Botnet Tracking: Exploring
a Root-Cause Methodology to Prevent
Distributed Denial-of-Service Attacks

Felix C. Freiling, Thorsten Holz*, and Georg Wicherski

Laboratory for Dependable Distributed Systems, RWTH Aachen University
http://www-i4.informatik.rwth-aachen.de/lufg/

Abstract. Denial-of-Service (DoS) attacks pose a significant threat to
the Internet today especially if they are distributed, i.e., launched simul-
taneously at a large number of systems. Reactive techniques that try to
detect such an attack and throttle down malicious traffic prevail today
but usually require an additional infrastructure to be really effective. In
this paper we show that preventive mechanisms can be as effective with
much less effort: We present an approach to (distributed) DoS attack
prevention that is based on the observation that coordinated automated
activity by many hosts needs a mechanism to remotely control them. To
prevent such attacks, it is therefore possible to identify, infiltrate and
analyze this remote control mechanism and to stop it in an automated
fashion. We show that this method can be realized in the Internet by
describing how we infiltrated and tracked IRC-based botnets which are
the main DoS technology used by attackers today.

1 Introduction

An important witness of the increasing professionalism in Internet crime are so
called Denial-of-Service (DoS) attacks. A DoS attack is an attack on a com-
puter system or network that causes a loss of service to users, typically the loss
of network connectivity and services by consuming the bandwidth of the victim
network or overloading the computational resources of the victim system [13].
Using available tools [0], it is relatively easy to mount DoS attacks against re-
mote networks. For the (connection-oriented) Internet protocol TCP, the most
common technique is called TCP SYN flooding [I9/4] and consists of creating a
large number of “half open” TCP connections on the target machine, thereby
exhausting kernel data structures and making it impossible for the machine to
accept new connections. For the (connectionless) protocol UDP, the technique
of UDP flooding consists of overrunning the target machine with a large number
of UDP packets thereby exhausting its network bandwidth and other computa-
tional resources.

* Thorsten Holz was supported by Deutsche Forschungsgemeinschaft (DFG) as part
of the Graduiertenkolleg “Software for mobile communication systems” at RWTH
Aachen University.

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 319-335] 2005.
© Springer-Verlag Berlin Heidelberg 2005

320 F.C. Freiling, T. Holz, and G. Wicherski

Like spam, it is well-known that DoS attacks are extremely hard to prevent
because of their “semantic” nature. In the terminology of Schneier [I8], seman-
tic attacks target the way we assign meaning to content. For example, it is very
hard to distinguish a DoS attack from a peak in the popularity of a large web-
site. Using authentication it is in principle possible to detect and identify the
single origin of a DoS attack by looking at the distribution of packets over IP
addresses. However, it is almost impossible to detect such an attack if multiple
attack hosts act in a coordinated fashion against their victim. Such attacks are
called Distributed Denial-of-Service (DDoS). DDoS attacks are one of the most
dangerous threats in the Internet today since they are not limited to web servers:
virtually any service available on the Internet can be the target of such an attack.
Higher-level protocols can be used to increase the load even more effectively by
using very specific attacks, such as running exhausting search queries on bulletin
boards or mounting web spidering attacks, i.e., starting from a given website and
then recursively requesting all links on that site.

In the past, there are several examples of severe DDoS attacks. In Febru-
ary 2000, an attacker targeted major e-commerce companies and news-sites [9].
The network traffic flooded the available Internet connection so that no users
could access these websites for several hours. In recent years, the threat posed
by DDoS attacks grew and began to turn into real cybercrime. An example of
this professionalism are blackmail attempts against a betting company during
the European soccer championship in 2004 [2]. The attacker threatened to take
the website of this company offline unless the company payed money. Similar
documented cybercrime cases happened during other major sport events. Fur-
thermore, paid DDoS attacks to take competitor’s websites down were reported
in 2004 [I]. These type of attacks often involve so called botnets [L1], i.e., networks
of compromised machines that are remotely controlled by an attacker. Botnets
often consist of several thousand machines and enable an attacker to cause seri-
ous damage. Botnets are regularly used for DDoS attacks since their combined
bandwidth overwhelms the available bandwidth of most target systems. In ad-
dition, several thousand compromised machines can generate so many packets
per second that the target is unable to respond to so many requests.

Defensive measures against DDoS can be classified as either preventive or
reactive [14]. Currently, reactive techniques dominate the arena of DDoS defense
methods (the work by Mirkovic et al. [13] gives an excellent survey over academic
and commercial systems). The idea of reactive approaches is to detect the attack
by using some form of (distributed) anomaly detection on the network traffic and
then react to the attack by reducing the malicious network flows to manageable
levels [I5]. The drawback of these approaches is that they need an increasingly
complex and powerful sensing and analysis infrastructure to be effective: the
approach is best if large portions of network traffic can be observed for analysis,
preferably in real-time.

Preventive methods either eliminate the possibility of a DDoS attack alto-
gether or they help victims to survive an attack better by increasing the resources
of the victim in relation to those of the attacker, e.g., by introducing some form

Botnet Tracking: Exploring a Root-Cause Methodology 321

of strong authentication before any network interaction can take place (see for
example work by Meadows [12]). Although being effective in theory, these sur-
vival methods always boil down to an arms race between attacker and victim
where the party with more resources wins. In practice, it seems as if the arms
race is always won by the attacker, since it is usually easier for him to increase
his resources (by compromising more machines) than for the victim, which needs
to invest money in equipment and network bandwidth.

