ(tin);
for ζ:=1 to M do(

I +
τ

2M
α

(M)
ζ A

(M)
tc

)
ψζ/M =

(
I +

τ

2M
α

(M)
ζ A

(M)
tc

)
ψ(ζ−1)/M → ψζ/M ;

end for;
ψ(tout) := ψ1;

Remarks:
1. In the pseudo-code expression of step 1: the definition of eqj comes from the
identity (5), where Table 1 shows a range of the summation indexes (n, q, l1, ...,
lq, j) in step 1:.
2. Integrals appearing at step 3: are evaluated explicitly at step 5: after substi-
tution of the Taylor-series expansion of the Hamiltonian H(x, t) in a vicinity of
the point t = tc = tin + τ/2.

3 Unitary Schemes with a Partial Splitting of the
Evolution Operator

Let us consider the Cauchy problem,

ı
∂

∂t
ψ(x, t) = H(x, t)ψ(x, t), (x, t) ∈ R× [t0, T ], (16)

H(x, t) = H(x) + q(x, t), H(x) = −1
2
∂2

∂x2
+ V (x),

ψ(−∞, t) = ψ(∞, t) = 0, ψ(x, t0) = ψ0(x),

of the TDSE in the interval for an atomic model in an external field.
For the operators, q(x, t) and H(x), and the wave function ψ(x), we make

the following assumptions. The q(x, t) describes the dipole-approximation of the
interaction between the atom and the external field f(t), which is written in
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the form, q(x, t) = f(t)x. The H(x) is the Hamiltonian of the atom without
the effect of the external field. The H(x) admits the non-negative continuous
spectra and/or non-positive discrete spectra: With a continuous spectral value
Ec ≥ 0 (resp. a discrete discrete spectral value Ed, eigenfunctions denoted by
ψEc(x) (resp. ψEd

(x)) are associated. As the initial state, namely the Cauchy
data, we choose the Gaussian packet ψ0(x) ∈ H1 or a bound state ψEd

(x). The
normalization condition,

||ψ||2 =
∫ ∞

−∞
|ψ(x, t)|2dx =

∫ ∞

−∞
ψ∗(x, t)ψ(x, t)dx = 1, (17)

is claimed at any t ≥ t0.

Second-order scheme at the time step (M = 1): We wish to construct
the second-order scheme in the time step τ for the Cauchy problem (16) on a
uniform grid (2). For M = 1, the scheme (15) of the order O(τ2) reads as well-
known Cranck-Nicholson method for the Cauchy problem (16) with the effective
operator,

Â
(1)
k ≡ A

(1)
k = H(x, tk+1/2), tk+1/2 = tk +

1
2
τ,

(I +
τ

2
α

(1)
1 Â

(1)
k )ψk+1 = (I +

τ

2
α

(1)
1 Â

(1)
k )ψk, (18)

ψ0 = ψ(x, t0), ‖ψk+1|| = ||ψk|| (k = 0, 1, · · · ,K − 1).

In these expressions α(1)
1 is given in Table 2. As is shown in the third line of

(18), the norm-preserving claim (17) is ensured in this scheme.

Fourth-order scheme at the time step (M = 2): In the case of M = 2,
we apply the gauge transformation, ψk → ψ̂k = exp

(
ıτ2S

(2)
k

)
ψk, to the wave

function, where S(2)
k is chosen to be

ıτ2S
(2)
k =

ıτ2

12
∂q(x, tk+1/2)

∂t
. (19)

Then the gauge transformation above and Eq. (10) are put together to show
that the new effective operator, Â(2)

k = exp
(
ıτ2S2

)
A

(2)
k exp

(−ıτ2S2

)
, induced

by the gauge transformation takes the form,

Â
(2)
k = A

(2)
k +

ıτ2

12
[
.
H,H ] = H(x, tk+1/2) +

τ2

24
∂2q(x, tk+1/2)

∂t2
. (20)

As is seen above, the characteristic of our gauge transformation is that all the
coefficients in the expansion of Â(2)

k up to order O(τ4) become real-valued af-
ter the transformation. The algorithm combined with the gauge transformation
starting from ψ0 = ψ(x, t0) can read as follows:
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1. ψ̂k = exp
(
ıτ2S

(2)
k

)
ψk,

2. (I +
τ

4
α

(2)
1 Â

(2)
k )ψ̂k+1/2 = (I +

τ

4
α

(2)
1 Â

(2)
k )ψ̂k,

3. (I +
τ

4
α

(2)
2 Â

(2)
k )ψ̂k+1 = (I +

τ

4
α

(2)
2 Â

(2)
k )ψ̂k+1/2, (21)

4. ψk+1 = exp
(
−ıτ2S

(2)
k

)
ψ̂k+1,

where α(2)
1 and α(2)

2 are calculated in Table 2. In this scheme, the norm-preserving
claim (17) is ensured in the form, ||ψ̂k+1|| = ||ψ̂k+1/2|| = ||ψ̂k||, (k = 0, 1, . . . ,
K − 1).

Sixth-order scheme at the time step (M = 3): Like in the case of M = 2,
we apply the gauge transformation, ψ̂k = exp

(
ı(τ2S

(2)
k + τ4S

(4)
k )
)
ψk , where

S
(4)
k is chosen to be

ıτ4S
(4)
k = − ıτ

4

720
∂V (x)
∂x

∂f(tk+1/2)
∂t

+
ıτ4

480
x
∂3f(tk+1/2)

∂t3
. (22)

The gauge transformation above and Eq. (11) are put together to show that the
new effective operator, Â(3)

k , takes the form,

Â
(3)
k = exp

(
ı(τ2S

(2)
k + τ4S

(4)
k )
)
A

(3)
k exp

(
−ı(τ2S

(2)
k + τ4S

(4)
k )
)

= Â
(2)
k +

τ4

5760

[
3x
∂4f(tk+1/2)

∂t4
+ 4f(tk+1/2)

∂2f(tk+1/2)
∂t2

+4
(
∂f(tk+1/2)

∂t

)2

+ 8
∂V (x)
∂x

∂2f(tk+1/2)
∂t2

]
,

so that all the coefficients in the expansion of Â(2)
k up to order O(τ6) become

real-valued after the transformation. The algorithm combined with the gauge
transformation starting from ψ0 = ψ(x, t0) can read as follows:

1. ψ̂k = exp
(
ı(τ2S

(2)
k + τ4S

(4)
k )
)
ψk,

2. (I +
τ

6
α

(3)
1 Â

(3)
k )ψ̂k+1/3 = (I +

τ

6
α

(3)
1 Â

(3)
k )ψ̂k,

3. (I +
τ

6
α

(3)
2 Â

(3)
k )ψ̂k+2/3 = (I +

τ

6
α

(3)
2 Â

(3)
k )ψ̂k+1/3, (23)

4. (I +
τ

6
α

(3)
3 Â

(3)
k )ψ̂k+1 = (I +

τ

6
α

(3)
3 Â

(3)
k )ψ̂k+2/3,

5. ψk+1 = exp
(
−ı(τ2S

(2)
k + τ4S

(4)
k )
)
ψ̂k+1,

where α
(3)
1 , α(3)

2 and α
(3)
3 are listed in Table 2. In this scheme, the norm-

preserving claim (17) is ensured in the form, ||ψ̂k+1|| = ||ψ̂k+2/3|| = ||ψ̂k+1/3|| =
||ψ̂k|| (k = 0, 1, . . . ,K − 1).
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4 Conversion to the Algebraic Problem by FEM

In the numerical calculations of the problem (16) on the grid (2) the boundary
conditions in (16) with respect to the spatial variable are reduced to the finite
interval ψ(xmin, t) = ψ(xmax, t) = 0. We consider a discrete representation of
solutions ψ(x; t) of problem (16) by means of FEM on the grid,Ωp

h = (x0 = xmin,
xj = xj−1 + hj , xn̄ = xmax), in a finite sum in each t = tk of the grid Ωτ [t0, T ]:

ψ(x; t) =
∑n̄p

μ=0
χμ(t)Nμ(x) =

∑n̄

r=0

∑p

j=1
χr+p(j−1)(t)N

p
r+p(j−1)(x), (24)

where Nμ(x) are local functions and χμ(t) are node values of ψ(x; t). The local
functions Nμ(x) are piecewise polynomials of the given order p which equals one
only in the node xμ and equals zero in all other nodes xν �= xμ, i.e.,Nν(xμ) = δνμ,
μ, ν = 0, 1, ..., n̄p. The coefficients χν(tk) are formally connected with solution
ψ(xp

j,r; tk) in a node xν = xp
j,r, r = 1, ..., p, j = 0, ..., n̄:

χν(tk) = χr+p(j−1)(tk) ≈ ψ(xp
j,r ; tk), xp

j,r = xj−1 +
hj

p
r.

The theoretical estimate for the H0 norm between the exact and numerical
solution has the order of ||ψ − χ|| = O(hp+1), where h = max1<j<n̄ hj is maxi-
mum step of grid [5]. It has been shown that we have a possibility to construct
schemes with very high order of accuracy comparable with the computer one
[8]. Let us consider the reduction of differential equations (15) on the interval
Δ : xmin < x < xmax with boundary conditions at points xmin and xmax at
each step k of the grid (2) rewriting in the form(

Aζ(x, tk+1/2)
)
ψk+ζ/M (x) =

(
Bζ(x, tk+1/2)

)
ψk+(ζ−1)/M (x), (25)

where A and B are differential operators. Substituting expansion (24) to (25)
and integrating with respect to x by parts in the interval Δ = ∪n̄

j=1Δj , we arrive
at a system of the linear algebraic equations(

aζ(tk+1/2)
)
μν
χk+ζ/M

ν = cμ, cμ =
(
bζ(tk+1/2)

)
μν
χk+(ζ−1)/M

ν , (26)

within the framework of the briefly described FEM. Using p-order Lagrange ele-
ments [5], we present below an algorithm AXeqC for construction of algebraic
problem (26) by the FEM in the form of conventional pseudocode. Its MAPLE
realization allows us to explicitly recalculate the indices μ, ν and to test corre-
sponding modules in FORTRAN code.

For solution of algebraic problem (26) with respect to unknown vector χk+ζ/M

≡ {χk+ζ/M
μ }T at large values of dimension n̄p of matrix a and a given vector c

one can use the subroutine F07BRF (ZGBTRS) of NAG Fortran Library Rou-
tine Document [13]. The main point of view to pay attention to the schemes
with the partial splitting TEO derived in the previous section consists in pre-
serving a symmetric structure of the band matrices (26) needed for applying the
conventional subroutines of the FEM [6].
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Algorithm AXeqC

Input:
Δ = ∪n̄

j=1Δj = [xmin, xmax], is interval of changing of space variable x;
hj = xj − xj−1 is a grid step;
n̄ is a number of subintervals Δj = [xj−1, xj ];
p is an order of finite elements;(
Aζ(x, tk+1/2)

)
,
(
Bζ(x, tk+1/2)

)
are differential operators in Eq. (25);

Output:
Nμ is the basis functions in (24);(
aζ(tk+1/2)

)
μν
,
(
bζ(tk+1/2)

)
μν

are matrix elements in system of algebraic equa-
tions (26);
Local:
xp

j,r are nodes;
φp

j,r(x) are Lagrange elements;
μ, ν = 0, 1, ..., n̄p ;

1: for j:=1 to n̄ do
for r:=0 to p do
xp

j,r = xj−1 + hj

p r
end for;

end for;

2: φp
j,r(x) =

∏
k �=r(x− xp

j,k)∏
k �=r((x

p
j,r − xp

j,k))
3: N0(x) := {φp

1,0(x), x ∈ Δ1; 0, x �∈ Δ1};
for j:=1 to n̄ do

for r:=1 to p− 1 do
Nr+p(j−1)(x) := {φp

j,r(x), x ∈ Δj ; 0, x �∈ Δj , }
end for;
Njp(x) := {φp

j,p(x), x ∈ Δj ;φ
p
j+1,0(x), x ∈ Δj+1; 0, x �∈ Δj

⋃
Δj+1};

end for;
Nn̄p(x) := {φp

n̄,p(x), x ∈ Δn̄; 0, x �∈ Δn̄};
4: for μ, ν:=0 to n̄p do(

aζ(tk+1/2)
)
μν

:=
∫

Δ

Nμ(x)
(
Aζ(x, tk+1/2)

)
Nν(x)dx;(

bζ(tk+1/2)
)

μν
:=
∫

Δ

Nμ(x)
(
Bζ(x, tk+1/2)

)
Nν(x)dx;

end for;

Remarks:
1. For equation (18) matrix elements of the operator,

(
A1(ρ, tk+1/2)

)
:(

I +
τ

2
ᾱ

(1)
1 Â

(1)
k

)
=

(
I +

τ

2
ᾱ

(1)
1

(
−1

2
∂2

∂x2
+ V (x) + q(x, tk+1/2)

))
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between local functions Nμ andNν defined in the same intervalΔj are calculated
by formula 3

(
a1(tk+1/2)

)
q+p(j−1),r+p(j−1)

=
+1∫
−1

φp
j,qφ

p
j,r

hj

2 dη

+ ᾱ
(1)
1 τ
2

+1∫
−1

{
2
h2

j
(φp

j,q)
′(φp

j,r)
′ +
(
V (x) + q(x, tk+1/2)

)
φp

j,qφ
p
j,r

}
hj

2 dη.

If integrals are not calculated analytically then we perform numerical evaluation
[5], for example, by means of the Gauss quadrature formulae of the order p+ 1.

2. For solution of algebraic problem (26) with respect to unknown vector
χk+ζ/M ≡ {χk+ζ/M

μ }T at large values of dimension n̄p of matrix a and a given
vector c a subroutine F07BRF (ZGBTRS) of NAG Fortran Library Routine
Document[13] is used. Note, that for schemes with partial splitting from previous
section are sufficient to apply the conventional subroutines for a symmetric band
matrix [6].

5 Numerical Experiments

Oscillator in an external periodical field. Now we consider the problem
(16) with the potential function V (x) = ω2x2/2 that supports only a pure dis-
crete spectrum. This potential describes a harmonic oscillator with the angu-
lar frequency ω in an external field f(t) = f0 sin(ω0t) with strength f0 and
angular frequency ω0. We choose the initial state ψ0(x) at the time t0 = 0
as a Gaussian wave packet ψ0(x) = 4

√
ω/π exp(−ω(x− x0)2/2 + ıp0(x − x0)).

For the numerical example considered below the constants are taken to be
x0 = 0, p0 = 1, ω = ω0 = 1, f = 0.25. This problem is a very good test for
numerical experiments because it has the known analytical solution ψ(x, t) [2].

In these experiments we consider the finite element grid Ωp
h with 1000 ele-

ments of order p = 6 in the interval [xmin, xmax], where xmin = 20, xmax = 20,
and 0 ≤ t ≤ 10. We use the enclosed three time grids Ωτ [0, 10] with the step
τ taking the values τ = 0.01, 0.005, 0.0025 and examine the behavior of the
function

Er2(t; i) =
∫ xmax

xmin

[ψ(x, t)− ψi(x, t)]∗[ψ(x, t) − ψi(x, t)]dx, (27)

where the index i = 1, 2, 3 labels the numerical solutions, obtained for a different
values of the time step τ . Having these three values of Er(t; i), we can calculate
the Runge ratio

αM (t) = ln
|Er(t; 1)− Er(t, 2)|
|Er(t; 2)− Er(t, 3)|/ ln 2. (28)

3 Transformation to new variable η in integral (x �→ η : Δj = [xj−1, xj ] �→ [−1, 1]) is
given by formula η = (xj − xj−1)

−1[2x − (xj + xj−1)]; x = 2−1[(xj − xj−1)η + (xj +
xj−1)], hj = xj − xj−1.
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Fig. 1. Logarithm of discrepancy lg10 Er(t; i), i = 1, 2, 3 (dash-dot, dashed and solid

curves) for schemes with M = 1, 2, 3 calculated for oscillator in Fortran with double

precision (15 significant digits) in left panel and quadruple one (33 significant digits)

in right panel

Hence, we obtain the following theoretical estimates: α1(t) ≈ 2 for the scheme
(18), α2(t) ≈ 4 for the scheme (21) and α3(t) ≈ 6 for the scheme (23) Fig.
1 shows the plots of Er(t; i), i = 1, 2, 3 for these schemes (upper three curves
correspond to the second-order scheme, middle three curves to the fourth-order
scheme and lower three ones to the six-order scheme) and the mean value of
αM over all values αM (tk) of the grid Ωτ [0, 10]. One can see in Fig. 1 that for
schemes starting from the order of M ≥ 3 the floating-point calculations with
at least a quadruple precision should be applied.

The Pöschl–Teller atom in a laser pulse field. Now we consider the prop-
agation problem (16) that has oscillating solutions. In our point of view, to find
directly such solutions with a given accuracy in an increasing interval of time
with respect to a short duration time of a pulse field is a rather complicated
problem[3]. To illustrate how the above approach allows an efficient solution of
the TDSE problem, we consider a Pöschl–Teller atom (PTA) in a laser pulse
electric field. For the PT model the potential function V (x) = − cosh−2 x sup-
ports only one bound state ψ0(x) = 1/

√
2 coshx, with the eigenvalue E0 = −0.5

a.u., and a continuum of the known scattering states with E > 0. The laser
pulse f(t) is given by f(t) =

{
f0 sin2( πt

2t0
), 0 < t < 2t0; 0, |t− t0| ≥ t0,

}
where

f0 = t0 = 1. We choose the corresponding ground state ψ0(x) as an initial state.
To approximate the solution ψi(x, t), i = 1, 2, 3, 4 we use 1600 finite elements
with p = 6 and the finite element grid Ω = {−1500(200)− 300(200)− 20(200)−
1(400)1(200)20(200)300(200)1500}, where the numbers in brackets denote the
number of finite elements in the intervals. We calculated the above solution
over the enclosed time grids Ωτ [t0 = 0, T = 10] with four different time steps
τ = 0.01, 0.005, 0.0025, 0.00125. Fig. 2 displays the wave function calculated at
time T = 10 and behavior of discrepancies Er(t; i), i = 1, 2, 3 evaluated by for-
mulae (27) and (28) at M = 1, 2, 3 where the function ψ4(x, t) was used instead
of an analytical solution ψ(x, t). Here, we again obtain the numerical estimates
of αM (t) and their mean value, αM , that strongly correspond to theoretical ones.



Symbolic-Numerical Algorithm 257

-30 -25 -20 -15 -10 -5 0 5 10 15

-0,4

-0,2

0,0

0,2

x

(x
)

-1,0 -0,5 0,0 0,5 1,0

-12

-10

-8

-6

-4

-2

3=5,97

2M=6

=3,98

2M=4

=1,97

2M=2

lg
10
t

lg
1
0
E
r(
t
j)

Fig. 2. Real and imaginary parts of solution φ(x, t) (solid and dashed curves) for PTA

atom at t = T = 10 in left panel and logarithm of discrepancy Er(t; i), i = 1, 2, 3

(dash-dot, dashed and solid curves) for schemes with M = 1, 2, 3 calculated in Fortran

by quadruple precision (33 significant digits) in right panel

6 Conclusions

We have presented a new computational approach to solve the TDSE, in which
partial (unitary) splitting of evolution operator and the FEM are combined
together effectively. Especially, to realize our approach in an explicit form, we
have derived the second-, fourth-, and sixth-order approximations with respect
to time. Several numerical results have been also given which turn out to agree
with the theoretical ones to a good extent.

As our future program, we wish to mention an extension of our proposed
approach to the nonlinear TDSE with the use of the Lie symmetry formal-
ism [14,15], which some of the authors have a plausible reason to think of. If it is
possible, ‘Lie-admissible’ TDSEs could be thought of, from which we could find
exact solutions [16,17]. Our approach would be worth being applied to the quan-
tum control problem, some pre-experimental calculations in the atomic dynamics
in traps and/or external-pulse fields, and other quantum calculations [2].

The authors thanks O. Chuluunbaatar at JINR for discussions. This work
was supported in part by Grant of RFBR Nos. 03-02-16263 and 04-01-00784,
Grant of the President of the Bulgarian State Agency for Atomic Energy (2004),
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and by Grant-in-Aid Scientific Research Nos. 13660065 and 16560050 from JSPS.
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Abstract. Some results of analysis of Kirchhoff equations, which de-
scribe the motion of a rigid body in the ideal incompressible fluid, are
presented. With respect to these equations, a problem is stated to ob-
tain steady-state motions, invariant manifolds of steady-state motions
(IMSMs), and to investigate their properties in the aspect of stability
and stabilization of motion. Our methods of investigation are based on
classical results obtained by Lyapunov [1]. The computer algebra systems
(CAS) “Mathematica”, “Maple”, and a software [2] are used as the tools.
Lyapunov’s sufficient stability conditions are derived for some steady-
state motions obtained. A problem of optimal stabilization with respect
to the first approximation equations is solved for some cases of unstable
motion. This paper represents a continuation of our research, the results
of which have been reported during CASC’2004 in St. Petersburg [3].

1 Introduction

Almost 250 years ago, L. Euler obtained differential equations, which describe
motions of a rigid body with a fixed point in a moving coordinate system.
Later these differential equations were generalized in numerous works, and are
presently used for the purpose of modelling various mechanical systems: a system
of rigid bodies in the gravitation field and other force fields, motions of a rigid
body in the ideal fluid (Kirchhoff’s equations), and also in hydrodynamic models
of convection, chaos, Kolmogorov’s flow in a channel with solid walls, etc. [4,5].
These equations are now used even as a system most suitable for demonstration
of some methods of algebraic geometry, representation theory (Lie algebras, al-
gebra of loops, Kac–Moody algebras), topology, which are applied in analysis
of so called quite integrable systems [6]. Euler-type equations normally assume
many algebraic first integrals, which may be used for obtaining information on
qualitative properties of solutions of such equations. This paper discusses one
of the types of above differential equations and presents some results, which are
bound up with both obtaining steady-state solutions and invariant manifolds of
steady motions and further investigation of their stability and stabilization by
methods of the theory of Lyapunov functions, which is conducted with the aid
of computer algebra tools.
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In particular, a problem of a rigid body motion in the ideal fluid, which is
described in terms of Kirchhoff equations, is considered. To wit, analysis of a
recently revealed case of “quite integrability” of such a problem, for which the
system Hamiltonian writes

2H = s21 + s22 + 2s23 + 2αr1s3 − α2r23 = 2h,

and the differential equations assume other 3 first integrals, is conducted in the
above aspect.

In obtaining steady-state motions and invariant manifolds we rely upon the
following proposition.

Proposition 1. If the differential equations of motion

ẋi = Xi(t, x1, . . . , xn) (i = 1, . . . , n) (1)

assume the first integral V (t, x1, . . . , xn) = c, then the system of equations

∂V

∂xi
= ϕi(t, x1, . . . , xn) = 0 (i = 1, . . . , n) (2)

defines invariant manifolds of the initial system of differential equations (1).

Proof. Since V (t, x1, . . . , xn) is the first integral of the system of differential
equations (1), the following identity holds:

n∑
i=1

∂V

∂xi
Xi +

∂V

∂t
= 0.

Having differentiated this identity with respect to xj (j = 1, . . . , n), after explicit
transformations we have the following n equalities:

n∑
i=1

∂

∂xi

(
∂V

∂xj

)
Xi +

∂

∂t

(
∂V

∂xj

)
= −

n∑
i=1

∂V

∂xi

∂Xi

∂xj
(j = 1, . . . , n).

As obvious from the latter system of equations, when (2) holds, left-hand sides
of equations, which represent the derivatives of ∂V /∂xj due to the differential
equations (1), vanish on the manifold defined by the equations ϕi(t, x1, . . . , xn) =
0 (i = 1, . . . , n). The latter allows us to state that the system of equations (2)
defines invariant manifolds of the system of differential equations (1).

If the functions ϕi(t, x1, . . . , xn) of the system of equations (2) are inde-
pendent, then equations (2), allow one, generally speaking, to find out some
set of steady-state solutions: x1,k = x1,k(t), . . . , xn,k = xn,k(t). And under the
condition of degeneracy of the scrutinized system (when ϕi(t, x1, . . . , xn) are
dependent), in the capacity of its solutions we obtain the invariant manifolds
which are henceforth called invariant manifolds of steady motions (IMSMs). )*
To the end of obtaining sufficient conditions of stability of steady-state solutions
and IMSMs, theorems of Lyapunov’s second method, in particular, the Routh–
Lyapunov’s theorem [7], are used. For the purpose of solving problems of optimal
stabilization, the well-known N.N.Krassovski’s theorem [8] is employed.
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2 Obtaining Steady-State Motions

Kirchhoff’s equations for a new integrable case [9] on account of the linear trans-
formation of the variables [10] writes:

ṙ1 = (αr1 + 2s3)r2 − r3s2, ṡ1 = (αr1 + s3)s2 − α2r2r3,

ṙ2 = r3s1 − r1(αr1 + 2s3), ṡ2 = (αr3 − s1)(αr1 + s3), (3)
ṙ3 = r1s2 − r2s1, ṡ3 = −αr2s3.

Here s = (s1, s2, s3) r = (r1, r2, r3) are vectors of “impulsive moment” and of
“impulsive force”, respectively, α is an arbitrary constant.

The system (3) assumes the four algebraic first integrals:

2H = (s21 + s22 + 2s23) + 2αr1s3 − α2r23 = 2h,
V1 = s1r1 + s2r2 + s3r3 = c1, (4)
V2 = r21 + r22 + r23 = c2,

9V3 = α2((αr1s1 + αr2s2 + s1s3)2 + s23(s
2
2 + (αr1 + s3)2)) = 9c3,

where H represents the system Hamiltonian “body-fluid”.
For the purpose of finding out steady-state solutions for the system (3) and

investigation of their stability, we – likewise in the previous paper [3] – use the
Routh–Lyapunov’s method [11], what allows us to perform a substantial part of
computations with the aid of computer algebra systems.

While following the Routh–Lyapunov’s method, let us restrict our consider-
ation to linear combinations of integrals (4). Specifically, let us compose a full
linear bundle of the first integrals of the problem:

K = λ0H − λ1V1 − λ2V2 − λ3V3 (5)

and write down for it the steady-state conditions with respect to all the variables:

∂K

∂s1
=

9
2
λ0s1 − 9

2
λ1r1 − α4λ3r

2
1s1 − α4λ3r1r2s2 − 2α3λ3r1s1s3 − α3λ3r2s2s3

−α2λ3s1s
2
3 = 0,

∂K

∂s2
=

9
2
λ0s2 − 9

2
λ1r2 − α4λ3r1r2s1 − α4λ3r

2
2s2 − α3λ3r2s1s3 − α2λ3s2s

2
3 = 0,

∂K

∂s3
=

9
2
αλ0r1 − 9

2
λ1r3 − α3λ3r1s

2
1 − α3λ3r2s1s2 + 9λ0s3 − α4λ3r

2
1s3

−α2λ3s
2
1s3 − α2λ3s

2
2s3 − 3α3λ3r1s

2
3 − 2α2λ3s

3
3 = 0, (6)

∂K

∂r1
=

9
2
αλ0s3 − 9λ2r1 − 9

2
λ1s1 − α4λ3r1s

2
1 − α4λ3r2s1s2 − α3λ3s

2
1s3

−α4λ3r1s
2
3 − α3λ3s

3
3 = 0,

∂K

∂r2
= 9λ2r2 +

9
2
λ1s2 + α4λ3r1s1s2 + α4λ3r2s

2
2 + α3λ3s1s2s3 = 0,

∂K

∂r3
= (α2λ0 + 2λ2)r3 + λ1s3 = 0.
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In accordance with the Proposition 1 given in the Introduction, solutions of
system (6) define IMSMs of system (3) (in particular, steady-state motions). In
the general case, these steady-state solutions may contain parameters λi, which
enter in the family of integrals K (5), and hence may represent a family of
steady-state solutions. Therefore, for the purpose of solving the stated problem
(obtaining IMSMs for the system (3) corresponding to the family of first integrals
K) it is necessary to solve a system of 6 nonlinear algebraic equations containing
four parameters. The maximum power of the equations entering the system is 3.

To the end of obtaining solutions of system (6), let us employ sufficiently
efficient methods of solving such problems – the Gröbner bases method and
the method of elimination of variables with the use of the resultants. Let us
preliminarily transform our equations by reducing their number.

In this connection, note that the 6th equation of system (6) is linear. The
4th and the 5th equations are also linear with respect to r1 and r2. Let us now
use the above equations to remove r1, r2, and r3 from the rest of equations (6).
As a result, the steady-state equations write:

f1(s1, s2, s3) = 0; s2f2(s1, s2, s3) = 0; f3(s1, s2, s3) = 0. (7)

Here we denote by f1, f2, f3 the polynomials of the variables s1, s2, s3. In the
present paper we will not need explicit form of these equations.

As a result, the problem is reduced to investigation of three nonlinear algebraic
equations dependent on the variables s1, s2, s3 and parameters λ0, λ1, λ2, λ3, and
α. The powers of the equations are, respectively, 9, 10 and 11. Consider the case
when s2 = 0. In this case, equations (7) are reduced to the following two ones, and
after introduction of the denotation a = 9λ2, b = 2a+ 9α2λ0 they will write:

a(2aλ0 + 9λ2
1)s1 + 4aα4λ0λ3s

3
1 + 2α8λ0λ

2
3s

5
1 − 9aαλ0λ1s3 + 3α3(2a+ 3α2λ0)

×λ1λ3s
2
1s3 + 2α7λ1λ

2
3s

4
1s3 + α2(9α2(λ2

1 − α2λ2
0)−

4
9
a2)λ3s1s

2
3 + 4α8λ0λ

2
3s

3
1s

2
3

+α3(2a− 9α2λ0)λ1λ3s
3
3 + 4α7λ1λ

2
3s

2
1s

3
3 + 2α8λ0λ

2
3s1s

4
3 + 2α7λ1λ

2
3s

5
3 = 0,

9abαλ0λ1s1 + α3(81α4λ2
0 − 4a2)λ1λ3s

3
1 − 2bα7λ1λ

2
3s

5
1 − a(8a2λ0 + 81α4λ3

0 + 2a

×(3α2λ2
0 + λ2

1))s3 − α2(4a2α2λ0 − 8
9
a3 + 81α4λ0(α2λ2

0 − λ2
1) + 18aα2(3α2λ2

0

+λ2
1))λ3s

2
1s3 + 2α6(

2
9
ab− 9α2λ2

1)λ
2
3s

4
1s3 − 3α3b(2a+ 3α2λ0)λ1λ3s1s

2
3 − 4α7bλ1

×λ2
3s

3
1s

2
3 + 4aα2(

2
9
ab− 9α2λ2

1)λ3s
3
3 + 4α6(

2
9
ab− 81α2λ2

1)λ
2
3s

2
1s

3
3 − 2α7bλ1λ

2
3s1s

4
3

+2α6(
2
9
ab− 9α2λ2

1)λ
2
3s

5
3 = 0. (8)

The power of both above equations is 5.
Now let us compute the resultant of (8) with respect to the variable s1. After

the factorization, it writes:
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Res = (α2λ2
0 + λ2

1 + 2λ0λ2)s3(α2(α4λ2
0 + 4λ2

2 + α2(λ2
1 + 4λ0λ2)λ3s

2
3 + 9λ2

1λ2))4

(a0s
8
3 + a1s

6
3 + a2s

4
3 + a3s

2
3 + a4), (9)

where a0, a1, a2, a3, a4 are polynomials of the parameters λ0, λ1, λ2, λ3. These
are too bulky, and so are omitted herein.

When using (9), it is possible to estimate the number of roots for the system
(8).

From the structure of the expression for Res and from the values of the
respective coefficients, it is obvious that, in the general case, the degree of this
polynomial with respect to s3 is 17. Consequently, the resultant equated to
zero allows us to obtain 17 values for s3. If all of the values are real then,
having substituted any of them into one of equations (8), we obtain a 5th-
degree equation with respect to s1. If the latter equation has 5 real solutions
with respect to s1 for each of 17 roots s3, then the system (8) has 85 real
solutions. Since, as a rule, our solutions contain the parameters, there arises
a problem of (i) bifurcations of such families of solutions and (ii) analysis of
their subfamilies under various restrictions imposed on the system parameters.
Consider the procedure of obtaining some of these solutions.

Having equated the resultant to zero, consider now the following 3 possibilities.
Let us start from the case when s3 = 0. Substitution of this value of s3 into

(8) entails in the following two equations containing s1 :

s1(81λ2
1λ2 + 162λ0λ

2
2 + 36α4λ0λ2λ3s

2
1 + 2α8λ0λ

2
3s

4
1) = 0,

s1(2α2λ3s
2
1 − 9λ0)(9λ2 + α4λ3s

2
1) = 0. (10)

Under arbitrary values of λi the equations have only the zero common root
s1 = 0. To the end of finding other solutions, let us construct the Gröbner basis
for system (10) with respect to both the variable s1 and the parameter λ2:

λ2s1(α4λ3
0 + 2(2α2λ2

0 + λ2
1)λ2 + 4λ0λ

2
2) = 0,

s1(9(2α2λ2
0 + λ2

1)λ2 + 18λ0λ
2
2 + α6λ2

0λ3s
2
1) = 0. (11)

As obvious from direct substitution, equations (11) have the following solutions
with respect to s1, λ2:{

{s1 = 0}, {s1 = − 3
√
λ0√

2α
√
λ3

, λ2 = −2α2λ2
0 + λ2

1 − λ1

√
4α2λ2

0 + λ2
1

4λ0
},

{s1 = − 3
√
λ0√

2α
√
λ3

, λ2 = −2α2λ2
0 + λ1(λ1 +

√
4α2λ2

0 + λ2
1)

4λ0
},

{s1 =
3
√
λ0√

2α
√
λ3

, λ2 = −2α2λ2
0 + λ2

1 − λ1

√
4α2λ2

0 + λ2
1

4λ0
},

{s1 =
3
√
λ0√

2α
√
λ3

, λ2 = −2α2λ2
0 + λ1(λ1 +

√
4α2λ2

0 + λ2
1)

4λ0
}
}
.

Now, acting similarly, let us obtain solutions for equations (8), which corre-
spond to the roots of the second multiplier in the expression for the resultant:
(α2(α4λ2

0 + 4λ2
2 + α2(λ2

1 + 4λ0λ2)λ3s
2
3 + 9λ2

1λ2))4.
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As regards s3, the latter polynomial has two roots of multiplicity 4 each:{
{s3 =

3λ1

√
λ2√
a
}, {s3 = −3λ1

√
λ2√
a
}
}
.

Here a = −α2(α4λ2
0 + 4λ2

2 + α2(λ2
1 + 4λ0λ2))λ3.

Now substitute the first of the roots into (8), and for the equations obtained
as a result of such a substitution construct the Gröbner basis with respect to
both the variable s1 and the parameter λ1. This allows, under definite restrictions
imposed on the parameters λi, to obtain up to 12 values of s1 (including multiple
ones) for the indicated value of s3. There were five values of s1 found out for the
second root.

Finally, for the purpose of investigation of the 8th degree bi-polynomial (for
the fourth multiplier in the expression of the resultant), standard techniques of
solving the 4th degree algebraic equations were used. In this case, the results
of computations turned out practically rather bulky, and the problem remained
incomplete, open.

As a result (considering the multiplicity) over 70 families of solutions for the
system (8) were found out. For obvious reasons, only real solutions are of interest
for us. On the whole, 19 various real solutions were obtained.

Having the solutions for s1, s2, s3, the respective values for the variables
r1, r2, r3 may be found from equations (6). Some of the solutions for the sys-
tem (6) obtained by above technique are given below.{

{s1 = −6λ
3/2
2

α
, s2 = 0, s3 = 0, r1 = 0, r2 = 0, r3 = 0, λ0 = 0, λ1 = 0,

λ3 = − 1

4α2λ2
2

}, {s1 =
3
√

λ2(α
2λ0 + 2λ2)

α
, s2 = 0, s3 = ±3

√
−λ0λ2(α2λ0 + 2λ2),

r1 = ∓3
√−λ0λ2(α2λ0 + 2λ2)

α
, r2 = 0, r3 = 3λ0

√
λ2, λ1 = ±

√
−λ0(α2λ0 + 2λ2),

λ3 = − 1

2α4λ0λ2 − 4α2λ2
2

}, {s1 = ∓ 3
√

λ0√
2α

√
λ3

, s2 = 0, s3 = 0, (12)

r1 = ±3(λ2
1 +
√

4α2λ2
0λ

2
1 + λ4

1)

2
√

2α3λ1

√
λ0λ3

, r2 = 0, r3 = 0, λ2 = − 1

4λ0
(2α2λ2

0 + λ2
1

−
√

4α2λ2
0λ

2
1 + λ4

1)}, {s1 = ∓ 3
√

λ0√
2α

√
λ3

, s2 = 0, s3 = 0, r1 = ± 3

2
√

2α3λ1

√
λ0λ3

(λ2
1

−
√

4α2λ2
0λ

2
1 + λ4

1), r2 = 0, r3 = 0, λ2 = −2α2λ2
0 + λ2

1 +
√

4α2λ2
0λ

2
1 + λ4

1

4λ0
}
}

.

3 Obtaining Invariant Manifolds of Steady-State Motions

Besides the problem of finding steady-state solutions for the system (3), a prob-
lem of obtaining IMSMs for the same equations was considered. In accordance
with [12], equality of the Jacobi matrix determinant of system (6) to zero is the
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condition of existence of such IMSMs. In the general case, such an investigation
entails in quite bulky expressions. Let us discuss a simpler problem. Instead
of the Jacobian of system (6), consider the Jacobian of system (8), which for
λ2 = −(α2λ2

0 + λ2
1)/(2λ0) (9) assumes a rather compact form:

J = (αλ0s1 + λ1s3)2{81λ0λ
4
1 − 432α5λ3

0λ1λ3s1s3 − 324α3λ0λ
3
1λ3s1s3 + 96α7λ2

0

×λ1λ
2
3s1s3(s

2
1 + s23) + 4α8λ3

0λ
2
3(5s

2
1 − 7s23)(s

2
1 + s23)

+27α4(3λ5
0 − 2λ2

0λ
2
1λ3s

2
3) + 54α2(3λ3

0λ
2
1 + λ4

1λ3(s21 − 2s23))
−4α6λ0λ3(27λ3

0(s
2
1 − s23) + λ2

1λ3(7s21 − 5s23)(s
2
1 + s23))}. (13)

It is obvious from (13) that this Jacobian vanishes, for example, when s1 =
−λ1s3/(αλ0). Having substituted the expression obtained for s1 into (6), it is
possible to find the respective values of the variables r1, r2, and r3. The complete
form of the solution writes:

{r1 = −s3
α
, r2 = 0, r3 =

λ0s3
λ1

, s1 = −λ1s3
αλ0

, s2 = 0}. (14)

The vector field on the elements of the family of IMSMs (14) is given by the
differential equation

ṡ3 = 0

derived from equations (3) after removing s1, s2, r1, r2, r3 from them with the aid
of expressions (14). Therefore, the elements of the family of IMSMs obtained rep-
resent hyper-surfaces. The permanent helical motions of a rigid body correspond
to the points of these hypersurfaces.

4 Stability Investigation of Steady-State Motions

The steady-state motions and the family of IMSMs (14) identified may be subject
to stability investigation. The method of Lyapunov functions [1] is one of the
traditional approaches in such cases, in particular, the above mentioned Routh–
Lyapunov’s method.

The procedure of obtaining sufficient conditions of stability of steady-state
solutions by this technique practically reduces to the verification (in the simplest
case) of sign-definiteness of the second variation of the integral K (5) in the
neighborhood of the steady-state solution, which is of interest for us, on the
manifold defined by the first variations each of k − 1 integrals (of k integrals
entering into the bundle K) equated to zero.

Consider the family of IMSMs (14) obtained above.
The second variation of K in the neighborhood of some helical motion, which

lies on the chosen IMSM, represented in terms of deviations

z1 = r1 +
s3
α
, z2 = r2, z3 = r3 − λ0s3

λ1
, z4 = s1 +

λ1s3
αλ0

, z5 = s2, z6 = s3 − s03
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writes:

δ2K =
(α2λ2

0 + λ2
1)(9λ0 − 2α2λ3s

0
3
2)

18λ2
0

z2
1 +

α2λ2
0 + λ2

1

2λ0
z2
2 +

λ2
1

2λ0
z2
3 − λ1z1z4

+
λ0

2
z2
4 − λ1z2z5 + (

λ0

2
− α2λ3s

0
3
2

9
)z2

5 ,

and the respective variations of the first integrals H,V1, V2 can be written as:

δH = (αz1 − α2λ0

λ1
z3 − λ1

αλ0
z4 +

λ4
1 − α4λ4

0

α2λ2
0λ

2
1

z6)s03 = 0,

δV1 = (− λ1

αλ0
z1 + z3 − 1

α
z4 + 2(

λ0

λ1
+

λ1

α2λ0
)z6)s03 = 0,

δV2 = 2(− 1
α
z1 +

λ0

λ1
z3 + (

1
α2

+
λ2

0

λ2
1

)z6)s03 = 0.

Assuming that s03 �= 0, let us eliminate the variables z1, z4 with the use of the
latter equations (because there are only two ones that are linearly independent)
from δ2K. As a result, the following quadratic form is obtained:

δ2K̃ =
α2λ2

0 + λ2
1

2λ0
z2
2 +

9(α4λ4
0 + α2λ2

0λ
2
1 + λ4

1)− 2α4λ0(α2λ2
0 + λ2

1)λ3s
0
3
2

18λ0λ2
1

z2
3

−λ1z2z5 + (
λ0

2
− α2λ3s

0
3
2

9
)z2

5 +
α2

9λ0λ3
1

(α2λ2
0 + λ2

1)(9λ
3
0 − 2(α2λ2

0

+λ2
1)λ3s

0
3
2
)z3z6 +

(α2λ2
0 + λ2

1)
2(9λ3

0 − 2(α2λ2
0 + λ2

1)λ3s
0
3
2)

18λ2
0λ

4
1

z2
6 .

The conditions of sign-definiteness of δ2K̃ are known to be sufficient stability
conditions for the helical motions, which belong to our IMSMs. When represent-
ing them in the form of Sylvester conditions we have:

1.
α2λ2

0 + λ2
1

2λ0
> 0,

2.
9(α6λ6

0 + 2α4λ4
0λ

2
1 + 2α2λ2

0λ
4
1 + λ6

1)− 2α4λ0(α2λ2
0 + λ2

1)2λ3s
0
3
2

λ2
0λ

2
1

> 0,

3.
α2

λ2
0λ

2
1

(2(α2λ2
0 + λ2

1)λ3s
0
3
2 − 9λ3

0)(2α
4λ0(α2λ2

0 + λ2
1)λ3s

0
3
2 − 9(α4λ4

0

+α2λ2
0λ

2
1 + λ4

1)) > 0,

4.
(α2λ2

0 + λ2
1)

3(9λ3
0 − 2(α2λ2

0 + λ2
1)λ3s

0
3
2)2

λ2
0λ

2
1

> 0. (15)

A standard software package “Algebra‘ InequalitySolve‘” of CAS “Mathematica”
is used for the purpose of verification of compatibility for this system of inequal-
ities. Its application to (15) gives evidence that the inequalities are compatible
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when:

α < 0 ∨ λ0 > 0

∨
(
λ1 < 0 ∨

(
λ3 ≤ 0 ∧ − 3λ3/2

0√
2
√
α2λ2

0 + λ2
1

√
λ3

< s03 <
3λ3/2

0√
2
√
α2λ2

0 + λ2
1

√
λ3

)

∧λ1 > 0 ∨
(
λ3 ≤ 0 ∧ − 3λ3/2

0√
2
√
α2λ2

0 + λ2
1

√
λ3

< s03 <
3λ3/2

0√
2
√
α2λ2

0 + λ2
1

√
λ3

))
∧α > 0 ∨ λ0 > 0

∨
(
λ1 < 0 ∨

(
λ3 ≤ 0 ∧ − 3λ3/2

0√
2
√
α2λ2

0 + λ2
1

√
λ3

< s03 <
3λ3/2

0√
2
√
α2λ2

0 + λ2
1

√
λ3

)

∧λ1 > 0 ∨
(
λ3 ≤ 0 ∧ − 3λ3/2

0√
2
√
α2λ2

0 + λ2
1

√
λ3

< s03 <
3λ3/2

0√
2
√
α2λ2

0 + λ2
1

√
λ3

))
.

Therefore, as far as elements of the family of IMSMs (14) are concerned, stable
in the sense of Lyapunov are only those helical motions of the body for which
parameter s03 satisfies the latter conditions.

With the use of the Routh–Lyapunov’s technique an attempt was made to
obtain stability conditions for practically all the obtained solutions of equa-
tions (6). For most of these solutions the obtained sufficient stability conditions
(Sylverster conditions) turned out to be incompatible for any values of param-
eters λi. In this connection, the problem of stabilization of such motions is of
interest for us.

5 Optimal Stabilization of Steady-State Motions

In order to stay within the framework of Lyapunov’s second method, a well-
known N.N.Krassovski’s theorem [8] is applied for solving problems of optimal
stabilization.

Let there be the need to stabilize the equilibrium position x1 = 0, . . . , xn = 0
of the system of equations:

ẋi = Xi(t, x1, . . . , xn, u1, . . . , ur) (i = 1, . . . , n) (16)

for a given quality criterion:

J =
∫ ∞

t0

ω(t, x1(t), . . . , xn(t), u1(t), . . . , ur(t))dt. (17)

Let us choose a Lyapunov function V (t, x1, . . . , xn) and make up an expression:

B[V, t, x1, . . . , xn, u1, . . . , ur] =
∂V

∂t
+

n∑
i=1

∂V

∂xi
Xi(t, x1, . . . , xn, u1, . . . , ur)

+ω(t, x1, . . . , xn, u1, . . . , ur). (18)

Hence the following theorem holds.
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Theorem 1. If for the differential equations (16) it is possible to obtain a pos-
itive definite function V 0(t, x1, . . . , xn) assuming an infinitesimal limit as well
as the controls u0

j(t, x1, . . . , xn) (j = 1, . . . , r), which satisfy the following condi-
tions in the domain t ≥ 0, |xi| ≤ H:
1) the function

ω(t, x1, . . . , xn) = ω(t, x1, . . . , xn, u
0
1(t, x1, . . . , xn), . . . , u0

r(t, x1, . . . , xn)) (19)

is positive definite,
2) the equality

B[V 0, t, x1, . . . , xn, u
0
1(t, x1, . . . , xn), . . . , u0

r(t, x1, . . . , xn)] = 0, (20)

holds,
3) whichever the numbers uj are, the following inequality holds

B[V 0, t, x1, . . . , xn, u1, . . . , ur] ≥ 0,

then the functions u0
j(t, x1, . . . , xn) are the solution of the problem of optimal

stabilization. Furthermore, the equality holds:

J =
∫ ∞

t0

ω(t, x0
1(t), . . . , x

0
n(t), u0

1(t), . . . , u
0
r(t))dt (21)

= min
∫ ∞

t0

ω(t, x1(t), . . . , xn(t), u1(t), . . . , ur(t))dt = V 0(t0, x1(t0), . . . , xn(t0)).

Consider now the problem of stabilization for one of the families of steady-state
motions (12):

{s01 = −6λ3/2
2

α
, s02 = 0, s03 = 0, r01 = 0, r02 = 0, r03 = 0}, (22)

obtained under the condition imposed on λi: λ0 = 0, λ1 = 0, λ3 = −1/(4α2λ2
2).

The family of solutions (22) are unstable in the first approximation [1], be-
cause among the roots of the characteristic equation constructed for the lin-
earized equations of system (3) in the neighbourhood of (22) there are zero mul-
tiple roots. The Jordan form of the system matrix with nonzero over-diagonal
elements corresponds to these roots. This means that the family of steady-state
motions under scrutiny is unstable in the first approximation.

Consider the problem of optimal stabilization in the first approximation for
the family of solutions (22) under the condition of incomplete control u1, u2, u3,
u4, u5.

Equations of the 1st approximation with control for the system (3), which
are obtained in the neighborhood of (22), write:

ż1 = u1, ż2 =
6λ3/2

2

α
z3 + 6λ3/2

2 z4 + u2, ż3 = u3,

ż4 = u4, ż5 = u5 − 6λ3/2
2

α
z6, ż6 =

6λ3/2
2

α
z5, (23)
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where z1 = s1−s01, z2 = s2−s02, z3 = s3−s03, z4 = r1−r01 , z5 = r2−r02 , z6 = r3−r03
are deviations.

The system (23) is controlled, what follows from direct verification of the
Kalman criterion [8].

Let us choose the following quadratic form in the capacity of the function ω
(17)

ω =
1
2
(u2

1 + u2
2 + u2

3 + u2
4 + u2

5) + a1u1z1 + a2u2z2 + a3u3z3 + a4u4z4 + a5u5z5

+a6u5z6 +
1
2
(d2

1z
2
1 + d2

2z
2
2 + d2

3z
2
3 + d2

4z
2
4 + d2

6z
2
6) + b2z2z3 + b1z2z4, (24)

and in the capacity of the Lyapunov function –

V =
1
2
(c1z2

1 + c2z
2
2 + c3z

2
3 + c4z

2
4 + c5z

2
5 + c6z

2
6) + c7z5z6, (25)

where ai, ci (i = 1, . . . , 6), c7, b1, b2, d1, d2, d3, d4, d6 are arbitrary constants to
be defined.

The expression for B (18) will have the form:

B =
1
2
(u2

1 + u2
2 + u2

3 + u2
4 + u2

5) +
1
2
(d2

1z
2
1 + d2

2z
2
2 + d2

3z
2
3 + d2

4z
2
4 + d2

6z
2
6) + a1u1z1

+a2u2z2 + a3u3z3 + a4u4z4 + a5u5z5 + a6u5z6 + c1u1z1 + c2u2z2 + c3u3z3

+c4u4z4 + c5u5z5 + c7u5z6 + b1z2z4 + b2z2z3 +
6c2λ

3/2
2

α
z2z3 + 6c2λ

3/2
2 z2z4

+
6c7λ

3/2
2

α
z2
5 +

6(c6 − c5)λ3/2
2

α
z5z6 − 6c7λ

3/2
2

α
z2
6 . (26)

The problem implies obtaining the controls u0
1, u

0
2, u

0
3, u

0
4, u

0
5, which would

satisfy conditions (19)-(21) of the theorem of optimal stabilization.
From the equations

∂B

∂ui
= 0, (i = 1, . . . , 5)

it is possible to find out expressions which define the structure of the controls
u0

1, u
0
2, u

0
3, u

0
4, u

0
5:

u0
1 = −(a1 + c1)z1, u0

2 = −(a2 + c2)z2, u0
3 = −(a3 + c3)z3,

u0
4 = −(a4 + c4)z4, u0

5 = −(a5 + c5)z5 − (a6 + c7)z6. (27)

After the substitution of (27) into (26), the latter writes:

B =
1
2
(d2

1 − (a1 + c1)2)z2
1 +

1
2
(d2

2 − (a2 + c2)2)z2
2 +

1
2
(d2

3 − (a3 + c3)2)z2
3

+
1
2
(d2

4 − (a4 + c4)2)z2
4 + (

6c7λ
3/2
2

α
− 1

2
(a5 + c5)2)z2

5 +
1
2α

(α(d2
6 (28)

−(a6 + c7)2)− 12c7λ
3/2
2 )z2

6 + (b2 +
6c2λ

3/2
2

α
)z2z3 + (b1 + 6c2λ

3/2
2 )z2z4

+(
6(c6 − c5)λ3/2

2

α
− (a5 + c5)(a6 + c7))z5z6 = 0.
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Satisfaction of equality (28) for any values of zj (j = 1, . . . , 6) necessitates that all
the coefficients of zizj (j = 1, . . . , 6; i = 1, . . . , 6) turn into zero. Having equated
these coefficients in (28) to zero, we obtain a system of algebraic equations needed
for determining the ai, ci (i = 1, . . . , 6), c7, b1, b2, d1, d2, d3, d4, d6. In the capacity
of one of its solutions this system has the following one:

b1 = −6c2λ
3/2
2 , b2 = −6c2λ

3/2
2

α
, a1 = d1 − c1, a2 = d2 − c2, a3 = d3 − c3, (29)

a4 = d4 − c4, a5 =
2
√

3
√
c7λ

3/4
2√

α
− c6, a6 = −c7, c5 = c6, d6 = −2

√
3
√
c7λ

3/4
2√

α
.

Having substituted (29) into (27), (24), and (25), we can obtain the desired
expressions for the controls u0

1, u
0
2, u

0
3, u

0
4, u

0
5 and for the functions ω, V:

u0
1 = −d1z1, u

0
2 = −d2z2, u

0
3 = −d3z3, u

0
4 = −d4z4, u

0
5 = −2

√
3
√
c7λ

3/4
2√

α
z5. (30)

ω = c1d1z
2
1 + c2d2z

2
2 −

6c2λ
3/2
2

α
z2z3 + c3d3z

2
3 − 6c2λ

3/2
2 z2z4 + c4d4z

2
4

+
2
√

3
√
αc6
√
c7λ

3/4
2 − 6c7λ

3/2
2

α
z2
5 +

2
√

3c3/2
7 λ

3/4
2√

α
z5z6 +

6c7λ
3/2
2

α
z2
6 ,

V =
1
2
(c1z2

1 + c2z
2
2 + c3z

2
3 + c4z

2
4 + c6z

2
5 + c6z

2
6) + c7z5z6.

The functions ω and V are positive definite when the following inequalities hold:

α > 0 ∨ λ2 > 0

∨c1 > 0 ∨ c2 > 0 ∨ c3 > 0 ∨ c4 > 0 ∨ c7 =
12λ3/2

2

α
∨ c6 > 12λ3/2

2

α
(31)

∨d1 > 0 ∨ d2 > 0 ∨ d3 >
9c2λ3

2

α2c3d2
∨ d4 >

9α2c2c3d3λ
2
2

α2c3c4d2d3 − 9c2c4λ3
2

.

The latter follows from the Sylvester conditions (necessary and sufficient condi-
tions of sign-definiteness for quadratic forms) obtained for these functions.

Substitution of the control (30) into (23) shows that, when conditions (31)
hold, the characteristic equation of the system (23) has the roots only with
negative real parts. Consequently, we have obtained a solution for the problem
of optimal stabilization of steady-state motions (22).

6 Conclusion

Some results of analysis of Kirchhoff equations, which describe the motion of a
rigid body in the ideal incompressible fluid, have been discussed. Steady-state
motions, invariant manifolds of steady-state motions have been found out for
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these equations. Qualitative analysis of properties of obtained motions has been
conducted in the aspect of stability and stabilization of motion. The methods of
investigation used are based on classical results obtained by Lyapunov [1]. The
CAS “Mathematica”, “Maple”, and a software [2] were used as the analytical
tools. Lyapunov’s sufficient stability conditions have been derived for a set of
obtained steady-state motions, which, concerning the problem under scrutiny,
are normally helical motions or families of such motions of the body. As far as
cases of unstable motion are concerned, we have solved the problem of optimal
stabilization with respect to the 1st approximation equations.
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Abstract. An approach to compatibility analysis of systems of discrete
relations is proposed. Unlike the Gröbner basis technique, the proposed
scheme is not based on the polynomial ring structure. It uses more prim-
itive set-theoretic and topological concepts and constructions. We illus-
trate the approach by application to some two-state cellular automata.
In the two-state case the Gröbner basis method is also applicable, and
we compare both approaches.

1 Introduction

A typical example of a system of discrete relations is a cellular automaton.
Cellular automata are used successfully in a large number of applications.1 Fur-
thermore, the concept of cellular automaton can be generalized, and we consider
the following extension of the standard notion of a cellular automaton:

1. Instead of regular uniform lattice representing the space and time in a
cellular automaton, we consider more general abstract simplicial complex
K = (X,Δ) (see, e.g., [2]). Here X = {x0, x1, . . .} is a finite (or countably
infinite) set of points ; Δ is a collection of subsets of X such that (a) for all
xi ∈ X, {xi} ∈ Δ; (b) if τ ⊆ δ ∈ Δ, then τ ∈ Δ.
The sets {xi} are called vertices. We say δ ∈ Δ is a k−simplex of dimension
k if |δ| = k+1, i.e., dim δ = |δ|−1. The dimension of complex K is defined
as the maximum dimension of its constituent simplices dimK = max

δ∈Δ
dim δ.

If τ ⊆ δ, τ is called a face of δ. Since any face of a simplex is also a sim-
plex, the topological structure of the complex K, i.e., the set Δ is uniquely
determined by the set of maximal simplices under inclusion.
One of the advantages of simplicial complexes over regular lattices is their
applicability to models with dynamically emerging and evolving rather than
pre-existing space-time structure.

1 Comparing expressiveness of cellular automata and differential equations, T. Toffoli
writes [1]: “Today, it is clear that we can do all that differential equations can do, and
more, because it is differential equations that are the poor man’s cellular automata
— not the other way around!”

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 272–284, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2. The dynamics of a cellular automaton is determined by a local rule

xik
= f

(
xi0 , . . . , xik−1

)
. (1)

In this formula xi0 , . . . , xik
∈ X are interpreted as discrete variables taking

values in a finite set of states S canonically represented as

S = {0, . . . , q − 1} .

The set of points
{
xi0 , . . . , xik−1

}
is called the neighborhood. The point xik

is considered as the “next time step” match of some point, say xik−1 , from
the neighborhood.
A natural generalization is to replace function (1) by a relation on the set
{xi0 , . . . , xik

} . In this context, local rule (1) is a special case of relation.
Relations like (1) are called functional relations. They are too restrictive in
many applications. In particular, they violate in most cases the symmetry
among points xi0 , . . . , xik

. Furthermore, we will see below that the functional
relations, as a rule, have non-functional consequences.

We can formulate some natural problems concerning the above structures:

1. Construction of consequences. Given a relation Rδ on a set of points δ,
construct non-trivial relations Rτ on subsets τ ⊆ δ, such that Rδ ⇒ Rτ .

2. Extension of relation. Given a relation Rτ on a subset τ ⊆ δ, extend it to
relation Rδ on the superset δ.

3. Decomposition of relation. Given a relation Rδ on a set δ, decompose Rδ into
combination of relations on subsets of δ.

4. Compatibility problem. Given a collection of relations
{
Rδ1 , . . . , Rδn

}
defined

on sets {δ1, . . . , δn}, construct relation R∪n
i=1δi on the union

⋃n
i=1 δi, such

that R∪n
i=1δi is compatible with the initial relations.

5. Imposing topological structure. Given a relation RX on a set X , endow X
with a structure of simplicial complex consistent with the decomposition of
the relation.

If the number of states is a power of a prime, i.e., q = pn, we can always2

represent any relation over k points {x1, . . . , xk} by the set of zeros of some
polynomial from the ring Fq [x1, . . . , xk] and study the compatibility problem
by the standard Gröbner basis methods. It would be instructive to look at the
compatibility problem from the set-theoretic point of view cleared of the ring
structure influence.

An example from fundamental physics is the holographic principle proposed
by G. ’t Hooft and developed by many authors (see [4,5]). According to ’t Hooft
the combination of quantum mechanics and gravity implies that the world at the
Planck scale can be described by a three-dimensional discrete lattice theory with
a spacing of the Planck length order. Moreover, a full description of events on
2 Due to the functional completeness of polynomials over Fq (see [3]) any function

mapping k elements of Fq into Fq can be realized by a polynomial.
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the three-dimensional lattice can be derived from a set of Boolean data (one bit
per Planck area) on a two-dimensional lattice at the spatial (evolving with time)
boundaries of the world. The transfer of data from two to three dimensions is
performed in accordance with some local relations (constraints or laws) defined
on plaquettes of the lattice. Since the data on points of the three-dimensional
lattice are overdetermined, the control of compatibility of relations is necessary.
Large number of constraints compared to the freedom one has in constructing
models is one of the reasons why no completely consistent mathematical models
describing physics at the Planck scale have been found so far.

2 Basic Definitions and Constructions

The definition of abstract k-simplex as a set of k + 1 points is motivated by the
fact that k+1 points generically embedded in Euclidean space of sufficiently high
dimension determine k-dimensional convex polyhedron. The abstract combina-
torial topology only cares about how the simplices are connected, and not how
they can be placed within whatever spaces.3 We need to consider also k-point
sets which we call k-sets. Notice that k-sets may or may not be (k−1)-simplices.

A relation is defined as a subset of a Cartesian product S× · · ·×S of the set
of states. Dealing with the system of relations determined over different sets of
points we should indicate the correspondence between points and dimensions of
the hypercube S×· · ·×S. The notation S{xi} specifies the set S as a set of values
for the point xi. For the k-set δ = {x1, . . . , xk} we denote Sδ ≡ S{x1}×· · ·×S{xk}.

A relation Rδ over a k-set δ = {x1, . . . , xk} is any subset of the hypercube
Sδ, i.e., Rδ ⊆ Sδ. We call the set δ domain of the relation Rδ. The relations ∅δ
and Sδ are called empty and trivial, respectively.

Given a set of points δ, its subset τ ⊆ δ and relation Rτ over the subset τ ,
we define extension of Rτ as the relation

Rδ = Rτ × Sδ\τ .

The procedure of extension allows one to extend relations Rδ1 , . . . , Rδm defined
on different domains to the common domain, i.e., the union δ1 ∪ · · · ∪ δm.

Now we can construct the compatibility condition of the system of rela-
tions Rδ1 , . . . , Rδm . Naturally this is intersection of extensions of the relations
to the common domain

Rδ =
m⋂

i=1

(
Rδi × Sδ\δi

)
, where δ =

m⋃
i=1

δi.

We call the compatibility condition Rδ the base relation of the system of
relations Rδ1 , . . . , Rδm . If the base relation is empty, the relations Rδ1 , . . . , Rδm

are incompatible. Note that in the case q = pn the compatibility condition can
3 There are mathematical structures of non-geometric origin, like hypergraphs or block

designs, closely related conceptually to the abstract simplicial complexes.



On Compatibility of Discrete Relations 275

be represented by a single polynomial, in contrast to the Gröbner basis approach
(of course, the main aim of the Gröbner basis computation — construction of
basis of polynomial ideal — is out of the question).

A relation Qδ is a consequence of relation Rδ, if Rδ ⊆ Qδ ⊆ Sδ, i.e., Qδ is
any superset of Rδ. Any relation can be represented in many ways by intersec-
tions of different sets of its consequences:

Rδ = Qτ1 ∩ · · · ∩Qτr .

We call such representations decompositions.
In the polynomial case q = pn, any possible Gröbner basis of polynomials

representing the relations Rδ1 , . . . , Rδm corresponds to some decomposition of
the base relation Rδ of the system Rδ1 , . . . , Rδm . However, the decomposition
implied by a Gröbner basis may look accidental from our point of view and if
q �= pn such decomposition is impossible at all.

The total number of all consequences (including Rδ itself and the trivial
relation Sδ) is, obviously,

2(qk−|Rδ|).

In our context it is natural to distinguish the consequences which are reduced
to relations over smaller sets of points.

A nontrivial relation Qτ is called proper consequence of relation Rδ if τ is
a proper subset of δ, i.e., τ ⊂ δ, and relation Qτ × Sδ\τ is consequence of Rδ.

There are relations without proper consequences and these relations are most
fundamental for a given number of points k. We call such relations prime.

If relation Rδ has proper consequences Rδ1 , . . . , Rδm we can construct its
canonical decomposition

Rδ = PRδ
⋂( m⋂

i=1

(
Rδi × Sδ\δi

))
, (2)

where the factor PRδ, which we call the principal factor, is defined as

PRδ = Rδ
⋃(

Sδ \
m⋂

i=1

(
Rδi × Sδ\δi

))
.

The principal factor is the relation of maximum “freedom”, i.e., closest to the
trivial relation but sufficient to restore Rδ in combination with the proper con-
sequences.

If the principal factor in canonical decomposition (2) is trivial, then Rδ can
be fully reduced to relations over smaller sets of points. We call a relation Rδ

reducible, if it can be represented in the form

Rδ =
m⋂

i=1

(
Rδi × Sδ\δi

)
,
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where all Rδi are proper consequences of Rδ. For brevity we will omit the trivial
multipliers in intersections and write in the subsequent sections expressions like⋂m

i=1 R
δi instead of

⋂m
i=1

(
Rδi × Sδ\δi

)
.

We see how to impose the structure of simplicial complex on an amorphous
set of points X = {x0, x1, . . .} via a relation RX . The maximal simplices of Δ
must correspond to the irreducible components of the relation RX . Now we can
evolve — starting only with a set of points and a relation on it (in fact, we
simply identify dimensions of the relation with the points) — the standard tools
of the algebraic topology like homology, cohomology, etc.

We wrote a program in C implementing the above constructions and manip-
ulations with them. Below we illustrate application of the program to analysis
of Conway’s Game of Life [6] and some of the Wolfram’s elementary cellular
automata [7].

A few words are needed about computer implementation of relations. To spec-
ify a k-ary relation Rk we should mark its points within the k-dimensional hy-
percube Sk, i.e., define a characteristic function χ : Sk → {0, 1} , with χ(s) = 1
or 0 according as s ∈ Rk or s /∈ Rk. Here s = (s0, s1, . . . , sk−1) is a point of the
hypercube. The simplest way to implement the characteristic function is to enu-
merate all the qk hypercube points in some standard, e.g., lexicographic order:

s0 s1 . . . sk−2 sk−1 iord

0 0 . . . 0 0 0
1 0 . . . 0 0 1...

... · · · ...
...

...
q − 2 q − 1 . . . q − 1 q − 1 qk − 2
q − 1 q − 1 . . . q − 1 q − 1 qk − 1

Then the relation can be represented by a string of qk bits. We call this string
bit table of relation. Symbolically BitTable [ iord] :=

(
s ∈ Rk

)
. Note that s is a

(“little-endian”) representation of the number iord in the base q. Most manipula-
tions with relations are reduced to very efficient bitwise computer commands. Of
course, symmetric or sparse (or, vice versa, dense) relations can be represented
in a more economical way, but these are technical details of implementation.

3 Conway’s Game of Life

The local rule of the cellular automaton Life is defined over the 10-set δ =
{x0, . . . , x9}:

�x0 �x1 �x2

�x7 �x8

�

�x9

�x3

�x6 �x5 �x4

Here the point x9 is the next time step of the point x8. The state set S is {0, 1}.
The local rule can be represented as a relation Rδ

Life on the 10-dimensional
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hypercube Sδ. By definition, the hypercube element belongs to the relation of
the automaton Life, i.e., (x0, . . . , x9) ∈ Rδ

Life , in the following cases:

1.
(∑7

i=0 xi = 3
)
∧ (x9 = 1),

2.
(∑7

i=0 xi = 2
)
∧ (x8 = x9),

3. x9 = 0, if none of the above conditions holds.

The number of elements of Rδ
Life is

∣∣∣Rδ
Life

∣∣∣ = 512. The relation Rδ
Life , as is

the case for any cellular automaton, is functional : the state of x9 is uniquely
determined by the states of other points. The state set S = {0, 1} can be ad-
ditionally endowed with the structure of the field F2. We accompany the below
analysis of the structure of Rδ

Life by description in terms of polynomials from
F2 [x0, . . . , x9] . This is done only for illustrative purposes and for comparison
with the Gröbner basis method. In fact, we transform the relations to polyno-
mials only for output. This is done by computationally very cheap Lagrange
interpolation generalized to the multivariate case. In the case q = 2, the poly-
nomial which set of zeros corresponds to a relation is constructed uniquely. If
q = pn > 2, there is a freedom in the choice of nonzero values of constructed
polynomial, and the same relation can be represented by many polynomials.

The polynomial representing Rδ
Life takes the form

PLife = x9 + x8 {σ7 + σ6 + σ3 + σ2}+ σ7 + σ3, (3)

where σk ≡ σk (x0, . . . , x7) is the kth elementary symmetric polynomial defined
for n variables x0, . . . , xn−1 by the formula:

σk (x0, . . . , xn−1) =
∑

0≤i0<i1<···<ik−1<n

xi0xi1 · · ·xik−1 .

The relation Rδ
Life is reducible. It decomposes into two equivalence classes (with

respect to the permutations of the points x0, . . . , x7) of relations defined over 9
points:

1. Eight relations Rδ\{xi}
1 , 0 ≤ i ≤ 7.

Their polynomials P i
1 (x0, . . . , x̂i, . . . , x7, x8, x9) take the form

P i
1 = x8x9

{
σi

6 + σi
5 + σi

2 + σi
1

}
+x9

{
σi

6 + σi
2 + 1

}
+x8

{
σi

7 + σi
6 + σi

3 + σi
2

}
,

σi
k ≡ σk (x0, . . . , x̂i, . . . , x7) . (4)

2. One relation R
δ\{x8}
2 with polynomial P 8

2 (x0, . . . , x7, x9):

P 8
2 = x9 {σ7 + σ6 + σ3 + σ2 + 1}+ σ7 + σ3, σk ≡ σk (x0, . . . , x7) . (5)
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The relation Rδ
Life has the following decomposition

Rδ
Life = R

δ\{x8}
2

⋂( 6⋂
k=0

R
δ\{xik

}
1

)
, (6)

where (i0, . . . , i6) are any 7 different indices from the set (0, . . . , 7).
We see that the rule of Life is defined on 8-dimensional space-time simplices.

