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Preface

Foreword from the Program Chairs

These proceedings contain the papers selected for presentation at the 10th Eu-
ropean Symposium on Research in Computer Security (ESORICS), held Sep-
tember 12–14, 2005 in Milan, Italy.

In response to the call for papers 159 papers were submitted to the confer-
ence. These papers were evaluated on the basis of their significance, novelty, and
technical quality. Each paper was reviewed by at least three members of the
program committee. The program committee meeting was held electronically,
holding intensive discussion over a period of two weeks. Of the papers submit-
ted, 27 were selected for presentation at the conference, giving an acceptance
rate of about 16%. The conference program also includes an invited talk by
Barbara Simons.

There is a long list of people who volunteered their time and energy to put
together the symposiom and who deserve acknowledgment. Thanks to all the
members of the program committee, and the external reviewers, for all their
hard work in evaluating and discussing papers. We are also very grateful to all
those people whose work ensured a smooth organizational process: Pierangela
Samarati, who served as General Chair, Claudio Ardagna, who served as Pub-
licity Chair, Dieter Gollmann who served as Publication Chair and collated this
volume, and Emilia Rosti and Olga Scotti for helping with local arrangements.

Last, but certainly not least, our thanks go to all the authors who submitted
papers and all the attendees. We hope you find the program stimulating.

July 2005 Sabrina De Capitani di Vimercati and Paul Syverson



VI Preface

Foreword from the General Chair

It is my pleasure to welcome you to the 10th European Symposium On Research
In Computer Security in Milan. Initially established as the European conference
in research on computer security, ESORICS has reached the status of a main
international event gathering researchers from all over the world. The confer-
ence, hosted for the first time in Milan, offers an outstanding technical program,
including one invited talk and 27 selected papers.

An event like this does not just happen; it depends on the volunteer efforts
of a host of individuals. I wish to express my sincere appreciation to all the
people who volunteered their time and energy to put together the conference
and make it possible. First and foremost, thanks are due to Sabrina De Capitani
di Vimercati and Paul Syverson and the members of the program committee
for selecting the technical papers for presentation and to Barbara Simons for
agreeing to deliver the keynote speech. I am also grateful to all those people
who ensured a smooth organization process: Dieter Gollmann, for collating the
proceedings volume and ensuring that these proceedings be ready for distribution
at the conference; Claudio Ardagna for serving as Publicity Chair; Emilia Rosti
for helping with the organization and taking care of local arrangements; and
Olga Scotti for her help with local arrangements.

Special thanks are due to: the University of Milan, for granting us the con-
ference location and service; the Department of Information Technologies of the
University for its support; the Italian Association for Information Processing
(AICA) for its financial support and for providing help in the secretarial and
registration process; and the sponsors for their support.

Last, but certainly not least, thanks to all of you for attending the conference.
I hope you find the program stimulating and enjoy your time in Milan!

Pierangela Samarati
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Computerized Voting Machines: A View from
the Trenches

Barbara Simons

simons@acm.org

As a result of Florida 2000, some Americans concluded that paper ballots simply
couldn’t be counted, even though businesses, banks, racetracks, lottery systems,
and others count and deal with paper all the time. Instead, paperless computer-
ized voting systems (Direct Recording Electronic or DREs) were touted as the
solution to “the Florida problem”.

Election officials in the U.S. were told that DREs in the long run would be
cheaper than alternative voting systems. They also were told that DREs had
been extensively tested and that the certification process guaranteed that the
machines were reliable and secure. No mention was made of the costs ballot
design, of pre-election testing, and of secure storage of DREs; nothing was said
about the threat of hidden malicious code; no mention was made of the inade-
quacy of the testing and certification processes, to say nothing of the difficulty
of creating bug-free software.

Why were independent computer security experts not consulted about such
a major and fundamental change in how elections are held? Why were some elec-
tion officials and policy makers hostile when computer security experts warned
of the risks of computerized voting to the point of accusing computer scientists
of being “fear mongers” and Luddites? How could Harris Miller, the President
of the Information Technology Association of America, a lobbying organization
that has received compensation from voting machine vendors, claim on Election
Day 2004 that, “Electronic voting machine issues that have been cited are re-
lated to human error, process missteps or unsubstantiated reports”? How would
he know? Why would anyone listen to him?

Why do many election officials and politicians believe that internet voting
would increase voter turnout in the U.S., even though no rigorous testing has oc-
curred? And, even if internet voting would increase turnout, how can these same
people who have been reading about internet viruses for years not understand
that internet voting is a very very risky proposition?

In short, why have DRE vendors and many election officials succeeded at
challenging the expertise of computer scientists and computer security experts?

The refusal of policy makers to listen to the computing community hardly
began with the introduction of poorly engineered and insecure voting machines.
Many computer scientists and computer security experts became involved with
policy debates over crypto policy, copyright, patents, and computerized surveil-
lance – to name some of the major issues.

The disconnect between the computing community and policy makers is
perhaps best illustrated by the Digital Millennium Copyright Act (DMCA),

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 1–2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 B. Simons

which became part of US law in 1998. It was only by chance that I learned
why implementation of the most controversial aspects of the DMCA, the anti-
circumvention and anti-dissemination provisions, was postponed until 2000. The
delay was written into the DMCA because lawmakers knew, or someone they
trusted told them, that aspects of the DMCA might criminalize work on secur-
ing software against Y2K problems. Yet, the fact that Y2K was hardly the only
software security issue that would require the kinds of reverse engineering that
was done to fix Y2K bugs was either unknown to the lawmakers or a matter of
indifference to them.

A discussion of the DMCA brings us full circle back to the issue of comput-
erized voting systems. In the U.S. the software that is deployed in these systems
is secret, as is the testing – paid for by the software vendors – and the test
results. Because of the anti-circumvention provisions of the DMCA, computer
security experts risk violating U.S. Federal law if they wish to reverse engineer
voting machine software to search for bugs or malicious code. Consequently, a
law that was crafted by the movie and record industries to prevent unauthorized
copying is assisting voting machine vendors with concealing their software from
meaningful independent review.

Clearly, we computing professionals have been failing at explaining the risks
of inappropriate, careless, or poorly designed software to the general public and
especially to policy makers, at least in the U.S. (At this conference I hope to
learn more about what is happening in Europe). While perhaps not enough of
us have become involved with efforts to educate policy makers, there are some
fundamental reasons why our expertise is frequently ignored:

1. People who have never done much programming do not understand how
difficult it is to find bugs in software.

2. Because people don’t understand point 1, they certainly don’t understand
that last minute software patches are very dangerous.

3. Consequently, most people have a hard time believing computer security
experts when they say that it’s possible to write malicious code and conceal
it in a large program. They just don’t understand why it can be very difficult
to determine that malware is present, let alone locate it in a large body of
code.

In addition, we are a relatively young profession, and many of us have an
independent streak and a casual mode of dress that, taken together, make some
politicians view us as potential trouble makers, rather than as people whose
views the politicians should take seriously.

Yet, we must make our voices heard. The issues are too critical to allow us
to be shut out of the debate.

I’ll give an overview of some of the technological and policy issues relating
to computerized voting machines, and perhaps touch on how we might do a
better job of getting our message across. I also look forward to hearing ideas
that others might have of how we might better explain software-related risks to
non-technical decision makers.



XML Access Control with Policy Matching Tree

Naizhen Qi (Naishin Seki) and Michiharu Kudo

IBM Research, Tokyo Research Laboratory,
1623-14, Shimo-tsuruma, Yamato-shi,

Kanagawa 242-8502, Japan
{naishin, kudo}@jp.ibm.com

Abstract. XML documents are frequently used in applications such as
business transactions and medical records involving sensitive informa-
tion. Access control on the basis of data location or value in an XML
document is therefore essential. However, current approaches to efficient
access control over XML documents have suffered from scalability prob-
lems because they tend to work on individual documents. To resolve this
problem, we proposed a table-based approach in [28]. However, [28] also
imposed limitations on the expressiveness, and real-time access control
updates were not supported. In this paper, we propose a novel approach
to XML access control through a policy matching tree (PMT) which
performs accessibility checks with an efficient matching algorithm, and
is shared by all documents of the same document type. The expressive-
ness can be expanded and real-time updates are supported because of
the PTM’s flexible structure. Using synthetic and real data, we evalu-
ate the performance and scalability to show it is efficient for checking
accessibility for XML databases.

1 Introduction

XML [7] data is becoming more prevalent as more businesses and systems be-
come integrated over the Web. In applications such as business transactions and
medical records, sensitive data may be scattered throughout an XML document
and access control at the node level (element or attribute) is required to ensure
that sensitive data can only be accessed by authorized users. Access control must
be expressive and be able to support rules that select data based on the location
and value(s) of the data. In practice, the number of access control rules can be
on the order of millions, which is a product of the number of document types
(in 1,000’s) and the number of user roles (in 100’s). Therefore, the solution also
requires high scalability and performance.

Several XML access control models [4,11,17,23] provide expressive access con-
trol over XML documents. These approaches usually support grant or denial
access control specifications, a propagation mechanism whereby descendant ele-
ments inherit rules from their parents, and conflict resolution in case the data is
covered by multiple access control rules. Since these models perform access con-
trol by traversing XML documents at runtime, the enforcement imposes heavy

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 3–23, 2005.
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4 N. Qi and M. Kudo

computational costs especially for deeply layered XML documents with large
and expressive access control rules.

Ideas to efficiently provide expressive access control have been proposed in
[3,9,12,28,30]. These approaches are effective in efficiently searching for access
controlled nodes [3,12,30], or in eliminating unnecessary accessibility checks at
runtime [9]. These research efforts have managed to improve the efficiency of
expressive access control. However, since they generally focus on document-based
optimizations, XML databases with frequent updates of either the documents or
access control rules may incur unacceptable costs. In our previous research [28],
we proposed an efficient table-driven access control model that takes into account
XML document updates. It provides runtime efficiency but has limitations on
access control expressiveness and the real-time update of access control rules was
not supported.

In this paper, we develop an effifffcient and expressive access control model
applicable to existing access control models [4,11,23] for XML documents. The
novelties of this access control model are a data-independent optimization so
that XML data updates will not trigger any recomputations, and that real-
time policy update is supported. The key idea is to build a policy matching
tree, a PMT, on the basis of the access control rules. The accessibility check
is performed by matching the access request against the PMT and deciding
on the basis of the matching results. Since all of the rules in the PMT are
isolated from each other, the PMT is capable of handling real-time PMT updates.
An accessibility cache improves runtime performance by skipping duplicated
accessibility evaluations on the same paths. Through experiments, we show the
PMT is capable of supporting millions of access control rules efficiently.

The rest of this paper is organized as follows. After reviewing the concerned
access control model in Section 2, we present our solution, the PMT model in
Section 3. In Section 4 we describe how to match an access request against the
PMT for an accessibility decision. Section 5 describes the access control system
on the basis of the PMT. Experimental results are reported in Section 6 and in
Section 7 we summarize our conclusions and consider future work.

1.1 Related Work

Many approaches for enforcing XML access control have been proposed. Some of
them [17,23] support full [10] expressions to provide expressiveness with straight-
forward implementations by creating the projection of the access control policy
on a DOM [19] tree. However, these approaches incur massive runtime costs when
handling a large access control policy or a deeply layered XML document. The
mechanisms proposed in [2,4,11,12] perform more efficiently but also encounter
the same problem at runtime since node-level access control on a DOM-based
view can be expensive when processing large numbers of XML documents.

To overcome this problem, several efficient access control models have been
proposed [25,28]. Qi et al. [28], our previous research, presents a method that per-
forms in near-constant time regardless of the number of access control rules. This
is achieved by using an access condition table generated from the access control
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rules independently of the XML data. However, this approach places limitations
on the XPath expressions, and does not provide an efficient runtime evaluation
mechanism for value-based conditions. Murata et al. [25] optimized the pre-
processing steps by minimizing the number of runtime checks for determining
the accessibility of nodes in a query with automata. However, the mechanism
was limited to XPath-based languages such as XQuery [6], and cannot handle
other query languages or primitive APIs such as DOM. XPath-based document
filtering systems [1,8,14] also provide value-based access control enforcement and
independence of the XML data through a precomputed data structure. However,
these filtering systems focus more on data filtering rather than data selection.
For example, they cannot specify denial access on document fragments in a grant
subtree. Therefore, they are unable to completely satisfy the needs of real XML
database access control applications.

A different approach with document-level optimizations was proposed by Yu
et al. [30]. Their scheme enforces efficient access control with an accessibility map
that is generated by compressing neighboring accessibility rules to improve the
efficiency. However, since the maps are generated on the basis of the documents,
document updates or policy updates may trigger expensive computations espe-
cially for a large XML ndatabase. In addition, the above efficient enforcement
algorithms cannot support real-time updates on the access control rules.

Optimizations were also the focuse in a number of research efforts on XML
query languages (e.g., XPath and XQuery). The methods include query optimiza-
tion based on (i) the tree pattern of queries [9,13,27] (ii) XML data and XML
schema [16,21,22,24]; and (iii) the consistency between integrity constraints and
schemas [15]. However, these approaches usually perform efficient data selec-
tion at the level of documents and require indices. Therefore, in a large XML
database, such as a database with 10,000 document collections and 10,000 doc-
uments for each document collection, such optimization mechanisms may con-
sume a prohibitive amount of space. Moreover, these technologies are designed
for XPath-based languages and they cannot handle other query languages and
primitive APIs such as DOM.

2 Abstract of Access Control Policy

Various access control policy models have been proposed. We used the one pro-
posed by Murata et al. [25] in which an access control policy contains a set of
3-tuple rules with the syntax1 (Subject, +/−Action, Object). The subject has a
prefix indicating the type such as userID, role, or group. A user with a unique
userID may be in multiple groups, and the accessibility is decided on the basis
of the accessibility results of the rules for the userID and each for each group. A
’+’ stands for positive authorization (granted), while a ’−’ is for negative autho-
rization (denied). Action can be read, update, create, and delete. A capitalized
rule with +Read or −Read means that propagation is permitted and that the
1 The syntax of the policy can be represented in XACML [26]. We use this form for

simplicity.
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access can be propagated downward to the entire subtree, while +read has an
effect only on the selected node. As an example, (role : Doctor, +Read, /record)
specifies a doctor’s access to /record is allowed and implicitly extended to the
descendants. In addition, according to denial downward consistency as defined in
[25] the descendants of an inaccessible node are also inaccessible, since there is an
accessibility dependency between the ancestors and the descendants. Therefore,
it is obvious that −read and −Read are equivalent to each other, and therefore
we specify denial rules using only −Read in this paper. We call the action per-
mission (’+’ or ’−’) together with the propagation permission the access effect.
The object is the expression of the subset of XPath.

In addition, in order to maximize data security, we (i) resolve access con-
flicts with the denial-takes-precedence [25] rule and (ii) apply the default denial
permission on the paths if no explicit or implicit access control is specified.

3 Policy Matching Tree (PMT) Model

The PMT model provides a fast matching mechanism to resolve the access con-
trol matching problem. The PMT searches for matched rules by matching the
request against a tree that is the internal data structure of the access control
policy. The PMT outputs matched target(s) upon which the accessibility, grant
or deny, can be decided.

In this section, we first introduce the access control matching problem and
then present the PMT model to represent the access control policy. Then, we
present the matching algorithm.

3.1 The Access Control Matching Problem

A request defines the requestors’ access requests to an XML data object or an
XML instance by specifying property values. In the case of an XML instance,
each path is individually checked against the access control rules. A matching
element ele is a condition evaluation for requests. We say a request req matches a
matching element ele if and only if match(req, ele) = true. In the access control
matching problem, we are given an access request req and a finite rule set Policy
which is translated into a set of matching elements. Subsequently, the goal is to
determine all those rules in Policy that match req.

In our model, each request contains at least five properties: a userID, role,
group, action, and path. The group is a list containing all of the groups the
requester belonging to. The path is the simple path expression requested by the
user. Besides these five properties, other properties such as current time and
date may also be included. The rule set Policy is represented as an internal tree
Policy Matching T ree.

3.2 PMT Components

The PMT model consists of four components: a node, edge, match target, and
link. The node represents a property name of the access request. The edge rep-
resents a matching condition on the property name. The matching condition
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Fig. 1. PMT model components

Table 1. Matching result of access effects for read action

Access effect Matching result
+r GRANT ON NODE
+R GRANT ON SUBTREE
-R DENY
Nothing UNDECIDED

consists of an operator and the associated value. The edge ends at another node
for further refinement or at a match target which is the leaf node representing
the matching result. As occasion demands, the match target may also contain
a property list, and a link for further matching. Fig. 1 depicts the PMT model
components. The matching result in a match target is prepared in accordance
with the access effect of the concerned rule. Table 1 shows the access effect for
a read action with the corresponding matching results.

3.3 Property Matches of PMT

A PMT represents a set of access control rules. Each access control rule is
a conjunction of property matches, where each property match represents a
condition evaluation on the property name. Suppose an access control rule
rule : (Sub, +/ − Act, Obj), in which if value-based predicate(s) is imposed,
the predicate(s) are represented as Pred, and the object after removing Pred is
represented as Obj. To match a request req against rule, match(req, rule) can
be done as follows:

match(req, rule) := match(req, Sub) ∧ match(req, Act) ∧ match(req, Obj) ∧
match(data value, Pred)

Only when all of the property matches result in true is the rule matched and a
matching result output. Each property match is represented by nodes and edges.
The PMT is therefore constructed by adding or sharing nodes, edges, and match
targets for the property matches of each rule. As a consequence, the policy is
converted to a PMT consisting of four matching parts which match the request
against Act, Sub, Obj, and Pred, respectively, as shown in Fig. 2. Since the
access control rules are often imposed on the same object, in order to minimize
the duplicated parts in the PMT, the Pred matching is shared. For the same
reason, the match target of the Pred matching does not hold a matching result
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Fig. 2. A Sample PMT

specified for the rules. However, the Pred matching consumes extra computation
owing to the data retrievals from the XML database. Therefore, to reduce the
extra data retrievals, the Pred matching is started only when a match target
is reached during the Obj matching no matter where the location where the
predicates are imposed.

The matching result is only held by the match target of the Obj matching. If
predicates are involved, then the match target of the Obj matching also provides
a link for the Pred matching.

3.4 PMT Construction

Each access control rule is individually converted into three property matchings,
or four in the case a predicate(s) is involved, with corresponding match targets.

Act Matching and Sub Matching Construction. Act matching and Sub
matching generation is simple in that ”Act” and ”Sub” are the nodes, and the
values of Act and Sub specified by the rule are on the edges. As an example, we
have an access control policy P1 as:

R1 : (role : employee, +read, /Record)
R2 : (role : employee, +Read, /Record/Item[Key = $userID])
R3 : (group : manager,+Read, /Record)
R4 : (group : manager,−Read, /Record//Info) In P1, $userID represents

a unique employee identifier. The corresponding Act matching and the Sub
matching of P1 are generated as in Fig. 3. In the figure, two edges are com-
ing from the action node, and the one to the role node is shared by R1 and R2.
The other edge to the group node is for R3 and R4. Note the matching conditions
on the edges from the action node are both =′ read′ in which the propagation
permission is not included. In our PMT model, the propagation permission is
carried by the Matching Result in the Obj matching.

Obj Matching Construction. Here we consider the XPath expressions as
compositions of five basic elements: /x, /∗, //x, //∗, and an [x operator value]
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Fig. 3. Act matching and Sub matching of P1

Fig. 4. Five basic elements to represent XPath expressions

where the last one represents a predicate and the operator can be any math-
ematical operator. Though other axes are not included as they would be in a
general access control model, these elements are sufficient to select the concerned
nodes.

The Obj matching is represented by the first four basic elements, while the
Pred matching uses the last one. Fig. 4 shows how the five basic elements are
represented.

Pn represents the node name of Obj at depth n. However, Pn++ appearing
in //x and //∗ automatically increases the depth counter variable for each loop.
The corresponding Obj matching for P1 is shown in Fig. 5.

All of the match targets hold a matching result, which not only represents
the access permission, but also represents the propagation permission to the
descendants. For r, the positive authorization is not permitted to propagate
downward, so a test on whether the requested path is the descendant of the
object is performed by isNull() as R1 shows. Beyond the normal matching
result, the match target of R2 also contains a property list and a link to further
refinement on /Record/Item through a predicate.

The property list contains pairs of the property name and the data name
appearing in the predicate where the property name is used in the Pred match-
ing in place of the data name. The data name is more than a single element
node name or attribute name, since the relative path from the object to the
node being appended with the predicate is also included. For example, when it is
/Record/Item[Key = $empID]/Priority, the property list is pred0 = ”../Key”,
since to traverse from Priority to Key, we must go up to Item first, which is
represented by ’../’. To retrieve XML data from the database for predicate eval-
uation, the data name is passed to the data retrieval processor at runtime. Since
the runtime has knowledge of the accessed node location with both the matched
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Fig. 5. Obj matching of P1

Fig. 6. Pred matching and the entire PMT

node location and the relative path from the matched node, the location of the
required data can be found.

Pred Matching Construction. A predicate is a condition for comparison
to the XML data or a conjunction of such conditions. The condition is directly
converted to the Pred matching. By separating the Pred matching from the Obj
matching, the predicate evaluation is optimized in the way: 1) unless the match
on the Obj matching reaches a match target, the match for the Pred matching
is not started; 2) multiple predicates imposed on the same object are processed
in a single Pred matching operation; and 3) the Pred matching is shared by the
set of access control rules.
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The Pred matching of P1 is shown in Fig. 6(a) and Fig. 6(b) gives the entire
PMT for P1. Beyond the condition matching for [pred0 = $userID], the link
which connects the Obj matching with the Pred matching is also shown in the
figure. Owing to the link ID Pid, the Pred matching can be shared by multiple
rules, if the same predicate is involved.

However, when a predicate Pred appears after with //, since multiple re-
quested paths match the object owing to //, the property list for Pred can-
not be specified in the match target during PMT generation without knowl-
edge of the requested path. Therefore, in the current PMT model, a limitation
is placed on the expressions that predicates never come after //. As a conse-
quence, XPath expressions such as /Record//Info[@type =′ classified′], and
// ∗ [@type =′ classified′] are not supported.

3.5 Complexity Analysis

PMT Generation Time Complexity. For each access control rule that we
need to add to the PMT, we spend generation time proportional to the number
A of properties, where the properties are the action, the subject, the node tests
appearing in the object, or the nodes involved if there is a predicate(s). Therefore,
if there are N access control rules, the total time spent on PMT generation is
O(AN). If the maximum depth of the object is D, and the maximum number of
conditions in a predicate is P , A is no bigger than (3+D+P+2), where that 3
is from the Act matching, the Sub matching, and a link from the Obj matching
to the Pred matching, and the 2 is for the match targets of the Obj and Pred
matchings. Therefore, A is no larger than (5+D+P), which are integers, and
hence the PMT generation time is linear with respect to the number of access
control rules.

PMT Space Complexity. For the space complexity, note that each rule can
add at most (5+D+P) nodes to the PMT. Thus, the largest space required for
the PMT is O((5 + D + P )N), that is, linear in the number of access control
rules.

4 PMT Matching

Our approach resolves the access control matching problem by matching the
request against the PMT to determine the access effects of the rules that match
the request. In this section, we present the matching algorithm, and then analyze
the complexity.

4.1 PMT Matching Algorithm

The input of the PMT is an access request that contains at least five properties:
a userID, role, group, action, and path. However, the path cannot be input di-
rectly into the PMT, since the PMT cannot match the path against the nodes
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and edges. Therefore, preprocessing is required to convert the path into a set of
node tests. The output of the PMT is the set of matching results as shown in
Table 1. By combining the matching results and resolving any access conflicts,
the accessibility decision, grant or deny, is decided. The PMT matching algo-
rithm is given in Fig. 7. The idea is to walk the PMT from the root node by
performing the matching prescribed by each node and following the edge that
satisfies the condition for that node. The set of matching results are the match
targets that are visited. This algorithm is independent of the traversal ordering
on the PMT. We can traverse the tree in a depth-first order, but it is clear that
other orderings, such as breadth-first, would also work.

As an example matching M1, we demonstrate how to decide the accessibility
using the PMT in Fig. 6(b). Suppose the access request req is {userID:’T29595’,
group:’manager’, action:’read’, path:’/Record/Item/Address’}. Path is further
processed to a property list {p0:’Record’, p1:’Item’, p2:’Address’}. As a re-
sult, the pairs of name and value input into the PMT eventually becomes
{userID:’T29595’, group:’manager’, action:’read’, p0:’Record’, p1:’Item’,
p2:’Address’}.

The input data traces two routes in the PMT. One is stopped halfway before
reaching a match target, and the other one reaches the match target of R3 as:

action(=′ read′) → group(=′ manager′) → p0(=′ Record′) →
p1(=′ Item′) → p2(=′ Address′) → p3

action(=′ read′) → group(=′ manager′) → p0(=′ Record′) →
R3′s match target

Since the matching result of R3 is GRANT ON SUBTREE, the accessibility is
therefore decided as grant, and the manager’s access to /Record/Item/Address
is permitted. Suppose one more PMT input is {userID:’T29595’, role:’employee’,
group:null, action:’read’, p0:’Record’, p1:’Item’, p2:’Address’}. The match target
of R2 is reached by the route:

Fig. 7. PMT Matching Algorithm
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action(=′ read′) → role(=′ employee′) → p0(=′ Record′)→ p1(=′ Item′)→
R2′s match target

In this case, beyond the matching result, a property list pid0 =′ Key′ and
a link Pid = 1 are also included. Therefore, the value of the required data
’Key’ is retrieved and the Pred matching is performed. The PMT input is
updated to {userID:’T29595’, role:’employee’, group:null, action:’read’, Pid:1,
pred0:’T29590’}. The Pred matching becomes:

action(�= isNull()) → Pid(= 1) → pred0(�= $userID)

The match target is not reachable in the Pred matching, and hence false is
returned. With the matching results in GRANT ON SUBTREE from the Obj
matching and false from the Pred matching, the accessibility decision results in
deny, and the access to /Record/Item/Address is denied.

4.2 Matching Time Complexity

We measured the access request matching times by counting the number of PMT
nodes that are visited during the match. In any reasonable implementation of
the matching algorithm, this number is proportional to the actual time necessary
to match the access request, since the algorithm performs a simple matching for
each node, which is assumed to take constant time.

The matching time is a function of the access request being matched, since
different access requests cause different sets of nodes to be visited during match-
ing even if the set of access control rules is constant.

In the rest of this section, we compute the expected time to match an access
request, and show the expected time is sub-linear with respect to the number of
access control rules. We assume that all properties range over the same set of
values for simplicity. Henceforth, let K be the number of properties of a rule; V
be the number of possible values for a property; P be an arbitrary set of rules;
PMT (P ) be the PMT generated for P ; and T (P ) the expected time to match
a request.

Theorem 1. Given that all access requests are equally likely, then the expected
time T (P ) to match a random access request is bounded by

T (P ) ≤ 2(K + 1)|P |1−λ(lnV + ln(K + 1)) where λ :=
lnV

lnV + ln(K + 1)
.

For each node n in PMT (P ), we define cost(n) to be the number of times that
this node is visited when we run the matching algorithm with all the possible
V K requests. The probability that a node n is visited when matching a random
request is therefore equal to V −Kcost(n). Thus, the expected number T (P ) of
nodes of PMT (P ) visited is:

T (P ) = V −K
∑

n∈nodes(PMT (P )) cost(n) (1)

where nodes(PMT (P )) is the set of nodes of PMT (P ).
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Lemma 2. For 0 ≤ j ≤ K, PMT (P ) contains at most (K + 1)((K + 1)V )j

nodes with cost V K−j.

Proof. A node n has cost V K−j if and only if the route from the root to the
node has exactly j non-* edges. The number of edges i is between j and K;
the positions of the non-* edges are j distinct numbers between the root and

n, and so there are
∑

i=j...K

(
i
j

)
=
(

K + 1
j + 1

)
ways of choosing routes without

involving *-edges. Moreover, we can assign V distinct values for each non-* edge.
Therefore, the number of paths in PMT(P) with exactly j non-* edges is at most

V j

(
K + 1
j + 1

)
. Moreover,

V j

(
K + 1
j + 1

)
≤ V j (K + 1)j+1

(j + 1)!
≤ (K + 1)((K + 1)V )j . (2)

Lemma 3. PMT (P ) has at most (K + 1)|P | nodes.

Proof. An access control rule is associated with subject, action, and object,
leading to K edges and K + 1 nodes including the match target. Thus, if the
policy has |P | rules, it has at most (K + 1)|P | nodes.

Let f(i) be cost of the i-th node in order, by using Equation (1) and Lemma 3,
we have that T (P ) = V −K

∑(K+1)|P |
i=1 f(i).

Let g(x) := (Ax + B)−λ where A := V −(K+1)/λ(V − 1/(K + 1)), B :=
V −(K+1)/λ, and λ := lnV

lnV +ln(K+1) < 1.

Lemma 4. f(x) ≤ g(x).

Proof. By Equation (2) and the definition of f(x), we have that for each i such
that 0 ≤ i ≤ K and for each j such that

∑
p=0...i−1(K + 1)((K + 1)V )p < j ≤∑

p=0...i(K + 1)((K + 1)V )p, the following holds: f(j) ≤ V K−i.

Now, g
(∑

p=0...i(K + 1)((K + 1)V )P
)

= g
(
K ((K+1)V )i+1−1

(K+1)V −1

)
. By using the

definition of g(x), we conclude g
(∑

p=0...i(K + 1)((K + 1)V )P
)

= V K−i.

Proof (Proof of Theorem 1). We have that T (P ) = V −K
∑K|P |

x=1 f(x) ≤
V −K

∑K|P |
x=1 g(x) ≤ V −K

∫K|P |
0 g(x)dx = V −K (AK|P |+B)1−λ−B1−λ

A(1−λ) . By replacing
the values of A and B and simplifying, we obtain

T (P ) ≤ V (K + 1)((V (K + 1)|P | − |P | + 1)1−λ − 1)
(V (K + 1) − 1)(1 − λ)

. After using V (K+1)|P |−
|P | + 1 ≤ V (K + 1)|P | and (V (K + 1))1−λ = K + 1, and after replacing the
value of λ, we obtain

T (P ) ≤ V (K + 1)((K + 1)|P |1−λ − 1)(lnV + ln(K + 1))
(V (K + 1) − 1)ln(K + 1)

. (3)

Since V ≥ 2 and K + 1 ≥ 2, we have V (K + 1)/(V (K + 1) − 1) ≤ 4/3
and 1/ln(K + 1) < 3/2. By introducing thees values in (3), we obtain T (P ) ≤
2(K + 1)|P |1−λ(lnV + ln(K + 1)).
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Fig. 8. PMT-based Access Control System

5 PMT Access Control System

In this section, we present the construction of the access control system. Then
we show a cache optimization to improve performance by skipping the PMT
matching and accessibility evaluation. Lastly, we describe the runtime policy
update mechanism.

5.1 Access Control System

The proposed access control system is constructed through Access Control Mod-
eling and Model Deployment shown in Fig. 8. In Access Control Modeling, the
access control policy is converted to an internal data structure, a PMT, so that
each rule is represented by a set of nodes and by edges with one or two match
targets. In Model Deployment, an empty cache table is prepared.

At runtime, given an access request from an application or a DBMS, the
access control system runs an evaluation for the accessibility decision. The sys-
tem may add a new entry to the cache, as long as the corresponding entry is
not found in the cache and the accessibility decision is uniquely decided owing
to independency of the data values. Otherwise, the previously cached value is
returned directly without PMT matching.

This system structure separates the access control system from the database
engine so that security-related support is not required from the underlying data-
base. In addition, it enables any DBMS to offer access control even if it is an
off-the-shelf product.

5.2 Optimization with an Accessibility Cache

Since the accessibility status of a path remains unchanged even if the XML data
changes as long as the access control does not involve any value-based evalua-
tions, the result of an accessibility evaluation can be cached, thereby improving
runtime performance. This is particularly beneficial if a path appears multiple
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times in an XML document(s), or in a document type, because obtaining the ac-
cessibility result by looking at the accessibility cache allows the system to avoid
repeating accessibility evaluations.

The accessibility cache, generated individually for each action type, is a table
of 3-tuples: subject, path, and accessibility decision. During an evaluation with
no predicate, an entry will be added to the accessibility cache table. Otherwise,
when the accessibility depends on the data values in the XML document, the
accessibility results may be different with different subtrees and different docu-
ments, and therefore, the accessibility evaluation involving predicates must be
performed at every access.

We show an example using the access control policy P1. The initial acces-
sibility cache table is empty. When M1 as presented in Sect. 4.1 finishes, we
obtain an accessibility cache table for read action which contains 1 entry:

{group:’manager’, /Record/Item/Address, grant}.
There is only one entry in the cache table since the second access request

was evaluated on the basis of an XML data value. Meanwhile, though the first
access request contains both userID and group data, the subject of the corre-
sponding cache entry only holds the group. This is because for PMT matching,
the userID does not affect the accessibility decision that a manager’s access to
/Record/Item/Address is always granted without regard to the userID. If any
manager accesses the same path, /Record/Item/Address, in another XML doc-
ument, the grant is looked up and directly returned as the accessibility decision.

When a user is bound to multiple groups such that the accessibility is decided
by multiple matching results, rather than generate a single cache entry, it is
efficient to generate one entry for each group. The cache entries can easily be
reused by other requesters in the same group(s). However, for rules involving a
userID or a role, the number of entries inserted into the accessibility cache table
is limited to one.

To generate a proper accessibility cache entry, the subject information that
decides the accessibility is required. Howevner, without recording each visited
path in the PMT, there is no way to know the corresponding matched subject.
This calls for extra computation to obtain the matched object information with
the current PMT structure, especially when multiple match targets for userID
and groups are visited. To resolve this problem, we enhance the match target of
the Obj matching by retaining the subject of the access control rule. Because
each access control rule is bound to an individual match target, carrying the
subject along with the match target can meet the requirements for accessibility
cache generation.

5.3 Access Control Policy Update

In some real applications, the access control policy may be updated at runtime.
For instance, if a new role is introduced into the running system, then the cor-
responding access control rules should be added to the system as well. In our
previous work Qi et al.[28], real time policy update was not supported, since
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multiple access control conditions were combined into an access condition ex-
pression. In the PMT model, it is possible to perform real time updates on the
PMT when the policy is updated during runtime, since each rule has a corre-
sponding match target which is distinguished by a unique rule ID RID.

The RID in the match target plays a crucial role in runtime rule removal.
The match target, nodes and edges are removed bottom-up if the components are
not shared by other rules. When a rule is updated, the PMT reacts by removing
and adding the corresponding components without changing the PID in the
match target. It costs O(m(2+D+1)) time to add, remove, or update the rules,
where m is the number of new rules, 2 is from the Act matching, and the Sub
matching, D is the maximum depth of the objects, and 1 is for the match target.

6 Experiments

In this section, we describe our experiments to evaluate the performance of our
PMT-based access control mechanism for XML documents. All of the experi-
ments were conducted on a machine with a 1.8GHz Pentium 4 CPU, 1.5GB of
main memory, and IBM JDK1.4.2. We discuss the experimental data in Sect. 6.1
and present the results in Sect. 6.2.

6.1 Experimental Data

To demonstrate the scalability of the system, we examined the memory require-
ments when a large access control policy is loaded into main memory, and the
access control processing times when a large XML document is processed. To
show the expressiveness of the access control specification, we ran experiments
involving predicates and we collected the update performance. In addition, we
show the performance gains achieved with the accessibility cache and evaluation-
skipping mechanisms.

We use two XML document types in our experiments. The first one, Orders,
is a real data set describing business transactions, and we prepared two different
documents of that type, with sizes of 100 KB and 4 MB. The other type is
the XMark benchmark data, where we used a 111MB standard.xml file. Both
document types contain subtrees with similar structures occurring repeatedly at
the same level.

6.2 Results

Scalability for Large Access Control Policies. In practice, the number
of access control rules is on the order of millions, which is a product of the
number of document types (in 1000’s) and the number of user roles (in 100’s).
The main purpose of this experiment is to see whether or not the PMT model
can support large access control policies. For simplicity, we specified 760,000
access control rules for 30,400 users for the Orders document type. Each user
was associated with a set of 25 access control rules specified with simple path
expressions and +r. Fig. 9(a) shows the rule set for User1, and Fig. 9(b) shows
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Fig. 9. Sample Access control rules and the corresponding PMT

the corresponding PTM image, showing that the subtree structure for the Sub
matching is actually identical. The experiment shows that 760,000 access control
rules use almost 640 MB implying each rule takes about 0.84KB on average.

Scalability for Large XML Documents. In many access control systems, it
is necessary to support access control for large XML documents. For example,
XML-formatted documents for record retention may be several megabytes in
size. In this experiment, we show the performance of the system by examining
the total processing time when the XML documents are 100 KB and 4 MB.

For each subject, we specified 25 access control rules such as shown in
Fig. 9(a) for Orders.xml. All rules specified a +r permission. Both documents
contain repeated sub-structures under /Orders/Order and so most parts of the
access control are duplicated at multiple locations. We used the SAX API of the
XML parser to parse the entire document, and checked the accessibility when
encountering either an element or an attribute. The processing time includes
the XML parsing time, the access control time, and the garbage collection time
if it occured. In this experiment, we defined the total time excluding the pars-
ing time as the AC Time. We also measured the performance improvements
achieved with caching. In Fig. 10, the processing times of the full documents are
shown.

From the bars, it is clear that the accessibility cache makes a significant
improvement in processing times. For the 100 KB document, the accessibility
cache reduces the AC time by almost 51%. For the 4 MB document, the AC
time is reduced to 21%. Since 4MB document contains more duplicated Order
subtrees, it derives more benefit from the accessibility cache.
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Fig. 10. Processing time for entire documents

Fig. 11. Access control times vs. #s of Rules

Effect of Policy Size. In this experiment, we see the relationships between the
access control performance, mostly decided by the matching time, and the policy
size. The accessibility cache was disabled in this experiment. We specified various
policy sizes from 2,000 to 20,000 rules, in which 80 ∼ 800 users are bound to
the kind of access control rules presented in Fig. 9(a). For comparison, we also
prepared a group of rules that led to multiple matched targets by specifying
parts of the rules in Fig. 9(a) with +R.

By processing the paths of an entire XML instance record.xml, we calculated
the average access control times on random paths. The results are shown in
Fig. 11, from which the XML parsing time has been eliminated.

To match an access request against the PMT, on average it costs close to 6.6
microseconds when a single target is matched (S), and 11 microseconds when
multiple targets are matched (M). The results show that the access control time
is affected by the number of matched targets, but little affected by the policy
size for our access control model.

In Sect. 4.2, we showed why the expected matching times and the number
of visited nodes during the matching should be sub-linear with regards to the
policy size. The experimental results are different from our analysis in that to
the same access control request each matching on the corresponding PMT of
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Fig. 12. Access control times vs. Object Length

both S and M results in static outgoing edge(s) in the Act matching, the Sub
matching, and the Obj matching. As a consequence, the number of visited nodes
for a specific user is static without regard to the policy size.

Effect of Object Length. This experiment was run to examine the rela-
tionship between the access control performance and the depths of the targets
of the access control rules. The accessibility cache was disabled in the exper-
iment. We specified policies with different object paths varying from 1 ∼ 13
for standard.xml. The experimental results are shown in Fig. 12. As the fig-
ure shows, the average access control time varies from 6.4 ∼ 6.8 microseconds,
showing that it increases only slightly as the object length increases.

As above two experiments show, for the current implementation, the number
of matched targets has more effect on the access control performance. The reason
is that when multiple match targets are visited during the match, the accessibility
can be decided by combing the matching results, during which access conflicts
should be resolved.

Performance on Predicates. As presented in the section on the Pred match-
ing construction in Sect. 3.4, regardless of the number of the predicates involved,
the predicate evaluation is performed only once during the Pred matching. Since
the performance of data retrieval from the XML database depends on the per-
formance of database itself, we eliminated the time spent on data retrievals in
the experiment. The accessibility cache was disabled in this experiment.

Since the match on the PMT is performed twice, once for the Obj matching
and again for the Pred matching, the results show that the access control time
is almost twice the time without predicate evaluation: 11 ∼ 17 microseconds per
path. The cost was independent of the number of predicates.

Performance on Policy Updating. Real-time update is supported by the
PMT, as shown in Sect. 5.3, and both adding and removing access control rules
costs O(m(3 + D)) time, where m is the number of access control rules, D
is the maximum depth of he objects. We tested the update performance by
measuring the times for adding 20,000 rules and removing 20,000 rules. From
the experiments, the results show that the average time to add an access control
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rule to an existing PMT is 33 microseconds, and that the average time to remove
an access control rule from the PMT is almost 17 microseconds. Therefore, to
update a rule, it takes almost 50 microseconds, since we first remove the original
rule and then add the new one. This time is considered to be reasonable for a
real access control system.

7 Conclusions and Future Work

In this paper, we have proposed a policy matching tree (PMT) model for provid-
ing expressive and scalable access control for XML databases. We first present
the PMT generated on the basis of the access control rules. We then described
the accessibility evaluation mechanism that matches each access request against
the PMT, and decides the accessibility on the basis of the matched results. The
PMT also supports // and predicates involved access control, and the expected
matching times are shown to be sub-linear relative to the policy size. To improve
the performance, we enhanced the access control system with a cache mecha-
nism that eliminates the need for matching when the same subject accesses the
same path repeatedly. Comparing with our previous work, the limitations on the
expressiveness are expanded, and the runtime PMT updates are supported for
policy updates.

To demonstrate the scalability and efficiency of the proposed model, we per-
formed experiments using synthetic and real XML documents. Experimental
results show that the PMT model supports 760,000 access control rules and
can perform accessibility checks in 6.4 ∼ 11 microseconds per path. This model
also supports access control involving predicates at a cost of 11 ∼ 17 microsec-
onds. An accessibility cache further improves performance by a factor of 2 to 5,
depending on the XML data structures.

Through these experiments, we also found that when multiple match targets
are matched, the performance is twice as slow as the case for a single matched
target. In future work, we plan to improve the PMT implementation to achieve
better performance for multiple matched targets. We also plan to build the PMT
with less memory.
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Abstract. The Semantic Access Control Model (SAC), built on the ba-
sis of separation of the authorization and access control management
responsibilities, provides adequate solutions to the problems of access
control in distributed and dynamic systems with heterogeneous security
requirements. SAC is characterized by its flexibility for accommodating
dissimilar security policies, but also by the ease of management and con-
trol over a large number of distributed elements and the support for
interoperability of authorization mechanisms. In this paper, we present
the semantic validation algorithms developed in SAC to detect seman-
tically incomplete or incorrect access control policies. Additionally, the
formal model of SAC along with some proofs of its soundness is intro-
duced. This formalization is the basis for additional model checking of
the semantic validation algorithms developed.

Keywords: Access Control, Authorization, Distributed Systems Secu-
rity, Formal Methods in security.

1 Introduction

When security requirements for distributed applications are considered, autho-
rization often emerges as a central element in the design of the whole security
system. Many other security requirements depend on the flexibility, trustworthi-
ness and expressiveness of the authorization scheme. On the other hand, access
control is the mechanism that allows resource owners to define, manage and en-
force the access conditions for each resource [16]. These two concepts are very
closely related because authorizations are usually the basis for the access decision
in access control systems.

The notions upon which an access control model is defined determine its
flexibility to be applied in different environments and systems. Traditional ac-
cess control models have been designed to provide access control in some specific
scenarios. However, the mechanisms provided by these models are not expressive
enough to deal with very dynamic environments with a high volume of hetero-
geneous data, where new resources are incorporated to the system continuously,
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each resource possibly needing a different access control policy, and where poli-
cies may change frequently. Furthermore, traditional access control schemes are
not suitable for scenarios where the local registration and authorization of users
is not appropriate or with a very large number of heterogeneous registered users.
In these systems, for scalability reasons, it is not practical to keep access and
authorization information for each user.

In this paper, we present the formalization of a more general access con-
trol model developed for these new environments. The Semantic Access Control
(SAC) model [20] was especially designed for handling the access control in het-
erogeneous, distributed and large environments. This model solves the above
mentioned scalability problems, facilitates access control management, and pro-
vides a means to express access conditions in a natural and flexible way.

SAC considers the operation of several independent access control systems
and authorization entities. The access control to resources is independent of their
location. Additionally, the identification of the user or client is not mandatory.
On one hand, the client possesses a set of attributes and, on the other hand,
the access control to resources is based on the specification of a set of attributes
that the client has to present to gain access to them. For interoperability and
security reasons, client attributes must be digitally signed (in the form of an
attribute certificate) by a trusted certification entity, external to the access con-
trol management system. The independence of the certification of attributes is
the key to the interoperability achieved because it allows attributes to be safely
communicated avoiding the necessity of being locally recorded by the system
administrator. Additionally, this approach avoids the registration phase of the
client, and the recording of a client attribute for each access control system. For
this approach to be secure, a mechanism to establish the trust between these
access control systems and the authorization entities was required. We addressed
this problem using semantic information about the certifications issued by each
authorization entity. One of the main characteristics of the SAC model is that, as
opposed to traditional schemes, the attributes required to access a resource may
depend on the semantic properties of the resources. The allocation of the policy
corresponding to a resource is not based on the storage structure of resources
but on their semantic properties. Of course, it is also possible to consider the
structure of storage.

An orthogonal problem when defining an access control model is to assure
that it is semantically sound. In this context, soundness means that users not
fulfilling the access policy cannot access resources. SAC enables the semantic
validation of the access control policies. Additionally, in order to prove sound-
ness, we have formalized the SAC model using inference rules. The construction
of the formal model makes use of the semantic information handled through
the different SAC metadata models [23]. In this formalisation, we have defined
two different entailment relations: the first one is able to infer whether a tar-
get satisfies an attribute; the second relation deals with the access policies. In
this last case, we have introduced some useful operators that combine different
access rules. It is worth noting that the formal model presented has inherited
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the flexibility of SAC in the sense that, if necessary, we may add new operators
transparently.

In summary, SAC was developed to facilitate the management of complex
access control systems, while guaranteeing the simplicity, correction and safety of
the system. To deal with this, SAC provides a set of algorithms for the automatic
validation of the access control policies defined by the system administrator. This
work presents the formal basis to prove its correctness.

This paper is organized as follows. Section 1 presents some related works.
Afterwards and before introducing the formal model of SAC, Section 2 shows
some background on SAC which helps its formalisation. Section 3 introduces the
formal model of SAC with the formalization of the Source of Authorizations of a
PMI and the derivation rules to deduce information from certificate classes. We
finalize with some conclusions and projected work for the near future. Lastly but
not least, an example and proofs of theorems are illustrated in the appendices.

2 Related Works

Traditional access control models such as Discretionary (DAC) [1], Mandatory
(MAC) [15] and Role-Based (RBAC) [17] Access Control were developed for
closed environments. Consequently, they are built on the basis of modelling
the environments that motivated their development [23]. Among these mod-
els, RBAC is commonly accepted as the most appropriate paradigm for the
implementation of access control in complex scenarios. RBAC can be considered
a mature and flexible technology. In RBAC, the structure of groups is defined
by the security administrator and it is usually static. Although grouping users
can suffice in many different situations, it is not flexible enough to cope with
the requirements of more dynamic systems where the structure of groups can
not be anticipated by the administrators of the access control system. In these
scenarios, the structure of the system may be increased dynamically with new
resources which may possibly need a different group structure and access control
policy. Additionally, the policy for a given resource may change frequently.

We believe that a more general approach, such as the one presented by the Se-
mantic Access Control model, is needed in order to properly deal with these new
environments. For example, in the referred situations, groups are artificial sub-
stitutes of a more general tool: the attribute. In fact, groups are usually defined
on the basis of the values of some specific attributes (employer, position, · · · ).
Some attributes are even built into most of the current access control models.
This is the case of the user element; the identity is just one of the most useful
attributes, but it is not necessary in all scenarios and, therefore, it should not be
a built-in component of a general model. Recent literature in the area of access
control for distributed heterogeneous resources from multiple sources shows the
use of attribute certificates and PMIs. Firstly, we highlight two research projects,
Akenti [7] and Permis [5]. Akenti Project proposes an access control system to
restrict access to distributed resources controlled by multiple stakeholders. The
requirement for the stakeholders to trust the rest of the servers in the network, as

.
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well as some security vulnerabilities related to the existence of positive and neg-
ative use-conditions, are the main drawbacks of Akenti. The PERMIS Project
[13] objective is to set up an integrated infrastructure to solve identification and
authorization problems. A specific goal is to specify the authorization policy in
a language that can be both easily parsed by computers and read by the security
administrators with or without software tools. The PERMIS group concluded
that XML is the most appropriate candidate for a policy specification language.
However, because PERMIS system is based on the RBAC model, it shares its
limitations. Moreover, the requirement of supporting a PKI is hard to fulfil and
it is not necessary in many authorization scenarios.

Regarding the different XML-based languages proposed for access control,
digital rights management, authentication and authorization, many similarities
and interesting features can be found among them. Some other features, such
as policy parameterisation and composition are not supported. Moreover, some
features provided by those languages are not appropriate in heterogeneous and
dynamic scenarios. Two relevant proposals for access control to XML documents
are the Author-X system [2] and the FASTER project [6]. They differ from SAC
in that both systems have been specifically developed for XML documents, unlike
the general definition of resource in this work. Author-X is based on credentials
that are issued by the access control administrator. Therefore, in practice, each
credential will be useful only for a single source, limiting interoperability. A direct
consequence of this approach is that users must subscribe to sources before they
can access their contents. In the Semantic Access Control Model (SAC) however
we have semantically integrated a Privilege Management Infrastructure that
will be responsible for issuing digitally signed attribute certificates. Another
relevant proposal is XACML [14], an OASIS standard that proposes two XML-
based languages to describe access control policies and access decision requests
and responses. Although XACML and SAC share some similarities, there are
important differences [21].

Other access control languages have been developed in the security commu-
nity to support different access control approaches. Jajodia et al. present in [9]
a logical language which allows users to specify the policy according to what
access control decisions are to be made as well as the authorizations. SAC is
focused in this direction, but in the SAC case we are interested in access control
for highly dynamic systems with an important volume of heterogeneous data and
multiple independent data sources. We use XML and XML Schema to enable
the definition of policies expressed by means of rules and the representation of
derivation rules for the attribute classes used in the policies semantic validation.

Some works have used formal semantics for policy representation and evalu-
ation such as [19] but this work differs from ours in that they address issues such
as positive and negative authorizations. Another interesting work is the Policy
Maker system [3,4], which focuses on construction of a practical algorithm for
determining trust decisions. The main drawback of this proposal is the use of a
policy language with a low abstraction level and it is very cumbersome, unlike
the SPL policy language defined in SAC.
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Finally, we must highlight an innovative feature presented by SAC which is
semantic and contextual validation of policies. In SAC we have taken into ac-
count that the creation and maintenance of access control policies is a difficult
and error prone activity. Therefore, in the design of SAC we have considered
that this access control model must facilitate and guarantee the correct admin-
istration of the system. To reach this objective, a set of algorithms have been
defined to detect incorrect access control policies. The semantic algorithms carry
out inference processes using the rules defined in the Source Of Authorization
Description (SOAD) documents and have been implemented as part of the Se-
mantic Policy Validator (SPV) tool.

3 Fundamentals of the Semantic Access Control Model
(SAC)

Most of current access control schemes base their authorization approaches on
locally-issued credentials that are based on user identities. This type of credential
presents many drawbacks. Among them we highlight:

(a) they are not interoperable;
(b) the same credentials are issued many times for each user, which introduces

management and inconsistency problems;
(c) credentials are issued by the site administrator, however, in most cases, the

administrator does not have enough information or resources to establish
trustworthy credentials; and

(d) they depend on user identity. However, in practice, frequently the identity
of the user is not relevant for the access decision. Sometimes, it is even
desirable that the identity is not considered or revealed. Furthermore, in
systems based on identity, the lack of a global authentication infrastructure
(a global Public Key Infrastructure, PKI) forces the use of local authenti-
cation schemes. In these cases, subscription is required and users have to
authenticate themselves to every accessed source.

To solve the aforementioned problems, single-sign-on mechanisms are becom-
ing popular [18]. Although these mechanisms represent an improvement, they do
not enable interoperability while maintaining the diversity. The reason is they
are based on federation of sources and all federated sources must agree on a
homogeneous access control scheme. Additionally, credentials remain local, not
to a site, but to a set of them.

On the other hand, digital certificates [8] can securely convey authorizations
or credentials. Attribute certificates bind attributes to keys and make authoriza-
tions interoperable and mobile, since attribute certificates can securely transport
authorization information. This mobility provides the foundation for a better al-
ternative to actual Single Sign-On schemes.

Another important advantage of attribute certificates is that they can be
used for various purposes. They may contain group membership, role, clearance,

M Gallardo, and A. Maña.
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or any other form of authorization. As a consequence, digital certificates provide
means for the deployment of scalable and flexible access control schemes, since
access conditions are expressed in terms of sets of attributes instead of users or
groups. Users must possess attribute certificates attesting that they meet the
requirements. As opposed to traditional access control schemes, a high number
of users and attributes do not degrade performance and manageability of this
solution.

On the other hand, when discussing how to establish the access conditions
applicable to a particular resource, two main approaches must be considered: (i)
conditions are established on the basis of the location of the resources or, (ii)
conditions are based on the properties of the resources. The fact is that con-
ditions and restrictions of access naturally depend on the semantic properties
of the target resource that are neglected in structure-based approaches. There-
fore, an approach based on semantic descriptions of the contents is much more
flexible and natural. Moreover, it is easy to incorporate structure-based require-
ments in the semantic model. Additionally, the structure is much more volatile
than the semantics. The incompatibility between the structure required for the
application domain and the ones that match the security requirements confirms
that structure-based approaches are not able to represent these situations in a
natural way.

Another drawback of structure-based approaches is that the number of poli-
cies becomes very large. In fact, these approaches usually imply the definition of
several policies for each resource. Positive and negative authorizations are used
in these cases to facilitate the definition of simple policies and to reduce the
number of policies. The price to pay is the presence of ambiguities, which in
turn requires the definition of conflict resolution rules. Consequently, the admin-
istration of the system becomes complex and difficult to understand, increasing
the chance of incorrect policies being produced.

The Semantic Access Control model (SAC) [20] was developed following a
different approach. It was called this because semantics are the basis of the ac-
cess conditions and its design follows a semantic approach. The SAC model is
based on the semantic properties of the resources to be controlled, properties of
the clients that request access to them, semantics about the context and finally,
semantics about the attribute certificates trusted by the access control system.
The semantic-based and modular approach adopted in SAC, facilitates the de-
finition and management of policies avoiding the use of positive and negative
authorizations. Tools provided to support the policy specification, composition
and validation also serve this objective. The Semantic Access Control model
has been implemented on the basis of the Semantic Policy Language (SPL) to
specify the access control criteria and the semantic integration of an external
authorization entity.

3.1 Semantic Policy Language (SPL)

SPL XML-Schema based policy definition language [24] was designed to specify
policies in a simple way, enabling high level expressiveness and efficient evalua-
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tion. Usual components of access policies include the target resource, the condi-
tions under which access is granted/denied and, sometimes, access restrictions.
As opposed to other languages, specifications in SPL do not include references
to the target object. Instead, a separate specification called Policy Applicability
Specification (PAS) is used to relate policies to objects dynamically when a re-
quest is received. Both SPL Policies and PAS use semantic information about
resources, included in Secured Resource Representations (SRRs), and other con-
textual information documents.

SPL Policies and PAS can be parameterised allowing the definition of flexible
and general policies, thus reducing the number of different policies to be man-
aged. Parameters, which can refer to complex XML elements, are instantiated
dynamically from semantic and contextual information. Additionally, policies
can be composed, importing components from other policies without ambiguity.
This compositional approach allows us to define the abstract meaning of the
elements of the policies, providing a mechanism to achieve abstraction, which
also helps in reducing the complexity of management.

The schema for SPL specifications is represented as a set of XML-Schema
templates that facilitate the creation of these specifications, allowing their au-
tomatic syntactic validation [24]. SPL policies can include components defined
locally as well as imported elements. The ability to import elements enables the
modular composition of policies based on the XPath standard. An SPL Policy is
composed of a set of access Rule elements. Every access Rule defines a particular
combination of attribute certificates required to gain access, associated with an
optional set of actions (such as Notify To, Payment and Online Permission) to
be performed before access is granted. In this way, provisional authorization or
PBAC [10] is enabled in SPL.

3.2 Semantic Description of the Sources of Authorization (SOAD)

As we have already mentioned, one of the basis of SAC is the separation of
the certification of attributes and access control management responsibilities, in
order to build a scalable and flexible solution.

A Privilege Management Infrastructure (PMI) [8] provides attribute certifi-
cation services. It is then reasonable to expect that the PMI includes different
certification authorities (SOAs), each one with a well-defined certification do-
main. That is, each SOA should be authoritative for a limited set of attributes
and users. Ideally, each attribute would be certified only by one SOA. This raises
the issue of the interoperability of the attribute certificates.

For example, suppose that Peter Smith is an authorized broker at the
Chicago Board of Trade. Then Peter will have two separate certificates: an iden-
tity certificate attesting to his identity information and an attribute certificate
attesting to his being an authorized broker at the Chicago Board of Trade. Both
certificates can be related, for instance, by including the serial number and/or
a hash value of the identity certificate in the attribute certificate. Suppose now
that our friend Peter Smith is also member of the Chicago Siesta Club (CSC),
a public library, Greenpeace, etc. If centralized access control schemes are
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used in these institutions, each one will have to locally register the different at-
tributes of Peter Smith that are applicable to their access control policies. For
instance, if the CSC has a discount for Greenpeace members then it is necessary
to record Peter ’s Greenpeace membership in the local database of users of
CSC. However, how can CSC be sure that Peter is member of Greenpeace? What
if Peter leaves Greenpeace? How does CSC know about this?

On the contrary, if the attribute certification function is separated then ac-
cess control systems responsibilities are limited to establishing the local access
control policies, making the system simpler, more dynamic and flexible, and
more secure. Obviously, this approach requires that the access control system is
complemented by an external component providing certification functions. The
PMI is precisely that component. A consequence of the separation of access con-
trol and authorization functions (now provided by the PMI) is that the access
control administrators do not have control over some factors that are used in
their access control systems. Consequently, a mechanism to establish the trust
between these administrators and the PMI is required.

In SAC, we addressed this problem using semantic information about the
certifications issued by each SOA. This assists the security administrators in
the creation and semantic validation of access control policies. In SAC, every
SOA produces and digitally signs a set of Source Of Authorization Descriptions
(SOADs) that express the semantics of the attribute certificates it issues [22].
These metadata documents describe the different attributes certified by a SOA,
including names, descriptions and relations of attributes. SOADs are used to
establish the trust between the PMI and the access control systems. They convey
the information needed by the access control system to understand the semantics
of the attribute certificates, which is essential in order to take appropriate access
decisions.

3.3 Semantic Validation of Policies

The information contained in SOADs is also essential for the semantic validation
of the policies, enabling the detection of semantically incomplete (or incorrect)
policies through a Semantic Policy Validator (SPV) tool developed with this
objective [20]. The SPV makes inference processes using the rules defined in the
SOAD documents. The semantic validation ensures that the policies written by
the security administrator produce the desired effects. An interesting feature of
the SPV is that it allows policies to be validated in the context where they will
be applied. The use of semantic information about the context allows the admin-
istrator to include relevant contextual considerations in a transparent manner.
The SPV can perform three types of validations:

1. Test Case Validation: Given a request to access a resource and a set of
attribute certificates, this algorithm outputs the sets of attribute certificates
needed for accessing that resource. Most of the time, this feature will be used
to check that a set of attribute certificates is incompatible with the access
criteria for that resource. For instance, the administrator of our university
can use this validation to guarantee that it is not possible for a student
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to access a given resource (i.e., documents containing marks). During the
validation process, the SPV generates the sets of attribute certificates that
are not excluded by the input set, and checks the generated ones against
all possible combinations of attribute certificates that grant access to the
resource.

2. Access Validation: Given a request to access a resource, this algorithm out-
puts the sets of certificates that grant access to that resource. For this vali-
dation process, the SPV generates the policy for the resource and all sets of
attribute certificates equivalent to those required by the policy.

3. Full Validation: The goal of this process is to check which resources can be
accessed given a set of attribute certificates. Therefore, SPV generates the
policy for each resource and, afterwards, all attribute certificates that can
be derived from the input set of attribute certificates. Finally, it informs of
every resource that can be accessed using the input attribute certificate set.

4 Formal Model of the Semantic Access Control

In this section, we formalize the deductive approach followed by the SAC model
in order to grant/deny a request to access a given resource.

A target is any entity that may hold properties. In the SAC model, targets
may be clients or resources. Properties of the targets are called attributes. Let T
and A be, respectively, the sets of all possible targets and (atomic) attributes in
a given application domain. We assume that each attribute a ∈ A has a negative
counterpart ¬a ∈ A denoting the opposite attribute. For instance, attribute
“non-student” is the negative counterpart of “student”. In addition, we suppose
that ¬¬a = a. The first step to formalize SAC is to associate each target t with
the set of attributes it holds at every instant in time. To this end, we define the
set A∗ = A∪ {!a|a ∈ A}.

Function K : N → (T → ℘(A∗))1 defines the true attributes held by targets
in each time instant as follows:

– a ∈ K(m)(t) means that target t holds attribute a at time instant m.
– Targets cannot hold simultaneously an attribute a and its negation ¬a in

an specific time instant m. Thus, a ∈ K(m)(t) ⇒ ¬a �∈ K(m)(t). On the
other hand, it is possible that some attributes cannot be associated to certain
targets. Thus, it may be that both a �∈ K(m)(t) and ¬a �∈ K(m)(t) hold. For
instance, it makes no sense to apply attributes “divorced”/“non-divorced”
to a “printer”.

– Operator ! is a weak version of ¬ whose meaning is given as
!a ∈ K(m)(t) iff a �∈ K(m)(t) (4.1)

That is, !a ∈ K(m)(t) means that t does not hold attribute a at time instant
m. But it says nothing about ¬a. However, when ¬a ∈ K(m)(t), following
the previous discussion, we have that

¬a ∈ K(m)(t) ⇒!a ∈ K(m)(t) (4.2)
1 ℘(A∗) denotes the powerset of set A∗.
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It is worth noting that time is introduced in the formal model because at-
tributes held by targets may vary with time. Thus, it is possible for a target to
hold an attribute a in a given instant m and to hold ¬a in some future instant
f > m. For example, target Marı́a may currently have the attribute “student”,
but it is very probable that, in the future, when she finishes her studies, Marı́a
holds attribute “non-student”. In order to properly deal with time, we assume
that function ctime :→ N returns the current time instant.

In contrast to the true facts represented by function K, the SAC model makes
use of SOAs to certify such facts. In other words, SOAs are the formal artefact
devoted to providing certificates about targets that must be consistent with the
reality represented by function K. In the rest of this section, we formally define
how SOAs infer information about targets when required.

4.1 Formalizing SOAs

As mentioned above, a Source of Authorization k.a. SOA is a certification entity
responsible for issuing attribute certificates attesting to a set of properties about
targets. Each SOA has a certification domain, i.e. a set of targets and properties
that can be certified by this SOA. For instance, the SOA of a university may
issue certificates related to the enrollment of its students in courses, but not
about their marital status. Likewise, it can not issue certificates related to the
enrollment of students from other universities. Let S be the set of all SOAs in a
given domain. In the sequel, we will use symbols σ, τ , etc. as elements of S.

Given a SOA σ ∈ S, an attribute certificate signed by σ is an expression
of the form σ〈〈a, t〉〉d, where d represents the temporal limit of the validity of
the sentence. Thus, σ〈〈a, t〉〉d means that σ certifies that target t holds attribute
a from the current time instant until the validity of the certificate expires in
time d. We assume, without loss of generality, that the holder t of this attribute
certificate will be identified by its public key2. Let Tσ ⊆ T be the set of all
targets in the certification domain of σ.

Besides attribute certificates, in our model, SOAs also provide rules (rep-
resented in SOAD metadata documents) defining semantic relations among at-
tributes using the so-called certificate classes. Given an attribute a ∈ A∗, the
certificate class σ〈〈a〉〉 is used by the rules to express that SOA σ is responsible
for checking attribute a. Thus, the notation of certificate classes allows us to
easily represent the trust relationship among SOAs.

Formally, each SOA σ ∈ S is constituted by a 3-uple 〈Dσ, Σσ, SOADσ〉 where

1. Dσ ⊆ S is the set of SOAs in which σ trust to delegate the task of issuing
attribute certificates. We assume that σ ∈ Dσ.

2. Σσ ⊆ A∗ × Tσ × N is the set of all attribute certificates attested by σ with
the corresponding deadline. As on commented above, elements of Σσ are

2 In asymmetric encryption schemes each user has a pair of related keys. One of these
keys, the Public Key, is publicly distributed while the other one, the Private Key,
must be kept secret. Public Key’s are included in digital certificates, so that other
users can verify their authenticity.
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denoted as σ〈〈a, t〉〉d. Sometimes, we will write them as 〈〈a, t〉〉d for the sake
of simplicity. We assume that SOAs only sign true certificates, that is, the
following assertion holds:

〈〈a, t〉〉d ∈ Σσ ⇒ ∀m ∈ N.(ctime ≤ m ≤ d ⇒ a ∈ K(m)(t)) (4.3)

3. Let Cσ = Dσ × A be the set of certificate classes regarding SOA σ. Then,
SOADσ ⊆ ℘(Cσ)×OpSet×A∗ is the SOA description constituted by a set
of rules, each one representing a relation between a set of certificate classes
and a given certificate class. The set of relational operators considered is
OpSet = {→, Φ}, where → is the usual implication, and operator Φ is used
to denote inconsistency and it will be formally defined below. For example,
assuming that τ ∈ Dσ, rule τ〈〈b〉〉, σ〈〈c〉〉 → σ〈〈a〉〉 could be an element of
SOADσ, indicating that any target holding attributes b and c also holds a.
In addition, the rule also expresses that σ delegates the task of checking b
to SOA τ . It is worth noting that certificate classes appearing at the right
side of rules always refer to the SOA defining the rule, this is why no SOA
identifier is needed and it will be omitted for the sake of simplicity. As before,
we assume that SOAD rules only establish true relations among attributes,
that is, the following assertion holds

σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈a〉〉 ∈ SOADσ ⇒
∀m ∈ N, ∀t ∈ Tσ.({a1, · · · , an} ⊆ K(m)(t) ⇒ a ∈ K(m)(t)) (4.4)

The Semantic Access Control (SAC) makes use of SOAD rules to derive
information about properties. We have developed two derivation relations, �σ

r

(Figure 1) deduces information from certificate classes, and �σ
at (Figure 2) deals

with attribute certificates. In order to avoid confusion, from now on, we call
d-rules the rules appearing in these two figures.

In the d-rules appearing in the figures, we are assuming that σ is the SOA
from which new rules or attribute certificates are being inferred. The rest of the
SOAs are supposed to belong to Dσ.

Next, we give short explanations about the meaning of each d-rule of Figure 1.

R1
σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈b〉〉 ∈ SOADσ

�σ
r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈b〉〉 (SOADσ rules)

R2
�σ

r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈a〉〉,�σ
r σ〈〈a〉〉 → 〈〈b〉〉

�σ
r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈b〉〉 (Transitivity)

R3
�σ

r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈!b〉〉
�σ

r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉Φ〈〈b〉〉 (Inconsistency)

R4
�τ

r σ〈〈b〉〉 → 〈〈!a〉〉
�σ

r τ 〈〈a〉〉 → 〈〈!b〉〉 (Exclusion)

Fig. 1. d-rules for certificate classes
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R1 Every SOADσ rule is directly derived by �σ
r . Note that the left part of each

rule may contain references to other SOAs meaning delegation for checking
the corresponding attribute. Since σ ∈ Dσ, R1 also deals with rules of the
form σ〈〈a〉〉 → 〈〈b〉〉.

R2 This d-rule defines transitivity. It may be directly inferred using the d-rules
for �σ

at described below. However, we define it explicitly in order to simplify
the algorithms implementing the SAC deductive system.

R3 This d-rule defines the inconsistency between a given certificate class issued
by σ and a set of them. If we can deduce σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈!b〉〉
then we conclude that attributes σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 and 〈〈b〉〉 are in-
consistent, that is, they cannot be held simultaneously. We use symbol Φ
to denote inconsistency.

R4 The exclusion d-rule says that both τ〈〈b〉〉 → 〈〈!a〉〉 in SOADσ and σ〈〈a〉〉 →
〈〈!b〉〉 in SOADτ may be used to prove that attributes a and b are incon-
sistent. Note that although these two assertions are logically equivalent,
it is possible that we can prove only one of them, depending on the rules
appearing in the corresponding SOADs. This d-rule also includes the case
where SOAs σ and τ coincide.

The following proposition proves that �σ
r only produces true relations among

certificate classes. See appendix for proofs of this section.

Proposition 1. If �σ
r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈c〉〉 then ∀m ∈ N, t ∈ Tσ, if

{a1, · · · , an} ⊆ K(m)(t) ⇒ c ∈ K(m)(t).

Note that the previous proposition does not consider operator Φ because it
only provides a specific notation for the rules having on their right side attributes
of the form !b.

Definition 1 (Consistency). We say that certificate class σ〈〈a〉〉 ∈ Cσ is con-
sistent with the certificate classes σ1〈〈a1〉〉, · · · , σ〈〈an〉〉 ∈ Cσ, and denote it as
σ1〈〈a1〉〉, · · · , σ〈〈an〉〉 c©σ〈〈a〉〉, iff ��σ

r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉Φ〈〈a〉〉.
It is worth noting that Proposition 1 implies that if SOA σ proves incon-

sistency then we have assured that the corresponding attributes cannot hold
simultaneously. On the other hand, the fact that SOA σ cannot prove incon-
sistency does not necessarily imply that attributes are consistent. That is, the
notion of consistency is weaker than that of inconsistency.

Figure 2 shows the system derivation used by a given SOA σ to infer certifi-
cate classes. We have denoted this relation with �σ

at.
In the following, we briefly explain the derivation rules given in the figure.

A1 Non expired attribute certificates in Σσ are directly inferred by �σ
at.

A2 Given a rule deduced using �σ
r , if each SOA σi asserts that target t holds

attribute ai, and the corresponding deadline di has not been reached, then σ
derives the attribute certificate 〈〈a, t〉〉d, d being the minimum of the dead-
lines di.

A3 This d-rule simply applies the d-rule for inconsistency R3.
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A1
〈〈a, t〉〉d ∈ Σσ, ctime ≤ d

�σ
at 〈〈a, t〉〉d

(SOA At. Certif.)

�σ
r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈a〉〉,

A2
∀1 ≤ i ≤ n.(�σi

at 〈〈ai, t〉〉di , ctime ≤ di), d = min(d1, · · · , dn)
�σ

at 〈〈a, t〉〉d
(Rule Application)

�σ
r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉Φ〈〈a〉〉,

A3
∀1 ≤ i ≤ n, (�σi

at 〈〈ai, t〉〉di , ctime ≤ di), d = min(d1, · · · , dn)
�σ

at 〈〈!a, t〉〉d
(Inconsistency)

Fig. 2. d-rules for attribute certificates

The following theorem proves the correctness of the information provided by
SOAs. In summary, it establishes that each certificate issued is true.

Theorem 1 (Soundness). For each attribute a ∈ A∗ and target t ∈ Tσ, if a
SOA σ exists such that �σ

at 〈〈a, t〉〉d then ∀m.ctime ≤ m ≤ d, a ∈ K(m)(t), that
is, SOAs only certify true attribute certificates.

4.2 Dealing with Negation

In the previous section we have managed three types of negation: “¬”, “!” and
“ ��σ

at”. In this section, we clarify the relations among them, and their effect when
a particular SOA σ must issue certificates.

Definition 2. We say that σ ∈ S does not issue an attribute certificate 〈〈a, t〉〉d
and denote it as �σ

at ¬〈〈a, t〉〉d iff ��σ
at 〈〈a, t〉〉d.

Observe that �σ
at ¬〈〈a, t〉〉d has the effect of denying target t the access to

resources if attribute a is necessary. However, this refutation may be produced
due to very different motives, as commented on below.

Expression �σ
at ¬〈〈a, t〉〉d means that SOA σ cannot assert 〈〈a, t〉〉d. This may

occur when 〈〈a, t〉〉d cannot be deduced because there is no sufficient information
in SOAs to assure it. However this situation may also take place if σ may deduce
the opposite attribute, i. e., if �σ

at 〈〈¬a, t〉〉d. That is, �σ
at ¬〈〈a, t〉〉d is weaker

than �σ
at 〈〈¬a, t〉〉d. It may be that σ cannot derive 〈〈a, t〉〉d, even although the

assertion is true, that is, ∀m.ctime ≤ m ≤ d, a ∈ K(m)(t), or equivalently, target
t does hold a until time instant d.

On the other hand, note that 〈〈!a, t〉〉d is different from 〈〈¬a, t〉〉d. The first
expression assures that target t does not hold a until time d, while the second
one says that t holds ¬a until time d.

From the user point of view, as commented on above, the three negations
imply that t is not allowed to access a given resource, if attribute a is necessary.

We now formalize the relations among these three types of negations.
Using condition (4.2), it is sound to add the d-rules of Figure 1 to Figure 3.
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R0
∀τ 〈〈¬a〉〉 ∈ Cσ

�σ
r τ 〈〈¬a〉〉 → 〈〈!a〉〉 (Negation)

Fig. 3. New d-rules for certificate classes

The following proposition shows how “¬”, “!” and “ ��σ
at” are related.

Proposition 2. ∀σ ∈ S, t ∈ Tσ, m ∈ N,

�σ
at 〈〈¬a, t〉〉m ⇒�σ

at 〈〈!a, t〉〉m ⇒�σ
at ¬〈〈a, t〉〉m. (4.5)

5 Conclusions and Further Work

The SAC model has proven to be scalable and applicable to different environ-
ments with heterogeneous and complex access criteria. Moreover, other access
control models can be represented within SAC. An infrastructure implement-
ing this access control model called XSCD (XML-based Secure Content Dis-
tribution), complemented by autonomous enforcement mechanisms, has been
developed and successfully applied to information commerce [12], digital rights
management [13] and secure content distribution in digital libraries [22]. Another
interesting application scenario for SAC is Web Services, where SAC achieved
the desired semantic interoperability [21], and CORBA architecture [11].

The ability to perform a semantic validation of access control policies was
an essential design goal of the SAC model. Both the Semantic Policy Language
(SPL) defined in SAC and the semantic descriptions of the certificates issued by
each SOA (conveyed by SOAD documents) were designed to serve this objec-
tive. The semantic validation ensures that the policies written by the security
administrator produce the desired effects. In this paper, we have presented the
semantic validation algorithms for access control policies developed as part of
SAC. Additionally, the SAC model has been formalized and some important
features have been formally proved. More specifically, the inference rules for
deducting new information have been presented as part of this formal model,
providing proofs of the correctness of SAC inference rules.

Regarding future work, model checking of the semantic validation algorithms
will be developed in the near future. On the other hand, we are now working
on the extension of the Semantic Policy Language with additional digital rights
specification, along with semantic models for its management.
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23. M.I. Yagüe, A. Maña, J. López, and J.M. Troya. Applying the Semantic Web
Layers to Access Control. In Proc. of the Int. Workshop on Web Semantics, pages
47–63. IEEE Computer Society Press, September 2003.
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A Example

To illustrate the inference rules stated on SOAD documents as the basis for the
semantic validation of policies, let us consider an editorial and its digital library
composed of books, magazines, bulletin news and other relevant publications.
The editorial has some special discounts for some customers; and also privileged
customers who can freely access some types of resources. For example, the Uni-
versity of Málaga has a particular membership with this editorial which grants
some privileges to their staff.

The access control system is based on the Semantic Access Control model,
and hence we have the separated specifications of PAS, SRR, and Policy to
describe access control criteria. Figure 4 is the XML representation of the se-
mantic properties relevant to access to the Computer News magazine. Figure 5.a
shows a simple policy (FreeDownload.xml) that defines as access criteria to be
holder of an attribute certificate signed by the SOA of the editorial attesting
the subscription to the editorial Portal. Figure 5.b represents the Policy Allo-
cation Specification document which allocates the FreeDownload.xml policy to
magazine items accessible in the digital library through the portal.

When a user tries to access the Computer News magazine through the Mc-
Grow portal, thanks to the semantic information represented in the Secured
Resource Representation for this object (Figure 4), dynamic allocation is made
on the basis of PAS of Figure 5.b. Therefore, the policy of Figure 5.a is used
to control the access to this object, based on its semantic property of being a
magazine.

As in any access control scheme based on attribute certificates, the seman-
tics of policies in the SAC model heavily depend on the semantics of attribute

<?xml version=“1.0” encoding=“UTF-8”?>
<SRR xmlns=“http://www.lcc.uma.es/∼yague”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.lcc.uma.es/ yague SRR.xsd”
Resource=”http://www.mcgrow.com/”>

<Property>
<PropertyName>PublicationName</PropertyName>
<PropertyValue>Computer News</PropertyValue>

</Property>
<Property>

<PropertyName>PublicationType</PropertyName>
<PropertyValue>magazine</PropertyValue>

</Property>
</SRR>

Fig. 4. SRR for the Computer News magazine
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<?xml version=“1.0” encoding=“UTF-8”?>
<Policy xmlns=“http://www.lcc.uma.es/∼yague”
xmlns:xsi=
“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=
“http://www.lcc.uma.es/∼yague Policy.xsd”>
<AccessRules>

<AccessRule>
<AttributeSet>

<Attribute>
<AttributeName>Subscription
</AttributeName>
<AttributeValue>Portal
</AttributeValue>
<SOA ID>McGrow SOA</SOA ID>

</Attribute>
</AttributeSet>

</AccessRule>
</AccessRules>
</Policy>

<?xml version=“1.0” encoding=“UTF-8”?>
<PAS xmlns=
“http://www.lcc.uma.es/∼yague”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=
“http://www.lcc.uma.es/∼yague pas.xsd”>
<Policy>FreeDownload.xml</Policy>
<Object>

<ObjectLocation>http://www.mcgrow.com/portal/
</ObjectLocation>
<Conditions>

<Condition>
<PropertyName>PublicationType
</PropertyName>
<PropertyValue>magazine
</PropertyValue>

</Condition>
</Conditions>

</Object>
</PAS>

Fig. 5. (a) FreeDownload.xml policy (b) PAS for magazines

<?xml version=“1.0” encoding=“UTF-8”?>
<SOAD xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=“SOAD.xsd”>

<SOA ID>UMA SOA</SOA ID>
<ACDeclarations>

<SOAAttribute>
<AttributeName>Member</AttributeName>
<AttributeValue>UMA</AttributeValue>
</SOAAttribute>

</ACDeclarations>
<ACRelations>

<SOARule>
<AttributeSet>
<SOAAttribute>

<AttributeName>Member</AttributeName>
<AttributeValue>CSDepartment</AttributeValue>
<SOA ID>CSDpt SOA<SOA ID>

</SOAAttribute>
</AttributeSet>
<Relation>Implies</Relation>
<AttributeSet>

<SOAAttribute>
<AttributeName>Member</AttributeName>
<AttributeValue>UMA</AttributeValue>

</SOAAttribute>
</AttributeSet>
</SOARule>

</ACRelations>
</SOAD>

Fig. 6. SOAD of the University of Málaga SOA

certificates which we have modelled in SOAD (Source of Authorization Descrip-
tion) documents. Figure 6 shows the descriptions of the source of authorization
that certifies the membership to the University of Malaga (UMA). The rule of
this SOAD states that the Source Of Authorization (SOA) of UMA trusts in the
SOA of the Computer Science Department for attesting to membership to the
department. That is, in order to prove UMA membership, to present an attribute
certificate signed by the CS department SOA attesting to being a member of this
department will be equivalent to presenting an attribute certificate signed by the
UMA attesting to membership of the UMA. Figure 7 shows the descriptions of
the source of authorization corresponding to the McGrow editorial. Relations
among attributes certified by each SOA are also described in these documents.

The SOAD corresponding to the McGrow editorial has two rules. The first
rule states that to be a member of UMA with a trusted certificate from
UMA SOA implies being a McGrow special customer and, additionally, being
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<?xml version=“1.0” encoding=“UTF-8”?>
<SOAD xmlns:xsi=
“http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=“SOAD.xsd”>
<SOA ID>McGrow SOA</SOA ID>
<ACDeclarations>

<SOAAttribute>
<AttributeName>Suscription
</AttributeName>
<AttributeValue>McGrow Portal
</AttributeValue>

</SOAAttribute>
<SOAAttribute>

<AttributeName>Subscription
</AttributeName>
<AttributeValue>Computer News
</AttributeValue>

</SOAAttribute>
<SOAAttribute>

<AttributeName>Subscription
</AttributeName>
<AttributeValue>Math News
</AttributeValue>

</SOAAttribute>
<SOAAttribute>

<AttributeName>Customer
</AttributeName>
<AttributeValue>Privileged
</AttributeValue>

</SOAAttribute>
</ACDeclarations>

/* being member of UMA implies to be a customer with
some privileges and subscription to the editorial portal */
<ACRelations>
<SOARule>

<AttributeSet>
<SOAAttribute>
<AttributeName>Member</AttributeName>
<AttributeValue>UMA</AttributeValue>
<SOA ID>UMA SOA</SOA ID>
</SOAAttribute>

</AttributeSet>
<Relation>Implies</Relation>
<AttributeSet>

<SOAAttribute>
<AttributeName>Customer</AttributeName>
<AttributeValue>Privileged</AttributeValue>
<SOA ID>MacGrow SOA</SOA ID>
</SOAAttribute>
<SOAAttribute>
<AttributeName>Subscription</AttributeName>

<AttributeValue>McGrow Portal </AttributeValue>
<SOA ID>MacGrow SOA</SOA ID>
</SOAAttribute>

</AttributeSet>
</SOARule>
</ACRelations>

<ACRelations>
<SOARule>

<AttributeSet>
<SOAAttribute>
<AttributeName>Suscription</AttributeName>
<AttributeValue>McGrow Portal>/AttributeValue>
</SOAAttribute>

</AttributeSet>
<Relation>Implies</Relation>
<AttributeSet>

<SOAAttribute>
<AttributeName>Subscription</AttributeName>
<AttributeValue>Computer News</AttributeValue>
</SOAAttribute>

<AttributeSet>
<SOAAttribute>
<AttributeName>Subscription</AttributeName>
<AttributeValue>Math News</AttributeValue>
</SOAAttribute>

</AttributeSet>
</SOARule>
</ACRelations>
</SOAD>

Fig. 7. SOAD of the McGrow Editorial SOA

σuma〈〈MemUma〉〉 → 〈〈CPriv〉〉
σuma〈〈MemUma〉〉 → 〈〈S MGPortal〉〉
σmg〈〈S MGPortal〉〉 → 〈〈S CNews〉〉
σmg〈〈S MGPortal〉〉 → 〈〈S MNews〉〉

σcs〈〈MemCS〉〉 → 〈〈MemUma〉〉

Fig. 8. Rules in SOADσmg and SOADσuma

subscribed to its portal. The second rule states that a certificate of being sub-
scribed to the portal implies a certificate of subscription to the Computer News
and Math News magazines.

To see the important role of the inference mechanisms developed, we con-
sider a professor of UMA who wants to access one of the CS News magazines.
If this professor presents an attribute certificate signed by the Computer Sci-
ence department SOA stating he/she is a professor of this University then this
certificate will be equivalent to an attribute certificate signed by the McGrow
Editorial of being subscribed to the portal. Therefore, the policy requisites stated
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on the access control policy will be satisfied and he/she will get free access to
this document.

Finally, let us consider derivation rules stated in SOAD documents and how
information from certificate classes is deduced. Let σmg, σuma and σcs be the
SOAs for the McGrow Editorial, the University of Málaga and the Computer
Science Department. Figure 8 shows the rules included in the Source Of Autho-
rization Description (SOAD) documents of MacGrow and UMA. In SOADσmg ,
the first rule states that to be member of UMA implies to be a Privileged Cus-
tomer of MacGrow. Second rule states that to be a member of UMA implies
being subscribed to the MacGrow Portal. Last two rules state that to be sub-
scribed to this portal implies being subscribed to the Computer News and Math
News magazines, respectively. The only rule of SOAD σuma states that to be a
member of the Computer Science Department implies being a member of the
University of Malaga. Now, suppose that �σcs

at σcs〈〈MemCS, MYagüe〉〉, that is, the
Computer Science Department is able to certify that MYagüe is a member of the
Department.

The following derivation shows how SOA σmg infers she can access the Com-
puter News magazine, using the d-rules described above. For the sake of simplic-
ity, we have dropped the time parameter, assuming that attribute certificates are
always valid. We have divided the derivation into three parts. The last derivation
makes use of the results previously obtained to reach the conclusion. Note that
the rule applied appears at the left side of each derivation.

(A2) �σcs
at 〈〈MemCS, MYagüe〉〉(R1) σcs〈〈MemCS〉〉 → 〈〈MemUma〉〉 ∈ SOADσuma

�σuma
r σcs〈〈MemCS〉〉 → 〈〈MemUma〉〉

�σuma
at 〈〈MemUma, MYagüe〉〉

(R1)
σuma〈〈MemUma〉〉 → 〈〈S MGPortal〉〉 ∈ SOADσmg

�σmg
r σuma〈〈MemUma〉〉 → 〈〈S MGPortal〉〉

(R1)
σmg〈〈S MGPortal〉〉 → 〈〈S CNews〉〉 ∈ SOADσmg

�σmg
r σmg〈〈S MGPortal〉〉 → 〈〈S CNews〉〉

(R2) �σmg
r σuma〈〈MemUma〉〉 → 〈〈S MGPortal〉〉 �σmg

r σmg〈〈S MGPortal〉〉 → 〈〈S CNews〉〉
�σmg

r σuma〈〈MemUma〉〉 → 〈〈S CNews〉〉

(A2) �σuma
at 〈〈MemUma, MYagüe〉〉 �σmg

r σuma〈〈MemUma〉〉 → 〈〈S CNews〉〉
�σmg

at 〈〈S CNews, MYagüe〉〉

B Proofs

Proposition 1. If �σ
r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈c〉〉 then ∀m ∈ N, t ∈ Tσ, if

{a1, · · · , an} ⊆ K(m)(t) ⇒ c ∈ K(m)(t).

Proof. Denote R ≡ �σ
r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈c〉〉, and consider t ∈ Tσ

and m ∈ N such that {a1, · · · , an} ⊆ K(m)(t). Now, we reason by induction on
the depth of the derivation tree to produce R.

– Base case. If σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈c〉〉 ∈ SOADσ, the proof is directly
derived from condition (4.4).

– Inductive case. We have two possible cases:

M Gallardo, and A. Maña.
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1. If R has been obtained applying rule R2, there exists d ∈ A and two rules
such that �σ

r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈d〉〉, and �σ
r σ〈〈d〉〉 → 〈〈c〉〉.

Applying successively the induction hypothesis to these rules, firstly we
deduce d ∈ K(m)(t), and then c ∈ K(m)(t).

2. If R has been obtained applying rule R4, then ∃b ∈ A.c =!b and R ≡ �σ
r

τ〈〈a〉〉 → 〈〈!b〉〉. Applying the induction hypothesis to �τ
r σ〈〈b〉〉 → 〈〈!a〉〉,

we have that if b ∈ K(m)(t) then a �∈ K(m)(t). Thus, assuming that
a ∈ K(m)(t), we deduce that b �∈ K(m)(t), or equivalently by definition
(condition (4.1)) that c =!b ∈ K(m)(t).

Theorem 1. For each attribute a ∈ A∗ and target t ∈ Tσ, if a SOA σ exists
such that �σ

at 〈〈a, t〉〉d then ∀m.ctime ≤ m ≤ d, a ∈ K(m)(t), that is, SOAs only
certify true attribute certificates.

Proof. By induction on the depth of the derivation tree to assert 〈〈a, t〉〉d.

– If 〈〈a, t〉〉d ∈ Σσ then, by condition (4.3), we have that ∀m.ctime ≤ m ≤
d, a ∈ K(m)(t).

– Let us assume that we have applied rule A2 to deduce 〈〈a, t〉〉d. Consider
an index i(1 ≤ i ≤ n). By induction hypothesis, if �σi

at 〈〈ai, t〉〉di , ctime ≤ di

then∀mi.ctime≤ mi≤ di, ai∈K(mi)(t). Thus, defining d=min(d1, · · · , dn),
we deduce that ∀m.ctime ≤ m ≤ d, {a1, · · · , an} ⊆ K(m)(t). Finally, ap-
plying Proposition 1 to �σ

r σ1〈〈a1〉〉, · · · , σn〈〈an〉〉 → 〈〈a〉〉, it is derived
∀m.ctime ≤ m ≤ d, a ∈ K(m)(t).

– The proof corresponding to applying A3 in the derivation is similar to the
previous one.
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Abstract. Security and authorization play a very important role in the
development, deployment and functioning of software systems. Java be-
ing the most popular platform for component-based software and sys-
tems, Java security is playing a key role in enterprise systems. The ma-
jor drawback in the security support provided by J2EE and J2SE is the
absence of a standard way to support instance level access control. JAAS
does provide some help, but it is not without its share of problems. The
newest standard related to security - XACML, provides a standard sim-
ple way to represent security policies. In the paper we propose a unique
way to extend JAAS technology so that it can support class-instance
level access control in a declarative manner. We then showcase how this
extension can be molded in the XACML architecture, thereby provid-
ing an end-to-end standard based access control specification and imple-
mentation for J2SE and J2EE applications. The major advantage of our
technique is that, being declarative it does not require any change to
the security code when - either the security policies are changed or the
security infrastructure is deployed in a new environment.

1 Introduction

The exponential growth of e-commerce in the recent past has lead to a propor-
tional increase in the complexity of software systems. This complexity has also
lead to an increase in security and authorization needs of enterprise applications.
In order to deal with this complexity, various proprietary and application spe-
cific languages [1, 2, 3] that help in specifying access control policies of enterprise
systems have been proposed. XACML is one such general-purpose access control
policy language, which in addition to being a standard, is generic, distributed
and powerful [4]. It provides an XML based access control policy language as
well as an access control decision request/response language, which can be used
by applications and systems to fulfill their access control needs. The XACML
specification deals with the framework and the exact implementation details of
the access control engine are left for the implementers.

Java is the most popular platform for component based software and has
played a key role in the popularity of e-commerce applications. Java has its own
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standardized mechanism to provide user-based security and access control called,
Java Authentication and Authorization service (JAAS). JAAS has played a key
role in securing these enterprise applications. The advancements in enterprise
applications have lead to rapid changes in the requirements and needs of the
software developer. The Java language has tried to keep pace with these needs
by adding new features such as Data Access Objects [6], remote monitoring and
management of JVM [5], class data sharing, generic types etc. But fulfilling the
security needs of Java applications is still closely tied with application code [13],
leading to an ad-hoc, application specific development of security and access
control implementations.

In the J2EE architecture, providing authentication and access control is del-
egated to the application server. A declarative XML based mechanism is used
to specify the access control needs of the J2EE applications. But such an access
control can be provided only at a method-level granularity. The state or logic of
the software object/component does not factor into the access control decision.
This is very restrictive and policies such as: “Employees can only view their own
salaries from the salary database”; are implemented programmatically.

This paper tries to bridge the gap between XACML based specification of
access control needs and standard security implementation for Java and outlines
an XACML implementation for Java applications. The XACML implementa-
tion proposed in this paper provides a generic and declarative mechanism for
providing access control in Java applications. Our technique uses an innovative
extension of JAAS to attain our objectives. Thus, the contributions of this paper
include:

– We propose a standard based implementation of XACML for Java using
an innovative extension of JAAS. In other words, we show how XACML
and JAAS can co-exist thereby providing end-to-end standards based access
control specification and implementation for Java language.

– Our technique provides a mechanism for supporting instance level autho-
rization in Java applications using declarative specifications.

– We provide a method of writing declarative security policies for Java appli-
cations

The rest of the paper is organized as follows: A brief introduction to XACML
architecture is given in section 2. Section 3 gives an overview of Java security
and JAAS, explaining their deficiencies in providing fine-grained access control.
Section 4 outlines how JAAS can be extended so as to provide declarative au-
thorization support in Java while using XACML standards. Related work is
discussed in Section 5 and Section 6 concludes the paper.

2 XACML

One of the basic reasoning for the development of XACML was the need to have
a standard, generic and powerful access control specification language. Existence
of various proprietary languages provided piecemeal solutions to security issues
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Fig. 1. Data flow diagram for XACML

of the enterprise. XACML tries to bridge this gap and provides a common lan-
guage for expressing security policy across the enterprise. It allows the enterprise
to manage the enforcement of all the elements of its security policy in all the
components of its information systems. XACML is generic thus it can be used
in various environments. As XACML is used across various components of the
enterprise application, management of the access control policy becomes easier.

The data flow diagram of Figure 1 shows the major actors in the XACML
domain, which are important for our approach. Main components of this archi-
tecture are:

1. PEP: The Policy Enforcement Point is the system entity that performs
access control by making decision request and enforcing authorization de-
cisions. This is the entry point for access control infrastructure. Consider
an example of an e-commerce application, which supports auctions. In this
application, each request (to bid, to create an auction etc.) made by the
user will be routed through a software component, which will send it out to
an entity responsible for making the access decision (allow/deny). Such an
entity, which makes a callout to the access control component, is the PEP
of the application.
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2. PDP: This is the core of the framework and is responsible for evaluating
the applicable access control policies and to render the authorization decision
as one of four values: permit, deny, indeterminate or not applicable. In the
above example, the entity which makes the decision to allow or deny the
request is the PDP. The PDP will evaluate the access control rules, which
could include policies like “Only a user who has created the auction should
be able to modify it”.

3. PIP: This component acts as a source of attribute values. The responsibility
of this component is to provide all the information that might be required
by the PDP to make the access decision. Attributes are characteristics of
the resource being managed (e.g. who is the owner of auction bid), the user
making the request, action (read or modify) or environment (office hours).

4. Context Handler: This is a system entity that converts decision requests
in the native request format to the XACML canonical form and converts au-
thorization decisions in the XACML canonical form to the native response
format. The context handler allows the use of XACML in a variety of appli-
cation environments. This component is one of the key components of our
solution, as it allows the JAAS specific data to be converted into decision
requests, which are understood by the PDP.

The context handler forms the access control request based on the attributes
of the requester, action, resource and environment. This information is provided
to the PDP to find the access control policy applicable for the request. The
access control policy is defined in terms of the attributes of the requester, ac-
tion, environment and resource. The policy can also include functions defined
on these attributes. The PDP performs the following two operations to arrive
at a decision: (1) It first tries to find all the policies applicable for the request
and (2) then it evaluates these policies and returns the decision back to the PEP
(via the context handler). PAP is the policy administrative point, responsible for
managing access control policies. The curious reader is requested to refer to [4]
for further details about XACML. We now explain why standard JAAS based
access control is not sufficient for enterprise applications, and how JAAS can be
extended to overcome its drawbacks.

3 Java Security and JAAS

3.1 Java 2 Security

Java 2 uses policy based security architecture. The security policy (Figure 2) is
defined by a set of permissions for code in various locations (codeBase) and
by various signers. These permissions allow certain actions on a certain re-
source. Resource names and their associated actions are enumerated in a policy
file. In Java 2, AccessController is used as the security enforcer. The exam-
ple policy file in Figure 2 gives all permissions to the jar files present in the
${java.home}/lib/ext directory, whereas read permissions on some system prop-
erties, are given to all the other code bases.
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grant {

};

grant codeBase "file:${java.home}/lib/ext/*" {

};

permission java.security.AllPermission;

permission java.util.PropertyPermission "os.name", "read";

permission java.util.PropertyPermission "os.version", "read";

permission java.util.PropertyPermission "os.arch", "read";

Fig. 2. Policy file in Java

SafeFileWriter() {

}

Permission perm = new java.io.FilePermission("foo.txt", "write");

AccessController.checkPermission(perm);

// Write to foo.txt

Fig. 3. Protecting a method using AccessController

The example method in Figure 3 shows the typical way in which a pro-
tected resource is accessed using Java methods. Before performing the opera-
tion, the method calls the AccessController with the permissions required to
perform operations on the resource being accessed. The AccessController checks
the requested permission with the application’s current authorization policy. If
any permission defined in the policy file implies the requested permission, the
method checkPermission simply returns; otherwise an AccessControlException
is thrown. The SafeFileWriter is used for writing in the file foo.txt. Thus before
writing, the AccessController is called to check whether writing to the file is
allowed. The major drawback of Java 2 security is that it does not have user,
role or object based permissions. The user based access control is added in Java
2 using JAAS, which is explained next.

3.2 Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) is a set of APIs
that enable Java applications to authenticate and enforce access controls upon
users. JAAS reliably and securely determines who is currently executing the
Java code and whether the user is allowed to do so. JAAS adds subject-based
policies to the Java 2 security model. For this the user is first authenticated and
the javax.security.auth.Subject class is used to encapsulate the credentials of
the authenticated user. A Subject can have multiple identities called Principals.
In a JAAS policy file, each grant statement is associated with a Principal. For
each Principal associated with the Subject, the AccessController gets permissions
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grant codebase "file:./MyAction.jar",

};

Principal sample.principal.ExamplePrincipal "Bob" {

permission java.io.FilePermission "max.txt", "read";

Fig. 4. Principal based authorization in JAAS

from the policy file and checks whether any permission implies the requested
permission. Otherwise, it throws an AccessControlException. Figure 4 shows a
typical authorization policy file in JAAS. It allows Java classes in MyAction.jar
to read max.txt if the particular class is accessed by Bob. All other users are not
allowed to access the resource.

The standard policy file format of JAAS does not support security policies
that are based on the properties of the application object on which the policy is
defined. This precludes the definition of policies such as “A manager is allowed
to edit the salary information only of his direct reports”. Using JAAS, if a user
(manager) is allowed to call method editSalary then the user is allowed to edit
salaries of all the employees irrespective of whether the employee is his/her direct
report or not. Such policies are very common in any application and custom code
is required to enforce such policies. However, JAAS does recognize such needs
and it provides mechanisms to extend its standard interfaces to suite the client
needs. Possible extensions to JAAS are explained next.

3.3 JAAS Extensions

JAAS is build on top of the pre-existing security model of Java, which depends
on the codeBase accessing the resource and uses the plaintext format policy file
implementation. JAAS makes authorization decision based on the Subject who
is performing the action, the action being performed and the resource being
accessed. Thanks to pluggable-features of JAAS, writing custom authentication
and authorization sub-modules can change its default behavior. In this section we
explain possible extensions which can be used for XACML implementation using
JAAS. In order to support instance level access control in JAAS the following
JAAS artifacts can be changed:

o java.security.Principal : The Principal interface represents the abstract no-
tion used to represent an entity such as an individual, an organization, a
group or a login id. By extending the Principal one can add custom proper-
ties which can be used for authorization.

o java.security.Permission: The Permission class is used in two places namely,
(1) The policy file where it represents the permissions given to a user on a
codeBase and (2) the permission object which is constructed in the code
before accessing a resource. In the code the object represents the permission
required by the code for accessing a resource. If the policy file grants the
requested permission to the codeBase, then the action is allowed by JAAS.
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As explained in Figure 3, the AccessController calls checkPermission to know
whether the caller has authority to perform the requested action. By default
the Permission object can specify things like name of the permission (which
may indicate the resource on which access is required), action for which
the resource is accessed, etc. The Permission class implements the implies
method, which takes as input another Permission object. This method is
called by the AccessController to know whether the requested permission
(present in the code) is implied by any permission present in the policy file.

o java.security.PermissionCollection: This abstract class is used for represent-
ing a collection of Permission objects. This class can be implemented to
have the desired way of storing the granted Permission’s and comparing
them with the requested Permission.

o java.security.Policy: It is an abstract class for storing security policies in
Java application environment. The AccessController contacts the Policy im-
plementation to get the set of permissions defined in the policy file for an
authenticated Subject on a codeBase. By-default the Policy class is extended
by the PolicyFile class to read the policy file as depicted in Figure 4. The Pol-
icy class has getPermissions method, which parses the policy file and returns
an appropriate PermissionCollection object enumerating the permissions of
the codeBase for the calling Subject.

From the above discussion it is fairly clear that JAAS can be extended in
a variety of ways to attain various authentication and authorization objectives.
But for these extensions one needs to write code to implement or extend various
JAAS interfaces and classes respectively. Writing new code, whenever there is
change in security requirements, is cumbersome and makes the code difficult to
maintain. Further, it precludes the possibility of changing the security settings at
deployment time thereby preventing the reuse of code across different domains.

Hence there is clearly a need for a security approach, which is flexible, stan-
dard based and which gracefully handles the extension or changes in the security
policy without requiring changes to the security code. The key points to be con-
sidered while addressing these problems are:

1. JAAS being a Java security standard, the solution should adhere to JAAS
security framework

2. The solution should provide fine grained (instance based) access control
3. The solution should enable the modification of the security policy without

requiring any change to the security code.

XACML provides a representation of fine-grained security policies across the
enterprise. This motivates us to explore whether the marriage of these two tech-
nologies/standards can be a solution to our problems? As it turns out, this indeed
is the case. The next section outlines our proposed extension to JAAS, which
allows XACML to be used with Java applications while having standard based
implementation.
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4 Extending JAAS for XACML Implementation

In the last section we listed the requirements which JAAS based implementation
of XACML should meet. In this section we present our XACML implementa-
tion for Java, which is generic and declarative. It enables changes in security
settings without writing any new code. It is assumed here that the resource be-
ing protected is accessed through various Java methods with different methods
performing different actions on the resource. In Section 4.1 we present our ex-
tensions to JAAS which are required to support generic authorization. Section
4.2 explains the code-flow between a user making an access request and the Ac-
cessController returning a response. Section 4.3 deals with the mapping between
XACML and our unique JAAS extension.

4.1 Generic Authorization Using JAAS

To attain the objectives of providing generic and declarative authorization we
propose a technique that modifies JAAS in a unique way so that its extension can
be written in a declarative manner rather than the conventional programmatic
way. Following are the extensions that we have implemented to the standard
JAAS classes/interfaces described in the previous section:

1. GenericPermission: It extends the standard Permission class of JAAS. For
implementing attribute level authorization, as mandated by XACML, the
class instance (object) representing the resource on which access is requested,
needs to be passed to the Permission object. The GenericPermission has
a constructor that takes the object (on which access is requested) as input.
The implies method of GenericPermission is written in such a way that
it takes into consideration the attributes of the action, the attributes of
the object and the environment variables for deciding whether the granted
permission implies the requested permission. The attributes of the resource
object required for XACML implementation can be obtained by calling the
getter methods on the object instance using Java reflection. This unique
extension of the implies method acts as PDP component of the XACML
architecture.

2. GenericPolicy: The core of our technique lies in the representation of the au-
thorization framework in an XACML policy file. Our GenericPolicy, which
is an extension of java.security.Policy class of JAAS, interprets the autho-
rization policies, written in XACML language. The getPermissions method
of GenericPolicy parses the XACML based policy file and retrieves all the
GenericPermission’s granted to the specified Subject and codeBase in the
policy file. The permissions are returned in the form of a GenericPermis-
sionCollection which is explained next.

3. GenericPermissionCollection: This class is used to represent a collection of
GenericPermission objects.

The access control policy is represented in terms of getter methods (for get-
ting attributes of the resource object) defined on the application objects. The
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policy allows the use of expressions, which operate on the values returned by
the getter methods. If the getter method(s) used in XACML policy are not
implemented, the context handler (which is responsible for invoking the get-
ter methods and calling the PDP) throws an exception. For example consider
the policy – “Only a user who has created the auction should be able to modify
it”. In this policy, access control is based on whether the caller is the owner of
the auction object. Thus, we pass the auction object to the GenericPermission
constructor so that the owner of the auction can be obtained using getOwner
method of the auction object.

4.2 Code Flow

Here we explain the steps required to protect a resource as well as the steps
followed when a user wants to perform some action on the protected resource.
Our technique assumes that all resource actions are implemented as methods,
and hence whenever a user wants to perform some action on a resource, the
corresponding method is accessed. Thus protecting a resource is equivalent to
protecting methods performing some action on a Java object representing the
resource. Each method, which is required to be protected, needs to start with
the construction of GenericPermission object having three parameters:

1. The class to which the method belongs,
2. The action which the method wants to perform and
3. The resource object on which the method is called.

This GenericPermission object represents the permissions necessary to ex-
ecute the method. At run-time, if the policy file grants this permission to the
code and the user invoking the method, then the access will be allowed by
JAAS. Figure 5 shows a method, which updates an auction object, creating the
GenericPermission object. Then a call is made to the AccessController pro-
vided by Java. The GenericPermission object is passed as a parameter to the
checkPermission call of the AccessController. This ensures that any user who
does not have the permissions as indicated by the GenericPermission object will
be thrown an AccessControlException. What follows next are the steps through
which the AccessController determines permissions for an authenticated user.

updateAction() {

Permission perm = new GenericPermission(String auction, 

AccessController.checkPermission(perm);

// perform action

}

String update, Object auction1);

Fig. 5. Method protection using by GenericPermission
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Step 2

Step 3

Step 4a

Step 4b

add(permission);
implies(permission);

Fig. 6. Code Flow for Generic Authorization

Figure 6 shows the code flow of an authorization decision using our generic
authorization scheme. In Step 1, a GenericPermission object is created. As men-
tioned earlier, this GenericPermission object represents the permission that is
necessary to execute the method i.e., to perform the action on the resource. This
permission object is then passed as a parameter to the checkPermission call of
the AccessController. The AccessController uses the Policy implementation of
JAAS to make the authorization decision. The standard Policy implementa-
tion of JAAS (PolicyFile) cannot understand the XACML policy file. We have
extended the Policy implementation (called GenericPolicy) and our implemen-
tation is equipped to handle the XACML format. The Policy implementation to
be used by the AccessController is specified using the auth.policy.provider para-
meter in the java.security file. Changing this parameter setting ensures that the
JVM uses the GenericPolicy for evaluating the authorization decision instead of
the normal PolicyFile provided by JAAS.

The GenericPolicy class finds the granted permissions for the given Subject
and codeBase by parsing the XACML file in the getPermission method (Step
2). In other words, if a user authenticated as “Foo” is accessing some code (in
“abc.jar”), which is trying to perform an action on an object (resource), then
the getPermissions method will try to find all the permissions that are given
to “Foo” for codeBase “abc.jar” in the XACML policy file. The getPermission
method returns GenericPermissionCollection which is a set of GenericPermis-
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sion objects given to the Subject (“Foo”) for the given codeBase (“abc.jar”) in
the XACML policy file (Step 3).

After getting the GenericPermissionCollection corresponding to the call-
ing Subject and codeBase, the AccessController calls the implies method of the
GenericPermissionCollection (Step 4a). This method has one parameter which
is the GenericPermission Object constructed in Step 1. The logical meaning
of this is to find if any one of the permissions in the GenericPermissionCol-
lection implies the requested permission (which is constructed in Step 1). In
order to do this, the implies method of the GenericPermissionCollection iter-
ates through each of the constituent GenericPermission’s in the collection. For
each of these GenericPermission’s it calls the implies method of the GenericPer-
mission class (Step 4b). The implies method of GenericPermission understands
the semantics of the declarative authorization policy specified in the XACML
policy file. Based on the authorization policy specified in the XACML file, it
checks if the requested permission (constructed in Step 1) can be implied from
the granted permission (which is represented by the GenericPermission object
itself on which the implies is called). If the AccessController finds that any one
of the GenericPermission.implies returns true, then it simply returns. If the re-
quested permission is not granted by any policy present in the XACML file or if
is not implied by any of the policies, then an AccessControlException is thrown.

The implies method of GenericPermission uses the resource object instance
to get the values of attributes by calling the getter method using Java reflection
technology. These values are used in the expressions defined on the object at-
tributes as well as environment variables to decide on the imply relationships.
For e.g., consider an authorization policy “Only a gold user is allowed to access
critical data between 10AM and 4 PM ”. In this policy, the application object, say
an entity bean, will have a getter method that returns the criticality (high/low
etc.) of the data and the policy will be expressed in terms of the return value
of this getter method. If this policy is later changed to “Only gold and silver
customers are allowed to access stock history data”, then such a change will
only require a minor change in the XACML policy and no change in the code.

grant codebase "file:./MyAction.jar", 

Principal sample.principal.GenericPrincipal "GoldCustomer" {

permission com.ibm.jaas.GenericPermission
Object="StockInfo" action="read";

CompoundCondition operator="AND" name="C1" name="C2";

Condition name="C1" type="method" mName="getType"
operator="equals" value="confidential";

Condition name="C2" type="environmentValue"
mName="getTime" operator="between" lower="10AM"

upper="4PM";

};

Fig. 7. XACML based sample JAAS extension policy file
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However, using conventional JAAS implementation, even this minor change will
require a change in the security code of the application. Thus a clever use of Java
reflection and the unique representation of the XACML based authorization pol-
icy file, allow us to support fine-grained access control, which can be changed
without warranting any change to the authorization code. A sample XACML
based JAAS policy is given in the appendix. In order to highlight the difference
between the normal JAAS and our extended JAAS implementation, Figure 7
shows the JAAS generic policy represented in non-XACML format. It should
be noted that we use an XACML based JAAS policy file (given in appendix),
but the non-XACML format (Figure 7) is given for illustrating the differences
between the normal and extended version of JAAS.

4.3 JAAS and XACML

In this section we explain how our implementation fits into XACML architec-
ture. The policy in XACML can either deny or permit an action on a resource.
The parallel of a policy in JAAS is a permission, which as the name suggests,
only provides closed policy authorizations [16]. Hence our framework consists
of permit policies only. Extending the architecture for other response alterna-
tives of XACML (open authorization policy) needs a different implementation
of Policy which is part of our future work. In Java, the AccessController han-
dles access requests, thus it acts as the PEP for Java applications. When the
PEP makes an evaluation request to the PDP of the XACML architecture, the
PDP first tries to find out the policies that apply for the given target. Then it
evaluates the applicable policies for making access decisions. The getPermissions
method of GenericPolicy is similar to the initial work done by the PDP. The
implies method of the GenericPermission class consists of an engine that can do
evaluation of logic expressions. It uses the values of the various (resource object,
environment etc.) attributes provided by the context handler (using Java reflec-
tion) to evaluate the authorization decisions. Thus it does the second function
of PDP. The context handler is responsible for converting application specific
objects to an XML format which is understood by the PDP. In our extension of
JAAS, the context handler does the reflection on the application object. Figure 8
summarizes how our extension fits into XACML architecture. The major steps
of the flow are:

– When an access request is made, the PEP calls the GenericPolicy.
getPermissions method. As mentioned earlier, one of the functionality of the
PDP is to find all the policies relevant to the given decision request. In the
standard XACML framework, this functionality is not independently acces-
sible from outside of PDP. In JAAS, the GenericPolicy.getPermissions does
a similar work (of finding the relevant policies). Hence in our framework the
GenericPolicy.getPermissions is part of the PDP and the AccessController
(which is part of the PEP) calls this method. Thus we have externalized
some of the functionality of the PDP. This is one of the extensions, which is
required to the XACML framework to support our JAAS extension.
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Fig. 8. XACML implementation using JAAS extensions

– Once the GenericPermissionCollection is received by the PEP, it calls the
implies method on the GenericPermissionCollection. This is implemented
in the PEP and it iterates over the GenericPermssion’s and calls the im-
plies method of each of the constituent GenericPermission objects
(Step 7).

– The context handler uses reflection to find out the values returned by the get-
ter methods. It then constructs the decision request (which is an XML doc-
ument) and sends it to the PDP (Step 12). The GenericPermission.implies
method is the core of the PDP. It evaluates the policy/rule and returns its
decision to the PEP.

– The XACML policy is represented in terms of expressions on the values
returned by the getter methods of the resource object. Hence we need to
represent the resource (Java) object in terms of an XML document. There
are known techniques such as XStream [15] and SYS-CON [14] for convert-
ing Java objects as XML documents. Using these techniques, each property
of the resource object can be easily represented in terms of an XPATH ex-
pression on an XML document. The values of the getter methods defined
on the resource are obtained by the context handler (using Java reflection)
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and sent out as part of the decision request. Invoking all the getter meth-
ods can have a lot of overhead. Hence the other option is for the PDP to
call back the context handler (Step 12a) to obtain the value of the nec-
essary getter methods. The information about the getter methods will be
present in the policy file. The PDP will send this information to the con-
text handler in Step 12a. E.g. the method to obtain the value of owner-
id will be represented as auctionEntry/auctionInfo/owner-id in the policy
file. This will be used by the context handler which will call the getter
methods in a sequence (i.e. call getAuctionInfo().getOwnerID() ) and will
return the results to the PDP. For more information, please refer to the
appendix.

It is to be noted that we can afford some flexibility in the XACML framework,
but doing so in JAAS is not possible as the architecture and its data flow is coded
inside the JVM. Our framework requires a minor change of externalizing the
getPermissions API present in the PDP but it does not jeopardize the XACML
architecture. Although we have given examples of resources being protected by
Java methods, our scheme can be easily extended to J2EE environment. The
various J2EE methods can be classified as actions on a resource (in which case
the action name can be replaced by the method name). Whenever those methods
are called on a Java object, the J2EE application server would have to create the
GenericPermission object corresponding to the intended action on the intended
Java object. The container would then invoke the AccessController before the
actual method call. Thus our technique can fit seamlessly into a J2EE as well as
J2SE environment.

5 Related Works

There are various attempts to represent the access control policies in XML for-
mat and for providing granular authorization. [1] deals with XML based ac-
cess control specification for dynamic web services using role based access con-
trol (X-RBAC). [3] deals with a security mechanism that can support a wide
range of security models and policies in an efficient and unified manner. These
models include ACLs, lattice based access control models, etc. But their im-
plementation is ad-hoc without focusing on any particular language. [7] pro-
vides a naive mechanism for management of security policies using XML in
a distributed environment. It proposes a schema, which represents the Role
based access control (RBAC) policies in XML. This XML policy file is inter-
preted using a standard API. The paper is very general and does not provide
instance level access control, nor does it provide authorization using any stan-
dard such as JAAS. [12] proposes dynFAF, a constraint logic programming based
approach for expressing and enforcing constraints. These constraints are evalu-
ated at run-time. Our instance based access control also fits in that definition.
We give the implementation of such a framework using Java. [8] explains how
meta-programming can help in expressing and implementing security policies.
It presents three different types of meta-object protocols (MOP). Compile time
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MOP’s reflect language constructs available at compile time. Load-time MOP’s
reflect on the byte-code using a modified class loader. Run-time MOP’s use a
modified version of JVM. Out of these three, the first two cannot support in-
stance level access control, which is the central theme of our paper. Run time
MOP’s can provide instance level access control, but it requires changing the
JVM, which is not required in our approach. In [9], a Java secure execution
framework (JSEF) is presented which introduces higher-level abstraction for
defining security policies. Using JSEF one can define permit as well as deny
policies. It also provides support for security negotiation in the case of insuffi-
cient permissions at runtime. This paper is related to Java security but it does
not give mechanism a to express conditional authorization based on object in-
stance. It does not follow any standard as we do using JAAS and XACML. A
UML based modeling language for specifying security requirement of an appli-
cation is presented in [10]. The model is used to automatically generate access
control infrastructure. Authorization constraints are represented using Object
Constrained Language (OCL). Besides this, there are various other Java secu-
rity implementations, which cater to some particular kinds of applications or
platforms. [11] describes Java based security model used in IBM’s WebSphere
Commerce Suite (WCS). This paper deals with policy based access control by
modeling relationship between business objects and users. But, the authorization
code is embedded in the application and the implementation is not JAAS based.
Our work is unique in the sense that using our standards based extensions, Java
applications can get flexibility of programmatic authorization using declarative
specification.

6 Conclusions

Java is one of the most popular languages for developing e-commerce and web
applications. Java has evolved over time, but the surprising fact of the day is
that Java security still leaves a lot to be desired. Even the basic class instance
level access control cannot be supported in a standard way using Java. This
has lead to the use of custom security code which is difficult to maintain and is
prone to security errors. In this paper we have proposed an innovative technique
that: (1) provides a declarative access control support for Java applications us-
ing an extension of JAAS, and (2) shows how the XACML framework can be
used to cater to the needs of JAAS security policies. Our innovative exten-
sion of JAAS enables the declarative specification of the Java security, which
can complement the security provided in J2EE as well as J2SE applications.
This mechanism has the potential to reduce the re-engineering work, which is
in the order of months to the order of hours and will also allow the specifica-
tion of Java security policies using the XACML representation, thereby provid-
ing a consistent and standard way of representing security policies across the
enterprise.

Acknowledgments. We would like to thank Neeran Karnik and Vishal Batra for
their helpful comments and discussions.
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A Appendix

In this section we provide a sample security policy of JAAS represented in
XACML format. The policy is for an e-auction site and is to ensure the fol-
lowing rule: “Only the owner of an auction is allowed to modify the closing-date
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of an auction”. This is mapped to executing a method “updateClosingDate” on
the Auction object. We first present the policy stated in XACML format. It
consists of the following parts:

– The Policy
– The Rule

The policy can consist of multiple rules, which apply to the e-commerce site. In
our case the policy consists of only a single rule, which is of “Permit” type. This
means that if the rule fires then the subject is permitted to do the requested
operation. The “Target” part of the policy decides the conditions under which
this policy (and the rules in this policy) will be applicable.

The target of the rule decides the conditions under which the rule will be
applicable. In this case the rule target states that it will apply to any subject
who is trying to execute the updateClosingDate method of the Auction object.
The condition part of the rule states the conditions that should hold true for
the action to be permitted. In this rule, it is stated that the customer-id given
in the request context should be equal to the owner-id of the auction that the
user is trying to update.

<?xml version="1.0" encoding=‘‘UTF-8"?>
<Policy xmlns="urn:ibm:names:tc:xacml:1.0:policy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ibm:names:tc:xacml:1.0:policy
http://www.ibm.com/irl/xacml/1.0/cs-xacml-schema-policy-01.xsd"
PolicyId="identifier:example:JaasPolicy1"
RuleCombiningAlgId="identifier:rule-combining-algorithm:permit-overrides">
<Description>

JAAS based Access Control policies for an e-Auction Site.
</Description>
<Target>

<Subjects>
<AnySubject/>

</Subjects>
<Resources>

<Resource>
<!-- match document target namespace -->
<ResourceMatch MatchId=

"urn:ibm:names:tc:xacml:1.0:function:string-equal">
<AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">
file:./Auction.jar

</AttributeValue>
<ResourceAttributeDesignator AttributeId=

"urn:ibm:names:tc:xacml:1.0:resource:target-namespace"
DataType="http://www.w3.org/2001/XMLSchema#string"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>
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<AnyAction/>
</Actions>

</Target>
<Rule RuleId="urn:ibm:names:tc:xacml:examples:ruleid:1" Effect="Permit">
<Description>

Only the owner of an auction is allowed to modify the
closing date of an auction.

</Description>
<Target>

<Subjects>
<AnySubject/>

</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId=

"urn:ibm:names:tc:xacml:1.0:function:xpath-node-match">
<AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">
Auction

</AttributeValue>
<ResourceAttributeDesignator
AttributeId="urn:ibm:names:tc:xacml:1.0:resource:xpath"
DataType="http://www.w3.org/2001/XMLSchema#string"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions>

<Action>
<!-- Match ‘‘updateClosingDate" action -->
<ActionMatch MatchId=

"urn:ibm:names:tc:xacml:1.0:function:string-equal">
<AttributeValue

DataType="http://www.w3.org/2001/XMLSchema#string">
updateClosingDate

</AttributeValue>
<ActionAttributeDesignator AttributeId=

"urn:ibm:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string"/>

</ActionMatch>
</Action>

</Actions>
</Target>
<Condition FunctionId="urn:ibm:names:tc:xacml:1.0:function:and">

<!-- compare customer-id subject attribute with the
owner-id value in the document -->

<Apply FunctionId="urn:ibm:names:tc:xacml:1.0:function:string-equal">
<Apply FunctionId=

"urn:ibm:names:tc:xacml:1.0:function:string-one-and-only">
<!-- customer-id subject attribute -->
<SubjectAttributeDesignator AttributeId=
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"urn:ibm:names:tc:xacml:1.0:examples:attribute:customer-id"
DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Apply>
<Apply FunctionId=

"urn:ibm:names:tc:xacml:1.0:function:string-one-and-only">
<!-- owner-id element in the document -->

<AttributeSelector RequestContextPath=
"//ac:auctionEntry/ac:ownerInfo/ac:owner-id/text()"
DataType="http://www.w3.org/2001/XMLSchema#string">

</AttributeSelector>
</Apply>

</Apply>
</Condition>
</Rule>
</Policy>

Request Context
What follows next is an example of the request context that is constructed by
the Context handler. This is created when a user makes a request to update
the closing-date of an auction. The context handler creates this document by
using Java reflection on the auction object which is passed by the PEP to the
context handler. This request context states that a subject with the name “Joe”
and with customer-id jh1234 is trying to update the closing date of an auction
whose owner-id is jh1234.

<?xml version="1.0" encoding="UTF-8"?>
<Request xmlns="urn:ibm:names:tc:xacml:1.0:context"
Xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:ibm:names:tc:xacml:1.0:context
http://www.ibm.com/irl/xacml/1.0/cs-xacml-schema-context-01.xsd">

<Subject>
<Attribute AttributeId=

"urn:ibm:names:tc:xacml:1.0:subject:subjectid"
DataType="urn:ibm:names:tc:xacml:1.0:data-type:rfc822Name">
<AttributeValue>Joe</AttributeValue>

</Attribute>
<Attribute AttributeId=

"urn:ibm:names:tc:xacml:1.0:example:attribute:customer-id"
DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>jh1234</AttributeValue>

</Attribute>
</Subject>
<Resource>

<Attribute AttributeId=
"urn:ibm:names:tc:xacml:1.0:resource:ufspath"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">
<AttributeValue>

Auction
</AttributeValue>
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</Attribute>
<Attribute AttributeId=

"urn:ibm:names:tc:xacml:1.0:example:attribute:owner-id"
DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>jh1234</AttributeValue>

</Attribute>
</Resource>
<Action>

<Attribute AttributeId=
"urn:ibm:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string">
<AttributeValue>updateClosingDate</AttributeValue>

</Attribute>
</Action>

</Request>

Response Context
The PDP evaluates the rule applicable for the decision request and constructs
a response context. In this example, the user “Joe” is also the owner of the
auction and hence is permitted to update the closing-date of the auction as per
the access control rule. Hence the PDP returns a result of “Permit”. The syntax
of the response context is given below.