Preventive techniques that aim at DDoS attack avoidance (i.e., ensuring that
DDosS attacks are stopped before they are even launched) have received close to
no attention so far. One reason for this might be the popular folklore that the
only effective prevention technique for DDoS means to fix all vulnerabilities in
all Internet hosts that can be misused for an attack (see for example Section
5 of [14]). In this paper we show that this folklore is wrong by presenting an
effective approach to DDoS prevention that neither implies a resource arms race
nor needs any additional (authentication) infrastructure. The approach is based
on the observation that coordinated automated activity by many hosts is at the
core of DDoS attacks. Hence the attacker needs a mechanism to remotely control
a large number of machines. To prevent DDoS attacks, our approach attempts
to identify, infiltrate and analyze this remote control mechanism and to stop it
in an automated and controlled fashion. Since we attack the problem of DDoS at
the root of its emergence, we consider our approach to be a root-cause method
to DDoS defense.

It may seem unlikely that it is possible to automatically analyze and infil-
trate a malicious remote control method crafted by attackers for evil purposes.
However, we provide evidence of the feasibility of our strategy by describing
how we successfully tracked and investigated the automated attack activity of
botnets in the Internet. The idea of our methods is to “catch” malware using
honeypots, i.e., network resources (cornputers7 routers, switches, etc.) deployed
to be probed, attacked, and compromised. Honeypots run special software which
permanently collects data about the system behavior and facilitates automated
post-incident forensic analysis. From the automated analysis we derive the im-
portant information necessary to observe and combat malicious actions of the
botnet maintainers. In a sense, our approach can be characterized as turning the
methods of the attackers against themselves.

The paper is structured as follows: Section [2] gives a brief overview over
botnets and their usage for DDoS attacks. In Section Bl we introduce a general
methodology to prevent DDoS attacks and exemplify a technical realization in
Section @l We present our results in Section Bl and conclude this paper with
Section

2 Distributed Denial-of-Service Using Botnets

In this section we give a brief overview over botnets and how they can be used to
mount DDoS attacks. More technical details can be found in [22]. A botnet is a
network of compromised machines running programs (usually referred to as bot,

322 F.C. Freiling, T. Holz, and G. Wicherski

zombie, or drone) under a common Command and Control (C&C) infrastructure.
Usually, the controller of the botnet compromises a series of systems using various
tools and then installs a bot to enable remote control of the victim computer via
Internet Relay Chat (IRC).

Newer bots can even automatically scan whole network ranges and propa-
gate themselves using vulnerabilities and weak passwords on other machines.
After successful invasion, a bot uses Trivial File Transfer Protocol (TFTP), File
Transfer Protocol (FTP), HyperText Transfer Protocol (HTTP), or CSend (an
IRC extension to send files to other users) to transfer itself to the compromised
host. The binary is started and tries to connect to the hard-coded master IRC
server on a predefined port, often using a server password to protect the botnet
infrastructure. This server acts as the C&C server to manage the botnet. Often
a dynamic DNS name is provided rather than a hard coded IP address, so the
bot can be easily relocated. Using a specially crafted nickname, the bot tries to
join the master’s channel, often using a channel password, too. In this channel,
the bot can be remotely controlled by the attacker.

Commands can be sent to the bot in two different ways: via sending an
ordinary command directly to the bot or via setting a special topic in the channel
that all bots interpret. For example, the topic

advscan lsass 200 5 0 -b

tells the bots to spread further with the help of a known vulnerability (the
Windows lsass vulnerability). The bots should start 200 concurrent threads that
should scan with a delay of 5 seconds for an unlimited time (parameter 0). The
scans should target machines within the same Class B network (parameter -b).
As another example, the topic

http.update http://<server>/rBot.exe c:\msy32awds.exe 1

instructs the bots to download a binary from the Internet via HT'TP to the local
filesystem and execute it (parameter 1).

If the topic does not contain any instructions for the bot, then it does nothing
but idling in the channel, awaiting commands. That is fundamental for most
current bots: they do not spread if they are not told to spread in their master’s
channel. Figure [Il depicts the typical communication flow in a botnet.

In order to remotely control the bots, the controller of a botnet has to au-
thenticate himself before issuing commands. This authentication is done with the
help of a classical authentication scheme. At first, the controller has to login with
his username. Afterwards, he has to authenticate with the correct password to
approve his authenticity. The whole authentication process is only allowed from
a predefined domain, so that only certain people can start this process. Once an
attacker is authenticated, he has complete control over the bots and can execute
arbitrary commands.