Of course, this interpretation is based on the concepts of the abstract combina-
torial topology and differs from the native interpretation of the game of Life as
a (2+1)-dimensional lattice structure.

The relations Rδ\{xi}
1 and R

δ\{x8}
2 are irreducible but not prime, i.e., they

have proper consequences.
The relation R

δ\{xi}
1 has two classes of 7-dimensional consequences:

1. Seven relations Rδ\{xi,xj}
1.1 with polynomials

P ij
1.1 (x0, . . . , x̂i, . . . , x̂j , . . . , x7, x8, x9) =

x8x9

{
σij

6 + σij
5 + σij

4 + σij
3 + σij

2 + σij
1 + 1

}
+x9

{
σij

6 + σij
5 + σij

3 + σij
2 + σij

1 + 1
}
, (7)

σij
k ≡ σk (x0, . . . , x̂i, . . . , x̂j , . . . , x7) .

2. One relation R
δ\{xi,x8}
1.2 with polynomial

P i
1.2 (x0, . . . , x̂i, . . . , x7, x9) = x9

{
σi

7 + σi
6 + σi

5 + σi
3 + σi

2 + σi
1 + 1

}
. (8)

The 8-dimensional relation Rδ\{x8}
2 has one class of 7-dimensional consequences.

This class contains 8 already obtained relations Rδ\{xi,x8}
1.2 with polynomials (8).

Continuing the process of construction of decompositions and proper conse-
quences we come finally to the prime relations Rδi0i1i2i3 defined over 4-simplices
δi0i1i2i3 = {xi0 , xi1 , xi2 , xi3 , x9}, where ik ∈ {0, 1, . . . , 7} and i0 < i1 < i2 < i3.
The polynomials of these relations take the form

P i0,i1,i2,i3 = x9σ4 (xi0 , xi1 , xi2 , xi3 ) ≡ x9xi0xi1xi2xi3 . (9)

Substituting (9) in (4), (5), (7), and (8) (this is a purely polynomial simplifica-
tion) we have finally the following polynomial form of the system of relations
valid for the Life rule:

x8x9

{
σi

2 + σi
1

}
+ x9

{
σi

2 + 1
}

+ x8

{
σi

7 + σi
6 + σi

3 + σi
2

}
= 0, (10)

x9 {σ3 + σ2 + 1}+ σ7 + σ3 = 0, (11)

(x8x9 + x9)
{
σij

3 + σij
2 + σij

1 + 1
}

= 0, (12)

x9

{
σi

3 + σi
2 + σi

1 + 1
}

= 0, (13)
x9xi0xi1xi2xi3 = 0. (14)
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Relations (14) have a simple interpretation: if the point x9 is in the state 1, then
at least one of any four points surrounding the center x8 must be in the state 0.

The above analysis of the relation Rδ
Life takes < 1 sec on a 1.8GHz AMD

Athlon notebook with 960Mb.
To compute the Gröbner basis we must add to polynomial (3) ten polynomials

x2
i + xi, i = 0, . . . , 9, (15)

expressing the relation xpn

= x valid for all elements of any finite field Fpn .
Computation of the Gröbner basis over F2 with the help of Maple 9 gives

the following. Computation for the pure lexicographic order with the variable
ordering x9 / x8 / · · · / x0 remains initial polynomial (3) unchanged, i.e.,
does not give any additional information. The pure lexicographic order with the
variable ordering x0 / x1 / · · · / x9 gives relations (10)—(14) (modulo several
polynomial reductions violating the symmetry of polynomials). The computation
takes 1 h 22 min. Computation for the degree-reverse-lexicographic order also
gives relations (10)—(14) (with the above reservation). The times are 51 min
for the variable ordering x0 / x1 / · · · / x9, and 33 min for the ordering
x9 / x8 / . . . / x0.

4 Elementary Cellular Automata

Simplest binary, nearest-neighbor, one-dimensional cellular automata were called
elementary cellular automata by S. Wolfram, who has extensively studied their
properties [7]. A large collection of results concerning these automata is presented
in the Wolfram’s online atlas [8]. In the exposition below we use Wolfram’s
notations and terminology. The elementary cellular automata are simpler than
the Life, and we may pay more attention to the topological aspects of our
approach.

Local rules of the elementary cellular automata are defined on the 4-set δ =

{p, q, r, s} which can be pictured by the icon

� � �p q r

s�� � . A local rule is a binary
function of the form s = f(p, q, r). There are totally 223

= 256 local rules, each
of which can be indexed with an 8-bit binary number.

Our computation with relations representing the local rules shows that the
total number 256 of them is divided into 118 reducible and 138 irreducible re-
lations. Only two of the irreducible relations appeared to be prime, namely, the
rules 105 and 1504 in Wolfram’s numeration.5

We consider the elementary automata on a space-time lattice with inte-
ger coordinates (x, t), i.e., x ∈ Z = {. . . ,−1, 0, 1, . . .} or x ∈ Zm (spatial m-
periodicity), t ∈ Z∗ = {0, 1, . . .} . We denote a state of the point on the lattice
by u(x, t) ∈ S = {0, 1}. Generally the points are connected as is shown on the
5× 3 fragment of the lattice
4 They are represented by the linear polynomial equations p + q + r + s + 1 = 0 and

p + q + r + s = 0 for the rules 105 and 150, respectively.
5 Wolfram prefers “big-endian” representation of binary numbers.
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� x �

�

t

� � � � �
�� �� �� ���� �� �� ��� � � � �
�� �� �� ���� �� �� ��� � � � � .

There are no horizontal ties due to the fundamental property of cellular automata
— the states of points at a given temporal layer are independent.

Applying our approach we see that some automata with reducible local re-
lations can be decomposed into automata on disjoint unions of subcomplexes:

1. Two automata 0 and 255 are defined on disjoint union of vertices.
2. Six automata 15, 51, 85, 170, 204 and 240 are, in fact, disjoint collections

of zero-dimensional automata. What we call zero-dimensional automaton is
spatially zero-dimensional analog of the Wolfram’s elementary automaton,
i.e., a single cell evolving with time. There are, obviously, four such automata
with local relations represented by the bit tables

1100,
0110, (16)
1001,
0011.

We call the automaton with bit table (16) oscillating point since its time
evolution consists in periodic changing 0 by 1 and vice versa. It is easy to
“integrate” these automata. Their general solutions are respectively

u(t) = 0,
u(t) = u(0) + t mod 2, oscillating point, (17)
u(t) = u(0),
u(t) = 1.

As an example consider the rule 15. The local relation is defined on the set
� � �p q r

s�� � and its bit table is 0101010110101010. This relation is reduced to

the relation on the face

�p
s�� and its bit table 0110 coincides with bit table

(16) of the oscillating point. We see that the automaton 15 decomposes into
the union of identical zero-dimensional automata on the disconnected lattice

� � � � �
�� �� �� ��� � � � �
�� �� �� ��� � � � � .

Using (17) we can write the general solution for the automaton 15

u(x, t) = u(x− t, 0) + t mod 2.
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3. Ten automata 5, 10, 80, 90, 95, 160, 165, 175, 245, 250 are decomposed into
two identical automata.

As an example let us consider the rule 90. This automaton is distinguished
as producing the fractal (of the topological dimension 1 and Hausdorff di-
mension ln 3/ ln 2 ≈ 1.58) known as the Sierpinski sieve, Sierpinski gasket,

or Sierpinski triangle. Its local relation on the set

� � �p q r

s�� � is represented by
the bit table 1010010101011010. The relation is reduced to the relation on

the face

� �p r

s�� � with the bit table

10010110. (18)

From the structure of the domain of the reduced relation it is clear that the
lattice decomposes into two identical independent lattices as is shown

� � � � �
�� �� �� ���� �� �� ��� � � � �
�� �� �� ���� �� �� ��� � � � �

=

� �
�� ���� ��� � �

�� ���� ��� �
∪

� � �
�� ���� ��� �

�� ���� ��� � �
.

To find a general solution of the automaton 90 it is convenient to transform
bit table (18) to an algebraic relation. It is the linear relation s+ p+ r = 0
and the general solution of the automaton takes the form

u(x, t) =
t∑

k=0

(
t

k

)
u(x− t+ 2k, 0) mod 2.

In the above examples we have considered the automata with reducible re-
lations. If a local relation is irreducible but has proper consequences we also, in
some cases, can obtain a useful information.

For example, there are 64 automata6 — both reducible and irreducible —
having proper consequencies with the bit table

1101 (19)

on one or two or three of the following faces

�p
s��

�q
s�

�r
s�� . (20)

The algebraic forms of relation (19) on faces (20) are

ps+ s = 0, qs+ s = 0, rs+ s = 0,

respectively.
6 The full list of these automata in the Wolfram’s numeration is 2, 4, 8, 10, 16, 32,

34, 40, 42, 48, 64, 72, 76, 80, 96, 112, 128, 130, 132, 136, 138, 140, 144, 160, 162,
168, 171, 174–176, 186, 187, 190–192, 196, 200, 205, 206, 208, 220, 222–224, 234–239,
241–254.
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Relation (19) is non-functional. Nevertheless, it imposes a severe restriction
on the behavior of the automata with such proper consequences. The peculiarities
in the behavior are clear visible in the atlas [8], where many results of compu-
tations with different initial conditions are pictured. A typical pattern from this
atlas is reproduced in Fig. 1, where several evolutions of the automaton 168 are
presented. The local relation of the automaton 168 is pqr + qr + pr + s = 0. It
has the proper consequence rs+ s = 0. The black and white square cells in Fig.
1 correspond to 1’s and 0’s, respectively. Note also that the authors of Fig. 1
have used a spatially periodic condition. Their spacial variable is x ∈ Z30.

Fig. 1. Rule 168. Several random initial conditions

Relation (19) means that if, say r, as for rule 168, is in the state 1 then s
may be in both states 0 or 1, but if the state of r is 0, then the state of s must
be 0. Thus the corresponding diagonal or vertical may contain either only 1’s, or
finite number of initial 1’s and then only 0’s. The presence of a proper conse-
quence of the form (19) simplifies essentially computation with such automata:
after the first appearance of 0, one can set 0’s on all points along the correspond-
ing line.

In conclusion, let us present the results of analysis of the automata 30 and
110. These automata are of special interest. The automaton 30 demonstrates
chaotic behavior and even used as the random number generator in Mathe-
matica. The automaton 110 is, like a Turing machine, universal, i.e., it is ca-
pable of simulating any computational process, in particular, any other cellular
automaton. The relations of both automata are irreducible but not prime.

The relation of automaton 30 is

1001010101101010

or in the algebraic form
qr + s+ r + q + p = 0.
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It has two proper consequences:

face

� �p q

s��
� �p r

s�� �

bit table 11011110 11011110

polynomial qs+ pq + q rs+ pr + r.

The principal factor is

1011111101111111 or qrs+ pqr + rs + qs+ pr + pq + s+ p = 0.

The Gröbner basis of automaton 30 in the total degree and reverse lexicographic
order is (omitting the trivial polynomials p2 + p, q2 + q, r2 + r, s2 + s)

{qr + s+ r + q + p, qs+ pq + q, rs + pr + r} .
We see that for the rule 30 the Gröbner basis polynomials coincide with ours.

The relation of automaton 110 is

1100000100111110 (21)

or in the polynomial form

pqr + qr + s+ r + q = 0.

The relation has three proper consequences:

face

� �p q

s��
� �p r

s�� �
� �q r

s��

bit table 11011111 11011111 10010111

polynomial pqs+ qs+ pq + q prs+ rs+ pr + r qrs+ s+ r + q.

The principal factor is

1111111111111110 or pqrs = 0.

The Gröbner basis of automaton 110 contains different set of polynomials:

{prs+ rs+ pr + r, qs+ rs+ r + q, qr + rs+ s+ q, pr + pq + ps} .
The system of relations defined by the Gröbner basis is:

R
{p,r,s}
1 = 11011111 = {prs+ rs+ pr + r = 0} ,

R
{q,r,s}
2 = 10011111 = {qs+ rs+ r + q = 0} ,

R
{q,r,s}
3 = 10110111 = {qr + rs+ s+ q = 0} ,

R
{p,q,r,s}
4 = 1110101110111110 = {pr + pq + ps = 0} .
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5 Conclusions

Let us summarize the main novelties of the paper.

– We have introduced a notion of a system of discrete relations on an abstract
simplicial complex. Such a system can be interpreted as
• a natural generalization of the notion of cellular automaton;
• a set-theoretic analog of a system of polynomial equations.

– After introducing appropriate definitions, we have developed and imple-
mented algorithms for
• compatibility analysis of a system of discrete relations;
• constructing canonical decompositions of discrete relations.

– We have proposed a regular way to impose topology on an arbitrary discrete
relation via its canonical decomposition: identifying dimensions of the re-
lation with points and irreducible components of the relation with maximal
simplices, we define the structure of an abstract simplicial complex on the
relation under consideration.

– Applying the above technique to some cellular automata — a special case
of systems of discrete relations — we have obtained some new results. Most
interesting of them, in our opinion, is demonstration of how the presence
of non-trivial proper consequences may determine the global behavior of an
automaton.
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Abstract. In this paper we present a method that uses solutions of
linear systems to construct all possible orthogonal arrays OA(n, q, 2, 2+),
when 3 ≤ q ≤ 6. A note on its complexity is also presented.

1 Introduction

An orthogonal array OA(n,q,s,t) is an n × q array with entries from a set of s
distinct symbols arranged so that, for any collection of t columns of the array,
each of the st row vectors appears equally often. Thus we see that st divides n.
We call n the number of rows in the orthogonal array, q the number of columns,
s the number of levels in each column and t the strength of the array.

Orthogonal arrays are useful in various fields such as, Applied Statistics (de-
sign of experiments, off-line quality control, etc), Coding Theory, Cryptography
and more. For applications in Coding theory and Cryptography we refer to
[2,8,9], and for a more recent application in visual cryptographic schemes see [4].
Also for more on orthogonal arrays, we refer the interested reader to Hedayat,
Sloane and Stufken [5].

In this paper we are interested in constructing two level orthogonal arrays
OA(n,q,2,t) with strength t ≥ 2. We code the levels of each column with −1
and +1 so the sense of strength t ≥ 2 reduces to the following two necessary
conditions:

(a) the inner product of any two distinct columns in the array must be zero,
(b) the sum of the elements in each column must be equal to zero, that is we

have the same number of −1 and +1 in every column.

A wide class of such orthogonal arrays can be obtained by selecting columns
from Hadamard matrices. An n-dimensional Hadamard matrix H is an n × n
matrix with elements −1 and +1 such that HTH = nI, in other words any
two columns of the Hadamard matrix H are orthogonal. The method of select-
ing columns from a Hadamard matrix has two major disadvantages. First, for
instance when n = 32 it is known that there are at least 30000 inequivalent
matrices. This explodes the combinatorial complexity of searching all possible
columns. Second disadvantage is that we do not know all the possible inequiv-
alent Hadamard matrices. But even if we knew them for a specific order there

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 285–293, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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exist some OA(n,q,2,t) that cannot be embedded into Hadamard matrices and
can be constructed using the method that would be described in this paper.
On the other hand, in some statistical applications, where orthogonal arrays are
used as factorial designs, those that cannot be embedded into Hadamard matri-
ces are superior to the designs obtained from Hadamard matrices when further
evaluated by the criteria of model estimability and design efficiency, see [6].

In order to construct all OA(n,q,2,t) t ≥ 2 we will propose a method that
generates all n× (q + 1) matrices with elements ±1 for which

(i) any two columns are orthogonal and
(ii) their first column has all elements equal to +1.

These two conditions are equivalent to the two conditions (a) and (b) given
previously. Of course we should remove the first column with all +1 to get the
OA(n,q,2,t).

Two orthogonal arrays are said to be isomorphic if, one can be obtained from
the other by a sequence of permutations of the columns, the rows and the levels
of each column. The identification of the complete non isomorphic classes of
orthogonal arrays with specific parameters n, q and s, is a difficult combinatorial
problem which seems to have important impact in various fields of Discrete
Mathematics, see [1,3,7]. In this paper we are not dealing with the problem of
isomorphism. Our focus is to construct all possible orthogonal arrays.

2 Construction of the Linear Systems and Its Solutions

2.1 Construction for q=3

The possible rows of the n × 4 matrix satisfying the condition (ii) appear as
vectors u1, . . . , u8

u1 = ( 1 1 1 1 )
u2 = ( 1 1 1 −1 )
u3 = ( 1 1 −1 1 )
u4 = ( 1 1 −1 −1 )
u5 = ( 1 −1 1 1 )
u6 = ( 1 −1 1 −1 )
u7 = ( 1 −1 −1 1 )
u8 = ( 1 −1 −1 −1 )

We denote with ui the number of times the row vector ui appears in the n ×
4 matrix. Since any two columns must be orthogonal we can write

(
4
2

)
= 6

equations, also
∑8

i=1 ui = n. The system consists of 7 equations with 8 unknowns

u1 + u2 + u3 + u4 − u5 − u6 − u7 − u8 = 0
u1 + u2 − u3 − u4 + u5 + u6 − u7 − u8 = 0
u1 − u2 + u3 − u4 + u5 − u6 + u7 − u8 = 0
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u1 + u2 − u3 − u4 − u5 − u6 + u7 + u8 = 0
u1 − u2 + u3 − u4 − u5 + u6 − u7 + u8 = 0
u1 − u2 − u3 + u4 + u5 − u6 − u7 + u8 = 0
u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 = n

and has parametric solution

u1 = n/4− u8

u2 = u8

u3 = u8

u4 = n/4− u8

u5 = u8

u6 = n/4− u8

u7 = n/4− u8

u8 = u8

2.2 Construction for q=4

The possible rows of the n × 5 matrix satisfying the condition (ii) appear as
vectors u1, . . . , u16

u1 = ( 1 1 1 1 1)
u2 = ( 1 1 1 1 −1)
u3 = ( 1 1 1 −1 1)
u4 = ( 1 1 1 −1 −1)
u5 = ( 1 1 −1 1 1)
u6 = ( 1 1 −1 1 −1)
u7 = ( 1 1 −1 −1 1)
u8 = ( 1 1 −1 −1 −1)
u9 = ( 1 −1 1 1 1)
u10 = ( 1 −1 1 1 −1)
u11 = ( 1 −1 1 −1 1)
u12 = ( 1 −1 1 −1 −1)
u13 = ( 1 −1 −1 1 1)
u14 = ( 1 −1 −1 1 −1)
u15 = ( 1 −1 −1 −1 1)
u16 = ( 1 −1 −1 −1 −1)

We denote with ui the number of times the row vector ui appears in the
n × 5 matrix. Since any two columns must be orthogonal we can write

(
5
2

)
=

10 equations, also
∑16

i=1 ui = n. The system consists of 11 equations with 16
unknowns, and has parametric solution
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u1 = n/2− u8 − u12 − u14 − u15 − 3u16

u2 = n/4 + u8 + u12 + u14 + 2u16

u3 = n/4 + u8 + u12 + u15 + 2u16

u4 = n/4− u8 − u12 − u16

u5 = n/4 + u8 + u14 + u15 + 2u16

u6 = n/4− u8 − u14 − u16

u7 = n/4− u8 − u15 − u16

u9 = n/4 + u12 + u14 + u15 + 2u16

u10 = n/4− u12 − u14 − u16

u11 = n/4− u12 − u15 − u16

u13 = n/4− u14 − u15 − u16

where u8, u12, u14, u15, u16 are the parameters of the solution.

2.3 Construction for q=5

Using the same techniques as previously we need to create n× 6 matrices. The
number of possible rows satisfying condition (ii) are 32. From orthogonality we
can create

(
6
2

)
= 15 equations also

∑32
i=1 ui = n. The system consists of 16

equations with 32 unknowns, and has parametric solution

u1 = −n/2− u8 − u12 − u14 − u15 − 3u16 − u20 − u22 − u23 − 3u24 + 6u25

+5u26 + 5u27 + 3u28 + 5u29 + 3u30 + 3u31

u2 = n/4 + u8 + u12 + u14 + 2u16 + u20 + u22 + 2u24 − 3u25 − 2u26 − 3u27

−u28 − 3u29 − u30 − 3u31

u3 = n/4 + u8 + u12 + u15 + 2u16 + u20 + u23 + 2u24 − 3u25 − 3u26 − 2u27

−u28 − 3u29 − 3u30 − u31

u4 = −u8 − u12 − u16 − u20 − u24 + u25 + u26 + u27 + u29 + u30 + u31

u5 = n/4 + u8 + u14 + u15 + 2u16 + u22 + u23 + 2u24 − 3u25 − 3u26 − 3u27

−3u28 − 2u29 − u30 − u31

u6 = −u8 − u14 − u16 − u22 − u24 + u25 + u26 + u27 + u28 + u29 + u31

u7 = −u8 − u15 − u16 − u23 − u24 + u25 + u26 + u27 + u28 + u29 + u30

u9 = n/4 + u12 + u14 + u15 + 2u16 − 3u25 − 2u26 − 2u27 − u28 − 2u29

−u30 − u31

u10 = −u12 − u14 − u16 + u25 + u27 + u29 + u31

u11 = −u12 − u15 − u16 + u25 + u26 + u29 + u30

u13 = −u14 − u15 − u16 + u25 + u26 + u27 + u28

u17 = n/4 + u20 + u22 + u23 + 2u24 − 3u25 − 2u26 − 2u27 − u28 − 2u29

−u30 − u31
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u18 = u29 + u31 − u20 − u24 + u25 + u27 − u22

u19 = u29 + u30 − u20 − u23 − u24 + u25 + u26

u21 = −u23 − u24 + u25 + u26 + u27 + u28 − u22

u32 = n/4− u28 − u25 − u26 − u27 − u29 − u30 − u31

where u8, u12, u14, u15, u16, u20, u22, . . . , u31 are the parameters of the solution.

2.4 Construction for q=6

Using the same techniques as previously we need to create n× 7 matrices. The
number of possible rows satisfying condition (ii) are 64. From orthogonality we
can create

(
7
2

)
= 21 equations also

∑64
i=1 ui = n. The system consists of 22

equations with 64 unknowns, and has parametric solution

u1 = 7n/4− u8 − u23 − u22 − 3u24 − u26 − u27 − u12 − u14 − u15 − 3u16 − u20

−3u28 − u29 − 3u30 − 10u64 − 6u63 − 6u60 − 3u61 − 6u62 − 6u56 − u57

−3u58 − 3u59 − 3u55 − u51 − 3u52 − u53 − 3u54 − u50 − u45 − 3u46

−3u47 − 6u48 − u43 − 3u44 − 3u40 − u39 − u42 − 3u31 − 6u32 − u36 − u38

u2 = −3n/4 + u8 + u22 + 2u24 + u26 + u12 + u14 + 2u16 + u20 + 2u28 + 2u30

+4u64 + 3u60 + 3u62 + 3u56 + 2u58 + 2u52 + 2u54 + u50 + 2u46 + 3u48

+2u44 + 2u40 + u42 + 3u32 + u36 + u38

u3 = −3n/4 + u8 + u23 + 2u24 + u27 + u12 + u15 + 2u16 + u20 + 2u28 + 4u64

+3u63 + 3u60 + 3u56 + 2u59 + 2u55 + u51 + 2u52 + 2u47 + 3u48 + u43

+2u44 + 2u40 + u39 + 2u31 + 3u32 + u36

u4 = n/4− u8 − u12 − u16 − u20 − u24 − u28 − u32 − u36 − u40 − u44

−u48 − u52 − u56 − u60 − u64

u5 = −3n/4 + u8 + u23 + u22 + 2u24 + u14 + u15 + 2u16 + u29 + 2u30 + 4u64

+3u63 + 2u61 + 3u62 + 3u56 + 2u55 + u53 + 2u54 + u45 + 2u46 + 2u47

+3u48 + 2u40 + u39 + 2u31 + 3u32 + u38

u6 = n/4− u8 − u14 − u16 − u22 − u24 − u30 − u32 − u38 − u40 − u46 − u48

−u54 − u56 − u62 − u64

u7 = n/4− u8 − u15 − u16 − u23 − u24 − u31 − u32 − u39 − u40 − u47 − u48

−u55 − u56 − u63 − u64

u9 = −3n/4 + u26 + u27 + u12 + u14 + u15 + 2u16 + 2u28 + u29 + 2u30 + 4u64

+3u63 + 3u60 + 2u61 + 3u62 + u57 + 2u58 + 2u59 + u45 + 2u46 + 2u47

+3u48 + u43 + 2u44 + u42 + 2u31 + 3u32

u10 = n/4− u12 − u14 − u16 − u26 − u28 − u30 − u32 − u42 − u44 − u46 − u48

−u58 − u60 − u62 − u64
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u11 = n/4− u12 − u15 − u16 − u27 − u28 − u31 − u32 − u43 − u44 − u47 − u48

−u59 − u60 − u63 − u64

u13 = n/4− u14 − u15 − u16 − u29 − u30 − u31 − u32 − u45 − u46 − u47

−u48 − u48 − u61 − u62 − u63 − u64

u17 = −3n/4 + u23 + u22 + 2u24 + u26 + u27 + u20 + 2u28 + u29 + 2u30 + 4u64

+3u63 + 3u60 + 2u61 + 3u62 + 3u56 + u57 + 2u58 + 2u59 + 2u55 + u51

+2u52 + u53 + 2u54 + u50 + 2u31 + 3u32

u18 = n/4− u60 − u20 − u22 − u24 − u26 − u28 − u30 − u32 − u50 − u52 − u54

−u56 − u58 − u62 − u64

u19 = n/4− u60 − u20 − u23 − u24 − u27 − u28 − u31 − u32 − u51 − u52 − u55

−u56 − u59 − u63 − u64

u21 = n/4− u62 − u22 − u23 − u24 − u29 − u30 − u31 − u32 − u53 − u54 − u55

−u56 − u61 − u63 − u64

u25 = n/4− u62 − u26 − u27 − u28 − u29 − u30 − u31 − u32 − u57 − u58 − u59

−u60 − u61 − u63 − u64

u33 = −3n/4 + 4u64 + 3u63 + 3u60 + 2u61 + 3u62 + 3u56 + u57 + 2u58 + 2u59

+2u55 + u51 + 2u52 + u53 + 2u54 + u50 + u45 + 2u46 + 2u47 + 3u48

+u43 + 2u44 + 2u40 + u39 + u42 + u36 + u38

u34 = n/4− u60 − u36 − u38 − u40 − u42 − u44 − u46 − u48 − u50 − u52 − u54

−u56 − u58 − u62 − u64

u35 = n/4− u60 − u36 − u39 − u40 − u43 − u44 − u47 − u48 − u51 − u52 − u55

−u56 − u59 − u63 − u64

u37 = n/4− u62 − u38 − u39 − u40 − u45 − u46 − u47 − u48 − u53 − u54 − u55

−u56 − u61 − u63 − u64

u41 = n/4− u62 − u42 − u43 − u44 − u45 − u46 − u47 − u48 − u57 − u58 − u59

−u60 − u61 − u63 − u64

u49 = n/4− u62 − u50 − u51 − u52 − u53 − u54 − u55 − u56 − u57 − u58 − u59

−u60 − u61 − u63 − u64

where u8, u12, u14, u15, u16, u20, u22, . . . , u24, u26, . . . , u32, u36, u38, . . . , u40,
u42, . . . , u48, u50, . . . , u64 are the parameters of the solution.

3 Complexity and Results

A very helpful lemma for calculating and reducing the complexity of the values
the parameters can take in our proposed method is the following.

Lemma 1. (The Distribution Lemma) Let n be a multiple of 4, n ≥ 4, and
u1 = (1, 1, 1), u2 = (1, 1,−1), u3 = (1,−1, 1), u4 = (1,−1,−1). The n×3 matrix
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for which (i) it’s first column are all +1’s and (ii) it’s columns are mutually
orthogonal, has exactly n/4 rows of each ui, i = 1, . . . , 4.

Proof. Denote with ui, i = 1, . . . , 4 the number of times each ui row appears in
the n× 3 matrix. Then by the order and the orthogonality we have:

u1 + u2 + u3 + u4 = n

u1 + u2 − u3 − u4 = 0
u1 − u2 + u3 − u4 = 0
u1 − u2 − u3 + u4 = 0

This system can be solved uniquely. The solution is

u1 = u2 = u3 = u4 = n/4

�

Corollary 1. For any n×q matrix satisfying the conditions (i) and (ii) described
in the introduction, it holds
(a)

0 ≤ u1 + . . .+ uk/4 ≤ n/4,
0 ≤ uk/4+1 + . . .+ u2k/4 ≤ n/4,
0 ≤ u2k/4+1 + . . .+ u3k/4 ≤ n/4,
0 ≤ u3k/4+1 + . . .+ uk ≤ n/4,

where k = 2q−1.
(b) 0 ≤ ui ≤ n/4, i = 1, . . . , 2q−1

Proof. We use the Distribution Lemma ignoring the last q-3 columns of the
possible rows described in section 2. �

3.1 Parameters for q=3

The solution in paragraph 2.1 has one parameter. From Distribution Lemma it
holds that 0 ≤ u8 ≤ n/4. Thus for each possible value of the parameter u8 we
can construct n/4+ 1 different n× 4 matrices and by removing the first column
have the corresponding n/4 + 1, not necessarily non isomorphic, OA(n,3,2,t).

3.2 Parameters for q=4

The solution in paragraph 2.2 has five parameters. From Distribution Lemma it
holds that 0 ≤ u1 +u2 +u3 +u4 ≤ n/4, 0 ≤ u5 +u6 +u7 +u8 ≤ n/4, 0 ≤ u9 +
u10 +u11+u12 ≤ n/4, 0 ≤ u13+u14 +u15 +u16 ≤ n/4. Then for the parameters
of the solution we have 0 ≤ u8 ≤ n/4, 0 ≤ u12 ≤ n/4, 0 ≤ u14+u15+u16 ≤ n/4.
The total number of the possible values of the parameters is calculated to be

(n/4 + 1)2
[

4
n/4

]
= (n/4 + 1)2

(
n/4 + 3
n/4

)
=

1
6
(n/4 + 1)3(n/4 + 2)(n/4 + 3)

where with
[
n
k

]
=
(
n+k−1

k

)
we denote the combinations with repetitions.
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3.3 Parameters for q=5

For the parameters of the solution in paragraph 2.3, as previously, using the
Distribution Lemma we can write the following restrictions 0 ≤ u8 ≤ n/4,
0 ≤ u12 + u14 + u15 + u16 ≤ n/4, 0 ≤ u20 + u22 + u23 + u24 ≤ n/4, 0 ≤
u25 + . . .+u31 ≤ n/4. The total number of the possible values of the parameters
is calculated to be

(n/4 + 1)
[

5
n/4

] [
5
n/4

] [
8
n/4

]
=

1
8!(4!)2

(n/4 + 1)4(n/4 + 2)3(n/4 + 3)3(n/4 + 4)3(n/4 + 5) . . . (n/4 + 8).

3.4 Parameters for q=6

For the parameters of the solution in paragraph 2.4, as previously, using the
Distribution Lemma we can write the following restrictions 0 ≤ u8 + u12 +
u14 + u15 + u16 ≤ n/4, 0 ≤ u20 + u22 + u23 + u24 + u26 + . . . + u32 ≤ n/4,
0 ≤ u36 + u38 + u39 + u40 + u42 + . . . + u48 ≤ n/4, 0 ≤ u50 + . . . + u64 ≤ n/4.
The total number of the possible values of the parameters is calculated to be[

6
n/4

] [
12
n/4

] [
12
n/4

] [
15
n/4

]
=

(n/4 + 1)4 . . . (n/4 + 5)4(n/4 + 6)3 . . . (n/4 + 11)3(n/4 + 12) . . . (n/4 + 14)
5!(11!)214!

.

3.5 Results

The number of OA(n,q,2,t) created using this method, for q = 3, 4, 5 and 6 and
various n can been seen in table 1. We should note that the number of the
arrays for q > 3 are less than the possible values of the parameters since from
Distribution Lemma all ui’s must take values between zero and n/4. Many of
these arrays are also isomorphic.

Table 1. Number of orthogonal arrays constructed

n�q 3 4 5 6

12 4 16 224 2688
16 5 51 1932 81420
20 6 96 10752 1869504
24 7 196 55284 42068304
28 8 336 244512
32 9 581 959209
36 10 912 3384032
40 11 1422 10920184
44 12 2096 32538016
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4 Implementation

The possible rows for any q can be easily generated if we take the binary rep-
resentation of the numbers 0 to 2q − 1. Then replace the 1’s with −1’s and 0’s
with 1’s. For a given q, let U be the 2q × (q+ 1) matrix for which the ith row is
equal to ui, as described in section 2, i = 1, . . . , 2q. Then the matrix A of the
system can be generated using the following algorithm:

s:=0;
for i from 1 to q do

for j from i+1 to q+1 do
s:=s+1;
for z from 1 to 2^q do

A(s,z):=U(z,i)*U(z,j);
s:=s+1;
A(s,:)=(1,...,1); #this is the for the condition

sum of ui’s is equal n

The vector b for which Au = b where u = [u1, . . . u2q ] is b = [0, . . . , 0, n]. All
systems were solved using Maple software. We used the package linalg and its
routine linsolve, which solves the system using LU decomposition with pivoting
when necessarily. Since the number of possible values for the parameters tends
to grow fast as n increases we used C to quickly generate the parameters and
get the exact solutions.
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Abstract. Two algorithmic techniques for specifying the existence of a
k×k submatrix with elements 0,±1 in a skew and symmetric conference
matrix of order n are described. This specification is achieved using an
appropriate computer algebra system.
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1 Introduction

A (0, 1,−1) matrix W = W (n, k) of order n satisfying WWT = kIn is called a
weighing matrix of order n and weight k or simply a weighing matrix. A W (n, n),
n ≡ 0 (mod 4), is called a Hadamard matrix of order n. A W = W (n, k) for which
WT = −W , n ≡ 0 (mod4), is called a skew–weighing matrix. A W = W (n, n−1)
satisfying WT = W , n ≡ 2 (mod4), is called a symmetric conference matrix.
Conference matrices cannot exist unless n−1 is the sum of two squares: thus they
cannot exist for orders 22, 34, 58, 70, 78, 94. For more details and construction of
weighing matrices the reader can consult the book of Geramita and Seberry [2].
Two matrices are said to be Hadamard equivalent or H-equivalent if one can be
obtained from the other by a sequence of the operations: 1. Interchange any
pairs of rows and/or columns; 2. Multiply any rows and/or columns through by
−1. Two important properties of the weighing matrices, which follow directly
from the definition, are: 1. Every row and column of a W (n, k) contains exactly
n− k zeros 2. Every two distinct rows and columns of a W (n, k) are orthogonal
to each other, which means that their inner product is zero.

The usefulness and significance of studying properties of the weighing matri-
ces lies in the fact that they have applications in several scientific areas. They are
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used in Coding Theory for producing error correcting codes with good properties
regarding the minimum Hamming distance. They appear also in the Theory of
Statistical Designs and in Cryptography. One of their most important applica-
tions is in Numerical Analysis, and in particular in the study of the problem of
the growth factor [1], which appears in the technique of Gaussian Elimination
(GE) for solving a system of the form A ·x = b, where A = [aij ] ∈ IRn×n is non-
singular. According to known theorems [5] the accuracy of the computed solution
with GE, which means in fact the stability of GE, depends on the growth factor.
So, is created the growth problem, which is actually the problem of determining
the growth factor for various values of the order n.

Experiments that have been made in the past on the computer reveal that
the weighing matrices have certain interesting properties regarding the structure
of the pivots appearing after GE. We are interested in specifying the existence
of submatrices with the maximum value of determinant, which are embedded
inside a weighing matrix. Write W (j) for the absolute value of the determinant
of the j × j principal submatrix in the upper left corner of the matrix W . It
can be proved that the magnitude of the pivots appearing after the application
of GE operations on a CP (completely pivoted, no exchanges are needed during
GE with complete pivoting) matrix W are given by

pj = W (j)/W (j − 1), j = 1, 2, . . . , n, W (0) = 1. (1)

It is obvious from the previous relationship that principal determinants (mi-
nors) of a matrix are strictly connected with the appearing pivots after GE, since
the value of a pivot is the quotient of two minors. The purpose of this paper
is to demonstrate two algorithmic techniques, which will prove the existence of
specific submatrices embedded in every W (n, n− 1), for appropriate value of n.
This will be done by showing that in every W (n, n−1) the columns, which make
up these matrices, can always be found. We have achieved our goal by applying
the notion of symbolic manipulation on a Computer Algebra Package, such as
Maple. By assigning all possible values to our variables we perform complete
(exhaustive) searches for all the appearing cases. This is a technique that is used
over and over in Cryptography to find impossibilities and possibilities.

In [3], the pivot structure of W (n, n − 1) was studied and the problem of
specifying specific k × k (0, 1,−1) matrices existing embedded in W (n, n − 1)
was initially posed.

Lemma 1. The possible absolute values of the determinants of all n×n (0, 1,−1)
matrices, where there is at most one zero in each row and column, is given in
Table 1 for n = 2, 3, 4, 5.

In [4] were proved the following lemmas 2,3 and 4:

Lemma 2. Let W be a CP skew and symmetric matrix, of order n ≥ 6 then if
GE is performed on W the first two pivots are 1 and 2.

Lemma 3. Let W be a CP skew and symmetric conference matrix, of order
n ≥ 12 then if GE is performed on W the third pivot is 2 and the fourth pivot
is 3 or 4.
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Table 1. Determinant Values for n = 2, 3, 4, 5

Order Maximum Determinant Possible Determinant V alues

2 × 2 2 0, 1, 2
3 × 3 4 0, 1, 2, 3, 4
4 × 4 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16
5 × 5 48 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 36, 40, 48

2 Existence of Specific (0, +, −) Submatrices in
W (n, n − 1)

Notation. Throughout this paper the elements of a (0, 1,−1) matrix will be
denoted by (0,+,−). Let yT

β+1
the vectors containing the binary representation

of each integer β+ 2k−1 for β = 0, . . . , 2k−1− 1. Replace all zero entries of yT
β+1

by −1 and define the k × 1 vectors uj = y
2k−1−j+1

, j = 1, . . . , 2k−1. We write
Uk for all the k × (n− 2k + 1) matrices, in which uj occurs xj times. So

Uk =

x1︷ ︸︸ ︷
+...+

x2︷ ︸︸ ︷
+...+ . . .

x2k−1−1︷ ︸︸ ︷
+...+

x2k−1︷ ︸︸ ︷
+...+

+...+ +...+ . . . −...− −...−
. . . . . . .
. . . . . . .

+...+ +...+ . . . +...+ −...−
+...+ −...− . . . +...+ −...−

=

x1 x2 . . . x2k−1−1 x2k−1

+ + . . . + +
+ + . . . − −
...

...
...

...
+ + . . . − −
+ − . . . + −

where x1 + x2 + . . .+ x2k−1 = n− 2k + 1.

Example 1. U3 =

x1 x2 x3 x4

1 1 1 1
1 1 − −
1 − 1 −

, U4 =

x1 x2 x3 x4 x5 x6 x7 x8

1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 − − 1 1 − −
1 − 1 − 1 − 1 −

2.1 An Algorithm Specifying the Existence of k × k (0, +, −)
Submatrices in a W (n, n − 1)

The following algorithm specifies the existence of a k × k submatrix A in a
W (n, n− 1), given that the upper left (k− 1)× (k− 1) submatrix B of A always
exists in a W (n, n− 1).

Algorithm Exist 1
Step 1
Read the k × k matrix A and the (k − 1)× (k − 1) matrix B
Step 2
Create the matrix Z
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Z =

⎡⎢⎢⎢⎢⎢⎣
0 + + · · · · · · +

y21 0 y23 · · · · · · y2k

B Uk y31 y32 0 y34 · · · y3k

...
...

...
. . .

...
+ z2 · · · zk−1 yk1 yk2 yk3 · · · yk,k−1 0

⎤⎥⎥⎥⎥⎥⎦ , where zi, yij = ±1

If B contains columns with 0
they are excluded from the matrix Z(:, n− k + 1 : n)

Step 3
If A has r 0’s

Demand that the r columns of Z(:, n− k + 1 : n), in which the 0’s are in
the same position as in A, take the appropriate values yij :

they are identical with the r columns of A containing the 0’s
Step 4
Procedure Solve
For all possible values of zi,i = 2, . . . , k − 1

Form the system of 1 +
(
k
2

)
equations and 2k−1 variables which results

from counting of columns and the inner products of every two distinct rows
Solve the system for all xi

Find the minimum values for the xi which correspond to the columns of
A, given that the number of columns appearing in Z(:, 1 : k − 1) is ≥ 1
Formulate (if necessary) conditions and/or restrictions for the order n
or for some xi:

the columns of A appear (the corresponding xi are all ≥ 1)
End{of Procedure Solve}
Else

Do Procedure Solve

Complexity. Obviously, all the calculations of the algorithm are made in Step

4, where the system is solved. The system has m = 1 +
(
k
2

)
equations with

v = 2k−1 variables, so it can be represented by an m × v matrix, with v ≥ m.
The solution of such a system requires about f = m2(v− m

3 ) flops, if we use, for
instance, QR factorization. Since the system is formed for all possible values of
zi, i = 2, . . . , k−1, and zi can be ±1, we have 2k−1−2+1 = 2k−2 systems. Hence,
we have totally f · 2k−2 flops.

Comments.

1. Clearly, any arbitrary W (n, n− 1) can be written always in the form of the
matrix Z and zi, yij can be ±1.

2. In Procedure Solve the system of 1 +
(
k
2

)
equations and 2k−1 variables

which results from the counting of all columns and the inner products of
every two distinct rows, is formed only once. For every combination of all
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possible values zi,i = 2, . . . , k − 1, only the k − 1 equations that result from
the inner product between the k−th and the previous k− 1 rows need to be
changed every time.

3. Obviously, the system has exactly one solution only for k=3, otherwise it

has infinite solutions, which are described by 2k−1 − 1−
(
k
2

)
parameters.

4. If in the expression for the solution xi appears n, we find the minimum value
of n, for which we have xi ≥ 1. Otherwise, we either establish that always
xi ≥ 1, or we apply conditions on the appearing parameters so that xi ≥ 1
holds.

5. If A contains some columns with 0’s in its (k − 1) × (k − 1) upper left
part, which is actually B, we exclude these columns from the submatrix Z(:,
n−k+1 : n), and give to the corresponding zi and yij appropriate values so
that they are identical with the columns of A containing the 0’s. If A contains
a 0 in the k-th column or row, which means outside the (k−1)×(k−1) upper
left sunmatrix B, then the corresponding column remains in Z(:, n−k+1 : n)
and the variable zi and yij in this column take appropriate values so that
this column is identical with the one in A containing the 0 outside of B.
After these subcases of Step 3 are examined, the matrix Z takes the desired
form and the system is set up.

6. By saying “a submatrix A always exists in a W (n, n− 1)” we mean actually
that there exist always the columns of A in W (n, n − 1). Then, after a
sequence of H-equivalent operations, A can appear on the upper left k × k
block of the W (n, n− 1).

7. The Computer Package gives the ability to select the parameters among the
variables before solving the system. In this way we take advantage of the
appearance of the first k − 1 columns of Z by assuming that the respective
parameters are ≥ 1.

Implementation of the Algorithm Exist 1

Next we demonstrate the application of the above described Algorithm for
various values of k.
1. Existence of 3× 3 Matrices (k=3)
We want to establish whether the matrix

B1 =

⎡⎣+ + +
+ − +
+ + −

⎤⎦
always exists in a W (n, n− 1). First we note that the upper left 2× 2 submatrix

of B1

[
+ +
+ −

]
always occurs in any W (n, n− 1), due to the orthogonality of the

first two rows.

1. We have A = B1, B =
[
+ +
+ −

]
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2. We create

Z =

⎡⎢⎢⎣+ +
x1︷︸︸︷
+

x2︷︸︸︷
+

x3︷︸︸︷
+

x4︷︸︸︷
+ 0 + +

+ − + + − − u 0 w
+ z + − + − x y 0

⎤⎥⎥⎦
where u, w, x, y and z are ±1.

3. Case 1, z = 1
For z=1, the system is

x1 + x2 + x3 + x4 = n− 5
x1 + x2 − x3 − x4 = −w
x1 − x2 + x3 − x4 = −2− y
x1 − x2 − x3 + x4 = −ux

(2)

The system has exactly one solution, as we have 4 equations with 4 un-
knowns. The solution is:

x1 = 1
4 (−y + n− ux− 7− w)

x2 = 1
4 (y + n+ ux− 3− w)

x3 = 1
4 (−7 + w − y + n+ ux)

x4 = 1
4 (y + n− ux− 3 + w)

(3)

We need to specify whether x2 ≥ 1, since the other two columns of A,
[+,+,+]T and [+,−,+]T , are the first two columns of Z. The minimum
value of x2 is n

4 − 6
4 . We have

x2 ≥ n

4
− 6

4
≥ 1⇔ x2 ≥ 1 for n ≥ 10

Hence, we have that B1 exists in any W (n, n− 1) with n ≥ 10.
For z = −1, the system differs in the third and fourth equation. After cal-
culating the solution, in this case we need to specify whether x2, x3 ≥ 1,
since the columns of A [+,+,+]T is the first column of Z. Similarly, we get
x2, x3 ≥ 1 for n ≥ 10. Consequently B1 exists in any W (n, n − 1) with
n ≥ 10.

With a similar argument we can prove that B2 =

⎡⎣+ + +
+ − 0
+ + −

⎤⎦ exists in any

W (n, n− 1) with n ≥ 10.

Lemma 4. The matrices B1 or B2 always exist in a W (n, n− 1) with n ≥ 10.

Remark 1. The maximum value of the 3 × 3 minor of a W (n, n − 1) is equal,
according to the previous results, to the absolute value of determinant of B1 and
B2, which is 4.
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With a similar argument we can prove the following Lemma:

Lemma 5. The matrices A1 =

⎡⎢⎢⎣
+ + + +
+ − + −
+ + − −
+ − − +

⎤⎥⎥⎦ or A2 =

⎡⎢⎢⎣
+ + 0 −
+ − − −
+ − + +
+ + − +

⎤⎥⎥⎦ always exist

in a W (n, n− 1) with n ≥ 10.

Remark 2. The maximum values of the 4× 4 minors of a W (n, n− 1) are equal,
according to the previous results, to the absolute values of determinants of A1

and A2, which are 16 and 12 respectively.

2. Existence of 5× 5 Matrices (k=5)

We want to establish whether the matrix C8 =

⎡⎢⎢⎢⎢⎣
+ + 0 − +
+ − − − −
+ − + + +
+ + − + −
+ + + − −

⎤⎥⎥⎥⎥⎦ always exists in

a W (n, n − 1). First we note that the upper left 4 × 4 submatrix of C8 is A2,
which was proved previously that always occurs in any W (n, n− 1).

1. We have A = C8, B = A2

2. We create

Z =

⎡⎢⎢⎢⎢⎣
+ + 0 − + + + +
+ − − − 0 a b c
+ − + + U5 d 0 e f
+ + − + g h 0 k
+ z + w l m p 0

⎤⎥⎥⎥⎥⎦
where
U5 =

⎡⎢⎢⎢⎢⎢⎣

x1︷︸︸︷
+

x2︷︸︸︷
+

x3︷︸︸︷
+

x4︷︸︸︷
+

x5︷︸︸︷
+

x6︷︸︸︷
+

x7︷︸︸︷
+

x8︷︸︸︷
+

x9︷︸︸︷
+

x10︷︸︸︷
+

x11︷︸︸︷
+

x12︷︸︸︷
+

x13︷︸︸︷
+

x14︷︸︸︷
+

x15︷︸︸︷
+

x16︷︸︸︷
+

+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + − − − + −
+ + − − + + − − + + − + − + − −
+ − + − + − + − + − + + + − − −

⎤⎥⎥⎥⎥⎥⎦

and a, b, c, d, e, f , g, h, k, l, m, n, p, z and w, are ±1. As described in
Comment 5, the column [0,−,+,−,+]T is excluded from Z(:, n− 4 : n) and
the values of the variables in this column remain fixed.
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3. Case 1, z = 1, w = 1
The system is

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14

+x15 + x16 = n − 8
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 − x9 − x10 − x11 − x12 − x13 − x14

−x15 − x16 = −1 − a − b − c
x1 + x2 + x3 + x4 − x5 − x6 − x7 − x8 + x9 + x10 + x11 − x12 − x13 − x14

+x15 − x16 = 1 − d − e − f
x1 + x2 − x3 − x4 + x5 + x6 − x7 − x8 + x9 + x10 − x11 + x12 − x13 + x14

−x15 − x16 = −1 − g − h − k
x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8 + x9 − x10 + x11 + x12 + x13 − x14

−x15 − x16 = −1 − l − m − p
x1 + x2 + x3 + x4 − x5 − x6 − x7 − x8 − x9 − x10 − x11 + x12 + x13 + x14

−x15 + x16 = −be − cf
x1 + x2 − x3 − x4 + x5 + x6 − x7 − x8 − x9 − x10 + x11 − x12 + x13 − x14

+x15 + x16 = −ah − ck
x1 − x2 + x3 − x4 + x5 − x6 + x7 − x8 − x9 + x10 − x11 − x12 − x13 + x14

+x15 + x16 = 2 − am − bp
x1 + x2 − x3 − x4 − x5 − x6 + x7 + x8 + x9 + x10 − x11 − x12 + x13 − x14

−x15 + x16 = −dg − fk
x1 − x2 + x3 − x4 − x5 + x6 − x7 + x8 + x9 − x10 + x11 − x12 − x13 + x14

−x15 + x16 = −2 − dl − ep
x1 − x2 − x3 + x4 + x5 − x6 − x7 + x8 + x9 − x10 − x11 + x12 − x13 − x14

+x15 + x16 = −2 − gl − hm

(4)

The system apparently has an infinite number of solutions, which depend
on five parameters, as we have 11 equations with 16 unknowns. We have
chosen between the five parameters x1, x8 and x12 because, in this case,
the respective columns appear in Z and we want to make use of this fact by
assuming x1, x8, x12 ≥ 1. The other two parameters can be chosen arbitrary.
The solution is:

x2 = 1
4
(−f − a − b − fk − dg − ck − ah − c − d − e) − x1 + x12 + x14

x3 = 1
4
(−8 − be − cf − ep − dl − bp − am + n) − x1 − x14 − x16

x4 = 1
4
(ep + dl + fk + dg + bp + am + ck + ah) + x1 − x12 + x16

x5 = 1
4
(−g + ep + dl + fk + dg − l − h − k − m − p) + x8 − x12 + x16

x6 = 1
4
(−10 + f − ep − dl + l + n + d + e + m + p) − x8 − x14 − x16

x7 = 1
4
(g − a − b + be + cf − fk − dg − c + h + k) − x8 + x12 + x14

x9 = 1
4
(−12 − ep − dl − fk − dg − hm − gl + n) − x1 − x8 − x16

x10 = 1
4
(4 − g + a + b + ep + dl + fk + dg + ck + ah + hm + gl + c − h − k)

+x1 + x8 − x12 − x14 + x16

x11 = 1
4
(10 − f + be + cf + ep + dl + fk + dg + bp + am + hm + gl − l − n

−d − e − m − p) + x1 + x8 + x14 + 2x16

x13 = 1
4
(−8 + f + a + b − be − cf + n + d + c + e) − x12 − x14 − x16

x15 = 1
4
(−8 + g − ep − dl − fk − dg − bp − am − ck − ah − hm − gl + l + n

+m + h + k + p) − x1 − x8 + x12 − 2x16

(5)
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We need to specify whether x7 ≥ 1, since the other columns of A appear in
this case in Z. The minimum value of x7 is − 10

4 − x8 + x12 + x14. We have

x7 ≥ −6
4
− x8 + x14 ≥ 1⇔ x14 ≥ 1 +

6
4

+ x8 ≥ 14
4

which means actually x14 ≥ 4.

Hence, we have that C8 exists in any W (n, n− 1) only if there exist at least
4 columns of the form [+,−,−,+,−]T or H-equivalent to it.
With similar arguments we deal with the other 3 cases and in every case it
is proved that C8 exists in any W (n, n− 1) if and only if x14 ≥ 4.

Remark 3. It is obvious that for larger orders k the previous algorithm will
encounter difficulties at extracting the wished results. Apart from this, results
of the type ”C8 exists in any W (n, n − 1) if and only if x14 ≥ 4” are not very
general and consequently of less importance. So, we needed a more sophisticated
technique which is more efficient in practice, provides more general results and
can be used more easily for larger dimensions n.

2.2 Another Algorithm Specifying the Existence of k × k (0, +, −)
Submatrices in a W (n, n − 1)

Notation. We denote by Uk,3 the first three rows of the previously defined
matrix Uk.

Uk,3 =

x1 x2 . . . x2k−1−1 x2k−1

1 1 . . . 1 1
1 1 . . . − −
1 1 . . . − −

Example 2. U3,3 =

x1 x2 x3 x4

1 1 1 1
1 1 − −
1 − 1 −

= U3 , U4,3 =

x1 x2 x3 x4 x5 x6 x7 x8

1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 − − 1 1 − −

The following algorithm specifies the existence of a k × k submatrix A in a
W (n, n− 1), given that the upper left (k− 1)× (k− 1) submatrix B of A always
exists in a W (n, n− 1).

Algorithm Exist 2
Step 1
Read the k × k matrix A and the (k − 1)× (k − 1) matrix B
Step 2
Denote with C the upper left 3× (k − 1) submatrix of B
Step 3
Create the matrix Yk
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Yk =

⎡⎣ 0 + + + · · · +
C Uk,3 y21 0 y23 y24 · · · y2k

y31 y32 0 y34 · · · y3k

⎤⎦ , where yij = ±1

Step 4
Compute the linear system resulting from the dimension and the orthogonality
of the rows of Yk and deduce the distribution of the number of columns of Yk

Step 5
Find the maximum values for the xi which correspond to the columns of A
Step 6
Formulate (if necessary) conditions for the order n:

the columns of A appear (the corresponding xi are all ≥ 1)

Complexity. All the calculations of the algorithm are elementary and take place
in Step 4. Precisely, we have totally 4 · (2k−1 + 1) additions or subtractions, so
the complexity is kept at low levels.

Comments.

1. Clearly, the first three rows of any arbitrary W (n, n − 1) can be written
always in the form of the matrix Yk and zi, yij can be ±1.

2. The matrix Yk, which is created in Step 3, is in fact a submatrix of the
matrix Z, as defined in the previous algorithm. In order to take advantage
of the fact that B always exists, we include separately the first three rows
of B in the matrix C.

3. In Step 4 is formulated a Distribution type Lemma, which gives the number
of several columns appearing in a weighing matrix and will allow us to obtain
bounds on the column structure of a weighing matrix. This Lemma results
from the solution of the system, which is set up from counting of all columns
and the inner products of every two distinct rows that must be zero.

Implementation of the Algorithm Exist 2

1. Existence of 5× 5 Matrices (k=5)

We want to establish whether the matrix C1 =

⎡⎢⎢⎢⎢⎣
+ + + + +
+ − + − −
+ − − + +
+ + − − +
+ + − + −

⎤⎥⎥⎥⎥⎦=[x1 x12 x8 x11 x10]

always exists in a W (n, n− 1). First we note that the upper left 4× 4 submatrix
of C1 is A1, which was proved previously that always occurs in any W (n, n− 1).

1. We have A = C1, B = A1

2. C =

⎡⎣+ + + +
+ − + −
+ − − +

⎤⎦
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3. We create

Y5 =

⎡⎣+ + + + 0 + + + +
+ − + − U5,3 q 0 a b c
+ − − + r d 0 e f

⎤⎦
where a, b, c, d, e, f , q and r are ±1 and
U5,3 =

⎡⎢⎣
x1︷︸︸︷
+

x2︷︸︸︷
+

x3︷︸︸︷
+

x4︷︸︸︷
+

x5︷︸︸︷
+

x6︷︸︸︷
+

x7︷︸︸︷
+

x8︷︸︸︷
+

x9︷︸︸︷
+

x10︷︸︸︷
+

x11︷︸︸︷
+

x12︷︸︸︷
+

x13︷︸︸︷
+

x14︷︸︸︷
+

x15︷︸︸︷
+

x16︷︸︸︷
+

+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + − − − + −

⎤⎥⎦
4. The Distribution Lemma for this case results from the following manipula-

tion of the equations (they result from the dimension and the orthogonality):

x1 +x2 +x3 +x4 +x5 +x6 +x7 +x8 +x9 +x10 +x11 +x12 +x13 +x14 +x15 +x16 = n−9 (6)

x1+x2+x3+x4+x5+x6+x7+x8−x9−x10−x11−x12−x13−x14−x15−x16 = −a−b−c (7)

x1+x2+x3+x4−x5−x6−x7−x8+x9+x10+x11−x12−x13−x14+x15−x16 = −d−e−f (8)

x1+x2+x3+x4−x5−x6−x7−x8−x9−x10−x11+x12+x13+x14−x15+x16 = −qr−be−cf (9)

(6) + (7) + (8) + (9) : x1 + x2 + x3 + x4 = 1
4 (n − 9 − a − b − c − g − h − k − qr − be − cf)

(6) + (7) − (8) − (9) : x5 + x6 + x7 + x8 = 1
4 (n − 9 − a − b − c + d + e + f + qr + be + cf)

(6) − (7) + (8) − (9) : x9 + x10 + x11 + x12 = 1
4 (n − 9 + a + b + c − d − e − f + qr + be + cf)

(6) − (7) − (8) + (9) : x13 + x14 + x15 + x16 = 1
4 (n − 9 + a + b + c + d + e + f − qr − be − cf)

Lemma 6. (Distribution Lemma). Let W be any W (n, n − 1) of order
n > 2 with its first three rows written in the form of Y5. Then the number
of columns which are

(a) (+,+,+)T or (−,−,−)T is 1
4 (n−9−a− b− c− g−h−k− qr− be− cf)

(b) (+,+,−)T or (−,−,+)T is 1
4 (n−9−a− b− c+d+ e+ f + qr+ be+ cf)

(c) (+,−,+)T or (−,+,−)T is 1
4 (n−9+a+ b+ c−d− e− f + qr+ be+ cf)

(d) (+,−,−)T or (−,+,+)T is 1
4 (n−9+a+ b+ c+d+ e+ f − qr− be− cf)

5. We have obviously

x1 ≤ 1
4 (n− 9− a− b− c− g − h− k − qr − be− cf)

x10, x11, x12 ≤ 1
4 (n− 9 + a+ b+ c− d− e− f + qr + be+ cf)

x8 ≤ 1
4 (n− 9− a− b− c+ d+ e+ f + qr + be+ cf)

By assigning all possible values ±1 to the variables, we get: x1, x8, x10, x11,
x12 ≤ 1

4 (n− 4).
6. Hence, 1 ≤ x1 ≤ 1

4 (n− 4)⇔ n ≥ 8. Similarly, x8, x10, x11, x12 ≥ 1⇔ n ≥ 8.
So we have that for n ≥ 8 C1 always exists. In a similar way can be proved
the same result for the matrices in the following lemma.

Lemma 7. One of the following matrices, named C1, C2, C3, C4, C5, C6, C7,
C8, C9 and C10 respectively,⎡⎢⎣

+ + + + +
+ − + − −
+ − − + +
+ + − − +
+ + − + −

⎤⎥⎦
⎡⎢⎣

+ + + + +
+ − + − −
+ − − + 0
+ + − − +
+ + − + −

⎤⎥⎦
⎡⎢⎣

+ + + + +
+ − + − −
+ − − + +
+ + − − +
+ + − 0 −

⎤⎥⎦
⎡⎢⎣

+ + + + +
+ − + − −
+ − − + −
+ + − − −
+ + + + −

⎤⎥⎦
⎡⎢⎣

+ + + + +
+ − + − −
+ − − + −
+ + − − 0
+ + − + −

⎤⎥⎦
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⎡⎢⎣
+ + + + +
+ − + − −
+ − − + −
+ + − − +
+ + 0 − −

⎤⎥⎦
⎡⎢⎣

+ + + + +
+ − + − −
+ − − + +
+ + − − +
+ + − + 0

⎤⎥⎦
⎡⎢⎣

+ + 0 − +
+ − − − −
+ − + + +
+ + − + −
+ + + − −

⎤⎥⎦
⎡⎢⎣

+ + 0 − +
+ − − − −
+ − + + 0
+ + − + −
+ + + − −

⎤⎥⎦
⎡⎢⎣

+ + 0 − +
+ − − − −
+ − + + +
+ + − + 0
+ + + 0 −

⎤⎥⎦
always exists in a W (n, n− 1) with n ≥ 8.

Remark 4. The maximum values of the 5× 5 minors of a W (n, n− 1) are equal,
according to the previous results, to the absolute values of determinants of
C1, . . . , C10, which are 48, 40, 36 and 32.

Theorem 1. Let W be a CP skew and symmetric conference matrix, of order
n ≥ 8 then if GE is performed on W the fifth pivot is 2 or 3 or 9

4 or 10
3 or 10

4 .

Proof. It follows obviously from lemma 7, remark 4 and relationship (1). )*

2.3 Conclusions

The object of our work was to find an algorithm able to decide if specific (0,+,−)
submatrices of order k exist embedded inside a CP weighing matrix W (n, n−1).
If such a submatrix exists, then, after a sequence of H-equivalent operations, it
can appear on the upper left k×k block of the W (n, n−1). So, the k×k principal
minor of the W (n, n− 1) is equal to the determinant of this submatrix. Hence,
according to relationship (1), the pivots of the W (n, n− 1) can be calculated.

By applying algorithms Exist 1 and Exist 2, we obtained the values for the
fifth pivot of a CP skew and symmetric conference matrix of order n ≥ 8. The use
of symbolic algebra packages is required for the solution of the systems appearing
in the implementation of the algorithms.

An issue open for research is to apply Algorithm Exist 2, or a more improved
form of it, for the next orders of submatrices k = 6, 7, . . ., in order to prove
more appearing values in the pivot structure of a W (n, n− 1) for large enough
n. Also the alteration of the parameters of the Algorithms, so that they can be
used more generally for W (n, n− p), p = 2, 3, . . ., is interesting and is dealt with
currently.
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Abstract. A fast verification algorithm of calculating guaranteed error
bounds for all approximate eigenvalues of a real symmetric matrix is pro-
posed. In the proposed algorithm, Rump’s and Wilkinson’s bounds are
combined. By introducing Wilkinson’s bound, it is possible to improve
the error bound obtained by the verification algorithm based on Rump’s
bound with a small additional cost. Finally, this paper includes some
numerical examples to show the efficiency of the proposed algorithm.

1 Introduction

In this paper, we are concerned with the accuracy of computed eigenvalues for

Ax = λx, (1)

where A is a real symmetric n × n matrix, λ is an eigenvalue of A and x is an
eigenvector corresponding to λ. There are several methods for calculating guar-
anteed error bounds for approximate eigenvalues and eigenvectors, e.g. [5,6,8,14].
Among them, we consider the case of verifying all eigenvalues in particular.
With respect to the way of verifying a few specified eigenvalues, for example,
see Yamamoto [14] and Golub, van Loan [2, p. 402, Theorem 8.1.16]. On error
bounds for eigenvector, see Yamamoto [14] and Rump and Zemke [10]. Excellent
overviews on perturbation theory for matrix eigenvalues can be found in Parlett
[7], Stewart and Sun [11] and Ipsen [4].

The algorithms by Oishi [6] and Miyajima et al. [5] are known as the al-
gorithm which calculates error bounds for all eigenvalues. Oishi’s algorithm
uses switches of rounding modes defined in IEEE standard 754 [1], especially
rounding-upward and rounding-downward. In contrast, Miyajima’s algorithm
uses only rounding-to-nearest mode which is set in default, so that their algo-
rithm does not require to change rounding modes.

In this paper, we introduce Rump’s bound [9], which can supply one guar-
anteed error bound for all eigenvalues. However, this estimation may be pes-
simistic for relatively small eigenvalues. To overcome this, we introduce Wilkin-
son’s bound [13]. This supplies an upper bound of distance between an approxi-
mate eigenvalue and its nearest true eigenvalue. Note that this does not always
give an error bound of ith approximate eigenvalue for ith true eigenvalue.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 306–317, 2005.
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The purpose of this paper is to propose a fast algorithm of calculating error
bounds for respective eigenvalues by utilizing Rump’s and Wilkinson’s bounds.
The proposed algorithm allows the presence of underflow in floating point arith-
metic. After developing the verification algorithms named Rump’s and Wilkin-
son’s algorithms which are based on Rump’s and Wilkinson’s bounds, respec-
tively, it is shown that the proposed algorithm supplies respective guaranteed
error bounds where each of them is less than or equal to that by Rump’s al-
gorithm. Moreover, an intermediate result in the process of Rump’s algorithm
can be reused for Wilkinson’s algorithm, so that additional computational cost
against Rump’s algorithm is almost negligible.

Finally, this paper includes some numerical examples to show the efficiency
of the proposed algorithm.

2 Utilized Bounds

In this section, we briefly explain Rump’s and Wilkinson’s bounds and their
properties. Hereafter, we assume that approximate eigenvalues λ̃i and eigenvev-
tors x̃(i) for i = 1, . . . , n have already been computed.

Let D̃ and X̃ be an n × n diagonal matrix and an n × n approximately
orthogonal matrix defined as D̃ := diag(λ̃1, . . . , λ̃n) and X̃ := (x̃(1), . . . , x̃(n)),
respectively. Then it is expected that AX̃ ≈ X̃D̃. We define n × n residual
matrices R and G as

R := AX̃ − X̃D̃ and G := I − X̃T X̃, (2)

where I denotes the n× n identity matrix.
At first, we present Theorem 1 with respect to Rump’s bound.

Theorem 1 (Rump [9]). Let A be a real symmetric n× n matrix. Let λi and
λ̃i for i = 1, . . . , n be the true and approximate eigenvalues of A such that

λ1 ≤ · · · ≤ λn and λ̃1 ≤ · · · ≤ λ̃n,

respectively. Let also R and G be defined as in (2). Then, it holds for all i that

|λi − λ̃i| ≤ ‖R‖2
1− ‖G‖2 . (3)

Comparing to matrix 1-norm and ∞-norm, it is disadvantageous in computa-
tional cost to compute matrix 2-norm with guaranteed accuracy. For a square
matrix P , it is known that ‖P‖2 ≤

√‖P‖1‖P‖∞. Moreover, if P is symmetric
in particular, then it follows that ‖P‖2 ≤ ‖P‖∞. Thus, we obtain

‖R‖2
1− ‖G‖2 ≤

√‖R‖1‖R‖∞
1− ‖G‖∞ . (4)

In this paper, Rump’s algorithm is implemented based on the following formula
instead of (3):

|λi − λ̃i| ≤
√‖R‖1‖R‖∞

1− ‖G‖∞ . (5)
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The right hand side of (5) does not depend on indices i. Therefore, Rump’s
algorithm can supply one error bound for all eigenvalues. However, the error
bound may be pessimistic for relatively small eigenvalues. For example, let A be
a 2 × 2 matrix and assume λ1 = 1, λ2 = 100 and λ̃1 = 0.9, λ̃2 = 95. Then the
algorithm tells |λi − λ̃i| ≤ 5, whereas |λ1 − λ̃1| = 0.1, that is relatively 500%
overestimated.

To improve this, we present Theorem 2 with respect to Wilkinson’s bound.

Theorem 2 (Wilkinson [13]). Let A, λ̃i and λj be defined as in Theorem 1.
Let also x̃(i) be the ith eigenvector of A corresponding to λ̃i. Then

min
1≤j≤n

|λj − λ̃i| ≤ ‖r
(i)‖2

‖x̃(i)‖2 , (6)

where

r(i) := Ax̃(i) − λ̃ix̃
(i). (7)

Theorem 2 supplies an upper bound of distance between λ̃i and λj which lies
nearest from λ̃i. Hence, it does not always follows that min1≤j≤n |λj − λ̃i| =
|λi − λ̃i|. For example, if the eigenvalues are closely clustered, it can occur that
min1≤j≤n |λj − λ̃i| �= |λi − λ̃i| i.e. j �= i.

In the next section, we will explain how Theorems 1 and 2 are related and
used.