<?xml version="1.0" encoding="UTF-8"?>
<Response xmlns="urn:ibm:names:tc:xacml:1.0:context"
xsi:schemaLocation="urn:ibm:names:tc:xacml:1.0:context
http://www.ibm.com/irl/xacml/1.0/cs-xacml-schema-context-01.xsd">

<Result>
<Decision>Permit</Decision>

</Result>
</Response>
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Abstract. Authorisation constraints can help the policy architect de-
sign and express higher-level security policies for organisations such as
financial institutes or governmental agencies. Although the importance
of constraints has been addressed in the literature, there does not ex-
ist a systematic way to validate and test authorisation constraints. In
this paper, we attempt to specify non-temporal constraints and history-
based constraints in Object Constraint Language (OCL) which is a con-
straint specification language of Unified Modeling Language (UML) and
describe how we can facilitate the USE tool to validate and test such poli-
cies. We also discuss the issues of identification of conflicting constraints
and missing constraints.

1 Introduction

Today information technology pervades more and more our daily life. This ap-
plies to very different domains such as healthcare, e-government, banking. On
the other hand, new technologies go along with new risks, which must be system-
atically dealt with, such as preventing unauthorised access. Hence it is manda-
tory to establish adequate mechanisms that enforce the security and protection
requirements demanded by the rules and laws relevant to the organisation in
question. For example, in Europe there do exist strong data protection require-
ments as those formulated in the Directive 95/46/EC [7]. This directive among
other areas applies to clinical information systems where in particular the prin-
ciple of patient consent must be enforced [4]. In contrast, in the banking domain
other security requirements such as data integrity are more important such that
often separation of duty policies (SoD) [17,5] must be enforced.

Implementing such higher-level organisational security policies in computer
systems can be cumbersome and inefficient. However, it has turned out that
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one of the great advantages of role-based access control (RBAC) is that SoD
rules can be implemented in a natural way [9]. Generally speaking, role-based
authorisation constraints are an important means for laying out higher-level
security policies [1,13]. Although there are several works on the specification of
role-based authorisation constraints, e.g., [1,13], there is a lack of appropriate
tool support for the validation, enforcement, and testing of role-based access
control policies. Specifically, tools are needed which can be applied quite easily
by a policy designer without too much deeper training.

As demonstrated in [2,18], the Unified Modeling Language (UML) and the
Object Constraint Language (OCL) can be conveniently used to specify several
classes of role-based authorisation constraints. Moreover, owing to the fact that
OCL has proved its applicability in several industrial applications1, OCL is a
good means for such a practically relevant process like the design of security
policies.

However, as mentioned above, tool support is needed in order to have a
broader practical use. Hence, we demonstrate in this paper how to employ the
USE system (UML Specification Environment) [19,20] to validate and test access
control policies formulated in UML and OCL. In particular, USE is a validation
tool for UML models and OCL constraints, which has been reportedly applied
in industry and research [19]. With the help of this tool, a policy designer can
detect conflicting and missing authorisation constraints.

The paper is now organised as follows: Section 2 gives a short overview of
RBAC, UML/OCL, and introduces the USE system. In Section 3 typical and
partly more complex authorisation constraints are specified in OCL and in a
temporal OCL extension. Section 4 then demonstrates how USE can be employed
to validate and enforce RBAC security policies and test RBAC configurations
while Section 5 sketches related work. Section 6 summarises and gives an outlook
on future work.

2 Related Technologies

We first give a short overview of RBAC, then we briefly describe UML and
OCL, and finally introduce the USE tool, which can be employed to validate
OCL constraints.

2.1 RBAC and Authorisation Constraints

RBAC has received considerable attention as an alternative to traditional dis-
cretionary and mandatory access control. One reason for this increasing in-
terest is that in practice permissions are assigned to users according to their
roles/functions in the organisation (governmental or commercial) [8]. In addi-
tion, the explicit representation of roles greatly simplifies the security manage-
ment and allows one to use well-known security principles like separation of duty
and least privilege.
1 OCL is UML’s constraint specification language and UML has been widely adopted

in software engineering discipline.
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In the sequel, we briefly describe RBAC96, a family of RBAC models intro-
duced by Sandhu et al. [22]. RBAC96 has the following components:

– Users, Roles, P, S (sets of users, roles, permissions, activated sessions)
– UA ⊆ Users × Roles (user assignment)
– PA ⊆ Roles× P (permission assignment)
– RH ⊆ Roles× Roles is a partial order also called the role hierarchy or role

dominance relation written as ≤.

Users may activate a subset of the roles they are assigned to in a session. P
is the set of ordered pairs of operations and objects. In the context of security
and access control all resources accessible in an IT-system (e.g., files, database
tables) are referred to by the notion object. An operation is an active process
applicable to objects (e.g., read, write, append). The relation PA assigns to
each role a subset of P . So PA determines for each role the operation(s) it may
execute and the object(s) to which the operation in question is applicable for the
given role. Thus any user having assumed this role can apply an operation to an
object if the corresponding ordered pair is an element of the subset assigned to
the role by PA.

An important advanced aspect of RBAC are authorisation constraints. Au-
thorisation constraints are sometimes argued to be the principal motivation be-
hind the introduction of RBAC [22]. They allow a policy designer to express
higher-level organisational security policies. Depending on the organisation, dif-
ferent kinds of authorisation constraints are required such as SoD in the banking
field [5] or constraints on delegation and context constraints in the healthcare
domain [24]. Later in this paper, different kinds of authorisation constraints are
specified and discussed.

2.2 Overview of UML and OCL

Unified Modeling Language. The Unified Modeling Language (UML) [21] is
a general-purpose visual modeling language in which we can specify, visualize,
and document the components of software systems. It captures decisions and
understanding about systems that must be constructed. UML has become a
standard modeling language in the field of software engineering.

UML permits the description of static, functional, and dynamic models. In
this paper, we concentrate on the static aspects of UML. A static model provides
a structural view of information in a system. Classes are defined in terms of their
attributes and relationships. The relationships include specifically associations
between classes. In Figure 1, the conceptual static model for RBAC is depicted.

Object Constraint Language. The Object Constraint Language (OCL) [25]
is a declarative language that describes constraints on object-oriented models.
A constraint is a restriction on one or more values of an object-oriented model.
OCL is an industrial standard for object-oriented analysis and design.

Each OCL expression is written in the context of a specific class. In an OCL
expression, the reserved word self is used to refer to a contextual instance.
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Fig. 1. Conceptual Class Model for RBAC-Entity Classes

The type of the context instance of an OCL expression is written with the
context keyword, followed by the name of the type. The label inv: declares the
constraint to be an invariant. Consider the RBAC model from Figure 1: If the
context is Role, then self refers to an instance of Role. The following line shows
an example of an OCL constraint expression describing a role with at most two
users:

context Role inv: self.user->size()<2

self.user is a set of User objects that is selected by navigating from objects
of class Role to User objects through an association. The ‘‘.’’ stands for a
navigation. A property of a set is accessed by an arrow ‘‘->’’ followed by the
name of the property. A property of the set of users is expressed using the size
operation in this example.

The following shows another example describing that a user can be assigned
to a role r2 only if she is already member of r1:

context User inv:
self.role_->includes(’r2’) implies self.role_->includes(’r1’)

The expression self.role ->includes(’r2’) means that r2 is a member
of the set of roles the user is assigned to. The implies connector is similar to
logical implication.

Furthermore, OCL has several built-in operations that can iterate over the
members of a collection (set, bag, ...) such as forAll, exists, iterate, any and
select (cf. [25]).

2.3 The USE Tool

This section explains the functionality of the UML Specification Environment
(USE) which allows the validation of UML and OCL descriptions. USE is the
only OCL tool allowing interactive monitoring of OCL invariants and pre- and
postconditions, and the automatic generation of non-trivial system states. These
system states or snapshots consist of the current objects and links between those
objects adhering to the UML model in question.
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The central idea of the USE tool is to check for software quality criteria
like correct functionality of UML descriptions already in the design level in an
implementation-independent manner. This approach takes advantage of descrip-
tive design level specifications by expressing properties more concisely and in a
more abstract way. Such properties are given by invariants and pre- and post-
conditions, and these are checked by the USE system against the test scenarios,
i.e., object diagrams and operation calls given by sequence diagrams, which the
developer provides. These abstract design level tests are expected to be also used
later in the implementation phase.

The USE tool expects as an input a textual description of a model and its
OCL constraints (for an example of such a description refer to Figure 3). Then
syntax checks of this description are carried out, which verify a specification
against the grammar of the specification language, basically a superset of OCL
extended with language constructs for defining the structure of the model. Hav-
ing passed all these checks, the model can be displayed by the GUI provided
by the USE system. In particular, USE makes available a project browser which
displays all the classes, associations, invariants, and pre- and post-conditions of
the current model.

Figure 2 shows a USE screenshot with an example. On the left we see the
project browser displaying the classes, associations, invariants, and operation
pre- and post-conditions. In a detail window below, the selected class is pictured
with all details. On the right, we identify a sequence diagram presenting the
operations which lead to the current system state given in the object diagram
window below. The evaluation of the invariants in this system state is pictured
in the class invariant window to the right of the object diagram window. The

Fig. 2. USE screenshot
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developer gets feedback from USE about the validity of the invariants in the
invariant window and the validity of the pre- and post-conditions in the sequence
diagram window. Further information about the validity of invariants can be
requested by a dialog window for evaluating arbitrary OCL expressions. This
dialog allows ad-hoc queries useful for navigating and exploring a system state
at any time. Hence, USE helps the developer in analysing situations when an
invariant or a pre- or post-condition fails. This query window will be used several
times in Section 4.

3 Constraints Specification

In this section, different types of authorisation constraints are specified in OCL.
In the first subsection, non-temporal authorisation constraints are formulated in
OCL, whereas in the second subsection history-based authorisation constraints
are formalised in a temporal extension of OCL.

3.1 Non-temporal Authorisation Constraints

Subsequently we give three examples that demonstrate how to use OCL to spec-
ify authorisation constraints.

Example 1: Simple Static Separation of Duty (SSOD)
The first example concerns a separation of duty constraint. Consider two (or
more) conflicting roles such as accounts payable manager and purchasing man-
ager. Mutual exclusion in terms of the user assignment UA specifies that one
individual cannot have both roles. This constraint on UA can be specified using
the OCL expression as follows 2:

context User inv SSOD:
let

CR:Set={{AccountsPayableManager, PurchasingManager}, ...}
in

CR->forAll(cr|cr->intersection(self.role_)->size()<=1)

This formulation of SSOD is based upon the SSOD specification given in [1].
Specifically, CR denotes a set which consists of conflicting role sets.

Example 2: Prerequisite Roles
The second example is based upon the concept of prerequisite constraints as
introduced in [22]. In this example, we consider a prerequisite constraint stating
that a user can be assigned to the engineer role only if the user is already as-
signed to the employee role.

2 For the sake of simplicity, we have left out here the part for the creation of the
instances AccountsPayableManager and PurchasingManager. Similar remarks hold
for the subsequent OCL specifications.
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context User inv Prerequisite Role:
self.role ->includes(engineer) implies self.role ->includes(employee)

Example 3: Static Separation of Duty - Conflict Users (SSOD-CU)
By means of OCL even more complex authorisation constraints can be formu-
lated. One example of such a constraint is SSOD-CU identified by Ahn in [1].
SSOD-CU means that two or more colluding users cannot be assigned to con-
flicting roles. For example, it might be the company policy that members of
the same family cannot be assigned to the roles accounts payable manager and
purchasing manager. SSOD-CU can now be expressed in OCL in the following
way:

context User inv SSOD-CU:
let

CU:Set(Set(User))=Set{Set{Michael,Frank,Susan},Set{Lars,Maria}},
CR:Set(Set(Role))=Set{Set{AccountsPayableManager, BillingClerk},
Set{Cashier, CashierSupervisor}, ...}

in
CR->forAll(cr|cr->intersection(self.role_)->size()<=1)

and
CU->forAll(cu|
CR->forAll(cr|cr->iterate(r:Roles; result:Set(User)=Set{}|
result->union(r.user))->intersection(cu)->size()<=1))

SSOD-CU is a composite constraint consisting of two parts, an SSOD part and an
additional part concerning the conflicting users. The SSOD part is required be-
cause otherwise obviously the whole constraint would not be useful. The iterate
operation iterates over all roles r belonging to a set of conflicting roles and col-
lects all users of these roles. CR has the same meaning as in example 1 whereas
CU is a set consisting of all conflicting user sets.

3.2 History-Based Constraints

OCL is quite similar to first-order predicate logic. As expressions of the predicate
calculus, OCL expressions used in invariants are evaluated in a system state.
However, due to the fact that we consider here only one snapshot of the system,
we have no notion of time. Hence, authorisation constraints that consider the
execution history such as history-based or object-based dynamic SoD [10] cannot
be adequately expressed.

In the following, we sketch how history-based authorisation constraints can
be specified in TOCL (Temporal OCL) [26], an extension of OCL with tem-
poral elements. In particular, temporal operators like always (in the future),
sometime (in the future), and next are available. To demonstrate how history-
based authorisation constraints can be formulated in TOCL, we take dynamic
object-based SoD as an example, which has been introduced informally by Nash
and Poland [17]. Dynamic object-based SoD roughly speaking means that a user
must not act upon an object that the same user has previously acted upon.
Other dynamic SoD constraints enumerated in [10] can clearly be expressed in
TOCL, too.
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model RBAC
-- classes

class Role
attributes

name:String
end

class User
attributes

name:String
end

class Permission
attributes

name:String
op:Operation
o:Object

end

class Object
attributes

name:String
end

class Operation
attributes

name:String
end

class Session
attributes

name:String
end

-- associations
association UA between

User[*] role user
Role[*] role role

end

association PA between
Permission[*] role permission
Role[*] role role

end
association establishes between

Users[1] role user
Session[*] role session

end

association activates between
Session[*] role session
Role[*] role role

end

association inherits between
Role[*] role senior
Role[*] role junior

end

constraints
context Users inv PrerequisiteRole:

self.role ->includes(r2)
implies self.role ->includes(r1)

--constraint: user part of SSOD-CU
context Role inv SSOD-CU:
let

CU:Set(Set(User))=Set{{u1,u2,u3},{u4,u5}}
in
let

CR:Set(Set(Role))=Set{Set{r1,r2},...}
in

CU->forAll(cu|
CR->forAll(cr|cr->iterate(r:Role;
result:Set(User)=oclEmpty(Set(User))|
result->union(r.user))->intersection(cu)->size()<=1))

Fig. 3. USE specification of an RBAC security policy

In order to specify dynamic object-based SoD in TOCL, we use two predi-
cates introduced in [16], namely auth(u, op, obj) and exec(u, op, obj). The former
predicate means that a user u is authorised to execute operation op on object
obj while the latter means that user u executes operation op on object obj in the
present state. For the sake of simplicity, the full details of those predicates are
left out here. The interested reader is referred to [16] to obtain more information
on that topic.

Due to the fact that exec and auth are ternary predicates and OCL supports
only binary associations we extend OCL with additional predicates Exec and
Auth to express ternary associations, as proposed in [12].

With this extension, we obtain the following TOCL specification for object-
based dynamic SoD (using the always operator):

context Object inv ObjDSoD:
Operation.allInstances->forAll(op,op1|

User.allInstances->forAll(u|
(Exec(u,op,self) and op1<>op) implies always not Auth(u,op1,self))))

This corresponds to the specification of dynamic object-based SoD in first-
order linear temporal logic as given in [16]:
∀u : Users; op, op1 : OpSet; obj : Object.op �= op1 ∧ exec(u, op, obj)
⇒ �¬auth(u, op1, obj).
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4 Validation and Testing of RBAC Security Policies

With OCL we have a light-weight formalism at hand, which can help specify-
ing RBAC security policies. What is however missing is a tool which helps a
policy designer in validating her RBAC policy. Hence, in the sequel it will be
demonstrated how the USE tool, which is a general-purpose validation tool for
OCL constraints, can be employed for this purpose (cf. Section 4.1). Specifi-
cally, authorisation constraints such as those categorised in [1] can be handled.
Additionally, USE can also be applied to test concrete RBAC configurations
against certain conditions (cf. Section 4.2). The last section sketches how the
USE functionality can be used to build an RBAC authorisation editor.

4.1 Validation of RBAC Security Policies

As mentioned in section 2.3, the main application of the USE tool is the valida-
tion of UML/OCL models. The same can be carried out with an RBAC security
policy. The USE specification of a security policy is given in Figure 3 with the
authorisation constraints expressed by OCL constraints. This policy will serve
as an example within this section.

Through the validation of RBAC policies conflicting constraints can be de-
tected and missing constraints identified. The validation can be done before the
deployment of the RBAC policy, i.e., during the design phase. As indicated above,
the USE approach for validation is to generate system states (snapshots) and
check these states against the specified constraints. In our case, the system states
are certain RBAC configurations (consisting of users, roles, the relations between
these entities). The RBAC configurations could be created automatically by run-
ning a script with the state manipulation commands, which are supported by
the USE tool, or as an alternative with a GUI provided by the USE system. This
animation-based approach for the validation of security policies can be regarded
as a complement to a rigorous formal verification, which often requires deeper
training in formal methods.

The result of the validation can lead to different consequences. Firstly, we
may have reasonable system states that do not satisfy one or more authorisation
constraints of the policy. This may indicate that the constraints are too strong
or the model is not adequate. Secondly, the security policy may allow undesired
system states, i.e., the constraints are too weak. In the following both situations
are discussed more thoroughly.

Conflicting Constraints. USE may help the policy designer find conflicting
constraints. This will be subsequently demonstrated by an example, considering
the RBAC policy presented in Figure 3. Clearly, this example policy is rather
simple, but in reality we often have to deal with considerably more complex
policies. Now, let us further assume that the policy designer has forgotten that
he had once defined a prerequisite role constraint between r1 and r2. Later, the
policy designer decided to define r1 and r2 mutually exclusive due to a change
of organisational rules/policies. Obviously, both constraints could not be sat-
isfied at the same time and hence the composite constraint is too strong. The
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Fig. 4. USE screenshot: two conflicting constraints

USE screenshot in Figure 4 displays the situation after user u has been assigned
to r2. Clearly, the policy designer cannot have assigned u to role r1; other-
wise the new SSOD constraint would be violated. However, now the constraint
User::PrerequisiteRole is evaluated to false (cf. “Class invariants” view in
Figure 4), and hence the current RBAC configuration is not a correct system
state according to the given policy specification.

Admittedly, the mere information that a constraint is false might often not
help to find the real reason for the problem and to resolve the conflict. Additional
information is required which objects and links of the current state violate the
constraint. For such a purpose, the policy designer can debug the constraints that
are not satisfied by the current system state with the “Evaluate OCL expression”
dialog. For example, in Figure 4 the result of the query “all users who are assigned
to r2 but not to r1” applied to the given RBAC configuration is shown. Here,
one can learn that u is not assigned to r1, although this is required by the
prerequisite role constraint. If the policy designer now conversely tries to assign
u to r1, the SSOD constraint fails, and one can conclude that both constraints
are contradictory. A policy designer could employ USE in a similar way for
other constraint types such as cardinality constraints or other SoD properties.
In particular, this approach is helpful if a new constraint is added to the policy,
in order to check if it is in conflict with the composition of the already defined
constraints.

Nevertheless, USE may find conflicts only in certain cases, and there is no
guarantee that all conflicts can be detected. Had u not been assigned to r2,
the conflict would have remained undetected. In order to eliminate contradic-
tory constraints in general, a more formal approach such as model checking is
required. On the other hand, the USE approach is only meant to improve the
design of a security policy, and does not aim at a formally proven design. Given
the condition that there is often a lack of tools for policy analysis, the USE ap-
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proach can be considered as a first pratical step towards more reliable security
mechanisms.

However, various heuristics can be applied which may streamline the conflict
detection process with USE. For example, system states (snapshots) could be
created which are specially tailored towards certain constraint types. In partic-
ular, we could consider snapshots which satisfy the constraint in question and
which contain all the parameters (objects and links) occurring in this constraint
(cf. the system state in Figure 4 for the SSOD constraint). Such a snapshot can
then be taken as a starting point for the conflict detection process. Specifically,
we can check if this system state also adheres to the composition of the other
already defined constraints. As a further improvement, we could store snapshot
templates for each constraint type (e.g., SSOD, prerequisite roles) and instanti-
ate these templates for a certain constraint if needed. This way, a library with
snapshot templates is available, which can be reused and appropriately combined
with other snapshots to obtain test cases for conflict detection.

Detection of Missing Constraints. The second consequence of constraint
validation may be that the policy permits undesirable system states, i.e., the
authorisation constraints are too weak. Once again suppose that the policy de-
signer has defined a complex security policy. Let us further assume that she has
forgotten to define the SSOD part of the SSOD-CU constraint mentioned above
(cf. Figure 3) and that an undesirable system state has been created by USE in
which u is assigned to both the roles r1 and r2. Now, USE can help in detecting
the missing constraint in this scenario: all constraints (in our case specifically
the conflict user part of the SSOD-CU constraint) defined so far are evaluated
to true and hence the policy seems supposedly to be correct. On the other hand,
the policy permits a user to be assigned to the mutually exclusive roles r1 and
r2. Therefore, a further SSOD constraint must be added to the policy in order
to exclude the undesirable state.

But how can we create a system state which reveals the missing constraint?
One possible solution is to create an RBAC configuration tailored towards the
missing constraint as described in the previous section, but with the difference
that now snapshots must be considered that violate the missing constraint. An-
other possibility is to use the test generator provided by USE [11]. By means
of this generator we can create system states at random and then check if the
created system state violates certain conditions with the help of the “Evaluate
OCL expression” dialog.

4.2 Testing a Given RBAC Configuration with USE

Beyond the validation of constraints, USE can be employed for testing an RBAC
configuration after the constraints have been deployed. However, observe that
we consider here a predefined RBAC configuration of users, roles, etc. which
corresponds to a real-world RBAC configuration of an organisation.

Testing an RBAC configuration may be mandatory in several situations. For
example, in some domains (e.g., healthcare) strict data protection laws must
be fulfilled such as the European Directive 95/46/EC [7]. In order to assess
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the current RBAC configuration defined for security-relevant applications, often
some external review is required, e.g., from an government agency responsible for
data protection as established in Germany. What is often missing is a tool that
supports an external reviewer in checking a concrete RBAC configuration of an
organisation against certain properties such as data protection rules. In addition,
the ability to test RBAC configurations may also be helpful for administrators
in order to check if a security policy has been implemented correctly.

USE can now be employed as an ad hoc query tool to check certain properties
of the current RBAC configuration such as:

– there is no common user of mutually exclusive roles
– only clinicians of a patient’s current ward may have access to the patient’s

electronic patient record3

For this purpose, the “Evaluate OCL expression” dialog is helpful again. For
example, a reviewer can check the current RBAC configuration if and which
users are assigned to the roles r1 and r2, which ought to be mutually exclusive.
Due to the fact that an administrator or external reviewer usually is not an
expert in specification formalisms like OCL an authorisation editor should be
made available which hides the formalism behind a GUI. This is discussed in the
following.

4.3 Authorisation Editor

We have implemented an RBAC authorisation editor built upon the Java API
made available by the USE system. This way, the USE system is hidden from
the administrator and hence she need not be familar with UML/OCL and USE.
The authorisation editor can enforce several types of authorisation constraints
like those listed in [1]. More explicitly speaking, the authorisation editor can be
used in principle to specify and enforce all authorisation constraints expressible
in OCL. As a consequence, types of authorisation constraints beyond those enu-
merated in [1] can also be formulated and enforced such as context constraints.

In the following, the functionality of the authorisation editor will be presented
in more detail. First, the prototype of the authorisation editor currently supports
most of the functionality demanded by the ANSI standard for RBAC [3]. This
means that we have implemented administrative functions, system functions, and
review functions. According to [3] administrative functions allow the creation and
maintenance of the element sets (e.g., User, Role, Permission) and the RBAC
relations (e.g., UA, PA). For example, AddUser, DeleteUser, and AssignUser
belong to this class of functions. System functions are required by the authorisa-
tion editor for session management and making access control decisions. Thus,
examples are CreateSession, and AddActiveRole. Review functions allow for
reviewing the results of the actions created by administrative functions. Typ-
ical examples of review functions are AssignedUsers, and UserPermissions.

3 We assume here that there is a further attribute “ward” for certain roles and for
users.
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Fig. 5. The authorisation editor

Administrative and system functions can be implemented by the state manipu-
lation commands provided by the USE system. Due to the aforementioned query
facilities of USE, RBAC review functions can also be easily implemented.

Beyond this basic functionality, the RBAC authorisation editor provides
mechanisms for defining and enforcing authorisation constraints (e.g., simple
static SoD, object-based static SoD, cardinality constraints). The basic idea of
the constraint checking mechanism is now as follows: The authorisation editor,
or to put it in another way, the USE system checks if the relevant authorisation
constraints are still satisfied after an administrative function has been carried
out. If any constraint is violated, the last function is automatically revoked. As
a consequence, the tool can only produce states that are consistent with the
specified constraints.

The authorisation editor can also deal with role hierarchies, which are not
restricted to inheritance trees, but can also in general form directed acyclic
graphs. Moreover, the tool can detect and then prevent inconsistencies such
as a senior role which inherits two mutually exclusive junior roles. For example,
assume we have a role Chair and two junior roles Reviewer and Author. Further
assume both junior roles are mutually exclusive. Then the role Chair is strictly
speaking useless because no user can ever be assigned to this role. To give a
better overview, a screenshot of the current prototype of the authorisation editor
is shown in Figure 5. In the upper part of the window, there are several buttons,
each button stands for a special administrative function. The large window in
the middle of the tool visualises the current system state (RBAC configuration).
The visualisation of the system state will be immediately renewed when the
system state has been changed by an administrative function. At the bottom of
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the window there is a log window, which displays the result of the last applied
administrative function. There are currently two windows open: On the right-
hand side there is a small window to create a set of roles for a simple static SoD
constraint; on the left-hand side there is a window to create a session for a user
with active roles.

5 Related Work

There are several works concerning the specification of RBAC authorisation con-
straints, e.g., a graphical language [13] and the RCL 2000 language based upon
restricted first-order logic [1]. As demonstrated in [1], various classes of authori-
sation constraints can be expressed with RCL 2000. Although the classification
and the case studies are insightful, no tool support for constraint validation, en-
forcement, and testing has been implemented so far. In [18] and [2], constraints
are formulated in UML/OCL, but once again no tool support for the validation
is available. In this respect, the USE approach fills this gap.

In [14,15], another approach for the verification of RBAC policies is presented,
based upon graph transformations. However, this approach does not tackle the
problem of conflicting constraints, but the problem of graph rules conflicting
with constraints. Due to the fact that some constraints can only be expressed
clumsily (e.g., SSOD-CU, operational SoD) a formulation of those constraints in
OCL is often more intuitive.

In [6], an authorisation editor is presented which is similar to the one de-
scribed in Section 4.3. However, with the approach from [6], for example, the
SSOD-CU constraint cannot be specified and enforced. On the other hand, with
USE no history-based SoD constraints can be enforced because TOCL is cur-
rently not supported.

6 Conclusion and Future Work

In this paper we demonstrated that with the help of OCL several classes of au-
thorisation constraints and even complex composite constraints can be specified.
Due to the fact that the UML/OCL is quite familiar in industrial environments
there is hope that OCL can be used by policy designers in many organisations.
In addition, we demonstrated how the USE tool, a validation tool for OCL con-
straints, can be employed to fulfill several practical needs such as constraint
validation, testing of RBAC configurations and building an authorisation editor.

Owing to the fact that USE can only check the current snapshot of an RBAC
configuration, history-based authorisation constraints [23] cannot be dealt with.
For this purpose a temporal extension of OCL like that sketched in this paper
is needed. Hence, it remains future work to extend USE in order to deal with
temporal constraints. Another goal is to integrate the authorisation editor into
middleware. Specifically, Web services could be an interesting target to enforce
authorisation constraints due to the high access control requirements of this
technology.
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Abstract. Often, enforcing security incurs overhead, and as a result may degrade
the performance of a system. In this paper, we attempt to address this problem in
the context of enforcing access control policies in a mobile data object environ-
ment. There are a number of applications that call for fine-grained specification
of security policies in guaranteeing the confidentiality of data or privacy of in-
dividuals in a mobile environment. In particular, the security policies state the
rules for providing controlled access to the mobile user profiles, to their current
location and movement trajectories, to mobile resources, and stationary resources
based on the mobile user location. Either a subject or an object in an authorization
specification can be a moving object. The access requests in such an environment
can typically be based on past, present and future status of the moving objects. To
effectively serve such access requests, one must efficiently organize the mobile
objects as well as authorizations.

Although implementation of authorizations as access control list, capability
list or access matrix is suitable for traditional data, it is not suitable to search
mobile object authorizations as they are based on spatial and temporal attributes
of subjects and objects, rather than subject and object identifiers. When a subject
issues an access request, the system must first retrieve the relevant objects from
the moving object database, and then verify whether there exists an authorization
that allows the subject to access these objects. Since both the moving objects and
authorizations are spatiotemporal in nature, for efficient processing of access re-
quests, it is essential that they both be organized using some index structures. As
a result, processing an access request requires searching two indexes - one, the
moving object index, and the other, the authorization index. To improve the re-
sponse time of access requests, in this paper, we propose a unified index structure,
called STPR-tree to index both moving objects and authorizations that govern ac-
cess to them. As a result of the unified index, access requests can be processed
in one pass, thereby improving the response time. Note that current access con-
trol systems do not use any index for authorizations; our work is a step in this
direction. We show how the STPR-tree can be constructed and maintained, and
provide algorithms to process access requests.

1 Introduction

Recent advances to mobile communication, Global Positioning System (GPS) and Ra-
dio Frequency Identification (RFID) technologies have propelled the growth of a num-
ber of mobile services. Among them, location-based service (LBS) is becoming the
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most widely used services. LBS presents a major new market for the mobile industry,
which includes (i) navigation services, (ii) providing business descriptions in a given
geographical radius, real-time alerts on traffic conditions and information about high-
way services, (iii) personalized point-of-need information delivery, such as travel reser-
vations, new or interesting products and services, and (iv) mobile advertising, which
includes personalized, location-aware, and context-sensitive advertising, based on mo-
bile customer profiles and preferences, as mobile devices are ideal for marketing chan-
nels for impulse buying [19]. For example, a wireless shopping site can be designed to
present users with targeted content such as clothing items on sale, based on prior knowl-
edge of their preferences and/or knowledge of their current location, such as proximity
to a shopping mall [25]. LBS can be also be used in emergency situations to transmit
messages via a reverse 911 service to individuals. To deliver LBS, service providers re-
quire access to customers’ preference profiles either through a proprietary database or
through an arrangement with an LBS provider, who matches customer profiles to ven-
dor offerings. In order to implement such services, customization and personalization
based on the location information, customer needs, and vendor offerings are required.
Industrial and corporate applications, including tracking of material through the sup-
ply chain and inventory, and tracking physicians, patients, and equipment in a hospital.
This relies on the deployment of RFID technologies, which is becoming inexpensive
and will likely be used by a number of retail businesses.

In all the above applications, the mobile objects may include mobile phones, wire-
less PDAs, GPS equipped units such as boats, trucks, automobiles, airplanes, and sol-
diers, objects with RFID tags, a variety of moving sensors and other wireless computing
devices.

In delivering mobile services, one encounters a number of security and privacy con-
cerns, which are discussed below.

– Location privacy: Privacy of mobile users can be compromised by disclosing the
location and movement. Note that it is essential to identify the location of the mo-
bile object due to the following two reasons. First, to effectively function, location-
based services require information about the location of the communication device.
Second, in countries like U.S., the European Union and Japan, laws require that mo-
bile telephones be able to provide location data with a fairly detailed accuracy for
the purposes of emergency situations.

Although identifying (and sometimes tracking) of the location of a mobile object
is essential in delivering a mobile service, it could pose a threat to privacy of the
person carrying the mobile device.

Unlike the internet, location information has the potential to allow an adversary
to physically locate a person, and therefore wireless subscribers carrying mobile
devices have legitimate concerns about their personal safety, if such information
should fall into the wrong hands. Laws and rules of varying clarity, offering differ-
ent degrees of protection, have been or are in the process of being enacted in the U.
S., the European Union and Japan [2].

– User Information Privacy: Privacy of mobile users can be compromised by re-
vealing the sensitive profile information of the mobile users to unintended users.
The needs of mobile commerce applications go beyond tracking users’ locations,
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for example, they may additionally need to track user profiles and preferences in
order to achieve mass personalization. This is because, to be effective, targeted ad-
vertising should not overwhelm the mobile consumers and must push information
only to a certain segment of mobile consumers based on their preferences and pro-
files, and based on certain marketing criteria. Obviously, these consumers should
be targeted only if they are in the location where the advertisement is applicable at
the time of the offer. It is important to note here that user profile information may
include both sensitive and non-sensitive attributes such as name, address, linguistic
preference, age group, income level, marital status, education level, etc.

While mobile consumers like to benefit from personalization, they usually are
not willing to share their sensitive profile information to all the merchants. To en-
sure the privacy of mobile users, it is important that the sensitive profile information
is revealed to the respective merchants only on the need-to-know basis.

– Security: In addition to the privacy concerns mentioned above, there are a num-
ber of applications that call for securing resources based on the criteria of mobile
objects. These include context (location)-sensitive access control, and ubiquitous
computing environment, where access is permitted based on the location of the
subjects/objects during a specific time.

In particular, the security policies provide controlled access to the mobile user pro-
files, to their current location and movement trajectories, to mobile resources, stationary
resources based on the mobile user location. Therefore, an appropriate access control
mechanism must be in place to enforce the authorization specifications reflecting the
above security and privacy needs.

Access policies are specified as a set of authorizations, where each authorization
states if a given subject possesses privileges to access an object. In the mobile environ-
ment, both subjects and objects can either be mobile or non-mobile. As a result either a
subject or an object in an authorization specification can be a moving object. The access
requests in such an environment can typically be on past, present and future status of the
moving objects [26,13]. To effectively serve such access requests, one must efficiently
organize the mobile objects as well as authorizations.

Although implementation of authorizations as access control list, capability list or
access matrix is suitable for traditional data, it is not suitable to search authorizations
in a mobile object environment, as they are based on spatial and temporal attributes of
subjects and objects, rather than subject and object identifiers. Therefore, when a sub-
ject issues an access request, be it a past, future or current, the system must first retrieve
the relevant object(s) from the moving object database, and then verify whether there
exists an authorization that allows the subject to access these objects. Since both the
moving objects and authorizations are spatiotemporal in nature, for efficient processing
of access requests, it is essential that they both be organized using some index struc-
tures. As a result, processing an access request requires searching two indexes - one, the
moving object index, and the other, the authorization index. To improve the response
time of access requests, in this paper, we propose a unified index structure to index both
moving objects and authorizations that govern access to them. Essentially, our index is
created by carefully overlaying authorizations on top a moving object index, based on
their spatiotemporal parameters.
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Recently, a number of moving object index structures have been proposed. Unlike
traditional spatiotemporal objects, moving objects are characterized by the moving spa-
tial location that changes with time. In other words, a moving object can be specified
as 〈x̄, v̄〉, where x̄ represents its initial position vector and v̄ its velocity vector. Current
moving object index structures can be categorized primarily into three types: The first
type stores the moving objects as transformed points in 2-dimensional dual 〈x̄, v̄〉 space
[12,14], where dual transformation [15] is adopted. The second type stores them as lines
in (d+1)-dimensional 〈x̄, t〉 space (TB-tree and STR-tree [18,17]) by adding time t as
an addition dimension. The third type stores them as points in native, d-dimensional 〈x̄〉
space (TPR-tree [20]). Our proposed unified index structure, STPR-tree, is constructed
by carefully overlaying authorizations on top the TPR-tree, based on their spatiotempo-
ral parameters. As a result of the unified index, access requests can be processed in one
pass, thereby improving the response time. Note that current access control systems do
not use any index for authorizations; our work is a step in this direction. We show how
the STPR-tree can be constructed and maintained, and provide algorithms to process
access requests.

This paper is organized as follows. We first present the preliminaries of the TPR-
tree in section 2. In section 3, we propose our moving object authorization model. In
section 4, we present our proposed novel unified index structure, the STPR-tree and
illustrate our approach and strategy to overlay authorizations on top of the TPR-tree. In
section 5, we describe how to process an access request that involves both searching for
a moving object and evaluation of an authorization can be performed simultaneously. In
section 6, we discuss the properties and limitations of our STPR-tree. Related work is
presented in section 7. We conclude the paper by providing some insight into our future
research in this area in section 8.

2 Preliminaries of the TPR-Tree

In this section, we present the details of the TPR-tree[20] since our STPR-tree is based
on this. In particular, we present how a moving object is represented in the tree and how
the tree is constructed to index these objects for efficient retrieval.

2.1 Representation of Moving Objects

Moving objects are data with attributes that change with time. Generally speaking, these
objects may move in a d-dimensional embedding space. In this paper, for ease of visu-
alization and explanation, we consider the space to be 2-dimensional. However, the
formalism can be easily extended to higher dimensional spaces.

Let the set of moving objects be MO = (mo1, mo2, . . . mok). In the d-dimensional
space, objects are specified as points which move with constant velocity v̄ = {v1, v2, . . .
vd} and initial location x̄ = {x1, x2, . . . xd}. The position x̄(t) of an object at future
time t(t ≥ tc) can be computed through the linear function of time, x̄(t) = x̄(t0) +
v̄(t − t0) where t0 is the initial time, tc the current time and x̄(t0) the initial position.
Considering a two-dimensional space, a moving object moi moving in 〈x, y〉 space can
be represented as follows: moi = ((xi, vix), (yi, viy )).
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2.2 Time Parameterized Rectangle (tpr)

Given the trajectories of a set of moving objects MO in the time interval [t0, t0 + δt]
in 〈x, y, t〉 space, we define the tpr of MO as a 3-dimensional bounding trapezoid
which bounds all the moving objects in MO during the entire time interval [t0, t0 + δt].
The tpr of MO can be defined as (x�, x
, v�x , v
x , y�, y
, v�y , v
y ) and its projection on
〈x, t〉 space is a time-parameterized bounding interval [x�(t), x
(t)] = [x�(t0)+v�x (t−
t0), x
(t0)+v
x (t−t0)] and the projection on 〈y, t〉 space is another time-parameterized
bounding interval [y�(t), y
(t)] = [y�(t0) + v�y (t − t0), y
(t0) + v
y (t − t0)], where
∀i ∈ {1, 2, . . . , k}

x� = x�(t0) = mini{xi(t0)} v�x = mini{vix}
x
 = x
(t0) = maxi{xi(t0)} v
x = maxi{vix}
y� = y�(t0) = mini{yi(t0)} v�y = mini{viy}
y
 = y
(t0) = maxi{yi(t0)} v
y = maxi{viy}
For example, figures 1 and 2 show a time parameterized rectangle and the trajectory

of three moving objects a,b and c in [t0, t0 + H ] time interval, together with their pro-
jections on both x− and y− dimensions, respectively. We explain how this tpr can be
constructed using figure 3, which depicts 3 moving objects, a,b and c in 〈x, y, t〉 space.
Based on their respective velocities, the lines represented by ax and cx form the lower
and upper bound in the x-dimension, and ay and cy in y-dimension, respectively. As a
result, the tpr shown in the shaded region in figure 4 is formed. Note that the axes in
figures 3 and 4 have been changed from those of figures 1 and 2 to improve readability.
As shown in figure 1, at each time point, say t0, ti and t0 + H the the slice of the tpr is
a rectangle with area A0, Ai, and AH , respectively.

The tpr hierarchy: Given a set of tprs, they can be organized in a hierarchical struc-
ture. As can be seen in figure 5, tpr C encloses tprs A and B. These three can be
organized as a hierarchical structure with A and B being the children of C, as shown in
figure 6. Essentially, at the bottom most level of the hierarchy, a set of moving objects
could be grouped to form tprs. Each tpr of the next higher level is the bounding tpr of
the set of tprs of all of its children. The root of the hierarchy is thus the bounding tpr
covering all its lower level tprs in a recursive manner. Each tpr has exactly the same
attributes as its children tprs except being larger in terms of its spatial magnitude while
temporal span remains the same.
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Ai AH

t0+H

x

y

t0 ti

Fig. 1. TPR
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Fig. 2. The Trajectory of Moving Objects in TPR
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2.3 The TPR-Tree

In this section, we first introduce some essential parameters related to the TPR-tree.

Time Horizon (H): Recall that each moving object is represented by its initial posi-
tion and velocity. However, given a moving object, it is unrealistic to assume that its
velocity remains constant. Therefore, the predicted future location of a object specified
as a linear function of time becomes less and less accurate as time elapses [20]. To ad-
dress this issue, the TPR-tree defines a time horizon, H , representing the time interval
during which the velocities of the moving objects hold good. It assumes that the tree
is constructed by bulkloading the moving objects at some point in time (say t0) and
reconstructs the tree after H . In essence, the tree is good during [t0, t0 + H] interval
and all predictions made within this interval are acceptable in terms of the degree of
accuracy. However, the tree deteriorates beyond its time horizon.

Construction of the TPR-Tree: TPR-tree is a time parameterized variant of R*-tree
[10]. Each node in the TPR-tree represents a tpr of a set of moving objects. The way
objects and in turn tprs are grouped and therefore be placed in a specific node is based
on an objective function that can be specified using any of the following strategies,
including the smallest sum of volumes of tprs, the smallest sum of the overlapping
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regions among tprs, etc. One may adopt an appropriate strategy based on the applica-
tion under consideration. So each node stores the bounding rectangle that grows with
time to cover the enclosing moving objects. Thus, the bounding rectangle forms the
3-dimensional bounding trapezoid. While objects are stored only at the leaf nodes, the
purpose of the upper level nodes is to direct the search via a specific path(s) to efficiently
retrieve the objects that satisfy a user request.

The tree is constructed via the consecutive insertion operation into an initially empty
tpr root. The candidate node to insert an object should either spatiotemporally enclose
the new object being inserted, or needs the least volume enlargement to enclose this
new object in time interval[t0, t0 +H ]. The tpr of its ancestor node should be expanded
to cover its children tprs, if necessary. The detailed steps for insertion are similar to
that of R*-tree. We use N� to denote the tpr of node N .

3 Moving Object Authorization Model

In this section, we propose an authorization model suitable for moving object data. An
authorization, in general, is specified on the basis of three parameters, 〈s, o, p〉. This
triple specifies that subject s is authorized to exercise privilege p on object o. Note that
both subjects and objects can be a moving object. To avoid confusion, from now on, we
denote the objects as auth-objects (stands for authorization objects) and mov-objects
(stands for moving objects). Let S = {s1, s2 . . .} denote a set of subjects, and O =
{o1, o2 . . .} a set of auth-objects, and MO a set of mov-objects. Note that in a moving
object environment, authorization specifications should be capable of specifying access
control policies based on spatiotemporal attributes of both subjects and auth-objects.

Example 1. Examples of policies include:

– Policy 1: A mobile (phone/service) customer is willing to reveal his personal profile
information to certain merchants only during the evening hours, and when he is
close to the shopping mall. Note that, in this case, only the auth-object is a mov-
object and this policy is based on object’s spatiotemporal attributes.

– Policy 2: An employee may use print services only between “9am and 5pm” and
while he is “in the office.’ Note that in this case, while the subject is a mov-object,
the auth-object is not. Also note that the policy is based on the subject’s spatiotem-
poral attributes.

In the following, we discuss the auth-objects, subjects, privilege modes, and define
authorization specifications. We have defined the mov-objects in section 2.

Definition 1. [Authorization] A authorization α is a 4 tuple 〈ce, ge, p, τ〉, where ce is
a credential expression denoting a group of subjects, ge is a object expression denoting
a set of auth-objects, p is a set of privilege modes, and τ is a temporal term. �

In this paper, we assume the formalism developed in [6] to specify ce, ge and τ . Due
to space limitations, we do not review the details. Essentially, ce can simply be a sub-
ject identifier(s) or an expression specified over the spatiotemporal attributes of subject
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credentials. Similarly, ge can be an auth-object identifier or spatiotemporal attributes of
the auth-object. τ can be a time point, a time interval or a set of time intervals.

As mentioned earlier, subjects can either be moving or static. For example, while
the subject is static in policy 1, it is mobile in policy 2. In other words, the credential
expression may involve attributes of the subject that are mobile in nature. for database
access purpose. As an example, a police officer may exercise her privileges and issue a
traffic violation ticket only if she is in her jurisdiction.

Auth-objects to be protected may include the traditional objects that are not mobile
in nature, as well as attributes of the mov-objects. Again, some of the attributes of the
moving objects are time dependent (rather mobile) such as the location or trajectory
information of the mov-object, whereas certain other attributes are time-independent
(e.g., the profile information of the person carrying a mov-object.)

The privilege modes include the traditional modes such as read, write and
update as well as those specific to moving objects such as locate and track.

Example 2. Examples of policies include:
– α1= 〈merchant(i), {profile(i) ∧ rectangle(j)=(50,60,10,10)∧ [5pm, 9pm]}, read 〉
– α2= 〈{Tom(i) ∧ rectangle(j)=(50,60,10,10)∧ [9pm, 5pm]},{printer}, execute〉

Given an authorization α = 〈ce, ge, p, τ〉, we use Sα to denote the set of subjects
that satisfy ce, xα

b , xα
e , yα

b and yα
e to denote the spatial extent specified by ge represented

by the lower and upper bounds in the x and y dimensions, respectively, and [τα
b , τα

e ] to
denote the time interval during which α is valid. We use α� to denote the spatiotem-
poral region specified by the authorization α. Essentially, α� is nothing but the region
specified by xα

b , xα
e , yα

b , yα
e , τα

b , and τα
e .

4 The STPR-Tree

In this section, we present the STPR-tree, which is a secure extension of the TPR-tree in
which authorizations are carefully overlaid on the nodes of the TPR-tree based to allow
efficient evaluation of access requests. Recall that the TPR-tree is valid only for a fixed
duration of the time, H , since the location of the objects is constantly changing. In other
words, the tree accurately represents the data values during H , but there are no guar-
antees on its accuracy that may deteriorate beyond H as the velocity of the mov-object
recorded in the tree may no longer hold. While H is typically of a relatively of short
duration, the time interval ([τb, τe]) associated with the authorizations that specifies the
validity period of the authorizations, is much longer. Therefore, in order to overlay au-
thorizations on the short-lived TPR-tree, we must slice each authorization based on H .
Recall that ατ can a timestamp or a single interval or multiple intervals. For the sake of
simplicity, in the following, our discussion and formalism primarily focuses on a single
time interval[τb, τe]. Our formalism can be easily extended to multiple intervals. Note
that a timestamp can be represented as an interval [τb, τb + 1].

Whenever [τα
b , τα

e ] > H , we partition that α such that the time intervals of the
partitions are mutually disjoint fragments whose interval does not exceed H .

Definition 2. [Authorization Partition] Given an authorization α and the time horizon
H , the set of partitions of α, Pα = {α1, α2 . . . αs} such that ∀αr ∈ Pα, the following
properties are satisfied:
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1. ταi ∩ ταj = ∅, i �= j;
2. [ταr

b , ταr
e ] ≤ H ;

3. ∪s
r=1[τ

αr

b , ταr
e ] = H ; and

4. ∀i, j ∈ {1 . . . s}, i �= j, xαi

b = x
αj

b , xαi
e = x

αj
e , yαi

b = y
αj

b and yαi
e = y

αj
e . �

Essentially, the above definition states that the time interval of each authorization is
partitioned into intervals no greater than H and the union of the intervals of all partitions
should be same as H . Moreover, authorization partitioning does not change the spatial
extent of the authorization. From now on, we denote an authorization partition as an
authorization since their structures are the same except for the difference in their time
interval. Without loss of generality, from now on in this paper, we use authorizations
to refer to their partitions since we are concerned about a single time horizon H at any
given time.

4.1 Categorization of Authorizations

Given the spatiotemporal extent of the authorization (α�) and the tpr of a node N in
the tree (N�), we are interested in the following three possible cases: (i) the former
fully contains the latter, (ii) the former overlaps with the latter and (iii) the former is
disjoint with the latter. Based on these three cases, we determine whether to overlay an
authorization on a specific node in the tree. Accordingly, we label the authorizations (or
rather their partitions), as one of the four types: enclosing authorization, overlapping
authorization, disjoint authorization and pending authorization.

Let the binary operators ⊃{x,y,t},∩{x,y,t} and ⊗{x,y,t} denote enclose, overlap and
disjoint, respectively, in all x, y and t dimensions.

Definition 3. Given a tree T , node N in T , and an authorization α, we define,

– Enclosing Authorizations, αE(N) = {α|α� ⊃{x,y,t} N� = True};
– Overlapping Authorizations, αO(N) = {α|α� ∩{x,y,t} N� = True};
– Disjoint Authorizations, αP (N) = {α|α� ⊗{x,y,t} N� = True}; and
– Pending Authorizations, αP (T ) = {α|∀N ∈ T (α ∈ αP (N))}. �

For example, in figure 7, the TPR-tree consists of 3 nodes A, B and C with A and B
being the children of C. Let there be 4 authorizations α1, α2, α3 and α4. Each shaded
area represents the intersecting region between an authorization and a tree node. As we
can be seen, α1 ∈ αO(C) and α2 ∈ αO(B). Note that at the same time it could be
possible that α1 ∈ αP (A), if α1

� is disjoint with A�. Since α4 is disjoint with A�, B�

and C�, α4 ∈ αP (T ).

4.2 Authorization Overlaying

In this section, we present our approach and strategy to overlay authorizations on top
of the TPR-tree. The resultant tree is the STPR-tree. Algorithm 1 presents the details
of our spatiotemporal overlaying approach. An authorization is overlaid on a node if
it is an enclosing authorization, that is, if it both spatially and temporally encloses the
node’s tpr. Essentially, it enforces the following two rules.

Authorization Overlaying Rules: Given a TPR-tree T , for each path from root node
to a leaf node, it enforces the following two overlaying rules, Rule 1 and Rule 2. These
rules are applied in a specific order, first Rule 1 and then Rule 2.
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– Rule 1:• a: If the authorization α ∈ αE(N), that is, if its spatiotemporal extent com-
pletely encloses that of node N , overlay α on N and add it to the list of enclosed
authorizations, AuthE(N). Halt the overlaying process of this authorization on
this path.

• b: If the authorization α ∈ αP (N), that is, if its spatiotemporal extent is dis-
joint with that of N , halt the overlaying process of this authorization on this
path.

– Rule 2: If N is the leaf node, overlay α on N and add it to the list of enclosed
authorizations, AuthO(N).

In the following, we provide the details of the various steps of our spatio-temporal
overlaying algorithm. Essentially, algorithm 1 traverses the tree recursively in a top
down manner starting from the root node. At each node N , α� is compared with N�.
Several cases could occur based on the result of this comparison.

Case 1: If the authorization fully encloses the node, we will stop traversing the sub-
tree of N and overlay α on that node, specifically in AuthE(N). This is because, it
is reasonable to assume that, if a subject is allowed to access objects within a certain
spatiotemporal region, it is always allowed to access objects in the subregion of that.
Therefore, after overlaying an authorization on a node, there is no need to overlay the
same authorization on any of its descendents. However, we still need to check if the au-
thorization’s spatiotemporal extent overlaps with that of any of its sibling nodes. Since
the enclosing relation between α and N has no implication on the spatiotemporal rela-
tions between α and N ’s siblings, this step is essential.

Case 2: If the authorization’s extent overlaps with that of the node, then we handle it
differently depending on the level of the node in the tree.

– If the node is at the leaf level, then we overlay α and store it in AuthO(N) asso-
ciated with that leaf node. This is because, when the authorization only overlaps
with a leaf node, it means that it cannot fully enclose any node from root to that
leaf in that path. However, to ensure that no relevant authorizations are discarded,
this must be overlaid on the leaf node only.

– If the node is at the non-leaf level, then we traverse to the level below, and compare
α� with each of the children nodes of N . This is because, the authorization may
have different spatiotemporal relationships with each of its children nodes.

Case 3: If the spatiotemporal extent of the authorization is disjoint with the node, then
we stop traversing the subtree and store α in AuthP (N) to be included in the pending
authorizations of the tree. After each H interval, when a new TPR-tree is constructed
based on the new position and velocity information of each moving object, the previ-
ously non-applicable authorizations may become relevant.
Based on this overlaying strategy, we can make the following observations:

– It is possible that an authorization may be overlaid on more than one node, resulting
in a number of copies of the same authorization being stored in the tree. However,
given a specific path from the root to a leaf, there may exist at most one copy of
an authorization, regardless of its location or whether it is stored in AuthE(N) or
AuthO(N).
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– Although the spatiotemporal extent of an authorization at node N may not com-
pletely enclose the spatiotemporal extents of the authorizations at the descendents
of N , it may cover them. By cover we mean that, it is not necessary to further
traverse the subtree if an authorization is found at that node. For example, if an au-
thorization is overlaid on node C in the STPR-tree in figure 7, it covers C’s children
nodes A and B for the same subject(s) in the overlaid authorization.

– The enclosing authorizations are overlaid on a node as high as possible in the tree.
In other words, an authorization α will be overlaid on a node N if there exists no
other node M at higher level than N in the tree such that α ∈ αE(M).

– Leaf nodes may be associated with two sets of authorizations, AuthE(N) and
AuthO(N), whereas, non-leaf node have only one set of authorizations,
AuthE(N), associated with them.

5 Access Request Evaluation

In this section, we present our approach to processing the access requests for different
types of queries posed in the mobile object environment.

5.1 Query Types

The user request can fall into one of the following query types.

Definition 4. [Generalized Query] We define a generalized query, denoted as a
quadruple Q = 〈Rb, Re, τb, τe〉, which is a 3-dimensional trapezoid in the spatiotem-
poral space that has two parallel rectangular bases Rb and Re projected to point τb and
τe on the temporal dimension respectively.

There are two special cases of the generalized query, which are as follows:

– Time Point Query: is the generalized query such that Rb = Re = R, τb = τe = τ .
– Time Interval Query: is the generalized query such that Rb = Re = R.

For example, figure 8 depicts the above three types of queries. Evidently, Q1 is a
generalized query, Q2 is a time interval query and Q3 is a time slice query. Note that,
while the moving object a satisfies Q3, the moving object b satisfies both Q1 and Q2.
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5.2 User Request Evaluation

This section presents the user request evaluation, presented in algorithm 2, to retrieve
the moving objects that satisfy the request. Formally, a user request is a tuple, U =
〈s, Q〉. We use U� and sU to denote the spatiotemporal extent and the subject of the
access request U .

The spatiotemporal query evaluation presented in algorithm 2 is based on our spa-
tiotemporal overlaying strategy. In the following, we explain the various steps of algo-
rithm 2. It traverses the tree from the root down to each node on the leaf level. During
this traversal, it compares the spatiotemporal extent of U with that of each node N .

1. If the spatiotemporal extent of user request either overlaps or fully contains that
of the node, the authorizations in either AuthE(N) or AuthO(N) are evaluated.
Essentially, it checks if there exists any relevant authorization for the subject issuing
the access request. If the node is at the leaf level, AuthE(N) is first checked for
relevant authorizations. If none is found, then AuthO(N) is checked. If the node is
a non-leaf node, AuthE(N) is checked for relevant authorizations. If none is found,
the traversal continues. If a relevant authorization is found, there is no need to
check any authorization associated with N ’s descendents. Since we do not consider
negative authorizations, the subject under consideration is allowed access to the
spatiotemporal extent of the descendents of N .

2. If the spatiotemporal extent of user’s access request is disjoint with that of the node
N , we simply stop the search since we already know that no relevant authorizations
can be found in N ’s subtree to satisfy the user request. However, the spatiotemporal
extent of user’s access request may still overlap or enclose with other nodes on the
same level of the tree, thus we still need to check N ’s siblings.

Note that, in algorithm 2, we use HEIGHTleaf to denote the height of the tree, i.e.
the length of the path from the root to a leaf. The operation ∪{x,y,t} is not a boolean op-
erator; it produces the union of the spatiotemporal extents. Also, we assume the default
value of the boolean variable authorized is FALSE, which means that by default subjects
are not entitled access unless an explicitly specified relevant authorization is found. The
operation EVALUATE( ) computes and returns the intersecting region among its para-
meters, it returns ∅ if the intersection among the parameters is empty EVALUATE() is a
overloading function in that it can take different number of parameters. RETRIEVE( )
takes the spatiotemporal extents as the parameter and retrieves all moving objects falling
into those spatiotemporal extents.

6 Discussion

In this section, we discuss the properties of our proposed STPR-tree with respect to
completeness and efficiency, as well as its limitations which are planned to be addressed
as part of our future work.

6.1 Properties of STPR-Tree

In this section, we demonstrate that our overlaying strategy and evaluation strategies
are both complete and efficient.
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Theorem 1. Given a set of authorizations A, Algorithm 1 overlays authorizations on
the STPR-tree in such a way that the evaluation of access request U by algorithm 2 is
complete.

Proof sketch: By complete, we mean, given a user access request U by subject s,
we evaluate every authorization relevant to s. Let this set of relevant authorizations
be α(sU ). This can be proved in three steps. First, we can prove that our overlaying
procedure (algorithm 1) overlays every authorization in α(sU ) on the search path of
U . Second, we can prove that our evaluation procedure (algorithm 2) traverses every
search path and therefore it evaluates all α(sU ). Third, we can prove that our halting
strategies of traversal in both the algorithms do not violate the completeness principle.

�

In addition to being complete our overlaying strategy is efficient in the sense it
does not do any additional traversal than necessary. This is achieved as a result of the
two of the following strategies we adopt during the overlay process: We overlay the
authorizations on the first node encountered on the search path that totally encloses
the region covered by the node. As a result, authorizations are overlaid as high up as
possible in the tree. Since the search path is from root to the leaf, we will encounter the
relevant authorizations as early as possible during the traversal. Our traversal essentially
avoids evaluating (1) non-relevant authorizations as much as possible, and 2) relevant
but redundant authorizations as much as possible.

6.2 Limitations of Our STPR-Tree

Our proposed index structure is not capable of layering authorizations with privilege
mode track. This is because, in order to entertain such privilege mode, it requires
persistent storage of the moving object location information. As such it requires the
index that maintains historical information (in addition to the current and future). We
defer this to our future work.

Moreover, our index structure is capable of overlaying authorizations where either
subjects or auth-objects are moving objects. However, it is not capable of overlaying
authorizations where both subjects and auth-objects are moving objects. For example,
it is not capable of supporting authorization policies similar to the one specified in the
example below. This is because, subjects and auth-objects are represented by different
nodes of the moving object index tree. As a result, supporting such authorization over-
laying may require splitting the subject and auth-object components. We defer this to
our future work.

– Policy 3: A manager can access the location of his employee (John) information
between “9am and 5pm” and while the manager is “in the office.” Note that both the
subject (manager in this case) and auth-object (his employee) are mov-objects. This
policy is based on the subject’s as well as auth-object’s spatiotemporal attributes.

7 Related Work

Recently, there has been a flurry of activity in developing indexing structures for mov-
ing object databases to effectively serve queries of past, present and future types [26,13]
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on moving objects. Sistla et al. [23] propose a Moving Objects Spatio-temporal Model
(MOST) to model object location as a linear function of time. A modification to R-trees
to represent past trajectories of moving points as polylines has been proposed by Pfoser
et al. [18]. Other work on indexing future trajectories include the PMR-Quadtrees
[21,24] by Tayeb et al. that index the future linear trajectories of one-dimensional mov-
ing point objects as line segments. These methods do not seem to apply to more than
one dimension. Kollios et al. [12] provide theoretical lower bounds for this indexing
problem. Basch et al. [9] propose main-memory data structure (kinetic) for mobile ob-
jects, whose ideas are applied by Agarwal et al. [3] to external range trees [4]. The Time
Parameterized R-trees (TPR-trees) [20], which is an extension of R*-trees, proposed by
Saltenis et al., rather than attempt to continuously update moving object locations [26],
represent objects as functions of time. Saltenis et al. claim that, similar to regular R-
trees, the TPR-trees are capable of indexing points in any number of dimensions and
are easily extended to accommodate objects that are not points. In [16], Palanis et al.
extend the TPR-tree to accommodate past queries.

Atluri and Mazzoleni have proposed a unified index, called RMX-Quadtree [8],
for geo-spatial data and authorizations that govern access to them. In [7], Atluri and
Guo have proposed a unified index called STAR-Tree that can uniformly index both
spatiotemporal objects and the authorizations. STAR-Tree relaxes several restrictive
assumptions of RMX-Quadtree and therefore is more general. While the above two
contributions are relevant but are limited to index data as well as authorizations specified
on spatiotemporal data that is static in nature. The focus of this paper is to provide
uniform indexing scheme for mobile data and the respective authorizations.

An index scheme for moving object data and user profiles has been proposed by
Atluri et al. [5]. However, this does not consider authorizations. Beresford et al. [11,22]
have proposed techniques that let users benefit from location-based applications, while
preserving their location privacy. Mobile users, in general, do not permit the informa-
tion shared among different location based services. Primarily, the approach relies on
hiding the true identity of a customer from the applications receiving the user’s loca-
tion, by frequently changing pseudonyms so that users avoid being identified by the
locations they visit. A system for delivering permission-based location-aware mobile
advertisements to mobile phones using Bluetooth positioning and Wireless WAP Push
has been developed [1]. An index structure has been proposed to index authorizations
ensuring that the customer profile information be disclosed to the merchants based on
the choice of the customers [27]. However, this provides separate index structures for
data and authorizations, and therefore is not a unified index.

8 Conclusions and Future Work

Often, enforcing security incurs overhead, and as a result, may degrade the performance
of a system. In this paper, we address this problem in the context of enforcing access
control policies in a mobile data object environment. Although implementation of au-
thorizations as access control list, capability list or access matrix is suitable for tradi-
tional data, it is not suitable to search authorizations as they are based on spatial and
temporal attributes of subjects and objects, rather than subject and object identifiers.
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Therefore, when a subject issues an access request, the system must first retrieve the
relevant object(s) from the moving object database, and then verify whether there exists
an authorization that allows the subject to access these objects. Since both the moving
objects and authorizations are spatiotemporal in nature, for efficient processing of ac-
cess requests, it is essential that they both be organized using some index structures. As
a result, processing an access request requires searching two indexes - one, the mov-
ing object index, and the other, the authorization index. To improve the response time
of access requests, in this paper, we have proposed a unified index structure, called
STPR-tree to index both moving objects and authorizations that govern access to them.
Essentially, our index has been created by carefully overlaying authorizations on top a
moving object index, specifically the TPR-tree. As a result of the unified index, access
requests can be processed in one pass, thereby improving the response time. We have
shown how the STPR-tree can be constructed and maintained, and provided algorithms
to process access requests.

Currently, we are conducting a performance evaluation to demonstrate that our uni-
form indexing scheme indeed has significant impact on the response time. Note that
current access control systems do not use any index for authorizations. Our work is a
step in this direction of improving the response time of access requests.

Our proposed unified indexing scheme is not capable of historical queries, which
requires persistent storage of moving objects [16]. As a result, our STPR-tree cannot
overlay and evaluate authorizations with the privilege mode track. In addition, our
overlaying strategy we have adopted in the STPR-tree is not capable of overlaying
authorizations in which both subject and authorization objects happen to be moving
objects. We will enhance our STPR-tree to address these issues. Support for negative
authorizations require significant changes to the overlaying of authorizations as well as
evaluating access requests. In this paper, we do not consider negative authorizations;
we will extend our work to support negative authorizations.
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A Algorithms

Algorithm 1. Spatiotemporal Overlay
1: Input: tree root N , authorization to be overlaid α, tree height h
2: Output: none
3: Assumption: the height of the root is 0
4: Constant Variable: HEIGHTleaf

5: Initialization:h = 0
6: Procedure ST-Overlay (N, α, h)
7: if (h = HEIGHTleaf ) then
8: if (α� ⊃{x,y,t} N�) =TRUE then
9: AuthE(N) ← α

10: else if (α� ∩{x,y,t} N�) =TRUE then
11: AuthO(N) ← α
12: else
13: AuthP ← α
14: end if
15: return
16: end if
17: if (α� ⊃{x,y,t} N�) =TRUE then
18: AuthE(N) ← α
19: return
20: end if
21: for each child Ci of N do
22: ST-Overlay(Ci, α, h + 1)
23: end for
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Algorithm 2. Spatiotemporal Query Evaluation
1: Input: tree root N ,user query U , tree height h
2: Output: the identifiers of targeted objects
3: Assumption: the height of the root is 0
4: Constant Variable: HEIGHTleaf

5: Initialization:h = 0, authorized = FALSE
6: Procedure ST-QueryEval(N, U, h, authorized)
7: if (U� ⊗{x,y,t} N�) = TRUE then
8: return ∅
9: end if

10: overlap ← ∅
11: if authorized = FALSE then
12: if ∃α ∈ AuthE(N)((sU ∈ Sα) ∧ ((U� ∩{x,y,t} α�) =TRUE )) then
13: authorized ← TRUE
14: end if
15: if (authorized = FALSE ) ∧ (h =HEIGHTleaf) then
16: for each α ∈ AuthO(N) do
17: if sU ∈ Sα then
18: overlap ← overlap ∪{x,y,t} EVALUATE (U�, N�, α�)
19: end if
20: end for
21: return RETRIEVE (overlap)
22: else if h =HEIGHTleaf then
23: overlap ← EVALUATE(U�, N�)
24: return RETRIEVE(overlap)
25: end if
26: else if h =HEIGHTleaf then
27: overlap ← EVALUATE(U�, N�)
28: return RETRIEVE(overlap)
29: end if
30: for each child Ci of N do
31: ST-QueryEval(Ci, U, h + 1, authorized)
32: end for
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Abstract. Access control is concerned with granting access to sensitive
data based on conditions that relate to the past or present, so-called
provisions. Expressing requirements from the domain of data protection
necessitates extending this notion with conditions that relate to the fu-
ture. Obligations, in this sense, are concerned with commitments of the
involved parties. At the moment of granting access, adherence to these
commitments cannot be guaranteed. An example is the requirement “do
not re-distribute data”, where the actions of the involved parties may
not even be observable. We provide a formal framework that allows us
to precisely specify data protection policies. A syntactic classification of
formulas gives rise to natural and intuitive formal definitions of provi-
sions and obligations. Based on this classification, we present different
mechanisms for checking adherence to agreed upon commitments.

1 Introduction

With the ever increasing use of modern communication technologies in the com-
mercial and public sectors, the adequate handling of personal data is a growing
concern. Such data is often distributed across many public and commercial data-
bases, and processed by many applications. This opens the door to illegitimate
access and misuse of data. To prevent misuse, many countries have passed data
protection laws and privacy regulations, but these are often not adequately re-
flected in the distributed information systems that store and process sensitive
data. When building such systems, one needs firstly to be able to precisely define
and specify the underlying requirements, and secondly a means of ensuring that
personal data is handled in accordance with applicable laws and regulations. To
date, neither problem is solved in a fully satisfactory manner.

By controlling who may access which data, traditional access control mecha-
nisms solve one part of the problem. However, they are unable to make decisions
based on how the data will be used once accessed, and this is an essential aspect
of many data protection regulations. For instance, it should be possible to grant
read access to personal data under the stipulation that the data be used exclu-
sively for certain predefined purposes. An example is a database maintained by
one government agency that must not disclose citizen data to other administra-
tions unless the data is used solely for statistical purposes. Retention, protection,
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or redistribution of data are further examples of relevant issues in the context
of data protection. This paper discusses the handling of data protection require-
ments : statements that, in addition to specifying who may access which data,
also impose constraints on how the data may be used. Our formal framework
makes it possible to precisely define and specify a large subset of data protection
requirements, and, upon implementation, also to control adherence to commit-
ments related to data protection. This makes the framework attractive as a
stepping stone to future, practical, data protection specification languages. Nat-
urally, it also gives rise to the possibility of formally analyzing data protection
requirements, e.g. to determine their consistency.

Our system model consists of agents that own or request access to data.
Access is granted or denied by a reference monitor based on conditions that are
expressed in (formalized) data protection requirements. In the form of provisions,
these conditions can relate to the past or present, e.g. “explicit owner consent
must be presented when access to data is granted”. In the form of obligations,
the conditions can also relate to the future, e.g. “data must be deleted within a
month”, or “the further distribution of the data must be logged”. We consider
obligations from two perspectives: time and observability, i.e. the possibility of
checking adherence to a commitment. Our formalization of obligations leads to
a natural classification along these two dimensions.

1. Time: Obligations are either concerned with fixed time intervals, or are
defined as eternally valid conditional statements—invariants. We will argue that
unbounded eventuality—roughly, liveness—is not relevant in the context of data
protection.

2. Observability: We address the problem exemplified by the obligation to
delete data some time after it has been obtained from the reference monitor.
From the monitor’s perspective, this is usually impossible to enforce and be-
cause it is not directly observable, difficult to check. We show how to transform
non-observable events into observable ones, which then can be checked by the
reference monitor. Upon violation of an obligation, the reference monitor can
take necessary actions.

Existing generalizations of traditional access control models cannot capture
the entirety of the above data protection issues. Some omit certain classes of
data protection requirements and thus leave room for generalization; others do
not provide a precise semantics for their frameworks (Section 5).

To summarize, the problem that we tackle is the lack of precise definitions
of data protection requirements (that necessarily precede a practically useful
specification language for data protection policies) and, in particular, the lack
of a precise understanding of how adherence to obligations can be checked. Our
solution consists of a conceptual and a methodological part. Conceptually, to pre-
cisely define and understand the cornerstones of data protection requirements,
we show how to specify them in a logic that adds the dimension of distribution
to classical temporal logics. This allows for the intuitive distinction between
provisions and obligations on the one hand, and between observability and non-



100 M. Hilty, D. Basin, and A. Pretschner

observability on the other. Methodologically, we show how to specify mechanisms
that rely on the transformation of non-observable parts of an obligation into ob-
servable ones. Overall, we see our contribution as (a) the extension of access
control models in the context of data protection with precisely defined concepts,
(b) a classification of data protection requirements along the dimensions of time
and observability, and (c) the description of generic mechanisms to cope with
non-observable parts of obligations.

The remainder of this paper is organized as follows. We take an informal
look at data protection and set the scene at the beginning of Section 2. Then
we introduce Distributed Temporal Logic (DTL) [5,6], which we use to define
our formal framework and to classify data protection requirements. In Section 3
we show how non-observable requirements can be transformed into requirements
that can be checked by a central reference monitor. We use Section 4 to illustrate
the ideas of this paper with an example. In Sections 5 and 6 we describe related
work and our conclusions. Formal details on DTL can be found in the appendices.

2 Data Protection Requirements

In this section, we examine data protection requirements. First we introduce the
kinds of problems we are concerned with from an informal point of view. Then we
present our formalism and show how it can be used to formalize data protection
policies. We also present a classification of data protection requirements based on
their temporal structure and the kinds of observations that different principals
in a distributed system can make.

2.1 An Informal View on Data Protection

Privacy is concerned with anonymity and data protection. Our work focuses on
data protection, i.e. controlling the access to and the usage of sensitive personal
data. By personal data, we denote any data that is, or can be, associated with a
person. We consider systems consisting of two kinds of agents: a server reference
monitor r and a set of subjects Sub. Dat is a set of personal data objects.
The reference monitor1 controls access to the data items in Dat. We consider
scenarios where a subject si ∈ Sub attempts to access a data object dk ∈ Dat.
In this case, we also refer to si as the requester.

We examine policies that define how to control the flow of sensitive data in a
distributed environment (this involves access control decisions made by r as well
as controlling the further distribution of data between the subjects), and how the
data must be used by the subjects. Sources for the different kinds of requirements
were existing privacy policy description languages like P3P [19], scientific papers
such as [11], and data protection regulations from different countries.

Data protection requirements include (1) access control requirements, which
should be as flexible as possible, i.e. able to express different access control
1 We will use the term reference monitor rather liberally to describe control programs

that can not only monitor and prohibit actions, but can also trigger corrective actions
such as the application of penalties.
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paradigms; (2) actions that must be performed prior to the access, e.g. presenting
a certificate or gathering the consent of the data owner; (3) actions that must be
performed within a certain time period or on a recurring basis, e.g. informing the
data owner about the access or about any usage of the data; (4) restrictions on
the further distribution of the data; (5) restrictions on the possible purposes for
which the data may be used; (6) limitations on the retention time; (7) mandatory
uses of protection mechanisms; and (8) duties of keeping the data up-to-date.

2.2 Gentle Introduction to DTL

We use Distributed Temporal Logic (DTL) to formally express privacy require-
ments. In this section, we give a brief, high-level overview of DTL, relegating
the formal presentation to Appendix A.

DTL [5,6] can be seen as a generalization of Linear Temporal Logic (LTL)
[13] and our explanation here will focus on the differences. DTL contains tem-
poral operators for reasoning about the past and the future. In addition, it
provides a distributed view of systems. Whereas LTL formulas express a global
view of a distributed system in terms of temporal properties of its traces, DTL
formulas formalize system properties from the local view of the system’s agents.
Statements ϕ refer to an agent a’s local data space; this is expressed as @a[ϕ].
@·[·] formulas cannot be nested. Intuitively, ϕ includes state propositions such
as “a possesses a certificate”, and actions such as “a deletes a file”. ϕ may also
express temporal behavior relative to the agent’s past or future. Action sym-
bols and state propositions are domain dependent and must be defined for each
concrete scenario. Examples are given later in this section and in Section 4.

Agents a and b can communicate messages time-synchronously and reliably
via snd/rcv pairs, which are parts of their respective set of local actions: the
action snd(b,m) denotes the sending of message m to agent b and rcv(b,m)
denotes the simultaneous reception of message m from agent b.

DTL future-time operators are the unary operators X (next) and G (always),
and the binary U operator (weak until). DTL past-time operators are the unary
operators Y (previous), P (sometime in the past), and H (always in the past), and
the binary operator S (since). Xn is shorthand for n repeated applications of X.
As further syntactic sugar, we define F≤nϕ ≡ ∨n

i=0 Xi ϕ for any n ∈ N. We will
employ a similar shorthand with G (replacing ∨ by ∧ in the above). Analogously,
by substituting X with Y in the definition F≤nϕ (respectively G≤n ϕ), we get the
definition of P≤n ϕ (H≤n ϕ).

Grossly simplifying matters, the semantics of DTL—formally defined in Ap-
pendix A—is similar to LTL and it takes into account that (a) propositions can
be true only for specific agents and (b) there is communication (synchronization)
between agents.

2.3 Formal Representation of Data Protection Policies

We now show how the kinds of systems introduced in Section 2.1 can be described
using DTL, and how privacy policies can be formally expressed. To simplify
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notation, we assume discrete time, e.g. one time step per day for the examples
given later.

We define two subsets of DTL formulas: provisional formulas and obligational
formulas. Provisional formulas are formulas @a[ϕ] for an agent a that contain no
future-time temporal operators. Obligational formulas are formulas of the same
form that do contain future-time temporal operators, but no past-time temporal
operators. Further, obligational formulas must not contain temporal operators
that are under the scope of a negation, respectively on the left-hand side of an
implication.2

We also divide DTL formulas into observable formulas and non-observable
formulas. These are defined from the reference monitor r’s point of view. In-
tuitively, observable formulas are only concerned with r’s local state or actions
that r can observe. Actions that r can observe are either local actions of r or
communication involving r. More formally, observable formulas are of the form
@r[ϕ] or @si [snd(r, msg)], for a subject si and a message msg . Non-observable
formulas are all other formulas.

The policies we consider are conjunctions of decision rules, which are formulas
of the form

@r[authorize(si, dk)] ⇒ (p1 ∧ ... ∧ pm ∧ o1 ∧ ... ∧ on),

where p1, ..., pm are observable provisional formulas, o1, ..., on are obligational
formulas, and m, n ≥ 0. The action authorize(si, dk) stands for authorizing
subject si to access data dk. Such decision rules may exist for each possible
subject/object pair. Of course, access policies are often expressed in a simpler
and more compact way by introducing hierarchies or roles, thereby eliminating
the necessity of having an entry for each subject/object pair. Without loss of
generality, we assume that decision rules of the form presented above may be
derived from a more compact representation.

Note that the right-hand side of the implication is only a necessary pre-
condition for the access to be authorized. One reason is that we do not reflect
the fact that an access is only authorized after it has been requested by the
subject. The acceptance of obligations (explained in Section 2.5) is not reflected
in our representation of a decision rule either. Thus, we formulate an implication
rather than an equivalence.

2.4 Provisions

A provisional formula that appears in a decision rule is called a provision. Intu-
itively, provisions cover traditional access control requirements. This is because
the information stored in r’s local state (cf. Section 2.3) can contain attributes
about the other subjects and about the data objects, which enables us to ex-
press rules in different access control paradigms. Many practical examples can
2 By restricting this, we cannot express liveness properties in our formalism. This is

intentional and it is not a restriction in our context since liveness does not appear
to be of practical relevance for formulating privacy requirements. In practice, one
generally sets a time limit for carrying out an action.
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therefore be found in the access control area, e.g. “si has the role manager”.
This could be formalized as @r[role(si, manager)], where role(si ,manager) is a
local state proposition that holds whenever si has the role manager .

Provisions may also concern actions that must have occurred before the au-
thorization. This is referred to as provisional authorization in the literature [8].
For brevity, we focus only on the results of such provisional authorizations (e.g.
that the owner’s consent must be present before allowing access), and not on
how this result is achieved (e.g. how and when the owner’s consent is gathered).
Therefore, we assume that all aspects of r’s past that are relevant for the current
access decision are reflected in r’s current local state, and we restrict ourselves to
expressing provisions without using past-time temporal operators. This can be
done without loss of generality. For example, instead of stating that a certificate
must be submitted before access is authorized, we demand that the certificate
be present at the time of the access decision.

As the reference monitor needs to be able to evaluate provisions before au-
thorizing access, we restrict the allowed provisional formulas to observable ones.
In other words, we allow only provisions that r is able to check. Addressing
non-observable provisions is an area for future work.

2.5 Obligations

Obligations impose conditions on the future (i.e. the time after an access is au-
thorized) that an agent is bound to fulfill. An obligational formula becomes an
obligation when a binding is established. Such a binding may be created in many
ways, for example by the subject explicitly committing himself to an obligation,
or by a law that applies to all agents of a system. For simplicity’s sake, we as-
sume that the reference monitor ensures that for all obligational formulas in a
decision rule, the bindings are established before the access is authorized and,
consequently, we do not explicitly state this in the decision rules. In the remain-
der of this paper, we hence drop the conceptually important distinction between
obligations and obligational formulas, and we will use the term obligation for all
obligational formulas in the context of a data protection policy.

We now explain what it means for an obligation to be violated. We give an
intuitive description here, and refer to Appendix B for a formal definition of
this notion. Consider a decision rule of the form @r[authorize(si, dk)] ⇒ (... ∧
ol ∧ ...), where ol is an obligation. We assume that each action authorize(si, dk)
occurs at most once,3 which allows us to uniquely relate an obligation to a
specific access decision. The obligation ol is violated at a time point tk if the
action @r[authorize(si, dk)] occurred at a previous time point tj , and the formula
@r[authorize(si, dk)] ∧ ¬ol holds at tj for all possible futures after tk.

Consider the example @r[authorize(s, d)] ⇒ @s[F≤3send(r, m)] for a subject
s, data item d, and message m. This decision rule states that s must send m
to r within three time steps after the authorization. Let t0 be the time point
where authorize(s, d) occurs, and tl be l time steps later. If send(r, m) does not
3 This is without loss of generality. From a theoretical perspective, one may safely

assume arbitrarily many copies of each rule, each copy uniquely indexed.



104 M. Hilty, D. Basin, and A. Pretschner

occur in the time span between t0 and t3, then the obligation @s[F≤3send(r, m)]
is violated at t4 and at every subsequent time step. If send(r, m) does not occur
at times t0, t1, or t2, then the obligation is not violated at any of these time
points: send(r, m) could still occur at t3, and thereby satisfy the decision rule.

We have classified data protection requirements in terms of provisions and
obligations. As provisions have been thoroughly analyzed in the literature (see
Section 5 for references), we henceforth focus on the part of the landscape that
is not yet as well-understood: obligations.

2.6 Classification of Obligations

We classify obligations along two dimensions: temporal structure and distrib-
ution. This categorization provides a useful mapping from requirements to en-
forcement mechanisms, as we will see in Section 3. In the temporal dimension,
we have the categories of bounded future and invariance properties.

We call an until statement ϕU ψ temporally bounded if there is an upper time
limit for the occurrence of ψ, i.e., there is a constant n ∈ N such that ϕU ψ can
be rewritten as

∨n
j=1

(
Xj ψ ∧∧j−1

i=0 Xi ϕ
)

without changing the semantics of the
formula that contains the until statement. We require that temporally bounded
until statements be transformed into the equivalent statement that contains only
X operators. With this transformation, we can syntactically distinguish between
bounded future (in particular, no U) and invariance properties.4

Bounded Future Only X as the temporal operator
Invariance Properties At least one G or U, and any number of X operators

In the distribution dimension, we distinguish between observable and non-
observable formulas as defined in Section 2.3. This classification results in four
categories of obligations named CI through CIV .

Time/Distribution Observable Non-Observable

Bounded Future CI CII

Invariance Properties CIII CIV

For each category of obligations, we describe their intuitive nature, present prac-
tical examples, and show how some of these examples can be formalized. We
continue the convention of calling the reference monitor r and the requester si.

Category I—Bounded future, observable: Intuitively, CI -obligations make state-
ments about properties and events that are observable for r and cover a limited
time frame. A classical example comes from the domain of e-commerce: the
obligation to pay a fee within a fixed number of days. Data protection examples
for CI -obligations include “Data item dk may not be accessed for x days” or “r
must notify the data owner about the access within x days”. The latter could
be formalized as @r[F≤xsnd(Owner , released(dk , si))], where Owner is the data
owner, and released(dk , si) is a message indicating that dk was given to si.
4 The transformation of temporally bounded until statements into sequences of X is

decidable because we are concerned with propositional statements only.
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Category II—Bounded Future, Non-observable: This category is similar to CI ,
with the difference that we are dealing with non-observable formulas. Privacy-
relevant examples include “dk must be deleted within x days” or “must not be
redistributed in the next x days”. The former obligation could be formalized as
@si [F≤x(del(dk))], where the action del(dk) corresponds to deleting dk.
Category III—Invariance Properties, Observable: A practical example for a CIII -
obligation is “Re-access the data at least every x days”, which can be formalized
as @si [G(F≤xsnd(r, request(dk)))], where request(dk) is a message used to re-
quest dk. This obligation is relevant to data protection since the freshness of
data is sometimes demanded by existing data protection regulations.
Category IV—Invariance Properties, Non-observable: CIV -obligations occur of-
ten in practice. Examples include “Only for statistical analysis”, “Do not distrib-
ute further”, “Each usage of the data must be reported immediately”, or “Must
be protected with protection level L until it is declassified by the owner”. We for-
malize the latter obligation as @si [protect(dk, L)U rcv(Owner, declassifiy(dk ))].
Here protect(dk, L) reflects that dk is protected according to protection level L,
Owner is the data owner, and declassifiy(dk ) is a message that indicates the
declassification of dk.

3 Coping with the Non-observable

In this section we address the question of how a central reference monitor can
ensure that data protection requirements are adhered to. In some sense, this is
an impossible task, because it is difficult to imagine how a reference monitor can
enforce something that it cannot even observe. We use a generalized notion of
enforcement here. It covers not only the strict sense of enforcement defined in
[14] (the prevention of unwanted executions of a system through system mon-
itoring and denying actions that would violate the policy), but also execution
monitoring combined with compensating actions (e.g. penalties) in case the ex-
ecution violates the policy. More specifically, such a penalty can be applied once
an obligation is violated (as defined in Section 2.5 and in the Appendix).

Therefore, a crucial point for achieving enforceability is to be able to monitor
the relevant parts of the system. We show how a reference monitor can use non-
technical mechanisms, such as audits or legal means, to support the task of
making non-observable actions observable, and how the use of such mechanisms
can be reflected in the policy of the reference monitor.

As in the previous section, our focus is on obligations. Enforcing provisions
is something that has been studied in many variations (see Section 5) and is
well understood. We first show how observable obligations can be enforced, and
then we show how we can use those enforcement mechanisms also for enforcing
non-observable obligations.

3.1 Enforcing Observable Obligations

For observable obligations, suitable enforcement mechanisms have already been
described by other authors, e.g. [3]. We give a short overview here, as these
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mechanisms will play a role in enforcing the non-observable obligations as well.
Among the observable obligations in CI and CIII , we have three cases, which
require different means of enforcement.

First, obligations that are requirements on r’s local actions or r’s local state
are called r-obligations. An example is that r must notify the owner of a data
item after it has been accessed, or that r must gather evidence about the usage of
a data item after some predefined time. Such obligations are of the form @r[ϕ],
and they are enforced by specifying and implementing r such that it always
respects them. In other words, we consider r to be a “trusted system”. Thus no
additional mechanisms are needed.

Second, those obligations that are enforceable by preventing unwanted exe-
cutions (EM enforceable in the sense of [14]) form a strict subset of the CI and
CIII -obligations. This is, for example, the case for an obligation that prohibits a
subject from accessing a certain data object in the future. Here, r can just deny
the respective access requests in order to enforce the obligation.

Third, an approach for enforcing all other CI -obligations is presented in [3].
A reference monitor can check if the obligation is violated at the end of the
bounded time period. If this is the case, the reference monitor can penalize the
subject, e.g by reducing its service level, lowering some trust or credibility rating
of the subject, or taking legal action. This approach can also be applied to CIII -
obligations. In this case, the obligation must be continuously monitored, not
only for a predefined amount of time.

3.2 Enforcing Non-observable Obligations

How can we enforce non-observable obligations? We show how, in some cases, it is
possible to reuse existing mechanisms for provisions and observable obligations.
Namely, we present three strategies for transforming a non-observable obligation
into a set of provisions and observable obligations that specify a similar goal.
It is likely that the transformed policy will not specify exactly the goals the
original policy expresses. This is the cost of observability. To what extent the
original goals are weakened by such a transformation depends on the mechanisms
that are used and is explored in the remainder of this section as well as in the
next section. The first two strategies we present below aim at making the non-
observable parts of an obligation observable, thereby enabling r to monitor their
fulfillment. The third strategy limits possible executions to prevent violations of
the obligations.

(1) Reserving the right to pull evidence: In this strategy, the reference mon-
itor reserves the right to obtain evidence in the future, for example through an
audit. This right could be executed after some deadline (in CII ) or whenever r
suspects that the obligation has been violated (in CIV ). Conceptually, the aim of
such an audit is to make certain local events and parts of the local state of the
subject visible to the reference monitor. To obtain the above mentioned right,
r demands a legal binding (e.g. in the form of a digitally signed statement from
the requester) that allows it to trigger an investigation in the future. Demanding
a legal binding is now a requirement that can be evaluated in the present, and
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therefore a provision. As we illustrate in the next section, this provision is ac-
companied by a set of r-obligations that define when and under which conditions
r must perform an investigation, and how it should react to the result.

(2) Imposing the duty to push evidence: Another strategy is that the requester
must commit himself to delivering evidence. The evidence could be delivered by
presenting the results of an audit performed by a trusted third party. Delivery
of such evidence can occur just once (as a prerequisite for gaining access, which
can be expressed by a provision), or on a recurring basis (which constitutes a
CIII -obligation). As in strategy (1), this requirement needs to be accompanied
by a set of r-obligations.

(3) Limiting possible executions: The third possibility for the reference moni-
tor is to limit of possible executions of the agents to those that do not violate the
obligation. In order to achieve this, r may put the data into an environment that
imposes restrictions on how the data can be used. Basically, this is the idea of
digital rights management (DRM) [16,17,18]. It remains to be seen how suitable
DRM is for enforcing data protection policies, since any data which is output out-
side the DRM environment can be re-recorded. At the very least, DRM can act
as a support mechanism to the two strategies listed above and thereby increase
the likelihood that the obligations are fulfilled, or at least prevent unintended
violations resulting from carelessness.

These three strategies are not necessarily applicable to all non-observable
obligations. In the case of further distribution, for example, implementing one
of the first two strategies might be difficult as r might not be able to audit every
subject that could possibly have received the data. The three strategies can at
least be applied to some non-observable obligations, however, and the question
of which enforcement mechanisms can enforce a given set of requirements is the
subject of future work. In the following example, we examine the application of
the pull-evidence strategy (1) to enforce CII -obligations.

4 Example

We now show how a simple data protection policy containing provisions, observ-
able obligations, and non-observable obligations can be formalized and enforced.
We sketch the semantics of the different requirements and use the pull-evidence
strategy to transform the non-observable obligations into observable ones. We
also discuss the results of this transformation, and how they relate to the original
policy.

Our system consists of two government agencies A and B, a citizen Owner,
and a trusted auditor T . A acts as the reference monitor and maintains a data-
base of citizen information, where data items d1 and d2, belonging to Owner,
are stored. These data items are sensitive, e.g. medical records, criminal records,
or tax statements. B is the only subject in the sense introduced in Section 2,
whereas T and Owner are additional agents introduced for different purposes.

Recall that our policies contain decision rules for each subject/object pair. To
keep things simple, we just present the entries for the pairs (B, d1) and (B, d2).
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A’s policy requires the following for authorizing B to access d1: (R1) B must
have role statistician; (R2) A must notify Owner immediately after the access;
and (R3) B must delete d1 after at most 90 days. For the pair (B, d2), the policy
requires that (R4) B must have trust level high; (R5) B must notify Owner
immediately after the access; and (R6) B must ensure that its copy of d2 is
never older than 30 days.

R1 and R4 are provisions because the roles and trust levels of the different
agents can be reflected in state propositions of A. R2 is a CI -obligation for A
(recall the notion of r-obligations introduced in Section 2). R3 is a CII -obligation
because it is non-observable and belongs to the bounded future category. R5
looks similar to R2, but is also a CII -obligation because the action of B notifying
Owner is not observable to A in our definition. To formalize R6, we must define
more precisely what it means for B to ensure that the data is kept fresh. In order
to get a new copy of the data, B must request it again, A must grant the request
and send the data to B, and B must update its local record of the data with the
new version received. B cannot be responsible for the request being granted and
the data being sent. Therefore we only demand the following two things in our
policy: that B regularly (at least every 30 days) requests d2, and that B updates
its local record every time it receives the new version. This corresponds to a
CIII -obligation for the regular requests and a CIV -obligation for the updating.
Therefore, we will formalize this as two separate requirements in our policy.

4.1 Formalization

We need to define appropriate actions and state propositions for our agents,
as well as the messages that are exchanged. We also introduce the actions and
state propositions that will be used when transforming the policy later. In these
definitions, we use the convention that si is an arbitrary subject, dk is a data
item, obl is the textual representation of an obligation, and penalty ∈ Penalties ,
where Penalties is a set of applicable penalties in case a requirement is violated.
This could be the lowering of a trust or credibility rating, or a legal action.

For the agency A, acting as the reference monitor, we define authorize(si, dk),
the action of allowing si to access dk (this includes delivering the data item, i.e.
sending dk to si), and penalize(si, penalty), the action of penalizing si by apply-
ing penalty. The state propositions include: role(si , statistician), for reflecting
that si is a statistician, trustlvl(si , high), for reflecting that si has trust level
high, and investigate, which reflects the value of a function that outputs true or
false (we will use this later for implementing the pull-evidence approach).

For the agency B, we define del(dk ), the action of deleting dk (i.e. no copies
of dk’s value are retained), update(dk ), the action of updating the previously
stored value of dk, and no state propositions.

The snd and rcv actions are defined for all agents as explained in Section
2.2. In addition, the following messages may be exchanged, where procedure is
an element of a set of procedures like push or pull :

• request(dk ) — message that a subject uses to request dk from A;
• released(si , dk ) — message that A uses to indicate the release of dk to si;
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• accessed(dk ) — message that B uses to indicate that it accessed dk;
• doc(dk) — document containing data item dk;
• accept(obl , procedure, penalty) — message that a subject sends to accept that

A may use the indicated procedure for checking the obligation, and to accept
the penalty in case the obligation is violated;

• reqAudit(obl) — message that A uses to request an audit regarding obl; and
• viol(obl) — message sent as the result of an audit, indicating that the oblig-

ation represented by obl is violated.

Now we are in a position to write down the two policy entries for (B, d1) and
(B, d2). We again assume discrete time with one day per time step. We formalize
the policy entries regarding B accessing d1 and d2 as
@A[authorize(B , d1 )] ⇒ (@A[role(B, statistician)]

∧ @A[X snd(Owner , released(d1 ,B))] ∧ @B[F≤90del(d1)])
and

@A[authorize(B, d2)]⇒(@A[trustlvl(B, high)]∧@B[X snd(Owner, accessed(d2))]
∧ @B[GF≤30snd(A, request(d2))] ∧ @B[G(rcv(A, d2 ) ⇒ X update(d2 ))]).

4.2 Transformation

We have three non-observable obligations in this policy as discussed above:
one CII -obligation deriving from R3, one CII -obligation deriving from R5, and
one CIV -obligation that defines a part of R6. We now transform the obligation
@B[F≤90del(d1)] into a set of provisions and observable obligations. We do this
in two steps. In the first step, we follow our notion of enforcement introduced in
Section 3 and require that if B does not delete d1 within 90 days, then it will
be penalized within a certain time period, say an additional 30 days. This goal
can be formalized as

(G1) @B[G≤90(¬del (d1))] ⇒ @A[X90 F≤30penalize(B , pen)],

where pen ∈ Penalties .
In the second step, we define how this goal should be achieved using the

pull-evidence approach. Roughly, the strategy is as follows. A must obtain B’s
permission to perform audits that check whether the obligation is violated (recall
that this is in addition to accepting the obligation itself, which is done implicitly
as stated in Section 2). 90 days after the access, A can ask the auditor to check
whether d1 was really deleted by B. For this to work, we must address the
following issues.

First, we must specify under which conditions A requests such an audit. The
reason for employing the pull-evidence strategy instead of the push-evidence
strategy is that such an audit is not necessary in all cases. This reduces the
auditing overhead. Generally, there are two options for triggering audits. One
option is that audits are performed randomly as control samples, and the other
option is to perform an audit only when suspicion arises. For both options, the
state proposition investigate indicates whether an audit should be performed.
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Second, we assume that the auditor is able to determine if the data was
actually deleted, given that B allows the audit to be performed. B must agree
to this audit beforehand. Furthermore, we assume that upon request from A,
the auditor T always performs an audit and returns the result within a given
time period, say one day. This assumption can be formalized as follows (where
o1 is the textual representation of the obligation @B[F≤90del(d1)]):

(A1) (@A[snd(T, reqAudit(o1))]∧¬@B[P≤90 del(d1)])⇒@T [X(snd(A, viol(o1)))]

Note that this assumption also expresses that the auditor is able to decide a
violation at run-time: we know that the audit request will (if ever) be sent 90
days after the access decision, and therefore the obligation is violated at that
point if the data has not been deleted within the last 90 days.

Applying the pull-evidence strategy yields an new set of requirements:

(P1) @B [snd(A, accept(o1 , pull , pen))]
(P2) @A[X90 (investigate ⇐⇒ snd(T , reqAudit(o1)))]
(P3) @A[X91 (rcv(T , viol(o1 )) ⇒ X penalize(B , pen))]

Requirement P1, which is a provision, expresses the fact that B must accept
the procedures and penalties used for enforcing the original obligation. P2 is in
CI and states that, after 90 days, if an audit should be performed then A sends
an audit request to T . Requirement P3 is in CIII and defines when a penalty
must be applied.

4.3 Comments

G1 is a consequence of A1 and P1–P3 under the semantics of DTL, provided that
investigate is always true when the obligation is violated. This means that if the
audit is always performed, our goal can be achieved. If audits are only performed
at random, then this is not always the case and the success of the enforcement
strategy depends on whether the possibility of being penalized acts as a deterrent
or not. This depends on the agents of a particular system, and is not within the
scope of this paper. But the example shows how the application of such a strategy
works, and the kinds of assumptions it requires. These assumptions derive from
the fact that the result of such a transformation is usually only an approximation
of the original policy, as mentioned in Section 3.

We have also shown that to give a formal semantics to data protection re-
quirements, we need to define the actions and state propositions for a concrete
system. In this example, we have kept these definitions at a relatively abstract
level, but for a practical application this needs to be done in more detail.

The representation of the policy we introduced in Section 2 has its focus on
the semantics of the requirements. It does not define when the reference monitor
has to authorize an access. There are two reasons for this. First, we only have
an implication in a decision rule, not an equivalence (cf. Section 2.3). Second, if
obligations are involved, the reference monitor will not be able to decide whether
to authorize the access or not, because it does not yet know if the obligations will



On Obligations 111

be violated. This can only be determined from a global point of view where we
know the full, potentially infinite executions. In a concrete realization of such a
reference monitor, one would authorize the access exactly when all the provisions
are satisfied and the obligations are accepted by the subject.

Finally, note that our formalism is rich enough to allow formulas that do not
make sense from a practical point of view. For example, it is possible to express
the requirement @A[X rcv(B,msg)], which is equivalent to @B[X snd(A,msg ].
However, it does not make sense from a practical point of view to make A
responsible for receiving a message that may never be sent. Addressing this
problem is the subject of future work.

5 Related Work

Many extensions and generalizations of access control have been proposed. Jajo-
dia et al. [9] present a framework for combining multiple access control policies
within a single system. Temporal criteria may also be used for access decisions
whereby access to data is only allowed at certain time points or intervals [2,15] or
based on temporal attributes of data, such as the creation date [7]. In our model,
these are all provisions, given that the current time is reflected in the reference
monitor’s state. Policies of the same expressiveness are considered in [10], which
introduces the concept of policy automata. Policy automata combine defeasi-
ble logic with state machines and represent complex policies as combinations of
simpler policies. A variant of access control called provisional authorization is
discussed in [8]. Provisional authorization stipulates that access be only autho-
rized if the requester or the system takes certain actions prior to authorizing the
request. In our model, this corresponds to provisions that contain action symbols.

The UCON model [12,21] extends access control by introducing decision con-
tinuity and attribute mutability. In terms of our model, UCON covers both
provisions (including temporal criteria and provisional authorization) and CI -
obligations (provided they do not contain negations). The latter are also dis-
cussed in [3], where the authors present a logical framework for monitoring these
obligations, and for taking compensating actions when obligations are violated.
EPAL [1] is a description language for privacy policies (data protection policies
in our terminology) that can express all categories presented in this paper, but
does not specify a semantics for obligations. An XML-based syntax for describing
privacy statements for web sites is defined in the P3P standard [19].

A collection of obligations encountered in practice is given in [11]. The au-
thors have a more operational view of obligations, and differentiate between
short-term obligations, long-term obligations and ongoing obligations. Formal
definitions of the corresponding predicates are not given, but practical examples
are provided for each category.

The terms obligation and provision are often but not consistently used in
the literature to describe different types of data protection requirements. Some
authors (e.g. [12]) use obligations to refer to actions that principals must perform,
or must have performed before an access is authorized. For other authors (e.g.
[3]), obligations concern actions that must be performed in the future, after the
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access is authorized. We adopt and generalize the latter definition: obligations are
agreed-upon conditions that not only concern actions that are to be performed in
the future, but also more general propositions about the future, for example the
mandatory presence of certain protection mechanisms. From [3], we also adopt
and generalize the notion of provisions. In our model, provisions are conditions
that must hold before an access is authorized, whereas in [3], they are specific
actions that must be taken before an access is authorized.

6 Conclusions and Future Work

In this paper, we showed how different aspects of data protection can be handled
by an extension of access control models. This extended model allows us to
precisely specify a broad range of data protection requirements—provisions and
obligations—that take into account observable and non-observable elements. We
showed how existing approaches to enforcing non-observable obligations fit into
our conceptual and formal framework.

We are aware that our syntactic classification imposes a restriction on the
presentation of requirements. For example, a provisional formula may have a
semantic equivalent that does not fit the syntactic criterion for a provisional
formula. This restriction does not seem too strong when the criterion is used
a-priori rather than a-posteriori, e.g. by describing policies in a dedicated pol-
icy editor that simply forbids certain constructs. Whether or not our syntactic
separation into provisions and obligations leaves out some important semantic
constructs remains to be investigated.

One promising direction for future work is to use the framework as a ba-
sis for a practically useful policy language that caters for both provisions and
obligations. It is likely that “policy patterns” in such a language can address
many recurring data protection needs. Since our framework language (DTL) has
a formal semantics, it is amenable to formal reasoning about policies and their
composition (interesting aspects include consistency and subsumption). Another
direction to explore, by case studies, is the practical applicability of the mech-
anisms presented in this paper. This is important in identifying the boundary
between those requirements that can be technically enforced and those that re-
quire non-technical mechanisms, such as legal ones. It will also shed light on how
much non-observable requirements must be weakened when transforming them
into observable ones. Our long-term goal here is to design a server-side reference
monitor controlling access to sensitive personal data. Finally, the use of DRM
mechanisms for handling obligations, as mentioned in Section 3, also requires
further investigation. In particular, we currently do not know how much can
be achieved by using client-side reference monitors. A related question concerns
honest subjects, where we need only to prevent careless, but not malicious, be-
havior. In this case, the mechanisms are likely to be weaker than in the case of
potentially malicious subjects.

Acknowledgments. P. Hankes Drielsma, F. Klaedtke, P. E. Sevinç, C. Sprenger
and L. Viganò provided useful comments on earlier versions of the paper.
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A Distributed Temporal Logic

In this appendix, which is adopted from [4], we explain the basics of DTL.
The syntax of DTL is defined over a distributed signature

Σ = 〈Id, {Acti}i∈Id, {Propi}i∈Id〉
of a system, where Id is a finite set of agent identifiers and, for each i ∈ Id, Acti
is a set of local action symbols and Propi is a set of local state propositions. The
global language L is defined by the grammar L ::= @i[Li] | ⊥ | L⇒L , for i ∈ Id,
where the local languages Li are defined by

Li ::= Acti | Propi | ⊥ | Li ⇒Li | Li ULi | Li SLi | j:Lj

with j ∈ Id. Locally for an agent, U and S are respectively the weak until5

and since temporal operators. Actions correspond to true statements about an
agent when they have just occurred, whereas state propositions characterize the
current local states of the agents. Note that the global formula @i[ϕ] means that
ϕ holds at the current local state of agent i. A local formula j:ϕ appearing inside
a formula in Li is called a communication formula and it means that agent i has
just communicated with agent j for whom ϕ held. The interpretation structures
of L are suitably labelled distributed life-cycles, built upon a simplified form of
Winskel’s event structures [20]. A local life-cycle of an agent i ∈ Id is a pair
λi = 〈Evi,→i〉, where Evi is the set of local events and →i ⊆ Evi × Evi is
the local successor relation, such that the transitive closure →∗

i defines a well-
founded total order on Evi, called local causality. A distributed life-cycle is a
family λ = {λi}i∈Id of local life-cycles such that the transitive closure →∗ of
→ =

⋃
i∈Id →i defines a partial order on the set Ev =

⋃
i∈Id Evi of all events,

called global causality. This last condition is essential since events can be shared
by several agents at communication points.

We can check the progress of an agent by collecting all the local events
that have occurred up to a certain point. This yields the notion of the local
configuration of an agent i: a finite set ξi ⊆ Evi closed under local causality, i.e. if
e →∗

i e′ and e′ ∈ ξi then also e ∈ ξi. The set Ξi of all local configurations of an
agent i is clearly totally ordered by inclusion and has ∅ as the minimal element.
In general, each non-empty local configuration ξi is reached, by the occurrence
of an event that we call last(ξi), from the local configuration ξi \ {last(ξi)}. We
can also define the notion of a global configuration: a finite set ξ ⊆ Ev closed for
global causality, i.e. if e →∗ e′ and e′ ∈ ξ then also e ∈ ξ. The set Ξ of all global
configurations constitutes a lattice, under inclusion, and has ∅ as the minimal
element. Clearly, every global configuration ξ includes the local configuration
ξ|i = ξ ∩ Evi of each agent i. Given e ∈ Ev, note that e↓= {e′ ∈ Ev | e′ →∗ e}
is always a global configuration.

An interpretation structure μ = 〈λ, α, π〉 consists of a distributed life-cycle
λ plus families α = {αi}i∈Id and π = {πi}i∈Id of local labelling functions. For
5 In contrast to the strong until operator, the weak until operator does not require γ

to eventually happen in the formula ϕ U γ.
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A e1 �� e4 �� e5 �� e8 �� . . .

B e2 �� e4 �� e7 �� e8 �� . . .

C e3 �� e4 �� e6 �� e7 �� e9 �� . . .

Fig. 1. A distributed life-cycle for agents A, B and C

πA(∅) αA(e1)�� πA({e1}) αA(e4) �� πA({e1, e4}) αA(e5)�� πA({e1, e4, e5}) αA(e8) �� . . .

Fig. 2. The progress of agent A

each i ∈ Id, αi : Evi → Acti associates a local action to each local event, and
πi : Ξi → ℘(Propi) associates a set of local state propositions to each local
configuration.

Fig. 1 illustrates the notion of a distributed life-cycle, where each row com-
prises the local life-cycle of one agent. In particular, EvA = {e1, e4, e5, e8, . . . }
and →A corresponds to the arrows in A’s row. We can think of the occurrence of
the event e1 as leading agent A from its initial configuration ∅ to the configura-
tion {e1}, and then of the occurrence of the event e4 as leading to configuration
{e1, e4}, and so on; the state-transition sequence of agent A is displayed in Fig. 2.
Shared events at communication points are highlighted by the dotted vertical
lines. Note that the numbers annotating the events are there only for conve-
nience since no global total order on events is in general imposed. Fig. 3 shows
the corresponding lattice of global configurations.

We can then define the global satisfaction relation at a global configuration
ξ of μ, where Ξi is the set of all local configurations of agent i in μ, as

– μ, ξ � @i[ϕ] if μ, ξ|i �i ϕ;
– μ, ξ �� ⊥;
– μ, ξ � γ ⇒ δ if μ, ξ �� γ or μ, ξ � δ,

where the local satisfaction relations at local configurations are defined by

– μ, ξi �i act if ξi �= ∅ and αi(last(ξi)) = act;
– μ, ξi �i p if p ∈ πi(ξi);
– μ, ξi ��i ⊥;
– μ, ξi �i ϕ ⇒ ψ if μ, ξi ��i ϕ or μ, ξi �i ψ;
– μ, ξi �i ϕU ψ if the following holds: if there exists ξ′′i ∈ Ξi with ξi � ξ′′i

such that μ, ξ′′i �i ψ, then μ, ξ′i �i ϕ for every ξ′i ∈ Ξi with ξi � ξ′i � ξ′′i ;
otherwise, μ, ξ′i �i ϕ for every ξ′i ∈ Ξi with ξi � ξ′i;

– μ, ξi �i ϕS ψ if there exists ξ′′i ∈ Ξi with ξ′′i � ξi such that μ, ξ′′i �i ψ, and
μ, ξ′i �i ϕ for every ξ′i ∈ Ξi with ξ′′i � ξ′i � ξi;

– μ, ξi �i j:ϕ if ξi �= ∅, last(ξi) ∈ Evj and μ, (last(ξi) ↓)|j �j ϕ.
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Fig. 3. The lattice of global configurations
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Fig. 4. Satisfaction of formulas

We say that μ is a model of Γ ⊆ L if μ, ξ � γ for every global configuration
ξ of μ and every γ ∈ Γ . Fig. 4 illustrates the satisfaction relation with respect
to communication formulas of our running example. Clearly μ, ∅ � @B[ψ U A:ϕ],
because μ, ξ′ � @B[A:ϕ]. Note however that μ, ξ �� @B[A:ϕ], although μ, ξ �
@A[ϕ].

Other usual logical operators are defined as abbreviations, e.g. ¬, �, ∨, and
∧. We also define the following temporal operators:

X ϕ ≡ ⊥U ϕ (weak next)
Y ϕ ≡ ⊥ S ϕ (previous)
P ϕ ≡ � S ϕ (sometime in the past)

Gϕ ≡ ϕU⊥ (always in the future)
H ϕ ≡ ¬P¬ϕ (always in the past)

Let Msg be a (not necessarily finite) set of messages. For each agent a ∈ Id,
the set of actions Acta includes snd(b, m) (send message m to agent b) and
rcv(b, m) (receive message m from agent b), where b ∈ Id is another agent, and
m ∈ Msg . Now we introduce the following axiom.

∀ a, b ∈ Id, m ∈ Msg : @a[snd(b, m) ⇐⇒ b:rcv(a, m)]

This axiom defines a reliable and synchronous communication channel for
each pair of agents. In this paper, we do not make other use of the j:ϕ operator,
i.e. the local languages Li are only defined by

Li ::= Acti | Propi | ⊥ | Li ⇒Li | Li ULi | Li SLi,
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in the body of this paper. The reason is that we do not need this operator for
our policy language, but only to define the semantics snd and rcv. Moreover,
omitting this simplifies the syntactical classification between observable formulas
and non-observable formulas that we introduce in Section 2.

B Violation of Obligations

Let μ = 〈λ, α, π〉 be an interpretation structure with λ = {〈Evi,→i〉}i∈Id and
ξ =
⋃

i∈Id Evi a global configuration of μ. We consider a formula of the form
@j[a] ⇒ ϕ, where a is a local action symbol that is only defined for agent j
and has exactly one pre-image under αj , and ϕ ∈ Li for some i ∈ Id. The sub-
formula ϕ is violated with respect to μ iff there exists ξ′ ∈ Ξ with ξ′ ⊆ ξ such
that μ, ξ′ � a ∧ ¬ϕ.

The reason why a must only be related to one single event is that otherwise,
there could be ξ′′, ξ′′′ ∈ Ξ with ξ′′ ⊆ ξ; ξ′′′ ⊆ ξ; μ, ξ′′ � a∧¬ϕ and μ, ξ′′′ �� a∧¬ϕ.
In our context of obligations and authorization actions, this would mean that
the actions that follow two different authorizations could interfere.

Note that this formal definition of violation cannot be used by a reference
monitor at runtime. This is because our characterization is with respect to a
fixed interpretation structure of the logical formulas that make up our models
of a system. Because this interpretation is fixed, and, in this sense, encompasses
everything that has happened, it does not leave any room for decisions of the
agents. Without formalizing it here, we hence assume an “operational” definition
that allows the auditor to decide violation at runtime.
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Abstract. We present an election scheme designed to allow voters to
verify that their vote is accurately included in the count. The scheme
provides a high degree of transparency whilst ensuring the secrecy of
votes. Assurance is derived from close auditing of all the steps of the
vote recording and counting process with minimal dependence on the
system components. Thus, assurance arises from verification of the elec-
tion rather than having to place trust in the correct behaviour of com-
ponents of the voting system. The scheme also seeks to make the voter
interface as familiar as possible.

1 Introduction

Since the dawn of democracy, it has been recognised that the process of record-
ing and counting votes could be the target of attempts at corruption. The An-
cient Greeks investigated the use of (primitive) technological devices to provide
trustworthy voting systems and avoid the need to trust voting officials [1]. The
challenge is to provide voters with complete confidence that their vote will be ac-
curately recorded and counted whilst at the same time guaranteeing the secrecy
of their vote.

Most traditional approaches to this problem involve placing significant trust in
the technology, mechanisms or processes used to process votes. Thus, for the tra-
ditional paper ballot, the handling of the ballot boxes and counting process must
be trusted, i.e., the boxes must not be lost or manipulated and that the counting
process is accurate. Various observers are introduced to the process which helps
to spread the dependence on the technology but does not eliminate it.

With many of the touch screen devices widely used in the recent US presiden-
tial elections, the voter at best gets some form of acknowledgement of the way she
casts her vote. After that, she can only trust in the assurances of the manufactur-
ers and certifiers that her vote will be accurately included in the final tally.

By contrast, in [3], Chaum presents a digital voting scheme that enables voter
verification, i.e., provides each voter with a means to assure themselves that her
vote has been accurately included in the vote tally. This scheme combines a
number of cryptographic techniques and primitives to provide a high degree
of transparency whilst at the same time preserving ballot secrecy. Rather than
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having to place trust in the components to perform correctly, steps of the vote
recording and tallying process are closely monitored to detect any malfunction
or corruption.

The key elements in voter-verification are:

– when a voter casts her vote in a booth, she gets a receipt showing her vote
in encrypted form.

– a voter confirms in the booth that her intended vote is correctly encoded in
the receipt. The vote cannot be read subsequently outside the booth.

– a number of tellers perform anonymising mixes and decryption on the batch
of encrypted ballot receipts. The decrypted votes emerge at the end of this
process, with all links between the original receipts and the final decrypted
values lost in the multiple mixes. Intermediate steps of the tellers processing
are posted to a bulletin board, which might be published via the web for
example.

– random checks are performed on all steps of the process to ensure that, with
high probability, any attempt to corrupt vote capture and counting will be
detected.

The point of the encrypted receipt is to provide the voter with a means to
check that her ballot is entered into the tallying process and, if her receipt has
not been included, to prove this to a third party. The fact that her vote is in
encrypted form ensures that there is no way for a third party to know which way
she voted. A voter can visit the bulletin board and check that her (encrypted)
ballot receipt has been correctly posted. The tellers process these posted receipts
and there are mechanisms in place to ensure that all posted receipts are entered
into the tallying process.

The anonymising mixes performed by the tellers ensure that there is no link
between the encrypted ballot receipt and the decrypted version that is finally
output by the tallying process.

The design philosophy is to minimise trust in components. The approach
is to strive for maximal transparency of the whole vote casting, recording and
counting process, consistent with maintaining ballot secrecy. Thus, the integrity
of the ballot forms and the correctness of the tellers’ transformations are closely
audited. The encryption of the voter’s choice on the receipt is performed in the
booth, is transparent, and does not depend on the intercession of any hardware
or software devices that might be susceptible to failure or corruption.

2 Prêt à Voter

The original scheme of [3] uses visual cryptography to encrypt the receipts and
perform the decryption in the booth. The scheme presented here uses a more
conventional representation of the vote, i.e., ballot forms with the candidates or
voting options listed in one column, and the voter choices entered in an adjacent
column. As a result, the scheme is easier to understand and implement.

An earlier paper, [7], introduced the idea of encoding the vote in terms of
two aligned columns, one carrying the candidate or option list in randomised
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order (independent for each ballot form) whilst the other strip carries the voter
choice. In this version, the voter was invited to choose which of the left and right
columns to retain as the receipt. This introduced a certain asymmetry with both
cryptographic and psychological implications.

In this paper we introduce some further innovations: we use ballot forms that
are generated and printed in advance. As before, these have two columns, one
of which shows the candidate list in scrambled order. Now however, rather than
choosing between columns as previously, the voter will always discard the left
hand column containing the candidate list, and submit the right hand column
containing the marked vote. This avoids the asymmetry in the choice between
left and right columns of the previous scheme.

A further innovation is to use the tellers in an oracle mode to enable the
checks on the well-formedness of the ballot forms. This is in addition to the
previous use of the tellers to perform the anonymising mix during the tally-
ing phase. Besides allowing independent auditing authorities to perform random
checks, this also opens up the possibility of novel checking modes, including en-
abling the voters to cast a dummy vote and have the tellers return the decryption
to them as a check on the construction of the ballot forms.

The scheme presented here provides a number of appealing innovations,
notably:

– Voters should find the vote casting process entirely familiar.
– Cryptographic commitments are generated before voter choices are known.
– Voter checks on the correct construction of the ballot forms are supplemented

by random audits. Thus, voters are able to contribute to the verification of
the vote capture process but the assurance of the scheme is not dependent
on the voters being sufficiently diligent.

– Checks on the correct construction of the ballot forms are performed before
votes are cast, thus simplifying the recovery strategies.

– The vote recording devices in the voting booths do not learn the voters’
choices. This neatly avoids any threats of such devices leaking the voters’
choices.

– The scheme is conceptually much simpler than others that have been pro-
posed, thus easing its implementation and increasing the chances of voter
acceptance.

– The current scheme shows considerable flexibility, suggesting that it could
readily be adapted to different electoral requirements.

3 The Election Setup

A number of tellers are appointed. Each is assigned or creates two secret/public
key pairs. The use of two keys per teller is a technical convenience arising from
the audit process that will become clear later. These public keys are publicised
and certified.

An authority creates a large number of ballot forms, significantly more than
required for the electorate. These will have a familiar appearance: a left hand
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column listing the candidates or options and a right hand column into which the
voter can insert her selection. This might just be an X in one cell for a single
choice election or a ranking for a Single Transferable Vote (STV) system. Thus,
for a four candidate race, a typical ballot form might look like:

Nihilist
Buddhist
Anarchist
Alchemist

7rJ94K

However, the order in which the candidates are listed will be randomised
for each ballot form, that is, for any given ballot, the candidate order shown
should be unpredictable. The random looking value at the bottom of the right
hand column (which we call an ‘onion’ for reasons that will become apparent in
Section 5) contains the information from which the candidate ordering can be
reconstructed, buried cryptographically under the public keys of the tellers. The
precise construction of the onions will be described in Section 5.2.

The exact details of the voting procedure can be varied according to the na-
ture of the election and according to the perceived nature of threats to which
the system is exposed. For simplicity of presentation we outline one simple pro-
cedure. Other procedures are possible and indeed one of the advantages of this
scheme is that it appears to be significantly more flexible than previous variants.

4 An Example

The scheme is best introduced by way of a simple example. We will give a more
formal and general description later. Suppose for simplicity that we are dealing
with a simple election system in which each voter selects exactly one candidate
and the winner will be the candidate who garners the most votes. This allows
us to present the example using simple cyclic shifts of the candidate ordering.
Generalisations to deal with options to select more than one candidate or to
rank them, etc. are straightforward and discussed later. Clearly, a “none of the
above” option could also be included.

4.1 Processing Votes

Suppose that there are four candidates and these are given a base ordering:

Anarchist
Alchemist
Nihilist
Buddhist

Since we are considering only cyclic shifts in this example, there are four
possible candidate lists, corresponding to the four possible offsets, 0 to 3, from
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the base candidate list. The generation of the random offsets and cryptographic
values will be described in detail later.

For convenience of the mathematical manipulations, we also adopt a canon-
ical numbering convention for the candidates from 0 to 3 as indicated. Thus a
vote for Anarchist will be represented as 0, for Alchemist as 1 etc. This numeri-
cal representation is purely for the machine manipulations and need not trouble
the voter.

Consider the following ballot form:

Buddhist
Anarchist
Alchemist
Nihilist

Qqkr3c

This has an offset of 1. Thus the onion—Qqkr3c—encodes the value 1. Sup-
pose the system is to process a vote for Nihilist. This would be represented by a
mark in the Nihilist box:

Buddhist
Anarchist
Alchemist
Nihilist X

Qqkr3c

Once the voter has marked her choice, the left hand column that shows the
candidate ordering is detached and destroyed, to leave a ballot receipt of the
form:

X
Qqkr3c

Such right hand strips showing the position of an X and an onion value
constitute the ballot receipts.

This is now fed into the voting device, presumably an optical reader, which
transmits the information on the strip, the position of the X (as a numerical
value 0, 1, 2 or 3) and the value of the onion, to the tellers. The tellers use their
secret keys to perform the decryption of the onion (see later), and generate the
decrypted vote value corresponding to the vote in the base ordering. In this case
the decryption process yields the offset 1, so the vote value is the position of
the vote (3) with the appropriate offset removed, yielding candidate 3 − 1 = 2:
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Nihilist

Nihilist

Anarchist

Anarchist Alchemist

Alchemist

Buddhist

Buddhist

X

X
Tellers

Qqkr3c

LH strip RH strip processed
RH strip

base ordering

Fig. 1. Processing a vote

Nihilist. This process is illustrated in Figure 1. A more detailed description will
be provided later.

4.2 Casting the Vote

Our voter, Anne, first authenticates herself and registers at the polling station.
She is invited to select, at random, a ballot form. She now enters a booth with
her ballot form and marks her X in the usual way. Suppose that she decides to
vote for the “Buddhist” candidate:

Nihilist
Buddhist X
Anarchist
Alchemist

e1rg38

She now removes the left hand strip (for shredding), and feeds the right hand
strip into the voting device. This checks that the ballot strip is unused and reads
the position of Anne’s X , and the value of the onion. The device marks the strip
as having been used to cast a vote and returns it to Anne for her to retain as
the ballot receipt.

X

e1rg38

Note that the vote recording device does not learn which way Anne voted. Its
role is merely to read the information on Anne’s receipt and relay it to the the
tellers via the bulletin board. This is a significant advantage of this scheme over
many other schemes where the voting device necessarily learns the voter’s choice,
raising the possibility that the device could somehow leak this information.



124 D. Chaum, P.Y.A. Ryan, and S. Schneider

The device transmits its digital record of the receipt to a central server for
subsequent posting to the bulletin board once the election has closed. Anne will
later be able to visit the bulletin board and confirm that her receipt is cor-
rectly posted and hence that it is correctly entered into the tallying process.
The tallying process is deliberately constructed to hide the link between spe-
cific ballot receipts and the resulting decrypted votes, in order to provide voter
anonymity. Thus Anne cannot directly link her input vote strip to any specific
resulting vote, and so she cannot directly verify that her vote has been correctly
decrypted. However, the fact that the votes are all correctly processed can be
checked to a high degree of confidence, which provides Anne with the assurance
that her vote will be decrypted correctly.

Observe that Anne’s receipt alone does not reveal which way she voted.
Unless the tellers are involved, this can only be determined if the left hand
strip (now destroyed), that carries the candidate ordering, is aligned against it.
Only the totality of the tellers, acting in consort, using their collection of secret
keys are able to extract the seed information and so reconstruct the candidate
ordering for that ballot form.

5 Construction of the Ballot Forms

The above description should have provided the reader with the key intuitions.
We now give some of the mathematical details.

5.1 Construction of the Cryptographic Seeds and Offsets

For each ballot form, the authority will generate a unique, random seed. Suppose
that there are k tellers (numbered 0 to k− 1), then this seed will be made up of
a sequence of 2k values that we will call the germs:

seed := g0, g1, g2 . . . g2k−1

Each of these germs should be drawn from some modest size field, perhaps
232. Thus, for k = 3 say, the seed values will then range over 2192. These numbers
can be adjusted to achieve whatever cryptographic strength is required.

The offset for the candidate list is now calculated from these germ values as
follows. First a publicly known cryptographic hash function is applied to each
of the germs and the result taken modulo v, where v is the size of the candidate
list:

di := hash(gi) (mod v) i = 0, 1, 2, ....., 2k − 1

The cyclic offset θ that will be applied to the candidate list on this form is
now computed as the (mod v) sum of these values:

θ := (
∑2k−1

i=0 di)mod v.
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g0g1g2g2k−2g2k−1
PKT0

PKT1

PKT2

P KT2k−2

P KT2k−1

D2k D2k−1 D3 D2 D1

D0. . . . . .