Today, botnets are most often used to mount DDoS attacks in the Internet.
All common bots include several different possibilities to participate in these
attacks. Most commonly implemented, and also very often used, are TCP SYN
[19/4] and UDP flooding attacks. For example, the command

Botnet Tracking: Exploring a Root-Cause Methodology 323

Fig. 1. Communication flow in a botnet

ddos.syn XXX.XXX.XXX.XXX 80 600

instructs the bots within the botnet to start a TCP SYN flooding attack against
the specified TP address against TCP port 80 for 600 seconds. Another example
is the following command:

udp XXX.XXX.XXX.XXX 18000 50000 100

It instructs the bots to mount a UDP flooding attack against the specified target
with 18,000 packets of a size of 50,000 bytes using a delay of 100 milliseconds
between each packet. Note that the C&C IRC server that is used to connect all
bots is in most cases also a compromised machine.

3 Preventing Distributed Denial-of-Service Attacks

In this section we introduce a general methodology to prevent DDoS attacks. It
is based on the following line of reasoning:

1. To mount a successful DDoS attack, a large number of compromised ma-
chines are necessary.

2. To coordinate a large number of machines, the attacker needs a remote
control mechanism.

3. If the remote control mechanism is disabled, the DoS attack is prevented.

We will substantiate this line of reasoning in the following paragraphs.

3.1 A Large Number of Machines Is Necessary

Why does an attacker need a large number of machines to mount a successful
DDoS attack? If an attacker controls only few machines, a DDoS attack is suc-
cessful only if the total resources of the attacker (e.g., available bandwidth or
possibility to generate many packets per second) are greater than the resources
of the victim. Otherwise the victim is able to cope with the attack. Hence, if this
requirement is met, the attacker can efficiently overwhelm the services offered
by the victim or cause the loss of network connectivity.

324 F.C. Freiling, T. Holz, and G. Wicherski

Moreover, if only a small number of attacking machines are involved in an
attack, these machines can be identified and counteractive measures can be ap-
plied, e.g., shutting down the attacking machines or blocking their traffic. To
obfuscate the real address of the attacking machines, IP spoofing, i.e., sending
IP packets with a counterfeited sender address, is often used. Furthermore, this
technique is used to disguise the actual number of attacking machines by seem-
ingly increasing it. However, IP spoofing does not help an attacker to conduct a
DDoS attack from an efficiency point of view. It does not increase the available
resources, but it even reduces them due to computing efforts for counterfeiting
the IP addresses. In addition, several ways to detect and counteract spoofed
sender address exist, e.g., ingress filtering [7], packet marking [20], or ICMP
traceback [BUI7]. The IP distribution of a large number of machines in different
networks makes ingress filter construction, maintenance, and deployment much
more difficult. Additionally, incident response is hampered by a high number of
separate organizations involved.

So control over a large number of machines is necessary for a successful DDoS
attack.

3.2 A Remote Control Mechanism Is Necessary

The success of a DDoS attack depends on the volume of the malicious traffic
as well as the time this traffic is directed against the victim. Therefore, it is
vital that the actions of the many hosts which participate in the attack are well-
coordinated regarding the type of traffic, the victim’s identity, as well as the
time of attack.

A cautious attacker may encode all this information directly into the malware
which is used to compromise the zombies that form the DDoS network. While
this makes him harder to track down, the attacker loses a lot of flexibility since
he needs to plan his deeds well in advance. Additionally, this approach makes
the DDoS attack also less effective since it is possible to analyze the malware
and then reliably predict when and where an attack will take place. Therefore it
is desirable to have a channel through which this information can be transferred
to the zombies on demand, i.e., a remote control mechanism.

A remote control mechanism has many more advantages:

1. The most effective attacks come by surprise regarding the time, the type and
the target of attack. A remote control mechanism allows an attacker to react
swiftly to a given situation, e.g., to mount a counterattack or to substantiate
blackmail threats.

2. Like any software, malware is usually far from perfect. A remote control
mechanism can be used as an automated update facility, e.g., to upgrade
malware with new functionality.

In short, a DDoS attack mechanism is only effective if an attacker has some type
of remote control over a large number of machines. Then he can issue commands
to exhaust the victim’s resources at many systems, thus successfully attacking
the victim.

Botnet Tracking: Exploring a Root-Cause Methodology 325

3.3 Preventing Attacks

Our methodology to mitigate DDoS attacks aims at manipulating the root-cause
of the attacks, i.e., influencing the remote control network. Our approach is based
on three steps:

1. Infiltrating the remote control network.
2. Analyzing the network in detail.
3. Shutting down the remote control network.

In the first step, we have to find a way to smuggle an agent into the control
network. In this context, the term agent describes a general procedure to mask
as a valid member of the control network. This agent must thus be customized
to the type of network we want to plant it in. The level of adaptation to a real
member of the network depends on the target we want to infiltrate. For instance,
to infiltrate a botnet we would try to simulate a valid bot, maybe even emulating
some bot commands.

Once we are able to sneak an agent into the remote control network, it enables
us to perform the second step, i.e., to observe the network in detail. So we can
start to monitor all activity and analyze all information we have collected.

In the last step, we use the collected information to shut down the remote
control network. Once this is done, we have deprived the attacker’s control over
the other machines and thus efficiently stopped the threat of a DDoS attack
with this network. Again, the particular way in which the network is shut down
depends on the type of network.