3 Proposed Algorithm

In this section, we propose a fast algorithm of calculating the error bounds for
respective eigenvalues by utilizing Theorems 1 and 2. At first, we present the
ground for combining (5) and (6), and show that the proposed algorithm sup-
plies error bounds where each of them is less than or equal to that by Rump’s
algorithm. Moreover, we propose the way to reduce the computational cost for
computing the right hand side of (6) by reusing an intermediate result in the
process of Rump’s algorithm. Next, we propose the way to check whether Theo-
rem 2 can be applied to calculate an upper bound of |λi − λ̃i| for each i. Finally
in this section, we describe the concrete steps of the proposed algorithm.

We first present Lemmas 1 and 2 as the preparation to prove Theorem 3.

Lemma 1. Let q(j) be the jth column of a real n × n matrix Q. Then it holds
for j = 1, . . . , n that

‖q(j)‖2 ≤
√
‖Q‖1‖Q‖∞. (8)

Proof of Lemma 1. Let qij be the (i, j) element of Q. Since both sides of (8)
are nonnegative, (8) is equivalent to

n∑
i=1

q2ij ≤ ‖Q‖1‖Q‖∞. (9)
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Therefore, we aim to prove (9) instead of (8). Considering the right hand side of
(9) yields

‖Q‖1‖Q‖∞ =

(
max

1≤j≤n

n∑
i=1

|qij |
)⎛⎝ max

1≤i≤n

n∑
j=1

|qij |
⎞⎠

≥ max
1≤j≤n

n∑
i=1

|qij ||qij | = max
1≤j≤n

n∑
i=1

q2ij ≥
n∑

i=1

q2ij , (10)

which proves (9) and Lemma 1. �

Lemma 2. Let Q̃ be a real n× n matrix and q̃(j) the jth column of Q̃, then it
holds that

1− ‖I − Q̃T Q̃‖∞ ≤ ‖q̃(i)‖2, (11)

where I is the n× n identity matrix.

Proof of Lemma 2. In the case ‖q̃(i)‖2 ≥ 1, Lemma 2 is obvious. Therefore,
we consider the case

‖q̃(i)‖2 < 1. (12)

For any real orthonormal n×n matrix Q, there exist real n×n matrices E and
F such that

Q̃ = Q+ E (13)
Q̃T Q̃ = I + F. (14)

Let q(i) and e(i) be the ith column of Q and E, respectively. Then it follows for
i = 1, . . . , n that

q̃(i) = q(i) + e(i). (15)

From (12), (14), (15) and ‖q(i)‖2 = 1, it follows that

‖I − Q̃T Q̃‖∞ + ‖q̃(i)‖2 = ‖F‖∞ + ‖q(i) + e(i)‖2
≥ ‖F‖∞ + ‖q(i) + e(i)‖22
= ‖F‖∞ + q(i)T q(i) + 2q(i)T e(i) + e(i)T e(i)

= 1 + ‖F‖∞ + 2q(i)T e(i) + e(i)T e(i). (16)

On the ohter hand, utilizing (13) and the orthogonality of Q yields

Q̃T Q̃ = (Q+ E)T (Q+ E)
= I +QTE + ETQ+ ETE. (17)

From (14) and (17), we obtain

F = QTE + ETQ+ ETE. (18)
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We here define the n× n diagonal matrix Fd whose diagonal elements are equal
to those of F as follows:

Fd :=

⎛⎜⎝f11 O
. . .

O fnn

⎞⎟⎠ , fii := 2q(i)T e(i) + e(i)T e(i). (19)

Then it is obvious that

‖Fd‖∞ ≤ ‖F‖∞. (20)

Inserting (20) into (16) yields

‖I − Q̃T Q̃‖∞ + ‖q̃(i)‖2 ≥ 1 + ‖Fd‖∞ + fii = 1 + max
1≤k≤n

|fkk|+ fii

≥ 1 + |fii|+ fii ≥ 1, (21)

which proves Lemma 2. �

From Lemmas 1 and 2, we finally have Theorem 3.

Theorem 3. Let x̃(i) be defined as in Theorem 2. Let also R, G and r(i) be
defined as in (2) and (7). Then the following inequality holds:

‖r(i)‖2
‖x̃(i)‖2 ≤

√‖R‖1‖R‖∞
1− ‖G‖∞ . (22)

Let δ and εi for i = 1, . . . , n be defined by

δ :=

√‖R‖1‖R‖∞
1− ‖G‖∞ and εi :=

‖r(i)‖2
‖x̃(i)‖2 . (23)

From Theorem 3, it follows that εi ≤ δ for i = 1, . . . , n. We will design the
proposed algorithm to supply the error bounds ηi such that

ηi =

{
εi (if it is proved that min

1≤j≤n
|λj − λ̃i| = |λi − λ̃i|)

δ (otherwise)
. (24)

Therefore, it is guaranteed that the proposed algorithm can give the error bounds
such that ηi ≤ δ for all i.

To obtain εi, we need to compute r(i) = Ax̃(i) − λ̃ix̃
(i). Here, r(i) is the

identical to the ith column of R. So, if R has already been obtained in the
process of calculating δ, we can reuse it for calculating εi, i = 1, . . . , n. By this
reuse, computational cost of the proposed algorithm can significantly be reduced.
Moreover, utilizing a priori error estimation used in [3,5] and considering the
presence of underflow yields

‖I − X̃T X̃‖∞ ≤ ‖fl�(I − X̃T X̃)‖∞ + γ(‖|X̃T |(|X̃ |s)‖∞ + 1) + nu (25)
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where s := (1, . . . , 1)T , γ is defined as γ := (n+1)u
1−(n+1)u with u being the unit

roundoff, and u as underflow unit (especially, u = 2−53 and u = 2−1074 in IEEE
754 double precision). Throughout this paper, fl(·) denotes the result of floating
point computations, where all operations inside parentheses are executed by
ordinary floating point arithmetic fulfilling rounding mode instruction, especially
fl�(·) in rounding-to-nearest, fl�(·) in rounding-upward and fl�(·) in rounding-
downward.

By this way, we can avoid to execute matrix multiplication twice (once in
rounding-upward and once in rounding-downward) as done in [6] to obtain the
rigorous enclosure of X̃T X̃. We need to execute matrix multiplication only once
in rounding-to-nearest. Thus computational cost for ‖fl�(I − X̃T X̃)‖∞ is n3

flops. Moreover, computational cost for ‖|X̃T |(|X̃ |s)‖∞ is O(n2) flops.
Based on the above discussions, we present concrete steps of computations

for δ and ε1, . . . , εn in Algorithms 1 and 2 assuming that D̃ and X̃ have already
been obtained. We express the algorithms Matlab-like [12].

Algorithm 1. Computation of rigorous upper bound δ for√‖R‖1‖R‖∞
1− ‖G‖∞ ≤ δ

utilizing D̃ and X̃ which have already been obtained. R is also outputted to reuse
in Algorithm 2. Computational cost of Algorithm 1 is 5n3 flops.

function [δ, R] = veigR(A, D̃, X̃)
Y = fl�(I − X̃T X̃);
B = fl�(AX̃); T = fl�(X̃D̃);
B = fl�(AX̃); T = fl�(X̃D̃);
R = fl�(B − T );
R = fl�(B − T );
R = max(|R|, |R|);
γ = fl� ((n+ 1)u/(1− (n+ 1)u)) ;
p = fl�(‖Y ‖∞ + (γ(‖|X̃T |(|X̃ |s)‖∞ + 1) + nu)); % s = (1, . . . , 1)T

if p ≥ 1, error(’Verification failed’), end
q = fl�(‖R‖1);
r = fl�(‖R‖∞);
δ = fl�

(√
qr/− (p− 1)

)
; % fl�(−(p− 1)) ≤ 1− p

If p ≥ 1 in Algorithm 1, it may be ‖G‖∞ = ‖I − X̃T X̃‖∞ ≥ 1 so that we
cannot use (5). However, such a case seems to hardly occur because condition
number on eigenvalue for a symmetric matrix is always one, i.e., ‖X‖2‖XT‖2 =
‖XTX‖2 = 1. Therefore it only depends on numerical stability of calculating X̃ .

Algorithm 2. Computation of rigorous upper bound εi for

‖r(i)‖2
‖x̃(i)‖2 ≤ εi ∀i = 1, . . . , n
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utilizing R and X̃ which have already been obtained. Computational cost of Al-
gorithm 2 is 4n2 flops.

function [ε1, . . . , εn] = veigW(R, X̃)
for i = 1 : n
pi = fl�(‖x̃(i)‖2); % x̃(i): the ith column of X̃ (approximate eigenvector)

end
for i = 1 : n
qi = fl�(‖r(i)‖2); % r(i): the ith column of R
εi = fl�(qi/pi);

end

Next, we present Theorems 4 and 5 to check whether min1≤j≤n |λj − λ̃i| =
|λi − λ̃i| holds.

Theorem 4. Let λi and λ̃i be defined as in Theorem 1. Let also δ be defined as
in (23). Suppose that⎧⎨⎩

λ̃i+1 − λ̃i > 2δ (i = 1)
λ̃i − λ̃i−1 > 2δ ∧ λ̃i+1 − λ̃i > 2δ (2 ≤ i ≤ n− 1)
λ̃i − λ̃i−1 > 2δ (i = n)

(26)

holds for some i. Then

min
1≤j≤n

|λj − λ̃i| = |λi − λ̃i|.

Proof of Theorem 4. From (5), it follows that |λi − λ̃i| ≤ δ. Therefore, λi

exists in the interval [λ̃i− δ, λ̃i + δ]. Moreover, it is made sure from (26) that the
eigenvalue which exists in [λ̃i − δ, λ̃i + δ] is λi only (see Fig. 1). Hence, we can
definitely say that the eigenvalue which lies nearest from λ̃i is λi, which proves
Theorem 4. �

λ̃i−1 λ̃i λ̃i+1

δ δ δ δ

εi εi

λi

Fig. 1. The case that λ̃i − λ̃i−1 > 2δ ∧ λ̃i+1 − λ̃i > 2δ holds

As we said above, condition number on eigenvalue for a symmetric matrix is
always one. Only we have to consider is the case where eigenvalues are clustered.
Therefore we next consider ill-conditioned case where some eigenvalues are nearly
multiple. If the distance between them is less than δ, then (26) does not hold. As
the fallback, we present Theorem 5 which supplies the signpost to check whether
min1≤j≤n |λj − λ̃i| = |λi − λ̃i| holds or not.
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Theorem 5. Let λi and λ̃i be defined as in Theorem 1. Let also δ and εi be de-
fined as in (23) and (23) . Suppose that some approximate eigenvalues λ̃k, . . . , λ̃k

with 1 ≤ k < k ≤ n are clustered such that

λ̃k − λ̃k−1 > 2δ ∧ λ̃k+1 − λ̃k > 2δ ∧ λ̃i+1 − λ̃i ≤ 2δ (27)

for all i = k, . . . , k − 1. If it holds for all i = k, . . . , k − 1 that

εi + εi+1 < λ̃i+1 − λ̃i, (28)

then
min

1≤j≤n
|λj − λ̃i| = |λi − λ̃i| for all i = k, . . . , k.

Proof of Theorem 5. From Theorem 3, it holds for all i = 1, . . . , n that εi ≤ δ.
Moreover, from (27) and (28), the eigenvalue λi is the only one which exists in
the interval [λ̃i − εi, λ̃i + εi] for each i (see Fig. 2). Hence, we can definitely say
that the eigenvalue which lies nearest from λ̃i is λi. This proves Theorem 5. �

λ̃k−1 λ̃k+1λ̃k λ̃k−1λ̃k+1 λ̃k+2 λ̃kλ̃k−1λ̃k−2

· · ·

εk εk εk+1 εk+1 εk+2 ε
k−2

ε
k−1

ε
k−1

ε
k

ε
k

λk λk+1λk λkλkλk−1

δ

Fig. 2. The case that (27) holds

Based on the above mentioned discussions, we present the concrete steps of
the proposed algorithm utilizing Theorems 3, 4 and 5.

Algorithm 3. Computation of error bounds ηi for respective eigenvalues λ̃i

combining (5) and (6) on the assumption that all λ̃i and x̃(i) have already been
obtained. Computational cost of Algorithm 3 is 5n3 flops.

Step 1: Compute δ by use of Algorithm 1.
Step 2: Compute ε1, . . . , εn by applying Algorithm 2.
Step 3: For i = 1, . . . , n, check whether⎧⎨⎩

fl�(λ̃i+1 − λ̃i) > 2δ (i = 1)
fl�(λ̃i − λ̃i−1) > 2δ ∧ fl�(λ̃i+1 − λ̃i) > 2δ (2 ≤ i ≤ n− 1)
fl�(λ̃i − λ̃i−1) > 2δ (i = n)

(29)
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Table 1. η, δ and t corresponding to several algorithms

η(1), t1 η(2), t2 η(3), t3 δ, tδ

Oishi [6, Alg. 3] Miyajima et al. [5, Alg. 3] Alg. 3 Alg. 1

holds or not. If yes, set the error bound ηi as

ηi = εi.

Otherwise, group the clustered eigenvalues as

Λ1, . . . , Λm (m < n), Λj = {λ̃kj
, . . . , λ̃kj

}.

Step4: For j = 1, . . . ,m with Λj = {λ̃kj
, . . . , λ̃kj

}, check whether

fl�(εi + εi+1) < fl�(λ̃i+1 − λ̃i) ∀i = kj , . . . , kj − 1 (30)

holds or not. If yes, set the error bound ηi as

ηi = εi ∀i = kj , . . . , kj .

Otherwise, set the error bound ηi as

ηi = δ ∀i = kj , . . . , kj .

Computational cost of Step 1 is 5n3 flops and that from Step 2 to Step 4 is
only O(n2) flops, so that total computational cost of Algorithm 3 is still 5n3 flops,
which is the same as that of Algorithm 1. Therefore, as n increases, computing
time for Step 1 becomes dominant and that from Step 2 to Step 4 does not
mostly influence the total computing time.

4 Numerical Examples

In this section, we report some numerical results to show the efficiency of the
proposed algorithm. Here, our computer environment is Pentium IV 3.4GHz
CPU. We use Matlab 7.0 with ATLAS and IEEE 754 double precision for all
computations.

Let η and t be an n-vector whose entries are guaranteed error bounds of
eigenvalues and computing time (sec) resulted by the algorithms in Table 1. Let
also teig and tvec be the computing time (sec) for calculating all eigenvalues and
eigenvectors, respectively.

At first, consider the following real symmetric 3× 3 matrix A:

A := fl((B +BT )/2), B := fl(XDXT ) (31)

where D := diag(1, 1 + θ, 100), θ := 2−52 and

X :=

⎛⎝−0.86584525931213−0.41783442087899 0.27518427218037
−0.16528548023377 0.75803310394750 0.63092513291484
−0.47222102552789 0.50079957073507 −0.72540133236778

⎞⎠ .
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Here, X is an approximately orthogonal matrix. Then the true eigenvalues of A
should be near from

λ1 = 1, λ2 = 1 + θ, λ3 = 100.

The approximate eigenvalues λ̃i obtained in by Matlab function eig were

λ̃1 = 0.99999999999997, λ̃2 = 1.00000000000000, λ̃3 = 99.99999999999997 .

Then we obtained

δ = 6.359e-14, ε1 = 3.385e-14, ε2 = 8.487e-15, ε3 = 4.159e-14

by Algorithms 1 and 2. In this case, the error bounds η(3) were

η
(3)
1 = δ = 6.359e-14, η

(3)
2 = δ = 6.359e-14, η

(3)
3 = ε3 = 4.159e-14

because neither (29) nor (30) holds for λ̃1 and λ̃2. In this connection, the error
bounds η(1) and η(2) were

η
(1)
1 = 6.837e-14, η

(1)
2 = 6.837e-14, η

(1)
3 = 1.536e-13

and
η
(2)
1 = 1.789e-13, η

(2)
2 = 1.789e-13, η

(2)
3 = 4.266e-13.

This result shows that Algorithm 3 supplies a smaller error bound for λ̃3 than δ
in this example. We also confirm that Algorithms 1 and 3 supply smaller error
bounds for all λ̃i than those by the algorithms proposed in [6] and [5].

Next, let A be a real symmetric n × n matrix whose entries are pseudo-
random numbers uniformly distributed in [−1, 1]. Table 2 displays max ηi, min ηi

Table 2. Comparison of the each algorithm for various A ∈ Rn×n

n max η
(1)
i min η

(1)
i max η

(2)
i min η

(2)
i max η

(3)
i min η

(3)
i δ

100 1.593e-11 1.546e-12 9.810e-11 6.697e-12 1.477e-12 2.800e-14 6.123e-12
250 1.359e-10 9.821e-12 1.322e-09 5.031e-11 7.484e-12 1.100e-13 4.588e-11
500 7.007e-10 4.489e-11 9.953e-09 2.482e-10 1.472e-11 2.659e-13 1.436e-10
1000 3.683e-09 2.843e-10 7.707e-08 1.324e-09 6.017e-11 8.529e-13 8.266e-10
1500 9.857e-09 6.575e-10 2.553e-07 3.378e-09 1.587e-10 1.344e-12 2.621e-09
2000 2.926e-08 1.331e-09 6.094e-07 6.761e-09 4.978e-10 2.254e-12 6.517e-09

n t1 t2 t3 tδ teig tvec

100 0.016 0.015 0.016 0.016 0.006 0.010
250 0.125 0.094 0.094 0.094 0.031 0.125
500 0.813 0.437 0.531 0.484 0.203 0.969
1000 5.609 2.500 3.187 3.062 1.688 6.921
1500 17.47 6.984 9.781 9.469 5.281 22.70
2000 40.61 15.41 22.19 21.66 12.27 53.64
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for 1 ≤ i ≤ n, δ and t defined in Table 1. In addition, teig and tvec are also
displayed. Here, (29) holds in all of examples within Table 2. By Table 2, it
can be seen that Algorithm 3 supplies smaller error bounds than those by the
algorithms proposed in [6] and [5]. Since (29) held in all of examples within Table
2, it held that max η(3)

i ≤ δ. This result identifies Theorem 3. It can also be seen
that Algorithm 3 was faster than the algorithm proposed in [6]. This result
identifies the fact that the computational cost of Algorithm 3 is 5n3 flops while
the computational cost of the algorithm proposed in [6] is 8n3 flops. Moreover,
Algorithm 3 is a little slower than the algorithm proposed in [5]. This results
from the fact that the computational cost of the algorithm proposed in [5] is 3n3

flops. Additionally the speed of Algorithm 3 was approximately equal to that of
Algorithm 1. This result identifies the consideration presented in Section 3.

Table 3. Comparison of the each algorithm for various A ∈ Rn×n whose eigenvalues

are partially clustered

n max η
(1)
i min η

(1)
i max η

(2)
i min η

(2)
i max η

(3)
i min η

(3)
i δ

100 7.297e-14 2.454e-14 2.265e-12 7.437e-13 5.703e-15 1.651e-15 4.131e-14
250 2.497e-13 8.495e-14 1.404e-11 4.982e-12 1.242e-14 4.298e-15 1.518e-13
500 6.118e-13 2.039e-13 5.577e-11 1.910e-11 2.377e-14 8.446e-15 4.211e-13
1000 1.506e-12 4.721e-13 2.201e-10 7.494e-11 4.654e-14 1.676e-14 1.150e-12
1500 2.743e-12 9.052e-13 5.113e-10 1.860e-10 2.161e-12 2.714e-14 2.161e-12
2000 3.907e-12 1.173e-12 8.662e-10 2.909e-10 3.144e-12 3.190e-14 3.144e-12

n m t1 t2 t3 tδ teig tvec

100 3 0.016 0.015 0.016 0.015 0.006 0.010
250 4 0.125 0.094 0.094 0.093 0.015 0.110
500 4 0.812 0.453 0.547 0.500 0.204 0.749
1000 5 5.468 2.500 3.234 3.078 1.672 5.063
1500 5 17.36 7.031 9.829 9.485 5.282 18.23
2000 5 40.48 15.41 22.42 21.75 12.22 40.08

At last, let A be a real symmetric n×n matrix whose eigenvalues are partially
clustered at regular interval 1e-13. Table 3 shows similar results to Table 2. Here,
m in Table 3 is the number of Λi in Step 3 within Algorithm 3. When n = 100,
(29) held. When n = 250, 500 and 1000, (29) did not hold and (30) held. When
n = 1500 and 2000, neither (29) nor (30) held. We are able to confirm that
max η(3)

i = δ held for n = 1500 and 2000 because neither (29) nor (30) held. The
other tendencies about the error bounds and the computing time were similar
to Table 2.

In conclusion, it turns out that we can efficiently obtain tighter error bounds
of respective eigenvalues by the proposed algorithm (Algorithm 3) with almost
the same computing time as that of Rump’s algorithm.
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Abstract. We study the problem of bounding a polynomial which is
absolutely irreducible, away from polynomials which are not absolutely
irreducible. These separation bounds are useful for testing whether an
empirical polynomial is absolutely irreducible or not, for the given toler-
ance or error bound of its coefficients. In the former paper, we studied
some improvements on Kaltofen and May’s method which finds appli-
cable separation bounds using an absolute irreducibility criterion due
to Ruppert. In this paper, we study the similar improvements on the
method using the criterion due to Gao and Rodrigues for sparse poly-
nomials satisfying Newton polytope conditions, by which we are able to
find more accurate separation bounds, for such bivariate polynomials.
We also discuss a concept of separation bound continuations for both
dense and sparse polynomials.

1 Introduction

We consider numerical polynomials with certain tolerances, including empirical
polynomials with error bounds on its coefficients, which are useful for applied
computations of polynomials. We have to use completely different algorithms
from the conventional algorithms since we have to take care of their errors on
coefficients and have to guarantee the results within the given tolerances.

In this paper and the former paper [1], we focus on testing absolute irre-
ducibilities of such polynomials, hence we consider the following problem.

Problem 1. For the given polynomial f ∈ C[x, y] which is absolutely irreducible,
compute the largest value B(f) ∈ IR>0 such that all f̃ ∈ C[x, y] with ‖f − f̃‖2<
B(f) ( and deg(f̃) ≤ deg(f) ) must remain absolutely irreducible. $

This problem is studied by Kaltofen [2], however its separation bound is too
small. The first applicable bound is given by the author [3], using an absolute
irreducibility criterion due to Sasaki [4], and slightly improved by the author [5].
In ISSAC’03, Kaltofen and May [6] studied an efficient method using an absolute
irreducibility criterion due to Ruppert [7], and a similar criterion due to Gao and
Rodrigues [8] for sparse polynomials. The former paper [1] gave some improve-
ments on Kaltofen and May’s method due to Ruppert. Similar improvements on
1 This research is partly helped by Grants-in-Aid of MEXT, JAPAN, #16700016.

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 318–329, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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their method due to Gao and Rodrigues can be available partly. This is one of
main topics in this paper. Hence, the problem becomes the following.

Problem 2. For the given polynomial f ∈ C[x, y] which is absolutely irreducible,
compute the largest value B̄(f) ∈ IR>0 such that all f̃ ∈ C[x, y] satisfying
P(f̃) ⊆ P(f) with ‖f − f̃ ‖2< B̄(f) must remain absolutely irreducible, where
P(p) means the Newton polytope of a polynomial p. $

This is better for the case where we limit the changeable terms to being in the
polytope. We note that the Newton polytope of a polynomial p =

∑
i,j ai,jx

iyj

is defined as the convex hull in the Euclidean plane IR2 of the exponent vectors
(i, j) of all the nonzero terms of p.

Example 1. Let f(x, y) be the following irreducible polynomial in x and y.

f(x, y) = (x2 + yx+ 2y − 1)(x3 + y2x− y + 7) + 0.2x.

We have B(f)/‖f ‖2= 3.867 × 10−5, by Kaltofen and May’s algorithm. Hence,
any polynomial which is included in ε-neighborhood of f(x, y) in 2-norm, is still
absolutely irreducible, where ε = 3.867 × 10−5. This bound can be optimized
to 4.247 × 10−5 by the improved method [1]. We note that this polynomial
can be factored approximately with the backward errors 7.531 × 10−4 [3] and
1.025×10−3 [9]. For the problem 2, we have B̄(f)/‖f‖2= 1.349×10−4. We note
that we have B̄(f) ≤ B(f) for any polynomial f , since the all changeable terms
in the sense of Problem 2 are included in those terms of Problem 1. $

The contribution of this paper is the following two points; 1) refining the
Kaltofen and May’s algorithm due to Gao and Rodrigues and finding more ac-
curate separation bounds, 2) a discussion about a concept of separation bound
continuations for both dense and sparse polynomials.

2 Original Method

Kaltofen and May’s method mainly uses the following absolute irreducibility
criterion due to Ruppert [7]. For the given polynomial, consider the following
differential equation w.r.t. unknown polynomials g and h.

f
∂g

∂y
− g ∂f

∂y
+ h

∂f

∂x
− f ∂h

∂x
= 0, g, h ∈ C[x, y], (1)

degx g ≤ degx f − 1, degy g ≤ degy f, degx h ≤ degx f, degy h ≤ degy f − 2.

The criterion is that f(x, y) is absolutely irreducible if and only if this differential
equation (1) does not have any non-trivial solutions.

Their method uses matrix representations of absolute irreducibility criteria,
and check whether those matrices are of certain ranks or not. They use the fol-
lowing matrix, for the above criterion, considering the above differential equation
w.r.t. g and h as a linear system w.r.t. unknown coefficients of g and h.
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Fig. 1. Ruppert matrix R(f)

Let R(f) be the coefficient matrix of the linear system as in the figure 1,
where the block matrices Gi and Hi are the matrices of sizes 2m× (m+ 1) and
2m× (m− 1), respectively, where the given polynomial be

f =
n∑

i=0

m∑
j=0

ci,jx
iyj , ci,j ∈ C.

We call R(f) the Ruppert matrix. The size of Ruppert matrix R(f) is (4nm)×
(2nm+m− 1) where n = degx(f) and m = degy(f).

The original expressions of separation bounds in Kaltofen and May’s algo-
rithm [6] are the following Bα(f) and Bβ(f). We note that Bα(f) is a lower
bound of Bβ(f) by bounding the largest coefficient of ‖R(ϕ)‖2F in Bβ(f), where
‖A‖F denotes the Frobenius norm (the square root of the sum of squares of all
the elements) of matrix A.

Bα(f) =
σ(R(f))

max{n,m}√2nm− n, Bβ(f) =
σ(R(f))√

(the largest coef. of ‖R(ϕ)‖2F )
,

where R(ϕ) denotes R(f) calculated by treating ci,j as variables and σ(A) de-
notes the (2nm+m− 1)-th largest singular value of matrix A.
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3 Previous Work

In the former article [1], we decomposed R(f) to integer matrices and complex
coefficients parts, and gave some improvements using those matrices.

We refer the former results, briefly. The Ruppert matrix can be written as

R(f) =
n∑

i=0

m∑
j=0

Ri,jci,j , Ri,j ∈ ZZ(4nm)×(2nm+m−1), (2)

where each elements of Ri,j is an integer coefficient generated by differentiating
polynomials, and Ri,j has the same shape as R(f) but whose elements are differ-
ent. Then, the expressions of separation bounds can be refined as the following
expression, by Lemma 1 in the former paper.

B(f) =
√

6 σ(R(f))/
√
n(m(m+ 1)(2m+ 1) + (m− 1)(n+ 1)(2n+ 1)). (3)

3.1 Improvement Strategy

We refer the strategy of the former paper [1], improving the original method of
Kaltofen and May due to the Ruppert.

The method uses the absolute irreducibility criteria as a necessary condition
which the given polynomial is absolutely irreducible. In the Kaltofen and May’s
algorithm, σ(R(f)) is considered as a threshold whether the differential equation
(or the linear system) (1) has non-trivial solutions or not. In this point of view,
to determine that the differential equation does not have non-trivial solutions,
corresponding to that the given polynomial is absolutely irreducible, we do not
need to use all the constraint equations w.r.t. unknown coefficients of polynomi-
als g and h, since the corresponding linear system is over-determined. We can
lessen the number of constraint equations appeared in the Ruppert matrix R(f),
without decreasing its matrix rank.

We note that removing rows (constraint equations) may decrease the numer-
ator of the expression (3) and may decrease the denominator depending on the
elements of Ri,j . Hence, depending on variations of the numerator and denomi-
nator, R(f) changes and it can be larger if we choose suitable rows.

As in the former paper, we define the following “drop” notations for removing
rows from a matrix, which are corresponding to removing constraint equations.

dropi(A) = (a1, . . . ,ai−1,0,ai+1, . . . ,ak1)
t, A = (a1, . . . ,ak1)

t ∈ Ck1×k2 ,

R(k)(f) = dropdk
(· · · (dropd1

(R(f)))), R
(k)
i,j = dropdk

(· · · (dropd1
(Ri,j))),

where d1, . . . , dk are indices of rows removed from the given matrix.
Improving the original method now becomes the following problem.

Problem 3. Find an integer k, row indices d1, . . ., dk to be removed, and the
following separation bound B(k)(f) > B(f).

B(k)(f) = σ(R(k)(f))/max
i,j
‖R(k)

i,j ‖F . $
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Lemma 1 (Lemma 2 in [1]). We have to remove at least 2 rows (k = 2)
from the Ruppert matrix for finding more accurate separation bounds satisfying
B(k)(f) > B(f), For k = 2, rows to be removed from the matrix, must satisfy{

d1 = 2mdx + dy (0 ≤ dx ≤ n− 1 ∧ dy = m+ 1),
d2 = 2mdx + dy (n ≤ dx ≤ 2n− 1 ∧ dy = m+ 1)

or
{
d1 = 2mdx + dy (dx = n ∧ 2 ≤ dy ≤ m),
d2 = 2mdx + dy (dx = n ∧ m+ 2 ≤ dy ≤ 2m). $

By Lemma 1, the simple algorithm was introduced, which give us about 1.6%
more accurate separation bounds, according to the experimental result in the
former paper. We note that “removing multiple rows” versions of the algorithm
were also introduced in the paper.

4 Newton Polytope Version

Kaltofen and May also argued briefly the method using the following criterion
due to Gao and Rodrigues [8] which is effective for factoring sparse polynomi-
als. For the given polynomial, consider the following differential equation w.r.t.
unknown polynomials g and h in C[x, y].

f
∂g

∂y
− g ∂f

∂y
+ h

∂f

∂x
− f ∂h

∂x
= 0, P(xg) ⊆ P(f) and P(yh) ⊆ P(f). (4)

The criterion that the given polynomial is absolutely irreducible is a little bit
different from the Ruppert criterion. Let R(f) be the coefficient matrix of the
linear system of the above differential equation (4) w.r.t. unknown coefficients
of polynomials g and h. We call R(f) the sparse Ruppert matrix. Polynomials g
and h do not have the same forms as in the differential equation (1) by Ruppert,
hence, for sparse polynomials, the size of sparse Ruppert matrix R(f) is less
than the size of Ruppert matrix R(f). The figure of the sparse Ruppert matrix
is depending on the Newton polytope of the given polynomial and we can not
show its general form. For easiness of discussions, we define the skeleton of the
sparse Ruppert matrix R̄(f), with full terms of g and h, as in the figure 1,
where the block matrices Gi and Hi are the matrices of sizes 2m× (m+ 1) and
2m×m, respectively, as in the figure 2. The size of the skeleton matrix R(f) is
(4nm)× (2nm+ n+m). We note that 1) the only difference between R(f) and
R̄(f) is on the block matrix Hi, 2) an actual sparse Ruppert matrix R(f) can be
generated by replacing all elements with zeros, on some columns corresponding
to unnecessary terms of polynomials g and h by the condition due to the Newton
polytope of f(x, y), or by removing such columns.

The criterion is that f(x, y) is absolutely irreducible if and only if the sparse
Ruppert matrixR(f) has the rank ρ−1, where ρ denotes the number of unknown
coefficients of polynomials g and h. We note that Problem 2 is corresponding to
this criterion, and contributions of this paper are mainly for this problem. We
have the following separation bound B̄β(f), by the same way of the paper [6].

B̄β(f) = σ̄(R(f))/
√

(the largest coefficient of ‖R(ϕ)‖2F ),
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Fig. 2. Block matrices of skeleton matrix R̄(f)

where σ̄(A) denotes the (ρ− 1)-th largest singular value of matrix A. In the rest
of this paper, we discuss the similar refining of B̄β(f) as in the former paper [1].

4.1 Integer Matrices

We decomposeR(f) and R̄(f) to integer matrices and complex coefficients parts,
as in the previous section. These matrices can be written as

R(f) =
n∑

i=0

m∑
j=0

Ri,jci,j , R̄(f) =
n∑

i=0

m∑
j=0

R̄i,jci,j ,

where each elements of Ri,j and R̄i,j is an integer coefficient generated by dif-
ferentiating polynomials, and Ri,j and R̄i,j have the same shape of R(f) and
R̄(f), respectively, but all the elements are defined as in the figure 3 where δi,j
denotes Kronecker delta. These integer matrices have the following properties
similar to those of the integer matrices of the Ruppert matrix.

Lemma 2. We have

max
i,j
‖R̄i,j‖2F = nm((2n+1)(n+1)+(2m+1)(m+1))/6. $

Proof. The same way as in Lemma 1 in [1].

Corollary 1. We have the following equality.

max
i,j
‖R̄i,j‖F =‖R̄n,m‖F =‖R̄n,0‖F =‖R̄0,m‖F =‖R̄0,0‖F . $
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Fig. 3. Integer matrix Ri,j

Remark 1. Using the above lemma and corollary, we can rewrite the expression
B̄β(f) as in the former paper, however, it is useless since an actual sparse Rup-
pert matrix which does not have some columns corresponding to unnecessary
terms of polynomials g and h by the Newton polytope of f(x, y), and separation
bounds based on R̄(f) may be larger than those of an actual sparse Ruppert
matrix R(f). Hence, we have to use the expression B̄β(f) still. This is different
from the Ruppert matrix case. $

The following lemma helps us to calculate the largest coefficient of ‖R(ϕ)‖2F
which is appeared in the denominator of B̄β(f).

Lemma 3. We have the following equality.

max
i,j
‖Ri,j‖F = max{‖Rn,m‖F , ‖Rn,0‖F , ‖R0,m‖F , ‖R0,0‖F }. $

Proof. Since we can construct Ri,j by removing some columns from R̄i,j (or
replacing them with zeros), we only have to prove that Corollary 1 is still valid
after removing columns. We focus only on the index j and consider the left hand
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side of R̄i,j formed by block matrices Gi and the the right hand side of R̄i,j

formed by block matrices Hi separately.
For the right hand side, each sum of squares of elements corresponding to an

index j on each column has the same Frobenius norm. Hence, removing columns
on the right hand side does not affect the equality of Corollary 1. Therefore, we
only have to show that: the largest coefficients of ci,m and ci,0 of the Frobenius
norm of Gi is the largest coefficient among ci,j after removing.

Let Δk,0 and Δk,m be differences between the coefficients of ci,0 and ci,m and
ci,m−κ of ‖Gi‖2F on the k + 1-th column, respectively. We have

Δk,0 = (m− k)2 − (m− k −m+ κ)2 = (2k − κ−m)(κ−m),
Δk,m = (−k)2 − (m− k −m+ κ)2 = (2k − κ)κ.

Let I be the set of column indices of the rest columns after removing. We suppose
that the lemma is not valid and ci,m−κ has the largest coefficient. We have∑

k∈I
Δk,0 = (κ−m)

∑
k∈I

(2k − κ−m) < 0,
∑
k∈I

Δk,m = κ
∑
k∈I

(2k − κ) < 0.

Since κ−m is not positive and κ is not negative, we have∑
k∈I

(2k − κ−m) =
∑
k∈I

(2k − κ)−#Im > 0,
∑
k∈I

(2k − κ) < 0,

where #I denotes the number of elements of the set I. This leads a contradiction.
Therefore the lemma is valid. We note that we can prove for the index i by the
similar way even if it not necessary for the proof.

By Lemma 3, we have the following separation bound.

B̄(f) = σ̄(R(f))/max{‖Rn,m‖F , ‖Rn,0‖F , ‖R0,m‖F , ‖R0,0‖F }.

4.2 Improvement Strategy

For the sparse Ruppert matrix, the improvement strategy of the former paper
is still applicable. Hence, the aim of this subsection is the following problem.

Problem 4. Find an integer k, indices d1, . . ., dk to be removed, and the following
separation bound B̄(k)(f) > B̄(f).

B̄(k)(f) = σ̄(R(k)(f))/max
i,j
‖R(k)

i,j ‖F . $

- Removing Two Rows - For the sparse Ruppert matrix, we still consider
“removing two rows from the matrix” even though the important corollary in
[1] is not valid and we have only Lemma 3. Because even for such cases, we may
have to remove rows providing that ‖Rn,m‖F , ‖Rn,0‖F , ‖R0,m‖F and ‖R0,0‖F
become smaller and B̄(k)(f) > B̄(f), depending on R(f). Therefore, we follow
the same discussion. We consider variations of ‖R̄i,j‖F , provided by removing a
(2mdx + dy)-th row from R̄(f), satisfying 0 ≤ dx ≤ 2n− 1 and 1 ≤ dy ≤ 2m.
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Let ΔG be the square of Frobenius norm of variations of the left hand side
part of R̄i,j , corresponding to Gi and ΔH be that of the right hand side part of
R̄i,j , corresponding to Hi. We have

‖drop2mdx+dy
(R̄i,j)‖2F =‖R̄i,j‖2F −ΔG −ΔH .

By the same way in the former paper, we have the following relations that are
slightly different from those of the Ruppert matrix.

ΔG =

⎧⎨⎩ 0 (i < n− dx) ∨ (2n− dx − 1 < i) ∨
(j < m− dy + 1) ∨ (2m+ 1− dy < j)

(2m+ 1− dy − 2j)2 otherwise
(5)

ΔH =

⎧⎨⎩
0 (i < n− dx) ∨ (2n− dx < i) ∨

(j < m− dy + 1) ∨ (2m− dy < j)
(2i+ dx − 2n)2 otherwise

(6)

Lemma 4. We may have to remove at least 2 rows (k = 2) from the sparse
Ruppert matrix for finding more accurate separation bound satisfying B̄(k)(f) >
B̄(f). For k = 2, rows to be removed from the matrix, should satisfy{

d1 = 2mdx + dy (0 ≤ dx ≤ n− 1 ∧ dy = m+ 1),
d2 = 2mdx + dy (n ≤ dx ≤ 2n− 1 ∧ dy = m+ 1)

or
{
d1 = 2mdx + dy (dx = n ∧ 1 ≤ dy ≤ m),
d2 = 2mdx + dy (dx = n ∧ m+ 1 ≤ dy ≤ 2m). $

Proof. The same way as in Lemma 2 in [1].

We note that removing only one row has possibility to satisfy B̄(1)(f) > B̄(f),
since we have only Lemma 3 for the sparse Ruppert matrix. However, the above
lemma guarantees that removing such two rows must decrease maxi,j ‖Ri,j ‖F
= max{‖Rn,m‖F , ‖Rn,0‖F , ‖R0,m‖F , ‖R0,0‖F }.

By Lemma 4, we have the following simple algorithm which give us about
1.3% more accurate separation bounds, according to our experimental result.

Algorithm 1. (Removing Two Rows Sparse Version)
Input: a bivariate polynomial f(x, y), Output: a separation bound B̄(f)

Step 1 Construct sparse Ruppert matrix R(f).
Step 2 For all index pairs d1 and d2 in Lemma 4, compute separation bounds,

and let the best separation bound be B̄(2)(f).
Step 3 Output the separation bound B̄(2)(f) and finish the algorithm. $

- Removing Multiple Rows - For the Ruppert matrix, in the former paper,
by the lemma which guarantees Lemma 3 after removing rows, the algorithms
removing multiple rows were introduced. For the sparse Ruppert matrix, such
a lemma does not exist since an actual sparse Ruppert matrix does not have a
lots of columns and removing rows easily breaks Lemma 3. However, we can use
the similar algorithms though they are not effective as before.
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Algorithm 2. (Early Termination Algorithm Sparse Version)
Input: a bivariate polynomial f(x, y), Output: a separation bound B̄(f)
Step 1 Construct sparse Ruppert matrix R(f) and put k = 1.
Step 2 Compute contributing ratios of each rows of R(f).
Step 3 Construct all the index pairs d2k−1 and d2k as in Lemma 4.
Step 4 For each index pairs constructed in Step 3, compute separation bounds

with d1, d2, . . . , d2k, by ascending order of sums of contributing ratios, until
an index pair for which a separation bound does not become better than that
of a previous group twice, and let the best separation bound be B̄(2k)(f).

Step 5 If B̄(2k−2)(f) ≤ B̄(2k)(f) then put k = k + 1 and goto Step 3.
Step 6 Output the separation bound B̄(2k−2)(f) and finish the algorithm. $

We use Euclidean norms of corresponding row vectors of the Moore-Penrose type
pseudo inverse of the transpose of R(f) as the contributing ratios (see [1]).
Example 2. For the polynomial in the example 1, the algorithms 1 and 2 output
B̄(f) = 1.420× 10−4 and B̄(f) = 1.427× 10−4, respectively, which are slightly
better than the results in the beginning example. $

5 Separation Bound Continuation

In this section, we consider another way to enlarge separation bounds. The key
idea is that the separation bound defines a kind of ε-neighborhood of the given
polynomial f(x, y). From this point of view, we consider to continuate one neigh-
borhood to others like analytic continuations.

For the given f(x, y) and 0 < b ∈ IR, let Ab(f) be the set of all f̃ ∈ C[x, y]
with ‖f−f̃‖2< b and deg(f̃) ≤ deg(f). HenceAB(f)(f) denotes a ε-neighborhood
of the given f(x, y), in which all polynomials must remain absolutely irreducible.

Definition 1. Let B0(f) = B(f) and Bi(f) ∈ IR (i = 1, . . .) be the maximum
value satisfying

ABi(f)(f) ⊆
⋃

g∈ABi−1(f)(f)

AB(g)(g).

We call Bi(f) (i > 0) and B∞(f) a continuated separation bound and the max-
imum continuated separation bound, of f(x, y), respectively. $

One may think that “Does the given polynomial have an approximate fac-
torization with tolerance B∞(f)?”. The author thinks that the answer is “No”
since separation bounds by the known methods are far from backward tolerances
with which the given polynomials have approximate factorizations. However, this
continuation helps us to enlarge separation bounds as follows.

For the problem 1, let ε be a arbitrary positive real number and Δ, b ∈ IR be

Δ = B(f)/
√

(n+ 1)(m+ 1)− ε, b = min
0≤i≤n,0≤j≤m,k=−1,1

B(f + kΔxiyj).

For the problem 2, let ε be a arbitrary positive real number and Δ̄, b̄ ∈ IR be

Δ̄ = B̄(f)/
√

#M− ε, b̄ = min
xiyj∈M,k=−1,1

B̄(f + kΔ̄xiyj),

whereM denotes the set of all the monomials xiyj satisfying P(xiyj) ⊆ P(f).
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Lemma 5.
√
b2 +Δ2 and

√
b̄2 + Δ̄2 are also separation bounds B(f) and B̄(f)

of f(x, y), respectively, and they may be better than the original bounds. $

Proof. We give the following proof only for
√
b2 +Δ2 since that for

√
b̄2 + Δ̄2

is proved by the same way. Let a polynomial f̃ ∈ A√
b2+Δ2(f) be

f̃ =
∑
i,j

(ci,j + c̃i,j)xiyj.

By the definition of B(f), we have that f̃ is absolutely irreducible if |c̃i,j | ≤ Δ

for all i and j. Hence, we suppose that one of variations of coefficients of f̃ from
f is larger than Δ and such the term be xi′yj′ . We rewrite f̃ be

f̃ =
∑
i,j

(ci,j + ći,j)xiyj + kΔxi′yj′ , (k = −1 or 1).

We have ‖ f − f̃ ‖22=
∑

i,j |ći,j |2 + 2|ći′,j′ |Δ + Δ2 < b2 + Δ2 which means∑
i,j |ći,j |2 < b2. Therefore, we have f̃ ∈ Ab(f + kΔxi′yj′) meaning f̃ remains

absolutely irreducible, and the lemma is valid.

Using the lemma, we define partial continuated separation bounds of f(x, y),
BC(f) = max{B(f),

√
b2 +Δ2} and B̄C(f) = max{B̄(f),

√
b̄2 + Δ̄2}.

Example 3. For the polynomial in the example 1, the algorithm using the above
lemma (let it be Algorithm C) outputs BC(f) = 4.068 × 10−5 and B̄C(f) =
1.467× 10−4, which are slightly better though it is very time-consuming. $

6 Numerical Experiment and Remarks

We have generated 100 bivariate sparse polynomials of degrees 6 and 5 w.r.t. x
and y, respectively, with coefficients randomly chosen in the real interval [−1, 1],
where each sample is irreducible and about 25% of coefficients are non-zero.
With those polynomials, we have tested the new algorithm 1, 2 and C, using our
preliminary implementations. We note that the results of our experiments are
small so we have to take care of precisions. Basically, we have tested it using the
same way in the paper [3] (bounding errors of singular values). The upper part
of the table 1 shows the results. According to the results, our improvements give
us more accurate separation bounds.

Moreover, we have generated 100 bivariate reducible polynomials. Each poly-
nomial is a product of two dense polynomials of total-degrees 5 and 4, respec-
tively, with coefficients randomly chosen in the integer interval [−5, 5]. Using
those polynomials, we have generated 100 approximately reducible polynomials.
Each polynomial is a sum of a reducible polynomial and a polynomial which
has the same degree as the reducible polynomial, about 25% as many terms and
coefficients randomly chosen in the real interval [−10−4, 10−4].

With those polynomials, we have tested the new algorithms except for the
algorithm C . The lower part of the table 1 shows the results. According to the
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Table 1. Experimental results

Algorithm B(f)/ ‖f‖ or B̄(f)/ ‖f‖ Ratio to KM03’s

Irr. B(f) KM03 1.412 × 10−2 –

Algorithm 2 in [1] 1.463 × 10−2 1.036

Algorithm C 1.473 × 10−2 1.043

B̄(f) KM03 (Polytope) 1.639 × 10−2 –

Algorithm 1 1.661 × 10−2 1.013

Algorithm 2 1.680 × 10−2 1.024

Algorithm C 1.703 × 10−2 1.038

Red. B(f) KM03 1.074 × 10−6 –

Algorithm 2 in [1] 1.083 × 10−6 1.008

B̄(f) KM03 (Polytope) 2.145 × 10−6 –

Algorithm 1 2.177 × 10−6 1.015

Algorithm 2 2.204 × 10−6 1.027

results, our improvements give us more accurate separation bounds. Although we
could not use the algorithm C for all the generated polynomials due to its time-
complexity, it gave us better results. We note that an average of backward errors
of those approximately reducible polynomials by the method [9] is 2.829× 10−4.

The methods revised by the former and this, are more time-consuming than
the originals though their separation bounds are better. The reason is that we
have to compute singular values after deleting unnecessary rows. Furthermore,
the author wishes to thank the anonymous referees for their suggestions.
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Abstract. We present a memory management subsystem for the com-
puter algebra library SACLIB that removes the potential for memory
leaks or double deletes in applications using the system. The system en-
capsulates the management of arrays that are allocated on the heap or
on the system stack. The system makes arrays responsible for their own
memory management, and enables the compiler to prevent other parts
of SACLIB from managing array memory. To prove that our memory
module and all applications using it are leak free and double delete free
we introduce a new iterator concept and implement a model of that
concept using generic programming techniques such as template meta-
programming. Our innovations reduce the amount of code responsible
for array memory management from 10, 000 lines of code to 2, 000 lines
of code. Using hardware performance counters we show optimizing com-
pilers are capable of avoiding any runtime overhead.

1 Introduction

Memory management is a critical component of any computer algebra library.
Correct memory management is required to ensure the correctness of subrou-
tines; efficient memory management facilitates improved execution speed and
the processing of larger data sets.

The SACLIB [1,2] library of computer algebra programs is used as the basis of
the quantifier elimination systems QEPCAD [3,4,5] and QEPCAD B [6,7]. How-
ever, SACLIB contains a number of memory management defects, all of which
occur outside of SACLIB’s garbage collector. Memory leaks involving dynami-
cally allocated arrays have caused problems in certain large computations [8].
While runtime-tools such as Valgrind [9], Electric Fence [10], and Purify [11]
can be used to detect some memory defects, the tools cannot guarantee their
absence. This is unfortunate because dynamic arrays are used extensively in a
weakly typed computer algebra system such as SACLIB.

We port SACLIB from C to C++ and introduce a memory management
subsystem that removes the potential for any memory leaks or double deletes
in applications using the system. The system encapsulates the management of
arrays that are allocated on the heap or on the system stack. The system makes
arrays responsible for their own memory management, and enables the compiler
to prevent other parts of SACLIB from managing array memory. To prove that
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our memory module and all applications using it are leak free and double delete
free we introduce a new iterator concept (see Section 3.3) and implement a model
of that concept using generic programming techniques such as template meta-
programming. Our innovations reduce the amount of code responsible for array
memory management from 10, 000 lines of code to 2, 000 lines of code.

Our memory management system consists of an iterator to control mem-
ory usage and of array classes to handle memory allocation. Using template
meta-programming [12,13,14] we implement a model of our iterator concept that
handles iterators of arbitrary dimension. Our meta-programming techniques are
similar to those used by Musser and Schupp in the SuchThat [15,16,17] computer
algebra library and in library-assisted code optimizations [18,19]; Schreiner [20]
details three other computer algebra libraries that use generic programming.
However, our implementation is the first to provide iterators capable of protect-
ing memory of arbitrary dimension.

The array component of our memory management system (Sections 3.1 and
3.2) is similar to the std::vector class found in the Standard Template Li-
brary [21,22,23], but our implementation is faster than the std::vector class
of the implementations shipped with our compilers, see Table 1.

In addition, our memory management subsystem offers numerous software
maintenance advantages. It allows some runtime bounds checking to be per-
formed during the development process without the need for external tools. The
system provides a well-defined architecture for future extensions of the non-
garbage collected memory subsystem. By embedding memory semantics directly
in the C++ type system, the assumptions functions make about memory man-
agement are clearly announced and enforced by their prototypes.

To attain these benefits, it was necessary to port SACLIB from C to C++.
We implemented code transformation scripts to convert most of the code from
K&R C [24] to ANSI C++ [21,22]; the remainder of the code was related to
floating point exception handling and was converted by hand.

In Section 2 we detail the limitations of the design of SACLIB that resulted in
a strong potential for memory leaks. In Section 3 we present our memory man-
agement subsystem, outline the general implementation techniques employed,
and give examples of its use. In Section 3.4 we explain why our memory man-
agement subsystem and the applications using it are leak free and double delete
free. In Section 4 we report the results of performance experiments on our mem-
ory management subsystem. Through the use of hardware performance counters
and the PAPI library [25] we are able to report timings with a resolution under
50 nanoseconds. In Section 5 we explain how we ported SACLIB from C to C++.
We conclude in Section 6 with a discussion of the effectiveness of our method
and of the techniques that make our implementation possible.

2 Existing SACLIB Practice

2.1 The Source-Sink Idiom and Its Limitations

SACLIB uses the source-sink idiom [26] for all memory management outside
of its garbage collector and some performance critical sections. In the source-
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sink idiom a source function is used to request a handle to a system managed
resource. The handle allows clients of the source function to access the resource
without any knowledge of how it was acquired by the source function. When
the handle provided by the source function is no longer needed, it is passed
to a sink function which releases the resource referred to by the handle. A
resource leak occurs when all handles to a resource have been lost, and, as a
result, the resource cannot be released by a sink function. Examples of source-
sink pairs are the library functions malloc/free and SACLIB functions such as
GETARRAY/FREEARRAY and GETMATRIX/FREEMATRIX.

The source-sink idiom gives rise to two types of programming mistakes, and
it makes it hard to change the implementation of the source-sink pair.

Failure to Release Resources. The source-sink idiom cannot guarantee that
all resources acquired from a source function will be released by a sink function.
Indeed, memory leaks in SACLIB subroutines prevented an experiment involv-
ing a large number of polynomials from successfully running to completion [8];
Figure 1 shows an example of a SACLIB routine with a memory leak.

Step3: /* Compute a list of the order 2 minors. */
C = GETARRAY(2);
C[0] = 0;
C[1] = 1;
L = NIL;
while (C[0] >= 0) {

i = C[0];
j = C[1];
B1 = IPPROD(r,A[n-2][i],A[n-1][j]);
B2 = IPPROD(r,A[n-2][j],A[n-1][i]);
B = IPDIF(r,B1,B2);
c = CSFAM(2,C);
L = COMP2(B,c,L);
LEXNEXTC(n,2,C,&t); }

L = INV(L);
/* FREEARRAY(C) missing. */

Fig. 1. Incorrect use of the source-sink idiom in the SACLIB routine MAIPDME results

in a memory leak

Uninitialized Delete and Double Delete. The source-sink idiom cannot
guarantee that the source and sink functions are called for valid handles. When
the same handle is passed to a sink function more than once it is called double
deletion. When a handle not initialized by a source function is passed to a sink
function this is called uninitialized deletion. In SACLIB, uninitialized deletions
produce undefined runtime behavior.

Source-Sink Functions Difficult to Maintain. SACLIB uses pointers for all
of its handles. Because the compiler has no control over what functions are called
on these pointers, clients of the source-sink pairs must check the implementation
of the source-sink pairs to determine what operations may safely be applied to
the handles. Not surprisingly, this poor information hiding has all of the problems
one would expect [27]. In addition to making current development more difficult
by requiring the programmer to be aware of the implementation of the source-
sink pairs, changes to the source-sink pairs can cause other previously working
parts of SACLIB to become defective.



Compiler-Enforced Memory Semantics 333

2.2 Stack-Before-Heap Idiom

For some performance critical sections of SACLIB the stack-before-heap idiom is
used for memory management. The idiom consists of allocating memory on the
stack that is large enough for the majority of inputs that SACLIB is expected
to run on. In the event that the amount of stack memory is sufficient for a given
input, the overhead of both allocating heap memory and heap fragmentation
are avoided. This technique is similar to the small string optimization [28,29],
although SACLIB does not use unions.

The stack-before-heap idiom is more error prone than the source-sink idiom.
It is more complicated and does not lend itself to being encapsulated in functions.
As a result, all uses of the stack-before-heap idiom require the programmer to
manually implement all parts of the idiom. Even when implemented correctly,
this detracts from the readability of the code.

Even when the stack-before-heap idiom is implemented correctly, it is not
always a performance optimization. It is only a performance optimization when
the amount of stack memory is sufficient for most inputs. If inputs frequently
(or even worse, always) require more memory than is allocated on the stack, the
stack-before-heap idiom offers the opportunity for reduced performance. Fur-
thermore, because the stack before heap idiom is manually implemented, each
occurrence must be manually checked to see if the idiom is in fact an optimiza-
tion.

While it is likely that the stack before heap idiom originally was an optimiza-
tion for a meaningful input set, it is unlikely that the use of the idiom will be
rechecked as system maintenance is performed and the program is used with new
input sets. There is no way to automatically detect where all uses of the stack-
before-heap idiom have been used. In even a moderately sized system such as
SACLIB, it becomes infeasible to test each occurrence of the stack-before-heap
idiom as the system evolves.

2.3 Memory Passing and Return Value Conventions

All memory in SACLIB is referred to by pointers. Functions requiring the ability
to be called polymorphically with respect to the value type of a pointer are
implemented using void pointers. Neither pointers or the data they point to are
declared const.

SACLIB currently uses pointers to return values from functions that return
more than one value. By convention, the output parameters of a function are
placed at the end of the argument list and the argument names have a trailing
underscore appended.

Pointers are one of the most powerful, flexible—and error prone—features of
the C and C++ programming language. Because of their flexibility, it is generally
the case that a function taking pointers as its arguments does not require all
of the functionality offered by pointers. This results in function prototypes that
fail to convey as much information about the function as more strongly typed
prototype can. This lack of information results in three types of maintenance
problems.
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1. A function taking raw pointers does not provide any information about its
expectations regarding memory ownership.

2. Pointers intended to be used solely as return values are capable of being used
for pointer arithmetic.

3. Functions may have memory defects added during maintenance, and the
function prototype cannot convey any memory ownership information.

3 Improvements to SACLIB

3.1 Replacing the Source-Sink Idiom with RAII

A well know replacement for the source sink-idiom is the Resource-Acquisition-
Is-Initialization (RAII) idiom [12,30,26,31,32]. This idiom is used extensively
in modern C++ libraries, for example containers in the Standard Template
Library [33], the Loki smart pointer classes [12], and the Boost smart pointer
library [34].

In the RAII idiom, responsibility for resource acquisition is delegated to a
class specifically designed to safely acquire and release resources. The class is
responsible for acquiring resources in its constructor and freeing all resources it
has acquired in its destructor. The C++ standard [21,22] guarantees that an
object will have its destructor called when it goes out of scope.

In SACLIB we replaced the GETARRAY/FREEARRAY source-sink pair
with an array class. To show how the RAII idiom can be implemented we give a
minimal implementation of the array class in Figure 2 (Left). The actual imple-
mentation contains additional features such as the performance enhancements
detailed in Section 3.2, the typedefs and methods required to make the array
model the STL Random Access Container concept, and the ability to resize the
array after the constructor is called. Figure 2 (Right) shows that the use of our
array class automatically removes memory leaks from SACLIB.

template<typename T>
class array{

public:
//ctors acquire memory

array():activeArray (NULL){};
array(size t n):activeArray (new T[n]){};

//dtor releases memory
~array(){ delete[] activeArray ; }

//allow the array class to be used like a built-in array
T& operator[](ptrdiff t index){

return activeArray [index];
};//operator[]
const T& operator[](ptrdiff t index) const {

return activeArray [index];
};//operator[] const

private:
T *activeArray ;

};//array

Step3: /* Compute a list of the order 2 minors. */
array<BDigit> C(2);
C[0] = 0;
C[1] = 1;
L = NIL;
while (C[0] >= 0) {

i = C[0];
j = C[1];
B1 = IPPROD(r,A[n-2][i],A[n-1][j]);
B2 = IPPROD(r,A[n-2][j],A[n-1][i]);
B = IPDIF(r,B1,B2);
c = CSFAM(2,&C[0]);
L = COMP2(B,c,L);
LEXNEXTC(n,2,&C[0],&t); }

L = INV(L);

Fig. 2. Left: The heap array class cannot leak memory. Right: The new version of the

SACLIB routine MAIPDME is leak-free—even without the call to FREEARRAY that

was missing in Figure 1.
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Remark 1. An array2d class is also provided for the new SACLIB. It provides
RAII memory management for two-dimensional arrays and offers an interface
similar to the array class.

3.2 Encapsulation of the Stack-Before-Heap Idiom

The principal drawback to the stack-before-heap idiom is the inability to encap-
sulate the idiom in C functions. In addition to removing the need for the source-
sink idiom, the array class also provides a convenient place to encapsulate the
stack-before-heap idiom. Figure 3 (Left) is an example of an implementation of
the array class that provides an encapsulated version of the stack-before-heap
idiom. Note that the implementation actually used in SACLIB contains addi-
tional features such as the typedefs and methods required to make the array
model the STL Random Access Container concept, and the ability to resize the
array after the constructor is called. Partial specialization is used to ensure there
is no overhead when N is zero. Figure 3 (Right) shows an array used to provide
a safe alternative to the stack-before-heap idiom.

template<typename T, size t N>
class array{

public:
//ctors acquire memory

array():activeArray (stackStorage){};
array(size t n):

activeArray ( n <= N ? stackStorage : new T[n] )
{};

//dtor releases memory if needed
~array(){

if(activeArray != stackStorage) delete[] activeArray ;
}//~array

//allow the array class to be used like a built-in array
T& operator[](ptrdiff t index){

return activeArray [index];
};//operator[]
const T& operator[](ptrdiff t index) const {

return activeArray [index];
};//operator[] const

private:
T *activeArray ;
T stackStorage [N];

};//array

void encapsulated stack before heap example(){
//how much stack memory to use

const size t stack size(50);
//’’compute’’ the size of array

int n;
cout < < ‘‘What size array do you want?’’;
cin > > n;

//acquire resources with a constructor using
//the stack-before-heap idiom

array<int,stack size> a(n);//pass desired
//array size to
//constructor

}//encapsulated stack before heap example

Fig. 3. Left: The stack array class efficiently stores elements on the system stack.

Right: Memory leaks are automatically avoided and the system stack is used for storage

using the stack array class.

The array class has been given an additional template parameter N to specify
the number of elements to be stored on the stack and the private member array
stackStorage in which to store up to N elements of type T. In the event that
a user instantiates an array class requiring less than N elements, the array con-
structor will set the activeArray member to stackStorage and there will be
no need to allocate memory from the heap.

While the removal of memory leaks is the most substantial benefit obtained
of this implementation, there is a another benefit. In the manual implementation
of the stack-before-heap idiom it is difficult to verify that the amount of storage
allocated on the stack is sufficient to be a performance optimization because
there is no central location to check. With the encapsulation of the idiom in



336 D.G. Richardson and W. Krandick

the array class a check can be placed in the array constructor. With conditional
compilation all overhead of the check can be avoided in production code. By
altering only methods of the array class, all clients of the array class can be run on
representative inputs to see if the proper amount of stack storage space is being
allocated. Note: alloca was not considered because it would have complicated
the porting of SACLIB from C to C++.

3.3 Recursively Fixed Iterator

The heavy use of the source-sink idiom in SACLIB offered the opportunity to
allow functions to express and enforce memory ownership expectations explicitly
through their prototypes. The key insight required to allow memory ownership to
be expressed by the function prototype is this: non-sink functions taking pointers
to memory managed by the source-sink idiom should not deallocate the memory
referred to by the pointers or overwrite the pointers.

Figure 4 shows an example of pointer usage in SACLIB. P is a two-
dimensional pointer of type int**. The dimensionality of a C++ type is defined
as the number of times * can legally be applied to it. Variables with a dimension-
ality greater than 0 (pointers) form the structure of the memory, while variables
with dimensionality of 0 (not pointers) form the contents of the memory. Func-
tions that manipulate the structure of a pointer are called memory managers of
the pointer, while functions that do not manipulate the structure of a pointer
are called contents-only users of the pointer.

P

Fig. 4. P is a pointer to a SACLIB matrix. The gray memory cells contain pointers and

are the structure of P . The white memory cells contain integers and are the contents

of P .

To facilitate the protection of memory structure, we define the following
concept.

Definition 1. Let T be a C++ type. T is a model of the recursively fixed iterator
concept if

1. T provides “T ::operator*” and “T ::operator[]” with pointer semantics,
2. T provides “T ::operator-¿” with the semantics “(T ::operator*()).”,
3. T provides all pointer arithmetic operators that are not self-modifying (+,-,

¡, ¡=, ¿, ¿=, ==), and
4. For all instances t of type T functions that do not use const cast may write

to the contents of t, but if they write to the structure they will not compile.



Compiler-Enforced Memory Semantics 337

Implementation. Using operator overloading and template meta-programming
we have implemented the rec fixed itr class as a model of the recursively fixed
iterator concept.

Using the operator overloading features of C++ it is straightforward to pro-
vide operator*, operator-¿, operator[], and the non-mutating pointer arithmetic
operators for rec fixed itr. Such implementation techniques are common prac-
tice and have been well documented in libraries such as Loki [12] and Boost [34].
The C++ const keyword allows variables to be made read-only.

The difficulty in implementing rec fixed itr occurs in deciding the return
types to give to operator*, operator-¿, and operator[]. When they are providing
access to memory that is in the structure of a rec fixed itr instance their
return type must prevent writes and deletes. When they are providing access to
the contents they must be mutable. For this, we must be able to determine at
compile time if a memory de-reference will access the contents or the structure
of a rec fixed itr instance.

We use C++ template meta-programming to accomplish this. Originally, the
C++ template instantiation mechanism was intended to provide a type-safe al-
ternative to macros for the generation of families of functions that differ only in
their types. But then Erwin Unruh [14] discovered that the C++ template in-
stantiation mechanism offered both branching and recursion, allowing arbitrary
computation at compile time. The C++ template instantiation mechanism offers
a Turing-complete functional language that executes at compile time.

The presence of a Turing-complete programming language in the C++ com-
pilation process has been widely used in libraries such as Boost [34], Loki [12],
Blitz++ [35,36], and GMCL [36,37] to provide both optimizations and improved
client interfaces. There are several excellent books [13,12,37] on library design
using template meta-programming in C++.

Definition 2. A C++ template meta-function is a C++ class template that
takes its parameters as template arguments and returns types or integral con-
stants as nested members.

The key to determining if a memory de-reference will return an element of the
structure lies in determining the dimension of the variable returned by the de-
reference. Since the dimension of a variable is determined by its type, we can
reduce the problem to computing the dimension of an arbitrary type. Figure 5
(Left) shows an implementation of the template meta-function Dim we use to
compute the dimension of a type. The function is defined recursively. The di-
mension of the NullType is defined as zero and used as the base case of the recur-
sion. The NullType is a placeholder type used to represent an unusable type, and
serves a similar role as null does for pointers. If the argument to the pointsTo
meta-function is a C++ pointer, it returns the type pointed to by the argument;
otherwise it returns the NullType. The isNullType meta-function returns true
if its argument is the NullType; otherwise it returns false. The if value meta-
function returns its second argument if its first argument is true; otherwise it
returns its third argument. We implemented all meta-functions called by Dim
for the sole purpose of computing the return types of the pointer operators of
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the rec fixed itr concept. In total, 22 meta-functions were required for the
computation of all needed return types.

//Meta-function: Dim
//Arguments: T - a type
//Description: Computes the dimensionality of T.
//Returns: value: the dimension of T

template<typename T> struct Dim;
template<> struct Dim<NullType>{

enum { value = 0 };
};//struct Dim<NullType>
template<typename T>
struct Dim{

enum {
value = if value<

isNullType<typename pointsTo<T>::type>::value,
Dim<NullType>::value,
1 + Dim< typename pointsTo<T>::type>::value

>::value
};//enum

};//struct

template<
typename CType,
unsigned int Dimension = Dim<CType>::value

>
class rec fixed itr{

public:
typedef rec fixed itr<CType,Dimension> self;
//ctor

rec fixed itr(const CType proxy):
proxy (proxy)

{};//rec fixed itr

//example of return type computation
typedef

typename return type<self>::op star type
op star ret

;
inline op star ret operator*(){

return op star ret(*proxy );
};//operator*

private:
CType proxy ;

};

Fig. 5. Left: The meta-function Dim computes the dimensionality of a type. Right:

Outline of the rec fix itr implementation technique.

Figure 5 (Right) offers an outline of the implementation of the
rec fixed itr. There are four major techniques to take note of. (1) The con-
structor is declared without the keyword explicit. This allows the compiler to
construct rec fixed itrs implicitly from variables of the CType. As a result,
functions declared to take an argument of type rec fixed itr<T*> may still be
passed variables of type T*. (2) The dimension of the CType is computed at tem-
plate instantiation and embedded in the rec fixed itr type. This allows the
dimension to be passed, via the typedef self, to the meta-function return type
for computation of the return type. (3) The proxy member is always wrapped
in an object of a type computed by the return type meta-function before being
returned to clients. This allows the proxy to be used in the explicit construction
of other types. The meta-function return type returns as types rec fixed itr
with a lower dimension than the current CType, const references, and mutable
references. This construction of return values allows the return type to com-
pute types that will protect the structure of the memory accessible from proxy
while at the same time allowing access to the contents.

Note: The actual rec fixed itr implementation is significantly more com-
plicated. All told, the rec fixed itr and its 22 supporting meta-functions com-
prise 666 lines of code. The full implementation handles all pointer arithmetic
operations required to support the full range of pointer functionality specified
by the recursively fixed iterator concept and validates that rec fixed itr is
instantiated correctly.

With the availability of the rec fixed itr class functions can become both
more expressive and capable of protecting memory structure passed to them.
Consider:

void might be a memory manger of p(int ***p);
void contents only user of p(rec fixed itr<int***> p);
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From the function prototype, neither the compiler nor maintenance program-
mers have any knowledge of the usage patterns the developers of
might be a memory manager of p intended. However, the function prototype of
contents only user of p clearly states it is a contents only user via the argu-
ment type rec fixed itr<int***>. If the definition of
contents only user of p ever attempts to be a memory manager of p, the
compiler will prevent compilation of contents only user of p. Furthermore,
we implemented rec fixed itr such that the compiler will emit a diagnostic
error that indicates the line of contents only user of p that attempts to man-
age memory. Schreiner’s criticism regarding template parameter validation [20]
no longer applies; indeed, the static assert facilities of Boost [34] allowed us to
provide meaningful error messages and parameter validation.

3.4 Correctness of the Memory System

Resource leaks can only occur when all handles to a resource are lost. The last
handles to a resource can be lost in two ways: (1) the variable holding the handle
goes out of scope or (2) the variable holding the handle is assigned a new handle.