Fig. 2. An onion

5.2 Construction of the Onions

In order to facilitate auditing of the tellers whilst preserving anonymity of the
voters (see [3] or [2] for more details), each teller performs two Chaum mixes and,
accordingly, has two independent secret/public key pairs assigned to it. Teller i
will have public keys PKT2i and PKT2i+1 , and corresponding secret keys. The
onion is formed by nested encryption of the germs under these public keys, and
is given by:

{g2k−1, {g2k−2, {. . . , {g1, {g0, D0}PKT0
}PKT1

. . .}PKT2k−3
}PKT2k−2

}PKT2k−1

We introduce a little more notation to denote the intermediate layers of the
onions. D0 is a random, nonce-like value, unique to each onion. The subsequent
layers are defined as follows:

Di+1 := {gi, Di}PKTi

Onion := D2k

Where i ranges over {0, 1, ....., 2k− 1}. The construction of an onion is pictured
in Figure 2.

6 The Role of the Tellers

The primary role of the tellers is to perform an anonymising mix and decryption
on the batch of encrypted ballot receipts posted to the bulletin board. This
ensures that the decrypted votes that emerge at the end of mix cannot be linked
back to the encrypted receipts that are input to the process. Aside from some
minor differences, the role of the tellers and the auditors are essentially as in the
Chaum original. For completeness we give a brief overview here. More detailed
descriptions can be found in [3] or [2].

The first, left hand column, of the bulletin board shows the receipts in exactly
the same form as the printed receipts held by the voters. A voter can check this
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column to verify that her receipt has been accurately posted. An easy way to
do this would be to search on the string representing the onion value and check
that the X appears in the correct box, i.e., as shown on the voter’s receipt.

The information in the first, left hand column of the bulletin board is then
passed to the first teller, Tellerk−1, for processing. There is no shuffling of the
information when it is passed to the teller. The position of the X on the voting
slip is encoded as an integer r, and the correctness of this encoding can be simply
and publicly verified.

The tellers will subsequently manipulate the numerical representations of the
receipts, i.e., pairs of the form (ri, Di), where ri is between 0 nd v − 1, and Di

is an ith level onion. The initial value of r2k is the encoding of the position of
the X as originally placed by Anne on her receipt.

Each column (apart from the first, which contains the actual receipts) shows
only the simplified, digital representation: a pair (r2k, D2k) consisting of a value
r from Zv and the value D of the onion layer.

Each teller accepts an input column of votes (r, D) from the previous teller,
and then carries out two manipulations, to produce a middle column of votes
and an output column of votes. The output column produced by the teller is
then passed to the next teller in the chain.

Thus for each of the (r2i, D2i) pairs in the batch in the input column,
Telleri−1 will:

– apply its first secret key, SKT2i−1 to strip off the outer layer of the onion
D2i to reveal the enclosed germ g2i−1 and the enclosed onion D2i−1.

g2i−1, D2i−1 = {D2i}SKT2i−1

– apply the hash function to the germ value and take the result (mod v) to
recover d2i−1:

d2i−1 = hash(g2i−1) (mod v)

– subtract d2i−1 from r2i (mod v) to obtain a new r value r2i−1:

r2i−1 = r2i − d2i−1 (mod v)

– form the new pair (r2i−1, D2i−1)

Having completed these transformations on all the pairs in the initial batch
as posted in its input column, the teller applies a secret shuffle to the resulting,
transformed pairs and posts the resulting (transformed and shuffled) pairs to its
middle column on the bulletin board.

Telleri−1 now repeats this process on the contents of the middle column
using its second secret key, SKT2i−2 to obtain a new set of (r2i−2, D2i−2) pairs.
It will apply a second secret shuffle, independent of the previous one, to this
batch of new pairs. The resulting transformed and shuffled (r2i−2, D2i−2) pairs
are now posted to the output column on the bulletin board, and passed on to
the next teller, Telleri−2. This process is illustrated in Figure 3.
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Fig. 3. A teller

Teller2 Teller1 Teller0

votesballots

Fig. 4. Three tellers anonymising mix

This process is repeated by all the tellers in sequence, as illustrated in Figure 4
for a sequence of three tellers. The value of any of the intermediate r values is
thus given by:

r2k−i = r2k − Σi
j=1d2k−i (mod v)

When the last teller performs the final transformation it outputs a batch of
pairs which comprise a final r value, r0, and the inner onion value D0. The final
r0 values are the values of the original votes in the canonical, base ordering.
Figure 5 illustrates the effect of the process on a single vote.

To see this, observe that the candidate list on each form is shifted by the
(mod v) sum of the d values, i.e., θ. Thus the initial r value is the candidate
value plus θ modulo v. For each ballot pair, the tellers will have subtracted out
the d values from the initial r value, thus cancelling the original shift of the
candidate list and so recovering the original candidate value. Thus:

r0 = r2k − Σ2k
j=1d2k−i (mod v) = r2k − θ (mod v)

Consider the example of Anne’s vote again (illustrated in Figure 5). The form
she used to cast her vote had an offset of 2 and her X was in the second box,
value 1. Hence the initial value of r2k was 1 in her case. The tellers will in effect
compute:
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Teller2 Teller1 Teller0

votesballots
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An
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Ni

Ni

Bu

Bun

X

X

Fig. 5. A vote processed by three tellers

Teller1Teller2 Teller0

votesballots

Fig. 6. Information posted by the sequence of three tellers

r0 = r2k −
2k∑

j=1

di(mod 4) = 1 − 2(mod 4) = 3

Thus the final r value r0 = 3 does indeed translate to a vote for “Buddhist”
in the base ordering. The encryption of the vote can thus be thought of as a
(co-variant) transformation of the frame of reference, decryption to the corre-
sponding (contra-variant) transformation.

The overall effect then, is to have posted on the bulletin board, in the left
hand column, the batch of initial receipts as posted by the voting devices. In the
right hand column we will have the fully decrypted votes. In between there will
be a set of columns with the intermediate, partially decrypted (r, D) pairs. Each
column will be some secret permutation and decryption of the previous one, and
the permutation will not be published. This is illustrated in Figure 6. Note that
the decryptions at each mix stage prevent the permutation being reconstructed
by simple matching of onions or r values.

The purpose of using the hash of the germ values buried in the onion layers
to transform the r values is to foil guessing attacks on the mixes. Without
these hashes it would be possible to guess links through the mixes and check
the guess by performing the appropriate computations (with the knowledge of
the tellers’ public keys). With the hash functions, these checks would require the
computation of pre-images of the hashes, thus rendering such attacks intractable.
We will see later that, for audited links the tellers are required to reveal not
only the link but also the associated germ. The computations performed by the
auditors are thus perfectly tractable.

Assuming that all the tellers perform their transformations correctly, there
will be a one-to-one correspondence between the elements of each column and
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the next. The exact correspondence, namely which (r, D) pair in one column
corresponds to which pair in the next column, will be hidden and known only to
the teller who performed the transformation between those columns. Thus, the
receipts will have undergone multiple, secret shuffles between the first column as
posted by the voting devices and the final decrypted column. This ensures that
no voter can be linked to her vote, so ensuring ballot secrecy.

The fact that several tellers are used gives several layers of defence with re-
spect to voter privacy: even if several of the tellers, but not all, are compromised,
the linkage of a voter with her vote will remain secret.

The decrypted votes are posted in the final column so the overall count can
be verified by anyone.

7 Auditing the Process

The description so far has assumed that all the steps of the vote casting, record-
ing and counting are performed correctly, to specification. In fact, we want to
avoid having to place such trust in the components of the scheme: the authority
that generates the ballot forms, the device that records and transmits the receipt
values and the tellers that perform the mixes and decryptions. In this section
we identify the failure modes and corresponding counter-measures.

We assume for the purposes of this paper that measures are taken to prevent
failures of the surrounding system, for example, in the maintenance of the elec-
toral role, voter authentication etc. Here we concentrate on the failure modes of
the cryptographic core of the scheme. With respect to the accuracy requirement
there are three failure modes of the technical core of the scheme:

– Incorrectly constructed ballot forms, i.e., forms for which the cryptographic
seed information buried in the onion does not correspond to the candidate
order printed on the form.

– Incorrect recording of the values on the receipts and/or transmission to the
Bulletin Board for tabulation.

– Errors or corruption in the transformations by the tellers on the ballot pairs.

Any of the failure modes could lead to vote values being incorrectly de-
crypted, i.e., resulting in decrypted vote values different from those intended
by the voters. We now detail the checking processes that are employed to de-
tect, with high probability, any such failures. We start with role of the authority
tasked with generating the ballot forms.

7.1 Checking on the Authority

Suppose that a suitable authority has generated and distributed a large number
of printed ballot forms to the polling stations. Independent auditors will be
appointed whose task is to subject a random sampling of these ballots to well-
formedness checks. These checks are designed to establish that the seeds buried
cryptographically in the onions correctly correspond to the candidate list that
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appears on the form, given the declared public keys of the tellers. The auditors
might also be tasked with checking the quality of the entropy used in the creation
of the ballot forms.

Further random audits could also be performed during the election. Indeed,
once the election has closed, left-over forms could also be routinely audited as well.

In addition to the checks performed by the auditors, mechanisms can also
be provided to enable the voters to perform checks on the integrity of the ballot
forms of their own, as detailed shortly. Thus, the voters are empowered to con-
tribute to the verification of the election. First we describe the auditor checks,
then we describe those that could be made available to the voters.

Auditing the Ballot Forms. A set of independent auditing authorities are
appointed. These should be chosen in such a way as to minimise the chance of
collusion. They might, for example, be drawn from civil liberties groups, the
political parties etc. Each would be invited to make a random sampling of, say,
5% of the ballot forms generated by the authority.

To check the construction of the forms, some access to the cryptographic
seeds is required. This could be achieved by requiring the authority to store the
seeds along with their association with the onion values on the forms. However,
the storing and selective release of such crypto material is potentially rather
delicate and fragile. A novel and more elegant and robust approach is to use the
tellers to strip off the layers of encryption for forms selected for audit and reveal
the seed material.

Once the seed material for a ballot form selected for audit has been revealed,
the form’s integrity can be verified by recomputing the offset and onion value. If
these match those printed on the form then it is safe to conclude that the form
was indeed correctly constructed. Note that these calculations can be performed
and verified by anyone, since the public keys of the tellers and the crypto hash
functions are all public knowledge, More precisely, to check a ballot form, the
following actions are performed:

– the auditor sends a digital copy of the onion on the form to the tellers.
– the tellers strip off the layers of encryption using their private keys to reveal

the germs.
– the sequence of germ values are returned to the auditor.
– given the germ values, and knowing the public keys of the tellers, the auditors

are able to reconstruct the value of the onion and can check that this agrees
with the value printed on the form.

– they now recompute the offset value as the (mod v) sum of the hashes of
the germs.

– they can now check that the offset applied to the candidate list shown on
the form agrees with the value obtained above.

If these checks are successful, it is safe to conclude that the ballot form in
question was correctly constructed. Checked ballot forms, for which the seed has
been revealed, are then discarded. If a random sampling of a significant propor-
tion of forms all pass the checks, then it is safe to conclude that all the forms are
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correctly formed. The statistical calculations of the levels of confidence afforded
by such random sampling are straightforward and, of course, the sampling rates
can be adjusted to achieve whatever confidence levels are required.

Note further, that the algorithms for these checks are publicly known, so in
principle, anyone could construct such a checker and make it freely available. Sim-
ilarly anyone could examine such a checker to establish that it was performing cor-
rectly. Note also that any interested party could volunteer to perform some of the
auditing. Thus, for example, the Electoral Reform Society could act as auditors.
Representatives of the political parties could act as auditors. Furthermore, any
results produced by an auditor can be double checked by independent parties.

Voter Checks on Ballot Form Integrity. In addition to the integrity checks
performed by the auditors described above, the scheme also allows for checks on
ballot form integrity to be performed by the voters themselves. This empowers
the voters to contribute to the dependability of the election outcome, a sort of
dependability for the people, by the people!.

The technique of using the tellers as an oracle during the voting phase sug-
gests a number of alternative modes for checking the integrity of the ballot forms.
These do not involve the revealing of the seed information.

1. Single dummy vote.
2. Multiple or ranked dummy vote.
3. Given the onion value, the tellers return the candidate ordering.

In the first, the voter would cast a dummy vote in exactly the same way that
she will later cast her real vote in the booth, except that in this case the dummy
vote would probably be cast in the presence of voting officials. Thus, she could
put a cross against a random selection and send the receipt off to the tellers.
They would decrypt the onion and return what they believe was the vote cast. If
the onion was correctly constructed, this should of course agree with the dummy
vote selected.

This has interesting psychological implications: assuming that the check suc-
ceeds, it should provide the voter with some assurance that when she comes to
cast her real vote, it will also be correctly counted. On the other hand it might
undermine her confidence that the secrecy of her vote will be assured.

Such a single dummy vote provides a rather weak check on the ballot form
construction, probing only part of the construction. The second mode seeks to
rectify this: by allowing the voter to cast several dummy votes, either in series
or in parallel by making a ranking selection. In the latter case, given the receipt,
the tellers should return what they believe to be the candidate ranking chosen
by the voter. This provides a more complete check on the construction of the
ballot form. Both of these suffer the drawback that the voter is expected to make
random choices in the presence of officials.

The third mode is perhaps the most satisfactory. It provides a complete check
on the ballot form but does not require the voter to make any random selections.
Here, given only the onion value, the tellers should return what they believe to
be the candidate ordering as shown on the ballot form.
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We note that, in contrast to the auditor checking mode, these three modes
are vulnerable to collusion attacks. If the authority that generated the forms is
in collusion with one of the tellers there is the possibility of corrupting forms
without detection by these modes. For example, the authority could flip a pair of
candidates on the ballot forms. The colluding teller performs the corresponding
flip during the checking phase, but not during the tallying phase.

The auditor checking mode is not vulnerable to such collusions and so is more
rigorous. It therefore appears to be more suitable for the auditing authorities. It
could also be made available to voters, but it seems less intuitive and so perhaps
less reassuring to the voters. The psychological aspects of these checking modes
from a voter perspective will be investigated in future work.

Thus, a possible voting procedure might be to allow a voter when she registers
at the polling station to select a pair of ballot forms at random and nominate one
for checking. This could then be checked in the presence of officials using, say,
the third mode described above. Assuming that the check goes through okay,
the checked form is discarded and the voter can proceed to the booth with her
“real” ballot form. If any check fails, she should notify an official who should
then investigate and diagnose the source of the error. We will discuss the error
handling and recovery strategies later.

As noted earlier, care has to be taken in assessing the assurance provided by
the voter checks as these are vulnerable to collusion attacks. Various counter-
measures could be adopted to limit the likelihood of such collusions going un-
detected. One possibility is to use an l out of k threshold scheme for the onion
encryptions. The l cardinality subsets of the k tellers could then be chosen ran-
domly for each dummy voting request. If the colluding tellers were omitted when
a corrupted dummy vote was decrypted, an error would be flagged. In any case,
the random checks by the auditors would catch such manipulated ballot forms
as these are not vulnerable to such collusion attacks.

The tellers might return incorrect germ values but this will of course throw
up a mismatch between the recomputed onion value and the value on the form.
It might be that a teller malfunctions, or is loaded with the wrong keys. In this
case the checks serve a useful role in debugging such configuration errors.

Note that the encryptions are all bijective, hence the germ values are uniquely
determined by the onion value. The tellers cannot therefore find alternative germ
values that would give the same onion value but a different offset.

Together, these checks ensure that if a malicious or corrupted authority tried
to corrupt votes by providing a candidate ordering that does not correspond
to the seed information buried in the onion, they stand a high chance of being
detected. The chance of corruption going undetected falls off exponentially with
the number of ballots they try to corrupt.

We stress that all the checks detailed here serve purely to probe the well-
formedness of the ballot forms, i.e., serve to detect any failure of the candidate
orderings on the forms to correspond to the information buried in the onions.
These checks do not provide any detection of corruption during the tallying
phase. A form that is correctly constructed in this sense will correctly capture
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the voter’s intention. Of course, this does not of itself ensure that the vote
will ultimately be correctly decrypted. For this we need additional mechanisms
to ensure that all ballot receipts will be correctly recorded, transmitted and
decrypted. These we address next.

8 Checking on the Vote Recording Devices

We need to ensure that ballot receipts are faithfully recorded, transmitted and
entered into the tallying process. This is where the bulletin board comes into
play. Once voting has closed, all ballot receipts are posted to the bulletin board.
The material posted to the bulletin board will be publicly available in read-only
mode. Thus any voter can visit the board and confirm that her receipt appears
correctly in the input column.

If her receipt does not appear, or appears in corrupted form (in particular,
if the position of the X is incorrect), this should be reported. The voter has
her receipt to prove to an official that her receipt does not appear correctly. In
practice all ballot forms would be printed with anti-counterfeiting measures and
would have been stamped and digitally signed by the device in the booth when
the vote was cast to prevent attempts to fake receipts.

Assuming that voters are reasonably diligent in performing these checks,
any failures to faithfully post receipts to the bulletin board, and hence to enter
them into the tallying, should be detected. Precautions would also be needed
to prevent anyone inserting additional, invalid receipts. One simple precaution
would be to ensure that the number of posted receipts matched the number of
cast ballots. The digital signatures applied by the voting devices could also be
used to help prevent fake ballots being introduced.

A further possible enhancement is for the device in the booth to produce a
paper copy of the ballot receipt. This copy is posted into a locked and sealed
audit box (perhaps after being viewed under glass and confirmed by the voter
in the manner of the ‘Mercuri method’ [5]). Now, independent auditors can
perform checks of the correspondence between published receipts and the paper
audit trails stored in the audit boxes. This serves to supplement the checks
performed by a voter on the appearance of her receipt in the published list.
This last enhancement has similarities to the Voter Verifiable Paper Audit Trail
(VVPAT [5]) and has the advantage that the checks on ballot receipts on the
bulletin board performed by the voters are supplemented by auditor checks. The
assurance of the scheme is thus less dependent on the diligence of the voters in
checking the appearance of their receipts in the published list.

9 Checking on the Tellers

The checks described above should ensure that voters’ intentions are correctly
encrypted in the ballot receipts and that all receipts are correctly entered in
the tabulation process. Now we must ensure that all the receipts are accurately
decrypted. For this, we must ensure that all the transformations performed on
the receipts by the tellers during the anonymising mixes are correct.
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Fig. 7. Auditing Telleri

As in the original Chaum scheme, the auditing of the tellers is based on the
notion of partial random checking proposed in [4]. This takes place after the
teller processing has finished, and is applied to the information committed to by
the tellers on the bulletin board.

For each teller an auditing authority goes down the middle column and ran-
domly assigns R or L to each (r, D) pair. For pairs assigned an R, the auditor
requires the teller to reveal the outgoing link (to the right) to the corresponding
pair in the next column along with the corresponding germ value. For all pairs
assigned an L, the auditor requires the teller to reveal the incoming link (from
the left) along with the germ value.

This way of selecting links ensures that, for any given teller, no complete
route across the two shuffles performed by that teller are revealed by the audit
process. Hence no ballot receipt can be traced across the two mixes performed by
any given teller. Each ballot transformation has a 50/50 chance of being audited.

This is illustrated in Figure 7, with the selected links included. The remaining
links are not revealed.

For each teller the auditor performs such a random audit. Given the property
that there are no full links revealed across any teller’s mixes, the L/R selection
can be made quite independently for each teller. This is the rationale for making
each teller perform two mixes.

Suppose that, for a revealed link, the pair has been transformed thus:

ri, Di −→ ri−1, Di−1

Knowing this and the corresponding germ value gi−1 (which the teller is re-
quired to provide for each revealed link), it can be checked that the following
hold:

Di = {gi−1, Di−1}PKTi−1

and

ri−1 = ri − hash(gi−1)(mod v)
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Fig. 8. Auditing the three tellers

If these equalities hold on a link we can conclude that the teller executed the
correct transformation on this ballot pair. Some additional reasoning is required
to show that it is not possible for a teller to perform a corrupted mix and be
able to reveal false links in such a way as to pass any audit.

Figure 8 illustrates the audit across the sequence of three tellers.

10 Error Handling and Recovery Strategies

So far we have only described the checks that can be performed. A full description
of the scheme requires detailing error handling and recovery modes. Due to lack
of space we will not attempt to give an exhaustive description here.

Let us just consider the error handling strategy for a failed voter check. The
first step for the official is to confirm that there is a real disagreement. Anne will
have both parts of the dummy ballot form so she can prove which way she cast
her dummy vote and she has the printout for the tellers. The official can thus
establish that the problem is genuine and not just a case of voter error.

If the problem is real, the official should now run a further, auditor check: use
the tellers as an oracle to extract the seed value and use this value to reconstruct
the onion value and candidate list offset. If these values agree with those shown on
the ballot, then it is fair to conclude that the form was correctly constructed by
the authority. The error must then lie with the decryption of the vote performed
by the tellers.

If this check fails, it can mean one of two things: the form was incorrectly
constructed by the authority, or the form was perhaps actually correctly formed
but the seed value returned by the tellers is incorrect.

Clearly, errors have to be diagnosed and collated. Strategies for dealing with
patterns of errors must be specified. Thus, if a significant number of ballot forms
were found to be malformed, doubt would be cast on the integrity of the authority
charged with generating the forms. Note another pleasing feature of the scheme:
any significant corruption on the part of the authority generating the ballot
forms would almost certainly be detected by random audits before the election
opens. Hence, this authority could be replaced before the election even starts.

A full description of error handling and recovery strategies is the topic of
current research.
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11 Generalising Ballots

This paper has so far considered ballots that allow a vote against a single candi-
date. More generally, elections may allow votes or preferences to be cast against
a number of candidates. In this case a right hand strip may contain a number
of X ’s, or perhaps a list of numbers against candidates.

In this case, in order to avoid leaking information about votes, it is necessary
to allow any permutation of the candidate list on the left hand strip, rather than
just a cyclic permutation.

In order to achieve this, the germs could be used as keys for a cryptographic
permutation function. The overall permutation applied to the candidate list
as shown on the ballot form would then be a composition of the 2k separate
permutations obtained from the 2k germs.

We use a publicly known hash function h that maps germs to permutations,
so that pi = h(gi) is a permutation of names on ballots. The overall permutation
is given by the composition of the permutations for all the germs:

π = p2k−1 ◦ p2k−1 ◦ . . . ◦ p0

(where f ◦ g(x) = f(g(x))). If the base candidate ordering is base, then the
candidate list on the ballot is given by π(base). Thus a corresponding vote r on
the right hand strip corresponds to a vote of π−1(r) against the base ordering.

The steps in the tellers take (ri+1, Di+1) to (ri, Di), where each step reverses
one permutation comprising π. Here, the r values will encode either a ranking or
an element of the power set of candidates as appropriate. The onion is unpeeled
as previously to extract the associated seed gi and the inner onion Di. In this
case the computation of ri is given by:

ri := (h(gi))−1(ri+1) = p−1
i (ri+1)

Given that the initial vote r provided to the tellers is r2k, we obtain that

ri = (p−1
i ◦ p−1

i+1 ◦ . . . ◦ p−1
2k−1)(r2k)

and thus the final vote r0 posted by Teller0 is π−1(r), which is indeed the vote
cast.

12 Related Work and Conclusions

A large number of cryptographic voting schemes have been proposed over the
past 20 years or so. These use a variety of cryptographic techniques, ranging from
blind signatures to cryptographic homomorphisms etc. The idea of providing the
voter with an encrypted receipt goes back to the original scheme proposed by
Chaum. Another scheme, that also uses encrypted receipts and has similar goals,
is the VoteHere scheme of Adler and Neff, [6]. The cryptographic primitives used
there are quite different from those of this paper and appear to be significantly
more complex.
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We have presented a new voter-verifiable election scheme based on the orig-
inal Chaum scheme. This variant preserves the essential features of the original
whilst sidestepping the complexity of the visual cryptography of the original.
The presentation of the encoding on the vote is quite intuitive and familiar. A
pleasing spin-off is that the randomisation of the candidate order counters any
tendency to bias the voter choice that might arise from a fixed order.

The new scheme provides some interesting advantages over previous variants:

– The format of the ballot forms and the process of casting a vote is quite
familiar.

– The cryptographic commitments are generated before the voter choices are
revealed, even before the election period starts.

– The vote recording devices do not learn the voter choices. This avoids the
possibility of such devices leaking this information.

– Voters get to perform their own checks on the correct construction of their
dummy ballot forms. This should help instil confidence that their real votes
will ultimately be correctly decrypted during the tallying process.

– The checking performed by the voters is supplemented by audits performed
by various auditing agencies.

– The problem of storing and selectively revealing seed information is solved
by the novel use of the tellers during the voting period as oracles to reveal
the seeds for ballot forms used for auditing.

– Voters get to run their checks before casting their vote. This avoids some of
the messiness in the recovery mechanisms of earlier variants when a voter
discovers a mal-formed receipt after casting their vote.

– The initial auditing phase performed on the ballot forms forms should serve
to weed out any corrupt authority even before the election opens.

Precautions need to be taken to prevent double voting. In particular, care needs
to be taken to ensure that ballot forms used for checking cannot be reused to cast
real votes. These details of such mechanisms will be discussed in a future paper.

Similarly, precautions are need to clearly separate the two functions of the
tellers: the on-demand ballot form integrity checking function and the anonymis-
ing mix function. In particular it is essential to ensure that no ballot form that
has been used to cast a “real” vote can be subsequently used in a checking mode.
Various procedures can be envisaged to prevent this: appropriately marking a
receipt that has been used to cast a vote and ensuring that it cannot be reused
for either dummy or real voting. It would be satisfying to develop cryptographic
mechanisms to enforce this.

For the purposes of illustration we have described how the scheme can be
used for a single vote system, i.e., in which voters get to choose just one of a
set of options or candidates. Where a voter can rank the candidates in order
of preference (or indeed where she can vote for more than one candidate), full
permutations in place of the simple cyclic shifts presented here. In practice, full
permutations would probably be used even for single selection elections.
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13 Future Directions

The destruction of the left hand strips of the ballot forms is essential to prevent
both coercion and vote buying. An issue that requires careful consideration then
is how to best enforce the destruction and ensure that it is not possible for the
voter to exit the booth with both parts of the ballot form. Mechanical devices
that enforce the destruction when the vote is cast are a possibility. Another
interesting possibility is to ensure that plenty of dummy left hand strips are
available in the booth, rather than trying to enforce destruction of this strip. If
a voter is threatened with coercion she can simply select an appropriate strip
that will keep the coercer happy.

Another issue is that, as presented, the scheme entails the authority know-
ing the association of all onions and candidate lists. Thus, if the authority were
compromised, it could jeopardise the secrecy of the election. Various measures
can be envisaged to counter or at least minimise this risk. Ballot forms could be
generated in some distributed fashion using various sources of entropy. Alterna-
tively, ballot forms could be generated and printed on demand. An intriguing
possibility is to use entropy derived from the paper used to print the forms, for
example using optical fibres stirred into the paper during manufacture. Ballot
forms could be supplied in sealed envelopes to prevent the information being
garnered in transit. The problem remains that there is still a point at which the
onion and candidate list must be presented to the voter.

For the three voter checking modes, the germ values do not have to be re-
vealed. This suggests the possibility of reusing a “dummy” ballot form to cast
a real vote. This has the advantage that the form used for the real vote will
itself have been tested. Ballot forms could come equipped with two onion values,
both of which should yield the candidate ordering shown. One could be used for
checking, the other to cast the real vote. This possibility may however open up
vulnerabilities and would need to be subjected to careful analysis. This is the
subject of current research.

This scheme would appear to be readily adapted to remote voting. The sim-
plest adaption is to distribute ballot forms by post. Votes could then be cast by
providing the onion value along with suitable indicators of the voter selection
in the right hand column. Alternatively, protocols could be used for on-line, au-
thenticated distribution of the crypto material. Of course, the threat of coercion
that plagues remote voting systems rears its head again, but there may be ways
to offset this.

These avenues are the subject of current research.
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Abstract. Formal methods have been extensively applied to the certi-
fication of cryptographic protocols. However, most of these works make
the perfect cryptography assumption, i.e. the hypothesis that there is no
way to obtain knowledge about the plaintext pertaining to a ciphertext
without knowing the key. A model that does not require the perfect cryp-
tography assumption is the generic model and the random oracle model.
These models provide non-standard computational models in which one
may reason about the computational cost of breaking a cryptographic
scheme. Using the machine-checked account of the Generic Model and
the Random Oracle Model formalized in Coq, we prove the safety of
cryptosystems that depend on a cyclic group (like ElGamal cryptosys-
tem), against interactive generic attacks and we prove the security of
blind signatures against interactive attacks. To prove the last step, we
use a generic parallel attack to create a forgery signature.

1 Introduction

Cryptographic protocols are designed to provide certain security guarantees
between agents communicating in a hostile environment. Numerous applica-
tion domains including distributed systems and web services used cryptographic
schemes. However, designing secure cryptographic mechanisms is extremely dif-
ficult to achieve [1], the literature abounds of attacks against cryptosystems
that were previously proven correct. Recently, a significant research effort has
been directed at linking the formal and computational approaches. One of the
first result is presented by Abadi and Rogaway [2]: they prove the computa-
tional soundness of formal encryption in the case of a passive attacker. Since
then, many results [3,15,19,14] have been obtained. Efforts are also under way
to formulate syntactic calculi for dealing with probabilism and polynomial-time
considerations, in particular [16,12,17] and a second step, to encode them into
proof tolls. Therefore, there has lastly been an increasing interest in provable
security. A system is said to have provable security if its security requirements
are stated formally in an adversarial model and there is a proof that these se-
curity requirements can be met provided that some well studied cryptographic
primitives (such as RSA) are secure. While provable cryptography has become
an important tool in the validation of cryptographic schemes, there are regular
attacks against cryptographic schemes that were deemed sound using methods
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from provable security. Formal proofs enable to detail assumptions so by using
a proof assistant like Coq, we do not have implicit requirements.

The objective of our work, initiated in [5], is to use proof assistants for
formalizing provable cryptography. There are two motivations for our work.
From the point of view of cryptography, proof assistants provide an excellent
tool to highlight hidden assumptions that permeate proofs in cryptography.
Furthermore, proof assistants solve another (milder) shortcoming of crypto-
graphic proofs, namely the imprecision on bounds for the attacker’s advantage.
From the point of view of formal mathematics, provable cryptography covers
a range of concepts including algebraic structures, polynomials, matrices and
probabilities.

Contribution. In earlier work [5], we established the security of cryptographic
schemes against non-interactive attacks, using the Generic Model (or GM for
short), which provides non-standard computational models for reasoning about
the probability and computational cost of breaking a cryptographic scheme. In
such a scenario, the attacker tries to launch an attack without any external
help. However in most practical scenarios the attacker is able to interact with
oracles that provide useful information for launching an attack. Different forms
of oracles include:

– a hash oracle: an interaction with the hash oracle is a query to a random
hash function H : G×M → Zq where G is an arbitrary group of prime order
q and M is the set of all cyphertexts.

– a signature oracle (signer for short): an interaction with the signer provides
to the attacker the signature of a message.

The main contribution of this paper is to extend our security proofs to such
interactive attacks, building on a combination of the GM and of the Random
Oracle Model (or ROM for short) that assuming the hash function to be collision
resistant (collisions of random functions have negligibly small probability).

We consider scenario in which we focus on signature forgery attacks, where
the attacker aims at forging a message that will appear as having been signed
by another party. In order to prove the security of a cryptographic signature
scheme, one must at least establish that it is resistant to signature forgery at-
tacks, since schemes that are subject to forgery attacks cannot guarantee the
identity of signers nor can they enforce non-repudiation. In order to establish
the security of signature schemes against forgery attacks, we are led to consider
the ROS problem:
Find an overdetermined, solvable system of linear equations modulo q with ran-
dom inhomogeneities. Specifically, given a random function F : Zl

q → Zq and
coefficients ak,l ∈ Zq, find a solvable system of l + 1 distinct equations (1) in the
unknowns c1, . . . , cl over Zq:

ak,1c1 + . . . + ak,lcl = F (ak,1, . . . , ak,l) for k = 1, . . . , t. (1)
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As in our earlier work, we improve on pen-and-paper proofs in two aspects:
– pen-and-paper proofs about GM and ROM are carried out on examples,

rather than in the general case. In contrast, our results deal with arbitrary
interactive generic algorithms;

– pen-and-paper proofs about GM and ROM often ignore events that occur
with a negligible probability, i.e. events whose probability tends to 0 when
the size of the group tends to ∞. In contrast, we take all events into account
and we provide accurate bounds on the attacker’s advantage.

Contents of the paper. The remainder of the paper is organised as follows. Sec-
tion 2 provides a brief account of the Coq proof assistant, and presents our for-
malization of probabilities and polynomials, which are required to prove our main
results. Section 3 provides a brief review of our formalization of GM. Section 4
describes parallel attacks and Section 5 provides the formalization of ROM in
which the attacker makes interactions with the signer. We conclude in Section 6.

2 Preliminaries in Coq

This section provides a brief overview of the proof assistant Coq, and discusses
some of issues with the formalization of algebra. Further, it describes our for-
malization of probabilities and of multivariate polynomials.

2.1 Coq

Coq [8] is a general purpose proof assistant based on the Calculus of Inductive
Constructions, which extends the Calculus of Constructions with a hierarchy of
universes and mechanisms for (co)inductive definitions.

Further, logical statements can be used in specifications, e.g. in order to form
the “subset” of prime numbers as the type of pairs 〈n, φ〉 where n is a natural
number and φ is a proof that n is prime. There are, however, some limita-
tions to the interaction between specifications and propositions. In particular,
dependent type theories such as the Calculus of Inductive Constructions lack
intensional constructs that allow the formation of subsets or quotients. In order
to circumvent this problem, formalizations rely on setoids [4], that is mathemat-
ical structures packaging a carrier, the “set”; its equality, the “book equality”;
and a proof component ensuring that the book equality is well-behaved. For the
sake of readability, we avoid in as much as possible mentioning setoids in our
presentation, although they are pervasive in our formalizations. The declaration
mechanism allows the user to specify his own basic objects. Declared objects
play the role of axioms or parameters in mathematics. To define simple induc-
tive type, we use the command Inductive and to define recursive functions, we
use the command Fixpoint that allows to define inductive objects using a fixed
point construction.

2.2 Probabilities

As there is no appropriate library for probabilities in the reference libraries and
contributions in Coq, we have developed a collection of basic definitions and
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results for discrete probabilities i.e, probabilities over finite sets [11]. Due to
lack of space, we only provide the definition of probabilities and conditional
probabilities, and the statement of one illustrative result.

Before delving into details, let us point out that there are several possible
approaches for defining discrete probabilities i.e, probabilities over finite setoids.
One possibility is to assume that the setoid is finite, i.e. isomorphic to some
initial segment of N, for a suitable notion of isomorphism of setoids. We have
found slightly more convenient to define probabilities w.r.t. an arbitrary type
V and a finite subset E of V, given as a (non-repeating) V-list. The probability
space is the finite set E where every base element has the same probability.

Given a fixed type V and a fixed enumeration E:list V, we define an event
to be a predicate over V, i.e. Event : Type := V →Prop. Then, we define the
probability of an event A being true as the ratio between the number of elements
in E for which A is true and the total number of elements in E, i.e.

Definition. PrE(L:Event):=length (filter E L)/(length E).

where length and filter are the usual functions on lists, i.e. (length l) com-
putes the length of the list l, and (filter l P) removes from the list l all its
elements that do not satisfy the predicate P.
Then, one can check that PrE satisfies the properties of a probability measure,
e.g.:

– for every event A, 0 ≤PrE(A)≤1;
– if True is the trivial proposition, which always holds, then PrE(λa.True)=1;
– for any sequence Ai of disjoint events PrE( 1≤i≤nAi)= 1≤i≤nPrE(Ai),

where 1≤i≤nAi=λa.A1(a) ∨ · · · ∨ An(a).

Conditional probabilities are defined in the usual way, i.e.

Definition. Pr_cond(L M:Event):=PrE(L ∧ M)/PrE(M).

In the sequel, we denote Pr_cond(L M) by PrE(L|M).
Then, one can check that PrE satisfies properties such as
PrE(A) =PrE(A|B) PrE(B) + PrE(A|¬B) (1-PrE(B))

In the sequel, E will often be omitted to adopt the notation Pr(A).

2.3 Polynomials

For our work, we need to have a formalization of polynomials in which we can
compute easily the degree of a polynomial in several variables; and in particular
for proving Schwartz lemma, we need to have a formalization that allows us to
view a polynomial in n+1 variables as a polynomial in n or 1 variables. We have
extended the formalization of polynomial on one variable.

Pol1 is the type of all polynomials in one variable in C.

Inductive Pol1:Type:=
|Pc : C→ Pol1
|PX : Pol1 → C → Pol1.
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We define the equality of polynomials with inference rules.

Inductive ≡:Pol1 → Pol1 → Prop :=
|Eq1_Pc_Pc : ∀ p q: C, p=q→(Pc p)≡(Pc q)
|Eq1_Pc_PX :∀ p q: C, ∀ Q1:Pol1,

p=q→Q1≡0→(Pc p)≡(PX Q1 q)
|Eq1_PX_Pc :∀ p q: C, ∀ P1:Pol1,

p=q→P1≡0→(PX P1 p)≡(Pc q)
|Eq1_PX_PX :∀ p q:C, ∀ P1 Q1 :Pol1,

p=q→P1≡Q1→(PX P1 p)≡(PX Q1 q).

where Pc is the constructor for constant polynomials and PX P c=P*X+c.
We formalize the set of coefficients as a ring with usual operations and

properties; with this formalization of polynomials on one variable, we can re-
cover the operations and properties of a ring for C[X]. By induction we ex-
tend it for several variables so a polynomial in n variables in C is of the type
(C[X1]. . .[Xn−1])[Xn].

Having this formalization of polynomials, we can formalize and prove an
useful lemma for our proofs on security.

Lemma Schwartz:
∀ (p : Zq[X1, . . . , Xn]), q = 0 → p ≡ 0 →

Prx1,...,xn∈Zn
q
(p(x1, . . . , xn)≡0) ≤ (degree p)/q.

The probability that an element x ∈ Zn
q is a zero of a polynomial p is smaller

than the degree of the polynomial divided by q. Here, the ring is the set Zq and
we have n variables X1, . . . , Xn.

2.4 Remarks on Formalization of Group

In our work, we consider a cyclic group G of prime order q; as we have an
isomorphism between the group G and the ring Zq [13], assuming that g is the
generator of the group, each element of the group are an exponentiation of the
generator and the function:

G → Zq

ga  → a

is a one-to-one correspondance (more precisely an isomorphism).
Thus, instead of considering an element ga of the group, we will always

consider the exponent a.
For example, for the multivariate exponentiation, we do not use the function

mex : Zd
q × Gd → G

(a1, . . . , ad, g1, . . . , gd)  →
d∏

i=1

gai

i
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but by assuming gi = gsi , we define the function

mex : Zd
q → Zd

q → Zq

(a1, . . . , ad), (s1, . . . , sd)  →
d∑

j=1

ajsj .

3 A Review of the Generic Model

The generic model, GM for short, was introduced by Shoup [22] and Nechaev [18],
and can be used to provide an overall guarantee that a cryptographic scheme is
not flawed [20,21,24]. For example, the GM is useful for establishing the com-
plexity of the discrete logarithm or the decisional Diffie-Hellman problem, which
we describe below.

3.1 Informal Account

The GM focuses on generic attacks, i.e. attacks that do not exploit any specific
weakness in the underlying mathematical structures, which in the case of GM
is a cyclic group G of prime order q. More concretely, the GM focuses on at-
tacks that work for all cyclic groups, and that are independent of the encoding
of group elements; in practice, this is achieved by leaving the group G unspec-
ified. Furthermore, the GM constrains the behavior of the attacker so that he
cannot access oracles, and can only gain information about the secret through
testing group equalities (a.k.a. collisions). In order to test group equalities, the
attacker performs repeatedly modular exponentiations of the program inputs,
using coefficients that are chosen randomly and with uniform distribution over
the probability space Zq.

More precisely, a generic attacker A over G is given by its list of secrets, say
s1, . . . , sn ∈ Zq, its list of inputs, say l1, . . . , lt′ ∈ Zq, which depends upon se-
crets, and a generic algorithm, which is a sequence of multivariate exponentiation
(mex) steps. For the latter, the attacker selects arbitrarily, and independently
of the secrets the coefficients ai,1, . . . , ai,t′ ∈ Zq and computes for t′ < i ≤ t the
group elements fi =

∏t′

j=1 f
ai,j

j , where fj = glj for 1 ≤ j ≤ t′. The output of
the generic algorithm is the list f1, . . . , ft, from which the attacker will test for
collisions, i.e. equalities fj = fj′ with 1 ≤ j < j′ ≤ t.

The objective of the GM model is to establish upper bounds for the proba-
bility of a generic attacker to be successful. To this end, the GM model assumes
that a generic attacker A is successful if it finds a non-trivial collision, i.e. a
collision that reveals information about secrets (those collisions which do not
reveal information are called trivial, and are defined as collisions that hold with
probability 1, i.e. for all choices of secret data). The assumption incurs a loss of
precision in the bounds one gives (since finding a non-trivial collision may not be
sufficient to reveal all secrets); however, it allows to show that the probability is
negligible for a sufficiently large order q of the group G and a reasonable number
of steps t of the generic algorithm.
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3.2 Formalization

The main difficulty in formalizing generic algorithms is to pinpoint the notion
of secret. The formal definition of a generic algorithm is given in the figure 1. In
order to model the notion of secrets, we introduce a type Sec of formal secret
parameters (see line 1) and model inputs as a list of non-repeating polynomial
expressions over secrets (see line 2). If the set Sec has n secrets s1, . . . , sn,
Zq[Sec] = Zq[s1, . . . , sn]. Then, we consider symbolic algorithms (see line 4) in
which the attacker selects arbitrarily and independently of the secrets a list of
coefficients ai,1, . . . , ai,t′ ∈ Zq. The function mex (see line 8) takes the expo-
nents instead of the group elements and returns the logarithm of the results of
the function concretemex. Symbolic outputs (see line 16) are polynomials con-
structed as linear combinations of inputs, i.e. of the form ai,1l1 + · · · + ai,t′ lt′

(which correspond to the logarithm of the mex-steps) and concrete outputs (see
line 21) are obtained from the symbolic outputs by using the extension of an
interpretation function σ from polynomial expressions to elements in Zq, more
precisely, [| |]σ : Zq[Sec] → Zq returns the evaluation of a polynomial in Zq[Sec]
by using an interpretation function σ. An interpretation function σ : Sec → Zq

maps formal secret parameters to actual secrets in Zq. We can define the set
of non-trivial collision (see line 24), we can find a non-trivial collision if we can
find two polynomials e e’ ∈(SymbOutput r) non identically equal such that
the interpretation of the polynomial e-e’ under σ is 0. By considering only
polynomials non identically equal, we eliminate trivial collisions.

The advantage of the attacker is the probability of finding non-trivial colli-
sions. Such an over-approximation is quite coarse since we consider the attacker
to be successful whenever he gains some informations about the interpretation
function σ. In principle, one could try to be more precise and estimate the prob-
ability of the attacker to find the function σ (i.e. its value for all inputs).

In order to give an upper bound for the probability of finding non-trivial
collisions, one can then rely on Schwartz Lemma (see the section 2), as usual
with the generic model.
In the sequel, we write CO(A) if the attacker A finds non-trivial collisions. Fur-
thermore, we let d be the maximal degree of the inputs i.e, the polynomials lj
for 1 ≤ j ≤ t′, let t be the number of steps A performs.

Proposition 1. ∀A : GA, Advantage(A) = Pr(CO(A)) ≤
(

t
2

)
d

q − (t2)d
Proof. All outputs are of the form pi =

∑
1≤j≤t′ ai,j lj(s1, . . . , sk), where pi is

a polynomial of degree d. Hence there exists a collision fi = fi′ iff (s1, . . . , sk)
is a root of pi − pi′ . There are

(
t
2

)
equalities of the form fi = fi′ to test, hence(

t
2

)
polynomials of the form pi − pi′ , each of which is not identical to 0 (as there

are non-trivial collisions), and has degree ≤ d. So we can apply an extension of
Schwartz Lemma to deduce the expected result.



Machine-Checked Security Proofs of Cryptographic Signature Schemes 147

We can instantiate the proposition to specific cryptographic schemes.

1 Parameter Sec:Set.
2 Parameter input:list Zq[Sec].
3
4 Inductive GA:Type:=
5 nostep:GA
6 |step:GA→(list Zq)→GA.
7
8 Fixpoint mex(a:list Zq)(e:list Zq[Sec]):Zq [Sec]:=
9 match a with nil⇒ 0

10 |b::bs ⇒
11 match e with nil ⇒ 0
12 |x::xs ⇒ x*b + (mex xs bs)
13 end
14 end.
15
16 Fixpoint SymbOutput(A :GA):(list Zq[Sec]):=
17 match A with nostep ⇒ nil
18 | (step A ’ e) ⇒(mex e input)::(SymbOutput A ’)
19 end.
20
21 Definition ConcrOutput(A :GA)(σ:Sec→Zq):list Zq:=
22 map λx:Zq [Sec].[|x|]σ (SymbOuput A ).
23
24 Definition CO (A :GA)(σ:Sec →Zq):=
25 ∀ e e’:Zq [Sec], e ∈ (SymbOutput A ) ∧
26 e’ ∈ (SymbOutput A ) ∧ e-e’≡0 ∧ [|e − e|]σ=0.

Fig. 1. Formalization of the GM

Example 1 (Discrete logarithm). The algorithm is given as input the group gen-
erator g ∈ G and the public key h = gr ∈ G, and outputs a guess y for loggh = r.
Observe that any non-trivial collision reveals the value of r: indeed, every fi will
be of the form gai(gr)a′

i = g(ai+ra′
i). Hence for any collision fi = fj , we have

g(ai+ra′
i) = g(aj+ra′

j), and so r(a′
i−a′

j) ≡ aj −ai [q]. If the collision is non-trivial,
then a′

i − a′
j �= 0 and we can deduce the value of r.

In this example, there is a single secret r and the formal inputs are the
polynomials 1 := loggg and r := loggg

r as we take the exposant instead of the
exponentiation, thus the maximal degree of an input is d = 1 so the probability

of finding the secret is μ + 1
q(1−μ) , where μ = (t

2)
q−(t

2)
.

Note that Proposition 1 only holds for a secret x : Sec ranging uniformly over
Zq. For some problems however, such as the Decisional Diffie-Hellman problem
below, x ranges uniformly over a subset of Zq. In this case, the probability of

finding a secret is μ + 1
q′(1−μ) , where μ = (t

2)d

q−(t
2)d

and q′ is the cardinal of the set

of possible values for x : Sec.
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Example 2 (Decisional Diffie-Hellman Problem [9]). The algorithm is given as
input the group generator g ∈ G, the group elements gx and gy, and the group
elements gxy and gz in random order, where x, y, z are random in Zq, and outputs
a guess for gxy (or equivalently, for the order of gxy and gz). In this example,
there are three secrets x, y and z, and the formal inputs are the polynomials
1 := loggg, x := loggg

x, y := loggg
y, xy := loggg

xy and z := loggg
z, thus the

maximal degree of an input is d = 2. Here q′ = 2 so the probability of finding

the secret is μ + 1
2(1−μ) , where μ =

2(t
2)

q−2(t
2)

.

4 The Random Oracle Model

Interactive generic algorithms are extension of generic algorithms in which the
attacker is able to interact with oracles through interactive steps. Such interactive
algorithms can be modeled using the Random Oracle Model, or ROM for short,
that was introduced by Bellare and Rogaway [6] but its idea originates from
earlier work by Fiat and Shamir [10].

For the purpose of our work, we do not need to develop a general framework
for interactions; instead we focus on two typical oracles with whom the attacker
can interact: queries to hash functions and signers.

The ROM assumes a random hash function and is a stronger assumption that
assuming the hash function to be collision resistant; the fundamental assumption
of ROM is that the hash function H : G → M → Zq is chosen at random with
uniform probability distribution over all functions of that type. Let G be a cyclic
group of prime order q with generator g and H be an hash function, modelled
as an oracle, that given an input (query) outputs a random number in the range
of H . An interactive generic algorithm A can read an input, or take a mex-step,
or perform an interaction. We consider two common forms of interactions in
cryptographic algorithms: queries to hash functions and signers. These forms of
interaction are used in particular in the signed ElGamal encryption protocol. A
over G is given by:

– its input l1, . . . , lt′ ∈ Zq, which depends upon a set of secrets, typically
secret keys, say s1, . . . , sn ∈ Zq. In the sequel, we define the group input
f1, . . . , ft′ ∈ G of the algorithm by fk = glk ;

– a run, i.e. a sequence of t steps including t′′ mex-steps, τ query to the hash
oracle and l interactions with the signer. A step can either be an input
step, a multivariate exponentiation (mex) step, a query to the hash function
or a interaction with the signer. An input step reads some input from the
group input. For 1 ≤ i ≤ t′′, we assume that the algorithm at step i takes
a mex step, i.e. selects arbitrarily ai,1, . . . , ai,t′ ∈ Zq and computes fi =∏

1≤j≤t′ gljai,j .
– For a query to the hash oracle, we apply to H a group element fj and a

claimed ciphertext mj to compute c = H(fj , mj)
– A interaction with the signer is a three rounds deterministic protocol.
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Each interaction with the signer provides an element ri and increases the
length of the input by one, so after the ith interaction, the input becomes:

l1, . . . , lt′ , r1, . . . , ri.

Schnorr Signatures. Blind signatures are generated by an interaction with
the signer who controls the secret signature key. Schnorr signatures refer to an
arbitrary group G of prime order q and a arbitrary message space M . A signer
interaction is an interactive protocol that enables a user to generate Schnorr
signatures of message of its choice. Signatures will be based on a ideal hash
function H : G × M → Zq, where M is the set of messages.

The private key x of the signer is random in Zq and the corresponding public
key h = gx is a random group element.

A Schnorr signature on a message m is a triple (m, c, z) ∈ M × Z2
q such

that H(gzh−c, m) = c. The standard signature (m, c, z) on a message m is con-
structed as follow: we pick random r, s ∈ Zq, compute gr, c = H(gr, m) and
z := r + cx. The result is valid since we have gzh−c = gr+cxg−cx = gr, and thus
H(gzh−c, m) = c.

A signer interaction is a three rounds interactive protocol between the signer
and a user. The user can generate from this protocol the standard signature
(m, c, z) by selecting c = H(gr, m) but he has more options than that (he can
generate a transformation (m, c′, z′) of this signature). The signer picks a random
r ∈ Zq and sends the commitment gr to the user. The user selects a challenge
c ∈ Zq and sends c. The signer responds by sending z := r + cx ∈ Zq.

4.1 Signature Forgery Attack

We study security against the one-more signature forgery, security means that
an attacker can not obtain l + 1 valid signatures from l interactions with the
signer (signature oracle).

Parallel attack. This is the generic parallel attack for Schnorr signatures. We
assume that the attacker makes τ queries to the hash oracle, l interactions with
a signer and we construct a l + 1 valid signature. For the attack to succeed, we
do not use the generator g and the public key h.

The signer picks r1, . . . .rl and sends commitments g1 := gr1 , . . . , gl := grl .
The attacker computes the group elements fi :=

∏l
j=1 g

ai,j

j and H(fi, mi) for
i = 1, . . . , τ . Then the attacker takes a subsystem of l+1 equations among these
τ equations (2) in the unknowns c1, . . . , cl over Zq.

H(fi, mi) =
l∑

j=1

ai,jcj for i = 1, . . . , τ (2)

If the attacker solves this subsystem, it obtains a solution c1, . . . , cl and it sends
the obtained solution to the signer that responds by zj := rj + cjx ∈ Zq for
j = 1, . . . , l. The attacker gets a valid signature (mi, c, z) by setting
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c :=
l∑

j=1

ai,jcj = H(fi, mi) and z :=
l∑

j=1

ai,jzj

In the ROM, the coefficients ai,j selected by the attacker are arbitrary values
and the values H(fi, mi) are random. The generic parallel attack uses a solution
of the ROS-problem (see (1)).

The objective of this interactive model is to etablish upper bounds for the
probability of a generic attacker to construct a one more signature forgery.

Let us explain the ways to make a valid signature. We assume that the
algorithm outputs a signature sig := (mi, c

′
i, z

′
i); a signature (m, c, z) is valid

if c = H(gzh−c, m); so sig is valid if c′i = H(gz′
ih−c′

i , mi) and the group ele-
ment gz′

ih−c′
i must be among the computed elements f1, . . . , ft′ (because c′i is

taken among the results of the hash queries, so there exists k ∈ {1, . . . , τ} such
that c′i = H(fk, mi)); we let fk = gz′

ih−c′
i . By the equations gz′

ih−c′
i = fk =

gak,−1+ak,0x+ l
j=1 ak,jrj and rj = zj − cjx, we have:

z′i = logg gz′
ih−c′

i + c′ix

z′i = ak,−1 +
l∑

j=1

ak,jzj + (ak,0 −
l∑

j=1

ak,jcj + c′i)x (3)

z′i is valid one of the following two cases occur:
• if c′i = −ak,0 +

∑l
j=1 ak,jcj (4.1) then the equation (3) does not depend on

the secret key x and z′i = ak,−1+
∑l

j=1 ak,jzj where the coefficients ak,−1, . . . , ak,l

and the signer responses are known to A.
• c′i �= −ak,0 +

∑l
j=1 ak,jcj and so we solve the equation (3) in x.

A one-more signature forgery can only succeed in either of four cases:

1. A find among the τ equations H(fk, mi) = −ak,0 +
∑l

j=1 ak,jcj (4.1) a
solvable subsystem of l + 1 equations. We must apply the ROS-problem
to find a bound of the probability of finding a solvable subsystem of l + 1
equations. This corresponds to the first case to obtain a valid signature z′i.
This is the generic parallel attack. We let Par Attack(A) be this condition
for an attacker A.

2. For some i, 1 ≤ i ≤ l+1 equation (4.1) does not hold but equation (3) holds.
Each interaction with the signer provides a polynomial loggg

z′
ih−c′i+c′i∗x−z′i

(2), thus after l interactions with the signer, we obtain a list of l polynomials
(2). We obtain information on the secret if we can find a zero of a polynomial
that belongs to this list. This corresponds to the second case to obtain a valid
signature z′i. We let Sign(A) be this condition for an attacker A.

3. There is a collision of group elements. We let CO(A)) be this condition for
an attacker A.

4. There is a collision of hash values H(fi, mi) = H(fj , mj), where mi = mj ,
fi �= fj and ai,k = aj,k for k = 0, . . . , l. We let COH(A)) be this condition
for an attacker A.
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By having a collision (of group elements or hash values), we get a bound of the
probability of finding the secret x; if we have the secret x, we can generate a
valid signature z = c + rx where c and r are knowned by the algorithm and x is
found by the algorithm.

In an interactive generic algorithm, the attacker might obtain a one more
signature forgery either through collisions on computed group elements or on
hash values, or through interactions with the signer. Thus its advantage will be
bounded by the probability of finding a collision on computed group elements
plus the probability of finding a collision on hash values plus the probability of
finding informations on the secret by an interaction with the signer. In the latter
case, we show that the attacker can only obtain information if it succeeds on a
parallel attack or if it can find a zero of a polynomial equation derived from the
equality tested to know if a signature is valid, i.e. c = H(gzh̄−c, m).

5 Formalization of an Interactive Generic Algorithm

5.1 Formalization

The main difficulty in formalizing interactive generic algorithms is to capture
the idea of random hash function. Following the idea of the generic model, we
consider a symbolic representation of the interactions with the hash oracle by
introducing a type Val of random variables that will represent the results of
the interactions with the hash oracle. In addition, we define an interpretation
function from Val to Zq. In order to fix terminology, we will refer to elements of
Val as symbolic hash values and to their interpretation as hash results.

An interactive generic algorithm is defined in the figure 2. As explained above,
we introduce a type Val of symbolic hash results and a type Sec of symbolic
secrets (see line 1). Then, we model inputs as a non-repeating list of polynomial
expressions over secrets (see line 3). We assume that all ciphertexts have the
type SymbM (see line 2). SymbH (see line 4) takes a list of coefficients instead
of a computed group element i.e, a formal result for an hash query i : SymbH is
of the form (a, m, c), where m is a ciphertext.

Interactive generic algorithms are defined inductively (see line 6) and may
consist of an empty step, or a mexstep i.e, a computation of group elements using
the function mex, or an hashstep i.e, a query to the hash oracle, or a signstep
i.e, an interaction with the signer; let us remenber what is an interaction with
the signer, the signer picks a random r in Zq and sends gr to the user which
sends c = H(gr, m) and the signer responds z := r + cx.

To make a signstep (see line 10) i.e, an interaction with the signer, we need to
have an hash value i : SymbH and a secret r : Zq (it is the secret that the signer
picks in Zq and sends gr to the attacker); and we take an i : SymbH := (a, m, c)
to send to the signer c = H(a, m).

Interactive generic algorithms have three kinds of outputs:

– The symbolic hash outputs (see line 12) are just the list of SymbH and
we can obtain the list of concrete hash outputs (see line 20) by applying
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1 Parameter Sec Val:Set.
2 Parameter SymbM:Set.
3 Parameter input:list Zq[Sec].
4 Definition SymbH:=(list Zq)*SymbM*Val.
5
6 Inductive IGA : Type :=
7 erun: IGA
8 | mexstep: IGA → list Zq → IGA
9 | hashstep: IGA → SymbH → IGA

10 | signstep: IGA →SymbH → Sec→ IGA .
11
12 Fixpoint SymbHOut (A : IGA) : list SymbH:=
13 match A with
14 erun ⇒ nil
15 | mexstep A ’ e ⇒ SymbHOut A ’
16 | hashstep A ’ (a,m,c) ⇒(a,m,c)::(SymbHOut A ’)
17 | signstep A ’ _ _⇒ SymbHOut A ’
18 end.
19
20 Definition ConcrHashOutput(r:IGA)(τ:Val→Zq):(list Zq):=
21 map τ (map λ(x,y,z).z (SymbHOut A )).
22
23 Fixpoint SymbMexOutput(A :IGA): list Zq [Sec]:=
24 match A with
25 | erun ⇒nil
26 | mexstep A ’ e ⇒ (mex e input)::(SymbMexOutput A ’)
27 | hashstep A ’ _ ⇒ SymbMexOutput A ’
28 | decstep A ’ _ ⇒ SymbMexOutput A ’
29 end.
30
31 Definition ConcrmexOutput(A : IGA)(σ:Sec→Zq):(list Zq):=
32 map λx.[|x|]σ (SymbMexOutput A ).
33
34 Definition mk_z(τ:Val→Zq)(r:Zq)(c:Val)(x:Zq):Zq:=
35 (τ c)+ r*x.
36
37 Fixpoint IdealSign(A :IGA)(τ:Va →Zq)(σ:Sec→Zq): listT Zq:=
38 match A with
39 erun ⇒ nil
40 | mexstep A ’ e ⇒ IdealSign A ’ τ σ
41 | hashstep A ’ _ ⇒ IdealSign A ’ τ σ
42 | signstep A ’ (a,m,c) r ⇒ (mk_z τ (σ r) c
43 (Eval (head (tail input))))::(IdealSign A ’ τ σ)
44 end.
45
46 Definition COH(A : IGA)(τ:Val→Zq):Prop:=
47 ∀ e e’:Val, e ∈ (map λ(x,y,z).z (SymbHOut A )) ∧
48 e’ ∈ (map λ(x,y,z).z (SymbHOut A )) ∧ e - e’≡0 ∧

(τ e)-(τ e’)=0 .

Fig. 2. Formalizatiom of interactive algorithm for parallel attack
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an evaluation function rom in the last element of the list of symbolic hash
outputs.

– Symbolic group outputs (see line 23) are polynomials constructed as linear
combinations of inputs in the same way of non-interactive generic algorithms.
Concrete group outputs (see line 31) are obtained from the symbolic group
outputs by using the extension of an interpretation function σ from polyno-
mial expressions to elements in Zq. mk_z (see line 34) returns the z := c+ rx
computed by the signer by evaluating the hash result c with an interpretation
function rom.

– The outputs of the signer (see line 37) are the computed elements z.

We can find a non-trivial collisions among hash outputs (see line 46) if we can
find two polynomials e e′ : V al non identically equal in the hash outputs such
that the interpretation of e − e′ under rom is 0.

Interactive generic algorithm can succeed on a one-more signature forgery if
it can find a collision on computed group elements or on hash values or if the
interpretation under the function σ of the derived polynomial (3) is 0 (knowing
that the equality (4.1) does not hold) or if it succeed on a parallel attack.

5.2 Security of Blind Signatures Against Interactive Attacks

The way to obtain a one more valid signature is given in the figure 3.
A one-more signature forgery can only succeed in either of four cases:

1. A find among the τ equations H(fk, mi) = −ak,0 +
∑l

j=1 ak,jcj (4.1) a
solvable subsystem of l + 1 equations, let us notice that we see the equation
(4.1) as the polynomial

∑l
j=1 ak,jcj − ak,0 − H(fk, mi) in Zq[c1, . . . , cl]. We

must apply the ROS-problem to find a bound of the probability of finding
a solvable subsystem of l + 1 equations. To formalize the ROS-problem, we
do not take a function F : Zl

q → Zq but a function F : (list Zq) → Zq

with a list of length l. The variables c1, . . . , cl are of the type V al so we
see each equation (4.1) like a polynomials in Zq[V al]. And we compose the
function F : (list Zq) → Zq like G ◦ F ′ + coeff where F ′ : V al → Zq

is an interpretation function that maps formal variables to actual values,
G : (list Zq) → V al and coeff is an element of Zq. Finally, be given the
coefficients ak,j ∈ Zq for j = 1, . . . , l and k = 1, . . . , τ (list ak), the list
of coefficients coeff ∈ Zq (list coeff) and a function G : (list Zq) →
V al, we have a list of τ polynomials of the form ak,1c1 + . . . + ak,lcl −
coeff −F ′(G(ak,1, . . . , ak,l) and the ROS-problem is to find a sublist of l+1
polynomials having a common solution. If we let ROS pb be this condition,
ROS pb is an event in V al → Zq.

For the moment, we have a paper proof of the ROS-problem but for this
proof, we need to formalize the determinant of a matrix in Coq and we did
not ever do it, so for the moment it is an axiom.

Proposition 2. Pr(ROS pb list ak list coeff G) ≤ ( τ
l+1)
q
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1 Definition list_ak(A :IGA):(list (list Zq)):=
2 map λ(x,y,z).x (SymbHOut A )).
3
4 Definition list_coeff(A :IGA):(list Zq):=
5 map λ(x,y,z).x (map λ(x,y,z).x (SymbHOut A ))).
6
7 Definition mk_G(l:listSymbH)(a:list Zq):Val:=
8 if ((h::a),m,c) ∈ l then c
9 else ?.

10
11 Definition G(r:IGA):(list Zq)→Val:=
12 mk_G (SymbHOut r).
13
14 Definition PolH_neq(g:listT Val)(τ:Val→Zq)(h:SymbH):Prop=
15 let h:=(fk,m,c) in

16 let l
j=1 ak,jcj:=sum (tail (tail (Ft h))) (map τ g) in

17 let ai,0 :=(head (Ft h)) in
18 let ci:=(τ (Td h)) in

19 ai,0-
l
j=1 ak,jcj+ci≡0.

20
21 Definition PolH_Pred(r:IGA)(τ:Val→Zq):=
22 nb_P_true(PolH_neq(mapλ(x,y,z).z(SymbHOut r))τ)(IdealOutput r)≤l+1.
23
24 Definition Sign(r:IGA)(τ:Val→Zq)(h:SymbH)(ri:Sec):Zq [Sec]=
25 let h:=(fk,m,c) in
26 let loggfk :=(mk_pol (Ft h) (inp r)) in
27 let ci:=(τ (Td h)) in
28 let x:=(mk_pol (head (tail input))) in
29 let zi:=(mk_pol ri)+ci*x in
30 loggfk +ci*x-zi.
31
32 Fixpoint list_Sign(r:IGA)(τ:Val→Zq):list Zq[Sec]:=
33 match r with erun ⇒ nil
34 | mexstep r’ _ ⇒ list_Sign r τ
35 | hashstep r’ _ ⇒list_Sign r τ
36 | signstep r’ h ri ⇒(Sign r’ τ h z)::(list_Sign r’ τ)
37 end.
38
39 Fixpoint Signer(A :IGA)(σ:Sec→Zq)(τ:Val→Zq){struct A }:Prop:=
40 ∀ p:Zq[Sec], p ∈ (list_Sign r τ) ∧ [|p|]σ ≡ 0.

Fig. 3. Make a valid signature

To apply the ROS-problem i.e, to have the list of the τ polynomials∑l
j=1 ak,jcj − ak,0 − H(fk, mi), we must have the list of coefficients ak,j ∈

Zq for j = 1, . . . , l and k = 1, . . . , τ (see line 1 of the figure 3), the list
of coefficients coeff := ak,0 for k = 1, . . . , τ (see line 4) and a function
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G : (list Zq) → V al (see line 11). As SymbH:=(list Zq)*SymbM*Val, we
define the function G by:

Fixpoint mk_G(l:list SymbH)(a:list Zq):Val:=
match l with nil ⇒ ?

|(h,a’,c)::tl⇒ if a=a’ then c
else (mk_G tl a)

end.

(Ros_pb τ(list_ak r) (list_coeff r) (G r)) is the condition to find
l + 1 polynomials having a common solution c1, . . . , cl. Then we send the
solution c1, . . . , cl to the signer that responds z1, . . . .zl. We obtain one-more
signature by the setting:

c′i = −ak,0 +
l∑

j=1

ak,jcj and z′i = ak,−1 +
l∑

j=1

ak,jzj

2. For some i, 1 ≤ i ≤ l +1 equation (4.1) does not hold (see line 21) but equa-
tion (3) holds i.e, there exists at least a polynomial p ∈(list_Sign r τ)

such that its interpretation under the function σ is 0, each interaction with
the signer provides a polynomial ai,0 −

∑l
j=1 ak,jcj + c′i (2), thus after l in-

teractions with the signer, we obtain a list of l polynomials (2) (see line 32).
This corresponds to the second case to obtain a valid signature z′i. We let
Sign(A) be this condition for an attacker A.

3. There is a collision of group elements.
4. There is a collision of hash values H(fi, mi) = H(fj , mj), where mi = mj ,

fi �= fj and ai,k = aj,k for k = 0, . . . , l.

5.3 Properties of Interactive Generic Algorithms

In this section, we let a interactive generic algorithm A be given the generator
g, the public key h, and oracles for the hash function H and for signature oracle.
Let A performs t generic steps including t′′ mex-steps, τ queries to the hash
oracle and l interactions (r1, c1, z1), . . . , (rl, cl, zl) with the signer.We assume the
input l1, . . . , lt′ to be polynomial expressions over secrets . Further, we let d be
the maximal degree of the polynomials lj for 1 ≤ j ≤ t′ where t′ is the number
of input.

Proposition 3. ∀A :IGA, Pr(CO(A)) ≤ (t′
2)d

q−(t′
2)d

Proof. All outputs are of the form fi =
∑

1≤j≤t′ ai
j lj(s1, . . . , sk), where pi =∑

1≤j≤t′ ai
j lj(x1, . . . , xk) is a polynomial of degree d. Hence there exists a colli-

sion fi = fi′ iff (s1, . . . , sk) is a root of pi − pi′ . There are
(
t′′

2

)
equalities of the

form fi = fi′ to test, hence
(
t′′
2

)
polynomials of the form pi−pi′ , each of which is

not identical to 0 (as there are non-trivial collisions), and has degree ≤ d. So we
can use an extension of the Schwartz lemma [5] to deduce the expected result.
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Proposition 4. ∀A :IGA, Pr(COH(A)) ≤ (τ
2)d

q−(τ
2)d

Proof. In the same way of proposition 3.

Proposition 5. ∀A :IGA, Pr(Sign(A)) ≤ (d+1)l
q

Proof. The proof is by induction of the interactive generic algorithm A. The only
interesting case is when the algorithm interacts with the signer. In this case, we
can find information on the secret iff σ is a solution of the extracted polynomial
corresponding to the equation (3) which is of degree d.

Proposition 6. ∀A :IGA, Pr(ParAttack(A)) ≤ ( τ
l+1)
q

Proof. ProbPar Attack(A) ≤ Pr(ROS pb (list ak A) (list coeff A) (G A))
In our formalization, we have an hash function of type (list Zq) × M → Val ,
where M is the set of all ciphertexts.

More precisely, we have a type SymbH := (list Zq)×M ×Val , i.e, instead of
having c = H(f, m), where f = ga−1+a0+a1x+ l

j=1 ajrj , we have ((a−1, . . . , al),
m, c) : SymbH where c = H(ga−1+a0+a1x+ l

j=1 ajrj , m). Moreover, in our for-
malization on the ROS-problem, we do not take a function F : Zl

q → Zq but
a function F : (list Zq) → Zq with a list of length l. So to have a func-
tion in (list Zq) → Zq, we define a function G : Run → (list Zq) → Val
(see line 11). Having an interactive generic algorithm A, we have the function
rom(G(A)) : (list Zq) → Zq. So we can apply the ROS-problem.

In the interactive setting, we consider that the advantage of the attacker
is bounded the probability of finding non-trivial collisions on computed group
elements or hash values plus the probability of finding a zero of a polynomial
resulting on an interaction with the signer plus the probability of succeeding on
a parallel attack.

Proposition 7. ∀A :IGA, Advantage(A) ≤ Pr(CO(A)) + Pr(COH(A)) +
Pr(Sign(A)) + Pr(ROS pb (list ak A) (list coeff A) (G A)).

6 Conclusion

We have extended our previous machine-checked account of the GM and ROM
to establish security bounds for interactive algorithms, and in particular to show
the security of signature schemes against forgery attacks. Our results generalize
existing results to the case of an arbitrary generic algorithm, and provide more
rigorous bounds than those present in the literature.

Machine-checked proofs of provable cryptography has barely been scratched.
Much work remains to be done in the context of the GM and ROM: in particular,
we intend to provide a machine-checked treatment of ROS, and to exploit our
formalizations to prove the security of realistic protocols, following e.g. [7,23].
An even more far-fetched goal would be to give a machine-checked account of a
formalism that integrates the computational view of cryptography, and provable
cryptography.
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Abstract. We introduce the notion of sanitizable signatures that offer
many attractive security features for certain current and emerging appli-
cations. A sanitizable signature allows authorized semi-trusted censors to
modify – in a limited and controlled fashion – parts of a signed message
without interacting with the original signer. We present constructions for
this new primitive, based on standard signature schemes and secure un-
der common cryptographic assumptions. We also provide experimental
measurements for the implementation of a sanitizable signature scheme
and demonstrate its practicality.

1 Introduction and Motivation

In government, military and corporate environments, information is often com-
partmentalized in a way that one’s role or security clearance determines access
rights with respect to a resource, such as a database or a document. Thus, two
subjects with different security clearances can “see” the same information with
varying granularity of detail. For example, the United States Government some-
times releases certain previously classified documents in “sanitized” form, often
as a result of a request made through the Freedom of Information Act (FOIA).
A document thus released is usually sprinkled with blacked-out sections which,
for various reasons, remain confidential. More specifically, individual words, sen-
tences, paragraphs and even entire sections of a document can be either deleted
or substituted with dummy data prior to being released.

Now, suppose that someone needs to refer to, or cite from, a sanitized docu-
ment. In this case, to avoid liability, it is necessary to ascertain the source and the
integrity of the document. Plain digital signatures (e.g., RSA or DSA) provide
the means to achieve both source authentication and data integrity. More exotic
constructs, such as Redactable Signatures [23], allow anyone to obtain a valid
signature of the redacted document without any help from the original signer.
However, there are situations where a duly authorized third party (censor) may
need to modify the document in some controlled and limited fashion. In doing
so, the authorized censor needs to somehow come up with a valid signature for

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 159–177, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the updated document, without contacting the original signer. There could be
many possible reasons for not asking the original signer to re-sign, including:
(1) the signer’s key has expired, (2) the original signature was securely time-
stamped via, e.g., [18], (3) the signer may not be reachable/available, (4) each
new signature would cost too much, either in terms of real expense or in terms
of computation. In this paper, we introduce the notion of sanitizable signatures
precisely in order to address these needs.

Informally, a Sanitizable Signature Scheme allows a semi-trusted censor to
modify designated portions of the document and produce a valid signature on
the legitimately modified document without any help from the original signer.
These designated portions of the document are blocks or segments explicitly
indicated as mutable under prior agreement between the signer and the censor.
The censor can produce a valid signature only if it modifies these portions and
no other parts of the message.

To illustrate the utility of sanitizable signatures, the rest of this section dis-
cusses several potential application scenarios.

1.1 Multicast and Database Applications

Sanitizable signatures are quite well-suited for customizing authenticated mul-
ticast transmissions. For example, in a subscription-based internet multimedia
database, sponsors may wish to insert personalized commercials into messages
at various points of the broadcast. It is desirable to authenticate these messages
to allow the subscribers to distinguish legitimate contents from spam. Since
real-time authentication may be too costly, one solution is for each vendor to
sign the commercial once and allow the database administrator to customize
the individual commercials by replacing the generic identity field with the ac-
tual subscriber’s identity, at various points of the commercial. This way, the
subscriber can verify that the commercial comes from a legitimate source (i.e.,
it is not spam) and the sponsors do not have to sign each customized broad-
cast. Furthermore, the database administrator is not forced to divulge personal
information of its subscribers without their consent.

A related application of sanitized signatures is editing movie content. De-
pending on the age of the subscriber, the administrator can replace offensive
language with watered-down substitutes rather than blip out the words. Again,
sanitized signatures provides the desired benefits.

In the same vein, sanitizable signatures can be used in outsourced database
applications. Database outsourcing [19] is a recent and important industry trend
whereby a Database Service Provider offers adequate resources to host its clients’
databases as well as mechanisms to efficiently manipulate and access outsourced
data. Database outsourcing poses numerous security challenges since it involves
a client storing its data at an external – and often untrusted – provider site.
To this end, it is essential to protect the integrity and authenticity of that data
from both malicious outsider attacks and the Database Service Provider itself.
This is usually achieved by having the client sign each database record before
outsourcing [21]. Later, when a user queries a database owned by a client of
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the Database Service Provider but physically stored at the latter, the provider
acts as an authorized re-distributor of outsourced data. In this role, it needs to
ensure that users – who obtain portions of the database (as replies to queries) –
cannot redistribute the results and themselves become unauthorized “de facto”
distributors. With the aid of sanitizable signatures, a query reply (i.e., a set
of database records) can be manipulated by the provider in a way that each
returned record is signed by its original owner (client), but personalized for the
specific user who posed the query.

More generally, sanitizable signatures can be viewed as a valuable tool for
combatting certain types of software piracy and unauthorized content distribu-
tion. If the actual content owner is off-line and an authorized on-line distributor
is used to sell or supply content to users, the benefit of sanitizable signatures is
the ability of the distributor to easily personalize signed (i.e., authentic) content
for each user or each transaction. While this would clearly not put a stop to
piracy (since multiple corrupt users can always trade ill-begotten content among
themselves), it would preclude honest users from being duped by unauthorized
or fraudulent re-sellers/re-distributors of valuable content.

1.2 Medical Applications

The additional functionalities and flexibility of sanitizable signatures may also
help protect the privacy of medical records. Under the Health Insurance Porta-
bility and Accountability Act of 1996 (HIPAA), covered entities are required to
comply with the Standards for Privacy of Individually Identifiable Health Infor-
mation (the Privacy Rule) [38]. The Privacy Rule specifies the criteria for creat-
ing both de-identified and limited data sets from protected health information
(PHI) for research purposes. In particular, covered entities must remove direct
identifiers of the individual or of relatives, employers, or household members of
the individuals before PHI can be legally released for research purposes.

Compare the scenarios of a cancer study and an epidemic study. The two
studies require different temporal resolution when creating limited data sets from
PHI. In a cancer study, the exact dates when treatments are administered to the
patient may not be necessary to the study. It is important, however, to note the
length of time between treatments. On the other hand, in an epidemic study, it
may be necessary to include exact treatment dates so the limited data set could
reveal trends and patterns necessary for creating an epidemiological model.

Sanitizable signatures can be used to ensure the integrity, authenticity, and
anonymity of PHI in both cases. In general, sanitizable signatures can accom-
modate different level of data de-identification, supporting the “minimum neces-
sary” disclosure standard of HIPAA Privacy Rule. This provides flexibility not
available in redactable signatures.

1.3 Secure Routing

A crucial aspect of security in modern routing protocols is the protection of
exchanges of connectivity information between routers. An important feature of
a major class of routing protocols – called distance vector – is the direct exchange
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of routing tables among neighboring routers. Distance vector protocols require
each router to maintain tables where each entry contains a destination and a
route metric (cost) to that destination. More advanced path vector protocols, in
addition, require each router to maintain – for each routing table entry, i.e., for
each destination – an actual shortest route/path to that destination. The best-
known path vector protocol is the Border Gateway Protocol (BGP) [33] widely
used in the Internet.

There have been several proposals for supporting authentication of origin
and data integrity in routing protocols, typically via digital signatures (see, for
example, [27] and [24]). Indeed, routing message authentication is imperative for
resistance against powerful – especially, Byzantine – adversaries. While mounting
Byzantine attacks against routing algorithms is generally difficult, the transitiv-
ity of trust implied by the very essence of distance and path vector algorithms
compounds the impact of any successful attack. Protecting link state protocols
against Byzantine attacks, as in [27], is simpler than the same task for distance
or path vector protocols such as [24]. A general architecture for link state pro-
tocols with Byzantine robustness has been developed rather early on, in [31],
whereas, no equivalent architecture for path vector protocols has been proposed.

The main challenge in authenticating path vector routing messages is that –
unless we assume complete transitivity of trust – for each path vector, a separate
signature by each hop in the route is required. The combined cost of verifying
multiple per-hop signatures becomes a serious burden on intermediate routers.
This can be mitigated by using transitive signatures [26,6,37], which allow anyone
to use the public keys of routers to combine several edge signatures (where
edges are a pair of adjacent routers along the route) into a single path signature
(from the source or any intermediate router to the destination or a subsequent
intermediate router).

Sanitized signatures provide an alternative mechanism. The main difference
between using transitive and sanitized signatures is that the latter delegate the
ability to aggregate signatures to specific routers, while transitive signatures
allow any router to aggregate. The explicit delegation model afforded by sanitized
signatures is more flexible, as it permits the implementation of arbitrary trust
infrastructures with respect to route aggregation.

Finally, we observe that similar techniques are applicable in on-demand
MANET routing protocols [10], such as Dynamic Source Routing (DSR) [22].
DSR uses flooding to discover a shortest path to a destination. A route is col-
lected incrementally, during flooding propagation, with each router adding itself
to the route as it processes a route request message. It is easy to see that sani-
tized signatures are also appropriate in this setting and offer the same benefits
as in path vector protocols.

2 Related Work

Several concepts are related to sanitizable signatures, including incremental cryp-
tography and homomorphic signatures, which encompass transitive, redactable
and context-extraction signatures.
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Incremental cryptography seeks to construct cryptographic primitives with an
efficient update property. Namely, if an incremental cryptographic algorithm
produces a value when applied to a document, then the value may be very
efficiently re-computed on a variant of the document obtained by applying a pre-
defined transformation rule – in particular, more efficiently than recomputing the
algorithm from scratch with the new document. Incremental cryptography was
defined in Bellare et al [3,4], including applications to incremental hashing and
signing. A separate construction of an incremental signature scheme with certain
privacy properties has been provided by Bellare and Micciancio [5].

Incremental and sanitizable signatures are similar in that they support signa-
ture re-computation through a process different than initial signature generation;
however, they differ in that the latter supports delegation of the ability to per-
form updates to another party, while the former provides a mechanism for the
original signer to perform updates more efficiently than through re-signing an
entire document.
Homomorphic signatures: In a series of talks, Rivest [34] proposed the design of
signature schemes that allow “forgeries” of pre-determined types. More specif-
ically, a signer would need his/her private key to generate a signature on a
document, but arbitrary parties could use simply the knowledge of the public
key to modify the document in locations and fashion pre-selected by the signer,
and obtain a new signature on the transformed document without interaction
with the original signer. This concept was then formalized as homomorphic sig-
nature schemes in [23]. A particular construction made possible through the
use of homomorphic signature schemes is a redactable signature (also [23]).
When a document is redacted, each redacted bit position is replaced with the
same special symbol to represent the location of the deletions. Explicitly mark-
ing the locations of the redactions is necessary to thwart semantic attacks. A
sanitized document can be view as a redacted document that allows arbitrary
bit substitution in the location of the deletions. However, there are other fun-
damental differences between sanitizable signatures and redactable signatures.
As with other homomorphic constructions, redactable signature schemes allow
anyone with the knowledge of the public key to generate a valid signature on the
redacted document. This property is not always desirable in a digital signature
scheme. In contrast, only the censor would be able to generate a valid signa-
ture on a modified (sanitized) document. Moreover, in our basic construction,
the signer can incontestably prove that the censor sanitized the document. Thus,
sanitizable signatures provide (and require) greater accountability. Furthermore,
once a signature is redacted, it is impossible to undo the redaction and recover
the signature on the original message. On the other hand, the censor can undo
the changes to the mutable portions of the message and produce a “sanitized”
signature that corresponds to the original message.

A related concept to redactable signature is that of content-extraction signa-
tures [36]. These are essentially redactable XML signatures, where the redaction
operation efficiently removes XML nodes – permitting customization of publish-
able information to comply with privacy and confidentiality demands of dynamic
distributed applications.
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Transitive signatures are essentially homomorphic signatures, where the opera-
tion in question is path concatenation on (undirected or directed) graphs. Op-
timized constructions for transitive signatures, more efficient than general ho-
momorphic techniques, have been proposed [26,6,37]. The interest in transitive
signatures stem from their potential applicability to secure routing in computer
networks [12], by enabling route-path signature aggregation. Namely, if a se-
cure routing protocol is implemented via router signatures on each hop, the
computational load on routers does not scale well, as increasingly long chains
of signatures need to be verified. Transitive signatures permit any intermedi-
ate routers to collapse routes to a single signed source-current router pair (or
to contract the route in any other intended fashion), thus achieving better effi-
ciency as well as security: In some cases it may not be in the interest of routers
(specially edge routers) to disclose the topology of the (internal) network they
protect.

We remark that sanitizable (as well as redactable) signatures can be employed
to achieve the route-path reduction efficiently – but under different trust mod-
els. Transitive and redactable signatures require intermediate routers to know
only the public key of previous routers in the path in order to remove their
signature to the authenticated path. On the other hand, sanitizable signatures
would permit routers to delegate the ability to remove their signature to spe-
cific trusted routers. We believe that this trust model is more flexible and more
representative of practical security architectures, where only some entities are
entrusted with security policies for a network, and allowed to “edit” or sanitize
network-security related information on behalf of other entities, as discussed in
section §1.3.

Automatic Sanitization of Internet Traffic: There exists an entire area of research
on sanitizing raw Internet packet traces for sharing and research purposes. Most
of this work studies different ways of anonymizing TCP/IP packet header fields,
for instance see [32,39]. The seminal work of Pang and Paxson [30] focuses on
sanitizing also packet payloads and has been extended and generalized by Bishop
et al. [8].

That line of research seeks to develop methods of expressing privacy poli-
cies and then to create tools that can interpret such policies to automatically
sanitize Internet traffic [30,8]. While not directly related to this paper (since
they do not deal with cryptographic primitives, such as signatures), we believe
that the techniques developed in [30,8] could be combined with ours for mutual
advantage.

3 Sanitizable Signatures

We define a sanitizable signature scheme as a secure digital signature scheme
that allows a semi-trusted censor to modify certain designated portions of the
message and produce a valid signature of the resulting (legitimately modified)
message with no interaction with the original signer. More concretely, a sanitiz-
able signature scheme must have the following properties:
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1. Immutability. The censor should not be able to modify any part of the mes-
sage that is not specifically designated as sanitizable by the original signer.

2. Privacy. Given a sanitized signed message with a valid signature, it is impos-
sible for anyone (except the signer and the censor) to derive any information
about the portions of the message that were sanitized by the censor. In other
words, all sanitized information is unrecoverable.1

3. Accountability. In case of a dispute, the signer can prove to a trusted third
party (e.g., court) that a certain message was sanitized by the censor.

4. Transparency. Given a signed message with a valid signature, no party –
except the censor and the signer – should be able to correctly guess whether
the message has been sanitized.

We further distinguish among two flavors of transparency: weak and strong.
Weak transparency means that the verifier knows exactly which parts of the mes-
sage are potentially sanitizable and, consequently, which parts are immutable.

In contrast, strong transparency guarantees that the verifier does not know
which parts of the message are immutable and thus does not know which parts
of a signed message could potentially be sanitizable.

Either transparency flavor can be beneficial depending on the specific ap-
plication. We stress that strong transparency is not always better. In certain
circumstances, weak transparency is actually preferable. For example, if a docu-
ment originally signed by some government official is later released by a certain
government agency – acting as a censor – under the Freedom of Information
Act, the general public would likely prefer knowing which parts of the document
could have been sanitized.

Our construction only provides for weak transparency. Accordingly, we only
provide a formal security model for weak transparency, in terms of an indistin-
guishability property.

3.1 Model

In this section, a formal definition of a sanitizable signature is given in terms of
the algorithms that constitute the scheme and their security properties.

A sanitizable signature scheme is a set of four efficient algorithms (as usual,
efficiency is defined in terms of a security parameter):

Key generation: For simplicity, we assume that each party could potentially
be a censor. Principal Pi uses this probabilistic algorithm to compute two
public-private key pairs:

(pki
sign, ski

sign), (pki
sanit, sk

i
sanit) ←−

R

1k,

where k is a security parameter. The first set of keys is for a standard digital
signature algorithm, while the second is useful to perform sanitization steps.

1 Unless of course the original message is stored by the signer and/or the censor.
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Sign: Takes as input a message m, a private signing key ski
sign, a public sani-

tization key pkj
sanit, random coins r, and produces a signature

σ ← SIGN
(
m, r; ski

sign , pkj
sanit

)
.

Verify: A deterministic algorithm that, on input a message m, a possibly valid
signature σ on m, a public signing key pki

sign and a sanitization key pkj
sanit,

outputs TRUE or FALSE:

V ERIFY
(
m, σ; pki

sign, pkj
sanit

)
→ {TRUE, FALSE}.

Sanitize: An algorithm that, on input a message m, a signature σ on m under
public signing key pki

sign, a private sanitizing key skj
sanit, and a new message

m′, produces a new signature σ′ on m′.

σ′ ← SANIT (m, σ, m′; pki
sign, skj

sanit).

We now discuss security requirements of this definition.

Security Requirements of Sanitizable Signatures: A sanitizable signature
as above should satisfy the following criteria:

Correctness: A signature produced by the SIGN algorithm should be accepted
by the VERIFY algorithm:

∀ σ = SIGN(m, r; ski
sign, pkj

sanit);

V ERIFY (m, σ; pki
sign, pkj

sanit) = TRUE

Unforgeability: Without the knowledge of the private signing key it is difficult
to produce a valid signature on a message that verifies against the associated
public key, except by resorting to the sanitization process. The exact formula-
tion of this concept can be provided within an adversarial-game framework,
detailed in 3.1.

Indistinguishability: It is the property that, for any pair of messages m1, m2,
and any choices of private signing key ski

sign, and public sanitizing key
pkj

sanit, the following distributions S1 and S2 are computationally indis-
tinguishable:

S1 = {σ; σ = SIGN(m1, r; ski
sign, pkj

sanit)}
and

S2 = {σ; σ = SIGN(m2, r; ski
sign, pkj

sanit)},
where r is chosen uniformly at random in the coin space of the SIGN algo-
rithm.
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Identical Distribution: Values produced by the SANIT algorithm are distrib-
uted identically to those produced by the SIGN algorithm. In particular, if a
signature σ on message m (with random coins r) is sanitized to signature σ′

on message m′, then there exist coins r′ for which σ′ is an original signature
on m′:

SANIT (m, σ, m′; pki
sign, skj

sanit) = σ′ = SIGN(m′, r′; ski
sign, pkj

sanit).

The above formulation of a sanitizable signature is not the only reasonable
one. For instance, the requirement that the sanitization algorithm produces the
exact outputs as the sign algorithm is not necessary as long as its outputs are
1) accepted by the verification algorithm, and 2) indistinguishable from the
outputs of the sign algorithm. We adopt the stricter formulation instead as it
is still general enough to capture the constructions we propose; because it has
the benefit of being easier to formulate and understand; and because of closer
parallel with related research literature – see, for instance, the formulation of
transitive signatures in [6].

Referring back to the more informal requirements at the beginning of this sec-
tion, we point out that the indistinguishability requirement provides for privacy,
while the identical distribution implies the weak transparency property.

The unforgeability requirement (typical of signature schemes) involves some
subtleties in the case of sanitizable signatures, as the sanitization process is a
bona-fide forgery algorithm. In order to formulate this concept more precisely
it is necessary to consider a stateful signer, since one must keep track of all
previously issued signatures and queries to the sanitize algorithm in order to
decide which signatures should be infeasible to compute without the private
signing key.

Note that the unforgeability requirement implies that only the censor is able
to change the message while maintaining the signing value constant. Therefore,
a signer can prove to a judge the involvement of the censor in producing a
sanitized message, by showing both the sanitized and the original messages and
their common signing value. This implies that accountability follows from the
unforgeability requirement.

We now proceed to define unforgeability via an adversarial game framework.

Unforgeability as an Adversarial Game: Let A be an algorithm that seeks
to forge signatures. We assume that A has oracle access to the SIGN as well as
to the SANITIZE algorithms.

The sign oracle Osksign is initialized with a positive integer qa which indi-
cates the number of queries it will accept during the period of the experiment.
Similarly, the sanitize oracle Osksanit is initialized with integer qb, the maximum
number of queries it will answer. Either oracle, if its quota of queries has been
exhausted, answers all further queries with the special symbol ⊥.

A sanitizable signature scheme is unforgeable if every efficient adversary has
negligible probability of success in the following 2-phase experiment. Given a
security parameter, and a pair of signing and sanitizing public keys, the adversary
can interact with the associated SIGN and SANITIZE oracles. At the end of the
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first phase the adversary outputs a state (representing the knowledge acquired
during the first phase) and a message m of its choice. In the second phase, the
adversary again interacts with the oracles SIGN and SANITIZE, and its output
is a candidate signature σ. The adversary wins if m was not queried to either the
SIGN or SANITIZE oracles during either phase of the experiment, and if σ is
a valid sanitizable signature on m. The advantage of the adversary is computed
as its success probability over all instances of size k and random choices made
by the adversary.

We say that a sanitizable signature is (ε, k, qa, qb, t)-unforgeable if for all prob-
abilistic algorithms running in at most t steps, making no more than qa queries
to the SIGN algorithm and no more than qb queries to the SANITIZE algorithm
has probability of success smaller than ε on problem instances of size k.

4 Construction Based on Chameleon Hashes

In this section we provide a construction of sanitizable signatures based on
chameleon hashes presented in [1]. We follow the well-established encode-and-
sign paradigm and construct a generalized signature scheme compatible with
standard signature schemes (e.g. RSA or DSS). As with any digital signature
scheme, a sanitizable signature scheme needs to bind the signer to the message
signed, thus providing non-repudiation. Our sanitizable signature schemes are
practical and efficient.

Chameleon signatures were introduced by Krawczyk and Rabin [25], and in
turn are related to the notion of undeniable signatures [9,13,14].

4.1 Setup

The parties involved are: A signer S with public and private keys (pksign, sksign)
associated with the signature scheme, a (semi-trusted) censor C with public and
private keys (pksanit, sksanit) associated with a chameleon hashing scheme, a
verifier V , and a judge J (trusted third party).

Our construction consists of the following components:

– A secure digital signature scheme with signature, s(·), and verification, v(·),
operations. We employ any standard signature scheme with any hash-and-
encode mechanisms, such as RSA-EMSA-PSS [7,35]. Note that we use SIGN
for the sanitizable signature and s(·) for the underlying signature algo-
rithm to avoid confusion, and similarly for VERIFY and v(·). The notation
ssk(m, r) stand for the output of the basic signature algorithm applied to the
value of an hash-and-encode function with input m; if the signature scheme
is probabilistic, the optional value r indicates the auxiliary random coins r.

– A chameleon hashing scheme [25,1]. A chameleon hash computed over a
message m with randomness r, and under public key pk will be denoted
by CHpk(m, r). A chameleon hash (or trapdoor commitment) has the same
properties of any cryptographic hash function and, in particular, it pro-
vides collision resistance. However, the owner of the private key sk corre-
sponding to the public key pk can find collisions, i.e., messages m′ such
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that CHpk(m, r) = CHpk(m′, r′). By definition, chameleon hashes are al-
ways probabilistic algorithms, and to verify the correctness of a computed
chameleon hash value C it is necessary to provide both the original message
m and the randomness r used.

4.2 Sanitizable Signing

Suppose we wish to sign a document m = (m1, ..., mt) that is partitioned into t
blocks, for some constant t. First, the signer selects a random unique document
identifier IDm and decides which portions, say mi1 , . . . , mik

, of the document
can be modified by the censor with public key pksanit. This allows the signer to
compute a chameleon hash, denoted by CHpksanit(·), under the censor’s public
key, on those portions of the message:

σ = SIGN(m, r; sksign, pksanit) := ssksign(IDm||t||pksanit||m̄1|| . . . ||m̄t),

where m̄i = CHpksanit(IDm||i||mi, ri) for i ∈ {i1, i2, . . . , ik}, otherwise m̄i =
mi||i. The value r should be interpreted as the concatenation of all the random
coins rik

, i = 1, . . . , k. In order to verify the above signature, one needs σ, m, r,
and auxiliary information to allow for segmentation of m into blocks.

The length of the sanitizable signature is proportional to the number of mu-
table message blocks only (that is, the number of chameleon hashes in the input),
because the verification of each chameleon hash requires an auxiliary random-
ness parameter. We stress that the underlying signature scheme is computed on
a single, fixed-length (e.g., 160-bit) value, the hash-encoding of the concatenated
input.

Because only the censor knows the private key corresponding to pksanit, it
only can find collisions of the chameleon hash with arbitrary message blocks
substituting for the original message block values. In particular, the censor can
produce triples (IDm, i, m′

i) such that:

CHpksanit(IDm||i||mi, ri) = CHpksanit(IDm||i||m′
i, r

′
i).

Notice that the signer can prove that it did not generate a signature on a
sanitized message by revealing the original message to a trusted third party (the
judge). The fact that a collision of the chameleon hash exists implies that the
censor has sanitized the document (only the censor can compute collisions). Note
the use of the document identifier IDm, and a block index. These are needed to
prevent re-use of mutable blocks within a message or across messages that would
enable changing of documents without censor intervention by re-use of sanitized
blocks.

4.3 Chameleon Hash

It is important to remark that not all the chameleon hashes are suitable for our
construction. For instance, the chameleon hash defined in [25] on a pair (m, r)
is of the form CHy(m, r) = ymgr, where y = gx and g is the generator of a
prime order cyclic group and x is the private key. If the original message is
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sanitized and transformed into (m′, r′) then the signer can recover the private
key x. Indeed, from gmyr = gm′

yr′
, x can be computed as x = m′−m

r−r′ .
This key exposure problem was first addressed in [2], where a partial solution

via identity-based constructions is proposed, and fully explored in [16,1]. In
particular, in [1] a strongly unforgeable2 chameleon signature scheme is provided,
with the property that no trapdoors are ever revealed through collisions. This
is in contrast with other constructions in [2,16,1], where at least an ephemeral
trapdoor is compromised with each forgery.

Since our sanitizable signature construction requires strongly unforgeable
chameleon hashes, it must use the scheme introduced in [1], which is related
to a twin Nyberg-Rueppel signature [29,28]. The scheme specifies a prime 3 p
of bitlength κ, i.e., p = uq + 1, where q is also prime, and a generator g of
the subgroup of squares of order q. The private key x is selected at random in
[1, q − 1], and the public key is (g, y = gx). Let H be a (traditional) collision-
resistant hash function, mapping arbitrary-length bitstrings to strings of fixed
length τ : H : {0, 1}∗ → {0, 1}τ .

To commit to a message m, it is sufficient to choose randomness r = (ρ, δ) ∈
Zq × Zq, and compute (cf. [1]):

e = H(m, ρ); andCHy(m, ρ, δ) = ρ − (yegδ mod p) mod q.

While the commitment can be computed by any party, the computation of
a collision requires knowledge of the private key x, as follows. Let C denote
the output of the chameleon hash on input (m, r) = (m, ρ, δ). First, a random
value k′ ∈ [1, q − 1] is generated and then the other values are computed as:
ρ′ = C + (gk′

mod p) mod q, e′ = H(m′, ρ′), and δ′ = k′ − e′x mod q. Notice
that indeed:

ρ′−(ye′
gδ′

mod p) mod q = C+(gk′
mod p)−(gxe′

gδ′
mod p) mod q = C.

Therefore, (m′, r′) = (m′, ρ′, δ′) is the sought collision.

4.4 Security Requirements

Correctness: It is clearly achieved, since the SIGN and VERIFY algorithms are
modifications of a basic signature scheme, wherein mutable message blocks have
been substituted by chameleon hashes.

Indistinguishability: In [1], it is shown that the chameleon hash based on the
twin Nyberg-Rueppel signature provides semantic security, i.e., it is impossible
to distinguish the distributions

Sy
1 = {(m1, r, C); C = CHy(m1, r)} and Sy

2 = {(m2, r, C); C = CHy(m2, r)}.
2 This terminology is not used in [1], but we adopt it here as it is related to the strong

unforgeability of signature schemes.
3 For conciseness of description, we discuss the Nyberg-Rueppel signature in the clas-

sical setting Z∗
p. However, the same scheme can be defined over elliptic curves and

would have better performance at comparable security settings.
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This is exactly the same requirement for indistinguishability of sanitizable sig-
natures. It is straightforward to verify that this semantic security furthermore
implies privacy.

Identical distribution of sanitized and original signatures: The sanitization algo-
rithm invokes the trapdoor collision-finding algorithm of the chameleon hash, in
effect obtaining an alternative set of inputs to the sign algorithm that evaluate
to the same signing value. Moreover, the outputs of the chameleon hash are sta-
tistically independent of the input message – again, see [1], and the proof for the
semantic security property. The output distributions for SIGN and SANIT are
therefore identical, and from that it follows that changes to the mutable parts
of the message are undetectable (weak transparency).

Unforgeability: Our proof works by contradiction. Assuming the existence of an
efficient adversary that defeats our chameleon-hash based sanitizable signature
construction we show how to construct either an efficient algorithm to break the
underlying signature scheme, or an efficient algorithm to compute chameleon
hash collisions. The proof is straightforward but lengthy so we have postponed
it to appendix §A.

5 Extensions and Other Constructions

One natural extension is to allow for multiple censors, each able to modify dif-
ferent portions of the document. To achieve this, one may simply list all the
public keys in the argument to the signature (and use each public key for the
chameleon hash of the corresponding message block):

SIGN(m, r;sksign, pk1
sanit, . . . , pkt

sanit) :=
ssksign(IDm||t||pk1

sanit|| · · · ||pkt
sanit||m̄1|| . . . ||m̄t).

A different extension is to allow for distributed, threshold-trust censors. This
can be easily achieved by using a threshold version of the chameleon hashing
scheme.

A more interesting extension is to support strong transparency. One way to
accomplish this would be for the signer to use the multiple-censor extension
described above, declare every block of the message mutable, but assign public
keys of non-existing (dummy) censors to the blocks the signer wish to remain
unmodified. Unfortunately, in practice it may be difficult to hide the information
about which censors are fictitious, since probably there will be only a few well-
known censors and any other public key would give rise to suspicion of non-
existence.

5.1 Hybrid Scheme

The construction described below is an extension of the redactable signature
schemes, discussed in [23], based on the Gennaro-Halevi-Rabin signature [17].
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It can be seen as an improved redactable signature of constant size which com-
bines the advantages of both redactable and sanitizable signatures. In particular,
the signature allows message blocks to be redacted by anyone while unredacted
blocks can be sanitized by a censor.

The signature in [17] requires an RSA-type modulus n which is the product
of two safe primes, p and q, that is, such that (p − 1)/2 and (q − 1)/2 are also
primes. The public key is (v, n) for a randomly selected v ∈ Z∗

n. To sign a message
m, first compute the hash of it H(m) and then release y such that yH(m) = v
mod n.4

In [23], the following method is described to compute redactable signatures
on a document x = (x1, . . . , xk): First generate a document identifier IDx and
then release the signature (IDx||y) where y = v1/(H(IDx||1||x1)×···×H(IDx||k||xk))

mod n. As reported in [23], to redact the message block xi it is sufficient to
release the new signature (IDx||y′) where y′ = yH(IDx||i||xi).

To make the redactable signature above sanitizable, we simply replace each
triple H(IDx, i, xi) that can be sanitized with H(IDx||i||CHy(IDx||i||xi)), that
is each message block xi is replaced with a chameleon hash of it computed under
the public key of the censor. Now the censor will be able to modify the ith block
and produce a valid sanitized signature. Note that the proof of security in [23]
still holds because the outer hash H(·) remains unchanged.

5.2 Attribute Tags

Certain applications may require the censor to modify mutable parts of the mes-
sage so that the new parts satisfy prescribed semantics or policies. For instance,
the censor could replace an address only with a generic geographic location, an
exact date only with a time period, an integer only with another integer in a
specific range, or a certain age with “senior” or “minor,” and so on.

A simple solution is to prepend an immutable attribute tag to a mutable
section of the message and expect the verifier to check that the data type of the
mutable portion matches the specifications of the prepended attribute tag. The
original signer could, for instance, prepend to a mutable part the phrase “Address
(or area):” and make it immutable. In this way the verifier of the signature will
expect after that phrase either an address or a geographic location. Clearly, with
this method, the original signer can specify the type of the mutable part and
which conditions it should satisfy. For instance, the immutable phrase “Value
(integer in [0, 100]):” indicates that the next mutable value must be an integer
and in the range from 0 to 100.

6 Implementation

We implemented our basic sanitizable signature construction with the Nyberg-
Rueppel-based chameleon hash, and performed a series of experiments to demon-
strate the efficiency of sanitizable signatures.
4 Note that gcd(H(m), φ(n)) = 1 with overwhelming probability.
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6.1 Experiment Setup

Our implementation incorporates OpenSSL 0.9.7e Library routines. The code is
compiled with gcc 3.4.2 (Red Hat). All tests are run under Fedora Core 3 with
Linux 2.6.9 kernel on Pentium-4 2.6-GHz PC with 512 MB of RAM.

The 1024-bit keys used for RSA signatures are generated using OpenSSL’s
command-line RSA key generation routine. We used OpenSSL Diffie-Hellman
library routines to generate our 1024-bit Nyberg-Rueppel key using 5 as the
generator (OpenSSL is optimized for 2 or 5 as the generator). Unfortunately,
one cannot store the key as Diffie-Hellman parameters because OpenSSL does
not write DH keys to file. So we store the Nyberg-Rueppel keys in DSA format.

In our implementation we chose hash-and-sign RSA as the generic signature
algorithm and SHA-1 as the generic hash algorithm. Notice that hash-and-sign
RSA is not secure but we are using it just as a lower-bound for our performance
measurements. In a real scenario, a secure hash-and-encode scheme should be
used, such as EMSA-PSS [7,35].

We applied our implementation on two 1 KB random message blocks. The
first block is the modifiable portion of the document; the second block is the fixed
portion. To generate a sanitizable signature, we apply the Nyberg-Rueppel-based
chameleon hash to the first block, concatenate the result to the second message
block, and finally apply hash-and-sign RSA signature. We used 128-bit labels
to serve as message block IDs. Signing and verifying both use OpenSSL RSA
signature routines.

6.2 Results

We applied each specific operation 1000 times. The average performance re-
sults from our experiments, where the amount of time specified is for a single
operation, are summarized in Table 1. These results show that the execution
time for each operation we tested is of the order of 10 milliseconds. Hence the
Nyberg-Rueppel-based sanitizable signature scheme is practical and efficient.
Furthermore, sanitizable signing costs about four times the signing time of RSA
signature with SHA-1, while providing significant subsequent advantages in a
setting where sanitization is required.

While sanitizable Nyberg-Rueppel verification is faster than signing, its rel-
ative performance vis-a-vis RSA-SHA-1 verification is worse. This results from
verification being approximately 10 times faster than signing for RSA signatures,
while only about 1.3 times faster for sanitizable Nyberg-Rueppel.

We note that the OpenSSL library, while implementing several optimizations
for the RSA cryptosystem, does not include optimized code for discrete logarithm

Table 1. Performance of OpenSSL primitives and Nyberg-Rueppel sanitizable signa-
ture algorithms

SHA-1 RSAsign RSAverify CHNR CHNR (Collision) SIGN V ERIFY

0.027 ms 10.653 ms 0.609 ms 33.863 ms 28.196 ms 44.518 ms 34.497 ms
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constructions. In particular, it does not support optimizations for simultaneous
multiple exponentiation, as described in [20], and its performance is an order of
magnitude slower than libraries such as Crypto++ [11].

7 Conclusions

Sanitizable signatures allow a semi-trusted censor to modify designated portions
of a document and then produce a valid signature of the legitimately modified
document without help from the signer. Moreover, a verifier cannot determine
whether a received signature has been sanitized by the censor. We have imple-
mented the scheme and the performance results obtained demonstrate that the
scheme is practical and efficient.

Acknowledgments. We are grateful to Aniello Del Sorbo for helping with config-
uration issues of OpenSSL. We thank the anonymous referees of ESORICS 2005
for their insightful comments. This work was partially supported by NSF.
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A Proof of Unforgeability

Let A be an (ε, k, qa, qb, t)-forgery algorithm defeating the security of our sanitiz-
able signature construction (notation as in section §3.1); we show how to use this
adversary to either undermine the security of the underlying signature scheme,
or to find collisions for the chameleon hash signature scheme, in violation of their
proven security properties.

Theorem 1. Let A be an (ε, k, qa, qb, t)-forger of a sanitized signature scheme.
Then there exist an (ε′, k, qa, t′)-forger of the underlying signature scheme and
an (ε′′, k, qb, t

′′)-forger of the chameleon hash function, where the quantities are
related by

ε ≤ ε′ + ε′′; t ≥ t′ − qbtcollision; t ≥ t′′ − qatsign,

where tcollision and tsign are, respectively, the maximum running times of the
hash-collision finding and the signing algorithms on instances of size k.

Denote by μ the intermediate value such that σ = Ssksign(μ), i.e., μ is the
value that is signed by the underlying signature algorithm in the process of
sanitizable-signing m. Consider an instance of the forging experiment in which A
succeeds in computing a signature σ on a new message m, where m = Ssksign(μ).
This instance must fall in (at least) one of two cases:
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Case 1: Every query m′ to the oracle Osksign during A’s execution resulted
in signatures σ′ = Ssksign(μ′) associated to intermediate values μ′ which are
distinct from the value μ for the successful forgery σ = Ssksign(μ).

Case 2: There is a query mi to the oracle Osksign such that the response σi

equals Ssksign(μ), with mi different from m.
In the first case, proceed as follows to build an adversary B of the underlying

signature algorithm. First, B generates a pair of public and private keys for
the chameleon hash function, (sksanit, pksanit). It uses sksanit with the collision-
finding algorithm for the chameleon hash function to emulate the oracle Osksanit ,
and it gives pksanit to the adversary A. In order to answer A’s signature queries,
B resorts to its own signing oracle for the underlying signature scheme. When
A finishes computing σ, B outputs μ for its choice of target message; and the
whole transcript of A’s execution as its state after the first phase. (Note that μ
is available from A’s transcript otherwise the verification of A’s success cannot
be ascertained via the sanitized verification algorithm.)

In its second phase, B just reads σ from the state information from the first
phase, and terminates successfully whenever A succeeds, and the execution is an
instance of case (1). B’s execution time equals t′ = t + qbtcollision, where t is the
number of steps used by A, qb is the number of queries to the sanitization oracle,
and tcollision is the (maximum) number of steps executed by the hash-collision
algorithm on instances of size k, which B must perform to emulate answers to
the sanitization oracle.

In the second case, algorithm A could be used to build an adversary C of the
chameleon hash algorithm. First, C generates a pair of public and private keys
for the underlying signature algorithm (sksign, pksign). It uses sksign with the
underlying signing algorithm s(·) to emulate the signing oracle Osksign , and con-
veys pksign to the adversary A. To answer A’s sanitization queries, C resorts to
the collision-finding oracle for the strongly unforgeable chameleon hash function.

When A finishes computing σ, C retrieves the value μ and compares it with
the values μi that appear in A’s transcript of queries to the signing oracle.
Since we are in case (2), there is at least one queried message mi that dif-
fers from m but such that μi equals μ. Note that m can differ from mi only
if they differ in some mutable block (otherwise μ �= μi). For simplicity of no-
tation we assume that m and mi are a single block each. Therefore, we have
C = CHpksanit(m, ρ, δ) = CHpksanit(mi, ρi, δi), and C outputs C, mi, ρi, δi as its
chosen value to seek collisions against, and the whole transcript of A’s execution
as its state after the first phase of the adversarial game.

In its second phase, C just reads the values m, ρ, δ from the transcript of A
and outputs it. Therefore, C succeeds whenever A succeeds and A’s execution is
of type (2). C’s execution time is t′′ = t + qatsign, where t is the number of steps
used by A, qa is the number of A’s queries to the signing oracle, and tsign is the
(maximum) number of steps executed by the underlying signing algorithm on
instances of size k, which is executed to emulate the signing oracle. !"
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Abstract. The abstraction of cryptographic operations by term algebras, called
Dolev-Yao models, is essential in almost all tool-supported methods for proving
security protocols. Recently significant progress was made in proving that Dolev-
Yao models can be sound with respect to actual cryptographic realizations and
security definitions. The strongest results show this in the sense of reactive simu-
latability/UC, a notion that essentially means the preservation of arbitrary security
properties under arbitrary active attacks and in arbitrary protocol environments,
with only small changes to both Dolev-Yao models and natural implementations.

However, these results are so far restricted to cryptographic systems like en-
cryption and signatures which essentially only have constructors and destructors,
but no further algebraic properties. Typical modern tools and complexity results
around Dolev-Yao models also allow more algebraic operations. The first such
operation considered is typically XOR because of its clear structure and crypto-
graphic usefulness. We show that it is impossible to extend the strong soundness
results to XOR, at least not with remotely the same generality and naturalness as
for the core cryptographic systems. On the positive side, we show the soundness
of a rather general Dolev-Yao model with XOR and its realization under passive
attacks.

1 Introduction

Tool-supported verification of cryptographic protocols almost always relies on abstrac-
tions of cryptographic operations by term algebras, called Dolev-Yao models after the
first authors [24]. The core of these term algebras are operations like en- and decryp-
tion which ideally have very few algebraic properties. However, if one wants to benefit
from such abstractions in protocols that also contain operations with more algebraic
properties, those operations have to be given a similar specification. A typical such op-
eration is the exclusive or (XOR), see, e.g., [39,18,19], because it is commutative and
associative and has significant uses in cryptology, e.g., as the one-time pad, in modes of
operation of block ciphers, and in some protocols.

Recent work has essentially bridged the original and long-standing gap between
Dolev-Yao models and real cryptographic definitions: It was shown that an almost
normal Dolev-Yao model of several important cryptographic system types can be im-
plemented with real cryptographic systems secure according to standard cryptographic
definitions in a way that offers reactive (blackbox) simulatability [8]. This security
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notion means that one system (here the cryptographic realization) can be plugged into
arbitrary protocols instead of another (here the Dolev-Yao model) and retains essentially
arbitrary security properties; it is also called UC for its universal composition properties.
Extensions of this simulatability result to more cryptographic primitives were presented
in [9,7] and actual uses in protocol proofs in [6,5]. Earlier results considered passive
attacks only [4,3,29]. Later papers [38,32,16] consider to what extent restrictions to
weaker security properties and/or less general protocol classes allow simplifications
compared with [8]. All these papers have in common that they only consider core
cryptographic operations, not operations with additional algebraic properties like XOR.

In this paper we study how the soundness results in the sense of reactive simulata-
bility/UC can be extended when an XOR is added to a Dolev-Yao model and its cryp-
tographic implementation. It turns out that this is impossible in a general way. We are
quite surprised by this result, because XOR seems a relatively simple operation com-
pared with systems like digital signatures, and it seems well described by its algebraic
properties. Note that the question is not whether an XOR is a good and generally usable
encryption system by itself, but only whether algebraic abstractions of it are sound. The
only positive result we show is a soundness result under passive attacks; apart from this
restriction the result is strong in the sense of using reactive simulatability and allowing
a broad range of other operations in the Dolev-Yao model. Although early papers on
bridging the gap between Dolev-Yao models and cryptography were also for passive
attacks only, typical overall Dolev-Yao attackers are active. We therefore regard our
negative results for the active case as the more interesting ones.

We want to show that it is not possible to cryptographically realize a Dolev-Yao
model that contains XOR together with other usual cryptographic operations via real
systems with actual XORs, in the sense of reactive (blackbox) simulatability. This is
a meta-theorem formulation on a very high level: There is no current definition of “a
Dolev-Yao model” independent of specific system models (like CSP, π-calculus, IO au-
tomata etc.). Nor is “an actual XOR” really well-defined. We aim at coming as close
as possible to this meta-theorem with precise statements, but in the end what we show
is a series of concrete impossibility results, and it is a matter of taste whether one con-
siders these results to demonstrate the informal meta-theorem. At a minimum, these
concrete impossibility results show that soundness results for Dolev-Yao models with
XOR cannot be achieved with remotely the same generality and naturalness as for the
core cryptographic systems.

Related Work. The XOR operation has accompanied cryptography from its beginnings,
from simple ciphers in ancient and medieval times, over the one-time pad and the work
of Shannon, to its widespread use in modern cryptography where it constitutes an es-
sential component in many cryptographic protocols, e.g., [28,13,45]. To the best of
our knowledge, the XOR operation in the symbolic analysis of cryptographic protocols
has first been mentioned by Meadows [34] as a possible extension of the NRL ana-
lyzer. Since then it has been incorporated in many formal proof tools, e.g., NRL [35],
CAPSL [40], Isabelle [42], and OFMC [10]. Recent papers on XOR in Dolev-Yao mod-
els mainly studied the decidability and complexity of the insecurity of cryptographic
protocols against a Dolev-Yao attack in the presence of deduction rules for the XOR
operator [18,19].
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This line of work typically continues with abstractions of more general Abelian
groups, e.g., [20,22,2], and the exponentiation function as used in many cryptographic
systems based on the discrete-logarithm problem, e.g., [36,27,41,21,17,46,1]. While we
have not yet considered these extensions, we are convinced that a general use of such
operations on other terms would lead to similar problems as with XOR. In the case
of exponentiations, however, it may be more realistic than for XOR to make strong
restrictions on the types of terms that can be exponentiated and on the use of the XOR
results within larger terms, and such restrictions might help.

The first sound formal abstraction of XOR, but only in connection with pseudoran-
dom permutations, not the typical general encryptions etc. of other Dolev-Yao models,
and only for passive attacks, was presented in [30,31]. Another sound formal abstrac-
tion of XOR was recently presented in [11], but only if XOR is restricted to terms whose
corresponding bitstrings are generated according to a uniform distribution, and only for
passive attacks.

The security notion of reactive simulatability, a notion of secure implementation that
allows arbitrary composition, was first defined generally in [43], based on simulatability
definitions for secure (one-step) function evaluation [25,26,12,37,14]. It was extended
in [44,15], called UC (universal composability) in the latter, and has since been used in
many ways for proving individual cryptographic systems and general theorems. While
the definitions of [44,15] have not been rigorously mapped, for the results in this paper
the differences do not matter.

As stated, our results, except for a simple first one, only consider the soundness of
Dolev-Yao models in the sense of reactive simulatability/UC. We do not exclude that
weaker soundness notions such as integrity-only soundness as first investigated in [38]
can be extended. Nor do we exclude that certain restricted protocol classes using XOR
can be secure in the sense of reactive simulatability even if the Dolev-Yao model as
such is not, a direction of work started (not for XOR yet, of course) in [16]. It will be
interesting to investigate the precise limits in the future. Nevertheless, we believe that
our results show that one cannot achieve the general secure pluggability of a Dolev-Yao
realization for a Dolev-Yao model with XOR that has been achieved for core crypto-
graphic operations.

Overview of this Paper. As mentioned above, our major results are negative results that
aim at demonstrating the informal claim that it is not possible to realize “true Dolev-
Yao models” by “real XORs” in a generally composable way. In the following, we
summarize our concrete impossibility results. By payload data we denote the type of
non-cryptographic data that most Dolev-Yao models have. It denotes data input by the
users of the Dolev-Yao model, e.g., letters to be encrypted and signed, or payment data
constructed by a payment protocol using the Dolev-Yao model.

– The standard Dolev-Yao model of XOR used in the literature is insecure with re-
spect to every moderately natural implementation when secrecy is required (not
necessarily even reactive simulatability) and general terms (e.g., payload data) can
be XORed.

– If payload data are used in their original form in real XORs and signatures are
one of the cryptographic operations, then every system that securely abstracts from
this situation (in the sense of blackbox simulatability) must be able to compute
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signatures from whatever cryptographic realization is used. Thus informally it is not
truly Dolev-Yao. More precisely, we present a reduction proof showing that such a
system can be used to build a signature oracle with minimal additional operations.

– The same result holds with a more complex counterexample if we no longer assume
that arbitrary usage of the Dolev-Yao model is allowed, but only assume that certain
useful-looking protocols can be built on top of it.

– The same result holds even if the payload data may be encoded in the real system
before being used in XORs, but with low or well-structured redundancy such as
type tags. To the best of our knowledge, all current implementations of XOR fall
into this class or the previous class.

– Even if payload data may be encoded with arbitrary redundancy, a similar result
holds where the system that should be a Dolev-Yao model must at least be able to
test signatures. I.e., we now make a reduction proof yielding a test oracle, a notion
that we first have to define because it is not usual in cryptography.

The basic underlying problem in all these cases is when an honest participant receives
an XOR from an active adversary and, after some local operations, tries to convert the
result into another type, in particular into payload data, thinking, e.g., that the result is a
recovered plaintext. There is no general consistent way for the cryptographic realization
and the Dolev-Yao abstraction to know whether such a type conversion should work,
and thus to make exactly the required output when the result is really a plaintext, but
not when it is not a plaintext and may thus have some cryptographic structure in the real
system.

Positively we show reactive simulatability of an extension of the Dolev-Yao-style
system from [8] by an XOR with a certain tolerable imperfection (needed to overcome
our first negative result) with respect to a natural realization, and under the condition
that users are restricted to correct type conversions, a fact that can be verified formally
for protocols.

2 A Solvable Secrecy Imperfection of XOR

Before going into real impossibility results, we present one imperfection of XOR that
would make a sound XOR abstraction different from the XOR abstractions in the liter-
ature. However, this imperfection alone could be taken care of by giving the Dolev-Yao
adversary additional capabilities, without leaving natural Dolev-Yao models and natural
XOR implementations. Thus it is similar, e.g., to the fact that cryptographic encryption
cannot keep the length of arbitrary terms secret, which led to the introduction of abstract
lengths into the Dolev-Yao-style model of [8].

As far as we know, all Dolev-Yao models with XOR allow participants to XOR
arbitrary terms and to convert (typically implicitly) a result that is a term of another
type back to that type. For instance, a recipient who receives a one-time pad ciphertext
c = d ⊕ k, where d is a plaintext and k a key, may ask to have c XORed with k and
to obtain the plaintext d as output. The adversary has no additional capabilities in these
models. In particular, if he receives an XOR of two terms that he both doesn’t know,
and that both did not occur in other XORs, he cannot retrieve these terms. For instance,
an adversary not knowing k and d in the example above cannot retrieve k or d.
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Now assume that an honest participant XORs two plaintexts written in English and
sends the result to the adversary. The result can be cryptanalyzed if the texts are long
enough, i.e., a real adversary can retrieve the two plaintexts, e.g., see the section on
running-key ciphers in [23]. Hence we must model that an XOR leaks the underlying
terms to the adversary unless we know that at least one of these terms is sufficiently
random. In this sense, prior Dolev-Yao models of XOR are overly optimistic. Even some
data types of significant entropy, like secret or public keys of public-key systems, cannot
be used in XORs to hide plaintext data or other cryptographic elements. The reason is
that they are not sufficiently uniformly distributed given only the standard cryptographic
definitions, i.e., besides the entropy they may contain significant redundancy.

One can deal with this imperfection—and we will do so in the positive result for pas-
sive attacks—by introducing a set of random types into the Dolev-Yao model. Elements
of a random type are deemed sufficiently random (often pseudo-random in reality) to
restrict the adversary to standard algebraic operations on XORs. In the absence of un-
known random elements in an XOR, the Dolev-Yao adversary is given the capability to
parse the XOR.

3 Assumptions for Our Impossibility Results

As explained in the introduction, we want to show that it is not possible to implement
any Dolev-Yao abstraction by any natural realization of XOR in a way that retains
arbitrary security properties in arbitrary protocol environments. In order to turn this
informal meta-theorem into concrete statements that can be verified or falsified, we
need assumptions on what characterizes a Dolev-Yao model, a model of XOR in it, and
a real implementation of such a model.

3.1 Reactive Simulatability

We start by surveying the notion of reactive simulatability/UC that we use for compar-
ing a Dolev-Yao model and a cryptographic realization with respect to security. As we
aim at general impossibility results, we try to avoid model-specific notation and to stay
as general as possible.

Reactive simulatability is a general notion for comparing two systems, typically
called real and ideal system. It relies on the notion of honest users (potential protocols)
that interact with one of these systems and an adversary that mounts attacks against the
system and its users. Essentially reactive simulatability states that for all attacks on the
real system there exists an equivalent attack on the ideal system. More precisely, black-
box simulatability states that there exists a simulator that can use an arbitrary real ad-
versary as a blackbox, such that arbitrary honest users cannot distinguish whether they
interact with the real system and the real adversary, or with the ideal system and the
simulator with its blackbox. This is illustrated in Figure 1. Here the machines M1 and
M2 jointly denote the real system, TH (trusted host) denotes the ideal system, H the en-
tirety of the honest users, A the real adversary, and Sim the simulator. The combination
of Sim and A is the adversary on the ideal system. The reader may regard the individual
boxes as IO automata, Turing machines, CSP or π-calculus processes etc., whatever he
or she is most familiar with. The only requirement on the underlying system model is
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Fig. 1. Overview of blackbox simulatability. A real system is shown on the left; an ideal system
plus simulator on the right. The views of H must be indistinguishable.

that the notion of an execution of a system when run together with an honest user and
an adversary is well-defined. The rigorous notion of equivalence of the attacks is that
the honest users’ views in such executions are computationally indistinguishable; this
is a well-known cryptographic notion from [47].