3.4 Discussion

The methodology described above can be applied to different kinds of remote
control networks and is thus very general. The practical challenge of the method-
ology is to automate the infiltration and analysis process as much as possible.
In all these cases, the zombies need to establish a communication channel be-
tween themselves and the attacker. If it is possible to “catch” this malware in a
controlled way, it is possible to extract a lot of information out of it in an auto-
mated fashion. For example, if contact to the attacker is set up by establishing a
regular network connection, the network address of the attacker’s computer can
be automatically collected.

To many readers, the methodology may sound like coming directly from a
James Bond novel and it is legitimate to ask for evidence of its feasibility. In the
following section we give exactly this evidence. We show that this method can be
realized in the Internet by describing how we infiltrated and tracked TRC-based
botnets which are the main DDoS technology used by attackers today.

4 An Example: Tracking Botnets

In this section we exemplify a technical realization of the methodology we intro-
duced above. We present an approach to track and observe botnets that is able
to prevent DDoS attacks.

326 F.C. Freiling, T. Holz, and G. Wicherski

Honeywall Honeypot
e |
Internet e——— —_— E]
fj ——
y 7
Management
C

Fig. 2. Setup for tracking botnets

As already stated in the last section, tracking botnets is clearly a multi-
step operation: First one needs to gather some data about an existing botnet.
This can for instance be obtained with the help of botnets or via an analysis of
captured malware. With the help of this information it is possible to smuggle a
client into the network.

We first introduce two techniques to retrieve the necessary information from
a botnet which enables us to infiltrate in it. The necessary information includes:

— DNS/IP-address of IRC server and port number.

Password to connect to IRC-server (optional).

— Nickname of a bot and ident [I0] structure.

— Name of IRC channel to join and (optional) channel password.

The first method to retrieve this information is based on honeypot technology
and is presented in Section Il The second method is more lightweight and
presented in Section Then we describe the observation and analysis process
in which we collected further information (Section A3]). Finally, in Section 4]
we give a small overview of possible ways to shut down a botnet.

4.1 Collecting Malware with Honeypots

A honeypot is a network resource (computers, routers, switches, etc.) deployed
to be probed, attacked, and compromised. A honeynet is a network of honey-
pots. Honeypots run special software which permanently collects data about the
system behavior and facilitates automatic post-incident forensic analysis. The
collected data enables us to determine the necessary information about an ex-
isting botnet. A detailed introduction to honeypots can for example be found
in [6].

Using a so called GenlII Honeynet [21] containing some Windows honeypots,
we are able to collect all necessary information. We deployed a typical Genll
Honeynet with some small modifications as depicted in Figure {11

The Windows honeypot runs an unpatched version of Windows 2000 or Win-
dows XP. This system is thus very vulnerable to attacks. It is located within the
internal network of RWTH Aachen University. On average, the expected lifespan
of the honeypot is less than ten minutes. After this small amount of time, the

Botnet Tracking: Exploring a Root-Cause Methodology 327

honeypot is often successfully exploited by automated malware. The shortest
compromise time was only a few seconds: Once we plugged the network cable
in, a bot compromised the machine and installed itself on the machine.

As explained in the previous section, a bot tries to connect to the C&C server
to obtain further commands once it successfully attacked the honeypot. This is
where the Honeywall comes into play. The Honeywall is a transparent bridge
that enables the two tasks Data Control and Data Capture. Due to the Data
Control facilities, it is possible to control the outgoing traffic. Using available
tools for Data Control we can replace all suspicious in- and outgoing messages.
A message is suspicious if it contains typical IRC messages for command and
control, for example “ TOPIC ”, “ PRIVMSG ”, or “ NOTICE ”. Thus we are able to
inhibit the bot from accepting valid commands from the master channel. It can
therefore cause no harm to others and therefore we have caught a bot inside our
Honeynet. As a side effect, we can also derive all necessary sensitive information
for a botnet from the data we have obtained up to that point in time: The
Data Capture capability of the Honeywall allows us to determine the DNS/IP-
address the bot wants to connect to and also the corresponding port number.
In addition, we can derive from the Data Capture logs the nickname, the ident
information, the server’s password, channel name, and the channel password as
well. So we have collected all necessary information and the honeypot can catch
further malware. Since we do not care about the captured malware for now, we
rebuild the honeypot every 24 hours to have a “clean” system every day. This
has proven to be a good time span since after this amount of time the honeypot
tends to become unstable due to installed malware.

4.2 Collecting Malware with Mwcollect
The approach described in the previous section works, but has several drawbacks:

— A honeypot will crash regularly if the bot fails to exploit the offered service,
e.g. due to a wrong offset within the exploit.

— The honeypot itself has to be closely monitored in order to detect changes
on the system. Furthermore, these changes have to be analyzed carefully to
detect malware.

— The approach does not scale well; observing a large number of IP addresses
is difficult.

To overcome these limitations, we developed a program called mwcollect to
capture malware in non-native environments. This tool simulates several vul-
nerable services and waits for them to be exploited. It is comparable to a low-
interaction honeypot like honeyd [I6]. In contrast to honeyd it is tailored to
collecting of malware and offers possibilities that honeyd cannot offer, e.g. bet-
ter packet handling and more flexibility.

muwcollect is based upon a very flexible and modularized design. The core
module — the actual daemon — handles the network interface and coordinates
the actions of the other modules. Furthermore, the core module implements a
sniffer mode which records all traffic to a special log file. This can for example
be useful if an unknown exploit is detected that needs to be further analyzed.