By encapsulating memory handles in the array class, we guarantee that the
destructor of the array will release memory when instances of the array class go
out of scope. This removes the possibility for the memory leaks via situation (1).

By passing memory handles into functions via the rec fixed itr, it becomes
impossible to write to the memory structure referred to by the
rec fixed itr. As the rec fixed itr’s structure contains all of the memory
handles accessible from the rec fixed itr, it is not possible to overwrite—and
thus loose—a memory handle.

Double deletes can only occur when a memory handle is deleted twice. The ar-
ray class will delete memory only once in its destructor. Since the rec fixed itr
does not allow memory to be deleted at all, a double delete cannot occur.

4 Performance Testing

In order to obtain the most accurate timing possible we used hardware per-
formance counters to measure the number of CPU cycles required for different
methods of memory management. All measurements were obtained on a 3.0
GHz Pentium 4 (1024KB L2 cache) running Fedora Core 2. The Performance
Counter API (PAPI) [25] version 3.0.7 was used to collect all measurements.
The single processor 2.6.5 kernel shipped with Fedora Core 2 was patched with
the perfctr-2.6.x patch distributed with PAPI. Tests were compiled with g++
version 3.3.3 [38] and icc [39] version 8.0. Both compilers were given the flags
-O3 -march=pentium4 -DNDEBUG.

Experiments were repeated 500 times for each compiler. Cycle counts were
obtained with PAPI get virt cyc. Timings were discarded if they were more
than twice the mean. Thirty-one measurements were discarded for gcc; 40 were
discarded for icc. Average times are reported in Table 1.
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Due to our implementation, there can only be run-time overhead in our
classes with respect to raw pointers if the optimizer fails to inline and collapse
references down to machine code equivalent to the raw pointer case. The icc
results show that compilers can avoid this abstraction penalty from our class
interface; the gcc results show that not all compilers do. Manual inspection of
the machine code generated by gcc confirms the performance overhead is from an
inability to properly collapse references. Both results show that our specialized
classes perform better than the general-purpose std::vector.

Table 1. Machine cycles for various types of memory management. Pointer designates

the non-garbage collected memory management used by the old SACLIB, array stands

for our management of heap-allocated memory, array stack for our management of

memory that is allocated (more efficiently) on the system stack, and vector refers to

the vector-class available in STL. The table reports the average number of machine cy-

cles required for allocating and deallocating 500 elements, and for reading and writing

500 elements. For pointer alloc denotes new and dealloc denotes delete[]. For array,

array stack, array2d, and vector alloc denotes their constructor and dealloc their de-

structor. In all cases, read denotes an expression of the form a = p[i] and write denotes

an expression of the form p[i] = a.

icc 8.0 benchmarks

1-dim alloc read write dealloc

pointer 9357.3 1554.2 2785.6 5734.1

array 9359.7 1561.6 2786.8 5782.2

array stack 931.2 1564.9 2751.3 223.6

vector 10867.1 1521.2 2776.9 6964.7

2-dim alloc read write dealloc

pointer2d 25046.8 2377.5 5108.0 13022.8

array2d 21951.6 1998.9 5193.9 13409.8

vector2d 35301.1 3524.0 6314.1 20654.3

gcc 3.3.3 benchmarks

1-dim alloc read write dealloc

pointer 7081.1 6317.5 7249.7 4581.6

array 7079.6 7294.0 7252.3 4679.5

array stack 986.0 7340.0 7251.5 203.1

vector 10279.0 7315.1 7269.3 5863.0

2-dim alloc read write dealloc

pointer2d 17644.2 7719.1 7741.9 12023.0

array2d 20466.1 7856.7 9248.5 12911.0

vector2d 31682.2 8073.4 11844.6 17039.2

5 Automatic Conversion

The old SACLIB was written in K&R C [24]. In K&R C functions can be
defined as

void function(a,b)
int a;
double b;

{

}

While this is a legal function definition in both K&R C and ANSI C [40,41], it
is not a legal function definition in ANSI C++ [21,22]. In ANSI C++, the
function must be defined as

void function(int a, double b){

}
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Additionally, K&R C requires only the return type of a function to be known
prior to allowing it to be called. The above function would have its return type
described as

void function();

ANSI C allows a full function prototype that specifies both the return type of
the function and the types of the arguments

void function(int a, double b);

ANSI C++ requires the use of a full function prototype.
SACLIB provided full function prototypes for compilers that were ANSI C

compliant. The function prototypes were wrapped in a macro

void function P ((int a, double b));

where P was defined as

#ifdef STDC
#define P (A) A

#else
#define P (A) ()

#endif

This ensured that function prototypes were only used by ANSI C compilers. We
first compiled SACLIB using an ANSI C compiler to ensure the correctness of the
prototypes. Once we knew the prototypes matched, a perl script was written that
read the existing prototypes, took the arguments from the prototypes and placed
them in the function definitions, and deleted the old K&R function argument
definitions. Another perl script was then used to remove the P macros.

As SACLIB was a generally well-structured C program, this was all that was
required to port SACLIB from C to C++.

6 Conclusion

We have shown how several features of the C++ language can be combined
with our recursively fixed iterator concept and the RAII idiom to ensure correct
allocation and deallocation of memory. User extensibility of the C++ type sys-
tem, operator overloading, and template meta-programming allow the compiler
to verify the absence of memory defects.

As a result, SACLIB and any future extensions using our memory subsystem
will be leak free and double delete free. We have significantly improved the self
documenting nature of the SACLIB code base and substantially reduced the
likelihood of memory errors. Consequently, programmers will spend less time
detecting, diagnosing, and repairing memory defects.

Our experiments show that these benefits can be obtained without degrada-
tion of performance.
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Abstract. Computer Algebra Systems (CASs) are convenient high-level
programming languages that provide the programmer not only with sym-
bolic capabilities and exact arithmetic, but also with different structures
handling and plotting capabilities. We have used the CAS Maple as
development tool for designing Meta-Petro, a system for training un-
dergraduates in metamorphic rocks recognition and classification using
photomicrographies. This expert system includes a collection of photomi-
crographies of thin sections of samples that are randomly presented to
the user. The user can ask the system for details about: the different
rocks, his guess of the solution and the right solution. Moreover, this
information can be shown on the decision tree the system uses. As far
as we know, in this field only “catalogs” with fixed photomicrographies
have been developed so far.

Keywords: Metamorphic Petrology, Computer Algebra Systems, Ex-
pert Systems.

1 Introduction

1.1 Our Goal

We would like to provide undergraduate students with a computer tool (expert
system) that allowed them to practice metamorphic rocks classifying.

One key feature of the package should be random selection of exercises from
a set of (previously prepared) selected ones. This has clear advantages over
packages presenting fixed examples:
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– it makes the student’s work almost a new one every time the system is
restarted

– it provides the less gifted students with many more examples and exercises
to practice

– it avoids the students extracting incorrect particular rules to solve the ex-
ercises (having one single example or very few examples of each “type of
exercise” is dangerous: for instance, if we have just one set of samples of
rocks, the student can remember that the only one with a “sharp corner”
is the sample of marble, what is not the classifying technique we would like
him to apply)

An excellent collection of samples of igneous and metamorphic rocks (i.e.,
plutonic, volcanic and metamorphic rocks) can be found in the “Atlas” [1]. But
it just shows one or two samples of each rock.

The tool we would like to implement should also provide bookmarks and
hyperlinks and the possibility of offering hints and helps.

1.2 The Computer Language Used

As said in the CFP of CASC’2005, “The ongoing development of (Computer
Algebra) systems, including their integration and adaptation to modern software
environments, puts them to the forefront in scientific computing and enables the
practical solution of many complex applied problems in the domains of natural
sciences and engineering”.

We have chosen a Computer Algebra System (CAS) as development tool be-
cause we need to internally handle different structures to allocate the information
(matrices and lists) as well as to produce plots of graphs. Despite a standard
language like C, Pascal or Java could be used, from our experience in similar
cases, like the complex simulation [2], where different structures and different
plots were to be produced, choosing a scientific computing language such as a
CAS is really time-saving.

Moreover, the use of CASs is not restricted to the standard educational appli-
cations of computer algebra: mathematics education and mathematical aspects
of science education (see e.g. Chapter 3.6 of [3] or click on “All education Pow-
erTools” at Maple’s web page [4]).

We have chosen the CAS Maple because it is a comprehensive and portable
system that also offers the possibility to create Maplets (a specific kind of aplets)
that can be run on a server where Maple is installed. For instance, we have
already designed and developed a Maplet-based expert system for diagnosis and
treatment of hypertensión [5]. The CAS Mathematica has recently released a
similar system (GUIKit) [6] and it also offers a specific version for developing
JavaServer pages (webMathematica).

1.3 Some Antecedents of Random Generation or Selection of
Exercises

Of course there have been many experiences that use random generation of exer-
cises in different fields. The spectrum is wide, ranging from primary education,
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like Primtres [7], to physics, like the award-winning Microlab [8], used in Spain
in the early nineties.

Some of these applications in mathematics teaching are really smart, like
the Mathematica-based MathEdu [9], that is able to recognize repeated errors
of the user. The Java-based application ConsMath [10] uses sophisticated A.I.
tools (agents) to develop dialog-based environments for problem solving. The
latter compiles a collection of interactive problems about ordinary differential
equations, that includes altering exercises by adding constraints, acceptance con-
ditions and generation procedures.

There are also applications specifically oriented to assessment, like Maple
T.A. [4] and even based on the word processor’s capabilities [11].

1.4 About Random Selection or Generation of Examples and
Exercises

We can classify random selection or generation of examples and exercises at
different levels. We could distinguish:

i) the solution of the examples can be calculated by the computer. Only the
“types” of problems are stored and the input data is randomly chosen from
a given (prepared) universe.

Example 1. A package for training students in operating with positive inte-
gers. A problem could be: 3+4=???. The computer calculates the solution
in each case.

ii) the solution cannot be calculated, but the solution strongly depends on the
particular problem. The “types” of problems, the corresponding possible
data and corresponding “types of solutions” are stored. The “type” of prob-
lem and the input data are randomly chosen and combined. The solution is
calculated using the adequate “type of solution” and the given data (apply-
ing the corresponding formula).

Example 2. A package for training students in calculating volumes of 3D
figures. The general “types” of problems could be like: “calculate the volume
of a cube of side ...” and the input data would be numbers to fill the “...”
(e.g. “1m”). The computer takes the formula to be used and calculates the
solution for the given data.

iii) the solution cannot be calculated and does not strongly depend on the data
structure. Then we have an ordered structure (e.g. list or vector) containing
the enunciates (or pointers to them) and another ordered structure contain-
ing the solutions (e.g., list or matrix).

Example 3. A package for training students in recognizing the style of an-
cient churches.

The computer tool we have developed is of type iii).
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Fig. 1. Photomicrograph of a thin section of granulite (width of field view: 10mm)

Fig. 2. Photomicrograph of the same thin section of granulite of Figure 1 using crossed

nicols (width of field view: 10mm)

1.5 Some Elementary Notions About Petrology

The main characteristic of metamorphic rocks is their texture (texture is under-
stoodas the relationof size, shape, anddispositionamongminerals in a rock) [12,13].
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Two kinds of photomicrographies of a thin section of a rock can be taken
using a petrographic microscope: “normal” photomicrographies and photomi-
crographies taken using “crossed nicols” (see figures 1 and 2). The “crossed
nicols” is an accessory of the petrographic microscope that allows to analyze the
sample under polarized light (which normally enhances the colors and makes the
texture clearer).

We have obtained photomicrographies with and without crossed nicols of
different samples of the main metamorphic rocks: hornfels, marble, quartzite,
granulite, slate, phylite, mylonite, schist, gneiss and migmatite.

We had already faced the problems of handling with Maple images stored
using other applications when we developed a knowledge-based system for house
layout selection [14] (the criteria that lead to determine which house layout
scheme fits the requirements of each case best are based on the climate, the
building site and the needs of the particular group of occupants).

2 The System’s Design

We have successfully used Gröbner bases to perform knowledge extraction and
consistency checking in expert systems based on classic bivalued and modal
multi-valued logics [15,16,17]. An overview of our line of research can be found
in [18].

But, in this case, all the information has been previously organized and stored
by the expert, and the algorithmic nature of the problem makes it unnecessary to
perform knowledge extraction and consistency checking in a rule-based standard
format. The solution only has to be searched for (and compared with the user’s
guess). Anyway, we think this tool can still be denoted expert system, as it
behaves as an expert in metamorphic rocks classifying.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Fig. 3. Classiffying common metamorphic rocks
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Load Meta-Petro package and Maple packages plots and Worksheet

↓
Random selection of a sample (the sample is described by integer k)

↓
The worksheet corresponding to that sample is opened (it has a link to a web page)

↓
The user checks the photomicrographies in the web page

↓
The user makes a guess (its name is stored in variable mg)

↓
Which rock was shown is obtained from the value of k

↓
The data of that rock is obtained from the data matrix

↓
The data of the user’s guess is obtained from the data matrix

↓
Both data lists are compared and the number of errors is counted

↓
The system shows the decision tree

↓
From the paths to each rock, the system selects the right one

↓
From the paths to each rock, the system selects the user’s guess

↓
The system shows (colored) the two paths on the decision tree

Fig. 4. Algorithm of the whole process

The system is based on the flow chart (tree) in Figure 3, that can be found
in [12].

The system should be able not only to give the right solution, but also to show
the differences between the user’s guess and the right solution. This information
can be shown both in matrix format and coloring both paths in a plot of the
tree used to classify the rocks.

Decision trees are normally used in Petrology. Nevertheless, in other branches
of Geology like Paleontology matrices are used, for instance, to classify fossils
according to the presence or absence of certain characteristics [19].

We have decide to use internally matrices and to allow the user to see the
data on both formats (as matrices and as decision trees).

The system has the possibility to be easily adapted or enlarged by introducing
new or different samples of the types of rocks considered. For instance, a teacher
could change the photomicrographies of samples according to his students’ needs
(if he had the media to obtain photomicrographies). Increasing the number of
types of rocks considered would require a little work from the designers.
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The system uses Maple’s packages Worksheet and plots. The kind of data
checked are stored in list LD:

[(foliated or banded), grain size, splintery , main minerals, color , banding ]

The names of the rocks are stored in list LR and their corresponding data in a
matrix of symbols (DM) which i-th row contains the data corresponding to the
i-th element of LR (DA means “doesn’t apply”):

[hornfels , marble, quartzite, granulite, slate ,
phyllite , mylonite, schist , gneiss , migmatite]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

not fb medium splintery DA DA DA
not fb coarse DA calcite DA DA
not fb coarse DA quartz DA DA
not fb coarse DA pyrox and feld DA DA

fb very fine DA DA DA DA
fb fine DA DA green DA
fb fine DA DA pale DA
fb medium DA DA DA DA
fb coarse DA DA DA distinct
fb coarse DA DA DA streaky

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The algorithm followed is shown in Figure 4.

3 Running the System

In the main worksheet, the user can ask Maple:

• to show the list of data of a certain rock:
> dataRock(mylonite);[

(foliated or banded) grain size splintery main minerals color banding
fb fine DA DA pale DA

]
• to compare the data of two rocks:
> compare(quartzite,gneiss);⎡⎣ (foliated or banded) grain size splintery main minerals color banding

not fb coarse DA quartz DA DA
fb coarse DA DA DA distinct

⎤⎦
Procedure randRock() randomly chooses a sample of metamorphic rock and

opens the Maple worksheet corresponding to that sample. This worksheet con-
tains a link to a web page (see Figure 5) that shows two photomicrographies of
the sample (a “normal” one and another one taken using crossed nicols).

After looking at the photomicrographies shown by the system and analyzing
them, the user can:
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Fig. 5. html page corresponding to one of the samples of hornfels

• introduce a guess to the system:
> myGuess(marble):
• to ask for the data of the user’s guess:
> myGuessData();[

(foliated or banded) grain size splintery main minerals color banding
not fb coarse DA calcite DA DA

]
• to ask for the right solution:
> solution();

hornfels

• to ask for the data of the right solution:
> solutionData();[

(foliated or banded) grain size splintery main minerals color banding
not fb medium splintery DA DA DA

]
• to compare the data of the user’s guess with those of the right solution:
> compare(mg,solution());⎡⎣ (foliated or banded) grain size splintery main minerals color banding

not fb coarse DA calcite DA DA
not fb medium splintery DA DA DA

⎤⎦
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migmatite

gneiss

schist

mylonite

phylite

slate

granulite

quartzite

marble

hornfels

streaky banding

distinct banding

pale color

green color

pyrox. & feld.

quartz

calcite

splintery

grain
coarse

medium grain

fine grain

very fine grain

grain
coarse

medium grain

or banded)
not (foliated

banded
or

foliated

Fig. 6. Automatically generated tree showing the path to the right rock (hornfels) in

green and the the path to the user’s guess (marble) in red

• to compare the data of a certain rock with those of the right solution:
> compare(mylonite,solution());⎡⎣ (foliated or banded) grain size splintery main minerals color banding

fb fine DA DA pale DA
not fb medium splintery DA DA DA

⎤⎦
• to count the number of different data between the user’s guess and each rock

or between the user’s guess and the right solution:
> differencesWithAll();

Differences with hornfels : 3
Differences with marble : 0

Differences with quartzite : 1
Differences with granulite : 1

Differences with slate : 3
Differences with phyllite : 4
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Differences with mylonite : 4
Differences with schist : 3
Differences with gneiss : 3

Differences with migmatite : 3

> differencesWithSol();

Differences with hornfels : 3

These data can also be clearly shown on the decision tree. Under the user’s
request, Maple can output:

• the classification tree used:
> showTree();
• the classification tree used, showing the path to the right rock in green and

the path to the user’s guess in red (hornfels and marble, respectively, in
Figure 6):
> showDiffInTree();

4 Conclusions

We think that we have developed an easy to use tool that can be very conve-
nient in Petrology teaching. The main interest of the implementation is the way
information is stored and treated.

Future developments would be:

• adding more photomicrographies of new samples to this system
• extending the system to the other types of rocks (plutonic, volcanic, sedi-

mentary)
• developing a GUI based on Maple’s Maplets (if the users considered it ad-

visable).

The expert system is yet to be experimented in the classroom. We plan to ex-
periment it firstly at the Universidad Complutense de Madrid, that has a Maple
site license. Remote access to a server running the system in this university is
also considered. The package can be freely obtained from the authors.
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11. R. Fuster, Exámenes aleatorios con LaTeX, in Terceras Jornadas de Innovación
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14. A. González-Uriel and E. Roanes-Lozano, A knowledge-based system for house

layout selection. Math. Comp. Simul. 66-1 (2004) 43-54.
15. E. Roanes Lozano, L.M. Laita and E. Roanes-Maćıas, A Polynomial Model for
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Abstract. The LEDA number type real is extended by the diamond
operator, which allows to compute exactly with real algebraic numbers
given as roots of polynomials. The coefficients of these polynomials can be
arbitrary real algebraic numbers. The implementation is presented and
experiments with two other existing implementations of real algebraic
numbers (CORE, EXACUS) are done.

1 Introduction

Real algebraic numbers are real roots of polynomials with integral coefficients.
Exact and efficient computation with real algebraic numbers is a crucial part of
exact computational geometry [12].

In this paper we describe an implementation of exact real algebraic numbers
and compare it with existing real algebraic number types in CORE [2] and
EXACUS [5]. The main features of the new implementation are that

– it allows computation (not only comparison) with real algebraic numbers
given by polynomials, which is not supported by EXACUS,

– it allows real algebraic numbers given by polynomials which have real alge-
braic numbers as coefficients, which is not allowed in CORE and in EXACUS.

For a formal definition of real algebraic expressions, we distinguish between
the expression E and its value v(E), which is a real algebraic number.

(1) Any integer z is a real algebraic expression. The integer is also the value of
the expression: v(z) = z.

(2) If E1 and E2 are real algebraic expressions, so are E1 +E2, E1−E2, E1 ·E2,
E1/E2, and k

√
E1, where k ≥ 2 is an integer. The value v( k

√
E1) is undefined if

k is even and v(E1) is negative. The value v(E1/E2) is undefined, if v(E2) =
0. The value of all expressions is undefined, if the value of one of the operands
is undefined. Otherwise the value v(E1 + E2), v(E1 − E2), v(E1 · E2), and
v(E1/E2) is the sum, the difference, the product and the quotient of v(E1)
and v(E2), respectively and the value v( k

√
E1) is the k-th root of v(E1).
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(3) If Ed, Ed−1, . . . , E0 are real algebraic expressions and j is a positive integer
with 0 ≤ j ≤ d, then 7(j, Ed, Ed−1, . . . , E0) is a real algebraic expression. If
the values v(Ei) are defined, the value v(7(j, Ed, Ed−1, . . . , E0)) is the j-th
smallest real root of the polynomial v(Ed)Xd + v(Ed−1)Xd−1 + . . .+ v(E0),
if the polynomial has at least j real roots. Otherwise, the value is undefined.

Real algebraic expressions restricted to (1) and (2) are implemented for exam-
ple in the number type real in LEDA, and in CORE. The diamond operator
7(. . .) has first been implemented in EXT [6], a LEDA real extension number
type. EXT is a number package for its own which has been developed for testing
the diamond operator. Most parts of EXT are integrated in the LEDA version
5.0.

The EXT implementation is done with the separation bound approach. Here
the real algebraic number is approximated with increasing precision as long as
the sign is not clear from the interval containing the exact number. This process
stops when the length of the interval reaches a specific bound, given by the
separation bound. The key issue for that approach is to find good (i.e. large
and easily computable) separation bounds. There are several separation bounds,
some of them are not in general comparable [1], [11], [15], [19].

The separation bound approach is also implemented in CORE. The differ-
ence to the EXT implementation is that CORE does not allow real algebraic
expressions as coefficients of the diamond operator (called RootOf in CORE).

EXACUS represents general real algebraic numbers by a defining polyno-
mial and an isolating interval which contains only this root of the polynomial.
Comparison is easy if the intervals do not intersect. If they intersect, one has to
do further refinement and possibly one has to compute the gcd of the polyno-
mials to decide whether they have a common factor. To do this efficiently, the
polynomials are restricted to polynomials with integral coefficients. Compari-
son of two algebraic numbers is fast in general. Computing with these algebraic
numbers gets difficult, as one has to provide always an integral defining polyno-
mial. Therefore these representations often do not allow computation with real
algebraic numbers.

The real algebraic numbers of Guibas, Karavelas and Russel [7] or of Rioboo
et al. [13], [17] are implemented with a similar concept than the EXACUS real
algebraic numbers.

Emiris and Tsigaridas [4] present an algorithm for exact comparison of the
real roots of two polynomials of degree ≤ 4. Their method relies on isolating
intervals for the representation of the roots in a specific way and on precomputing
Sturm sequences to minimize computational effort.

2 Implementation

An EXT real is represented by the real algebraic expression which defines it
and an open interval I that contains its exact value. The interval is given by a
bigfloat (floating point with arbitrary precision) approximation and an error.
When the sign of a real x needs to be determined, the data type uses the
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separation bound approach and first computes a number q, such that |x| ≤ 2−q

implies x = 0. In the current EXT version, this bound is either the improvement
of the BFMSS bound [1], [15], [19] or the degree measure bound from [11], if this
is larger.

Using floating point arithmetic with arbitrary-length mantissa, the data type
then computes an interval I of maximal length 2−q that contains x. If I contains
zero, then x itself is equal to zero. Otherwise, the sign of any point in I is
returned as the sign of x.

Two shortcuts are used to speed up the computation of the sign. Firstly,
if the initial interval approximation already suffices to determine the sign, no
further bigfloat approximation is computed at all. Secondly, the bigfloat ap-
proximation is first computed only with small precision. The precision is then
roughly doubled until either the sign can be decided (i.e., if the current approx-
imation interval does not contain zero) or the full precision 2−q is reached. This
procedure makes the sign computation of a real x adaptive in the sense that
the running time of the sign computation depends on the complexity of x.

The diamond operator is integrated into the EXT real number package. The
two important steps of the implementation of the diamond operator are

– to compute an isolating interval which contains only the intended real root
of the given polynomial

– to approximate the real root with increasing precision.

The isolating interval is computed with the method based on Descartes rule of
sign1 as described for example in [8], [18], [9] (see also [14]). Applied on the poly-
nomial with exact real coefficients, this algorithm performs sign computation
of possibly large real expressions. To speed up the isolating interval computa-
tion, the EXT package replaces the exact coefficients of the polynomial by their
interval approximation and applies the Descartes real root isolation method for
polynomials given by interval coefficients [8], [18]. This results in a much faster
algorithm, which succeeds in many cases to compute isolating intervals. However
there are cases where the interval root isolation method cannot compute isolat-
ing intervals, because the sign of an interval cannot be determined. In these cases
the reals use the exact root isolation method. In [3] the authors give a complete
and exact Descartes method which does not need to rely on exact arithmetic as
in the implementation above.

2.1 Approximation of the Root

The EXT real number type uses the LEDA bigfloat package to approximate a
real algebraic number with a given error bound. The approximation of a number
given by the 7-expression is done in two steps. First a bigfloat polynomial is
created which has a root near the exact root of the exact polynomial. Then the
Newton method is applied on that bigfloat polynomial. In this subsection we
consider the first step. Let
1 The disadvantage of this method is that it allows only isolated interval computation

for square free polynomials, but there are methods to circumvent this problem.
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P (x) =
d∑

i=0

aix
i

be the polynomial with the exact real coefficients ai. Consider a bigfloat
approximation

P̃ (x) =
d∑

i=0

ãix
i

of that polynomial, that is, the coefficients ãi of P̃ are bigfloat approximations
of the coefficients ai of P :

|ãi − ai| ≤ 2−q.

The polynomial P̃ can also be written as a sum of two polynomials P̃ (x) =
P (x) +E(x), where the second polynomial contains the errors:

E(x) =
d∑

i=0

eix
i with |ei| ≤ 2−q.

Let α be a root of the polynomial P (x). The goal is to compute an approxi-
mation α of this root with an error |α− α| ≤ 2−p.

Suppose we know in advance that α lies in the interval (a, b) and that P (x)
has no double roots. Using bisection we can shrink the isolating interval in such
a way that the first derivative of P has no root in (a, b). Let m := max{|a|, |b|}.

Choosing q large enough, we can show that the polynomial P̃ (x) has a simple
root near α:

Lemma 1. If q satisfies the conditions

a) 2−q
∑d

i=0m
i < min{|P (a)|, |P (b)|},

b) 2−q
∑d−1

i=0 (i+ 1)mi < minc∈(a,b){|P ′(c)|},
then P̃ (x) has exactly one simple root α̃ in the interval (a, b).

Proof. Let ξ ∈ (a, b). Then |P ′(ξ)| ≥ minc∈(a,b){|P ′(c)|}. Condition b) then gives

|P ′(ξ)| > 2−q
d−1∑
i=0

(i+ 1)mi.

The right hand side is an estimate for |E′(ξ)|:

|E′(ξ)| =
∣∣∣∣∣
d−1∑
i=0

(i+ 1)ei+1ξ
i

∣∣∣∣∣ ≤
d−1∑
i=0

(i+ 1)|ei+1||ξ|i ≤ 2−q
d−1∑
i=0

(i+ 1)mi.

Together we see that |P ′(ξ)| > |E′(ξ)|. With P̃ ′(ξ) = P ′(ξ) + E′(ξ) this shows
that P̃ ′(ξ) and P ′(ξ) have the same sign. Hence, as P ′(x) has no root in (a, b),
the polynomial P̃ ′(x) also has no root in (a, b).

Using Condition a) we see in a similar way as above, that |E(a)| < |P (a)|
and |E(b)| < |P (b)|, so that the sign of P̃ (a) and P (a) resp. P̃ (b) and P (b) is
the same. It follows that P̃ (x) has exactly one simple root in (a, b). )*
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With the next condition we quantify how close the root α̃ is to the root α of
the exact polynomial.

Proposition 1. Let p > 0. If q satisfies the conditions a) and b) from the lemma
and

c) q ≥ p+ 1 + log2

(∑d
i=0 m

i
)
,

then for the root α̃ of P̃ (x) in (a, b) we have |α̃ − α| ≤ 2−p−1/M , where 0 <
M < minc∈(a,b){|P̃ ′(c)|}.

Proof. Using the mean value theorem we get the equation

P̃ (α̃)− P̃ (α)
α̃− α = P̃ ′(ξ),

where ξ is a number between α̃ and α. From this equation we get, using P̃ (α̃) = 0
and P (α) = 0,

|α̃− α| = |P̃ (α)|
|P̃ ′(ξ)| =

|E(α)|
|P̃ ′(ξ)| .

Now we estimate

|E(α)| ≤
d∑

i=0

|ei||α|i ≤ 2−q
d∑

i=0

|α|i ≤ 2−q
d∑

i=0

mi.

If we choose q as in Condition c), we get

|α̃− α| ≤ 2−p−1 1
|P̃ ′(ξ)| .

As P̃ ′(x) has no roots in (a, b), we can estimate the minimum M of P̃ ′(x) in
(a, b) and get |α̃− α| ≤ 2−p−1/M . )*

If we now choose
r ≥ − log2(2

−p − 2−p−1/M)

and apply the Newton method to compute an approximation α of the root α̃ of
P̃ (x) up to an error |α− α̃| ≤ 2−r, we get the desired approximation:

|α− α| ≤ |α− α̃|+ |α̃− α| ≤ 2−r + 2−p−1/M ≤ 2−p.

Summarizing this subsection, to get the desired approximation of the exact
root, we need to find approximations of the coefficients of the exact polynomial
such that the errors satisfy conditions a), b) and c), and we need a lower bound
for the minimal absolute value of the derivative of the approximating polynomial
in the interval.
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2.2 Newton Method for bigfloat Polynomials

The implementation of the Newton method for bigfloat polynomials deserves
some explanation. Let α̃ be the exact root of the bigfloat polynomial P̃ (x) in
the interval (a, b). We consider the Newton iteration function

F (x) = x− P̃ (x)
P̃ ′(x)

First of all we have to ensure that the Newton method converges.

Lemma 2. Let b − a ≤ 2−t.

(1) If
maxx∈(a,b){|P̃ ′′(x)|}maxx∈(a,b){|P̃ (x)|}

(minx∈(a,b){|P̃ ′(x)|})2 =: c < 1

then the Newton method with any start value x ∈ (a, b) converges linearly
and

|F (x) − α̃| ≤ 2−t+log c.

(2) If

maxx∈(a,b){|P̃ ′′′(x)|}maxx∈(a,b){|P̃ (x)}
(minx∈(a,b){|P̃ ′(x)|})2 +

maxx∈(a,b){|P̃ ′′(x)|}
minx∈(a,b){|P̃ ′(x)|}

−2
(maxx∈(a,b){|P̃ ′′(x)|})2 maxx∈(a,b){|P̃ (x)|}

(minx∈(a,b){|P̃ ′(x)|})3 =: C < 2t

then the Newton method with any start value x ∈ (a, b) converges quadrati-
cally and

|F (x) − α̃| ≤ 2−2t−1+log C .

Proof. These conditions come from the conditions for the convergence rates of
the Newton method. The proofs can be found in any numerical mathematics
book. )*

At the start of the Newton method, we use bisection to shrink the isolating
interval until condition (1) or (2) is satisfied. Then we can assure that the Newton
method converges.

Now we look at the particular Newton steps. At the beginning of a Newton
step we have an approximation xi of α̃ with |xi − α̃| ≤ 2−l. The next approxi-
mation is computed in the Newton step xi+1 = F (xi). If everything is computed
exactly, then |xi+1 − α̃| ≤ 2−(l′+1).

Here l′ + 1 > l. The choice of l′ + 1 depends whether condition (1) or (2) is
satisfied: If condition (1) is satisfied, then l′ + 1 = l − log c. If condition (2) is
satisfied, then l′ +1 = 2l+1− logC. (The +1 is chosen to deal with the inexact
computation with bigfloat numbers.)
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The values P̃ (xi) and P̃ ′(xi) are computed exactly. This is possible, because
there is no division. If the polynomial evaluation would be done inexactly, one
would need lower bounds on the absolute value of the results for the error bounds.
Such bounds can not be computed for P̃ (xi), as this value should is very small.

The bigfloat division P̃ (xi)

P̃ ′(xi)
is performed with absolute error less than

2−(l′+3+log2(|P̃ (xi)|)−log2(|P̃ ′(xi)|)).
The subtraction is also done exactly. This could be done inexactly providing

an error bound, but there is not much profit and it makes the analysis easier if
there is no computation error.

The result is a bigfloat approximation x̃i+1 of xi+1 with absolute error
|x̃i+1−xi+1| ≤ 2−(l′+2). This value is rounded to absolute precision 2−(l′+2), such
that the result has an absolute error |round(x̃i+1) − xi+1| ≤ 2−(l′+1). Together
with |xi+1 − α̃| ≤ 2−(l′+1) this gives |round(x̃i+1)− α̃| ≤ 2−l′ .

3 Experiments

This section contains experiments with real algebraic numbers given by poly-
nomial in EXT, EXACUS and CORE. More experiments can be found on
http://www.mpi-sb.mpg.de/projects/EXACUS/leda_extension/experiments.html.

The two systems EXACUS and CORE have been chosen for the first set of
experiments, because their understanding of arithmetic with exact real algebraic
numbers is similar. There are other approaches to exact real algebraic computa-
tion. SYNAPS [16] for example assumes that the user provides a bound on the
minimal distance between two roots of a polynomial. Of course such a bound
can be computed in a similar way as the separation bound, but this system is
not designed with the intention to compute this bound internally.

We did no comparison with systems providing real root isolation methods.
Computing an isolating interval is only one (nevertheless important) part of the
EXT reals. In this set of experiments we wanted to test the overall performance
of computing with real algebraic numbers.

The experiments were done on a 850 MHz Pentium III machine. We measured
the time needed to generate the real algebraic numbers and to compare them.

CORE uses Sturm sequences to isolate real roots and therefore can handle
polynomials with multiple roots. The EXT package and EXACUS both use the
Descartes isolating method, which needs square free polynomials. Hence for these
packages, a square free test has to be made before the real root isolation. If a
polynomial P (x) is not square free, one has to divide P (x) by the gcd of P (x)
and P ′(x). In the examples however, all randomly generated polynomials were
square free. The time of this square free test is also measured.

3.1 Comparison

For the first test cases we generated random polynomials of degree d (for odd d)
where the coefficients have bit-size L. The probability that two such polynomials
have a common root is negligible. As the degree of the polynomials is odd, they
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all have at least one real root. The first test checks if the smallest real roots of
two such polynomials are equal. As they are not equal, this test should be very
fast. The results for degree 5 polynomials with coefficients of growing bit-size
are shown in Figure 1.

To test two equal diamond expressions, we again generated random polyno-
mials of odd degree d and coefficient bit-size L. Let P (x) be such a polynomial.
Then Q(x) = P (x) · (x2 + 1) has the same real roots as P (x). The second test
cases check if the first real roots of both polynomials are equal. The results for
degree 5 polynomials with coefficients of growing bit-size are shown in Figure 2.

In both cases, EXACUS provides the fastest method. For different numbers,
the EXT package is also quite efficient. For equal numbers, both methods relying
on the separation bound approach need more time than EXACUS.

We did the same experiments for polynomials with different degrees. The
results in Figure 3 and Figure 4 show that both separation bound methods have
problems with polynomials of larger degree. The bad running time of the EXT
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real numbers in Figure 3 comes from the failure of the interval Descartes method.
Here the isolation method has to fall back on exact computation with real al-
gebraic numbers for isolating the real root. This will be improved in the future,
using [3]. However, current applications of the diamond operator in EXACUS
only need polynomials of degree ≤ 10.
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3.2 Computation

In CORE and EXT one can perform computations with real roots of polynomi-
als. These computations include +,−, ·, / and k

√ . In EXACUS the real algebraic
numbers resulting from roots of polynomials do not support computation. How-
ever, it is possible to do computation in a restricted sense if one can find an
integral defining polynomial.
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For the tests we considered a polynomial P (x) with a positive real root α and
a polynomial Q(x) with a positive real root β. The test was to check if

√
α = β.

To find an integral defining polynomial for
√
α consider the polynomial

R(x) = P (x2). The real roots of R(x) are the square roots of the positive real
roots of P (x). Using this polynomial it is possible to perform the tests in EX-
ACUS. The time for generating R(x) and its roots was also measured in the
EXACUS tests.

Figure 5 and Figure 6 contain the test for polynomials of degree 5 with
coefficients of growing bit-size. Again for different numbers the EXT package is
as efficient as the EXACUS package. When the real algebraic numbers are equal,
the two separation bound methods need more time.

3.3 Real Algebraic Coefficients

Unlike CORE and EXACUS, EXT can handle roots of polynomials as reals.
That means that one can do exact computation with those numbers and can
take those numbers also as coefficients of polynomials of other 7-operators.
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In the example we generated the first real root α of the polynomial x3+2x−1.
Then we generated polynomials of odd degree, as before, and added α to the
coefficient of x. The tests were performed on degree 5 polynomials with coefficient
of growing bit-size. The computation time (in seconds) of the equality test for
different numbers and for equal numbers are given in Figure 7.
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3.4 Conclusion

The experiments indicate that the separation bound approach for the diamond
operator implemented in EXT is efficient for comparisons of different numbers
of degree ≤ 10. In the degenerate cases (that is, when the numbers are equal),
the separation bound approaches both need more time for comparisons.

It is interesting to note that also in the difficult case (Figure 5 and Figure 6),
where the integral defining polynomial has to be computed, the isolating interval
method from EXACUS has the best running time. This indicates that the real
root isolation method should be preferred to the separation bound method, when
integral defining polynomials can be found.

Future experiments, also with other real algebraic number packages, should
give more insight in the behavior of the different methods. Especially the behav-
ior of iterated diamond expressions should be considered in more detail.
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Abstract. The present study demonstrates a very helpful role of com-
puter algebra systems (CAS) for deriving and testing new numerical
methods. We use CAS to construct and test a new numerical method
for solving boundary - value problems for the 2D Navier —Stokes equa-
tions governing steady incompressible viscous flows. We firstly describe
the core of the method and the algorithm of its construction, then we
describe the implementation in CAS for deriving formulas of the method
and for testing them, and finally we give some numerical results and
concluding remarks.

1 Introduction

Solving the boundary-value problems for Navier— Stokes equations is a com-
plicated task of computational fluid dynamics. Many numerical methods, which
demonstrate a good performance when solving problems for other equations, do
not work when applied to Navier—Stokes equations. That is why there is a
permanent search for new methods to solve this problem.

We have proposed the method of collocation and least squares (CLS) for solv-
ing this problem. Firstly it was implemented to solve the boundary - value prob-
lems for Stokes equations [1]. In the present study we shall briefly describe the
application of the CLS method to Navier— Stokes equations. The method has
a number of advantages: the continuity equation is satisfied exactly, the bound-
ary conditions are easily approximated, the method can easily be generalized to
the case of three dimensions and to the case of domain with curvilinear bound-
ary without loss of accuracy, the approximation order can be increased just by
adding new basis functions. But huge analytical work is needed when construct-
ing the formulas of the CLS method for Navier— Stokes equations. To great ex-
tent such work can be carried out by computer algebra systems (CAS) [2,3,4,5].
To construct the formulas one needs to perform analytically the following steps:
summation of huge expressions in functionals, their differentiation, solving linear
algebraic systems in order to obtain coefficients of approximate solution in poly-
nomial basis. CAS can successfully cope with this work. Computer derivation
of the formulas of the method gives additional advantages. Optimization with
respect to the rate of computation by obtained formulas, analytical and numer-
ical verification of these formulas by using the same or another CAS, conversion

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 367–378, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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of constructed formulas to arithmetic operators of FORTRAN and C program-
ming languages can be made. All these factors facilitate greatly the process and
reduces the time for reaching final result. Different modifications of the method
are easily available using computer programs in CAS. Modifications related to
replacement of basis, collocation nodes, matching conditions etc., can be made
just by changing functions involved in the program.

2 Description of the CLS Method and Its Construction
Algorithm

The basic idea of the method is to use the collocation method in combination
with the least-squares method to obtain numerical solution. We call such a com-
bined method “collocation and least-squares” method (CLS). One of the reasons
for using this combination was that the application of the least-squares method
often improves the properties of a numerical method. In turn, the collocation
method is simple in implementation and gives good results when solving bound-
ary - value problems for ODEs, both linear and nonlinear [6].

Let us consider the boundary - value problem for Navier—Stokes equations:⎧⎪⎪⎨⎪⎪⎩
Re−1 8 vj − v1 ∂vj

∂x1
− v2 ∂vj

∂x2
− ∂p

∂xj
= fj , (x1, x2) ∈ Ω, j = 1, 2,

div v = 0,
v|∂Ω = V .

(1)

Here Re is the Reynolds number, ∂Ω is the boundary of domain Ω. The approx-
imate solution is found as a piecewise polynomial function on a regular grid. Let
us introduce the following denotations: h is the half - width of the cell, (x1m, x2m)
are the coordinates of mth cell center, y1 = (x1 − x1m)/h, y2 = (x2 − x2m)/h
are the local coordinates in the cell, u(y1, y2) = v(x1, x2), q(y1, y2) = hp(x1, x2).
Then equations (1) in local variables can be written as follows:

8uj − Re
(
h

(
u1
∂uj

∂y1
+ u2

∂uj

∂y2

)
+

∂q

∂yj

)
= Reh2fj, j = 1, 2, (2)

div u = 0, (3)
u|∂Ω = U . (4)

The essential feature of the Navier— Stokes equations consists in the presence
of nonlinear terms. Therefore, linearization of these equations is needed to obtain
a system of linear equations used to find the solution. This is carried out as
follows. Let some approximate solution (ŭ1, ŭ2, q̆) be known. Let us represent
the desired improved solution in the form: u1 = ŭ1 + û1, u2 = ŭ2 + û2, q = q̆+ q̂.
Substituting this representation in equations (2) and neglecting the second-order
terms û1ûj,y1, û2ûj,y2, j = 1, 2, we obtain the linearized equations:

8 ûj−Reh(ŭ1ûj,y1 + ŭ2ûj,y2 + û1ŭj,y1 + û2ŭj,y2)−Re q̂yj = Fj , j = 1, 2, (5)

where Fj = Re(h2fj + h(ŭ1ŭj,y1 + ŭ2ŭj,y2) + q̆yj )−8ŭj, vk,y = ∂vk

∂y .
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Improvement of solution in each cell is sought for in the form:⎛⎝ û1

û2

q̂

⎞⎠ =
∑

j

ajmϕj , (6)

where ϕj are basis vector - functions with three components,m is the cell number.
Coefficients ajm will be determined from the collocation equations and

matching conditions on the boundary of adjacent cells or boundary conditions
at ∂Ω.

The selected basis functions assume that the components of the velocity
vector and the pressure are polynomials. We have implemented a variants of the
method where the velocity components are second-order polynomials, and the
pressure is either linear function or second order polynomial too. Moreover, it
is required that solution (6) satisfies the continuity equation div u = 0 due to
the selection of basis functions. It means that the continuity equation will be
satisfied in the whole domain on any numerical solution found.

For the case of pressure approximation by the second-order polynomial, there
are 15 basis functions. Below, we will write down the summation indices in all
formulas corresponding to this case.

It is necessary to specify the matching conditions at the intercell boundaries
to obtain a unique piecewise polynomial solution. The continuity conditions of
the following expressions are considered as matching conditions:

∂Un

∂n
− ηp+ ηUn,

∂Ut

∂n
+ ηUt. (7)

Here Un and Ut are the velocity components normal and tangential to the bound-
ary, respectively, n is the outside unit vector normal to the cell, η is a positive
parameter. The latter can affect the conditionality of the obtained system of
linear algebraic equations and the convergence rate. Generally speaking, these
conditions cannot be satisfied along the whole intercell boundary. We satisfy
them in terms of least squares at eight points at the cell boundary.

If the cell boundary coincides with the domain boundary, then velocity vector
is specified at two points at this boundary. Moreover, the pressure is specified
at the lower left corner of the domain.

Collocation equations of (5) at four points inside the cell are added to the
matching conditions (boundary conditions). In local coordinates, the matching
conditions are specified at points (±1,±ζ), (±ζ,±1), the boundary conditions
are specified at points (±1,±ξ), (±ξ,±1), the collocation equations are specified
at points (±ω,±ω). Values ζ, ξ, ω are positive and less than unity. They can be
chosen in different manner to obtain a well - conditioned matrix of the system of
linear algebraic equations.

As a result, the following system of linear algebraic equations is obtained:

15∑
k=1

Blkakm = Fl, l = 1, . . . , 24. (8)
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Here the first four equations were obtained from matching conditions (7) or the
boundary conditions at the bottom boundary, the next four equations were ob-
tained from the corresponding conditions at the right boundary, equations at
l = 9, . . . , 12 were obtained from conditions at the top boundary, and equa-
tions at l = 13, . . . , 16 were obtained from the conditions at the left boundary.
Equations at other l were obtained from the collocation equations.

The system (8) is overdetermined: it involves more equations than unknowns.
Let us consider the following two functionals to define what is considered to be
a solution of this system:

Φ1 =
16∑

l=1

(
∑

j

Bljajm − Fl)2, Φ2 =
24∑

l=17

(
∑

j

Bljajm − Fl)2. (9)

The first functional corresponds to the sum of residual squares of equations
obtained from the matching or boundary conditions, the second one corresponds
to the sum of the residual squares of the collocation equations. Solution of (8) is
found from minimizing these functionals, with Φ1 being minimized with respect
to 10 first ajm at fixed others, and Φ2 being minimized at fixed ajm, j = 1, . . . , 10
with respect to the rest of ajm.

Thus, we have the following system of equations for determining the coeffi-
cients ajm in each cell:

15∑
j=1

Dljajm = F̃l, l = 1, . . . , 15. (10)

It involves the same number of equations and unknowns.
The assemblage of these systems over all cells of the domain gives a global

system of linear algebraic equations. A method of iterations over the subdomains
is applied to solve this system. Each grid cell was treated as a subdomain. The
solution is improved for each cell individually. At each iteration when improving
the solution in the mth cell, solution in adjacent cells either already has been
improved or was taken from previous iteration step. System (10) is solved by
direct elimination method in each cell.

3 Application of CAS to Derive Formulas of the Method

To obtain formulas of CLS method we made programs in CAS REDUCE and
Maple. These programs use the following elementary operations of CAS men-
tioned: arithmetic operations, functional dependencies, series summation, differ-
entiation, substitutions, operations with common factors, simplifications, loops,
operations with matrices. Governing equations, basic functions, form of the ap-
proximate solution, form of boundary and matching conditions, coordinates of
collocation, matching and boundary nodes are the input parameters of the pro-
gram. Quantities η, ξ, ζ, ω are used as symbols in order to obtain formulas in gen-
eral form. For example, we introduce arrays a[ ] and B[ ] for coefficients aj on cur-
rent and previous iteration. Then we introduce functions u(y1,y2), v(y1,y2),
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q(y1,y2) corresponding to û1, û2, q̂ and functions uu(y1,y2), vv(y1,y2),
qq(y1,y2) corresponding to ŭ1, ŭ2, q̆:

u(y1,y2):=sum(’a[j]*fi1[j]’,’j’=1..15);
uu(y1,y2):=sum(’B[j]*fi1[j]’,’j’=1..15);
v(y1,y2):=sum(’a[j]*fi2[j]’,’j’=1..15);
vv(y1,y2):=sum(’B[j]*fi2[j]’,’j’=1..15);
q(y1,y2):=sum(’a[j]*fi3[j]’,’j’=1..15);
qq(y1,y2):=sum(’B[j]*fi3[j]’,’j’=1..15);

Here fi1[j], fi2[j], fi3[j] stand for the first, second, and third component of basis
vector-function ϕj . After filling in arrays fi1[j], fi2[j] and fi3[j] we write down
the equations (5):

l1(y1,y2):=diff(u(y1,y2),y1$2)+diff(u(y1,y2),y2$2) -
R*(diff(q(y1,y2),y1)+h*(uu(y1,y2)*diff(u(y1,y2),y1)+vv(y1,y2)
*diff(u(y1,y2),y2)+u(y1,y2)*diff(uu(y1,y2),y1)+v(y1,y2)*diff(
uu(y1,y2),y2)))-R*(h*h*f1(y1,y2)+diff(qq(y1,y2),y1)+h*(uu(y1,
y2)*diff(uu(y1,y2),y1)+vv(y1,y2)*diff(uu(y1,y2),y2)))+diff(uu
(y1,y2),y1$2)+diff(uu(y1,y2),y2$2);

l2(y1,y2):=diff(v(y1,y2),y1$2) + diff(v(y1,y2),y2$2) -
R*(diff(q(y1,y2),y2)+h*(uu(y1,y2)*diff(v(y1,y2),y1)+vv(y1,y2)
*diff(v(y1,y2),y2)+u(y1,y2)*diff(vv(y1,y2),y1)+v(y1,y2)*diff(
vv(y1,y2),y2)))-R*(h*h*f2(y1,y2)+diff(qq(y1,y2),y2)+h*( uu(y1,
y2)*diff(vv(y1,y2),y1)+vv(y1,y2)*diff(vv(y1,y2),y2)))+diff(vv
(y1,y2),y1$2)+diff(vv(y1,y2),y2$2);

In order to specify the collocation equation we substitute coordinates of collo-
cation node in l1(y1,y2) and l2(y1,y2) (W stands for ω):

eq_coll[1]:=subs(y1=-W,y2=-W,l1(y1,y2));
. . .
ek_coll[8]:=subs(y1=W,y2=W,l2(y1,y2));

Matching and boundary conditions are specified in the same manner.
We distinguish several types of cell: all sides of the cell are inside the domain

(“inner cell”); one of the sides is on the domain boundary (4 types depending on
position of this side); two adjacent sides are on the domain boundary (4 types
too). Once all equations have been specified, the program collects functional of
the sum of squared residuals of collocation equations and functionals of the sum
of squared residuals of matching and boundary conditions for all mentioned cell
types. The functional collected from the squared residuals of collocation equa-
tions does not depend on whether the cell side lies on the domain boundary
or not and hence this functional is common for all cell types. The functional
collected from squared residuals of matching and boundary conditions depends
on the cell type. That is why we collect one functional corresponding to col-
location equations and 9 functionals corresponding to matching and boundary
conditions for different cell types. Collecting the “collocation” functional was
made as follows:
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Phi_coll:=sum(’eq_coll[k]^2’,’k’=1..8);

Other functionals were collected analogously.
Then the program finds elements of matrices D and right-hand side vectors

F̃ in (10) for all mentioned cell types by differentiating corresponding functionals
with respect to unknown coefficients aj and posing factors at aj to corresponding
places in matrices. Thus, for example, to obtain the 11th equation in (10) we
should differentiate the functional Φ2 with respect to the coefficient a11:

row[11]:=diff(Phi_coll,a[11]);

and the element with indices i, j in the matrix D can be found by differentiating
row[i] with respect to aj :

for i from 1 to 15
do
for j from 1 to 15 do
D[i,j]:=diff(row[i],a[j]);
od;

od;

In order to find the right-hand side F̃ in (10) we should substitute zeros in places
of aj into the expressions - row[i] (because row[i] corresponds to the equation
∂Φ1 or 2

∂ai
= 0):

for i from 1 to 15
do
FF[i]:=subs(a[1]=0,a[2]=0,a[3]=0,a[4]=0,a[5]=0,a[6]=0,
a[7]=0,a[8]=0,a[9]=0,a[10]=0,a[11]=0,a[12]=0,a[13]=0,
a[14]=0,a[15]=0, - row[i]);

od;

There are two possible ways to go further. The first one is to solve this system
symbolically and to obtain symbolic formulas for every coefficient aj in (6). This
way is advantageous when a wide reduction is possible and formulas involve
comparatively few number of arithmetic operations. The second way is to solve
this system numerically already in the special program for finding numerical
solution of the whole problem. It is also possible to combine rationally these two
approaches.

The symbolic representations of elements in the matrices D and vectors F̃
which are obtained from the functionals corresponding to matching and bound-
ary conditions are not very huge. But those elements that correspond to colloca-
tion equations are very huge. That is why we were unable to solve systems (10)
symbolically and to obtain explicit expressions for aj . So we have used the sec-
ond approach mentioned above: the solution of this system is found numerically
every time the improvement of approximate solution (ŭ1, ŭ2, q̆) is sought for. For
example, the representation for element D11,11 occupies 5 rows, and expression
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for F̃11 occupies 32 rows. Obviously, it is almost impossible for a researcher to
derive these formulas with pen and paper without errors, and only computer
algebra system can do this.

Moreover, it is possible to check the obtained formulas inside the CAS in
which they were derived. Let us take some second order polynomials as an ex-
act solution. Substituting it into equations (1) we obtain right-hand sides fi of
governing equations. Now, to check formulas for particular cell type we start
calculating numerical solution only in the cell of interest taking right-hand sides
of boundary and matching conditions from the exact solution. If the initial ap-
proximation (ŭ1, ŭ2, q̆) in the cell is also the exact solution then the coefficients
aj of the improvement (6) of numerical solution will be equal to zero. If the
initial approximation is equal to perturbed exact solution then the improvement
of numerical solution will give exact solution in a few iterations. If such tests fail
then it means that there are errors in the formulas.

Fig. 1. The relationship between conditionality number and parameter η for the Stokes

equations

We have also used CAS to analyse the condition number of the matrix D.
It seems impossible to perform this analysis for the matrix of the method for
Navier— Stokes equations because this matrix involves elements which are de-
pendent on the numerical solution on the previous iteration and hence it changes
from iteration to iteration. But in the case of Stokes equations the matrix D is
independent of the numerical solution. It turned out to be possible for the cond
operator to give symbolic formula for the condition number in this case. Then
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we used the plot operator to visualize the dependence of the condition number
on the parameter η at different Reynolds numbers. Figure 1 presents this rela-
tionship at Reynolds number equaling 10. One can see that there is the value of
η at which the condition number is minimal. It is well known that a large value
of condition number affects the rate of convergence and the accuracy of compu-
tations and can cause the iteration method to be divergent. That is why it is
very important to obtain SLAE with minimal possible condition number. Thus,
CAS can help us to select the optimal value of the parameter of the method.

When the CAS program is verified on some variant of the method, it keeps
the researcher from many possible errors at deriving formulas of new variants of
the method. As a result, CAS allows efficient verification of the formulas of new
method and facilitates and speeds up the formulas deriving procedure.

4 Some Numerical Results

This section presents the results of computations of test problems and model
problems of a viscous flow in a cavity and flow over a backward - facing step.
The computations of the test problems give information required for evaluation
of the quality of discrete model. Subsequent solution of specific problems makes
it possible to estimate the effectiveness and applicability of numerical algorithms
developed.

For separated flows, including flows in a cavity and flow over a backward -
facing step, special attention should be given to correct reproduction of a detailed
flow pattern which is determined by the location of separation and reattachment
points, sizes of the main and secondary vortices, etc. That is why a comparison
of the results obtained in this study with those of other researches [7–10, 12–16]
was made.

4.1 Test With Exact Solution Being Known

The validity of the formulas obtained was tested in the computational program
on a number of problems with known exact solution beyond the basis. The follow-
ing problem was used as one of the tests. The domain is a unity square. Trigono-
metric expressions for (v1, v2, p) were taken as exact solution: v1 = − sin(π(x2−
0.5)/(1 − 2l)) cos(2πx1)/(2(1 − 2l)), v2 = sin(2πx1) cos(π(x2 − 0.5)/(1 − 2l)),
p = (cos(π/2x1) + cos(π/2x2))/2. We have assumed l = 0.25 in the numerical
experiments. The substitution of this solution into (1) introduces terms of ex-
ternal forces and springs types into the right - hand sides, which are the causes
of the liquid flow defined by this solution. Then, the CLS method was applied
to find a numerical solution of the system (1) with right-hand sides obtained.

Under this test, numerical experiments were made on a sequence of grids
to find the convergence order of the method. Differences between exact and
numerical solutions were calculated on grids with step sizes 1/10, 1/20, 1/40
and 1/80. Comparative results of the velocity and pressure error computations
on the grid sequence at the Reynolds number of 100 for variants of the CLS
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method with linear and quadratic pressure approximation for the test described
above are presented in table 1.

Table 1. Defining the convergence order on grid sequence, Re=100

Linear approximation Quadratic approximation
Grid step of pressure of pressure

Error Error
Error decrease Error decrease

factor factor

P r e s s u r e

1/10 9.5e-2 1.4e-1

1/20 2.3e-2 4.1 8.9e-3 15.8

1/40 4.9e-3 4.7 1.4e-3 6.4

1/80 1.0e-3 4.9 2.4e-4 5.9

V e l o c i t y

1/10 3.7e-2 6.0e-2

1/20 8.9e-3 4.2 4.9e-3 12.3

1/40 2.3e-3 4.0 3.1e-4 15.8

1/80 5.1e-4 4.5 2.9e-5 10.7

One can see that the solution error improves by, at least, a factor of four
when the grid step decreases by a factor of two both for the linear and the
quadratic pressure approximation. Hence, the convergence order of the method
is 2 or higher for smooth solutions.

Both the convergence order and the accuracy of pressure computing are im-
proved in comparison with the case of pressure approximation with linear poly-
nomials. It is worth noting that the convergence order and the accuracy of the
velocity components are also improved. Thus, the improvement of the pressure
approximation order leads to the improvement of the whole solution accuracy.

The fact that the numerical solution converges to the exact solution with the
order expected is the additional evidence of correctness of formulas derived in
CAS.

4.2 Flow Over Backward-Facing Step

The computation of the viscous liquid flow over a backward - facing step was
performed using the proposed variant of CLS method with the pressure approx-
imation by second - order polynomials. The step height was assumed to be equal
to the half of the maximum domain height. A parabolic velocity profile was
specified at the inlet, and another parabolic profile with the same discharge was
specified at the outlet. The pressure was specified at the lower left corner of the
inlet channel to determine it uniquely.

As pointed out in [7], the flow behind the step affects the flow behaviour in
the inlet channel, namely the parabolic profile of the flow is distorted near the
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a

b

Fig. 2. Flow over step, Re = 1 (a), Re = 800 (b)

sudden expansion point. That is why the length of the inlet channel should be
set essentially nonzero.

The computations were made in the Reynolds number range from 1 to 800.
It is known [7] that the flow is laminar within this range.

Figure 2 shows the streamlines at different Reynolds numbers. The stream-
lines were reconstructed from the values of the velocity components obtained by
the CLS method. The scale of ordinate axis was taken two times larger than the
scale of abscissa axis for better visualization. Obviously, recirculation regions
behind the step appear and expand with increasing Reynolds number.

The validity of the qualitative structure of the flow is confirmed by physi-
cal experiments. The coordinates of the separation and reattachment points are
distinctive quantitative values that define the flow structure. At low Reynolds
numbers there is good agreement in these coordinates obtained by CLS method
and by numerical results of other researches. At Re = 800 the first recirculation
region in experiment and 3D computations is longer than in 2D computations,
including the computations performed in the present study. Apparently, this ef-
fect is caused by an essential three - dimensionality of this flow at large Reynolds
numbers. As noted in [8], a good coincidence of the 2D results and the experi-
mental data is observed at Reynolds numbers up to 500.

4.3 Flow in the Lid-Driven Cavity

The computations of the flow in a cavity with driven lid were performed for
the Reynolds numbers from Re=1 to Re=2000 for different depth-to-width ra-
tios. The streamline patterns for Reynolds numbers 1 and 1000 in the square
cavity are shown in Figure 3. The vortex center is marked by the ’+’ sign. An
enlargement of the bottom corner vortices and a shift of the main vortex center
initially along the lid motion direction and, then, to the cavity center are seen to
occur when the Reynolds number increases. This effect is confirmed by physical
experiments [11] and computations [12,13,14,15,16].

A comparison of the maximum and minimum velocity values along the ver-
tical and horizontal cavity centerlines with the results published in [13,14,15,16]
shows that distinctive values of the velocity profile obtained by the CLS method
agree well with those obtained by other researchers.

It is worth to note that in our computations the corner vortices are present
even at Reynolds number 1, although they are very weak.
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Fig. 3. Streamlines of the flow in the cavity. Re = 1 (left), Re = 1000 (right).

5 Summary

In the present study we tried to show the very important role of CAS for con-
structing a numerical method for solving equations of mathematical physics.
The CAS program for constructing the formulas of the method is flexible and
allows to construct other modifications of the method. The usage of CAS keeps
the researcher from many possible arithmetical errors and allows one to per-
form symbolic manipulations with very huge analytical expressions. Computer
derivation of the formulas also gives additional advantages. Optimization with
respect to the rate of computation by obtained formulas, analytical and numer-
ical verification of these formulas by using the same or another CAS, conversion
of constructed formulas to arithmetic operators of FORTRAN and C program-
ming languages can be made. All these factors greatly facilitate the process and
reduce the time for reaching final result.

Hence, the advantage of the computer algebra application for construction
and analysis of the formulas for a numerical method is obvious.
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Nonlinear Waves in a Rod
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Abstract. Computer algebra system is applied for studying the elastic
torsional nonlinear waves in a rod using the second order approximation.
It is shown that the nonlinear correction to the classic linear solution is
a combination of a stationary longitudinal wave, a progressive longitu-
dinal wave, and a progressive transverse wave. The solution describing
a stationary longitudinal wave is a quadratic polynomial of cylindrical
functions. The expressions for a progressive longitudinal wave and a pro-
gressive transverse wave inevitably include quadratures from polynomials
of the cylindrical functions.

1 Introduction

Elastic torsional linear waves in a rod are studied in almost all classic books on
elastic waves in solids and give a typical example of transverse waves (S-waves)
(see [1]–[3]). The purpose of this work is to calculate the nonlinear quadratic
correction for the torsional waves. This correction is naturally decomposed in
three terms: the stationary longitudinal wave, the progressive longitudinal wave,
and the progressive transverse wave.

The main result concerns the stationary longitudinal waves. Substituting the
expression

uθ = aJ1 (kr) sin (Kz − ωt) , ur = 0, uz = 0, (1)

which describes the torsional waves in the linear approximation, in the nonlinear
terms of elasticity equation, we obtain a quadratic polynomial in Bessel functions
J0(kr) and J1(kr) whose coefficients are rational functions of r. When we search
for a nonlinear correction in the same form

R00J
2
0 +R01J0J1 +R11J

2
1 , (2)

where RAB are polynomials of r−1 and r with unknown coefficients and of un-
known degree n

RAB =
n∑

k=−n

CAB
k rk. (3)

we substitute (2) in linear part of the elasticity equation and obtain overdeter-
mined systems of linear algebraic equations for CAB

k . The key point of consider-
ation is that these overdetermined systems are compatible for the case of the
stationary longitudinal waves. This allows us to construct explicit expressions

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 379–386, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



380 A. Shermenev

for the nonlinear correction, which are homogenous polynomials of the Bessel
functions J0(kr) and J1(kr). The result can be interpreted as integrability of
some cubic expressions of Bessel functions. The situation is similar to the case
of waves in the fluid and gas where the nonlinear solution always is a quadratic
polynomial of the cylindrical functions. (Classic examples are studied in [4]–[7],
and the general result is proved in [8]). Presence of a standing wave means that
the rod with torsional waves is subjected to a constant radial deformation.

The expressions describing the progressive longitudinal wave and the progres-
sive transverse wave include a solution of a non-homogenous ordinary differential
second-order equation of the form

Yrr +
1
r
Yr + γY + J(r)2 = 0 (4)

which can be expressed in terms of quadratures from cubic polynomials of Bessel
functions. Functions of this type appear also in other nonlinear problems and
deserve detailed study which is started in this paper. We are focused on search-
ing for particular solutions of equations (4) assuming that remaining solutions
can be obtained by addition of Bessel functions. Analysis of the second-order ap-
proximations in nonlinear mathematical physics demands a considerable amount
of symbolic calculations and hardly can be performed without computer algebra
system. Mathematica 4.1 was used for writing this article.

2 Nonlinear Theory of Elasticity

Here we shall remind basic formulas of the three-dimensional nonlinear elasticity
theory (See [1]). The elastic energy of an isotropic solid in the third approxima-
tion can be expressed in terms of a vector function of deformation u(x1, x2, x3)
as follows:

E = μ
4

(
∂ui

∂xk
+ ∂uk

∂xi

)2

+ λ
2

(
∂ul

∂xl

)2

+
(
μ+ A

4

)
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∂ul

∂xi
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+
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2 + λ

2

)
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(
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(5)

Calculating a stress tensor

σij =
∂E

∂ (∂ui/∂xk)
, (6)

we obtain

σik = μ
(
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)
+ λ
(
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Thus, the nonlinear elasticity equation has the following form:

∂2ui

∂t2
− μ∂

2ui

∂x2
k

− (μ+ λ)
∂2ul

∂xl∂xi
= Fi (8)

where

Fi =
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μ+ A

4
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∂x2
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(9)

We assume that

u = ε grad ϕ+ ε2 grad ϕ′′ + ε rot ψ + ε2 rot ψ′′, (10)

and try to find analogous decomposition of equation (8).

3 Special Case

We consider solutions which have the following form in the linear approximation

u1 = ∂x2U, u2 = −∂x1U, u3 = 0, (11)

where
U = εX(x1, x2) sin (Kx3 − ωt) . (12)

A deformation u satisfies the linear version of the elasticity equation (8) if
and only if the function X(x1, x2) is a solution of the Helmholtz equation

Xx1x1 +Xx2x2 +
ω2 −K2μ

μ
X = 0 (13)

or differs from its solution by constant.
If

X(x1, x2) = X

(√
x2

1 + x2
2 = r

)
, (14)

we obtain a torsional wave in a rod. Substituting (14) in (13), we have the
following equation for X (r)

X ′′ +
1
r
X ′ +

ω2 − μK2

μ
X = 0. (15)

Its solution regular at zero is the Bessel function

X (r) = J0 (kr) , (16)

where k = ω2−μK2

μ . Then we have

uθ = aJ1 (kr) sin (Kz − ωt) , ur = 0, uz = 0. (17)
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4 Calculation of Nonlinear Terms

Substituting (12) in (9), we have

F1 = C̃1(x1, x2) + C1(x1, x2) cos (2Kz − 2ωt)
F2 = C̃2(x1, x2) + C2(x1, x2) cos (2Kz − 2ωt)
F3 = C̃3(x1, x2) + C3(x1, x2) sin (2Kz − 2ωt)

(18)

where C̃i(x1, x2) and Ci(x1, x2) are linear combinations of

XXx1 , Xx2Xx1x2 , Xx1Xx1x1 , Xx1x2Xx1x1x2 , XXx1x1x1 , Xx1x1Xx1x1x1 (19)

with numerical coefficients (these coefficients can be explicitly calculated in terms
of μ, λ, A, B, K, and ω. They do not depend on C).

We would like to represent Fi in the form

F = grad ϕF + curl ψF (20)

Potential ϕF (x1, x2, x3) can be found using the following condition

∂x1

(
F1 − ϕF

x1

)
+ ∂x2

(
F2 − ϕF

x2

)
+ ∂x3

(
F3 − ϕF

x3

)
= 0 (21)

Naturally, we have

ϕF = ϕF
0 + ϕF

2 cos (2Kz − 2ωt) (22)

Assume that a function Q(x1, x2) satisfies the condition

Qx1x1 +Qx2x2 − 4K2Q +X2 = 0 (23)

Then computer algebra calculations give the expressions

ϕF
0 = 1

16μ2

(
K2μ− ω2

) (
K2μ (A+ 4B + 4λ+ 4μ)

− 2 (A+ 2B + 2λ+ 4μ)ω2
)
X2

+ 1
16K
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(
X2
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+X2

x2

)
+ 1

2μ

(
K2μ− ω2

)
(A+ 2B + λ+ 3μ)XXx1x1

+ 1
2 (A+ 2B + λ+ 3μ)

(
X2

x1x1
+X2

x1x2

)
;

ϕF
2 = K2(A+4μ)ω4

2μ2 Q(x1, x2)− 1
16μ2

(
K4μ2 (A+ 4B + 4λ+ 4μ)

− K2μ (A+ 8B + 8λ+ 4μ)ω2 + 2 (A+ 2B + 2λ+ 4μ)ω4
)
X2

+ K2

16 (A+ 4B + 4λ+ 4μ)
(
X2
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+X2
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)
+ 1
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μ

)
(A+ 2B + λ+ 3μ)XXx1x1

− 1
2 (A+ 2B + λ+ 3μ)

(
X2

x1x2
+X2

x1x1

)
,

(24)

which determine a potential ϕF satisfying (21).
Without loss of generality, we can assume that vector potential ψF has the

following form

ψF =
(
ψF

1 (x1, x2) sin (2Kx3 − 2ωt) , ψF
2 (x1, x2) sin (2Kx3 − 2ωt) , 0

)
. (25)
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Therefore, we have

F1 − ϕF
x1

= 2KψF
2 cos (2Kx3 − 2ωt) ,

F2 − ϕF
x2

= −2KψF
1 cos (2Kx3 − 2ωt) ,

F3 − ϕF
x3

=
(
ψF

2x1
− ψF

1x2

)
sin (2Kx3 − 2ωt) .