3.2 Interface Behavior of a Dolev-Yao Model with XOR

In this section we describe the functionality that we assume a Dolev-Yao system with
XOR offers. This is quite natural, but recall that there is no general definition of this in
the literature yet.

As we want to compare the Dolev-Yao model and its cryptographic realization in
the sense of reactive simulatability/UC we can assume that they offer the same syntac-
tic user interfaces, i.e., in- and output formats. In terms of Figure 1, this is the interface
from TH or M1 and M2, respectively, to the entirety of users H. Similar concepts exist
in all variants, in particular [43,44,15] and when extending the observational equiva-
lence from [33] by simulators, e.g., the input and output formats of the ideal and real
functionality in [15] and the free channel types in [33]. Syntactically different user
interfaces would either simply prevent the same users from using the real and ideal
systems or lead to trivial distinguishability.

We make the following assumptions:

– The honest users can ask for standard cryptographic terms to be constructed and
sent to other users. In particular this includes nonces, XORs, encryptions, and sig-
natures. We sometimes describe the commands used for this by writing down the
desired result term in a quasi-algebraic notation.

– When an honest user receives a term, it gets notified by the system, and can then
perform at least some cryptographic operations on this term. We sometimes desig-
nate an opaque term t in such a context by the handle notation thnd.

– The XOR operation, when considered with respect to the user inputs, fulfills the
typical algebraic equations such as (t1 ⊕ t2) ⊕ t1 = t2 for all terms t1, t2. Note
that we can require this independently of how the Dolev-Yao model internally rep-
resents terms and how the real system encodes strings (e.g., with type tags or error-
correcting codes).

– The users can input payload data and have them output again. They can use payload
data as leaves in typical cryptographic terms (e.g., as a message to be encrypted;
the examples will show where exactly we assume that payload data can be used).

– The Dolev-Yao model offers some secrecy. At a minimum, we require that it does
not leak information about the payload in an encryption to the ideal adversary,
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except at most its term structure with types and lengths. Similarly, we require that
an XOR with a fresh nonce of sufficient length does not leak information about the
other XORed components to the ideal adversary, except at most their term structure
and length.

Beyond these minimum assumptions, we will make more assumptions in our first ex-
amples, to get easy and natural cases, but we will relax those other assumptions later.

As discussed above, reactive simulatability/UC requires a common representation
of terms at the user interface, i.e., some kind of names that designate either abstract
terms or real bitstrings when a protocol uses either the ideal or the real cryptographic
system. We call these names “handles” following [8]. Note, however, that we do not
assume any specific implementation of these handles, in particular not that they are local
names represented by successive natural numbers as in [8]. They could even be terms
(with a notion of holes where the term cannot be parsed for this user) or cryptographic
objects, although for many readers the latter choice would immediately disqualify the
ideal system from counting as a Dolev-Yao model.

3.3 Characteristics of Dolev-Yao Models and Real Systems

Our next assumptions concern what constitutes an ideal, Dolev-Yao-style system, and
what constitutes a real, cryptographic system. We obviously need such assumptions:
The notion of reactive simulatability is reflexive. Thus, if an arbitrary Dolev-Yao model
with XOR would also count as real, we would trivially have a secure realization of the
system by itself. The same would hold if an arbitrary real cryptographic system with
XOR would also count as ideal. But this is not what we want.

As we aim for impossibility results for large classes of Dolev-Yao models and re-
alizations, we try to make only minimum requirements on ideality and reality. Note,
however, that also a theorem that one particular ideal system, such as from the litera-
ture, cannot be realized, would be of some interest, and similarly for statements that
specific cryptographic libraries with XOR cannot be idealized.

Dolev-Yao Models. The seemingly essential feature of Dolev-Yao models is that they
work on term algebras, and not on real cryptographic bitstrings. However, this is not
easy to formalize. For instance, given only a list or pairing operation, one can in prin-
ciple construct terms that correspond to strings, and it may be possible to implement
real cryptography on them as very complex term operations. Hence one cannot sim-
ply define the presence of terms and the absence of bitstrings as the characteristics of
a Dolev-Yao model. Some other properties are easier to define, but not sufficient for
our results. For instance, a Dolev-Yao model is expected to be deterministic and inde-
pendent from concrete underlying cryptographic systems as long as they fulfill certain
definitions. However, these properties do not help much to construct counterexamples
because the simulator could give random values and algorithms to the ideal system
during their first interaction. Another property, which we will use but which is not suf-
ficient for the proofs, is the secrecy of local operations. This means that during a term
construction or the parsing of a received term and the potential output of some of its
components to the honest user, no intermediate results are exchanged with the ideal ad-
versary. All existing Dolev-Yao models fulfill this property since they treat the parsing
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of terms and the construction of response terms as monolithic transitions that do not
grant the adversary access to the term structure or even the subterms.

We overcome this lack of a clear characterization of Dolev-Yao models by resort-
ing to reduction proofs. We show essentially that every system (in particular a potential
Dolev-Yao model) that can faithfully abstract from cryptography and XOR in certain
situations, can be used to compute actual cryptographic operations. The reduction con-
sists only of very few and simple operations. This intuitively means that the main work
in computing the actual cryptographic operations must be done inside the system that
is supposed to be a Dolev-Yao model. This leads us to conclude (again informally) that
the system is not actually in Dolev-Yao style.

Real Systems. A general characteristics of real systems is that they are distributed.
This means that each participant has its own machine, and that the machines are only
connected by channels that offer a real adversary well-defined possibilities for obser-
vations and manipulation. Specifically for a cryptographic realization of a Dolev-Yao
model, we require that the machines only exchange messages according to the user in-
terface commands, i.e., when a term is exchanged between participants according to the
protocol. Specifically for XOR we usually assume that the real system contains a real
XOR on bitstrings. More precisely, we assume that message elements like signatures or
keys have a representation that is fixed for their type, and a real XOR of such message
elements is an actual bitstring XOR. In particular, payload data (see Section 3.2) may
have an internal representation different from the external one, e.g., with a type tag,
but then this fixed representation is used in all XORs. Whether the payload data are
used in the XORs in their original form or in a redundant encoding is an important dis-
tinction. The first case leads to easier counterexamples and is quite natural, e.g., when
one considers XORs in modes of operation like CBC, but we also consider the more
complicated case.

4 Impossibility Results and Their Consequences

This section contains our major results that aim at demonstrating the informal claim that
it is not possible to realize true Dolev-Yao models by real XORs in a generally compos-
able way. We first present counterexamples for simple cases, e.g., for non-redundant
representations of payload data and arbitrary users. Then we move to more involved
cases, e.g., to data of high redundancy and restricted protocol classes, that require more
sophisticated reasoning to establish the unsoundness of Dolev-Yao-style XOR.

4.1 Counterexample for Non-redundant Data and Arbitrary Users

Our first example is made under the additional assumption that payload data are non-
redundant in XORs, and that there is no restriction on the users H. The example is
shown in Figure 2. The real situation is shown on the left, the attempt at a simulation on
the right. The real adversary sends a random string y to the machine Mv of an honest
participant v. The user v gets a notification that a string (or term in the ideal case) was
received. The user v then asks to have this received string or term XORed with his or her
signature on payload data d, and to have the result output as payload data. As there is no
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Fig. 2. Example for non-redundant data and arbitrary users

redundancy in payload data under the assumptions of this case, the machine Mv cannot
recognize that the result is not payload data. Clearly, the user H and the adversary A
together can validate in the real system that the bitstring y ⊕ z is a valid signature on d,
assuming the public key pks for this signature is known. (Note that H and A are allowed
to interact in the definitions of reactive simulatability, e.g., to model chosen-message
attacks and plaintexts becoming public. Actually, in blackbox simulatability, one can
simply join H and A.) Hence in the simulation TH must also output a bitstring z with
this property. However, this intuitively means that TH can compute a cryptographic
signature.
Reduction proof. More precisely, we show as a reduction proof that if this situation is
simulated correctly, then TH can be used to compute signatures. Thus we construct a
signature oracle Sig with TH as a blackbox, and where Sig only performs very few and
simple operations itself in the signature computation phase. For its setup, Sig runs hon-
est users and the simulator for the generation of a signature key pair and the publication
of the public key pks . It publishes the same key. It further generates a random string y
and the arrival indication that Sim would give to TH for such a message; this is denoted
by yhnd in Figure 2. It waits for TH to notify the user; in slight abuse of notation we
again denote this with yhnd because typically both these values are just some handles.
Now Sig, when asked to sign a payload d, asks TH (as H would do) to XOR the term
denoted by yhnd with a signature on d, and to output the resulting payload data. It waits
for the output z from TH and outputs s := z⊕y. By the arguments above, this is indeed
a signature on d valid with respect to pks . Note that in the signing phase, the only op-
erations that Sig performs itself are the final XOR and the earlier user inputs requesting
the computation of a signature and an XOR and the output of payload data.

This proof seems a clear indication that this TH can compute a signature on an
arbitrary message.

4.2 Counterexamples for Non-redundant Data and Protocol Restrictions

If every permitted user H consists of a protocol prot from a restricted class Prots and
a user H′ of prot , then the example from Section 4.1 only still works if a permitted
protocol subtracts a signature from a received string and converts the result into payload
data. The simplest protocol that does this is written as follows in typical high-level
notation, and where d and sks are secrets known to u and v.

u → v : d′ ⊕ sig(sks , d);
v : Output d′.

This protocol may or may not belong to the class Prots of typical Dolev-Yao models
extended by XOR. For instance, the models might not allow joint secret payload data
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Fig. 3. Example for non-redundant data and protocol restrictions

and a joint secret key. If this simple protocol is in the class, then Figure 2 remains a
counterexample, even if we know that this protocol is the only use made of the ideal
or real cryptographic system: In the real system, Mv cannot know whether Mu started
this protocol. Hence whenever it gets a message y supposedly from Mu, it applies its
protocol step and thus acts as in Figure 2.

Otherwise, the following protocol is more likely to be permitted for arbitrary Dolev-
Yao models.

v → u : E(pkeu , sig(sksv , d));
u → v : d′ ⊕ sig(sksv , d);

v : Output d′.

Here pkeu denotes the public encryption key of user u and sksv the secret signing key
of user v. By our assumptions on the secrecy offered by Dolev-Yao models, the first
term does not leak the encrypted plaintext to the ideal adversary, in particular neither d
nor the signature. I.e., as long as TH and Sim are independent of the protocols run on
top, TH only outputs an opaque handle ehnd to the ideal adversary to indicate the first
term sent, see Figure 3. Then when Mv receives the second message y while Mu did not
really send it, the situation is essentially as in Section 4.1: Mv does not know whether
Mu sent the second term, so it reacts on any y supposedly from Mu. It always outputs
a result z. This result is passed through to the protocol user H′. So even H′ and A alone
(without observing the inner workings of the protocol prot ) can obtain y ⊕ z, which
should be a valid signature on d, which they also know.

4.3 Counterexample for Data with Low Redundancy

The situations studied so far no longer serve as counterexamples for implementability
of a Dolev-Yao XOR if we restrict the domain of payload data. Then Mv might usually
output an error ↓ instead of z. For this, the real system must contain an explicit conver-
sion between input data d and their redundant representation within the realization of
terms. We sometimes omit this conversion, but sometimes write it out as data2string
(with input pure payloads, and output the redundant encoding) and string2data. We
write the domain of string2data as Datastrings and its restriction to strings of length l
as Datastrings l.

A common case is that a realization implements a type system by tagging, i.e., by
representing all data as pairs of a type tag and the original data, and that the original
payload data can be an arbitrary string from an exponentially large domain. If the type
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Fig. 4. Example for potentially highly redundant data

tag in such a realization is short, the counterexample from Figure 2 still works. More
generally, we assume that the family of sets Datastrings l is not negligible within the
family of sets of all strings of length l. The string z in the example is uniformly ran-
dom (a fresh one-time pad y XORed with a fixed string) and thus with not negligible
probability we are in the situation as above, which cannot be simulated.

In some real implementations of type systems on strings, in particular XML, the
overall part of a string that is fixed by a type is of considerable length, so that the use of
a random y no longer works. However, a similar attack works for many realistic cases:
Assume that a subset Fixbitsdata,l of the bits of Datastringsl is fixed (e.g., opening and
closing XML tags), and similarly Fixbitssig,l for signatures. We can increase the latter
set by only considering signatures made with one known algorithm and with respect
to the known public key pksv . Now if Fixbitssig,l ⊇ Fixbitsdata,l, the adversary can
predetermine the necessary bits of z in y by XORing them with the corresponding fixed
bits of a signature.

4.4 Counterexample for Highly Redundant Data and Arbitrary Users

Before delving into slightly exotic reduction proofs, let us consider one relatively nor-
mal case although it does not correspond to a specific underlying assumption: If the
redundancy is of a complex form such that Sim cannot parse bitstrings with the struc-
ture y = d′⊕ sig(d) where both d′ and d are new, and if TH only expects from the ideal
adversary and thus from Sim an opaque indication that an XOR has been received (in
particular not the string y), and if the user later subtracts d′ and requests a signature test
on the result, then TH can obviously not react correctly, and it is too late to contact Sim
because of the secrecy of local operations.

Now we return to the case without additional assumptions, i.e., Sim is arbitrary and
may pass arbitrary strings to TH. We use the example from Figure 4. Participant v and
the adversary share a large number C of nonces n1, . . . , nC of a certain length l suit-
able for hiding signatures. Here C is chosen such that the nonces span the whole space
GF(2)l. This can be tested on the fly by A, and C be adapted accordingly. Now the
adversary chooses a random vector b R← GF(2)C and computes the linear combina-
tion N :=

∑C
i=1 bini of the nonces; this is as good as a fresh nonce. The adversary

also computes a signature s on data d with a secret key sksw where the public key
pksw was published, and sends s hidden by the new nonce as a message y = s ⊕ N



Limits of the Cryptographic Realization of Dolev-Yao-Style XOR 189

to participant v. Outside the system, A shares d and b with user v, represented in the
entirety of users H, corresponding to a chosen-message attack. Then user v gives the
commands to subtract the appropriate nonces from y and asks whether the result z is
a correct signature on d. Alternatively, the adversary does the same with an incorrect
signature s′. The real machine Mv will always decide this correctly. We now assume
that we have an ideal system TH and a simulator Sim that correctly simulates the same
situation. Intuitively, we want to show that TH must be able to test cryptographic sig-
natures for this. Formally, we derive a test oracle Test from TH that only performs very
simple, algorithm-independent operations outside its subroutine TH during the signa-
ture test phase. Intuitively, this shows that after a set-up phase, TH has learned the test
algorithm.

While signature oracles are usual in the literature, test oracles are not. When trying
to define one, we need to decide on an input distribution for the potential signatures.
For instance, if we input random values, the oracle may be correct with overwhelming
probability by always outputting false. Or, if we input either a correct signature or a
random value, there may be so much trivial redundancy in the real signatures that a
very simple oracle can make the distinction. We deal with this problem as follows:
We allow a second, arbitrary oracle Fake that tries to fake signatures. It must always
output wrong signatures. Intuitively a good oracle Fake makes its fakes as plausible as
possible. For instance, for RSA signatures with additional tags, random elements, and
fields for the public key and the signed data, it might set all these fields correctly, and
choose the rest randomly from the correct mathematical group. We require a test oracle
Test to be able to distinguish every fake oracle from a correct signature oracle.

Now we perform our reduction proof, i.e., we construct a test oracle Test from the
given TH and Sim. We call the fake or sign oracle O. In the setup phase, Test obtains
a public signature key pksw and runs the actions of Sim on this key together with TH.
This key and the corresponding pksw are also in O. It then runs A and Sim choosing C
nonces together with TH. Further, Test chooses a random string y and runs Sim upon
receipt of y as a message from the adversary for participant v. This finishes the set-up
phase.

Now, given input data d, it calls s ← O(d) and thus obtains a correct or faked
(wrong but possibly plausible-looking) signature s. It computes the one-time pad N
that makes s fit the previously chosen y by setting N := s ⊕ y. It solves the equation
N =

∑C
i=1 bini for a vector b (parts of this can be precomputed). It then makes the

user inputs for b to TH, i.e., for all i with bi = 1, it asks TH to XOR the i-th nonce
to the string. In this situation Mv would have the result z = s. Thus, when Test finally
inputs the signature test command for zhnd, then Mv would output B = true if O = Sig
and B = false if O = Fake. Hence TH almost always does the same. This proves that
TH can be used as a test oracle for arbitrary machines Fake. Intuitively, this shows that
TH must have the specific cryptographic test algorithm used in the current realization
implemented after the set-up phase.

4.5 Counterexamples for Highly Redundant Data and Protocol Restrictions

Similar to Section 4.2, we may ask whether reasonable protocol restrictions allow us
to exclude the situation from Section 4.4. First, if Mv’s action is part of a protocol, we
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need that participant v is willing to execute the protocol with a corrupted participant
w. This corresponds to the fact that the adversary may corrupt at least one participant,
and that the other participants do not know about this. All Dolev-Yao models we know
of allow this trust setting. Secondly, the protocols might not use payload data d and bit
vectors b on both sides that were not exchanged using the Dolev-Yao model. For the
data, we can assume a signature system with message recovery and let the user retrieve
d, or we can send d explicitly with the signature, hidden by N . It is trivial to adapt the
reduction proof to this.

For the bits, we may assume that they are sent as payload data, and that the protocol
class is large enough that Sim has no reason to interpret these payload data in relation
to specific messages. To go further towards a reasonable protocol with such behavior,
assume that we are doing some group communication where every group member adds
a nonce to a message, and the recipient subtracts all these nonces. In our situation, a
large number of group members is dishonest, so that all these nonces are shared with the
adversary. Further, the groups can vary and the current group membership is indicated
by the vector b (suitably augmented by a bit for v, and bits for the possible other honest
group members).

5 A Passively Sound Dolev-Yao-Style Model for XOR

The main special case of Dolev-Yao-style XOR that we prove to be sound corresponds
to passive attacks only, together with a type-consistency requirement on the protocol
above the Dolev-Yao model. In other respects the result is strong: We show reactive
simulatability and need no restrictions on the other operations in the Dolev-Yao model;
this distinguishes our result from those in [30,11]. Roughly, the benefit of the restriction
to passive adversaries is that all XORs are constructed bottom-up. Thus the simulator
never receives bitstrings that claim to be XORs but where it does not know how to par-
tition them. The necessity of the type-consistency requirement is shown in Section 5.1.
We then sketch our Dolev-Yao version of XOR, in particular the extensions compared
with current models in the literature that we need to overcome the secrecy problem
from Section 2. Afterwards, we sketch the cryptographic realization of this XOR and
the security statement that combines reactive simulatability with passive attacks and
the type-consistency requirement. The details of the Dolev-Yao version, the realization,
and the simulator are available in a long version; they require significant introduction of
notation from the underlying reactively simulatable Dolev-Yao-style model from [8].

5.1 The Necessity of Correct Type Conversions

The largest difficulty with XOR even in the passive case is typing. XORs can yield
arbitrary bitstrings, while otherwise it seems necessary for achieving reactive simu-
latability that a Dolev-Yao model is strongly typed. The reason is that the Dolev-Yao
model must make a decision what happens if a destructor is applied to a term that is
not properly constructed, e.g., if decryption is applied to a term that is not encrypted
at all or with a different key. The only result that seems consistently realizable with
real cryptosystems is to prescribe that the result is an error. In other words, the terms
are considered typed, and many operations (in particular destructors) yield errors when
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applied to wrong types. In the cryptographic implementation, this must be realized by
explicit type tags.

For an XOR, however, the algebraic equations like commutativity and associativity
are considered essential, and they apply to pure bitstrings, not to bitstrings with type
tags. The real problem with this typing, however, occurs when converting an XOR back
into the original element type. This is a standard situation when XOR is used for explicit
or implicit encryption: At some time, the subterms in an XOR cancel out except for one;
typically random strings cancel out and one term of another type remains, e.g., payload
data. This subterm must be usable by its recipient according to its original type. This
is easy to realize in the Dolev-Yao model because one can retain the knowledge of
the original type of the subterm. However, in a real, distributed cryptographic system,
this is not possible: When two terms are XORed, we cannot reliably decide whether
the result is of an underlying type. This is obvious if we remove all type tags before
XORing (which is one possibility, and comes closest to typical message formats in
XORs). It is also true if we XOR base types with their type tags, e.g., data for payloads
and sig for a signature, because these tags can occur by chance when XORing arbitrary
strings. Then a participant in the cryptographic realization would get a result (e.g., a
payload message) which is totally unpredictable in the Dolev-Yao model; this destroys
reactive simulatability. One natural solution to circumvent this problem is to forbid
wrong typecasts on the user layer. This may sound like a strong restriction, but actually
XOR is an operation that a cryptographic library should not offer to end users (e.g.,
a mail program), but only to cryptographic protocols. For protocols it is usually clear
what types are expected at what times, and when one expects to be able to extract some
payload from an XOR. Correct behavior in this sense can be verified on the protocol
layer if we only allow passive attacks.

5.2 The Dolev-Yao-Style XOR

The main new operation for honest users is the XOR itself, called XOR. In our Dolev-
Yao model it is implemented with immediate normalization, i.e., if terms m1, . . . , mj

are XORed, all those that are XORs themselves are replaced by their parameter lists.
The resulting overall parameter list is sorted and duplicates are canceled, i.e., parame-
ters occurring an even number of times disappear and those occurring an odd number
of times only occur once.

Honest users can also ask to have an XOR converted back to a different type x by a
command conv xor to x . This only works if the XOR term (which is normalized) has
only one parameter of the correct type.

Finally, honest users can generate nonces of variable length. These are like normal
nonce terms with an additional leaf for the length; they are useful for hiding arbitrary
other terms in XORs. (The notion of abstract lengths of the underlying library [8] en-
ables protocols to choose the correct lengths.)

The most interesting part is to correctly implement the adversary capability of pars-
ing certain XOR terms; in the underlying model this becomes part of the general com-
mand adv parse available to the adversary. As in other Dolev-Yao models of XOR, this
capability depends on previously obtained XORs because a corresponding real adver-
sary may perform linear algebra on the different XORs, which correspond to different
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linear combinations of the base terms. In addition, we allow the ideal adversary to parse
XORs of non-random types as explained in Section 2. Finally, we have to consider that
nonces can only hide other terms if they are long enough.

For the linear algebra needed for these goals, we define matrices over GF(2) repre-
senting released XORs. Each column of a matrix corresponds to a released XOR and
the rows to the existing terms. A coefficient 1 indicates that the term is a top-level para-
meter in the XOR. We also make a column for each released individual random value.
Matrix A indicates the non-random components in each XOR, while R(l) for each l ∈ N

indicates the random components of length at least l, and R̄(l) those of length less than l.
We now sketch the algorithm for parsing an XOR term m; the corresponding algo-

rithms for nonces are a much simpler version of this.

– Let (x1, . . . , xh) be the arguments of the given term m. Let l be the maximum
length of a term xi that is neither random nor yet known to the adversary, i.e., a
term to be protected.

– Let a, r(l), and r̄(l) denote the vectors that this newly parsed XOR will add to the
matrices A, R(l), and R̄(l), respectively. Try to solve the equation R(l)b = r(l).

– If no such b exists, the adversary does not learn any new information from this
XOR.

– Otherwise let d := Ab⊕a and r′ := R̄(l)b⊕r̄(l). These are the linear combination of
XORs, including the new one, for which we just saw that the random components of
at least length l cancel out. Hence we let the ideal adversary learn the non-random
terms designated by the vector d and the short random terms designated by the
vector r′.

5.3 Concrete Realization of the Dolev-Yao-Style XOR

In the cryptographic realization, individual machines Mu of individual users operate
on real cryptographic bitstrings. As discussed in Section 5.1, these bitstrings are typed
in [8], and this is simply done by initial type tags. Whenever several typed bitstrings are
XORed, we first remove their type tags, bring all remaining bitstrings to equal length
by prepending zeroes, XOR these equal-length bitstrings, and finally prepend a tag xor
to the resulting bitstring.

5.4 Soundness of the Abstraction

Our security claim is that the cryptographic realization from [8] extended with XOR as
sketched in Section 5.3 is as secure as the Dolev-Yao-style model from [8] extended by
XOR as sketched in Section 5.2 in the sense of blackbox simulatability, provided that
the adversary is restricted to passive attacks and that the surrounding protocol ensures
that XORs are only converted if they consist of a single element and the conversion
matches the type of this element. We call the latter property of a configuration correct
XOR conversion, or short CorrXOR.

The rigorous presentation of this property would again need a lot of additional nota-
tion from [8], but the essence is simple: For a given trace of the Dolev-Yao style system
(i.e., a sequence of inputs, outputs, and states), we say that CorrXOR holds iff for all
inputs of the command conv xor to x made by honest users the preconditions of this
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command described in Section 5.2 are fulfilled. In other words, the honest users only
ask for type conversions that the Dolev-Yao model can actually make. We now say that
a user machine H fulfills CorrXOR if all traces of the Dolev-Yao model running in in-
teraction with H, independent of the adversary, fulfill CorrXOR. Reactive simulatability
with correct XOR conversion means that the comparison of the Dolev-Yao model and
the cryptographic realization (see Figure 1) is only made for these users.

Passive attacks in the underlying model can be defined as follows. First, no ma-
chines of the cryptographic realization are corrupted. Secondly, all channels are au-
thentic; this is a well-defined notion in the underlying model. The proof of soundness
still works if we relax the authenticity restriction by allowing message re-ordering, re-
routing, and duplication, i.e., by solely requiring that the adversary only sends messages
that it previously received from an honest participant.

For proving reactive simulatability for the original Dolev-Yao-style model and real-
ization without XOR, a simulator Sim has been defined in [8]. We sketch in the long ver-
sion how we extend the simulator and the proof of correct simulation to deal with XOR.

6 Conclusion and Outlook

We have shown that Dolev-Yao models augmented by XOR, the simplest operation with
algebraic equations in many formal methods and automated tools for cryptographic
protocol proofs, cannot be realized by actual cryptographic libraries in a way that is
at the same time natural, secure, and usable without restrictions. Our first result shows
that typical Dolev-Yao models with XOR are not sound with respect to any secrecy
definition; here we only assume that the Dolev-Yao model contains at least a payload
data type and allows XORs on it.

The intuitive goal of our more complex results is to show that no Dolev-Yao model
with usual cryptographic operations and XOR can be securely implemented in the sense
of reactive simulatability/UC, i.e., in the sense that the realization can be safely plugged
in for the abstraction in arbitrary environments and for arbitrary goals. As there is no
formal definition of what is and isn’t a Dolev-Yao model, and as the result would cer-
tainly not hold if we also called cryptographic realizations Dolev-Yao models, we have
approached this intuitive goal by a series of results that make certain precise assump-
tions about Dolev-Yao models as well as real XORs, and then show impossibility.

On the positive side, we have presented a Dolev-Yao-style model with XOR that has
a cryptographic realization secure against passive attacks if the surrounding protocol
additionally guarantees that no incorrect conversions of XORs back into other types are
attempted.

As future work, we expect that there are possibilities for positive results also under
active attacks by strong restrictions on the protocol class or the security properties re-
quired, i.e., by no longer requiring reactive simulatability between the Dolev-Yao model
as such and its realization. However, we believe that our impossibility results pose se-
vere limits on the applicability of formal methods for XOR and cryptography when
ultimately a cryptographically sound implementation is desired. The results certainly
also prove that one cannot simply add operations with algebraic properties to a Dolev-
Yao model if one aims at general secure realizations, even if the operation on its own
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seems simple and well characterized by its algebraic properties, as XOR is. We actually
believe that the difficulties we had with XOR are not an exception, but the norm. How-
ever, this remains future work, except that the results trivially generalize to the Abelian
groups Z2l , into which bitstrings can be bijectively mapped.
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Abstract. Security protocols are critical for protecting modern communication
infrastructures and are therefore subject to thorough analysis. However practical
implementations of these protocols lack the same level of attention and thus may
be more exposed to attacks. This paper discusses security assurance provided
by security-typed languages when implementing cryptographic protocols. Our
results are based on a case study using Jif, a Java-based security-typed language,
for implementing a non-trivial cryptographic protocol that allows playing online
poker without a trusted third party. The case study deploys the largest program
written in a security-typed language to date and identifies insights ranging from
security guarantees to useful patterns of secure programming.

1 Introduction

Networked commerce, health, and military applications critically depend on underlying
security protocols. Malicious attacks on these systems target vulnerabilities of two ba-
sic kinds—vulnerabilities of protocols and vulnerabilities of protocol implementations.
Although the first kind of vulnerabilities is dangerous, the descriptions of security pro-
tocols are often open to public and are subject to thorough analysis by security experts.
As a result, discovering and exploiting protocol-level weaknesses is significantly more
daunting than attacking flaws in protocol implementations (cf. the need for a paradigm
shift in cryptology [4]). This is also confirmed by CERT® incident reports where most
of exploited flaws come from inadequate implementations. In the context of protocols,
recent discoveries of multiple vulnerabilities in different implementations of the well
studied SSL/TLS protocols [1] uncover insecure implementations that can be exploited
to allow a remote attacker to execute arbitrary code.

To defend against implementation-level attacks, modern security technology relies
on common principles for building secure software [47], including prudent techniques
for deploying cryptographic software [23]. Moreover, since the paradigm shift in cryp-
tology, much work has been done on timing, cache, power-consumption, and other
implementation-level attacks. Nevertheless, the resulting principles and techniques are
somewhat ad-hoc; they provide no end-to-end guarantees that systems preserve the con-
fidentiality of secret data. For example, these principles and techniques provide little
help in preventing an accidental leak of a secret key to a public field, or revealing a
secret bid in an online auction before all participants have committed their bids. These
are examples of undesired information flows that compromise confidentiality.
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Security-typed languages have emerged over the past decade as an attractive ap-
proach to preventing insecure information flows (see [39] for a survey). These lan-
guages allow labeling sensitive data with security levels (naturally extending conven-
tional types to security types). Security type systems regulate flows between data at
different security levels, providing tight control over information flow.

Recent developments [33, 5, 37] raise hope for the possibility of regulating the prop-
agation of sensitive information by security type systems in realistic languages. Fur-
thermore, compilers for these languages such as Jif [36] (based on Java) and Flow-
Caml [45] (based on Caml) have been developed. Nevertheless, “despite this large
body of literature and considerable, ongoing attention from the research community,
information-flow based enforcement mechanisms have not been widely (or even nar-
rowly!) used” [48].

The challenge is whether security-typed languages scale up to real systems. In par-
ticular:

– How helpful are security types for identifying potential insecurities in security-
critical code?

– How laborious is the process of security typing? Does it force unnecessary restric-
tions on code?

– Is the security assurance provided by security types transparent enough?
– What is the general balance of benefits and drawbacks when using security-typed

languages?

Addressing these challenges seems impossible without practical experience in de-
ploying security-typed languages. Motivated by this, we have performed an in-depth
case study of securing an implementation of a non-trivial cryptographic protocol in the
security-typed language Jif. To the best of our knowledge, this implementation is the
largest program written in a security-typed language so far.

The focus of the case study is a protocol for online poker without a trusted third
party (also known as mental poker [44]). This protocol has direct application in e-
gambling, but it is also generally interesting because its security goals are similar to
those of many other protocols. These goals include confidentiality in an environment of
mutual distrust (in the absence of a trusted third party), auditability, fairness, and detec-
tion of cheating with high probability. This gives us a range of security properties that
are useful in security-critical applications. For example, in online voting, it is important
that every vote remains confidential yet the result (such as the number of votes for each
candidate) becomes known to the public after the election is over. Besides confidential-
ity, a form of auditability is a desired security property here—it should be possible to
recount the results. Another example with similar goals is an online auction protocol
with mutual distrust. Participants reveal their secret bids only when the bidding phase
has been completed. That the participants cannot alter their bids in the verification phase
is also a form of auditability.

It is worth mentioning that the threat model adopted in this paper does not include
covert channels that are due to probabilistic, timing, power-consumption, and cache
behavior. Neither integrity nor availability issues are treated in our setting. While these
restrictions are inherited from Jif’s threat model, they are not fundamental to security-
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typed languages. Indeed, there are such languages capable of treating various covert
channels [3, 41], as well as integrity [25, 49] and availability [51].

The case study has been conducted in three steps. First, we have implemented a
baseline implementation in a conventional programming language (Java). Second, we
have lifted this implementation to Jif. Finally, we have distributed the Jif implementa-
tion in order to simulate a realistic scenario where players run their parts of the protocol
on their respective machines.

The case study has resulted in a range of insights into the challenges above (whose
summary we defer to the conclusion). Further, the case study has suggested the need
for richer mechanisms of information release (currently lacking not only in Jif but in
most available information flow analyses). Additionally, we have developed patterns for
secure programming that help streamline the process of security typing. Furthermore,
we have uncovered some vulnerabilities and problems in Jif that lead to interesting
directions for improvements.

The rest of the paper is organized as follows. Section 2 provides some background
about the protocol for mental poker and the Jif language. Section 3 discusses the three
different implementations. The lessons learned from the case study are reported in Sec-
tion 4. Section 5 presents some programming patterns that have emerged from our expe-
rience in security-typed programming. Section 6 comments on related work. Section 7
concludes the paper.

2 Background

This section contains necessary background on protocols for mental poker and an in-
troduction to security-typed languages and Jif.

Mental poker In the popular card game of poker players with fully or partially con-
cealed cards make wagers into a central pot. After several rounds of betting the pot is
awarded to the remaining player or players with the best combination of cards. Mental
poker is a well-known problem in cryptography on how to “play a fair game of poker
[. . . ] over the phone” [44] or how to play poker without a trusted third party (TTP). This
problem continues to attract researchers and many solutions have been proposed [22,
12, 13, 29, 28, 43, 8, 6].

Crépeau has outlined some objectives for mental poker [12], summarized as follows:

1. Uniqueness of cards: every card must appear exactly once—either in the deck or in
the hand of one player. This property can only be broken as a result of detectable
cheating.

2. Uniform distribution of cards: the hand of each player must be possible with equal
probability and must depend on decisions made by every player.

3. Absence of TTP: players trust neither each other nor any third party.
4. Cheating detection with high probability: the probability that a player may cheat

without being detected must decrease fast (exponentially) with respect to some

2.1 Protocols for Mental Poker

.
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security parameter that the players must agree on before the game. Also, the amount
of work to accomplish the protocol should increase reasonably (polynomially) with
respect to this parameter.

5. Complete confidentiality of cards: no information about any card from the deck
may be obtained without the approval of every opponent. Also, no information
may be obtained from a player’s hand without his or her approval.

6. Minimal effect of coalitions: when more than two players are involved, some play-
ers could establish secret communication and exchange all their knowledge about
the game. Nonetheless they should not be able to learn more than what they can
deduce from the cards in their coalition.

7. Confidentiality of strategy: losing players may keep their cards secret at the end of
a game.

Although protocols that claim to achieve all these properties have been proposed [13,
29, 28], they are demanding to computation time and are unacceptable in practice [18,
24]. For our case study, we have adopted a protocol by Castellà-Roca et al. [8] that
achieves these properties (with the exception of the last one) and is practical in terms of
computational requirements.

Castellà-Roca et al. TTP-free protocol In this protocol all players cooperate in shuf-
fling, so that no player coalition can force a particular outcome. Every player generates
a random permutation of the card deck and keeps it secret; the player then commits
this permutation using a bit commitment protocol. The shuffled deck is formed by the
composition of all players’ permutations.

Turning a physical card face down corresponds to encryption. Shuffling a card cor-
responds to a mathematical operation over the card’s representation. The protocol uses
an additive and multiplicative homomorphic cryptosystem, such as [17], to shuffle a
deck of cards and maintain the privacy of the cards. The outcome of permuting an en-
crypted card and decrypting it is the same as if the card had been permuted without
prior encryption.

When the game is over, the players reveal their encryption keys and permutations for
validation. Requiring the disclosure of players’ strategies after the game is a limitation
of this protocol. On the other hand, it raises an interesting security goal of preventing
hand revelation earlier in the game.

Secure information flow Information flow from object x to object y occurs whenever
the value of y is affected by the value of x. Explicit flows are results of assignment
statements (e.g., y=x), I/O statements, and value returns by functions. The flow in these
cases is caused by the operation explicitly; whether the operation is reached during
execution does not necessarily depend on the value of x. By contrast, implicit flows [16]
occur whenever x affects y through control flow, i.e., the execution of a statement that
updates y depends on x. For example, in the fragment y = 1; if (x == 0) y = 0,
the if statement causes an implicit flow from variable x to y.

2.2 Security-Typed Languages and Jif

.

.
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The problem of information flow is relevant for se-
curity if, for instance, x stores sensitive information and
y is a public system output. In this case, the control
of how sensitive information propagates in the program
is crucial for protecting confidentiality. Generally, pro-
gram data can be associated with security levels, which
constitute a security lattice [15]. The higher the security
level is located in the lattice the more sensitive informa-
tion is associated with this level. Figure 1 presents two
examples of lattices: a two-element lattice with high and low levels corresponding to
secret and public information; and a four-element lattice with a public element ⊥, a
top secret element �, and two mutually incomparable intermediate elements �1 and �2.
Information flow is considered secure if the level of the flow target is higher than (or
the same as) the level of the flow origin.

Decentralized label model The decentralized label model (DLM) [34] is a security
model in which principals express their privacy concerns via labels. Principals in DLM
(e.g., users, groups, and roles) may own, update, and release information. Labels are
used to guarantee confidentiality. Every label consists of a set of policies that express
privacy requirements. A privacy policy has two parts: an owner and a set of readers; and
is written in the form owner:readers. By definition, an owner is implicitly contained in
its readers set. A principal is allowed to read data if and only if it is contained in the
reader sets of all policies of the label attached to the data.

Jif Jif [33, 36] is an extension of the Java language with DLM labels. In Jif, methods
can be granted authority to act for some set of principals. Authority regulates the ability
of a method to declassify (or downgrade) the data: weaken or remove a policy in a label.
This is possible if a policy is owned by a principal that is a part of the process authority.

An example of a label written in Jif syntax is {Alice:Bob,Carol;}. This label
contains a single policy in which Alice is the owner; and Alice, Bob, and Carol are
the readers. The label {Bob:Alice;Alice:Carol;} contains two policies. In this label
Alice is the only principal present among readers of both policies. Hence, only Alice
can read the data.

Variable types in Jif are composed of two parts: a regular Java type, such as boolean,
and a security label, indicating how the value stored in this variable may propagate. For
instance, the type boolean{Alice:Bob} represents a boolean that Alice owns and Alice
and Bob can read. The bottom security level corresponding to public data has label {}
(with the empty list of policies).

int {Alice:} x;

int {} y = 1;

...

if (x == 0) y = 0;

In security-typed languages implicit flows are often
controlled by the program-counter label (pc). This label
tracks dependencies of the program counter. Recall an
example given earlier (displayed in Listing 1) with some
variable definitions. Here, the pc in the branch of the if

statement captures the dependency on x and, thus, has label {Alice:}. The assignment
statement is rejected by the compiler because the variable y is less secure than the pc.

.

.

Fig. 1. Examples of lattices

Listing 1. Implicit flow
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Method declarations and constraints Method declarations in Jif may be annotated with
two optional labels, called begin-label and end-label. Begin-label is a lower bound on
the side effects of a method. That is, Jif prevents calling a method if pc at the invocation
point is higher than the begin-label of the method being invoked. By default, if no begin-
label is specified, it is assumed that the method has no side effects and can be called
regardless of pc of the caller (i.e., from any context). A method’s end-label carries
information about how much can be learned by observing if the method terminates
normally or raises an exception. After the method invocation, pc of the caller is affected
by the end-label of the method that has been called.

Arguments and return values can also be labeled with their security levels. An ex-
ample of a method declaration is:
public boolean{Alice:Bob} validate{Alice:}(String{} s, int{} hash):{Alice:}

In this example, the function validate takes two arguments both of which are of the
bottom security level. The return value has label {Alice:Bob}. Both the begin- and
end-labels are {Alice:}.

Jif methods may contain a list of constraints prefixed by the keyword where. Two
kinds of constraints are useful for our purposes: (i) authority(p1 , . . . , pn), listing prin-
cipals that this method is authorized to act for, and (ii) caller(p1 , . . . , pn), listing prin-
cipals whose authority the caller of the method is required to possess in order to run this
method. We return to some security implications of these constraints in Section 5.4.

public class IntegerLeak {

private int {Alice:} secret;

public int{Alice:} div(int{} a) {

return a/secret;

}

}

Exceptions In contrast to Java, Jif disal-
lows unchecked runtime exceptions. Con-
sider the program (which is rejected by
the Jif compiler) in Listing 2. If variable
secret is zero, ArithemeticException

is thrown by the method div. Observing
whether this exception takes place would
expose some information about the value of secret.

class X[label L] {

private int {L} p;

public int{L} getP() {return this.p;}
public void setP{L} (int {L} n) {

this.p = n;

}

}

Parameterized classes Jif classes and in-
terfaces can be parameterized over labels
and principals. This is useful for build-
ing reusable data structures. For instance,
instead of writing two separate Player

classes for Alice and Bob, which would
only differentiate in the labels of the cor-
responding variables, one can write a single class Player[P] parameterized over prin-
cipal variable P. Later in the instantiation, this parameter is replaced by the actual prin-
cipal (e.g., Alice or Bob).

Listing 3 displays an example of a Jif class parameterized over label L. This la-
bel is used in the declaration of class fields, such as p, and methods, such as getP()

and setP(). An example of how this class can be instantiated with label {Alice:} is
X[{Alice:}]{Alice:} x = new X[{Alice:}](). Note the two labels that appear in
the declaration of the variable x. The first one is a parameter of the class, while the
second is the label of the referring variable.

.

.

.

Listing 2. Flow via exception

Listing 3. Parameterized class
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Array labels Being mutable data containers, arrays have two labels: one for the ele-
ments of an array, and the other for the array itself and its length. A single label for
arrays would allow laundering attacks (i.e., code that exploits a vulnerability in a pro-
tection mechanism in order to leak more information than intended). Assume that arrays
only had a single label. A variable indeck of type int[]{} with a single label {} could
be assigned to a variable hand typed int[]{Alice:}. Then it would be safe to assign a
variable cardvalue labeled {Alice:} to an element of array hand. However, this value
would become visible through the variable indeck. This provides an illustration of a
laundering attack.

An example array declaration is int{Alice:}[]{} hand. This array denotes Alice’s
hand of cards. The length of the array has the bottom label ({}); indeed, it is publicly
known how many cards a player has. In contrast, the values of the actual cards are secret
for others. Therefore, the elements of the array are labeled as {Alice:}.

Declassification Many secrets have their lifetimes, after which they are not secrets
anymore. Controlled information release or declassification is an important aspect of
security-typed languages. It is safe to move data to a higher position in the security lat-
tice. However, declassification relabels program variables so that the resulting label can
be less restrictive than the original. Declassification in Jif is expressed via declassify

statements. The process is required to have sufficient authority to declassify data. For
example, to declassify a variable x of type int{Alice:} to int{} a process is re-
quired to have the authority of Alice. An example of a declassification statement is
y = declassify(x,{}). Here, the declassify statement returns the value of x rela-
beled to {}, which is assigned to y.

3 Implementation

This section discusses the three different implementations we have developed [2]. The
baseline implementation is in Java, the two remaining ones are in Jif. For both Jif im-
plementations we assume the presence of two principals Alice and Bob (without loss of
generality we assume two players).

One motivation for an implementation in Java is to set a baseline implementation that
would have been produced by ordinary Java programmers. Another reason is that de-
bugging Jif programs often becomes burdensome. The baseline implementation follows
Castellà-Roca et al.’s protocol for two players (Alice and Bob). It can be straightfor-
wardly extended to multiple players. In this implementation, we have developed the
main functional part of the program. A player is represented by a class Player. This
class contains the player’s data (such as the name, the hand of cards, cryptographic
keys, and the game log) and methods that implement initialization, card drawing, and
ending protocols. These methods are called by the game coordination routines.

3.1 Java Baseline Implementation

.

.
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{Bob:}{Alice:}

{Alice:;Bob:}

{ }

The second implementation lifts the Java version to Jif
(as realized by the current distribution Jif 1.1.1). Fol-
lowing the security objectives, we have adopted the
security lattice in Figure 2. The sensitive information
of the players carries the labels {Alice:} and {Bob:}.
The data passed between the players is downgraded to
the bottom level ({}).

Lifting Java programs to Jif involves the follow-
ing steps: (i) writing signatures for necessary Java API
classes, (ii) changing some of the classes to Jif ana-
logues, (iii) parameterizing classes over labels and principals, (iv) assigning labels to
class fields, (v) assigning begin- and end-labels to functions and arguments, (vi) han-
dling runtime exceptions, and (vii) writing helper functions for declassification of large
data structures. Note that, there is no linear dependency in performing these steps—the
process of lifting may (and is likely to) consist of a number of iterations and repetitive
refactoring. Below we discuss these steps in detail.

Writing signatures To compile against existing Java API classes, the Jif implementation
needs Jif signatures for these classes. Although writing signatures is a relatively simple
task compared to Jif programs, this should be done with care. It is possible to misuse
this feature (see Section 4.4 on problems and vulnerabilities related to signatures).

Changing to Jif analogues Writing class signatures for Java classes can be avoided if
there is a Jif analogue providing the same functionality. For example, the Jif implemen-
tation uses jif.util.ArrayList instead of java.util.Vector. The former is written
completely in Jif, which makes its usage both safer and more convenient.

Parameterizing classes Class parameterization is heavily used by the Jif implemen-
tation. Most of the classes are parameterized over an invariant label L, which stands
for the security level of the information stored in instances of these classes. The main
class of the implementation Player[principal P, label L] is parameterized over
the player principal P, and the label of the output channel L. Therefore, in this class the
label {P:;L} corresponds to the high label and {L} to the low one.

Assigning labels to class fields It is important to identify which variables contain sen-
sitive information and how restrictive their labels should be. It is sometimes convenient
to use high labels for low data, for example, when a low variable is only used in a high
context.

Assigning labels to functions and arguments Recall that begin- and end-labels in method
declarations are related to side effects in the program: in this implementation we iden-
tify side effects in Jif programs by the following events: (i) assignment to a non-final
member variable, (ii) assignment to a mutable data structure such as an array or a class,
and (iii) calling a method with side effects.

3.2 Jif Implementation

.

.

.

.

.

Fig. 2. Security lattice for Jif im-
plementation
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implementation

BinderPlayer 1 Player 2

Input 1
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(b) Distributed implementation architecture

Fig. 3. Distributed implementation

Catching/throwing runtime exceptions Because unchecked exceptions may lead to in-
formation leaks, Jif requires runtime exceptions to be handled. Our Jif implementation
uses the following disciplines:

– Declare and throw: an exception is declared in the method header and the respon-
sibility to handle it is passed to the caller. However, this exception still has to be
handled by the caller; moreover, its origin becomes obscured for the caller since it
may be thrown at different points in the method.

– Avoiding exceptions: Jif compiler has a simple, yet useful, dataflow analysis that
may detect if a local variable is null at a particular program point.

– Catch and ignore: there are two scenarios when a programmer might want to ignore
an exception:
• there are sufficient guarantees in the code that the exception may not be thrown,

and
• the programmer deliberately hides the presence of the exception.

– Catch and handle: exception may be handled, and a custom application exception
is thrown by the method that contains information about the error.

The ArgCheck pattern (Section 5.1) describes how NullPointerExceptions caused by
method arguments can be handled.

Modularizing declassification See the Declassifier pattern in Section 5.2.

The third implementation has been developed to provide a “real-world” application of
Jif. In this implementation players run as different processes and standard input/output
is used as a communication medium.

Figure 3(a) displays the security lattice for one of the players (Alice). Here L is
the label of the run-time environment. Sensitive variables in the program are labeled
by {Alice:;L}. System outputs have the label {L}. The lattice for the other player’s
process is similar.

Figure 3(b) illustrates how the distribution works: two player processes communi-
cate through a binding process so that I/O pipes of both processes are connected to that
process.

3.3 Distributed Jif Implementation

.

.
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The introduction of distribution to the Jif implementation involves these steps: (i)
changing the logic of the coordinating process to take care of the distribution, (ii) writ-
ing helper classes for serialization of objects into strings and visa versa (strings can be
easily exchanged by the processes), and (iii) writing a synchronization program that
interconnects two processes via pipes.

4 Evaluation

This section reports on lessons we have learned from this case study. We compare the
three implementations, evaluate security assurance provided by the security-typed im-
plementations, discuss the role of declassification, and report some problems we have
uncovered in Jif.

Java vs. Jif implementation Lifting Java programs to Jif is not straightforward. Sec-
tion 5 presents useful programming patterns we have developed over the process of
lifting. The Jif implementation is a result of successive refactoring iterations over the
initial Java version. The main impact is caused by the security label annotations of
program variables. These labels propagate further into the begin- and end-labels of the
methods. Following this propagation, we have rewritten Java methods in such a way
that the Jif version either repairs a discovered flow or declares it explicitly either via a
declassification statement or via a method header. This technique increases assurance
that the program protects the confidentiality of sensitive variables.

Explicit declassification helps specifying exactly which data is downgraded, who
authorizes downgrading, and where in code it is downgraded. Thanks to declassifica-
tion statements, intended leaks in the program are reduced to declassification points in
the code. A detailed discussion of the declassification points in our implementation is
presented later in this section.

Jif has helped uncover some insecurities in the Java implementation. Although it
is not obvious how these particular insecurities can be exploited, they still represent
potential vulnerabilities. One of the interesting insecurities we have discovered in the
Java implementation is due to exceptions occurring at high security levels. Listing 4
illustrates this insecurity:

public class ExceptionLeak[label L] {

private int{} readInput{}() { ... }

public void exceptionLeak{}() throws Exception{

while (true) {

int{} x = readInput();

6 highMethod(x);

}

}

private int{L} highDenominator;

private int{L} highCounter;

private int{L}[]{L} highArray;

12 private void highMethod{}(int{} x)

throws ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException {

highArray[highCounter++] = x/highDenominator;

}

}

4.1 Comparison of the Three Implementations

.

Listing 4. Example of leaks via exceptions
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Here, any of exceptions ArrayIndexOutOfBoundsException, ArithmeticException,
or NullPointerException can be thrown in a high context reflecting problems in the
high variables highDenominator, highArray, and highCounter. Therefore, the caller
of highMethod on line 6 obtains information not only about the successful termination
of the method but also details on what kind of exception has occurred and, in more com-
plicated scenarios, the stack trace back to the origin of the exception! The SuccessFlag
pattern (Section 5.5) describes how one can prevent such leaks.

Jif vs. distributed Jif implementation While the second implementation reveals im-
portant security issues, the third one is more interesting from a practical point of view.
From this perspective, the second implementation may be considered as an intermedi-
ate step toward the final distributed version. The second and third implementations have
both been developed in Jif. Most of the code from the second implementation is reused
in the third. Thus, the third implementation benefits from the security guarantees that
are achieved in the second version and, in addition, is a simple, yet fully functional,
example of a distributed program written in a security-typed language.

Because the distributed Jif implementation encompasses the features of the inter-
mediate Jif implementation, the rest of the discussion refers to the distributed Jif imple-
mentation as the Jif implementation, unless specified otherwise.

Recall from Section 2 the security objectives provided by the underlying protocol: (1)
uniqueness of cards, (2) uniform distribution of cards, (3) absence of TTP, (4) cheating
detection with high probability, (5) complete confidentiality of cards, and (6) minimal
effect of coalitions. Although these objectives are addressed by protocol design, our
goal is to ensure that the protocol implementation may not violate these objectives. Let
us discuss how these objectives are addressed by the Jif implementation.

The first and the second properties rely on the random number generators, supported
by Java API. The third property (absence of TTP), which is crucial to the protocol, is
not broken by our implementation. Indeed, the implementation does not introduce a
TTP as there are only two principals—the players. Cheating detection is supported in
our implementation via logging the messages that players exchange. In the verification
phase of the game this log is used to check if either of the players has cheated. Note that
the sixth objective does not apply to a two-player implementation. For a multi-player
extension, control over the propagation of sensitive information (as provided by the
security-type system) is essential for minimizing the effect of coalitions.

The most interesting objective is the fifth one (complete confidentiality of cards).
It is for this objective that we capitalize on using security types. Tight control of con-
fidentiality is guaranteed by assigning high-security labels to the following program
variables:

– instance of the cryptosystem that stores the secret key for homomorphic encryption;
– signature key used for signing messages;
– player’s hand: decrypted values of the player’s cards; and

4.2 Security Assurance

.
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– player’s secret permutation (for commutative shuffling) and variables related to this
permutation.



GR POINT WHAT WHO WHERE WHEN

I
1 Public key for

signature
Anyone Initialization Before game start, before seal is open

2 Public security param Player Initialization Before game start, before seal is open

II

3 Message signature Player Sending msg Any time
4–7 Protocol init data Player Initialization Before game start, before seal is open
8–10 Encrypted permuted

card
Player Card drawing During game, before seal is open

III
11 Decryption flag Player Card drawing During game, before seal is open,

after player obtains card

IV

12 Player’s secret
encryption key

Player Verification After game end, after seal is open

13–14 Player’s secret
permutation

Player Verification After game end, after seal is open

Table 1. Declassification points

Labeling these variables as high restricts the flow of sensitive data to public outputs.
Jif’s type system prevents unintended flows of sensitive information unless otherwise
specified by declassify statements. This reduces the manual security analysis of the
system down to inspection and justification of declassify statements in code. This is
the subject of the following section.

Label assignment reduces possibilities for information leaks to the program points
where declassifications occur. Declassification is possible if the running process has
enough authority to relabel the data. The ability to grant a class or a method authority
is useful but also a potentially dangerous feature since this authority may be misused
for inappropriate declassification of confidential information. The Jif implementation
grants the authority of the player to the following two functions: (i) function that re-
turns the public key of the player and (ii) function that coordinates the game process.

There are 14 declassification points in the main class of the Jif implementation. For
each declassification Table 1 states what is declassified, who declassifies data, where in
the program, and when declassification may occur (the last column uses the notion of
seal defined in group IV below). These aspects correspond to dimensions of informa-
tion release [42]. Accordingly, the declassification points can be naturally grouped as
follows.

I Declassification of naturally public data (points 1–2). Functions for generating sig-
nature keys return KeyPair data structure. It contains both a private and a public
component and, as a whole, is labeled as high. In order to return the public key,
a separate high copy of the key has to be obtained and declassified. Similarly, the

4.3 Authority and Declassification
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public parameter of the homomorphic cryptosystem is extracted from an instance
of the cryptosystem. Again, we obtain a high copy of this parameter and declassify
it separately. These declassifications are safe, since they affect neither the sensitive
part of the key nor the secret parameter of the cryptosystem.

II Declassification following signatures and encryptions in the underlying protocol
(points 3–10). This is the largest group of declassification points. The first such
point is related to the digital signature of the messages. Because computation of
the signature involves a private key, the result gets tainted by the high label of the
private key and becomes high. Here we rely on the cryptographic properties of the
calculated signature and assume it is safe to declassify the computed result. The
obtained declassified signature is attached to the message.
The rest of the declassifications in this group are applied to encrypted values created
in the context with a high pc label. The motivation for these declassifications is
similar to the one for signatures. These declassifications are safe as far as we trust
the underlying cryptographic protocol.

III Declassification of the success flag in finishCardDraw() (point 11). See the Suc-
cessFlag pattern (Section 5.5) for motivation and details.

IV Declassification of sensitive information for verification (points 12–14): After a
game completes, the protocol requires players to exchange their private keys and
secret permutations in order to verify the fairness of each other. This is a common
scenario for security protocols that rely on bit commitment. It is important that
these functions are not used earlier than they are supposed to, i.e., it is important
when information is downgraded. Jif’s declassification mechanism is not powerful
enough to support such temporal properties. Therefore, we introduce a so called
seal, a boolean flag that changes its value at most once after initialization. The
seal is initialized in the constructor of the Player class. Its integrity is checked in
the methods that implement game protocols. The seal is opened once the sensitive
information that it protects is released. This is done in the methods that declassify
the keys and secret permutation. Next time there is a call to a method that assumes
the seal’s integrity, a runtime exception is thrown indicating that this call violates
the security properties of the protocol. That is, one is not allowed to declassify
data prematurely. Implementation details of the seal technique are presented in the
section on patterns.

The artifact of four different categories of declassification (with independent reasons
for justifying each of them) opens up the question of an adequate treatment of the mul-
tifaceted nature of declassification. In particular, there is need for enforcing temporal
information release policies. This provides a basis for our future work (cf. Section 7).

Many of the insights we have gathered in the case study are not Jif-specific. However, as
Jif is the most ambitious security-typed language to date, it is useful to highlight some
vulnerabilities and problems discovered in the Jif compiler.

4.4 Jif’s Vulnerabilities and Problems
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Signature misuse Jif uses existing Java libraries by means of class signatures. A sig-
nature is a file with Jif-style method declarations. Jif programs are type-checked against
these headers, but pre-compiled Java binaries are used at runtime. An example of where
we use Java API with Jif signatures is DSA signature scheme, which has internal ran-
dom values that need to remain secret.

However, a flow can be easily introduced if labels declared in the method header do
not correspond to the code in the library. An example of such a weakness is a signature
of System.arraycopy function from the current Jif distribution.
public static native void arraycopy(Object{dst} src, int{dst} src_position, Object dst,

int{dst} dst_position, int{dst} length)

throws (IndexOutOfBoundsException, ArrayStoreException, NullPointerException);

This method has no begin-label, which implies the absence of side effects. However,
the copy of an array in the memory is an obvious side effect that should be reflected in
the begin-label of the method. Listing 5 is an example of how this weakness can be
exploited.
public class TestLeak[label L] {

private int{L}[] secret;

private int{}[] output;

public void leak() {

try { System.arraycopy(secret, 0, output, 0, secret.length);

} catch (Exception ignored) { }

}

}

In this example, function leak() calls System.arraycopy to copy data from the high
array secret into the low array output. Nevertheless, this code is accepted by the Jif
compiler since it trusts the provided method signature.

class X {

public native int {this} getP();

public native void setP{this}(int{this}n);

}

Parameterized signatures Recall class
X from Section 2.2 with label annota-
tions erased to obtain a Java class. List-
ing 6 is an example of a vulnerable sig-
nature that can be written for such class.
Here, {this} is a label of the current instance. This signature is exposed to the
attack similar to the array-laundering attack from Section 2.2. However, this at-
tack can be prevented by parameterizing the signature as it is shown in Listing 7.

class X[label L]{

public native int {L} getP();

public native void setP{L}(int{L} n);

}

Generally, a class should be param-
eterized if a variable of that class can
be modified after the instantiation. While
such flows are captured in pure Jif pro-
grams by the type system, they are not
prevented in class signatures. It is the author of a signature who is responsible for its
correctness.

Relabeling mutable data containers Assume there is an array x of type int{}[]{}

which we want to relabel to type int{Alice:}[]{Alice:}. The assignment statement

.

.

.

Listing 5. Leakage via invalid method signature

Listing 6. Vulnerable signature for class

Listing 7. Correct signature for class
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int{Alice:}[]{Alice:} y = x is rejected by the Jif type system as it is exposed to
the laundering attack similar to the one described in Section 2.2. A possible solution is
to create a separate copy of an array, upgrading elements one-by-one.
int{Alice:}[]{Alice:} x = new int[y.length];

for (int i = 0; i < y.length, i++) y[i] = x[i];

Similar code has to be written if one wants to relabel an instance of some parame-
terized class. Declassification is another example of relabeling, so the same argument
applies when there is need to downgrade an array or a class instance. As a consequence,
the programmer is forced to write relabeling (and declassification) code for every com-
plex data structure that is used at different security levels. In our Jif implementation, we
resolve this problem with the Declassifier pattern (Section 5.2).

Missing Java features Although Jif includes a large subset of Java, some useful fea-
tures of Java, such as inner classes and super calls, are missing. The lack of inner
classes and super calls have not proven a substantial obstacle. Most important in the
context of this case study is the lack of support for serializability for parameterized
classes. As a result, serialization routines used in the distributed implementation need
to be written manually for every class.

As discussed in Section 4, enriching Java code with security types is not straightfor-
ward. To help streamline this process we have developed patterns for secure program-
ming in Jif. These patterns help resolve insecurities in baseline code in a uniform and
transparent fashion. Appendix A presents examples and code listings for each pattern
sketched below.

This pattern suggests raising IllegalArgumentException if an argument provided to a
method is null. This exception type is more informative than NullPointerException.
Also, because an exception is raised, Jif’s built-in NullPointerException analysis en-
sures that NullPointerException no longer needs to be handled for this argument,
which results in transparent code for the rest of the method.

Because arrays and parameterized classes are mutable data containers they cannot be
completely declassified with a single declassify statement. Each field of such a class
or element of an array needs to be relabeled separately. This pattern uses a single class
Declassifier that contains static declassification and upgrade methods for every data
type used in the program. This class is parameterized over a principal P whose author-
ity is used for declassification and a label L to which the data is downgraded. Thus,
declassification methods in this class accept arguments of the level {P:;L} and return
low copies of them relabeled to {L}. Similarly, upgrade routines return high copies of
their arguments relabeled from {L} to {P:;L}.

5 Programming Patterns

5.1 ArgCheck: Checking Arguments in Jif

5.2 Declassifier: Declassification of Large Data Structures

.
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In this pattern, the class Declassifier has no authority, and all declassification
methods in the class require the caller to have the authority of P to declassify data.
One can also imagine an alternative version of this class which combines encryption
and declassification transparently for the caller. Then, the caller of the method receives
an encrypted (and declassified) value without having the authority necessary for de-
classification. We can assume that this kind of declassification is safe as the caller of
the method receives an encrypted value. While helpful, this scenario is not used in our
implementation since it is the player who owns, encrypts, and declassifies the data.

Some declassifications in a program may be avoided if the code is rearranged so that
low operations (such as input) precede operations that affect the pc label.

Jif’s authority clause in method declarations can be easily misused. This clause grants
the authority of a principal opening up possibilities for declassification by any caller.
Often, it is safer to use a caller clause. This avoids granting authority and prevents the
method from being called when the calling process does not have the required authority.

This pattern prevents the propagation of exceptions thrown at a high security level to
callers at a lower level. A caller is still notified about the failure; however, no detailed
data, such as the call stack, is passed to the caller. Instead, the high code that can gener-
ate an exception is enclosed by a try...catch block; a boolean flag tracks whether the
try block has terminated with an exception. This variable is then declassified immedi-
ately after the try...catch block; a low exception is thrown depending on the flag’s
value.

Sealing is used to enforce temporal properties such as preventing secret-key declassifi-
cation from happening earlier in the game. Unlike the other patterns, this is a combina-
tion of conventional programming techniques and security features of Jif.

The class has two parameters: the owning principal P and the label L. This label
stands for the lowest security level at which the seal is visible. The value of the seal
is stored in the boolean variable open, which is only accessible to the owner P. The
caller constraint in the class constructor requires that the calling process should have
the authority of P. Initially, the value of the variable open is false. It may only change
to true in the method unseal(). Similar to the constructor, this method has the caller

constraint. This prevents calling unseal() from program contexts that do not have the
authority of the seal’s owner. Note that the actual validation occurs at run-time.

The method isOpen() returns the value of the seal. It grants the authority of the
owning principal to the process in order to declassify the current value to the visible
level L. The method assertIntegrity() is similar to isOpen() and is a suggested way
of checking whether the seal has been opened.

5.3 EffectOrder: Ordering Effects

5.4 ReqAuth: Requiring Authority vs. Granting it

5.5 SuccessFlag: Declassification of a Success Flag

5.6 Seal: Seal Class
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This pattern shows how the signature of a class that generates encryption keys can be
specified to avoid declassifying public keys (declassification group I in Section 4). This
signature is parameterized over two labels corresponding to the labels of public and
private keys. Then, method headers can be written in such a way that getPublic()
returns a low value and getPrivate() returns a high one. Thus, declassification is
avoided. This, however, does not eliminate the flow but makes it invisible to Jif.

Although the theoretical area of information flow security is rather mature [21, 19, 38,
39], there is little evidence for the scalability of information flow controls in practice.
Below we discuss some latest progress in this area.

On the security assurance side, this work fits into a recent classification of declassi-
fication [42] that, however, considers only information release policies (not declassifi-
cation mechanisms). Nevertheless, the what, who, where, and when columns of Table 1
correspond to the dimensions of declassification from [42].

A related recent development that investigates the practical use of declassification
policies is Li and Zdancewic’s work on web scripting languages. With the target of
enforcing relaxed noninterference [30] they develop a type system for web program-
ming [31]. To what extent this language addresses challenges for practical security has
not so far been reported, however.

Giambiagi and Dam have investigated how admissibility justifies the security of a
simple payment protocol [14]. In subsequent work [20], they separate protocol spec-
ification from its implementation such that implementation is guaranteed to reveal no
more information than the specification of a protocol. The implementation language,
however, is rather distant from a realistic language like Jif. Recently, Chong and My-
ers have considered temporal release policies in the context of an ML-like language [9,
10]. Their noninterference “until” policies are intended to guarantee that secrets are
released after a certain statically-enforceable condition becomes true. This approach,
however, abstracts away from how the release conditions are enforced. An intriguing
direction for future work is exploring the sealing technique further in order to enforce
conditional release policies similar to admissibility and noninterference “until.”

Heldal et al. [26, 27] show how UML can be integrated with Jif in order to introduce
declassification early in the design process. This line of work is promising for modu-
larizing declassification and can lead to a way of combining declassification-free Java
code with security-critical Jif code in such a way that declassification statements agree
with declassification at the modeling level.

Jif/split [49, 50] performs systematic partitioning of Jif programs into distributed
components. Unfortunately, Jif/split does not support parameterized classes (due to
compatibility issues with Java’s serialization) which would be an obstacle for splitting
our Jif implementation of the protocol.

As for the largest implementations in security-typed languages reported so far, we
are aware of a battleship game protocol implemented in Jif/split [49, 50] and an evalu-
ation of an earlier version of Jif on a library of cryptographic primitives [46]. However,

5.7 KeySignature: Signature for Key Generation

6 Related Work
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these implementations are relatively light (500 and 800 lines of code, respectively, vs.
4500 lines in this study).

7 Conclusion

As a proof of concept, we have implemented a non-trivial cryptographic protocol in a
security-typed language. The implementation has resulted in the largest program writ-
ten in a security-typed language to date. The case study has given useful evidence on
challenges for practical information flow security (cf. Section 1). We discuss insights
into these challenges in turn:

– How helpful are security types for identifying potential insecurities in security-
critical code?
We have found security types useful for preventing explicit and implicit insecure
flows. We have also uncovered insecurities in the baseline implementation due to
liberal handling of exceptions and mutable data structures (cf. Section 4.1 and 4.4).

– How laborious is the process of security typing? Does it force unnecessary restric-
tions on code?
All three implementations have been coded by a graduate student (the first au-
thor). The baseline implementation consumed around 60 man-hours of develop-
ment work. The Jif implementation and distributed Jif implementation consumed
150 and 80 man-hours respectively, excluding the time to learn Jif. The case study
indicates that although lifting Java code to Jif takes some experience to master,
the security-typed result is not significantly distant from the original code. Further-
more, we have developed patterns for secure programming (cf. Section 5) to make
programming with security types clearer and more convenient.

– Is the security assurance provided by security types transparent enough?
This is the territory of the most interesting findings. Jif’s mechanism for declassi-
fication has proven to be useful for localizing information release to certain well-
marked parts of the program (declassify points). The case study, however, sug-
gests that there are various reasons for declassifying at different points. Not only
does one need to control what information is released, by whom and where in the
system, but also when it is safe to release information (cf. Section 4.3). For example,
the declassification of the result of encryption (as in the card shuffling phase) and
the declassification of the secret key (as in the commitment verification phase) have
distinct reasons and hence need to be protected in distinct ways. One disadvantage
of Jif (as many other information release mechanisms [20, 40, 35, 32, 30]) is that its
treatment of declassification disregards the multifaceted nature of declassification.

– What is the general balance of benefits and drawbacks when using security-typed
languages?
Apart from the (dis)advantages we have already discussed, modularity (due to the
compositionality of the type system) and selective type annotation (due to security
type inference) have proven particularly helpful. On the other hand, debugging tools
and extensive documentation currently lack for security-typed languages, which
forces programmers to debug code in baseline implementations written in conven-
tional languages. Another unaddressed issue is the connection between high-level
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security policies for information release and declassification statements in the code.
One can argue that manual inspection of declassification points can, in some cases,
be acceptable but, generally, there is need for expressing security policies in high-
level languages (perhaps modeling languages) ensuring that these policies are en-
forced in code. For recent steps in this direction, see [26, 27, 7].

Future work The case study has strongly suggested that existing information release
mechanisms need further improvement. A lesson we have learned is that different kinds
of declassifications need to be treated differently.

In order to alleviate this problem, we plan to generalize the seal-like data construc-
tion to represent declassification that may only happen once a certain condition has
been satisfied (as, e.g., the mental poker protocol has reached its verification phase, or
all bids are placed in an online auction protocol). This would lead to enforcing stronger
(and more intuitive) security guarantees statically.

At the next level of ambition, we intend to connect language-based declassification
to security assurance that is provided with respect to information release policies. For
example, it remains to be seen how this approach can be connected to conditional re-
lease policies such as admissibility [14, 20] and noninterference “until” policies [9, 10].
A long-term goal is to provide a toolbox of declassification mechanisms for each of the
what, who, where, and when axes of information release [42].

Another strand of worthwhile future work is improving Jif’s shortcomings (cf.
Section 4.4). We plan to explore automated refactoring techniques for pattern design
(e.g., [11]) in order to facilitate program transformations that result in security typed
programs. Another interesting problem is connected to relabeling mutable data struc-
tures. We believe it can be improved by introducing an operation that would combine
declassification and object cloning so that a relabeled separate copy of an object would
be created. This would prevent laundering attacks via object aliases. Also, this would
make programming in Jif easier because traversing mutable data structures for the
sole purpose of declassification would no longer be needed. A structured way of do-
ing this is by defining a Jif interface Declassifiable that would allow an operation
declassifyAndClone to be performed on the classes that implement the interface.

Although the case study is the largest of the kind, it is not large enough to be an
example of real production code. In order to investigate additional subtleties that come
with such code, we plan to run a student project to extend the case study to a fully
fledged application for mobile devices.
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We describe further details on some programming patterns that one may find useful
when programming in Jif, or lifting Java programs to Jif. A brief summary of these
patterns appears in Section 5.

The obligation to handle runtime exceptions in Jif can easily make code more clunky
than necessary. Consider, for example, a Java function:
public boolean validate(byte [] p, Matrix mx) {

if (!mx.validate(p)) return false;
}

If the argument mx is null, NullPointerException is thrown. Straightforward porting
of this function may lead to the following Jif code:
public boolean validate{L}(byte{L}[]{L}p, Matrix[L]{L} mx):{L} throws NullPointerException{

if (!mx.validate(p)) return false;
}

This code declares the exception in the method header. Listing 8 illustrates how the
above function can be modified so that IllegalArgumentException is thrown when-
ever an argument is null. Due to Jif’s NullPointerException analysis it is not neces-
sary to handle NullPointerException for mx.
public boolean validate{L}(byte{L}[]{L} p, Matrix[L]{L} mx):{L}

throws IllegalArgumentException {

if (mx == null) throw new IllegalArgumentException();

if (!mx.validate(p)) return false;
}

This pattern achieves more transparent code as all arguments are checked in advance
before they are used; also, the type of a declared exception is more specific to the error.

A Programming Patterns

A.1 ArgCheck: Checking Arguments in Jif Functions
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Listing 8. Checking arguments in Jif functions



public class IntPair[label L] {

private int x, y;

public IntPair(int{L} _x, int{L} _y) {

this.x = _x; this.y = _y;

}

public int{L} getX() { return this.x; }

public int{L} getY() { return this.y; }

}

Consider the class IntPair in List-
ing 9. Listing 10 is an example
of a method in Declassifier that
downgrades an object of the type
IntPair[{P:;L}]{P:;L} to the type
IntPair[L]{L}. The first declassifica-
tion on line 2 downgrades the reference
to the object. Line 4 declassifies the
fields of the object a and constructs a new object at the low security level that has
the same value as a.

public static IntPair[L]{L} declassifyIntPair(IntPair[{P:;L}]{P:;L}a1) where caller(P) {

2 IntPair[{P:;L}] a = declassify(a1, {L});

if (a == null) return null;

4 return new IntPair[L](declassify(a.getX(),{L}), declassify(a.getY(),L));
}

A similar approach needs to be applied for upgrading a mutable object from one
security level to another. A disadvantage of this approach is that it requires the con-
structors of the relabeled classes to have all class fields as arguments. This is not always
desirable since the values of private variables, (e.g., the internal state of an object) are
not always supposed to be instantiated in constructors.

Some program statements in Jif may affect the pc label. If pc is high, low side effects
are not allowed without prior declassification. Sometimes, it is possible to avoid such
a declassification by ordering program statements so that low side effects precede the
statements that taint pc with a higher label. Consider an example where readData and
update functions are defined as follows:
public String{L} readData{L}():{L} { ... }

public void update{L;H}(String{L} x):{L;H} throws NullPointerException { ... }

Now, consider a code snippet where low input is interleaved with high update calls and
which is rejected by the compiler (unless pc is declassified before the second read).
1 String{L} a = readData(); // low side effect

2 update(a); // high statement, pc becomes high

3 String{L} b = readData(); // low side effect, rejected because pc is high

4 update(b); //

After the call to update function on line 2, pc becomes high, and the call to the func-
tion readData on line 3 is rejected. The revision below demonstrates how this can be
repaired by ensuring that the low function calls precede the high ones.
String{L} a = readData(); // low side effect

String{L} b = readData(); // low side effect, ok

update(a); // high statement effect, ok

update(b); // high statement effect, ok

A.2 Declassifier: Declassification of Large Data Structures

A.3 EffectOrder: Ordering Effects
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Consider examples of two functions that reveal the secret permutation of the player,
declassifying it to a lower label:
public byte{L}[]{L} revealPermutation{L}() where authority (P) { ... }

public byte{L}[]{L} revealPermutation{L}() where caller (P) { ... }

The first example grants the authority of the player to the method. This implies that the
method can be called from any context. Such a declaration is dangerous because secret
information can be easily leaked. In contrast, the second example grants no authority but
requires the caller to have necessary authority for declassification: calling this method
from a context where the calling process does not have the authority of the principal P
is rejected by the compiler.

Listing 4 in Section 4.1 is an example of code that needs to release information about
the termination of the method without leaking the details on why the method failed to
terminate normally. Listing 11 shows how one can use a boolean flag variable to track
the termination path of high methods.
1 public void foo{L}():{L} throws Exception where caller(P) {

2 boolean ok = false;

3 try { ... // code that can throw high exception

4 ok = true;

5 } catch (Exception ex) { ... } // handling high exception

6 if (declassify (!ok, {L})) { throw new Exception(); }

7 }

In this example, the boolean flag ok is initialized on line 2. High code that can gen-
erate exceptions is enclosed by a try ... catch statement, so that possible exceptions
are caught and handled on line 5. The assignment ok=true on line 4 may generate no
exception and is the last one within the try block. Line 6 declassifies the value of this
variable and, depending on this value, it may generate a low exception that will propa-
gate to the caller.

Listing 12 presents the structure of the seal class that is described in Section 5.6.
1 /* Seal belongs to a principal P, and is visible at the level L */

2 public class Seal[principal P, label L] authority(P) {

3 private boolean{P:;L} open; /*actual value of the seal */

4 /* require the principal to create this */

5 public Seal{P:;L}() where caller(P) { this.open = false; }

6 /* require the principal to unseal it */

7 public void unseal{P:;L}() where caller (P) { this.open = true; }

8 /* anyone at the level L can check it */

9 public boolean{this;L} isOpen():{L} where authority (P) {

10 return declassify (open, {this;L});

11 }

12 /* similar to previous */

13 public void assertIntegrity():{L} throws SecurityException {

A.4 ReqAuth: Requiring Authority vs. Granting it

A.5 SuccessFlag: Declassification of a Success Flag

A.6 Seal: Seal Class
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Listing 11. Declassification of success flag



14 if (this.isOpen()) throw new SecurityException();

15 }

16 }

Listing 13 shows how sealing is used. Line 1 declares a seal that belongs to Alice
and is observable by everyone. It is initialized in the method init(). The work()

method checks if the seal has been opened before it is called. The seal is opened in
revealSecret() method. If work() is called after the seal is opened, the exception
SecurityException is thrown.
1 private Seal[Alice,{}] seal; // declaration

2 public void init() where caller(Alice) { // initialization

this.seal = new Seal[Alice, {}]();

...

}

public void work() throws SecurityException, NullPointerException{

this.seal.assertIntegrity(); // check the integrity in the beginning of the method

...

}

public void revealSecret() where caller (Alice) throws NullPointerException{

this.seal.unseal();
... // declassification goes next

}

public final class KeyPair{

public KeyPair(PublicKey{this} publicKey,

PrivateKey{this} privateKey) {}

public native PublicKey{this} getPublic();

public native PrivateKey{this} getPrivate();

}

Listings 14 and 15 are two signatures for
Java’s java.security.KeyPair class.
The usage of the first one requires an
instance of the KeyPair class to be
high, because it contains a sensitive
private key. Declassification is applied
when information about the public key is
needed. This declassification is safe be-
cause the released information is naturally public.

public final class KeyPair[label L, label H]{

public KeyPair(PublicKey{L} publicKey,

PrivateKey{L;H} privateKey) {}

public native PublicKey{L} getPublic();

public native PrivateKey{L;H} getPrivate();

}

The declassification-free version is
parameterized over two labels—for the
private and public keys. In this case, a
parameterized signature avoids declas-
sification by labeling method headers
appropriately. Both of the approaches
are acceptable, providing a trade-off be-
tween explicit flow control and ele-
gance.

A.7 KeySignature: Signature for Key Generation
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Listing 13. Usage of seal

Listing 14. Non-parameterized signature for
KeyPair

Listing 15. Parameterized signature for KeyPair
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Abstract. In this paper, we first introduce a new notion called aug-
mented oblivious polynomial evaluation (AOPE), a useful notion to deal
with the general oblivious polynomial evaluation protocol. And then we
propose a novel implementation of our AOPE protocol. Finally we show
that our construction is provably secure within our model. The potential
areas of application of this protocol are numerous (two-party computa-
tion, bidding protocol, keyword search problem, and so on...).
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1 Introduction

Oblivious polynomial evaluation (OPE) first introduced by Naor and Pinkas
[12], is a protocol involving two parties, a sender whose input is a polynomial
f(x) ∈ F [x] of degree m (m ≥ 1), and a receiver whose input is a value a ∈ F ,
where F is a finite field. At the end of execution of the protocol the receiver
learns f(a) and the sender learns nothing. There are two constructions proposed
in [12]. The first construction is based on a conjecture that given a randomly
chosen input to the polynomial list reconstruction problem, the value of the
polynomial at x = 0 is pseudo-random. The second construction is more efficient
but based on more stronger security assumption that the value of the polynomial
at x = 0 is pseudo-random even given some additional hints about the location
of the values of the polynomial. Unfortunately, their constructions were shown to
be weaker than expected in [2]. Thus it is still an unsolved problem to implement
secure and efficient OPE protocol.

1.1 This Work

Let F=Z/rZ, and f be f(x) = a0 + a1x + · · · + amxm mod r. We provide two
observations in order to construct the proposed OPE scheme:

– a general OPE protocol for a finite field F where f has general order can be
obtained from OPE protocol for prime field where the order of f is one.
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c© Springer-Verlag Berlin Heidelberg 2005
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– an OPE protocol for a finite field F where the order of f is one can be
obtained from an OPE protocol over an integer ring where the order of f is
one. An OPE protocol for an integer ring where the order of f is one can be
obtained when a trusted initializer distributes a public key of RSA system.

We now explain the first observation (the main contribution of this paper).
Suppose Alice has a polynomial f at hand. She first randomly selects aj0 ∈ F ,
aj1 ∈ F such that aj,0 + aj,1 =aj + r (computed over integer domain Z),
for j = 1, · · · , m − 1. Here, f(x) = a0 + a1x + · · · + amxm mod r = a0 +
(a1,0 + a1,1)x + · · · + (am−1,0 + am−1,1)xm−1 + amxm mod r. f(x) can be
further written as a0 +a1,0x + (a1,1 +a2,0x)x + · · · + (am−1,1 +amx)xm−1. Bob
who holds the secret input α perform OPE protocol, obtains (aj,1 + aj+1,0α)
for all 1 ≤ j ≤ m − 1 together with (a0 + a1,0α), and thus f(α). Notice that
the finite field F must be a prime field, so that aj,1 + aj+1,0α can be uniformly
distributed among F . Throughout the following discussion, we assume that r is
a prime number.

We further explain the second observation. Suppose Bob has an integer 0 �=
α < r, and Alice has f(x)=ax + b mod r. Bob generates public key and secret
keys of Paillier’s cryptographic system and sends EB(α) and public key EB to
Alice. Alice then selects long enough integers u, v satisfying u = a mod r, and
v = b mod r, and sends EB(α)u EB(1)v =EB(uα + v) to Bob. Alice further
proves to Bob that all performance are correct against the common reference
string − a public key of commitment scheme (RSA modulus) provided by the
trusted initializer. Bob performs decryption and obtains uα + v mod r = aα + b
if the proof is correct.

The security definition of our protocol should be viewed as an enhanced
version of Naor and Pinkas’ definition [12]. That is, we allow an adversary to
corrupt one of participant (either P or V could be malicious within our 2-party
client/server model). The proof of security is standard. That is the rewinding of
the malicious party is allowed within our model since a malicious party is not
allowed to communicate with distinguisher D, i.e., the distinguisher D only gets
to see the transcript to protocol execution which is significant difference from
the argument of the universally composable property [3]. We also remark that
the rewinding of a malicious party is strictly forbidden in Canetti’s model [3],
however, we do not deal with the security of our AOPE protocol in Canetti’s
model throughout the paper.

In summary, the main contribution of this paper are following. We introduce
an interesting yet useful notion called augmented oblivious polynomial function
evaluation (AOPE) in this paper. And we also propose an efficient implementa-
tion of the AOPE protocol and show that our construction is provably secure in
the common reference string model assuming that a static adversary corrupts P
or V .

1.2 Road Map

The rest of paper is organized as follows: in Section 2 building blocks which will
be used for constructing of AOPE protocol are sketched; In section 3.1 syntax and
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security of AOPE protocol are proposed and in Section 3.2 our implementation
and security proof of the implementation are presented. In Section 4, we provide
a novel application of our AOPE protocol to realize greater gate protocol. And
we conclude our works in Section 5.

2 Building Blocks

We briefly review the following building blocks that will be used throughout the
paper.

2.1 Paillier’s Public Key Encryption Scheme

Paillier investigated a novel computational problem, called Composite Residuos-
ity Class Problem, and its applications to public key cryptography in [14]. Our
construction will heavily rely on this probabilistic encryption scheme which is
sketched below.

The public key is a k1-bit RSA modulus n = pq, where p, q are two large safe
primes. The plain-text space is Zn and the cipher-text space is Z∗

n2 . To encrypt
α ∈ Zn, one chooses r ∈ Z∗

n uniformly at random and computes the cipher-text
as EPK(a, r) = garn mod n2, where g = (1+n) has order n in Z∗

n2 . The private
key is (p, q).

The encryption function is homomorphic, i.e., EPK(a1, r1) × EPK(a2, r2)
mod n2 = EPK(a1 + a2 mod n, r1 × r2 mod n).

Another interesting result of Paillier’s public key encryption scheme is that it
can be viewed as a commitment scheme as well since given a cipher-text c:=garn

mod n2, we first compute a ∈ Zn from the following equation L(cλmodn2)
L((1+n)λmodn2)modn

and then compute r from the equation r ∈ Z∗
n=c′n

−1modλ mod n, where λ =
lcm(p − 1, q − 1), n = pq.

2.2 Fujisaki-Okamoto Commitment Scheme

Let s be a security parameter. The public key is a k2-bit RSA modulus, where P ,
Q are two large safe primes. We assume that neither P nor V knows factorization
N . Let g1 be a generator of QRN and g2 be an element of large order of the
group generated by g1 such that both discrete logarithm of g1 in base g2 and the
discrete logarithm of g2 in base g1 are unknown by P and V .

We denote C(a, ra) = ga
1gra

2 mod N a commitment to x in base (g1, g2),
where ra is randomly selected over {0, 2sN}. This commitment scheme first
appeared in [10] and reconsidered by Damg̊ard and Fujisaki [7] is statistically
secure commitment scheme, i.e.:

-P is unable to commit itself to two values a1, a2 such that a1 �= a2 in Z by
the same commitment unless P can factor N or solves the discrete logarithm of
g1 in base g2 or the the discrete logarithm of g2 in base g1.

-C(a, ra) statistically reveals no information to V , i.e., there is a simulator
which outputs simulated commitment to a which are statistically indistinguish-
able from true ones.
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Notice that this commitment is homomorphic, i.e, C(a+b, ra +rb) = C(a, ra)
× C(b, rb). This property is useful when P wants to prove that the committed
value a ∈ [x, y]. Also notice that Paillier’s encryption scheme is only homomor-
phic with respect to addition RSA modulus. If we want the output of oblivious
polynomial evaluation protocol defined over Z (so that V can verify the correct-
ness of its received messages), then k1 should be chosen large enough compared
with the sizes of inputs of participants.

2.3 Proof of Knowledge of Encryptions

Given a cipher-text Enc(x) which is computed from Paillier’s encryption scheme,
the prover should provide a proof that he knows x and x lies in a given inter-
val I specified in the protocol. There is efficient protocol presented by Damg̊ard
and Jurik already in [6]. The basic idea is the following: given Enc(x), the prover
provides a commitment C(x, rx) which is computed from Fujisaki-Okamoto com-
mitment scheme, proves that the commitment contains the same number as the
encryption, and then uses Baudot’s protocol [1] to prove that m ∈ I. More
precisely,

-Let T be the maximum bit length of x. The prover chooses at random u, an
integer of length T + 2k, where k is a security parameter. He sends a=Enc(u),
b=C(u) to the verifier;

-The verifier chooses a l-bit challenge e;
-The prover opens the encryption a(Enc(x)e) mod N2 and the commitment

bC(x)e mod N , to reveal in both cases the number z = u + ex. The verifier
checks the opening were correct.

The protocol can be made non-interactive in the standard way using a hash
function and the Fiat-Shamir paradigm. It is also statistically zero-knowledge in
the random oracle mode.

3 AOPE Protocol

3.1 Syntax and Security Definition

An augmented OPE protocol consists of three participants: system initiator I,
P and V . The auxiliary information of individual participant is first generated
as follows:

– on input k2, I outputs an instance of Fujisaki and Okamoto’s commitment
scheme. The public key PKc of the commitment scheme is called common
reference string which will be used by each participant in the system;

– on input m, r and k2, P outputs a polynomial f(x) of degree m defined
over Z/rZ, together with a commitment C(f) := ((C(a0 + r), · · ·, C(am +
r)) of f(x); Notice that the commitment of f(x) is defined as (C(a0 +
r), · · · , C(am + r)) but not (C(a0), · · · , C(am));

– on input k1, V outputs an instance of Paillier’s encryption scheme for V .
The public key/ secret key pair is denoted by (PKv, SKv);
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To define the functionality of AOPE protocol, an imaginary TTP is intro-
duced. And then TTP involves in the following performance:

– P runs with TTP and proves to TTP that a chosen polynomial f(x) is
correct; Otherwise, a random f(x) defined over Z/rZ is assigned;

– V runs with TTP and proves to TTP that a chosen value α is correct;
otherwise, a random α is assigned by TTP from Z/rZ;

– The output of P is a null string while the output of V is f(α);

Definition 1: An AOPE protocol is said secure for a sender P if for any
malicious chooser V , there exists a simulator simV that plays the role of V in
the ideal world such that for any polynomial time distinguisher D, the view of
V in real conversation is computationally indistinguishable from that simulated
by simV .

Definition 2: An AOPE protocol is said secure for a chooser V if for any
malicious prover P , there exists a simulator simP that plays the role of P in
the ideal world such that for any polynomial time distinguisher D, the view of
P in real conversation is computationally indistinguishable from that simulated
by simP .

Definition 3: We say that an AOPE protocol is secure for any static and
probabilistic polynomial time (PPT) adversary if it is secure for both the sender
and the chooser.

3.2 The Construction

The following implementation of AOPE consists of two phases: initializer setup
and oblivious polynomial evaluation.

– In initial reprocessing phase: a sender P chooses a polynomial f(x) = a0
+ a1x + · · · + amxm mod r at hand over a finite field Z/rZ, where r is
a prime number, 0 �= aj ∈ Z/rZ. P then commits the chosen polynomial
f(x) using the common reference string − the public key PKc of a specified
Fujisaki and Okamoto’s commitment scheme ( or its improved version by
Damg̊ard and Fujisaki [7]), allowing P or V to commit to an integer a of
sufficiently long size and prove efficiently in zero-knowledge that a belongs to
some interval using the technique of Baudot [1] (thus, our model is within the
common reference string model). At the end of processing phase, P publishes
commitments C(f) of the chosen polynomial f(x).

– Inputs of participants: the input of P is the polynomial f(x), and the cor-
respondent commitment C(f): =(C(a0 + r), · · ·, C(am + r)) of polynomial
f(x). The input of V is the commitment C(f) and a value x ∈ Z/rZ.

– Oblivious polynomial evaluation phase: in this phase, we assume that V has
available a homomorphic public key encryption scheme E (e.g., Paillier’s
public key encryption scheme [14]). Then P and V involve the following
steps:
• V sends the public key PKv to P , and also sends the encryption E(α)

together with the proof that α is chosen in a correct interval by means
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of Baudot’s protocol [1], where α ∈ Z/rZ is chosen secretly by V which
can be viewed as an non-zero value within the interval {0, 1}log(r), E(α):
=EPKv (α);

• Upon receiving E(α) and the correspondent proof that E(α) is the en-
cryption of a correct value, P verifies the correctness of proof. If the proof
is correct, P proves to V that P knows that the commitment is correct
(each aj lies in a correct interval), the knowledge of de-commitment of
C(f);

• P then randomly selects aj,0 ∈ Z, aj,1 ∈ Z such that aj,0 + aj,1 =aj

+ r, for j = 1, · · · , m − 1 (all computations are defined over the integer
domain Z). f(x) can now be written as a0 +a1,0x + (a1,1 +a2,0x)x + · · ·
+ (am−1,1 + amx)xm−1: =(l0(x), · · · , lm−1(x)) • (1, x, · · · , xm−1), where
l0(x): =a0+a1,0x, lj(x):= (aj,1+aj+1,0x) and lm−1(x): =(am−1,1+amx);
Finally, P recommits f(x) as following: C(l0)= (C(a0, r0), C(a1,0, r1,0);
C(lj)= (C(aj,1, rj,1), C(aj+1,0, rj+1,0)); C(lm−1)= (C(am−1,1, rm−1,1),
C(am, rm)).

• P then sends (C(l0), · · ·, C(lm−1)) to Bob, together with a sequence
of proof such that C(aj,0) × C(aj,1) =C(aj) by means of proof of the
equality of two commitments;

• Given E(α) and for each lj(x), P further computes βj : =E(1)aj,1 ×
E(α)aj+1,0 , together with a proof that: (1) P knows the decomposition
of βj correspondent to the bases of E(1) and E(α); and (2) each ex-
ponent equals to correspondent commitment of C(lj). Notice that the
correctness of E(1) can be verified by V since V has the secret key of
E; That is given the Fujisaki-Okamoto’s commitments: C(a) and C(b)
and the Paillier encryption E(x) one can directly prove that E(ax + b)
= E(x)a E(1)b, i.e., one combines the proof of knowledge of the values
committed to C(a) and C(b), and the proof that one knows a and b
such that E(ax + b) = E(x)a E(1)b. There are tons of examples in the
literature where this is done (see for instance, the works already done by
Chaum and Pedersen [4], and by Camenisch and Shoup [5]).

• Once V received the correct value of βj , it obtains the exact value of
f(x) thereafter.

This ends the description of our implementation.

3.3 The Proof of Security

In this section, we are able to show the following interesting statements:

Lemma 1: for each malicious V , there exists a simulator simV that plays the role
of V in the ideal process for carrying out the functionality of AOPE protocol such
that for any polynomial time distinguisher D, the view of V in real conversation
is computationally indistinguishable from that simulated by simV .

Proof: simV first generates system parameters − the public key of the underlying
commitment scheme and the correspondent secret key. The public key of the
commitment scheme is defined as a common reference string while the secret
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key of commitment scheme will be used as trapdoor information which is known
only by simV . Notice that the action of V in our implementation is to generate
an encryption E(α) together with the proof that α is chosen in a correct interval
by means of Baudot’s protocol [1]; Thus, simV simply rewinds the malicious
V to obtain the correct α with over-whelming probability; Once simV has α,
it forwards α to TTP. And TTP replies simV with f(α). Now simV further
rewinds the random tape of V so that simV obtains the malicious V ′s private
random string that is used in the real implementation and thus simulation of
transcripts can be generated as that in the real world protocol.

Lemma 2: for each malicious prover P , there exists a simulator simP that plays
the role of P in the ideal process for carrying out the functionality of AOPE
protocol such that for any polynomial time distinguisher D, the view of P in
real conversation is computationally indistinguishable from that simulated by
simP .

Proof: In this time simP first generates system parameters as the real proto-
col described above. The public key of the underlying commitment scheme is
(N, g1, g2), the secret key (trapdoor of the commitment scheme) is (P, Q, w),
where N = PQ, g2 = gw

1 , g1 ∈ QRN is a common reference string. Then by
applying the standard rewinding technique, simP can extract ai and ai,0 and
ai,1 such that ai = ai,0 + ai,1 mod r from its proof. Once ai, ai,0 and ai,1 are
all known, simP forward these values to TTP. TTP replies simP a value α.
The rest simulation of the protocol is then trivial since P proves no knowledge
to V further except for the equation that β = f(α). Since there is a simulator
sim1 for proving that β0 equals a0 + a1,0α, and simj for proving that βj equals
aj−1,0 + aj,1α if the sub-protocols are constructed from the idea used by Chaum
and Pedersen [4], and by Camenisch and Shoup [5] already. It follows that simP

can be defined as the concatenation of sim1 || · · · || simm. It is easy to see
that the view generated by simP is computationally indistinguishable from that
generated by P in the real world protocol.

Combining Lemma 1 and Lemma 2, we have the main statement below.

Theorem: The AOPE protocol is provably secure if the underlying Fujisaki-
Okamoto’s commitment scheme is informational hiding and computational bid-
ing as well Paillier’s encryption scheme is semantically secure in the common
reference string model.

4 Applications

There are two main types of applications in which OPE protocol is useful: first
when it is required to enable the receiver to obliviously obtain a value from a m-
wise independent space. The second application is when it is desired to preserve
anonymity in cryptographic protocols which require a user to get a value of a
polynomial held by the sender without revealing the choice of the sender. Thus
our AOPE protocol can be applied to the scenario of keyword search protocol
[11] and [8] and the privacy preserving auctions [13] as well as private matching
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and set intersection [9]. We now further suggest the following implementation of
the greater gate protocol by applying our AOPE protocol:

Greater gate protocol can be abstracted as the following problem: on input
two commitments C(a) and C(b) (Alice holds a privately while Bob holds b
privately). The output of is > or ≤. This protocol is useful for real world ap-
plications. We now apply our AOPE protocol to deal with this problem as a
supportive example to demonstrate the power of our AOPE protocol.

– On input a, Alice chooses two non-zero random strings sa, ra from {0, 1}k

and provides the commitment C(a) of a and the commitments C(sa) for sa

and C(ra) for ra using Fujisaki-Okamoto’s commitment scheme. Similarly,
on input b, Bob chooses two non-zero random strings sb, rb from {0, 1}k and
provides the commitment C(b) of b and the commitments of sb and rb using
the same Fujisaki-Okamoto’s commitment scheme.

– Alice and Bob then involve the processing of the following computation: δ:
=(a−b)(ra+rb). Notice that δ can be rewritten as δ = (ara+sa) + (arb+sb)
-(rab + sa) - (brb + sb) (in the rest of paper, all computations are defined
over the integer domain);
• Alice computes αa: =(ara + sa) while Bob computes αb:= (brb + sb)

locally.
• on input C(a), C(rb) and C(sb), Alice and Bob run AOPE protocol

together so that Alice obtains βa: =(arb + sb) while Bob knows nothing;
• on input C(ra), C(sa) and C(b), Alice and Bob run AOPE protocol

together so that Bob obtains βb:= (rab + sa) while Alice knows nothing;
– Once given βa, Alice can compute γa =αa + βa; And at the same time Bob

can compute γb =αb + βb;
– Alice sends γa to Bob while Bob sends γb to Alice;

The rest work of Alice is to show Bob that γa is computed from αa + βa while
Bob’s task is to show Alice that γb is computed from αb + βb. To convince Bob
γa is computed from αa + βa, Alice processes the following protocol with Bob.
That is,

– Alice computes EA(α) and proves to Bob that both the encryption EA(a)
and the commitment C(a) hide the same non-zero value, where EA stands
for Alice’s encryption scheme (it is specified by an instance of Paillier’s en-
cryption with sufficiently long public key NA) by means of Damg̊ard and
Jurik approach;

– Bob then sends EA(1) to Alice; Since Alice has private key correspondent to
EA, it follows that the correctness of Bob’s encryption can be verified.

– Alice then proves to Bob that EA(αa) = EA(a)ra EA(1)sa by means of
the standard technique used already by Chaum and Pedersen [4], and by
Camenisch and Shoup [5];

– Since Alice and Bob can run AOPE protocol together so that Alice obtains
EA(βa), thus Alice can compute the encryption of EA(γa): =EA(αa) EA(βa).
Alice further proves to Bob that γa and ta are exact decryption of EA(γa),
where ta is a random string used to generate the cipher-text EA(γa). Notice
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that this is possible since Paillier’s encryption can be viewed as alternative
commitment scheme (both message and a random string can be extracted
from the cipher-text with the help of private key) due to the observation
stated in Section 2.

5 Conclusion

In this paper, a new notion called augmented oblivious polynomial evaluation is
introduced and formalized and then a novel yet efficient implementation of the
primitive is proposed which has been proved secure with our model assuming
that the underlying Fujisaki-Okamoto commitment scheme is unconditional hid-
ing and computational binding, together with Paillier’s encryption is semantic
secure. Like its sibling notion, our protocol has numerous applications as well.
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Abstract. A major concern for computer systems security is the threat from ma-
licious insiders who execute perfectly legitimate operations to compromise sys-
tem security. Unfortunately, most currently available intrusion detection systems
(which include anomaly and misuse detection systems) fail to address this prob-
lem in a comprehensive manner. In this work we propose a framework that uses
an attack tree to identify malicious activities from authorized insiders. We de-
velop algorithms to generate minimal forms of attack tree customized for each
user such that it can be used efficiently to monitor the user’s activities. If the
user’s activities progress sufficiently up along the branches of the attack tree to-
wards the goal of system compromise, we generate an alarm. Our system is not
intended to replace existing intrusion detection and prevention technology, but
rather is intended to complement current and future technology.

1 Introduction

Intrusion detection systems are an important tool to system administrators in their fight
against malicious attacks on systems. These tools monitor different system activities
and report on anything that can be construed as malicious. The system administrator
looks at the reports generated by the intrusion detection system and (based on experi-
ence to some extent) determines which of the activities are malicious. In this work, we
propose a quantitative approach to help system administrators make sound judgements
regarding ensuing attacks. Our system is intended to complement existing tools to fight
the war against crackers.

Existing intrusion detection systems suffer from two shortcomings. First, not many
of them do a good job in handling threats from malicious insiders. These attacks, which
are often considered to cause the majority of security breaches, can arise in one of two
ways: (i) A user uses perfectly legitimate operations to exploit known system vulner-
abilities and launches an attack. (ii) A user uses information and resources that do not
fall directly under the category of computer system resources, and launches attack. An
example of the former is the buffer overflow attack using the Unix “lpr” command in
HP True64 Unix operating system as reported by CERT in CERT-VU #651377 (see
http://www.kb.cert.org/vuls/id/IAFY-5DQPFL). We are more interested in addressing
these types of attacks. The latter category is considerably more difficult to prevent, de-
tect or deter. Addressing such threats is beyond the scope of the current work.

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 231–246, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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A second concern with intrusion detection systems is that they generate alerts only
after they are able to see the misuse signatures or some deviations from norm. A ma-
licious activity may result from a sequence of perfectly innocuous activities. Intrusion
detection systems do not report on these activities mostly to prevent information over-
load for the system administrator. Thus the intrusion detection system generates an
alarm only after the cause for alarm has occurred. In many situations however, this may
already be too late.

These two factors lead us to propose a new approach that can be used to predict
attacks arising from an insider’s activities. Our work uses the user-intent analysis ap-
proach proposed earlier by Upadhyaya et al. [2, 14, 15, 16]. Upadhyaya et al’s approach
consists of ensuring that during a particular session a user remains reasonably within
the scope of a previously declared set of activities. Any digression beyond this reason-
able limit constitutes a misuse of system and steps are taken to protect against such
digressions. However, this approach fails to account for the fact that a user may remain
completely within the scope of a previosuly declared set of activities and still be able to
launch attacks. This is where our approach contributes.

We begin by assuming that it is possible to enumerate the different attacks that a
user can launch against a given system. This assumption is not unreasonable for known
attacks. Almost all network vulnerability scanners provide such information. We then
determine all the possible actions by which a user can launch an attack against the
system. We map these actions against a user’s session scope to identify which sequences
of these actions can potentially lead to system compromise. Next we monitor each user’s
activities to see if and how they match against these sequences. Depending on the match
we propose an estimator of attack probability.

Our approach is different from classical intrusion detection systems. It works as an
early warning system. We continuously provide the system administrator an estimator
of attack probability. Thus we cannot associate a rate of false positives or negatives
with our technique. Our objective is to ensure that the system enters an alert mode
once the probability of an attack is determined to be sufficiently strong. The notion of
“sufficiently strong” is based on perceived risks. In the alert state, the following actions
will be undertaken to ensure the survivability of information in case of an actual attack.

1. Allocate additional resources to assist in data collection by logging system wide
activities more aggressively, saving system states more frequently and initiating
recovery contingency plans by coordinating with other monitors.

2. Re-distribute essential services to other safer portions of the network.
3. Introduce mechanisms to handle possible attacks including ways to contain the

attack.

All these activities are continued until either an intrusion is actually signaled by accom-
panying intrusion detection system or no further signs of attack are identified.

The advantage of our approach is that it is a flexible and resource efficient technique
for security management. At the same time it is a guarded approach. If an attack suc-
ceeds (which is determined by techniques other than ours), it allows the system to be in
a fully prepared mode for subsequent recovery.

The rest of the paper is organized as follows. In section 2 we briefly discuss the
work by Upadhyaya et al. which is the starting point of our work. Section 3 discusses
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our proposed approach. We begin the section with an overview of our approach. In
section 3.1 we introduce the notion of augmented attack trees which helps us model
system wide vulnerabilities that a user can potentially exploit. We further refine the
augmented attack tree in section 3.2 to propose the minimal cut of an attack tree with
respect to a given user intent. Finally section 4 concludes the paper.

2 Background and Related Work

In [14, 15, 16] the authors propose CIDS, a host-based concurrent intrusion detection
scheme. The system is based on user work profiling [5]. This technique assumes that
if one can encapsulate the intent of a user in a reasonable manner, then it is possible
to assess intrusions by monitoring the activities on-line. The system works as follows.
Sometime prior to login, a user submits a description of his intended system usage.
This forms the user’s session scope. The system converts the scope to a “SPRINT”
(Signature Powered Revised Instruction Table) plan which is a list (may be ordered)
of quadruples of the form < subject, action, object, period >. Here “subject”
represents a user, “action” is an operation performed by the subject (such as login,
logout, read etc.), “object” is the target of an action (such as files, programs, messages,
printers etc.), and “period” represents the time interval for the duration of the action.
Each quadruple represents a verifiable assertion, a concept that is a generalization of
IDES’s [4] specification of user characteristics, and can be monitored on-line. When a
user is active, a monitor process (called the “Watchdog”) monitors the user’s commands
and checks them against the user’s SPRINT plan. Deviations beyond a certain tolerance
limit is considered potential intrusions and CIDS generates alerts for such deviations.
The basic CIDS system flow diagram is shown in figure 1.

The basic scheme [16] described above is improved upon by the authors in a later
work [14]. In particular, the authors adopt the notion of reasonableness check to address

Session Scope Filter Plan Generator SPRINT Plan

Tolerance
Limits, Counters, Thresholds

Run time
Watchdog Monitor

Assertion
Generator

User

Run-time command

Intrusion Signal

One time effort

Run-time monitoring

Fig. 1. Flow diagram for the CIDS system
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issues like “what is a reasonable SPRINT plan” and “what is a reasonable deviation
from the SPRINT plan”. The authors use risk analysis techniques to estimate, from
a given SPRINT plan, what events can possibly occur in the future (including their
probabilities of happening) and the costs associated with those events.

One drawback of this work is that the authors do not address the scenario when a
user does not deviate in any manner from the SPRINT plan, but still is able to launch an
attack. The authors consider deviations from the SPRINT plan to be malicious, which
is okay. However, their system fail to generate an alert if the user does not deviate from
the SPRINT plan. Our work addresses this particular problem.

3 The Attack Prediction System

Our attack prediction system works briefly as follows. We begin by developing a model
of network risks. We augment the notion of attack trees [8, 11] for this purpose. We
introduce the notion of “attack probability” as labels of nodes in the attack tree. Next
we iteratively apply each user’s SPRINT plan to the augmented attack tree, to generate
a trimmed attack tree for each user. We call such an attack tree the minimal cut of an
attack tree with respect to the user intent. Branches of this trimmed attack tree represent,
in a concise manner, all the different ways by which a user can use his assigned job
privileges to launch an attack on the system. In the event such a trimmed attack tree does
not exist for a particular user, we can safely claim that the user’s current job description
does not pose a threat to the system. This does not necessarily mean, however, that we
can cease to monitor this user’s activities. If we allow a user to deviate from her/his
SPRINT plan as is done in the original work [2] then we should continue monitoring
the user as proposed in that work. For this work we will assume that the users we are
planning to monitor are the ones who, by virtue of their work definition, are able to
launch attacks against the system.

In the following sections we describe each component of our system in details. We
begin by describing how we augment the notion of attack trees to model network risks.

3.1 Augmented Attack Trees

Attack trees have been previously proposed [3, 8, 11] as a systematic method to specify
system security based on varying attacks. They help organize intrusion and/or misuse
scenarios by

1. utilizing known vulnerabilities and/or weak spots in the system, and
2. analyzing system dependencies and weak links and representing these dependen-

cies in the form of an And-Or tree.

For every system that needs to be defended there is a different attack tree1. The
nodes of the tree are used to represent the stages towards an attack. The root node of the
tree represents the attacker’s ultimate goal, namely, cause damage to the system. The

1 Actually there can be a forest of trees. However, a forest can be always collapsed to a single
tree. So we will assume that there is a single tree.
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interior nodes, including leaf-nodes, represent possible system states (that is subgoals)
during the execution of an attack. System states can include level of compromise by the
attacker (such as successful access to a web page or successful acquisition of root privi-
leges), configuration or state changes achieved on specific system components (such as
implantation of Trojan Horses) and other sub-goals that will ultimately lead to the final
goal (such as sequence of vulnerabilities exploited). Branches represent a change of
state caused by one or more action taken by the attacker. Change in state is represented
by either AND-branches or OR-branches. Nodes may be decomposed as

1. a sequence of events (attacks) all of which must be achieved for a this sub-goal to
succeed; this is represented by the events being combined by AND branches at the
node; or

2. a set of events (attacks), any one of which occurring will result in the sub-goal
succeeding; this is represented by the events being combined by OR branches at
the node.

The notion of attacks trees is related to the notion of attack graphs that have been
proposed by other researchers [1, 6, 7, 9, 12, 13] for network vulnerability analysis. The
difference is in the representation of states and actions. Attack graphs model systems
vulnerabilities in terms of all possible sequence of attack operations. As pointed out
by Ritchey and Ammann [10] a major shortcoming of this approach is its scalability.
On the other hand, attack trees model system vulnerabilities in terms of cause and ef-
fect. Sequential ordering of events does not have to be captured in attack graphs. Thus
constructing an attack tree is significantly less complex than attack graphs. An often
cited criticism of attack trees (vis-a-vis attack graphs) is that they are not able to model
cycles. However, we believe that this criticism is valid only in cases where attack trees
are used to represent sequence of operations leading to attacks, not when they are used
to represent the dependency of states reached. A second criticism of using attack tree to
model attack scenarios is that they tend to get unwieldy. One contribution of this work
is that we provide algorithms to minimize the size of the attck tree so that it is usable.

We assume that a technique is available to generate an attack tree corresponding to
the network system we are attempting to defend. Figure 2 shows a simple attack tree
for a hypothetical system that we are planning to defend.

In the network in figure 2 there is a server that stores and manages sensitive in-
formation. It is connected to a network printer. The network allows users to connect to
systems either via wired connections or wirelessly. The ultimate objective of an attacker
is to acquire root access on the server. To break the system the attacker may attack either
via the buffer overflow attack on the lpr command or via the setuid command. These
activities are represented as state transitions in the attack tree. Later on in the paper we
define these activities as atomic attacks. The first atomic attack can be done without any
pre-condition. The latter can be effected only if the attacker gains user privilege on the
server machine.

We augment an attack tree by associating a label < n, m > with each node in the
attack tree. The augmented attack tree is defined formally as follows:

Definition 1. An augmented attack tree is a rooted tree defined as AAT = (V, E, ε, L),
where
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Fig. 2. Simple Attack Tree Corresponding to a Hypothetical System

1. V is the set of nodes in the tree representing the different states of compromise or
sub-goals that an attacker need to reach in order to compromise a system. V ∈
V is a special node, distinguished from others, that forms the root of the tree. It
represents the ultimate goal of the attacker, namely system compromise. The set V
can be partitioned into two subsets, leaf nodes and internal nodes, such that
(a) leaf nodes ∪ internal nodes = V ,
(b) leaf nodes ∩ internal nodes = φ, and
(c) V ∈ internal nodes

2. E ⊆ V × V constitutes the set of edges in the attack tree. An edge (vi, vj) ∈ E
represents the state transition (in terms of actions taken) from a child node vi ∈ V
to a parent node vj ∈ V in the tree. The edge (vi, vj) is said to be “emergent from”
vi and “incident to” vj . Further if edges (vi, vj) and (vi, vk) exists in the set of
edges, then vj and vk represent the same node.

3. ε is a set of tuples of the form < v, decomposition > such that
(a) v ∈ internal nodes and
(b) decomposition ∈ [AND − decomposition, OR − decomposition]

4. L is a set of attack probability labels. A label l ∈ L is associated with a node.
If S ∈ V is a node then the attack probability label lS , associated with node S,
is given by the tuple < n, m > where m and n are positive integers greater than
0 with n ≤ m. The value of n for the node S can change over a period of time;
however the value of m is fixed for the node S. The item m is termed the least
effort to compromise subgoal S while the item n is termed the number of currently
compromised subgoals under S.

The values m and n in the attack probability label of the root node V are of particular
interest to us. The ratio n

m at any given time provides a measure of how far an attacker
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has progressed towards the ultimate goal in terms of the least effort along the most
advanced attack path that he has been through. Thus this ratio provides the probability
of the system getting compromised at that time. The values m and n corresponding
to the root node are computed based on the corresponding values for the other nodes.
At this time we show how to compute the value of m for any given node. Note that
this is a one time effort that is done during system initialization. First, some additional
definitions.

Definition 2. Given a node, v in an attack tree such that v ∈ internal nodes, the
node is an AND-decomposition if all edges incident to the node are connected by the
AND operation.

Definition 3. Given a node v of an attack tree such that v ∈ internal nodes, the
node is an OR-decomposition if all edges incident to the node are connected by the OR
operation.

An AND-decomposition, v, (shown by a single arc among the edges incident to
V in figure 2) means that each subgoal of v represented by a child of v needs to be
reached in order to reach v. An OR-decomposition (shown by a double arc in figure 2)
means that the goal v can be reach only if any one of the subgoals is reached. Note that
reaching a child goal is only a necessary condition for reaching the parent goal and not
a sufficient condition. An instance of an augmented attack tree is shown in figure 3.

Let us assume without loss of generality that the attacker uses one unit of effort
to perform one atomic attack that furthers his goal. In other words, each hop along
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Fig. 3. Example of an Augmented Attack Tree



238 I. Ray and N. Poolsapassit

one edge of the attack tree takes one unit of effort to get through. The least effort to
compromise a subgoal is the minimum effort the attacker needs to compromise the
given subgoal. If a given goal S has an OR-decomposition, the least effort is computed
as the minimum least efforts of its child nodes plus one unit effort needed to advance
to S from the child node. If the goal S has an AND-decomposition then the least effort
is the sum of the least efforts of the child nodes plus all additional unit efforts, one for
each child node to go to S. The following definition captures the steps to compute the
least effort for a subgoal S.

Definition 4. Given a subgoal S and its child subgoals Si, the least effort to compro-
mise S, ms, is defined as follows.

1. If S is a leaf node of the attack tree the least effort is 0.
2. If S is some interior node and is an AND-decomposition, then ms = Sum(msi)+k

where k is the number of child nodes Si of S.
3. If S is some interior node and is an OR-decomposition, then ms = Min(msi) + 1.

Henceforth we will use the terms attack tree and augmented attack tree interchange-
ably to mean the latter.

3.2 Minimal Cut of Attack Trees w.r.t. User Intent

An augmented attack tree can be used to model system vulnerabilities in a very effec-
tive manner. The attack tree describes all possible ways in which a particular attack can
be launched. If there are more than one attacks against a system that we are concerned
about, we can generate separate attack trees for each. However, there are a few draw-
backs of the attack tree defined as it is now. First, for a complex system the attack tree
can become quite deep and spread out. Thus it will become difficult to manage. Second,
it is possible that a number of users are executing the same set of operations albeit at dif-
ferent paces. In this case, the cumulative effects of these users’ actions will be reflected
on the attack tree. If the users are not colluding this does not give the true picture of the
state of the attack. For example, let a user have initially launched an attack and have
compromised upto subgoal S1 of S in an attack tree. Another user has compromised
upto subgoal S2. If the node S is an AND-decompostion of S1 and S2, the model will
indicate that subgoal S is compromised. However, if the two users are not co-operating,
then this is not the case. Thus, we want to refine the concept of attack tree so that we
are able to monitor each individual user’s activities. If we believe there is possibility of
collusion among attackers we will maintain the system-wide attack tree as generated so
far in addition to the per-user attack tree that we are now ready to define.

That a per-user attack tree is relevant is further strengthened by the following ob-
servation. For any attack, we may not always need to know all possible ways the attack
can be launched, but rather the practical ways. In the case of attacks from insiders, for
example, we are interested only in the activities of authorized users in the system. Thus,
we want to determine if the operations that a user executes can lead to an attack. This
implies that for a particular user, only a portion of an attack tree is relevant. This leads
us to propose the notion of a minimal cut of an attack tree with respect to a user intent.
We begin with the following definitions.
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Fig. 4. A Possible Attack Scenario

Definition 5. Given an attack tree, AAT , an attack scenario, AS of AAT is defined
to be a sub-tree of AAT that is rooted at the root of AAT , and follows one or more
branches through the tree to end at one or more leaf nodes of AAT such that

1. if the subtree has a node that is an AND-decomposition then the subtree must con-
tain all the children of this node, and

2. the sub-tree represents one and only one of the many attacks described by AAT .

The following figure represents one possible attack-scenario corresponding to the
attack graph of figure 3, with the shaded boxes constituting the nodes in the attack
scenario.

Definition 6. An edge (vi, vj) in an attack scenario is called an atomic attack. The
node vi represents the precondition for the atomic attack and vj is the goal.

Referring to figure 4 some of the atomic attacks have been shown by dashed ar-
rows. Note that to achieve an atomic attack, the attacker must execute some operations
that exploit one or more vulnerabilities in the system. Once a vulnerability has been
exploited the attacker executes a set of “attacking operations” that achieve the goal of
an atomic attack. Thus,

Definition 7. A suspicious operations set, SOattk , corresponding to an atomic attack
attk, is a set of operations on specific objects that may potentially lead to the culmina-
tion of the atomic attack attk. SOattk is a set of tuples of the form < action, object >.
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We can identify two different types of operations in a suspicious operations set,
SOattk. The first subset of operations is the set V ul of vulnerable operations. At least
one of the operations in the vulnerable set needs to be executed to exploit a vulnerability.
An atomic attack can be launched by exploiting one or more vulnerabilities. Similarly
each vulnerability can be exploited by executing one or more vulnerable operations. The
second subset of operations is the set Ao of attacking operations. All of these needs to
be executed to accomplish the atomic attack.

We would like to point out here that we specifically omit the use of the term “se-
quence” from the definition of suspicious operations set. It is quite possible that only
a particular order of execution of the operations will lead to an attack. Since we are
interested in estimating the probability of an attack and not just reporting on the attack
if and when it is launched, we are interested in all the operations in the set and not just
the operations in some particular order.

Definition 8. The set of intended operations of a particular user, IOS, is a projection
of the SPRINT plan for the user over attributes action and object.

We need to be worried about a user’s SPRINT plan if some members of the cor-
responding intended operations set includes a suspicious operations set. We define the
intended operations to abet an attack subgoal as follows.

Definition 9. Given, an attack subgoal vi (that is a node in an attack scenario) decom-
posed as the set A of atomic attacks attki, the suspicious operations sets corresponding
to each atomic attack, SOattk

i , and a set of intended operations, IOS for a user, we say
that the intended operations abet the attack subgoal if and only if one of the following
conditions holds true.

1. If vi is an AND-decomposition with m edges then ∀i, 1 ≤ i ≤ m, SOattk
i ⊆ IOS

2. If vi is an OR-decomposition with m edges then ∃i, 1 ≤ i ≤ m, SOattk
i ⊆ IOS

The intended operations abet an attack scenario if the intended operations abet all
attack subgoal in that attack scenario.

Recall that one of our objectives is to determine if a user’s activities in a system
can lead to an attack on the system. A related objective is to determine the exact way
in which an attack can be launched with the user’s intended operations. Thus, given
an attack scenario, AS, consisting of subgoals (a1, a2, . . ., an), we need to determine
for each user’s intended operations, if the intended operations abet every subgoal ai ∈
AS. If the intended operations do not abet every subgoal ai in AS, it implies that this
particular attack scenario cannot arise from the user’s activities. However, this does not
mean that another attack scenario cannot arise from the same intended operations. What
we need to identity, therefore, is the maximal set of attack scenarios that can arise from
a given set of intended operations.

Definition 10. The minimal cut, MCIOS , of an attack tree, AAT with respect to a
particular user intent, IOS, is the minimal subtree of AAT which is rooted at the root
of AAT and whose leaf nodes are a subset of the leaf nodes of AAT , such that the
subtree includes the maximal set and only the maximal set of attack scenarios that can
arise from IOS.
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Algorithm 1 PRUNING ALGORITHM (AAT, r, IOS)
{Description: This algorithm takes an attack tree and a set of intended operations for a par-
ticular user and generates a confined version of the attack tree. The original attack tree is
represented as a tree structure in which each node except the leaf nodes, contains an array of
adjacency lists. Each element in the array represents an attack subgoal. For each attack sub-
goal, Vi, Adj[Vi] contains a reference to a pre-condition subgoal. Each edge in the set E of
edges refer to an atomic attack. The algorithm assumes the existence of a procedure called
OPERATIONS that takes an edge e[u, v] corresponding to a state transition in the attack tree
and returns the set of operations that result in the state transition. It also assumes a second
procedure called PARENT that takes a node v and returns the parent of v. The algorithm uses
three temporary queues called Explore-List, E′ and V ′ with operation ENQUEUE and DE-
QUEUE defined. Finally, the algorithm assumes a procedure DRAW TREE that builds a tree
given a set of nodes and edges}
{Input: The attack tree AAT , its root, r and the set of intended operations for the user, IOS}
{Output: The pruned attack tree containing the minimal cut of the attack tree with respect to
the user intent.}
ENQUEUE(Explore-List, r)
E′ ← φ
V ′ ← φ
while Explore-List �= φ do

u ← DEQUEUE(Explore-List)
ANY MET ← false
for all v ∈ Adj[u] do

ENQUEUE(Explore-List,v)
if OPERATIONS([u,v]) ⊆ IOS then

ENQUEUE(E′,[u,v])
ANY MET ← true

end if
end for
if (Adj[u] = φ) && ([PARENT(u),u] ∈ E′) then

ENQUEUE(V ′,u)
end if
if ANY MET = true then

ENQUEUE(V ′,u)
end if

end while
DRAW TREE(V ′,E′)

We now give two algorithms (algorithms 1 and 2) applying which in sequence gives
us a minimal cut of an attack tree with respect to a given user intent. We call the first
algorithm the Pruning Algorithm and the second algorithm the Trimming Algorithm.
The first algorithm takes an attack tree and generates a subtree rooted at the root of the
attack tree such that the subtree contains the desired minimal cut. It removes from the
original tree any attack scenarios whose attack subgoals are not abetted by the intended
operations. The second algorithm further reduces the subtree produced by the pruning
algorithm to produce the minimal cut.
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The following theorems hold on the pruning algorithm.

Theorem 1. Let ATT = (V, E, ε, L) be an augmented attack tree and assume that the
pruning algorithm is executed on ATT starting with the root node r ∈ V . If the user’s
actions abet an attack then that attack subgoal will be present in the pruned attack tree
generated by the pruning algorithm.

Proof. To prove soundness of the algorithm we need to prove that during its execution
the pruning algorithm explores every state s that forms an attack subgoal for the attacker
and includes it in the pruned attack tree. To prove completeness, we must prove that if
a node s is included in the pruned attack tree it must form an attack subgoal for the
attacker.

First let assume that at the termination of the pruning algorithm, an attack subgoal
s ∈ V which can lead to the root of the attack tree exists such that it is not enqueued
by the pruning algorithm. The pruning algorithm starts by exploring the root’s adjacent
nodes and then iteratively explores the adjacent nodes of these. Thus, if there is an
unexplored subgoal s left at the termination of the pruning algorithm, it must be the case
that that subgoal s is not be reachable from the root.Then according to the definition 1,
subgoal s /∈ V which contradicts the assumption.