328 F.C. Freiling, T. Holz, and G. Wicherski

Several modules, which register themselves in the core, fulfill the actual tasks.
There are basically four types of modules:

— Vulnerability modules open some common vulnerable ports (e.g. TCP Port
135 or 2745) and simulate the vulnerabilities according to these ports.

— Shellcode parsing modules analyze the shellcode, an assembly language pro-
gram which executes a shell, received by one of the vulnerability modules.
These modules try to extract generic URLs from the shellcode.

— Fetch modules simply download the files specified by an URL. These URLs
do not necessarily have to be HT'TP or FTP URLs, but can also be TFTP
or other protocols.

— Submission modules handle successfully downloaded files, for example by
writing it to disk or submitting it to a database.

Vulnerability modules seem to be the most important part of mwcollect, but
in fact they are not more important than every other module, they all require
each other. Moreover, the vulnerable service emulation is not very sophisticated,
but functional: Often malware does not require an indistinguishable emulation
of a real service but an approximation of it. In most cases it is thus sufficient to
provide some minimal information at certain offsets in the network flow. This
information is used by the malware to calculate the offsets it can use to exploit
the service. Upon successful exploitation, the payload of the malware is passed
to another kind of modules.

Currently there is only one shellcode parsing module that is capable of analyz-
ing all shellcodes we have found up to now. The module first recursively detects
XOR decoders in a generic way. An XOR decoder is a common way to encrypt
the actual shellcode in order to evade intrusion detection systems. Afterwards the
module decodes the code itself according to the computed key and then applies
some pattern detection, for example CreateProcess and URLDownloadToFileA
detection patterns. The results are further analyzed and if an URL is detected,
it is passed to the fetch modules. A module that parses shellcodes in an even
more generic way by emulating a Windows Operating System environment is
currently under development.

Fetch modules have the simple task of downloading files from the Internet.
There are currently three different fetch modules: one for TFTP, one for generic
HTTP and FTP URLs and finally one for CSend and similar transfer methods
used by different species of bots.

Finally, submission modules handle successfully downloaded files. Currently
there are three different types of submission modules:

— A module that stores the file in a configurable location on the filesystem and
is also capable of changing the ownership.

— A module that submits the file to a central database to enable distributed
sensors with central logging interface

— A module that checks the file with the help of different anti-virus scanners
for known malware. Optionally this module sends an alert to enable an early
warning system. Therefore, mwcollect can also be seen as a kind of intrusion
detection system.

Botnet Tracking: Exploring a Root-Cause Methodology 329

Two further features of mwcollect are important to efficiently collect malware:
virtualized filesystem and shell emulation.

A common technique to infect a host via a shell is to write commands for
downloading and executing malware into a temporary file and then execute this
file. Therefore a virtual filesysterm was implemented to enable this type of attacks.
Every shell session has its own virtual filesystem so concurrent infection sessions
using similar exploits do not conflict. The temporary file is analyzed and the
malware is downloaded from the Internet in an automated way.

Some Malware does not spread by download shellcodes but by providing a
shell to the attacker. Therefore it is sometimes required to spawn and emulate
a Windows shell. Shell emulation is centralized in the core module since only
one type of shell is emulated. However, modules can register additional com-
mands that extend the possibilities for the malware. mwcollect currently simu-
lates a rudimentary shell and implements several commands: echo, ftp.exe and
tftp.exe, as well as batch file execution.

The big advantage of using mwcollect to collect malware is clearly both sta-
bility and scalability: A bot trying to exploit a honeypot running Windows 2000
with payload that targets Windows XP will presumably crash the service. In
most cases, the honeypot will be forced to reboot. In contrast to this, mwcollect
can be successfully exploited by all of those tools and hence catch a lot more
binaries this way. Furthermore, mwcollect can listen on many IP addresses in
parallel. We tested the program with 256 IP addresses and it scaled well.

To derive the sensitive information of the botnet from the collected malware,
a further analysis is necessary. A possible way to extract the information from
the captured malware is reverse engineering, the process of carefully analyzing a
program without having its source code. This process is time consuming, but we
have developed some techniques that enables us to extract the information within
a few minutes. A better approach is an automated analysis with the help of a
honeynet. The setup depicted in Figure 41l can be used for this purpose. Upon
startup, the Windows honeypot downloads a piece of malware from a database
located somewhere in the Internet. It executes the file and reboots itself after a
few minutes. During this time span, the bot installs itself on the honeypots and
connects to the C&C server. With the help of the Honeywall, we are again able
to extract all necessary information. In addition, the honeypot resets the hard
disk during each reboot so that a clean image is booted each time.

In a third approach, we are currently implementing a virtual machine that
implements an environments in which the bot can be executed. This virtualiza-
tion emulates a Windows environment and enables us to efficiently analyze the
malware.

4.3 Observing Botnets

Once we have collected all sensitive information of the botnet, we start to in-
filtrate the botnet as we have all the necessary data. In a first approach, it is
possible to setup a normal IRC client and try to connect to the network. If the
operators of the botnets do not detect this client, logging of all commands can

330 F.C. Freiling, T. Holz, and G. Wicherski

be enabled. This way, all bot commands and all actions can be observed. If the
network is relatively small (i.e., less then 50 clients), there is a chance that the
bogus client will be identified since it does not answer to valid commands. In this
case, the operators of the botnets tend to either ban and/or DDoS the suspicious
client.