(26)

Hence

ψF
1 = K(A+4μ)

4

(
−ω4

μ2Qx2 + ω2

2μXXx2 +Xx1Xx1x2 −Xx2Xx1x1

)
,

ψF
2 = K(A+4μ)

4

(
ω4

μ2Qx1 +
ω2(2K2μ−3ω2)

2μ XXx1 −Xx2Xx1x2 −Xx1Xx1x1

)
.

(27)
5 P−Waves

A potential ϕ′′ from expression (10) satisfies the equation

(λ+ 2μ)
(
ϕ′′

x1x1
+ ϕ′′

x2x2
+ ϕ′′

x3x3

)− ϕ′′
tt + ϕF = 0 (28)

We assume that ϕ′′ = f0 (x1, x2) + f2 (x1, x2) cos (2Kx3 − 2ωt) and have the
following equations for f0 and f2:

(λ+ 2μ) (f0x1x1 + f0x2x2) + ϕF
0 = 0 (29)

(λ+ 2μ)
(
f2x1x1 + f2x2x2 − 4K2f2

)
+ ϕF

2 = 0 (30)

Stationary Solution. Let Q0 (x1, x2) be a solution of equation

Yx1x1 + Yx2x2 +X2 = 0 (31)

Then it can be checked that the expression

S = (−3Aμ−4Bμ−8μ2)K2+(4A+8B+4λ+12μ)ω2

32μ(λ+2μ) X2

+ A+2B+λ+3μ
8(λ+2μ)

(
X2

x1
+X2

x2

)
+ (−3Aμ−4Bμ−8μ2)K2+(4A+8B+4λ+12μ)ω2

32μ(λ+2μ) Q0

(32)

gives a particular solution of equation (29).
Assume that all considered functions depend only on r =

√
x2

1 + x2
2 and

denote J0 (kr) by J . Then equation (31) takes the form

Yrr +
1
r
Yr + J2 = 0 (33)

and the expression

QPolar
0 = −1

2
r2J2 +

r

2
(
K2 − ω2

μ

)JJ ′ +
r2

2
(
K2 − ω2

μ

)J ′2 (34)

is its particular solution.
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Expression for S takes the form

SPolar (r) = (−3Aμ−4Bμ−8μ2)K2+(4A+8B+4λ+12μ)ω2

32μ(λ+2μ) J2

+ A+2B+λ+3μ
8(λ+2μ) J ′2

+ (−3Aμ−4Bμ−8μ2)K2+(4A+8B+4λ+12μ)ω2

32μ(λ+2μ) QPolar
0

(35)

Expression for Deformations:

u1 = SPolar
x1

, u2 = SPolar
x2

, ur = SPolar′, uθ = 0. (36)

Periodic Solution. Let Q2 (x1, x2) be a solution of equation

Yx1x1 + Yx2x2 +
4
(
ω2 −K2 (λ+ 2μ)

)
8 (λ+ 2μ)

Y +X2 = 0. (37)

Then it can be checked that the expression
(3A+4B+8μ)K2μ(λ+2μ)+4λ(A+2B+λ+3μ)ω2

32μ(λ+2μ)2
X2

+A+2B+λ+3μ
8(λ+2μ)

(
X2

x1
+X2

x2

)
+ (A+4μ)K2ω2

8μ2 Q2

(38)

gives a particular solution of equation (30). Assume that all considered functions
depend only on r =

√
x2

1 + x2
2. Then equation (37) takes the form

Yrr +
1
r
Yr +

4
(
ω2 −K2 (λ+ 2μ)

)
8 (λ+ 2μ)

Y + J2 = 0 (39)

and, therefore, Q2 (r) must be a particular solution of this Bessel-type inhomo-
geneous equation.

6 Numerical Example, Stationary P−Waves

Here we present an example of stationary P -waves for the following values of
parameters:

λ = 11.6, μ = 8.4, A = 11, B = −15.8, K = 17.2, ω = 2 .

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

Fig. 1. Radial deformation ur versus radius r
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7 S−Waves

Equation for ψ′′ has the form

μ
(
ψ′′

x1x1
+ ψ′′

x2x2
+ ψ′′

x3x3

)− ψ′′
tt + ψF = 0 (40)

We assume that

ψ′′ = (a1 (x1, x2) sin (2Kx3 − 2ωt) , a2 (x1, x2) sin (2Kx3 − 2ωt) , 0)

and have the following equations for a1 (x1, x2) and a2 (x1, x2):

μ (a1x1x1 + a1x2x2)− 4
(
K2μ− ω2

)
a1 + ψ1 = 0

μ (a2x1x1 + a2x2x2)− 4
(
K2μ− ω2

)
a2 + ψ2 = 0 (41)

Then it can be checked that the expressions

a∗1 (x1, x2) = (A+4μ)K
8μ XXx2 − (A+4μ)Kω2

16μ2 Qx2,

a∗2 (x1, x2) = − (A+4μ)K
8μ XXx1 + (A+4μ)Kω2

16μ2 Qx1

(42)

give particular solutions of equations (41). Assume that all considered functions
depend only on r =

√
x2

1 + x2
2. Then equation (23) for Q (r) takes the form

Yrr +
1
r
Yr +K2Y + J2 = 0 (43)

and, therefore, Q (r) must be a particular solution of the Bessel type equation.

8 Conclusions

We have constructed a solution of the nonlinear equation of the elasticity theory
whose linearization gives classic torsional waves in a rod with circular section.
The constructed solution is decomposed into a stationary (standing) longitudi-
nal wave, a progressive longitudinal wave, and a progressive transverse wave.
The standing wave is represented by explicit quadratic expression of cylindri-
cal functions. Its presence means a stationary radial deformation of a rod with
torsional waves. The expressions for progressive waves include quadratures from
cubic polynomials of cylindrical functions.
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Abstract. We study solution methods for boundary value problems as-
sociated with the static Kirchhoff rod equations. Using the well known
Kirchhoff kinetic analogy between the equations describing the spinning
top in a gravity field and spatial rods, the static Kirchhoff rod equations
can be fully integrated. We first give an explicit form of a general solution
of the static Kirchhoff equations in parametric form that is easy to use.
Then by combining the explicit solution with a minimization scheme,
we develop a unified method to match the parameters and integration
constants needed by the explicit solutions and given boundary condi-
tions. The method presented in the paper can be adapted to a variety
of boundary conditions. We detail our method on two commonly used
boundary conditions.

1 Introduction

The study of deformations in elastic rods can be applied in several fields. Ex-
amples of slender structures in structural engineering are submarine cables or
tower cables [1]; in biology elastic rods are often used to study supercoiling and
other mechanical behaviors of DNA strands [2,3,4,5]. And in daily life we often
see string objects or filaments, like telephone cords, willow branches, climbing
plants and human or animals hair [6].

Based on Newton’s second law, the Kirchhoff rod model provides a theoreti-
cal frame describing the static and dynamic behaviors of elastic rods [7,8]. The
Kirchhoff model holds for small curvatures of rods, but Kirchhoff rods can un-
dergo large changes of shape [9]. In particular, for the static case, all dependent
variables appearing in the equations are only functions of one spatial variable,
such as arc length of rods. Thus the static Kirchhoff equations are a set of ordi-
nary differential equations. Numeric method can be used to solve the associated
initial value problems (IVP) or boundary value problems (BVP), but the Kirch-
hoff equations are well known to be difficult for numeric methods due to their
stiffness [10].

On the other side, a well known feature of the Kirchhoff rod model is called
Kirchhoff kinetic analogy. Theoretically, the governing equations of the static
Kirchhoff rods are formally equivalent to the Euler equations describing the mo-
tion of a rigid body with a fixed point under external force fields [7]. In some

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 387–398, 2005.
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instances, the Euler equations are fully integrable [7], e.g. in the famous case
investigated by Sofia Kovalevskaya [11]. In the case of rods, the corresponding
example is the Kovalevskaya rod [12], the governing equations of which are fully
integrable by the analogy. So far, several achievements have been made to obtain
the symbolic solutions to the Kirchhoff equations. Shi and Hearst first obtained
an explicit form of solution of the static Kirchhoff equations [13]. Nizette and
Goriely gave a parameterized analytical solution for Kirchhoff rods with circular
cross-section and further made a systematic classification of all kinds of equilib-
rium solutions [7]. Goriely et al. studied the dynamical stability of elastic strips
by analyzing the amplitude equations governing the dynamics of elastic strips
[8].

Unfortunately the above achievements can not be easily used in real applica-
tions, because in real situations, generally we deal with finite rods constrained by
specific boundary conditions. Pai presented a two-phase integration method to
model the behaviors of the strand of surgical suture [14]. The full static Kirchhoff
equations including distributed external loading and initial curvatures of rods
are considered. Because of its fast computational speed it matches the request
of operating rods in real time for computer graphics. However the scheme is not
complete in theory. It may be used to determine the shape of rods in the case
where the final shape of rods has only small changes compared to the initial
shape of rods. In case of large changes in shape of rods, two steps of integration
may not result in a good precision. So one needs an iterative procedure, in which
the two-step integration will be repeated until a given precision is matched. How-
ever, we do not know of any formal proof that guarantees the convergence of the
approach. Combining the shooting method and monodromy method, da Fonseca
et al. in their study of the equilibrium solution of DNA gave a method for solving
a boundary value problem associated with the Kirchhoff rods [9]. As is pointed
out in [9], the scheme may fail if the end point of rods is moved into a forbidden
area.

1.1 Our Contribution

In this paper we develop a symbolic-numeric method for solving boundary value
problems associated with the static Kirchhoff rods, which works uniformly for
various BVPs. A major difference between our work and that presented in [9]
is that our method is motivated in the application of physics-based human hair
modeling. We use Kirchhoff rods to model hair fibers. It is possible that different
kinds of boundary conditions can come up. For example, there are at least two
kinds of boundary conditions commonly used in hair modeling. For the first case
of interest which was also dealt with in Pai’s model [14], the considered rod is
clamped at one end point and at the other end of rods external forces and torques
are exerted. Another possibility arising in applications is that the positions of
both ends of rods are given and at one end point of rods the orientation is given,
too. In [9] a similar boundary condition was dealt with, where only the positions
of both ends of rods were given at boundaries of rods. In our work we first
study the parametric closed form of solution to the static Kirchhoff equations
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and express it in a form easy to be used for matching user given boundary
conditions. Then we provide a method matching the given boundary conditions
by solving an unconstrained global minimization problem, the solution of which
is the set of parameters solving the parametric explicit form of the solution of the
static Kirchhoff equations. Our method is a general method for solving BVPs,
which can be adapted to a variety of boundary conditions. We will give detailed
results of our method being applied to the two boundary conditions mentioned
above.

2 Closed Form Solution of the Static Kirchhoff Equations

2.1 Geometric Representation of 3D Rods

A curly rod can approximately be represented by a spatial curve because of its
special geometric feature. The deformations of any point on the cross-section
of rods have little contribution to the final shape of rods subjected to exter-
nal loads. Thus the axis of rods, or the corresponding spatial curve of rods,
can be parameterized by arc length. At any time, for every point on the axis
of rods, say s, we have a position vector R(s) and three orthonormal vectors
d1 (s) ,d2 (s) ,d3 (s) constructing a local triad there. Without loss of generality
we may assume that the vector d3 (s) is the tangent of the rod at point s, while
vectors d1 (s) ,d2 (s) are located in its normal plane. In the rest of the paper we
assume that all variables and vectors are functions of the arc length s without
explicitly restating this assumption.

At any point on the rods we introduce a twist vector κ =
(
κ1, κ2, κ3

)
.

κi, i = 1, 2, 3, is the component along the ith local basis vector and κ1 and κ2

represent the rotation angle per unit arc length along the two local basis vectors
in the cross-section of rods, respectively, while κ3 represents the twist angle per
unit arc length along the tangent of rods. The twist vector can also be expressed
as κ = κ1d1 + κ2d2 + κ3d3 in the general fixed frame.

The generalized Frenet equations can be written as follows, cf. [7]:

d
ds

di = κ× di, i = 1, 2, 3 (1)

Using the matrix form of the equations and by introducing Euler angles (α,
β, γ) for local basis vectors, d1,d2,d3 we obtain{κ1 = −∂α

∂s cos γ sinβ + ∂β
∂s sin γ

κ2 = ∂α
∂s sin γ sinβ + ∂β

∂s cos γ
κ3 = ∂α

∂s cosβ + ∂γ
∂s

(2)

Another geometric relation about rods is the following:

d
ds

R = d (3)

When the tangent director of rods is determined, eqn. 3 can be integrated to get
the position of rods.
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2.2 Introduction to the Static Kirchhoff Equations and its
Boundary Value Problems

Consider an infinitesimal element of rods, using Newton’s second law, we can
obtain the equilibrium equations of rods [7]. In our work we will focus on the
static case with all distributed loads ignored. Then the control equations of rods
in the case of our interest are

d
ds

F = 0 (4)

d
ds

M + d3 × F = 0 (5)

where F and M are the tension and internal moment of rods, respectively.
In this paper we consider linear material laws and the constitutive relation-

ship of linear elasticity is given in terms of M and κ. This can be stated as
follows:

M = EI 1κ1d1 + EI 2κ2d2 + μJκ3d3 (6)

where E is elastic module, μ is shear module, I1 and I2 are the principal moment
of inertia of the cross-section of rods, J is a function of shape of the cross-section
of rods. In particular, for circular cross-sections, we have

I1 = I2 =
J

2
=
πR4

2

The rods can undergo large displacement, even when a linear constitutive rela-
tionship is used, cf. [7].

Following [7] eqns. 4, 5, and 6 can be rewritten in a scaled form, if the
assumption of circular cross-section of rods is used:

d
ds

F = 0 (7)

d
ds

M + d3 × F = 0 (8)

M = κ1d1 + κ2d2 + bκ3d3 (9)

where b = μJ
EI1

= 1
1+ν and υ is Poisson’s ratio.

The equations 1, 3, 7, 8, and 9 constitute a closed system consisting of seven
vectors of dependent variables, as F, M, κ, d1,d2,d3, R. However not all of the
seven vectors are needed when solving the system. If we choose F, κ,d1,d2 as
dependent variables and write the corresponding equations extracted from the
whole system in a component form, then we obtain

dF1

ds
+ κ2F3 − κ3F2 = 0

dF2

ds
+ κ3F1 − κ1F3 = 0

dF3

ds
+ κ1F2 − κ2F1 = 0
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dκ1

ds
+ κ2κ3(b − 1)− F2 = 0

dκ2

ds
+ κ1κ3(1 − b) + F1 = 0

d
ds

d1 = κ3d2 − κ2d1 × d2

d
ds

d2 = κ1d1 × d2− κ3 d1

where the tension of rods is expressed as F = F1d1 +F2d2 +F3d3, Fi, i =1,2 3,
is the ith component of the tension of rods given in local frames. The reduced
system can also be written in a concise form as follows:

dY
ds

= Ξ(F1,F2,F3, κ1, κ2, κ3,d1,d2)

where Y = (F1, F2, F3, κ1, κ2, κ3,d1,d2). With given boundary conditions we
can define a boundary value problem associated with the static Kirchhoff rods.
For example, at one end of rods, we can have the director vectors d1 and d2

and at other end of rods we can give stresses. However, because we do not know
the orientation at the right end of rods a priori, in general we cannot give the
curvatures and forces there in component form directly. But we can still give the
linear and angular momentum balances at that point, which will couple all the
dependent variables. In the paper we will first deal with this case of boundary
conditions.

In addition, the tangent director can be obtained by d3 = d1 × d2; and
M can be determined by using eqn. 9; the position vector can be obtained by
integrating eqn. 3.

2.3 Closed Form of Solution of Euler Angles

Using 2, in which curvatures and local triad of rods are represented in term of
Euler angles, eqn. 7, 8, and 9 are converted into the following three equivalent
equations [7]:

dα
ds

=
Mz −M3z

1− z2
(10)

dγ
ds

=
(

1
b
− 1
)
M3 +

M3 −Mzz

1− z2
(11)(

dz
ds

)2

= 2F (h− z)(1− z2)− (Mz −M3z)2 (12)

where z = cosβ, h = 1
F

(
H − M2

3
2b

)
and F , Mz, M3, H are constant system

integrals, which are defined as

Mz = M · ez

M3 = M · d3

H =
1
2
M · κ+ F · d3
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Here Mz represents the component of moments projected along axis z; M3 rep-
resents the component of moments projected along tangent director d3; H repre-
sents the elastic energy function of rods. And F is the magnitude of the constant
tension of rods which can be inferred from eqn. 7. In the following analysis, we
assume that without loss of generality F is along axis Z of the fixed general
frame.

The above three equations are not fully coupled. One can easily see that α
and γ can be obtained by directly integrating eqn. 10 and 11 as seen beneath if
the function z is known.

α =
∫ s

0

Mz −M3z(σ)
1− z(σ)2

dσ + α0 (13)

γ =
∫ s

0

[(
1
b
− 1
)
M3 +

M3 −Mzz(σ)
1− z(σ)2

]
dσ + γ0 (14)

where α0 and γ0 are the integration constants of Euler angles α and γ. We refer
to the paper [7] for more details on the explicit form of solutions of eqn. 12.
However in [7], the author only expressed the solution for a special boundary
conditions. This special case is not convenient to be used when specific initial
values are given. In our work we will give a closed of form solution that is easy
to use. It is assumed that the initial condition of eqn. 12 is, at s=0, z = z0 =
cos β0, where β0 is the initial value of Euler angle β given at a boundary point.
Then the explicit form of solution to eqn. 12 can be given as

z(s) = z1 + (z2 − z1)JacobiSN(λ(s+ s0), k)2 (15)

where λ =
√

F (z3−z1)
2 , k =

√
z2−z1
z3−z1

and s0 can determined by the given initial
conditions. And it is the root of the following equation:

JacobiSN(λs0, k) =
√
z0 − z1
z2 − z1 (16)

z1, z2 and z3 are the three real roots of the cubic polynomial of the right hand
side of eqn. 12 at z. These roots are assumed to be in the following order [7].

− 1 ≤ z1 ≤ z2 ≤ 1 ≤ z3 (17)

JacobiSN(x, k) is one of the Jacobi’s elliptic functions [7]. One can easily prove
in a symbolic system such as Maple that eqn. 15 is really the solution to eqn. 12.
According to the above analysis one can see that if at the boundary of rods the
three Euler angles α0, β0, γ0, and the material constant b and the four system
constants F , Mz, M3 and H are given, then all dependent variables of the system
can be determined.

3 Boundary Matching Method

According to the analysis in Sec. 2, the static Kirchhoff equations can be fully
determined if all the necessary parameters are known. However, in general these
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parameters do not obviously appear in the equations of boundary conditions. In
the following we develop a method for locating all these parameters which make
the explicit form of solution match the given boundary conditions. In this way
the BVPs associated with the static Kirchhoff rods are solved.

In particular, in eqns. 13–15, α0, γ0 and z0 are related to the orientation of
the boundary points of rods. And the parameter b can be calculated by using
the given physical parameters. Normally the four constant system integrals, F ,
Mz, M3 and H cannot all be determined directly. In the following, we present a
unified boundary matching method to deal with two commonly used boundary
conditions.

3.1 First Case of Boundary Conditions

For the first case of interest, as is shown in Fig. 1, at the left end of rods, say
s = 0, the position vector RL is given and also the local basis vectors d1L, d2L,
d3L. At the right end of rods, say s = L (length of rods), external forces FR and
torques MR are exerted.

All the given boundary conditions are expressed in the general fixed frame
now. However, we still need another fixed reference frame XYZ, the axis of
which is related to the direction of the tension of rods and also in which the
closed form of the solution of our system is given as seen in Fig. 1. All the given
boundary conditions will be represented in this reference frame after it is built.
Let us choose the axis Z of the reference frame oriented along the external force
exerted at the right end of rods and take the left end of rods as its origin. It
is easy to see that the angle between axis Z and the tangent director d3 at
the starting point of rods is the initial value of Euler angle β, the cosine of
which is equal to z0. The axis Y will be the cross-product of vector Z and d3L.
Then one can easily get the axis X of the reference frame X = Y × Z. Next
we can use the local triad given at the left end of rods to determine the initial
values of the other two Euler angles, α and γ. To do so we set another local
reference frame at the point, say d′

1Ld′
2Ld′

3L. The axis d′
3L of the local reference

frame coincides with the axis d3L and the axis d′
2L coincides with the axis Y

of the reference frame XYZ. Then we have d′
1L = d′

2L × d′
3L. Accordingly, the

three Euler angles of the local reference triad d′
1d

′
2d

′
3given in the reference frame

XYZ areα0 = γ0 = 0, β0 = arccos(z0), respectively. One can see that the only
difference between the given local frame d1Ld2Ld3L and local reference frame
d′

1Ld′
2Ld′

3L is a rigid rotation along axis d3L. Thus the initial values of the three
Euler angles of the local triad d1Ld2Ld3L are α0 = 0, β0 = arccos(z0), γ0 = γ0,
respectively, where γ0 is the angle by which the axis d′

1L is rotated to axis d1L

along axis d3L.
Now all boundary conditions given at the starting point have been used.

And at the other end of rods, the external force condition FR has been used too,
because its direction is used for setting the axis Z and its magnitude is equal to
one of the four constant system integrals, namely F . In addition at any point of
rods, say s, the internal moment Ms can be expressed as

Ms = (ΔRs)× FR + MR
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Fig. 1. Boundary matching scheme

where ΔRs = RR −Rs, RR and Rs are the position vector of the right end of
rods and the point s, respectively. Projecting both sides of the above equation
along axis Z, one can get the constant system integral Mz,

Mz = (MR) · ez

However M3 can not be obtained in this way, because ΔRs can not be deter-
mined. Neither the constant system integral H can be determined using the
given boundary conditions. But if these two system constants are determined
all the descriptive variables of Kirchhoff rods can be determined. Thus we may
take them as unknown parameters to be determined. In the following we give a
method for finding appropriate values for the two parameters to match the given
boundary conditions.

So far the only boundary condition that has not been used is the moment
exerted at the right end of rods, which can be equivalently written as{

κ1(L)− κ1(L) = 0
κ2(L)− κ2(L) = 0
κ3(L)− κ3(L) = 0

(18)

where κi(L) and κi(L), i=1, 2, 3, represent the curvature along the ith axis
at point s = L. The former is determined by using eqn. 2, while the latter is
calculated by using the constitutive relationship and the exerted moment there,
obtained by the following formulae.{

κ1(L) = MR · d1(L)
κ2(L) = MR · d2(L)
κ3(L) = MR · d3(L)/b

constructing a function as follows:
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f1 =
1
2

{
[κ1(L)− κ1(L)]2 + [κ2(L)− κ2(L)]2 + [κ3(L)− κ3(L)]2

}
(19)

One can easily see that it is in fact a function of the constant system integrals
M3 and H . In addition—from the definition of the function—one can see that
the conditions minimizing the function 19 are necessary and sufficient for eqn. 18
to be fulfilled, and vice versa. Thus the problem of matching the last boundary
conditions, eqn. 18, is converted to finding appropriate M3 and H that minimize
the function f1 from 19. Because we are going to deal with an unconstraint
minimization problem, the two unknown parameters M3 and H could be in the
range of the whole real region. However H can not take all real numbers since
it can be expressed in term of Euler angles as in [7],

H =
1
2

[
(θ′)2 +

M2
3

b
+

(Mz −M3z)2

1− z2

]
+ Fz (20)

where θ′ =
(

dθ

ds

)
. Eqn. 21 indicates that H can only be in some regions of

the reals. However by observation of eqn. 21, we found that θ′ can be any real
number. Thus we select θ′ as the other unknown parameter for our minimization
scheme in place of H . Since H is a constant system integral which is of course not
dependent on arc length, we can extract it at the starting point where the Euler
angle βw and P = θ′(0) and other necessary parameters are known in this case.
Then M3 and Pare selected as the unknown parameters for our minimization
problem. A global minimization approach can be well chosen to find appropriate
values of M3 and P with which the explicit form solution of our system can
match the given boundary conditions. We refer to the first example in Sec. 4.

3.2 The Second Case of Boundary Conditions

In this section we use similar technique to deal with another case of boundary
conditions. At the left end of rods, say s = 0, the position vector RL is given
and also the local triad of the point d1L, d2L, d3L. At the other end of rods only
the position vector RR = (xR, yR, zR) is given, written as,{x(L) = xR

y(L) = yR
z(L) = zR

(21)

where
(
x(L) y(L) z(L)

)
is the position vector at the right end of rods which is

the result of integrating eqn. 3. Similarly we first construct a cost function f2,

f2 =
1
2

{
[x(L)− xR]2 + [y(L)− yR]2 + [z(L)− zR]2

}
(22)

According to the definition of the function 22 the conditions that minimize the
function 22 are equivalent to the boundary condition in eqn. 21.

For this case of boundary conditions we chooseMz, M3, β0 and P (P = θ′(0))
as the unknown parameters to be determined. This case is a little bit more com-
plex than the previous one because all these parameters cannot be determined
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directly by using the given boundary conditions. The constant system integral
F is in this case taken as an external parameter. Then we can examine how the
closed form of solution matches the given boundary conditions at different level
of tension.

When the cost function is evaluated Mz, M3, β0 and P will be passed to it
as input arguments. Similarly we first build a reference frame XYZ. Without
loss of generality, we choose the left end of rods as its origin. Then we set the
axis Y of the reference frame oriented along the direction that is perpendicular
to the tangent director d3L at the left end of rods just like that of Sec. 3.1. The
axis Z is set as a vector which will coincide with the tangent director d3L at the
left end of rods if it is rotated by angle β0 along axis Y. Then one can easily get
X = Y × Z. After the reference frame is obtained, one can similarly determine
the other two initial values of Euler angles α0 and γ0 using the local triad given
at the left end of rods. Thus the problem of matching the boundary condition,
eqn. 21 is converted to solving an unconstrained minimization problem with Mz,
M3, β0 and P as unknown parameters to be determined by minimizing f2.

4 Example

Our work is motivated by human hair modeling. In the following example we
assume that the rods considered will have the physical properties of human hair:
the Young’s module of rods is 3.89e10 dyne/cm2; the Poisson’s ratio is 0.25; the
radius of rods is 0.005 cm [15].

For the example, we consider the first case of boundary conditions in which
the left end of a rod is fixed at the origin and the director vectors are also given,
d1 = (0.0, 0.0, 1.0), d2 = (1.0, 0.0, 0.0); and at the right end of the rod, external
forces and torques are exerted, FR = (0.0, 0.0, -2.0), MR = (0.0, 0.0, 5.0). We
will consider several rods with various length in the example, say L= 10cm,
20cm, 30cm, respectively.

We use the multidimensional downhill simplex method for our minimization
task [16]. Although the algorithm is not a global minimization method, from the
definition of our cost function, one can easily know that it is non-negative in the
whole real region. It can be inferred that the global minimum of our cost function
is zero. Thus we can easily check if the results of the minimization scheme are the
desired. In addition, we do not need to evaluate the derivative of the cost function
in the minima finder, which can only be calculated numerically in our method.
On the other side, we also use a global minimization method for the purpose,
called Sigma [17]. However in our experience, it will be very time consuming if
we use the global method. The cost function will be evaluated for about several
tens of thousands or even hundreds of thousands times. However similar results
compared with those of the downhill simplex method were obtained, in which
only several hundreds of times of evaluation of the cost function are needed. In
Table 1, we give the results of our computations of several rods with different
length under the case of boundary conditions.

In Fig. 2 (a) to (c), we show the final shape of the rods for three cases.
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Table 1. Results of our minimization method for the example

The CPU times were measured on a Pentium IV 2.2 GHz PC.

Length (cm) 10 20 30

Values
at start

(M3, P) (-2.0, -2.0) (-0.260, 0.375) (-0.262, 0.375)

Function
value

5.091 0.03337 0.2223

Values
at end

(M3, P) (-0.2583,
-0.3740)

(-0.26183,
0.37538)

(-0.2618,
0.3753)

Function
value

0.0 0.0 0.0

Number of function
evaluations

219 179 220

Total CPU time (ap-
proximate)

0.5 sec 0.5 sec 0.5 sec

Fig. 2. The shapes of a rod with a variety of lengths; (a) length: 10 cm; (b) length: 20

cm; (c) length: 30 cm

5 Conclusion

In this paper we presented a symbolic-numeric method for solving various bound-
ary value problems associated with the static Kirchhoff rods. We first expressed
the explicit form of solution to the static Kirchhoff rod equations in a form which
is easily parameterized by initial values. By combining the parameterized closed
form solution with a global minimization scheme we presented a general method
in which the problem of solving the boundary value problems associated with
static Kirchhoff rods is converted to the problem of solving an unconstrained
global minimization problem. Our method can be used to adapt a variety of
boundary conditions, as we only need to construct different cost functions for
them. An adaptation to other constraints and boundary conditions, e.g. the ones
arising from contact between hair fibers, will be a topic of our future research.
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Differential and Difference Equations for

Products of Classical Orthogonal Polynomials

Sergey Slavyanov and Vladimir Papshev

St-Petersburg State University, V.A. Fock Institute of Physics,
St-Petersburg 198506, Botanicheskaya 1, Russia

Factorization of differential equations has been intensively studied (see, for in-
stance, [1], [2]). Less results are known for difference equations. In this publi-
cation we are not giving a general approach to the theory of factorization but
rather present some observations and derive formulae for further use in reference
books and for symbolic computations.

Several specific examples which arise from the theory of classsical orthogo-
nal polynomials are studied. They have, to our mind, significance for practical
applications in physics.

The paper is based to some extent on the ideas developed in other publica-
tions of the authors [3], [5], [6] but the angle of view on the problem is different.
In the first section differential equations are dealt with. In the second section,
our studies are concentrated on difference equations. In both cases knowing
the equation for orthogonal polynomials we derive equations for their products.
These latter equations are of higher order than the starting ones, and polynomial
solutions can be sought as solutions of multiparametric spectral problem [4].

1 Differential Equations for the Products of Orthogonal
Polynomials

Classical orthogonal polynomials may be considered as appropriate solutions
(related to eigenfunctions of a corresponding singular Sturm–Liouville problem)
of the particular cases of the linear second-order differential equation

r(x)y′′(x) + p(x)y′(x) + λy(x) = 0. (1)

If

r(x) = 1− x2, p(x) = (b + 1)(1− x)− (a+ 1)(1 + x),
λn = n(n+ a+ b + 1) (2)

(1) generates Jacobi polynomials. If

r(x) = 1− x2, p(x) = −2x, λn = n(n+ 1) (3)

(1) generates Legendre polynomials. If

r(x) = x, p(x) = a+ 1− x, λn = n (4)

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 399–404, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(1) generates Laguerre polynomials. If

r(x) = 1, p(x) = −2x, λn = n (5)

(1) generates Hermite polynomials.
An auxiliary equation to (1) can be written as

r(x)u′′(x) + p(x)u′(x) + μu(x) = 0 (6)

with other value μ of the spectral parameter. Multiplying (1) by u(x) and (6)
by y(x) we obtain the following equation

r(x)v′′(x) + p(x)v′(x) + σv(x) = 2r(x)y′u′, with σ = λ+ μ (7)

The left-hand side of (7) contains only the product v = yu of solutions of (1) and
(6) whenever the right-hand side of (7) still contains these solutions. The further
trick is ”to kill” the latter terms (they are called below ”unbalanced terms”) by
subsequent differentiation of (7).

To do so is easy in the self-adjoint case of (1,7) when p(x) = r′(x). After two
sequential differentiations of (7) the unbalanced terms can be excluded, and the
following equation holds as the result

(r(rv′)′)′′ + σ[(r′v)′ + 2(rv′)′] +Δ2v = 0, (8)

where
Δl = λn − λm, l = |n−m|,
σj = λn + λm, j = n+m.

In the case of Legendre polynomials p(x) = r′(x) and the corresponding equation
(1,3) is in the self-adjoint form. Hence, (8) solves the problem with products of
Legendre polynomials.

If (1) is not in the self-adjoint form like for (2,4,5), it is needed to introduce
an “integrating multiplier” before the second differentiation.

Lemma 1. It is possible to eliminate the unbalanced terms introducing at the
second differentiation the “integrating multiplier” ω. The integrating multiplier
ω is found from the first-order equation

ω′

ω
=
p− r′
r

. (9)

Proof. The unbalanced terms arising after first differentiation of (7) are

2r(λyu′ + μy′u).

Consider the expression

τ = −2ωr(λyu′ + μy′u).

Condition (9) leads to the consequence that the function τ ′ contains no more
unbalanced terms and is expressed in terms of v

τ ′ = ω(−σ(rv′′ + pv′)−Δ2v).
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Two remarks are needed: 1) the integrating multiplier is equal to the weight
function for considered polynomials, 2) the integrating multiplier up to a con-
stant factor is unique.

Boring computations with Maple lead to the following equation for the prod-
uct

r3v′′′′ + r2(4p+ r′)v′′′ + r [(2r(2p′ + σ) + p(5p− r′)] v′′ +[
r2p′′ + r(5p′p− (pr′)′ + σ(4p− r′) + p(p− r′)(2p− r′))] v′

+
[
r((2p′ − r′′)σ +Δ2) + (p− r′)(2p− r′)σ] v = 0. (10)

Equation (10) solves the above formulated problem for other types of classical
orthogonal polynomials.

The simplest case are Hermite polynomials. For them the following fourth-
order differential equation holds

v′′′′ − 8xv′′′ + [(2(σ − 4) + 20x2]v′′ +[
20x− 8σx− 16x3

]
v′ +

[−4σ +Δ2 + 8x2σ
]
v = 0. (11)

The obtained differential equations can be helpful for the following purposes.

1) They give representative examples for factorization of higher order differ-
ential equations.
2) They give examples of fourth-order equations with polynomial solutions.
3) If some integral transform is applied to these equations several other
equations with more or less simple explicit solutions can be generated. It
could be, for instance, multipole matrix elements in quantum physics [6].
4) They give examples of solvable multiparametric eigenvalue problems,
which regretfully are not self-adjoint.

2 Difference Equations for Products of Classical
Orthogonal Polynomials

Each classical orthogonal polynomial yn(x) can be studied as a function of con-
tinuous variable x and index n. On the other hand it can be considered as a
function y(n, x) of the discrete variable n on an integer grid and of the param-
eter x. Below the notation y(n) is used instead of y(n, x). The shift operator E
can be defined on y(n)

Ey(n) = y(n+ 1).

In these notations polynomials y(n) satisfy the following difference equation [7]

α(n)Ey(n) = (kx+ β(n))y(n) + γ(n)E−1y(n) (12)

with polynomial coefficients in n

α = n+ 1, k = −1, β = (2n+ a+ 1), γ = −(n+ a) (13)
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in the case of Laguerre polynomials,

α = n+ 1, k = 2n+ 1, β = 0, γ = −n (14)

in the case of Legendre polynomials,

α = 1, k = 2, β = 0, γ = −2n (15)

in the case of Hermite polynomials and more complicated expressions

α = 2(n+ 1)(n+ a+ b+ 1)(2n+ a+ b),
k = (2n+ a+ b+ 2)(2n+ a+ b+ 1)(2n+ a+ b),

β = (2n+ a+ b+ 1)(a2 − b2),
γ = −2(n+ a)(n+ b)(2n+ a+ b+ 2) (16)

in the case of Jacobi polynomials. It is needed to point out that (13)–(16) depend
on normalization of chosen polynomials∫ b

a

w(x)f2
n(x)dx = hn,

where w(x) is the weight function, and fn are the studied polynomials. The value
hn equals

hn =
Γ (n+ a+ 1)

n!
, a > −1

in the case of Laguerre polynomials,

hn =
2

2n+ 1

in the case of Legendre polynomials,

hn =
√
π2nn!

in the case of Hermite polynomials, and

hn =
2a+b+1

2n+ a+ b+ 1
Γ (n+ a+ 1)Γ (n+ b+ 1)
Γ (n+ 1)Γ (n+ a+ b+ 1)

in the case of Jacobi polynomials.
The auxiliary difference equation reads

α(m)Eu(m) = (kx+ β(m))u(m) + γ(m)E−1y(m). (17)

The product of the solutions of (12) and (17) is defined as

v(n,m) = y(n)u(m). (18)
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It is assumed below that the shift operator acts on both arguments of v(n,m)
simultaneously, so, for instance, Ev(n,m) = v(n+ 1,m+ 1) and E−1v(n,m) =
v(n− 1,m− 1). Multiplying (12) and (17) we obtain

α(n)α(m)Ev − (kx+ β(n))(kx + β(m))v −
γ(n)γ(m)E−1v = −(kx+ β(n))γ(m)y(n)E−1u−

(kx+ β(m))γ(n)uE−1y. (19)

Similar to (7) and to the equation which follows from (7) after differentiation we
have “unbalanced terms” in the right-hand side of (19) whenever the expression
in the left-hand side of (19) depends only upon the product v(n,m). In order
to wipe them out it is needed to apply operators E and E−1 to (19). After
further manipulations with obtained formulae and initial equations (12,17) the
fourth-order difference equation for v(n,m) appears.

In the general case the computations are rather cumbersome and need use of
Maple or other CAS. Hence, as a simple example the case of Hermite polynomials
is studied. For them equation (19) reads

Mv : Ev − 4x2v − 4nmE−1v = −4x(my(n)E−1u(m) + nu(m)E−1y(n)). (20)

Using the shifts E and E−1 two other equations can be derived from (20)

E2v − 4x2Ev − 4(n+ 1)(m+ 1)v =
−4x((m+ 1)Ey(n)u(m) + (n+ 1)y(n)Eu(m)) (21)

and

v − 4x2E−1v − 4(n− 1)(m− 1)E−2v =
−4x((m− 1)E−1y(n)E−2u(m) + (n− 1)E−2y(n)E−1u(m)). (22)

In (21) the “forward” substitution of (12) and (17) is performed with the result

M+v : E2v − 4x2Ev + 4(2x2(m+ n+ 2)− (n+ 1)(m+ 1))v
= 8x((m+ 1)nu(m)E−1y(n) + (n+ 1)my(n)E−1u(m)). (23)

The purpose of this substitution was to eliminate terms Ey(n) and Eu(m) from
the right-hand side expression in (21). The “backward” substitution of (12) and
(17) into (22) leads to the difference equation

M−v : v + 4x2E−1v − 4(n− 1)(m− 1)E−2v =
2x(u(m)E−1y(n) + y(n)E−1u(m)). (24)

After elimination of unbalanced terms y(n)E−1u(m) and y(n)E−1u(m) from
(20, 23, 24) the following five-term difference equation is obtained

(M+ − 4mnM− + 2M)v = 0. (25)
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The final equation follows from explicit expressions for M , M+, and M−

E2v − 2(2x2 − 1)E−1v + (4(2x2 − 1)(m+ n+ 1)− 8mn)v −
8nm(2x2 + 1)E−1v + 16mn(n− 1)(m− 1)E−2v = 0, (26)

which gives a simple example of factorization of difference equations.
It is known that recurrence (12) gives one of the most effective tools for sym-

bolic calculation of classical orthogonal polynomials. We claim that recurrence
(26) for Hermite polynomials (and similar recurrences for other polynomials) give
an effective algorithm to calculate products of these polynomials which is better
compared to multiplication. How can this algorithm be organized? Suppose it is
needed to calculate v(n,m) = HN (x)HM (x). Let N ≥M and k = N −M . First
with the help of (12,15) and multiplication the values of v(k + 1, 1), v(k + 2, 2),
v(k+ 3, 3), v(k+ 4, 4) are found, and then within M steps we obtain the needed
product.

We have performed the computations for the general case with Maple. How-
ever, the results are too bulky to be exposed in this text and will be presented
elsewhere.

The field of application of the proposed scheme is broader than the classical
orthogonal polynomials but in this broader field other aspects should be taken
into account which are beyond the scope of this publication.

Technically it was possible to use in this section the difference operator Δ
instead of the shift operator E. This would lead to closer relationship to the
first section but would be unlike the notations used in the theory of orthogonal
polynomials.
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Abstract. In this paper we present a procedure that allows us to dis-
tinguish all branches of a space curve near the singular point and to
compute parametric form of them with any accuracy. The same proce-
dure works for finding the branches of a space curve such that some (or
all) coordinates tend to infinity.

Introduction. Let an algebraic curve F be defined in Cn by the system of
polynomial equations

fi(X) def=
∑
aiQX

Q = 0, Q = (q1, . . . , qn) ∈ Di, i = 1, . . . , n− 1, (1)

where Di
def= D(fi) = {Q : aiQ �= 0}. Let X = (x1, . . . , xn) = 0 be a singular

point of F , i.e. all fi(0) = 0 and rank(∂fi/∂xj) < n − 1 in X = 0. Then
several branches of F pass through the X = 0. Each branch has its own local
uniformization [5] of the form

xi =
∞∑

k=1

bikt
pik , i = 1, . . . , n (2)

where exponents pik are integers, 0 > pik > pik+1, and coefficients bik are com-
plex numbers, series converge for large |t|, i.e. X → 0 for t→∞. We propose an
algorithm for finding any initial parts of the expansion (2) for all branches of F .

At first we find a list of truncated systems

f̂i(X) def=
∑
aiQX

Q = 0, Q ∈ D(di)
ij (fi), i = 1, . . . , n− 1. (3)

with the help of Newton polyhedra of polynomials fi [4]. Each of them is the
first approximation of (1). By the power transformation

yi = xαi1
1 . . . xαin

n , i = 1, . . . , n (4)

we reduce the number of variables in the truncated system(3). The power trans-
formation (4) gives a method for the solution of truncated systems (3) and
� This work was supported by State Committee for Science and Technology of the

Republic of Uzbekistan, grant No. 1.1.13.
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resolves (only partly) the singularity X = 0 of system (1). In the transformed
system (1), we find all points Y 0 corresponding to the point X = 0 of F . We
translate each Y 0 into the origin and repeat the procedure described above. After
a finite number of such steps, we come to a system having unique local branch,
and we uniformize it by means of the Implicit Function Theorem. Returning to
the initial coordinate X by inverse transformations we obtain the branch in the
form (2). We uniformize similarly all other branches of the curve F near the
origin X = 0 and all branches going to infinity and real branches of a real curve
as well.

We could solve system (1) by eliminating n − 2 coordinates, writing the
system as a single equation g(x1, x2) = 0, and solving with Newton’s method.
But the process of eliminating variables leads to a great increase in the order of
the polynomials involved [10]. Hence, the algorithm in this paper requires much
less computation.

Graves [9] proposed (and Botashev [11] developed) considering the system
(1) in the form of a single vector equation

G
def=
∑
p,q,

G(p)
q xq = 0

with a single Newton polygon on the (p, q)-plane. A deficiency of this approach
is that with Botashev’s method certain components of the vector Ĝ can be
identically equal to zero in the truncated vector equation Ĝ = 0, while with each
f̂i in the truncated system (3) contains some terms g(p)

iq xq that are not identically
zero. Therefore, with Botashev’s method the sets of solutions of truncated vector
equation can have larger dimension, and it makes more difficult to find even the
branches with the homogeneous expansions (2). The calculations of Botashev
method are, thus, simpler than those of the method of elimination, but are more
complicated than the computation of our method.

Bernshtein [1] employed the approach to compute the number of branches
of an algebraic curve of special form, but he did not consider the question of
computing asymptotic expansions. In contrast to the papers of Bernshtein [1],
Khovanskii [7], and Varchenko [6] it is not assumed in the present article that
system (1) is in general position. To simplify the presentation it is assumed only
that the system (1) does not belong to an exceptional set of infinite codimension
in the space of systems (1). More about history of this problem see [2].

1o. Let us consider the finite sum of monomials

f(X) =
∑

aQX
Q (5)

without similar terms and aQ ∈ C.
The setD = {Q : aQ �= 0} is called the support of f . We assume thatD ⊂ Zn,

and we enumerate all points of D as Q1, . . . , Ql. Let t be a real parameter. After
the substitution

xi = tpi , pi ∈ R, i = 1, . . . , n, P = (p1, . . . , pn),
P �= 0, P ≤ 0 (6)

into (5), we have
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f(X) =
∑

aQt
〈P,Q〉, (7)

where 〈P,Q〉 = p1q1 + · · · + pnqn is the scalar product. Let us find main terms
in sum (7) for t → ∞, and let them for simplicity be the terms with the first k
exponents Qi, 1 ≤ k ≤ l, i.e.,

〈P,Q1〉 = · · · = 〈P,Qk〉,
〈P,Q1〉 > 〈P,Qj〉, k < j < l + 1. (8)

Let us denote DP = {Q1, . . . , Qk}, then the sum

f̂i(X) =
∑

aQX
Q,where Q ∈ DP (9)

is called the truncation of f for the vector order P . After a substitution of the
form

xi = bit
pi(1 + o(1)), bi �= 0, i = 1, . . . , n, (10)

where t→∞, we have f(X) = trf̂(B) + o(tr), r = 〈P,Q1〉,
B = (b1, . . . , bn).

The set N = N(f, f̂) of all those P for which f̂ is the truncation of f is the
(normal) cone of the truncation (9). N is described by system (8).

In order to describe the sets Dp for different vectors P , we denote by M
the intersection of all negative half-spaces L−

P of supporting hyperplane LP of
the set D. As the set D consists of a finite number of points and so the set
M is a polyhedron coinciding with the convex hull of the set D. The boundary

of M consists of a finite number of faces Γ (d)
s (Γ (0)

s is a vertex, where d is its
dimension, and s is its number. Thus, the Γ (0)

k are vertices, Γ (1)
k are edges and

so on [2,3]. The dimension of the truncation of f̂ is defined as the dimension of
the corresponding face Γ (d)

s .
We consider P ∈ Rn

2 , Q ∈ Rn
1 , where Rn

1 and Rn
2 are dual spaces.

If the set D is the support of f , then the convex hull M of D is called the
Newton polyhedron of f . To each face Γ (d)

s of M there corresponds truncation

(9) with respect to vectors P ∈ N (d)
s = N(f, f̂).

2o. We now consider system (1), where the fi are the finite sums of monomi-
als without similar terms, Di ⊂ Zn. To each fi there correspond the objects
Di,Mi, f̂i, N(fi, f̂i) . . .. First subscript i will show that an object belongs to fi.
System (3) is a truncation of the system (1) for the order P if, for each i sum f̂i

is a truncation of fi for the order P .
The cone K of the truncated system (3) is the set of all such P that the

truncation of system (1) for order P is the same system (3). It is evident that

K = N(f1, f̂1) ∩ . . . ∩N(fn−1, f̂n−1).

Let di be the dimension of f̂i. The dimension d of the truncated system (3) is the
codimension of the cone K of the system, i.e., d = n− dimK ≤ d1 + · · ·+ dn−1.
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Theorem 2.1. Let a curve of the form (10) satisfy system (1). Then the curve

xi = bit
pi , i = 1, . . . , n (11)

satisfies the truncated system (3), if P lies in its cone K.

3o. Let us consider the power transformation (4), where the αij are integers, α =
(αij) is a square matrix with detα = ±1. The set of such power transformation
(4) makes up a group [2]. Denote logX = (log x1, . . . , log xn). We shall consider
a vector as a matrix column. Then (4) can be written as

log Y = α logX. (12)

It transforms curve (9) into the curve

yi = cit
ri(1 + o(1)), ci �= 0, i = 1, . . . , n

where t→∞, R = (r1, . . . , rn) and R = αP
(13)

By (12) we have the chain of equalities

XQ = exp〈logX,Q〉 = exp〈α−1 logY,Q〉 = exp〈logY, α∗−1
Q〉 = Y S ,

where
S = α∗−1

Q. (14)

Hence,
f(X) =

∑
aQX

Q =
∑

aQY
S = g(Y ); D′ = α∗−1

D.

The power transformation (4) induces two linear transformations: R = αP
in Rn

1 and (14) in Rn
2 . The scalar product is preserved:

〈R,S〉 = 〈αP, α∗−1
Q〉 = 〈P,Q〉.

So Rn
1 and Rn

2 are dual spaces.
Note that all our constructions commute with power transformations, trans-

formation (4) gives the one-to-one correspondence for the integer lattice Zn and
(4) is the one-to-one transformation of the torus set

{X : 0 < |xi| <∞, i = 1, . . . , n}.
Theorem 3.1. Let the subsystem of the first k equations of the truncated system
(3) have the dimension e(k) for k = 1, . . . , n−1. Then there exist integer vectors
T1, . . . , Tn−1 and an integer unimodular matrix α such that, after the power
transformation (4), the first k functions of

ĝi(Y ) = XTi f̂i(X), i = 1, . . . , n− 1 (15)

depend on e(k) variables y1, . . . , ye(k) only (for k = 1, . . . , n− 1) and supports of
all functions

gi(Y ) = XTifi(X), i = 1, . . . , n− 1

lie in the first octant {Rn : R ≥ 0}.
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Hence all functions (15) depend on d variables y1, . . . , yd only, where d =
e(n − 1) is the dimension of the truncated system (3). In many cases Theorem
3.1 gives a possibility to transform a truncated system into a triangular form.

4o. Now consider the basic problem: Let us have system (1), where fi are the
Laurent polynomials, and a convex cone K in Rn

2 , we must find all solutions of
system (1) such that in expansion (2) the vector P ∈ K, P �= 0. The cone K is
called the cone of problem.

The basic problem is said to be reduced if the branches without a coordinate
identically equal to zero (or infinity) are to be found.

Obviously, the basic problem breaks up into finitely many reduced problems
in which various coordinates xi are set equal to zero (or infinity).

To solve the reduced problem we form for each fi the Mi, Γ
(d)
ik , N (d)

ik . Here
it suffices to single out all the faces Γ (d)

ik such that the N (d)
ik ∩K is different from

zero. Let K(d)
ik = N

(d)
ik ∩ K and consider possible nonempty intersections.

K(d1)
1k1
∩ . . . ∩ K(dn−1)

n−1kn−1

def= Πλ, λ = 1, . . . , l.

Let Πλ be one of these intersections and (3) be the truncated system correspond-
ing to it. If di = 0 then f̂i = aXQ and aXQ = 0, so one of the coordinates is
equal to zero, and they cannot be the solution of the reduced problem. Therefore,
in a reduced problem all di > 0.

We make the power transformation for (3) and the cancellations indicated in
Theorem 3.1. Then we have

ĝi(y1, . . . , yd)
def= XTi f̂i(x1, . . . , xn) = 0, i = 1, . . . , n− 1 (16)

System (1) passes to

gi(y1, . . . , yd)
def= XTifi(x1, . . . , xn) = 0, i = 1, . . . , n− 1 (17)

Now (16) is a truncation of system (17) with cone Π ′
λ = αΠλ ⊂ {P : p1 = · · · =

pd = 0}. We must now find the solutions

yi = cit
Pi(1 + o(1)), i = 1, . . . , n

of (17) such that the vector order P ∈ Π ′
λ.

Let us find all solutions yi = y0
i , i = 1, . . . , d, of (16) such that all the

y0
i �= 0 nor∞. If there are no such solutions, then the reduced problem does not

have solutions (2) with P ∈ Πλ. If there are such solutions then we distinguish
two cases:

(i) the point y0
1 , . . . , y

0
d is an isolated solution of (16);

(ii) this point lies on some continuous set of the solutions of (16) that is an
algebraic set of positive dimension.

Case (i). The truncated system (16) has the form

ĝi(y1, . . . , yd)
def= gi(y1, . . . , yd, 0, . . . , 0) = 0, (18)

i = 1, . . . , n− 1

and its cone
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Π ′
λ = αΠλ ⊂ {P : p1 = · · · = pd = 0, pd+1 < 0, . . . , pn < 0}.

Let y0
1 , . . . , y

0
d be a solution of system (18). Then

Y 0 = (y0
1 , . . . , y

0
d, 0 . . . , 0)

is a root of (17), by (18). Assume that Y 0 is a simple root of (17), then a single
branch corresponds to it, which can be found by the Implicit Function Theorem.
Returning to the original variables we obtain the described expansion (2). In
this case a branch has been isolated.

But if Y = Y 0 is a singular point of (17), or if in (17) the yd+1, . . . , yn appear
to negative powers, then we make the substitution

yi = y0
i + zi, i = 1, . . . , d, yj = zj , j = d+ 1, . . . , n

in (7). We obtain the system

hi(z1, . . . , zn) def= gi(y1, . . . , yn) = 0, i = 1, . . . , n− 1 (19)

with
Π ′′

λ = {P : p1 < 0, · · · , pd < 0, pd+1 = . . . = pn = 0}+Π ′
λ,

the cone of the problem. For system (19) we have the basic problem, but for a
narrower set of solutions.

Case (ii). This case may be considered as degenerate. Here the solutions of
system (16) contain a continuum. So to isolate branches we must use not only
the first approximation of the system but also the next approximation as well.

The set of solution of an arbitrary system (16) consists of a finite number
of the irreducible algebraic manifolds, and the following reduction may be done
separately for each of them. Let H be such an l-dimensional manifold (0 < l < d).
If it is a linear one, then by a reversible linear change of coordinates y1, . . . , yd →
z1, . . . , zd we transfer H into the coordinate subspace, zl+1 = · · · ,= zd = 0 and
look for solutions of (16) near this subspace, i.e. we arrive at the basic problem
with the cone

K = {P : pl+1 < 0, · · · , pd < 0, pd+1 = . . . = pn = 0}+Π ′
λ.

If the manifold H cannot be transferred into a coordinate subspace then we
can compose in some cases from system (17) such an additional equation that
its first approximation does not equal zero identically on H , and in other cases
we can introduce additional coordinates, which give another truncated system.

The complexity of the truncated system (3) is defined to be the (n − 1)-
dimensional Minkowski [1] mixed volume of the corresponding parallel-transfer
faces Γ (di)

ik −Qi
, i = 1, . . . , n− 1.

The complexity of reduced problem is defined to be the sum of the complex-
ities of all the truncated systems whose normal cones intersect the cone of the
problem.
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In the generic case the number of complex branches of the reduced problem
is equal to its complexity [1]. For a non-generic system of this kind no estimate
of the number of branches is known for n > 2.

5o. Example
Let the algebraic curve be given by the system of equations{

f1(x)
def= x4

1 + 3x4
2 − 6x2

2x
2
3 − 9x2x

3
3 − 6x4

3 + 7x1x
2
2x

2
3 = 0,

f2(x)
def= 2x2

1 − 4x3
2 + 3x4

3 + 2x1x2x
2
3 = 0.

We distinguish all branches of this curve near the singular pointX = 0, therefore,
the cone of the problem is K = {P < 0}. We find supports D1 and D2:

D1 =
{
Q1

1 =(4; 0; 0);Q1
2=(0; 4; 0);Q1

3=(0; 2; 2);

Q1
4 =(0; 1; 3);Q1

5=(0; 0; 4);Q1
6=(1; 2; 2)

}
D2 =

{
Q2

1 = (2; 0; 0);Q2
2 = (0; 3; 0) ;Q2

3 = (0; 0; 4) ;Q2
4 = (1; 1; 2)

}
The Newton polyhedra M1 and M2, as the convex hulls of sets D1 and D2

are shown in Figures 1 and 2. The results of these computations on PC [4] are
shown in Tables 1 and 2. It is immediately clear from Figures 1 and 2 that for
M1 the support planes with P ≤ 0 pass only through the elements of the triangle
Γ

(2)
11 with vertices Q1

1, Q
1
2, Q

1
3, and for M2 they pass through the elements of the

triangle Γ (2)
21 with vertices Q2

1, Q
2
2, Q

2
3.

We write the linear relations (8) on the plane S = {p1 + p2 + p3 = −1}.
For a side Γ

(2)
11 and M1 the relations (8) on this plane we obtain the points

S ∩K(2)
11 =

{
p2 = p3 = − 1

3

}
and S ∩K(2)

21 =
{
p2 = − 4

13 , p3 = − 5
13

}
respectively.

the linear relations on a plane S for edges will be:

S ∩K(1)
21 = {5p2 + 2p3 = −2, 3p2 > 4p3} ;

S ∩K(1)
23 = {3p3 + p2 = −1, 4p3 > 3p2} ;

S ∩K(1)
22 = {3p2 = 4p3, 3p3 + p2 > −1} ;

Representing these lines on a plane S we get the picture of the section S of the
space R3. The heavy and light lines in Fig. 3 represent sections of the normal
cones N (1)

11 and N (1)
21 of the edges of the polyhedra M1 and M1, respectively. It is

clear from Figure 3 that in the cone of the problem there is only one intersection

S ∩Π = S ∩K(1)

21 ∩K
(1)

12 =
{
p2 = p3 = −2

7

}
Which is a cone of truncation of the following truncated system{

f̂1 (x) def= 3x4
2 − 6x2

2x
2
3 − 9x2x

3
3 − 6x4

3 = 0;
f̂2 (x) def= 2x2

1 − 4x3
2 = 0,

}
from here we have
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Q̄′
1 = Q̄′

2 − Q̄′
5 = (0, 1,−1) ; Q̄2

2 = Q̄2
1 − Q̄2

2 = (2,−3, 0) .

Therefore, the unimodular matrix α is:

α =

⎛⎝0 1 −1
2 −3 0
1 −1 0

⎞⎠ ; α−1 =

⎛⎝ 0 −1 3
0 −1 2
−1 −1 2

⎞⎠ .

The power transformation with a matrix α and its inverse are:⎧⎨⎩
y1 = x2x

−1
3 ,

y2 = x2
1x

−3
2 ,

y3 = x1x
−1
2 ,

⎧⎨⎩
x1 = y−1

2 y3
3 ,

x2 = y−1
2 y2

3 ,
x3 = y−1

1 y−1
2 y2

3 .

After the power transformation and some cancellation in the truncated system
we get the system {

y4
1 − 2y2

1 − 3y1 − 2 = 0,
y2 − 2 = 0.

This system has two real and two complex simple solutions:

y0
11 = −1, y0

2 = 2, and y0
12 = 2, y0

2 = 2.

y0
13 =

1
3

(
−1 + i

√
3
)
, y0

2 = 2, and y0
14 =

1
2

(
−1− i

√
3
)
, y0

2 = 2

Making the substitutions y1 = −1 + z1, y2 = 2 + z2 and y1 = 2 + z, y2 = 2 + z2
in the system {

f1 (y1, y2, y3) = 0,
f2 (y1, y2, y3) = 0.

applying the implicit functions theorem to the expression obtained, and return-
ing to the original variables with respect to power transformation, we find the
real branches F1, F2 ⎧⎨⎩

x1 = 1
2y

3
3 + 3

16y
5
3 + o

(
y6
3

)
,

x2 = 1
2y

2
3 + 3

16y
4
3 + o

(
y5
3

)
,

x3 = − 1
5y

2
3 − 3

16y
4
3 + o

(
y5
3

)
.

Table 1. Table of correspondence of set D1 (see [4])

Q1
1 Q1

2 Q1
3 Q1

4 Q1
5 Q1

6

N
(0)
11 = (−1,−1,−1) + + + + + -

N
(0)
12 = (0,−1, 0) + - - - + -

N
(0)
13 = (−1, 0, 0) - + + + + -

N
(0)
14 = (0, 0,−1) + + - - - -

d i j k

2 1 1,2,3,4,5 1

1 1 1,5 1
1 2 2,3,4,5 1
1 3 1,2 1

0 1 5 1,2
0 2 1 1,3
0 3 2 2,3
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Table 2. Table of correspondence of set D2 (see [4])

Q2
1 Q2

2 Q2
3 Q2

4

N
(0)
21 = (−6,−4,−3) + + + -

N
(0)
22 = (0,−1, 0) + - + -

N
(0)
23 = (−1, 0, 0) - + + -

N
(0)
24 = (0, 0,−1) + + - -

d i j k

2 1 1,2,3 1

1 1 1,3 1
1 2 2,3 1
1 3 1,2 1

0 1 3 1,2
0 2 1 1,3
0 3 2 2,3
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x1 = 1

2y
3
3 + 3

128y
5
3 + o

(
y6
)
,

x2 = 1
2y

2
3 + 3

128y
4
3 + o

(
y5
)
,

x3 = 1
4y

2
3 + 3

156y
4
3 + o

(
y5
)
.

The complex roots of the system give the following complex branches F3, F4:⎧⎨⎩
x1 = 1

2y
3
3 + 3

128y
5
3 + o

(
y6
)
,

x2 = 1
2y

2
3 + 3

128y
4
3 + o

(
y5
)
,

x3 = − 1
4

(
1± i√3

)
y2
3 − 3

32

(
1± i√3

)
y4
3 + o

(
y5
)
.

For the branches found the role of the parameter τ is played by y−1
3 .

6o. Computation of branches of solutions of the specific system (1) consists of
the following 8 stages:

1. For each coordinate singular point X0 we do parallel-transfer X − X0,
write the system in the form (1) and make following stages for each such system
separately. We shall describe them for system (1).

2. For each fi compute the Newton polyhedron Mi, all its faces Γ (di)
ij , and

normal cones N (di)
ij and sets D(di)

ij .

3. Find all nonempty intersections N (d1)
1j ∩ . . . ∩N (dn−1)

n−1j with all di > 0 and,
for each of them, write the corresponding truncated system (3).

4. For each such system (3), compute vectors Ti and the matrix α by Theorem
3.1 and make corresponding transformations of (1) and (3) into (17) and (16).

5. Find all roots of (6) and, by computation of the matrix G = (∂gi/∂yj)
separate simple roots Y 0 of (17).

6. By Implicit Function Theorem, compute an initial part of expansions for
the branch corresponding to the simple root Y 0 of (17).

7. For each non-simple root Y 0 of (17), compute the new system (19) and
repeat the procedure until a full isolation of all branches.

8. By inverse transformations, write all branches in initial coordinates X .
Stages 1–4 were programmed in PC. Stages 5, 6, and 8 are essentially non-

linear but can be done by standard programs.
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Abstract. We present an extension of constraint logic programming,
where the admissible constraints are arbitrary first-order formulas over
various domains: real numbers with ordering, linear constraints over p-
adic numbers, complex numbers, linear constraints over the integers with
ordering and congruences (parametric Presburger Arithmetic), quanti-
fied propositional calculus (parametric qsat), term algebras. Our arith-
metic is always exact. For R are C there are no restrictions on the poly-
nomial degree of admissible constraints. Constraint solving is realized by
effective quantifier elimination. We have implemented our methods in
our system clp(rl). A number of computation examples with clp(rl)
are given in order to illustrate the conceptual generalizations provided
by our approach and to demonstrate its feasibility.

1 Introduction

During the past 15 years, quantifier elimination has become a successful and
universal tool in various fields of science and engineering. An overview on some
relevant application areas has been given in [1], which in turn give numerous
references to further literature on actual as well as on possible applications.

According to the author’s experience there are three major points stated by
the numerous researchers from outside the core quantifier elimination commu-
nity, who are interested in applying such methods:

1. The request for further domains of computation as e.g. the integers, mixed
real-integer domains, or quantified propositional calculus. Interestingly, these
requests restrict mostly to theories that actually admit quantifier elimina-
tion, such that these issues are mainly a matter of time and of man power.

2. The combination of various domains for modeling a problem. The requested
combinations in general clearly exceed the applicability of pure quantifier
elimination approaches. One important exception is the mixed real-integer
quantifier elimination proposed in [2].

3. As a further extension of point 2 above, there is often a need for free terms
and predicates in the style of logic programming.

The two latter points give rise to the idea that one or several quantifier
elimination procedures can be combined with resolution techniques. Instead of

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 416–430, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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developing such a concept from scratch, we observe that quantifier elimination
can perfectly take the role of a constraint solver in constraint logic programming
(clp). This paper is going to describe how quantifier elimination can be inte-
grated into this framework. Hence our work is going to extend clp by admitting
as constraints arbitrary first-order formulas.

In a pure clp approach, one would fix a domain, and then all variables of
a program would be considered variables over this domain. Then the constraint
solver completely replaces unification also for non-constraint subgoals. A more
general approach would admit several types of variables: variables over the do-
main of the solver, variables over other domains treated by other solvers, and
general variables to be traditionally treated by unification. All these extensions
do not at all interfere with the issues that we are going to discuss here. We will
thus allow ourselves to restrict to the basic case that all variables are elements
of the domain of our solver, and that this solver is the only one involved.

The future applications that we have in mind are not those currently handled
with constraint solving systems. Instead we focus on problems currently solved
by quantifier elimination with human interaction. Hopefully, it will in addition be
possible to fill a considerable part of the gap between the paradigms of constraint
logic programming on the one hand and quantifier elimination on the other hand.
So although talking about extending constraint solving systems throughout this
article, the intuition is primarily that the major part of the job is done by the
quantifier elimination engine, while there is a bit of logic programming on top
of this.

If our approach would also be noticed and picked up by the constraint solving
community this might be, of course, mutually fruitful. There is in fact also a nice
theoretical benefit of our approach from the point of view of logic programming:
With the recent developments in quantifier elimination techniques for term alge-
bras [3], the unification for non-constraint terms within the resolution processes
can in principle be replaced by quantifier elimination. This has the consequence
that the free terms formally establish just another domain and do not play a
special role anymore.

We want to mention some existing work that might appear similar to our
ideas at the first glance: First, Hong has described a clp system risc-clp(real)
[4]. It admits real constraints of arbitrary degree. They are solved by either real
quantifier elimination or by Gröbner basis methods. This approach, however, has
the usual restriction of pure lists of constraints in contrast to arbitrary first-order
formulas.

Second, there is considerable research being done on first-order constraints.
This so far mostly affects the treatment of finite domains, finite or infinite terms,
approximate methods, and decidability considerations for very general domains.
The connection between researchers developing such first-order methods on the
one hand, and researchers seeking such methods for incorporation into their clp
framework on the other hand appears to be quite weak [5].

The plan of this paper is as follows: In Section 2, we introduce the notion of
quantifier elimination. We also give an overview on the currently available do-
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mains for this: R, Qp (linear theory of p-adic numbers), C, Z (parametric Pres-
burger Arithmetic), quantified propositional calculus (parametric qsat), term
algebras. In Section 3 we give an analogous introduction to the theoretical back-
ground of clp to the extent that is necessary for our purposes here. Section 4
describes in detail our clp interpreter by giving an explicit algorithm. In addi-
tion we indicate an alternative point of view on our work, which would not revise
present clp interpreters but instead access our quantifier elimination techniques
as reasoning services. Section 5 gives a brief overview of our implementation.
This consists of a system clp(rl), which is embedded in the computer algebra
system reduce. There all necessary quantifier elimination methods are provided
by the computer logic package redlog [6].

Section 6 collects some computation examples with clp(rl). This gives an
idea of the present efficiency of our system. In addition, these examples illustrate
to what extent our approach conceptually extends the traditional framework of
clp:

– constraints of arbitrary degree,
– exact real arithmetic for arbitrary degree,
– absolutely complete treatment of e.g. disjunction,
– quantified constraints,
– new powerful domains.

In Section 7 we finally summarize our results and evaluate our work.

2 Quantifier Elimination

Quantifier elimination generally takes place wrt. a fixed formal language and a
semantics for that language. For our purposes here, it is convenient to call such
combinations domains. We start with a brief survey of the various domains that
we provide at present. On this basis we then turn to the notion of quantifier
elimination.

2.1 Available Domains

real numbers. We use the language LOR = (0, 1,+,−, · ; �,�, <,>, �=) of or-
dered rings expanded by constants for all rational numbers; formally that
is LOR(Q). Available implemented quantifier elimination methods are the
following: partial cylindrical algebraic decomposition (cad) [7]; virtual sub-
stitution methods [8,9]; Hermitian quantifier elimination [10,11,12]. All these
methods have certain advantages and disadvantages. For a thorough survey
we point the reader at [1]. Within the framework described here, the users
need not care about these issues. Appropriate methods will be chosen auto-
matically via some heuristic approach.

p-adic numbers. We use the language LDIV = (0, 1, p,+,−, · ; |, ‖,∼, �∼, �=) of
rings with abstract divisibilities expanded by constants for all rational num-
bers; formally LDIV(Q). Using abstract divisibilities in contrast to a function
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symbol v for the valuation allows us to keep things one-sorted. The divisi-
bility predicates are defined as follows:

a | b :⇔ vp(a) � vp(b), a ‖ b :⇔ vp(a) < vp(b), a ∼ b :⇔ vp(a) = vp(b).