We prove completeness of the algorithm as follows. Let us assume that at the ter-
mination of the algorithm there exist a state transition e[u, v] ∈ E such that SOe[u,v] ⊆
IOs but e[u, v] /∈ E′. Since all states in an attack tree have been explored, then e[u, v]
must have been explored. By definition 9, if user intent IOs abet an atomic attack which
corresponds to the state transition e[u, v], it must be explored and included in E′. This
results in a contradiction.

The pruned attack tree generated by the pruning algorithm may include atomic at-
tacks that however can never materialize from a user’s activities. This is because the
preconditions to these attacks are never satisfied by the user actions. For example, a
user’s intent may abet a remote login attack but may not abet the user to perform an
ftp/.rhost attack on the target machine. In this case, the attacker cannot perform these
atomic attacks at least till such time as they are not permitted to modify their intent.
The next algorithm called the trimming algorithm removes these attack scenarios and
produces the minimal cut of attack tree.

Theorem 2. If the trimmed attack tree generated from a pruned attack tree by the ap-
plication of a user’s intended operation contains an attack scenario, then the intended
operations abet that particular attack scenario.

Proof. Let assume that there exist subgoal s (which its preconditions are met by the
user intents) mistakenly removed by the trimming algorithm.

According to the semantic of the trimming algorithm, the while loop in the trimming
algorithm explores every node in the input pruned tree and the for loop trying to discover
all possible paths from the leaf nodes to a subgoal currently explored by the while loop
’s iteration. Then the remove instruction removes a subgoal if and only if the previous
for loop could not find such a path to the leaf node. We will split subgoal s in 2 cases.

Case 1: If subgoal s ∈ V ′ is an initial subgoal, this case could not have happened
since the if statement of line 6 in the procedure detect the leaf node. Then the initial sub-
goal s /∈ Minimal cut if and only if s /∈ V ′ which contradicts the previous assumption.
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Algorithm 2 TRIMMING ALGORITHM (V ′, E′)
{Description: This algorithm takes the pruned attack tree generated by the pruninng algorithm,
and removes attack goals that the user can never reach.}
{Input: The set of nodes from the pruned attack tree, ordered by traversing the tree in breadth
first order and stored in an array V ′, and the corresponding set of edges E′}
{Output: Minimal cut of an attack tree with respect to user intent}

i ← SIZEOF(V′)
while (i > 0) do

u ← V ′[i]
i ← i − 1
valid ← false
if Adj[u] = φ then

valid ← true
else

for all v ∈ Adj[u] do
if v ∈ V ′ then

valid ← true
else

remove (u,v) from E′

end if
end for

end if
if ¬ valid then

remove u from V ′

end if
end while
DRAW TREE(V ′,E′)

Case 2: If subgoal s ∈ V ′ is an intermediate subgoal, s will be removed by the
trimming algorithm if and only if s can not be reached from any initial subgoal. This
means the preconditions of an intermediate subgoal s are not met which contradicts the
previous assumption.

3.3 Computing Probability of Attack by User

We now use the minimal cut of an attack tree with respect to a user intent to determine
the probability of an attack originating from that user. Algorithm 3 computes the attack
probability label of a subgoal at any given time t. By applying this algorithm on the root
node of the minimal cut of an attack tree for a user, we get the attack probability label
corresponding to the root at time t. The ratio n/m at time t gives the probability of the
user’s attack succeeding at time t.

Figure 5 shows an example trace for the algorithm 3. Assume that at time t a mali-
cious user compromises the subgoals shown in the figure. The algorithm computes the
< n, m > value for the root of the tree as follows. All leaf-nodes return value (0, 0).
Node A.1 and A.3 have the summation equal to (0, 0) since their immediate child nodes
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Algorithm 3 Risk-Analysis(Subgoal A)
{Description: This algorithm takes an attack tree subgoal A and returns the attack probability
label (n,m) for that goal. Here n refers to the number of nodes that have been compromised on
the most advanced attack paths and m refer to the least-effort needed to compromise A on that
path.}
{Input: A subgoal of an attack tree}
{Output: 1. Number of subgoals that have been compromised along the most advanced attack
path. 2. Least-effort needed to compromise the subgoal along the most advanced attack path. }

Let n = number of currently compromised subgoal under A on the most advanced attacking
path.
Let m = least-effort needed to compromise A on the most advanced path.
if A is a leaf node then

return (0,0)
end if
if A is an AND-Decomposition then

(n,m)← Sum {Risk-Analysis(Ai) | ∀AiChildnodesofA}
if A is compromised then

return (n+k, m+k)
else

return (n, m+k)
end if

else
(n, m) ← Max{(n/m) of Risk-Analysis(Ai) | ∀AiChildnodesofA}
if A is compromised then

return (n+1, m+1)
else

return (n, m+1)
end if

end if

are all leaf nodes. When A.1 is compromised the procedure returns (2, 2). Similarly for
A.3 the procedure returns (0, 2). For B.1 and B.3 the values are (1, 1) and (0, 1) respec-
tively. At this point the value of (2, 2) tells us that it takes 2 unit efforts to compromise
A.1. The attacker has already compromised A.1 but no damage has been done on A.3.
Next we calculate value on A. Eventually, since the root is an AND-decomposition on
two branches A and B the least effort is 8 + 2 = 10 and the number of compromised
nodes is 3. This yields a probability of attack value of 3

10 at time t.

4 Conclusions and Future Work

In this paper, we propose a proactive approach to predicting network attacks that can
potentially result from a insider exploiting known system vulnerabilities through the
execution of authorized operations. Our system is intended to complement existing
intrusion detection systems to help fight unwelcome cracker activities. We develop a
quantitative framework. Our approach is proactive in the sense that we want to provide
the system administrator an early warning. We want the system to enter an alert mode
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Fig. 5. Computing attack probability label for attack subgoal

once the probability of an attack is determined to be sufficiently strong and remain in
that state until either an intrusion is actually signaled by an intrusion detection system
or no further signs of attack are identified. The advantage of our approach is that it is a
flexible and resource efficient technique for security management. At the same time it
is a guarded approach. If an attack succeeds, it allows the system to be in a fully pre-
pared mode for subsequent recovery. Moreover, although we develop this framework
with insider threats in mind our approach can be easily adapted to predict threats from
the outside.

At this stage the model has one shortcoming. The model results in the probability
of an ensuing attack to increase continuously or remain static at best. However, in real
life, a system administrator may sometimes take certain steps that results in the signs of
an attack to subside. In our model this will be reflected by no change in the probability
of the attack. We are currently working on this problem. Once that is solved we plan to
develop a working prototype and undertake some simulation studies.
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Abstract. To defend against a multi-step network intrusion, its progress needs
to be monitored and predicted in real-time. For this purpose, isolated alerts must
be correlated into attack scenarios as soon as the alerts arrive. Such efficient cor-
relation of alerts demands an in-memory index to be built on received alerts.
However, the finite memory implies that only a limited number of alerts inside a
sliding window can be considered for correlation. Knowing this fact, an attacker
can prevent two attack steps from both falling into the sliding window by either
passively delaying the second step or actively invoking bogus alerts between the
two steps. In either case, the correlation effort is defeated.

In this paper, we first address the above issue with a novel queue graph (QG)
approach. Instead of explicitly correlating a new alert to all the old ones that pre-
pare for it, the approach only correlates the new alert to the latest copy of each
type of alerts. The correlation with other alerts is kept implicit using the temporal
order between alerts. Consequently, the approach has a quadratic (in the num-
ber of alert types) memory requirement, and it can correlate two alerts that are
arbitrarily far away (namely, an infinitely large sliding window with a quadratic
memory requirement). Our second contribution is a unified method based on the
QG approach that can correlate received alerts, hypothesize missing alerts, and
predict future alerts all at the same time. Empirical results show that our method
can fulfill those tasks faster than an IDS can report alerts. The method is thus a
promising solution for administrators to monitor and predict the progress of an
intrusion, and thus to take appropriate countermeasures in a timely manner.

1 Introduction

For most well-administrated networks, a realistic intrusion is usually composed of mul-
tiple attacks with earlier ones preparing for later ones. Defending against such multi-
step intrusions is important but challenging. It is usually impossible to respond to such
intrusions based on isolated alerts that correspond to individual attack steps. The rea-
son lies in the well-known impreciseness of Intrusion Detection Systems (IDSs). That
is, alerts reported by IDSs are usually filled with false alerts that correspond to either
normal traffic or failed attack attempts.
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The defense of multi-step intrusions will be more effective, if the attack scenarios of
such intrusions can be reconstructed from isolated alerts. Alert correlation techniques
achieve this 1 by exploiting either the similarity in alert attributes or the a priori knowl-
edge about alert dependencies (related work will be reviewed in the next section). Alert
correlation can also be based on the knowledge about a given network, such as network
connectivity and the relationship between vulnerabilities. Regardless of the different
knowledge used by correlation methods, the following nested loop procedure is usually
assumed. That is, for each new alert, a search is performed in previously received alerts
to find those who prepare for the new one. For off-line applications with a fixed set
of alerts, such as computer forensics, this approach is a natural choice with reasonably
good performance. For example, by maintaining an in-memory index on alerts, 65k
alerts can be processed in less than a second [20].

However, the defense against multi-step intrusions poses a new challenge to exist-
ing correlation methods that are based on the nested loop approach. A timely defense
requires that each new alert be correlated with older ones as soon as the new alert ar-
rives. This performance requirement demands an in-memory index to be maintained
on received alerts. An index on all received alerts would exhaust any finite memory
when more and more alerts arrive. Hence, the index can only be maintained for those
alerts that are close enough to the new alert, namely, those inside a sliding window.
Unfortunately, an attacker aware of this fact can prevent any two attack steps from both
falling into the sliding window. This can be achieved by either passively delaying the
second step or actively invoking bogus alerts between the two steps. In either case, the
correlation effort is completely defeated.

In this paper, we first remove the above obstacle towards efficient correlation of in-
trusion alerts. We propose a novel queue graph (QG) data structure for this purpose. The
QG only keeps in memory the latest alert matching each of the known exploits (that is,
host-bound vulnerabilities). The correlation is explicit only between the new alert and
these in-memory alerts, while that between the new alert and other older alerts is kept
implicit with the temporal order between alerts. We then study a QG-based correlation
method that can not only correlate received alerts, but also hypothesize missing alerts
and predict possible future alerts all at the same time. Finally, we evaluate the proposed
techniques through implementations and empirical results.

The contribution of this work is two-fold. First, the QG-based alert correlation re-
moves the limitation of a nested loop approach. Our approach has a quadratic memory
requirement and a linear time complexity (in the number of known exploits in the given
network) that are both independent of the number of received alerts. Hence, the effi-
ciency does not decrease over time. Our approach can correlate alerts that are arbitrarily
far away. It thus defeats slowed attacks and injected bogus attacks. Second, the unified
approach to alert correlation, hypothesis, and prediction provides a promising solution
to the defense of multi-step intrusions. Empirical results indicate that our methods can
fulfill the tasks even faster than the IDS can report alerts. Hence, the proposed tech-

1 There are alert correlation techniques used for other purposes, such as correlating multiple
victims targeted by the same attacker, but we shall focus on the techniques used for analyzing
multi-step intrusions.
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niques can help an administrator to monitor and predict the progress of a multi-step
intrusion, and thus to take appropriate countermeasures in a timely manner.

The rest of this paper is organized as follows. The next section reviews related work.
Section 3 introduces some basic concepts and states our assumptions. Section 4 pro-
poses the QG approach to alert correlation. Section 5 studies a unified method for alert
correlation, hypothesis, and prediction. Section 6 evaluates the proposed techniques
with implementation and empirical results. Finally, Section 7 concludes the paper and
gives future directions.

2 Related Work

To reconstruct attack scenarios from isolated alerts, some alert-based correlation tech-
niques employ the a priori knowledge about known attack strategies [6,8,4,9,35] or
alert dependencies [3,19,21]. Other techniques do not depend on such knowledge, but
cluster alerts through the similarity in their attributes (such as same sources and des-
tinations) [2,5,34,38] or statistical and temporal patterns [16,28]. Hybrid approaches
combine different techniques to obtain better results [21,29]. Alert correlation tech-
niques have also been used for other purposes than the analysis of multi-step intrusions,
such as to relate alerts to the same attack thread [13]. In real-time applications, the
correlation methods based on a nested loop approach either suffer from performance
decreases over time or can be easily defeated by slowed attacks and injected bogus at-
tacks. To our best knowledge, this has not been extensively studied. Our work addresses
this important issue and provides a solution.

Network vulnerability analyses enumerate potential attack sequences between fixed
initial conditions and attack goals [25,30,31,33,15,1,14,24,40,10]. To avoid potential
combinatorial explosion in the number of attack sequences, we adopt a notation of
attack graphs similar to that of [1,25]. However, we do not assume fixed initial or goal
conditions in an attack graph but base the actual start and end of an intrusion on alerts.
Efforts in integrating information from different sources include M2D2, a formal model
of alerts, vulnerabilities, networks, and security tools [18]. By organizing IDS alerts
and the reports of vulnerability scanners (or other monitoring tools such as anti-virus
software) into a Bayesian network, the alerts corresponding to successful attacks can be
distinguished from others with higher confidence [41]. In another recent approach, alert
correlation is based on the shortest distance between exploits in an attack graph [23].
We also adopt such a vulnerability-centric approach, because it can effectively filter out
bogus alerts that do not match any exploit in the given network. However, the correlation
in [23] still assumes a nested loop approach, and hence has the same limitation in real-
time applications.

Broken scenarios caused by missing alerts are reassembled through clustering alerts
with similar attributes [22], and those caused by incomplete knowledge are pieced to-
gether through statistical analyses [29,28]. Instead of repairing a broken scenario af-
terwards, our method can tolerate and hypothesize missing alerts at the same time of
correlation. This unified approach makes our method more appropriate for real-time ap-
plications. Real-Time detection of isolated alerts is studied in [17,27]. Some products
claim to have the capability of real-time analyses of alerts, such as the Tivoli Risk Man-
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ager [12], although their efficiency and resistance to slowed attacks may need further
study. The RUSSEL language used in the ASAX system is similar to our QG approach
in that the analysis of data only requires one-pass of data processing, although the RUS-
SEL language is designed for the generic analysis of audit trails [11].

3 Preliminaries

This section reviews relevant concepts and states our notations and assumptions about
those concepts. First, we discuss attack graph in Section 3.1. We then address intrusion
alerts and alert correlation in Section 3.2. Finally, we address the nested loop approach
and its limitations in Section 3.3.

3.1 Attack Graph

An attack graph represents the a priori knowledge about a given network in terms of
vulnerabilities and connectivity [1,33]. An attack graph is a directed graph having two
type of vertices, exploits and security conditions. Exploits are host-bound vulnerabili-
ties. More precisely, an exploit is a triple (vul, src, dest) that indicates the following
facts. The vulnerability vul exists on the host dest, and the two hosts src and dest are
connected (src and dest may refer to the same host in a local exploitation, and those
exploitations that involve more than two hosts are beyond the scope of this paper). Se-
curity conditions refer to the network states that are required or implied by exploits,
such as privilege levels or trusts. The interdependencies between exploits and security
conditions form the edges of an attack graph. An edge from a security condition to an
exploit indicates that the exploit cannot be executed until the security condition has
been satisfied; an edge from an exploit to a security condition indicates that executing
the exploit will satisfy the security condition.

Example 1. Figure 1 depicts part of an attack graph. In the attack graph, security con-
ditions appear as ovals and exploits as rectangles. The edges in the attack graph reflects
that the buffer overflow exploit can be executed only if the attacker can access the source
host and the vulnerable service exists on the destination host.

We assume attack graphs can be obtained by analyzing the given network with ex-
isting tools. For example, the Topological Vulnerability Analysis (TVA) tool reported

 
User privilege on host1 

Sadmind buffer overflow vulnerability 
host1 → host2 

Vulnerable Sadmind RPC service on  host2 

Arbitrary code execution with 
root privileges on host2 

Fig. 1. An Example of Attack Graph
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in [14] can model 37,000 vulnerabilities taken from 24 information sources includ-
ing X-Force, Bugtraq, CVE, CERT, Nessus, and Snort. We assume the attack graph is
updated in a timely fashion upon changes in network topology and configuration. We
assume that the attack graph of a given network can be placed in memory. Unlike the
number of alerts which may increase indefinitely over time, the size of an attack graph is
usually relatively stable. The required memory can thus be predetermined and allocated
accordingly. We leave the case when the attack graph does not fit in memory as future
work. Different from the attack graph in [33,30], we do not assume fixed initial or goal
conditions in an attack graph. Instead, the actual start and end of an intrusion are based
on alerts reported by IDSs. We do not assume external host addresses can be trusted
and thus our attack graphs use wildcards for external addresses. This may cause false
correlations when multiple attackers concurrently launch similar attacks while they do
not intend to cooperate with each other.

To simplify our discussion, we introduce some notations to formally denote attack
graphs. Let E be the set of exploits discovered in a subject network, and C be the
set of relevant security conditions. Denote the require and imply relationship between
exploits and security conditions as two relations Rr ⊆ C × E and Ri ⊆ E × C,
respectively. Then an attack graph is the directed graph G(E∪C, Rr∪Ri). The prepare-
for relationship between exploits, as captured by many alert correlation methods [3,19],
is simply the composite relation Re = Ri ◦ Rr.

3.2 Intrusion Alert

Intrusion alerts are suspicious events reported by IDS sensors placed in the given net-
work. Although the alerts reported by different IDSs may vary in format, they typi-
cally contain attributes like the type of events, the address of the source and destination
host, the time stamp, and so on. Our discussion does not depend on specific format
of alerts, and hence we simply regard each alert as a relational tuple of relevant at-
tributes. The schema of the relation will usually be clear from context. For example,
with the schema (event type, source IP, destination IP, time stamp), an alert will have the
form of (RPC portmap sadmind request UDP, 202.77.162.213, 172.16.115.20, 03/07-
08:50:04.74612).

We adopt a vulnerability-centric approach to correlating alerts that is similar to [23].
Roughly speaking, the approach first matches alerts with corresponding exploits and
then correlate alerts based on the knowledge encoded in an attack graph. The matching
has two parts, that is the mapping from the event type attributes of alerts to the vulnera-
bility attributes of exploits, and the comparison between the addresses of the source and
destination hosts. The mapping from event types to vulnerabilities can be established
using domain knowledge, such as the correspondence between Snort identifiers and
Nessus identifiers available in OSSIM [26]. The comparison between host addresses
supports using wildcards in exploits for untrustworthy external addresses. For simplic-
ity, we denote the matching between alerts and exploits as a function f from the set
of alerts A to the set of exploits E (more generally, an event type can match multiple
vulnerabilities, and one way to handle this is to duplicate any alert of that even type
such that each copy of the alert matches exactly one exploit).
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Using the vulnerability-centric approach can potentially mitigate the negative im-
pact of disruptive alerts. For example, if the attacker blindly launches some Windows-
specific attacks on UNIX machines, then the reported alerts will be ignored by the
approach. On the other hand, the approach also has limitations in that relevant alerts do
not always match exploits. For example, an ICMP PING matches no vulnerability, but it
signals the probing preparation for following attacks. Such relevant alerts can be iden-
tified based on attack graphs and the knowledge about alert types. We accommodate
them by allowing exploits to have alert types in the place of vulnerability attributes.
Such special exploits are inserted into attack graphs and the function f is extended
accordingly.

Our methods critically depend on temporal characteristics of alerts, such as
timestamps and the order of arrivals. In practice, those characteristics are expected to
exhibit much uncertainty due to various delays in hosts and network, especially when
alerts are from multiple sensors placed differently. We address such temporal imprecise-
ness in more details in Section 4.3. We assume the clocks of IDS sensors are loosely
synchronized with the correlation engine. This can be achieved in many different ways
depending on specific IDS systems. For example, Snort has built-in support of auto-
matic time synchronization through the network time protocol (NTP) [32]. We leave
the case where attackers may temper with the clocks as future work.

3.3 The Nested Loop Approach and Its Limitations

A natural way to correlate alerts is to search previously received alerts for those who
prepare for the new alert. Such a nested loop approach is assumed by many correlation
methods. Suppose we have a sequence of alerts ascending in time, a0, a1, . . . , an. For
each i = 1, 2, . . . , n, the approach searches a0, a1, . . . , ai−1 for those aj’s that sat-
isfy f(aj)Ref(ai). However, this does not imply that ai must be compared to every
aj(0 ≤ j ≤ i − 1), although it comprises a naive implementation of the search. The
search can certainly be optimized with standard indexing schemes. More specifically,
an index on a0, a1, . . . , ai−1 is employed for searching the alerts that may prepare for
ai. After ai is processed, the index needs to be updated by inserting an entry for ai.
By maintaining such an index in memory, the nested loop approach can have a rel-
atively good performance (for example, 65k alerts can be processed in less than one
second [20]).

It is not always possible to have enough memory for indexing all the alerts. Hence, a
sliding window approach comes to the rescue. That is, only the alerts close enough to the
new alert are considered for correlation. For the alert ai, the search is only performed
on ai−k, ai−k+1, . . . , ai−1, where k is a given window size determined by available
memory. Apparently, an unavoidable tradeoff exists between the performance and com-
pleteness of correlation. On one hand, performance requires k to be small enough so
the index fits in memory. On the other hand, a smaller k means less alerts will be con-
sidered for correlation with the new alert, and this may cause incomplete result because
two related alerts may actually be separated by more than k others.

The tradeoff between performance and completeness causes a more serious prob-
lem for real-time correlation, where performance is critical and alerts accumulate in
time. The problem can be exacerbated by those attackers who are aware of the ongoing
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detection effort. An attacker can employ the following slow attack to defeat alert corre-
lation. More specifically, given an arbitrarily large window size k, for any two attacks
that raise the correlated alerts ai and aj , the attacker can delay the second attack until
at least k other alerts have been raised since ai, so j − i > k meaning ai and aj will
not be correlated. Instead of passively awaiting, a smarter attacker can actively launch
bogus attacks between the two real attack steps, so the condition j − i > k can be satis-
fied in a shorter time. The attacker can even script bogus attack sequences between the
real attack steps, such that a deceived correlation engine will be kept busy in producing
bogus attack scenarios, while the real intrusion will be advanced in peace of mind.

4 The Queue Graphs (QG) Approach to Correlating Alerts

This section proposes a novel Queue Graph (QG) data structure to remove the limitation
discussed in the previous section. First, we make a key observation about implicit and
explicit correlation in Section 4.1. We then introduce the QG data structure and discuss
correlating alerts using QG in Section 4.2. Finally, we address the issue of imprecise
temporal characteristics of alerts in Section 4.3.

4.1 Implicit Correlation and Explicit Correlation

The key observation is that the correlation between alerts does not always need to be
explicit. In Figure 2, suppose the first three alerts ai, aj , and ak all match the same
exploit f(ak) (that is, their event types match the same vulnerability and the same source
and destination hosts are involved); the alert ah matches another exploit f(ah); f(ak)
prepares for f(ah). Hence, ai, aj , and ak should all be correlated with ah. However,
if the correlation between ak and ah is explicitly recorded (shown as a solid line in
the figure), then the correlation between aj and ah can be kept implicit (shown as a
dotted-line). More precisely, the facts f(aj) = f(ak) and f(ak)Ref(ah) jointly imply
f(aj)Ref(ah), and the facts that aj is before ak and ak is before ah jointly imply that
aj must also be before ah. Similar arguments apply to the correlation between ai and ah.

 

time 

ai aj ak …  …  …  ah …  …  

f(ai) = f(aj) = f(ak)  
f(ak) Re f(ah) 

Fig. 2. Implicit and Explicit Correlation

To generalize the above observation, a new alert only needs to be explicitly corre-
lated with the latest alert matching each exploit. The correlation with other older alerts
matching the same exploit can be kept implicit with the temporal order (for example, aj

is before ak and ak is before ah) and the matching from alerts to exploits (for example,
aj and ak match the same exploit). In the above case, if ak is indeed the latest alert
matching f(ak), then only the correlation between ah and ak needs to be explicit 2.

2 This is analogous to a moving-average or smoothing model, although what is concerned here is
not the accumulated effect of one sequence, but the relationship between multiple sequences.
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As we shall show shortly, this distinction between implicit and explicit correlation can
reduce the complexity and memory requirement of correlation. Intuitively, for each ex-
ploit the correlation algorithm only needs to search backward for the first (ak in the
above case) alert matching that exploit. For the nested loop approach, however, the
correlation is always explicit. Hence, the approach must unnecessarily search all the
previous alerts, as discussed in Section 3.3.

4.2 Correlating Alerts Using Queue Graphs

Based on the observation about the implicit and explicit correlation, we design an in-
memory data structure, namely, Queue Graph. A queue graph is an in-memory materi-
alization of the given attack graph with enhanced features (the purpose of the features
will be clear in the following sections). Each exploit is realized as a queue of length
one, and each security condition as a variable.

The realization of edges is a little more complicated. Starting from each exploit ei,
a breadth-first search (BFS) is performed in the attack graph by following the directed
edges. For each edge encountered during the search, a forward pointer is created to con-
nect the corresponding queue and variable. Similarly, another search is performed by
following the directed edges in their reversed direction, and a backward pointer is cre-
ated for each encountered edge. Later we shall use the backward edges for correlation
purposes and use the forward edges for prediction purposes.

The two collections of pointers are then placed at a separate layer tailored to the
queue that corresponds to the exploit ei. The reason for separating pointers into layers
is as follows. A BFS always creates a tree (namely, the BFS tree), and hence later
another BFS starting from the same queue can follow only the pointers at that layer.
This later BFS will then be performed within a tree instead of a graph, reducing the
complexity from quadratic to linear. We first illustrate the concepts in Example 2.

Example 2. In Figure 3, from left to right are a given attack graph, the corresponding
queues (shown as buckets) and variables (shown as texts), and the (both forward and
backward) pointers at different layers. Notice that the layer one pointers do not include
those connecting v2 and Q3, because a BFS in the attack graph starting from e1 will
reach c2 only once (either via e2 or via e3, but we assume e2 in this example). The layer
one pointers thus form a tree rooted at Q1.

In Section 3.3, we discussed how a nested loop approach correlates alerts that pre-
pare for each other. As a comparison, we now perform the same correlation using a
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queue graph (we shall discuss other correlation requirements in Section 5). Intuitively,
we let the stream of alerts flow through the queue graph, and at the same time we col-
lect correlation results by searching the queue graph. More specifically, each incoming
alert is first matched with an exploit and placed in the corresponding queue. Then, be-
cause the length of each queue is one, a non-empty queue must dequeue the current
alert before it can enqueue a new alert.

During this process, the results of correlation are collected as a directed graph,
namely, the result graph. First, each new alert is recorded as a vertex in the result graph.
Second, when a new alert forces an old alert to be dequeued, a directed edge between
the two alerts is added into the result graph, which records the temporal order between
the two alerts and the fact that they both match the same exploit. Third, after each new
alert is enqueued, a search starts from the queue and follows two consecutive backward
pointers; for each non-empty queue encountered during the search, a directed edge from
the alert in that queue to the new alert is added into the result graph. This is illustrated
in Example 3.

Example 3. Consider correlating the four alerts ai, aj , ak, and ah in Figure 2 with the
queue graph given in Figure 3, and suppose f(ah) = e1, f(ak) = e2, and no other
alerts match e1 or e2 besides ai, aj , ak, and ah. First, when ai arrives, it is placed in
the empty queue Q2. Then, aj forces ai to be dequeued from Q2, and a directed edge
(ai, aj) in the result graph records the facts that ai is before aj and they both match
e2. Similarly, ak replaces aj in Q2, and a directed edge (aj , ak) is recorded. Finally,
ah arrives and occupies Q1, a search starting from Q1 and following two layer one
backward pointers will find the alert ak in Q2. Hence, a directed edge (ak, ah) records
the only explicit correlation.

Definition 1. Let G(E∪C, Rr ∪Ri) be an attack graph, where E = {ei | 1 ≤ i ≤ n},
C = {ci | 1 ≤ i ≤ m}, Rr ⊆ C × E, and Ri ⊆ E × C.

– For k = 1, 2, . . . , n,

• use BFSR(k) to denote the set of edges visited by a breadth-first search in
G(E ∪ C, Rr ∪ Ri) starting from ek, and

• use BFS(k) for the set of edges visited by a breadth-first search in G(E ∪
C, R−1

r ∪R−1
i ) staring from ek, where R−1

r and R−1
i are the inverse relations.

– The queue graph Qg is a data structure with the following components:
• Q = {Qi | 1 ≤ i ≤ n} are n queues of length one,
• V = {vi | 1 ≤ i ≤ m} are m variables,
• for each k = 1, 2, . . . , n,

∗ Pk = {< Qj, vi >| (ci, ej) ∈ BFS(k)} ∪ {< vi, Qj >| (ej , ci) ∈
BFS(k)} are the layer k backward pointers, and

∗ PRk = {< vi, Qj >| (ci, ej) ∈ BFSR(k)} ∪ {< Qj, vi >| (ej , ci) ∈
BFSR(k)} are the layer k forward pointers.

Definition 1 formally characterizes the queue graph data structure. To rephrase Ex-
ample 2 using those notations, the queue graph has three queues Q = {Q1, Q2, Q3} and
two variables V = {v1, v2}. The layer one backward pointers are P1 = {< Q1, v1 >,
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< v1, Q2 >, < Q2, v2 >, < v1, Q3 >}3, and the layer one forward pointers are
PR1 = φ. The layer two pointers include P2 = {< Q2, v2 >} and PR2 = {<
Q2, v1 >, < v1, Q1 >}. The layer three pointers include P3 = {< Q3, v2 >} and
PR3 = {< Q3, v1 >, < v1, Q1 >}.

The process for correlating alerts using a queue graph, as illustrated in Example 3,
is more precisely stated as the procedure QG Alert Correlation in Figure 4. The result
graph Gr has a set of vertices V and two separate sets of edges Er and El. The edges
in Er correspond to the explicit correlations and those in El record the temporal order
between alerts matching the same exploit. Initially, we set the queues in Q, the sets V ,
Er, and El as empty. The first step of the procedure inserts the new alert into the result
graph. The second step dequeues a non-empty queue and updates the result graph by
adding an edge between the old alert and the new alert. The third step enqueues the new
alert into the queue graph. The fourth step does correlation by searching for the alerts
that need to be explicitly correlated to the new alert.

Procedure QG Alert Correlation
Input: A queue graph Qg (with n queues and m variables), the initial result graph

Gr(V, Er ∪ El), and an alert anew satisfying f(anew) = ei for some 1 ≤ i ≤ n
Output: The updated result graph Gr(V, Er ∪ El)
Method:

1. Insert anew into V
2. If Qi contains an alert aold

Insert edge (aold, anew) into El

Dequeue aold from Qi

3. Enqueue anew into Qi

4. For each Qj(1 ≤ j ≤ n) satisfying < Qi, vk >∈ Pi and < vk, Qj >∈ Pi, for some 1 ≤ k ≤ m
If Qj contains an alert aj

Insert (aj , anew) into Er

5. Return Gr(V, Er ∪ El)

Fig. 4. A Procedure for Correlating Alerts with Queue Graphs

Complexity Analysis. The procedure QG Alert Correlation demonstrates the advan-
tages of the QG approach over the nested loop approach (some of the features of a
queue graph, such as the variables and the forward pointers, are not used by the pro-
cedure and will be needed in the next section). First, the time for processing each new
alert with the QG approach is linear in (m + n), that is the number of exploits and
security conditions in the attack graph. In Procedure QG Alert Correlation, the fourth
step visits at most (m + n) edges, because it searches in a tree (that is, the BFS tree
rooted at Qi) by following the layered pointers in Pi; the other steps of the procedure
take almost constant time. Hence, the performance of the QG approach does not depend
on the number of received alerts, as n and m are relatively stable for a given network.
On the other hand, the nested loop approach (without using a sliding window) searches
all alerts, and hence the performance keeps decreasing as more and more alerts are
received.

Second, the memory usage of the QG approach is roughly O(n(n + m)) (n layers,
with each layer having maximally (n + m) pointers) 4, and hence does not depend on

3 We use the notation < a, b > for a pointer in a queue graph and (a, b) for an edge in a graph.
4 The correlation only appends to the result graph but does not read from it, and hence the result

graph needs not to be in memory.
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the number of received alerts, either. In comparison, the nested loop approach with-
out a sliding window needs memory for indexing on all the received alerts. Third, the
QG approach is not vulnerable to slowed attacks, which can easily defeat the nested
loop approach using a sliding window as described in Section 3.3. In the procedure
QG Alert Correlation, an alert is dequeued (and no longer considered for correlation)
only when a new alert matching the same exploit arrives. Hence, if one alert prepares
for another, then no matter how many unrelated alerts are injected, the earlier alert will
always sit in the queue graph waiting for the later one 5.

4.3 Handling Alerts with Imprecise Temporal Characteristics

The correctness of the QG approach critically depends on the correct order of alerts.
However, neither the order suggested by timestamps nor the order of arrivals should be
trusted, because the temporal characteristics of alerts are typically imprecise. Instead,
we adopt the following conservative approach. First, any two alerts whose timestamps
have a difference no greater than a given threshold tcon are treated as concurrent; the
correct order of concurrent alerts is always the one that allows the alerts to be corre-
lated. Second, for non-concurrent alerts, the correct order is the one suggested by their
timestamps, but alerts are allowed to arrive in a different (and incorrect) order. This con-
servative approach takes into account varying delays in a network and small differences
between the clocks of sensors 6.

The basic QG approach does not work properly if alerts do not arrive in the correct
order. To illustrate, consider an alert a1 that prepares for another alert a2 but arrives
later then a2. As described in Section 4.2, the procedure QG Alert Correlation will
only look for those alerts that prepare for a1, but not those that a1 prepares for (a2 in
this case). Moreover, suppose another concurrent alert a′

2 matches the same exploit as
a2 does, and it arrives after a2 but before a1. Then, a2 is already dequeued by the time
a1 arrives, and hence the correlation between a1 and a2 will not be discovered.

We address this issue through reordering alerts inside a time window before feeding
them into the queue graph. More specifically, assume the varying delays are bounded by
a threshold tmax. We postpone the processing of an alert a1 with a timestamp t1 until
tmax (the larger one between tmax and tcon, when concurrent alerts are also considered)
time has passed since the time we receive a1. We reorder the postponed alerts, so they
arrive at the correlation engine in the correct order. Then after tmax time, any alert a2
will have a timestamp t2 satisfying t2 > t1 (the worst case is when a1 is not delayed
but a2 is delayed tmax time, and the fact a2 is received tmax later than a1 indicates
t2 + tmax − tmax > t1, and hence t2 > t1).

The capability of dealing with concurrent alerts and varying delays comes at a cost.
The additional delay introduced for reordering alerts certainly causes an undesired de-
crease in the timelineness of alert correlation. However, if we choose to report results
immediately as each alert arrives, then the imprecise temporal characteristics of alerts
may cause incorrect and confusing results. Such results may diminish the value of the

5 In case some temporal constraint states that an alert should not be considered for correlation
once it gets too old, a timer can be used to periodically dequeue alerts.

6 We assume the clocks are loosely synchronized, as discussed in Section 3.2.
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correlation effort. This reflects the inherent tradeoff between the capability of contain-
ing unavoidable uncertainties and the performance of processing alerts.

5 A Unified Approach to Alert Correlation, Hypothesis, and
Prediction

In this section, we extend the basic QG-based correlation procedure to a unified ap-
proach to correlating received alerts, hypothesizing missing alerts, and predicting future
alerts. Section 5.1 introduces some key concepts. Sections 5.2 describes the integration
of alert correlation with alert hypothesis. Section 5.3 then discusses alert prediction.

5.1 Consistent and Inconsistent Alert Sequences

The queue graph approach introduced in Section 4 provides unique opportunities to
tolerate and hypothesize alerts missed by IDSs, as well as to predict possible conse-
quences. Intuitively, missing alerts cause inconsistency between the knowledge (en-
coded in attack graphs) and the facts (represented by received alerts). By reasoning
about such inconsistency, missing alerts can be plausibly hypothesized. On the other
hand, by extending the facts in a consistent way with respect to the knowledge, possi-
ble consequences of an intrusion can be predicted. To elaborate on those ideas, we first
illustrate consistent and inconsistent sequences of alerts in Example 4 and Example 5.

Example 4. The sequence of alerts shown on the left hand side of Figure 5(that is,
a0, a3) is inconsistent with respect to the attack graph, because the security condition
c3 is not satisfied before the exploit e3 is executed (as indicated by the alert a3).

Example 5. The sequence shown in the middle of Figure 5 (that is, a0, a1, a3) is con-
sistent, because executing the exploit e1 (as indicated by the alert a1) satisfies the only
security condition c3 that is required by the execution of e3 (as indicated by a3). The
sequence shown on the right hand side of Figure 5 is inconsistent, because the security
condition c4 is not satisfied before the execution of e3.

To generalize the above examples, we say an exploit is ready to be executed if all
of its required security conditions are satisfied by previous executions of exploits (or
initially satisfied security conditions, such as c1 in Figure 5). We say a sequence of

 

c1 c2 

e1 e2 

c3 

e3

c3

e3 

c4 

c1 c2 

e1 e2 

e0 e0 

Consistent Inconsistent 

c1 c2

e1 e2 

c3 

e3 

e0 

Inconsistent 

a0 

a3 a3

a0 

a1

a0

a1 

time 

a0 a1 a3 

a3

Fig. 5. Examples of Consistent and Inconsistent Alert Sequences



An Approach to Correlating, Hypothesizing, and Predicting Intrusion Alerts 259

alerts is consistent, if every alert in the sequence matches an exploit that is ready to
be executed by the time the alert is received. Example 4 depicts an inconsistent alert
sequence in which the consecutive executions of exploits is broken by missing alerts.
Example 5 indicates that the relationship between exploits can be either disjunctive
(executing e1 or e2 makes e3 ready in the first case) or conjunctive (both e1 and e2
must be executed to make e3 ready), and security conditions play an important role in
such relationship (the approach in [23] cannot distinguish the two cases in Example 5,
because it is based on a simplified version of attack graphs with no security conditions).

5.2 Alert Correlation and Hypothesis

In Section 4.2, the correlation algorithm searches for the alerts that prepare for a new
alert by following two consecutive pointers. Such an approach only works for consistent
alert sequences. For inconsistent sequences, such as those in Example 4 and Example 5,
the search will stop at empty queues that correspond to missing alerts and the correla-
tion result will be incomplete. A natural question is, Can we continue to search and
hypothesize missing alerts if necessary? This question motivates us to propose a uni-
fied approach to correlating received alerts and at the same time making hypotheses of
missing alerts.

Intuitively, the approach attempts to explain the occurrence of a new alert by in-
cluding it in a consistent sequence of alerts (alert correlation) and missing alerts (alert
hypothesis). More specifically, a search starts from the queue that contains the new
alert; it hypothesizes about a missing alert for each encountered empty queue; it stops
at each received alert because it knows that this received alert must have already been
explained previously. The search expands its frontier in a breadth-first manner 7 after
each hypothesis is made, because the hypothesis itself may also need an explanation.
Such attempts continue until a satisfactory explanation for the new alert and all the hy-
pothesized ones is obtained. The explanations of all received alerts collectively form the
result, that is a graph composed of alerts, hypothesized alerts, and security conditions
that are either satisfied or hypothetically satisfied. This is illustrated in Example 6.

Example 6. Consider again the three cases, from left to right, in Figure 5 when the
alert a3 is received. For the first case, two missing alerts matching e1 and e2 need to
be hypothesized and then a3 can be correlated to a0 (through one of the hypothesized
alerts). For the second case, no alert needs to be hypothesized because the sequence is
already consistent, and a3 needs to be correlated to a1. For the third case, a0 needs to
be correlated to a1, and it also needs to be correlated to a0 through a hypothesized alert
matching e2.

More precisely, we extend the basic QG approach described in Section 4 by modi-
fying the fourth step of Procedure QG Alert Correlation. Due to space limitations, we
describe how the modified procedure works but leave out more details (a detailed proce-
dure can be found in [39]). Consider a queue graph Qg with n queues Q and m variables
V . Each variable in V can now have one of the three values TRUE, FALSE, and HYP,

7 Other approaches, such as a DFS, may work as well, but a queue graph organizes its pointers
in layered BFS trees to improve performance, and this makes BFS a preferred choice.
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together with a timestamp; those denote a satisfied security condition, an unsatisfied
one, a hypothetically satisfied one, and the time of the last update, respectively. Each
queue in Q can contain alerts or hypothesized alerts. The result graph Gr(V, El ∪ Er)
is similar to that described in Section 4.2. However, the vertex set V now includes not
only alerts but also hypothesized alerts and security conditions.

Suppose a new alert anew with the timestamp tnew is received and enqueued in the
queue Qi(1 ≤ i ≤ n). First, we start from Qi and follow the pointers in PRi to set
each variable vj(1 ≤ j ≤ m) adjacent to Qi with the value TRUE and the timestamp
tnew. This step records the security conditions satisfied by anew. Second, we start from
Qi and make a partial BFS by following the pointers in Pi. The BFS is partial, because
it stops upon leaving 8 a variable with the value TRUE or the value HYP (or a queue
that contains a hypothesized alert). This step correlates anew to previously received
or hypothesized alerts. The result graph Gr is updated during the above process as
follows. First, after we enqueue anew into Qi and make changes to each vj adjacent
to Qi, we add anew and vj (that is, the value and timestamp of vj ) as vertices, and
an edge from anew pointing to vj into the result graph Gr. This step records the fact
that the new alert anew satisfies its implied security conditions at time tnew. Second,
during the partial BFS, we record each hypothesis. Whenever we change the value of a
variable vj from FALSE to HYP, we record this update in Gr; similarly, whenever we
enqueue a hypothesized alert into an empty queue, we record this hypothesized alert in
Gr. Third, whenever we leave a variable v and reach a queue Q, we insert into Gr a
directed edge from each queue Q to v; similarly, we insert edges from a queue to its
connected variables when we leave the queue.

Example 7. Consider the left-hand side case of Figure 5. The first alert a0 will only
cause (the variable corresponding to) the security condition c2 to be changed from
FALSE to TRUE. The result graph will be updated with the alert a0 and satisfied secu-
rity condition c2 and the directed edge connecting them. When a3 is received, a search
starts from (the queue corresponding to) e3; it changes c3 from FALSE to HYP; it in-
serts a hypothesized alert a1 into e1 and a2 into e2, respectively; it stops at c1 (which
is initially set as TRUE) and c2 (which has been set as TRUE when a0 arrived). The
result graph will be updated with the alert a3, the hypothesized alerts a1 and a2, the
hypothetically satisfied security condition c3, and the directed edges between them.

Complexity Analysis. At first glance, the procedure described above takes quadratic
time, because a BFS takes time linear in the number of vertices (n + m) and edges
(n+m)2, where n and m is the number of exploits and security conditions in the attack
graph, respectively. However, this is not the case. As described in Section 4.2, a queue
graph organizes its pointers in separate layers, and each layer is a BFS tree rooted at
a queue. Hence, a BFS that starts from a queue and follows the pointers in the corre-
sponding layer will be equivalent to a tree traversal, which takes linear time (n + m).
This performance gain seems to be obtained at the price of more memory requirement,
because a pointer may appear in more than one layer. However, as described in Sec-

8 Given that a BFS is implemented through manipulating a separate queue as usual, we shall
refer to the enqueues as reaching and the dequeues as leaving to avoid confusions.
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tion 4.2, the memory requirement is quadratic (that is, O(n(n + m))), which is indeed
asymptotically the same as that of the original attack graph.

5.3 Attack Prediction

In the previous section, we explain the occurrence of a new alert by searching back-
wards (that is, in the reversed direction of the edges in attack graphs) for correlated
(or hypothesized) alerts. Conversely, we can also predict possible consequences of each
new alert by searching forwards. A BFS is also preferred in this case, because the pre-
dicted security conditions will be discovered in the order of their (shortest) distances to
the new alert. This distance roughly indicates how imminent a predicted attack is, based
on the alerts received so far.

The procedure of prediction is similar to that of correlation and hypothesis discussed
in the previous section, although they differ in some details. More specifically, after
the correlation and hypothesis completes, the prediction starts. It begins at the security
conditions satisfied by the new alert and makes a partial BFS in the queue graph by
following the pointers in PRi (suppose the new alert is enqueued by Qi). The search
stops at previously received (or hypothesized) alerts and their (hypothetically) satisfied
security conditions to avoid repeating the previous prediction.

The result of the prediction process is a sequence of non-empty sets Con1,
Con2, . . ., with Coni(1 ≤ i ≤ m) containing the security conditions that can possibly
be satisfied in i steps from now. Unlike in correlation and hypothesis, the prediction
process does not reason about the disjunctive and conjunctive relationship between ex-
ploits as discussed in Section 5.1. Instead, a security condition c will appear in the set
Coni as long as there exists a path of length 2i (the path consists of both security con-
ditions and exploits) from c to some previously satisfied security condition. Hence, the
number i provides a lower bound to the number of exploits that must be executed before
c can be satisfied.

6 Empirical Results

This section evaluates the proposed correlation, hypothesis, and prediction techniques
through implementation and empirical results. The correlation engine is implemented
in C++ and tested on a Pentium III 860MHz server with 1G RAM running RedHat
Linux. We use Snort-2.3.0 [32] to generate isolated alerts, which are directly pipelined
into the correlation engine for analyses. We use Tcpreplay 2.3.2 [37] to replay network
traffic from a separate machine to the server running the correlation engine.

We use two data sets for experiments, the Darpa 2000 intrusion detection LLDOS
1.0 by MIT Lincoln Labs [7], and the treasure hunt dataset by the University of Cal-
ifornia, Santa Barbara [36]. The attack scenario in the Darpa 2000 dataset has been
extensively explored before (such as in [19]). Our experiments with the dataset show
similar results, validating the correctness of our correlation algorithm. The treasure hunt
dataset generates a large amount of alerts (about two million alerts taking about 1.4G
of disk space, with most of them being brute force attempts of the same attacks), which
may render a nested loop-based correlation method infeasible (we found that even run-
ning a simple database query over the data will paralyze the system). In contrast, our
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correlation engine processes alerts with negligible delays (Snort turns out to be the bot-
tleneck).

Effectiveness. The objective of the first set of experiments is to justify the effectiveness
of the proposed algorithms in alert correlation, hypothesis, and prediction. We use the
Darpa 2000 dataset for this purpose, as the attack scenario can be easily referenced in
both the included description and previous results, such as [19]. Our correlation algo-
rithm produces similar result to that of previous work. However, in contrast to the static
result graph seen in those work, our result graph actually evolves in time with the con-
tinuously arriving alerts. Such a result can more clearly reveal the actual progress of an
intrusion (due to space limitations, snapshots of the result graph during real-time corre-
lation can be found in [39]). To save space, only the latest alert matching each exploit
is shown in the figures in this section.

 

 
 

Fig. 6. The Hypothesis of Missing Alerts During Correlation

Figure 6 includes two results on hypothesizing missing alerts during the correlation.
On the left-side of the figure, two consecutive missing alerts (ICMP PING and ICMP
Echo Reply) and the corresponding security conditions are hypothesized (shown as
shaded) when an alert (RPC portmap sadmind request UDP) is received but its required
security condition (Host 10 Alive) has not been satisfied. The right-hand side of the
figure shows a conjunctive relationship between alerts, that is a DDoS mstream traffic
between two hosts requires the mstream software to be installed on both hosts. We
deliberately deleted the RSERVICES rsh alert on one of the host, which is successfully
hypothesized (shown as shaded).

Figure 7 includes a result of alert prediction. In the left figure, some security con-
ditions are predicted to be satisfied by possible upcoming alerts. The predicted secu-
rity conditions are shown as shaded, and the numbers are placeholders for alerts. The
right-hand side figure shows a later snapshot of the result graph, in which some of the
predicted security conditions are indeed realized.

Performance. The objective of the second set of experiments is to evaluate the real-time
performance of the correlation engine. The performance metric includes the resource
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correlation method does not decrease over time. Instead, the time required for correlat-
ing each alert remains fairly steady. Next we examine the scalability of the correlation
engine in terms of the number of exploits and security conditions. We use the treasure
hunt data set for this purpose. The initial attack graph only has about one hundred ex-
ploits. We increase the size of attack graphs by randomly inserting dummy exploits
and corresponding security conditions. The inserted exploits increase the complexity of
correlation because the correlation engine must search through them. The right chart in
Figure 9 shows the average processing time as a function of the attack graph size. The
result shows that the average time for correlation scales with the size of attack graph as
expected.
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Fig. 9. The Processing Time and Its Relationship with the Size of Attack Graph

We replay network traffic at a high speed (for example, the Darpa data set is replayed
in about 26 seconds). Real-world traffic is usually less intensive, and consequently our
correlation engine will exhibit a better performance. However, we are aware that real-
world traffic may bring up new challenges that are absent in synthesized data sets. We
plan to remove such limitations in our future work.

7 Conclusion

In this paper, we studied the real-time correlation of intrusion alerts. We identified a
limitation in applying the nested loop-based correlation methods and proposed a novel
QG approach to remove this limitation. The method has a linear time complexity and a
quadratic memory requirement. It can correlate alerts that are arbitrarily far away. Based
on the QG method, we proposed a unified method for the correlation, hypothesis, and
prediction of alerts. The proposed techniques are implemented and evaluated. Empirical
results showed that our correlation engine can process alerts faster than an IDS can
report them, making our method a promising solution for an administrator to monitor
and predict the progress of multi-step intrusions. Our future work is to integrate the
proposed methods in a prototype system and evaluate it with real-world traffic in live
networks.
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Abstract. We embark into theoretical approaches for the investigation of in-
trusion detection schemes. Our main motivation is to provide rigorous security
requirements for intrusion detection systems that can be used by designers of
such systems. Our model captures and generalizes well-known methodologies in
the intrusion detection area, such as anomaly-based and signature-based intru-
sion detection, and formulates security requirements based on both well-known
complexity-theoretic notions and well-known notions in cryptography (such as
computational indistinguishability).

Under our model, we present two efficient paradigms for intrusion detection
systems, one based on nearest neighbor search algorithms, and one based on both
the latter and clustering algorithms. Under formally specified assumptions on the
representation of network traffic, we can prove that our two systems satisfy our
main security requirement for an intrusion detection system. In both cases, while
the potential truth of the assumption rests on heuristic properties of the represen-
tation of network traffic (which is hard to avoid due to the unpredictable nature
of external attacks to a network), the proof that the systems satisfy desirable de-
tection properties is rigorous and of probabilistic and algorithmic nature. Addi-
tionally, our framework raises open questions on intrusion detection systems that
can be rigorously studied. As an example, we study the problem of arbitrarily
and efficiently extending the detection window of any intrusion detection system,
which allows the latter to catch attack sequences interleaved with normal traf-
fic packet sequences. We use combinatoric tools such as time and space-efficient
covering set systems to present provably correct solutions to this problem.

1 Introduction

Informally, an Intrusion Detection system is a system for raising attention towards po-
tential misbehaviors of the system caused by external adversaries. We could think of
a ‘burglar alarm’ in the real world as the physical analogue of an intrusion detection
system in the computerized world. (Just as a burglar alarm in the real world, Intrusion
Detection only deals with discovering that an intrusion might have happened into a net-
work. A number of additional aspects related to intrusions, such as intrusion avoidance;
that is, augmenting systems so to have a lower likelihood of an external attacker that
successfully performs an intrusion; or intrusion tolerance; that is, augmenting systems
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so that the intended system behavior does not change even after an intrusion; are the
subject of study of different research areas.)

Intrusion Detection is a very active and important research area in the Security lit-
erature. We won’t attempt to survey or categorize the research in this area, but we note
that the origin of the problem is often attributed to [1] and several taxonomies and sur-
veys can be found, for instance, in [3,14,15,16]. Often all techniques in known intrusion
detection systems are abstracted as falling under two important principles: anomaly de-
tection, according to which traffic significantly different from normal ones can be inter-
preted as likely to be an attack, and signature detection, (also called misuse detection or
rule-based detection), according to which traffic significantly similar to known attack
traffic can be interpreted as likely to be the same attack. Both principles offer advan-
tages and disadvantages, and many recent systems combine the two principles, rather
than specifically choosing one of them.

Despite the large amount of research in this area, no established common framework
exists for the design and analysis of intrusion detection systems. A typical research pa-
per in the area proceeds describing some new ideas for detecting intrusions and justifies
their validity by describing a specific implementation experience where both the rate
of ‘false positives’ and the rate of ‘false negatives’ are low. A notable exception is the
seminal paper of [7], which does provide a number of valid and formal guidelines for
the design and tools for the analysis of intrusion detection systems. In particular, several
papers attribute to [7] the introduction of the anomaly-based detection principle.

OUR MODEL. In this paper we put forward a theoretical framework for a rigorous in-
vestigation of intrusion detection systems. Our main motivation is to provide security
requirements for intrusion detection systems that can be used to accompany simulation-
based approaches in their design and increase the number of properties that can be rigor-
ously proved for such systems. Our framework captures and generalizes the notions of
anomaly-based and signature-based intrusion detection. Our security requirements are
formulated using cryptographic notions such as computational (in)distinguishability,
and analysis tools from probability and complexity theory. Specifically, we define two
requirements: sensitivity and detection. The first requirement, “sensitivity”, says that a
fixed window of network traffic entering a system can be alternatively represented so
that the output of the representation algorithm behaves quite differently according to
whether this traffic comes from normal traffic or from a potentially unknown attack.
(We remark that this representation algorithm alone is not sufficient to build an intru-
sion detection system for a few reasons that we later discuss.) The second requirement,
“detection”, says that if the representation algorithm satisfies the sensitivity require-
ment, then a data structure and a classification algorithm should allow to constructively
detect with high probability any attack among a potentially infinite set of new attacks
or variations of known attacks, and in an arbitrarily large traffic window. The difficulty
in turning a representation algorithm into data structure and classification algorithms is
due to the emphasized text in the previous sentence. According to our model, proving
both requirements, possibly under some additional assumption, for a proposed system
should give mathematical guarantees that the system is a “satisfactory” Intrusion Detec-
tion (ID) system. When coupled with simulation-based investigations on the sensitivity
of fixed-window network traffic representations and on the estimation of anomaly-type
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or signature-type parameters, our framework promises to give a valuable methodol-
ogy to allow ID designers to increase their claimed properties about their ID systems.
Effectively, our model assumes that simulation-based investigations guarantee certain
properties about both fixed-window traffic representation and parameter estimation, are
satisfied. After this assumption, however, the detection requirement can be formally
proved for a given system. We also provide several validations for our model, including
the fact that well-known ID systems very often used in practice (most notably, SNORT
[22]) can be easily cast into our formalization; and results from a satisfactory imple-
mentation experience.

OUR ID SYSTEMS. Under this framework, we obtain two efficient paradigms for intru-
sion detection systems, one based on nearest neighbor search algorithms, and one based
on both the latter and clustering algorithms. Under formally specified assumptions (both
stronger than the sensitivity property, one being more applicable than the other), we can
prove that our two systems satisfy our detection requirement for an intrusion detection
system. (Due to lack of space, we only briefly discuss our second system.)

OPEN QUESTIONS. We believe that our framework raises a number of important open
questions on intrusion detection that can be studied using mathematical and/or algorith-
mic approaches. As an important example, we study the problem of arbitrarily and effi-
ciently extending the detection window of intrusion detection systems, which allows the
latter to catch attack sequences interleaved with normal traffic packet sequences (which
was not detected in the previously discussed two systems). We present a construction
that works for any intrusion detection system and is based on particular versions of
known combinatorial tools (Covering Set Systems).

ORGANIZATION OF THE PAPER. In Section 2 we present our new framework and
all formal definitions. (Validations of the model are in Appendix A.) In Section 3 we
present our ID scheme based on Nearest Neighbor Search algorithms and briefly discuss
an extension based on Clustering algorithms. In Section 4 we formulate and study the
problem of extending the detection window of intrusion detection schemes.

2 Model and Formal Definitions

In this section we present our formal model and definitions for intrusion detection
schemes. We start by presenting the system and attack model, including the scenario,
the mechanics and the algorithms involved in an execution of such systems, and then
describe the requirements that we would like an intrusion detection to satisfy. Although
we concentrate on network intrusion detection, our definitions are applicable to host
instrusion detection, where the traffic analyzed is entering the particular host.

2.1 System and Attack Model

SCENARIO, CONNECTIVITY, ACTION. The scenario we consider is that of a large net-
work, also called autonomous system (AS), which may have many points of entry for
network traffic, also called the border gateways (BG) of the AS. The traffic is generated
by external users, and without loss of generality, each user can send traffic to each BG.
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We write network traffic as a sequence of atomic packets, where each packet can be
abstracted as a tuple p = (sid, time, poe, pl), where sid is the identity of the sender,
time is a timestamp of the action, poe is the point of entry and pl is the payload. At
any time the action in an AS system can be described as a stream of packets entering
AS through any of its BG (we will assume for simplicity that all traffic enters through
a single BG), where each packet in this stream can trigger an event in the AS.

ATTACK MODEL. Informally, an attack can be any sequence of c packets, for some
c ≥ 1, that successfully alters the state of machines in an AS in order to achieve a
specific (malicious) goal. If by Φt we denote the state of the AS at time t (this may
include items such as available bandwidth resources and the internal state of all hosts
within the AS) we can then define a polynomial time computable predicate ρ(1n, t, Φt),
where n is a security parameter (later we clarify how to choose it). More generally, we
can then define an attack as an efficiently samplable probability distribution A over
all packet sequences ps = (p1, . . . , pl), where l is the length of A’s first input, and
such that the probability that experiment E(A) is not successful, is negligible, (that is,
smaller than 1/p(n), for all positive polynomials p and all sufficiently large n); and, for
any distribution D, the probability experiment E(D) is defined as follows.

1. A sequence p of packets is drawn from distribution D
2. sequence p is sent into the network
3. AS turns into state Φt

4. predicate ρ(1n, t, Φt) evaluates to bit b,

and we say that E(D) is successful if b = 1. (Here, an output 0 for ρ is intended to
imply that attack A has not been succesfully carried out at time t, and 1 otherwise.)

A class of attacks C may be simply defined as a set of attacks {A1, A2, A3, . . .}.
We also define a normal traffic distribution (briefly, normal traffic) as an efficiently

samplable probability distribution N over the set of (single) packets, such that the prob-
ability that experiment E(N) is successful, is negligible.

ALGORITHMS AND ID MECHANICS. We will define an intrusion detection system as
a triple of algorithms:

1. A representation algorithm R (typical actions modeled by this algorithm include
data filtering, formatting, plotting, feature selection, etc.)

2. a data structure algorithm S, (typical actions modeled by this algorithm include
data collection, aggregation, classification; knowledge base creation, etc.)

3. a classification algorithm C (typical actions modeled by this algorithm include:
detection in all forms, including pattern-based, rule-based, anomaly-based, etc.;
response, refinement, information tracing, visualization, etc.).

The execution of the ID system can be divided into two phases: an initialization phase
and a detection phase. Briefly speaking, algorithm S is run in the initialization phase
and algorithm C is run in the detection phase; both algorithms C and S use algorithm R
as a subroutine. Specifically, in the initialization phase, the data structure algorithm uses
the representation algorithm to process a stream of data obtained from normal traffic
distribution or known attack distributions; the returned output is some data structure that
will help in the detection phase. Here we note that the initialization phase assumes that
the traffic generated according to such distributions is not subject to an attack, with the
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possible exception of simulated known attacks. In the detection phase, the classification
algorithm is run on input the data structure and a sequence of traffic packets (possibly
subject to a known or new attack), and returns an assessment of whether the input
sequence of packets contains an attack (and if so, if this is a new attack or not) or
only normal traffic. (We note that this output can be generalized to contain additional
information such as an estimate of the probability of either event, etc.) Algorithm R,
informally, maps a sequence of data packets entering the AS into a fixed-length tuple,
having a more compact form (e.g., a point in a high-dimension space).

2.2 Requirements

REQUIREMENTS. Let n be a security parameter; let N be a normal traffic distribution
and let A1, . . . , At be (known) attack distributions such that N, A1, . . . , At are all effi-
ciently samplable and with pairwise disjoint supports. We define an intrusion detection
system IDS as a triple of polynomial time algorithms R,S, C with the following syntax.

1. On input 1n and a sequence of rw packets p, algorithm R returns a d-tuple r.
2. On input 1n and distributions N, A1, . . . , At algorithm S returns a data structure

ds of size at most m[int].
3. On input 1n, a data structure ds, a sequence of m[det] packets p, a detection win-

dow dw and a class of attacks C, algorithm C returns a classification value out.

Here, rw is a parameter indicating the window of packets used in a single execution
of R (which we will also call the representation window and is normally considered a
small value); m[init] is a parameter indicating the length of the stream of packets used
in the initialization phase; m[det] is a parameter indicating the length of the stream of
packets used in the detection phase, to be classified by S (which is normally considered
an arbitrarily large, but polynomial in n and rw, value), and dw is a parameter indicating
the maximum distance between the first and last packet of an attack sequence within the
stream of packets used in the detection phase. In general, rw, d, m[init], m[det] and
dw are all bounded by a polynomial in n; a typical setting would be rw = O(n),
d = O(1), m[init] = na, m[det] = nb, rw ≤ dw ≤ m[det], for potentially large
constants a, b > 1. Furthermore, IDS can satisfy the following two requirements of
sensitivity and detection.

Sensitivity. Informally, we would like the output tuple of the representation algorithm
to capture differences between normal traffic and attack traffic in its small input packet
sequence. Capturing these differences is formalized using the notion of computational
distinguishability (a particular strong negation of the notion of computational indistin-
guishability of [12,24], a notion very frequently used in Cryptography), and specifically
by requiring distinguishability with respect to a single sample of the distributions.

Formally, we first recall (an adaptation of) the definition of computational dis-
tinguishability: Let t, q be positive integers and ε ∈ [0, 1]. We say that two distri-
butions A, B are (t, q, ε)-distinguishable if there exists a probabilistic algorithm E
running in time t such that |pA − pB| ≥ ε, where, for C = A, B, it holds that
pC = {x1, . . . , xq ←C : E(x1, . . . , xq) = 1}.

Now, let n be a security parameter. An asymptotic formulation of this definition can
be obtained by considering t and q as functions smaller than some polynomial in n.
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(By noticeable we mean that it is larger than 1/p(n), for some polynomial p and all
sufficiently large n.) Specifically, assume A = {An} and B = {Bn} are families of
distributions; we say that A and B are computationally distinguishable if there exists
a probabilistic polynomial (in n) time algorithm E such that for any polynomial (in n)
q, it holds that |pA − pB| ≥ ε(n), where ε(n) is noticeable in n and for C = A, B, it
holds that pC = {x1, . . . , xq ←C : E(x1, . . . , xq) = 1}.

In practice, we recommend running simulation experiments to determine convenient
values for ε(n) and therefore for a security parameter n such that the above inequality
|pA − pB| ≥ ε(n) holds.

We recall that an important result, often used in Cryptography, states that two fami-
lies of distributions are computationally indistinguishable if and only if they are single-
sample computationally indistinguishable; that is, they satisfy the latter definition for
q(n) = 1. In our scenarios, the families of distributions will be normal traffic or at-
tack distributions, and therefore, in general, the algorithm E may not have access to an
arbitrary number of of samples from these distributions, especially the attack ones (con-
sider the case of an attacker that only tries her attack once). Therefore, our sensitivity
definition only considers distinguishability with respect to one sample.

Definition 1. Let A be an attack distribution and N be a normal traffic distribution;
also, let t, rw be a positive integers and σ ∈ [0, 1]. We say that a representation scheme
R is (t, σ, A)-sensitive if distributions DN , DA are (t, 1, σ)-distinguishable, where:

DN = {p1, . . . , prw ←N(1rw); r←R(p1, . . . , prw) : r}
DA = {(a1, . . . , arw)←A(1rw); r←R(a1, . . . , arw) : r}

Furthermore, let C be a class of distributions. We say that a representation scheme
R is (t, σ, C)-sensitive if it is (t, σ, A)-sensitive for all distributions A in class C.

In the asymptotic formulation, n is a security parameter, A and N are families of
distributions and we say that a representation scheme R is C-sensitive if the distribu-
tions DN and DA are single-sample computationally distinguishable for all A in class
C, where:

DN = {p1, . . . , prw ←Nn(1rw); r←R(1n, p1, . . . , prw) : r}
DA = {(a1, . . . , arw)←An(1rw); r←R(1n, a1, . . . , arw) : r}.

Finally, we say that an intrusion detection system IDS = (R,S, C) is C-sensitive if
so is its representation algorithm R.

For i = 1, . . . , rw, let posi be the index ind ∈ {1, . . . , m[det]} such that qind = ai,
where qind is the ind-th packet received during the detection phase. We will also say
that IDS has detection window dw if it holds that posrw − pos1 ≤ dw.

We remark that if a representation scheme is (t, σ, C)-sensitive for “good” parameters,
this implies both that the representation has not significantly obscured the information
necessary to detect attacks in class C, and that such information was originally present
in the observed packet sequence (an obviously minimal feasibility assumption for intru-
sion detection). The algorithm E may be viewed as an ideal (perfect) analysis system
for detecting attacks in class C using R, as described later. While we will not expect
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to design such an E for any attack on a given system, we will address the problem of
using an estimation for such an algorithm E to detect that a given system is under a
certain (known or unknown) attack.

Detection. The only property of the representation algorithm is that the fixed-window
behavior between attack and normal traffic is different on its output, without clarifying
anything about the nature of this difference, or any constructive algorithm to distinguish
which of two different outputs is of which type. Instead, we would like the data structure
algorithm and the classification algorithm to directly provide “good enough” detection
properties on arbitrarily large traffic sequences as long as the representation algorithm
has “good enough” sensitivity properties on small and fixed traffic sequences. This con-
ditional detection requirement is captured by the following game. In a first phase, the
data structure algorithm is given access to a stream of m packets p and can run the rep-
resentation algorithm on inputs of length rw; furthermore, it is allowed to query both
the normal traffic distribution N and several (known) attack distributions A1, . . . , At,
for some t polynomial in the security parameter n. At the end of this phase, it returns
a data structure ds. Now, a sequence of dw packets q are somehow generated and the
classification algorithm returns an output out saying if q contains a sample from one
of the known attacks A1, . . . , At, or a different (unknown) attack A or no attack at all.
The intrusion detection system is successful if this classification is correct.

First, we define the probabilistic experiment in the initialization phase: Let p be the
sequence of m packets in this phase, let A1, . . . , At be known attacks and let N denote
the normal traffic distribution over single packets; we can define

Init(1m) = {ds←SN,A1,...,At,R(p)},
where the notation SD1,...,Dk means that algorithm S can generate several independent
samples from distributions D1, . . . , Dk.

Now we consider the detection phase; let q be the sequence of dw packets generated
in this phase, and let A ≡ A0 be a possibly unknown attack different from A1, . . . , At;
we say that string s = (s0, . . . , st) ∈ {0, 1}t+1 is A-correct if si = 1 if and only if q
contains a tuple of packets in the support of distribution Ai, for i = 0, 1, . . . , t. We are
now ready to give a formal definition of the detection property.

Definition 2. Let A be a (potentially unknown) attack, let t be a positive integer and
let δ ∈ [0, 1]. We say that an intrusion detection system IDS = (R,S, C) is a (t, δ, A)-
detector if for any packet sequence q, it holds that π(A, q) ≥ δ, where we define
probability π(A, q) as

Prob
[
ds←SR(1m[init]); out←CR(1n, ds, q, A) : out is A-correct

]
.

Furthermore, let C be a class of distributions. We say that an intrusion detection
scheme IDS = (R,S, C) is a (t, δ, C)-detector if it is (t, δ, A)-detector for all distribu-
tions A in class C.

In the asymptotic formulation, we let n be a security parameter, and C be a class of
families of distributions and we say that an intrusion detection system IDS = (R,S, C)
is a C-detector if for t polynomial in n, for any A ∈ C and any q, it holds that
π(A, q) ≥ δ, for some δ noticeable in n.
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We remark that an intrusion detection scheme can be considered a ‘good’ detector if it
achieves a detection probability δ ‘close enough’ to the sensitivity probability σ associ-
ated with the representation algorithm. In other words, the closest δ is to σ, the highest
is the detection property of the scheme.

DISCUSSION. We also remark that the sensitivity assumption on the behavior of the
representation algorithm R is a necessary assumption, as otherwise no efficient distin-
guisher between a normal traffic distributions and an attack distribution exists and there-
fore no pair of algorithms S, C can be a detector. Formally, this implies the
following

Proposition 1. Let n be a security parameter and A be an attack distribution. Also,
let R be a representation algorithm and assume that R is not (t, σ, A)-sensitive for t
polynomial in n and σ noticeable in n. Then, in our model, there exist no algorithms
S, C such that the ID system (R,S, C) is an (A,R)-detector.

Model validation arguments can be found in Appendix A. We do note that our approach
in formulating model and security requirements has been quite minimalistic and we
have made a number of simplifications. Indeed, we believe we have addressed the most
basic possible variant of the intrusion detection problem. We do believe that our model
will allow in the future a much easier modeling of more elaborated variants, currently
studied in the Intrusion Detection literature.

ANALYSIS METHODOLOGY. Given the above definitions of sensitivity and detection,
an ideal methodology to analyze an intrusion detection system in our model would
prove that a given ID scheme satisfies:

1. the sensitivity requirement (for some appropriate parameter values)
2. the detection requirement (for some appropriate parameter values) under the as-

sumption that it satisfies the sensitivity requirement.

Clearly, 1) and 2) imply that the given ID scheme satisfies the detection requirement. A
mathematical proof that an intrusion detection system satisfies the sensitivity require-
ment seems hard to obtain, even in a formal model, due to the unpredictable nature
of a generic unknown attack. Validating the sensitivity of a representation algorithm is
therefore left to simulation-based analysis. However, once a heuristic representation al-
gorithm R is assumed to be C-sensitive for a class C of attacks, we consider the major
analysis goal in our model to formally prove that a certain classification algorithm C is
a (C;R)-detector under this very minimal assumption. In this paper we will get very
close to prove this result: specifically, we show that our two schemes are C-detectors
under slightly stronger (but believable) versions of the sensitivity assumption. We stress
that no simulation-based arguments are used in proving this property for our schemes.

3 An ID Scheme Based on Nearest Neighbor Search

In this section we present our first intrusion detection scheme, using algorithms for the
approximate nearest neighbor search problem. We start by reviewing this problem and
the properties that an algorithm for this problem has to satisfy to be applicable to our ID
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scheme. Then we formulate assumptions on the normal traffic and attack distributions,
on the output of the estimation algorithm and on the output returned by a representation
algorithm. Finally, we present our ID scheme and observe that it satisfies the detection
requirement, as defined in Section 2, under the formulated assumptions. An important
property achieved using the nearest neighbor search technique is that of merging and
generalizing the anomaly-based and signature-based methodologies into a setting with
a well-defined metric. As an example, two traffic flows will be determined to be closer
to a signature according to a well-defined distance metric, and we can therefore assign
a related confidence on whether each traffic flow is a known attack or not. Analogously,
in the anomaly-based case, we can assign a related confidence on whether each traffic
flow is an unknown attack or a false positive.

APPROXIMATE NEAREST NEIGHBOR SEARCH. Let V S be a vector space of dimen-
sion d and let Δ be some distance function defined over V S. Given a set S of n d-
component vectors in V S, an error parameter ε, and a d-component vector q ∈ V S,
we define the (1 + ε)-approximate nearest neighbor of q as the vector v in S such that
Δ(q, v) ≤ (1 + ε) · Δ(q, w), for any w ∈ S. A solution to the approximate nearest
neighbor search problem is a pair of algorithms (Init, Search) as follows. First, algo-
rithms Init and Search have the following syntax: on input an n-size set S of d-length
vectors and parameters ε, μ, algorithm Init returns a data structure ds; on input data
structure ds, a vector v and parameter ε, algorithm Search returns a vector w. Then the
problem requires that with probability at least μ the following holds: 1) w ∈ S, and 2)
w is a (1 + ε)-approximate nearest neighbor of v. We note that we impose efficiency
requirements on algorithms for approximate nearest neighbor search that can be of in-
terest for our constructions of ID schemes. In particular, we will require that algorithm
Init runs in time polynomial in n and d, and that algorithm Search runs in time poly-
nomial in d and log n. (This is because of the fact that algorithm Init will be used in
off-line mode in the initialization phase while algorithm Search will be used in on-line
mode in the detection phase). We also note that the performance of algorithm Search
is required to be significantly faster than Θ(dn), which is the performance of the naive,
brute-force, and exact search algorithm.

Although any efficient solution for the approximate nearest neighbor search prob-
lem can be used for the design of our ID scheme, for concreteness, we will use the
following result from [13].

Lemma 1. [13] There exists (constructively) a pair of algorithms (Init,Search) that
solve the approximate nearest neighbor search problem for V S = {0, 1}d and Δ equal
to the Hamming distance, and has the following efficiency property: Init runs in time
ε−2 · poly(dn) and Search runs in time Θ(ε−2 · d · poly(log(dn))).

A SET OF ASSUMPTIONS. We now describe assumptions on the normal traffic and at-
tack distributions, on the output of the estimation algorithm and on the output returned
by the representation algorithm. The assumptions about the normal traffic and attack
distributions generalize the usual assumptions underlying the basic principles of anom-
aly detection (for the normal traffic and unknown attack distributions) and signature
detection (for the known attack distributions). The assumption about the estimation al-
gorithm is stating that the estimation of the parameters in the previous assumptions is
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correct with some (somewhat high) probability. The assumption about the behavior of
the representation algorithm is at least as strong as the assumption that the representa-
tion algorithm is sensitive, in the sense that if a representation algorithm satisfies this
new assumption then it also satisfies the sensitivity definition, as in Section 2 (while
it is unclear whether the converse is true). Informally, these assumptions postulate that
the representation algorithm returns, given a fixed-length sequence of packets as input,
a point in a high-dimensional space, such that any two points belonging to the same dis-
tribution, being it normal traffic, a known attack, or a new attack, have ‘small’ distance,
while any two points coming from different distributions have ‘large’ distance. We now
define these assumptions more formally.

Assumption 1. Let N be a normal traffic distribution, let A1, . . . , At be (known) attack
distributions and let A be an (unknown) attack distribution.

A representation algorithm is defined as an algorithm that, on input 1k and a se-
quence of at most rw packets p, where rw is polynomial in k, returns a d-tuple r.
We say that distributions N, A1, . . . , At, A are (δn, δa, δ1, . . . , δt)-oversensitiveif there
exists a vector space V S of dimension d, a distance function Δ over V S and a repre-
sentation algorithm R such that, for any p1, p2, denoting as r1, r2 ∈ V S the values
such that R(p1) = r1 and R(p2) = r2, it holds that Δ(r1, r2) is:

1. ≤ δn if and only if p1, p2 were both returned by distribution N
2. ≤ δa if p1, p2 were returned by distribution A
3. ≤ δi if p1, p2 were returned by distribution Ai, for i = 1, . . . , t.

An estimation algorithm is defined as an algorithm returning (δ′n, δ′a, δ′1, . . . , δ
′
t)

when given as input (1k, N, A1, . . . , At, A, V S, Δ). We say that an estimation algo-
rithm ES is μ-correct if it holds that |δn − δ′n| ≤ μ, |δa − δ′a| ≤ μ, and |δi − δ′i| ≤ μ,
for i = 1, . . . , t.

We say that a representation scheme R is (A, V S, Δ, δ′n, δ′a, δ′1, . . . , δ′t)-oversensitive
if for any p1, p2, denoting as r1, r2 ∈ V S the values such that R(p1) = r1 and
R(p2) = r2, it holds that Δ(r1, r2) is:

1. ≤ δ′n if and only if p1, p2 were both returned by distribution N
2. ≤ δ′a if p1, p2 were returned by distribution A
3. ≤ δ′i if p1, p2 were returned by distribution Ai, for i = 1, . . . , t.

Finally, the assumption requires that there exists a μ-correct estimation algorithm for the
oversensitivity parameters of distributions N, A1, . . . , At, A, and that the representation
algorithm R is (A, V S, Δ, δ′n, δ′a, δ′1, . . . , δ

′
t)-oversensitive, where δ′n, δ′a, δ′1, . . . , δ

′
t are

the parameters returned by the estimation algorithm.

We note that item 1 in the oversensitivity assumptions is an ‘if and only if’ as we
would like that any point generated from an attack distribution, known or unknown, to
have distance larger than parameter δn (or δ′n) from a point generated from a normal
traffic distribution.

OUR FIRST ID SCHEME. Let δ′n, δ′a, δ′1, . . . , δ′t be estimations, validated by simulation-
based studies, of the parameters δn, δa, δ1, . . . , δt in Assumption 1. Also, let R be an
(A, V S, Δ, δ′n, δ′a, δ′1, . . . , δ′t)-oversensitive representation algorithm with representa-
tion window rw, where the oversensitivity assumption is also validated by simulation-
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based studies. (Note that this assumption implies the assumptions that distributions
N, A1, . . . , At, A are (δn, δa, δ1, . . . , δt)-oversensitive and therefore we do not need
to clearly state the latter assumption below.) Moreover, let (Init,Search) be a pair of
algorithms for the NNS problem, satisfying Lemma 1. Specifically, on input a set S
of d-length vectors and parameter ε, algorithm Init returns a data structure ds; on in-
put data structure ds, a vector v and parameter ε, algorithm Search returns (with high
probability) a vector w ∈ S such that w is a (1 + ε)-approximate nearest neighbor of v.
We now describe algorithms S and C for our first ID scheme IDS1 (for simplicity, we
assume that the detection window satisfies dw = rw).

Input to Algorithm S: 1n, distributions N, A1, . . . , At, algorithm R, and parameters
ε, δ′1, . . . , δ

′
t, δ

′
n, δ′a.

Instructions for Algorithm S:

1. For i = 1, . . . , n,
for j = 1, . . . , rw,

uniformly and independently sample ri,j from D
set xi = R(ri,1, . . . , ri,rw)

2. For i = 1, . . . , t and j = 1, . . . , n,
uniformly and independently sample sij from Ai

set yij = R(sij)
3. Let S = {xi}n

i=1 ∪ {y1j}n
j=1 ∪ . . . ∪ {ytj}n

j=1
4. Let ds = Init(S, ε) and set ds = ds ∪ S
5. Return: ds.

Input to Algorithm C: 1n, 1c, data structure ds, algorithm R, packets p1, . . . , pm, and
parameters ε, δ′1, . . . , δ

′
t, δ

′
n, δ′a > 0, where m = m[det] = rwc

Instructions for Algorithm C:

1. For � = 0, . . . , m − rw,
det v� = R(p�+1, . . . , p�+rw)
let w� = Search(ds, v�, ε)
let S be the set contained in ds such that

S = {xi}n
i=1 ∪ {y1j}n

j=1 ∪ . . . ∪ {ytj}n
j=1

set outh = 0 for h = 0, . . . , t
if w� = yij for some i ∈ {1, . . . , t} and j ∈ {1, . . . , n} then

if Δ(w�, yij) ≤ δ′i then set outi = 1
else set outi = (1, �)

if w� = xj for some j ∈ {1, . . . , n} then
if Δ(w�, xj) > δ′n then set out0 = (1, �)

2. Return: (out0, out1, . . . , outt) and halt.

We would like to prove that under the oversensitivity assumption on RS, the system
IDS is a successful detector.

By inspection of algorithms S, C, and by assuming that algorithm R satisfies As-
sumption 1, we observe that the successful detection of algorithm C strictly depends
on whether the point w� returned by algorithm Search is the nearest neighbor of v�

and whether the estimations δ′a, δ′n, δ′1, . . . , δ
′
t are sufficiently close to δa, δn, δ1, . . . , δt.
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Specifically, we observe that if point w� returned by algorithm Search is the exact near-
est neighbor of v� and it holds that δ′a = δa, δ′n = δn and δ′i = δi, for i = 1, . . . ,t, then
then the output out = (out0, out1, . . . , outt) is A-correct. Therefore, the probability
that out is not A-correct can be bounded, using the union bound, as at most the prob-
ability that w� is not the exact nearest neighbor of v� for at least one � ∈ {1, . . . , m},
plus the probability that the estimations δ′a, δ′n, δ′1, . . . , δ

′
t are not correct. We finally

note that the former probability is at most ε by Lemma 1 and the latter probability is at
most μ by Assumption 1.

Among all performance metrics of the scheme, we stress the importance of the
efficiency of the running time of algorithm C. We then obtain the following

Theorem 1. Let A be an attack distribution, and let δn, δa, δ1, . . . , δt, ε be some para-
meters > 0, and let δ′n, δ′a, δ′1, . . . , δ′t be the output of a μ-correct estimation algorithm
taking as input (1k, N, A1, . . . , At, V S, Δ).
If R is an (A, V S, Δ, δ′n, δ′a, δ′1, . . . , δ

′
t)-oversensitive representation algorithm then the

scheme IDS = (R,S, C) is a (τ, δ, A)-detector, where δ = 1 − μ − m · ε, and for any
τ =poly(n). Moreover, scheme IDS is efficient as algorithm S runs in time poly(n ·
rw · ε−1) and algorithm C runs in time O(ε−2 · rw· polylog(n · rw)). Furthermore, IDS
has detection window dw = rw.

We consider a major open problem in the theory of intrusion detection to design ID
schemes with assumptions weaker than Assumption 1. (Due to Proposition 1, the ulti-
mate goal would be that of using the sensitivity requirement as a minimal assumption.)

OUR SECOND ID SCHEME. We only briefly mention that our first ID scheme can be
generalized using Clustering algorithms and resulting in a second scheme based on a
slightly weaker assumption. The idea we use here is in relaxing the assumption is in
allowing several distributions (rather than a single one) for normal traffic. As a con-
sequence, it is not true any more that any two points associated to normal traffic have
‘small’ distance, but it will hold that any such point has ‘close’ distance from at least
one point generated according to at least one of the normal traffic distributions. Since
our second scheme is based on weaker assumptions than our first one, the class of at-
tacks that it can detect is strictly larger than the class of attacks of our first scheme,
which points at another interesting capability allowed by our model.

4 ID Schemes with Arbitrary-Length Detection Window

In the previous sections we have studied intrusion detection schemes with detection
window equal to the representation window. This restriction is, in practice, undesirable
as it allows an adversary to perform simple attack strategies that would not be detected
by the intrusion detection system. For instance, even for attacks consisting of two pack-
ets only, an adversary could send the second packet slightly later than the first packet
(precisely, by interleaving between the two packets a number of packets at least as large
as the representation window), and the detection window of the system will not contain
both packets.

In this section we formally define and study the problem of extending the length
of the detection window of an ID scheme. We use combinatorial techniques and apply
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them to any ID scheme that satisfies the definition in Section 2. Therefore, when applied
to our schemes in Section 3, we obtain ID schemes with extended-length detection
window under the same assumptions on the representation algorithm.

More formally, a first formulation of this problem could be the following. Given
a generic intrusion detection system IDS1=(R,S, C) with representation window rw1
and detection window dw1 = k, is it possible to construct an intrusion detection system
IDS2 with representation window rw2 = rw1 and detection window dw2 = m, for any
m =poly(k) ?

We note that the size of the tuple returned by an attack distribution A is defined to
be equal to the length of A’s first input, which is set, for convenience of parameters,
equal to the representation window rw. More generally, in our problem formulation
we would like to capture the situation of the number of effective attack packets being
equal to some � such that 1 ≤ � ≤ rw, which is closer to what expected in practice.
Formally, we define an attack distribution A as �-effective if, denoting by Supp(A, rw)
the support of distribution A, when run on input 1rw, the following holds: for each
tuple (a1, . . . , arw) ∈ Supp(A, rw), there exists an �-tuple of indices i1, . . . , i� such
that all rw-tuples containing ai1 , . . . , ai�

are in Supp(A, rw). (Here, such �-tuple can
be considered as the effective attack witness.)

As a consequence, we will study the following problem. Let C be a class of �-
effective attacks. Given a C-sensitive intrusion detection system IDS1 = (R,S, C) with
representation window rw1 and detection window dw1 = k, is it possible to construct
a C-sensitive intrusion detection system IDS2 with representation window rw2 = rw1
and detection window dw2 = m, for any m =poly(k) ?

4.1 A Solution Based on Covering Set Systems

We now recall the definition of well-studied combinatorial objects, called covering
set systems, and present a generic construction of an intrusion detection system with
arbitrary-length detection window from one with a fixed detection window.

Definition 3. Let �, k, m be positive integers. Let S be a set of size m and let T =
{T1, . . . , Ts} be a set of k-size subsets of S. We say that T is an (�, k, m)-covering set
system for S if for any �-size Si ⊆ S, there exists a subset Tj ∈ T such that Si ⊆ Tj .
The space efficiency of the covering set system T is defined to be the size s of T (and
can be a function of �, k, m). The time efficiency of covering set system T is defined to
be the running time (as a function of �, k, m) that an algorithm takes to construct T .

As an example, note that the set of all �-size subsets of S is an (�, k, m)-covering set
system for S having both time and space efficiency

(
m
�

)
. Covering set systems have been

studied in several works (see, e.g., [10,11,9,18,21] and references therein), focusing on
somewhat different requirements than ours. We also note that a related and dual notion
of set systems (in an area also called Turan Theory) has been applied to other areas in
Cryptography, such as secret sharing [19] and secure mixnets [6] (works on this notion
typically focus on covering set systems for k, m very close to �). We are not aware of
other applications of covering set systems in the Security area.

Construction of an IDS with arbitrary detection window. Let C be a class of �-
effective attacks, and let IDS1=(R1,S1, C1) be a C-sensitive intrusion detection sys-
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tem with representation window rw1 and detection window dw1 = k. Also, let T =
{T1, . . . , Tm} be a (�, k, m)-covering set system for set S = {1, . . . , m}. We now de-
fine an intrusion detection system IDS2=(R2,S2, C2), with representation window rw2
and detection window dw2 = m.

Algorithms R2,S2 are defined as equal to R1,S1, respectively. Algorithm C2 goes
as follows. On input a sequence of m packets p1, . . . , pm, it runs s times (using inde-
pendent randomness) C1, each time on inputs a sequence of packets s = pj1 , . . . , pjk

,
where Ti = {j1, . . . , jk}; we denote as (outi0, . . . , outit) be the output returned by
this execution of C1. Finally, C2 returns (out0, . . . , outt), where outj = ∨m

i=1outij , for
j = 1, . . . , t.

The sensitivity of C2 can be proved by using the sensitivity of C1 and the definition of
covering set system. (Very roughly, for each �-size effective attack sequence seq, there
exists at least one subset in T that will define a sequence of packets seq′ that contains
seq and is given as input to C1 that will detect it). The efficiency of IDS2 depends on the
efficiency of the construction for the covering set systems. We note that for � = O(1)
(which is expected in practice) or for just s polynomial in the security parameter, then
algorithm C2 runs in time polynomial in the security parameter and then so does IDS2.

We obtain the following

Theorem 2. Let C be a class of �-effective attacks. Given a C-sensitive intrusion detec-
tion system IDS1=(R1,S1, C1) with representation window rw1 and detection window
dw1 = k, and given an (�, k, m)-covering set system for set S = {1, . . . , m} with time
efficiency t and space efficiency s, it is possible to construct a C-sensitive intrusion
detection system IDS2 = (R2,S2, C2) with representation window rw2 = rw1 and
detection window dw2 = m, for any m = poly(k), where algorithm C2 runs in time
O(t + s·time(C1)).

We note that in the above theorem the efficiency of algorithm C2 (and therefore, of
IDS2) significantly depends on both time and space efficiency of the covering set sys-
tem. It is then of interest to obtain covering set systems with satisfactory performance on
both parameters and yet working for all choices of �, k, m. (Specifically, we are willing
to sacrifice optimality with respect to space efficiency in order to achieve generality and
satisfactory time efficiency.) Furthermore, of additional interest is the practical require-
ment that the code to generate such systems is simple. Constructions of covering set
systems in the combinatorics and theoretical computer science literature mostly focus
on achieving space-optimality, even for possibly limited choice of parameters �, k, m.
In the next section we show some constructions that work for all choices of �, k, m,
are simple to generate, and are time and space-efficient for � = O(1). Improving these
constructions to achieve time and space-efficiency for larger values of � is an interesting
open problem.

4.2 Constructions of Time-Efficient Covering Set Systems

We define C(�, k, m) as the minimum, over all (�, k, m)-covering set systems T , of the
space efficiency of T . We recall that a trivial upper bound of

(
n
�

)
on C(�, k, m) follows

by defining a set Ti as an arbitrary extension of the i-th �-size subset of S. Furthermore,
we now recall two known lower bounds for C(�, k, m). The first bound is simple and



Towards a Theory of Intrusion Detection 281

follows by observing that each Ti can at most cover
(
k
�

)
distinct subsets of size � from

S. The second lower bound is also well-known and due to [20].

Fact 1. It holds that

1. C(�, k, m) ≥ (m
� )

(k
�)

2. C(�, k, m) ≥ �m
k · C(� − 1, k − 1, m − 1) �

We ideally would like to define general and time-efficient constructions of T also having
space efficiency as close as possible to the above lower bounds. Assuming � = O(1)
and, for simplicity, k/� equal to an integer, we now define two constructions that meet
these bounds up to a constant.

Construction 1:

1. Let S = {1, . . . , m} and T1 = ∅.
2. Partition S into k-size disjoint subsets S1, . . . , Sm/k�
3. For i = 1, . . . , �m/k�,

partition each Si into disjoint (k/�)-size subsets Zi,1, . . . , Zi,�

4. For each i1, . . . , i� ∈ {1, . . . , �m/k�},
for each (a1, b1), . . . , (a�, b�) ∈ {(ij, t) : j, t = 1, . . . , �},

add ∪�
i=1Zai,bi to T1,

5. Return: T1.

Construction 2:

1. Let S = {1, . . . , m} and T2 = ∅.
2. Partition S into (k/�)-size disjoint subsets S1, . . . , S�·m/k�
3. For each i1, . . . , i� ∈ {1, . . . , � · �m/k�},

add ∪�
j=1Sij to T2,

4. Return: T2.

The above constructions satisfy the following

Theorem 3. The above two constructions define (�, k, m)-covering set systems T1, T2
for arbitrary positive integers �, k, m, with time and space efficiency (t1, s1) and (t2, s2),
respectively, where:

1. s1 =
(m/k�

�

) · (�2� ) and t1 = Θ(s1);
2. s2 =

(
�·m/k�

�

)
and t2 = Θ(s2).
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A Model Validation

We have gone through a few basic steps towards validation of our model.

WELL-KNOWN PERFORMANCE METRIC OF ID SYSTEMS IN OUR MODEL. All natural
performance metrics considered in the ID literature have a rigorous definition according
to our model, as we discuss in detail in Appendix A. In particular, we discuss false
positive rate, detection probability, detection attempt rate, time and space efficiency,
data collection stability, data upgrade rate and performance.

WELL-KNOWN ID SYSTEMS IN OUR MODEL. Well-known ID systems very often used
in practice can be easily cast into our formalization. We only discuss the notable case
of SNORT [22] and show how its major components can be recast in forms of repre-
sentation, data structure and classification algorithms. Then we discuss how analysis
along the lines of Section 3 can be used to argue a number of interesting facts about
one or more SNORT instantiations, even beyond just rigorously proving its detection
properties. As an example, our model can be used to rigorously evaluate the tradeoff
in two different SNORT instantiations between increased set of rules and efficiency
performance of the system. We now proceed in slightly greater detail.

A public domain tool and perhaps the most widely deployed ID systems, SNORT
[22] can be abstracted in one-line as a signature-based network intrusion detection sys-
tem. A little more precisely, SNORT is a rule-based ID system, as it allows the definition
and update of rules for traffic classification, and it actually provides somewhat sophisti-
cated detection capabilities, such as information about attack ‘origin’ and attack ‘breach
type’. A high level definition of SNORT major components is as follows:

1. Packet Capture Engine: this uses a certain library to capture traffic datagrams.
2. Preprocessor Plug-Ins: they inspect packet data received from the capture engine

and decide whether to analyze it or not, and, if yes, whether to generate an alert of a
potential attack. They also perform some data filtering to eliminate traffic that may
be malicious to the SNORT application itself.

3. Detection Engine: this performs basic tests according to a set of internal rules, each
of them typically asking to search for a string/value associated with the rule itself
and some particular piece of the packet. As for any signature-based ID system, it
contains a preliminary phase of data gathering and main rules definition, and an
active phase of online traffic classification.

4. Output Plug-Ins: they return high-level information of interest to the ID analyst.

We now show how we can simply fit SNORT into our formalization. Specifically, the
representation algorithm R is composed with both the Packet Capture Engine and the
Preprocessor Plug-Ins. The data structure algorithm S is composed with the rule defini-
tion part (both in the preliminary and active phase) and the preliminary phase of the De-
tection Engine. Finally, the classification algorithm C is composed with the active phase
of the Detection Engine as well as the Output Plug-Ins. Technically, it is more appropri-
ate to talk of SNORT as of an ID system suite, rather than a single ID system, as its de-
tection success may significantly change according to how the above 4 components are
instantiated. It is clear then that for each instantiation, one could prove a theorem similar
in spirit to Theorem 1. One major difference, however, is that, given that the rules used
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by any SNORT instantiation fall under the signature detection principle, any SNORT
instantiation will only be able to detect attacks A that are among the known attacks
A1, . . . , At (while other schemes including the one given in Section refse-scheme1
combine and generalize the anomaly and signature detection principles.) Still, theorems
in our model can be used in order to compare the advantages and disadvantages of dif-
ferent rule sets in different SNORT instantiations. For instances, a very basic question
for which our model can provide quantitative answers, is that of evaluating the tradeoff
between the convenience of enlarging the set of rules (i.e., using a weaker assumption
and obtaining stronger detection results) and the degrade in certain performance metrics
(such as running time, detection attempt rate and data upgrade rate).

A similar abstraction can be done for several other well-known signature-based ID
systems. We remark that our formalization captures also anomaly-based ID systems
(in fact, our system in Section 3 is an hybrid of both approaches: anomaly-based and
signature-based).
DESIGN/ANALYSIS PLAN FOR ID SYSTEMS IN OUR MODEL. It is possible to formu-
late a detailed plan for the design and analysis methodology of ID systems in our model
(thus, further elaborating on the discussion at the end of Section 2.2), that automati-
cally integrates simulations and implementation experiences with theoretical analysis.
In general, we will consider the following (summarized) step-by-step design and analy-
sis methodology for ID systems:

1. Assumptions about normal traffic distributions and single attacks or attack classes
distributions are rigorously formulated in terms of a set PS of parameters.

2. An algorithm ES is defined to produce a set PS′ of parameters estimating the
parameters in PS

3. Algorithms R,S, C are defined using estimations in PS′.
4. An assumption is made about the estimation property of algorithm ES and the

assumption is validated through simulation-based studies.
5. An assumption is made about the sensitivity property of algorithm R and the as-

sumption is validated through simulation-based studies.
6. The detection property of algorithms S, C for the given attack class is mathemati-

cally proved under the assumption that R satisfies the sensitivity property.

Note that we could have included the estimation algorithm in the formalization above
but we decided not to do so not to overburden the formalism (alternatively, estimates
could be returned by the algorithm R itself). We underline the highly desirable modu-
larity of this approach: an ID designer can mix-and-match representation and parameter
estimation algorithms validated through simulation studies with data structure and clas-
sification algorithms that are mathematically proved correct. In the rest of this paper we
will concentrate on the latter part: defining data structure and classification algorithms
that are mathematically proved correct under the assumption that the associated repre-
sentation algorithm is sensitive to a given attack or class of attacks. We stress that this is
performed for any classification algorithm satisfying the sensitivity property and there-
fore the reader should not expect a simulation-based analysis, but rather a mathematical
correctness proof for the detection property of the classification algorithm.

OUR IMPLEMENTATION EXPERIENCE. One implementation in [25] of an ID system
(using the system discussed in Section 3) performs quite satisfactorily on several prac-
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tical performance metrics (in addition to the desired theoretical properties established
here). Specifically, in [25], together with other coauthors, we detail an implementation
of a version of our ID system in Section 3, based on Nearest Neighbor Search, as a
component of a larger system for the detection of IP spoofed traffic. There we run ex-
periments designed to quantify the ability to detect various kinds of attacks (of both
voluminous and stealthy nature), the detection rate, the false positive rate, and the vari-
ance with the location of attack sources. Except for pathological cases and very high
attack loads, the implementation has a detection rate of about 80 % and a false positive
rate of about 2 % in testbed experiments using Internet traffic and real cyberattacks.
The implementation is compromised of various system level components deployed at
various locations within a target network. NetFlow [17] is enabled on Border Routers
(BRs) in large IP backbone networks. Flowtools [23] software modules can be deployed
at various host nodes within the target network. NetFlow data is transmitted to the flow-
tools modules from the BRs. Statistics generated by Flow-tools are then transferred to
the analysis software module, which analyzes the data and can provide notification in
case abnormal behavior is detected. A full report on some features and results of our
implementation can be found in [25].

PERFORMANCE METRICS. We consider several metrics that can help in measuring
the performance of an intrusion detection system receiving as input a stream of m[det]
packets and formally redefine them in the described model (this is, of course, non nec-
essarily an exhaustive list); finally, we discuss values for these metrics that would imply
satisfactory performance of an intrusion detection system.

False Positive Rate. Informally, a false positive happens when an alert for an attack is
raised in correspondence of a sequence of packets that does not contain any attack. This
is one of the most often considered performance metrics, especially in anomaly-based
intrusion detection systems, and reducing the rate of false positives in such systems
is one of the biggest areas of research for Intrusion Detection. In our formal model, a
false positive can be defined as a sequence q of dw packets such that the string out =
(out0, out1, . . . , outt) returned by algorithm C when run on input R, (1n, ds, q, A),
satisfies the following: there exists i ∈ {0, . . . , t} such that outi = 1 and q does
not contain a tuple of packets in the support of distribution A. Then the false positive
rate of an intrusion detection system for sequences up to m[det] packets, is equal to
the expected value, over all sequences of length m[det], of the ratio of the number of
false positives to the number of sequences of dw packets having nonzero probability of
occurrence. Here the probability space is over distributions N, A, A1, . . . , At.

Detection Probability. Informally, the detection probability is the probability that the
response from the intrusion detection system is correct, and, clearly, this is the ulti-
mately more interesting parameter. In our formal model, the detection probability with
respect an attack A and a sequence q of dw packets is denoted as π(A, q) and is for-
mally defined in Definition 2.

Detection Attempt Rate. Informally, the detection attempt rate is the frequency with
which a detection attempt is being performed. While an ideal system would check in
an m[det]-packet sequence for every dw-packet subsequence where an attack might
appear, more realistic efficiency constraints might prevent the system to do that and
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therefore detection attempts would be performed less frequently. Let A be an attack
distribution, rw be the representation window of the intrusion detection system and
denote as s an m[det]-packet stream entering into the network. We define the set of
(A, rw, m[det])-candidate sequences as the set of rw-packet subsequences in s that
might contain a tuple in the support of distribution A. The detection attempt rate is
then the expected value of the ratio of the number of subsequences of (A, rw, m)-
candidate sequences for which the output of algorithm C is A-correct, to the number of
all (A, rw, m)-candidate sequences. Here, again, the probability space is over distribu-
tions N, A, A1, . . . , At.

Initialization and Detection Time and Space Efficiency. Informally, the initialization
(resp., detection) time and space efficiency are the running time and the space com-
plexity of the intrusion detection system during the initialization phase (resp., the de-
tection phase). In our model, we define the initialization time efficiency (resp., initial-
ization space efficiency) as the running time (resp., storage complexity) of S as a func-
tion of n, m[init], σ, δ; we then define the detection time efficiency (resp., detection
space efficiency) as the running time (resp., storage complexity) of C as a function of
n, m[init], dw, m[det], σ, δ.

Data Collection Stability. Informally, the data collection stability parameter is the
amount of storage that is necessary in the initialization phase in order to guarantee
the claimed detection properties of an intrusion detection system for an m[det]-packet
stream in the detection phase. In our model, we denoted this parameter as a free para-
meter and defined as the length of the output of algorithm S; in general, it can be set as
a function of other parameters n, σ, δ, dw, m[det].

Data Upgrade Rate. Informally, the data upgrade rate denotes how often the data struc-
ture is upgraded; at one extreme, a system could periodically discard the previously
collected data and rerun the initialization phase; at the other extreme, a system could
use every packet received by the network in order to update the data structure. Formally,
this rate can be defined as the expected value of 1 − the ratio of the number of packets
for which an update of ds has not occurred to the length of the packet stream m[det].
Here, again, the expected value is over all m[det]-packet sequences and the probability
space is over distributions N, A, A1, . . . , At.

Satisfactory Performance. Clearly, one would like an intrusion detection system to
optimize all the defined performance metrics. We only remark here on two metrics.
In terms of detection, as we observe later, algorithm C cannot find attacks that are not
somehow captured by algorithm R; therefore, we would require a satisfactory detection
probability to be one that minimizes the difference δ − σ. In a complexity-theoretic
sense, satisfactory time and space efficiency of an intrusion detection system could
be required to be equivalent to all algorithms R,S, C running in time polynomial in
the security parameter n. In a more practical setting, we note that algorithm S is run
once and for all in an initialization phase, while algorithms R, C are repeatedly run
(in an on-line fashion) in the detection phase. Therefore, we specifically require that
algorithms R, C are significantly more efficient; for instance, that they run in time at
most polynomial in log n. (We note that both schemes we propose in this paper satisfy
this.)
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Abstract. As the use of computers and data communication technolo-
gies spreads, network security systems are becoming increasingly com-
plex, due to the incorporation of a variety of mechanisms necessary to
fulfil the protection requirements of the upcoming scenarios. The in-
tegrated design and management of different security technologies and
mechanisms are thus of great interest. Especially in large-scale environ-
ments, the employment of security services and the design of their con-
figurations shall be supported by a structured technique which separates
the consideration of the system as a whole from the detailed design of
subsystems. To accomplish this goal, this paper presents a scalable ap-
proach for the modelling of large security systems, relying on the concepts
of policy-based management and model-based management.

1 Introduction

The widespread use of computers and data communication technologies, together
with an ever-increasing Internet, requires the adoption of protection measures to
control the risk of network-based attacks. In consonance with these protection
needs, the technology utilised by security systems is growing in complexity. Thus,
to the hardening of operating system configurations associated with the use of
traditional firewalls [1,2], a series of mechanisms and services are incorporated
like Virtual Private Networks (VPNs), end-to-end cryptographic associations
(using, for instance, IPSec), authentication services (like Kerberos), authorisa-
tion services, and diverse monitoring, logging and auditing, as well as automated
intrusion detection systems (IDS).

As those security services and mechanisms are increasingly employed—at-
taining thereby dazzlingly knotty scenarios—importance and costs of security
management escalate. Initially, the management tasks are comprised of the in-
stallation and configuration of security services, followed then, during operation,
by their monitoring, auditing, adaptation and reconfiguration. Proper abstrac-
tion, integration and tool support are thus key factors for easing the management
tasks.
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Both policy hierarchies [3] and policy-based management [4] approaches can
be profitably used in this context, since they aim at automating management
tasks in complex systems. These two approaches work together as follows: man-
agement policy hierarchies can be built by initially taking a set of high-level
policies and refining them through intermediate levels until reaching mechani-
cally executable policies. Thus, policy-based management uses those relatively
low-level policies with distributed management agents that will communicate
with each other, interpreting and executing policies specifically assigned to cor-
responding management roles.

The Model-Based Management approach [5,6,7], in turn, supports the build-
ing of those policy hierarchies by means of interactive graphical design. It adopts
concepts of object-oriented system design tools and employs a model of the sys-
tem vertically structured into a set of layers. The objects and associations of a
layer represent the system to be managed on a certain abstraction level.

A common problem of these approaches occurs when dealing with larger
systems, since the model tends to lose much of its understandability, getting
obscure due to the great number of components (as attested in [8]). A canonical
way of addressing such problems is to use the principle of divide and conquer;
i.e. the modularisation of a system into smaller segments would allow us to deal
with each of them in detail separately, and to reason about the whole system
through a more abstract view of the interaction of those parts.

In this paper, we apply this principle to achieve an approach based on the
segmentation of a system into Abstract Subsystems. A Diagram of Abstract Sub-
systems constitutes thus a representation of the overall structure of the system
in which the details are hidden and dealt with in the internal specification of
each subsystem. This abstraction permits a decomposition of the processes of
system analysis and design, thereby improving the comprehensibility and scal-
ability of the model. Moreover, this diagram is policy-oriented and provides an
interface between a service-oriented view and the depiction of the actual network
mechanisms. This modelling technique is also assisted by a software tool, which
consists of a graphical editor with additional functions for checking of model-
dependent constraints and guiding the policy refinement through the model’s
hierarchical levels.

As the present work builds upon Model-Based Management, an introduction
to the latter is given in the next section. Subsequently, the concept of Abstract
Subsystem (AS) is presented (Sect. 3), to serve as a basis for the elaboration
on the Diagram of Abstract Subsystems in Sect. 4 and on the modelling of ASs
(Sect. 5). Section 6 discusses results from the application of our modelling tech-
nique to a realistic environment, and Sect. 7 presents the automatic model re-
finement. Lastly, we discuss related work in Sect. 8 and cast conclusions for this
paper in Sect. 9.

2 Model-Based Management

The concept of Model-Based Management was initially proposed by Lück et al. in
[5] and later applied to the configuration of several security mechanisms such as
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packet-filters [6] and VPNs [7]. This approach aims to support the policy-based
management by the use of an object-oriented model of the system to be managed.
Based upon this model, a policy refinement can be accomplished such that con-
figuration parameters for security mechanisms can be automatically derived.

The structure of the model is shown in Fig. 1 (reproduced from [8]), where
three abstraction levels can be distinguished: Roles & Objects (RO), Subjects &
Resources (SR), and Processes & Hosts (PH). Each level is a refinement of the
superordinated level in the sense of a “policy hierarchy”. The uppermost level
represents the business-oriented view of the network whereas the lowest level is
related to the technical view. The vertical subdivisions differentiate between the
model of the actual managed system (with productive and control elements) and
the policies that regulate this system. This last category encompasses require-
ment and permission objects, each of which refers to the model components of
the same level and expresses security policies.

The uppermost level (RO) is based on concepts from Role-Based Access
Control (RBAC) [9]. The main classes in this level are: Roles in which people,
who are working in the modelled environment, act; Objects of the modelled
environment which should be subject to access control; and AccessModes; i.e.
the ways of accessing objects. The class AccessPermission allows the performer
of a Role to access a particular Object in the way defined by AccessMode.

The second level (SR in Fig. 1) consists of a more complex set of classes.
Objects of these classes represent: (a) people working in the modelled environ-
ment (User); (b) subjects acting on the user’s behalf (SubjectTypes); (c) services
in the network that are used to access resources (Services)—a service has ref-
erences to all resources it is able to access; (d) the dependency of a service on
other services (ServiceDependency); and lastly (e) Resources in the network. The
ServicePermission class allows a subject to use a service to access a resource.

The SR level offers a transition from the business-oriented view, represented
in RO level, to a more technical perspective, which is service-based. This is
accomplished by using a service-oriented management approach to achieve a
relatively abstract view of the management system, which is hence defined from
the standpoint of the services that the system will provide. As such, the system’s
internal structure is not expressed in the SR level, but rather in the third level
(PH) of the model (Fig. 1).

The lowest level (PH) is responsible for modelling the mechanisms that will
be used to implement the security services defined in SR. Therefore, PH will

Fig. 1. Model Overview
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Fig. 2. Tool Interface

have even more classes than before, representing for instance the Hosts, with
their respective network Interfaces, and the Processes, that perform commu-
nicative actions relying on Sockets. ProtocolPermissions allow the transition of
packets between processes. Several other classes are also defined according to the
supported mechanisms. They will not be mentioned here for the sake of brevity.

To support tool-assisted interactive configuration of mechanisms a graphical
tool—whose interface is shown in Fig. 2—is supplied. This tool assists the user
in the modelling of the system by means of a graphical editor with additional
functions for the checking model-dependent constraints.

It can be noted from the previous discussion that the PH level—which shall
depict the entire system, with its processes, hosts, network interfaces etc.—has its
complexity quickly increased as the size of the modelled system grows. This fact
is also illustrated in Fig. 2, which shows the model of a very simple scenario with
only one AccessPermission at the uppermost level: the workers of a company
shall be allowed to access the corporate web server. Despite the simplicity of this
RO level, the model unfolds into a considerable number of objects at the lowest
level (bottom of Fig. 2), in order to represent mechanisms like IP-masquerading,
firewalls and load balancers.

Due to the simpleness of this example, the resulting model is still reasonable;
however, it can be noted that models of larger real environments tend to become
quite confusing. In order to overcome this problem we introduce in the next
section the concept of Abstract Subsystems.

3 Concept of Abstract Subsystem (AS)

An Abstract Subsystem (AS) is an abstract view of a system segment; i.e. a
simplified representation of a given group of system components. As such, an AS
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Fig. 3. Components of Abstract Subsystems

omits much of the detail that is contained inside of it, presenting instead only
the relevant aspects for a global view of the system structure. These aspects are
chosen based on a policy-oriented view of the system, which is depicted in Fig. 3.

In this scheme, three types of elements can be distinguished: actors, mediators
and targets. The first type (actors) stands for groups of individuals in a system
which have an active behaviour; i.e. they initiate communication and execute
mandatory operations according to obligation policies.

The second element type encloses Mediators, which intermediate communica-
tions, receiving requests, inspecting traffic, filtering and/or transforming the data
flow according to the authorisation policies. They can also perform mandatory
operations based on obligation policies, such as registering information about
data flows. The Targets, in turn, are passive elements; they contain relevant
information, which is accessed by actors.

Using this scheme as a foundation, we can now redefine an Abstract Sub-
system as a non-directed graph whose edges represent potential (bidirectional)
communication between its nodes. These nodes can be either of one of the three
types mentioned above (actors, mediators and targets) or connectors. This last
type of component has been added to represent the interfaces of one AS with
another; i.e. to allow information to flow from, and to, an AS.

4 Diagram of Abstract Subsystems (DAS)

Relying upon the concepts presented in the preceding section, we now introduce
a new abstraction level into the modelling of security systems: the Diagram of
Abstract Subsystems (DAS). This layer is located immediately below the service-
oriented view of the system (SR level in Fig. 1) and above the PH layer, which
depicts the actual network mechanisms. Its main objective is to describe the
overall structure of the system to be managed in a modular fashion; i.e. to cast
the system into its constituent blocks (ASs) and to indicate the connections
between them. Since these blocks consist of a policy-oriented, abstract represen-
tation of the actual subsystem components (see Sect. 3), the DAS provides a
concise and intelligible view of the system architecture—in a similar sense as the
one proposed in [10]. Moreover, this diagram supports the reasoning about the
structure of the system vis-à-vis the executable security policies, thus making
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explicit the distribution of the different participants of these policies over the
system.

The DAS is formally a graph, comprised of ASs as nodes and edges which
represent the possibility of bidirectional communication between two ASs, as
shown at the bottom of Fig. 5. Thus, from a top-down perspective (i.e. from
the SR level downwards) this diagram adds four kinds of information to the
precedent model: (a) the segmentation of the users, services and resources into
subsystems; (b) the structural connections amongst elements and subsystems;
and therefore (c) the structural connections amongst the different participants
of a policy (actors, mediators and targets); and lastly (d) mediators that are
not directly related to SR level services but take part in the communication and
filter or transform its data (e.g. firewalls).

In order to make clear the use of the DAS, in the next section we describe
the systematic mapping from a service-oriented view of a system to its repre-
sentation through abstract subsystems, and from this to the modelling of the
actual mechanisms. Each step of this mapping is exemplified by means of a test
scenario.

5 Modelling Abstract Subsystems

The scenario that will be used here relies on a typical network environment, as
illustrated in Fig. 4. To this scenario the following network security policies are
applied: 1) the users are allowed to browse the WWW from the internal work-
stations; 2) the users may send e-mails to the Internet from the workstations;
3) mail from the Internet shall be permitted to get to the external mail server,
which in turn may forward it to the internal mail server; 4) external users us-
ing the Internet may access the company’s public web server; and 5) users are
allowed to fetch e-mails from the internal mail server to the workstations.

The modelling of these policies according to the principles referred in Sect. 2
produces the first two levels of Fig. 5. The basic objects are: the roles “Employee”
and “Anonymous Internet User”, and the Objects “Internal e-mail”, “Website”,
“Internet e-mail” and “Internet WWW”. These objects are associated with Ac-
cesModes by means of five AccessPermissions (at the top, on the right of Fig. 5),
each corresponding to one of the above enumerated policies, which will hence-
forth be referred to as AP1 to AP5. Thus, for instance, the AccessPermission
“allow Internet surfing” models the policy statement (1), associating the role
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“Employee” to “surfing” and “Internet WWW”. The other policy statements
are analogously modelled by the remaining AccessPermissions.

The mapping from the SR level to the Diagram of Abstract Subsystems (DAS)
is then executed in three steps: (i) the modularisation of the system in confor-
mance with the respective network scenario—i.e. the segmentation into Abstract
Subsystems (ASs); (ii) the mapping of the elements of the SR level (users, ser-
vices, resources) to components inside each AS; and (iii) the establishment of
structural connections in the DAS, reflecting the associations between elements
inside an AS and those between ASs, which are performed by means of Connec-
tor objects (Sect. 3). Subsequently, each AS can be expanded independently in
order to achieve at the PH level a detailed representation of its mechanisms, and
thereby enabling the generation of the corresponding configuration files. These
steps will be described in turn in the following sections.

5.1 Segmentation into ASs

The subdivision of the system into ASs shall be guided by the structural blocks
of the analysed environment. The abstract components of a DAS are thus ag-
gregated according to the groups of mechanisms that already exist in the real
system, such as departments, workplaces and functions.

An important criterium to be considered is the semantic unity of an AS;
i.e. the group of mechanisms enclosed in an AS must have a common property
that is clearly distinguishable. As such, this property assures the cohesion of
the AS, so that it thereby represents a logical grouping identifiable in the real
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environment (like the ones previously mentioned), instead of only consisting of
a mere agglomeration of heterogeneous elements.

On the other hand, the modularisation criterium of coupling (also a classical
measure in the modularisation techniques of software engineering) should be
taken into account in this context as well. The more the elements enclosed in
the detailed view of an AS are related exclusively to elements of the same AS (and
hence more independent from elements of other ASs), the more concise will be the
abstract representation offered by the DAS, since those internal connections will
be hidden. In this manner, a lower coupling between ASs improve the scalability
of the DAS.

Analysing the scenario illustrated in Fig. 4, the existence of a structural
subdivision in three segments is clear, namely: the internal network, the demili-
tarised zone (DMZ) and the external network (the Internet). Therefore, the DAS
for this example has an AS to each one of these segments.

5.2 Mapping of Actors

An actor will be basically created for each group of hosts/processes (inside a
given AS) which originates communication in order to act in conformance with
a policy—which at the SR level is called service permission. In this manner, the
actor corresponds to the subject domain of this permission, or, more precisely,
to the part of the domain that is located in a given AS.

Nevertheless, actors can be shared by a number of different service permis-
sions, as long as they have the subject domain comprehended by the actor in
common. This contributes to a more compact representation, thus improving
the scalability of the model.

In the SR level, the subject domain of service permissions is represented by
User and SubjectType objects; thus each Actor will be connected to one or more
pairs of these types of objects. In the framework of model-based management,
however, service permissions are not directly modelled by the system designer but
rather are automatically generated from AccessPermission objects located in the
uppermost (RO) level. For this reason, the determination of the system’s actors
must start from an AccessPermission; thus taking the Role that is associated
with it and identifying its corresponding User and SubjectType objects (in the
SR level). Subsequently, one can create an Actor object that will contemplate
the relevant AccessPermission and, consequently, is also related to the service
permission that will be generated from it.

Considering our test scenario, an Actor object “internal web clients” is cre-
ated in the AS “internal network” for the first policy—which is modelled by the
first AccessPermission in Fig. 5, namely “allow Internet surfing” (AP1). Simi-
larly, for the AccessPermission AP3 (“allow sending e-mail”) the Actor “internal
mail clients” is created in the same AS, whereas, in the AS “Internet”, the ac-
tors “external mail sender” and “external web surfer” correspond respectively
to the objects “permit receiving e-mail” (AP2) and “permit access to own web”
(AP4). The AccessPermission “allow fetching e-mail” (AP5) can be covered by
the previously created Actor “internal mail clients”, since its subject domain is
the same as that of AP3.
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5.3 Mapping of Mediators

As regards to Mediators, two types can be distinguished. Mediators of the first
type are a refinement from services which perform the “middleman functions”
described in Sect. 3, for instance, proxies and mail forwarders. Therefore, they
are achieved by means of a straightforward mapping from those services of the SR
level, positioning them in the appropriate AS. Indeed, a service can be covered
by a number of Mediators, each one residing in a different AS. On the other
hand, a given Mediator object can map more than one service.

In our sample scenario, the “E-mail-Forwarder” Mediator, in the “DMZ” AS,
stands for both services of handling incoming and outgoing e-mails. As for the
“internal network”, the “Web proxy” Mediator maps the “WWWProxyService”.

The second type of Mediators consists of technical mechanisms that are not
modelled in the SR level but are required in order to control the communica-
tion; i.e. they transform and/or filter it according to authorisation policies (like
packet filters, IP-masquerading), or inspect the data according to obligation poli-
cies (e.g. IDS, event monitors). In this manner, the system designer shall create
this type of mediators whenever these functionalities are required; i.e. a Medi-
ator object will then appear wherever a security mechanism like the previously
mentioned ones is to be placed in the respective actual network environment.

Examples of the second type of Mediators are illustrated in Fig. 5 by the
objects “Firewall 1” e “Firewall 2”. They have been introduced into the AS
“DMZ”, precisely in the place where the firewalls are found in the scenario of
Fig. 4.

5.4 Mapping of Targets

Targets are obtained by a quite direct mapping from the pairs of Service and
Resource objects (in the SR level) which encompass a target domain of a service
permission, or a part of this domain that is placed in a given AS. In this way, each
Target object must be connected to at least one pair of Service and Resource in
the SR level, but it can also be shared by different service permissions; in the
latter case, relations with other such pairs would be also present—this sharing
also contributes to the conciseness of the model. Conversely, each pair of Service
and Resource can be mapped to a number of Targets, each one located in different
ASs—similar to the case of Mediators.

Similar to the actors, the target identification must start by considering the
AccessPermissions in the RO level. Here, nonetheless, it is the Object related to
a certain AccessPermission that is considered at first in order to establish then
the corresponding Resource (SR level) and the Service which provides access to
it. Finally, we create a Target to map this pair of objects.

When applying this method to our test scenario, then for the policy AP1
(Sect. 5) the Target object “Internet web sites” is created to refine the pair of
Service and Resource of “Internet webservice” and “Internet web pages”, since
the latter is related to the Object “Internet WWW” (at the level RO) of AP1. It
is worthwhile to note that, in this case, the Service refined from the AccessMode
“surfing” of AP1 , namely “WWW proxy service”, is different from the one
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previously used as target; this only happens when there is a ServiceDependency
between these two Services. Indeed, the “WWW proxy service” cannot provide
access to the Resource “Internet web pages” by itself, but relies on the “Internet
web service” to do it. This dependency is modelled by the object “Dependency
outgoing web” in the SR level (at the centre of Fig. 5).

Proceeding in the same manner, the targets “internal mail server” (“internal
network”), “Internet mail server” (“Internet”) and “Web server” (“DMZ”) map
respectively the policies modelled by AP2, AP3 and AP4. As for AP5, the Target
“internal mail server” can be shared with AP2; as such, there is no need to create
another object.

5.5 Establishment of Structural Connections

In order to complete the model that has been formed thus far by the application
of the procedures of the latter sections, one needs to introduce the associations
between objects of the DAS; i.e. formally speaking, to add the edges of the graph.
Such associations have a different meaning compared to that of the associations
between an element in the SR level and an object of the DAS. While the latter
represent abstraction refinements—in the sense of relating levels of a policy
hierarchy—the former represent structural connections; i.e. the possibility of
communication in the actual system. Despite this, only the connections that
are relevant to the abstract view of the system shall be depicted here; these are
namely the associations that interconnect the different participants of executable
policies: actors, mediators and targets.

Once again, the establishment of these connections starts at an AccessPer-
mission. Each of the objects (in the DAS) that correspond to this permission is
identified and then associations are created in order to construct paths between
the respective actors and targets, traversing the necessary mediators. Whenever
one of these paths enters or leaves an AS, Connector objects are inserted at this
point, representing the communication interfaces of the AS. Thus, the number
of Connectors in an AS corresponds to the number of available physical inter-
faces of the actual system. Proceeding in this manner with our test scenario, the
Connector objects (rectangles) and connection edges (lines) shown in Fig. 5 are
obtained.

5.6 Expansion of ASs

Starting from the model that has been produced thus far (Fig. 5), the next stage
in the model development is to expand each of the ASs separately. This means
that, for each AS, the mechanisms inside it shall be modelled according to the
usual procedure described in [8], resulting in a detailed representation of these
mechanisms; i.e. the PH level. Afterwards, the associations between the PH level
components with the objects in the AS have to be drawn, thus establishing a
relation of abstraction refinement.

Each Actor object of an AS must be then related to its corresponding Process-
and UserID-typed components in the PH level, such that the Actor performs
the association of these components with SubjectType and User objects in the
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Fig. 6. Expanded ASs

SR level. As noted in Sect. 5.2, an Actor may be used for more than one pair
of SubjectType and User, thereby corresponding to several service permissions.
Hence, to avoid the burden of depicting all of the single associations amongst
the objects (of type User, SubjectType, UserID and Process) connected to each
Actor, a table of 4-tuples containing these associations shall be used to store
them.

The Mediator objects of an AS, in turn, are simply related to one or more
Process-typed components which implement the corresponding functionalities.
With regards to Targets, each of them is related to one or more pairs of Processes
and Objects that provide the corresponding services. Therefore, a Process in the
PH level is related via a Target to a Service in the SR level, whereas an Object
is related in a similar fashion to a Resource.