But there are many problems with this approach: Some botnets use very
strongly stripped down C&C server which is not RFC compliant so that a normal
IRC client can not connect to this network. A possible way to circumvent this
situation is to find out what the operator has stripped out, and modify the source
code of the IRC client to override it. Furthermore, this approach does not scale
very well. Tracking more than just a few botnets is not possible since a normal
IRC client will be overwhelmed with the amount of logging data and it does not
offer a concise overview of what is happening.

Therefore we use an IRC client optimized for botnet tracking called drone.
This software was developed by two members of the German Honeynet Project
and offers several decent techniques for observing botnets:

— Multi-server support to track a large number of botnets in parallel

— Excessive debug-logging interface so that it is possible to get information
about RFC non-compliance issues very fast and fix them in the client

— Automated downloading of malware identified within the botnet

— Modular interface to un/load modules at runtime

Furthermore, drone is capable of using SOCKS v4 proxies so we do not run
into problems if it’s presence is noticed by an attacker in a botnet. The SOCKS
v4 proxies are on dial-in accounts in different networks so that we can easily
change the IP addresses of our infiltrated bot.

When observing more than a couple of networks, we began to check if some of
them are linked, and group them if possible. Link-checking is simply realizable:
our client just joins a specific channel on all networks and detects if more than
one client is there, thus concluding the the networks controlled by several C&C
servers are linked. Surprisingly, many networks are linked.

4.4 Preventing DDoS Attacks Caused by Botnets

Several ways to prevent DDoS attacks caused by botnets exist that we want
to sketch in this section. Since we observe the communication flow within the
botnet, we are also able to observe the IP addresses of the bots unless this
information is obfuscated, e.g., by modifying the C&C server. Thus one possible
way to stop DDoS attacks with this methodology is to contact the owner of the
compromised system. This is however a tedious and cumbersome job, since many
organizations are involved and these organizations are spread all over the world.
In addition, the large number of bots make this approach nearly infeasible, only
an automated notification system could help.

Another approach to prevent DDoS attacks caused by botnets aims at stop-
ping the actual infrastructure, in particular the C&C server, since this compo-
nent is vital for the remote control network. One possible way to stop the C&C

Botnet Tracking: Exploring a Root-Cause Methodology 331

server is described in [8]: Most botnets use a dynamic DNS name instead of a
hard-coded IP address for the C&C server. So if the DNS name is changed so
that it resolves to an IP address in a private subnet as defined in RFC 1918,
the bots are not able to connect to the central server. Thus the remote control
network is efficiently shut down. For this approach, the assistance of the DNS
provider is needed, though.

In addition, the collected information about botnets enable another way to
stop the botnet. We know the IP address of the C&C server and are thus able to
locate it. If the operator of the network cooperates, it is possible to shut down
this server and thus shutting down the remote control network.

5 Results

In this section we present some of the findings we obtained through our obser-
vation of botnets. Data is sanitized so that it does not allow one to draw any
conclusions about specific attacks against a particular system, and protects the
identity and privacy of those involved. The information about specific attacks
and compromised systems was forwarded to DFN-CERT (Computer Emergency
Response Team) based in Hamburg, Germany.

The results are based on the observations collected with just two sensors.
One sensors uses the approach depicted in Section 1] and is located within the
network of RWTH Aachen University. The other sensor is based on the technique
and software introduced in Section and is located within a dial-in network
of a German ISP.

We start with some statistics about the botnets we have observed in the last
five months:

— Number of botnets: We were able to track about 180 botnets during the
last five months. Some of them went offline (e.g. C&C server went offline
or inexperienced attackers) and at the time of writing (March 2005) we are
tracking about 60 active botnets.

— Number of hosts: During these few months, we saw more than 300,000 unique
IP addresses joining at least one of the channels we monitored. Seeing an
IP means here that the C&C server was not modified to not send a JOIN
message for each joining client. If an IRC server is modified not to show
joining clients in a channel, we do not see IPs here. Furthermore some IRC
server obfuscate the joining clients IP address and obfuscated IP addresses
do not count as seen, too. This shows that the threat posed by botnets is
probably worse than originally believed. Even if we are very optimistic and
estimate that we track a significant percentage of all botnets and all of our
tracked botnet C&C servers are not modified to hide JOINs or obfuscate the
joining clients IPs, this would mean that more than one million hosts are
compromised and can be controlled by malicious attackers.

— Typical size of Botnets: Some botnets consist of only a few hundred bots.
In contrast to this, we have also monitored several large botnets with up
to 50,000 hosts. The actual size of such a large botnet is hard to estimate.

332 F.C. Freiling, T. Holz, and G. Wicherski

Often the attackers use heavily modified IRC servers and the bots are spread
across several C&C servers which are linked together to form a common
remote control network. We use link-checking between IRC servers to detect
connections between different botnets that form one large botnet. Thus we
are able to approximate the actual size.

As a side note: We know about a home computer which got infected by 16
different bots, so its hard to make an estimation about world bot population
here.