Our implemented methods are restricted to the corresponding linear theory.
That is, the total degree in the quantified variables must not exceed 1. This
restriction is a bit weakened by the automatic application of various heuristic
methods, e.g. polynomial factorization. Our quantifier elimination procedure
by virtual substitution [13] allows to keep the prime p parametric. For our
purposes here, we have to fix p, however. This guarantees that variable-free
atomic formulas can be decided, and on these grounds arbitrary sentences
can be decided by employing quantifier elimination.

complex numbers. We use the language LR = (0, 1,+,−, · ; �=) of rings ex-
panded by constants for all rational numbers; formally LR(Q). Notice that
there are no operations like real part, imaginary part, or absolute value
available. Problems involving such operations would be encoded as real prob-
lems instead. Our quantifier elimination methods are based on comprehensive
Gröbner bases [14].

integers. We use the language LPR = (0, 1,+,−, · ; �,�, <,>, �=,≡(3), �≡(3)) of
ordered rings expanded by (ternary) congruences and their negated coun-
terparts plus constants for all integers; formally LPR(Z). The theory is the
linear theory of the integers over the above language. This is commonly
known as Presburger Arithmetic. Our framework is actually a bit more gen-
eral: linearity refers to the total degree of the quantified variables only. As
coefficients and also as moduli there may occur arbitrary polynomials in the
parameters, i.e., in the unquantified variables [15].

quantified propositional calculus. We formally use the essentially algebraic
language

(
0(0), 1(0),∼(1),&(2), |(2),→(2),↔(2); �=), where all symbols except

the negated equality “ �=” are function symbols. Over this language, we con-
sider the theory of initial, i.e. 2-element, Boolean algebras. Quantifier elimi-
nation is performed by virtual substitution in combination with sophisticated
intermediate simplification techniques in the style of non-probabilistic ap-
proaches to sat-checking. Note that in terms of that framework, quantifier
elimination offers parametric qsat-checking. There are normal forms of for-
mulas such that all atomic formulas are of one of the forms v = 0 or v = 1,
where v is a variable. Using a so-called propositional wrapper such formulas
can be straightforwardly displayed in the style of quantified propositional
calculus. See [16] for further details on this domain.

term algebras. over finite languages. This domain is motivated by the desired
treatment of absolutely free term algebras over finite algebraic languages L.
Except for extreme special cases, such structures do not admit quantifier
elimination. This is overcome by expanding the languages by symbols for
unary so-called inverse functions. These inverse functions are essentially used
to express whether their argument term t starts with a particular function
symbol from L or not. See [3] for further details on this domain and for our
quantifier elimination method by virtual substitution.
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2.2 The Notion of Quantifier Elimination

As already indicated, a domain is determined by two choices: a language and a
corresponding semantics.

We have explicitly given the languages for our domains in the previous sec-
tion. In order to give a formal framework for real quantifier elimination, we
introduce first-order logic on top of such languages L. Terms are inductively
defined by nesting according to their arities function symbols and constants and
also variables, which are not mentioned in the languages. Many of our languages
are expansions of the language of rings. In these cases, every term can be equiv-
alently represented by a multivariate polynomial f with rational coefficients.

Atomic formulas are either equations t = t′ between terms t, t′ or predicates.
A predicate is built by combining a relation symbol R(n) from L with terms
t1, . . . , tn according to its arity n; this yields a word R(t1, . . . , tn). Wherever
this is appropriate, we make use of infix notation in both our description here
and our implementations. Similarly to the choice of polynomials as canonical
term representations above, there are often reasonable normal forms for atomic
formulas. Over the reals, e.g., it is sufficient to consider equations and inequalities
of the form f = 0, f � 0, f � 0, f < 0, f > 0, or f �= 0 for polynomials f .

Quantifier-free formulas are “true,” “false,” atomic formulas, and any com-
bination between these by the logical operators “¬,” “∧,” “∨,” “−→,” “←−,”
“←→.”

A formula of the form ∃x1 . . .∃xnψ(u, x), where ψ(u, x) is a quantifier-free
formula, is called an existential formula. Similarly, universal formulas are of
the form ∀x1 . . . ∀xnψ(u, x). A prenex first-order formula has several alternating
blocks of existential and universal quantifiers in front of a quantifier-free formula.
General first-order formulas are inductively obtained from “true,” “false,” and
atomic formulas by admitting quantification also inside the scope of logical oper-
ators. It is not hard to see, however, that every first-order formula is equivalent to
a prenex one. Notice our convention to denote parameters by u = (u1, . . . , um)
and main variables by x = (x1, . . . , xn). A parameter-free first-order formula
is called a first-order sentence. A first-order formula ϕ(u) (possibly containing
quantified main variables x) can be turned into a sentence by universally quan-
tifying all present parameters u. The obtained sentence ∀ϕ = ∀u1 . . .∀umϕ(u) is
called the universal closure of ϕ.

For the semantics of our domains, we had used in the previous section verbal
descriptions like “the real numbers.” Let us be a bit more precise about that
now. Let S be the L-structure that we are aiming at, e.g. S = R. Then the
theory Th(S) of S is the set of all first-order sentences that hold over S. Note
that Th(S) depends on L although the notation does not reflect this. If for some
first-order formula ϕ its universal closure ∀ϕ is contained in Th(S), then we say
that ϕ holds in the theory of S or shorter ϕ holds in S; we write Th(S) |= ϕ
or S |= ϕ, respectively. Any set Φ of first-order formulas naturally induces a
model class, i.e. the class of all L-structures in which all formulas from Φ hold:
Mod(Φ) = {T | T |= ϕ for all ϕ ∈ Φ }. For arbitrary classes M of L-structures
and first-order formulas ϕ we write M |= ϕ if T |= ϕ for all T ∈M. For instance,
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Mod(Th(R)) is the class of real closed fields, and Mod(Th(R)) |= x2 � 0, in
particular R |= x2 � 0.

The quantifier elimination problem can be phrased as follows: Given a for-
mula ϕ, find a quantifier-free formula ϕ′ such that ϕ′ is equivalent to ϕ in the con-
sidered domain; formally S |= ϕ′ ←→ ϕ. A procedure computing such a ϕ′ from ϕ
is called a quantifier elimination procedure. Note that, since the required equiva-
lence is a first-order formula itself, the quantifier elimination output ϕ′ generally
satisfies even Mod(Th(S)) |= ϕ′ ←→ ϕ. As a simple example for real quantifier
elimination consider the equivalence R |= a �= 0 ∨ b = 0←→ ∃x(ax+ b = 0).

Over the reals, there is a straightforward geometric interpretation for quan-
tifier elimination for an existential formula ϕ(u) = ∃x1 . . . ∃xnψ(u, x). Consider
M = { (u, x) ∈ Rm+n

∣∣ ψ(u, x) } and M ′ = { u ∈ Rm | ϕ(u) }. Then M ′ is
the projection of M along the coordinate axes corresponding to the existentially
quantified variables x into the parameter space. Real quantifier elimination yields
a quantifier-free description of this projection.

3 Constraint Logic Programming

Constraint logic programming (clp) arose around the mid of the eighties. Promi-
nent systems are chip [17], clp(r) [18], and Prolog III [19]. Clp integrates
the concepts of logical programming with constraint solving. The intuitive idea
is that a constraint is a relational dependence between several numbers (in a
very liberal sense), variables, and certain functions on these numbers and vari-
ables. The type of numbers and the possible functions and relational dependences
establish the domain of the constraint solver. Our domains introduced in Sec-
tion 2.1 are compatible with this notion. In fact, they are quite typical examples.
A solution of a constraint system is one binding of all involved variables such
that all constraints are simultaneously satisfied. A constraint solver computes
such a solution. In particular, it checks this way for feasibility, i.e. the exis-
tence of a solution. We now turn this informal discussion into generalized formal
definitions suitable for our framework.

We fix a domain S with language L. A constraint is a first-order formula in
the sense of Section 2.1. An atom is of the form P (t1, . . . , tn) for n ∈ N where
P is an n-ary predicate symbol that is not in L, and the t1, . . . , tn are terms.
Atoms must not be confused with atomic formulas.

A clause is of the form β0 ← β1, . . . , βn, ψ, where β0, . . . , βn are atoms, and ψ
is a constraint. The atom β0 is the head of the clause. The sequence β1, . . . , βn, ψ
is the body of the clause. Notice that it is not possible to have a constraint as
the head of a clause. A program is a finite set of clauses. A query is of the form
← α1, . . . , αn, ϕ, where α1, . . . , αn are atoms, and ϕ is a constraint.

Let Π be a program, and let Q be a query. Then we can fix an expansion
languageL′ ⊇ L containing all predicate symbols and function symbols occurring
in Π and Q. Over this language L′ we identify clauses β0 ← β1, . . . , βn, ψ with
first-order formulas β0 ←− β1∧· · ·∧βn∧ψ. Accordingly, we identify the program
Π with the conjunction

∧
Π of the contained clauses. Finally, the empty head in
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the query Q is interpreted as “false,” and thus Q =← α1, . . . , αn, ϕ is equivalent
to ¬(α1 ∧ · · · ∧ αn ∧ ϕ). Recall that “true” is a constraint, and that forming
conjunctions is a valid operation for constructing constraints. It is thus not a
restriction that clauses and queries contain exactly one constraint.

Let Π be a program. The completion Π̄ of Π is obtained by adding to Π for
each n-ary predicate symbol P in Π a first-order formula γP as follows: Let P
be defined by clauses

P (t11, . . . , t1n)← B1

...
P (tm1, . . . , tmn)← Bm.

Let x1, . . . , xn be pairwise distinct variables not occurring in these clauses.
Denote for i ∈ {1, . . . ,m} by yi1, . . . , yiki the variables occurring in the i-th
clause above. Then γP is defined as

P (x1, . . . , xn)←→
m∨

i=1

∃yi1 . . .∃yiki

( n∧
j=1

xi = tij ∧Bi

)
.

Note that in the special case that P does not occur in the head of a clause, this
amounts to P (x1, . . . , xn)←→ false, which is equivalent to ¬P (x1, . . . , xn).

A variable v is free in a first-order formula ϕ if v occurs in ϕ at some point
outside the scope of all quantifiers ∃v and ∀v. We denote by var(ϕ) the set of all
variables that are free in ϕ. Let V = {v1, . . . , vk} be a finite set of variables. Then
∃V ϕ is a concise notation for ∃v1 . . .∃vkϕ. Even more concisely, ∃ϕ stands for
the existential closure ∃var(ϕ)ϕ. Accordingly, the universal closure ∀ϕ, which we
have introduced already in Section 2.2, equals ∀var(ϕ)ϕ. In view of our discussed
identification of syntactic entities of clp programs with first-order formulas, all
these definitions can obviously be applied also to the former.

Let Π be a program, and let Q =← α1, . . . , αk, ϕ be a query. Then a correct
answer for Π and Q is a quantifier-free constraint ϕ′ such that var(ϕ′) = var(Q)
and

Mod
(
Π̄ ∪ Th(S)

) |= ϕ′ −→ α1 ∧ · · · ∧ αk ∧ ϕ.
Here the model class is formed over the expanded language L′ while Th(S)
denotes the L-theory of S.

4 Our Resolution Algorithm

We are now going to precisely describe our resolution algorithm in a procedural
style. Later on in this section, we discuss an alternative point of view on our
work, which would not revise present clp interpreters but instead access our
quantifier elimination techniques as reasoning services there.

Besides quantifier elimination, our following resolution algorithm applies a
simplifier to the final result formula. Simplifiers map first-order formulas to
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simpler equivalent ones. For details and a discussion of the notion of simplicity
see [20]. There are powerful simplifiers available for all our domains. Generally
quantifier elimination implementations would include such simplifiers either as
a subroutine for the simplification of intermediate results or as a part of the
quantifier elimination procedure itself.

Algorithm 1. Input: A program Π and a query Q =← α1, . . . , αk, ϕ. Output:
A correct answer for Π and Q. Termination: The algorithm does not necessarily
terminate. Used subroutines: simplify is a simplifier; qe is a quantifier elimina-
tion procedure.

begin
(G′, C′) := clpqe

({α1, . . . , αk}, ϕ
)

C′ := simplify(C′)
return C′

end
procedure clpqe(G,C)
begin

V := var(C) � (var(G) ∪ var(Q))
C := qe(∃V C)
if G = ∅ or C = false then

return (G,C)
fi
G := remove P (t1, . . . , tn) ∈ G from G
Π ′ := standardize apart all variables in Π
while Π ′ �= ∅ do

Π ′ := remove a clause K ∈ Π ′ from Π ′

if K is of the form P (s1, . . . , sn)← B,ψ then
μ :=

∧n
i=1 si = ti

if qe(∃(μ ∧ C)) = true then
(G′, C′) := clpqe(G ∪B,C ∧ μ ∧ ψ)
if G′ = ∅ and C′ �= false then

return (G′, C′)
fi

fi
fi

od
return (G, false)

end

Consider the domain of the real numbers. Given the program

Π =
{
p(X)← X � 0, p(X)← X � 0

}
and the query ← p(X), it is clear that “true” is a correct answer. There are,
however, exactly two possible answers that can be computed by the algorithm:
X � 0 and X � 0. This is not a drawback of our particular approach, but
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a general problem of clp in contrast to conventional logic programming. Clp
resolution is complete only in the following sense:

Theorem 2 (Completeness of CLP). Let Π be a program, let Q be a query,
and let ϕ′ be a correct answer for Π and Q. Then there are finitely many runs
of Algorithm 1 on Π and Q with corresponding results ϕ′

1, . . . , ϕ′
r such that

S |= ϕ′ −→
r∨

i=1

ϕ′
i. )*

A proof for this restricted completeness as well as for the correctness of
Algorithm 1 can be derived from the corresponding proofs for other constraint
solvers in any textbook on clp.

Our current implementation resolves the non-determinism in Algorithm 1
exclusively by selecting the first possible program clause in the order of notation
and maintaining a stack of goals. Though common in logic programming, this is
a considerable restriction, because it can lead to infinite runs of the algorithm
where there would exist finite runs yielding correct answers.

Since the availability of our implementation is an important part of the work
discussed here, we have discussed the implemented algorithm to some detail. Our
approach is, however, much more flexible than providing this very algorithm:
Within the clp framework, the constraint solver is generally considered as a
module that abstractly provides certain reasoning services, which are roughly
the following [21]:

1. consistency test (is a given constraint satisfiable?),
2. projection (existential elimination of variables),
3. entailment test (decision of implication between constraints),
4. simplification (replace a constraint by an equivalent simpler one),
5. determination (is the value of a variable uniquely determined?),
6. negation (provide suitable constraint symbols to resolve logical negation).

It is not hard to see that even admitting first-order constraints, the services 1–3
can be rather straightforwardly realized by quantifier elimination. Re 4, power-
ful simplifiers lie at the very heart of any efficient implementation of quantifier
elimination. So one can count on their availability. Re 5, the question whether
a variable is uniquely determined is again a quantifier elimination problem. De-
termining the unique value is rather simplification. Note that it is not generally
possible to explicitly express all possible unique values anyway. Re 6, finally,
the fact that it is useful to encode negation in the language of the domain is
well-known also within the quantifier elimination community. Consequently all
our domains in Section 2.1 are designed that way.

5 Implementation: CLP(RL)

Our system clp(rl) is implemented within the computer algebra system re-
duce on top of our computer logic package redlog. Redlog is an extension
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of the computer algebra system reduce to a computer logic system, which pro-
vides symbolic algorithms on first-order formulas wrt. temporarily fixed domains
in the sense of Section 2.1. Redlog has its origin in the implementation of real
quantifier elimination by virtual substitution. Successfully applying such meth-
ods to both academic and real-world problems, the authors have developed a
large collection of formula-manipulating tools, many of which are meanwhile
interesting in their own right.

The author started the realization of redlog in 1992. In April 1995, the
system has been redesigned by the author together with A. Dolzmann [6]; in
2001 A. Seidl has joined the development team. In October 1996, redlog 1.0
was published on the Web. In April 1999, redlog 2.0 was distributed as a
part of reduce 3.7. In April 2004, the current version redlog 3.0 has been
shipped with reduce 3.8. For many years, redlog is widely accepted inside
the scientific community. For a collection of applications of redlog in various
fields of science and engineering see [1] and the references there.

In the name clp(rl), the “rl” is an abbreviation for redlog. Similarly to
redlog, our present version of clp(rl) is completely integrated into reduce.
There is a function clp, which has two arguments: a program and a query. A pro-
gram is a list of clauses; clauses are input following the usual conventions writing
“←” as “:-”. The return value of clp is a quantifier-free formula in the query
variables, which can then be further processed by reduce, redlog, or clp(rl)
itself. The availability of the computer algebra environment is particularly inter-
esting since for principal reasons the answer formula does not necessarily provide
an explicit description of the solution.

The function clp is essentially an implementation of Algorithm 1 with the
selection rules for goals and clauses as discussed in Section 4. In order to be as
clear and concise as possible, we have in our presentation of Algorithm 1 in this
paper neglected some efficiency considerations, which we have taken care of in
the implementation.

The domain is determined via the global domain choice mechanism of red-
log. At the present stage of the implementation it is not yet possible to integrate
several domains within one program.

6 Computation Examples

We give some computation examples. The idea is at the first place to point at
features of our systems that exceed those of many other existing ones. All our
computation times mentioned below refer to computations on an Intel 933 MHz
Pentium III using 128 MB ram.

6.1 Real Constraints of Arbitrary Degree

As an example for quadratic real constraints, consider the computation of Py-
thagorean triples, i.e., natural numbers x, y, z ∈ N with x2 + y2 = z2. We use
the following program:
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nat(0)←
nat(X + 1)←nat(X), X � 0

pyth(X,Y, Z)←nat(X), nat(Y ), nat(Z), 2 � X � Y � Z ∧X2 + Y 2 = Z2.

The query ← pyth(3, 4, Z) yields Z − 5 = 0 in 0.05 s. For ← pyth(X, 9, Z) we
obtain X − 12 = 0 ∧ Z − 15 = 0 in 0.7 s, and ← pyth(X,Y, 9) results in “false”
after 0.3 s.

A completely parametric query ← pyth(X,Y, Z) would result in an infinite
run. The reason for this is our fixed clause selection function and thus a general
problem of logic programming, which is not really related to our work here.

Our next example has been introduced by Hong for the illustration of his
risc-clp(real) system [4]. The program describes the Wilkinson polynomial
equation:

wilkinson(X,E)←
20∏

i=1

(X + i) + EX19 = 0.

Mind that this product actually occurs in the program in the following expanded
polynomial form:

X20 + (210 + E)X19 + 20615X18 + 1256850X17 + 53327946X16 + 1672280820X15

+ 40171771630X14 + 756111184500X13 + 11310276995381X12

+ 135585182899530X11 + 1307535010540395X10 + 10142299865511450X9

+ 63030812099294896X8 + 311333643161390640X7 + 1206647803780373360X6

+ 3599979517947607200X5 + 8037811822645051776X4

+ 12870931245150988800X3 + 13803759753640704000X2

+ 8752948036761600000X + 2432902008176640000.

On the query ← wilkinson(X, 0), −20 � X � −10 we obtain after 0.3 s the
answer

20∨
i=1

X + i = 0.

For the query← wilkinson(X, 2−23), −20 � X � −10 with a slight perturbation,
we obtain after 0.9 s the following answer (in expanded form):

8388608 ·
( 20∏

i=1

(X + i) + 2−23X19

)
= 0 ∧X + 20 � 0 ∧X + 10 � 0.

The integer factor is the least common denominator of the coefficients of the
product polynomial. This answer is contradictory. This could be tested, e.g., by
applying quantifier elimination to its existential closure. Hong’s risc-clp(real)
actually delivers the result “false.” It generally applies some sophisticated pro-
cessing to its results including dnf computation at the risk of exponentially
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increasing the size of the output. Since our clp(rl) lives inside a computer al-
gebra system, we prefer to leave to the user the responsibility of how to proceed.
In this situation it would be straightforward to apply the partly numerical func-
tion realroots [22] of reduce to the left hand side polynomial of the equations.
This yields after 0.5 s the result

X ∈ {−20.8469,−8.91725,−8.00727,−6.9997,−6.00001,−5,−4,−3,−2,−1}.
If one wishes to remain exact, one could, e.g., apply cad to the existential

closure of the answer, which immediately yields “false.” In general, numerical
methods will be more efficient, of course.

6.2 Exact Arithmetic

The minimal perturbation of Wilkinson’s equation in the previous section has
dramatically demonstrated how sensitive the root behavior of polynomials and
thus algebraic equations and inequalities are even to smallest rounding errors.
Within clp(rl) all arithmetic is exact. The price for this is that we possibly
obtain only implicit solutions as we have also seen in the previous section. Then
one has the choice to either remain exact, or to apply approximate methods.

As long as we are within the clp framework, however, we remain absolutely
exact, and the answers—though not necessarily explicit—are always of the best
possible quality from the point of view of exactness.

6.3 Disjunction

Recall that in traditional clp, constraints are finite sets of relational depen-
dences, which are regarded as conjunctions. There has been a considerable discus-
sion within the clp community about disjunctions of constraints within clauses
and corresponding modifications of the resolution algorithm for treating certain
restricted variants of disjunction in an appropriate way. All suggested solutions
eventually led to further restrictions of completeness such that one did not really
obtain a procedural counterpart to the declarative meaning of disjunction.

Within our framework, disjunction is most naturally and absolutely com-
pletely handled by the constraint solver itself. Our resolution algorithm does not
at all know about the possible existence of disjunctive constraints. One standard
example when discussing the treatment of disjunctive constraints in the literature
is the minimum function. Its formulation as a clp program is straightforward:

min(X,Y, Z)← (X � Y ∧ Z = X) ∨ (Y � X ∧ Z = Y ).

The answers that can be derived from this program are as complete and concise
as the definition itself. For the query ← min(3, 4, Z) we obtain Z − 3 = 0. For
← min(X,Y, 3) the answer is

(X − 3 = 0 ∧ Y − 3 � 0) ∨ (X − 3 � 0 ∧ Y − 3 = 0).

Asking for ← min(X,Y, Z), we obviously get the definition itself. These compu-
tations take no measurable time.
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6.4 Quantified Constraints

Since our constraints are first-order formulas, they may also contain quantifica-
tion. It follows, of course, from the existence of quantifier elimination procedures
for our domains that this does not really increase expressivity. It, however, sup-
ports very much the concise formulation of programs.

The following program, for instance, describes that in real 2-space the point
(U1, U2) is the image of the point (X1, X2) under central projection from the
punctual light source (C1, C2):

pr(C1, C2, X1, X2, U1, U2)← ∃T
(
T > 0 ∧

2∧
i=1

Ui = T (Xi − Ci)
)
.

Notice that this description covers all degenerate cases that arise when some
of the points or coordinates happen to coincide. The following is a possible
quantifier-free description with 10 atomic formulas:

(C1 = 0 ∧ C2 = 0 ∧ U1 = X1 ∧ U2 = X2) ∨
(C2 �= 0 ∧ C2U2 > C2X2 ∧C1U2 − C1X2 − C2U1 + C2X1 = 0) ∨
(C1 �= 0 ∧ C1U1 > C1X1 ∧C1U2 − C1X2 − C2U1 + C2X1 = 0).

The quantified formulation has been taken from [23], the quantifier-free result
has been obtained by quantifier-elimination with redlog. In higher dimension
the effect becomes more dramatic. The quantifier-free description in 3-space has
18 atomic formulas, the one in 4-space 28.

6.5 Beyond Real Numbers

We conclude our collection of examples with a non-real one. The following pro-
gram over the domain of p-adic numbers is analogous to the definition of nat in
Section 6.1.

ppow(1)←
ppow(p ·X)← ppow(X), 1 | X.

It defines the powers of the prime p. For each query, the constant p must be
chosen to be a fixed prime; this completely determines the domain Qp. The
constraint 1 | X states that X is a p-adic integer. It is obvious that successive
division by p eventually leads to a number with negative value. Thus the con-
straint can play the role of the emergency brake such as X � 0 does in the
definition of nat. For p = 101 the query

← ppow(12201900399479668244827490915525641902001)

yields “true” after 0.1 s. If we increase this number, which is 10120, by 1, then
the corresponding query immediately yields “false.” In this case, the constraint
solver recognizes that 10120+1

101 is not a p-adic integer.
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7 Conclusions

We have introduced an extension of clp, where the constraints are arbitrary
first-order formulas over some domain. Constraint solving is realized by various
applications of quantifier elimination techniques. Our approach is implemented
in our system clp(rl). There are already various domains available there: R,
Qp, C, Z, quantified propositional calculus, and term algebras. The advantages
of our approach include real of arbitrary degree, exact arithmetic, absolutely
clean treatment of disjunction and other Boolean operators and, moreover, first-
order quantified constraints. The idea behind our work is to consider the logic
programming part as a supplement to quantifier elimination in order to pro-
vide solution methods for problems that have so far been accessible neither by
quantifier elimination nor by constraint logic programming.
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Abstract. In original comprehensive Gröbner bases, we must select pa-
rameter from variables before computation. By extending them, we intro-
duce full comprehensive Gröbner bases as comprehensive Gröbner bases
such that we can choose parameters to be instantiated from variables
freely after computation. In this paper, we give an algorithm to compute
full comprehensive Gröbner bases.

1 Introduction

In [10], V. Weispfenning introduced comprehensive Gröbner bases. A compre-
hensive Gröbner basis is a set of polynomials depending on parameters such
that, for any instantiation of parameters, the set is a Gröbner basis of the in-
stantiated system. Several algorithms to compute comprehensive Gröbner bases
are introduced. [2,7] In general, a comprehensive Gröbner basis might not be
a Gröbner basis. For example, if we let F = {A2Y + 1, AX − Y }, then F is a
comprehensive Gröbner basis in C[X,Y ] with a parameter A, beside it is not a
Gröbner basis in C[X,Y,A] since X + Y 2A ∈ 〈F 〉. On the other hand, we can
calculate a comprehensive Gröbner basis which is also a Gröbner basis as follow:
Let K be a computable infinite field. Let X̄ = {X1, . . . , Xn} be a set of vari-
ables, and Ā = {A1, . . . , Am} be the set of parameters. Then, for a given finite
set F ⊆ K[X̄], we can get a comprehensive Gröbner basis G of F in K[X̄ \ Ā]
with parameters Ā such that G ⊆ 〈F 〉 in K[X̄], and we can also get a Gröbner
basis G′ of the ideal 〈F 〉 in K[X̄]. Then we can easily see that G ∪ G′ is a
comprehensive Gröbner basis which is also a Gröbner basis.

For a convenience, we introduce terms as follow where P(X̄) is the power set
of X̄ , i.e., P(X̄) = {Ā : Ā ⊆ X̄}:
Definition 1. Let X̄ be a finite set of variables. Let K be a field. Let F and G
be a finite subset of K[X̄]. For Ā ⊆ X̄ , G is Ā-comprehensive Gröbner basis
for F if G forms a comprehensive Gröbner basis for F with parameters Ā. For
A ⊆ P(X̄), G is A-comprehensive Gröbner basis for F if it is Ā-comprehensive
Gröbner basis for each Ā ∈ A. And G is a full comprehensive Gröbner basis for
F if it is a P(X̄)-comprehensive Gröbner basis for F .

Full comprehensive Gröbner bases are introduced by the author [8]. Extending
the argument of the previous paragraph, we can get a finite set Ḡ ⊆ K[X̄]

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 431–444, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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which is a full comprehensive Gröbner basis, by taking the union of the B̄-
comprehensive Gröbner bases GB̄ for each B̄ ⊆ X̄. Then, if we consider any
subset B̄ of X̄ as a parameters, Ḡ forms a B̄-comprehensive Gröbner basis.
Especially, considering the case B̄ = ∅, we can see that Ḡ is a Gröbner basis.
For the F ⊆ C[X,Y,A] given in the beginning of this section, we get a set
{X2+Y 2, X+Y 2A, Y A2 +1, XA−Y,XA3+1} gathering 23 = 8 comprehensive
Gröbner bases for F for various parameters. In this paper, we show a way to
compute full comprehensive Gröbner bases which is more sophisticated than the
naive method shown in this paragraph.

In this paper, we use definitions and arguments appearing in [7], so we assume
the reader is familiar with them. We also assume the reader is familiar with a
theory of Gröbner bases of polynomial rings over von Neumann regular rings
[9,11,4] and a one of terraces and preterraces which are introduced in [6,5].

2 von Neumann Regular Rings

In this paper, we fix an algebraically closed field K and a finite set X̄ =
{X1, . . . , Xn} of variables. We also fix an admissible order <X̄ on the set of
terms of X̄. For a mapping f : A→ B and C ⊆ A, we use the terminology f [C]
as the image of C under f , i.e., f [C] = {f(a) ∈ B : a ∈ C}.

A commutative ring R with identity 1 is von Neumann regular ring if R
satisfies that ∀a ∈ R ∃b ∈ R a2b = a. For such a and b, defining a∗ = ab
and a−1 = ab2, we notice that a∗ and a−1 are uniquely determined by a and
independent from the choice of b. Note that every direct product of fields is a
von Neumann regular ring. Then the set K(Kn) of the mappings from Kn into
K forms a von Neumann regular ring.

A polynomial f ∈ K[X̄] can be considered as a mapping f : Kn → K,
i.e., a member of the ring K(Kn). Thus we can define the canonical embedding
ϕX̄ : K[X̄]→ K(Kn). Let TX̄ be the closure of the image ϕX̄ [K[X̄]] under addi-
tion, multiplication, and inverse of the von Neumann regular ring (K(Kn),+, ·,
−1). For c ∈ TX̄ , we define the support of c by supp(c) = {ā ∈ Kn : c(ā) �= 0K}.

For each subset Ā of X̄, we let ϕĀ : K[Ā] → TX̄ be the restriction of ϕX̄ to
K[Ā] ⊆ K[X̄]. Let TĀ ⊆ TX̄ be the closure of the image ϕĀ[K[Ā]] under addition,
multiplication, and inverse of the ring (TX̄ ,+, ·,−1). Then we can easily see that
TĀ forms a von Neumann regular ring again. Let T ∗̄

A
be the set of idempotent

elements of TĀ, i.e., T ∗̄
A

= {c∗ : c ∈ TĀ}. Let T p
Ā

be the set of the elements c of
T ∗̄

A
which can be expressed by c = ϕX̄(f1)∗ · · ·ϕX̄(fk)∗ · (1 − ϕX̄(g1)∗) · · · (1 −

ϕX̄(gl)∗) for some f1, . . . , fk, g1, . . . , gl ∈ K[Ā]. Then we have the following. We
can show this from the fact the supp(c) is constructible.

Lemma 1. Let Ā ⊆ X̄ and c ∈ T ∗̄
A
. Then there are d1, . . . , dm ∈ T p

Ā
such that

c = d1 + · · ·+ dm.

Proof. First we note that c is a function of values 0 or 1. So it is enough to find
d1, . . . , dm ∈ T p

Ā
such that supp(c) = supp(d1) * · · · * supp(dm) where a = b * c

means a is the disjoint union of b and c, i.e., a = b ∪ c and b ∩ c = ∅.
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Since supp(c) is algebraically constructible, it can be expressed by

supp(c) =
N⋃

i=1

(V (Ii) \ V (Ji)) (1)

where V (Ii) and V (Ji) are varieties for ideals Ii and Ji on K[Ā] respectively.
Then, by an easy argument, we may assume that (1) is a disjoint union. So
it is enough to show that to find d1, . . . , dm ∈ T p

Ā
such that V (I) \ V (J) =

supp(d1) * · · · * supp(dm) for any ideals I and J on K[Ā].
Say I = 〈f1, . . . , fk〉 and J = 〈g1, . . . , gl〉 where f1, . . . , fk, g1, . . . , gl ∈ K[Ā].

If l = 0, then V (I) \ V (J) = ∅ = ϕX̄(1)∗, and so we are done. Thus we assume
l > 0. Then V (J) = V (g1, . . . , gl) = V (g1) ∩ · · · ∩ V (gl) implies that

V (I) \ V (J) = V (I) \ V (g1, . . . , gl)
= V (I) \ (V (g1) ∩ · · · ∩ V (gl))
= (V (I) \ V (g1)) ∪ · · · ∪ (V (I) \ V (gl))
= (V (f1, . . . , fk) \ V (g1)) * (V (f1, . . . , fk, g1) \ V (g2))*

V (f1, . . . , fk, g1, . . . , gl−1) \ V (gl).

So defining d1 = ϕX̄(g1)∗ · (1 − ϕX̄(f1)∗) · · · (1 − ϕX̄(fk)∗), d2 = ϕX̄(g2)∗ · (1−
ϕX̄(f1)∗) · · · (1−ϕX̄(fk)∗)·(1−ϕX̄(g1)∗), . . . , dl = ϕX̄(gl)∗ ·(1−ϕX̄(f1)∗) · · · (1−
ϕX̄(fk)∗ ·(1−ϕX̄(g1)∗) · · · (1−ϕX̄(gl−1)∗), we have that V (I)\V (J) = supp(d1)*
· · · * supp(dl) and that d1, . . . , dl ∈ T p

Ā
. )*

When we assume that Ā ⊆ X̄, we can express Ā = {Xi1 , Xi2 , . . . , Xim} ⊆
{X1, X2, . . . , Xn} = X̄ with i1 < i2 < · · · < im. Then projĀ : Kn → Km

is defined by proj((a1, . . . , an)) = (ai1 , . . . , aim). We also define, for s ⊆ Kn,
projĀ(s) = {projĀ(ā) ∈ Km : a ∈ s}. Furthermore, we define a mapping
πĀ : T ∗̄

X
→ T ∗̄

A
such that supp(πĀ(c)) =

⋂{supp(a) ⊆ Kn : a ∈ T ∗̄
A
, supp(c) ⊆

supp(a)}. Then we can see the well-definedness of it by the argument in [6] or
[5].

We fix an arbitrary subset Ā of X̄ and a polynomial f in TX̄ [X̄ \ Ā]. We
define the term order <X̄\Ā on the set of terms of X̄ \ Ā by the restriction of
<X̄ . Then the leading term of f is a term of X̄ \ Ā is denoted by lt(f). The
leading coefficient lc(f) is a member of TX̄ , and the leading monomial lm(f)
satisfies lm(f) = lc(f) · lt(f). We often use Greek letters α, β, γ for terms of
X̄ \ Ā, alphabet letters f, g, h for polynomials in K[X̄], and a, b, c for elements
of T ∗̄

X
.

3 Comprehensive Pairs and Gröbner Bases

In this section, we use the symbol Ā for a subset of X̄. Comprehensive pairs
are a generalization of “witnessing pairs of coherent polynomials” appeared in
[7]. The reader refers it for detailed arguments. In this paper, each pair (c, f) in
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T p
X̄
× K[X̄] is called a comprehensive pair. For (c, f) ∈ T ∗̄

X
× K[X̄], we define

ψĀ((c, f)) = c · ϕĀ(f) ∈ TX̄ [X̄ \ Ā] and ψ̃Ā((c, f)) = πĀ(c) ·ϕĀ(f) ∈ TĀ[X̄ \ Ā].
From now on, we give a sketch of an algorithm to compute a finite subset G

of T p

X̄
× K[X̄] from a given finite set F ⊆ K[X̄] and A ⊆ P(X̄) (P(X̄) is the

power set of X̄ , the set of the all subsets of X̄) such that:

1. For each Ā ∈ A, the set ψ̃Ā[G] forms a Gröbner basis of 〈ϕĀ[F ]〉, the ideal
generated by the image of F under ϕĀ, in TĀ[X̄ \ Ā],

2. {g : ∃c (c, g) ∈ G} ⊆ 〈F 〉 in K[X̄].

We see that the set G above gives us A-comprehensive Gröbner Basis for F in
the latter section.

Definition 2. Let P be a finite subset of T p

X̄
× K[X̄]. Let F be a finite set of

polynomials in K[X̄]. Then P is Ā-faithful to F if

1. 〈ψĀ[P ]〉 = 〈ϕĀ[F ]〉 in TX̄ [X̄ \ Ā],
2. f ∈ 〈F 〉 for each (c, f) ∈ P .

We say P is A-faithful to F if P is Ā-faithful to F for each Ā ∈ A.

The following Lemma is used to check faithfulness of sets of comprehensive
pairs.

Lemma 2. Let Ā ⊆ B̄ ⊆ X̄. Let F be a finite subset of K[X̄]. Let P be a
finite subset of T ∗̄

B
× K[X̄]. If {g : ∃c (c, g) ∈ P} ⊆ 〈F 〉 in K[X̄], then

ψĀ[P ] ⊆ 〈ϕĀ[F ]〉 in TB̄[X̄ \ Ā].

Proof. We pick arbitrary (c, g) ∈ P . Then we know that g ∈ 〈F 〉 in K[X̄] by the
assumption. So we can take polynomials f1, . . . , fm ∈ F and h1, . . . , hm ∈ K[X̄]
such that g = f1h1 + · · · fmhm. Since ϕĀ : (K[Ā])[X̄ \ Ā] → TĀ[X̄ \ Ā] is an
embedding, we have ϕĀ(g) = ϕĀ(f1)ϕĀ(h1) + · · ·+ϕĀ(fm)ϕĀ(hm). So we have
ϕĀ(g) ∈ 〈ϕĀ[F ]〉 in TĀ[X̄ \ Ā]. Thus we have ψĀ((c, g)) = c · ϕĀ(g) ∈ 〈ϕĀ[F ]〉
in TB̄[X̄ \ Ā] since c ∈ T ∗̄

B
⊇ T ∗̄

A
. )*

We can easily see that {1TX̄
} × F is P(X̄)-faithful to F for any finite F ⊆

K[X̄]. So we give a method to calculate a finite set G of comprehensive pairs
appeared in the beginning of this section by modifying Buchberger algorithm,
starting from {1} × F keeping the comprehensive pairs to be faithful to F .

Definition 3. Let op be a mapping from a finite set of comprehensive pairs to a
finite set of comprehensive pairs (or a comprehensive pair). We say op((c1, f1),
. . . , (cm, fm)) = {(d1, g1), . . . , (dl, gl)}. Then op is faithful if g1, . . . , gl ∈
〈f1, . . . , fm〉.

In the rest of this section, we show faithful operations to calculate a finite set
G of comprehensive pairs such that ψĀ[G] forms a Gröbner basis in TX̄ [X̄ \ Ā].
We should note that we does not require ψĀ[G] to be a Gröbner basis in TĀ[X̄\Ā]
at the present moment.
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Definition 4. Let (c, f) and (d, g) be comprehensive pairs. We define an oper-
ation Mul by Mul((c, f), (d, g)) = (cd, fg).

Definition 5. Let (c, f) and (c, g) be comprehensive pairs which share their first
coordinate. We define an operation Add by Add((c, f), (c, g)) = (c, f + g).

Then we can easily see the following Proposition for these operations.

Proposition 1. Let c, d ∈ T p
X̄

and f, g ∈ K[X̄]. Then, for each Ā ⊆ X̄, we have

1. ψĀ((c, f)) · ψĀ((d, g)) = ψĀ(Mul((c, f), (d, g)),
2. ψĀ((c, f)) + ψĀ((c, g)) = ψĀ(Add((c, f), (c, g)),

in TX̄ [X̄ \ Ā]. We also have that Mul and Add are faithful.

Next we consider boolean closures for comprehensive pairs. A polynomial
f ∈ TX̄ [X̄] is boolean closed if f = lc(f)∗ · f , and boolean closure of f is bc(f) =
lc(f)∗ · f . For a finite set F of polynomials in TX̄ [X̄ ], a finite set bc(F ) of
polynomials in TX̄ [X̄] is called boolean closure of F if 〈F 〉 = 〈bc(F )〉 in TX̄ [X̄ ]
and if each polynomial in bc(F ) is boolean closed, though bc(F ) is not uniquely
determined by F . As you can see in the following theorem, boolean closure is
an important operation to calculate Gröbner bases in polynomial rings over von
Neumann regular rings.

Theorem 1. Let G be a finite set of boolean-closed polynomials. Then G is a
Gröbner basis iff SPol(f, g) ∗−→G 0 for any pair f and g in G.

We first see an algorithm to compute a boolean closure bc({ψĀ(c, f)}) of the
singleton of a comprehensive pair with respect to Ā. We can easily see that the
operator defined by this BCSingle is faithful since Mul is so.

Algorithm. BCSingle
Input: c ∈ T p

X̄
, f ∈ K[X̄], and Ā ⊆ X̄

Output: Q : a finite set of comprehensive pairs of
boolean-closed polynomials with respect to Ā such that
〈ψĀ(c, f)〉 = 〈ψĀ[Q]〉

If ψĀ(c, f) = 0 then
Return ∅;

Else
Return {Mul((c, f), (lc(ψĀ(c, f))∗, 1)} ∪

BCSingle(Mul((c, f), (1− lc(ψĀ(c, f))∗, 1), Ā);

For a finite set P of comprehensive pairs and Ā ⊆ X̄, we define the boolean
closure of it with respect to Ā by bcĀ(P ) =

⋃
p∈P BCSingle(p, Ā). For Ā ⊆ X̄, a

comprehensive pair p is Ā-boolean closed if ψĀ(p) is boolean closed in TX̄ [X̄ \ Ā].
And, for A ⊆ P(X̄), a comprehensive pair p is A-boolean closed if p is Ā-boolean
closed for each Ā ∈ A. For a boolean closed polynomial f ∈ TX̄ [X̄] and c ∈ T ∗̄

X
,
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we can easily see that c · f is boolean closed. On the other hand, the boolean
closure above only require multiplications by elements of T p

X̄
essentially. From

these facts, we can get an algorithm FullBC such that 〈ψĀ[P ]〉 = 〈ψĀ[Q]〉 for
each Ā ∈ A, where P is a finite set of comprehensive pairs, Q = FullBC(P ),
and A ⊆ P(X̄).

The computations of the S-polynomials and the normal form is essentially
same as the ones shown in [7], though we have to distinct the ones with respect
to Ā for each Ā ⊆ X̄ , e.g., SPolĀ(f, g) �= SPolB̄(f, g) may occur. For monomial
reductions of comprehensive pairs, we consider a polynomial f = bαβ + f ′ and
a boolean-closed polynomial g = aα + g′ where a · b �= 0 and lm(g) = aα. So
we first split f to a∗f and (1− a∗)f (split stage), then we concentrate to apply
monomial reduction to af by bg as af −→bg af − bβg = af ′ − bβg′. (reduction
stage) Moreover, we can assume that, for any Ā ⊆ X̄, it outputs the empty set
if the 0TX̄ [X̄\Ā] is given as its input, i.e., NormalFormĀ((c, f), P ) = ∅ for each
Ā ⊆ X̄ and (c, f) ∈ T p

X̄
× K[X̄] with c · ϕĀ(f) = 0TX̄ [X̄\Ā] and for any finite

P ⊆ T p

X̄
×K[X̄].

Then we can give the faithful algorithm GröbnerBasis as below:

Algorithm. GröbnerBasis

Input: F : a finite subset of K[X̄], A ⊆ P(X̄)
Output: G : a finite set of comprehensive pairs such that

ψĀ[G] forms a Gröbner basis of 〈ϕĀ[F ]〉 in TX̄ [X̄ \ Ā] for each Ā ∈ A
and that G is faithful to F

G := FullBC({1TX̄
} × F,A);

G′ := ∅;
While G �= G′ do
G′ := G;
For each Ā ∈ A do

For each p, q ∈ G with p �= q do
N := NormalFormĀ(SPolĀ(p, q), G);
G := G ∪FullBC(N,A);

End
End

End
Return G;

In order to see that the output G of this algorithm is a one as in the re-
quirement of “Output:” part, we first show that G is faithful to F during the
computation. Since NormalForm and FullBC are faithful operations, we have
that {g : ∃c (c, g) ∈ G} ⊆ F . So it is enough to show that 〈ψĀ[G]〉 = 〈ϕĀ[F ]〉
for each Ā ∈ A. So we fix Ā ∈ A. From the fact FullBC({1} × F,A) ⊆ G, we
see that 〈ψĀ[G]〉 ⊇ 〈ϕĀ[F ]〉. On the other hand, we can see 〈ψĀ[G]〉 ⊆ 〈ϕĀ[F ]〉
in TX̄ [X̄ \ Ā] by applying Lemma 2 with B̄ = X̄.
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Then, for each fixed Ā ∈ A, in the While-loop in this algorithm, though
new comprehensive pairs may be added to G as normal forms of S-polynomials,
the other comprehensive pairs may also be added to G with respect to B̄ ∈
A\ {Ā}. We can see that the extra comprehensive pairs for Ā does not affect to
ψĀ[G] to be a Gröbner basis for ψĀ[F ], since G is faithful to F and so ψĀ[G] ⊆
〈ϕĀ[F ]〉 holds during the computation. So, for each Ā ∈ A, the procedure to
add new comprehensive pairs stops in finite steps by the same reason of one of
Buchberger’s Algorithm. Thus we can see that this algorithm GröbnerBasis
stops in finite steps since |A| ≤ 2n is finite, and that ψĀ[G] forms a Gröbner
basis for 〈ϕĀ[F ]〉 in the polynomial ring TX̄ [X̄ \ Ā] (not in TĀ[X̄ \ Ā]) for each
Ā ∈ A.

4 Comprehensive Gröbner Bases

In this section, we first show, for a given finite F ⊆ K[X̄] and A ⊆ P(X̄), that
the algorithm GröbnerBasis outputs G required in the beginning of the last
section. Note that we have seen, at the end of the last section, that the G satisfies

1. ψĀ[G] forms a Gröbner basis, and so ψ̃Ā[G] forms a Gröbner basis of 〈ϕĀ[F ]〉
in TX̄ [X̄ \ Ā] for each Ā ∈ A, and

2. {g : ∃c (c, g) ∈ G} ⊆ 〈F 〉 in K[X̄].

Therefore it is enough to show that ψ̃Ā[G] is a Gröbner basis for 〈ϕĀ[F ]〉 in
TĀ[X̄ \ Ā], not in TX̄ [X̄ \ Ā], for each Ā ∈ A. To show it, we introduce a concept
of Ā-principal and show some Lemmas concerning it.

Definition 6. Let Ā ⊆ X̄. Then c ∈ T ∗̄
X

is Ā-principal if c · ϕX̄(h) �= 0 holds
for any h ∈ K[X̄] \K[Ā].

Lemma 3. Let Ā ⊆ X̄. Let c ∈ T p
X̄

be an Ā-principal element such that πĀ(c) ∈
T p

Ā
. Then there is a polynomial f ∈ (K[X̄] \ K[Ā]) ∪ {1K[X̄]} such that c =

πĀ(c) · ϕX̄(f)∗ in TX̄ .

Proof. In this proof, we abbreviate ϕX̄ to ϕ for the readability if there is no
confusion.

From the assumption c ∈ T p

X̄
, we get f ′

1, . . . , f
′
k′ , g′1, . . . , g

′
l′ ∈ K[Ā] such that

c = ϕ(f ′
1)∗ · · ·ϕ(f ′

k′ )∗ · (1−ϕ(g′1)∗) · · · (1−ϕ(g′l′)
∗). Since supp(c) ⊆ supp(πĀ(c))

from the definition of πĀ, we have c = πĀ(c) · c. So we have

c = πĀ(c) · ϕ(f ′
1)

∗ · · ·ϕ(f ′
k′)∗ · (1− ϕ(g′1)

∗) · · · (1− ϕ(g′l′)
∗.

We let f = f ′
1 · · · f ′

k′ ∈ K[X̄]. Then we notice that ϕ(f)∗ = ϕ(f ′
1 · · · f ′

k′)∗ =
ϕ(f ′

1)∗ · · ·ϕ(f ′
k′ )∗ by an easy argument. So we have the following:

c = πĀ(c) · ϕ(f) · (1− ϕ(g′1)
∗) · · · (1− ϕ(g′l′)

∗). (2)

Then we notice the following.
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Claim. We may assume g′1, . . . , g
′
l′ �∈ K[Ā].

Proof (Claim). We suppose g′i ∈ K[Ā] for some i = 1, . . . , l′. Then we know that
πĀ(c) · (1−ϕ(g′i)

∗) ∈ T p

Ā
and that supp(c) ⊆ supp(πĀ(c) · (1−ϕ(g′i)

∗)). Thus we
have πĀ(c) · (1 − ϕ(g′i)

∗) = πĀ(c) by the definition of πĀ. So if g′i ∈ K[Ā], then
it can be omitted from (2). 9(Claim)

Thus we assume g′1, . . . , g
′
l′ ∈ K[X̄] \K[Ā]. Then we have the following.

Claim. We have l′ = 0, i.e., there is no g′i in (2).

Proof (Claim). We suppose that g′i ∈ K[X̄] \ K[Ā] exists satisfying (2) for a
contradiction. Then we knew that ϕ(g′i) · (1−ϕ(g′i)

∗) = ϕ(g′i)−ϕ(g′i) = 0 in TX̄ .
So we had c·ϕ(g′i) = 0, which contradicts to the assumption that c is Ā-principal.
9(Claim)

So c can be expressed by c = πĀ(c) · ϕ(f)∗. If f ∈ K[Ā], then supp(c) ⊆
supp(πĀ(c) · ϕ(f)) and so πĀ(c) · ϕ(f)∗ = πĀ(c) by the definition of πĀ, and so
we may assume that f = 1K[X̄]. Therefore we may assume that f ∈ (K[X̄] \
K[Ā]) ∪ {1K[X̄]}. )*

Lemma 4. Let Ā ⊆ X̄. Let c, d ∈ T p
X̄

be Ā-principal elements such that πĀ(c) ·
πĀ(d) �= 0. Then c · d ∈ T p

X̄
is Ā-principal and πĀ(c · d) = πĀ(c) · πĀ(d).

Proof. In this proof, we abbreviate ϕX̄ to ϕ. Since πĀ(c) · πĀ(d) ∈ T ∗̄
A
, we have

p1, . . . , pl ∈ T p
Ā

such that πĀ(c) ·πĀ(d) = p1 + · · ·+ pl in TĀ by Lemma 1. Then,
for each i = 1, . . . , l, we notice that pi · c ∈ T p

X̄
and that πĀ(pi · c) = pi ∈ T p

Ā

since supp(pi) ⊆ supp(πĀ(c)). So we can take fi ∈ (K[X̄]\K[Ā])∪{1K[X̄]} such
that pi · c = pi · ϕ(fi)∗ by Lemma 3, for each i = 1, . . . , l. In the same way, we
can take g1, . . . , gl ∈ (K[X̄] \ K[Ā]) ∪ {1K[X̄]} such that pi · d = pi · ϕ(gi)∗ for
each i = 1, . . . , l.

Fixing i with 1 ≤ i ≤ l arbitrarily, we show that (pi · c) · (pi ·d) is Ā-principal
and that πĀ((pi · c) · (pi · d)) = pi since πĀ(pi · c) = πĀ(pi · d) = pi. Now we
have (pi · c) · (pi · d) = pi · ϕ(fi)∗ · pi · ϕ(gi)∗ = pi · ϕ(fi · gi)∗. So we can see that
it is Ā-principal. If fi · gi = 1K[X̄], then we have nothing to do, so we assume
fi · gi ∈ K[X̄] \ K[Ā]. Since it is trivial that supp(pi · ϕ(fi · gi)∗) ⊆ supp(pi),
it is enough to show that projĀ(supp(pi)) ⊆ projĀ(supp(πĀ(pi · ϕ(fi · gi)∗))).
So we fix an arbitrary ā ∈ projĀ(supp(pi)). Then the instantiated polynomial
(fi · gi)(ā, X̄ \ Ā) is a member of K[X̄ \ Ā] \ K, and so {b̄ ∈ K |X̄\Ā| : (fi ·
gi)(ā, b̄) �= 0} �= ∅. It means that ā ∈ projĀ(supp(πĀ(ϕ(fi · gi)∗))). So we have
ā ∈ projĀ(supp(πĀ(pi · ϕ(fi · gi)∗))).

Then, for any h ∈ K[X̄] \ K[Ā], we have p1 · ϕ(f1 · g1)∗ · ϕ(h)∗ �= 0 by
the previous paragraph, and so (c · d) · ϕ(h)∗ �= 0, i.e., c · d is Ā-principal. We
also know that c · d = p1 · ϕ(f1 · g1)∗ + · · · + pl · ϕ(fl · gl)∗ by the previous
paragraph and the fact pi · pj = 0 if i �= j. Therefore we have πĀ(c · d) =
πĀ(p1 · ϕ(f1 · g1)∗) + · · ·+ πĀ(pl · ϕ(fl · gl)∗) = p1 + · · · pl = πĀ(c) · πĀ(d). )*
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Lemma 5. Let a ∈ T p
X̄

and b, c ∈ T ∗̄
X

be such that a is Ā-principal, c is not
Ā-principal, and that a = b+ c in TX̄ . Then b is Ā-principal and πĀ(a) = πĀ(b).

Proof. Using Lemma 1 for πĀ(a) ∈ T ∗̄
A
, we can get p1, . . . , pl ∈ T p

Ā
such that

πĀ(a) = p1 + · · · + pl. Then since a · pi is Ā-principal and πĀ(a · pi) = pi

by Lemma 4, and so we can take fi ∈ (K[X̄] \ K[Ā]) ∪ {1K[X̄]} such that
pi ·a = pi ·ϕX̄(fi)∗ by Lemma 3, for each i = 1, . . . , l. On the other hand, since c
is not Ā-principal, we can take g ∈ K[X̄] \K[Ā] such that c · ϕX̄(g)∗ = 0. Then
supp(c) ⊆ supp(a · (1 − ϕX̄(g)∗)). Therefore, for each i = 1, . . . , l,

supp(b · pi) = supp(a · pi) \ supp(c)
⊇ supp(a · pi · ϕX̄(g)∗)
= supp(pi · ϕX̄(fi · g)∗).

Therefore we can see that b ·pi is Ā-principal and that πĀ(b ·pi) = pi = πĀ(a ·pi)
since fi · g ∈ K[X̄] \K[Ā] for each i = 1, . . . , l. So b is Ā-principal and πĀ(a) =
πĀ(b). )*
Lemma 6. Let c, d ∈ T p

X̄
be Ā-principal elements such that πĀ(c) = πĀ(d). For

f, g ∈ K[X̄], if c · ϕĀ(f) = d · ϕĀ(g), then πĀ(c) · ϕĀ(f) = πĀ(d) · ϕĀ(g) in
TĀ[X̄ \ Ā].

Proof. We assume that c · ϕĀ(f) = d · ϕĀ(g). We take p1, . . . , pl ∈ T p

Ā
such

that πĀ(c) = p1 + · · · + pl by Lemma 1. Since c and d are Ā-principal, we
can take f1, . . . , fl, g1, . . . , gl ∈ (K[X̄] \K[Ā]) ∪ {1K[X̄]} by Lemma 3 such that
c · pi = pi · ϕX̄(fi)∗ and that d · pi = pi · ϕX̄(gi)∗ for each i = 1, . . . , l.

We fix i with 1 ≤ i ≤ l arbitrarily. Let ā ∈ projĀ(pi) arbitrarily. Since
(c · d) · ϕĀ(f) = (c · d) · ϕĀ(g), we have

∀b ∈ K |X̄\Ā| (
(fi(ā, b̄) �= 0 ∧ gi(ā, b̄) �= 0) −→ f(ā, b̄) = g(ā, b̄)

)
.

This is equivalent to

∀b ∈ K |X̄\Ā| (
fi(ā, b̄) = 0 ∨ gi(ā, b̄) = 0 ∨ (f − g)(ā, b̄) = 0

)
.

Since K is an infinite field and fi(ā, X̄\Ā), gi(ā, X̄\Ā) ∈ (K[X̄\Ā]\K)∪{1}, we
have (f − g)(ā, X̄ \ Ā) = 0K[X̄\Ā]. Since the choice of ā ∈ projĀ(pi) is arbitrary,
we have pi · ϕĀ(f) = pi · ϕĀ(g).

Since the choice of i is arbitrary, we have πĀ(c) · ϕĀ(f) = πĀ(d) · ϕĀ(g). )*
Then we have the following:

Theorem 2. Let F be a finite subset of K[X̄] and A be a subset of P(X̄). Let
G be the finite set of comprehensive pairs such that G = GröbnerBasis(F,A).
Then, for each Ā ∈ A, we have that ψ̃Ā[G] forms a Gröbner basis of the ideal
〈ϕĀ[F ]〉 in TĀ[X̄\Ā]. And so ψ̃Ā[G] is an ACGB for F with respect to parameters
Ā ∈ A.
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Proof. We fix Ā ∈ A arbitrarily and show that ψ̃Ā[G] is a Gröbner basis of
〈ϕĀ[F ]〉 in TĀ[X̄ \ Ā].

We first note that the fact {(πĀ(c), g) : (c, g) ∈ G} ⊆ T ∗̄
A
× K[X̄] implies

that ψ̃Ā[G] = ψĀ[{(πĀ(c), g) : (c, g) ∈ G}] ⊆ 〈ϕĀ[F ]〉 in TĀ[X̄ \ Ā] by applying
Lemma 2 with B̄ = Ā. Then we have the following:

Claim. For each (c, f) ∈ G, we have πĀ(c) ·ϕĀ(f) is boolean closed in T ∗̄
A
[X̄ \ Ā].

Proof (Claim). Let g ∈ K[Ā] be such that lc(c · ϕĀ(f)) = c · ϕX̄(g) and that
g divides f . By the definition of BCSingle, we have c · ϕX̄(g)∗ = c. Then
πĀ(c) = πĀ(c · ϕX̄(g)∗) = πĀ(c) · ϕX̄(g)∗ by the definition of πĀ. On the other
hand, since lc(πĀ(c) · ϕĀ(f)) = πĀ(c) · ϕX̄(g), we have that lc(πĀ(c) · ϕĀ(f))∗ ·
(πĀ(c) · ϕĀ(f)) = πĀ(c) · πĀ(c) · ϕĀ(f) = πĀ(c) · ϕĀ(f). 9 (Claim)

We let GĀ = {(c, g) ∈ G : c is Ā-principal}. Then we note that {1TX̄
}×F ⊆

G and that 1TX̄
is Ā-principal, and so {1TX̄

} × F ⊆ GĀ. Therefore ϕĀ[F ] ⊆
ψ̃Ā[GĀ]. Since ψ̃Ā[GĀ] ⊆ ψ̃Ā[G], it is enough to show that ψ̃Ā[GĀ] is a Gröbner
basis of 〈ϕĀ[F ]〉 in T ∗̄

A
[X̄ \ Ā]. Furthermore, since each f ∈ ψ̃Ā[GĀ] is boolean

closed by the previous Claim, it is enough to show that SPol(f, g) ∗−→ψ̃Ā[GĀ] 0 for
each f, g ∈ ψ̃Ā[GĀ] by Theorem 1. So we pick two coherent pairs (c, f), (d, g) ∈
GĀ arbitrarily.

If s = SPol(πĀ(c) · ϕĀ(g), πĀ(d) · ϕĀ(g)) = 0, there is nothing to do. So
we assume that s �= 0 and so πĀ(c) · πĀ(d) �= 0. Then we have c · d �= 0 by
Lemma 4. So, in the algorithm GröbnerBasis, SPolĀ((c, f), (d, g)) is calcu-
lated. Say (e, h) = SPolĀ((c, f), (d, g)) ∈ T p

X̄
×K[X̄]. We also let c̄ = πĀ(c) and

d̄ = πĀ(d). Then we have

SPol(c̄ · ϕĀ(f), d̄ · ϕĀ(g)) = ψĀ(SPolĀ((c̄, f), (d̄, g))

= ψ̃Ā(SPolĀ((c, f), (d, g))

= ψ̃Ā((e, h))

by Lemma 4 again. So we show that NormalFormĀ((πĀ(e), h), ḠĀ) = ∅ where
ḠĀ = {(πĀ(c), g) : (c, g) ∈ GĀ}.

Since ψĀ[G] is a Gröbner basis, we know that NormalFormĀ((e, h), G) =
∅. Though we should remind that a monomial reduction in this paper con-
tains a split stage not only a reduction stage, we know that calculation of
NormalFormĀ((e, h), G) contains at most finite many split stages because
it stops. So, we first apply the all split stages contained in the calculation of
NormalFormĀ((e, h), G) at the beginning, we can split e to e1, . . . , el such
that

1. e1, . . . , el ∈ T p

X̄
,

2. supp(e) = supp(e1) ∪ · · · ∪ supp(el),
3. supp(ei) ∩ supp(ej) = ∅ for i, j = 1, . . . , l with i �= j, and
4. the calculation of NormalFormĀ((ei, h), G) = ∅ contains no split stages for

each i = 1, . . . , l.
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Then reordering 〈ei : i = 1, . . . , l〉, we can assume that e1, . . . , em are Ā-principal
and em+1, . . . , el are not Ā-principal.

Claim. We have the following:

1. supp(πĀ(e)) = supp(πĀ(e1)) ∪ · · · ∪ supp(πĀ(em)), and
2. supp(πĀ(ei)) ∩ supp(πĀ(ej)) = ∅ for i, j = 1, . . . ,m with i �= j.

Proof (Claim). We let a1, a2 ∈ T ∗̄
X

be such that a1 = e1 + · · · + em and that
a2 = em+1 + · · · + el in TX̄ . It is easy to see that a1 is Ā-principal and that a2

is not A-principal. Since e = a1 + a2 ∈ T p

X̄
, we can see that πĀ(e) = πĀ(a1) by

Lemma 5. So we have supp(πĀ(e)) = supp(πĀ(e1) ∪ · · · ∪ supp(πĀ(em)).
For 1 ≤ i < j ≤ m, if we had πĀ(ei) · πĀ(ej) �= 0, then we had ei · ej �=

0 by the fact ei, ej are Ā-principal and Lemma 4. So we have supp(πĀ(ei) ∩
supp(πĀ(ej)) �= 0 for 1 ≤ i < j ≤ m. 9 (Claim)

Thus it is enough to show that NormalFormĀ((πĀ(ei), h), ḠĀ) = ∅ for
each i = 1, . . . ,m. So we fix i such that 1 ≤ i ≤ m. Since we know that
NormalFormĀ((ei, h), G) = ∅, There is a sequence of reductions

(ei, h) −→g1 (ei, h1) −→g2 · · · −→gr (ei, hr)

such that ei ·ϕĀ(hr) = 0 and that g1, . . . , gr ∈ G. Then we notice that g1, . . . , gr

are Ā-principal, since no split stage is included. So we have πĀ(g1), . . . , πĀ(gr) ∈
ḠĀ. Furthermore, we have aj, bj ∈ K[Ā] and a term βj of X̄ \ Ā such that
hj+1 = ajhj + bjβj ḡj+1 where ḡj+1 ∈ K[X̄] is such that gj+1 = (cj+1, ḡj+1)
for some cj+1 for each j = 1, . . . , r − 1, by the definition of Add. So, from this
sequence, we can construct another sequence of reductions below:

(πĀ(ei), h) −→πĀ(g1) (πĀ(ei), h1) −→πĀ(g2) · · · −→πĀ(gr) (π(ēi), hr).

Since we know that ei ·ϕĀ(hr) = ei ·ϕĀ(0), we have that πĀ(ei)·ϕĀ(hr) = πĀ(ei)·
ϕĀ(0) = 0TĀ[X̄\Ā] by Lemma 6. Thus we have NormalFormĀ((πĀ(ei), h), ḠĀ)
= ∅.

So we have ψ̃Ā[G] is a Gröbner basis of the ideal 〈ϕĀ[F ]〉 in TĀ[X̄ \ Ā]. To
see that ψ̃Ā[G] is an ACGB for F , we refer to the Theorem 4.3 in [6]. )*

Now we have the following. The proof is shown in [7].

Theorem 3. Let F be a finite subset of K[X̄] and A be a subset of P(X̄). Let
G be the finite set of coherent pairs such that G = GröbnerBasis(F,A). Let
Ḡ = {g ∈ K[X̄] : ∃c (c, g) ∈ G}. Then Ḡ forms an A-comprehensive Gröbner
basis, i.e., Ḡ is a comprehensive Gröbner basis with respect to parameters Ā for
any Ā ∈ A.
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5 Examples and Remarks

We implemented the algorithm to compute A-comprehensive Gröbner bases in
the case K is the field of the complex numbers C on trial. In this section, we
give computational examples of our implementation.

Example 1. Fix the lex order with X > Y . Find a full comprehensive Gröbner
basis for the finite set of polynomials F = {XY + 1, X2 + 2} ⊆ C[X,Y ].

From an input fcgr([x*y+1,x^2+2],[[x,y],[x],[y]],2); our program writ-
ten in Risa/Asir [3] produces [-2*y^2-1,-x+2*y,y*x+1,-x^2+4*y^2,x^2+2],
and so a full comprehensive Gröbner basis is

G = {2Y 2 + 1, X − 2Y,XY + 1, X2 − 4Y 2, X2 + 2}.
In fact, we can check that the reduced Gröbner basis (∅-comprehensive Gröbner
basis) is {2Y 2 +1, X−2Y }, {Y }-comprehensive Gröbner basis is {X−2Y,XY +
1, X2 +2}, and {X}-comprehensive Gröbner basis is {X−2Y,XY +1, 2Y 2 +1}.
We should note that F itself is an {X,Y }-comprehensive Gröbner basis.

In this example, we remark that we should not make the base ϕX [G] re-
duced in TX̄ [Y ]. For example, we see that ϕX(2Y 2 + 1) ∗−→ϕX(X−2Y ) ϕX(X2 +
2) −→ϕX(X2+2) 0, though 2Y 2 + 1 is required for the base ϕY [G] in TY [X ]. So
we should take care to delete (or modify) a comprehensive pair by monomial
reductions in the structure T p

X̄
×K[X̄], though adding a faithful comprehensive

pair is safe.

Example 2. Fix the lex order with X > Y > A > B. Find a {∅, {A}, {B},
{A,B}}-comprehensive Gröbner basis for the set of polynomials F = {(A +
1)X2Y +B, (B2 + 2)X2 +AY } ⊆ C[X,Y,A,B].

From an input fcgr([(a+1)*x^2*y+b,(b^2+2)*x^2+a*y],[[x,y,a,b],
[x,y,a],[x,y,b],[x,y]],2); our program outputs the following set of eight
polynomials

{(−a2 − a)y2 + b3 + 2b, (b2 + 2)x2 + ay, (a+ 1)yx2 + b,

(b2a− 2)yx2 + a2y2 − 2b, (−b2 − 2)x4 + yx2 + b, ((−b2 − 2)a− b2 − 2)x4 + ba,

(−ba− b)yx4 + 2x2 + ay, ((−b3 − 2b)a− b3 − 2b)x6 − 2ax2 − a2y}.
On the other hand, we can see that each Ā-comprehensive Gröbner basis can be
expressed as below where G′ = {(−a2 − a)y2 + b3 + 2b, (b2 + 2)x2 + ay}:

Ā Ā-comprehensive Gröbner basis

∅ G′ ∪ {(a+ 1)yx2 + b}
{A} G′ ∪ {(a+ 1)yx2 + b, (−ba− b)yx4 + 2x2 + ay}
{B} G′ ∪ {((−b2 − 2)a− b2 − 2)x4 + ba, (−b2 − 2)x4 + yx2 + b}
{A,B} G′ ∪ {((−b2 − 2)a− b2 − 2)x4 + ba, (a+ 1)yx2 + b}
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Then we can see that the polynomial ((−b3 − 2b)a− b3 − 2b)x6 − 2ax2 − a2y in
the output of fcgr(...) does not appear in the table above. So it is overplus for
an {∅, {A}, {B}, {A,B}}-comprehensive Gr”obner basis for F . But the present
implementation does not have a sophisticated method to delete such overplus
comprehensive pairs.

6 Conclusion and Remarks

In [7], we adopted the structure TĀ[X̄ \ Ā] and give an algorithm to compute Ā-
comprehensive Gröbner bases with fixing Ā ⊆ X̄ during computation. In this pa-
per, extending the idea of it, we show an algorithm to compute Ā-comprehensive
Gröbner bases for each Ā ⊆ X̄ simultaneously. We can think this new algorithm
enable to compute at most 2n many comprehensive Gröbner bases for a given
finite set of polynomials where n is the number of variables. Thus the number of
polynomials which are generated as S-polynomials during the computation may
be less than ones generated during the sequential computation of comprehensive
Gröbner bases.

On the other hand, as we mentioned in Section 5, it is not easy to reduce
the number of comprehensive pairs during computation, and so many technique
to reduce amount of computation used in computation Gröbner bases cannot
be applied to the algorithm in this paper. Furthermore, several methods to re-
move duplications of the same computation used in the algorithm of [7] is not
introduced to the new algorithm, because we think that the introduction may
makes the data structure expressing comprehensive pairs too complex. As a re-
sult of them, the computational speed of the present implementation is slower
than sequential computation by a existing implementation in many cases. So we
should try to introduce such methods to reduce computation of full comprehen-
sive Gröbner bases.
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Abstract. We give two new expressions of subresultants, nested sub-
resultant and reduced nested subresultant, for the recursive polynomial
remainder sequence (PRS) which has been introduced by the author. The
reduced nested subresultant reduces the size of the subresultant matrix
drastically compared with the recursive subresultant proposed by the
authors before, hence it is much more useful for investigation of the
recursive PRS. Finally, we discuss usage of the reduced nested subresul-
tant in approximate algebraic computation, which motivates the present
work.