Figure 6 presents the PH level model for the ASs “internal network” and
“dmz” in our example (see Fig. 5). In Fig. 6, the relation from actors, mediators
and targets in the AS (at the top) to objects in the PH level (bottom)—achieved
merely by following the principles previously exposed in this section—is graph-
ically indicated by edges. For instance, the Actors “internal mail clients” and
“internal web clients” in the “internal network” (on the left) are related to PH-
level objects that represent the corresponding processes that run in two different
workstations, as well the user credentials and login names of the users that may
take advantage of these processes. On the other hand, the Mediator “E-mail
Forwarder” and the Target “Webserver” in the AS “DMZ” (on the right) are
correspondingly mapped to processes and resources that implement them. These
PH objects directly assigned to AS entities are in turn related to a series of other
PH objects in order to provide the model with detailed information about the
communication, such as the protocol stack and the network interfaces used (see
bottom of Fig. 6). In this manner, the correspondence between the abstract view
of the system (AS) and its actual mechanisms (PH level) is established.
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6 Application Case and Results

In this section we report about the application of the modelling technique pre-
sented in the previous sections to a realistic large-scale network environment.
This environment (inspired from the one in [8]) consists of an extension of the
simple test scenario of Sect. 5, in order to address an enterprise network, com-
posed of a main office and branch office, that is connected to the Internet.

The employees are allowed to use the computers in the main and branch
offices in order to surf on the Internet and to access their internal e-mail ac-
counts, as well as to send e-mails to internal and external addresses. In addition
to that, they may also retrieve their e-mails from home. As for the ongoing
communication from the Internet, the security system must enable any exter-
nal user to access the corporate’s web site and to send e-mails to the internal
e-mail accounts. Our main goal is then to design the configuration for the secu-
rity mechanisms that are required to enable and control web-surfing and e-mail
facilities for the company’s office employees, namely: three firewalls, three VPN
gateways, and a web proxy.

Figure 7 presents the DAS obtained for this environment. It is composed by
five ASs, representing the logical network segments of the described scenario:
“internal network”, “dmz”, “Internet”, “branch office’s network” and “remote
access point”. The Actors, Targets and Mediators of each of these AS and their
interconnections through Connectors and structural connections are also de-
picted in Fig. 7. Pictures of the model’s overview for the application case and
of the detailed PH-level models for the ASs “internal network” and “dmz” are
given in the Appendix A.

Analysing the model for this realistic application case, one can clearly per-
ceive the advantages brought forth by the DAS. Altough the detailed infor-
mation of the PH level encompasses more than 500 objects—representing, for
instance, 8 hosts and credentials for 30 users in the internal network, 8 hosts

internal network

remote access point

branch office’s network

Internetdmz

Fig. 7. DAS of a complex environment
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in the branch office’s network and a cluster of 5 web servers in the “dmz” (see
Appendix A)—the abstract representation of the DAS (Fig. 7) consists of only
32 objects alltogether. Therefore, it can be noticed that the modelling through
abstract subsystems offers concrete advantages in the conciseness and under-
standability of the model.

Furthermore, since the environment in this application case is an extension
of the test scenario used in Sect. 5, it is possible to compare them, in order
to identify the growth behaviour of a DAS. The number of PH objects (which
depict the mechanisms of the actual system, and thus reflect the growth of the
system itself) increased from 95 in the simple test scenario to 540 in the realistic
application case (i.e. a growth of almost 470%). The number of DAS elements, in
contrast, rose from 19 (Fig. 5) to 32 (Fig. 7)—i.e. a growth of only less than 69%.
We thus conclude that the size of a DAS does not increase in the same pace as
the number of elements in the PH level (and thus as the system’s mechanisms),
but rather the DAS’s growth is much slower. This makes clear the scalability
gain afforded by the DAS in the support of large models.

Since the number of elements both in the DAS and in the PH levels heav-
ily depend on intrinsic characteristics of the environment modelled (such as the
entities to be modelled and the possibility of subdividing and grouping them),
an unrestricted generalisation of these quantitative results is not possible. Nev-
ertheless, in qualitative terms, similar gains can be expected in the modelling
of other large-scale networked environments; for they are similar to the typical
scenarios presented here.

7 Tool Support and Automated Refinement

To support our modelling, a software tool is provided. This tool encloses a dia-
gram editor (by means of which Fig. 5, Fig. 6 and Fig. 7 were produced) that
allows the inputing of model objects and their relationships, as well as the assign-
ment of properties to them. In this manner, each step of the modelling explained
in the previous sections is assisted by the tool, which verifies the compliance of
the model with structural constraints in the moment particular objects are in-
puted. Once the modelling is complete, a series of checks are performed to assure
the consistency of the model as a whole.

Though the fully automated derivation of low-level, executable policies from
a set of abstract specifications is, in the general case, not practical [11,12], our
modelling technique makes possible an automation of the building of a policy
hierarchy on the basis of a system’s model that is structured in different abstrac-
tion levels. Thus, the analysis of the system’s objects, relationships and policies
of an abstraction level enables the generation of lower level policies, based on
the system’s model in the lower level and on the relations between the entities
of the two layers1.

1 An extensive elaboration on the policy refinement process and on the consistency
checks that are described in this section is beyond the scope of this paper and can
be found in [13].
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In this process, the support tool firstly derives each one of the given Ac-
cessPermissions (in the uppermost level RO) into one or more ServicePermis-
sions in the SR level (see Sect. 2). Afterwards, a set of ATPathPermission
(ATPP) objects are generated from the ServicePermissions. Each ATPP is a
path in the graph (DAS) that represents the permission for an Actor to reach
a certain Target passing through the required Mediator and Connector objects.
The refinement advances with the automatic generation of ProtocolPermissions
from the ATPPs, using the detailed information contained in the PH level in
order to achieve the security policies for this level. Each ProtocolPermission is
then related to a set of objects, denoting that an initiating process—to which a
user credential can be assigned—may communicate, via its co-located protocol
entity and a remote protocol, with a serving process in order to access a certain
physical resource.

Throughout the above refinement process, a series of conditions are verified
against the model, in order to check the consistency of the different abstraction
levels and the feasibility of enforcing the high-level policies defined by the ad-
ministrator. Our experience also shows that, in practice, the modelled network
systems are frequently not capable of enforcing the given high-level policies. In
this case, the consistency checks cannot be satisfied, and the tool offers indica-
tions to the necessary modifications on the system in order to make it congruous
to the policies.

Finally, for the last step of model-based security service configuration, a
series of back-end modules are executed, where each module corresponds to a
special security service product (e.g. Kerberos, FreeS/WAN, Linux IP tables
etc.). These back-end functions evaluate the ProtocolPermissions and the PH
model in order to generate the adequate configuration files for each of the security
service products. Further details can be found in [6,7,8].

8 Related Work

There are a considerable number of approaches to policy specification both for
security management and policy-driven network management purposes (see [11]
for a survey). However, regarding the tool-assisted building of policy hierarchies
and the automation of the policy refinement process, considerable research re-
mains to be done.

The graphical tool Firmato [14] seems to be the closest available approach
to ours, since it supports the interactive policy design by means of policy di-
agrams and automatically derives the corresponding configuration parameters
for mechanisms such as routers, switches, and packet filters. However, since the
abstraction levels of graphical policy definitions and configuration parameters
are relatively near to each other, its support is restricted to an abstraction level
that is close to the system mechanisms. In this respect, the Power prototype [15]
has a broader scope, aiming to support the building of policy hierarchies by
means of a tool-assisted policy refinement. Nevertheless, Power does not allow a
free graphical definition of policies, relying instead on pre-defined templates and
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wizard engines. Furthermore, neither Power nor Firmato are concerned with
scalability issues; this fact is reflected by the absence of a modular system’s
representation in these approaches.

9 Conclusion

This paper has presented a modelling technique for the management of security
systems. The modelling achieves scalability by the segmentation of the system
in Abstract Subsystems, which enables the processes of model development and
analysis to be performed in a modular fashion.

The systematic mapping from a service-oriented system view to a Diagram of
Abstract Subsystems was covered in detail, encompassing the choice of elements
to be represented in the abstract view, as well as the correspondence of these
elements to the actual mechanisms of the system. A realistic case study was
presented and the results achieved through our modelling were discussed. We
have concluded that concrete gains in the understandability and scalability of
the modelling of large-scale systems can be expected from the employment of
our technique. Furthermore, the tool-assisted modelling and automated policy
refinement supported by our prototype tool were also briefly described.

Future work could include improving the representation of policies at the
lower levels of the model, in order to ease their handling.

Acknowledgments. We would like express gratitude to Helen Mary Murphy
Peres Teixeira for reviewing.
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A Models of the Application Case

We present here some of the models obtained for the application case analysed
in Sect. 6. The growth in the complexity of the PH level is made clear from the
comparison of the models of the AS “internal network” in the realistic application
case (Fig. 8) with that in the test scenario (left hand of Fig. 6), and similarly
for the AS “dmz” (compare Fig. 9 with the right hand of Fig. 6).

Fig. 8. PH-model of the AS “internal network”

In contrast, the superior levels of the modelling show a slower growth behav-
iour, and hence more scalability. Figure 10 presents the three-layered model for
the application case (compare with Fig. 5).

Fig. 9. PH-model of the AS “dmz”
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Abstract. Distributed Hash Tables (DHTs) are very efficient distrib-
uted systems for routing, but at the same time vulnerable to disruptive
nodes. Designers of such systems want them used in open networks,
where an adversary can perform a sybil attack by introducing a large
number of corrupt nodes in the network, considerably degrading its per-
formance. We introduce a routing strategy that alleviates some of the
effects of such an attack by making sure that lookups are performed us-
ing a diverse set of nodes. This ensures that at least some of the nodes
queried are good, and hence the search makes forward progress. This
strategy makes use of latent social information present in the introduc-
tion graph of the network.

1 Introduction

Distributed Hash Tables (or DHTs) [14,15,12,10] are distributed systems that
allow efficient lookup of identifiers and routing to the corresponding nodes. They
achieve this by imposing on the routing tables of nodes a rigid structure that
guarantees quick convergence to a target.

This rigid structure makes DHTs easy to disrupt by a set of malicious nodes
that return useless information instead of helping in the routing. An adversary
can create a very large number of bogus nodes and flood the DHT network, in
order to disrupt it or degrade its performance. This is called a sybil attack [3].

We present a method that lowers the probability an honest user queries a
malicious node. The method takes into account the DHT’s introduction graph,
which describes which node introduced which to the network. We assume that
the adversary is connected to the graph at very few points, but that it can cre-
ate large numbers of virtual “sybils” behind its attachment points. Following a
strategy inspired by Advogato [5], our method turns these few corrupt attach-
ment points into trust bottlenecks. We ensure that queries use a diverse set of
nodes, thereby minimising our reliance on a localized set of nodes that might be
controlled by the adversary. We also show that trying to minimise the number
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of corrupt nodes in honest nodes’ routing tables makes a significant difference
to the performance of the DHTs.

The security of DHTs, including routing security which is the main concern
of our work, has been the subject of discussion in [13,2]. Trust metrics based
on social networks were introduced in Advogato [5]. Advogato uses maximum
flow in a network to make trust judgments, but there are other proposals, such
as Appleseed [16], which use spreading activation models. Our work uses such
social network trust metrics to tackle the sybil attack in structured peer-to-peer
systems. Sprout [7] is also making use of social network information, to route
messages over trusted nodes. We follow the opposite approach and attempt to
eliminate trust bottlenecks, thereby trying not to trust any nodes more than
others.

2 The Sybil Attack Against DHTs

The basic premise of the sybil attack [3] is that an adversary in a peer-to-peer
system can easily introduce a very large set of corrupt participants. All of these
participants, or sybils, are controlled by the adversary; they can be used to com-
promise security properties of the system or degrade its performance. The latter
can be framed in the context of computer security by considering degradation
of performance as service denial [9].

A Distributed Hash Table (DHT) is a specialized distributed system that
aims to look up identifiers efficiently in order to route messages to and from the
corresponding nodes. Our designs will be based on Chord [14], but the principles
we will examine (both in terms of understanding the sybil attack and defending
against it) are applicable to other systems [15,12,10]. Nodes in Chord arrange
themselves into a ring sorted according to their IDs, where each knows its suc-
cessor. In correct operation, this guarantees that all nodes are reachable. Chord
achieves its efficiency by additionally requiring each node to know a small num-
ber of other nodes in the network, its finger table. Finger nodes are selected to
be carefully spaced [4] around the ring address space to ensure that lookups will
quickly converge towards a target node.

Lookups can happen in two ways: either recursively or iteratively. In a recur-
sive lookup the initiator looks up a particular ID by asking the finger with the
closest ID to the target node. The finger node will in turn ask one of its fingers,
and this procedure is repeated until the target node is located and the answer
propagated back. Iterative routing relies on the initiator of a lookup to query the
finger with the closest ID to the target, which in turn returns one of its fingers.
The initiating node can then perform further lookups itself, using the additional
information until the target node is located. Our sybil resistant lookup strategies
will implement a variant of the iterative method, giving the requesting node the
most flexibility. Each iteration returns a set of nodes instead of just one.

An adversary can participate in a Chord network by introducing nodes it
controls. These malicious nodes take their respective places in the ring structure
and populate other nodes’ finger tables. The objective of the adversary nodes is
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to disrupt lookups as much as possible: make them fail if possible or make them
very slow otherwise. Two basic strategies malicious nodes can use to sabotage
lookups are:

– Non-cooperation. Malicious nodes do not provide any information to other
nodes. They fail to look up nodes, and just forget about their successors: they
return no information. As a result, requests are slower, and the structure of
the ring is fractured.

– Flooding. Malicious nodes, when prompted for a request, provide another
malicious node as the reply. This sends the requesting node in a wild goose
chase [13], never successfully finishing its request.

Both non-cooperation and flooding can lead to a standard Chord lookup
failing. Using the standard Chord strategy a node looking up a target ID tries
to make ‘progress’: the next hop is chosen from among the nodes discovered
between the current hop and the target ID. If all the known nodes in this region
are non-cooperating, the lookup will fail. Similarly, flooding nodes will provide
a set of corrupt virtual nodes with IDs closer to the target, yet never reaching
it. In both cases there will be no answer to the query.

In this paper we will attempt to protect DHTs, and a variant of Chord in
particular, against random flooding attacks. Our threat model is based on an
adversary that aims to disrupt as many queries as possible through the network,
and positions its nodes, at random around the Chord ring. Note that targeted
attacks could be more easily accomplished by concentrating the dishonest nodes
on particular regions of the ring [13]. Targeted attacks that aim to maximally
disrupt queries from or to specific nodes are beyond the scope of our study.

In order to address these attacks, we need to modify the iterative Chord
lookup. When choosing a next help, our variant will take into account the sources
of information about the previous hops, and strive to avoid relying on a single
trust bottleneck.

3 The Bootstrap Graph Model

The traditional peer-to-peer model, within which the sybil attack was formu-
lated, views the network as an undifferentiated set of nodes, each with an indi-
vidual ID. The attacker controls some fraction of these nodes and can cheaply
introduce new ones until the network is flooded. Once the fraction of bad nodes
exceeds approximately 25%, the system is unable to reliably route queries to the
correct ID [2]. So one proposed solution to the sybil attack is to rate limit new
nodes joining and to impose a centralized admission control system.

The bootstrap graph adds new elements to the peer-to-peer model that might
help tackling the sybil attack without any centralized authority. In most peer-to-
peer systems, a new node needs to have a first point of contact with the network
in order to join; thus, the nodes in the network must have some previous off-line
relationship. We call the set of these relationships the network’s introduction
graph, or “bootstrap graph”. Figure 1 provides an example of such a graph, in
which nodes joined in the order of their label numbers.
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Fig. 1. Example of a bootstrap graph

Now, the goal of a secure overlay network is to enable Alice and Bob, nodes in
the network, to communicate with each other if there is any path of good nodes
between them in the bootstrap graph. In the DHT context, “communicate with
each other” means to be able to look up each others’ IDs. This is a good security
criterion because if there is no such path between Alice and Bob, then they
might as well be in separate DHTs: the only nodes common to the two graph
components are malicious, so connecting them would require some out-of-band
mechanism, i.e. a new bootstrap graph link.

A “flood fill” routing mechanism provides a proof of concept: if Alice flood-
fills the bootstrap graph with her query, it will eventually reach every connected
good node regardless of the actions of the adversary. However, this is a very
inefficient solution, and it is not resiliant to nodes in the path failing. We’d like
to solve this problem using less storage and communication cost than flood filling
(which is quadratic in the number of nodes).1

The methods presented in this paper assume that the bootstrap graph is a
tree, which is typical for current DHTs. We analyze the case of an adversary
which has managed to convince one honest node to allow it to join the network,
perhaps by social engineering. The adversary can then introduce a large num-
ber of sybils into the network via this attachment point. The adversary spends
much less effort per sybil than it spent obtaining the attachment point. In sec-
tion 4.3 we examine what happens when a set of sybils are attached to the honest
bootstrap graph at more than one points.

In this paper, we only concern ourselves with routing security, i.e. resolving a
particular ID to a node. We assume that if we actually reach the target node, we
will be able to verify that it owns the target ID, e.g. using self-certifying IDs [1,8].
We won’t discuss the security of data stored on nodes, or the mechanics of data
block migration as nodes join and leave the network; these must be left to other
security layers.

1 Insecure DHTs like Chord achieve polylogarithmic cost; it is an open question
whether this is possible for a secure overlay.
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3.1 Efficient Bootstrap Path Calculation

When the bootstrap graph is a tree, there is an efficient decentralized algorithm
for calculating the shortest path between any two nodes. This means that no
node is required to know the totality of the bootstrap tree at any time, and the
path is constructed as a natural side effect of node lookups.

Each node stores, in addition to IDs and addresses, the path from itself to
each node it knows. This includes the node’s Chord-ring successor, its predeces-
sor, its finger nodes, and the connections it has in the bootstrap tree. The same
is true for all resolutions: the current hop returns not only the ID and address
of the next hop, but also the path of bootstrap links from the current hop to the
next hop. The path from the querier to the next hop may be computed as the
concatenation of the querier-to-current-hop path and the current-hop-to-next-
hop path, with any loops removed. In this way, a querier can compute the path
from itself to any other node it discovers.

Nodes that first join the network not only have to discover their successor
node, predecessor node, and fingers, but also the paths to them. This is done as
a side effect of the joining protocol. The new node asks the node it uses to join
the network for the IDs of the nodes, and as a result also gets their paths. This
allows it to compute its paths to them.

When the bootstrap graph is a tree, nodes can join paths and eliminate all cy-
cles, therefore guaranteeing that they know the shortest path. This is convenient
but not necessary for the security properties we will describe next, and extending
our algorithms for discovering paths in generic graphs should be possible.

4 Reducing the Impact of the Sybil Attack

Our objective is to devise a resolution strategy that will always succeed, and
provide better performance than the standard Chord strategy when under a
sybil attack. First we shall deal with the issue of failed queries, then we shall
assess the efficiency of our approach.

We modify the standard Chord iterative strategy in the following two ways.
1. A node, when queried, returns all nodes that it knows about, and not simply

the closest to the target. The node returns its successor, fingers, and con-
nections in the bootstrap tree. Such a modification requires more bandwidth
per query, but does not add any latency to standard iterative lookups.

2. Having a set of nodes returned by each query allows the initiator to be in
full control of the resolution, and be able to schedule lookups to maximize
efficiency and minimize the potential for disruption from corrupt nodes. A
number of query strategies can be used to establish which nodes should be
queried and in which order.

We will first look at the standard Chord query strategy that selects nodes
according to closeness in ID space, and then present a radically different query
strategy that routes according to trust diversity. These two extremes can be
combined, as in the mixed and zig-zag strategies, to provide fast yet robust
lookups.
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4.1 Query Scheduling Strategies

The aim of a node that wants to perform a lookup is to select hops that might
provide more information about the address of the target ID, and that are not
malicious. The basic Chord strategy, which we will call closeness routing, is ex-
tremely effective at ensuring the first, but does not take into account the second
issue (corrupt nodes): given a set of known nodes, Chord chooses to query the
one whose ID is closest to the target. When all nodes are honest, the worst case
for performance is that the last hop’s successor is the only node closer to the
target ID. On the other hand, when some nodes are liars, the ring structure is
effectively broken. Thus, looking only at nodes between the initiator and the
target of the lookup is not guaranteed to succeed. To address this, we need an
alternative resolution strategy.

We have assumed that the set of bad nodes are connected to the rest of
the bootstrap network through a single good node. We therefore expect that
this single good node, along with the bad node it is directly connected to, will
always be in the bootstrap graph path from the quering node to the bad nodes.
An intrusion detection approach could be used to detect them — this will not be
the strategy we chose to implement since nodes that are not always misbehaving
might fool it. Instead we will try to balance the number of requests going to bad
nodes by making sure that not too much ‘trust’ is put on any particular node
when answering queries. For the purpose of routing we will consider that a node
is trusted if it is on the path of the bootstap graph from the initiator of the
request to the queried node. The core of our sybil defense mechanism consists
of distributing queries around the network in such a way that no small set of
nodes is predominantly present on the paths of the queries.

Diversity routing is the purest form of this strategy, and choses nodes to
query as following:

1. For each ID lookup the initiator keeps a record of nodes queried. A histogram
is computed of the frequency with which each node in the network has been
on the path of the queries so far. This can be thought as a ‘trust profile’ of
this particular lookup at any time (Fig 2, step (1)).

2. A node proceeds by answering the follwing question: which node is to be
queried next to get more information concerning the node looked up, given
the trust profile so far? We associate with each candidate node the ‘trust
profile’ the lookup would have if it was to be used (Fig 2, step (2)).

3. Then the different trust profiles are compared to each other in order to
assess which one increases the least the trust put on a single or a small set
of nodes. This can be done by sorting the ‘trust profile’ for each candidate
by descending order, and creating a ‘trust list’ of their values: the first value
would be the number of paths the most trusted node was on, and so forth.
Then the candidate nodes can be ranked by sorting lexicographically their
respective sorted ‘trust lists’ (Fig 2, step (3)). We then chose the smallest
element as the next node to query.
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Fig. 2. Illustrating a step of the diversity routing node selection

Table 1. Number of queries to satisfy 100 lookups in closeness and diversity routing
(100 good nodes)

Number of
bad nodes Closeness Diversity

1 373 552
50 1400 1359

100 3183 2610
200 6977 4807
400 18434 12543

Figure 2 illustrates a step of the diversity routing strategy. Strarting with the
nodes that are known to the querying node, this strategy is repeated, until the
target ID node is found.

The above strategy tries to distribute queries across the network, taking into
account bottlenecks that might indicate a sybil attack point. Adversary nodes
that introduce a large number of sybils will aquire high values in the trust
profile and nodes behind them will not be used until other nodes in the network
are queried. Yet the diversity strategy does not make by itself any progress
towards the target node. Note that sybil nodes are not excluded but a balance
is maintained between queries to sybils and other nodes.
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We expect this strategy to be more efficient than pure Chord when there
are more sybils than honest nodes. In particular it will always yield the answer
to a query, even if it has to ask the whole network. Still this strategy remains
terribly inefficient under normal circompstances. Table 1 shows the number of
nodes queried to satisfy 100 random ID requests, where there are 1, 50, 100, 200
and 400 sybil nodes flooding 100 honest nodes.

4.2 Mixed Strategies

In order to maintain some efficiency we need to introduce some bias to choose
nodes that are closer to the target. Two strategies have been assessed.

A first approach is to provide a balance between the closeness and the diver-
sity of nodes, and we call this mixed routing. This can easily be implemented:
given the rank ci of a node according to closeness, and the rank di of the node
according to the strategy that provides diversity, and a balance factor b ∈ [0, 1],
we calculate the new rank ri:

ri = bci + (1 − b)di (1)

Nodes can then be sorted according to ri in decending order, and the first
one chosen to be queried next. Table 2 illustrates the number of queries required
to satisfy 100 random lookups in a network of 100 good nodes flooded by 1, 50,
100, 200 and 400 nodes. It is clear that this mixture strategy balances the two
key factors, closeness and trust diversity. It provides better results than either
of the pure strategies for a lower number of sybils (100 and 200) but does not
perform better than the diversity strategy in case there are a lot more sybils
than honest nodes.

The best results have been achieved using zig-zag routing. Instead of trying
to select diverse yet close to the target nodes, as mixed routing attempts to do,
the closeness strategies and diversity strategies are alternatively employed. First
a node that is close to the target is queried, then a node that is diverse is chosen,
and so forth. With each set of diversity routing the pool of known nodes becomes
more likely to contain honest nodes, and then the step of closeness routing selects
the closest node and queries it for the target.

As table 2 shows zig-zag routing outperforms closeness as the number of
malicious nodes grows, as well as mixed routing. Zig-zag routing is also easier
to analyze. In the absence of any malicious nodes the lookup will take at most

Table 2. Number of queries to satisfy 100 lookups in closeness, mixed and zig-zag
routing (100 good nodes)

Number of Good entries
bad nodes Closeness Mixted (b = 0.2) Zig-Zag in finger table

1 373 1696 510 99%
50 1400 2172 1291 65%

100 3183 2358 2104 46%
200 6977 4842 3606 30%
400 18434 15110 7004 20%
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double the amount of queries to resolve, than using the standard Chord strategy.
This is due to the fact that one in two steps implements the Chord strategy.
When there are malicious nodes in the network the diversity step ensures that
the pool of known nodes retains its quality: it makes sure mostly honest nodes
are queried to populate it. On the other hand the closeness step ensures progress
towards the target ID, by choosing out of a the pool of known nodes, the closest
to the target.

Simulations were run and the histograms describing how many queries (i.e.
steps of the iterative routing strategy) were necessary to satisfy 100 requests are
plotted in Figure 3. Note that a significant number of requests are satisfied by
few (< 10) queries even when a lot of sybils are introduced in the system. Zig-
zag routing retains this property as the sybils multiply, while closeness routing
becomes increasingly inefficient.

Note that under extreme flooding, the zig-zag strategy (and any strategy
based on bootstrap graphs) will be following the bootstrap graph to route be-
tween two honest nodes. This makes them fragile against node churn, that could
even be the result of malice, and heavy sybil attacks. Providing routing security
under such extreme conditions is beyond our scope.

4.3 The Effects of Increased Infiltration

In our analysis so far we have assumed that the set of sybils nodes are attached
to the honest part of the bootstrap graph at one honest node only. We briefly
assess how our most effective defense mechanism, the zig-zag strategy, handles
sybils being attached to multiple points of the bootstrap graph, or in other words
an adversary that has fooled more honest nodes.

We performed 100 requests in the DHT, made of 100 good nodes, using
the zig-zag and the closeness routing strategies, and record how many nodes
have been queried to answer them. We repeated the experiment for 100 and 200
additional bad nodes in the network, connected to 1, 10, 20 . . .90, 100 distinct
good nodes. The rest of the bad nodes were only introduced by these ‘attached’
bad nodes. Figure 4 summarises the results.

In the experiment with 100 bad nodes (Figure 4, black lines) we observe
that the zig-zag strategy outperforms the standard closeness strategy until more
than 80 bad nodes have infiltrated the network. For higher values closeness
(represented by the straight line) outperforms the zig-zag strategy, which is due
to the overhead it introduces: it only makes progress in one out of two steps.

On the other hand as the overall number of sybils increases, as in our exper-
iment with 200 bad nodes (Figure 4, dotted lines), our zig-zag strategy outper-
forms the standard closeness strategy even when the adversary has managed to
infiltrate and connect to every single one of the 100 honest nodes. It is encour-
aging that the number of requests ‘stabilises’ for more than 30 infiltrated nodes,
and infiltrating more of them does not seem to degrade the performance of the
network further. An adversary that chooses to infiltrate more and more honest
nodes will therefore experience diminishing returns.
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Fig. 3. Closeness and Zig-Zag routing
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Fig. 4. The number of requests required to satisfy a query increase with the number
of sybil nodes attached to the honest network. The network used was composed of 100
honest nodes, and 1 to 100 attachment points for 100 and 200 sybils. In each case the
horisontal line denotes the standard closeness strategy, while the other set of points
denotes the zig-zag strategy under increased infiltration.

These initial simulation results indicate that there is an optimal number or
percentage of infiltrated nodes to disrupt the network, after which the adversary
does not get much advantage. Still we cannot do away with our initial assump-
tion that the bootstrap graph should contain a connected components with all
honest nodes, otherwise an adversary would be able to split the network in many
separate ones to better attack it.

4.4 Balanced Finger Tables

The diversity based strategy, and the zig-zag strategies, make sure that a fair
share of good nodes are selected to answer a query. Yet the quality of the infor-
mation provided, even by good nodes, decreases as more sybils are introduced
in the network. The reason for this is that their finger tables are populated with
an increasing number of sybils that will not contribute to answering the queries.

The solution to this is to select fingers according to a strategy that ensure that
good nodes are still present. A variant of the strategy based on the ordered ‘trust
lists’ described above in the context of lookups can be used for that purpose.

Chord fingers are distributed around the ring in a manner that maximizes
the efficiency of lookups. The original design is very deterministic and requires
nodes to pick fingers half way across the ring, a quarter across, an eight, and so
forth. The idea behind this distribution is that nodes will know mostly about
their immediate successors, but also some far away nodes to make far lookups
efficient.

We propose a sybil-resistant finger distribution: A set of 32 fingers are se-
lected with an exponential distribution around the ring. This reflects the Chord
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Table 3. Number of queries to satisfy 100 lookups in closeness, mixed and zig-zag
routing (100 good nodes) with diverse routing tables

Number of Good entries
bad nodes Closeness Mixted (b = 0.2) Zig-Zag in finger table

1 309 1634 413 99%
50 809 1962 725 66%

100 1519 1503 1056 53%
200 3581 1801 1400 37%
400 8762 5873 3627 26%

paradigm, of discovering more about the immediate environment. Out of these
fingers the 16 are selected in the following manner: the successor is first used to
create a ’trust profile’ of the table. Then all the candidate fingers are assessed
to find out which would least increase the trust put into a small set of nodes,
using the ‘trust list’ strategy described above. The procedure is repeated with
all selected fingers contributing to the ‘trust profile’, until 16 fingers have been
chosen.

Requests routed using these more trust ‘balanced’ finger tables exhibit a
better performance as illustated in table 3. Note that the percentage of corrupt
finger entries is lower than in table 2, when the strategy described was not in
use. The efficiency results are positively correlated to the degree of finger table
corrution.

5 Conclusions

Distributed Hash Tables are very efficient distributed systems to lookup identi-
fiers, and in the past it has been demonstrated that they can be made robust
against node churn, random failures, and fluctuating network conditions [6,11].
We devise strategies that make DHTs resilient to malicious nodes trying to poi-
son lookups by providing inaccurate information. We achieve this by routing
queries, not only to make them converge fast to their destinations, but also in
a way that minimizes trust bottle necks. This minimizes the amount of poi-
soned information that honest nodes receive from hostile sybils controlled by
the adversary.

The strategies we present have been validated through extensive testing and
simulations, whose results have been presented. It is worthwhile noting that
routing is still possible, and more efficient than broadcasting, even when honest
nodes are in a small minority (our tables illustrate the ratio of 1 honest node to
4 sybils). We have also validated through simulation that our approach would
protect the network, even if a large number of sybil nodes manage to infiltrate
the network by fooling many honest nodes into introducing them. Furthermore
one could describe our approach as ‘value free’, in that there is no attempt to
classify nodes into good and bad: we simply try to spread the queries across all
nodes in the trust graph. Intrusion detection strategies could be devised that
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correlate the quality of the information provides with nodes, to determine which
are the bad nodes. Making such a mechanism strategy proof is a hard problem.

Our algorithms also refrains from making global judgments about nodes:
there is no such thing as a good node or a bad node, but only nodes that are
connected to the requesting node through different paths. As a result we expect
our algorithms to be of use when two mutually hostile groups of nodes decide
to form a common DHT. While members of one group might provide poor, or
no information, to members of the other group, they would behave properly to
each other. Our approach should be able to cope with this model.

Finally we hope that this work contributes to a redefinition of ‘identity’ when
used in a distributed systems security setting, as the position of a party in a
social, or other, network, rather than an arbitrary external identifier. The tradi-
tional identity based approach requires additional infrastructure to assign identi-
ties, such as admission control and public key infrastructures that are expensive
and difficult to implement in any network, let alone in a fully decentralized peer-
to-peer setting. We have shown that preserving this contextual information can
yield simpler and more robust mechanisms for dealing with adversaries.
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Abstract. Denial-of-Service (DoS) attacks pose a significant threat to
the Internet today especially if they are distributed, i.e., launched simul-
taneously at a large number of systems. Reactive techniques that try to
detect such an attack and throttle down malicious traffic prevail today
but usually require an additional infrastructure to be really effective. In
this paper we show that preventive mechanisms can be as effective with
much less effort: We present an approach to (distributed) DoS attack
prevention that is based on the observation that coordinated automated
activity by many hosts needs a mechanism to remotely control them. To
prevent such attacks, it is therefore possible to identify, infiltrate and
analyze this remote control mechanism and to stop it in an automated
fashion. We show that this method can be realized in the Internet by
describing how we infiltrated and tracked IRC-based botnets which are
the main DoS technology used by attackers today.

1 Introduction

An important witness of the increasing professionalism in Internet crime are so
called Denial-of-Service (DoS) attacks. A DoS attack is an attack on a com-
puter system or network that causes a loss of service to users, typically the loss
of network connectivity and services by consuming the bandwidth of the victim
network or overloading the computational resources of the victim system [13].
Using available tools [5], it is relatively easy to mount DoS attacks against re-
mote networks. For the (connection-oriented) Internet protocol TCP, the most
common technique is called TCP SYN flooding [19,4] and consists of creating a
large number of “half open” TCP connections on the target machine, thereby
exhausting kernel data structures and making it impossible for the machine to
accept new connections. For the (connectionless) protocol UDP, the technique
of UDP flooding consists of overrunning the target machine with a large number
of UDP packets thereby exhausting its network bandwidth and other computa-
tional resources.
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of the Graduiertenkolleg “Software for mobile communication systems” at RWTH
Aachen University.

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 319–335, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



320 F.C. Freiling, T. Holz, and G. Wicherski

Like spam, it is well-known that DoS attacks are extremely hard to prevent
because of their “semantic” nature. In the terminology of Schneier [18], seman-
tic attacks target the way we assign meaning to content. For example, it is very
hard to distinguish a DoS attack from a peak in the popularity of a large web-
site. Using authentication it is in principle possible to detect and identify the
single origin of a DoS attack by looking at the distribution of packets over IP
addresses. However, it is almost impossible to detect such an attack if multiple
attack hosts act in a coordinated fashion against their victim. Such attacks are
called Distributed Denial-of-Service (DDoS). DDoS attacks are one of the most
dangerous threats in the Internet today since they are not limited to web servers:
virtually any service available on the Internet can be the target of such an attack.
Higher-level protocols can be used to increase the load even more effectively by
using very specific attacks, such as running exhausting search queries on bulletin
boards or mounting web spidering attacks, i.e., starting from a given website and
then recursively requesting all links on that site.

In the past, there are several examples of severe DDoS attacks. In Febru-
ary 2000, an attacker targeted major e-commerce companies and news-sites [9].
The network traffic flooded the available Internet connection so that no users
could access these websites for several hours. In recent years, the threat posed
by DDoS attacks grew and began to turn into real cybercrime. An example of
this professionalism are blackmail attempts against a betting company during
the European soccer championship in 2004 [2]. The attacker threatened to take
the website of this company offline unless the company payed money. Similar
documented cybercrime cases happened during other major sport events. Fur-
thermore, paid DDoS attacks to take competitor’s websites down were reported
in 2004 [1]. These type of attacks often involve so called botnets [11], i.e., networks
of compromised machines that are remotely controlled by an attacker. Botnets
often consist of several thousand machines and enable an attacker to cause seri-
ous damage. Botnets are regularly used for DDoS attacks since their combined
bandwidth overwhelms the available bandwidth of most target systems. In ad-
dition, several thousand compromised machines can generate so many packets
per second that the target is unable to respond to so many requests.

Defensive measures against DDoS can be classified as either preventive or
reactive [14]. Currently, reactive techniques dominate the arena of DDoS defense
methods (the work by Mirkovic et al. [13] gives an excellent survey over academic
and commercial systems). The idea of reactive approaches is to detect the attack
by using some form of (distributed) anomaly detection on the network traffic and
then react to the attack by reducing the malicious network flows to manageable
levels [15]. The drawback of these approaches is that they need an increasingly
complex and powerful sensing and analysis infrastructure to be effective: the
approach is best if large portions of network traffic can be observed for analysis,
preferably in real-time.

Preventive methods either eliminate the possibility of a DDoS attack alto-
gether or they help victims to survive an attack better by increasing the resources
of the victim in relation to those of the attacker, e.g., by introducing some form
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of strong authentication before any network interaction can take place (see for
example work by Meadows [12]). Although being effective in theory, these sur-
vival methods always boil down to an arms race between attacker and victim
where the party with more resources wins. In practice, it seems as if the arms
race is always won by the attacker, since it is usually easier for him to increase
his resources (by compromising more machines) than for the victim, which needs
to invest money in equipment and network bandwidth.

Preventive techniques that aim at DDoS attack avoidance (i.e., ensuring that
DDoS attacks are stopped before they are even launched) have received close to
no attention so far. One reason for this might be the popular folklore that the
only effective prevention technique for DDoS means to fix all vulnerabilities in
all Internet hosts that can be misused for an attack (see for example Section
5 of [14]). In this paper we show that this folklore is wrong by presenting an
effective approach to DDoS prevention that neither implies a resource arms race
nor needs any additional (authentication) infrastructure. The approach is based
on the observation that coordinated automated activity by many hosts is at the
core of DDoS attacks. Hence the attacker needs a mechanism to remotely control
a large number of machines. To prevent DDoS attacks, our approach attempts
to identify, infiltrate and analyze this remote control mechanism and to stop it
in an automated and controlled fashion. Since we attack the problem of DDoS at
the root of its emergence, we consider our approach to be a root-cause method
to DDoS defense.

It may seem unlikely that it is possible to automatically analyze and infil-
trate a malicious remote control method crafted by attackers for evil purposes.
However, we provide evidence of the feasibility of our strategy by describing
how we successfully tracked and investigated the automated attack activity of
botnets in the Internet. The idea of our methods is to “catch” malware using
honeypots, i.e., network resources (computers, routers, switches, etc.) deployed
to be probed, attacked, and compromised. Honeypots run special software which
permanently collects data about the system behavior and facilitates automated
post-incident forensic analysis. From the automated analysis we derive the im-
portant information necessary to observe and combat malicious actions of the
botnet maintainers. In a sense, our approach can be characterized as turning the
methods of the attackers against themselves.

The paper is structured as follows: Section 2 gives a brief overview over
botnets and their usage for DDoS attacks. In Section 3 we introduce a general
methodology to prevent DDoS attacks and exemplify a technical realization in
Section 4. We present our results in Section 5 and conclude this paper with
Section 6.

2 Distributed Denial-of-Service Using Botnets

In this section we give a brief overview over botnets and how they can be used to
mount DDoS attacks. More technical details can be found in [22]. A botnet is a
network of compromised machines running programs (usually referred to as bot,
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zombie, or drone) under a common Command and Control (C&C) infrastructure.
Usually, the controller of the botnet compromises a series of systems using various
tools and then installs a bot to enable remote control of the victim computer via
Internet Relay Chat (IRC).

Newer bots can even automatically scan whole network ranges and propa-
gate themselves using vulnerabilities and weak passwords on other machines.
After successful invasion, a bot uses Trivial File Transfer Protocol (TFTP), File
Transfer Protocol (FTP), HyperText Transfer Protocol (HTTP), or CSend (an
IRC extension to send files to other users) to transfer itself to the compromised
host. The binary is started and tries to connect to the hard-coded master IRC
server on a predefined port, often using a server password to protect the botnet
infrastructure. This server acts as the C&C server to manage the botnet. Often
a dynamic DNS name is provided rather than a hard coded IP address, so the
bot can be easily relocated. Using a specially crafted nickname, the bot tries to
join the master’s channel, often using a channel password, too. In this channel,
the bot can be remotely controlled by the attacker.

Commands can be sent to the bot in two different ways: via sending an
ordinary command directly to the bot or via setting a special topic in the channel
that all bots interpret. For example, the topic

advscan lsass 200 5 0 -b

tells the bots to spread further with the help of a known vulnerability (the
Windows lsass vulnerability). The bots should start 200 concurrent threads that
should scan with a delay of 5 seconds for an unlimited time (parameter 0). The
scans should target machines within the same Class B network (parameter -b).
As another example, the topic

http.update http://<server>/rBot.exe c:\msy32awds.exe 1

instructs the bots to download a binary from the Internet via HTTP to the local
filesystem and execute it (parameter 1).

If the topic does not contain any instructions for the bot, then it does nothing
but idling in the channel, awaiting commands. That is fundamental for most
current bots: they do not spread if they are not told to spread in their master’s
channel. Figure 1 depicts the typical communication flow in a botnet.

In order to remotely control the bots, the controller of a botnet has to au-
thenticate himself before issuing commands. This authentication is done with the
help of a classical authentication scheme. At first, the controller has to login with
his username. Afterwards, he has to authenticate with the correct password to
approve his authenticity. The whole authentication process is only allowed from
a predefined domain, so that only certain people can start this process. Once an
attacker is authenticated, he has complete control over the bots and can execute
arbitrary commands.

Today, botnets are most often used to mount DDoS attacks in the Internet.
All common bots include several different possibilities to participate in these
attacks. Most commonly implemented, and also very often used, are TCP SYN
[19,4] and UDP flooding attacks. For example, the command
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Fig. 1. Communication flow in a botnet

ddos.syn XXX.XXX.XXX.XXX 80 600

instructs the bots within the botnet to start a TCP SYN flooding attack against
the specified IP address against TCP port 80 for 600 seconds. Another example
is the following command:

udp XXX.XXX.XXX.XXX 18000 50000 100

It instructs the bots to mount a UDP flooding attack against the specified target
with 18,000 packets of a size of 50,000 bytes using a delay of 100 milliseconds
between each packet. Note that the C&C IRC server that is used to connect all
bots is in most cases also a compromised machine.

3 Preventing Distributed Denial-of-Service Attacks

In this section we introduce a general methodology to prevent DDoS attacks. It
is based on the following line of reasoning:

1. To mount a successful DDoS attack, a large number of compromised ma-
chines are necessary.

2. To coordinate a large number of machines, the attacker needs a remote
control mechanism.

3. If the remote control mechanism is disabled, the DoS attack is prevented.

We will substantiate this line of reasoning in the following paragraphs.

3.1 A Large Number of Machines Is Necessary

Why does an attacker need a large number of machines to mount a successful
DDoS attack? If an attacker controls only few machines, a DDoS attack is suc-
cessful only if the total resources of the attacker (e.g., available bandwidth or
possibility to generate many packets per second) are greater than the resources
of the victim. Otherwise the victim is able to cope with the attack. Hence, if this
requirement is met, the attacker can efficiently overwhelm the services offered
by the victim or cause the loss of network connectivity.
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Moreover, if only a small number of attacking machines are involved in an
attack, these machines can be identified and counteractive measures can be ap-
plied, e.g., shutting down the attacking machines or blocking their traffic. To
obfuscate the real address of the attacking machines, IP spoofing, i.e., sending
IP packets with a counterfeited sender address, is often used. Furthermore, this
technique is used to disguise the actual number of attacking machines by seem-
ingly increasing it. However, IP spoofing does not help an attacker to conduct a
DDoS attack from an efficiency point of view. It does not increase the available
resources, but it even reduces them due to computing efforts for counterfeiting
the IP addresses. In addition, several ways to detect and counteract spoofed
sender address exist, e.g., ingress filtering [7], packet marking [20], or ICMP
traceback [3,17]. The IP distribution of a large number of machines in different
networks makes ingress filter construction, maintenance, and deployment much
more difficult. Additionally, incident response is hampered by a high number of
separate organizations involved.

So control over a large number of machines is necessary for a successful DDoS
attack.

3.2 A Remote Control Mechanism Is Necessary

The success of a DDoS attack depends on the volume of the malicious traffic
as well as the time this traffic is directed against the victim. Therefore, it is
vital that the actions of the many hosts which participate in the attack are well-
coordinated regarding the type of traffic, the victim’s identity, as well as the
time of attack.

A cautious attacker may encode all this information directly into the malware
which is used to compromise the zombies that form the DDoS network. While
this makes him harder to track down, the attacker loses a lot of flexibility since
he needs to plan his deeds well in advance. Additionally, this approach makes
the DDoS attack also less effective since it is possible to analyze the malware
and then reliably predict when and where an attack will take place. Therefore it
is desirable to have a channel through which this information can be transferred
to the zombies on demand, i.e., a remote control mechanism.

A remote control mechanism has many more advantages:

1. The most effective attacks come by surprise regarding the time, the type and
the target of attack. A remote control mechanism allows an attacker to react
swiftly to a given situation, e.g., to mount a counterattack or to substantiate
blackmail threats.

2. Like any software, malware is usually far from perfect. A remote control
mechanism can be used as an automated update facility, e.g., to upgrade
malware with new functionality.

In short, a DDoS attack mechanism is only effective if an attacker has some type
of remote control over a large number of machines. Then he can issue commands
to exhaust the victim’s resources at many systems, thus successfully attacking
the victim.
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3.3 Preventing Attacks

Our methodology to mitigate DDoS attacks aims at manipulating the root-cause
of the attacks, i.e., influencing the remote control network. Our approach is based
on three steps:

1. Infiltrating the remote control network.
2. Analyzing the network in detail.
3. Shutting down the remote control network.

In the first step, we have to find a way to smuggle an agent into the control
network. In this context, the term agent describes a general procedure to mask
as a valid member of the control network. This agent must thus be customized
to the type of network we want to plant it in. The level of adaptation to a real
member of the network depends on the target we want to infiltrate. For instance,
to infiltrate a botnet we would try to simulate a valid bot, maybe even emulating
some bot commands.

Once we are able to sneak an agent into the remote control network, it enables
us to perform the second step, i.e., to observe the network in detail. So we can
start to monitor all activity and analyze all information we have collected.

In the last step, we use the collected information to shut down the remote
control network. Once this is done, we have deprived the attacker’s control over
the other machines and thus efficiently stopped the threat of a DDoS attack
with this network. Again, the particular way in which the network is shut down
depends on the type of network.

3.4 Discussion

The methodology described above can be applied to different kinds of remote
control networks and is thus very general. The practical challenge of the method-
ology is to automate the infiltration and analysis process as much as possible.
In all these cases, the zombies need to establish a communication channel be-
tween themselves and the attacker. If it is possible to “catch” this malware in a
controlled way, it is possible to extract a lot of information out of it in an auto-
mated fashion. For example, if contact to the attacker is set up by establishing a
regular network connection, the network address of the attacker’s computer can
be automatically collected.

To many readers, the methodology may sound like coming directly from a
James Bond novel and it is legitimate to ask for evidence of its feasibility. In the
following section we give exactly this evidence. We show that this method can be
realized in the Internet by describing how we infiltrated and tracked IRC-based
botnets which are the main DDoS technology used by attackers today.

4 An Example: Tracking Botnets

In this section we exemplify a technical realization of the methodology we intro-
duced above. We present an approach to track and observe botnets that is able
to prevent DDoS attacks.
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Fig. 2. Setup for tracking botnets

As already stated in the last section, tracking botnets is clearly a multi-
step operation: First one needs to gather some data about an existing botnet.
This can for instance be obtained with the help of botnets or via an analysis of
captured malware. With the help of this information it is possible to smuggle a
client into the network.

We first introduce two techniques to retrieve the necessary information from
a botnet which enables us to infiltrate in it. The necessary information includes:

– DNS/IP-address of IRC server and port number.
– Password to connect to IRC-server (optional).
– Nickname of a bot and ident [10] structure.
– Name of IRC channel to join and (optional) channel password.

The first method to retrieve this information is based on honeypot technology
and is presented in Section 4.1. The second method is more lightweight and
presented in Section 4.2. Then we describe the observation and analysis process
in which we collected further information (Section 4.3). Finally, in Section 4.4
we give a small overview of possible ways to shut down a botnet.

4.1 Collecting Malware with Honeypots

A honeypot is a network resource (computers, routers, switches, etc.) deployed
to be probed, attacked, and compromised. A honeynet is a network of honey-
pots. Honeypots run special software which permanently collects data about the
system behavior and facilitates automatic post-incident forensic analysis. The
collected data enables us to determine the necessary information about an ex-
isting botnet. A detailed introduction to honeypots can for example be found
in [6].

Using a so called GenII Honeynet [21] containing some Windows honeypots,
we are able to collect all necessary information. We deployed a typical GenII
Honeynet with some small modifications as depicted in Figure 4.1.

The Windows honeypot runs an unpatched version of Windows 2000 or Win-
dows XP. This system is thus very vulnerable to attacks. It is located within the
internal network of RWTH Aachen University. On average, the expected lifespan
of the honeypot is less than ten minutes. After this small amount of time, the
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honeypot is often successfully exploited by automated malware. The shortest
compromise time was only a few seconds: Once we plugged the network cable
in, a bot compromised the machine and installed itself on the machine.

As explained in the previous section, a bot tries to connect to the C&C server
to obtain further commands once it successfully attacked the honeypot. This is
where the Honeywall comes into play. The Honeywall is a transparent bridge
that enables the two tasks Data Control and Data Capture. Due to the Data
Control facilities, it is possible to control the outgoing traffic. Using available
tools for Data Control we can replace all suspicious in- and outgoing messages.
A message is suspicious if it contains typical IRC messages for command and
control, for example “ TOPIC ”, “ PRIVMSG ”, or “ NOTICE ”. Thus we are able to
inhibit the bot from accepting valid commands from the master channel. It can
therefore cause no harm to others and therefore we have caught a bot inside our
Honeynet. As a side effect, we can also derive all necessary sensitive information
for a botnet from the data we have obtained up to that point in time: The
Data Capture capability of the Honeywall allows us to determine the DNS/IP-
address the bot wants to connect to and also the corresponding port number.
In addition, we can derive from the Data Capture logs the nickname, the ident
information, the server’s password, channel name, and the channel password as
well. So we have collected all necessary information and the honeypot can catch
further malware. Since we do not care about the captured malware for now, we
rebuild the honeypot every 24 hours to have a “clean” system every day. This
has proven to be a good time span since after this amount of time the honeypot
tends to become unstable due to installed malware.

4.2 Collecting Malware with Mwcollect

The approach described in the previous section works, but has several drawbacks:

– A honeypot will crash regularly if the bot fails to exploit the offered service,
e.g. due to a wrong offset within the exploit.

– The honeypot itself has to be closely monitored in order to detect changes
on the system. Furthermore, these changes have to be analyzed carefully to
detect malware.

– The approach does not scale well; observing a large number of IP addresses
is difficult.

To overcome these limitations, we developed a program called mwcollect to
capture malware in non-native environments. This tool simulates several vul-
nerable services and waits for them to be exploited. It is comparable to a low-
interaction honeypot like honeyd [16]. In contrast to honeyd it is tailored to
collecting of malware and offers possibilities that honeyd cannot offer, e.g. bet-
ter packet handling and more flexibility.

mwcollect is based upon a very flexible and modularized design. The core
module – the actual daemon – handles the network interface and coordinates
the actions of the other modules. Furthermore, the core module implements a
sniffer mode which records all traffic to a special log file. This can for example
be useful if an unknown exploit is detected that needs to be further analyzed.
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Several modules, which register themselves in the core, fulfill the actual tasks.
There are basically four types of modules:

– Vulnerability modules open some common vulnerable ports (e.g. TCP Port
135 or 2745) and simulate the vulnerabilities according to these ports.

– Shellcode parsing modules analyze the shellcode, an assembly language pro-
gram which executes a shell, received by one of the vulnerability modules.
These modules try to extract generic URLs from the shellcode.

– Fetch modules simply download the files specified by an URL. These URLs
do not necessarily have to be HTTP or FTP URLs, but can also be TFTP
or other protocols.

– Submission modules handle successfully downloaded files, for example by
writing it to disk or submitting it to a database.

Vulnerability modules seem to be the most important part of mwcollect, but
in fact they are not more important than every other module, they all require
each other. Moreover, the vulnerable service emulation is not very sophisticated,
but functional: Often malware does not require an indistinguishable emulation
of a real service but an approximation of it. In most cases it is thus sufficient to
provide some minimal information at certain offsets in the network flow. This
information is used by the malware to calculate the offsets it can use to exploit
the service. Upon successful exploitation, the payload of the malware is passed
to another kind of modules.

Currently there is only one shellcode parsing module that is capable of analyz-
ing all shellcodes we have found up to now. The module first recursively detects
XOR decoders in a generic way. An XOR decoder is a common way to encrypt
the actual shellcode in order to evade intrusion detection systems. Afterwards the
module decodes the code itself according to the computed key and then applies
some pattern detection, for example CreateProcess and URLDownloadToFileA
detection patterns. The results are further analyzed and if an URL is detected,
it is passed to the fetch modules. A module that parses shellcodes in an even
more generic way by emulating a Windows Operating System environment is
currently under development.

Fetch modules have the simple task of downloading files from the Internet.
There are currently three different fetch modules: one for TFTP, one for generic
HTTP and FTP URLs and finally one for CSend and similar transfer methods
used by different species of bots.

Finally, submission modules handle successfully downloaded files. Currently
there are three different types of submission modules:

– A module that stores the file in a configurable location on the filesystem and
is also capable of changing the ownership.

– A module that submits the file to a central database to enable distributed
sensors with central logging interface

– A module that checks the file with the help of different anti-virus scanners
for known malware. Optionally this module sends an alert to enable an early
warning system. Therefore, mwcollect can also be seen as a kind of intrusion
detection system.
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Two further features of mwcollect are important to efficiently collect malware:
virtualized filesystem and shell emulation.

A common technique to infect a host via a shell is to write commands for
downloading and executing malware into a temporary file and then execute this
file. Therefore a virtual filesystem was implemented to enable this type of attacks.
Every shell session has its own virtual filesystem so concurrent infection sessions
using similar exploits do not conflict. The temporary file is analyzed and the
malware is downloaded from the Internet in an automated way.

Some Malware does not spread by download shellcodes but by providing a
shell to the attacker. Therefore it is sometimes required to spawn and emulate
a Windows shell. Shell emulation is centralized in the core module since only
one type of shell is emulated. However, modules can register additional com-
mands that extend the possibilities for the malware. mwcollect currently simu-
lates a rudimentary shell and implements several commands: echo, ftp.exe and
tftp.exe, as well as batch file execution.

The big advantage of using mwcollect to collect malware is clearly both sta-
bility and scalability: A bot trying to exploit a honeypot running Windows 2000
with payload that targets Windows XP will presumably crash the service. In
most cases, the honeypot will be forced to reboot. In contrast to this, mwcollect
can be successfully exploited by all of those tools and hence catch a lot more
binaries this way. Furthermore, mwcollect can listen on many IP addresses in
parallel. We tested the program with 256 IP addresses and it scaled well.

To derive the sensitive information of the botnet from the collected malware,
a further analysis is necessary. A possible way to extract the information from
the captured malware is reverse engineering, the process of carefully analyzing a
program without having its source code. This process is time consuming, but we
have developed some techniques that enables us to extract the information within
a few minutes. A better approach is an automated analysis with the help of a
honeynet. The setup depicted in Figure 4.1 can be used for this purpose. Upon
startup, the Windows honeypot downloads a piece of malware from a database
located somewhere in the Internet. It executes the file and reboots itself after a
few minutes. During this time span, the bot installs itself on the honeypots and
connects to the C&C server. With the help of the Honeywall, we are again able
to extract all necessary information. In addition, the honeypot resets the hard
disk during each reboot so that a clean image is booted each time.

In a third approach, we are currently implementing a virtual machine that
implements an environments in which the bot can be executed. This virtualiza-
tion emulates a Windows environment and enables us to efficiently analyze the
malware.

4.3 Observing Botnets

Once we have collected all sensitive information of the botnet, we start to in-
filtrate the botnet as we have all the necessary data. In a first approach, it is
possible to setup a normal IRC client and try to connect to the network. If the
operators of the botnets do not detect this client, logging of all commands can
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be enabled. This way, all bot commands and all actions can be observed. If the
network is relatively small (i.e., less then 50 clients), there is a chance that the
bogus client will be identified since it does not answer to valid commands. In this
case, the operators of the botnets tend to either ban and/or DDoS the suspicious
client.

But there are many problems with this approach: Some botnets use very
strongly stripped down C&C server which is not RFC compliant so that a normal
IRC client can not connect to this network. A possible way to circumvent this
situation is to find out what the operator has stripped out, and modify the source
code of the IRC client to override it. Furthermore, this approach does not scale
very well. Tracking more than just a few botnets is not possible since a normal
IRC client will be overwhelmed with the amount of logging data and it does not
offer a concise overview of what is happening.

Therefore we use an IRC client optimized for botnet tracking called drone.
This software was developed by two members of the German Honeynet Project
and offers several decent techniques for observing botnets:

– Multi-server support to track a large number of botnets in parallel
– Excessive debug-logging interface so that it is possible to get information

about RFC non-compliance issues very fast and fix them in the client
– Automated downloading of malware identified within the botnet
– Modular interface to un/load modules at runtime

Furthermore, drone is capable of using SOCKS v4 proxies so we do not run
into problems if it’s presence is noticed by an attacker in a botnet. The SOCKS
v4 proxies are on dial-in accounts in different networks so that we can easily
change the IP addresses of our infiltrated bot.

When observing more than a couple of networks, we began to check if some of
them are linked, and group them if possible. Link-checking is simply realizable:
our client just joins a specific channel on all networks and detects if more than
one client is there, thus concluding the the networks controlled by several C&C
servers are linked. Surprisingly, many networks are linked.

4.4 Preventing DDoS Attacks Caused by Botnets

Several ways to prevent DDoS attacks caused by botnets exist that we want
to sketch in this section. Since we observe the communication flow within the
botnet, we are also able to observe the IP addresses of the bots unless this
information is obfuscated, e.g., by modifying the C&C server. Thus one possible
way to stop DDoS attacks with this methodology is to contact the owner of the
compromised system. This is however a tedious and cumbersome job, since many
organizations are involved and these organizations are spread all over the world.
In addition, the large number of bots make this approach nearly infeasible, only
an automated notification system could help.

Another approach to prevent DDoS attacks caused by botnets aims at stop-
ping the actual infrastructure, in particular the C&C server, since this compo-
nent is vital for the remote control network. One possible way to stop the C&C
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server is described in [8]: Most botnets use a dynamic DNS name instead of a
hard-coded IP address for the C&C server. So if the DNS name is changed so
that it resolves to an IP address in a private subnet as defined in RFC 1918,
the bots are not able to connect to the central server. Thus the remote control
network is efficiently shut down. For this approach, the assistance of the DNS
provider is needed, though.

In addition, the collected information about botnets enable another way to
stop the botnet. We know the IP address of the C&C server and are thus able to
locate it. If the operator of the network cooperates, it is possible to shut down
this server and thus shutting down the remote control network.

5 Results

In this section we present some of the findings we obtained through our obser-
vation of botnets. Data is sanitized so that it does not allow one to draw any
conclusions about specific attacks against a particular system, and protects the
identity and privacy of those involved. The information about specific attacks
and compromised systems was forwarded to DFN-CERT (Computer Emergency
Response Team) based in Hamburg, Germany.

The results are based on the observations collected with just two sensors.
One sensors uses the approach depicted in Section 4.1 and is located within the
network of RWTH Aachen University. The other sensor is based on the technique
and software introduced in Section 4.2 and is located within a dial-in network
of a German ISP.

We start with some statistics about the botnets we have observed in the last
five months:

– Number of botnets : We were able to track about 180 botnets during the
last five months. Some of them went offline (e.g. C&C server went offline
or inexperienced attackers) and at the time of writing (March 2005) we are
tracking about 60 active botnets.

– Number of hosts : During these few months, we saw more than 300,000 unique
IP addresses joining at least one of the channels we monitored. Seeing an
IP means here that the C&C server was not modified to not send a JOIN
message for each joining client. If an IRC server is modified not to show
joining clients in a channel, we do not see IPs here. Furthermore some IRC
server obfuscate the joining clients IP address and obfuscated IP addresses
do not count as seen, too. This shows that the threat posed by botnets is
probably worse than originally believed. Even if we are very optimistic and
estimate that we track a significant percentage of all botnets and all of our
tracked botnet C&C servers are not modified to hide JOINs or obfuscate the
joining clients IPs, this would mean that more than one million hosts are
compromised and can be controlled by malicious attackers.

– Typical size of Botnets: Some botnets consist of only a few hundred bots.
In contrast to this, we have also monitored several large botnets with up
to 50,000 hosts. The actual size of such a large botnet is hard to estimate.
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Often the attackers use heavily modified IRC servers and the bots are spread
across several C&C servers which are linked together to form a common
remote control network. We use link-checking between IRC servers to detect
connections between different botnets that form one large botnet. Thus we
are able to approximate the actual size.
As a side note: We know about a home computer which got infected by 16
different bots, so its hard to make an estimation about world bot population
here.

– Dimension of DDoS-attacks : We are able to make an educated guess about
the current dimension of DDoS-attacks caused by botnets. We can observe
the commands issued by the controllers and thus see whenever the botnet is
used for such attacks. From the beginning of November 2004 until the end of
March 2005, we were able to observe 406 DDoS-attacks against 179 unique
targets. Often these attacks targeted dial-up lines, but there are also attacks
against bigger websites or other IRC server.

– Spreading of botnets : Commands issued for further spreading of the bots
are the most frequent observed messages. Commonly, Windows systems are
exploited and thus we see most traffic on typical Windows ports used for file
sharing.

– “Updates” within botnets : We also observed updates of botnets quite fre-
quently. Updating in this context means that the bots are instructed to
download a piece of software from the Internet and then execute it.

We conclude that our general methodology described in Section 3 is feasible
and the automated approach described in Section 4.2 is effective. We collected
more than 5500 binaries (about 800 unique ones) with mwcollect in just one
week on a single sensor. This sensor has only one IP address and is connected
to the Internet via a German DSL dial-in provider with 4 MBit downstream
and 2 MBit upstream. About five percent of the unique files were broken due
to failures during TFTP transfer. We are currently in the process of analyzing
these files. Once we have implemented a virtualization mechanism to efficiently
and automatically analyze the collected files, we hope to be able to significantly
increase the number of botnets we observe. In addition, this information can be
used to prevent DDoS attacks by shutting down the C&C server.

6 Conclusion and Further Work

DDoS attacks have become increasingly dangerous in recent years and we are
observing a growing professionalism in the type of Internet crime surrounding
DDoS. In this paper we have introduced a technique for DDoS attack prevention
that neither implies a resource arms race nor needs any additional infrastructure.
In contrast to previous work in this area our approach is preventive instead of
reactive. Our technique attacks a root-cause of DDoS attacks: in order to be
effective, an attacker has to control a large number of machines and thus needs
a remote control network. Our methodology aims at shutting down this control
network by infiltrating it and analyzing it in detail.
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We have exemplified a technical realization of this methodology considering
as example the tracking of IRC-based botnets. Such a botnet is a network of
compromised machines that can be remotely controlled by an attacker through
Internet relay chat technology. Due to their immense size (tens of thousands of
systems can be linked together), these botnets pose a severe threat to the Internet
community, e.g., since their aggregated resources can be used to overwhelm most
targets with a DDoS attack. We have shown that an automation of this approach
is possible to a high degree. With the help of honeypots, i.e., network resources
deployed to be compromised, we are able to automate the process of collecting
sensitive information of the remote control network by automatically “collecting”
malware. Via an automated analysis of the captured binaries we are furthermore
able to extract the sensitive information that allow to shut down the control
network.

With the help of just two sensors we were able to track a significant number
of botnets within a few months. In the future we want to analyze how good
our approach scales. Therefore we want to deploy more sensors within different
networks. In addition, we aim at speeding up the automated analysis process so
that it becomes even more effective. This can for example be achieved with the
help of a generic shellcode parser or a virtual machine that analyzes and extracts
the sensitive information from the captured binaries.

Moreover, the data we captured while observing the botnets show that these
control networks are used for more than just DDoS attacks. Possible usages of
botnets can be categorized as listed below. And since a botnet is nothing more
then a tool, there are most likely other potential uses that we have not listed:

– Spamming: Some bots offer the possibility to open a SOCKS v4/v5 proxy –
a generic proxy protocol for TCP/IP-based networking applications – on a
compromised machine. After having enabled the SOCKS proxy, this machine
can then be used for nefarious tasks such as sending bulk email (spam) or
phishing mails. With the help of a botnet and thousands of bots, an attacker
is able to send massive amounts of spam. Some bots also implement a special
function to harvest email-addresses from the victims.

– Attacking IRC Chat Networks : Botnets are also used for DDoS attacks
against Internet Relay Chat (IRC) networks. Popular among attackers is
especially the so called clone attack : In this kind of attack, the controller or-
ders each bot to connect a large number of clones to the victim IRC network.
The victim is overwhelmed by service request from thousands of (cloned)
bots.

– Manipulating online polls/games: Online polls/games are getting more and
more attention and it is rather easy to manipulate them with botnets. Since
every bot has a distinct IP address, every vote will have the same credibility
as a vote cast by a real person. Online games can be manipulated in a similar
way.

– Sniffing Traffic: Bots can also use a packet sniffer to watch for interesting
clear-text data passing by a compromised machine. The sniffers are mostly
used to retrieve sensitive information like usernames and passwords.
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– Keylogging: If the compromised machine uses encrypted communication chan-
nels (e.g. HTTPS or POP3S), then just sniffing the network packets on the
victim’s computer is useless since the appropriate key to decrypt the packets
is missing. But most bots also implement functions to log keystrokes. With
the help of a keylogger it is very easy for an attacker to retrieve sensitive
information.

– Harvesting of information: Sometimes we can also observe the harvesting
of information from all compromised machines. With the help of special
commands the operator of the botnet is able to request a list of sensitive
information from all bots.

With our method we can shut down the root-cause of all of these types of nui-
sances, and hence our method is not restricted to combat DDoS.

In the future, we hope to develop more advanced honeypots that help us to
gather more information about threats such as botnets. Examples include client-
side honeypots that actively participate in networks (e.g., by crawling the web,
idling in IRC channels, or using P2P-networks) or modify honeypots so that they
capture malware and send it to anti-virus vendors for further analysis. It is also
to be expected that future botnets will use communication facilities other than
IRC (like potentially decentralized P2P-communication or covert channels). Our
methodology seems valid also for these scenarios, although more research in this
area is still needed.
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Abstract. Information flow and non-interference are well-established
techniques for expressing both integrity and privacy properties. Because
of the enormous potential to transmit information using probabilistic
methods of cryptography, interest has arisen in extending the tradi-
tional notions of information flow to fully reactive settings that allow
for reasoning about arbitrary interactive systems, and in particular ar-
bitrary cryptographic protocols. We propose definitions for quantifying
the amount of information that users are able to transmit to each other
in such reactive settings, and we in particular address computational re-
strictions and error probabilities so that our definitions are suited for
complexity-theoretic reasoning about cryptographic systems. We show
that our definitions are preserved under simulatability, which constitutes
the cryptographic notion of a secure implementation, and we link our de-
finitions to non-interference by showing that a zero or negligible quantity
of information flow is equivalent to perfect or computational probabilistic
non-interference, respectively.

1 Introduction

Information flow and non-interference have become powerful possibilities for
expressing both privacy and integrity requirements. The concept of informa-
tion flow was first investigated for secure operating systems by Lampson [17]
and subsequently by Bell and LaPadula [4] and Denning [7]. Initiated by
the work on non-interference of Goguen and Meseguer [11,12], various de-
finitions have subsequently been proposed that rigorously specify when in-
formation flow is considered to occur for possibilistic and non-deterministic
systems [33,24,37,26,30,10,22,23] and for probabilistic systems [13,14,25,35,32].
Whereas these lines of work concentrated on the absence of information flow in
various settings, they were accompanied by work that gave quantitative mea-
surements of the information that might flow between certain users, motivated
by use cases where some flow of information might be inevitable or accept-
able [27,16,20,5,8].

Recently, interest has arisen in generalizing definitions of information flow so
that they allow for reasoning about real cryptographic protocols in order to cap-
ture the variety of cryptographic techniques that can be used to transmit infor-
mation in a secret or undetectable way, e.g., encryption or steganographic tech-
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niques. The incorporation of cryptographic reasoning into information flow defin-
itions posed major challenges because a faithful analysis of cryptography requires
not only probabilistic behaviors but also error probabilities and polynomial-time
restrictions in terms of computational complexity. Moreover, a suitable definition
has to capture a reactive environment, i.e., continuous interaction between users,
an adversary, and the system. These problems recently led to the notion of com-
putational probabilistic non-interference [1,2], which was the first definition that
allowed for reasoning about information flow in a reactive setting and the pres-
ence of cryptography. However, quantitative measurements of information flow
in reactive settings and particularly in the presence of arbitrary cryptographic
protocols have not been addressed yet.

We present the first definitions for quantifying the amount of information
that one user is able to transmit to another user within a reactive setting.
We present definitions for unconditional security that are suitable for reasoning
about informational-theoretically secure or non-cryptographic systems, as well
as computational definitions that comprise complexity-theoretic reasoning such
as polynomially bounded adversaries, allow error probabilities, and are tightly
related to well-established cryptographic notions such as computational indistin-
guishability. Roughly, our approach to quantify an information flow from a high
user to a low user is to consider different behaviors of the high user that result
in different views of the low users (different probability distributions), to then
measure the distance of these distributions, and to finally maximize the result-
ing measurement for different behaviors of the high user. Both the unconditional
and the computational definitions comprise malicious or predefined behaviors of
third parties as well as timing aspects.

We show that our definitions are preserved under simulatability, which con-
stitutes the cryptographic notion of a secure implementation, i.e., securely imple-
menting a specification in the sense of simulatability may not increase the trans-
mitted information in the unconditional case, and only by a negligible quantity
in the computational case. This significantly simplifies the determination of the
information flow quantity permitted within a cryptographic system, since simu-
latability helps to eliminate cryptography-related details such as error probabil-
ities and computational restrictions. Moreover, we show that a zero or negligible
quantity of information flow is equivalent to perfect and computational proba-
bilistic non-interference. With our simulatability preservation theorem, this in
particular allows for a short, alternative proof that non-interference properties
are preserved under simulatability [1].

Further Related Literature. The only definitions of information flow that reside
in a reactive scenario and that allow for complexity-theoretic reasoning have
been presented by Backes and Pfitzmann in [1,2] based on the model of reactive
simulatability [29,3]; quantitative aspects of information flow are, however, not
considered there.

The work that comes closest to ours in terms of quantifying information
flow is the one on approximate non-interference of Di Pierro et al. [8]. They
defined the notion of ε-confinement that captured that information flow is still
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acceptable if the distance of views of specific user deviate only up to probability ε.
Although their definition does not address computational aspects as needed for
cryptographic purposes, our work is nevertheless inspired by some of their ideas.
Lowe [20] measured the amount of information in a non-probabilistic setting by
counting the number of different behaviors of the high user that yield different
views for the low user. Clark et al. [5] proposed syntax-directed inference rules
for computing estimates on information flow in an imperative language. Both
works do not aim to deal with computational aspects.

Early ideas of quantitative security based on Shannon’s information theory
go back to Denning’s work [6], which was subsequently used in [27,16] to measure
the quantity of covert channels. The investigated settings, however, were sim-
plistic in that the channels were memoryless, there was no input feedback in the
channel, and only uncorrelated inputs; moreover, no computational restrictions
were taken into account there. This stands in blatant contrast to reactive scenar-
ios that allow for expressing and analyzing arbitrary (cryptographic) primitives
and protocols, where inputs and user behaviors are typically highly correlated
and protocols are highly stateful. We consider it interesting future work to ex-
tend the information-theoretic line of work to our unconditional definitions, and
we have some basic ideas on this subject that we intend to pursue.

Recent research has also investigated non-interference properties involving
real cryptographic primitives, but without investigating quantitative aspects.
Laud [18,19] presented a sequential language for which he expressed real compu-
tational secrecy. The definition is non-reactive and specific to encryption as the
only cryptographic primitive. Volpano [34] investigated conditions for safely us-
ing one-way functions in a programming language, but his underlying definition
does not express non-interference, but the secrecy of a specific secret.

Outline of the Paper. In Section 2 we briefly review the underlying model of
reactive simulatability, which is an asynchronous probabilistic execution model
with distributed scheduling, including computational aspects as needed for cryp-
tography. We give our definitions for capturing the quantity of information trans-
mitted between two users in a fully reactive scenario—including the presence of
cryptographic techniques—in Section 3. In Section 4 we show that our defini-
tions are preserved under simulatability, and we finally show in Section 5 that a
zero or negligible quantity of information flow is equivalent to existing notions
of perfect and computational probabilistic non-interference. We conclude with a
summary of our results in Section 6.

2 The Model of Reactive Simulatability

Our work is based on the model of reactive simulatability [29,3], which is an
asynchronous probabilistic execution model with distributed scheduling that
provides universal composability properties while including computational as-
pects as needed for cryptography. The model is automata based, i.e., protocols
are executed by interacting machines, and event-based, i.e., machines react on
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certain inputs. All details of the model that are not necessary for understanding
are omitted here; for completeness, we give rigorous definitions of the relevant
notions in Appendix A.

2.1 General System Model

A machine is a probabilistic IO automaton (extended finite-state machine) in
a slightly refined model to allow complexity considerations. For these automata
Turing-machine realizations are defined, and the complexity thereof is measured
in terms of a common security parameter k, given as the initial work-tape content
of every machine. A structure consists of a set M̂ of connected machines and a
subset S of free ports, called service ports. Each structure is complemented to
a configuration by a set of user machines U and an adversary machine A. The
machines in U connect only to ports in S , whereas A connects to the remaining
free ports S̄ of the structure and may interact with the users. We denote the
set of configurations of a structure (M̂ ,S ) by Conf(M̂ ,S ) and the subset of
polynomial-time configurations by Confpoly(M̂ ,S ).1

The general scheduling model in [29,3] gives each connection c (from an out-
put port c! to an input port c?) a buffer, and the machine with the corresponding
clock port c	! can schedule a message there when it makes a transition. In real
cryptographic systems, network connections are typically scheduled by A, which
usually serves as a master scheduler, but the model allows for specifying other
designated master schedulers as well as local schedulers for specific connections.
Scheduling of machines is done sequentially, so there is exactly one active ma-
chine M at any time. If this machine has clock-out ports, it can select the next
message to be scheduled. If that message exists, it is delivered by the buffer and
the unique receiving machine is the next active machine. If M tries to schedule
multiple messages, only one is taken, and if it schedules none or the message
does not exist, the special master scheduler is scheduled.

This means that a configuration has a well-defined notion of runs, also called
traces or executions. Formally a run is essentially a sequence of steps, and each
step is a tuple of the name of the active machine in this step and its input,
output, and old and new local state. As the underlying state-transition functions
of the individual machines are probabilistic, one can define a probability space
on the possible runs by a canonical construction as for Markov chains, cf. [3]
for the precise definition. We call the corresponding random variable runconf ,k

for a configuration conf and the security parameter k. One can restrict a run
r to a machine M or a set of machines M̂ by retaining only the steps of these
machines; this is called the view of these machines. For a configuration conf , the
corresponding random variables over the probability space of all possible runs
are denoted by view conf ,k(M) and view conf ,k(M̂ ), respectively.
1 Here and elsewhere we change some notation of [29,3] from so-called systems to struc-

tures. These systems contain several possible structures, derived from an intended
structure with a trust model. Here we can always work with individual structures.
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2.2 Partition Configurations for Defining Information Flow

Structures and configurations in their general form impose no restrictions re-
garding which user can connect to which service ports, e.g., users in different
configurations might connect to a different subset of the service ports. For quanti-
fying information flow in a reactive environment, as well as for the mere detection
of information flow as defined in [1,2], we need security domains between which
we can analyze the flow of information. It is intuitive to regard the possible pro-
tocol participants as security domains. However, to be independent of the details
of the actual user and the adversary machines, we represent users by the ports
they connect to in the considered structure (M̂ ,S ), and the adversary by the
remaining free ports of the structure. This means that we consider a partition
Γ = {Si | i ∈ I} of the set S of service ports, where I is an arbitrary finite
index set. We can now designate each user Hi with i ∈ I by the subset of service
ports Si it connects to. For a given structure and a partition of its service ports,
those configurations where each user only connects to its ports of the partition,
and where the adversary connects to the remaining free ports of the structure
are called partition configurations. A characteristic of partition configurations is
that the different user machines and the adversary have no direct connections,
because otherwise they could trivially transmit information without relying on
the possibilities granted by the structure. Moreover, a specific fair master sched-
uler X is added to the configuration because if the adversary were allowed to
schedule the connections to and from the users, it could always achieve proba-
bilistic information flow, cf. [1,2] for more details. We denote the set of partition
configurations of a structure (M̂ ,S ) and partition Γ by Conf(M̂ ,S , Γ ) and the
subset of polynomial-time ones by Confpoly(M̂ ,S , Γ ). Finally, we consider the
subset of partition configurations where users are only allowed to perform a
certain number of steps. This will allow us to reason about timing aspects of
information flow. We call a partition configuration with index set I a timed
partition configuration for a function ϕ : I → (N → N ∪ {∞}), if the user Hi

in this configuration only makes ϕ(i) outputs (as a function of k, the security
parameter). We call the set of these configurations Confϕ(M̂ ,S , Γ ) and the set
of polynomial ones Confϕpoly(M̂ ,S , Γ ).

3 Measuring Probabilistic Information Flow in Reactive
Settings

We now define the amount of information that one user is able to transmit to
another user via a particular structure. Using standard terminology, we call these
two users the high user and the low user. The remaining users are referred to as
third parties.

Roughly speaking, the idea of quantifying information flow is that we consider
different behaviors of the high user that result in different views of the low users,
and measure the distance between these different views. Finally, we maximize
this distance for all possible behaviors of the high user, which gives the desired
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measure of the information quantity. The notion hence provides information on
how much two behaviors of the high user might differ in the worst case, given
only the view of the low user, and it hence resembles the similarity relation of [8].

It remains to decide to what extent the third parties might contribute to
the information flow. The most stringent choice is to regard every third party
as malicious, i.e., it fully exploits its possibilities to help the high user to trans-
mit information to the low user. Formally, this means that we quantify over the
behavior of all third parties to maximize the distance, and we speak of the worst-
case information quantity in this scenario. This approach is the one commonly
taken in the literature, as it gives an upper bound on the amount of informa-
tion flow under worst-case assumptions. Moreover, it is naturally linked to the
notion of non-interference, i.e., absence of information flow, as we will see in
Section 5. Based on this core definition, we introduce several variants and ex-
tensions, including more benign behaviors of the third parties as well as timing
aspects.

Definition 1. (Worst-Case Information Quantity) Let (M̂ ,S ) be a structure,
let Γ = {Si | i ∈ I} be a partition on the set S of service ports for a finite
set I, and let ||·, ·|| be a distance of user views, i.e., of probability distributions.
Furthermore, let H, L ∈ I be given. Then the worst-case information quantity
Q||·,·||

(M̂ ,S ,Γ )
(H, L) that the high user HH is allowed to transmit to HL is defined as

Q||·,·||
(M̂ ,S ,Γ )

(H, L) := max
conf 1,conf 2∈Conf(M̂ ,S ,Γ )

||view conf 1,k(HL), view conf 2,k(HL)||,

such that conf l is of the form conf l := (M̂ ,S ,Ul, A) with Ul = {H(l)
H , HL, X} ∪

{Hi | i ∈ I \ {H, L}} for an arbitrary adversary A and arbitrary users
H(1)

H , H(2)
H , HL, and Hi for i ∈ I \ {H, L}. The polynomial-time worst-case infor-

mation quantity QP
||·,·||
(M̂ ,S ,Γ )

(H, L) is defined similarly by taking the maximum

over Confpoly(M̂ ,S , Γ ). �

Several extensions of this definition are useful. First, it is often more natural
to consider fixed behaviors for some of the third parties because in real world
examples, e.g., when a spy attempts to transmit information out of a company,
it is unlikely that every employee will help the spy to do so. Formally, this means
that we consider fixed user behaviors for a subset J ⊆ I, i.e., we parameterize
the information quantity by a set M := {Hj | j ∈ J }. The remaining users are
considered malicious as in the previous definition. We speak of the generalized
information quantity here because we obtain the worst-case definition as the
special case M = ∅.
Definition 2. (Generalized Information Quantity) Consider the preconditions
as in Definition 1 and let M := {Hj | j ∈ J } be given for fixed machines Hj and
J ⊆ I. Then the generalized information quantity Q||·,·||,M

(M̂ ,S ,Γ )
(H, L) with respect

to M is defined as

Q||·,·||,M
(M̂ ,S ,Γ )

(H, L) := max
conf 1,conf 2∈Conf(M̂ ,S ,Γ )

||view conf 1,k(HL), view conf 2,k(HL)||,
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such that conf l is of the form conf l := (M̂ ,S ,Ul, A) with Ul = {H(l)
H , HL, X} ∪

{Hi | i ∈ I \ {H, L}} for an arbitrary adversary A and arbitrary users
H(1)

H , H(2)
H , HL, and Hi for i ∈ I \ (J ∪ {H, L}), i.e., the maximum is only taken

over those configurations in which the users Hj for j ∈ J are fixed by the para-
meter M. The polynomial-time variant QP

||·,·||,M
(M̂ ,S ,Γ )

(H, L) is defined as usual. �

Timing capabilities of certain users are typically of interest, i.e., to model that
a spy should not be allowed to send data all the time, or only has limited access
to his machine. We use timed partition configurations for this and speak of the
timed generalized information quantity.

Definition 3. (Timed Generalized Information Quantity) Consider the precon-
ditions as in Definition 2 and let in addition a function ϕ : I → (N → N ∪ {∞})
be given. Then the timed generalized information quantity Q||·,·||,M,ϕ

(M̂ ,S ,Γ )
(H, L) with

respect to M, ϕ is defined as in Definition 2 except that the maximum is only
taken over Confϕ(M̂ ,S , Γ ). The polynomial-time variant QP

||·,·||,M,ϕ

(M̂ ,S ,Γ )
(H, L) is

defined as usual. �

4 Preservation of Information Quantities Under
Simulatability

We now investigate how the information quantity behaves under simulatability,
which is the cryptographic notion of secure implementation. For reactive systems,
it means that whatever might happen to users in a real structure (M̂1,S ) can also
happen to users in an ideal structure (M̂2,S ) (with the same set of service ports
to which the same users can connect). Formally, for every set U of polynomial-
time users, and every polynomial-time adversary A1, there exists a polynomial-
time adversary A2 such that the views of the machines in U are computationally
indistinguishable when run either with (M̂1,S ) or with (M̂2,S ). This is illustrated
in Figure 1. Indistinguishability is a well-known cryptographic notion from [38].

Definition 4. (Computational Indistinguishability) Two families (vark)k∈N and
(var′k)k∈N of random variables on common domains Dk are computationally in-
distinguishable (“≈”) iff for every algorithm Dis (the distinguisher) that is prob-
abilistic polynomial-time in its first input, we have

|P (Dis(1k, vark) = 1) − P (Dis(1k, var′k) = 1)| ∈ NEGL,

where NEGL denotes the set of all negligible functions, i.e., g : N → R≥0 ∈ NEGL
iff for all positive polynomials Q, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k). �

Intuitively, given the security parameter and an element chosen according to
either vark or var′k, Dis tries to guess which distribution the element came from.

Definition 5. (Reactive Simulatability) Let structures (M̂1,S ) and (M̂2,S ) be
given. We say that (M̂1,S ) is at least as secure as (M̂2,S ), written (M̂1,S ) ≥poly

sec
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A1

S

M1 A2
M2

S

U U

Fig. 1. Reactive simulatability: The two views of U must be indistinguishable

(M̂2,S ) if for every configuration conf 1 = (M̂1,S ,U , A1) ∈ Confpoly(M̂1,S ),
there exists a configuration conf 2 = (M̂2,S ,U , A2) ∈ Confpoly(M̂2,S ) such that

view conf 1
(U ) ≈ view conf 2

(U ).

We speak of perfect reactive simulatability, written (M̂1,S ) ≥perf
sec (M̂2,S ), if the

above formula holds for all (also non-polynomially bounded) configurations of
the respective structures, and with indistinguishability replaced by equality. �

4.1 Preservation of Information Quantities

The following theorem establishes that the information quantity between two
users is essentially unchanged under reactive simulatability. More precisely, the
theorem states that only a negligible additional quantity of information can
be transmitted to the low user when simulatability is applied, provided that
the employed distance respects computational indistinguishability in a natural
manner, i.e., two ensembles are indistinguishable if and only if their distance
constitutes a negligible function. We call such distances computational distances.
In the case of perfect reactive simulatability, we even show that no additional
information can be sent to the low user for any distance. (Note that reactive
simulatability is not symmetric, hence we cannot rule out that the user can only
transmit less information when interacting with a real structure rather than
when interacting with the ideal structure.)

These are exactly the properties that already allow modular and cryptograph-
ically sound proofs on the abstract level: For instance, an ideal specification
that should prohibit the flow of information between two users has informa-
tion quantity zero because it allows no communication between these two users
by construction, e.g., the ideal firewall presented in [1] is of this kind. This is
typically much easier to prove than for a cryptographic realization where the
restriction on the information flow might be achieved by cryptographic tech-
niques, e.g., digital signatures in the real implementation of the firewall. The
theorem hence allows for conveniently analyzing the information flow proper-
ties of real cryptographic systems by means of their ideal counterparts, and we
can hope that well-established techniques for enforcing the absence respectively
measuring the quantity of information flow based on type checking techniques,
e.g., [36,9,28,35,31,32,39], can be applied to our setting. Moreover, a negligible
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amount of information is the best we can hope for in the presence of asymmetric
cryptography because a negligible probability of error there always remains.

Theorem 1. (Preservation of Information Quantity) Let two structures (M̂i,S )
for i = 1, 2 be given, let Γ := {Si | i ∈ I} be a partition of S for a finite
index set I, and let H, L ∈ I. Let M := {Hj | j ∈ J } for some J ⊆ I and
ϕ : I → (N → N ∪ {∞}) arbitrary. Then (M̂1,S ) ≥perf

sec (M̂2,S ) implies

Q||·,·||,M,ϕ

(M̂1,S ,Γ )
(H, L) ≤ Q||·,·||,M,ϕ

(M̂2,S ,Γ )
(H, L)

for every distance ||·, ·||. Moreover, (M̂1,S ) ≥poly
sec (M̂2,S ) implies

QP
||·,·||c,M,ϕ

(M̂1,S ,Γ )
(H, L) ≤ QP

||·,·||c,M,ϕ

(M̂2,S ,Γ )
(H, L) + ε(k)

for some ε ∈ NEGL and every computational distance ||·, ·||c. �

Proof. Let conf 1
1 = (M̂1,S ,U1, A) and conf 1

2 = (M̂1,S ,U2, A) be two
(polynomial-time) partition configurations in Confϕ(M̂1,S , Γ ) with Ul :=
{H(l)

H , HL, X} ∪ {Hi | i ∈ I \ {H, L}} (for arbitrary machines Hi for i ∈
I \ (J ∪ {H, L})) such that ||(view conf 1

1,k(HL), view conf 1
2,k(HL))|| is equal

to Q||·,·||,M,ϕ

(M̂1,S ,Γ )
(H, L) or to QP

||·,·||c,M,ϕ

(M̂1,S ,Γ )
(H, L), respectively, in the polynomial

case. Owing to (M̂1,S ) ≥sec (M̂2,S ), (polynomial-time) configurations conf 2
1,

conf 2
2 ∈ Confϕ(M̂2,S ) exist such that view conf 1

1,k(U1) ≈ view conf 2
1,k(U1) and

view conf 1
2,k(U2) ≈ view conf 2

2,k(U2). Moreover, we obviously have conf 2
1, conf 2

2 ∈
Confϕ

′
(M̂2,S , Γ ) because the users and the set of service ports are unchanged

under simulatability, and ϕ = ϕ′ as the users’ view could otherwise be trivially
distinguished in both configurations (the distinguisher waits until one user stops
in one configuration but continues to send messages in the other configuration).

We now restrict the views of U1 and U2 to the user HL in all configurations.
This is the function on the view of both U1 and U2, i.e., a polynomial-time
computable function applied to indistinguishable views, hence we obtain
view conf 1

1,k(HL) ≈ view conf 2
1,k(HL) and view conf 1

2,k(HL) ≈ viewconf 2
2,k(HL). In

the following, we abbreviate view conf i
j ,k(HL) by vi,j

k for the sake of readability.

We obtain ||v1,1
k , v1,2

k || ≤ ||v1,1
k , v2,1

k || + ||v1,2
k , v2,2

k || + ||v2,1
k , v2,2

k || by the triangle
inequality. In the case of perfect reactive simulatability, we have v1,1

k = v2,1
k

and v1,2
k = v2,2

k for all k, hence ||v1,1
k , v1,2

k || ≤ ||v2,1
k , v2,2

k ||. As conf 2
1, conf 2

2 ∈
Confϕ(M̂2,S , Γ ), Definition 3 implies ||v2,1

k , v2,2
k || ≤ Q||·,·||,M,ϕ

(M̂2,S ,Γ )
(H, L) for all

distances ||·, ·||, which completes the proof of the perfect case. In the com-
putational case of reactive simulatability, we have ||v1,1

k , v2,1
k ||c ∈ NEGL and

||v1,2
k , v2,2

k ||c ∈ NEGL for every computational distance ||·, ·||c. As the class of neg-
ligible functions is closed under addition, ε(k) := ||v1,1

k , v2,1
k ||c + ||v1,2

k , v2,2
k ||c is a

negligible function again. Now conf 2
1, conf 2

2 ∈ Confϕ(M̂2,S , Γ ) and Definition 3
imply that ||v2,1

k , v2,2
k ||c is upper bounded by QP

||·,·||c,M,ϕ

(M̂2,S ,Γ )
(H, L) for any compu-

tational distance ||·, ·||c, which completes the proof of the computational case.
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5 Relationship to Probabilistic Non-interference

In this section, we show that the worst-case information quantity is related in a
natural way to the notion of probabilistic non-interference, i.e., to the absence
of probabilistic information flow. More precisely, we consider the recently pro-
posed definitions of perfect and computational probabilistic non-interference [1]
in reactive systems, and we show that a structure fulfills a non-interference prop-
erty for particular high and low users if and only if the worst-case information
quantity between these users is zero in the case of perfect non-interference or
bounded by a negligible function in the case of computational non-interference.

5.1 Brief Review of Computational Probabilistic Non-interference

We first review briefly the notions of perfect and computation non-interference in
reactive systems. Information flow properties such as non-interference consist of
two components: a flow policy and a definition of information flow. Flow policies
specify restrictions on the information flow within a system.

Definition 6. (Flow Policy) Let a structure (M̂ ,S ) be given, and let Γ =
{Si | i ∈ I} denote a partition of S for a finite index set I. A flow policy F of
the structure (M̂ ,S ) is a graph F = (Γ, �) with � ⊆ Γ × Γ . For (Si,Sj) ∈ �,
we write Si � Sj , and Si �� Sj otherwise. Furthermore we demand Si � Si for
all Si ∈ Γ . �

Here Si � Sj intuitively means that information may flow from Si to Sj , whereas
Si �� Sj means that it must not. The relation �� is the non-interference relation
of F , i.e., SH �� SL means that no information must flow from the user connected
to the ports SH to the user connected to the ports SL. To capture this in a way
that allows for computational restrictions, error probabilities etc., the notion
of probabilistic non-interference from [1] gives the user HH (connected to SH)
a randomly distributed bit b at the start of the run, and HH should try to
transmit this bit to HL (connected to SL). The user HL then outputs a bit
b∗, which is its guess of the bit b. To capture this formally in the model, the
specific users have special ports for receiving the initial bit and for outputting
their guess, respectively, and special machines BITH and OUTL are added that
produce the bit b and consume the bit b∗. As for partition configurations, the
same specific fair master scheduler X is added to the configuration to prevent
from achieving information flow in a trivial manner. The resulting configurations
are called non-interference configurations for SH and SL. Then the underlying
structure (M̂ ,S ) is defined to fulfill the non-interference requirement defined by
flow policy F in the computational sense (written (M̂ ,S ) |=poly F) iff for all H, L
with SH �� SL and all polynomial-time non-interference configurations for SH

and SL, the probability of a correct guess b = b∗ is only negligibly greater than
pure guessing. A structure fulfills the requirement in the perfect sense (written
(M̂ ,S ) |=perf F) iff the same holds for all (also non-polynomially bounded)
configurations and the advantage over pure guessing should be zero. We review
the rigorous definitions in Appendix A.
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5.2 Linking Information Quantity and Non-interference

We now show that a structure fulfills a non-interference requirement if and only if
the worst-case information quantity between the respective pairs of users defined
by the flow policy is zero or a negligible function in the security parameter k,
respectively.

The left-to-right direction of this statement is closely related to existing re-
sults for previous definitions of non-interference, where it has been proved that
non-interference implies that the information quantity exchanged between the
respective users is zero. In a cryptographic scenario, the notion of a negligibly
small information quantity has replaced the total absence of information flow.
When considering the converse direction however, an information quantity of
zero was not sufficient to establish the non-interference property for many exist-
ing definitions of non-interference, which often made these properties too strict
for dealing with information flow. For the definition of perfect and computational
probabilistic non-interference in the reactive setting, we can establish this con-
verse direction. This might serve as an indication that the reactive definition of
non-interference is not overly restrictive and might constitute an important tool
for reasoning about absence of information flow in the presence of cryptography.

Theorem 2. (Information Quantity and Non-Interference) Let a structure
(M̂ ,S ), a partition Γ = {Si | i ∈ I} of S for a finite index set I, and a flow
policy F = (Γ, �) of (M̂ ,S ) be given. Then we have (M̂ ,S ) |=perf F (resp.
(M̂ ,S ) |=poly F) iff for all H, L ∈ I with SH �� SL we have Q||·,·||

(M̂ ,S ,Γ )
(H, L) = 0

for all distances ||·, ·|| (resp. QP
||·,·||c
(M̂ ,S ,Γ )

(H, L) ∈ NEGL for all computational
distances ||·, ·||c). �

Proof. We only prove the more complicated computational case here; the per-
fect case can be easily derived from that. We start with the left-to-right di-
rection. Assume for contradiction that QP

||·,·||c
(M̂ ,S ,Γ )

(H, L) �∈ NEGL for some
H, L with SH �� SL and some computational distance ||·, ·||c. This means that
there exist two partition configurations conf 1 = (M̂ ,S ,U1, A) and conf 2 =
(M̂ ,S ,U2, A) from Confpoly(M̂ ,S , Γ ) with Ul := {H(l)

H , HL, X} ∪ {Hi | i ∈
I \ {H, L}} such that ||view conf 1,k(HL), view conf 2,k(HL)||c = QP

||·,·||c
(M̂ ,S ,Γ )

(H, L).
This implies view conf 1,k(HL) �≈ view conf 2,k(HL), i.e., there exists a probabilistic
polynomial-time distinguisher Dis such that |P (Dis(1k, view conf 1,k(HL)) = 1) −
P (Dis(1k, view conf 2,k(HL)) = 1)| = n(k) for a non-negligible function n. We now
define a non-interference configuration conf that contradicts (M̂ ,S ) |=poly F .
If the high user of conf receives b = 0, it acts as H(1)

H , and as H(2)
H otherwise.

The low user of conf act as HL but when HL would enter final state, the low
user uses Dis as a blackbox submachine, runs it on HL’s view, and outputs the
bit that Dis outputs. The low user is polynomial-time because both HL and
Dis are polynomial-time. The remaining users of conf act as in configuration
conf 1 and conf 2. By the construction of conf , the probability of a correct guess
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b = b∗ of the low user in conf is equal to n(k), which yields a contradiction to
(M̂ ,S ) |=poly F .

We now prove the right-to-left direction. Assume for contradiction that
(M̂ ,S ) �|=poly F . Then there exist H, L with SH �� SL and a non-interference
configuration conf for SH ,SL such that the probability of a correct guess of the
low user in conf is equal to 1

2 +n(k) for some non-negligible function n. We now
define two partition configurations conf 1, conf 2 as follows. The user H(1)

H in
conf 1 acts as HH would if it received b = 0, and H(2)

H in conf 2 acts as HH would
if it received b = 1. The user HL in conf 1 and conf 2 acts as the low user in conf
but instead of outputting the bit b∗ to the now non-existing machine OUTL, it
simply stores b∗ (to keep it part of its view). The remaining users act as in conf .
Now, as n is a non-negligible function, we immediately obtain view conf 1,k(HL) �≈
view conf 2,k(HL) by construction of conf 1 and conf 2, and hence
||view conf 1,k(HL), view conf 2,k(HL)||c �∈ NEGL for every computational distance
||·, ·||c. This yields QP

||·,·||c
(M̂ ,S ,Γ )

(H, L) ≥ ||view conf 1,k(HL), view conf 2,k(HL)||c �∈
NEGL and hence the desired contradiction.

The key property proved about the notions of perfect and computation prob-
abilistic non-interference in [1] is that they are preserved under reactive simu-
latability, i.e., if (M̂2,S ) fulfills a non-interference requirement and (M̂1,S ) is at
least as secure as (M̂2,S ), then (M̂1,S ) also fulfills this non-interference require-
ment. Using the results of Theorem 2 and Theorem 1, we can give a very short
alternative proof.

Corollary 1. (Preservation of Perfect/Computation Probabilistic Non-
interference [1], Sketch) Let structures (M̂1,S ), (M̂2,S ) be given such that
(M̂1,S ) ≥x

sec (M̂2,S ) for x ∈ {poly, perf}. Then (M̂2,S ) |=x F for a flow policy
F implies (M̂1,S ) |=x F . �

Proof. Theorem 2 and (M̂2,S ) |=poly F imply QP
||·,·||c
M̂2,S ,Γ

(H, L) ∈ NEGL for all
H, L with SH �� SL and all computational distances ||·, ·||c. Theorem 1 im-
plies QP

||·,·||c
M̂1,S ,Γ

(H, L) ≤ QP
||·,·||c
M̂2,S ,Γ

(H, L) + ε(k) for some ε ∈ NEGL. Hence

QP
||·,·||c
M̂1,S ,Γ

(H, L) ∈ NEGL because the class of negligible function is closed under

addition. Theorem 2 then yields (M̂1,S ) |=poly F . The perfect case is proved by
replacing QP with Q and by considering arbitrary distances.

6 Conclusion

We have presented the first definitions for quantifying information flow within
a reactive setting. The definitions comprise unconditional as well as complexity-
theoretic aspects of security and are hence suited for reasoning about information
flow even in the presence of cryptography. We have shown that our definitions are
preserved under simulatability which constitutes the cryptographic notion of a
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secure implementation. This significantly simplifies to determine the information
flow quantity for cryptographic system since simulatability helps to eliminate
cryptography-related details such as error probabilities and computational re-
strictions; hence we can hope to exploit existing non-cryptographic techniques for
this task. We have linked our definitions to existing non-interference definitions
by showing that a zero or negligible quantity of information flow is equivalent to
perfect and computational probabilistic non-interference. With our simulatabil-
ity preservation theorem, this has in particular allowed for a short, alternative
proof that non-interference properties are preserved under simulatability.

References

1. M. Backes and B. Pfitzmann. Computational probabilistic non-interference. In
Proc. 7th European Symposium on Research in Computer Security (ESORICS),
volume 2502 of Lecture Notes in Computer Science, pages 1–23. Springer, 2002.

2. M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic pur-
poses. In Proc. 24th IEEE Symposium on Security & Privacy, pages 140–152,
2003.

3. M. Backes, B. Pfitzmann, and M. Waidner. Secure asynchronous reactive systems.
IACR Cryptology ePrint Archive 2004/082, Mar. 2004.

4. D. Bell and L. LaPadula. Secure computer systems: Unified exposition and multics
interpretation. Computer Science Technical Report ESD-TR-75-306, The Mitre
Corporation, 1976.

5. D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of confi-
dential data. In Proc. Quantitative Aspects of Programming Languages, volume 59
of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

6. D. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
7. D. E. Denning. A lattice model of secure information flow. Communications of the

ACM, 19(5):236–243, 1976.
8. A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. In Proc.

15th IEEE Computer Security Foundations Workshop (CSFW), pages 1–17, 2002.
9. R. Focardi and R. Gorrieri. The compositional security checker: A tool for the

verification of information flow security properties. IEEE Transactions on Software
Engineering, 23(9):550–571, 1997.

10. R. Focardi and F. Martinelli. A uniform approach to the definition of security prop-
erties. In Proc. 8th Symposium on Formal Methods Europe (FME 1999), volume
1708 of Lecture Notes in Computer Science, pages 794–813. Springer, 1999.

11. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. 3rd
IEEE Symposium on Security & Privacy, pages 11–20, 1982.

12. J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. 5th
IEEE Symposium on Security & Privacy, pages 75–86, 1984.

13. J. W. Gray III. Probabilistic interference. In Proc. 11th IEEE Symposium on
Security & Privacy, pages 170–179, 1990.

14. J. W. Gray III. Toward a mathematical foundation for information flow security.
Journal of Computer Security, 1(3):255–295, 1992.

15. C. A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science, Prentice Hall, Hemel Hempstead, 1985.

16. M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network version of the pump. In
Proc. 16th IEEE Symposium on Security & Privacy, pages 144–154, 1995.



Quantifying Probabilistic Information Flow 349

17. B. W. Lampson. A note on the confinement problem. Communications of the
ACM, 16(10):613–615, 1973.

18. P. Laud. Semantics and program analysis of computationally secure information
flow. In Proc. 10th European Symposium on Programming (ESOP), pages 77–91,
2001.

19. P. Laud. Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In Proc. 25th IEEE Symposium on Security & Privacy, pages
71–85, 2004.

20. G. Lowe. Quantifying information flow. In Proc. 15th IEEE Computer Security
Foundations Workshop (CSFW), pages 18–31, 2002.

21. N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco,
1996.

22. H. Mantel. Unwinding possibilistic security properties. In Proc. 6th European
Symposium on Research in Computer Security (ESORICS), volume 1895 of Lecture
Notes in Computer Science, pages 238–254. Springer, 2000.

23. H. Mantel and A. Sabelfeld. A generic approach to the security of multi-threaded
programs. In Proc. 14th IEEE Computer Security Foundations Workshop (CSFW),
pages 200–214, 2001.

24. D. McCullough. Specifications for multi-level security and a hook-up property. In
Proc. 8th IEEE Symposium on Security & Privacy, pages 161–166, 1987.

25. J. McLean. Security models and information flow. In Proc. 11th IEEE Symposium
on Security & Privacy, pages 180–187, 1990.

26. J. McLean. Security models. Chapter in Encyclopedia of Software Engineering,
1994.

27. J. K. Millen. Covert channel capacity. In Proc. 8th IEEE Symposium on Security
& Privacy, pages 60–66, 1987.

28. A. Myers and B. Liskov. A decentralized model for information flow control. In
Proc. ACM Symposium on Operating System Principles, pages 129–142, 1997.

29. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In Proc. 22nd IEEE Sym-
posium on Security & Privacy, pages 184–200, 2001. Extended version of
the model (with Michael Backes) IACR Cryptology ePrint Archive 2004/082,
http://eprint.iacr.org/.

30. R. G. Riccardo Focardi, Anna Ghelli. Using non-interference for the analysis of
security protocols. In Proc. DIMACS Workshop on Design and Formal Verification
of Security Protocols, 1997.

31. A. Sabelfeld and D. Sands. A per model of secure information flow in sequential
programs. In Proc. European Symposium on Programming (ESOP), pages 40–58.
Springer, 1999.

32. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-
grams. In Proc. 13th IEEE Computer Security Foundations Workshop (CSFW),
pages 200–214, 2000.

33. D. Sutherland. A model of information. In Proc. 9th National Computer Security
Conference, pages 175–183, 1986.

34. D. Volpano. Secure introduction of one-way functions. In Proc. 13th IEEE Com-
puter Security Foundations Workshop (CSFW), pages 246–254, 2000.

35. D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language.
In Proc. 11th IEEE Computer Security Foundations Workshop (CSFW), pages
34–43, 1998.

36. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.



350 M. Backes

37. J. T. Wittbold and D. M. Johnson. Information flow in nondeterministic systems.
In Proc. 11th IEEE Symposium on Security & Privacy, pages 144–161, 1990.

38. A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 80–91, 1982.

39. S. Zdancewic and A. C. Myers. Secure information flow and CPS. In Proc. 10th
European Symposium on Programming (ESOP), volume 2028 of Lecture Notes in
Computer Science, pages 46–61. Springer, 2001.

A The Model of Reactive Simulatability

In this section we give a more comprehensive review of the model of reactive
simulatability [29,3] for the sake of completeness.

A.1 General System Model

Communication between different machines is done via ports. Inspired by the
CSP-notation [15], we write input and output ports as p? and p!, respectively.
The input and output ports in a port set P are written in(P) and out(P), respec-
tively. Connections are defined by naming convention: port p! sends messages to
p?. To achieve asynchronous timing, a message is not immediately delivered to
its recipient, but is first stored in a special machine p̃ called a buffer, where it
waits to be scheduled. This can be done by the machine with the unique clock-
out port p	!. To schedule the i-th message of buffer p̃, it outputs i at p	!, see
Figure 2. The buffer then delivers the i-th message and removes it from its in-
ternal list. Most buffers are scheduled either by a specific master scheduler or
by the adversary, i.e., one of those has the clock-out port. Ports p! and p?, in
contrast to the other four port types occurring at the buffers, are called simple,
and a simple machine has only simple ports and clock-out ports.

Receiving
machine

Sending
machine

Scheduler for
buffer q~

q!

q   !

q?

Buffer q
~

q   ?

q↔!

q↔?

1

Fig. 2. Naming of ports around a buffer. Later one can often abstract from the buffer
and simply regard q! and q? as asynchronously connected.

The precise definition of machines is a variant of probabilistic state-transition
machines, similar to probabilistic I/O automata as sketched by Lynch [21]. If a
machine is switched, it reads an input tuple at its input ports and performs its
transition function. This yields a new state and an output tuple. A probabilistic
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transition function actually describes a finite distribution over the pairs of a new
state and an output tuple. Furthermore, each machine has bounds on the length
of considered inputs. This allows time bounds independent of the environment.

Definition 7. (Machines) A machine (for an alphabet Σ) is a tuple

M = (nameM,PortsM,StatesM, δM, lM, IniM,FinM)

of a machine name nameM ∈ Σ+, a finite sequence PortsM of ports, a set
StatesM ⊆ Σ∗ of states, a probabilistic state-transition function δM, a length
function lM : StatesM → (N ∪ {∞})|in(PortsM)|, and sets IniM,FinM ⊆ StatesM

of initial and final states. Its input set is IM := (Σ∗)|in(PortsM)|; the i-th ele-
ment of an input tuple denotes the input at the i-th in-port. Its output set is
OM := (Σ∗)|out(PortsM)|. The empty word, ε, denotes no in- or output at a port. δM

maps each pair (s, I) ∈ StatesM ×IM to a finite distribution over StatesM ×OM.
If s ∈ FinM or I = (ε, . . . , ε), then δM(s, I) = (s, (ε, . . . , ε)) deterministically.

Inputs are ignored beyond the length bounds, i.e., δM(s, I) = δM(s, I�lM(s)) for
all I ∈ IM, where (I�lM(s))i := Ii�lM(s)i

for all i. �

In the text, we often write “M” for nameM as well. In the following, the initial
states of all machines are a security parameter k ∈ N in unary representation.
In order to define the notion of polynomial runtime for these machines, Turing
machine realizations of them are defined so that the runtime can be measured in
the size of the initial worktape content (typically a security parameter in unary
representation).

A collection Ĉ of machines is a finite set of machines with pairwise different
machine names and disjoint sets of ports. All machines start with the same
security parameter k. Let furthermore ports(Ĉ ) denote the set of all ports of all
machines in Ĉ . The completion [Ĉ ] of a collection Ĉ consists of all machines
of Ĉ and the buffers needed for all the ports in Ĉ . The free ports free(Ĉ ) in a
collection are those to which no other port in the collection connects. A collection
Ĉ is closed if its completion [Ĉ ] has no free ports except a special master clock-in
port clk	?. The machine with this port is the master scheduler, to which control
returns as a default.

For a closed collection, a probability space of runs (sometimes called traces
or executions) is defined. The machines switch sequentially, i.e., there is exactly
one active machine M at any time, called the current scheduler. If this machine
has clock-out ports, it can select the next message to be scheduled as explained
above. If that message exists, it is delivered by the buffer and the recipient is
the next active machine. If M attempts to schedule multiple messages, only one
is taken. If it schedules none or the message does not exist, the master scheduler
is activated. Formally, runs are sequences of steps defined as follows (where the
state-transition function of buffers is as explained above).

Definition 8. (Runs) Given a closed collection Ĉ with master scheduler X and
a security parameter k, the probability space of runs is defined inductively by
the following algorithm. It has variables r for the run under construction and
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MCS for the current scheduler, and treats each port as a variable over Σ∗. Here,
r is an initially empty list, MCS a machine name initialized with X, and all port
variables are initially ε except for clk	? := 1. Probabilistic choices only occur in
Phase 1.

1. Switch current scheduler: Switch machine MCS, i.e., set (s′, O) ← δMCS(s, I)
for its current state s and in-port values I. Then assign ε to all in-ports of
MCS.

2. Termination: If X is in a final state, the run stops.
3. Buffer new messages: For each simple out-port q! of MCS, switch buffer q̃

with input q↔? := q!, cf. Figure 2. Then assign ε to all these ports q! and
q↔?.

4. Clean up scheduling: If at least one clock out-port of MCS has a value �= ε,
let q	! denote the first such port and assign ε to the others. Otherwise let
clk	? := 1 and MCS := X and go back to Phase 1.

5. Deliver scheduled message: Switch buffer q̃ with input q	? := q	! (see Fig-
ure 2), set q? := q↔! and then assign ε to all ports of q̃ and to q	!. Let
MCS := M′ for the unique machine M′ with q? ∈ ports(M′). Go back to
Phase 1.

Whenever a machine (this may be a buffer) with name nameM is switched from
(s, I) to (s′, O), we append a step (nameM, s, I ′, s′, O) to the run r for I ′ :=
I�lM(s), except if s is final or I ′ = (ε, . . . , ε). This gives a family of random
variables

runĈ = (runĈ ,k)k∈N.

For a number l ∈ N, the l-step prefix of a run r is the list of the first l steps. �

Next we define what a machine sees in a run and what events happen at a set
of ports, and the probabilities of such views and events.

Definition 9. (Views and Restrictions to Ports) The view of a set of machines
M̂ in a run r is the subsequence of all steps (nameM, s, I, s′, O) where nameM is
the name of a machine M ∈ M̂ . The restriction r�S of a run to a set S of ports
is a sequence derived as follows: First only retain the inputs and outputs, (I, O),
from each step, and further restrict I and O to the ports in S . Then delete pairs
where both I and O have become empty.

The corresponding families of random variables (in the probability space over
the runs) are denoted by

view Ĉ (M̂ ) = (view Ĉ ,k(M̂ ))k∈N and

runĈ �S= (runĈ ,k�S )k∈N.

With an additional index l, we denote the l(k)-step prefixes of the views and
restrictions. �

For a one-element set M̂ = {H} we write view Ĉ (H) for view Ĉ ({H}).
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A.2 Security-Specific System Model

For security purposes, we have to define how adversaries and honest users con-
nect to specified machines of a collection. First, an adversary may take over parts
of the initially intended machines. These machines are then absorbed into the
adversary, and the remaining machines form a structure. Formally, a structure is
a collection of machines in which one additionally distinguishes which free ports
honest users can connect to and expect some reasonable service (e.g., message
transport in a cryptographic firewall), and which ports are only used by adver-
saries. The former are the service ports in the following definition. Valid honest
users should neither try to connect to the remaining free ports of a structure,
nor, for unique naming, have ports that already occur inside the structure. This
is expressed by forbidden ports. The ports connecting to a given port set P are
expressed by the complement notation Pc, e.g., q!c = q↔?, q	!c = q	?, q↔!c = q?
in Figure 2, and vice versa.

Definition 10. (Structures) A structure is a pair (M̂ ,S ) where M̂ is a collection
of simple machines called correct machines, and S ⊆ free([M̂ ]) is called service
ports. If M̂ is clear from the context, let S̄ := free([M̂ ])\S . We call forb(M̂ ,S ) :=
ports(M̂ ) ∪ S̄ c the forbidden ports. �

A structure is completed to a (multi-party) configuration by a set of machines
U modeling the honest users, and by a machine A modeling the adversary. As
explained above, the machines in U do not have certain ports. A connects to the
remaining free ports of the structure.

Definition 11. ((Multi-party) Configurations)

a) A (multi-party) configuration of a structure (M̂ ,S ) is a tuple conf = (M̂ ,S ,
U , A), where U is a set of simple machines without forbidden ports, i.e.,
ports(U ) ∩ forb(M̂ ,S ) = ∅, and Ĉ := M̂ ∪ U ∪ {A} is a closed collection.
For simplicity, we often write runconf and view conf (M̂ ) instead of runĈ and
view Ĉ (M̂ )

b) The set of (multi-party) configurations is written Conf(M̂ ,S ). The subset of
configurations with polynomial-time users and a polynomial-time adversary
is called Confpoly(M̂ ,S ). The index poly is omitted if it is clear from the
context. �

Partition and non-interference configurations can now be defined by considering
only those users that have a specific set of ports so that they connect exactly to
the ports of the structure prescribed by the considered partition. We omit the
formal yet lengthy definitions and refer to [1].

A.3 Definition of Non-interference in the Model

We finally give a precise definition of perfect and computational probabilis-
tic non-interference in the reactive model, i.e., the formal semantics of the



354 M. Backes

BITH OUTL

HLHH

MSH SL^

pbit p*bit

Fig. 3. Sketch of the non-interference definition: HL attempts to guess a bit that HH

is attempting to transfer

�� relation. Usually, expressing this semantics is the most difficult part of an
information-flow definition. Given our underlying model, it is somewhat eas-
ier because we already have definitions of runs, views, and indistinguishability.
Based on these definitions, we can define the probability that the low user cor-
rectly guesses the bit that the high user attempts to transmit.

Definition 12. (Guessing Probability) For a non-interference configuration
conf ∈ Conf(M̂ ,S , Γ ) for SH ,SL ∈ Γ of a structure (M̂ ,S ), the guessing proba-
bility Pguess,conf is defined as

Pguess,conf := P (b = b∗ | r ← runconf ,k; b := r�pbit!; b
∗ := r�p∗

bit?),

with the ports pbit! and p∗bit? defined as in Figure 3. This is a function of the
security parameter k. �

Now we are ready to give the non-interference definition, i.e., the definition
of the semantics of a flow policy for a reactive setting.

Definition 13. (Non-Interference) Let a structure (M̂ ,S ) ∈ Sys, and a flow
policy F = (Γ, �), Γ = {Si | i ∈ I} be given. We say that (M̂ ,S ) fulfills the
non-interference requirement defined by the flow policy F

a) perfectly, written (M̂ ,S ) |=perf F , iff for every H, L with SH �� SL and
every non-interference configuration conf ∈ Conf(M̂ ,S , Γ ) for SH and SL,
we have

Pguess,conf ≤ 1
2
.

c) computationally, written (M̂ ,S ) |=poly F , iff for every H, L with
SH �� SL and every polynomial-time non-interference configuration conf
∈ Confpoly(M̂ ,S , Γ ) for SH and SL there exists a function ε ∈ NEGL such
that

Pguess,conf ≤ 1
2

+ ε(k).

�
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Abstract. We consider the enforcement powers of program monitors,
which intercept security-sensitive actions of a target application at run
time and take remedial steps whenever the target attempts to execute a
potentially dangerous action. A common belief in the security commu-
nity is that program monitors, regardless of the remedial steps available
to them when detecting violations, can only enforce safety properties. We
formally analyze the properties enforceable by various program monitors
and find that although this belief is correct when considering monitors
with simple remedial options, it is incorrect for more powerful monitors
that can be modeled by edit automata. We define an interesting set of
properties called infinite renewal properties and demonstrate how, when
given any reasonable infinite renewal property, to construct an edit au-
tomaton that provably enforces that property. We analyze the set of
infinite renewal properties and show that it includes every safety prop-
erty, some liveness properties, and some properties that are neither safety
nor liveness.

1 Introduction

A ubiquitous technique for enforcing software security is to dynamically monitor
the behavior of programs and take remedial action when the programs behave in
a way that violates a security policy. Firewalls, virtual machines, and operating
systems all act as program monitors to enforce security policies in this way. We
can even think of any application containing security code that dynamically
checks input values, queries network configurations, raises exceptions, warns the
user of potential consequences of opening a file, etc., as containing a program
monitor inlined into the application.

Because program monitors, which react to the potential security violations
of target programs, enjoy such ubiquity, it is important to understand their ca-
pabilities as policy enforcers. Such understanding is essential for developing sys-
tems that support program monitoring and for developing sound languages for
specifying the security policies that these systems can enforce. In addition, well-
defined boundaries on the enforcement powers of security mechanisms allow se-
curity architects to determine exactly when certain mechanisms are needed and
save the architects from attempting to enforce policies with insufficiently strong
mechanisms.
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Schneider defined the first formal models of program monitors and discov-
ered one particularly useful boundary on their power [24]. He defined a class of
monitors that respond to potential security violations by halting the target ap-
plication, and he showed that these monitors can only enforce safety properties—
security policies that specify that “nothing bad ever happens” in a valid run of
the target [18]. When a monitor in this class detects a potential security violation
(i.e., “something bad”), it must halt the target.

Although Schneider’s result applies only to a particular class of program
monitors, other research on formalizing monitors has likewise developed only
models that enforce just safety properties. In this paper, we advance the the-
oretical understanding of practical program monitors by proving that certain
types of monitors can enforce non-safety properties. These monitors are mod-
eled by edit automata, which have the power to insert actions on behalf of and
suppress actions attempted by the target application. We prove an interesting
lower bound on the properties enforceable by such monitors: a lower bound that
encompasses strictly more than safety properties.

1.1 Related Work

A rich variety of security monitoring systems has been implemented
[14,7,9,11,17,4,8,5]. In general, these systems allow arbitrary code to be exe-
cuted in response to potential security violations, so they cannot be modeled
as monitors that simply halt upon detecting a violation. In most cases, the
languages provided by these systems for specifying policies can be considered
domain-specific aspect-oriented programming languages [15].

Theoretical efforts to describe security monitoring have lagged behind the
implementation work, making it difficult to know exactly which sorts of security
policies to expect the implemented systems to be able to enforce. After Schneider
made substantial progress by showing that safety properties are an upper bound
on the set of policies enforceable by simple monitors [24], Viswanathan, Kim,
and others tightened this bound by placing explicit computability constraints on
the safety properties being enforced [25,16]. Viswanathan also demonstrated that
these computable safety properties are equivalent to coRE properties [25]. Fong
then formally showed that placing limits on a monitor’s state space induces limits
on the properties enforceable by the monitor [12]. Recently, Hamlen, Schneider,
and Morrisett compared the enforcement power of static analysis, monitoring,
and program rewriting [13]. They showed that the set of statically enforceable
properties equals the set of recursively decidable properties of programs, that
monitors with access to source-program text can enforce strictly more properties
than can be enforced through static analysis, and that program rewriters do not
correspond to any complexity class in the arithmetic hierarchy.

In earlier theoretical work, we took a first step toward understanding the
enforcement power of monitors that have greater abilities than simply to halt
the target when detecting a potential security violation [20]. We introduced edit
automata, a new model that captures the ability of program monitors to insert
actions on behalf of the target and to suppress potentially dangerous actions.
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Edit automata are semantically similar to deterministic I/O automata [22] but
have very different correctness requirements. The primary contribution of our
earlier work was to set up a framework for reasoning about program monitors
by providing a formal definition of what it even means for a monitor to en-
force a property. Although we also proved the enforcement boundaries of several
types of monitors, we did so in a model that assumed that all target programs
eventually terminate. Hence, from a practical perspective, our model did not ac-
curately capture the capabilities of real systems. From a theoretical perspective,
modeling only terminating targets made it impossible to compare the properties
enforceable by edit automata to well-established sets of properties such as safety
and liveness properties.

1.2 Contributions

This paper presents the nontrivial generalization of earlier work on edit au-
tomata [20] to potentially nonterminating targets. This generalization allows us
to reason about the true enforcement powers of an interesting and realistic class
of program monitors, and makes it possible to formally and precisely compare
this class to previously studied classes.

More specifically, we extend previous work in the following ways.

– We refine and introduce formal definitions needed to understand exactly
what it means for program monitors to enforce policies on potentially non-
terminating target applications (Section 2). A new notion of enforcement
(called effective= enforcement) enables the derivation of elegant lower bounds
on the sets of policies monitors can enforce.

– We show why it is commonly believed that program monitors enforce only
computable safety properties (Section 3). We show this by revisiting and
extending earlier theorems that describe the enforcement powers of simple
monitors. The earlier theorems are extended by considering nonterminating
targets and by proving that exactly one computable safety property—that
which considers everything a security violation—cannot be enforced by pro-
gram monitors.

– We define an interesting set of properties called infinite renewal properties
and demonstrate how, when given any reasonable infinite renewal property,
to construct an edit automaton that provably enforces that property (Sec-
tion 4).

– We prove that program monitors modeled by edit automata can enforce
strictly more than safety properties. We demonstrate this by analyzing the
set of infinite renewal properties and showing that it includes every safety
property, some liveness properties, and some properties that are neither
safety nor liveness (Section 5).

2 Technical Apparatus

This section provides the formal framework necessary to reason precisely about
the scope of policies program monitors can enforce.
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2.1 Notation

We specify a system at a high level of abstraction as a nonempty, possibly
countably infinite set of program actions A (also referred to as program events).
An execution is simply a finite or infinite sequence of actions. The set of all finite
executions on a system with action set A is notated as A�. Similarly, the set of
infinite executions is Aω , and the set of all executions (finite and infinite) is A∞.
We let the metavariable a range over actions, σ and τ over executions, and Σ
over sets of executions (i.e., subsets of A∞).

The symbol · denotes the empty sequence, that is, an execution with no
actions. We use the notation τ ; σ to denote the concatenation of two finite se-
quences. When τ is a (finite) prefix of (possibly infinite) σ, we write τ�σ or,
equivalently, σ�τ . If σ has been previously quantified, we often use ∀τ�σ as an
abbreviation for ∀τ ∈ A� : τ�σ; similarly, if τ has already been quantified, we
abbreviate ∀σ ∈ A∞ : σ�τ simply as ∀σ�τ .

2.2 Policies and Properties

A security policy is a predicate P on sets of executions; a set of executions
Σ ⊆ A∞ satisfies a policy P if and only if P (Σ). For example, a set of executions
satisfies a nontermination policy if and only if every execution in the set is an
infinite sequence of actions. A key-uniformity policy might be satisfied only by
sets of executions such that the cryptographic keys used in all the executions
form a uniform distribution over the universe of key values.

Following Schneider [24], we distinguish between properties and more general
policies as follows. A security policy P is a property if and only if there exists a
characteristic predicate P̂ over A∞ such that for all Σ ⊆ A∞, the following is
true.