— Dimension of DDoS-attacks: We are able to make an educated guess about
the current dimension of DDoS-attacks caused by botnets. We can observe
the commands issued by the controllers and thus see whenever the botnet is
used for such attacks. From the beginning of November 2004 until the end of
March 2005, we were able to observe 406 DDoS-attacks against 179 unique
targets. Often these attacks targeted dial-up lines, but there are also attacks
against bigger websites or other IRC server.

— Spreading of botnets: Commands issued for further spreading of the bots
are the most frequent observed messages. Commonly, Windows systems are
exploited and thus we see most traffic on typical Windows ports used for file
sharing.

— “Updates” within botnets: We also observed updates of botnets quite fre-
quently. Updating in this context means that the bots are instructed to
download a piece of software from the Internet and then execute it.

We conclude that our general methodology described in Section [3is feasible
and the automated approach described in Section is effective. We collected
more than 5500 binaries (about 800 unique ones) with mwecollect in just one
week on a single sensor. This sensor has only one IP address and is connected
to the Internet via a German DSL dial-in provider with 4 MBit downstream
and 2 MBit upstream. About five percent of the unique files were broken due
to failures during TFTP transfer. We are currently in the process of analyzing
these files. Once we have implemented a virtualization mechanism to efficiently
and automatically analyze the collected files, we hope to be able to significantly
increase the number of botnets we observe. In addition, this information can be
used to prevent DDoS attacks by shutting down the C&C server.

6 Conclusion and Further Work

DDoS attacks have become increasingly dangerous in recent years and we are
observing a growing professionalism in the type of Internet crime surrounding
DDoS. In this paper we have introduced a technique for DDoS attack prevention
that neither implies a resource arms race nor needs any additional infrastructure.
In contrast to previous work in this area our approach is preventive instead of
reactive. Our technique attacks a root-cause of DDoS attacks: in order to be
effective, an attacker has to control a large number of machines and thus needs
a remote control network. Our methodology aims at shutting down this control
network by infiltrating it and analyzing it in detail.

Botnet Tracking: Exploring a Root-Cause Methodology 333

We have exemplified a technical realization of this methodology considering
as example the tracking of IRC-based botnets. Such a botnet is a network of
compromised machines that can be remotely controlled by an attacker through
Internet relay chat technology. Due to their immense size (tens of thousands of
systems can be linked together), these botnets pose a severe threat to the Internet
community, e.g., since their aggregated resources can be used to overwhelm most
targets with a DDoS attack. We have shown that an automation of this approach
is possible to a high degree. With the help of honeypots, i.e., network resources
deployed to be compromised, we are able to automate the process of collecting
sensitive information of the remote control network by automatically “collecting”
malware. Via an automated analysis of the captured binaries we are furthermore
able to extract the sensitive information that allow to shut down the control
network.

With the help of just two sensors we were able to track a significant number
of botnets within a few months. In the future we want to analyze how good
our approach scales. Therefore we want to deploy more sensors within different
networks. In addition, we aim at speeding up the automated analysis process so
that it becomes even more effective. This can for example be achieved with the
help of a generic shellcode parser or a virtual machine that analyzes and extracts
the sensitive information from the captured binaries.

Moreover, the data we captured while observing the botnets show that these
control networks are used for more than just DDoS attacks. Possible usages of
botnets can be categorized as listed below. And since a botnet is nothing more
then a tool, there are most likely other potential uses that we have not listed:

— Spamming: Some bots offer the possibility to open a SOCKS v4/v5 proxy —
a generic proxy protocol for TCP /IP-based networking applications — on a
compromised machine. After having enabled the SOCKS proxy, this machine
can then be used for nefarious tasks such as sending bulk email (spam) or
phishing mails. With the help of a botnet and thousands of bots, an attacker
is able to send massive amounts of spam. Some bots also implement a special
function to harvest email-addresses from the victims.

— Attacking IRC Chat Networks: Botnets are also used for DDoS attacks
against Internet Relay Chat (IRC) networks. Popular among attackers is
especially the so called clone attack: In this kind of attack, the controller or-
ders each bot to connect a large number of clones to the victim IRC network.
The victim is overwhelmed by service request from thousands of (cloned)
bots.

— Manipulating online polls/games: Online polls/games are getting more and
more attention and it is rather easy to manipulate them with botnets. Since
every bot has a distinct IP address, every vote will have the same credibility
as a vote cast by a real person. Online games can be manipulated in a similar
way.

— Sniffing Traffic: Bots can also use a packet sniffer to watch for interesting
clear-text data passing by a compromised machine. The sniffers are mostly
used to retrieve sensitive information like usernames and passwords.

334 F.C. Freiling, T. Holz, and G. Wicherski

— Keylogging: If the compromised machine uses encrypted communication chan-
nels (e.g. HTTPS or POP3S), then just sniffing the network packets on the
victim’s computer is useless since the appropriate key to decrypt the packets
is missing. But most bots also implement functions to log keystrokes. With
the help of a keylogger it is very easy for an attacker to retrieve sensitive
information.

— Harvesting of information: Sometimes we can also observe the harvesting
of information from all compromised machines. With the help of special
commands the operator of the botnet is able to request a list of sensitive
information from all bots.