1 Introduction

The polynomial remainder sequence (PRS) is one of fundamental tools in com-
puter algebra. Although the Euclidean algorithm (see Knuth [1] for example)
for calculating PRS is simple, coefficient growth in PRS makes the Euclidean
algorithm often very inefficient. To overcome this problem, the mechanism of co-
efficient growth has been extensively studied through the theory of subresultants;
see Collins [2], Brown and Traub [3], Loos [4], etc. By the theory of subresultant,
we can remove extraneous factors of the elements of PRS systematically.

In our earlier research [5], we have introduced a variation of PRS called “re-
cursive PRS,” and its subresultant called “recursive subresultant.” The recursive
PRS is a result of repeated calculation of PRS for the GCD and its derivative
of the original PRS, until the element becomes a constant. Then, the coeffi-
cients of the elements in the recursive PRS depend on the coefficients of the
initial polynomials. By the recursive subresultants, we have given an expression
of the coefficients of the elements in the recursive PRS in certain determinants
of coefficients of the initial polynomials. However, as the recursion depth of the
recursive PRS has increased, the recursive subresultant matrices have become
so large that use of them have often become impractical [6].

In this paper, we give two other expressions of subresultants for the recur-
sive PRS, called “nested subresultant” and “reduced nested subresultant.” The
nested subresultant is a subresultant with expression of “nested” determinants,
used to show the relationship between the recursive and the reduced nested sub-
resultants. The reduced nested subresultant has the same form as the result of

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 445–456, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Gaussian elimination with the Sylvester’s identity on the nested subresultant,
hence it reduces the size of the subresultant matrix drastically compared with
the recursive subresultant. Therefore, it is much more useful than the recursive
subresultant for investigation of the recursive PRS.

This paper is organized as follows. In Sect. 2, we review the concept of the
recursive PRS and the recursive subresultant. In Sect. 3, we define the nested
subresultant and show its equivalence to the recursive subresultant. In Sect. 4, we
define the reduced nested subresultant and show that it is a reduced expression
of the nested subresultant. In Sect. 5, we discuss briefly usage of the reduced
nested subresultant in approximate algebraic computation.

2 Recursive PRS and Recursive Subresultants

Let R be an integral domain and K be its quotient field, and polynomials F
and G be in R[x]. When we calculate PRS for F and G which have a nontrivial
GCD, we usually stop the calculation with the GCD. However, it is sometimes
useful to continue the calculation by calculating the PRS for the GCD and its
derivative; this is used for square-free decompositions. We call such a PRS a
“recursive PRS.”

To make this paper self-contained, we briefly review the definitions and the
properties of the recursive PRS and the recursive subresultant, with necessary
definitions of subresultants (for detailed discussions, see Terui [5]). In this paper,
we follow definitions and notations by von zur Gathen and Lücking [7].

2.1 Recursive PRS

Definition 1 (Polynomial Remainder Sequence (PRS)). Let F and G
be polynomials in R[x] of degree m and n (m > n), respectively. A sequence
(P1, . . . , Pl) of nonzero polynomials is called a polynomial remainder sequence
(PRS) for F and G, abbreviated to prs(F,G), if it satisfies P1 = F , P2 = G,
αiPi−2 = qi−1Pi−1 + βiPi, for i = 3, . . . , l, where α3, . . . , αl, β3, . . . , βl are ele-
ments of R and deg(Pi−1) > deg(Pi). A sequence ((α3, β3), . . . , (αl, βl)) is called
a division rule for prs(F,G). If Pl is a constant, then the PRS is called com-
plete. )*

Definition 2 (Recursive PRS). Let F and G be the same as in Definition 1.
Then, a sequence (P (1)

1 , . . . , P
(1)
l1
, P

(2)
1 , . . . , P

(2)
l2
, . . . , P

(t)
1 , . . . , P

(t)
lt

) of nonzero
polynomials is called a recursive polynomial remainder sequence (recursive PRS)
for F and G, abbreviated to rprs(F,G), if it satisfies

P
(1)
1 = F, P

(1)
2 = G, P

(1)
l1

= γ1 · gcd(P (1)
1 , P

(1)
2 ) with γ1 ∈ R,

(P (1)
1 , P

(1)
2 , . . . , P

(1)
l1

) = prs(P (1)
1 , P

(1)
2 ),

P
(k)
1 = P

(k−1)
lk−1

, P
(k)
2 =

d

dx
P

(k−1)
lk−1

, P
(k)
lk

= γk · gcd(P (k)
1 , P

(k)
2 ) with γk ∈ R,

(P (k)
1 , P

(k)
2 , . . . , P

(k)
lk

) = prs(P (k)
1 , P

(k)
2 ),

(1)
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for k = 2, . . . , t. If α(k)
i , β(k)

i ∈ R satisfy α
(k)
i P

(k)
i−2 = q

(k)
i−1P

(k)
i−1 + β

(k)
i P

(k)
i for

k = 1, . . . , t and i = 3, . . . , lk, then a sequence ((α(1)
3 , β

(1)
3 ), . . . , (α(t)

lt
, β

(t)
lt

)) is

called a division rule for rprs(F,G). Furthermore, if P (t)
lt

is a constant, then the
recursive PRS is called complete. )*

In this paper, we use the following notations. Let c(k)
i = lc(P (k)

i ), n(k)
i =

deg(P (k)
i ), j0 = m and jk = n

(k)
l for k = 1, . . . , t and i = 1, . . . , lk, and let

d
(k)
i = n

(k)
i − n(k)

i+1 for k = 1, . . . , t and i = 1, . . . , lk − 1.

2.2 Recursive Subresultants

We construct “recursive subresultant matrix” whose determinants represent the
elements of the recursive PRS by the coefficients of the initial polynomials.

Let F and G be polynomials in R[x] such that

F (x) = fmx
m + · · ·+ f0x

0, G(x) = gnx
n + · · ·+ g0x

0, (2)

with m ≥ n > 0. For a square matrix M , we denote its determinant by |M |.
Definition 3 (Sylvester Matrix and Subresultant Matrix). Let F and G
be as in (2). The Sylvester matrix of F and G, denoted by N(F,G) in (3), is
an (m+ n)× (m+ n) matrix constructed from the coefficients of F and G. For
j < n, the j-th subresultant matrix of F and G, denoted by N (j)(F,G) in (3),
is an (m+ n− j)× (m+ n− 2j) sub-matrix of N(F,G) obtained by taking the
left n− j columns of coefficients of F and the left m− j columns of coefficients
of G.

N(F, G) =

⎛⎜⎜⎜⎜⎜⎜⎝

fm gn

...
. . .

...
. . .

f0 fm g0 gn

. . .
...

. . .
...

f0 g0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

︸ ︷︷ ︸
n

︸ ︷︷ ︸
m

N (j)(F, G) =

⎛⎜⎜⎜⎜⎜⎜⎝

fm gn

...
. . .

...
. . .

f0 fm g0 gn

. . .
...

. . .
...

f0 g0

⎞⎟⎟⎟⎟⎟⎟⎠ .

︸ ︷︷ ︸
n−j

︸ ︷︷ ︸
m−j

(3)

Definition 4 (Recursive Subresultant Matrix). Let F and G be defined as
in (2), and let (P (1)

1 , . . . , P
(1)
l1
, . . . , P

(t)
1 , . . . , P

(t)
lt

) be complete recursive PRS for
F and G as in Definition 2. Then, for each tuple of numbers (k, j) with k =
1, . . . , t and j = jk−1 − 2, . . . , 0, define matrix N̄ (k,j) = N̄ (k,j)(F,G) recursively
as follows.

1. For k = 1, let N̄ (1,j)(F,G) = N (j)(F,G).
2. For k > 1, let N̄ (k,j)(F,G) consist of the upper block and the lower block,

defined as follows:
(a) The upper block is partitioned into (jk−1 − jk − 1) × (jk−1 − jk − 1)

blocks with diagonal blocks filled with N̄ (k−1,jk−1)
U , where N̄ (k−1,jk−1)

U is a
sub-matrix of N̄ (k−1,jk−1)(F,G) obtained by deleting the bottom jk−1 +1
rows.



448 A. Terui

(b) Let N̄ (k−1,jk−1)
L be a sub-matrix of N̄ (k−1,jk−1) obtained by taking the

bottom jk−1 +1 rows, and let N̄
′(k−1,jk−1)
L be a sub-matrix of N̄ (k−1,jk−1)

L

by multiplying the (jk−1 + 1 − τ)-th rows by τ for τ = jk−1, . . . , 1, then
by deleting the bottom row. Then, the lower block consists of jk−1− j−1
blocks of N̄ (k−1,jk−1)

L such that the leftmost block is placed at the top row
of the container block and the right-side block is placed down by 1 row
from the left-side block, then followed by jk−1 − j blocks of N̄

′(k−1,jk−1)
L

placed by the same manner as N̄ (k−1,jk−1)
L .

Readers can find the structures of N̄ (k,j)(F,G) in the figures in Terui [5]. Then,
N̄ (k,j)(F,G) is called the (k, j)-th recursive subresultant matrix of F and G. )*

Proposition 1. For k = 1, . . . , t and j < jk−1 − 1, the numbers of rows and
columns of N̄ (k,j)(F,G), the (k, j)-th recursive subresultant matrix of F and
G are (m + n − 2j1)

{∏k−1
l=2 (2jl−1 − 2jl − 1)

}
(2jk−1 − 2j − 1) + j, (m + n −

2j1)
{∏k−1

l=2 (2jl−1 − 2jl − 1)
}

(2jk−1 − 2j − 1), respectively. )*

Definition 5 (Recursive Subresultant). Let F and G be defined as in (2),
and let (P (1)

1 , . . . , P
(1)
l1
, . . . , P

(t)
1 , . . . , P

(t)
lt

) be complete recursive PRS for F and

G as in Definition 2. For j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, let N̄ (k,j)
τ =

M
(k,j)
τ (F,G) be a sub-matrix of the (k, j)-th recursive subresultant matrix

N̄ (k,j)(F,G) obtained by taking the top (m + n − 2j1) × {
∏k−1

l=2 (2jl−1 − 2jl −
1)}(2jk−1−2j−1)−1 rows and the ((m+n−2j1){

∏k−1
l=2 (2jl−1−2jl−1)}(2jk−1−

2j − 1) + j − τ)-th row (note that N̄ (k,j)
τ is a square matrix). Then, the poly-

nomial S̄k,j(F,G) = |N̄ (k,j)
j |xj + · · ·+ |N̄ (k,j)

0 |x0 is called the (k, j)-th recursive
subresultant of F and G. )*

3 Nested Subresultants

Although the recursive subresultant can represent the coefficients of the ele-
ments in recursive PRS, the size of the recursive subresultant matrix becomes
larger rapidly as the recursion depth of the recursive PRS becomes deeper, hence
making use of the recursive subresultant matrix become more inefficient.

To overcome this problem, we introduce other representations for the subre-
sultant which is equivalent to the recursive subresultant up to a constant, and
more efficient to calculate. The nested subresultant matrix is a subresultant ma-
trix whose elements are again determinants of certain subresultant matrices (or
even the nested subresultant matrices), and the nested subresultant is a subre-
sultant whose coefficients are determinants of the nested subresultant matrices.

In this paper, the nested subresultant is mainly used to show the relationship
between the recursive subresultant and the reduced nested subresultant, which
is defined in the next section.
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Definition 6 (Nested Subresultant Matrix). Let F and G be defined as in
(2), and let (P (1)

1 , . . . , P
(1)
l1
, . . . , P

(t)
1 , . . . , P

(t)
lt

) be complete recursive PRS for F
and G as in Definition 2. Then, for each tuple of numbers (k, j) with k = 1, . . . , t
and j = jk−1 − 2, . . . , 0, define matrix Ñ (k,j)(F,G) recursively as follows.

1. For k = 1, let Ñ (1,j)(F,G) = N (j)(F,G).
2. For k > 1 and τ = 0, . . . , jk−1, let Ñ (k−1,jk−1)

τ be a sub-matrix of Ñ (k−1,jk−1)

by taking the top (n(k−1)
1 +n(k−1)

2 −2jk−1−1) rows and the (n(k−1)
1 +n(k−1)

2 −
jk−1 − τ)-th row (note that Ñ (k−1,jk−1)

τ is a square matrix). Now, let

Ñ (k,j)(F,G) = N (j)

(
S̃k−1,jk−1(F,G),

d

dx
S̃k−1,jk−1 (F,G)

)
, (4)

where S̃k−1,jk−1 (F,G) is defined by Definition 7. Then, Ñ (k,j)(F,G) is called
the (k, j)-th nested subresultant matrix of F and G. )*

Definition 7 (Nested Subresultant). Let F and G be defined as in (2), and
let (P (1)

1 , . . . , P
(1)
l1
, . . . , P

(t)
1 , . . . , P

(t)
lt

) be complete recursive PRS for F and G as

in Definition 2. For j = jk−1−2, . . . , 0 and τ = j, . . . , 0, let Ñ (k,j)
τ = Ñ

(k,j)
τ (F,G)

be a sub-matrix of the (k, j)-th nested recursive subresultant matrix Ñ (k,j)(F,G)
obtained by taking the top n(k)

1 +n
(k)
2 − 2j− 1 rows and the (n(k)

1 +n
(k)
2 − j− τ)-

th row (note that Ñ (k,j)
τ is a square matrix). Then, the polynomial S̃k,j(F,G) =

|Ñ (k,j)
j |xj + · · ·+ |Ñ (k,j)

0 |x0 is called the (k, j)-th nested subresultant of F and
G. )*

We show that the nested subresultant is equal to the recursive subresultant
up to a sign.

Theorem 1. Let F and G be defined as in (2), and let (P (1)
1 , . . . , P

(1)
l1
, . . . , P

(t)
1 ,

. . . , P
(t)
lt

) be complete recursive PRS for F and G as in Definition 2. For k =
2, . . . , t and j = jk−1 − 2, . . . , 0, define uk,j, bk,j, rk,j and Rk as follows: let

uk,j = (m+ n− 2j1)
{∏k−1

l=2 (2jl−1 − 2jl − 1)
}

(2jk−1 − 2j − 1) with uk = uk,jk

and u1 = m + n − 2j1, bk,j = 2jk−1 − 2j − 1 with bk = bk,jk
and b1 = 1,

rk,j = (−1)(uk−1−1)(1+2+···+(bk,j−1)) with rk = rk,jk
and r1,j = 1 for j < n, and

Rk = (Rk−1)bkrk with R0 = R1 = 1. Then, we have

S̃k,j(F,G) = (Rk−1)bk,j rk,j S̄k,j(F,G). (5)

To prove Theorem 1, we prove the following lemma.

Lemma 1. For k = 1, . . . , t, j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, we have

|Ñ (k,j)
τ (F,G)| = (Rk−1)bk,j rk,j |N̄ (k,j)

τ (F,G)|. (6)

Proof. By induction on k. For k = 1, it is obvious by the definitions of the recur-
sive and the nested subresultants. Assume that the lemma is valid for 1, . . . , k−1.
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Then, for τ = jk−1, . . . , 0, we have |Ñ (k−1,jk−1)
τ | = Rk−1|N̄ (k−1,jk−1)

τ |. For an ele-
ment in recursive PRS P (k)

i (x), expressed as P (k)
i (x) = a

(k)

i,n
(k)
i

xn
(k)
i + · · ·+a

(k)
i,0 x

0,

denote the coefficient vector for P (k)
i (x) by p

(k)
i = t(a(k)

i,n
(k)
i

, . . . , a
(k)
i,0 ). Then, there

exist certain eliminations and exchanges on columns which transform Ñ (k−1,jk−1)

to M̃ (k−1,jk−1) =
(

W̃k−1 O

∗ p
(k−1)
lk−1

)
=
(

W̃k−1 O

∗ p
(k)
1

)
, such that, for τ = j, . . . , 0,

we have M̃ (k−1,jk−1)
τ =

(
W̃k−1 O

∗ a
(k−1)
lk−1,τ

)
=
(

W̃k−1 O

∗ a
(k)
1,τ

)
with |M̃ (k−1,jk−1)

τ | =

|W̃k−1|a(k)
1,τ , where M̃ (k−1,jk−1)

τ is a sub-matrix of M̃ (k−1,jk−1) by taking the top

n
(k−1)
1 +n

(k−1)
2 −2jk−1−1 rows and the (n(k−1)

1 +n
(k−1)
2 −jk−1−τ)-th row (note

that the matrix W̃k−1 is a square matrix of order n(k−1)
1 +n

(k−1)
2 −2jk−1−1). By

the definition of Ñ (k,j)(F,G), we have Ñ (k,j)(F,G) = |W̃k−1|N (j)(P (k)
1 , P

(k)
2 ),

hence we have

|Ñ (k,j)
τ (F,G)| = |W̃k−1|n

(k)
1 +n

(k)
2 −2j |N (j)

τ (P (k)
1 , P

(k)
2 )|. (7)

On the other hand, there exist similar transformation which transforms

N̄ (k−1,jk−1) and

(
N̄

(k−1,jk−1)

U

N̄
′(k−1,jk−1)

L

)
into M̄ (k−1,jk−1)=

(
W̄k−1 O

∗ p
(k−1)
lk−1

)
=
(

W̄k−1 O

∗ p
(k)
1

)
and M̄

′(k−1,jk−1) =
(

W̄k−1 O

∗ p
(k)
2

)
, respectively, with |W̄k−1| = |W̃k−1| by as-

sumption. Therefore, by exchanges of columns after the above transformations
on each column blocks (see Terui [5] for detail), we have

(Rk−1)bk,j rk,j |N̄ (k,j)
τ (F,G)| = |W̄k−1|n

(k)
1 +n

(k)
2 −2j |N (j)

τ (P (k)
1 , P

(k)
2 )|

= |W̃k−1|n
(k)
1 +n

(k)
2 −2j |N (j)

τ (P (k)
1 , P

(k)
2 )|

= |Ñ (k,j)
τ (F,G)|,

(8)

which proves the lemma. )*

4 Reduced Nested Subresultants

The nested subresultant matrix has “nested” representation of subresultant ma-
trices, which makes practical use difficult. However, in some cases, by Gaus-
sian elimination of the matrix with the Sylvester’s identity after some pre-
computations, we can reduce the representation of the nested subresultant ma-
trix to “flat” representation, or a representation without nested determinants;
this is the reduced nested subresultant (matrix). As we will see, the size of the
reduced nested subresultant matrix becomes much smaller than that of the re-
cursive subresultant matrix.

First, we show the Sylvester’s identity (see also Bariess [8]), then explain the
idea of reduction of the nested subresultant matrix with the Sylvester’s identity
by an example.
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Lemma 2 (The Sylvester’s Identity). Let A = (aij) be n×nmatrix, and, for

k = 1, . . . , n−1, i = k+1, . . . , n and j = k+1, . . . , n, let a(k)
i,j =

∣∣∣∣∣∣∣∣
a11 · · · a1k a1j

...
...

...
ak1 · · · akk akj

ai1 · · · aik aij

∣∣∣∣∣∣∣∣.

Then, we have |A|
(
a
(k−1)
kk

)n−k−1

=

∣∣∣∣∣∣∣
a
(k)
k+1,k+1 · · · a

(k)
k+1,n

...
...

a
(k)
n,k+1 · · · a

(k)
n,n

∣∣∣∣∣∣∣ . )*

Example 1. Let F (x) and G(x) be defined as

F (x) = a6x
6 + a5x

5 + · · ·+ a0, G(x) = b5x
5 + b4x

4 + · · ·+ b0, (9)

with a6 �= 0 and b5 �= 0. We assume that vectors of coefficients (a6, a5) and
(b5, b4) are linearly independent as vectors over K, and that prs(F,G) = (P (1)

1 =
F, P

(1)
2 = G, P

(1)
3 = gcd(F,G)) with deg(P (1)

3 ) = 4. Consider the (2, 2)-th
nested subresultant; its matrix is defined as

Ñ (2,2) =

⎛⎜⎜⎜⎜⎝
A4 4A4

A3 3A3 4A4

A2 2A2 3A3

A1 A1 2A2

A0 A1

⎞⎟⎟⎟⎟⎠ , Aj =

∣∣∣∣∣∣
a6 b5

a5 b4 b5

aj bj−1 bj

∣∣∣∣∣∣ , (10)

for j ≤ 4 with bj = 0 for j < 0. Now, let us calculate the leading coefficient of
S̃2,2(F,G) as

|Ñ (2,2)
2 | =

∣∣∣∣∣∣
A4 4A4

A3 3A3 4A4

A2 2A2 3A3

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
a6 b5

a5 b4 b5

a4 b3 b4

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5

a5 b4 b5

4a4 4b3 4b4

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5

a5 b4 b5

0a4 0b3 0b4

∣∣∣∣∣∣∣∣∣∣∣∣
a6 b5

a5 b4 b5

a3 b2 b3

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5

a5 b4 b5

3a3 3b2 3b3

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5

a5 b4 b5

4a4 4b3 4b4

∣∣∣∣∣∣∣∣∣∣∣∣
a6 b5

a5 b4 b5

a2 b1 b2

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5

a5 b4 b5

2a2 2b1 2b2

∣∣∣∣∣∣
∣∣∣∣∣∣
a6 b5

a5 b4 b5

3a3 3b2 3b3

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |H | =

∣∣(Hp,q

)∣∣ .

(11)

To apply the Sylvester’s identity on H, we make the (3, 1) and the (3, 2) elements
in Hp,2 and Hp,3 (p = 1, 2, 3) equal to those elements in Hp,1, respectively, by
adding the first and the second rows, multiplied by certain numbers, to the third
row. For example, in H1,2, calculate x12 and y12 by solving a system of linear
equations {

a6x12 + a5y12 = −4a4 + a4 = −3a4

b5x12 + b4y12 = −4b3 + b3 = −3b3
, (12)

(Note that (12) has a solution in K by assumption), then add the first row
multiplied by x12 and the second row multiplied by y12, respectively, to the
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third row. Then, we have H1,2 =

∣∣∣∣∣∣
a6 b5
a5 b4 b5
a4 b3 h12

∣∣∣∣∣∣ with h12 = 4b4 + y12b5. Doing

similar calculations for the other Hp,q, we calculate hp,q for Hp,q similarly as in
the above. Finally, by the Sylvester’s identity, we have

|Ñ (2,2)
2 | =

∣∣∣∣a6 b5
a5 b4

∣∣∣∣2
∣∣∣∣∣∣∣∣∣∣
a6 b5
a5 b4 b5 b5 b5
a4 b3 b4 h12 h13

a3 b2 b3 h22 h23

a2 b1 b2 h32 h33

∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣a6 b5
a5 b4

∣∣∣∣2 |N̂ (2,2)
2 |, (13)

note that we have derived N̂
(2,2)
2 as a reduced form of Ñ (2,2)

2 . )*
Definition 8 (Reduced Nested Subresultant Matrix). Let F and G be
defined as in (2), and let (P (1)

1 , . . . , P
(1)
l1
, . . . , P

(t)
1 , . . . , P

(t)
lt

) be complete recursive
PRS for F and G as in Definition 2. Then, for each tuple of numbers (k, j) with
k = 1, . . . , t and j = jk−1 − 2, . . . , 0, define matrix N̂ (k,j)(F,G) recursively as
follows.

1. For k = 1, let N̂ (1,j)(F,G) = N (j)(F,G).
2. For k > 1, let N̂ (k−1,jk−1)

U (F,G) be a sub-matrix of N̂ (k−1,jk−1)(F,G) by
deleting the bottom jk−1 + 1 rows, and N̂

(k−1,jk−1)
L (F,G) be a sub-matrix

of N̂ (k−1,jk−1)(F,G) by taking the bottom jk−1 + 1 rows, respectively. For
τ = jk−1, . . . , 0 let N̂ (k−1,jk−1)

τ (F,G) be a sub-matrix of N̂ (k−1,jk−1)(F,G)
by putting N̂

(k−1,jk−1)
U (F,G) on the top and the (jk−1 − τ + 1)-th row of

N̂
(k−1,jk−1)
L (F,G) in the bottom row. Let Â(k−1)

τ = |N̂ (k−1,jk−1)
τ | and con-

struct a matrix H as

H =
(
Hp,q

)
= N (j)

(
Â(k−1)(x),

d

dx
Â(k−1)(x)

)
, (14)

where Â(k−1)(x) = Â
(k−1)
jk−1

xjk−1 + · · ·+ Â
(k−1)
0 x0. Since N̂ (k−1,jk−1)

τ consists

of N̂ (k−1,jk−1)
U and a row vector in the bottom, we express N̂

(k−1,jk−1)
U =(

U (k)|v(k)
)
, where U (k) is a square matrix and v(k) is a column vector, and

the row vector by
(
b
(k)
p,q

∣∣∣ g(k)
p,q

)
, where b

(k)
p,q is a row vector and g

(k)
p,q is a

number, respectively, such that

Hp,q =

∣∣∣∣∣U (k) v(k)

b
(k)
p,q g

(k)
p,q

∣∣∣∣∣ , (15)

with b
(k)
p,q = 0 and g(k)

p,q = 0 for Hp,q = 0. Furthermore, we assume that U (k) is
not singular. Then, for p = 1, . . . , n(k)

1 +n(k)
2 −j and q = 2, . . . , n(k)

1 +n(k)
2 −j,

calculate a row vector x
(k)
p,q as a solution of the equation x

(k)
p,qU (k) = b

(k)
p,1, and

define h(k)
p,q as h(k)

p,q = x
(k)
p,qv(k). Finally, define N̂ (k,j)(F,G) as
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N̂ (k,j)(F,G) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

U (k) v(k) v(k) · · · v(k)

b
(k)
1,1 g

(k)
1,1 h

(k)
1,2 · · · h

(k)
1,Jk,j

b
(k)
2,1 g

(k)
2,1 h

(k)
2,2 · · · h

(k)
2,Jk,j

...
...

...
...

b
(k)
Ik,j ,1 g

(k)
Ik,j ,1 h

(k)
Ik,j ,2 · · · h(k)

Ik,j ,Jk,j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (16)

Ik,j = n
(k)
1 + n

(k)
2 − j = (2jk−1 − 2j − 1) + j,

Jk,j = n
(k)
1 + n

(k)
2 − 2j = 2jk−1 − 2j − 1.

(17)

Then, N̂ (k,j)(F,G) is called the (k, j)-th reduced nested subresultant matrix
of F and G. )*

Proposition 2. For k = 1, . . . , t and j < jk−1 − 1, the numbers of rows and
columns of the (k, j)-th reduced nested subresultant matrix N̂ (k,j)(F,G) are (m+
n− 2(k − 1)− 2j) + j and (m+ n− 2(k − 1)− 2j), respectively.

Proof. By induction on k. It is obvious for k = 1. Assume that the proposition
is valid for 1, . . . , k − 1. Then, the numbers of rows and columns of matrix U (k)

in (16) are equal to (m+n−2{(k−1)−1}−2jk−1)−1, respectively. Therefore,
by (16) and (17), we prove the proposition for k. )*
Note that, as Proposition 2 shows, the size of the reduced nested subresultant
matrix, which is at most the sum of the degree of the initial polynomials, is much
smaller than that of the recursive subresultant matrix (see Proposition 1).

Definition 9 (Reduced Nested Subresultant). Let F and G be defined as
in (2), and let (P (1)

1 , . . . , P
(1)
l1
, . . . , P

(t)
1 , . . . , P

(t)
lt

) be complete recursive PRS for
F and G as in Definition 2. For j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, let
N̂

(k,j)
τ = N̂

(k,j)
τ (F,G) be a sub-matrix of the (k, j)-th reduced nested subresultant

matrix N̂ (k,j)(F,G) obtained by the top m+ n− 2(k − 1)− 2j − 1 rows and the
(m + n − 2(k − 1) − j − τ)-th row (note that N̂ (k,j)

τ (F,G) is a square matrix).
Then, the polynomial Ŝk,j(F,G) = |N̂ (k,j)

j (F,G)|xj + · · · + |N̂ (k,j)
0 (F,G)|x0 is

called the (k, j)-th reduced nested subresultant of F and G. )*
Now, we derive the relationship between the nested and the reduced nested

subresultants.

Theorem 2. Let F and G be defined as in (2), and let (P (1)
1 , . . . , P

(1)
l1
, . . . , P

(t)
1 ,

. . . , P
(t)
lt

) be complete recursive PRS for F and G as in Definition 2. For k =
2, . . . , t, j = jk−1 − 2, . . . , 0 with Jk,j as in (16), define B̂k,j and R̂k as B̂k,j =
|U (k)|Jk,j−1 with B̂k = B̂k,jk

and B̂1 = B̂2 = 1, and R̂k = (R̂k−1 · B̂k−1)Jk,jk

with R̂1 = R̂2 = 1, respectively. Then, we have

S̃k,j(F,G) = (R̂k−1 · B̂k−1)Jk,j B̂k,j · Ŝk,j(F,G). (18)

To prove Theorem 2, we prove the following lemma.
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Lemma 3. For k = 1, . . . , t, j = jk−1 − 2, . . . , 0 and τ = j, . . . , 0, we have

|Ñ (k,j)
τ (F,G)| = (R̂k−1 · B̂k−1)Jk,j B̂k,j |N̂ (k,j)

τ (F,G)|. (19)

Proof. By induction on k. For k = 1, it is obvious from the definitions of the
nested and the reduced nested subresultants. Assume that the lemma is valid
for 1, . . . , k − 1. Then, for τ = jk−1, . . . , 0, we have

|Ñ (k−1,jk−1)
τ (F,G)| =(R̂k−2 · B̂k−2)

Jk−1,jk−1 B̂k−1,jk−1 |N̂ (k−1,jk−1)
τ (F,G)|

=(R̂k−1 · B̂k−1)|N̂ (k−1,jk−1)
τ (F,G)|.

(20)

Let Ã(k−1)
τ = |Ñ (k−1,jk−1)

τ | and Â
(k−1)
τ = |N̂ (k−1,jk−1)

τ |. Then, by the definition
of the (k, j)-th nested subresultant, we have

|Ñ (k,j)
τ | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã
(k−1)
jk−1

jk−1Ã
(k−1)
jk−1

.

.

.
. . .

.

.

.
. . .

.

.

. Ã
(k−1)
jk−1

.

.

. jk−1Ã
(k−1)
jk−1

.

.

.

.

.

.

.

.

.

.

.

.

Ã
(k−1)
2j−jk−1+3 · · · Ã

(k−1)
j+1 (2j − jk−1 + 3)Ã(k−1)

2j−jk−1+3 · · · (j + 2)Ã(k−1)
j+2

Ã
(k−1)
j−jk−1+τ+2 · · · Ã

(k−1)
τ (j − jk−1 + τ + 2)Ã(k−1)

j−jk−1+τ+2 · · · (τ + 1)Ã(k−1)
τ+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(21)

=(R̂k−1 · B̂k−1)Jk,j |H ′|, (22)

where Ã
(k−1)
l = 0 for l < 0 and H ′ =

(
H ′

p,q

)
is defined as (21) with Ã

(k−1)
l

replaced by Â(k−1)
l (note that Ñ (k,j)

τ and H ′ are square matrices of order Jk,j).

Then, by Definition 8, we can express H ′
p,q as H ′

p,q =

∣∣∣∣∣U (k) v(k)

b
′(k)
p,q g

′(k)
p,q

∣∣∣∣∣ with b
′(k)
p,q = 0

and g
′(k)
p,q = 0 for H ′

p,q = 0. Note that, for q = 1, . . . , Jk,j , we have b
′(k)
p,q = b

(k)
p,q

and g
′(k)
p,q = g

(k)
p,q for p = 1, . . . , Jk,j − 1, and b

′(k)
Jk,j ,q = b

(k)
Ik,j−τ,q and g

′(k)
Jk,j,q =

g
(k)
Ik,j−τ,q, where b

(k)
p,q and g

(k)
p,q are defined in (15), respectively. Furthermore, by

the definition of h(k)
p,q in Definition 8, we have

|H ′| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣U (k) v(k)

b
′(k)
1,1 g

(k)
1,1

∣∣∣∣∣
∣∣∣∣∣U (k) v(k)

b
′(k)
1,1 h

(k)
1,2

∣∣∣∣∣ · · ·
∣∣∣∣∣U (k) v(k)

b
′(k)
1,1 h

(k)
1,Jk,j

∣∣∣∣∣
...

...
...∣∣∣∣∣ U (k) v(k)

b
′(k)
Jk,j−1,1 g

(k)
Jk,j−1,1

∣∣∣∣∣
∣∣∣∣∣ U (k) v(k)

b
′(k)
Jk,j−1,1 h

(k)
Jk,j−1,2

∣∣∣∣∣ · · ·
∣∣∣∣∣ U (k) v(k)

b
′(k)
Jk,j−1,1 h

(k)
Jk,j−1,Jk,j

∣∣∣∣∣∣∣∣∣∣ U (k) v(k)

b
′(k)
Ik,j−τ,1 g

(k)
Ik,j−τ,1

∣∣∣∣∣
∣∣∣∣∣ U (k) v(k)

b
′(k)
Ik,j−τ,1 h

(k)
Ik,j−τ,2

∣∣∣∣∣ · · ·
∣∣∣∣∣ U (k) v(k)

b
′(k)
Ik,j−τ,1 h

(k)
Ik,j−τ,Jk,j

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (23)

By Lemma 2, we have

|H ′| = |U (k)|Jk,j−1|N̂ (k,j)
τ (F,G)| = B̂k,j |N̂ (k,j)

τ (F,G)|, (24)

hence, by putting (24) into (22), we prove the lemma. )*
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Remark 1. We can estimate arithmetic computing time for the (k, j)-th reduced
nested resultant matrix N̂ (k,j) in (16), as follows. The computing time for the
elements hp,q is dominated by the time for Gaussian elimination of U (k). Since
the order of U (k) is equal to m + n − 2(k − 2) − 2jk−1 (see Proposition 2), it
is bounded by O((m + n− 2(k − 2)− 2jk−1)3), or O((m + n)3) (see Golub and
van Loan [9] for example). We can calculate N̂ (k,j)(F,G) for j < jk−1 − 2 by
N̂ (k,0)(F,G), hence the total computing time for N̂ (k,j) for the entire recursive
PRS (k = 1, . . . , t) is bounded by O(t(m+n)3) (see also for the conclusion). )*

5 Conclusion and Motivation

In this paper, we have given two new expressions of subresultants for the recur-
sive PRS, the nested subresultant and the reduced nested subresultant. We have
shown that the reduced nested subresultant matrix reduces the size of the matrix
drastically to at most the sum of the degree of the initial polynomials compared
with the recursive subresultant matrix. We have also shown that we can calcu-
late the reduced nested subresultant matrix by solving certain systems of linear
equations of order at most the sum of the degree of the initial polynomials.

A main limitation of the reduced nested subresultant in this paper is that we
cannot calculate its matrix in the case the matrix U (k) in (15) is singular. We
need to develop a method to calculate the reduced nested subresultant matrix
in the case such that U (k) is singular in general.

From a point of view of computational complexity, the algorithm for the
reduced nested subresultant matrix has a cubic complexity bound in terms of
the degree of the input polynomials (see Remark 1). However, subresultant al-
gorithms which have a quadratic complexity bound in terms of the degree of
the input polynomials have been proposed ([10], [11]); the algorithms exploit
the structure of the Sylvester matrix to increase their efficiency with controlling
the size of coefficients well. Although, in this paper, we have primarily focused
our attention into reducing the structure of the nested subresultant matrix to
“flat” representation, development of more efficient algorithm such as exploiting
the structure of the Sylvester matrix would be the next problem. Furthermore,
the reduced nested subresultant may involve fractions which may be unusual for
subresultants, hence more detailed analysis of computational efficiency including
comparison with (ordinary and recursive) subresultants would also be necessary.

We expect that the reduced nested subresultants can be used for including ap-
proximate algebraic computation, especially for the square-free decomposition
of approximate univariate polynomials with approximate GCD computations
based on Singular Value Decomposition (SVD) of subresultant matrices ([12]
[13]), which motivates the present work. We can calculate approximate square-
free decomposition of the given polynomial P (x) by several methods including
calculation of the approximate GCDs of P (x), . . . , P (n)(x) (by P (n)(x) we de-
note the n-th derivative of P (x)) or those of the recursive PRS for P (x) and
P ′(x); as for these methods, we have to find the representation of the subresul-
tant matrices for P (x), . . . , P (n)(x), or that for the recursive PRS for P (x) and
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P ′(x), respectively. While several algorithms based on different representation
of subresultant matrices have been proposed ([14] [15]) for the former approach,
we expect that our reduced nested subresultant matrix can be used for the latter
approach. To make use of the reduced nested subresultant matrix, we need to
reveal the relationship between the structure of the subresultant matrices and
their singular values; this is the problem on which we are working now.
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Abstract. The standard methods for the search for the elliptic solutions
consist of two independent steps: transformation of a nonlinear poly-
nomial differential equation into a nonlinear algebraic system and the
search for solutions of the obtained system. It has been demonstrated
by the example of the generalized Hénon–Heiles system that the use of
the Laurent-series solutions of the initial differential equation assists to
solve the obtained algebraic system and, thereby, simplifies the search
for elliptic solutions. This procedure has been automatized with the help
of the computer algebra systems Maple and REDUCE. The Laurent-
series solutions also assist to solve the inverse problem: to prove the non-
existence of elliptic solutions. Using the Hone’s method based on the use
the Laurent-series solutions and the residue theorem, we have proved
that the cubic complex one-dimensional Ginzburg–Landau equation has
neither elliptic standing wave nor elliptic travelling wave solutions. To
find solutions of the initial differential equation in the form of the Laurent
series we use the Painlevé test.

1 Introduction

The investigations of exact special solutions of nonintegrable systems play an
important role in the study of nonlinear physical phenomena. There are a few
methods to construct solutions in terms of rational, hyperbolic, trigonometric
or elliptic functions (all such functions are solutions of the first-order polyno-
mial differential equations) [1–8]. These methods (at least some of them) use
information about the dominant behavior of the initial system solutions in the
neighbourhood of their singular points, but do not use the Laurent series repre-
sentations of them. In [9] R. Conte and M. Musette developed a new method,
based on the Painlevé analysis and the Laurent-series solutions, as an alternative
way to construct elliptic and elementary solutions. In this paper we demonstrate
that this method is useful not only as an alternative one but also in combination
with traditional methods for construction of special solutions. To show it we con-
sider the generalized Hénon–Heiles system, for which analytic and Laurent-series
solutions have been found in [4,7,10].

We also consider the one-dimensional cubic complex Ginzburg–Landau
equation (CGLE) [11]. All known single-valued solutions of this equation are
elementary functions. In [9] they have been recovered by the Conte–Musette

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 457–468, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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method. The non-existence of elliptic travelling wave solutions of the CGLE
has been proved by A.N.W. Hone [12]. This result is based on analysis of the
Laurent-series solutions and the residue theorem. In the paper we prove that
the CGLE (with special choice of parameters given in [9]) has neither elliptic
standing wave nor elliptic travelling wave solutions.

It has been noted by R. Conte and M. Musette in [13] that a computer algebra
package is highly recommended for the use of their method. The corresponding
package in Maple [19] has been presented in [14]. This package constructs the
system of algebraic equations, which corresponds to the given Laurent-series. In
this paper we describe a new procedure of this package, which assists to simplify
the obtained algebraic system. Also we show how our package assists to prove
the non-existence of elliptic solutions.

2 Metnods for Construction of Elliptic Solutions

2.1 The Hénon–Heiles System

To compare the methods of the elliptic solutions construction let us consider
the generalized Hénon–Heiles system with an additional non-polynomial term,
which is described by the Hamiltonian:

H =
1
2

(
x2

t + y2
t + λ1x

2 + λ2y
2
)

+ x2y − C

3
y3 +

μ

2x2
(1)

and the corresponding system of the motion equations:⎧⎨⎩xtt = − λ1x− 2xy +
μ

x3
,

ytt = − λ2y − x2 + Cy2,
(2)

where subscripts denote derivatives: xtt ≡ d2x
dt2 and ytt ≡ d2y

dt2 , λ1, λ2, μ and
C are arbitrary numerical parameters. Note that if λ2 �= 0, then one can put
λ2 = sign(λ2) without loss of generality. If C = 1, λ1 = 1, λ2 = 1 and μ = 0,
then (2) is the initial Hénon–Heiles system [16].

The function y, solution of system (2), satisfies the following fourth-order
polynomial equation:

ytttt = (2C − 8)ytty − (4λ1 + λ2)ytt + 2(C + 1)y2
t +

+
20C
3

y3 + (4Cλ1 − 6λ2)y2 − 4λ1λ2y − 4H.
(3)

The energy of the system H is not an arbitrary parameter, but a function of
initial data: y0, y0t, y0tt and y0ttt. The form of this function depends on μ.

2.2 Construction of a Nonlinear Algebraic System

The direct algebraic method is the substitution of the first-order polynomial dif-
ferential equation, which solutions are elementary or elliptic functions, into the



Interdependence Between the Laurent-Series and Elliptic Solutions 459

initial differential system to transform it into a nonlinear algebraic system in
coefficients of the first-order equation and parameters of the initial system. The
obtained system of algebraic equations in principle can be solved by the Gröbner
(Groebner) bases method [17], but calculations for a sufficiently complex alge-
braic system can be very difficult and expensive. The use of the Laurent-series
solutions gives additional algebraic equations and allows to simplify calculations.
These equations are linear in coefficients of the first-order equation and nonlin-
ear, maybe even nonpolynomial, in parameters of the initial system. Note that
one maybe should fix some of these parameters to construct the Laurent-series
solutions. Therefore, in contrast to the Gröbner bases method, the additional
equations may be not consequences of the initial algebraic system.

Let
y(t) = '(t)2 + P0, (4)

where P0 is a constant, then eq. (3) is equivalent to

'tttt' = 2(C − 4)'tt'
3 − 4'ttt't − 3'2

tt + (2P0(C − 4)− 4λ1 − λ2)'tt'+

+ 2(3C − 2)'2
t'

2 + (2CP0 − 4λ1 − 8P0 − λ2)'2
t +

10
3
C'6 +

+ (2Cλ1 + 10CP0 − 3λ2)'4 + 2(2λ1CP0 + 5CP 2
0 − λ1λ2 −

− 3P0λ2)'2 +
10
3
CP 3

0 + 2λ1CP
2
0 − 3P 2

0 λ2 − 2λ1λ2P0 − 2H.

(5)

We will seek such solutions of (5) that they are the general solution of the
following first-order equation

'2
t =

1
4

(
A4'

4 +A3'
3 +A2'

2 +A1'+A0

)
, (6)

where Ak are constants to be determined.
Using (6) we transform eq. (5) into the following algebraic system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3A4 + 4) (2C − 3A4) = 0,

A3(9C − 21A4 − 16) = 0,

96A4CP0 − 240A4A2 − 192A4λ1 − 384A4P0 − 48A4λ2 −
− 105A2

3 + 128A2C − 192A2 + 128Cλ1 + 640CP0 − 192λ2 = 0,

40A3CP0 − 90A4A1 − 65A3A2 − 80A3λ1 −
− 160A3P0 − 20A3λ2 + 56CA1 − 64A1 = 0,

16A2CP0 − 36A4A0 − 21A3A1 − 8A2
2 − 32A2λ1 − 64A2P0 − 8λ2A2 +

+ 24CA0 + 64λ1CP0 + 160CP 2
0 − 16A0 − 32λ1λ2 − 96P0λ2 = 0,

10A3A0 + (5A2 + 8CP0 − 16λ1 − 32P0 − 4λ2)A1 = 0

(7)

and the equation for the energy H :
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H =
1

384

(
96CA0P0 − 48A2A0 + 384Cλ1P

2
0 + 640CP 3

0 − 9A2
1 −

− 192A0λ1 − 384A0P0 − 48A0λ2 − 384λ1λ2P0 − 576λ2P
2
0

)
.

(8)

In [5] it has been proposed to seek solutions as polynomials with three arbitrary
coefficients

y(t) = P2'(t)2 + P1'(t) + P0, (9)

where '(t) satisfies eq. (6). The function

'̆(t) =
1√
P2

(
'(t)− P1

2

)
(10)

satisfies eq. (6) as well, therefore, the same function y(t) corresponds to a two-
parameter set of coefficients Ai (i = 0..4) and Pk (k = 0..2), so we always can
put P2 = 1 and P1 = 0, in other words use (4) instead of (9) without loss of
generality.

System (7) has been solved by REDUCE [18] using the standard function
solve and the Gröbner bases method [7]. The goal of this paper is to show that
the use of the Laurent-series solutions allows us to obtain some solutions of (7)
solving only linear systems and nonlinear equations in one variable.

We cannot use this method for arbitrary C, because the Laurent-series solu-
tions are different for different C. So first of all we have to fix the value of C. To
fix C we use the condition A3 �= 0, then from two first equations of system (7)
it follows:

C = − 4
3

and A4 = − 4
3

or C = − 16
5

and A4 = − 32
15
. (11)

2.3 Construction of a Linear Algebraic System

Let us choose C = −4/3 ( one can consider the case C = −16/5 similarly). If we
consider system (7) separately from the differential equations (6) and (5), from
which it has been obtained, then it would be difficult to solve system (7) without
the use of the Gröbner bases method. At the same time from equations (6) and
(5) we can obtain an additional information, which assists us to solve system (7).

Let us construct the Laurent-series solutions for eq. (5). The method of con-
struction of the Laurent-series solutions for the generalized Hénon–Heiles system
has been described in detail in [10]. For eq. (5) with C = − 4/3 we obtain that
solutions have singularities proportional to 1/t and the values of resonances are
−1 (corresponds to an arbitrary parameter t0), 1, 4 and 10. The Laurent-series
solutions are (we put t0 = 0):

ρ̃ = ±
(
i
√

3
t

+ c0 +
i
√

3
24
(
3λ2 − 2λ1 + 4P0 + 62c20

)
t+ . . .

)
, (12)
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where

c0 =
±
√

161700λ1 − 121275λ2 ±
√

1155(5481λ2
2− 12768λ1λ2 + 8512λ2

1)

2310
. (13)

Two signs ”± ” in (13) are independent. At the same time, functions ρ̃ and −ρ̃
correspond to one and the same function ỹ, so there are four different Laurent-
series solutions. The coefficients c3 and c9 are arbitrary. To find any number of
coefficients, we should solve, except linear equations in one variable, only two
nonlinear equations in one variable.

Using the algorithm of the construction of elliptic solutions, described in [9],
we substitute the obtained Laurent-series solutions in eq. (6). This substitution
transforms eq. (6) into a linear and overdetermined system in Ak with coefficients
depending on arbitrary parameters.

The obtained system has the triangular form and is linear not only in Ak, but
also in H , c3 and c9. From the first equation we obtain anew that A4 = − 4/3.
From the second equation it follows that

A3 =
16
3
c0, and so on: (14)

A2 = − 70c20 − 3λ2 + 2λ1 − 4P0, (15)

A1 =
(

40
3
P0 − 60λ1 + 50λ2 + 1300c20

)
c0, (16)

A0 = − 40i
√

3c3 − 21535
12

c40 +
(

565
6
λ1 − 405

4
λ2 − 245

3
P0

)
c20 +

+
7
4
λ1λ2 − 21

16
λ2

2 −
7
12
λ2

1 +
7
3
λ1P0 − 7

2
λ2P0 − 7

3
P 2

0 .

(17)

From the next equation of the system we obtain c3 and, finally,

A0 =
15645

4
c40 +

(
1545

4
λ2 − 465P0 − 1495

2
λ1

)
c20 +

537
20

λ2
1 −

− 663
20

λ1λ2 +
729
80

λ2
2 + 19λ1P0 − 37

2
λ2P0 − 17

3
P 2

0 .

(18)

Substituting the values of Ak, which correspond to one of the possible values
of c0, in system (7), we obtain that it is satisfied for all values of λ1, λ2 and
P0, so we do not need to solve the nonlinear equations. Therefore, we settle
the nonlinear algebraic system (7) in the case C = −4/3, solving only linear
equations and nonlinear equation in one variable. We have used the values of
only six coefficients of the Laurent series solutions. Note that, for c0 and − c0
we obtain the same values of A4, A2 and A0, and the opposite values of A3 and
A1. From (6) it follows that these solutions correspond to ±ρ(t), and, hence,
give the same function y(t). Therefore, two rather than four different elliptic (or
degenerated elliptic) solutions of eq. (3) have been found.

To obtain the explicit form of the elliptic function, which satisfies the known
first-order ODE, one can use the classical method due to Poincaré, which has
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been implemented in Maple [19] as the package “algcurves” [20]. The elliptic
solutions y(t) are the fourth-order elliptic functions and can be expressed in
terms of the Weierstrass elliptic function ℘(t− t0):

y(t− t0) =
(
a℘(t− t0) + b

c℘(t− t0) + d

)2

+ P0, (19)

where constants a, b, c, d and periods of ℘(t) are determined by Ak. The param-
eters t0 and P0, which define the energy of the system, are arbitrary. Solutions
of this type exist in both above-mentioned nonintegrable cases: C = −16/5 and
C = − 4/3. Full list of solutions is given in [7].

3 Non-existence of Elliptic Solutions

3.1 The Complex Ginzburg–Landau Equation

The one-dimensional cubic complex Ginzburg–Landau equation (CGLE) [11] is
one of the most well studied nonlinear equations (see [21] and references therein).
It is a generic equation which describes many physical phenomena, such as pat-
tern formation near a supercritical Hopf bifurcation [21] or spatiotemporal in-
termittency in spatially extended dissipative systems [22]. The CGLE

iAt + pAxx + q|A|2A− iγA = 0, (20)

where subscripts denote partial derivatives: At ≡ ∂A
∂t , Axx ≡ ∂2A

∂x2 , p ∈ C, q ∈ C

and γ ∈ R is not integrable if pqγ �= 0. In the case q/p ∈ R and γ = 0 the CGLE
is the well-known nonlinear Schrödinger equation. One of the most important
directions in the study of the CGLE is the consideration of its travelling wave
reduction [9,12,21,23,24]:

A(x, t) =
√
M(ξ)ei(ϕ(ξ) − ωt), ξ = x− ct, c ∈ R, ω ∈ R, (21)

which defines the following third-order system⎧⎪⎪⎨⎪⎪⎩
M ′′

2M
− M ′2

4M2
−
(
ψ − csr

2

)2

− csiM
′

2M
+ drM + gi = 0,

ψ′ +
(
ψ − csr

2

)(M ′

M
− csi

)
+ diM − gr = 0,

(22)

where ψ ≡ ϕ′ ≡ dϕ
dξ , M ′ ≡ dM

dξ , six real parameters dr, di, gr, gi, sr and si are
given in terms of c, p, q, γ and ω as

dr + idi =
q

p
, sr − isi =

1
p
, gr + igi =

γ + iω
p

+
1
2
c2sisr +

i
4
c2s2r. (23)

Using (22) one can express ψ in terms of M and its derivatives:

ψ =
csr

2
+

G′ − 2csiG

2M2(gr − diM)
, (24)
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where
G ≡ 1

2
MM ′′ − 1

4
M ′2 − csi

2
MM ′ + drM

3 + giM
2, (25)

and obtain the third order equation in M :

(G′ − 2csiG)2 − 4GM2(diM − gr)2 = 0. (26)

To avoid carrying heavy expressions, following [9], we put

p = −1− 3i, q = 4− 3i. (27)

Substituting these values of p and q, we obtain

dr =
1
2
, di =

3
2
, sr = − 1

10
, si = − 3

10
. (28)

Equation (26) in the case p/q �∈ R is nonintegrable, which means that the gen-
eral solution (which should depend on three arbitrary integration constants) is
not known. It has been shown using the Painlevé analysis [24] or topological
arguments [23] that single-valued solutions can depend on only one arbitrary
parameter. Equation (26) is autonomous, so this parameter is ξ0: if M = f(ξ)
is a solution, then M = f(ξ − ξ0), where ξ0 ∈ C, has to be a solution. All
known exact solutions of the CGLE are elementary (rational, trigonometric or
hyperbolic) functions. The full list of these solutions is presented in [9,12].

A.N.W. Hone [12] has proved that a necessary condition for eq. (26) to admit
elliptic solutions is c = 0. In this paper we prove that eq. (26) does not admit
elliptic solutions in the case c = 0 as well. In other words, neither travelling
nor standing wave solutions are elliptic functions. In contrast to [9,12] we con-
sider system (22) instead of eq. (26). Below we show that this choice has some
preferences.

3.2 Elliptic Functions

The function ς(z) of the complex variable z is a doubly-periodic function if there
exist two numbers ω1 and ω2 with ω1/ω2 �∈ R, such that for all z ∈ C

ς(z) = ς(z + ω1) = ς(z + ω2). (29)

By definition a double-periodic meromorphic function is called an elliptic func-
tion. These periods define the period parallelograms with vertices z0, z0 +N1ω1,
z0 +N2ω2 and z0 +N1ω1 +N2ω2, where N1 and N2 are arbitrary natural num-
bers and z0 is an arbitrary complex number. The classical theorems for elliptic
functions (see, for example, [25]) prove that

– If an elliptic function has no poles then it is a constant.
– The number of elliptic function poles within any finite period parallelogram

is finite.
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– The sum of residues within any finite period parallelogram is equal to zero
(the residue theorem).

– If ς(z) is an elliptic function then any rational function of ς(z) and its deriva-
tives is an elliptic function as well.

From (24) it follows that if M is an elliptic function then ψ has to be an
elliptic function. Therefore, if we prove that ψ cannot be an elliptic function, we
prove that M cannot be an elliptic function as well. To prove this we construct
the Laurent-series solutions for system (22) and apply the residue theorem to
the function ϕ and its degrees.

3.3 Nonexistence of the Standing Wave Elliptic Solutions

It has been proved [12] that if ψ is a constant then M cannot be a nonconstant
elliptic function. So, to obtain nontrivial elliptic solutions we have to assume
that ψ has poles. We do not restrict ourselves to the case c = 0 and prove the
non-existence of either travelling or standing wave solutions. It has been noted
in [13] that one does not need to transform a system of differential equations
into one equation to obtain the Laurent-series solutions.

Using the Ablowitz–Ramani–Segur algorithm of the Painleve test [15] and a
computer algebra system (for example, Maple [19] or REDUCE [18]) it is easy
to find the Laurent-series solutions of system (22). There exist two different
Laurent-series solutions (ξ0 = 0):

ψ1 = − 1
ξ

+
1
6

(
9

200
c2 − 5

2
gi − gr

)
ξ +

1
40

(
3

100
c3 − 3

2
cgi +

1
3
cgr

)
ξ2 +

+
1

180

(
81

40000
c4 − 81

200
c2gi +

39
100

c2gr +
61
4
g2

i + 11gigr + g2
r

)
ξ3 + . . .

(30)

and

ψ2 =
2
ξ
− 3c

20
− 1

39

(
27
200

c2 − 10gi − gr

)
ξ − 1

260

(
3
50
c3 − 3cgi − 7

6
cgr

)
ξ2 +

− 1
1521

(
3969

400000
c4 − 963

1000
c2gi − 561

500
c2gr +

122
5
g2

i + 8gigr − 7
2
g2

r

)
ξ3 + . . .

(31)
Solutions ψ1 and ψ2 correspond to solutions of eq. (26)

M− = − 2
ξ2

+ . . . and M+ =
4
ξ2

+ . . . ,

which have been found in [9].
The sum of residues of all poles of an elliptic function within some finite

period parallelogram is equal to zero. So the elliptic function ψ(x) has to have
both ψ1 and ψ2 Laurent series expansions. Let the function ψ have N1 poles
with residues, which are equal to 2, within some finite period parallelogram,
then in this domain the number of poles, which residues are equal to −1, has to
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be equal to 2N1. So, if the function ψ is elliptic, then within some finite period
parallelogram it has N1 poles with ψ1 Laurent expansion and 2N1 poles with
ψ2 Laurent expansion. If ψ is an elliptic function, then ψ2 is an elliptic function
as well and satisfies the residue theorem (the residues of powers of ψ have been
calculated with the help of the procedure ydegree from our package of Maple
procedures [14], which realizes the Conte–Musette algorithm for construction of
single-valued solutions of nonintegrable systems [9]). Residues of ψ2

1 are equal to
zero, whereas residues of ψ2

2 are −3c/5. So we obtain the condition c = 0 and
prove the absence of the travelling wave solutions. Applying the residue theorem
to ψ3 and ψ5 and using the condition c = 0, we obtain the following system on
parameters gr and gi: {

5gi − 6gr = 0,

1827g2
i − 2076gigr − 356g2

r = 0.
(32)

System (32) is satisfied only if

gi = 0 and gr = 0. (33)

In this case the Laurent-series solutions give

ψ1 = − 1
ξ
, M1 = − 2

ξ2
, and ψ2 =

2
ξ
, M2 =

4
ξ2
. (34)

The straightforward substitution of these functions in system (22) with c = 0,
gr = 0 and gi = 0 proves that they are exact solutions. The coefficients of the
Laurent-series solutions do not include arbitrary parameters, so the obtained so-
lutions are unique single-valued solutions, and the CGLE has no elliptic solution
for these values of parameters as well. Thus, we have proved the non-existence
of both travelling and standing wave elliptic solutions. We have proved the non-
existence of standing wave solutions for the special choice of parameters sr, si,
dr and di. If the initial values of these parameters are not zero then using the
scaling transformations, we always can select the values of sr, si, dr as in (28)
without loss of generality, whereas the value of di remains arbitrary. In [12] the
nonexistence of elliptic travelling wave solutions has been proved for an arbitrary
di. We prove the nonexistence of elliptic standing wave solutions of the CGLE
with an arbitrary di in [26]. Note that in general case the system of differential
equations can give more information about the existence or the non-existence of
elliptic solutions, than the equivalent differential equation in one variable.

4 The Corresponding Computer Algebra Procedures

All calculations have been made with the help of the package of computer algebra
procedures, which had been written in Maple and REDUCE. The Maple version
of this package has been presented on the International Conference CASC’04
and has been published in the proceedings of this conference [14].
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Let us consider this package, which constructs the first order equation in the
form (1) with the given (formal) Laurent-series solution:

y =
Nmax∑
k=−p

c(k)tk, (35)

where p and Nmax are some integer numbers. The general form of the first-order
polynomial differential equation with solutions (35) is [9,13]

F (yt, y) ≡
m∑

k=0

j<=(m−k)(p+1)/p∑
j=0

hj,k y
jyk

t = 0, h0,m = 1. (36)

At singular points ym
t tends to infinity as 1/tm(p+1), so we can present F (yt, y)

as the Laurent series, beginning from this term:

F (yt, y) =
Nmax−m(p+1)+p∑

s=−m(p+1)

Kst
s (37)

and transform (36) into the overdetermined algebraic system: Ks = 0 in hi,j .
The procedure equalist(h,m, p) constructs a list, which corresponds to the

first-order equations (36) with unknown coefficients hi,j , m is the highest order
of derivative in (36). The procedure quvar(m, p) calculates the number of un-
known coefficients hi,j . The procedure equlaurlist(h,m, p, ove, c) transforms the
first order differential equation into an algebraic system and constructs the first
quvar(m, p) + ove equations of this system.

We can use the fact that c(−p) �= 0 to exclude some of unknowns hi,j

from the obtained algebraic system, which is linear in them. We add to our
package the procedure simlequa(flist, h,m, p), which gives the corresponding
hi,j . If one does not restrict the general form of (36), one has to use flist :=
equalist(h,m, p). If one fixes some hi,j , then one has to exclude them from flist.
For example, in Section 2 we construct eq. (36) form = 2, p = 1 and put h2,1 = 0,
h1,1 = 0 and h0,1 = 0, so we have used flist := [[h[0, 0], 0, 0], [h[1, 0], 1, 0],
[h[2, 0], 2, 0], [h[3, 0], 3, 0], [h[4, 0], 4, 0], [h[0, 2], 0, 2]] or equivalently

flist := [[h[0, 0], 0, 0], [h[1, 0], 1, 0], [h[2, 0], 2, 0], [h[3, 0], 3, 0], [h[4, 0], 4, 0]]; (38)

The procedure simplequa(flist,h,2,1) gives the list

[[−4, 4, 0], [−3, 3, 0], [−2, 2, 0], [−1, 1, 0], [0, 0, 0]]. (39)

This result means that we can exclude h4,0 from system (37), using the equation,
which corresponds to t−4, exclude h3,0, using the equation, which corresponds
to t−3, and so on. To calculate residues of products y(t)ny′(t)m one can use
the procedure monomlaur(c,mon,j,p), with j = −1 and mon = [1, n,m], but
previously one has to put ∀k = −m(p+ 1)− np..− p− 1 : c(k) = 0.

The procedure monomlaur is presented in [14]. The considering packages of
procedures in Maple and REDUCE are available in Internet [27].
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5 Conclusion

The Laurent-series solutions are useful to find elliptic or elementary solutions in
the analytic form. The method proposed in [9] converts the local information into
the global one and can be used not only as an alternative of the standard method,
but also as an addition to it, which assists to find solutions of the obtained
algebraic system. We have demonstrated that one can find elliptic solutions of
the generalized Hénon–Heiles system solving only linear equations and nonlinear
equations in one variable, instead of nonlinear system (7). At the same time,
to use this method one has to know not only an algebraic system, but also
differential equations, from which this system has been obtained.

The Laurent-series solutions are useful not only to find elliptic solutions,
but also to prove the non-existence of them. Using the Hone’s method based
on residue theorem, we have proved the non-existence of both standing and
travelling wave elliptic solutions of the CGLE.
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Abstract. We present algorithms for parametric problems in differen-
tial algebra that can be formulated in a suitable first-order language L.
The atomic L-formulas are linear ODEs of arbitrary order with paramet-
ric coefficients of arbitrary degrees. Using rather weak axioms on differ-
ential fields or differential algebras that are realized in natural function
domains, we establish explicit quantifier elimination algorithms for L pro-
viding also parametric sample solutions for purely existential problems.
These sample solutions are “generic” solutions of univariate parametric
linear ODEs that can be realized by concrete functions in the natu-
ral function domains mentioned above. We establish upper complexity
bounds for the elimination algorithms that are elementary recursive for
formulas of bounded quantifier alternation, in particular doubly exponen-
tial for existential formulas. Our results are in contrast to Seidenberg’s
model theoretic elimination theory for non-linear problems that is non
elementary recursive, requires very strong axioms that are not realizable
in natural function domains, and does not provide sample solutions.

1 Introduction

In the 1950s A. Seidenberg developped an ingenious algebraic and algorithmic
elimination theory for parametric ODEs (and also PDEs) [1]. This theory gave
rise to the model theoretic concept of a differentially closed field as an (almost)
perfect analogue for an algebraically closed field [2–4]. Later L. Blum found
simple axioms for differentially closed fields [5,6]. Recently the joint algorithmic
outcome of all these theoretical results has been implemented by A. Dolzmann
and T. Sturm in the REDLOG package of the computer algebra system RE-
DUCE [7]. This approach has, however, two significant drawbacks: Firstly, it is
valid only in the “artificial algebraic paradise” of differentially closed fields, that
can never be realized by a natural analytic function domain, due to the strength
of its axioms. Secondly, the elimination algorithm uses an enormous number of
case distinctions and iterated formation of disjunctive and conjunctive normal
forms of quantifier-free formulas that may result in a combinatorial explosion.
As a result the elimination algorithm is non elementary recursive in the worst
case; this may even happen for input formulas of bounded quantifier alternation.

The present paper is an attempt to avoid both drawbacks by restricting
attention to a fragment of the first-order language of differential fields, where
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all quantified variables occur only linearly, whereas parameters may occur in
arbitrary degrees. By analysing L.Blums’s axioms for this situation, we find that
they can be weakened in such a way that they are realizable in natural analytic
functions domains. In particular these domains need neither be algebraically
closed fields nor real closed fields.

Thus the corresponding elimination theory becomes analytically meaningful.
By a considerable modification of Seidenberg’s method we develop an explicit
quantifier elimination algorithms for the restriced language L and the weaker
axioms providing also parametric sample solutions for purely existential linear
problems. These sample solutions are “generic” solutions of univariate paramet-
ric linear ODEs that can be realized by concrete functions in the the natural
function domains mentioned above. We establish upper complexity bounds for
the elimination algorithms that are elementary recursive for formulas of bounded
quantifier alternation, in particular doubly exponential for existential formulas
and thus considerably better than those for Seidenberg’s method.

In fact we also present a variant of all these results for the even more restricted
case, where parametric variables range only over differntial constants. In this
case the axioms can be further weakened, so that they are e. g. satisfied by by
a differential algebra of complex polynomials in x and functions of type eλx for
complex λ or a differential algebra of real polynomials in x and functions of type
eλx, sin(λx), cos(λx) for real λ.

As a byproduct we get decion algorithms for parameter-free formulas in these
languages with the same upper complexity bounds.

Some simple examples illustrate the range and applicability of these theoreti-
cal results. An implementation in the REDLOG package of REDUCE is planned.

2 Basic Concepts

A differential ring (differential field) F is an integral domain (a field) F extending
the field Q of rational numbers together with a formal derivation, i. e.unary
operation ′ : F −→ F satisfying

(a+ b)′ = a′ + b′, (a · b)′ = a · b′ + a′ · b
An element a of a differential ring F is a constant if a′ = 0. The set K of
differential constants of a differential ring F forms a subring of F , the constant
subring of F. If F is a field, so is K. We call a differential ring F a differential
algebra, if K is a field [8].

The first-order theory DF of differential fields has the natural language L =
{0, 1,+,−, ·,′ }. In this language it is easy to formulate the axioms for DF by the
axioms for fields of characteristic zero together with the sum and product rule
above for the derivation. Similarly, one can formulate axioms DA for differential
algebras in L. For practical applicability we may also allow in L constants for
some or all elements of F provided these objects are in a fixed subalgebra of F
and can be handled algorithmically, i.e. for every variable-free term one should
be able to decide, whether it represents zero or not.
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The terms of this language may all be written as (ordinary) differential poly-
nomials in some variables y1, . . . , yn, in other words as polynomials in y1, . . . , yn,

and their iterated derivatives y(j)
i with integer coefficients. The (formal) order

ordy(t) of a variable y in a term t is the highest superscript j such that y(j)

occurs in t. Let y be of order k in t. Then the initial inity(t) of y in t is the
coefficient of the highest power of y(k) in t.

In order to get a nice elimination theory in DF, i. e. quantifier elimination in
the language L one needs rather strong additional axioms of the following kind
[5,6]: First one requires the fields to be algebraically closed; second one requires
for every pair of terms t, s in L and every variable y such that ordy(t) > ordy(s)
the axiom

(inity(t) �= 0 ∧ inity(s) �= 0) =⇒ ∃y(t = 0 ∧ s �= 0)

By adding these axioms one passes from the theoryDF of differential fields to the
theory CDF of differentially closed differential fields. Notice that these axioms
imply that both the field F and its constant field K have to be algebraically
closed.

This stronger theory has very nice algebraic and model theoretic proper-
ties, in particular it admits an algorithmic quantifier elimination and a decision
procedure [1,2,5,6,3,4]. On the other hand differentially closed differential fields
can never be realized as natural fields of functions. So these fields are a kind of
“algebraic paradise” far removed from the “real world” of analysis.

Here we consider therefore the much weaker theories LCDF of linear-closed
differential fields and WLCDA of weakly linear-closed differential algebras that
do in fact admit many models that are differential function rings; thus these
theories is really close to actual analytic problems.

For these weaker theories we provide explicit axioms, efficient algorithmic
quantifier elimination and decision procedures for suitable classes of L-formulas
and compute upper complexity bounds for these procedures. In order to de-
scribe LCDF we first specify a restricted class of L-formulas: Suppose we have
partitioned the set of all variables in L into two disjoint infinite blocks, the set
LV of linear variables and the set PV of parametric variables. Then we define
linear terms as differential polynomials with integer coefficients in which linear
variables and their higher derivatives occur only linearly, whereas parametric
variables and their iterated derivatives may occur in arbitrary degrees. Thus
linear terms can be written as linear polynomials in the linear variables and
their iterated derivatives with coefficients that are in turn arbitrary differential
polynomials with integer coefficients in the parametric variables only. We call
a linear term t weakly parametric if all coefficients of linear variables and their
iterated derivatives in t are variable-free terms representing fixed elements of F.
So parametric variables occur at most in the absolute term of t wrt. the linear
variables and their iterated derivatives. A linear term t is univariate if it contains
at most one linear variable together with its iterated derivatives. If this linear
variable is y, then we say t is univariate in y. If in addition t has no absolute
term wrt. y, then we call t homogeneous univariate in y.
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Atomic linear formulas are then equations between linear terms. Atomic lin-
ear formulas are weakly parametric if the terms in them are weakly parametric.
Arbitrary linear formulas are obtained from atomic linear formulas by proposi-
tional connectives “and”, “or”, “not” and quantifications ∃x or ∀x over linear
variables x ∈ LV. A linear formula is weakly parametric if all its atomic subformu-
las are weakly parametric. A linear term or a linear formula is purely parametric
if it contains no linear variable. We allow purely parametric terms also to be
written in non-expanded form.