P (Σ) ⇐⇒ ∀σ ∈ Σ : P̂ (σ) (Property)

Hence, a property is defined exclusively in terms of individual executions
and may not specify a relationship between different executions of the program.
The nontermination policy mentioned above is therefore a property, while the
key-uniformity policy is not. The distinction between properties and policies
is an important one to make when reasoning about program monitors because
a monitor sees just individual executions and can thus enforce only security
properties rather than more general policies.

There is a one-to-one correspondence between a property P and its char-
acteristic predicate P̂ , so we use the notation P̂ unambiguously to refer both
to a characteristic predicate and the property it induces. When P̂ (σ), we say
that σ satisfies or obeys the property, or that σ is valid or legal. Likewise, when
¬P̂ (τ), we say that τ violates or disobeys the property, or that τ is invalid or
illegal.

Properties that specify that “nothing bad ever happens” are called safety
properties [18,3]. No finite prefix of a valid execution can violate a safety prop-
erty; stated equivalently: once some finite execution violates the property, all
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extensions of that execution violate the property. Formally, P̂ is a safety prop-
erty on a system with action set A if and only if the following is true.1

∀σ ∈ A∞ : (¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ)) (Safety)

Many interesting security policies, such as access-control policies, are safety prop-
erties, since security violations cannot be “undone” by extending a violating
execution.

Dually to safety properties, liveness properties [3] state that nothing excep-
tionally bad can happen in any finite amount of time. Any finite sequence of
actions can always be extended so that it satisfies the property. Formally, P̂ is
a liveness property on a system with action set A if and only if the following is
true.

∀σ ∈ A� : ∃τ�σ : P̂ (τ) (Liveness)

The nontermination policy is a liveness property because any finite execution
can be made to satisfy the policy simply by extending it to an infinite execution.

General properties may allow executions to alternate freely between satisfying
and violating the property. Such properties are neither safety nor liveness but
instead a combination of a single safety and a single liveness property [2]. We
show in Section 4 that edit automata effectively enforce an interesting new sort
of property that is neither safety nor liveness.

2.3 Security Automata

Program monitors operate by transforming execution sequences of an untrusted
target application at run time to ensure that all observable executions satisfy
some property [20]. We model a program monitor formally by a security au-
tomaton S, which is a deterministic finite or countably infinite state machine
(Q, q0, δ) that is defined with respect to some system with action set A. The set
Q specifies the possible automaton states, and q0 is the initial state. Different
automata have slightly different sorts of transition functions (δ), which accounts
for the variations in their expressive power. The exact specification of a transi-
tion function δ is part of the definition of each kind of security automaton; we
only require that δ be complete, deterministic, and Turing Machine computable.
We limit our analysis in this work to automata whose transition functions take
the current state and input action (the next action the target wants to execute)
and return a new state and at most one action to output (make observable). The
current input action may or may not be consumed while making a transition.

We specify the execution of each different kind of security automaton S
using a labeled operational semantics. The basic single-step judgment has the

1 Alpern and Schneider [3] model executions as infinite-length sequences of states,
where terminating executions contain a final state, infinitely repeated. We can map
an execution in their model to one in ours simply by sequencing the events that
induce the state transitions (no event induces a repeated final state). With this
mapping, it is easy to verify that our definitions of safety and liveness are equivalent
to those of Alpern and Schneider.
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form (q, σ) τ−→S (q′, σ′) where q denotes the current state of the automaton, σ
denotes the sequence of actions that the target program wants to execute, q′ and
σ′ denote the state and action sequence after the automaton takes a single step,
and τ denotes the sequence of at most one action output by the automaton in
this step. The input sequence, σ, is not observable to the outside world whereas
the output, τ , is observable.

We generalize the single-step judgment to a multi-step judgment using stan-
dard rules of reflexivity and transitivity.

Definition 1 (Multi-step). The multi-step relation (σ, q) τ=⇒S (σ′, q′) is in-
ductively defined as follows (where all metavariables are universally quantified).

1. (q, σ) ·=⇒S (q, σ)
2. If (q, σ) τ1−→S (q′′, σ′′) and (q′′, σ′′) τ2=⇒S (q′, σ′) then (q, σ)

τ1;τ2=⇒S (q′, σ′)

In addition, we extend previous work [20] by defining what it means for a pro-
gram monitor to transform a possibly infinite-length input execution into a possi-
bly infinite-length output execution. This definition is essential for understanding
the behavior of monitors operating on potentially nonterminating targets.

Definition 2 (Transforms). A security automaton S = (Q, q0, δ) on a system
with action set A transforms the input sequence σ ∈ A∞ into the output sequence
τ ∈ A∞, notated as (q0, σ) ⇓S τ , if and only if the following two constraints are
met.

1. ∀q′ ∈ Q : ∀σ′ ∈ A∞ : ∀τ ′ ∈ A� : ((q0, σ) τ ′
=⇒S (q′, σ′)) ⇒ τ ′�τ

2. ∀τ ′�τ : ∃q′ ∈ Q : ∃σ′ ∈ A∞ : (q0, σ) τ ′
=⇒S (q′, σ′)

When (q0, σ) ⇓S τ , the first constraint ensures that automaton S on input σ
outputs only prefixes of τ , while the second constraint ensures that S outputs
every prefix of τ .

2.4 Property Enforcement

Several authors have noted the importance of monitors obeying two abstract
principles, which we call soundness and transparency [19,13,8]. A mechanism that
purports to enforce a property P̂ is sound when it ensures that observable outputs
always obey P̂ ; it is transparent when it preserves the semantics of executions
that already obey P̂ . We call a sound and transparent mechanism an effective
enforcer. Because effective enforcers are transparent, they may transform valid
input sequences only into semantically equivalent output sequences, for some
system-specific definition of semantic equivalence. When two executions σ, τ ∈
A∞ are semantically equivalent, we write σ ∼= τ . We place no restrictions on a
relation of semantic equivalence except that it actually be an equivalence relation
(i.e., reflexive, symmetric, and transitive), and that properties should not be able
to distinguish between semantically equivalent executions.

∀ P̂ : ∀σ, τ ∈ A∞ : σ ∼= τ ⇒ (P̂ (σ) ⇐⇒ P̂ (τ)) (Indistinguishability)
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When acting on a system with semantic equivalence relation ∼=, we will call
an effective enforcer an effective∼= enforcer. The formal definition of effective∼=
enforcement is given below. Together, the first and second constraints in the
following definition imply soundness; the first and third constraints imply trans-
parency.

Definition 3 (Effective∼= Enforcement). An automaton S with starting state
q0 effectively∼= enforces a property P̂ on a system with action set A and semantic
equivalence relation ∼= if and only if ∀σ ∈ A∞ : ∃τ ∈ A∞ :

1. (q0, σ) ⇓S τ ,
2. P̂ (τ), and
3. P̂ (σ) ⇒ σ ∼= τ

In some situations, the system-specific equivalence relation ∼= complicates our
theorems and proofs with little benefit. We have found that we can sometimes
gain more insight into the enforcement powers of program monitors by limiting
our analysis to systems in which the equivalence relation (∼=) is just syntactic
equality (=). We call effective∼= enforcers operating on such systems effective=
enforcers. To obtain a formal notion of effective= enforcement, we first need to
define the “syntactic equality” of executions. Intuitively, σ=τ for any finite or
infinite sequences σ and τ when every prefix of σ is a prefix of τ , and vice versa.

∀σ, τ ∈ A∞ : σ=τ ⇐⇒ (∀σ′�σ : σ′�τ ∧ ∀τ ′�τ : τ ′�σ) (Equality)

An effective= enforcer is simply an effective∼= enforcer where the system-
specific equivalence relation (∼=) is the system-unspecific equality relation (=).

Definition 4 (Effective= Enforcement). An automaton S with starting state
q0 effectively= enforces a property P̂ on a system with action set A if and only
if ∀σ ∈ A∞ : ∃τ ∈ A∞ :

1. (q0, σ) ⇓S τ ,
2. P̂ (τ), and
3. P̂ (σ) ⇒ σ=τ

Because any two executions that are syntactically equal must be semantically
equivalent, any property effectively= enforceable by some security automaton is
also effectively∼= enforceable by that same automaton. Hence, an analysis of the
set of properties effectively= enforceable by a particular kind of automaton is
conservative; the set of properties effectively∼= enforceable by that same sort of
automaton must be a superset of the effectively= enforceable properties.

Past research has considered alternative definitions of enforcement [20]. Con-
servative enforcement allows monitors to disobey the transparency requirement,
while precise enforcement forces effective monitors to obey an additional timing
constraint (monitors must accept actions in lockstep with their production by
the target). Because these definitions do not directly match the intuitive sound-
ness and transparency requirements of program monitors, we do not study them
in this paper.
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3 Truncation Automata

This section demonstrates why it is often believed that program monitors enforce
only safety properties: this belief is provably correct when considering a common
but very limited type of monitor that we model by truncation automata. A trun-
cation automaton has only two options when it intercepts an action from the
target program: it may accept the action and make it observable, or it may halt
(i.e., truncate the action sequence of) the target program altogether. This model
is the focus of most of the theoretical work on program monitoring [24,25,16].
Truncation-based monitors have been used successfully to enforce a rich set of
interesting safety policies including access control [11], stack inspection [10,1],
software fault isolation [26,9], Chinese Wall [6,8,12], and one-out-of-k authoriza-
tion [12] policies.2

Truncation automata have been widely studied, but revisiting them here
serves several purposes. It allows us to extend to potentially nonterminating tar-
gets previous proofs of their capabilities as effective enforcers [20], to uncover the
single computable safety property unenforceable by any sound program moni-
tor, and to provide a precise comparison between the enforcement powers of
truncation and edit automata (defined in Section 4).

3.1 Definition

A truncation automaton T is a finite or countably infinite state machine (Q, q0, δ)
that is defined with respect to some system with action set A. As usual, Q speci-
fies the possible automaton states, and q0 is the initial state. The complete func-
tion δ : Q × A → Q ∪ {halt} specifies the transition function for the automaton
and indicates either that the automaton should accept the current input action
and move to a new state (when the return value is a new state), or that the
automaton should halt the target program (when the return value is halt). For
the sake of determinacy, we require that halt �∈ Q. The operational semantics of
truncation automata are formally specified by the following rules.

(q, σ) τ−→T (q′, σ′)

(q, σ) a−→T (q′, σ′) (T-Step)
if σ = a; σ′

and δ(q, a) = q′

(q, σ) ·−→T (q, ·) (T-Stop)if σ = a; σ′

and δ(q, a) = halt

As described in Section 2.3, we extend the single-step relation to a multi-step
relation using standard reflexivity and transitivity rules.
2 Although some of the cited work considers monitors with powers beyond truncation,

it also specifically studies many policies that can be enforced by monitors that only
have the power to truncate.
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3.2 Enforceable Properties

Let us consider a lower bound on the effective∼= enforcement powers of trun-
cation automata. Any property that is effectively= enforceable by a truncation
automaton is also effectively∼= enforceable by that same automaton, so we can
develop a lower bound on properties effectively∼= enforceable by examining which
properties are effectively= enforceable.

When given as input some σ ∈ A∞ such that P̂ (σ), a truncation automaton
that effectively= enforces P̂ must output σ. However, the automaton must also
truncate every invalid input sequence into a valid output. Any truncation of
an invalid input prevents the automaton from accepting all the actions in a
valid extension of that input. Therefore, truncation automata cannot effectively=
enforce any property in which an invalid execution can be a prefix of a valid
execution. This is exactly the definition of safety properties, so it is intuitively
clear that truncation automata effectively= enforce only safety properties.

Past research has presented results equating the enforcement power of trun-
cation automata with the set of computable safety properties [25,16,20]. We
improve the precision of previous work by showing that there is exactly one
computable safety property unenforceable by any sound security automaton:
the unsatisfiable safety property, ∀σ ∈ A∞ : ¬P̂ (σ). A monitor could never en-
force such a property because there is no valid output sequence that could be
produced in response to an invalid input sequence. To prevent this case and to
ensure that truncation automata can behave correctly on targets that generate
no actions, we require that the empty sequence satisfies any property we are in-
terested in enforcing. We often use the term reasonable to describe computable
properties P̂ such that P̂ (·). Previous work simply assumed P̂ (·) for all P̂ [20];
we now show this to be a necessary assumption. The following theorem states
that truncation automata effectively= enforce exactly the set of reasonable safety
properties.

Theorem 1 (Effective= T∞-Enforcement). A property P̂ on a system with
action set A can be effectively= enforced by some truncation automaton T if and
only if the following constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ) (Safety)
2. P̂ (·)
3. ∀σ ∈ A� : P̂ (σ) is decidable

Proof. Please see our companion technical report [21] for the proofs of all the
theorems presented in this paper.

We next delineate the properties effectively∼= enforceable by truncation au-
tomata. As mentioned above, the set of properties truncation automata
effectively= enforce provides a lower bound for the set of effectively∼= enforceable
properties; a candidate upper bound is the set of properties P̂ that satisfy the
following extended safety constraint.

∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : (¬P̂ (τ) ∨ τ ∼= σ′) (T-Safety)
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This is an upper bound because a truncation automaton T that effectively∼=
enforces P̂ must halt at some finite point (having output σ′) when its input (σ)
violates P̂ ; otherwise, T would accept every action of the invalid input. When T
halts, all extensions (τ) of its output must either violate P̂ or be equivalent to
its output; otherwise, there is a valid input sequence for which T fails to output
an equivalent sequence.

Actually, as the following theorem shows, this upper bound is almost tight.
We simply have to add computability restrictions on the property to ensure that
a truncation automaton can decide when to halt the target.

Theorem 2 (Effective∼= T∞-Enforcement). A property P̂ on a system with
action set A can be effectively∼= enforced by some truncation automaton T if
and only if there exists a decidable predicate D over A� such that the following
constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : D(σ′)
2. ∀(σ′; a) ∈ A� : D(σ′; a) ⇒ (P̂ (σ′) ∧ ∀τ�(σ′; a) : P̂ (τ) ⇒ τ ∼= σ′)
3. ¬D(·)

On practical systems, it is likely uncommon that the property requiring en-
forcement and the system’s relation of semantic equivalence are so broadly de-
fined that some invalid execution has a prefix that not only can be extended to
a valid execution, but that is also equivalent to all valid extensions of the prefix.
We therefore consider the set of properties detailed in the theorem of Effective=
T∞-Enforcement (i.e., reasonable safety properties) more indicative of the true
enforcement power of truncation automata.

4 Edit Automata

We now consider the enforcement capabilities of a stronger sort of security au-
tomaton called the edit automaton [20]. We refine previous work by presenting a
more concise formal definition of edit automata. More importantly, we analyze
the enforcement powers of edit automata on possibly infinite sequences, which
allows us to prove that edit automata can effectively= enforce an interesting,
new class of properties that we call infinite renewal properties.

4.1 Definition

An edit automaton E is a triple (Q, q0, δ) defined with respect to some system
with action set A. As with truncation automata, Q is the possibly countably
infinite set of states, and q0 is the initial state. In contrast to truncation au-
tomata, the complete transition function δ of an edit automaton has the form
δ : Q × A → Q × (A ∪ {·}). The transition function specifies, when given a cur-
rent state and input action, a new state to enter and either an action to insert
into the output stream (without consuming the input action) or the empty se-
quence to indicate that the input action should be suppressed (i.e., consumed
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from the input without being made observable). We previously defined edit au-
tomata that could also perform the following transformations in a single step:
insert a finite sequence of actions, accept the current input action, or halt the
target [20]. However, all of these transformations can be expressed in terms of
suppressing and inserting single actions. For example, an edit automaton can
halt a target by suppressing all future actions of the target; an edit automaton
accepts an action by inserting and then suppressing that action (first making the
action observable and then consuming it from the input). Although in practice
these transformations would each be performed in a single step, we have found
the minimal operational semantics containing only the two rules shown below
more amenable to formal reasoning. Explicitly including the additional rules in
the model would not invalidate any of our results.

(q, σ) τ−→E (q′, σ′)

(q, σ) a′−→E (q′, σ) (E-Ins)
if σ = a; σ′

and δ(q, a) = (q′, a′)

(q, σ) ·−→E (q′, σ′) (E-Sup)
if σ = a; σ′

and δ(q, a) = (q′, ·)
As with truncation automata, we extend the single-step semantics of edit

automata to a multi-step semantics with the rules for reflexivity and transitivity.

4.2 Enforceable Properties

Edit automata are powerful property enforcers because they can suppress a
sequence of potentially illegal actions and later, if the sequence is determined
to be legal, just re-insert it. Essentially, the monitor feigns to the target that
its requests are being accepted, although none actually are, until the monitor
can confirm that the sequence of feigned actions is valid. At that point, the
monitor inserts all of the actions it previously feigned accepting. This is the same
idea implemented by intentions files in database transactions [23]. Monitoring
systems like virtual machines can also be used in this way, feigning execution
of a sequence of the target’s actions and only making the sequence observable
when it is known to be valid.

As we did for truncation automata, we develop a lower bound on the set of
properties that edit automata effectively∼= enforce by considering the properties
they effectively= enforce. Using the above-described technique of suppressing
invalid inputs until the monitor determines that the suppressed input obeys a
property, edit automata can effectively= enforce any reasonable infinite renewal
(or simply renewal) property. A renewal property is one in which every valid
infinite-length sequence has infinitely many valid prefixes, and conversely, every
invalid infinite-length sequence has only finitely many valid prefixes. For exam-
ple, a property P̂ may be satisfied only by executions that contain the action a.
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This is a renewal property because valid infinite-length executions contain an in-
finite number of valid prefixes (in which a appears) while invalid infinite-length
executions contain only a finite number of valid prefixes (in fact, zero). This
P̂ is also a liveness property because any invalid finite execution can be made
valid simply by appending the action a. Although edit automata cannot enforce
this P̂ because ¬P̂ (·), in Section 5.2 we will recast this example as a reasonable
“eventually audits” policy and show several more detailed examples of renewal
properties enforceable by edit automata.

We formally deem a property P̂ an infinite renewal property on a system
with action set A if and only if the following is true.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ {σ′�σ | P̂ (σ′)} is an infinite set (Renewal1)

It will often be easier to reason about renewal properties without relying
on infinite set cardinality. We make use of the following equivalent definition in
formal analyses.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

If we are given a reasonable renewal property P̂ , we can construct an edit
automaton that effectively= enforces P̂ using the technique of feigning accep-
tance (i.e., suppressing actions) until the automaton has seen some legal prefix
of the input (at which point the suppressed actions can be made observable).
This technique ensures that the automaton eventually outputs every valid prefix,
and only valid prefixes, of any input execution. Because P̂ is a renewal prop-
erty, the automaton therefore outputs all prefixes, and only prefixes, of a valid
input while outputting only the longest valid prefix of an invalid input. Hence,
the automaton correctly effectively= enforces P̂ . The following theorem formally
states this result.

Theorem 3 (Lower Bound Effective= E∞-Enforcement). A property P̂
on a system with action set A can be effectively= enforced by some edit automaton
E if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)
2. P̂ (·)
3. ∀σ ∈ A� : P̂ (σ) is decidable

It would be reasonable to expect that the set of renewal properties also
represents an upper bound on the properties effectively= enforceable by edit
automata. After all, an effective= automaton cannot output an infinite number
of valid prefixes of an invalid infinite-length input σ without outputting σ itself.
In addition, on a valid infinite-length input τ , an effective= automaton must
output infinitely many prefixes of τ , and whenever it finishes processing an input
action, its output must be a valid prefix of τ because there may be no more input
(i.e., the target may not generate more actions).

However, there is a corner case in which an edit automaton can effectively=
enforce a valid infinite-length execution τ that has only finitely many valid pre-
fixes. If, after processing a prefix of τ , the automaton can decide that τ is the
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only valid extension of this prefix, then the automaton can cease processing in-
put and enter an infinite loop to insert the remaining actions of τ . While in
this infinite loop, the automaton need not output infinitely many valid prefixes,
since it is certain to be able to extend the current (possibly invalid) output into
a valid one.

The following theorem presents the tight boundary for effective= enforce-
ment of properties by edit automata, including the corner case described above.
Because we believe that the corner case adds relatively little to the enforce-
ment capabilities of edit automata, we only sketch the proof in the companion
technical report [21].

Theorem 4 (Effective= E∞-Enforcement). A property P̂ on a system with
action set A can be effectively= enforced by some edit automaton E if and only
if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒

⎛⎜⎜⎜⎜⎝
∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)
∨ P̂ (σ) ∧

∃σ′�σ : ∀τ�σ′ : P̂ (τ) ⇒ τ=σ ∧
the existence and actions of σ
are computable from σ′

⎞⎟⎟⎟⎟⎠
2. P̂ (·)
3. ∀σ ∈ A� : P̂ (σ) is decidable

We have found it difficult to precisely characterize the properties that are
effectively∼= enforceable by edit automata. Unfortunately, the simplest way to
specify this set appears to be to encode the semantics of edit automata into
recursive functions that operate over streams of actions. Then, we can reason
about the relationship between input and output sequences of such functions
just as the definition of effective∼= enforcement requires us to reason about the
relationship between input and output sequences of automata. Our final theorem
takes this approach; we present it for completeness.

Theorem 5 (Effective∼= E∞-Enforcement). Let D be a decidable function
D : A� ×A�→A∪{·}. Then R�

D is a decidable function R�
D : A� ×A�×A�→A�

parameterized by D and inductively defined as follows, where all metavariables
are universally quantified.

– R�
D(·, σ, τ) = τ

– (D(σ; a, τ) = ·) ⇒ R�
D(a; σ′, σ, τ ′) = R�

D(σ′, σ; a, τ ′)
– (D(σ; a, τ) = a′) ⇒ R�

D(a; σ′, σ, τ ′) = R�
D(a; σ′, σ, τ ′; a′)

A property P̂ on a system with action set A can be effectively∼= enforced by
some edit automaton E if and only if there exists a decidable D function (as
described above) such that for all (input sequences) σ ∈ A∞ there exists (output
sequence) τ ∈ A∞ such that the following constraints are met.

1. ∀σ′�σ : ∀τ ′ ∈ A� : (R�
D(σ′, ·, ·) = τ ′) ⇒ τ ′�τ

2. ∀τ ′�τ : ∃σ′�σ : R�
D(σ′, ·, ·) = τ ′
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3. P̂ (τ)
4. P̂ (σ) ⇒ σ ∼= τ

As with truncation automata, we believe that the theorems related to edit
automata acting as effective= enforcers more naturally capture their inherent
power than does the theorem of effective∼= enforcement. Effective= enforcement
provides an elegant lower bound for what can be effectively∼= enforced in practice.

Limitations. In addition to standard assumptions of program monitors, such
as that a target cannot circumvent or corrupt a monitor, our theoretical model
makes assumptions particularly relevant to edit automata that are sometimes vi-
olated in practice. Most importantly, our model assumes that security automata
have the same computational capabilities as the system that observes the moni-
tor’s output. If an action violates this assumption by requiring an outside system
in order to be executed, it cannot be “feigned” (i.e., suppressed) by the monitor.
For example, it would be impossible for a monitor to feign sending email, wait
for the target to receive a response to the email, test whether the target does
something invalid with the response, and then decide to “undo” sending email
in the first place. Here, the action for sending email has to be made observable
to systems outside of the monitor’s control in order to be executed, so this is an
unsuppressible action. A similar limitation arises with time-dependent actions,
where an action cannot be feigned (i.e., suppressed) because it may behave dif-
ferently if made observable later. In addition to these sorts of unsuppressible
actions, a system may contain actions uninsertable by monitors because, for
example, the monitors lack access to secret keys that must be passed as parame-
ters to the actions. In the future, we plan to explore the usefulness of including
sets of unsuppressible and uninsertable actions in the specification of systems.
We might be able to harness earlier work [20], which defined security automata
limited to inserting (insertion automata) or suppressing (suppression automata)
actions, toward this goal.

5 Infinite Renewal Properties

In this section, we examine some interesting aspects of the class of infinite re-
newal properties. We compare renewal properties to safety and liveness proper-
ties and provide several examples of useful renewal properties that are neither
safety nor liveness properties.

5.1 Renewal, Safety, and Liveness

The most obvious way in which safety and infinite renewal properties differ is that
safety properties place restrictions on finite executions (invalid finite executions
must have some prefix after which all extensions are invalid), while renewal
properties place no restrictions on finite executions. The primary result of the
current work, that edit automata can enforce any reasonable renewal property,
agrees with the finding in earlier work that edit automata can enforce every
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reasonable property on systems that only exhibit finite executions [20]. Without
infinite-length executions, every property is a renewal property.

Moreover, an infinite-length renewal execution can be valid even if it has infi-
nitely many invalid prefixes (as long as it also has infinitely many valid prefixes),
but a valid safety execution can contain no invalid prefixes. Similarly, although
invalid infinite-length renewal executions can have prefixes that alternate a finite
number of times between being valid and invalid, invalid safety executions must
contain some finite prefix before which all prefixes are valid and after which all
prefixes are invalid. Hence, every safety property is a renewal property. Given any
system with action set A, it is easy to construct a non-safety renewal property
P̂ by choosing an element a in A and letting P̂ (·), P̂ (a; a), but ¬P̂ (a).

There are renewal properties that are not liveness properties (e.g., the prop-
erty that is only satisfied by the empty sequence), and there are liveness prop-
erties that are not renewal properties (e.g., the nontermination property only
satisfied by infinite executions). Some renewal properties, such as the one only
satisfied by the empty sequence and the sequence a; a, are neither safety nor
liveness. Although Alpern and Schneider [3] showed that exactly one property
is both safety and liveness (the property satisfied by every execution), some in-
teresting liveness properties are also renewal properties. We examine examples
of such renewal properties in the following subsection.

5.2 Example Properties

We next present several examples of renewal properties that are not safety prop-
erties, as well as some examples of non-renewal properties. By the theorems in
Sections 3.2 and 4.2, the non-safety renewal properties are effectively= enforce-
able by edit automata but not by truncation automata. Moreover, the proof of
Theorem 3 in our companion technical report [21] shows how to construct an edit
automaton to enforce any of the renewal properties described in this subsection.

Renewal properties. Suppose we wish to constrain a user’s interaction with a
computer system. A user may first obtain credentials (e.g., a Kerberos ticket)
and then log in. If he has obtained no credentials then executing a log-in action
causes him to be logged in as a guest. At no time, however, can the user log in
as “root.” The process of logging in to the system may repeat indefinitely, so
we might write the requisite property P̂ more specifically as (a1

�; a2)∞, where
a1 ranges over all actions for obtaining credentials, a2 over actions for logging
in, and a3 over actions for logging in as root.3 This P̂ is not a safety property
because a finite sequence of only a1 events disobeys P̂ but can be extended (by
appending a2) to obey P̂ . Our P̂ is also not a liveness property because there
are finite executions that cannot be extended to satisfy P̂ , such as the sequence
containing only a3. However, this non-safety, non-liveness property is a renewal
property because infinite-length executions are valid if and only if they contain
infinitely many (valid) prefixes of the form (a1

�; a2)
�.

3 As noted by Alpern and Schneider [3], this sort of P̂ might be expressed with the
(strong) until operator in temporal logic; event a1 occurs until event a2.
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Interestingly, if we enforce the policy described above on a system that only
has actions a1 and a2, we remove the safety aspect of the property to obtain a
liveness property that is also a renewal property. On the system {a1, a2}, the
property satisfied by any execution matching (a1

�; a2)∞ is a liveness property
because any illegal finite execution can be made legal by appending a2. The
property is still a renewal property because an infinite execution is invalid if and
only if it contains a finite number of valid prefixes after which a2 never appears.

There are other interesting properties that are both liveness and renewal. For
example, consider a property P̂ specifying that an execution that does anything
must eventually perform an audit by executing some action a. This is similar to
the example renewal property given in Section 4.2. Because we can extend any
invalid finite execution with the audit action to make it valid, P̂ is a liveness
property. It is also a renewal property because an infinite-length valid execution
must have infinitely many prefixes in which a appears, and an infinite-length
invalid execution has no valid prefix (except the empty sequence) because a
never appears. Note that for this “eventually audits” renewal property to be
enforceable by an edit automaton, we have to consider the empty sequence valid.

As briefly mentioned in Section 4.2, edit automata derive their power from
being able to operate in a way similar to intentions files in database transac-
tions. At a high-level, any transaction-based property is a renewal property. Let
τ range over finite sequences of single, valid transactions. A transaction based
policy could then be written as τ∞; a valid execution is one containing any
number of valid transactions. Such transactional properties can be non-safety
because executions may be invalid within a transaction but become valid at the
conclusion of that transaction. Transactional properties can also be non-liveness
when there exists a way to irremediably corrupt a transaction (e.g., every trans-
action beginning with start ;self-destruct is illegal). Nonetheless, transactional
properties are renewal properties because infinite-length executions are valid if
and only if they contain an infinite number of prefixes that are valid sequences of
transactions. The renewal properties described above as matching sequences of
the form (a1

�; a2)∞ can also be viewed as transactional; each transaction must
match a1

�; a2.

Non-renewal properties. An example of an interesting liveness property that is
not a renewal property is general availability. Suppose that we have a system
with actions oi for opening (or acquiring) and ci for closing (or releasing) some
resource i. Our policy P̂ is that for all resources i, if i is opened, it must even-
tually be closed. This is a liveness property because any invalid finite sequence
can be made valid simply by appending actions to close every open resource.
However, P̂ is not a renewal property because there are valid infinite sequences,
such as o1; o2; c1; o3; c2; o4; c3; ..., that do not have an infinite number of valid
prefixes. An edit automaton can only enforce this sort of availability property
when the number of resources is limited to one (in this case, the property is trans-
actional: valid transactions begin with o1 and end with c1). Even on a system
with two resources, infinite sequences like o1; o2; c1; o1; c2; o2; c1; o1; ... prevent
this resource-availability property from being a renewal property.
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Fig. 1. Relationships between safety, liveness, and renewal properties

Of course, there are many non-renewal, non-liveness properties as well. We
can arrive at such properties by combining a safety property with any property
that is a liveness but not a renewal property. For example, termination is not
a renewal property because invalid infinite sequences have an infinite number
of valid prefixes. Termination is however a liveness property because any finite
execution is valid. When we combine this liveness, non-renewal property with a
safety property, such as that no accesses are made to private files, we arrive at
the non-liveness, non-renewal property in which executions are valid if and only
if they terminate and never access private files. The requirement of termination
prevents this from being a renewal property; moreover, this property is outside
the upper bound of what is effectively= enforceable by edit automata.

Figure 1 summarizes the results of the preceding discussion and that of Sec-
tion 5.1. The Trivial property considers all executions legal and is the only
property in the intersection of safety and liveness properties.

6 Conclusions

When considering the space of security properties enforceable by monitoring po-
tentially nonterminating targets, we have found that a simple variety of monitor
enforces exactly the set of computable and satisfiable safety properties while
a more powerful variety can enforce any computable infinite renewal property
that is satisfied by the empty sequence. Because our model permits infinite se-
quences of actions, it is compatible with previous research on safety and liveness
properties.

Awareness of formally proven bounds on the power of security mechanisms
facilitates our understanding of policies themselves and the mechanisms we need
to enforce them. For example, observing that a stack-inspection policy is really
just an access-control property (where access is granted or denied based on the
history of function calls and returns), which in turn is clearly a safety property,
makes it immediately obvious that simple monitors modeled by truncation au-
tomata are sufficient for enforcing stack-inspection policies. Similarly, if we can
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observe that infinite executions in a property specifying how users log in are valid
if and only if they contain infinitely many valid prefixes, then we immediately
know that monitors based on edit automata can enforce this renewal property.
We hope that with continued research into the formal enforcement bounds of
various security mechanisms, security architects will be able to pull from their
enforcement “toolbox” exactly the right sorts of mechanisms needed to enforce
the policies at hand.
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Abstract. Both the formal and the computational models of cryptography con-
tain the notion of message equivalence or indistinguishability. An encryption
scheme provides soundness for indistinguishability if, when mapping formal mes-
sages into the computational model, equivalent formal messages are mapped to
indistinguishable computational distributions. Previous soundness results are lim-
ited in that they do not apply when key-cycles are present. We demonstrate that an
encryption scheme provides soundness in the presence of key-cycles if it satisfies
the recently-introduced notion of key-dependent message (KDM) security. We
also show that soundness in the presence of key-cycles (and KDM security) nei-
ther implies nor is implied by security against chosen ciphertext attack (CCA-2).
Therefore, soundness for key-cycles is possible using a new notion of compu-
tational security, not possible using previous such notions, and the relationship
between the formal and computational models extends beyond chosen-ciphertext
security.

1 Introduction

‘Security’ is the Rorschach blob of theoretical computer science: every model of com-
putation has attempted to define it in its own way. In the area of cryptographic protocols,
two models are noteworthy for their natural definitions and rigorous proofs. The first of
these models, the computational model, is derived from complexity theory. Its defini-
tions are phrased in terms of the asymptotic behavior of Turing machines, and its main
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proof technique is the reduction. The other of these two models, the formal model (or,
Dolev-Yao model), is so-named because of its genesis in the field of formal methods.
Its definitions are phrased in terms of process algebras and state machines (particularly
non-deterministic ones) and it uses many different proof methods (including automated
ones).

In this work, we consider the relationship between these two models; more pre-
cisely, the relationship between a simplified formal model following the technique of
Abadi and Rogaway, and the computational implementation of this model. There are
two key differences between them: their representations of messages and the powers
they give to the adversary.

– In the computational model, messages are families of probability distributions over
bit-strings (indexed by the security parameter). The adversary is modeled as an
algorithm of realistic computational power: probabilistic polynomial-time.

– The formal model imposes a great deal more structure. Messages are expressions,
built according to a particular grammar. The atomic messages are symbols repre-
senting keys, random values, texts, and so on. More complex messages can be built
from simpler ones via the two operations of pairing and encryption. The adversary
is given only limited power to manipulate these expressions, such as separating a
concatenation or decrypting an encryption (if it knows the needed key).

Despite these differences, certain intuitions can be translated between the two mod-
els in the expected way. In particular, under carefully chosen conditions, indistinguisha-
bility of messages can be mapped directly from one model to the other. In the formal
model of Abadi and Rogaway, two expressions are thought to be indistinguishable to
the adversary, also called formally equivalent, if their only differences lie in encryption
terms that cannot be decrypted by the formal adversary. In the computational model,
on the other hand, messages are families of probability distributions on bit-strings.
Indistinguishability of computational messages is captured by the standard notion of
computational indistinguishability (i.e., indistinguishability by an efficient algorithm).

Relating the two models. Once a computational encryption scheme is fixed, an intuitive
function establishes the relationship between the two models. This function (called in-
terpretation), maps each formal expression to an ensemble (indexed by the security pa-
rameter) of probability distributions over bit-strings. Given an encryption scheme, and
hence a particular interpretation function, one can then ask whether all pairs of equiva-
lent formal messages map to indistinguishable probability distribution ensembles. If so,
we say that soundness holds1 and it implies that the formal model is a faithful abstrac-
tion of the computational model in the sense that security of the formal model implies
security in the computational.

The first soundness result of this type is due to Abadi and Rogaway in the symmetric-
key encryption setting [2]. They demonstrated that soundness holds when the security
level of the computational encryption algorithm is ‘type-0,’ a property of their own

1 This particular kind of soundness is but one piece of a much larger definition, but as a
convenient shorthand we will use ‘soundness’ in this paper to mean soundness of message
indistinguishability.
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devising. This result was later translated to the public-key setting (which is also the set-
ting we will consider in this paper) by Micciancio and Warinschi [41]. They found that
soundness in this setting is guaranteed by encryption schemes that satisfy the standard
definition of chosen-ciphertext security (CCA-2 in the notation of [13]). This power of
chosen-ciphertext security has been confirmed by subsequent extensions [29,19]. How-
ever, both the original result of Abadi and Rogaway and the later extensions (including
those that use CCA-2 security) share a common limitation: they do not necessarily ap-
ply in the presence of key-cycles.

A persistent question. A formal message M contains a key-cycle if it contains encryp-
tion terms {M1}K1 , {M2}K2 , . . . , {Mn}Kn (where {Mi}Ki denotes the encryption of
the message Mi with the public key Ki) such that Mi contains the key necessary to
decrypt {Mi+1}Ki+1 and Mn contains the key necessary to decrypt {M1}K1 . The sim-
plest key-cycle is the message {K−1}K , where K−1 denotes the (private) decryption
key associated with the encryption key K , but more complex key-cycles are possible
(e.g., {K−1

2 }K1 {K−1
1 }K2).

The formal model makes no distinction between those messages that posses key-
cycles and those that do not. Further, the presence of a key-cycle will not prevent a
formal expression from being interpreted as a computational distribution ensemble in
the natural way. However, neither the soundness result of Abadi and Rogaway nor sub-
sequent soundness demonstrations (described in Section 2) are known to hold for such
messages. (In fact, the stronger of these results [10,19] assume that no private or sym-
metric keys are encrypted at all!)

Thus, the question of key-cycles is both interesting in its own right and has im-
plications in a larger context. The standard security definitions for computational en-
cryption, such as CCA-2 security, do not obviously imply security in the presence of
key-cycles [38]. The formal model, on the other hand, assumes that key-cycles do not
weaken encryption in any way. Therefore, the issue of key-cycles may represent a ‘gap’
between the formal and computational models, and thus might shed light on their gen-
eral relationship.

Gaps between the two models. The majority of the results relating the two models
show the formal model to be sound with respect to standard definitions of the com-
putational model—with some notable exceptions. Some aspects of the formal model
have been shown to be overly strong relative to the computational model. For example,
the original soundness results of Abadi and Rogaway assumed that formal encryption
concealed all aspects of the plaintext. In particular, their result requires that symmet-
ric encryption hides (among other things)the length of the plaintext. Unfortunately, this
cannot be achieved for many contexts. Soundness in these other contexts is considered
by Micciancio and Warinschi [41], Laud [34], Bana [11], Micciancio and Panjwani [39]
and Adão, Bana and Scedrov [3], who require a weaker notion of formal equivalence.
(In keeping with this, we will use the more complex formal model that addresses these
weaknesses.)

On the other hand, other aspects of the formal model have been shown to be overly
weak compared to the computational one. Canetti and Herzog [19] and Backes and
Pfitzmann [9], for example, have demonstrated that the formal definition of secrecy
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(in the context of key-exchange protocols) is strictly weaker than the computational
definition. That is, some protocols may satisfy the formal notion of security but not
the computational one. Having demonstrated this gap, the authors close it by provid-
ing a strictly stronger formal definition that abstracts the computational definition in a
demonstrably faithful way.

Thus, at least two ‘gaps’ between the formal and computational models have been
uncovered. In both cases, their resolution forced changes onto the formal model. Should
the resolution of the problem of key-cicles again cause changes to the formal model, or
could it this time be more naturally resolved through modifications to the computational
model?

An alternate approach. Laud [33] has proposed a solution to the problem of key-cycles
which takes the first approach. That is, Laud’s solution provides soundness in the pres-
ence of key-cycles, but does so by weakening the notion of formal equivalence. It is
assumed that key-cycles somehow always ‘break’ the encryption and the formal ad-
versary is strengthened so as to be always able to ‘see’ inside the encryptions of a
key-cycle.

Soundness in the presence of key-cycles naturally holds under this assumption, but
we feel that the price paid is too high. Formal equivalence should reflect the ability
of the formal adversary to distinguish messages, which should in turn reflect the actual
extent to which the computational adversary can distinguish messages. It is often unrea-
sonable from a cryptographer’s point of view to a priori assume that the computational
adversary can break all key-cycles. We therefore propose, in this work, to demonstrate
soundness in the presence of key-cycles not by weakening encryption in the formal
model but by strengthening it in the computational one.

Our work. In this paper, we resolve the issue of soundness in the presence of key-
cycles by using the notion of key-dependent message (KDM) security for asymmetric
encryption. This definition was recently introduced simultaneously both by Black, Ro-
gaway and Shrimpton [14], who consider it in their own right, and by Camenisch and
Lysyanskaya [16], who use it for an anonymous credential system.

We, however, will use it to demonstrate two points:

1. As expected, and predicted by Black et al., this new definition is strong enough to
provide soundness in the presence of keys cycles. That is, a KDM-secure encryption
scheme provides soundness for the existing and unweakened formal model.

2. Also, soundness requires new computational definitions of security. That is, we
demonstrate that soundness and KDM security neither imply nor are implied by
chosen-ciphertext (CCA-2) security, the strongest known definition of security in
the (standard) computational model.2

Thus, the problem of key-cycles was a genuine gap between the formal and compu-
tational models at the time of the original Abadi-Rogaway result, but with recent ad-
vances in the computational model it can be repaired. Also, soundness in the presence of
key-cycles demonstrates that there is more to the relationship between the formal and

2 A stronger notion of security, plaintext-awareness, is known, but it is defined (generally)
only in the random-oracle model and so is regarded as non-standard. See Herzog, Liskov
and Micali [30] for fuller discussion and an alternate definition.
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computational models (in the case of asymmetric encryption) than chosen-ciphertext
security.

Limitations. We note that our results contain a few limitations of their own. Firstly,
we consider a passive adversary only. Secondly, KDM security has only been actually
implemented in the random oracle model, a non-standard variation of the computational
model. Lastly, we use a weakened version of the formal model in which encryptions
reveal the length of the plaintext and the key used to encrypt. (Rephrased in the language
of Abadi and Rogaway [2], we consider ‘type-3’ encryption and not ‘type-0.’)

However, it should also be noted that these limitations are smaller than they may first
seem. We consider a passive adversary solely for simplicity. We expect that our results
can be extended to consider active adversaries (as was the original Abadi-Rogaway
result) and regard our work as a ‘first step’ towards that extension. Secondly, we do
not use the random oracle in this work. We use only the definition of KDM security,
which is well-founded in the standard computational model and does not rely upon
the random oracle. Lastly, the issue of type-3 vs. type-0 encryption is orthogonal to
our work. We express our definitions and results in the style of type-3 encryption for
two reasons: to be in keeping with recent extensions, and because only type-3 security
is guaranteed by the standard computational definitions. (That is, definitions such as
chosen-ciphertext security do not a priori conceal the encryption key or the length of
the plaintext.) However, our results will map directly to their type-0 analogies provided
that the computational encryption scheme is length- and key-concealing as well as being
KDM-secure.

Overview of the paper. We begin with a discussion of some previous work (Section 2).
We then present (Section 3) modified versions of Abadi and Rogaway’s soundness def-
inition and result. As mentioned above, we consider encryption schemes that reveal the
key used to encrypt and the length of the plaintext.

We then show that (adaptive) chosen-ciphertext security alone cannot ensure sound-
ness in the presence of key-cycles (Section 4). Thus, soundness for key-cycles could not
have been demonstrated with the computational definitions available to Abadi and Ro-
gaway, and new definitions were necessary.

We then present the notion of KDM security (Section 5.1) and show that it is strong
enough to imply soundness in the presence of key-cycles (Section 5.2). We also show
(Section 5.3) that KDM-security is in fact a new notion: it neither implies nor is implied
by CCA-2 security. To finish our discussion on the relationships between the different
security notions, we also show that soundness does not imply semantic security (IND-
CPA security, in the notation of [13]).

We conclude (Section 6) with the discussion of some future work.
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2 Previous Work

Work intended to bridge the gap between the cryptographic and the formal models
started with several independent approaches, including Lincoln, Mitchell, Mitchell, and
Scedrov [36], Canetti [18], Pfitzmann, Schunter and Waidner [43,44], and Abadi and
Rogaway [2]. In [2], formal terms with nested operations are considered specifically
for symmetric encryption, the adversary is restricted to passive eavesdropping, and the
security goals are formulated as indistinguishability of terms. This was extended in
[1] from terms to more general programs, but the restriction to passive adversaries re-
mained. We discuss other extensions of [2] further below. Several papers consider spe-
cific models or specific properties, e.g., Guttman, Thayer, and Zuck [26] specifically
consider strand spaces and information-theoretically secure authentication.

A process calculus for analyzing security protocols in which protocol adversaries
may be arbitrary probabilistic polynomial-time processes is introduced in [36]. In this
framework, which provides a formal treatment of the computational model, security
properties are formulated as observational equivalences. Mitchell, Ramanathan, Sce-
drov, and Teague [42] use this framework to develop a form of process bisimulation
that justifies an equational proof system for protocol security.

The approach by Pfitzmann, Schunter and Waidner [43,44] starts with a general
reactive system model, a general definition of cryptographically secure implementation
by simulatability, and a composition theorem for this notion of secure implementation.
This work is based on definitions of secure function evaluation, i.e., the computation of
one set of outputs from one set of inputs [27,37,15,17]. The approach was extended
from synchronous to asynchronous systems in [45,18], which are now known as the
reactive simulatability framework [45,8] and the universal composability framework
[18]. A detailed comparison of the two approaches may be found in [23].

The first soundness result of a formal model under active attacks has been achieved
by Backes, Pfitzmann and Waidner [10] within the reactive simulatability framework.
Their result comprises arbitrary active attacks and holds in the context of arbitrary sur-
rounding interactive protocols and independently of the goals that one wants to prove
about the surrounding protocols; in particular, property preservation theorems for the
simulatability have been proved, e.g., for integrity and secrecy [4,9]. While the original
result in [10] considered public-key encryption and digital signatures, the soundness re-
sult was extended to symmetric authentication and to symmetric encryption in [7] and
[6], respectively.

Concurrently with [10], an extension to asymmetric encryption, but still under pas-
sive attacks, is in [30]. Asymmetric encryption under active attacks is considered in [28]
in the random oracle model. Laud [34] has subsequently presented a cryptographic un-
derpinning for a formal model of symmetric encryption under active attacks. His work
enjoys a direct connection with a formal proof tool, but it is specific to certain confi-
dentiality properties and restricts the surrounding protocols to straight-line programs in
a specific language. Herzog et al. [30] and Micciancio and Warinschi [41] also give a
cryptographic underpinning under active attacks. Their results are narrower than that
in [10] since they are specific for public-key encryption, but consider simpler real im-
plementations. Moreover, [30] relies on a stronger assumption, which was subsequently
weakened by Herzog [29]. The approach in [41] restricts the classes of protocols and
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protocol properties that can be analyzed. The work of [41] was subsequently extended
by Micciancio and Panjwani [39] to prove soundness of a group-key distribution proto-
col in the presence of a CPA-secure scheme. Cortier and Warinschi [21] use automated
tools for proving that symbolic integrity and specific secrecy proofs are sound with
respect to the computational model in the case of protocols that use nonces, signa-
tures and asymmetric encryption (see below for the relationship between symbolic and
cryptographic secrecy). Bana [11] and Adão, Bana, and Scedrov [3] extend the original
Abadi-Rogaway result to weaker encryption schemes. Laud and Corin [35] consider ex-
tensions to composite keys, while Baudet, Cortier, and Kremer [12] consider extensions
to equational theories and to static equivalence.

Impagliazzo and Kapron [32] suggest a formal logic for reasoning about probabilis-
tic polynomial-time indistinguishability. Datta, Derek, Mitchell, Shmatikov, and Turu-
ani [24] describe a cryptographically sound formal logic for proving protocol security
properties without explicitly reasoning about probability, complexity, or the actions of
a malicious attacker.

Recently, there has been concurrent and independent work on linking symbolic and
cryptographic secrecy properties. Cortier and Warinschi [21] have shown that symbol-
ically secret nonces are also computationally secret, i.e., indistinguishable from a fresh
random value given the view of a cryptographic adversary. Backes and Pfitzmann [9]
and Canetti and Herzog [19] have established new symbolic criteria that suffice to show
that a key is cryptographically secret. Backes and Pfitzmann formulate this as a prop-
erty preservation theorem from the formal model to a concrete implementation while
Canetti and Herzog link their criteria to ideal functionalities for mutual authentication
and key exchange protocols. Backes and Pfitzmann have additionally provided a new
definition of secrecy of payloads, i.e., application data, in a reactive framework, and
they pointed out a sufficient symbolic criteria to derive if a payload is cryptographically
secret.

The first cryptographically sound security proofs of the Needham-Schroeder-Lowe
protocol have been presented concurrently and independently in [5] and [47]. While the
first paper conducts the proof within a deterministic, symbolic framework, the proof in
the second paper is done from scratch in the cryptographic approach; on the other hand,
the second paper proves stronger properties and further shows that chosen-plaintext-
secure encryption is insufficient for the security of the protocol.

The relation between these two models is not one-way, that is, there is also re-
search regarding the other direction, completeness. (That is, an interpretation enforces
completeness if two formal messages must be equivalent whenever their interpretations
are indistinguishable.) Micciancio and Warinschi [40] show that a sufficiently strong
encryption scheme enforces completeness for indistinguishability properties, and later
Horvitz and Gligor [31] strengthened this result by giving an exact characterization of
the computational requirements on the encryption scheme under which completeness
holds. Later, it was shown by Bana [11] and Adão, Bana, and Scedrov [3] that com-
pleteness also holds for a more general class of (weaker) encryption systems. We only
briefly mention that the simulatability-based results of [10,7,6] have shown complete-
ness implicitly to establish the notion of simulatability. We do not discuss completeness
any further in this work.
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Finally, we stress that none of the aforementioned results hold in the presence
of key-cycles. As we mentioned in the introduction, this problem was addressed by
Laud [33] in a different way from the one that we will address in this paper.

3 Computational Soundness for Indistinguishability

We start presenting the formal model, and then describe the computational model in
a fairly standard way. Then, we introduce the notion of soundness we consider in
this paper: that equivalent formal expressions represent indistinguishable computational
distribution-ensembles.

In general, this is almost entirely identical to the treatment of Abadi and Rog-
away [2], with three exceptions: we deal with asymmetric encryption, formal encryp-
tions reveal the keys used to encrypt, and formal expressions have an associated ‘length.’

3.1 The Formal Model

In this model, messages (or expressions) are defined at a very high level of abstraction.
The simplest expressions are symbols for atomic keys and bit-strings. More complex
expressions are created from simpler ones via encryption and concatenation, which are
defined as abstract, ‘black-box’ constructors.

Definition 1 (Expressions). Let Keys = {K1, K2, K3, ...} be an infinite discrete set of
symbols, called the set of encryption keys, and Keys−1 = {K−1

1 , K−1
2 , K−1

3 , ...} the
corresponding set of decryption keys. Let Blocks be a finite subset of {0, 1}∗. We define
the set of expressions, Exp, by the grammar:

Exp ::= Keys | Keys−1 | Blocks | (Exp, Exp) | {Exp}Keys

We will denote by Keys(M) the set of all encryption keys occurring in M and by
Keys−1(M) the set of decryption keys in M . Expressions of the form {N}K are called
encryption terms.

Expressions may represent either a single message sent during an execution of the pro-
tocol, or the entire knowledge available to the adversary. In this second case, the ex-
pression contains not only the messages sent so far, but also any additional knowledge
in the adversary’s possession (such as the public keys and compromised private keys).

We wish to define when two formal expressions are indistinguishable to the adver-
sary. Intuitively, this occurs when the only differences between the two messages lie
within encryption terms that the adversary cannot decrypt. In order to rigorously define
this notion, we first need to formalize when an encryption term is ‘undecryptable’ by
the adversary, which in turn requires us to define the set of keys that the adversary can
learn from an expression.

An expression might contain keys in the clear. The adversary will learn these keys,
and can then use them to decrypt encryption terms of the expression—which might
reveal yet more keys. By repeating this process, the adversary can learn the set of re-
coverable decryption keys:
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Definition 2 (Visible Subterms, Recoverable Decryption Keys). Let vis (M) ⊆ Exp,
the visible subterms of M , be the smallest set of expressions containing M such that:

1. (N1, N2) ∈ vis (M) =⇒ N1 ∈ vis (M) and N2 ∈ vis (M), and
2. {N}K ∈ vis (M) and K−1 ∈ vis (M) =⇒ N ∈ vis (M).

Let R-Keys(M), the set of recoverable decryption keys in M , be vis (M) ∩ Keys−1.

This allows us to identify those encryption terms of an expression that will be
‘opaque’ to the adversary: those protected by at least one non-recoverable decryption
key. Thus, we wish to say that two expressions are equivalent if they differ only in the
contents of their ‘opaque’ encryption terms.

However, computational realities force us to add two ways in which an opaque
encryption may leak information: they now reveal the key used to encrypt, and they
now reveal the ‘length’ of the plaintext. This second condition requires that the notion
of length be added to the formal model [40,29,11]:

Definition 3 (Formal Length). We introduce a function symbol with fresh letter � with
the following identities:

– For all blocks B1 and B2, �(B1) = �(B2) iff |B1| = |B2|,
– ∀i, j ∈ N, �(Ki) = �(Kj) and �(K−1

i ) = �(K−1
j ),

– If �(M1) = �(N1), �(M2) = �(N2) then �((M1, M2)) = �((N1, N2)), and
– If �(M) = �(N), then for all Ki, �({M}Ki) = �({N}Ki).

We introduce this function in order to be able to express that the encryption operation
may leak information about the length. We note that when Blocks is just {0, 1}, then
equality of �(M) and �(N) implies that M and N have identical type trees.

Remark 1. The addition of lengths to the formal model is fairly recent, and is not nec-
essary for soundness if computational encryption can hide the length of the plaintext.

Recall that our goal is to define formal equivalence of messages. This requires us to
define what is ‘observable’ for an adversary in an expression. In order to express that,
we define the so-called pattern of an expression, and two expressions will be considered
equivalent when their patterns are (roughly speaking) identical:

Definition 4 (Pattern). We define the set of patterns, Pat, by the grammar:

Pat ::= Keys | Keys−1 | Blocks | (Pat, Pat) | {Pat}Keys | �Keys,�(Exp)

The pattern of an expression M , denoted by pattern(M), is derived from M by replac-
ing each encryption term {M ′}K ∈ vis (M) (where K−1 /∈ R-Keys(M)) by �K,�(M ′).

For two patterns P and Q, P = Q is defined the following way:

– If P ∈ Blocks ∪ Keys ∪ Keys−1, then P = Q iff P and Q are identical.
– If P is of the form �K,�(M ′), then P = Q iff Q is of the form �K,�(N ′), and

�(M ′) = �(N ′) in the sense of Definition 3.
– If P is of the form (P1, P2), then P = Q iff Q is of the form (Q1, Q2) where

P1 = P2 and Q1 = Q2.
– If P is of the form {P ′}K , then P = Q iff Q is of the form {Q′}K where P ′ = Q′.
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The symbol �K,�(M ′) in a pattern reveals that some expression was encrypted with
the key K and its length is �(M ′). (Abadi and Rogaway replace these undecryptable
terms by �.)

One last complication remains before we can define formal equivalence. Consider
two formal expressions that differ only in the names of the keys in them, but such that
if there are identical keys in one of them, there are corresponding identical keys in the
other in the same place. On the other hand, two keys, say, K1 and K2, have the same
meaning: a randomly drawn key, using the same key-generation algorithm. It does not
matter if we replace one of them with the other. The appearance of a new key in an
expression just means a freshly generated key, it does not matter what name we give
it. What matters is only where the identical keys are in an expression, and where are
the differing ones. We wish to formalize the notion of equivalence in such a way that
renaming the keys yields in equivalent expression. Therefore, two formal expressions
should be equivalent if their patterns differ only in the names of their keys.

Definition 5 (Key-Renaming Function). A bijection σ : Keys → Keys is called a
key-renaming function. For any expression (or pattern) M , Mσ denotes the expression
(or pattern) obtained from M by replacing all occurrences of keys K in M by σ(K)
(including those occurrences as indices of �) and all occurrences of keys K−1 in M by
(σ(K))−1.

We are finally able to formalize the symbolic notion of equivalence:

Definition 6 (Equivalence of Expressions). We say that two expressions M and N
are equivalent, denoted by M ∼= N , if there exists a key-renaming function σ such that
pattern(M) = pattern(Nσ).

Our main focus in this paper is on key-cycles:

Definition 7 (Key-Cycles). A formal message M contains a key-cycle if it contains
encryption terms {M1}K1 , {M2}K2 , . . . , {Mn}Kn (where {Mi}Ki denotes the encryp-
tion of the message Mi with the public key Ki) such that Mi contains the key necessary
to decrypt {Mi+1}Ki+1 and Mn contains the key necessary to decrypt {M1}K1 . In this
case we say that we have a key-cycle of length n.

3.2 The Computational Model

The fundamental objects of the computational world are strings, strings = {0, 1}∗,
and families of probability distributions over strings. These families are indexed by a
security parameter η ∈ parameters = N (which can be roughly understood as key-
lengths). Two distribution families {Dη}η∈N and {D′

η}η∈N are indistinguishable if no
efficient algorithm can determine from which distribution a value was sampled:

Definition 8 (Negligible Function). A function f : N → R is said to be negligible,
written f(n) ≤ neg (n), if for any c > 0 there is an nc ∈ N such that f(n) ≤ n−c

whenever n ≥ nc.

Definition 9 (Indistinguishability). Two families {Dη}η∈N and {D′
η}η∈N, are indis-

tinguishable, written Dη ≈ D′
η, if for all PPT adversaries A,∣∣Pr [d ←− Dη; A(1η, d) = 1] − Pr

[
d ←− D′

η; A(1η, d) = 1
]∣∣ ≤ neg (η)
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In this model, pairing is an injective pairing function [·, ·] : strings × strings → strings
such that the length of the result only depends on the length of the paired strings. An
encryption scheme is a triple of algorithms (K, E ,D) with key generation K, encryption
E and decryption D. Let plaintexts, ciphertexts, publickey and secretkey be nonempty
subsets of strings. The set coins is some probability field that stands for coin-tossing,
i.e., randomness.

Definition 10 (Encryption Scheme). A computational asymmetric encryption scheme
is a triple Π = (K, E ,D) where:

– K : parameters × coins → publickey × secretkey is a key-generation algorithm
with security parameter η,

– E : publickey × plaintexts × coins → ciphertexts is an encryption function, and
– D : secretkey × strings → plaintexts is such that for all (e, d) ∈ publickey ×

secretkey and ω ∈ coins

D(d, E(e, m, ω)) = m for all m ∈ plaintexts.

All these algorithms must be computable in polynomial time in the size of the input
not counting the coins. (For this reason, the set parameters is usually represented as
1∗.) We insist that |E(e, m, w)| = |E(e, m, w′)| for all e ∈ publickey, m ∈ plaintexts
and w, w′ ∈ coins, where |x| stands for the binary length of x. We also insist that
0∗ ⊆ plaintexts. We lastly insist that for all e and x, all elements in the support of
E(e, x) are of the same length and that this length depends only on |x| and η (when
(e, d) ←− K(1η)).

3.3 Relating the Two Models

In order to prove any relationship between the formal and computational worlds, we
need to define the interpretation of expressions and patterns. Once an encryption scheme
is picked, we can define the interpretation function Φ, which assigns to each expression
or pattern M a family of random variables {Φη(M)}η∈N

such that each Φη(M) takes
values in strings. As in Abadi and Rogaway [2], this interpretation is defined in an al-
gorithmic way. The full formalism is given in Appendix B, but we present an informal
overview here. For expressions:

– Blocks are interpreted as strings,
– Each key is interpreted by running the key generation algorithm,
– Pairs are translated into computational pairs,
– Formal encryptions terms are interpreted by running the encryption algorithm.

We will denote by [[M ]]Φη the distribution of Φη(M) and by [[M ]]Φ the ensemble of
{[[M ]]Φη}η∈N. For the interpretation of patterns, everything is the same as for the inter-
pretation of expressions, but we also have:

– The interpretation of a pattern �K,�(M) for a given security parameter η is given by
Φη({0|Φη(M)|}K) where |Φη(M)| is the binary length of Φη(M), which must be
the same for all samples (due to our assumptions about encryption schemes). We
can call the sequence {|Φη(M)|}η∈N the interpretation of �(M).
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For any pattern M , let Φ(M) = {Φη(M)}η∈N be the family of random variables given
by the interpretation, [[M ]]Φη the distribution of Φη(M) and [[M ]]Φ the ensemble of
distributions {[[M ]]Φη}η∈N.

We can now define the notion of soundness.

Definition 11 (Soundness). We say that an interpretation is sound, or that an encryp-
tion scheme provides soundness, if the interpretation Φ (resulting from the encryption
scheme) is such that

M ∼= N ⇒ [[M ]]Φ ≈ [[N ]]Φ

for any expressions M and N .

The primary result of Abadi and Rogaway given in [2] is that, in the symmetric case,
soundness is guaranteed by sufficiently strong cryptography (called ‘type-0’) if the ex-
pressions M and N have no key-cycles. Subsequent work [41] translates this result
to the setting of asymmetric encryption, and derives that a similar soundness property
(in the absence of key-cycles) is guaranteed by chosen-ciphertext security. Subsequent
work [29,19] confirms that chosen-ciphertext security suffices for several extensions,
so long as key-cycles are prohibited. In the next section, we show that this prohibition
was necessary: in the presence of key-cycles, chosen-ciphertext does not necessarily
guarantee soundness.

4 Chosen-Ciphertext Security Is Not Enough

In this section we show that these notions of security, which were standard when the re-
sults of Abadi and Rogaway were published, are not strong enough to ensure soundness
in the case of key-cycles. That is, it is possible to construct encryption schemes that
satisfy the standard notions of security (in particular, CCA-2 in the notation of [13]) but
fail to provide soundness in the presence of key-cycles.

Definition 12 (IND-CCA2—Adaptive Chosen Ciphertext Security). A computation-
al public-key encryption scheme Π = (K, E ,D) provides indistinguishability under the
adaptive chosen-ciphertext attack if for all PPT adversaries A and for all sufficiently
large security parameters η:

Pr[ (e, d) ←− K(1η);
m0, m1 ←− AD1(·)(1η, e);
i ←− {0, 1} ;
c ←− E(e, mi);
g ←− AD2(·)(1η, e, c) :
b = g ] ≤ 1

2 + neg (η)

The oracle D1(x) returns D(d, x), and D2(x) returns D(d, x) if x �= c and returns ⊥
otherwise. The adversary is assumed to keep state between the two invocations. It is
required that m0 and m1 be of the same length.

That is, an adversary should not be able to learn from a ciphertext whether it contains
the plaintext m0 or the plaintext m1, even if:
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– the adversary knows the public key used to encrypt,
– the adversary can choose the messages m0 and m1 itself, so long as the messages

have the same length, and
– the adversary can request and receive the decryption of any other ciphertext.

This definition has been shown to be strictly stronger than almost all other definitions,
including semantic security [13]. It does not, however, guarantee soundness: A does not
have (obviously) access to the private keys, and therefore the messages submitted to
the oracles D1 and D2 cannot depend on those private keys. Therefore key-dependent
messages are not considered and not captured:

Theorem 1. CCA-2 security does not imply soundness. That is, if there exists an en-
cryption scheme secure against the chosen-ciphertext attack, then there exists another
encryption scheme which is secure against the chosen-ciphertext attack but does not
provide soundness.

We motivate the proof with a simple example: one-time pads. Although this is a form
of symmetric encryption and the rest of this paper discusses asymmetric encryption, the
main ideas translate:

Example 1 (One-Time Pad). Consider a key-cycle of length 1, such as the expression
M = {K}K . When interpreted using one-time pads, [[M ]]Φ will become a sequence
of elements from 0∗. However, we note that M is equivalent to the expression N =
{K ′}K , yet the interpretation of N will be a family of uniformly random distributions.
Thus, two equivalent expressions yield easily distinguished distribution families.

A similar argument, using CCA-2 encryption schemes instead of one-time pads, will
suffice to prove Theorem 1. Given a CCA-2 secure encryption scheme, another CCA-2
encryption scheme is constructed which will provide distinguishable interpretations for
expressions M and N above.

Proof. Let Π = (K, E ,D) be a CCA-2 secure encryption scheme. We construct a
second CCA-2 secure encryption scheme Π ′ = (K′, E ′,D′) such that K′ = K, D′ = D,
and E ′ is as follows:

– Receive input (e, m), an encryption key and a message;
– Test whether m is the decryption key associated with e. For many encryption

schemes, key-pairs are recognizable as such via number-theoretic properties. Even
when this is not the case, this test can be conducted via the sub-algorithm:
• Select a random plaintext r;
• Let c ←− E(e, r);
• Let p ←− D(m, c);
• Test whether p = r.

– If m is the decryption key associated with e, output m;
– Otherwise, compute c′ ←− E(e, m) and output c′.

Since Π ′ acts exactly like Π when plaintexts and encryption keys are unrelated, Π ′

must be also CCA-2 secure. However, Π ′ cannot be KDM-secure. Let M be the formal
expression {K−1}K , and let N be the expression {K ′−1}K . These two expressions
are equivalent, but [[M ]]Φ can be easily distinguished from [[N ]]Φ: the first distribution
family will output a decryption key while the second outputs a ciphertext. ��
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Remark 2. We note that in both the example and the proof, the expression M contains
a key-cycle of length 1. What if all key-cycles are of length 2 or more? The one-time
pad still fails to provide soundness: the interpretation of ({K1}K2 , {K2}K1) is a pair of
completely correlated distributions, while the interpretation of ({K1}K2 , {K3}K1) is a
pair of independent distributions. The same question in the public-key setting, however,
remains open. That is, there is no known CCA-2 secure encryption scheme which fails
to provide soundness for key-cycles that are of length two or more.

Since CCA-2 security implies a number of other definitions [13] (see the figure
in Appendix A) we can easily conclude that these other definitions also do not imply
soundness:

Corollary 1. Soundness is not implied by any of: NM-CCA-1 security, IND-CCA-1
security, NM-CPA security, or IND-CPA (semantic) security.

Therefore, soundness with key-cycles could not have been demonstrated with the stan-
dardcomputational notions of security available at the time. In the next section, we show
that this soundness property can, however, be met with new computational definitions.

5 KDM Security and Soundness for Key-Cycles

5.1 KDM-Security

In the last section, we showed that the standard notions of security are not strong enough
to enforce soundness in the presence of key-cycles. However, key-dependent message
(KDM) security, which was introduced by Black et al. [14] (and in a weaker form by
Camenisch and Lysyanskaya [16]), is strong enough to enforce soundness even in this
case. (We note that Camenisch and Lysyanskaya also provided a natural application of
KDM security, a credential system with interesting revocation properties, and so KDM
security is of independent interest as well.)

KDM security strengthens IND-CPA (semantic) security, a weaker form of Defini-
tion 12 in which the adversary does not have access to the decryption oracles. However,
semantic security still allows the adversary to submit two messages to be encrypted.
KDM strengthens this by allowing more general submissions. In particular, in KDM
security the adversary can submit not only fixed messages, but also functions of the
decryption keys.

More precisely, KDM security is defined in terms of oracles Reald and Faked ,
which work as follows:

– Suppose that for a fixed security parameter η ∈ N, a family of keys is given:
{(ei, di) ←− K(1η)}i∈N. The adversary can now query the oracles providing them
with a pair (j, g), where j ∈ N and g : secretkey∞ → {0, 1}∗ is a constant length,
deterministic function and d is defined as the sequence 〈d1, d2, . . .〉:
• The oracle Reald when receiving this input returns c ←− E(ej , g(d));
• The oracle Faked when receiving this same input returns c ←− E(ej , 0|g(d)|).

The challenge facing the adversary is to decide whether he has interacted with oracle
Reald or oracle Faked . Formally:
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Definition 13 (KDM Security). Let Π = (K, E ,D) be an asymmetric encryption
scheme. Let the two oracles Reald and Faked be as defined above. We say that the
encryption scheme is KDM-secure if for all PPT adversaries A and for all sufficiently
large security parameters η:∣∣Pr

[
(e,d) ←− K(1η) : AReald(1η, e) = 1

]−
Pr
[
(e,d) ←− K(1η) : AFaked(1η, e) = 1

]∣∣ ≤ neg (η)

Remark 3. We note that although all known implementations of KDM-security are in
the random-oracle model, this definition is well-founded even in the standard model. We
also note that this definition is phrased in terms of indistinguishability. One could also
imagine analogous definitions phrased in terms of non-malleability, but an exploration
of those are beyond the scope of the paper.

5.2 Soundness for Key-Cycles

Below, we present our main soundness result: if an encryption scheme is KDM secure,
it also satisfies soundness.

Theorem 2 (KDM Security Implies Soundness). Let Π = (K, E ,D) be a computa-
tional encryption scheme. If Π is KDM-secure, then Π provides soundness.

This theorem holds even when the expressions have encryption-cycles. The proof in
this case is a somewhat reduced hybrid argument. In a standard hybrid argument, like
the one Abadi and Rogaway used to prove their soundness result, several patterns are
put between M and N ; then, using security, it is proven that soundness holds between
each two consecutive patterns, and therefore soundness holds for M and N . In our
case, we first directly prove that [[M ]]Φ is indistinguishable from [[pattern(M)]]Φ. Then,
since that holds for N too, and since pattern(M) differs from pattern(N) only in the
name of keys, [[pattern(M)]]Φ is indistinguishable from [[pattern(N)]]Φ, therefore the
result follows. KDM security is used when we show that [[M ]]Φ and [[pattern(M)]]Φ are
indistinguishable.

Proof. For an arbitrary key K , let ι(K) denote the index of K . For an expression M , a
set of formal decryption keys S, and a function τ defined on (Keys∪Keys−1) \S such
that τ |Keys takes values in publickey and τ |Keys−1 takes values in secretkey, we define
a function fM,S,τ : coinse(M) × secretkey∞ → strings (where e(M) is the number of
encryptions in M ) inductively the following way:

– For B ∈ Blocks, let fB,S,τ : secretkey∞ → strings, fB,S,τ(d) = B;
– For K ∈ Keys, let fK,S,τ : secretkey∞ → strings, fK,S,τ(d) = τ(K);
– For K−1 ∈ Keys−1, if K−1 /∈ S, then fK−1,S,τ : secretkey∞ → strings,

fK−1,S,τ(d) = τ(K−1);
– For K−1 ∈ Keys−1, if K−1 ∈ S, then fK−1,S,τ : secretkey∞ → strings,

fK−1,S,τ(d) = dι(K);
– Let f(M,N),S,τ : coinse(M) × coinse(N) × secretkey∞ → strings. Then, f(M,N),S,τ

is defined as
f(M,N),S,τ(ωM , ωN ,d) = [fM,S,τ(ωM ,d), fN,S,τ(ωN ,d)];
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– Let f{M}K ,S,τ : coins × coinse(M) × secretkey∞ → strings. Then, f{M}K ,S,τ is
defined as
f{M}K ,S,τ (ω, ωM ,d) = E(τ(K), fM,S,τ (ωM ,d), ω).

We first prove that [[M ]]Φ ≈ [[pattern(M)]]Φ. Suppose that [[M ]]Φ �≈ [[pattern(M)]]Φ,
which means that there is an adversary A that distinguishes the two distributions, that is

Pr(x ←− [[M ]]Φη : A(1η, x) = 1) − Pr(x ←− [[pattern(M)]]Φη : A(1η, x) = 1)

is a non-negligible function of η. We will show that this contradicts the fact that the
system is KDM-secure. To this end, we construct an adversary that can distinguish
between the oracles Reald and Faked . Let F denote either of these oracles. Let e ∈
publickey∞ be the array of public keys that F outputs. From now on, let S = Keys−1 \
R-Keys(M), and if K−1 ∈ S, let then τ(K) = eι(K). Consider now the following
algorithm:

algorithm BF
η (e, M)

For K−1 ∈ R-Keys(M), do (τ(K), τ(K−1)) ←− K(1η)
y ←− CONVERT2e(M, M)
b ←− A(1η, y)
return b

algorithm CONVERT2e(M ′, M) with M ′ " M
if M ′ = K where K ∈ Keys then

return τ(K)
if M ′ = K−1 where K−1 ∈ R-Keys(M) then

return τ(K−1)
if M = B where B ∈ Blocks then

return B
if M ′ = (M1, M2) then

x ←− CONVERT2e(M1, M)
y ←− CONVERT2e(M2, M)
return [x, y]

if M ′ = {M ′′}K with K−1 ∈ R-Keys(M) then
x ←− CONVERT2e(M ′′, M)
y ←− E(τ(K), x)
return y

if M ′ = {M ′′}K with K−1 /∈ R-Keys(M) then
ω ←− coinse(M ′′)

y ←− F(ι(K), fM ′′,S,τ(ω, .))
return y

This algorithm applies the distinguisher A(1η, ·) on the distribution [[M ]]Φ when F
is Reald , and the distribution of [[pattern(M)]]Φ when F is Faked . So, if A(1η, ·)
can distinguish [[M ]]Φ and [[pattern(M)]]Φ, then BF

η (e, M) can distinguish Reald and
Faked . But we assumed that Reald and Faked cannot be distinguished, so [[M ]]Φ ≈
[[pattern(M)]]Φ.
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In a similar manner, we can show that [[N ]]Φ ≈ [[pattern(N)]]Φ. It is easy to see
that [[pattern(M)]]Φ = [[pattern(N)]]Φ, because the two patterns differ only by key-
renaming. Hence [[M ]]Φ ≈ [[N ]]Φ. ��

This one result has many powerful implications. Many extensions of the Abadi
and Rogaway result simply rely on soundness as a ‘black-box’ assumption, and are
not themselves hindered by key-cycles. By removing the key-cycle restriction from the
Abadi-Rogaway result, it is removed from these extensions as well.

Consider, for example, the non-malleability results of Herzog [29]. In this setting,
the adversary does not wish to distinguish two expressions but to transform one expres-
sion M into another expression M ′. The formal adversary has only a limited power to
do this, and can only produce formal messages in a set called the closure of M (de-
noted C[M ]). Soundness for this non-malleability property is that no computational
adversary, given the interpretation of M , can produce the interpretation of an expres-
sion outside C[M ]. As Herzog shows, this soundness for this non-malleability property
is directly implied by soundness for indistinguishability of messages (Definition 11).
Because we show the KDM security soundness for message indistinguishability, this
result of Herzog shows that it also provides soundness for non-malleability properties
as well.

5.3 A Strictly New Notion

We now provide brief propositions about what Black et al. claimed informally: the
notion of KDM security is ‘orthogonal’ to the previous definitions of security. In par-
ticular, we claim that KDM security neither implies nor is implied by chosen-ciphertext
security (CCA-2). The former is proved directly, Theorem 3, while the latter is a corol-
lary to previous theorems:

Corollary 2. CCA-2 security does not imply KDM-security. If there exists an encryp-
tion scheme secure against the chosen-ciphertext attack, there exists an encryption
scheme which is secure against the chosen-ciphertext attack but not KDM-secure.

Theorem 3. KDM security does not imply NM-CPA security. That is, there is an en-
cryption scheme that is KDM-secure, but not NM-CPA secure.

Proof. This is easily seen by inspecting the KDM-secure encryption scheme given by
Black et al. in the random oracle model [14]. Let F be a trapdoor permutation generator.
Then:

– K = F produces pairs (f, f−1) where f encodes a trapdoor permutation and f−1

encodes its inverse,
– The encryption algorithm E , on input (f, M), selects a random bit-string r and

returns the pair (f(r),RO(r) ⊕ M) (where RO is the random oracle),
– D, on input

(
f−1, C = (c1, c2)

)
, returns RO

(
f−1(c1)

)⊕ c2.

This scheme is not NM-CPA secure: it is simple to change the ciphertext associated
with a message M into the ciphertext of a related message. Note that an encryption of
M provides confidentiality by essentially applying a random r as a one-time pad. Thus,
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changing a single bit of the (second component of a) ciphertext changes the same bit
of the plaintext. That is, if C = (f(r),RO(r) ⊕ M) is an encryption of M , one can
easily create C′ =

(
f(r),RO(r) ⊕ M

)
(where M is the bit-wise complement of M ).

C′ decrypts to M . Thus, this KDM-secure encryption scheme does not provide non-
malleability of ciphertexts. ��
Due to the various relations among the security notions (see Appendix A) we have the
following corollary:

Corollary 3. KDM security implies neither NM-CCA1 security nor CCA2 security.

We conclude our discussion on the relationships between different notions of security
by showing that soundness does not imply IND-CPA:

Theorem 4. Soundness does not imply IND-CPA. That is, if there exists an encryption
scheme with provides soundness, there exists a scheme which provides soundness but is
not IND-CPA.

Proof. Let Π = (K, E ,D) be a sound encryption scheme. Let Π ′ = (K′, E ′,D′) be the
following. Let K′ = K. Let E ′ do the same on an input of a pair of a public key and a
plaintext (k, x) as E for all plaintext, except when x is the security parameter given by
k, in which case E ′ outputs a fixed bit-string σ of the same length as E(k, x). D′ is the
corresponding modified decryption algorithm.

This encryption scheme is still sound, because the interpretation of any expression
with respect to E is indistinguishable from the interpretation of this same expression
with respect to E ′. The reason for this is the following: For each security parameter,
there is only one string that is encrypted differently by E and E ′. Let Φ and Φ′ de-
note the respective interpretations. For any K public or private key, [[K]]Φ = [[K]]Φ′

trivially, and also [[B]]Φ = [[B]]Φ′ for any block B. Moreover these interpretations
hit the security parameter with negligible probability. Now, for any expression M , if
[[M ]]Φ ≈ [[M ]]Φ′ and [[M ]]Φ′ hits the security parameter with negligible probability,
then [[{M}K ]]Φ ≈ [[{M}K ]]Φ′ , and [[{M}K ]]Φ′ hits the security parameter with negli-
gible probability. Similarly for pairing. Therefore, by induction, the two interpretations
of a given expression are indistinguishable.

On the other hand, it is easy to see, that Π ′ is not IND-CPA secure, because an
adversary who submits as candidate messages the security parameter and 0η (that is,
outputs m0 = 0η, m1 = 1η) will certainly be able to determine which of the two
messages was encrypted.

These statements are summarized in a figure in Appendix A.

6 Conclusions

We have considered computational soundness of formal encryption. This property states
that formal equivalence of symbolic expressions implies computational indistinguisha-
bility when the symbolic expressions are interpreted using a given computational en-
cryption scheme. Computational soundness was proved in Abadi and Rogaway [2] un-
der the assumption that there are no key-cycles and that a computational encryption
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scheme satisfies a strong version of semantic security (so-called type-0 in the sense of
Abadi and Rogaway [2]). We have considered a modification of their logic in the case
of which-key revealing and message-length revealing, asymmetric encryption schemes
(which corresponds to so-called type-3 in the sense of Abadi and Rogaway [2]). In the
presence of key-cycles, we have proved that the computational soundness property fol-
lows from the key-dependent message (KDM) security proposed by Black et al. [14].
As far as we know, this is the first time that in order to achieve soundness, the computa-
tional model is strengthened and not the formal model weakened. We have also shown
that the computational soundness property neither implies nor is it implied by security
against chosen ciphertext attack, CCA-2. This is in contrast to many previous results
where forms of soundness are implied by CCA-2 security.

Our work presents several directions for future research. Firstly, several questions
about KDM security (independently of any soundness considerations) remain unan-
swered. An implementation of KDM security in the standard model remains to be
found, although there are several natural candidates (for instance Cramer-Shoup [22]).
Conversely, there remains to be found a natural (i.e., non-constructed) example of an
encryption scheme which is secure in the sense of CCA-2 but is not KDM-secure. Fur-
ther, the constructed examples of such encryption schemes only fail to provide KDM
security when presented with key-cycles of length 1. It may be possible that CCA-2 se-
curity implies KDM security when all key-cycles are of length 2 or more. Lastly, similar
questions can also be posed in the setting of symmetric-key encryption—a course of in-
vestigation we are currently investigating.

With regard to soundness, on the other hand, it seems desirable to extend our results
from the passive-adversary setting to that of the active adversary. Also, we show that the
relationship between the formal and computational models requires more than chosen-
ciphertext security. While it demonstrates that KDM security is also necessary, it does
not show it to be sufficient—even when conjoined with CCA-2 security. That is, this
investigation is not complete; it is more than likely additional properties will be revealed
as necessary as soundness is more fully explored.
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A Computational Definitions of Security for Asymmetric
Encryption Schemes

We present the standard computational notions of security for asymmetric encryption
schemes. See Figure 1 for their relationships.
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B Interpretation Algorithm

For a pattern M we define the interpretation as

algorithm INIT IALIZEη(M)
for K ∈ Keys(M) do (τ(K), τ(K−1)) ←− K(1η)

algorithm CONVERTη(M)
if M = K where K ∈ Keys then

return τ(K)
if M = K−1 where K ∈ Keys−1 then

return τ(K−1)
if M = B where B ∈ Blocks then

return B
if M = (M1, M2) then

x ←− CONVETη(M1)
y ←− CONVERTη(M2)
return [x, y]

if M = {M1}K then
x ←− CONVERTη(M1)
y ←− E(τ(K), x)
return y

if M = �K,�(M ′), then
y ←− E(τ(K), 0|Φη(M ′)|)
return y

We note that expressions are simply patterns in which symbols of the form �K,�(M ′)
do not appear, and thus can be interpreted by this same algorithm.
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Abstract. The freedom and transparency of information flow on the Internet has
heightened concerns of privacy. Given a set of data items, clustering algorithms
group similar items together. Clustering has many applications, such as customer-
behavior analysis, targeted marketing, forensics, and bioinformatics. In this pa-
per, we present the design and analysis of a privacy-preserving k-means cluster-
ing algorithm, where only the cluster means at the various steps of the algorithm
are revealed to the participating parties. The crucial step in our privacy-preserving
k-means is privacy-preserving computation of cluster means. We present two pro-
tocols (one based on oblivious polynomial evaluation and the second based on
homomorphic encryption) for privacy-preserving computation of cluster means.
We have a JAVA implementation of our algorithm. Using our implementation,
we have performed a thorough evaluation of our privacy-preserving clustering al-
gorithm on three data sets. Our evaluation demonstrates that privacy-preserving
clustering is feasible, i.e., our homomorphic-encryption based algorithm finished
clustering a large data set in approximately 66 seconds.

1 Introduction

The ease and transparency of information flow on the Internet has heightened concerns
of personal privacy [9,49]. Web surfing, email, and other services constantly leak in-
formation about who we are and what we care about. Many have accepted that some
privacy will be lost in exchange for the benefits of digital services [48]. However, in
other domains privacy is so important that its protection is federally mandated [1].
Technologies for protecting privacy are emerging in response to these growing con-
cerns [8,18,45]. Recently, more emphasis has been placed on preserving the privacy of
user-data aggregations, e.g., databases of personal information. Access to these collec-
tions is, however, enormously useful. It is from this balance between privacy and utility
that the area of privacy preserving data-mining emerged [3,33].

Unsupervised learning deals with designing classifiers from a set of unlabeled sam-
ples. A common approach for unsupervised learning is to first cluster or group unla-
beled samples into sets of samples that are “similar” to each other. Once the clusters
have been constructed, we can design classifiers for each cluster using standard tech-
niques (such as decision-tree learning [38,44]). Moreover, clusters can also be used to
identify features that will be useful for classification. There is significant research on
privacy-preserving algorithms for designing classifiers [3,33]. This paper addresses the
problem of privacy-preserving algorithms for clustering.
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Assume that Alice A and Bob B have two unlabeled samples DA and DB . We
assume that each sample in DA and DB has all the attributes, or the data sets are hor-
izontally partitioned between A and B. Alice and Bob want to cluster the joint data
set DA ∪ DB without revealing the individual items of their data sets (of course Alice
only obtains the clusters corresponding to her data set DA). In this paper, we assume
that clustering the joint data set DA ∪ DB provides better results than individually
clustering DA and DB . Using a large data set from the networking domain we also
demonstrate that clustering the joint data set results in significantly different clusters
than individually clustering the data sets (see end of section 5 for details). We present
a privacy-preserving version of the k-means algorithm where only the cluster means at
the various steps of the algorithm are revealed to Alice and Bob.

There are several applications of clustering [14]. Any application of clustering where
there are privacy concerns is a possible candidate for our privacy-preserving clustering
algorithm. For example, suppose network traffic is collected at two ISPs, and the two
ISPs want to cluster the joint network traffic without revealing their individual traffic
data. Our algorithm can be used to obtain joint clusters while respecting the privacy of
the network traffic at the two ISPs. An application of clustering to network intrusion
detection is presented by Marchette [36]. Clustering has been used for forensics [43]
and root-cause analysis for alarms [29]. Clustering has also been used in bioinformat-
ics. For example, Dhillon et al. [11] have used clustering to predict gene function. We
believe that privacy-preserving clustering can be used in bioinformatics where the data
sets are owned by separate organizations, who do not want to reveal their individual
data sets.

This paper makes the following contributions:

– We present the design and analysis of privacy-preserving k-means clustering al-
gorithm for horizontally partitioned data (see Section 3). The crucial step in our
algorithm is privacy-preserving of cluster means. We present two protocols for
privacy-preserving computation of cluster means. The first protocol is based on
oblivious polynomial evaluation and the second one on homomorphic encryption.
These protocols are described in detail in Section 4.

– We have also have a JAVA implementation of our algorithm. We believe that mod-
ular design of our implementation will enable other researchers to use our im-
plementation. Our clustering tool is available by request. We evaluated the two
privacy-preserving clustering algorithms on real data sets. Our first conclusion is
that privacy-preserving clustering is feasible. For example, for a large data set
(5, 687 samples and 12 features) from the speech recognition domain our
homomorphic-encryption-based algorithm took approximately 66 seconds. We also
observed that both in bandwidth efficiency and execution overhead algorithms based
on homomorphic encryption performed better than the one based on oblivious poly-
nomial evaluation. A detailed discussion of our evaluation is given in Section 5.

2 Related Work

Privacy issues in statistical databases have been thoroughly investigated [2,10]. Re-
cently privacy-preserving data mining has been a very active area of research. Initial
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focus in this area was on construction of decision trees from distributed data sets [3,33].
There is also a significant body of research on privacy-preserving mining of association
rules [15,46,50]. We will focus on existing work on privacy-preserving clustering.

In general, there are two approaches for designing privacy-preserving machine learn-
ing algorithms. The first approach is to use transformations to perturb the data set before
the algorithm is applied. This approach for designing privacy-preserving clustering al-
gorithms is taken by several researchers [31,37,41]. A second approach to designing
privacy preserving algorithms is to use algorithms from the secure-multiparty com-
putation literature. The advantage of this approach over the perturbation approach is
that formal guarantees of privacy can be given for these algorithms. This paper takes
the latter approach. Vaidya and Clifton’s [51] work is closest to the one presented
in this paper. Vaidya and Clifton present a privacy-preserving k-means algorithm for
vertically-partitioned data sets. As already pointed out in the introduction, our paper
considers clustering for horizontally-partitioned data. Vaidya and Clifton’s algorithm is
based on the secure-permutation algorithm of Du and Atallah [13]. However, Vaidya
and Clifton’s algorithm has to execute Du and Atallah’s protocol for every item in the
data set. Therefore, their algorithm is not practical for large data sets. Moreover, Vaidya
and Clifton did not perform an experimental evaluation of their algorithm. By contrast,
the complexity of our algorithm only depends on the number of steps taken by the k-
means algorithm and the dimension of the data items. There are distributed clustering
algorithms where the goal is to reduce communication costs [12,30]. These distributed
clustering algorithms do not consider privacy. However, it will be interesting to investi-
gate whether these algorithms can be made privacy preserving.

In our implementation, we approximate real numbers using intervals (see appen-
dix C). Finite-precision approximation to functions may leak information. Feigenbaum
et al. [16] show that approximations to functions can be made private by adding noise.

3 The k-Means Clustering Algorithm

The k-means algorithm [14,34] is shown in Figure 1. Assume that we are given n sam-
ples x1, · · · , xn, where each sample is a m-dimensional vector of real numbers. The
number of clusters is c. The algorithm maintains c means μ1, · · · , μc. Initially, assume
that the means are assigned arbitrary values. A sample xi is deemed to be in the clus-

ter j if it is closest to the mean μj , where mean of a cluster {x′
1, · · · , x′

r} is x′
1+···,x′

r

r .
Distance between two m-dimensional vectors x and y is given by

∑m
j=1(x[j] − y[j])2,

where x[j] is the j-th element of the vector x. Other distance metrics [14, Chapter 10],
such as scatter metrics, can be used instead of the distance metric mentioned above.
Each iteration of the k-means algorithms recomputes the means and reclassifies the
samples. The algorithm terminates when it detects “no change” in the means. The pre-
cise definition of “no change” depends on the specific metric being used. We also as-
sume that the initial cluster means are chosen randomly. There is some research on
picking the initial cluster means [4]. Various techniques for picking initial cluster means
can be easily incorporated into our algorithm. This issue will not be discussed further
in the paper.
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Algorithm (k-means clustering)
begin initialize n, c, μ1, · · · , μc

do classify n samples according to nearest μi, and
recompute μi

until no change in μi’s
return μ1, μ2, · · · , μc

end

Fig. 1. The k-means clustering algorithm

3.1 Distributed k-Means

Assume that Alice A (party 1) has z samples {x1, · · · , xnA}, and Bob B (party 2)
has n − nA samples {xnA+1, · · · , xn}. Each party wants to jointly cluster their sam-
ples without revealing any private information. We are assuming that clustering the
union of samples from the two parties is more desirable than clustering the two samples
individually.

Assume that there is a trusted third party TTP . A and B perform iterations locally.
However, at each iteration the new cluster means μis are computed by communicating
with the TTP . Let CA

i and CB
i be the cluster corresponding to mean μi for A and B,

respectively. A sends c-pairs 〈(a1, b1), · · · , (ac, bc)〉 to TTP , where ai =
∑

xj∈CA
i

xj

and bi =| CA
i | (ai is the sum of samples in cluster CA

i and bi is the number of samples
in the cluster CA

i ). Analogously, B sends c-pairs 〈(d1, e1), · · · , (dc, ec)〉 to the TTP ,
where di =

∑
xj∈CB

i
xj and ei =| CB

i |. The TTP computes the c means 〈μ1, · · · , μc〉
and sends them to A and B, where μi = ai+di

bi+ei
. We call this algorithm distributed

k-means or Dk-means.

3.2 Assumptions

Our goal is to design a privacy-preserving k-means that does not use a TTP. Before
we present such an algorithm, we state assumptions made in the design of our privacy-
preserving algorithm.

Number of parties. In this paper we only present the two party case.

The adversary model. We assume a semi-honest adversary (also called honest but cu-
rious adversary model) [20]. There are standard constructions that transform a proto-
col that is secure in the semi-honest model and produce a protocol that is secure in
a more general malicious model (these constructions are called “semi-honest to mali-
cious” compilers, and details of these constructions can be found in [23]).

Information disclosure. Our privacy-preserving algorithm discloses the cluster means
at the various steps to the two parties. Therefore, the computation of classifying sam-
ples according to the nearest cluster means can be performed locally. Therefore, the
complexity of our privacy-preserving algorithm depends only on the number of steps
taken by the k-means algorithm and the number of features, but not on the size of the
data. This is a desirable property because usually the data sets to be clustered can be
very large.
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3.3 Privacy-Preserving k-Means

In order, to create a privacy-preserving version of k-means that does not use a TTP we
have to devise a privacy-preserving protocol to compute the cluster means. Consider
the computation of a single cluster mean μi. Recall that in distributed k-means each
party sends (ai, bi) and (di, ei) to the TTP, which computes ai+di

bi+ei
; this is precisely the

function for which we have to devise a privacy-preserving protocol. This problem can
be formally defined as follows:

Definition 1. The weighted average problem (WAP) is defined as follows: party 1 has
a pair (x, n), where x is a real number and n is a positive integer. Similarly, party 2
has pair (y, m). They want to jointly compute x+y

n+m . In other words, we need a privacy-
preserving protocol for the following functionality:

((x, n), (y, m)) $−→ (
x + y

n + m
,

x + y

n + m
)

The notation shown above means that the first and second party provide inputs (x, n)
and (y, m) to the protocol and both parties receive output x+y

n+m . Notice that WAP is
different than the classical problem of computing the averages, where n parties have a
number and they jointly want to compute the average without revealing their individual
numbers. In the classical problem, the number of parties n is known to all the parties.
In WAP, the number of points n and m needs to be kept secret.

Let PWAP be a privacy-preserving protocol for solving WAP. Two protocols for
WAP are presented in Section 4. In the privacy-preserving k-means algorithm (denoted
as PPk-means) A and B use PWAP instead of the trusted third party TTP to compute
the cluster means μis. The algorithm is shown in Fig 2. We only show the part of
the algorithm executing at Alice’s (party 1) side. Bob (party 2) will execute a similar
algorithm at his side.

Note: Suppose that the initial clusters are picked randomly. For the privacy-preserving
algorithm we need a protocol for two parties to jointly pick a common random vector.
Such a protocol is called coin-tossing into the well and is based on commitment schemes
(see [20, Section 7.4.3.1]).

3.4 Proof of Privacy

In this section we provide a proof of privacy for the protocol shown in Figure 2. The
proof uses a semi-honest adversary model. Notice that in the distributed k-means algo-
rithm Dk-means both parties only know their input and output. Definition of privacy is
based on the intuition that parties should learn nothing more from the messages used
in privacy-preserving protocol, i.e., the messages received by a party during an execu-
tion of a privacy-preserving protocol can be “effectively computed” by only knowing
its input and output. This idea is formalized below:

Definition 2. Let x and y be inputs of the two parties and 〈f1(x, y), f2(x, y)〉 be the
desired functionality, i.e., the first party wants to compute f1(x, y) and the second
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Algorithm PPk-means (privacy-preserving k-means clustering)
begin initialize nA, c, μ1, · · · , μc

do classify nA samples according to nearest μi

for i := 1 to c step 1 do
Let CA

i be the i-th cluster
Compute ai = xj∈CA

i
xj and bi =| CA

i |
recompute μi by invoking the protocol PWAP

od
until no change in μi

return μ1, μ2, · · · , μc

end

Fig. 2. The privacy-preserving k-means clustering algorithm

wants to compute f2(x, y). Let Π be a two-party protocol to compute f . The view
of the first party after having participated in protocol Π (denoted by VIEWΠ

1 (x, y)) is
(x, r, m1, · · ·mt), where r are the random bits generated by party 1 and m1, · · · , mt is
the sequence of messages received by party 1, while participating in protocol Π . The
view VIEWΠ

2 (x, y) for the second party is defined in an analogous manner.
We say that Π privately computes f if there exists probabilistic polynomial-time

algorithms (PPTA), denoted by S1 and S2 such that

{S1(x, f1(x, y))}x,y ≡s {VIEWΠ
1 (x, y)}x,y

{S2(x, f2(x, y))}x,y ≡s {VIEWΠ
2 (x, y)}x,y

In the equation given above, ≡s denotes statistically indistinguishable. Two probability
ensembles X = {Xw}w∈S and Y = {Yw}w∈S indexed by S are statistically indistin-
guishable if for some negligible function μ : ℵ $→ [0, 1] and all w ∈ S,∑

α

| Pr(Xw = α) − Pr(Yw = α) | < μ(| w |)

A function μ : ℵ $→ [0, 1] is called negligible if for every positive polynomial p, and
all sufficiently large n’s, μ(n) < 1

p(n) . There is a weaker notion of indistinguishabil-
ity called computationally indistinguishable. We will use statistical indistinguishability
throughout the paper, but all the results hold even if the weaker notion of indistinguisha-
bility is used. Detailed definitions of these concepts can be found in [19,20].

The privacy-preserving k-means algorithm uses the privacy-preserving protocol
PWAP for the WAP. Assume that the two parties invoke the protocol PWAP as an
oracle, i.e., both parties write their respective inputs (in this case (x, n) and (y, m))
and invoke the oracle which returns the result (in this case x+y

n+m ). Recall that in the
distributed k-means algorithms both parties learn the cluster means at various steps. If
we use oracle calls to compute the cluster means, then the two parties also learn only
the cluster means. So the views in the two cases are identical. Hence, the conditions of
definition 2 are trivially satisfied. However, there are additional messages exchanged in
the protocol PWAP used to compute the cluster means. We need to ensure that nothing



Privacy Preserving Clustering 403

can be learned from these messages. The privacy of protocol shown in Figure 2 follows
from the composition theorem [7] stated below (g is the algorithm shown in Figure 2
and f is the protocol PWAP to solve WAP described in Section 4):

Theorem 1. (Composition Theorem for the semi-honest model): Suppose that g is pri-
vately reducible to f and that there exists a protocol for privately computing f . Then
there exists a protocol for privately computing g.

4 Privacy-Preserving Protocol for the Weighted Average Problem

In the weighted average problem (WAP) we want to find a privacy-preserving protocol
for the following functionality:

((x, n), (y, m)) $−→ (
x + y

n + m
,

x + y

n + m
)

Recall that a protocol for WAP was used in the privacy-preserving k-means algorithm
(see Figure 2).

A simple strategy to address this problem is to first approximate the function x+y
n+m

by a circuit C, and then use standard constructions [21,22,52] to construct a privacy-
preserving protocol. Protocols constructed using this strategy have a very high compu-
tational overhead. Malkhi et al. considered the cost of implementing these protocols
in their work in the Fairplay system [35]. They found that the protocol was feasible
for small circuits, e.g., a single ∧-gate could be implemented in 410 milliseconds, and
more complex integer numerical functions could be implemented on the order of sec-
onds. They further showed the runtimes of these protocols grow quickly with the size
of the input and complexity of the implemented function. The most complex function
discussed by the authors computed a median of two ten-element integer input sets. This
function took over 7 seconds to execute in a LAN environment, and over 16 seconds
in an WAN environment. The circuit for computing x+y

n+m is significantly more com-
plex. Hence, with a non-trivial data set, a single computation of cluster means may take
several minutes to compute. Note that the underlying costs of Fairplay are not artifacts
of the design, but simply the cost of implementing the standard protocols; the reported
costs were almost completely dominated with circuit setup and the necessary oblivious
transfers.

In this section, we present two privacy-preserving protocols for WAP that are more
efficient than the standard protocols. The first protocol is based on oblivious polyno-
mial evaluation and the second on homomorphic encryption. Similarity of WAP with a
problem that occurs in protocols for generation of shared RSA keys [6,17] is discussed
in appendix B.

4.1 Protocol Based on Oblivious Polynomial Evaluation

We will first give a privacy-preserving protocol for a general problem, and then at the
end of the subsection demonstrate how we can construct a privacy-preserving protocol
for WAP. Consider the following problem.
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Definition 3. Let F be a finite field. Party 1 has two polynomials P and Q with coeffi-
cients in F . Party 2 has two points α and β in F . Both parties want to compute P (α)

Q(β) .
In other words, we want to privately compute the following functionality:

((P, Q), (α, β)) $−→ (
P (α)
Q(β)

,
P (α)
Q(β)

)

We call this problem private rational polynomial evaluation (PRPE).

The protocol PPRPE uses a protocol for oblivious polynomial evaluation, which is
defined below.

Definition 4. Let F be a finite field. The oblivious polynomial evaluation or OPE prob-
lem can be defined as follows: Alice A has a polynomial P over the finite field F , and
Bob B has an element x ∈ F . After executing the protocol implementing OPE B
should only know P (x) and A should know nothing.

A protocol to solve the OPE was given by Naor and Pinkas [40]. Let POPE(P, α)
denote the privacy-preserving protocol for OPE. We provide a protocol PPRPE((P, Q),
(α, β)) for PRPE, which uses POPE(P, α) as an oracle. The protocol is shown in
Figure 3.

(Step 1) Party 1 picks a random element z ∈ F and computes two new polynomials zP and
zQ. In other words, party 1 “blinds” the polynomials P and Q.

(Step 2) Party 2 computes zP (α) and zQ(α) by invoking the protocol for OPE twice, i.e.,
invokes the protocol POPE(zP, α) and POPE(zQ,β).

(Step 3) Party 2 computes P (α)
Q(β) by computing zP (α)

zQ(β) and sends it to party 1.

Fig. 3. Protocol for PRPE

Theorem 2. Protocol PPRPE((P, Q)(α, β) shown in Figure 3 is privacy-preserving
protocol for PRPE.

Proof: The views of the two parties are

VIEWPP RPE

1 (P, Q) = (P, Q,
P (α)
Q(β)

)

VIEWPPRP E
2 (α, β) = (α, β, zP (α), zQ(β))

The view of party 1 consists of its input (P, Q) and output P (α)
Q(β) . Therefore, there is

nothing to prove (see definition 2, we can use S1 as the identity function). The input
and output of party 2 are (α, β) and P (α)

Q(β) respectively. We have to show a PPTA S2

such that S2(α, β, P (α)
Q(β) ) and VIEWPP RPE

2 (α, β) are statistically indistinguishable. Let

z′ be a random element of F and S2(α, β, P (α)
Q(β) ) be defined as follows:

(α, β, z′
P (α)
Q(β)

, z′)
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It is easy to see that the following two ensembles are statistically indistinguishable:

(α, β, z′ P (α)
Q(β) , z

′)
(α, β, zP (α), zQ(β))

The reason is that if z is a random element of F then zQ(β) is a random element of F
as well. Moreover, the ratio of the third and fourth elements in the view of party 2 is
P (α)
Q(β) , i.e., the output and the third element of the view determine the fourth element of
the view.

Recall that PPRPE uses the protocol POPE . Using the composition theorem we
conclude that PPRPE is privacy preserving. �

Protocol for WAP. First, we show that a protocol PPRPE for PRPE can be used to solve
WAP. Recall that in WAP party 1 and party 2 have inputs (x, n) and (y, m) respectively.
In the invocation of PPRPE , party 1 constructs two polynomials P (w) = w + x and
Q(w) = w + n, and party 2 sets α = y and β = m. The output both parties receive
is equal to x+y

n+m , which is the desired output. The proof of privacy for this protocol
follows from Theorem 2 and the composition theorem.

4.2 Protocol Based on Homomorphic Encryption

Let (G, E, D, M) be a encryption scheme (where G is the function to generate public
parameters, E and D are the encryption and decryption functions, and M is the message
space respectively) with the following properties:

– The encryption scheme (G, E, D) is semantically secure [24]. Essentially, an en-
cryption scheme is semantically secure if an adversary gains no extra information
by inspecting the ciphertext. This is formally defined in the appendix (see defini-
tion 5).

– For all m ∈ M and α ∈ M , m1 ∈ E(m) implies that mα
1 ∈ E(mα). Encrypting

the same message twice in a probabilistic encryption function can yield a different
ciphertext, so E(m) denotes the set of ciphertexts that can be obtained by encrypt-
ing m.1

– There is a computable function f such that for all messages m1 and m2 the follow-
ing property holds:

f(E(m1), E(m2)) = E(m1 + m2)

There are several encryption scheme that have the three properties mentioned above
[5,39,42]. In our implementation, we used the dense probabilistic encryption (DPE)
scheme of Benaloh [5]. The semantic security of the scheme provided by Benaloh is
based on the intractability of deciding prime residuosity.

Party 1 and 2 have a pair of messages (x, n) and (y, m). The two parties want
to jointly compute x+y

n+m in a privacy-preserving way. Assume that party 1 sets up a

1 Of course, to successfully decrypt two different messages m and m′ sets E(m) and E(m′)
should be disjoint.
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probabilistic encryption scheme (G, E, D, M), and publishes the public parameters G.
We also assume that the probabilistic encryption scheme (G, E, D, M) satisfies the
three properties given at the beginning of the section. The protocol PH for WAP is
shown in Figure 4.

– (Step 1) Party 1 encrypts x and n and sends the encrypted values x1 ∈ E(x) and n1 ∈
E(n) to party 2.

– (Step 2) Party 2 computes a random message z ∈ M , and encrypts z · y and z ·m to obtain
z1 ∈ E(z · y) and z2 ∈ E(z · m). Party 2 computes the following two messages and sends
it to party 1:

m1 = f(xz
1, z1)

m2 = f(nz
1, z2)

Note: In our implementation we use the homomorphic-encryption scheme by [5] where f
is multiplication.

– (Step 3) Using the two properties of the probabilistic encryption scheme (G, E, D), we
have the following:

m1 = E(z · x + z · y)

m2 = E(z · n + z · m)

Therefore, party 1 can compute z(x + y) and z(n + m), and hence can compute x+y
n+m

.

Party 1 sends x+y
n+m

to party 2.

Fig. 4. Protocol for WAP based on homomorphic encryption

Theorem 3. Assume that the probabilistic encryption scheme (G, E, D) has three prop-
erties mentioned at the beginning of this sub-section. PH((x, n), (y, m)) is a privacy-
preserving protocol to compute x+y

n+m .

The proof of this theorem is straightforward and is given in appendix A. The basic in-
tuition is that party 2 cannot tell the difference between E(x) and E(n) and encryption
of two arbitrary messages.

The complexity of encryption and decryption operations of a scheme (G, E, D, M)
depends on size of the message space M . Therefore, in order to keep the complexity
low it is important that the size of the message space be small. However, in order to
achieve adequate precision the message space should be large. Chinese remainder the-
orem (CRT) allows us to perform computation over smaller spaces and then reconstruct
the result for a larger message space. Let p1, · · · , pm be m small primes. The two par-
ties execute the protocol described above for Zp1 , · · · , Zpm . Party 1 receives z(x + y)
and z(n + m) modulo pi (for 1 ≤ i ≤ m). CRT allows party 1 to reconstruct z(x + y)
and z(n + m) modulo N =

∏m
i=1 pi. This technique is also used by Gilboa [17].
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5 Experimental Evaluation

This section looks at the feasibility of our solution by evaluating the cost of the protocol
on real data-sets. The goal of this study is to establish the cost of our privacy-preserving
clustering algorithms on real applications. We principally seek to understand the per-
formance and privacy tradeoffs inherent to the operation of the protocols.

We evaluated three clustering algorithms. The simple scheme is used throughout as
a baseline for our experiments. This protocol implements the k-means clustering al-
gorithm as described in section 3. This algorithm does not use any privacy-preserving
protocols. This represents the nominal cost of clustering, and will be present in any k-
means clustering approach, independent of if and how privacy is implemented. Through-
out this section features refer to the dimension of the vectors being clustered and each
iteration of the k-means algorithm is referred to as round. Our first privacy-preserving
protocol (referred to as OPE) uses oblivious polynomial evaluation. This protocol is de-
scribed in detail in Section 4.1. For oblivious polynomial evaluation we use the protocol
presented by Naor and Pinkas [40]. The next privacy-preserving protocol (referred to as
DPE) uses homomorphic encryption scheme of Benaloh [5]. This protocol is described
in detail in Section 4.2.

Implementation. Our system consists of approximately 3000 lines of Java code, split up
into a number of self-contained modules. The k-means algorithm module implements
actual clustering computations as described in Section 3. During each iteration, this
module calls the protocol module to compute the cluster means for each dimension of
the cluster. The protocol module sets up the framework of communication, and calls
the specific protocol handlers with a common interface, depending on which protocol
is selected. In the simple handler, Alice sends (x, n) to Bob, who computes the cluster
mean x+y

n+m and sends it to Alice. The OPE and DPE protocol handlers implement the
protocols described in Sections 4.1 and 4.2.

The central results uncovered by this investigation include:

1. Clustering using DPE is two orders of magnitude more bandwidth efficient than
OPE, and executes in 4.5 to 5 times less time. This is largely due to bandwidth and
computational costs associated with the oblivious transfers used by OPE.

2. Our protocols clustering with perfect fidelity; that is, the clusters resulting from our
algorithms are identical to those reported by a k-means algorithm with no privacy
for reasonable parameter choices.

3. Small, medium, and large data-sets can be clustered efficiently.
4. Costs scale linearly with feature and rounds. The number of samples affects run-

time only inasmuch as it increases the number of rounds toward convergence.
5. Protocol parameters affect bandwidth usage by constant factor. Moreover, expo-

nential increases in security or supported message space result in linear increases
in execution run-times.

We begin in the following section by exploring several real data-sets representative of
expected environments.
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5.1 Experimental Data

The validity of our experimental approach is partially dependent on the realism of our
test data. For this reason, we have obtained a collection of externally provided data-
sets representing diverse applications. All experiments described in this section use the
synthetic, river, robot, and speech data-sets detailed below.

We selected the elements of our synthetic data-set to enable testing and measure
startup costs. This data set includes 4 points uniformly distributed within a 6 dimen-
sional space. By design, the data clusters quickly into 4 ”natural” clusters within 2
rounds under the k-means algorithm in all experiments.

Originally used in the Computation Intelligence and Learning (COIL) competition,
the river data-set describes measurements of river chemical concentrations and algae
densities [27]. The river data was used to ascertain the summer algae growth of river
water in temperate climates. The clustered data is used to inform the relationship be-
tween the presence and concentrations of various chemicals in public waterways and
algae growth. The river contains 184 samples with 15 features per sample.

The robot data-set [26] contains continuous senor readings from the Pioneer-1 mo-
bile robot used for testing computer learning and conceptual development approaches.
Each of the 697 samples contains 36 features from sensor arrays of the Pioneer-1 mobile
robot. The samples were taken every 100ms and reflect the movements and changing
environment in which the robot was tested. The data has been clustered in prior use to
recognize experiences with common outcomes.

The speech data-set [28] documents the measured voice characteristics of spoken
Japanese vowels. Nine male speakers uttered two Japanese vowels /ae/ repeatedly.
Sampled at 10kHz, the 640 utterances resulted in 12 features of 5,687 samples. This
large data-set is used in the context of our experiments to evaluate the degree to which
the proposed protocols scale with the size of the input data. Similar data-sets are clus-
tered frequently to help guide speech recognition software [32].

Each of the data-sets represents a singular corpus. In contrast, our protocols are tar-
geted for applications of clustering with two parties. We model the two party case by
randomly subdividing the samples into equal sized subsets and assigning them to each
party. In real environments the size of the sets may be vastly different. Our approxima-
tion approach ensures that this kind of asymmetry will be transparent to both parties
both in execution and performance. That is, the performance of the algorithm is largely
independent of the number of samples. However, as we shall see below, the number of
features has tremendous effect on the cost of clustering.

The last data set (called the ping data-set) was collected by us. The purpose of
collecting this data was two fold:

– Test our clustering algorithm on a large data set.
– Construct a data set that can be naturally partitioned to demonstrate that jointly

clustering two data sets can produce significantly different results than individually
clustering them.

We setup two hosts (referred to as A and B) to measure ICMP ping round-trip times.
There were 4 ping targets located around the world (one of the ping targets was on
the same subnet as host B). On each host and for each ping target the pings were
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grouped in blocks of 200. For each block, a 3-tuple consisting of the following three
values was generated: the average time to live (TTL), the average round-trip time (RTT),
and fraction of lost packets (%drop). We collected data over a period of 24 hours and
generated a data set consisting of 23872 data points, which were evenly divided between
host A and B. We ran our clustering algorithm on the joint data set, and data sets
corresponding to hosts A and B.

5.2 Experimental Setup

We use the architecture and code described earlier for the experiments described
throughout. All experiments are executed on a pair of 3Ghz machines with 2 gigabyte
physical memory. The experimental application is running on the Sun Microsystems
Java Virtual Machine version 1.5 [47] on the Tao Linux version 1.0 operating sys-
tem [25]. The protocols are executed on a 100Mbps unloaded LAN with a measured
round-trip time of 0.2 milliseconds.

The experiments profile the additional cost of providing privacy in clustering sen-
sitive data. To this end, we focus on three metrics of cost and utility; communication
overhead, delay, and precision. Communication overhead records the amount of addi-
tional network bandwidth used by the privacy schemes over the simple schemes. Delay
measures the additional time required to complete the clustering.

Precision is used to measure the degree to which the approximated clustering di-
verge from those reported by a simple k-means algorithm, and is calculated as follows.
Let X = {x1, . . . , xn} be the sample data set to be clustered. C1 ⊆ 2X is the cluster-
ing of X by the simple algorithm, and C2 ⊆ 2X is the clustering returned by the OPE
algorithm (the DPE metric is defined similarly in the obvious manner). For each pair
(xi, xj) such that 1 ≤ i < j ≤ n an error occurs if

1. xi and xj are in the same cluster in C1, but in C2 they are in different clusters.
2. xi and xj in the same cluster in C2, but in C1 they are in different clusters.

The total number of errors is denoted E. The maximum number of errors is N =
n(n − 1)/2. The precision P is given by (N − E)/N .

Both OPE and DPE have unique parameters which dictate the performance and se-
curity of each protocol. The performance of DPE is most effected by the size of the
primes used to select the homomorphic encryption keys. Small primes can be crypt-
analyzed, and large ones can unnecessarily increase bandwidth use and computational
costs. Like RSA, linear increases in the size of the primes should result in exponential
security improvements.

We use interval arithmetic to approximate real numbers (see appendix C). The size
of the message space in DPE and the finite-field in OPE are chosen to achieve the de-
sired precision. In Benaloh’s encryption scheme r denotes the size of the message space.
For efficiency reasons we choose r = 3k (see [5] for details). Two crucial parameters
in the oblivious polynomial evaluation protocol of Naor and Pinkas are D, the degree
of the masking polynomial and M , the total number of points used (details of this algo-
rithm can be found in [40]). The sender’s masking polynomial D has degree k.d, where
d is the degree of the polynomial P being evaluated and k is the security parameter.
Since in our algorithm the polynomial being evaluated is always linear, the security
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Table 1. Experimental Results - resource and precision results from experiments over the three
data sets. The feature/round statistics show the costs of per feature clustering in a single round of
the k-means algorithm, e.g., a single execution of the privacy preserving WAP protocol.

Communications Overhead Delay
Test Rounds bytes percent milliseconds percentbytes

feature/rnd increase
milliseconds

feature/rnd increase

Synthetic (4 samples, 6 features)
Simple 2 5959 0 0% 168 0 0%
OPE 2 1497823 124322 25035.48% 10147 831.58 5939.88%
DPE 2 13580 635.08 127.89% 2135 163.9166667 1170.83%

River (184 samples, 15 features)
Simple 16 74574 0 0% 772 0 0%
OPE 16 29916457 124241.17 40116.47% 176133 730.67 22715.16%
DPE 16 234422 566.03 314.35% 38721 158.12 4915.67%

Robot (697 samples, 36 features)
Simple 8 94005 0 0% 1348 0 0%
OPE 8 36569040 126649.42 38801.16% 212776 734.125 15684.57%
DPE 8 269698 610.04 186.90% 47662 160.8125 3435.76%

Speech (5,687 samples, 12 features)
Simple 33 143479 0 0% 4198 0 0%
OPE 33 49359739 124183.48 34402.07% 294694 733.57 6919.87%
DPE 33 384644 509.00 268.08% 66101 156.3207071 1474.58%

Ping (28,392 samples, 3 features)
Simple 9 11644 0 0% 2765 0 0%
OPE 9 3429688 126594.2 29354.55% 23767 777.8519 759.566%
DPE 9 30633 703.29 163.07% 9694 256.63 250.59%

parameter is simply D. Increasing D strengthens the sender’s security. Only D + 1
points are needed to interpolate, but the receiver sends (D +1).M pairs of values to the
sender. Out of each set of M pairs, one of them is related to α (the point the polynomial
is being evaluated on), and the other M − 1 values are random. The 1-out-ofM obliv-
ious transfer protocol (denoted as OT M

1 ) is repeated D + 1 times to learn the required
value. So, increasing M strengthens the receiver’s security. Unless otherwise specified,
we selected D = 7 and M = 6. For brevity, we do not consider D or M further.

5.3 Results

Our first battery of tests broadly profile the performance of OPE and DPE. Shown in
Table 1, the most striking characteristic of these experiments is that they demonstrate
that OPE protocols consume two orders of magnitude more network resources than the
DPE protocols. These costs can be directly attributed to the oblivious transfer algo-
rithms whose primitive cryptographic operations require the transfer of many polyno-
mials between hosts. The total bandwidth costs scaled linearly for both OPE and DPE.
That is, the bandwidth costs per feature/round are relatively constant for the given data
sets, where we observed 0.03% variance in scaled bandwidth usage in OPE and 9.36%
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in DPE. Note that the bandwidth is ultimately of limited interest; the worst case exper-
iment only consumes 47 megabytes of bandwidth over two and a half minutes. Hence,
our protocols would have visible impact only the slowest or busiest networks.

A chief feature illustrated by the timing measurements is that DPE is much more
time and bandwidth efficient than OPE. Surprisingly, DPE is 4.5 to 5 times faster on
all the data-sets for the selected parameters. The reasons for this is that the underlying
oblivious transfers incur large message exchanges between the two parties. Hence, in
all experiments the limiting factors are bandwidth and computation.2 The efficiency of
DPE with respect to OPE further shows fixed costs (startup) are likewise dominated
by the underlying privacy preservation operations. Further, like the bandwidth costs,
the execution of each algorithm scale linearly with the number of features and rounds,
where each feature round requires 730 and 160 milliseconds for OPE and DPE to com-
plete, respectively.

The cost of privacy-preservation in large data-set clustering is noticeable. For exam-
ple, a large data-set containing 5687 samples and 12 features takes DPE just 66 seconds
to cluster, as opposed to the 4.19 seconds required by its simple k-means counterpart.
Hence for this experiment, DPE algorithm incurs slowdown of a factor of 15 and the
more expensive OPE a factor of 70. These results are, for most applications, clearly
within the bounds of acceptable performance. This is particularly encouraging in the
face of past attempts; circuit implementations of vastly simpler operations (averaging
very small collections of data points) took tens of seconds to complete [35].

Fairplay. We compared our protocols for WAP with a simple strategy of approximating
the function x+y

n+m by a circuit C and then using standard constructions [21,22,52]. We
used Fairplay [35] to securely evaluate the circuit C. Fairplay does not support divi-
sion, so we implemented a circuit for division (our implementation for division uses the
standard ”long division” method). As expected the privacy-preserving clustering algo-
rithm that uses Fairplay to be very slow. Experimental results confirmed this intuition.
For example, for the ping data set clustering with Fairplay took 805, 416 milliseconds
(recall that clustering with DPE took only 9, 694 milliseconds).

For the parameters we selected the precision of our privacy-preserving algorithms
(DPE and OPE) was 100%. The reasons for this are two-fold. The parameter choices for
DPE resulted in a message space of 340 values, which allowed us to map cluster means
to 4 decimal places. Moreover, the data range was small in all our data-sets. Hence,
the error rounding caused by using interval arithmetic was inconsequential. Note that in
other environments, where the message space is required to be smaller (likely for perfor-
mance reasons) or the range of data values is large, precision errors may be introduced.

The costs of OPE grow slightly with increases in D and M . We experimented with
varied parameters of D and M equal 5, 10, 15 on all the non-synthetic data-sets (for a
total of 27 experiments) . In all cases increased cost was nominal; the parameter sets
slowed the performance of the algorithm down between 60% and 190% over a baseline
experiment, i.e., M = D = 5. Again, these costs are a direct reflection of the costs of

2 Early implementations of our protocols were limited by the latency caused by many individual
round-trips in the protocol. We optimized these these by parallelizing exchanges, where pos-
sible. This vastly improved protocol performance, and as a direct result, bandwidth and and
computation have since emerged as the limiting factors.
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Cluster centers
A (241.76, 32.69, 0.18), (48.00, 75.87, 0.58), (243.00, 59.81, 0.15), (64.00, 0.19, 0.00)
B (47.00, 88.60, 0.74), (251.92, 4.73, 0.19), (242.00, 48.01, 2.70), (133.67, 485.77, 13.78)
Joint (245.26, 28.73, 0.60), (47.51, 82.13, 0.66), (133.67, 485.77, 13.78), (64.00, 0.186, 0.00)

Fig. 6. (TTL,RTT,%drop) centers for the four clusters

the underlying oblivious transfer. Not shown, the bandwidth costs in DPE scale by a
constant factor proportional to D and M .

As illustrated in Figure 5, increases the size n (which is a product of two primes) in
DPE has modest affect on the performance of the protocols. Exponential increases in n
result in linear increases in message size. Because the network is a limiting factor, such
increases are, as shown, reflected in linear slowdowns. Hence, very large intervals or
high precision clustering can be supported by small increases in bandwidth consump-
tion. As in OPE, bandwidth costs in DPE scale by a constant factor in these experiments,
where each protocol exchange increases directly in proportion to the size of the primes.

For the ping data set our clustering algorithm generated 4 clusters, which correspond
to the four target hosts. The centers for the four clusters are shown in Figure 6. As can be
clearly seen from the results, clusters found by the algorithm using the joint data set are
significantly different than the clusters found in the individual data sets. Therefore, if the
goal is to estimate RTT, TTL, and %drop for the target hosts to be used in networking
applications (such as routing), then clustering on the joint data set is desirable.

6 Conclusion

We presented two privacy-preserving k-means algorithms. We also implemented these
algorithm and performed a thorough evaluations of our algorithms. There are several
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avenues for further research. We want to perform further optimizations to our tool to
reduce the execution and bandwidth overheads. We want to explore privacy-preserving
versions of other clustering algorithms. We are particularly interested in hierarchical
clustering algorithms.
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A Definitions and Proofs

Definition 5. Assume that the message space M can be sampled in polynomial time,
i.e., there exists a probabilistic polynomial time algorithm AM such that it takes input
1k and generates a message m ∈ M . Let h : M → R be a function, which can be
thought of as some information about the message, e.g., h(m) = 1 iff message has a
substring “Bob” in it. Consider the following two games:
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– (Game 1): Adversary is informed that I am about to choose a message m using the
sampling algorithm AM . The adversary is asked to guess h(m).

– (Game 2): In addition to the information given in game 1, he is also told the en-
cryption α ∈ E(m) of the message. The adversary is again asked to guess h(m).

An encryption function E is called semantically secure if the difference between the
probabilities of the adversary succeeding in the two games is negligible. The probability
is computed over the message space.

Proof of Theorem 3: The view of the two parties is shown below:

VIEWPH
1 (x, n) = (x, n, z(x + y), z(n + m))

VIEWPH
2 (y, m) = (y, m, x1, n1,

x + y

n + m
)

Let z′ be a message uniformly chosen from M . Define S1(x, n, x+y
n+m ) as follows:

(x, n, z′
x + y

n + m
, z′)

It is easy to see that S1(x, n, x+y
n+m ) and VIEWPH

1 (x, n) are statistically indistinguish-
able (this proof is very similar to the proof of Theorem 2 given in Section 4.1).

Recall that x1 ∈ E(x) and n1 ∈ E(n). Since (G, E, D) is semantically secure,
party 2 cannot gain extra information from the encrypted values x1 and n1. In other
words. Let x′

1 ∈ E(x′) and n′
1 ∈ E(n′), where x′ and n′ are randomly chosen

messages. An adversary cannot distinguish between VIEWPH
2 (y, m) and (y, m, x′

1, n
′
1,

x+y
n+m ) with more than negligible probability. Therefore, privacy of party 1 with respect
to party 2 follows. �

B Generation of Shared RSA Keys and WAP

We assume that all elements are drawn from a finite field F . Suppose that party 1 and 2
have a pair of numbers (a, b) and (c, d) and they want to privately compute (a+c)(b+d).
In other words, they want to privately compute the following functionality:

((a, b), (c, d)) $−→ (a + c)(b + d)

This problem is one of the crucial steps in the protocol for sharing RSA keys. Let Psk

be the protocol for solving this problem. We will show that Psk can be used to design
a protocol PWAP for solving WAP (see Section 4 for a description of this problem).
Protocol PWAP works as follows:

– Party 1 and party 2 generate two random elements z1 and z2 chosen uniformly
from F .