With our method we can shut down the root-cause of all of these types of nui-
sances, and hence our method is not restricted to combat DDoS.

In the future, we hope to develop more advanced honeypots that help us to
gather more information about threats such as botnets. Examples include client-
side honeypots that actively participate in networks (e.g., by crawling the web,
idling in IRC channels, or using P2P-networks) or modify honeypots so that they
capture malware and send it to anti-virus vendors for further analysis. It is also
to be expected that future botnets will use communication facilities other than
IRC (like potentially decentralized P2P-communication or covert channels). Our
methodology seems valid also for these scenarios, although more research in this
area is still needed.

Acknowledgments

We thank Lucia Draque Penso for reading a previous version of this paper and
giving valuable feedback that substantially improved it’s presentation. In addi-
tion, we would like to thank the authors of drone, an IRC client optimized for
botnet tracking, for their hard word in writing the program.

References

1. FBI report on Operation Cyberslam. Internet: http://www.reverse.net/
operationcyberslam.pdf], Accessed March 2005, February 2004.

2. Hacker threats to bookies probed. Internet: http://news.bbc.co.uk/1/hi/
technology/3513849.stm, Accessed March 2005, February 2004.

3. S. M. Bellovin. ICMP traceback messages, March 2001. Internet Draft.

4. Computer Emergency Response Team. CERT advisory CA-1996-21 TCP SYN
Flooding Attacks. Internet: http://www.cert.org/advisories/CA-1996-21.
htmll 1996.

5. D. Dittrich. Distributed Denial of Service (DDoS) attacks/tools resource page.
Internet: http://staff.washington.edu/dittrich/misc/ddos/} 2000.

6. M. Dornseif, F. C. Gartner, and T. Holz. Vulnerability assessment using honepots.
Prazis der Informationsverarbeitung und Kommunikation (PIK), 4(27):195-201,
2004.

7. P. Ferguson. Network ingress filtering: Defeating denial of service attacks which
employ IP source address spoofing, May 2000. Request for Comments: RFC 2827.

http://www.reverse.net/
operationcyberslam.pdf
http://news.bbc.co.uk/1/hi/
technology/3513849.stm
http://www.cert.org/advisories/CA-1996-21.
html
http://staff.washington.edu/dittrich/misc/ddos/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Botnet Tracking: Exploring a Root-Cause Methodology 335

. T. Fischer. Botnetze. In Proceedings of 12th DFN-CERT Workshop, March 2005.
. L. Garber. Denial-of-service attacks rip the Internet. Computer, 33(4):12-17, April

2000.

M. S. Johns. Identification protocol, February 1993. Request for Comments: RFC
1413.

B. McCarty. Botnets: Big and bigger. IEEE Security € Privacy, 1(4):87-90, 2003.
C. Meadows. A formal framework and evaluation method for network denial of ser-
vice. In Proceedings of the 1999 IEEE Computer Security Foundations Workshop,
pages 4-13. IEEE Computer Society Press, 1998.

J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet Denial of Service:
Attack and Defense Mechanisms. Prentice Hall PTR, 2004.

J. Mirkovic and P. Reiher. A taxonomy of DDoS attacks and defense mechanisms.
ACM SIGCOMM Computer Communications Review, 34(2):39-54, Apr. 2004.

J. Mirkovic, M. Robinson, P. Reiher, and G. Kuenning. Alliance formation for
DDoS defense. In Proceedings of the New Security Paradigms Workshop 2003.
ACM SIGSAC, Aug. 2003.

N. Provos. A virtual honeypot framework. In Proceedings of 18th USENIX Security
Symposium, 2004.

S. Savage, D. Wetherall, A. R. Karlin, and T. Anderson. Practical network support
for IP traceback. In Proceedings of the 2000 ACM SIGCOMM Conference, pages
295-306, August 2000.

B. Schneier. Inside risks: semantic network attacks. Communications of the ACM,
43(12):168-168, Dec. 2000.

C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, and D. Zam-
boni. Analysis of a denial of service attack on TCP. In Proceedings of the 1997
IEEE Symposium on Security and Privacy, pages 208-223. IEEE Computer Soci-
ety, IEEE Computer Society Press, May 1997.

D. X. Song and A. Perrig. Advanced and authenticated marking schemes for IP
traceback. In Proceedings of IEEE Infocom 2001, April 2001.

The Honeynet Project. Know Your Enemy: Genll Honeynets, November 2003.
http://www.honeynet.org/papers/gen2/.

The Honeynet Project. Know your Enemy: Tracking Botnets, March 2005.
http://www.honeynet.org/papers/bots.

http://www.honeynet.org/papers/gen2/
http://www.honeynet.org/papers/bots

	Introduction
	Distributed Denial-of-Service Using Botnets
	Preventing Distributed Denial-of-Service Attacks
	A Large Number of Machines Is Necessary
	A Remote Control Mechanism Is Necessary
	Preventing Attacks
	Discussion

	An Example: Tracking Botnets
	Collecting Malware with Honeypots
	Collecting Malware with Mwcollect
	Observing Botnets
	Preventing DDoS Attacks Caused by Botnets

	Results
	Conclusion and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