We deal only with problems that can be formulated by linear formulas. Due
to this restriction we can now fomulate much weaker axioms than those for
CDF in order to obtain quantifier elimination and decision procedures for linear
formulas:

We require for every natural number n and every n+ 1-tuple of linear terms
t, s1, . . . , sn in L that are univariate in a linear variable y such that ord(y, t) >
ord(y, si) for all 1 ≤ i ≤ n, the axiom

(inity(t) �= 0 ∧
n∧

i=1

inity(si) �= 0) =⇒ ∃y(t = 0 ∧ s1 �= 0 ∧ . . . ∧ sn �= 0)

We call the theory with these new axioms the theory LCDF of linear-closed
differential fields. Notice that for CDF there was no necessity to consider more
than one inequality, since one may form products of differential terms, which is
in general impossible for linear differential terms.

An even weaker theoryWLCDA of weakly linear closed differential algebras is
obtained, when takes the axioms ofDA together with the axioms above restricted
to the case where all coefficients of y and its iterated derivatives in t and in all
si are required to be differential constants, i. e. elements of K.

3 Examples of Linear Closed Differential Fields

Which differential fields satisfy the axioms of LCDF and which differential al-
gebras satisfy the axioms of WLCDA? In order to appraoch this question, it
is useful to formulate potentially stronger sets of axioms that are closer to the
standard theory of ODEs:

Call a differential field F plentiful, if the following two conditions are satisfied:

1. Every linear univariate ODE of positive order with coefficients in F has a
solution in F .

2. The set of solutions of a homogeneous univariate linear ODE with coefficients
in F of positive order n forms a vector space of dimension n over the field
K of differential constants of F.

Call a differential algebra F weakly plentiful, if the corresponding two condi-
tions are satisfied for linear univariate ODEs with coefficients in K.

By the standard theory of linear ODEs any differential field F that satisfies
condition 2 and is closed under integration is in fact plentiful.
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It is now easy to see, that every plentiful differential field F is indeed linear
closed: Given a linear univariate ODE t = 0 of positive order n, and finitely
many further linear univariate ODEs si = 0 of order smaller than n, all with
coefficients in F , we may conclude that the set of solutions of t = 0 in F forms
a non-empty affine space A over K of dimension n; similarly the solution set Si

of each si = 0 in F forms an affine space over K of dimension smaller than n.
Hence the union of all Si can never cover all of A. This shows that there is a
solution of t = 0 in F which is not a solution of every equation si = 0.

A similar argument shows that every weakly plentiful differential algebra is
weakly linear-closed.

A related argument also shows that the axioms for linear closed differential
fields can be weakened as follows: It suffices to require for every natural number
n and every n+ 1-tuple of linear terms t, s1, . . . , sn in L that are homogeneous
univariate in a linear variable y such that ord(y, t) > ord(y, si) for all 1 ≤ i ≤ n,
the axiom

(inity(t) �= 0 ∧
n∧

i=1

inity(si) �= 0) =⇒ ∃y(t = 0 ∧ s1 �= 0 ∧ . . . ∧ sn �= 0)

In addition one must require for every linear term u univariate in a linear variable
y with ord(y, u) > 0 the axiom

(inity(t) �= 0 =⇒ ∃y(t = 0)

All examples listed below will be plentiful differential fields or weakly plentiful
differential algebras:

Fix a non-empty open connected region G ⊆ C. Then the differential field of
all meromorphic functions defined on G is plentiful. This applies in particular to
regions G ⊆ R and also to the differential field of all real-valued meromorphic
functions defined on G. Hence all these fields are linear-closed.

The differential algebra A generated as a ring by C together with the identity
function and all the exponential functions eλx for arbitrary λ ∈ C is a weakly
plentiful differential algebra. Its elements are complex polynomials in x and all
eλx. Notice that in the representation of elements of A powers (eλx)k

of eλx are
superfluous, since they can be rewritten as ekλx.

Similarly, the differential algebra A generated as a ring by C together with
the identity function all the exponential functions eλx, and the trigonometric
functions cos(μx), sin(νx) for λ, μ, ν ∈ R is a weakly plentiful differential alge-
bra. Its elements are real polynomials in x, eλx, cos(μx), sin(νx). Again powers
of eλx, cos(μx), sin(νx) can be avoided in the representation of elements of A
by the identities

(eλx)k

= ekλx,

sin(μx) sin(νx) = 2−1(cos((μ− ν)x) − cos((μ+ ν)x))

cos(μx) cos(νx) = 2−1(cos((μ− ν)x) + cos((μ+ ν)x)).

Hence all these algebras are weakly linear-closed.
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4 Reduction and Normal Forms

First we describe a reduction process for linear atomic formulas with respect to
a specified linear variable y that is analogous to Gauss elimination and in fact
may be considered as a parametric version of Ritt reduction [8,1].

Notice that every linear term t can be written wrt. a specified linear variable
y in the form

t = aky
(k) + . . .+ a1y

′ + a0y + a−1,

where inity(t) := ak, . . . , a1 are purely parametric differential polynomials, and
absy(t) := a−1 is a linear term not containing the variable y. If, moreover,
t is a weakly parametric linear term, then ak, . . . , a1 are variable-free terms
representing fixed integers.

We call this form of t a normal form of t wrt. y. The derivative t′ of a linear
term t as above is then

t′ = aky
(k+1) + (a′k + a(k−1))y(k) + . . .+ (a′2 + a1)y(2) + (a′1 + a0)y′ + a′0y + a′−1

which is again in normal form wrt. y with inity(t′) = ak = inity(t). If in addition
t is weakly parametric, then a′k = . . . = a′0 = 0, and so

t′ = aky
(k+1) + a(k−1)y

(k) + . . .+ a1y
(2) + a0y

′ + a′−1

Iterating this observation for higher derivatives, we find that for m ∈ N,

t(m) = aky
(k+m) + t∗,

where t∗ is a linear term in normal form wrt. y of order ordy(t∗) < k + m; in
particular inity(t(m)) = ak = inity(t) and ordy(t(m)) = m+ k.

The reductum redy(t) = ak−1y
(k−1) + . . .+ a0 of t wrt. y is simply obtained

from t by deleting the highest order monomial of t in normal form wrt. y. Iterated
reducta are defined by

redy(t)0 := t, redy(t)i+1 = redy(redy(t)i)

for i < k. So inity(redy(t)i) = ak−i.
Let s, t be two linear terms both in normal form with respect to y and assume

k := ordy(s) ≤ ordy(t) =: m. Then we define the reduction t1 of t wrt. y and s,
t−→

y,s
t1 by setting t1 := inity(s)t− inity(t)s(m−k).

Since s(m−k) is of the form s(m−k) = inity(s)y(m) + s∗, where s∗ is a linear
term with ord(y, s∗) < m, it follows that ord(y, t∗) < ord(y, t) = m. Moreover
in every differential algebra, we have

(inity(s) �= 0 ∧ s = 0) =⇒ (t = 0 ⇐⇒ t1 = 0)

Iterating this type of reduction for fixed y and s, we obtain reduction chains
leading from t in say r steps to tr, t

r−→
y,s

tr. If this reduction chain is of maximal
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length r ≤ m − k + 1, then we call tr the normal form of t wrt. y and s. If the
number r ≥ 0 is irrelevant we simply write t ∗−→

y,s
tr. By induction on the number

r of reduction steps the equation above holds as well for reduction chains:

(inity(s) �= 0 ∧ s = 0) =⇒ (t = 0 ⇐⇒ tr = 0)

Notice that the reductum of t as defined above has nothing to do with reductions
of t.

5 Generic Solutions

Let t = aky
(k) + . . .+ a1y

′ + a0y+ a−1 be a linear term in normal form wrt. the
variable y. For later use we define guardy,t := (a0 = . . . = ak = 0). Notice that
this is a quantifier-free linear formula containing no linear variables.

Next we introduce a new formal expression geny,t, called the generic solution
of t = 0 wrt. y.

The semantics of geny,t is as follows: Suppose we have fixed all values of all
parametric variables in a differential algebra A such that inity(t) �= 0 holds in A,
and we have specified a finite set S of linear terms such that for these specified
values of the parameters ordy(s) < ordy(t) for all s ∈ S. Then geny,t is an object
in A satisfying

t = 0 ∧
∧
s∈S

s �= 0

when substituted for y in these linear terms.
The existence of such an object is guaranteed, if A is a linear closed differen-

tial field. Alternatively, if all coefficients of y, . . . , y(k) in t and in all s ∈ S have
values in the constant field K, then the existence of such an object is already
guaranteed, if only A is a weakly linear closed differential algebra.

Notice that of course this object depends on the values in A of the parametric
variables occurring in t and in all s ∈ S. Moreover it depends on the set S itself.
The latter dependence can be removed by taking geny,t as an object in a suitable
elementary extension A∗ of A. If we insist on geny,t being an object in A, then
we specify the dependence of this object on S by saying that geny,t is a generic
solution of t = 0 wrt. y and S.

Anyway, the only fact we need of geny,t is its correct semantic behaviour,
when formally substituted for y in some linear atomic formula ϕ. So our next
goal is to define such a modified substitution in such a way that the expression
geny,t does in fact not occur in the resulting linear formula.

Let ϕ be of the form v = 0, where v is a linear term in normal form wrt.
y. Then we define the modified substitution of geny,t for y in v = 0, notation
(v = 0)[geny,t//y], as follows: Let v∗ be the normal form of v upon reduction of
v wrt. y and t. Then the implication

(inity(t) �= 0 ∧ t = 0) =⇒ (v = 0 ⇔ v∗ = 0)

is valid in every differential algebra.
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Let now v∗ be in normal form wrt. y,

vi = bjy
(j) + . . .+ b0y + b−1

with j < ordy(t). Then we let (v = 0)[geny,t//y] be the linear formula bj = . . . =
b0 = b−1 = 0.

Notice that this definition conforms with the semantic properties of geny,t

specified above, i.e. if in some differential algebra A, where geny,t exists and
inity(t) �= 0 holds for specific values of the parametric variables, then v = 0
holds in A at point y = geny,t iff (v = 0)[geny,t//y] holds in A.

We extend the concept of modified substitution of geny,t for y to arbitrary
quantifier-free linear formulas ψ in the natural way: So ψ[geny,t//y] is obtained
from ψ by performing the modified substitution ϕ "→ ϕ[geny,t//y] in every atomic
subformula of ψ. Then this modified substitution is again semantically correct:
So if in some differential algebra A, where geny,t exists and inity(t) �= 0 holds for
specific values of the parametric variables, then ψ holds in A at point y = geny,t

iff ψ[geny,t//y] holds in A. Moreover by the remark above we see that the number
of atomic subformulas does not increase in the passage from ψ to ψ[geny,t//y],
provided t and ψ are both weakly parametric.

One important observation that follows from the semantics of generic solu-
tions is the following

Lemma 1. Let t be a linear term in normal form wrt. the linear variable y and
assume ordy(t) ≥ 0. Let U be a finite set of linear terms that do not contain the
variable y, and let S be another set of linear terms in normal form wrt. y. Then
in every linear closed differential field the following holds:

(inity(t) �= 0 ∧ t = 0 ∧
∧

u∈U

u = 0 ∧
∧
s∈S

s �= 0) =⇒

(t[geny,t//y] = 0 ∧
∧

u∈U

u[geny,t//y] = 0 ∧
∧
s∈S

s[geny,t//y] �= 0)

Proof. Assume the hypothesis. Since all u ∈ U do not involve y, we get
u[geny,t//y] = u. By the hypothesis we have for every normal form s∗ of s ∈ S
that s∗ �= 0, and so the fact that at least one coefficient of s∗ wrt. y is non-zero. So
by the semantics of generic solutions, we have that s[geny,t//y] = s∗[geny,t//y]
�= 0.

6 Quantifier Elimination for a Single Quantifier

Using the expressions for generic solutions we can now perform quantifier elimi-
nation in the theory LCDF and WLCDA, respectively, for linear formulas ∃x(ϕ)
involving only a single existential quantifier.

To begin with we let y be a linear variable and denote by Ty (T+
y ) the set of

all linear terms that are in normal form with respect to y (and have ordy(t) ≥ 0).
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Next we associate with every non-empty finite subset T of Ty a finite set ΓT of
purely parametric formulas that are conjunctions of equations and disequations,
and a map ΓT −→ T+

y , γ "→ tγ , such that the following properties hold in
every linear closed differential field, and under the hypothesis that all parametric
variables have derivative zero also in all weakly linear closed differential algebras:

1. (
∧

u∈T guardy,u ∧ absy(u) = 0) ∨ (
∨

γ∈ΓT
γ)

2. For every γ ∈ ΓT , (γ ∧ ∧u∈T u = 0) =⇒ (inity(tγ) �= 0 ∧ tγ = 0 ∧∧
u∈T u[geny,tγ

] = 0).

The definition of ΓT and the map γ "→ tγ is by recursion on the natural
number d :=

∑
u∈T (ordy(u) + 1).

If d = 0 then no u ∈ T involves y and we put ΓT = ∅. Note that empty
disjunctions are false and empty conjunctions are true by definition; so in this
case the properties above are satisfied.

If d > 0 and there is at most one u ∈ T which involves y, then we put

ΓT := {inity(u) �= 0} ∪ {(inity(u) = 0 ∧ γ | γ ∈ (Γ(T\{u}) ∪ {redy(u)},

and put
tinity(u) �=0 := u, tinity(u)=0∧γ := tγ .

Then the first property is obvious and the second follows directly from the in-
duction assumption.

If d > 0 and T contains at least two terms s, t with ordy(s), ordy(t) ≤ 0, and
say ordy(s) ≤ ordy(t), then we let s∗ := redy(s), and let t∗ be the normal form
of t wrt. y and s. Then we put

ΓT := {(inity(s) �= 0 ∧ γ)|γ ∈ Γ(T\{t}) ∪ {t∗}} ∪

{(inity(s) = 0 ∧ δ)|δ ∈ Γ(T\{s}) ∪ {s∗}}.
Moreover we put

t(inity(s) �=0 ∧ γ) := tγ), t(inity(s):=0 ∧ δ) := tδ.

Then again the first property is obvious and the second follows directly from the
induction assumption applied to Γ(T\{t}) ∪ {t∗} and to Γ(T\{s}) ∪ {s∗}.

Finally we put T∼ := {tγ |γ ∈ ΓT }, and T ∗ :=
⋃

∅�=U⊆T U
∼.

Notice that if all terms u ∈ T are weakly parametric, then T∼ is a singleton
set, since all case distinctions on initials are superfluous.

Then we have:

Theorem 1. Let ϕ be a linear formula consisting of an ∧ − ∨-combination of
equations t = 0 and disequations s �= 0 for linear terms t, s. Let T be the finite
set of all terms t ∈ T+

y occuring in some equation t = 0 in ϕ. Let y be a linear
variable. Let q ∈ N be bigger than all the numbers ordy(s), such that s occurs in
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a disequation s �= 0 in ϕ, and let v be the linear term y(q). Let T ∗ be the set of
linear terms constructed as above from T.

Then in every linear closed differential field, the formula ∃y(ϕ) is equivalent
to

ϕ1 := ϕ[genq,yv//y]) ∨
∨

t∈T∗
(inity(t) �= 0 ∧ ϕ[geny,t//y])

Next let z1, . . . , zp be all parametric variables occurring in ϕ. Then in every
weakly linearly closed differential algebra, the following formula holds:

(
p∧

j=1

z′j = 0) −→ (∃y(ϕ) ⇔ (ϕ[genq,yv//y] ∨
∨

t∈T∗
(inity(t) �= 0 ∧ ϕ[geny,t//y])

Proof. We prove the first part; the second is analogous. Let F be a linear closed
differential field, We begin by the converse direction of the equivalence:

If for fixed values of the variables except y,

ϕ[genq,yv//y]) ∨
∨

t∈T∗
(inity(t) �= 0 ∧ ϕ[geny,t//y])

holds in F, then we have two cases: If ϕ[geny,v//y]), then since inity(v) = 1 �= 0,
we get by the semantics of the modified substitution of generic solutions that ϕ
holds in F at point y = geny,v, and so ∃y(ϕ) holds in F.

Otherwise there is some t ∈ T ∗ such that (inity(t) �= 0 ∧ ϕ[geny,t//y])
holds in F. Then again by the semantics of the modified substitution of generic
solutions we get that ϕ holds in F at point y = geny,t, and so ∃y(ϕ) holds in F.

Next we prove the other direction: Suppose that for fixed values of all vari-
ables except y, ∃y(ϕ) holds in F. Let c ∈ F be such that ϕ holds in F at point
y = c. We may assume that ϕ has been put into disjunctive normal form, say∨m

i=1 ϕi, where each ϕi is a conjunction of equations u = 0 for u ∈ U and of
disequations s �= 0 for s ∈ S.

Then for some 1 ≤ i ≤ m, ϕi holds in F at point y = c. Notice that U ⊆ T,
and so U ⊆ T ∗.

By the first property of ΓU ,
(
∧

u∈U guardy,u ∧ absy(u) = 0) ∨ (
∨

γ∈ΓU
γ

holds in F. Again we have two cases:
If (
∧

u∈U guardy,u∧absy(u) = 0) holds in F, then u[geny,v//y] = absy(u) = 0,
and for all s ∈ S, s[geny,v//y] �= 0. Hnece ϕi[geny,v//y] holds in F, and so
ϕ[geny,v//y] holds in F.

Otherwise there is some γ ∈ ΓU such that γ holds in F. Together with∧
u∈U u = 0, this implies by the second property of ΓU , (inity(tγ) �= 0 ∧∧
u∈U u[geny,tγ

] = 0).
Concerning the disequations, let for s ∈ S s∗ be the normal form of s wrt y

and tγ . Then by the second property of ΓU , tγ = 0 at point y = c. Consequently,
s∗ = s �= 0 in f at point y = c. Hence by the semantics of generic solutions,
s[geny,tγ

//y] �= 0. So ϕi[geny,tγ
//y] holds in F, and hence ϕ[geny,tγ

//y] holds
in F.

This completes the proof.
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Remark. The proof actually show more: If ϕ is already a conjunction of equa-
tions and disequations, then the role of the set T ∗ in the theorem can be replaced
by the smaller set T∼. If in addition ϕ is weakly parametric, then T∼ is a sin-
gleton set, and so the disjunction over T∼ has only one disjunct.

7 Quantifier Elimination - The General Case

We begin with quantifier elimination for existential linear formulas, i. e. formulas
of the form

∃y1 . . .∃yn(ϕ),

where y1, . . . yn are linear variables, ϕ is a quantifier-free linear formula with
parametric variables z1, . . . , zp. In the following we assume without restriction
that ϕ is actually a ∧-∨-combination of equations and inequations with right
hand side 0. In the special case, where ϕ is in addition a conjunction of equations
and disequations of this form, such a formula is called a primitive linear formula.

From the main theorem of the previous section we obtain by induction on n
the following result:

Theorem 2. For every existential linear formula ψ := ∃y1 . . . ∃yn(ϕ) as above
one can construct finite sets T1, . . . , Tn of linear terms, such that the terms in Ti

contain besides parametric variables at most the linear variables y1, . . . , yi, and
such that ψ is equivalent in LCDF to the disjunction

ψn :=
∨

t1∈T1

. . .
∨

tn∈Tn

(inityn(tn) �= 0 ∧ . . . ∧ inity1(t1) �= 0) ∧

ϕ[genyn,tn
//yn] . . . [geny1,t1//y1]

Here the iterated modified substitution is performed sequentially from left to right.
Moreover the sets Ti can be replaced by considerably smaller set T∼

i in case ψ is
a primitive linear formula. If in addtion ϕ is weakly parametric, then all T∼

i are
in fact singleton sets.

A corresponding result holds for WLCDA under the hypothesis that the deriva-
tives of all parametric variables in ψ have value zero.

Proof. As noted above we assume that ϕ is a ∧-∨-combination of equations and
inequations with right hand side 0. Then the proof is by induction on n. The
case n = 1 is identical to the previous theorem with the only modification that
the conjunct 1 �= 0 is added in the first disjunct.

Next assume the theorem for fixed n and let ψ := ∃y1 . . .∃yn∃yn+1(ϕ). Let
ψ′ := ∃y1 . . .∃yn(ϕ). Then by induction assumption ψ′ is equivalent in LCDF to
a disjunction of the form∨

t1∈T1

. . .
∨

tn∈Tn

(inityn(tn) �= 0 ∧ . . . ∧ inity1(t1) �= 0) ∧

ϕ[genyn,tn
//yn] . . . [geny1,t1//y1]
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So by permuting the existential ∃yn+1 quantifier with the disjunction, ψ is
equivalent in LCDF to∨

t1∈T1

. . .
∨

tn∈Tn

(inityn(tn) �= 0 ∧ . . . ∧ inity1(t1) �= 0) ∧

∃yn+1(ϕ[genyn,tn
//yn] . . . [geny1,t1//y1])

Next we apply the case n = 1 to each disjunct and find Tn+1 such that the above
is equivalent in LCDF to∨
t1∈T1

. . .
∨

tn∈Tn

∨
tn+1∈Tn+1

(inityn+1(tn+1) �= 0∧inityn(tn) �= 0∧. . .∧inity1(t1) �= 0) ∧

ϕ[genyn+1,tn+1
//yn][genyn,tn

//yn] . . . [geny1,t1//y1]).

This proves the induction step.
Notice that this proof together with the proof of the previous theorem ac-

tually shows that we have here a case of quantifier elimination with answers:
In fact one can easily modify the output of the quantifier elimination algorithm
above so that it outputs the finite list of pairs

((inityn(tn) �= 0 ∧ . . . ∧ inity1(t1) �= 0), (yn = genyn,tn
, . . . , y1 = geny1,t1)

consisting of guards and answers in the sense of A. Dolzmann and T. Sturm. In
particular the disjunction over all guards holds in LCDF, and the conjunction of
each guard together with the input formula yields the ϕ evaluated at the point
specified in the second entry.

In other words we have a finite choice of guards and corresponding iterated
generic solutions of parametric univariate differential equations such that when-
ever ϕ has a solution (y1, . . . , yn) ∈ Fn for a specific values of the parametric
variables in a linear closed differential field F, then we can express at least one
such solution by a nesting of some iterated generic solutions. The choice of this
nesting is decided by the corresponding guard.

Similar statements hold in WCDA under the additional hypothesis that all
parametric variables have derivative zero.

Corollary 1. For every universal linear formula ψ := ∀y1 . . . ∀yn(ϕ) as above
one can construct finite sets T1, . . . , Tn of linear terms, such that the terms in Ti

contain besides parametric variables at most the linear variables y1, . . . , yi, and
such that ψ is equivalent in LCDF to the conjunction

ψn :=
∧

t1∈T1

. . .
∧

tn∈Tn

(inityn(tn) �= 0 ∧ . . . ∧ inity1(t1) �= 0) −→

ϕ[genyn,tn
//yn] . . . [geny1,t1//y1]

Here again the iterated modified substitution is performed sequentially from left
to right. Moreover the sets Ti can be replaced by considerably smaller set T∼

i in
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case in case ϕ is a disjunction of equations and disequations. If in addtion ϕ is
weakly parametric, then all T∼

i are in fact singleton sets. A corresponding result
holds for WLCDA under the hypothesis that the derivatives of all parametric
variables in ψ have value zero.

Proof. . Apply the previous theorem to the input formula ∃y1 . . .∃yn(¬ϕ), that
is equivalent to ¬ψ, and negate the result.

We say that LCDF admits effective linear quantifier elimination if there is
an algorithm assigning to every linear formula ϕ a quantifier free linear formula
ϕ′ such that the equivalence ϕ ⇔ ϕ′ holds in LCDF. We say WLCDA admits
weak effective linear quantifier elimination if there is an algorithm assigning to
every linear formula ϕ a quantifier free linear formula ϕ′ both with parametric
variables among z1, . . . , zm such that the formula

(
m∧

i=1

z′i = 0) =⇒ (ϕ⇔ ϕ′)

holds in WLCDA.
Then we have the following important result as consequence of the theorem

and its corollary:

Theorem 3. LCDF admits effective linear quantifier elimination and WLCDA
admits weak effective linear quantifier elimination.

Proof. Every linear formula ϕ can be equivalently rewritten in prenex normal
form ϕ1. Then an easy induction on the number of quantifier blocks in ϕ1 shows
the result.

.
We call a linear formula ϕ a linear sentence if every occurence of a variable

y in ϕ is within the scope of a corresponding quantifier ∃y or ∀y. We say that
LCDF admits an effective linear decision procedure if there is an algorithm that
takes linear sentences ϕ as input and outputs “true” respectively “false” if ϕ
respectively ¬ϕ holds in every linear closed differential field. We say WLCDA
admits a weak effective linear decision procedure if there is an algorithm that
takes linear sentences ϕ whre all constants are differential constants as input and
outputs “true” respectively “false” if ϕ respectively ¬ϕ holds in every weakly
linear closed differential algebra.

Corollary 2. LCDF admits an effective linear decision procedure and WLCDA
admits a weak effective linear decision procedure. Moreover all linear closed dif-
ferential fields satisfy the same linear sentences and all weakly linear closed dif-
ferential algebras satisfy the same linear sentences, where all constants have
derivative zero.

Proof. Apply first quantifier elimination to the input sentence ϕ and then decide
all atomic subfomulas of the output formula ϕ′ in the fixed field of constants.
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8 Complexity Bounds

In order to get upper bound on the complexity of the quantifier elimination
procedures described above in Theorems 2, 3, 5 we need to estimate

1. the change of the orders and of the lengths of linear terms wrt. the linear
variables involved in the various algorithms.

2. The number of disjuncts occuring in Theorems 2 and 3.

Obviously the passage from a linear term t to an iterated reductum redi(t)
does neither increase ordz(t) nor length(t) for an arbitrary linear variable z.

For a single reduction t−→
y,s

t1 = inity(s)t − inity(t)s(m−k) we get ordz(t1) ≤
max(ordz(t), ordz(s) + ordy(t) − ordy(s). Since ordy(t1) < ordy(t), the same
bound applies to an iterated reduction: Let t ∗−→

y,s
t∗. Then

ordz(t∗) ≤ max(ordz(t), ordz(s) + ordy(t)− ordy(s)).

In particular we have

ordz(t∗) ≤ max(ordz(t), ordz(s) + ordy(t)).

Concerning length, a one step reduction of linear terms requires in the coeffi-
cients the addition of two products of former coefficients; so we get length(t1) ≤
2(length(t) + length(s)) + c for some constant integer c. We use this obser-
vation in order to compute an upper bound length(T ∗) on length(t) for all
t ∈ T ∗ from a corresponding bound length(T ) on on length()u for all u ∈ T.
If ordy(()ϕ) = −1, then T ∗ = ∅, and so we may put length(T ∗) = 0. If
ordy(()ϕ) ≥ 0, then we may pass to a new linear formula ϕ1 determining the
same T ∗ with ordy(()ϕ1) < ordy(()ϕ) by one step reductions of linear terms with
an additional one step reduction of the original divisor by a resulting term in the
worst case. So the length of terms in ϕ1 is bounded by length(T1) := 7length(T ).
By recursion on ordy(()ϕ) this yields:

length(T ∗) = 7ordy(()ϕ)length(T )

By definition the modified substitution of a generic solution of t = 0 for some
term t ∈ T ∗ into some equationψ of the form s = 0 or some disequation ψ of
the form s �= 0 occuring in ϕ involves an iterated reduction of s by t, where the
number of reduction steps is bounded by ordy(()ϕ). Thus again by the argument
above the length of the resulting linear formula ϕ[geny,t//y] is bounded by:

length(ψ[geny,t//y]) ≤ 3ordy(ϕ)(length(t) + length(s)) ≤

3ordy(ϕ)(length(T ∗) + length(s)) ≤ 3ordy(ϕ)(7ordy(ϕ)length(T ) + length(s)) ≤
3ordy(ϕ)(7ordy(ϕ)length(T ) + length(s)) ≤ 21ordy(ϕ)(length(T ))
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So in total we get

length(ϕ[geny,t//y]) ≤ 21ordy(ϕ)length(ϕ)

If ϕ is a linear formula and y is a linear variable, then we let ordy(ϕ) be the
maximum of all values ordy(t), where t is a linear term occuring in ϕ. Using the
bound above we can now study the increase in order upon modified substitution
of a generic solution in a quantifier-free linear formula ϕ : Recall that the modified
substitution is carried out in every atomic subformula of ϕ. There it involves the
formation of the normal form of some term v in ϕ under reduction wrt. y and t,
where t is another term of order bounded by ordy(t) ≤ ordy(ϕ). Hence we have

ordz(ϕ[geny,t//y]) ≤ ordz(ϕ) + ordy(ϕ).

Let ord(ϕ) be the maximum of all ordz(ϕ), where z ranges over all linear variables
occuring in ϕ. The we can summarize the last result in the inequality

ord(ϕ1) ≤ 2ord(ϕ).

Next we want to compute an upper bound on the number D := |T ∗| + 1 of
disjuncts occuring in the output formula of Theorem 2. Recall that by definition
|T ∗| ≤ ∑U⊆T |U∼| in the general case. Furthermore |U∼| ≤ |ΓU |, and |ΓU |
satisfies the following recursive inequalities in dU :=

∑
u∈U (ordy(u) + 1) :

|ΓU | = 0 if dU = 0
|ΓU | ≤ |ΓU1 |+|ΓU2 |, if d > 0. Here the induction parameters dUi for Ti satisfy

the inequalities dUi ≤ dU − 1.
Hence an induction on d shows that |ΓU | < 2d

U . Consequently we have D ≤
|T ∗| + 1 ≤ 1 +

∑
U⊆T |ΓU | < 1 +

∑
U⊆T 2dU ≤ 1 +

∑
U⊆T 2|U|(ordy(ϕ)+1) ≤

2|T |2|T |(ordy(ϕ)+1) = 2|T |(ordy(ϕ)+2).
In the special case, where ϕ is a conjunction of equations and disequations we

can by the remark in section 6 replace the role of T ∗ by T∼. So the corresponding
bound reads:

D ≤ |T∼|+ 1 ≤ 1 + |ΓT | ≤ 2dT ≤ 2|T |(ordy(ϕ)+1).
We denote by eq(ϕ) the number of equations in ϕ, and by eql(ϕ) the number

of equations in ϕ that are not purely parametric, i. e. contain at least one linear
variable. Similarly at(ϕ) is the number of equations in ϕ, and atl(ϕ) is the
number of equations in ϕ that are not purely parametric, i. e. contain at least
one linear variable.

Then the comparison of these numbers for the input formula ϕ and each
disjunct δ of the output formula ϕ1 yields:

eql(δ) ≤ eql(ϕ), eq(δ) ≤ ordy(ϕ)eq(ϕ)

and
atl(δ) ≤ atl(ϕ), at(δ) ≤ ordy(ϕ)at(ϕ).

Next we analyze the complexity of the algorithm in Theorem 3 by induction on
the number n of existential quantifiers in the input formula ψ.
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For n = 1 the bounds obtained above for Theorem 2 yield:

ord(ψ1) ≤ 2ord(ψ).

Next we compute an upper bound on the number D(ψ) := |T1| of disjuncts
occuring in the output formula ψ1of Theorem 3 in this case, and get:

D(ψ1) ≤ 2eql(ψ)(ord(ψ)+2).

Finally we obtain for each disjunct δ of the output formula ψ1 :

eql(δ) ≤ eql(ψ), eq(δ) ≤ ordy(ψ)eq(ψ)

atl(δ) ≤ atl(ψ), at(δ) ≤ ordy(ψ)at(ψ)

length(δ) ≤ 25ordy(()ψ)length(ψ).

For the induction step n "→ (n+ 1) : we obtain:

ord(ψn+1) ≤ 2ord(ψn)

D(ψn+1) ≤ D(ψn) · 2eql(ψn)(ord(ψn)+2)

Furthermore for each disjunct δ of the output formula ψn+1 :

eql(δ) ≤ eql(ψn), eq(δ) ≤ ordy(ψn)eq(ψn)

atl(δ) ≤ atl(ψn), at(δ) ≤ ordy(ψn)at(ψn)

length(δ) ≤ 25ordy(()ψn)length(δn).

Here δn is the longest disjunct in ψn.
Using these recursive inequalities, we get the following explicit bounds in

Theorem 3:
ord(ψn) ≤ (n+ 1)ord(ψ).

D(ψn) ≤ 2eql(ψ)((n+1)ord(ψ)+2).

Here the first inequality requires a more detailed analysis of orders of terms in
ψ; a straightforward recursion would yield only ord(ψn) ≤ 2nord(ψ). Notice that
for weakly parametric primitive ψ we have D(ψn) = 1. For each disjunct δn of
the output formula ψn :

eql(δ) ≤ eql(ψ).

atl(δ) ≤ atl(ψ).

eq(δ) ≤ n! ord(ψ)neq(ψ)

at(δ) ≤ n! ord(ψ)nat(ψ)

length(δ) ≤ 25n!ord(ψ)length(ψ).
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In particular we get the following bounds on the output formula ψn under
the hypothesis that atl(ψ) ≥ 1 and ord(ψ) ≥ 1 :

atl(ψn) ≤ 2atl(ψ)(n+3)ord(ψ)

at(ψn) ≤ 2atl(ψ)(n+3) log(n)ord(ψ)at(ψ)

length(ψn) ≤ 2(n+1)!ord(ψ)eql(ψ)length(ψ)

So roughly speaking, we have the following upper complexity bounds concerning
linear quantifier elimination in LCDF and weakly linear quantifier elimination
in WLCDA for existential linear formulas with n quantifiers:

Theorem 4. The order ord(ψn) grows linearly in n and in ord(ψ). The number
atl(ψn) grows doubly exponential in n, and singly exponential in ord(ψ), and in
atl(ψ). Similarly, the number at(ψn) grows doubly exponential in n, singly expo-
nential in ord(ψ), and in atl(ψ) and in addition linearly in at(ψ). length(psin)
grows doubly exponential in n, singly exponential in ord(ψ), and in eql(ψ) and
in addition linearly in length(ψ).

Notice that all the operations required during quantifier elimination and
for deciding atomic linear sentences can be performed in a time bound that is
polynomial in the size of the object. So we may conclude:

Corollary 3. Linear quantifier elimination for existential linear formulas ψ in
LCDF can be performed in time doubly exponential in the number of quantifiers
of ψ singly exponential in ord(ψ), and in atl(ψ) and linear in length(ψ). Similarly
bounds holds for a linear decision procedure for existential linear entences in
LCDF. Analogous results hold for the corresponding weak procedures in WLCDA.

The same bounds apply analogously to (weakly) linear quantifier elimination
for universal linear formulas in Corollary 4.

Finally we compute upper complexity bounds for full linear quantifier elim-
ination. We consider a prenex linear input formula ψ with b alternating blocks
of quantifiers, where each block has at most n quantifiers. Then we get the fol-
lowing recursive upper bounds for the result ψn,b of the quantifier elimination
in Theorem 5 in terms of the recursion in b :

ord(ψn,b+1) ≤ (n+ 1)ord(ψn,b).

atl(ψn,b+1) ≤ 2atl(ψn,b)(n+3)ord(ψn,b).

at(ψn,b+1) ≤ 2atl(ψn,b)(n+3) log(n)ord(ψn,b)at(ψn,b).

length(ψn,b+1) ≤ 2atl(ψn,b)(n+1)!ord(ψn,b)length(ψn,b).

Using these recursive inequalities, we get the following explicit bounds in
Theorem 5:

ord(ψn,b) ≤ (bn+ 1)ord(ψ).
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atl(ψn,b) ≤ exp(b, atl(ψ)((n + 3)ord(ψ))b).

at(ψn,b) ≤ exp(b, atl(ψ)(n+ 3)3bord(ψ)b)at(ψ)

length(ψn,b) ≤ exp(b, atl(ψ)2(n+1) log(n+1)+2bord(ψ)b)length(ψ).

Here the function exp(b, a) is b-times iterated exponentiation with base 2 and
argument a. The recursive definition is exp(1, a) := 2a, exp(b+1, a) := 2exp(b,a).

So roughly speaking, we have the following upper complexity bounds con-
cerning full linear quantifier elimination in LCDF and weakly linear quantifier
elimination in WLCDA for prenex linear formulas with b alternating blocks of
at most n quantifiers in each block:

Theorem 5. Effective quantifier elimination in LCDF applies to a prenex linear
input formula ψ with b alternating blocks of at most n quantifiers in each block
yields a quantifier-free linear formula ψn,b with the following features: The order
ord(ψn,b) grows linearly in bn and in ord(ψ). The number atl(ψn,b) grows b-
times exponentially in n, ord(ψ), and in atl(ψ). The number at(ψn,b) grows b-
times exponentially in n, ord(ψ), and in atl(ψ), and in addition linearly in at(ψ).
length(ψn,b) grows grows b-times exponentially in n, ord(ψ), and in atl(ψ), and
in addition linearly in length(()ψ).

Corollary 4. Linear quantifier elimination for prenex linear formulas ψ in
LCDF with b alternating blocks of at most n quantifiers in each block can be
performed within a time bound that grows b-times exponentially in n, ord(ψ),
and in atl(ψ), and in addition linearly in length(ψ). Similarly bounds holds for a
linear decision procedure for prenex linear entences in LCDF. Analogous results
hold for the corresponding weak procedures in WLCDA.

Thus for a bounded number b of quantifier blocks all these procedures are
elementary recursive, while for unbounded b they are in the fourth Grzegorcyk-
class (compare [9,10]).

9 Examples

Example 1 Let ϕ be the linear formula

y′2 − y2 − 12y1 = 0 ∧ 3y2 + y1 − y′1 = 0 ∧ y′1 − 7y1 �= 0

Notice that this formula has no parametric variable. Let A be a weakly lin-
ear closed differential algebra. Elimination of y2 via reduction yields for y2 the
generic solution z2 := geny2,3y2−y′

1+y1
and for y1 the linear formula

y′′1 − 2y′1 − 35y1 = 0 ∧ y′1 − 7y1 �= 0

Since the order of the disequation is lower than that of the equation, this has a
solution in A and we may take for y1 the generic solution z1 := geny1,y′′

1 −2y′
1−35y1

.

In particular ∃y1∃y2(ϕ) holds in A and a solution is obtained in the form

z1 := geny1,y′′
1 −2y′

1−35y1
, z2 := geny2,3y2−z′

1+z1
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Interpreted in the standard weakly linear closed differential algebra A the equa-
tion y′′1−2y′1−35y1 has as fundamental system {e−5t, e7t}. The given disequation
y′1 − 7y1 �= 0 excludes the second but admits the first solution as a generic one.
Substitution in z2 := geny2,3y2−z′

1+z1
yields 3z2 = 6e−5t and thus z2 = 2e−5t.

Thus our solution is as possible in purely algebraic terms.

Example 2. This is a weakly parametric variant of example 1, where the zero
on the right hand side of the second equation has beeen replaced by a parameter
a. Then the elimination of y2 and y′2 yields:

y′′1 − 2y′1 − 35y1 = a′ − a ∧ y′1 − 7y1 �= 0

So if a is a differential constant then a′ = 0 and z1 := a/35 is a generic solution
satisfying this formula, whenever a �= 0. With z2 := geny2,3y2−z′

1+z1
= a/3 we

have a complete solution. When we regard a as a linear variable, then a′ �= 0 is
possible. Taking e. g. a = eλx in A, the generic solution z1 will look differently
for different values of λ which determine the resonance behaviour.

Example 3. Passing to a fully parametric version of Example 1,

y′1 = a1y1 + a2y2 + c, y′2 = b1y1 + b2y2 + d, y1 �= 0

we see that the generic solution of the resulting second order ODE in y1 will look
quite differently in A depending on the eigenvalues of the matrix and inhomoge-
neous parts. Here we have assumed that parameters have differential constants
as values. In the general case, where these values may not be differential con-
stants one has to consider the situation in a linear closed differential field f such
as real or complex meromorphic functions. In this case our generic solutions may
not even have a closed form in F.

10 Conclusions

We have designed, verified and analyzed algorithms for parametric problems in
differential algebra that have been formulated in a suitable first-order language
L. The atomic L-formulas were linear ODEs of arbitrary order with paramet-
ric coefficients of arbitrary degrees. Using rather weak axioms on differential
fields or differential algebras that are realized in natural real or complex ana-
lytic function domains, we have established explicit quantifier elimination and
decision algorithms for L. For purely existential multivariate problems the elim-
ination algorithms also yields parametric sample solutions for all existentially
quantified variables. These sample solutions are “generic” solutions of univari-
ate parametric linear ODEs that can be realized by concrete functions in natural
analytic function domains. Thus we have shown that the well-known theory of
non-parametric linear ODEs can be extended to a fully parametric situation
by replacing concrete solution systems of linear ODEs by“generic” solutions of
univariate parametric linear ODEs. Some easy examples have illustrated our ap-
proach. We have found upper complexity bounds for the elimination and decision
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algorithms that are elementary recursive for formulas of bounded quantifier al-
ternation, in particular doubly exponential for existential formulas. Our results
are in contrast to Seidenberg’s model theoretic elimination theory for non-linear
problems that requires very strong axioms that are not realizable in natural
function domains, and does not provide sample solutions.

We conjecture that our upper bounds are essentially tight in the worst case.
An implementation of the algorithms in the REDLOG package of REDUCE
is planned; it will be based on the optimized implementation of Seidenberg’s
elimination procedure in [7].
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for Elliptic PDE and Its Error Estimate
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Abstract. The proposed in [7] uniform error estimate allows to con-
trol the accuracy of the symbolic approximate solution of the Dirichlet
problem for elliptic PDE in the whole domain of the problem considered.
The present paper demonstrates the techniques of finding such an ap-
proximate solution with Mathematica and the use of the uniform error
estimate for a concrete example.

1 Introduction

The modern computer systems for symbolic calculations can noticeably help the
researcher in solving differential equations. In the present paper we are going to
show how the computer algebra system Mathematica [1] can be used in finding
a symbolic approximate solution of the Dirichlet problem for elliptic partial
differential equation (PDE) and its error estimate.

For the differential equation which has no exact solution (or such a solution
can not be found at present), it is often possible to develop methods for finding
analytical approximate solution (see, e.g., [2], [3]).

The idea of the error estimate method we use was originally proposed for
ordinary differential equations (ODEs) in [4]. The variants of realization of this
idea for linear ODEs and non-linear ODEs can be found, for example, in [5]
and [6] respectively. Both for the case of ODEs and one of PDEs considered in this
paper, it is one of important elements of investigation to guarantee the desired
accuracy of the solution found. On the successful resolution of this problem
depends whether the approximate solution could have a practical application.

2 The Uniform Error Estimate of the Approximate
Solution of the Dirichlet Problem for Elliptic PDE

Let us consider the following Dirichlet problem in the domain Ω ⊂ IR2 with
doubly continuously differentiable bound Γ.

L(U) = (Δ− a(x, y)) (U) = f(x, y), (x, y) ∈ Ω , (1)

U = 0, (x, y) ∈ Γ . (2)

V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2005, LNCS 3718, pp. 489–500, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We suppose here that a, f ∈ C1(Ω), C(Ω
⋃

Γ). We denote by UL the unknown
exact solution of (1), (2) and by U∗

L the approximate one we look for.
We consider also the auxiliary Dirichlet problem

Δκ(U) = (Δ− κ) (U) = f(x, y), (x, y) ∈ Ω, κ > 0 , (3)

U = 0, (x, y) ∈ Γ . (4)

Let GΔκ;Ω(x, y; ξ, η) be the Green’s function of (3), (4).

Theorem 1. If the following inequality holds true

h =

√√√√√∫∫
Ω

⎛⎝∫∫
Ω

|(a(ξ, η)− κ)GΔκ;Ω(ξ, η;u, v)|2dξ dη
⎞⎠ du dv < 1

then there exists the uniform estimate

|UL − U∗
L| ≤

||GΔκ;Ω(x, y; ., .)||2
1− h ||L(UL)− L(U∗

L)||2 , (5)

where U∗
L ∈ C2(Ω), (x, y) ∈ Ω.

This theorem is proved in [7] for κ = 0. It can also be proved similarly for κ > 0.
Further we’ll demonstrate the computations of all components of the right-

hand side of (5) on a concrete example. But first let us consider the technique
for finding an approximate solution of (1), (2).

3 Finding the Approximate Solution U∗
L

We shall find the approximate solution of (1), (2) as a series expansion over
eigenfunctions of the Dirichlet problem for the Laplace operator

ΔU = λU, (x, y) ∈ Ω , (6)

U = 0, (x, y) ∈ Γ . (7)

There exist countable sets of negative eigenvalues λi and eigenfunctions Φi

of (6), (7) [8].
Thus, the following equalities hold true

ΔΦi = λiΦi, (x, y) ∈ Ω, i = 1, 2, . . . ,

Φi = 0, (x, y) ∈ Γ, i = 1, 2, . . . .

It is also known [8] that the system Φi, i = 1, 2, . . . is an orthonormal basis in
L2(Ω). That means, any function U ∈ L2(Ω) can be represented as a Fourier
series converging in L2(Ω)

U =
∞∑

i=1

UiΦi, Ui = 〈U,Φi〉L2(Ω) .
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For operator L from (1), function Φi, and exact solution UL of (1), (2) the
Green’s formula can be written∫∫

Ω

ULL(Φi) dx dy =
∫∫
Ω

ΦiL(UL) dx dy, i = 1, 2, . . . . (8)

Since Φi(x, y) are the eigenfunctions of (6), (7) we obtain from (8) the following
equalities∫∫

Ω

UL(λiΦi − a(x, y)Φi) dx dy =
∫∫
Ω

Φif dx dy, i = 1, 2, . . . . (9)

We are looking for an approximate solution of (1), (2) as an expansion in a series
over eigenfunctions of (6), (7)

U∗
L =

n∑
j=1

CjΦj . (10)

Substituting (10) into the left side of (9) we obtain for first n equalities

n∑
j=1

Cj

⎛⎝∫∫
Ω

Φj(λiΦi − a(x, y)Φi) dx dy

⎞⎠ =
∫∫
Ω

Φif dx dy, i = 1, 2, . . . , n .

(11)
Thus, we have a system of linear algebraic equations with respect to unknowns
Cj , j = 1, 2, . . . , n.

4 Calculation of ||GΔκ ;Ω(x, y; ., .)||2
Now let us consider the following concrete example of (1), (2)

L(U)
def
= ΔU − β cos(x2 + y2)U = f(x, y), (x, y) ∈ Ω1, β > 0 , (12)

U = 0, (x, y) ∈ Γ1 , (13)

where

Ω1 = {(x, y) ∈ IR2 : x2 + y2 < 1}, Γ1 = {(x, y) ∈ IR2 : x2 + y2 = 1} ,
and

f(x, y) = 4 cos(1 − x2 − y2) + (4(x2 + y2) + β cos(x2 + y2)) sin(1 − x2 − y2) .

The exact solution of (12), (13) is known

UL(x, y) = sin(x2 + y2 − 1) .

and will be used to control further calculations.
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As an auxiliary task we consider correspondingly the following Dirichlet prob-
lem for the Helmholtz equation

Δκ(U) = ΔU − κU = f(x, y), (x, y) ∈ Ω1, κ > 0 , (14)

U = 0, (x, y) ∈ Γ1 . (15)

The Green’s function of (14), (15) can be given in polar coordinates explicitly
as the following series [9]

GΔκ;Ω1(r, ϕ; ρ, θ) =
∑

l=1,2

∞∑
k=0

∞∑
j=1

w
(l)
kj (r, ϕ)w(l)

kj (ρ, θ)
λ∗kj − κ

,

where r, ρ ∈ [0, 1), ϕ, θ ∈ [0, 2π), and

w
(1)
0j (r, ϕ) =

1√
π

1∣∣∣J ′
0

(
μ

(0)
j

)∣∣∣J ′
0

(
μ

(0)
j r
)
, j = 1, 2, . . . ,

w
(1)
kj (r, ϕ) =

1√
π

√
2∣∣∣J ′

k

(
μ

(k)
j

)∣∣∣J ′
k

(
μ

(k)
j r
)

cos(kϕ), k, j = 1, 2, . . . ,

w
(2)
kj (r, ϕ) =

1√
π

√
2∣∣∣J ′

k

(
μ

(k)
j

)∣∣∣J ′
k

(
μ

(k)
j r
)

sin(kϕ), k, j = 1, 2, . . . ,

λ∗kj = −μ(k)
j

2 − κ, k = 0, 1, . . . , j = 1, 2, . . . .

are orthonormal eigenfunctions of (14), (15) and corresponding eigenvalues.
Here μ(k)

j denotes the j-th positive root of Bessel function Jk(x).
So, in detail the Green’s function of (14), (15) can be written as follows

GΔκ;Ω1(r, ϕ; ρ, θ) = −
∞∑

j=1

1

πJ ′
0
2
(
μ

(0)
j

) J0

(
μ

(0)
j r
)
J0

(
μ

(0)
j ρ
)

μ
(0)
j

2
+ 2κ

−

∞∑
k=1

∞∑
j=1

2(cos(kϕ) cos(kθ) + sin(kϕ) sin(kθ))

πJ ′
k
2
(
μ

(k)
j

) Jk

(
μ

(k)
j r
)
Jk

(
μ

(k)
j ρ
)

μ
(k)
j

2
+ 2κ

.

After raising this expression to the second power, integrating with respect to the
variables (ρ, θ), and extracting the square root we obtain

||GΔκ;Ω1(r, ϕ; ., .)||2 =
(16)

1√
π

√√√√√√ ∞∑
j=1

1

J ′
0
2
(
μ

(0)
j

) J2
0

(
μ

(0)
j r
)

(
μ

(0)
j

2
+ 2κ

)2 + 2
∞∑

k=1

∞∑
j=1

1

J ′
k
2
(
μ

(k)
j

) J2
k

(
μ

(k)
j r
)

(
μ

(k)
j

2
+ 2κ

)2 .
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To receive an approximate value of this expression one should evaluate partial
sums of the series under the square root sign. We shall do this with Mathematica
in several steps. First, we find the partial sum of the first series with N0 items
(we denote this partial sum by φ1).

In[1]:= << NumericalMath‘BesselZeros‘

N0 = 50; b0Z = BesselJZeros[0, N0];

φ1 = Compile[{r, κ}, Evaluate[Sum[BesselJ[0, r*b0Z[[j]]]^2/

((D[BesselJ[0, x], x] /. x -> b0Z[[j]])^2*

(b0Z[[j]]^2 + 2*κ)^2), {j, 1, N0}]]];

Then we form the procedure to calculate the partial sum φ2 of the second
(double) series.

In[4]:= bZeros = Timing[Table[BesselJZeros[k, N0], {k, 1, N0}]];

φ2 = Compile[{r, κ}, Evaluate[2*Sum[BesselJ[k, bZeros[[2, k, j]]*r]^2/

((D[BesselJ[k, x], x] /. x -> bZeros[[2, k, j]])^2*

(bZeros[[2, k, j]]^2+2*κ)^2), {k, 1, N0}, {j, 1, N0}]]];

So, the expression for the approximate value of the norm of the Green’s
function with respect to the second pair of variables in polar coordinates has the
following form:

||GΔκ;Ω1(r, ϕ; ., .)||2 ≈
1√
π

√
φ1 + φ2 .

The norm of the Green’s function doesn’t involve the variable ϕ, as is seen
in (16). So, we define the corresponding Mathematica subroutine as a function
depending on r and κ.

In[6]:= normGreen[r_, κ_] := (1/Sqrt[Pi])*Sqrt[φ1[r, κ] +φ2[r,κ]];

5 Estimate of the Value of h

The value h2 in the example under consideration is the following double integral
which can be estimated and evaluated using (16):

h2 =
∫∫
Ω1

⎛⎝∫∫
Ω1

∣∣(β cos(ξ2 + η2)− κ)GΔκ;Ω1(x, y; ξ, η)
∣∣2dξ dη

⎞⎠ dx dy ≤

(β2 − 2κβ cos(1) + κ2)
∫∫
Ω1

⎛⎝∫∫
Ω1

G2
Δκ;Ω1

(x, y; ξ, η) dξ dη

⎞⎠ dx dy =

2(β2 − 2κβ cos(1) + κ2)

⎛⎜⎝ ∞∑
j=1

1(
μ

(0)
j

2
+ 2κ

)2 + 2
∞∑

k=1

∞∑
j=1

1(
μ

(k)
j

2
+ 2κ

)2

⎞⎟⎠ .
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Taking into consideration the lower estimate for positive roots μ(k)
m of Bessel

function Jk(x) from [10]

k + 3(m− 1) ≤ μ(k)
m , m = 1, 2, . . . , k = 0, 1, 2, . . .

we can write down another estimate for h2:

h2 ≤ 2(β2 − 2κβ cos(1) + κ2)×⎛⎝ ∞∑
j=1

1

((3(j − 1))2 + 2κ)
2 + 2

∞∑
k=1

∞∑
j=1

1

((k + 3(j − 1))2 + 2κ)
2

⎞⎠ .

The first series from this expression can be calculated with Mathematica.

In[7]:= r1[κ_] = Simplify[ Sum[1/((3*(i - 1))^2 + 2*κ)^2, {i, 1, ∞}],{κ > 0]}]

Out[7]=
2π2κ csch2

(
1
3

√
2π

√
κ
)

+ 3
√

2π
√

κ coth
(

1
3

√
2π

√
κ
)

+ 18

144κ2

The second (double) series can not be calculated directly. We find at first the
sum with respect to j.

In[8]:= r2a[κ_] = TrigToExp[ FullSimplify[ Sum[ 1/(k + (3*(j - 1))^2 + 2*κ)^2,

{j, 1, ∞}], {k > 0, k∈ Integers, κ > 0, κ ∈ Reals}]]

Out[8]=

(
3

2
π
√

k + 2κ
(
−e−

2
3 π

√
k+2κ + e

2
3 π

√
k+2κ

)
+

9
(
e−

2
3 π

√
k+2κ + e

2
3 π

√
k+2κ

)
+ 2π2(k + 2κ) − 18

)/
(

18
(
−e−

1
3 π

√
k+2κ + e

1
3 π

√
k+2κ

)2

(k + 2κ)2
)

It is simply

to prove that the following estimates hold true:

1(
−e− 1

3 π
√

k+2κ + e
1
3 π

√
k+2κ

)2 ≤
e2π/3

(e2π/3 − 1)2
def
= E1 ,

(
e−

2
3 π

√
k+2κ + e

2
3 π

√
k+2κ

)
(
−e− 1

3 π
√

k+2κ + e
1
3 π

√
k+2κ

)2 ≤
1 + e4π/3

(e2π/3 − 1)2
def
= E2 ,

(
−e− 2

3 π
√

k+2κ + e
2
3 π

√
k+2κ

)
(
−e− 1

3 π
√

k+2κ + e
1
3 π

√
k+2κ

)2 ≤
1 + e2π/3

e2π/3 − 1
def
= E3 ,

k + 2κ(
−e− 1

3 π
√

k+2κ + e
1
3 π

√
k+2κ

)2 ≤
e2π/3

(e2π/3 − 1)2
def
= E4 .
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Hence, we can finally calculate the upper estimate for the double sum:

∞∑
k=1

∞∑
j=1

1

((k + 3(j − 1))2 + 2κ)
2 ≤

∞∑
k=1

E1

(k + 2κ)2
+

∞∑
k=1

E2

2(k + 2κ)2
+

∞∑
k=1

E3π
√
k + 2κ

12(k + 2κ)2
+

∞∑
k=1

E4π
2

9(k + 2κ)2
.

In[9]:= E1 = E^((2*Pi)/3)/(-1 + E^((2*Pi)/3))^2;

E2 = (1 + E^((4*Pi)/3))/(-1 + E^((2*Pi)/3))^2;

E3 = (1 +E^((2*Pi)/3))/(-1 + E^((2*Pi)/3));

E4 = E^((2*Pi)/3)/(-1 + E^((2*Pi)/3))^2;

In[13]:= r2[κ_] = Simplify[ Sum[(-18*E1)/(18*(k + 2*κ)^2),{k, 1, ∞}] +

Sum[(9*E2)/(18*(k + 2*κ)^2), {k, 1, ∞}] +

Sum[((3/2)*E3*Pi*Sqrt[k + 2*κ])/(18*(k + 2*κ)^2), {k, 1, ∞}] +

Sum[(2*Pi^2*E4)/(18*(k + 2*κ)^2), {k, 1, ∞}]]

Out[13]=
2
(
2e2π/3(π2 − 9) + 9e4π/3 + 9

)
ψ(1)(2κ + 1) + 3

(
e4π/3 − 1

)
πζ
(

3
2
, 2κ + 1

)
36(e2π/3 − 1)

2

Now we evaluate the whole upper estimate for h.

In[14]:= hEstimate[β_, κ_] = FullSimplify[ Sqrt[2*(β^2 -

2*κ*β*Cos[1] + κ^2)*(r1[κ] + 2*r2[κ])], {κ > 0, β > 0}]

Out[14]=

√
β2 − 2κ cos(1)β + κ2

6
√

2κ
×(

8

((
π2csch2(

π

3
) + 18

)
ψ(1)(2κ + 1) + 3π coth(

π

3
)ζ(

3

2
, 2κ + 1)

)
κ2 +

csch2

(
1

3

√
2π

√
κ

)
κ + 3

√
2 coth

(
1

3

√
2π

√
κ

)√
κ + 18

)1/2

To be able to use the error estimate (5) we should find those values of κ
which deliver negative values of the expression h− 1. For example, for β = 1/32
this expression has the following graphical representation.

In[15]:= Plot[ hEstimate[1/32, κ] - 1, {κ, 0.01, 0.6}];
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In[16]:= FindRoot[hEstimate[1/32, κ] - 1 == 0, {κ, 0.01}][[1, 2]]

FindRoot[hEstimate[1/32, κ] - 1 == 0, {κ, 0.5}][[1, 2]]

Out[16]= 0.0186874

0.363051

So, for all value of κ between 0.0186874 and 0.363051 the inequality h−1 < 0
holds true. We can also find a point, where the value of h− 1 is minimal. That
means, for such a value of κ we shall obtain the best error estimate according (5).

In[18]:= κOpt = FindRoot[ D[ hEstimate[1/32, κ],κ] == 0, {κ, 0.1}][[1, 2]]

Out[18]= 0.0534114

6 Computational Procedure for Finding the Approximate
Solution of (12), (13)

We fix, at first, the finite number of the eigenfunctions w
(1)
0j , w

(1)
kj , w

(2)
kj

of (14), (15).

In[19]:= n=4; n1=2; n2=2; m1=2; m2=2;

We take, for example, n functions from the first group w(1)
0j , n1×n2 functions

from the second group w
(1)
kj , and m1×m2 functions from the third group w

(2)
kj .

Then three lists of orthonormal eigenfunctions are formed.

In[20]:= tb0 = Table[BesselJ[0, r*BesselJZeros[0, n][[j]]]/

(Sqrt[Pi]*Abs[D[BesselJ[0, x], x] /.

x -> BesselJZeros[0, n][[j]]]), {j, 1, n}]

Out[20]= {1.08676 J0(2.40483 r), 1.65809 J0(5.52008 r), 2.07841 J0(8.65373 r),

2.42704 J0(11.7915 r)}

In[21]:= tb1 = Table[(Sqrt[2]*BesselJ[k, r*BesselJZeros[k, n2][[j]]]*

Cos[k*ϕ])/(Sqrt[Pi]*Abs[D[BesselJ[k, x], x] /.

x -> BesselJZeros[k, n2][[j]]]), {k, 1, n1}, {j, 1, n2}]

Out[21]=

(
1.98105 J1(3.83171 r) cos(ϕ) 2.65859 J1(7.01559 r) cos(ϕ)
2.34901 J2(5.13562 r) cos(2ϕ) 2.94007 J2(8.41724 r) cos(2ϕ)

)
In[22]:= tb2 = Table[(Sqrt[2]*BesselJ[k, r*BesselJZeros[k, m2][[j]]]*

Sin[k*ϕ])/(Sqrt[Pi]*Abs[D[BesselJ[k, x], x] /.

x -> BesselJZeros[k, m2][[j]]]), {k, 1, m1}, {j, 1, m2}]

Out[22]=

(
1.98105 J1(3.83171 r) sin(ϕ) 2.65859 J1(7.01559 r) sin(ϕ)
2.34901 J2(5.13562 r) sin(2ϕ) 2.94007 J2(8.41724 r) sin(2ϕ)

)
The lists of orthonormal eigenfunctions are combined into one-dimensional

list.
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In[23]:= tb = Join[tb0, tb1, tb2] // Flatten;

Now we check that all functions thus calculated are orthonormal in L2.

In[24]:= MatrixForm[ Chop[ Table[ Integrate[

r*Integrate[tb[[i]]*tb[[j]], {ϕ, 0, 2*Pi}], {r, 0, 1}],

{i, Length[tb]}, {j, Length[tb]}]]]

Out[24]=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1. 0 0 0 0 0 0 0 0 0 0 0
0 1. 0 0 0 0 0 0 0 0 0 0
0 0 1. 0 0 0 0 0 0 0 0 0
0 0 0 1. 0 0 0 0 0 0 0 0
0 0 0 0 1. 0 0 0 0 0 0 0
0 0 0 0 0 1. 0 0 0 0 0 0
0 0 0 0 0 0 1. 0 0 0 0 0
0 0 0 0 0 0 0 1. 0 0 0 0
0 0 0 0 0 0 0 0 1. 0 0 0
0 0 0 0 0 0 0 0 0 1. 0 0
0 0 0 0 0 0 0 0 0 0 1. 0
0 0 0 0 0 0 0 0 0 0 0 1.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Also we form three lists of the roots of Bessel functions for each group of
eigenfunctions and then combine them into one list.

In[25]:= μ0 = Table[BesselJZeros[0, n][[j]], {j, 1, n}];

μ1 = Table[BesselJZeros[k, n2][[j]], {k, 1, n1}, {j, 1, n2}];

μ2 = Table[BesselJZeros[k, m2][[j]], {k, 1, m1}, {j, 1, m2}];

μ = Join[mu0, mu1, mu2] // Flatten

Out[28]= {2.40483, 5.52008, 8.65373, 11.7915, 3.83171, 7.01559, 5.13562,

8.41724, 3.83171, 7.01559, 5.13562, 8.41724}
Now we define the expression for the approximate solution of (12), (13).

In[29]:= cc = Array[c, Length[tb]]; Uapp = cc.tb // Short

Out[29]= 1.08676J0(2.40483 r)c(1)+ <<10>> +2.94007J2(8.41724 r)c(12) sin(2ϕ)

Here c(1), . . . , c(12) are unknown constants mentioned in (10).
Further, we define in Mathematica the concrete functions a(x, y) and f(x, y).

In[30]:= f[x_, y_] = (1/32)*(128*Cos[1 - x^2 - y^2] +

(128*(x^2 + y^2) + Cos[x^2 + y^2])*Sin[1 - x^2 - y^2]);

a[x_, y_] = Cos[x^2 + y^2]/32;

We describe also the lists of integrands for the left- and right-hand side of
linear algebraic system defined in general form by (11).

In[32]:= rigths = Table[tb[[i]]*f[x, y], {i, Length[tb]}] /.

{x -> r*Cos[ϕ], y -> r*Sin[ϕ]};
lefts = Table[Uapp*((-mu[[i]]^2)*tb[[i]] -

Simplify[a[r*Cos[ϕ], r*Sin[ϕ]]]*tb[[i]]), {i, Length[tb]}];

The integrands for the left-hand side of the system still include the unknowns
c(1), c(2), . . . , c(12) looked for. So, we should separate these unknowns from their
coefficients.
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In[34]:= TempMatr = Table[Coefficient[Expand[lefts[[i]]], c[j]],

{i, Length[lefts]}, {j, Length[cc]}];

We calculate now the integrals of all elements of the matrix thus obtained
and receive the matrix of a linear algebraic system with respect to unknown
expansion coefficients.

In[35]:= Matr = Table[NIntegrate[r*Integrate[TempMatr[[i, j]],

{ϕ, 0, 2*Pi}], {r, 0, 1}, AccuracyGoal -> 15],

{i, Length[lefts]}, {j, Length[cc]}];

Short[Matr, 6]

Out[36]= {{−5.81322, −0.00151404, 0.00082594, −0.00032907, 0., 0., 0., 0., 0., 0., 0., 0.},
<<10>>, {0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,−0.0021503, −70.8782}}

In a similar way, we calculate the integrals of all elements of expression vector
for the right-hand side of the system.

In[37]:= RSide = Table[NIntegrate[r*Integrate[rigths[[i]],

{ϕ, 0, 2*Pi}], {r, 0, 1}, AccuracyGoal -> 15], {i, Length[rigths]}]

Out[37]= {5.33393, −3.58757, 1.97892, −1.34107, 0., 0., 0., 0., 0., 0., 0., 0.}
We solve the system and write down the formula for the approximate solution

of (12), (13).

In[38]:= coeffs = LinearSolve[Matr, RSide]

Out[38]= {−0.917587, 0.117673, −0.026429, 0.00964673, 0., 0., 0., 0., 0., 0., 0., 0.}

In[39]:= appSol[r_, ϕ_] = coeffs.tb // Chop

Out[39]= −0.997198 J0(2.40483 r) + 0.195112 J0(5.52008 r) −
0.0549304 J0(8.65373 r) + 0.023413 J0(11.7915 r)

The difference between the exact solution and the approximate one thus
obtained can be represented graphically both in polar and Cartesian coordinates:
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7 Evaluation of ||f − L(U∗
L)||

2
and the Error Estimate

Let us define the operator L and the right-hand side of (12) in polar coordinates.

In[40]:= LPol[W_, {r_, ϕ_}] := (1/r)*D[r*D[W, r], r] +

(1/r^2)*D[W, ϕ, ϕ] - (Cos[r^2]/32)*W

In[41]:= fPol[r_,ϕ_] = Simplify[f[x,y] /. {x -> r*Sin[ϕ], y -> r*Cos[ϕ]}]

Out[41]=
1

32

(
128 cos

(
1 − r2

)
+
(
128r2 + cos

(
r2
))

sin
(
1 − r2

))
The defect f − L(U∗

L) will have then the following form.

In[42]:= defect[r_, ϕ_] = LPol[appSol[r, ϕ], {r, ϕ}] - fPol[r, ϕ]

Out[42]=
1

r
(2.39809J1(2.40483r) − 1.07703J1(5.52008r) + 0.475352J1(8.65373r) −
0.276075 J1(11.7915 r) + r(2.88349(J0(2.40483 r) − J2(2.40483 r)) −
2.97266(J0(5.52008 r) − J2(5.52008 r)) + 2.05679(J0(8.65373 r) −

J2(8.65373 r)) − 1.62768(J0(11.7915 r) − J2(11.7915 r)))) −
1

32
(−0.997198 J0(2.40483 r) + 0.195112 J0(5.52008 r)−
0.0549304 J0(8.65373 r) + 0.023413 J0(11.7915 r)) cos

(
r2
)

+
1

32

(−128 cos
(
1 − r2)− (128r2 + cos

(
r2)) sin (1 − r2))

Now we calculate the defect norm:

In[43]:= nDef = Sqrt[NIntegrate[r*Integrate[defect[r, ϕ]^2,

{ϕ, 0, 2*Pi}], {r, 0, 1}]]

Out[43]= 2.24889

So, now we have all constituents to evaluate the upper estimate of the right-
hand side of (5).

In[44]:= rhs[r_, κ_] := normGreen[r, κ]/(1 - hEstimate[1/32, κ])*nDef

This Mathematica function as well as the approximate solution found in sec-
tion 6 doesn’t depend of the variable ϕ. Therefore, we can graphically illustrate
the formula (5) in polar coordinates using two-dimensional plot:

In[45]:= Plot[{rhs[r,κOpt], -rhs[r, κOpt]}, {r, 0, 1}];
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Strictly speaking, before to use the uniform estimate (5) in practice it is nec-
essary to consider more closely the representation of the norm of the Green’s
function (16). We have calculated this expression approximately, as a combina-
tion of partial sums, and, therefore, one should still estimate the series remain-
der in this formula. Then, according to (5) the error of the approximate solution
of (12), (13) would be guaranteed to lie within bounds indicated on the latter
plot.
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