– Two parties invoke the protocol Psk with inputs (x, z1) and (y, z2). Each party
obtains r1 = (x + y)(z1 + z2).

– Two parties invoke the protocol Psk with inputs (n, z1) and (m, z2). Each party
obtains r2 = (n + m)(z1 + z2).

– The two parties obtain x+y
n+m by computing r1

r2
.
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Next we argue that PWAP is privacy preserving. The views of the two parties in
this protocol are:

VIEW1(x, n) = (x, n, (x + y)(z1 + z2), (n + m)(z1 + z2))
VIEW2(y, m) = (y, m, (x + y)(z1 + z2), (n + m)(z1 + z2))

Let z′ be a random element of F and S1(x, n, x+y
n+m ) be defined as follows:

(x, n, z′
x + y

n + m
, z′)

If we fix x, y, and z1 and pick z2 uniformly from F , then (x + y)(z1 + z2) is a random
element distributed uniformly over F . Therefore, VIEW1(x, n) and S1(x, n, x+y

n+m )) are

statistically indistinguishable. Let z′ be a random element of F and S2(y, m, x+y
n+m )) be

defined as follows:
(y, m, z′

x + y

n + m
, z′)

It is easy to see that VIEW2(y, m) and S2(y, m, x+y
n+m )) are statistically indistinguish-

able. Using the composition theorem the privacy of PWAP follows.

C Approximating Reals

Assume that real numbers occur in the interval [M,−M). We divide the interval
[M,−M) into 2MN sub-intervals of size 1

N . The i-th sub-interval (where 0 ≤ i <
2MN ) is given by [

−M +
i

N
,−M +

i + 1
N

)
We denote by I(x) as the sub-interval the real number x lies in, i.e. x ∈ [−M +
I(x)
N ,−M + I(x)+1

N ). If x and y are two real numbers that lie in the sub-interval I(x)
and I(y), then x + y lies in the sub-interval [−2M + I(x)+I(y)

N ,−2M + I(x)+I(y)+2
N ).

For the rest of the sub-section we will approximate real numbers with the the inter-
val they lie in. In our protocol, a party obtains z(I(x) + I(y)) and z(n + m), where z

is the random number. Using some simple arithmetic we can deduce that z(I(x)+I(y))
z(n+m)

lies in the interval [−M + Q
N ,−M + Q+1

N ), where Q is the quotient of q1 divided by
q2. Integers q1 and q2 are shown below:

q1 = MN(z(n + m) − 2) + z(n + m) · z(I(x) + I(y))
q2 = z(n + m)

In all our algorithms, we have to use a large enough space so that all the operations used
to calculate q1 and q2 are exact, i.e., there is no “wrap around”. If all the integers used
in q1 and q2 are bounded by 2k, then the size of the field should be greater than or equal
to 24k+5.
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Abstract. Confidentiality of certain parameters is an essential security
requirement for many security sensitive applications. In this paper, con-
ditions for abstractions are formulated in terms of formal language theory
to be able to prove parameter confidentiality in an abstract view of a sys-
tem and then conclude that an adequate representation of the property
is satisfied in the refined system as well. These conditions essentially de-
pend on an agent’s view as well as on an agent’s initial knowledge of the
system behaviour, which explicitely formalizes assumptions about the
system.

1 Introduction

Typically, the well-known concepts of non-interference or information flow con-
trol address confidentiality of actions: the occurrence or non-occurrence of certain
actions of an agent shall not be deducible for another agent based on what it
observes. In the literature there is a variety of formalizations of this concept,
Mantel [11] gives a good insight into this topic. The subtle differences between
these definitions show the spectrum of this kind of confidentiality.

However, non-interference is not suitable for the specification of security re-
quirements in distributed open systems. Here, it can be assumed that all actions
concerned with communication might indeed be visible to malicious agents. Nev-
ertheless, confidentiality is required for data transmitted using these actions. An
adequate notion of confidentiality therefore has to provide the flexibility to define
confidentiality for arbitrary parameters of the actions. The notion of parameter-
confidentiality presented in [6] provides this flexibility. Parameter confidentiality
formalizes the following property: An agent R that monitors a sequence of actions
ω of a system S cannot determine the value of a certain parameter (a certain part
of the message, the agent performing the action, etc.) of a specific action or set
of actions of the sequence, even if it knows the set of possible parameter values.

It is well known that security of a system is not an add on but must be con-
sidered during the whole design process from abstract requirement specifications
to a concrete realization of the system. To efficiently employ the notion of para-
meter confidentiality it is therefore necessary to be able to prove satisfaction of
� Part of the work described in this paper was developed within the project SicAri
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this property in an abstract view of a system and then conclude that an adequate
representation of the property is satisfied in the refined system as well. Using
our formal framework for security properties [7] in terms of formal languages
and language homomorphisms, this paper gives sufficient conditions for such a
top down design and explains by a characteristic example its functionality.

Only a few papers discuss confidentiality in combination with refinement.
[9] considers degrees of confidentiality and shows that degrees of functionality
and confidentiality are inversely related w.r.t. refinement. [12] shows how re-
finement can be modified to preserve flow properties. [10] gives conditions for
certain refinement operators on stream functions to preserve a kind of explicit
confidentiality which does not capture implicit information flow. [8] identifies
confidentiality preserving refinements in a probabilistic setting.

Another aspect to be taken into consideration is that security properties can
only be satisfied relative to particular sets of underlying system assumptions. Ex-
amples include assumptions on cryptographic algorithms, secure storage, trust
in the correct behaviour of agents or reliable data transfer. Relatively small
changes in these assumptions can result in huge differences concerning satisfac-
tion of security properties. Every model for secure systems must address these
issues. However, most existing models rely on a fixed set of underlying assump-
tions (see for example [3] and [13]). These assumptions are often implicitly given
by particular properties of the model framework. Thus, it is very hard to verify
whether a particular implementation actually satisfies all of these assumptions.
Further, imprecise security assumptions might result in correct but useless secu-
rity proofs and finally in insecure implementations. Therefore, a model for secure
systems needs to provide the means to accurately specify underlying system as-
sumptions in a flexible way.

In order to provide the required flexibility, we extend the system specification
by two components: agents’ knowledge about the global system behaviour and
agents’ view. The knowledge about the system consists of all traces that an
agent initially considers possible, i.e. all traces that do not violate any of its
assumptions about the system, and the view of an agent specifies which parts of
the system behaviour the agent can actually see.

The main result of this paper shows that preserving parameter confidential-
ity under refinement essentially depends on agents’ view as well as on agents’
knowledge. The effect of agents’ view is also considered in [9] and in [8] whereas
agents’ knowledge is ignored by all papers mentioned above.

In Section 2 the formalization background is introduced. Section 3 recapit-
ulates the definition of parameter confidentiality from [6]. Sufficient conditions
for abstractions preserving parameter confidentiality are given in Section 4 and
are discussed by examples in Sections 5 and 6.

2 System Behaviour and Abstractions

In this section we first give a short summary of the necessary concepts of formal
languages to describe system behaviour and abstractions.
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The behaviour S of a discrete system can be formally described by the set
of its possible sequences of actions (traces). Therefore S ⊆ Σ∗ holds where Σ
is the set of all actions of the system, and Σ∗ is the set of all finite sequences
of elements of Σ, including the empty sequence denoted by ε. This terminology
originates from the theory of formal languages [5], where Σ is called the alphabet
(not necessarily finite), the elements of Σ are called letters, the elements of Σ∗

are referred to as words and the subsets of Σ∗ as formal languages. Words can
be composed: if u and v are words, then uv is also a word. This operation is
called concatenation; especially εu = uε = u. A word u is called a prefix of a
word v if there is a word x such that v = ux. The set of all prefixes of a word u
is denoted by pre(u); ε ∈ pre(u) holds for every word u.

Formal languages which describe system behaviour have the characteristic
that pre(u) ⊆ S holds for every word u ∈ S. Such languages are called prefix
closed. System behaviour is thus described by prefix closed formal languages. La-
beled transition systems are uniquely determined by their sets of labeled paths,
which are prefix closed languages. So our method will apply to specifications
with an interleaving semantics based on labeled transition systems, as for exam-
ple any kind of communicating automata.

Different formal models of the same application/system are partially ordered
with respect to different levels of abstraction. Formally, abstractions are de-
scribed by so called alphabetic language homomorphisms. These are mappings
h∗ : Σ∗ −→ Σ′∗ with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ) ⊆ Σ′ ∪ {ε}
which implies h∗(S) ⊆ (Σ′)∗. So they are uniquely defined by corresponding
mappings h : Σ −→ Σ′ ∪ {ε}. In the following we denote both the mapping h
and the homomorphism h∗ by h.

The Example. In order to illustrate our approach using an example as simple
as possible, in the following we introduce an artificial price offer–order example
(which is not supposed to represent appropriate security requirements for any
realistic application). In the project CASENET [2,4] funded by the European
Commission our approach was successfully applied to real life e-government and
e-business applications.

The scenario for the example system consists of a set of two users U = {U, V }
and a set of two service providers S = {S, T }. The following actions can occur
in the example system: a service provider sends a price offer for a certain service
to a particular user, which is then received by the user. Subsequently, the user
can place an order which is in turn received by the service provider. The price is
assumed to be the critical parameter to remain confidential. For simplicity, we
assume that only two prices are possible. Therefore, the set of prices is M =
{cheap, exp}. For user USER ∈ U , service provider SP ∈ S and price ∈ M , the
actions of the system are send-offer(SP,USER,price),rec-offer(USER,SP,price),
send-order(USER,SP,price) and rec-order(SP,USER,price). The first parameter
denotes the agent executing the particular action, the second parameter the
agent the action is associated with. Note that throughout the paper we denote
sets, homomorphisms etc. that belong to our example by expressions in bold
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face. Thus Σ denotes the set of all possible actions of the example, while Σ
indicates an arbitrary alphabet.

We will now define an abstraction of this system. Here we consider the same
sets of agents and prices, but a reduced set of possible actions.

Σ′ =
⋃

USER∈U
SP∈S,price∈M

{send-offer(SP, USER, price), rec-offer(USER, SP, price)}

The language homomorphism h : Σ∗ −→ Σ′∗ simply removes all actions for
sending and receiving orders:

Let Σ′ and Σ be as defined above. Then we define a homomorphism h :
Σ∗ −→ Σ′∗ by

h(a) =
{

a if a ∈ Σ′

ε else

Figure 1 illustrates the effect of applying h to one particular sequence in Σ∗.

ε
homomorphism h
Language

send−offer(S,U,exp)

send−order(U,T,cheap) send−offer(S,U,exp)rec−offer(U,T,cheap)

rec−offer(U,T,cheap)send−offer(T,U,cheap)

send−offer(T,U,cheap)Refined system

Abstract system

Fig. 1. Application of h to a specific sequence in Σ∗

In the remaining sections of the paper we will formally define confidentiality
of the price in the abstract system and then show that this property is satisfied
in the abstract system and that h preserves this property. Thus, we are able
to conclude that confidentiality of the price is satisfied in the more complex
(refined) system as well.

3 Parameter Confidentiality

This section gives a brief introduction to parameter confidentiality as introduced
in [6].

3.1 Agents’ View and Knowledge About the Global System
Behaviour

We will now explain in more detail our approach to specify agents’ view and
knowledge about the system and their relations. The specification of the desired
system behaviour generally does not include behaviour of malicious agents which
has to be taken into account in open systems. An approach which is frequently
used for the security analysis of cryptographic protocols is to extend the system
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specification by explicit specification of malicious behaviour. However, in gen-
eral malicious behaviour is not previously known and one may not be able to
adequately specify all possible actions of dishonest agents. In our approach, the
explicit specification of agents’ knowledge about system and environment allows
to discard explicit specification of malicious behaviour. Every behaviour which
is not explicitly excluded by some WP is allowed.

We consider all agents’ knowledge sets to be part of the system specification.
As explained in the introduction, agent P ’s knowledge WP ⊆ Σ∗ about the
global system behaviour contains all traces that P assumes to be possible. We
may assume for example that a message that was received must have been sent
before. Thus an agent’s WP will contain only those sequences of actions in which
a message is first sent and then received.

Care must be taken when specifying the sets WP for all agents P in order not
to specify properties that are not guaranteed by verified system assumptions. In a
setting for example where we assume one time passwords are used, if P trusts Q,
WP contains only those sequences of actions in which Q sends a certain password
only once. However, if Q cannot be trusted, WP will also contain sequences of
actions in which Q sends a password more than once.

Denoting a system containing malicious behaviour by S and the correct sys-
tem behaviour by SC , we assume SC ⊆ S ⊆ Σ∗. We further assume S ⊆ WP , i.e.
every agent considers the system behaviour to be possible. Security properties
can now be defined relative to WP .

The set WP describes what P knows initially. However, in a running system
P can learn from actions that have occurred. Satisfaction of security properties
obviously also depends on what agents are able to learn. After a sequence of
actions ω ∈ S has happened, every agent can use its local view of ω to determine
the sequences of actions it considers to be possible. In order to determine what is
the local view of an agent, we first assign every action to exactly one agent. Thus
Σ =

⋃̇
P∈PΣ/P (where P denotes the set of all agents, Σ/P denotes all actions

performed by agent P , and
⋃̇

denotes the disjoint union). The homomorphism
πP : Σ∗ → Σ∗

/P defined by πP (x) = x if x ∈ Σ/P and πP (x) = ε if x ∈ Σ \Σ/P

formalizes the assignment of actions to agents and is called the projection on P .
The projection πP is the correct representation of P ’s view of the system

if all information about an action x ∈ Σ/P is available for agent P and P can
only see its own actions. In this case P ’s local view of the sequence of actions
send-offer(P,Q,price) rec-offer(Q,P,price) for example is send-offer(P,Q,price).
However, P ’s view may be finer. For example it may additionally note other
agents’ actions without seeing the messages sent and received, respectively. In
this case, P ’s local view of ω will be equal to send-offer(P,Q,price) rec-offer(Q).
P ’s local view may also be coarser than πP . In a system the actions of which
are represented by a triple (global state, transition label, global successor state),
although seeing its own actions, P will not be able to see the other agents’ state.
Thus, we generally denote the local view of an agent P on Σ by λP .

For a sequence of actions ω ∈ S and agent P ∈ P, λ−1
P (λP (ω)) ⊆ Σ∗ is

the set of all sequences that look exactly the same from P ’s local view after
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ω has happened. Depending on its knowledge about the system S, underly-
ing security mechanisms and system assumptions, P does not consider all se-
quences in λ−1

P (λP (ω)) possible. Thus it can use its knowledge to reduce this
set: λ−1

P (λP (ω)) ∩ WP describes all sequences of actions P considers to be pos-
sible when ω has happened. As this set is frequently used in this paper, we
introduce the following abbreviation: ΛP (ω, WP ) = λ−1

P (λP (ω)) ∩ WP .
The set ΛP (ω, WP ) is similar to the possible worlds semantics that have been

defined for authentication logics in the context of cryptographic protocols [1,14].
Our notion is more general because for authentication logics λP and WP are
fixed for all systems, whereas in our approach they can be defined differently for
different systems.

Our approach to define agents’ local view and system knowledge is the basis
for the framework of security requirements introduced in [7].

Our Example. We now define local view and knowledge about the system for
agents of the abstract version of the example system introduced in Section 2.
We assume that each user and service provider can only see its own actions.

For every agent P ∈ U ∪S we define a homomorphism λ′
P : Σ′∗ −→ Σ′∗ by

λ′
P (a) =

{
a if a ∈ Σ′

/P

ε else

We further assume that the knowledge sets W ′
P of the agents P ∈ U∪S in the

abstract system are only restricted by an assumption about the communication:
No agent considers a sequence of actions possible in which an offer is received
without having been sent. Thus, we have the following knowledge sets for P ∈
U ∪ S:

W ′
P = Σ ′∗\

USER∈U,SP∈S
price∈M

(Σ ′\{send-offer (SP, USER, price)})∗{rec-offer (USER, SP, price)}Σ ′∗

W ′
P does not contain sequences of actions that start with a sequence without

an action send-offer(SP, USER, price), continues with action rec-offer(USER,
SP, price), and finally ends with any sequence of actions in Σ∗.

Based on these knowledge sets, the system behaviour of the abstract system
can now be defined as S′ =

⋂
P∈U∪S W ′

P = W ′
P for all P ∈ U ∪ S.

In the remainder of the paper, primed notation denotes expressions associ-
ated with the abstract system. Corresponding expressions for the refined system
appear unprimed.

3.2 Formalizing Parameter Confidentiality

For the example system, we want to specify the property that the price offered
to U is confidential from V’s perspective. Various aspects are included in our
definition. First, we have to consider an agent’s local view and its knowledge
about the system, as explained in Section 3.1. Then we need to identify the
actions in which the price shall be confidential. In our example, only the actions
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where a price is sent to and received by U are of interest. Thus, we disregard all
other actions, i.e. we map them with a suitably chosen homomorphism μ onto the
empty word. From those actions not mapped onto ε, μ extracts the parameter
to be confidential that occurs in the action and associates it with the “type” of
the action. The type consists of the name of the action and all parameters that
are not required to be confidential.

Hence μ(ΛR(ω, WR)) is a set of sequences of types of those actions that are
of interest with respect to parameter confidentiality, paired with the respective
parameter values being possible from R’s local view.

If Σt denotes a set of types of parameter occurrences and M denotes a set
of parameter values then homomorphism μΣt,M : Σ∗ → (Σt × M)∗ can be used
to identify the parameters that shall be confidential. For simplicity we write μ
if the related parameter set and the types are obvious.

Our Example. For SP ∈ S and price ∈ M , the homomorphism μ′ for the
abstract example system can be defined as follows:

μ′(send-offer(SP, V, price)) = ε
μ′(rec-offer (V, SP, price)) = ε
μ′(send-offer(SP, U, price)) = (send-offer(SP, U), price)
μ′(rec-offer (U, SP, price)) = (rec-offer (U, SP ), price)

This homomorphism μ′ extracts the parameter price from all send-offer ac-
tions for and rec-offer actions by user U , respectively. Consequently, the type
set for the example is given as Σt = {send-offer(SP, U), rec-offer(U, SP )}.

Our aim is now to formalize that μ′(Λ′
V (ω, W ′

V )) contains all possible pa-
rameter values. What are the possible combinations of parameters is the last
aspect that needs to be specified. In general it is obviously sufficient if all com-
binations of parameters are possible. However, in many cases interdependencies
between different actions are publicly known and consequently, such a strong
requirement would be impossible to be satisfied. In these cases it is reasonable
to restrict the combinations of parameters. In our example we assume reliable
transmission of messages and therefore rec-offer(USER, SP, price) can only oc-
cur if send-offer(SP, USER, price) has happened before.

The following language K ⊆ (Σt ×M)∗ expresses the different combinations
of parameter values regarding offers sent to and received by U which are possible
in the example system.

K = (Σt × M)∗\⋃
SP∈S

price∈M

[((Σt × M) \ {(send-offer(SP, U), price)})∗
{(rec-offer(U, SP ), price)}(Σt × M)∗]

Using the homomorphism pt : (Σt×M)∗ → Σ∗
t that denotes the projection

on the types, the following definition expresses parameter confidentiality with
respect to a particular μ and K.

Definition 1. [6] Let M be a parameter set, Σ a set of actions, Σt a set of types,
μ : Σ∗ → (Σt × M)∗ a homomorphism, and K ⊆ (Σt × M)∗ with K ⊇ μ(WR).
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Then M is parameter confidential for agent R ∈ P with respect to μ and K if
for each ω ∈ S

μ(ΛR(ω, WR)) = p−1
t (pt(μ(ΛR(ω, WR)))) ∩ K

The left hand side of the above equation consists of the μ-image of the set of
sequences of actions agent R considers possible after having monitored ω, while
the right hand side contains all possible combinations of parameters by applying
pt and then p−1

t . Again, the intersection with K removes all sequences of actions
from this set R is not required to consider possible because of information on
the system it is allowed to know.

In order to provide a reasonable confidentiality property, the occurrence of
parameters in K cannot be too restricted. In most cases it is reasonable to require
that apart from interdependencies between actions that are allowed to be known
by all agents, all parameter values are possible for each action. This property of
K is expressed by the so-called (L,M)-completeness of K as described in [6] and
obviously holds for the above defined K.

We can now show that in our abstract example system, agent V does not
know more than it is allowed to know about occurrences of parameters in M
when monitoring sequences of actions.

Proposition 1. The set M is parameter confidential for V with respect to μ′

and K.

Proof: We show by contradiction that for all ω ∈ S′ holds
μ′(Λ′

V (ω, W ′
V ) ⊇ p−1

t (pt(μ′(Λ′
V (ω, W ′

V )))) ∩ K:
Assume we have ω ∈ S such that there exists x ∈ p−1

t (pt(μ′(Λ′
V (ω, W ′

V ))))∩K
with x �∈ μ′(Λ′

V (ω, W ′
V ). Then there exists ω1 ∈ Λ′

V (ω, W ′
V ) with pt(μ′(ω1)) =

pt(x) but μ′(ω1) �= x.
Further there exists ω2 �∈ Λ′

V (ω, W ′
V ) with μ′ω2 ∈ K, μ′(ω2) = x and ω2 ∈

μ′−1
ID(μ′

ID(ω1)), where the mapping μ′
ID : Σ′∗ −→ (Σ′ ∪ Σt)∗ is defined by

μ′
ID(a) =

{
a if μ′(a) = ε
p1(μ′(a)) else

Sequence ω2 equals ω1 except for those parameter values that are extracted by
μ′. Such an ω2 exists, because according to the assumption there have to be
combinations of parameter values that do not occur in Λ′

V (ω, W ′
V ).

For all δ ∈ Σ′∗ holds μ′(λ′
V (δ)) = ε, i.e. every action that can be seen by

V is mapped to ε by μ′. Therefore, with ω2 ∈ μ′
ID

−1(μ′
ID(ω1)) and ω1 ∈

(λ′
V )−1(λ′

V (ω)) follows ω2 ∈ (λ′
V )−1(λ′

V (ω)). As ω2 �∈ Λ′
V (ω, W ′

V ) it follows
that ω2 �∈ W ′

V . This means that in ω2 there exists a rec-offer action by user U
without a preceeding send-offer. This is in contradiction to μ′(ω2) ∈ K. �

4 Preserving Parameter Confidentiality

This section explains how we conclude from the proof of parameter confiden-
tiality of an abstract view of a system that an adequate representation of the
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property is satisfied in the refined system as well, and constitutes the main con-
tribution of this paper.

For simplicity, we assume that for a system S ⊆ Σ∗ and homomorphism
μ′ on Σ′∗ ⊇ h(S), the property for the concrete system is defined using the
homomorphism μ = μ′ ◦ h (where f ◦ g denotes the composition of functions f
and g). Then the same language K can be used on both levels of abstraction
to express the combinations of action types and parameter values. Definition 2
below can be easily transferred to the more general case with different type
sets and different homomorphisms. However, the extended definition is more
technical while the simplified version is suitable for many realistic scenarios.

Preservation of parameter confidentiality by a homomorphism h is concerned
with the parameter values considered possible on the different levels of abstrac-
tion. It therefore depends on the local views λR and λ′

R as well as on the relation
between the knowledge sets WR and W ′

R. These relations between the different
levels of abstraction are shown in Figure 2.

additional knowledge in the
concrete system expressed by Aω

of parameter confidentiality
conditions for preservation

concrete
system

abstract
system h(ω) ∈ h(S)

system
behaviour

ω ∈ S

possible by R
sequences considered

Λ′
R(h(ω), W ′

R)

parameter values considered
possible by R

ΛR(ω, WR) μ[ΛR(ω, WR)]

μ′[Λ′
R(h(ω), W ′

R)]

Fig. 2. Preserving parameter confidentiality

Definition 2 formulates a condition on language homomorphisms. We will
show that homomorphisms satisfying this condition preserve parameter confi-
dentiality, i.e. that if parameter confidentiality is satisfied in the homomorphic
image of a system it is satisfied in the system as well.

Definition 2. Let h : Σ∗ −→ Σ′∗ and μ : Σ∗ → (Σt × M)∗ be language
homomorphisms, S ⊆ Σ∗, R ∈ P, and λ′

R the local view of agent R in Σ′∗. Then
we call the homomorphism h parameter confidential for R with respect to μ if
for all ω ∈ S there exists Aω ⊆ Σ∗

t such that the following holds:

μ[ΛR(ω, WR)] = μ′[Λ′
R(h(ω), h(WR))] ∩ p−1

t (Aω)

So a parameter confidential homomorphism guarantees that the sequences of
actions R considers possible after having monitored ω in S correspond to those
R considers possible after having monitored h(ω) in S′. The definition takes into
account that usually agents will be allowed to learn additional information in
the refined system about the type of actions that have occurred. This additional
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knowledge is expressed by the set Aω ⊆ Σ∗
t . Applying p−1

t adds all parameter
values in M. Therefore, intersection with p−1

t (Aω) expresses that agents cannot
gain any additional information on parameter values. In the case that agents
do not learn any new information about action types, we simply have Aω = Σ∗

t

which leads to the much simpler condition μ[ΛR(ω, WR)] = μ′[Λ′
R(h(ω), h(WR))].

The next lemma states that if X ⊆ (Σt×M)∗ is parameter confidential, then
the intersection with a set in (Σt ×M)∗ containing all possible parameter values
is also parameter confidential.

Lemma 1. Let X, K ⊆ (Σt × M)∗ and A ⊆ Σ∗
t . Then X = p−1

t (pt(X)) ∩ K
implies X ∩ p−1

t (A) = p−1
t (pt[X ∩ p−1

t (A)]) ∩ K.

Proof: With Lemma A.1, p−1
t (pt[X ∩ p−1

t (A)]) ∩ K = p−1
t (pt(X) ∩ A) ∩ K.

According to the remark to Lemma A.1, this is equal to p−1
t (pt(X))∩p−1

t (A)∩K,
which by assumption is equal to X ∩ p−1

t (A). �

In Theorem 1 we now show that parameter confidential homomorphisms
indeed preserve parameter confidentiality as defined in Definition 1.

Theorem 1. Let S′ ⊆ Σ′∗ be parameter confidential for agent R ∈ P with re-
spect to some μ′ and K. Let furthermore S ⊆ Σ∗ and homomorphism h : Σ∗ −→
Σ′∗ such that h(S) ⊆ S′ and h(WR) = W ′

R. If h is parameter confidential with re-
spect to R, then S is parameter confidential for R with respect to μ = μ′◦h and K.

Proof: S′ being parameter confidential with h(S) ⊆ S′ and h(WR) = W ′
R im-

plies that μ′[ΛR(h(ω), h(WR))] = p−1
t (pt [ΛR(h(ω), h(WR))])∩K. From applying

Lemma 1 with X = μ′[ΛR(h(ω), h(WR))] we conclude μ′[ΛR(h(ω), h(WR))] ∩
p−1

t (Aω) = p−1
t (pt{μ′[Λ′

R(h(ω), h(WR))] ∩ p−1
t (Aω)}) ∩ K which is equal to

p−1
t (pt(μ[ΛR(ω, WR)])) ∩ K, because according to the assumption h is parame-

ter confidential. �

We now introduce a property that is sufficient for a homomorphism to be
parameter confidential. In contrast to Definition 2 here we directly compare the
image under homomorphism h of what R can learn from ω in the refined system
S with what R can learn from the image of ω in the abstract system S′ (again
taking into account what R is allowed to learn). This can result in easier proofs
in some cases.

Theorem 2. Let h : Σ∗ −→ Σ′∗ be a language homomorphism, S ⊆ Σ∗, R ∈ P,
and let ψ′ = pt ◦ μ′. h is parameter confidential for R with respect to μ if for all
ω ∈ S there exists Aω ⊆ Σ∗

t such that

h[ΛR(ω, WR)] = [Λ′
R(h(ω), h(WR)] ∩ ψ′−1(Aω).

Proof: Since μ = μ′◦h, we have μ[ΛR(ω, WR)] = μ′[h(ΛR(ω, WR))]. By assump-
tion, this is equal to μ′[Λ′

R(h(ω), h(WR)) ∩ ψ′−1(Aω)]. This in turn is equal to
μ′[Λ′

R(h(ω), h(WR))∩μ′−1(p−1
t (Aω))] because ψ′ = pt ◦μ′, and with Lemma A.1

follows equality with μ′[Λ′
R(h(ω), h(WR))] ∩ p−1

t (Aω). �
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Note that in the case where agents do not learn additional information in
the refined system, the sufficient condition of Theorem 2 for homomorphism h
for being parameter confidential reduces to

h[ΛR(ω, WR)] = [Λ′
R(h(ω), h(WR)],

i.e. Aω is equal to Σ∗
t .

For designing a system using various steps of refinement a natural require-
ment is that the composition of parameter confidential homomorphisms is again
parameter confidential.

Theorem 3. Let h : Σ∗ −→ Σ′∗ and g : Σ′∗ −→ Σ′′∗ be homomorphisms
parameter confidential for R ∈ P with respect to μ and μ′, respectively, and let
μ′′ = μ′ ◦ g. Then g ◦ h is also parameter confidential for R with respect to μ.

Proof: Let λR, λ′
R, and λ′′

R be the local views of agent R in Σ, Σ′, and
Σ′′, respectively. Since h is parameter confidential, μ[ΛR(ω, WR)] = μ′[Λ′

R(h(ω),
h(WR))] ∩ p−1

t (Aω). This is equal to μ′′[Λ
′′
R(g(h(ω)), g(h(WR)))] ∩ p−1

t (A′
h(ω)∩

p−1
t (Aω) because of parameter confidentiality of g. Equality to μ′′[Λ

′′
R(g(h(ω)),

g(h(WR)))] ∩ p−1
t (A′

h(ω) ∩ Aω) follows with the remark to Lemma A.1). �

We can now introduce a theorem which is the key for proving parameter
confidentiality of a refined system based on parameter confidentiality of an ab-
straction. The theorem uses a couple of conditions that, though very technical,
address quite natural conditions on compatibility of homomorphism and local
views in the refined and the abstract system. The theorem refers to the case
where an agent does not learn additional information about actions in the re-
fined system (see note of Theorem 2). It essentially states that in this case the
homomorphism is parameter confidential if the initial knowledge WR of agent R
in the refined system is just the inverse of what R knows in the abstract system.

Theorem 4. Let h : Σ∗→Σ′∗ be an alphabetic language homomorphism, h sur-
jective, and for R ∈ P let λR and λ′

R be the homomorphisms describing the local
views of R on Σ and Σ′, respectively. Let furthermore h′

R : λR(S) → λ′
R(S′) a

mapping on S with λ′
R ◦ h = h′

R ◦λR. Let additionally the following conditions
hold:

1. For all t′∈Σ′ with λ′
R(t′)=ε there exists t∈Σ with λR(t)=ε and h(t)= t′.

2. For all a ∈ Σ with λ′
R(h(a)) �= ε and for all t′ ∈ Σ′ with λ′

R(t′) = λ′
R(h(a))

there exists t ∈ Σ with λR(t) = λR(a) and h(t) = t′.
3. For all a ∈ Σ with h(a) �= ε and λ′

R(h(a)) = ε holds λR(a) = ε.

Then h[ΛR(ω, h−1(W ′
R))] = Λ′

R(h(ω), W ′
R).

For the (very technical) proof of this theorem we refer the reader to the
appendix.
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5 Parameter Confidentiality of the Refined Example
System

We now consider the refined system as defined in Section 2, which contains
an additional set of actions for sending and receiving orders. In Section 3 we
have shown that parameter confidentiality of the price offered to U is satisfied
in the abstract system. We will now show that this property is preserved by
homomorphism h and is therefore satisfied in the refined system as well.

The knowledge sets WP of the agents P ∈ P in the refined system are
analogous to those in the abstract system: No agent considers a sequence of
actions possible in which an offer and an order, respectively, is received without
having been sent before. However, the particular user V knows more about the
system. It knows that user U only orders the cheap price, and that he orders
only after having received an offer. This additional knowledge is formalized in
W 2

V below.
The knowledge sets for agents P ∈ {U, S, T} for the refined system S are

defined as follows:
WP = h−1(W ′

P ) ∩ W 1
P

where
W 1

P = Σ∗\

USER∈U,SP∈S
price∈M

(Σ\{send-order (USER, SP, price)})∗{rec-order (SP, USER, price)}Σ∗

The knowledge set for agent V for the refined system S with its additional
restrictions is defined as follows: WV = h−1(W ′

V ) ∩ W 1
V ∩ W 2

V

where W 1
V = W 1

P and

W 2
V = (Σ \

SP∈S
{send-order (U, SP, exp)})∗\

SP∈S
(Σ \ {rec-offer (U, SP, cheap)})∗{send-order (U, SP, cheap)}Σ∗

The refined system S ⊆ Σ in our example is given as the intersection of all

knowledge sets:
S =

⋂
P∈P

WP (Σ)

We will show that, although V knows more about the concrete system than
it knows about the abstract one, with respect to the homomorphism h the two
sets are identical. This allows us to make use of Theorem 4.

For specifying parameter confidentiality in S, we need to define the local
view of V and the type of action(s) we are interested in. The local views of the
refined system are analogous to those of the abstract system, i.e. each agent sees
its own actions and does not see any (part of) actions of other agents.

The local view λV : Σ −→ ΣV of agent V is defined as follows:

λV (a) =
{

a if a ∈ Σ/V

ε else
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In the refined system we are again interested in the confidentiality of the price
offered to user U, i.e. on both abstraction levels we focus on the same type of
actions with respect to parameter confidentiality:

The function μ that extracts action type and parameter is given by μ = μ′◦h,
i.e.

μ(send-offer(SP, V, price)) = ε
μ(send-offer(SP, U, price)) = (send-offer(SP, U), price)
μ(rec-offer(V, SP, price)) = ε
μ(rec-offer(U, SP, price)) = (rec-offer(U, SP ), price)
μ(send-order (USER, SP, price)) = ε
μ(rec-order(SP, USER, price)) = ε

Proposition 2. M is parameter confidential for V with respect to μ and K.

Proof:
We will show that Proposition 2 holds by applying Theorem 1. Thus we have

to show that all conditions of Theorem 1 hold, i.e. that

(i) h(S) ⊆ S′ (i.e. S′ is indeed an abstract view of S),
(ii) h(WV ) = W ′

V (i.e. knowledge sets in the refined and the abstract system
are consistent),

(iii) and homomorphism h : Σ −→ Σ′∗ is parameter confidential for V with
respect to μ.

Lemma 2. h(S) ⊆ S′, i.e for all ω ∈ S holds h(ω) ∈ S′.

Proof: We show the lemma by induction over the length of ω ∈ S.

Induction basis: Let ω = ε. Then h(ω) = ε ∈ S′.
Induction hypothesis: For ω0 ∈ S holds h(ω0) ∈ S′.
Induction step: Let us consider ω = ω0a.

1. h(a) = ε. Then h(ω) = h(ω0)h(a) = h(ω0) ∈ S′.
2. h(a) �= ε,a = send-offer(SP, USER, price) for USER ∈ U , SP ∈ S,

and price ∈ M .
Then h(ω0) ∈ S′ implies h(ω0a) = h(ω0)a ∈ S′.

3. h(a) �= ε,a = rec-offer(USER, SP, price) for USER ∈ U , SP ∈ S, and
price ∈ M .
Then ω0a ∈ S implies ω0 ∈ Σ∗send-offer(USER, SP, price)Σ∗.
It follows that h(ω0) ∈ Σ′∗send-offer(USER, SP, price)Σ′∗

and therefore h(ω0a) = h(ω0)h(a) = h(ω0)a ∈ S′. �

For the remaining items (ii) and (iii) we first prove a preliminary considera-
tion concerning the fact that in our particular example the additional restrictions
on V ’s knowledge of the system S have no influence on the image under h. This
is formulated in the next lemma.

Lemma 3. For all u ∈ h−1(W ′
V ) there exists v ∈ h−1(W ′

V )∩W 1
V ∩W 2

V such
that h(u) = h(v).



Abstractions Preserving Parameter Confidentiality 431

Proof: The lemma holds trivially for u ∈ h−1(W ′
V ) ∩ W 1

V ∩ W 2
V . Thus let

u ∈ h−1(W ′
V )\(W 1

V ∩W 2
V ), i.e. u ∈ h−1(W ′

V )\W 1
V ∪h−1(W ′

V )\W 2
V . Then

u = u1 . . . ul contains

1. actions ui1 , . . . , uir with uix ∈ {rec-order(SP, USER, price) | SP ∈ S,
USER ∈ U , price ∈ M} without the respective action send-order(USER,
SP, price) before, or

2. actions uj1 , . . . , ujs with ujy ∈ {send-order (U, SP, exp) | SP ∈ S}, or
3. actions uk1 , . . . , ukt with ukz ∈ {send-order (U, SP, cheap) | SP ∈ S} with-

out the respective action rec-offer (U, SP, cheap) before.

We define v := f(u) where

f(ui) =
{

ε if ui ∈ {ui1 , . . . , uir , uj1 , . . . , ujs , uk1 , . . . , ukt}
ui else

Since f maps all actions that can cause u not to be element of W 1
V ∩

W 2
V onto ε, v = f(u) ∈ W 1

V ∩ W 2
V . Since u ∈ h−1(W ′

V ) and h keeps all
actions send-offer(SP, USER, price) and rec-offer(USER, SP, price), u does
not contain actions rec-offer(USER, SP, price) without the respective action
send-offer(SP, USER, price) before. f keeps in particular all actions rec-offer
and send-offer , thus v = f(u) also contains no actions rec-offer without the re-
spective send-offer before, hence is element of h−1(W ′

V ), and therefore element
of h−1(W ′

V ) ∩ W 1
V ∩ W 2

V . �

Lemma 4. h(WV ) = W ′
V

Proof: h(WV )=h(h−1(W ′
V )∩W 1

V ∩W 2
V ). Lemma 3 together with Lemma A.2

yields h(WV ) = h(h−1(W ′
V )). Surjectivity of h implies h(h−1(W ′

V )) = W ′
V

and therefore, h(WV ) = W ′
V . �

Lemma 5. For all u ∈ λ−1
V (λV (ω)) there exists v ∈ λ−1

V (λV (ω))∩W 1
V ∩W 2

V

such that h(u) = h(v).

Proof: Again, the interesting case to show is u∈λ−1
V (λV (ω)) \ W 1

V ∩W 2
V . We

use the same function f to define v=f(u). With the same argument as above we
can deduce that v ∈ W 1

V ∩W 2
V . It remains to show that v∈λ−1

V (λV (ω)), which
follows from λV (v) = λV (ω). Since u ∈ λ−1

V (λV (ω)), λV (u) = λV (ω). Further-
more, for all actions a that are mapped by f onto ε holds λV (a)=ε (none of these
actions is performed by V ), hence λV ◦f =λV , thus λV (v)=λV (f(u))=λV (u)∈
λ−1

V (λV (ω)). Again we can conclude v ∈ λ−1
V (λV (ω))∩W 1

V ∩W 2
V . �

Finally we have to show that homomorphism h is parameter confidential
for V .

Lemma 6. h is parameter confidential for V with respect to μ.

Proof: According to Theorem 2, the assertion holds if there exists Aω such
that for all ω ∈ S, h(ΛV (ω, WV )) = [Λ′

V (h(ω), h(WV ))] ∩ ψ′−1(Aω). We
show that this equation holds for Aω = Σ∗

t , i.e. we show that
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h(ΛV (ω, WV )) = [Λ′
V (h(ω), h(WV ))] (1)

Lemma A.2 (see Appendix) states that f(X ∩ Y ) = f(X) if for all x ∈ X
there exists y ∈ X ∩Y such that f(x) = f(y). According to Lemma 5, this holds
for X = λ−1

V (λV (ω)) and Y = W 1
V ∩W 2

V . Since WV = h−1(W ′
V )∩W 1

V ∩W 2
V ,

this yields h(ΛV (ω, WV )) = h(ΛV (ω, h−1(W ′
V ))). Together with Lemma 4

we can reduce equation 1 to the case where V ’s knowledge about the system S
is just the inverse image of what it knows from Σ′. It remains to show

h(ΛV (ω, h−1(W ′
V ))) = Λ′

V (h(ω), W ′
V )

which holds by Theorem 4. Finally we have to show that our example satisfies
the respective properties. We do not provide formal proofs here as the assertions
are easy to see.

With h = h and hR = h, obviously λ′
R◦h = h◦λR. Furthermore, we need to

exclude some pathological cases concerning inconsistency between the homomor-
phism and the agents’ local views on both abstraction levels (see Lemma A.5).
The homomorphism h just maps part of the refined system S onto ε, the other
part of S forms S′. Of course this homomorphism is surjective. It is also con-
sistent with the agents’ local view, as λ′

R is simply λR restricted to the actions
in Σ′. For the same reason, pathological cases as described by the conditions of
Theorem 4 cannot occur. Hence the preconditions of Theorem A.4 are fulfilled
and the above equation holds.

Thus h is parameter confidential for V with respect to μ. �

This concludes the proof that M is parameter confidential for V with respect
to μ and K.

This proof seems to be rather complex for this artificial small example. How-
ever, the general structure of this proof applies to all examples where conditions
for Theorem 4 are satisfied. More complicated systems will only result in more
elaborate case differentiations.

6 A Different Refined System Not Parameter
Confidential

In order to give an impression why the condition in Definition 2 fails to hold for
a system not being parameter confidential, let us consider a system based on the
same set of actions Σ, the same set of agents, the same knowledge sets, etc., but
which has a slightly different local view of agent V . V sees all actions performed
by itself and additionally all types of actions performed by some other agent, i.e.
it sees who sends to whom which type of message, but it cannot see the actual
price used in the message. Although V never sees the price, in this example it
can deduce it from the observed behaviour combined with its knowledge about
the system. This example shows that often it is not sufficient to protect only
the transfer of confidential data. In order to achieve confidentiality the complete
system behaviour needs to be considered.

Let Σ, WP , S etc. be as defined in the previous sections. Then λ̃V : Σ −→
Σt ∪ Σ/V with
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λ̃V (a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a if a ∈ Σ/V

send-offer(SP, U) if a = send-offer(SP, U, price)
rec-offer(U, SP ) if a = rec-offer (U, SP, price)
send-order (U, SP ) if a = send-order (U, SP, price)
rec-order (SP, U) if a = rec-order (SP, U, price)

is the local view of agent V in S.

Proposition 3. M is not parameter confidential for V with respect to μ and
K if the local view of V is given by λ̃V .

Proof Sketch: We give a short proof sketch for the proposition. The complete
proof can be found in the appendix in Section A.2. In order to show that the
condition of Definition 2 does not hold we need to show that there exists ω ∈ S
containing an action send-offer(S,U,price) with price∈ {cheap, exp} where V
knows the value of the price. Indeed, such an ω exists because V knows (through
its knowledge set WV ) that U only orders the cheap price, and he sees that U
receives an offer by S and then orders, thus the price offered by S must be equal
to cheap.

7 Conclusions

In this paper we gave sufficient conditions to prove parameter confidentiality in
an abstract view of a system and then conclude that an adequate representation
of the property is satisfied in the refined system as well. The notion of parameter-
confidentiality was introduced in a preceding paper [6] to specify confidentiality
of certain parameters relative to an agent’s knowledge about the system, es-
pecially knowledge about dependencies between parameter values in different
actions.

As it was discussed in a typical example, the formulated conditions essentially
depend on an agent’s view as well as on an agent’s initial knowledge of the
systems behaviour, which explicitely formalizes assumptions about the system.

The universality of our formal definitions, based on formal languages and
language homomorphisms, allows to apply them to any specification language
with a semantics based on labeled transition systems.

The conditions introduced in this paper fit in our design method for security
sensitive systems, where security properties are specified independently from the
abstraction level. Suitable language homomorphisms map from lower to higher
levels of abstraction. Our design method was successfully applied in the project
CASENET funded by the European Commission (IST-2001-32446), where it was
used to develop real life applications with certain security properties.
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A Appendix

A.1 Several Technical Lemmata and Proof of Theorem 4

For arbitrary sets X and Y and A, C ⊆ X , B, D ⊆ Y and a mapping f : X −→ Y
we always have the equality f−1(B) ∩ f−1(D) = f−1(B ∩ D), but only the
inclusion f(A∩C) ⊆ f(A)∩ f(C). However, for particular intersections we have
equality:

Lemma A.1. Let X, Y be arbitrary sets, f : X −→ Y a mapping, and A ⊆
X, B ⊆ Y . Then f(A ∩ f−1(B)) = f(A) ∩ B.

Proof: a ∈ f(A∩f−1(B)) is equivalent to the existence of b ∈ A with f(b) ∈ B
and a = f(b), which in turn is equivalent to a ∈ f(A) and a ∈ B. �

Lemma A.2. Let X, Y and Z be arbitrary sets, and f : X −→ Z a homo-
morphism. If for all x ∈ X there exists y ∈ X ∩ Y such that f(x) = f(y) then
f(X ∩ Y ) = f(X).
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Proof: Let a∈f(X). Then there exists b∈X with f(b)=a. With the assumption
if follows the existence of some c∈X∩Y with f(c)=f(b)=a. Thus a ∈ f(X∩Y ).
On the other hand, if a∈f(X∩Y ), then a ∈ f(X)∩f(Y ) ⊆ f(X), thus a∈f(X).

�

Lemma A.3. Let h : Σ∗ → Σ′∗ be an alphabetic language homomorphism and
for R ∈ P let λR and λ′

R be the homomorphisms describing the local views of
R on Σ a Σ′, respectively. If there exists a mapping h′

R : λR(S) → λ′
R(S′) with

λ′
R ◦ h = h′

R ◦ λR on S, then h(ΛR(ω, WR)) ⊆ ΛR(h(ω), h(WR))

Proof: x ∈ h(ΛR(ω, WR)) implies the existence of y ∈ WR such that x = h(y)
and λR(y) = λR(ω). This in turn implies that there exists y ∈ WR with x = h(y)
and hR(λR(y)) = hR(λR(ω)). It follows that there exists y ∈ WR with x = h(y)
and λ′

R(h(y)) = λ′
R(h(ω)) which finally implies that x ∈ ΛR(h(ω), h(WR)).

Lemma A.4. Let h, h′
R, λR and λ′

R be as defined above. If h is surjective, h(WR)
= W ′

R, and λ′
R ◦ h = h′

R ◦ λR, then h[ΛR(ω, h−1(W ′
R))] ⊆ Λ′

R(h(ω), W ′
R).

Proof: Replacing WR in h[ΛR(ω, WR)] ⊆ ΛR(h(ω), h(WR)) of Lemma A.3 by
h−1(W ′

R) yields h[ΛR(ω, h−1(W ′
R))] ⊆ Λ′

R(h(ω), h(h−1(W ′
R))). Since the surjec-

tivity of h implies h(h−1(W ′
R)) = W ′

R, it follows the assertion.

Lemma A.5. Let h, Σ, Σ∗, λR and λ′
R be as defined above. Let furthermore the

following conditions hold:

(1) For all t′ ∈ Σ′ with λ′
R(t′) = ε there exists t ∈ Σ with λR(t) = ε and

h(t) = t′.
(2) For all a ∈ Σ with λ′

R(h(a)) �= ε and for all t′ ∈ Σ′ with λ′
R(t′) = λ′

R(h(a))
there exists t ∈ Σ with λR(t) = λR(a) and h(t) = t′.

(3) For all a ∈ Σ with h(a) �= ε and λ′
R(h(a)) = ε holds λR(a) = ε.

Then for all ω ∈ Σ∗ and x ∈ λ′−1
R (λ′

R(h(ω))) holds h−1(x)∩λ−1
R (λR(ω)) �= ∅.

Proof: We prove the lemma by induction over the length of ω.

Induction basis: Let ω = ε. Then λ′
R(x) = ε implies x ∈ [Σ′ ∩ λ

′−1
R (ε)]∗. By

condition (1) it follows the existence of y ∈ Σ∗ ∩ λ−1
R (ε) with h(y) = x and

further y ∈ h−1(x) ∩ λ−1
R (λR(ε)).

Induction hypothesis: The assertion holds for ω ∈ Σ∗ and x ∈ λ′−1
R (λ′

R(h(ω))).
Induction step: Let ω ∈ Σ∗, a ∈ Σ, λ′

R(x)=λ′
R(h(ω)h(a))=λ′

R(h(ω))λ′
R(h(a)).

1. λ′
R(h(a)) �= ε

Then there exists x = u′t′v′ with t′ ∈ Σ′, λ′
R(u′) = λ′

R(h(ω)), λ′
R(t′) =

λ′
R(h(a)) and λ′

R(v′) = ε. Because of the induction hypothesis there
exists u ∈ Σ∗ with h(u) = u′ and λR(u) = λR(ω). Because of condition
(2) there exists t ∈ Σ with h(t) = t′ and λR(t) = λR(a).
As for the induction basis, it follows that there exists v ∈ Σ∗ with
λR(v) = ε and h(v) = v′. As a consequence we have h(utv) = u′t′v′ = x
and λR(utv) = λR(ω)λR(a) = λR(ωa).
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2. λ′
R(h(a)) = ε

(a) h(a) = ε
Then we have λ′

R(x) = λ′
R(h(ω)h(a)) = λ′

R(h(ω)). The induction
hypothesis implies the existence of y ∈ Σ∗ with h(y) = x and
λR(y) = λR(ω). It follows h(ya) = x and λR(ya) = λR(ωa).

(b) h(a) �= ε and λ′
R(h(a)) = ε.

As above there exists y ∈ Σ∗ with h(y) = x and λR(y) = λR(ω).
Condition (3) implies λR(y) = λR(ωa).

�

Lemma A.6. If the preconditions of Lemma A.5 hold, then Λ′
R(h(ω), W ′

R) ⊆
h[ΛR(ω, h−1(W ′

R))].

Proof: Let x ∈ Λ′
R(h(ω), W ′

R). By Lemma A.5 there exists y ∈ Σ∗ with
h(y) = x and λR(y) = λR(ω). Thus it follows y ∈ ΛR(ω, h−1(W ′

R)), hence
x ∈ h[ΛR(ω, h−1(W ′

R))]. �

Now Lemma A.6 and Lemma A.4 prove Theorem 4.

A.2 Proof of Proposition 3

In order to show that the condition of Definition 2 does not hold we need to
show that there exist s ω ∈ S such that for all Aω ⊆ Σ∗

t holds

μ[Λ̃V (ω, WV )]
⊂
�= μ′[Λ̃′

V (h(ω), WV )] ∩ pt
−1(Aω) (2)

Consider ω = send-offer(S, U, cheap)rec-offer(U, S, cheap)send-order(U, S,
cheap). V ’s local view of this particular sequence of actions is

λ̃V (ω) = send-offer(S, U)rec-offer(U, S)send-order (U, S)
and the set of sequences V considers possible contains only one sequence:

Λ̃V (ω, WV ) = send-offer(S, U, cheap)rec-offer(U, S, cheap)
send-order (U, S, cheap) = ω

The reason for this is that V knows (through his knowledge set WV ) that U
only orders the cheap price, and he sees that U receives an offer by S and then
orders, thus the price offered by S must be equal to cheap.
Thus we have for the left hand side of Equation 2

μ[Λ̃V (ω, WV )] = μ(ω) = (send-offer(S, U), cheap)(rec-offer(U, S), cheap)

For the right hand side of Equation 2 we have

h(ω) = send-offer(S, U, cheap)rec-offer(U, S, cheap)
thus

λ̃′
V (h(ω)) = ε

therefore
λ̃′−1

V (λ̃′
V (h(ω))) ∩ W ′

V = (Σ′ \ Σ′
/V )∗ ∩ W ′

V



Abstractions Preserving Parameter Confidentiality 437

Thus in order to show that h is parameter confidential we would have to show

(send-offer(S, U), cheap)(rec-offer(U, S), cheap) =
μ′[(Σ′ \ Σ′

/V )∗ ∩ W ′
V ] ∩ p−1

t (Aω)

for some suitable Aω ⊆ Σt
∗.

Consequently, the sequence (send-offer(S, U), exp)(rec-offer (U, S), exp) may not
be element of p−1

t (Aω). However, we either have

{(send-offer(S, U), exp)(rec-offer(U, S), exp),
(send-offer(S, U), cheap)(rec-offer(U, S), cheap)} ⊆
p−1

t (Aω) ∩ μ′[(Σ′ \ Σ′
/V )∗]

that is

μ[Λ̃V (ω, WV )]
⊂
�= p−1

t (Aω) ∩ μ′[(Σ′ \ Σ′
/V )∗]

or we have

{(send-offer(S, U), exp)(rec-offer (U, S), exp),
(send-offer(S, U), cheap)(rec-offer(U, S), cheap)} ∩ p−1

t (Aω)
∩μ′[(Σ′ \ Σ′

/V )∗] = ∅
that is

μ[Λ̃V (ω, WV )] �⊆ p−1
t (Aω) ∩ μ′[(Σ′ \ Σ′

/V )∗]

So there is no Aω ⊆ Σt
∗ such that the condition in Definition 2 is satisfied.
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Abstract. Hippocratic Databases have been proposed as a mechanism to guar-
antee the respect of privacy principles in data management. We argue that three
major principles are missing from the proposed mechanism: hierarchies of pur-
poses, delegation of tasks and authorizations (i.e. outsourcing), and the minimal
disclosure of private information.

In this paper, we propose a flexible framework for the negotiation of personal
information among customers and (possibly virtual) enterprises based on user
preferences when enterprises may adopt different processes to provide the same
service. We use a goal-oriented approach to analyze the purposes of a Hippocratic
system and derive a purpose and delegation hierarchy. Based on this hierarchy,
effective algorithms are given to determine the minimum set of authorizations
needed for a service. In this way, the minimal authorization table of a global
business process can be automatically constructed from the collection of privacy
policy tables associated with the collaborating enterprises. By using effective on-
line algorithms, the derivation of such minimal information can also be done
on-the-fly by the customer wishing to use the services of a virtual organization.

1 Introduction

Since the early works on privacy protection in statistical databases [1], privacy research
has gained momentum. Changes in the landscape of legislation around the world, and
growing consumer attention to the issue have changed attitudes towards security and
privacy concerns for database systems. This matches with a substantial body of research
on approaches for managing the negotiation of personal information among customers
and enterprises [2,3,18,20].

At the basis of every solution for the exchange between enterprises and customers,
there is the principle of transparency. Transparency means that when enterprises store
data about customers they should disclose to customers which data is collected and
how it is used, i.e., for what purpose data is maintained. Starting from the landmark
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proposals for Hippocratic databases [3], most privacy-aware technologies use purpose
as a central concept around which privacy protection is built. For the transparency re-
quirement, enterprises should declare in their privacy policies the purpose for which
data is collected, who can receive it, the length of time the data can be retained and the
authorized users who can access it. Looking at such policies customers would be able to
understand how their personal data will be used and, in case they agree, disclose them.

Transparency is not the only principle, and another important notion which goes
hand in hand with transparency is the notion of minimal disclosure, as defined in the US
Privacy Act of 1974 and the EU Directives on Privacy in 1995. This principle requires
enterprises to maintain only the information necessary to fulfill the purpose for which
it has been collected. The principle of minimal disclosure seems to be easily satisfiable.
A company must simply ask the necessary data and leave other useful but unnecessary
fields as optional. We all experience this business practice when filling in a web form.

However, enterprises are able to provide their services in different ways, and each
different method could require different data. For example, banks may deliver bank
statements by email and by regular post. Depending on the method, customers should
provide their shipping address or email to the bank. Asking for both addresses as com-
pulsory would clearly violate the principle of minimal disclosure.

If we consider these decisions, the burden of choice is on the human who must
decide what to do on the basis of his/her personal feeling of trust of the enterprises.
But this is very difficult for complex tasks, where there are many ways to deliver the
service. The situation is worse if we consider dynamic coalitions, such as those that
might be soon available with Web Services and Business Processes for Web Services.
On the server side, we might not have a single enterprise, but rather a host of partners
participating in a business process. Further, companies may outsource a large part of
data processing to external supplier which on their own may do a similar process.

In some cases, the client process may even no longer be a human deciding to fill
an email field with her business email or a freshly created Yahoo address but rather
a software client. A software process needs automatic procedures for making such a
judgment on the basis of some general criteria provided by the user.

Classical privacy-aware systems such as Hippocratic Databases do not consider
these issues of delegation, minimality and their automatic treatment. In this paper we
show how to address them.

1.1 The Contribution of This Paper

This paper presents a flexible framework for automatically deriving the minimum set of
authorizations needed to achieve a service (i.e., the minimal privacy authorization table)
from the enterprise privacy policy (privacy policy table) by determining the minimum
set of data needed to fulfill required services based on users preferences and the partners
entitled to access the data.

Following goal-oriented security requirements engineering approaches [9], we pro-
pose to analyze the purposes behind the design of a Hippocratic system, and organize
them in hierarchal manner through AND- and OR-decompositions and delegation. Fur-
ther, we extend that hierarchy by associating to purposes the data needed to accomplish
them. Once customers have given a weight to each piece of data, one can determine
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the minimum set of data for fulfilling the root purpose with respect to user preferences.
Reasoning procedures for the fulfillment of users’ requirements by different solutions
have been already investigated in goal oriented requirements engineering [10,19]. How-
ever, their solution is not adequate for our purposes, as it is tailored to off-line analysis
by the system designer and not to on-the-fly selection by the system user.

In order to have more efficient algorithms, we represent purpose and delegation hi-
erarchies with hypergraphs [4,5]. Based on this data structure, we provide algorithms
for finding a minimal decomposition path that represents the process that uses the min-
imum set of information to fulfill a purpose, and for efficiently updating it when users
change the cost of data items or choose among the alternatives that an enterprise offers
for achieving the required service. Then, this path is used to determine the minimum
set of authorizations needed to achieve a service.

The remainder of the paper is structured as follows. Next (§2) we introduce a sce-
nario used as running example throughout the paper. We then provide (§3) a brief de-
scription of Hippocratic databases. Then, we introduce purpose DAGs in order to rep-
resent purpose hierarchies (§4) and discuss how to build a purpose DAG from a Hippo-
cratic database system (§5). Next (§6) we present algorithms for finding and updating
the minimum cost path. Finally, we discuss related works and conclude the paper with
some directions for future work (§7).

2 A Running Example

Our scenario is a revised version of the case study proposed by Agrawal et al. [3].
Mississippi is an on-line bookseller who needs to obtain certain personal informa-

tion to perform purchase transactions. This information includes name, shipping ad-
dress, and credit card number. Mississippi views purchase (the root-level ”purpose” for
its service) as a three-step process: credit assessment, delivery, and notification. Deliv-
ery can be done by direct delivery or by post, while notification can be done by email
or by fax. Depending on the method of notification, Mississippi needs either email or
fax information.

Mississippi relies on Worldwide Express (WWEx) for shipping books. WWEx is a
delivery company that offers a global network of specialized services – transportation,
international trade support and supply chain services. WWEx also needs personal infor-
mation to delivery books for Mississippi. This information includes customer name and
shipping address. In turn, WWEx depends on local delivery companies for door-to-door
delivery. To this end, WWEx delegates customer information to them. In the remain-
der of the paper, we call LDC1, . . . ,LDCn the local delivery companies responsible to
deliver books in the zone where the customer lives.

Furthermore, Mississippi relies on the Credit Card Company (CCC) for credit as-
sessment. CCC needs to obtain some information for providing credit assessment. This
information includes customer’s name and credit card number, and the transaction be-
tween Mississippi and the customer. For making credit decisions, CCC wants a credit
rating1. For this, CCC depends on the Credit Rating Company (CRC). CRC uses sta-
tistics to summarize past experience so that predictive analysis can be used to generate

1 Credit rating is a method for interpreting the content of a credit report.
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Table 1. Database Schema

table attribute
customer purpose, customer-id, name, address, email, fax-number, credit-card-info
order purpose, customer-id, transaction, book-info, status

Table 2. Privacy Metadata Schema

table attributes
privacy-policies purpose, table, attribute, { external-recipients }, retention
privacy-authorizations purpose, table, attribute, { authorized-users }

a rating for the customer. Based on the rating, CCC can decide to accept or not the
customer transaction.

3 A Primer on Hippocratic Databases

Hippocratic databases [2,3] use purpose as a central concept and consider it as a “spe-
cial” attribute occurring in every tables forming the database and associated with each
piece of data stored in the database.

Example 1. Table 1 shows the schema of two tables, customer and order, that store the
personal information collected by Mississippi.

Then, for each purpose and for each data item stored in the database, we have:

– external-recipients: the actors to whom the data item is disclosed;
– retention-period: the period during which the data item should be maintained;
– authorized-users: the users entitled to access the data item.

Purpose, external recipients, authorized users, and retention period are stored in the
database with respect to the metadata schema defined in Table 2 [3]. Specifically, the
above information is split into separate tables: external-recipients and retention period
are in Privacy-Policies Table (PPT), while authorized-users in Privacy-Authorizations
Table (PAT). The purpose is stored in both of them. PPT contains the privacy policies
of the enterprise, while PAT contains the access controls policies that implement the
privacy policy and represents the actual disclosure of information. In particular, PAT is
created from PPT by instantiating each external recipient with the corresponding users.
Therefore, Hippocratic systems define a PAT for each PPT. These tables are equal for
every customer, and so they do not appreciate individual user preferences.

Example 2. According the PPT of Mississippi, it can access both email and fax number
for notifying the status of the order. WWEx, Post Office, and all LDCs can access cus-
tomer data for direct delivery, delivery by post and door-to-door delivery, respectively.
These authorizations match exactly the policies declared in the corresponding PPTs.

Further examples for the PPT of each partner involved in the business process and the
corresponding PATs in our running example can be found in [14].
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Before users disclose their information, the Privacy Constraint Validator is used to
verify whether user preferences match the privacy policy of the enterprise. In this way,
Hippocratic DBs implement the consent principle. When queries are submitted to the
database, the system answers only queries for which the purpose is equal to that for
which data has been stored. Further, Hippocratic DBs do not disclose information for
purposes different from those for which the owner of the information have previously
give the consent. Thus, Hippocratic DBs implement, respectively, the limited use and
disclosure principles. To enforce the retention principle, Hippocratic DBs use the Data
Retention Manager which deletes data items when their retention period is expired.

The limited collection principle requires that enterprises collect the minimum set of
data needed to fulfill the purpose for which data is stored. Hippocratic DBs use three
components to implement such principle: Access Analysis, that identifies for each pur-
pose which data never occurs in query answers; Granularity Analysis, that determines
the granularity of the required information; Minimal Query Generation, that designs
queries that disclose the minimum set of data needed for fulfilling a certain purpose.

4 Hierarchy and Delegation of Purposes

Hippocratic systems are an elegant and simple solution but do not allow for dynamic
situations that could arise with web services and business process software. In such set-
tings, enterprises may provide services in many different ways and may delegate the
execution of parts of the service to third parties. This is indeed the case of a virtual or-
ganization based on business process for web service where different partners explicitly
integrate their efforts into one process. This affects mainly the creation of the PAT.

Agrawal et al. [3] propose to split a purpose into multiple purposes and then store
them in the database. In this way, we lose the relation among a purpose and its sub-
purposes. Karjoth et al. [11] use a directory-like notation to represent purpose hierar-
chies. However, this notation does not distinguish if a sub-purpose is derived by AND
or OR decomposition, and consequently cannot be used to reason about the fulfillment
of the root purpose. Additionally the same sub-purpose may be part of different pur-
poses. This distinction is important from the perspective of minimality of information.
For example, providing both an email address and a physical address might be needed
to provide the password for access to the tracking service and the actual shipping of
goods and those purposes may be both necessary (AND) to obtain a certain higher level
goal. However, in other cases only one of them could be necessary (OR). Therefore,
requiring both of them would be a violation of the minimality principle.

Our approach is based on traditional goal analysis [15], and consists of decom-
posing purposes into sub-purposes through an AND/OR refinement. If purpose p is
AND-decomposed (respectively, OR-decomposed) into sub-purposes p1, . . . , pn, then
all (at least one) of the sub-purposes must be satisfied for satisfying p. The idea is to
represent purpose hierarchies with hypergraphs [4,5], and we will call them purpose
directed acyclic graphs (or purpose DAGs, for short).

Definition 1. A purpose DAG P is a pair 〈P, D〉 where P is a set of purposes and D is
a set of decomposition arcs. Each decomposition arc is an ordered pair 〈S, t〉 from an
arbitrary nonempty set S ⊆ P (source set) to a single node t ∈ P (target node).
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Definition 2. Let P = 〈P, D〉 be a purpose DAG. A purpose DAG P ′ = 〈P ′, D′〉 such
that P ′ ⊆ P and D′ ⊆ D and, for each 〈S, t〉 ∈ D′, S ⊆ P ′, is called sub purpose
DAG of P . This is denoted by P ′ ⊆ P .

The enterprise-wide privacy policies is derived by looking at the Hippocratic data-
base of each partner involved in the business process and merging them into a single pur-
pose DAG. Therefore, purpose DAGs can be recognized as the outcome of a process of
refinements of goals and delegation of tasks in security requirements modeling method-
ologies [9]. Fig. 1 shows an example of purpose DAG. Each node is composed by two
parts: a purpose identifier and the list of data items needed to fulfill the purpose. Bro-
ken lines partition the purpose DAG in sub purpose DAG, and each of them represents
the policies of a single enterprise, and so purposes on the broken line can be seen as
services whose execution is delegated to other suppliers.

Definition 3. Let P = 〈P, D〉 be a purpose DAG, X ⊆ P be a non-empty subset of
purposes, and y be a purpose in P . A decomposition path DX,y is a set of decomposition
arcs D′ ⊆ D such that either y ∈ X or there exists a decomposition arcs 〈Z, y〉 ∈ D′

and there are decomposition paths DX,z ∈ D′ for each z ∈ Z .

Essentially, a decomposition path represents a possible process through which an
enterprise can fulfill a root purpose. Our goal is to decide which is the process with
the “minimum privacy penalty” to fulfill the root purpose with respect to the user’s
preferences. This can be performed through a quantitative analysis. In order to support
quantitative analysis, we need to introduce the notion of weighted purpose DAG.

Definition 4. A weighted purpose DAG P = 〈P, D〉 is one where each decomposition
arc 〈X, y〉 ∈ D has associated with it a weight ω〈X,y〉.

Since decomposition paths have a complex structure, different ways can be used to
measure the cost of the same decomposition path. Depending on the weight measure,
the problem can be polynomially tractable [8] or NP-hard [6,7,17]. The problem of
finding a minimal cost hyperpath in a directed hypergraph is shown to be NP-hard when
the cost of a hyperpath is the sum of the weights of its hyperarcs [4,5]. By making the
cost function additive, Martelli and Montanari [13] were able to formulate a polynomial
time algorithm for AND/OR graphs. For additive cost functions, the cost of one edge is
counted as many times as it is traversed. Additive cost functions are also considered in
hypergraph approaches that find optimal hyperpaths in polynomial time [4,5].

For our purposes, we use an additive cost function. We believe that additive mea-
sures are the ones that capture best the intuitive way in which we might wish to protect
our privacy. In a nutshell, if the same datum is disclosed N times, then the cost of these
disclosures is N, rather than 1. After all, the more a datum is used, the more it is likely
that it might be compromised, or the more it is likely to end up in companies not so
privacy-aware. The more our data are tossed back and forth the less happy we are.

Definition 5. Let X be a source set, y be a purpose node, and DX,y be a decomposition
path from X to y. The disclosure penalty (or privacy penalty) to reach y starting from
X , dp(X, y), is inductively defined as follows:
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1. if y ∈ X , then dp(X, y) = 0
2. if path DX,y has root 〈Z, y〉 with subpath DX,z1 , . . . ,DX,zk

, then dp(X, y) =
ω〈Z,y〉 +

∑
zi∈Z dp(X, zi).

5 From Hippocratic DBs to Purpose DAG

We now have the machinery to construct a purpose DAG when orchestrating a business
process composed by many different partners (each with its own Hippocratic DB). The
construction is sketched below.

– For each supplier PPT, purposes are analyzed through a goal refinement process,
and so they are structured with respect to AND/OR decomposition. These purpose
DAGs are circumscribed by a broken line and labeled with the supplier’s name.

– Once we have a DAG for each supplier, we build the DAG representing the privacy
policy of the entire business process by merging them.

– Then each purpose is associated with the data items directly needed to achieve the
purpose itself (data items needed to achieves its sub-purposes are linked directly to
sub-purposes).

Merging is done by looking at the external-recipients field in every PPT: when the
external-recipients field is not empty, we connect that purpose with the corresponding
purpose (with the same name) occurring in the DAG associated with the supplier that
is an instance of some external recipient. If there is more than one instance for the
same external recipient, we create a fictitious node and OR decompose it into a number
of nodes equal to the number of possible instances. This is also what happens if we
have multiple external suppliers for the same purpose. This approach supports complex
enterprise strategies and, at the same time, allows customers to directly choose a certain
supplier whenever the choice is possible. To support this process, we assume a common
ontology among all the actors involved in the purpose DAG.2

The last step takes into account the data items we need to satisfy a purpose and the
privacy penalty assigned to each data item by users. The idea is to create a node for each
data item and link it to the purposes that directly requires it. So, we add to the purpose
DAG n + 1 nodes where n is the number of data items. Then, if a purpose node has no
incoming decomposition arcs, we link to the purpose the data items needed to fulfill it
with decomposition arc 〈X, t〉 where X is the set of data items and t the purpose node.
Otherwise, if node t has already an incoming decomposition arc 〈X ′, t〉, this is replaced
by the decomposition arc 〈X ∪ X ′, t〉. We link to each data item nodes the last node,
source node, with arc 〈⊥, t〉, where ⊥ is the source node and t is a data item node.

Example 3. Fig. 1 shows the purpose DAG extended within data items corresponding
to the running example. Each purpose DAG on a broken line represents the hierarchical

2 This assumption is also necessary in Hippocratic database systems. If external recipients of
data could assign a semantics to a purpose that is different from the semantics assigned by the
Hippocratic database owner we could as well eliminate the entire tagging process and provide
all data with purpose “do-what-you-please”.
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Fig. 1. Purpose DAG

model of the privacy policies concerning a partner. In particular, Mississippi AND-
decomposes purchase into delivery, credit assessment whose execution is delegated to
CCC, and notification. Thus, all sub purposes have to be reached in order to reach the
root purpose. Then, the store OR-decomposes delivery into direct delivery for which it
depends on WWEx, and delivery by post for which it depends on Post Office. These
purposes are the root of the DAGs associated with WWEx and Post Office. Finally, the
store achieves notification either by fax or by email. These purposes are not further on
decomposed, and so are linked to the data items needed to fulfill them.

Every decomposition arc has disclosure penalty equal to 0, except the decomposi-
tion arcs joining source node and data item nodes, and delegation arcs. In the first case,
the disclosure penalty corresponds to the cost of perceived disclosure of data. The latter
represents the disclosure penalty to delegate information. Both these assignments are
given by data owners with respect to their own preferences. In particular, weight on
delegation edges from one supplier to the sub-suppliers can be defined by asking the
users to specify the level of trust they feel about sub-suppliers.

6 Minimum Cost Algorithms

Customers do not want to disclose more data than needed to get the desired service.
This corresponds to finding the minimal decomposition path from the source node to
the root purpose. This path can be used to build the minimal PAT that represents the
minimum set of authorizations for fulfilling the root purpose. A key observation is that
such computation cannot in general be done by the company providing the service
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Table 3. Data Structures

Data Structure Type Description
LAST [y] node Pointer to the last node in the minimal path from source node to simple node y.
DISCLOSE [y] integer Privacy penalty from the source node to node y.
NEEDED [y] data item list Data items needed to fulfill node y.
TODO[y] integer For simple nodes, it says if node y is reachable.

For compound nodes, it is the number of simple nodes (that compound y) which are not
reachable from the source.

once and for all customers: customers may associate a different privacy penalty to the
provision of the same data item. Therefore, they are interested in finding the minimum
information cost for fulfilling the root purpose with respect to their own preferences.
The computation of minimal preferences is essentially a dynamic on-line process.

In order to design efficient algorithms for dynamic evaluation of privacy prefer-
ences, we use FD-graph [5] whose definition is given below.

Definition 6. Given a purpose DAG P = 〈P, D〉, let S be the set of source set, i.e.,
S = {Z| there exists a decomposition arc 〈Z, i〉 ∈ D and |Z| > 1}. The FD-graph of
P is a labeled graph G(P) = 〈Ps ∪ Pc, Aor ∪ Aand〉, where:

1. Ps ≡ P is a set of simple nodes;
2. Pc is the set of compound nodes which is in bijective relationship with S. If Z ∈ S

is a source set then z will denote the corresponding compound node, and any simple
node zi in the source set Z will be called a component node of compound node z;

3. Aor ⊆ (Pc × Ps) ∪ (Ps × Ps) = {(z, x)|〈Z, x〉 ∈ D} is the set of edges referred
to as OR-edges, in bijective relationship with D;

4. Aand ⊆ Ps × Pc = {(zi, z)|z ∈ Nc and zi ∈ Z} is the set of edges referred to as
AND-edges, connecting any compound node to its components

Essentially, a decomposition arc is represented by a compound node with a leav-
ing OR-edge and one or more incoming AND-edges. The OR-edge corresponds to the
OR choice of selecting the decomposition arc. Once the decomposition arc is selected,
all purposes in its source set must be fulfilled. There is a one-to-one correspondence
between the decomposition arcs of a given purpose DAG P and OR-edges of the corre-
sponding FD-graph G(P). If a decomposition arc of P has a weight, this is associated to
the corresponding OR-edge. FD-graphs can be implemented by maintaining adjacency
lists where all OR (AND) edges leaving a node y are organized in Lor(y) (Land(y)).

When we design a system we can distinguish two phases, namely Requirements
Capture phase and Privacy Assessment phase. Each of these phases involves some op-
erations: the Requirements Capture phase requires an initialization phase and support
for deleting arcs, adding arcs, increasing weights and decreasing weights, while the
Privacy Assessment phase requires support for deleting arcs and increasing weights.

Next, we present the data structures used in the algorithms. A summary of such data
structures is shown in Table 3. In order to retrieve the minimal decomposition path, the
idea is to store for each simple node y, the incoming decomposition arcs belonging
to the minimal decomposition path (backward pointers [5]) by using LAST [y]. This
points to the last node in the minimal decomposition path from source node ⊥ to simple
node y, otherwise, if there is no path from ⊥ to y, it is equal to nil .
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Table 4. Algorithms for initializing and updating the minimal decomposition path

Phase Name Input Description
I MinimumCost Find the minimal decomposition path for a purpose DAG.
I ScanMC t: node

x: simple-node
Scan OR-edges and update priority queue. Called by MinimumCost.

U WeightIncrease 〈X, y〉: decomposition arc
ω: weight

Update the minimal decomposition path when arcs are delated or
weight is increased.

U ScanWI t: node
x: simple-node

Scan OR-edges and update priority queue. Called by Insert and
WeightIncrease.

The privacy penalty of the minimal decomposition paths from ⊥ to any other simple
or compound node y is stored in DISCLOSE [y]. For every node, the privacy penalty
is initialized to infinity (∞). The list of data item needed to fulfill a purpose y is stored
in the variable NEEDED [y]. At the beginning, for every node y, NEEDED [y] = ∅
except for the nodes associated to a data item where the list contains the data item
itself. The symbol ) is used to represent concatenation of lists. Finally, the variable
TODO [y] is used to store if there is a path from ⊥ to y. A node y is visited if the
value of TODO [y] is equal to 0. For any simple node x, TODO [x] is initialized to 1,
and for any compound node z (with components z1, . . . , zq), TODO [z] is initialized to∑q

k=1 TODO [zk].
In the remainder of the section, we present some algorithms for finding and updat-

ing the minimum cost decomposition path. A summary of such algorithms is given in
Table 4 where I and U are respectively used for initialization and update.

6.1 Initialization

Initialization refers to find the minimum cost decomposition path for a new purpose
DAG. The following algorithms are based on [5] and are essentially a variant of Dijk-
stra classical minimum spanning tree algorithm. The algorithms are described in the
following, while the pseudocode is given in Fig. 2 and 3.

Algorithm MinimumCost uses a priority3 queue PQ whose elements have the
form (Ct, It, 〈s, t〉) where 〈s, t〉 is an OR-edge, and Ct and It are, respectively, the
privacy penalty and the list of data items associated with the node t. The algorithm
inserts as a first element in the priority queue the item (0, ∅, 〈⊥,⊥〉). Then, repeat-
edly, the algorithm extracts from the queue PQ the node t with minimum priority Ct

which is assumed to be the privacy penalty of the minimal decomposition path from
⊥ to t. Thereby, all OR-edges outgoing from t are scanned by procedure ScanMC, all
AND-edges 〈t, z〉 are analyzed. For each compound node z, TODO [z] is decreased,
and if it is equal to 0 the privacy penalty of the minimal decomposition path from
⊥ to z is computed. Then, all OR-edges outgoing from z are scanned by procedure
ScanMC. Procedure ScanMC aims at analyzing OR-edges 〈t, x〉: if the ingoing node
x is not already visited, the procedure inserts it in the priority queue; otherwise, the
penalty of x is updated if and only if edge 〈t, x〉 improves the old penalty associated
with x.

3 Lowest data required in, first out.
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Algorithm MinimumCost
Output:

DISCLOSE [y] : integer;
NEEDED [y] : data item list;
TODO [y] : integer;
LAST [y] : node;

begin
make-PQ -empty;
PQ -insert(0, ∅, 〈⊥,⊥〉);
TODO [⊥] := 0;
while PQ -nonempty do begin

PQ-extract(Ct, It, 〈s, t〉); {extract from the queue PQ the node t with minimum priority Ct}
DISCLOSE [t] := Ct;
NEEDED [t] := It;
LAST [t] := s;
for each {OR-edge} 〈t, x〉 ∈ Lor(t) do ScanMC(t, x);
for each {AND-edge} 〈t, z〉 ∈ Land(t) do begin

decrement(TODO[z]);
if TODO[z] = 0 {If node z is reached the privacy penalty of the path from ⊥ to z is computed}

then begin
DISCLOSE [z] := zi∈z DISCLOSE [zi]
NEEDED [z] := zi∈z NEEDED [zi]
for each {OR-edge} 〈z, x〉 ∈ Lor(z) do ScanMC(z, x);

end
end

end
end

Fig. 2. Algorithm MinimumCost

Procedure ScanMC(t: node; x: simple-node);
begin

Ct,x := ω〈t,x〉 + DISCLOSE [t];
It,x := NEEDED [t];
if TODO [t] = 1 {check if node t has been previously visited}

then begin
decrement(TODO [t]); {if not, node t is marked as reached
PQ -insert(Ct,x, It,x, 〈t, x〉); and arc 〈t, x〉 is inserted in PQ}

end
else if Ct,x < Cx {otherwise, PQ is update only if arc 〈t, x〉 improves minimal path}

then PQ-decrease(Ct,x, It,x, 〈t, x〉);
end

Fig. 3. Procedure ScanMC

Example 4. Defining default preferences, Mississippi gives a value on data items and
delegation steps (Table 5). It prefers to deliver books by using a delivery company
because this method is more secure and faster. Further, it prefers to notify by fax. Fig. 4
shows the minimum cost path. Comparing it with Fig. 1, we can see that email does
not occur anymore since fax has a lower penalty. Also the DAGs labeled with Post
Office and LDC2 are no longer considered since the sum of the penalties associated
with WWEx and LDC1 is lower than those associated with Post Office and LDC2.4

4 The penalty for delegating data to LDC2 includes the trust level associated with WWEx.
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Table 5. User Preferences

Data Item Cost Delegation Cost
name 1 CCC 2
address 5 CRC 4
email 4 WWEx 2
fax-number 2 LDC1 2
credit-card-info 10 LDC2 3
transaction 5 Post Office 5
book-info 2
status 3
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Fig. 4. Minimum Decomposition Path

It is possible to prove, as done in [5] that

1. a node y is marked (i.e., TODO [y] = 0) if it is reachable from the source node;
2. the algorithm computes correctly the minimal privacy penalty from ⊥ to any other

node in the purpose DAG;
3. the algorithm terminates in linear time in the size of the purpose DAG.

Every purpose can be seen as a business process. Business processes can be com-
bined, and the “new” process can be seen as an atomic process. Atomic processes follow
the ACID properties [16] that guarantee that all participants will see the same outcome:
in case of success all services make the results of their operation permanent by com-
mitment, otherwise all services undo all operations they have requested and data is not
disclosed. Thus, to guarantee consistent and reliable execution, we should check if the
minimal path exists. This path is then used to build the PAT where external recipients
are instantiated by the corresponding authorized users. This ensures that a user discloses
all information needed to fulfill the service only if a path exists and that disclosed in-
formation is the minimum cost set of data necessary to fulfill the service.
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Example 5. Mississippi is authorized to notify the status of the order only by fax, and
so it can collect only data related to that purpose for notification. LDC1 can access
only data needed for door-to-door delivery, and so WWEx for direct delivery. In turn,
Mississippi is entitled to access those data for achieving delivery. Moreover, CRC is au-
thorized to access only data need for credit rating and CCC for credit resolution. Then,
CCC can access only those data for performing credit assessment. Finally, Mississippi
is entitled to collect data for achieving purchase in accordance with those allowed for
its sub purposes. As shown in Fig. 4, Mississippi cannot access customer email.

A comparison among the PATs derived by two approaches is given in [14].

6.2 On-the-Fly Update of Customer Privacy Preferences

Both requirements capture and privacy assessment phases require to update the solution
when weights are modified. In particular, the privacy assessment phase requires that
data structures are maintained and that operations are performed on-line. The idea is to
reuse the valid part of the old solution as much as possible.

The problem of dynamically updating the purpose DAG can be essentially divided
in two distinct classes depending on the update operations that are possible:

– adding new arcs or decreasing the privacy penalty of an existing arc;
– deleting an existing arc or increasing the privacy penalty of an existing arc.

For sake of generality both possibilities must be considered when devising the the-
ory but we argue that most practical implementations will only have to cope with the
second type of updates. Indeed the presence of a decomposition arc corresponds to
a business choice done by the enterprise (such as using a supplier). A customer may
surely decide not to use a particular supplier, without further ado than ticking a check-
box on the web. However, adding a supplier or a partner to a business process is a pro-
cedure that can be conceived for very dynamic virtual business coalitions, and requires
to solve problems (system integration, commercial agreement, legal liabilities etc.) that
go well beyond the comparatively simple issue of privacy preferences. So we leave to
the technical report [14] the details of the procedure that maintains the minimum cost
path when new arcs are inserted or the cost of an existing arc is decreased.

In the case the customer increases the privacy penalty of decomposition arcs, we
use algorithm WeightIncrease to build the new minimum cost decomposition path.
The pseudocode is given in Fig. 5 and 6. The idea is that if the decomposition arc does
not belong to the minimum cost decomposition path, this path does not change since we
are analyzing only weight increase and arc deletion. If the decomposition arc belongs
to the minimal path, we examine the other decomposition arcs having node t as head.
To this end, we use the function backward Bor where, given a node x, Bor(x) = {h ∈
D|x = head(h)}. Essentially, Bor(x) is the set of incoming decomposition arcs of x.
Any time a decomposition arc that does not belong to the minimum cost path is found,
it is pruned. The procedure WeightIncrease can be simply re-used for the case of arc
deletion by defining the weight equal to infinity (∞).

Example 6. Alice, a Mississippi’s customer, does not agree with default user prefer-
ences given by Mississippi. In particular, she prefers to receive books by post because
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Procedure WeightIncrease(〈X, y〉: decomposition arc, ω: weight);
begin

if |X| = 1
then x := the single element of X;
else x := Compound(X);

if LAST [y] = x then begin {arc 〈x, y〉 is considered only if it belongs to minimal path}
DISCLOSE [y] := ω + DISCLOSE [x];
for each {OR-edge} 〈s, y〉 ∈ Bor(y) do ScanWI(s, y);
while PQ-nonempty do begin

PQ-extract(Ct, It, 〈s, t〉); {extract from the queue PQ the node t with minimum priority Ct}
DISCLOSE [t] := Ct;
NEEDED [t] := It;
LAST [t] := s;
for each {OR-edge} 〈t, x〉 ∈ Lor(t) do

if LAST [x] = t then {arc 〈t, x〉 is considered only if it belongs to minimal path}
for each {OR-edge} 〈s, x〉 ∈ Bor(x) do ScanWI(s, x);

for each {AND-edge} 〈t, z〉 ∈ Land(t) do begin
c := zi∈z DISCLOSE [zi]
d := zi∈z NEEDED [zi]
if c < DISCLOSE [z] then begin {arc 〈t, z〉 is considered only if it improves minimal path}

DISCLOSE [z] := c
NEEDED [z] := d
for each {OR-edge} 〈z, x〉 ∈ Lor(z) do

if LAST [x] = z then {arc 〈z, x〉 is considered only if it belongs to minimal path}
for each {OR-edge} 〈s, x〉 ∈ Bor(x) do ScanWI(s, x);

end
end

end
end

Fig. 5. Procedure WeightIncrease

Procedure ScanWI(t: node; x : simple-node);
begin

Ct,x := ω〈t,x〉 + DISCLOSE [t];
It,x := NEEDED [t];
if Ct,x < DISCLOSE [x] {arc 〈t, x〉 is considered only if it improves minimal path}

then if 〈t, x〉 /∈ PQ
then PQ-insert(Ct,x, It,x, 〈t, x〉);
else PQ -decrease(Ct,x, It,x, 〈t, x〉);

end

Fig. 6. Procedure ScanWI

she does not trust to give her address to delivery companies after a bad experience with
a local delivery company. To this end, she defines the cost of delegation information to
WWEx equal to infinity (∞). Further, she does not have a personal fax and must use her
company’s fax where faxes are first given to the program manager’s secretary for dis-
tribution to the staff. Thus, she defines the cost of fax number equal to 20. Fig. 7 shows
the minimal path computed with respect to her user preferences. The corresponding
PAT [14] shows that Mississippi cannot access her fax number for notification and that
WWEx and local delivery companies cannot access any of her data; only Post Office is
entitled to access her data for delivering the purchased books.
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7 Related Work and Conclusion

Last years have seen an increasing attention to privacy-protection technologies and the
negotiation of private information between customers and companies. Tumer et al. [20]
present a framework for Web Services that allows users and enterprises to automatically
negotiate personal information. Each data item is defined as Mandatory or Optional by
an enterprise, while users define for each part of their personal information the kind
of access, namely Free, Limited, or NotGiven. Then, the framework matches enterprise
policies with user preferences. If a mandatory input is not given by a user, enterprises
can find alternative strategies in order to reach an agreement with the user.

A policy itself may be sensitive since analyzing the disclosed policies an unautho-
rized user may infer sensitive information. Therefore, some approaches aim not only to
protect personal information, but also policies themselves. LeFevre et al. [12] provide
an approach for forcing queries to respect privacy policies stated by an enterprise and
users preferences. Their idea is to specify additional conditions to regulate the disclo-
sure of information. Another approach to avoid unauthorized disclosure of sensitive in-
formation is Automated Trust Negotiation [18]. It aims to regulate iterative disclosures
of credentials and requests between requesters and provider. These approaches are dif-
ferent from ours since we assume that information are committed only after checking
that enterprise policies comply with user preferences. We argue that, if policies are not
known at priori, users cannot know which data they have to provide. It may be possible
that users discover that an enterprise requires more information than they (the users)
consider reasonably sufficient to provide the service only when they have already dis-
closed part of their information.

The main contribution of this paper is a framework for deriving the minimum set of
authorizations needed to provide a service by determining the minimum set of informa-
tion a customer has to give. In particular, our approach provides support to Hippocratic
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systems for enforcing the limited collection principle when a complex business process
is analyzed and user preferences are considered. Indeed Hippocratic systems create a
privacy authorization table shared by all customers. This does not allow to distinguish
which particular method is used for delivering a service, and so to customize the mini-
mum set of information. Therefore, access analysis is only able to determine which data
items are never used for a purpose and, consequently, minimal query generation works
on a set of information that is not minimum. Finally, our framework ensures that a user
discloses all (and only) the information required by the process that uses the minimum
set of information to delivery the service.

There are some issues left as future work. One of these is to introduce an actor
hierarchy to model the hierarchical nature of organizations (e.g., company-division-
department-individual worker). Further, customers must be assured that they are getting
a complete and correct answer to their queries before delegating privacy information.
To this end, we are investigating the usage of Merkle Trees to build a global certificate
to be provided to the client by composing the individual certificates from the various
business partners.
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Abstract. We define security goals and attack models for disk encryp-
tion, and prove several results for the resulting security notions, as well
as some relationships. We give concrete constructions for every security
notion along with security proofs. We briefly discuss the security of some
implementations and standards for disk encryption.

1 Introduction

It is quite common for confidential and important data to be written to some
storage medium (laptop computers, memory sticks, optical or magnetic media,
networked storage systems, etc.), but where the physical integrity of the storage
medium cannot be guaranteed. The obvious solution is to use cryptography.

While it is possible to include encryption and integrity into application pro-
grams, this is often infeasible, either because proper security must be designed
into applications, not added as an afterthought, or because the software cannot
be modified. The creation of temporary files as well as working copies leave traces
on the physical disk, which means that conventional file encryption programs are
of little use. Even when such solutions are possible, they will often be difficult
to use correctly.

One popular solution is disk encryption, where all data is encrypted by the
operating system before it is written to the storage medium. This is an attractive
solution, because it is potentially very easy to use (being almost transparent to
the user), and existing applications can be used unmodified.

We shall consider four different attack scenarios for disk encryption.

Theft. The simplest situation is when the storage medium is stolen, where
the goal will be confidentiality. The thief should not be able to read the
confidential information stored.

Passive monitoring. There are situations where the adversary is able to mon-
itor the data being read and written to and from the storage medium, but he
is not able to modify the data. One example could be electromagnetic radia-
tion leaking from the cables between the user device and the storage medium.
A more plausible example is a storage device connected to a network, where
the attacker can read network traffic, but is unable or unwilling to modify
traffic. A third example is read-only storage media used for transport.

S. De Capitani di Vimercati et al. (Eds.): ESORICS 2005, LNCS 3679, pp. 455–474, 2005.
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Theft with recovery. A slightly more complicated situation is where the stor-
age medium is first stolen, the theft is discovered, and the medium is subse-
quently recovered. Obviously, confidentiality remains a goal, but in addition,
the storage medium may have been tampered with. We need to be confident
in its integrity.

Active attack. The most difficult situation is when the adversary has surrep-
titious read and write access to the storage medium while it is in use (or
between sessions). The most extreme example is out-sourced storage ac-
cessed via a network, where the adversary either controls the network, or is
in complete control of the storage medium (we could say that the adversary
is the storage medium).

We define precisely what a disk encryptor is in Sect. 2, and look briefly at two
practical implementations of disk encryptors, as well as the work of a standards
group. In Sect. 3 we define attack models and security goals (combinations of
which form security notions). In Sect. 4 we discuss relationships between various
security notions, as well as some general results about what is required to reach
various security notions.

In Sect. 5, we give several constructions for disk encryptors, meeting every
security notion discussed in Sect. 3. We also discuss the security of the imple-
mentations and the standard discussed in Sect. 2. The proofs for the results in
Sect. 4 and 5 are somewhat technical, and are included in Appendix A.

2 Disk Encryptor

2.1 Definitions

We first define what a sector-based storage medium is. Let S be a set of possible
sector values (typically S = {0, 1}l for some l). A storage medium for n sectors is
an interactive deterministic algorithm. It accepts as input write or read requests,
and keeps a list of pairs from {0, 1, . . . , n − 1} × S. The list is initially empty.

The write request is a pair (i, s) ∈ {0, 1, . . . , n − 1} × S (“store s at index
i”). The storage medium stores the pair (i, s) in a list, discarding any previously
stored pair (i, s′), and replies with the special symbol *.

The read request is a number i ∈ {0, 1, . . . , n − 1} (“read from index i”). If
the storage medium has a pair (i, s) in its list, it outputs s. Otherwise, it outputs
some (fixed) value from S.

Let x = (x1, x2, . . . , xr) ∈ Sr, and let I be a subset of {0, 1, . . . , n − 1} of
cardinality r. Order the elements of I and denote the jth element by ij. Reading
(writing) x according to I means to read (write) xj from (to) sector ij.
A disk encryptor D for N plaintext sectors with values in S is an interactive
algorithm, accepting input from a user and giving input to a storage medium1.

The disk encryptor accepts as its first input a key from a set K and possibly
a state. As part of its initialization, it may issue read and write requests to the
1 It is possible (and desirable) to allow the disk encryptor and the storage medium to

have different sector sizes. To simplify the presentation, we keep sector sizes equal.
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storage medium. After initialization, the disk encryptor accepts as input read
and write requests.

The disk encryptor may keep a state between read and write requests. We
shall assume that this state is publicly known at all times, but that no adversary
may modify it. A disk encryptor that does not keep a state is stateless.

The write request is a pair (i, s) ∈ {0, 1, . . . , N − 1} × S. The processing of
the write request is probabilistic, and may result in read requests as well as write
requests to the storage medium. All the read requests must be completed before
any write request occurs. After all the read requests are complete, but before
the first write request has been issued, the disk encryptor may stop processing
and reply with the special symbol ⊥ (signifying encryption error). Otherwise,
the disk encryptor issues its write requests to the storage medium and replies
with the special symbol * (signifying no error) when processing is complete.

The read request is a number i ∈ {0, 1, . . . , N − 1}. The processing of the
read request is deterministic, and will only result in read requests to the storage
medium. When the processing is complete, the disk encryptor replies either with
a sector value from S, or with the special symbol ⊥, signaling decryption error.
The disk encryptor’s state should not change as a result of a read request.

We require that the indexes of the read and write requests issued to the
storage medium should only depend on the index of the input request, not on
the key or the state.

The disk encryptor must guarantee that, in normal operation, if (i, s) was
the last write request issued for i, then the read request i will return s. If no
write request (i, s′) for any s′ has been issued, the disk encryptor may respond
arbitrarily to the read request i.

To provide secure storage of N sectors with values from S, the disk encryptor
requires n ≥ N sectors of storage medium. The ratio n/N is the expansion ratio
of the disk encryptor.

We impose one more requirement on a disk encryptor: Any read and write
request to the storage medium should result in at most a constant times log N
reads and writes to the storage medium.

The sectors read and written through the user interface of a disk encryptor
are the plaintext sectors. The sectors on the storage medium are the ciphertext
sectors.

2.2 Existing Implementations and Standards

The following presentation includes three concrete examples of implementations
or standards. We shall analyze these systems in Sect. 5.

LoopAES [11] is a disk encryptor for Linux-based computer operating systems.
Its stated aim is to provide confidentiality, but not integrity. It encrypts sectors
using a block cipher in CBC mode, and has three modes of operation, one using
a single key and two different modes using multiple keys.

The documentation is somewhat unclear, but a (possibly deprecated) single
key mode seems to use the sector index as initialization vector for CBC mode.
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One multiple-key mode apparently uses a pseudo-random function family to
derive the initialization vector from the sector index. We discuss these variants
in Sect. 5.2. We quote from the purpose of the Security in Storage Working

Group (SISWG) [5]:

This standard provides a standard architecture for media security and
enabling components. Present non-standard, insecure encrypted storage
methodologies are augmented, and users will be able to create higher-
assurance, standard, interoperable solutions.

They restrict their attention to disk encryptors with expansion rate 1. As we
shall see, Theorem 5 will severely limit the security level achievable.

One of their proposed methods for disk sector encryption uses tweakable,
sector-wide block ciphers. We discuss this construction in Sect. 5.3.
The disk encryptor called GEOM Based Disk Encryption (GBDE) [7] is part of
the computer operating system FreeBSD.

The main idea is that every sector is encrypted using a block cipher in CBC
mode. A constant initialization vector is used together with a one-time key. The
one-time key is encrypted and written to a different sector using a block cipher
in CBC mode. The key for this encryption is derived from a master key, sector
index and a salt using a pseudo-random function family.

We discuss scheme in Sect. 5.5, along with other alternatives.

3 Security Goals and Attack Models

As usual, we model an attack as a game played between an adversary and a
simulator. At the start of the game, the simulator initializes a disk encryptor
instance with a randomly chosen key. The adversary is given access to the disk
encryptor and the storage medium through the simulator.

In practice, much of the information written to the disk encryptor will either
be influenced, known or guessable by the adversary. This means that a chosen
ciphertext attack is unrealistic. To simplify modelling, we allow the adversary
to write arbitrary data of his choice to the disk encryptor.

The adversary should also have read access to any data written by himself
(when relevant). The intuition is that most users would not hesitate in giving
the adversary access to data supplied by the adversary.

The simulator must bar read access to any data it has written to the disk
encryptor, to keep the adversary from achieving his goals trivially.

The four scenarios in the introduction give us the following attack models2,
which describe the attack conditions.

Non-adaptive chosen plaintext attack (naCPA). The adversary gets write
access to the disk encryptor. When he is finished writing, he is given read ac-
cess to the storage medium for the duration of the game. (This corresponds
to the theft scenario.)

2 Technically, many more attack models are possible, but we consider only those that
seem interesting.
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Chosen plaintext attack (CPA). The adversary is given read and write ac-
cess to the disk encryptor. Everything read from and written to the storage
medium is simultaneously copied to the adversary. (This corresponds to the
passive monitoring scenario.)

Non-adaptive chosen ciphertext attack (naCCA). The adversary is given
write access to the disk encryptor. When he is finished writing, he is given
read and write access to the storage medium. When he is finished with the
storage medium, he is given read access to the disk encryptor. (This corre-
sponds to the theft with recovery scenario.)

Chosen ciphertext attack (CCA). The adversary is given read and write
access to the disk encryptor, and the simulator uses the adversary as storage
medium. (This corresponds to the active attack scenario.)

naCPA is the weakest attack. naCCA and CPA are not comparable. CCA is
the strongest attack.

We shall now describe a series of security goals for disk encryption. Throughout,
we consider a disk encryptor D providing N plaintext sectors with values from
a set S.

The classic security goal is confidentiality. Following the standard notion of
semantic security, an adversary that has partial information about the plain-
text sectors must not be able to deduce anything new by studying the storage
medium. We note that this is equivalent to the notion of indistinguishability,
where an adversary must distinguish between encryptions of two messages he
has chosen.

Definition 1. An adversary A against semantic security works as follows: First
the adversary specifies a probability space X over Sr, an index set I ⊆ {0, 1, . . . ,
N − 1} of cardinality r, and a function f : Sr → {0, 1} such that Pr[f(x) = 0 |
x

r← X ] = Pr[f(x) = 1 | x
r← X ] = 1/2. The simulator samples x from X and

writes x to the disk encryptor according to I. The adversary then outputs a bit
b ∈ {0, 1}.

Let E be the event that f(x) = b. The adversary’s advantage is

AdvD,IND,·
A = |Pr[E] − 1/2|.

Remark 1. The adversary is assumed to output a description of the probability
space X such that the simulator can sample from X .

Remark 2. For all of the attack games described in this section, we say that an
adversary requires time at most t if the described game requires at most time t
to complete, counting the work done by the adversary and the simulator.

Another important security goal is that of non-malleability, where the adver-
sary should not be able to change the ciphertext sectors to cause any meaningful
change in the plaintext sectors.
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Definition 2. An adversary A against non-malleability works as follows: First
the adversary specifies a probability space X over Sr, and an index set I ⊆
{0, 1, . . . , N − 1} of cardinality r. The simulator samples x = (x1, x2, . . . , xr)
from X and writes x to the disk encryptor according to I.

The simulator will deny any read requests from the sectors in I. The ad-
versary may choose to write to any sector in I. When the ith sector in I is
written to, we remove its index from I, decrease r by one, and replace X by the
conditional probability space where the ith coordinate is fixed to the value xi.

When the adversary terminates, he outputs a relation R on Sr × Sr. The
simulator reads x′ = (x′

1, x
′
2, . . . , x

′
r) from the disk encryptor according to I.

Now we replace X with the conditional probability space where the ith coordinate
is fixed to the value xi if xi = x′

i, and sample x′′ from X.
Let E0 be the event that there was no decryption error when reading x′, and

x R x′. Let E1 be the event that there was no decryption error when reading x′,
and x′′ R x′. The adversary’s success rate is

SuccD,NM,·
A = |Pr[E0] − Pr[E1]|.

Remark 3. The adversary is assumed to output a description of the probabil-
ity space X such that the simulator can sample from X and the conditional
probability spaces.

Remark 4. If the adversary cannot change the ciphertext sectors, x will be equal
to x′′, and the adversary has zero sucess rate. Therefore, non-malleability is only
relevant for the chosen ciphertext attacks.

In public key cryptography, the adversary is free to construct ciphertexts us-
ing the public key. In this way, adversaries can defeat non-malleability without
ever tampering with a ciphertext. For private key cryptography, the standard de-
finition [8] allows ciphertexts output by an encryption oracle in the final answer.
This mirrors the public key case.

For disk encryption, the equivalent notion would be to allow the adversary to
write to the sectors in I without changing the probability space X . We disallow
this, thereby separating the goals of indistinguishability and non-malleability.

The following two goals are slightly different. The first (weaker) goal says
that the adversary should not be able to cause the encrypted data to change in
any way (even randomly). The second (stronger) goal says that any change the
adversary makes to the storage medium will result in a decryption error.

Definition 3. An adversary A against plaintext integrity works as follows: The
simulator keeps a private copy of anything written to the disk encryptor. When
data is read from the disk encryptor, it is compared with the private copy.

Let E be the event that data successfully read from the disk encryptor is
different from the private copy. The adversary’s success rate is

SuccD,PTXT,·
A = Pr[E].
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Definition 4. An adversary A against ciphertext integrity works as follows:
The simulator keeps a private copy of anything the disk encryptor writes to the
storage medium. Whenever the disk encryptor reads from the storage medium, it
is compared with the private copy.

Let E be the event that something the disk encryptor reads from the storage
medium is different from the private copy, but the disk encryptor does not signal
an error. The adversary’s success rate is

SuccD,CTXT,·
A = Pr[E].

Remark 5. We note that an adversary that can replace a sector value with ran-
dom data has no success rate against non-malleability. Random changes may
still represent a problem for certain applications, who will require the stronger
notion of plaintext integrity.

4 General Results

We follow the concrete security approach of [2]. The main technique is to use an
attacker against a notion X to construct an attacker against a notion Y. Since
security is the absence of attackers, logic then dictates that security notion Y
implies security notion X. To separate notions X and Y, we use one disk encryptor
to create a second disk encryption. First we show that the latter does not satisfy
notion Y. Second, if the first satisfies notion X, then the second also satisfies
notion X. This means that security notion X does not imply security notion Y.

An adversary against non-malleability must be a successful adversary against
plaintext integrity. Also, any adversary against plaintext integrity must be an
adversary against ciphertext integrity. But the converse is not true: Plaintext
integrity does not imply ciphertext integrity, since the ciphertext may contain
information that can be changed without affecting the decryption.

Theorem 1. Let D be a disk encryptor. There exists a disk encryptor D′ and
a non-adaptive chosen ciphertext adversary A against ciphertext integrity such
that SuccD

′,CTXT,naCCA
A = 1. Further, for any adversary A′ against plaintext

integrity for D′, there exists an adversary A′′ against plaintext integrity for D
such that

SuccD,PTXT,·
A′′ = SuccD

′,PTXT,·
A′ .

A uses trivial time, and A′′ requires as much time as A′.

The following theorem says that plaintext integrity does not imply semantic
security, because the ciphertext may contain a copy of the plaintext.

Theorem 2. Let D be a disk encryptor. There exists a disk encryptor D′ and a
non-adaptive chosen plaintext adversary A against semantic security for D′ with
AdvD′,IND,naCPA

A = 1/2. Further, for any adversary A′ against plaintext integrity
for D′, there exists an adversary A′′ against plaintext integrity for D such that

SuccD,PTXT,·
A′′ = SuccD

′,PTXT,·
A′ .

A uses trivial time, and A′′ has essentially the same time requirements as A′.
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The most interesting result in this section is the following: Semantic secu-
rity against (non-adaptive) chosen ciphertext attacks follows from semantic se-
curity against (non-adaptive) chosen plaintext attacks and ciphertext integrity
against (non-adaptive) chosen ciphertext attacks. The idea is that if the adver-
sary changes the ciphertext without causing decryption errors, he is a successful
adversary against ciphertext integrity. If not, he reduces to a simple chosen
plaintext adversary. (This mirrors results for symmetric cryptosystems in [9].)

Theorem 3. Let D be a disk encryptor, and let A be a (non-adaptive) chosen ci-
phertext adversary against semantic security. Then there exists a (non-adaptive)
chosen ciphertext adversary A′ against ciphertext integrity, and a (non-adaptive)
chosen plaintext adversary A′′ against semantic security such that

AdvD,IND,(na)CCA
A ≤ SuccD,CTXT,(na)CCA

A′ + AdvD,IND,(na)CPA
A′′ .

A′ and A′′ has the same time requirements as A, except for a trivial amount of
processing for every disk encryptor read and write.

Next, we note that ciphertext integrity and semantic security can be handled
independently. This simplifies design and analysis of disk encryptors.

We show this by composing disk encryptors. If D1 and D2 are two disk
encryptors with keys from K1 and K2, respectively, D1 ◦ D2 is a disk encryptor
that works as follows: It takes keys from K1 × K2 (the keys are independent).
Read and write requests to the composition are forwared to D1. Any storage
read and write requests made by D1 are forwarded to D2. If D2 responds with
⊥ to any request, processing is halted and ⊥ is output. Otherwise, D1 is allowed
to complete its processing, and its result is output.

Since the keys for D1 and D2 are independent, the following theorem holds.

Theorem 4. Let D1 and D2 be two disk encryptors. For any (non-adaptive)
chosen plaintext adversary A1 and (non-adaptive) chosen ciphertext adversary
A2 against, respectively, semantic security and ciphertext integrity for D1 ◦ D2,
there exists a (non-adaptive) chosen plaintext adversary A′

1 against D1 such that

AdvD1,IND,(na)CPA
A′

1
= AdvD1◦D2,IND,(na)CPA

A1
,

as well as a (non-adaptive) chosen ciphertext adversary A′
2 against D2 such that

SuccD2,CTXT,(na)CCA
A′

2
= SuccD1◦D2,IND,(na)CCA

A2
.

A′
1 and A′

2 have the same time requirements as A1 and A2, respectively.

If no redundancy is added to the stored data, the best security that can be
achieved is semantic security and non-malleability against a non-adaptive chosen
ciphertext attack.

Theorem 5. Suppose a disk encryptor D has expansion ratio 1. Then there ex-
ists a chosen plaintext adversary against semantic security, a chosen ciphertext
adversary against non-malleability, and a non-adaptive chosen ciphertext adver-
sary against plaintext integrity, all with advantage 1/2 or success rate 1, and
trivial time requirements.
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The final result shows that to achieve security against chosen ciphertext attacks,
the disk encryptor must keep a state. The attack uses what is commonly known
as rollback or replay attacks. These trivially compromise integrity, and also allow
attacks on semantic security.

Theorem 6. Let D be a stateless disk encryptor. Then a chosen ciphertext ad-
versary A against semantic security exists such that

AdvD,IND,CCA
A = 1/2.

A has trivial time requirements.

5 Concrete Constructions

We give several constructions for meeting the various security notions described
in Sect. 3. The strategy in this section is to show that an adversary against the
security would imply an adversary against a building block. If we have faith in
the building blocks, faith in the construction follows.

Let l and m be integers larger than zero. Throughout this section, the set
of sector values S will be the set of bit strings of length lm, S = {0, 1}lm.
N will denote the number of plaintext sectors provided by the disk encryptor,
and n will be the number of ciphertext sectors required. Let l0 = �log2 m� and
l1 = �log2 N�.

When convenient, we shall consider integers as bit strings, and vice versa, in
the usual manner.

5.1 Building Blocks

We are interested in indistinguishable subsets of function families. So let F̄ be
a function family, and let F be a subset of F̄ . A distinguisher A for F plays the
following game with a simulator: First, the simulator samples a function either
from F or from F̄ . A is allowed to query the function (and its inverse, if relevant)
at up to q points. Then A outputs 0 or 1.

Let E be the event that A outputs 0 when the simulator sampled from F̄ , or
1 when the simulator sampled from F . Then A’s distinguishing advantage is

AdvF,q
A = |Pr[E] − 1/2|.

Pseudo-Random Function Families. Let Map(S, S′) denote the set of all func-
tions from the set S to the set S′. We are interested in finding subsets of
Map(S, S′) where the functions are easy to evaluate, but it difficult it is to
distinguish random elements of the subset from random elements of Map(S, S′).

Definition 5. Let S, S′ and K be sets. A pseudo-random function family (PRF)
Φ from S to S′ indexed by K is a subset Φ = {fk : S → S′ | k ∈ K} of
Map(S, S′), along with a deterministic algorithm that on input of k ∈ K and
s ∈ S computes fk(s).

We denote an adversary’s distinguishing advantage by AdvPRF,Φ,q
A .
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Typical examples of interesting pseudo-random function families are message
authentication codes, such as HMAC [1] and OMAC [6].

Block Ciphers. Let Perm(S) denote the set of all permutations on the set S. We
are interested in finding subsets of Perm(S) where the permutations are easy to
evaluate, but it is difficult to distinguish random elements of the subset from
random elements of Perm(S).

Definition 6. Let S, K be sets. A pseudo-random permutation family (PRP)
Π on S indexed by K is a subset Π = {fk | k ∈ K} of Perm(S), along with two
deterministic algorithms that on input of k ∈ K and s ∈ S computes fk(s) and
f−1

k (s), respectively.
We denote an adversary’s distinguishing advantage by AdvPRP,Π,q

A .

Typical examples of pseudo-random permutation families are block ciphers
such as AES [3].

We note that any pseudo-random permutation family Π on S can be used
as a pseudo-random function family from S to S, and it is easy to show that for
any PRF-distinguisher A, there exists a PRP-distinguisher A′ such that

AdvPRF,Π,q
A ≤ AdvPRP,Π,q

A′ + q2/|S|.

Tweakable Block Ciphers. Let S and T be sets. A tweakable permutation on
S tweaked by T is a function f : T → Perm(S). When convenient, we abuse
notation and denote the action of f(t) on s by f(t, s), considering f as a function
f : T × S → S. Let PermT (S) denote the set of tweakable permutations on S.

Definition 7. Let S, T and K be sets. A tweakable pseudo-random permutation
family Π̃ on S indexed by K and tweaked by T is a subset Π̃ = {fk | k ∈ K}
of PermT (S), along with two deterministic algorithms that on input of k ∈ K,
t ∈ T and s ∈ S computes (fk(t))(s) and (fk(t)−1)(s), respectively.

We denote an adversary’s distinguishing advantage by AdvTPRP,Π̃,q
A .

We refer to [4,10] for further background on tweakable permutations and
concrete constructions. We restrict ourselves to noting that there are practical
constructions based on block ciphers.

5.2 Semantic Security Against Non-adaptive Chosen Plaintext
Attack

It is fairly easy to see that a block cipher used in Electronic Code Book (ECB)
mode does not provide semantic security against a non-adaptive chosen plaintext
attack. We outline two simple constructions that provide semantic security.

Our first construction is also our simplest construction. It is based on the well-
known counter mode construction. Let Φ be a pseudo-random function family
from {0, 1}l to {0, 1}l indexed by K.
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Define the function r : Map({0, 1}l, {0, 1}l) × {0, 1, 2, . . . , N − 1} → S to
be function that takes (f, i) to the concatenation of the value of f(i2l0 + j) for
0 ≤ j < m, that is,

(f, i) $→ f(i2l0 + 0)||f(i2l0 + 1)|| . . . ||f(i2l0 + m − 1).

(Remember that m ≤ 2l0 .)
The disk encryptor D1(Φ) takes keys from K, and n = N . Suppose the disk

encryptor is initialized with the key k ∈ K. Given the write request (i, s), the
disk encryptor issues the write request (i, s ⊕ r(fk, i)) to the storage medium.
Given the read request i, the disk encryptor reads s′ from the ith sector of the
storage medium and outputs s′ ⊕ r(fk, i).

Theorem 7. Let D1(Φ) be as above, providing N sectors of storage, and let A
be a non-adaptive chosen plaintext adversary against semantic security. Then
there exists a distinguisher A′ for Φ such that

AdvD,IND,naCPA
A = 2AdvPRF,Φ,Nm

A′ .

We note that block ciphers are good candidates for efficient pseudo-random
function families.

The next construction is based on Cipher Block Chaining mode. CBC mode
requires an unpredictable initialization vector, so using the sector index does
not provide security. We have two easy options: either use a pseudo-random
function family to derive the IV from the sector index (the approach taken by
one variant of LoopAES described in Sect. 2.2), or simply run the sector index
through the block cipher and use that as an initialization vector.

Let Π be a pseudo-random permutation family on {0, 1}l indexed by K.
The disk encryptor D2(Π) takes keys from K, and n = N . Let D2(Π) be

initialized with the key k ∈ K. Given the write request (i, s), the value s is
split into blocks s1, . . . , sm ∈ {0, 1}l. The IV is derived as c0 = fk(i). Then ci is
computed as fk(ci−1 ⊕ si), and the write request (i, c1||c2|| . . . ||cm) is issued to
the storage medium.

We leave the read operation and the security proof to the interested reader.
Compared to counter mode above, this scheme is more complicated, requires

both the encryption and decryption part of the block cipher, and cannot easily be
parallellized. CBC-mode does, however, seem to have wider hardware support,
though this will probably change in the future. (Some would say that since
counter mode is totally insecure against stronger attacks, and CBC-mode could
in practice thwart some stronger attacks, there are security advantages to using
CBC-mode. However, if one worries about stronger attacks, one should defend
against stronger attacks.)

5.3 Non-malleability Against Non-adaptive Chosen Ciphertext
Attack

This construction uses a tweakable permutation on the sector level to encrypt
the data. Note that the permutation has to be tweakable, otherwise the usual
attacks on ECB mode apply.
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Let K be a set and T = {0, 1, . . . , N − 1}. Let Π̃ be a tweakable pseudo-
random permutation family on S indexed by K and tweakable by T .

The disk encryptor D3(Π̃) takes keys from K, and n = N . Let D3(Π̃) be
initialized with the key k ∈ K. Given the write request (i, s), it issues the write
request (i, fk(i, s)) to the storage medium. Given the read request i, it passes it
on to the storage medium and gets a value s′. It then returns the value fk(i)−1(s).

Theorem 8. Let D3(Π̃) be as above, and let A be a non-adaptive chosen cipher-
text adversary against semantic security (non-malleability). Then there exists
distinguisher A′ and A′′ for Π̃ such that

AdvD3(Π̃),IND,naCCA
A = 2AdvTPRP,Π̃,N

A′

and
SuccD3(Π̃),NM,naCCA

A ≤ 2AdvTPRP,Π̃,N
A′′ .

Note that this scheme has expansion rate 1, and by Theorem 5 this is the
best we can do with expansion rate 1. Furthermore, this scheme is essentially
equivalent to the sector-wide scheme adopted by SISWG (see Sect. 2.2).

5.4 Ciphertext Integrity Against Non-adaptive Chosen Ciphertext
Attack

The following construction provides ciphertext integrity using a pseudo-random
function family.

Let T = {0, 1, . . . , N − 1}, and let Φ be a pseudo-random function family
from T × S to {0, 1}l indexed by K.

The disk encryptor D4(Φ) takes keys from K, and n = 2N . Let D4(Φ) be
initialized with the key k ∈ K. Given the write request (i, s), it issues the write
requests (2i, s) and (2i+1, fk(i, s)) to the storage medium (the bit string fk(i, s)
is padded with zeros to get a string of length ml). Given the read request i, it
issues the read requests 2i and 2i + 1 to the storage medium, getting values s′

and s′′. If s′′ = fk(i, s) (ignoring zero padding), s′ is output, otherwise ⊥.

Theorem 9. Let D4(Φ) be as above, and let A be a non-adaptive chosen cipher-
text adversary against ciphertext integrity. Then there exists a distinguisher A′

for Φ such that

SuccD4(Φ),CTXT,naCCA
A ≤ AdvPRF,Φ,N

A′ +
N

2l
.

We note that the zero padding is rather wasteful, but it is required for tech-
nical reasons3. However, the storage medium can easily arrange to store several
checksums in one physical sector, giving an expansion rate of (m + 1)/m.

3 If we stored more than one checksum in the same sector, we could change the first
checksum, and then read a sector corresponding to an unchanged checksum. The
read would return 
, but the attacker would win the chosen ciphertext attack game.



Security Notions for Disk Encryption 467

We also note that it is easy to construct Φ using for example HMAC [1] or
OMAC [6].

By Theorems 3 and 4, we can compose a scheme from Sect. 5.2 with this
scheme to achieve semantic security against non-adaptive chosen ciphertext
attacks.

5.5 Semantic Security Against Chosen Plaintext Attack

The following construction provides semantic security against a chosen plaintext
attack using a pseudo-random function family. It is based on counter mode, but
each sector is given its own initialization vector.

Let Φ be a pseudo-random function family from {0, 1}l to {0, 1}l indexed by
K. Let r : Map({0, 1}l, {0, 1}l) × {0, 1}l−l0 → S be the function defined by

(f, t) $→ f(t2l0 + 0)||f(t2l0 + 1)|| . . . ||f(t2l0 + m − 1).

(Remember that m ≤ 2l0 .)
The disk encryptor D5(Φ) takes keys from K, and n = 2N . Let D5(Φ) be

initialized with the key k ∈ K. Given the write request (i, s), D5(Φ) samples
j from {0, 1}l−l0, then issues the write requests (2i, j) (where j is padded with
zeros) and (2i + 1, s ⊕ r(fk, j)).

Given the read request i, the disk encryptor issues the read requests 2i and
2i + 1 to the storage medium, getting values s′ and s′′. It then outputs s′′ ⊕
r(fk, s′) (where the zero padding in s′ is ignored).

Theorem 10. Let D5(Φ) be as above, and let A be a chosen plaintext adversary
against semantic security that writes at most q sectors to the disk encryptor.
Then there exists a distinguisher A′ for Φ such that such that

AdvD5(Φ),IND,CPA
A ≤ AdvPRF,Φ,qm

A′ + q2/2l−l0 .

We note that a similar technique can be used for CBC-mode or with a
tweakable block cipher. We also note that the storage medium could arrange
to store several initial values in one physical sector, reducing the expansion rate
to (m + 1)/m.

The above scheme aims to achieve that same goal as FreeBSD’s GBDE (see
Sect. 2.2). Briefly, GBDE works as follows: it encrypts each data sector using a
pseudo-random permutation family Π in CBC mode with a fixed IV, but with
a random one-time “sector key”. The random key is then written to a different
sector, encrypted using Π and a “key-key” derived from a “master key” and the
sector index using a pseudo-random function family Φ.

We sketch a possible proof that GBDE is semantically secure against chosen
plaintext attacks: First we replace the pseudo-random function used to derive
the “key-keys” with a random function. Then we replace the pseudo-random
permutations used to encrypt the “sector keys” with random permutations. If
“sector key” is ever reused, the adversary will never learn any information about
the “sector keys”. Then we replace the pseudo-random permutations used to



468 K. Gjøsteen

encrypt the data sectors with random permutations. After the final replacements,
the adversary can have no advantage. The resulting bound will be somewhat
weaker than that the above theorem.

While we believe D5 to be a superior construction to GBDE, the latter has
the significant advantage of being available for use today.

5.6 Ciphertext Integrity Against Chosen Ciphertext Attack

By Theorem 6, a disk encryptor must keep a state to achieve security against
chosen ciphertext attack. Our goal is to keep the state as small and simple as
possible. The idea is to use an m-ary tree of checksums (see Fig. 1). The root of
the tree is authenticated using the state, and the state changes with every write.

Let T be the set {0, 1, . . . , 2l − 1}, and let Φ be a pseudo-random family of
functions from T × S to {0, 1}l indexed by K.

Set N1 = N , and define the sequence Nj by Nj = �Nj−1/m�. Let h be the
smallest integer such that Nh = 1. Set n1 = N and define the sequence nj by
nj−1 + Nj−1. For an integer i, we let ij = +i/mj−1,.

The disk encryptor D6(Φ) takes keys from K, and n = nh+1 + 1. Let D6(Φ)
be initialized with the key k. It sets the state σ to the integer 1.

Denote the value of the sector nj + t, 0 ≤ t < Nj , by s
(j)
t , and the sector

nh+1 = nh +1 by s(h+1). The initialization process first zeros s
(1)
i for all i. Then

it computes the correct checksums s
(j)
ij

for all i and 1 < j ≤ h using

s
(j)
ij

= fk(j2l1 + ij , s
(j−1)
mij+0||s(j−1)

mij+1|| . . . ||s(j−1)
max{mij+m−1,Nj}). (1)

...

s0 s1

s
(0)
0 s

(0)
1

s
(1)
0

. . .
sN−2 sN−1

s
(0)
N−2 s

(0)
N−1. . .

s
(1)
N−1. . .

s
(h)
0 σ

s(h+1)

Fig. 1. The MAC tree for D6(Φ)
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Note that in the concatenation, the zero padding of each s
(j)
t is discarded. Finally,

it computes s(h+1) using

s(h+1) = fk(σ22l1 , s
(h)
0 ). (2)

Then the disk encryptor issues the writes (nj + ij, s
(j)
ij

) for all 0 ≤ i < N ,
1 ≤ j ≤ h, and finally the write (nh+1, s

(h+1)).
Let the write request be (i, s). The disk encryptor reads s

(j)
t from the index

nj + t, for ij+1m ≤ t < max{ij+1m+m−1, Nj}, 1 ≤ j ≤ h. Then it reads s(h+1)

from the index nh+1.
It verifies that any zero padding remains zero, that for all 1 < j ≤ h, (1)

holds, and that (2) holds. If any verification fails, ⊥ is output and processing
terminated.

If all of these checks are correct, the disk encryptor changes s
(1)
i to be fk(i, s),

updates every s
(j)
ij

for 1 < j ≤ h according to (1), increases σ by 1, and updates
s(h+1) according to (2).

Then it issues the write requests (i, s), (nj + ij, s
(j)
ij

) for 1 ≤ j ≤ h, and
(nh+1, s

(h+1)), and outputs *.
Given the read request i, the disk encryptor reads s

(j)
t from index nj + t, for

ij+1m ≤ t < max{ij+1m + m − 1, Nj}, 1 ≤ j ≤ h. Then it reads si from index i
and s(h+1) from index nh+1.

Now the disk encryptor verifies that s
(1)
i = fk(i, si), that any zero padding

remains zero, that the s
(j)
ij

satisfy (1) for 1 < j ≤ h, and that s(h+1) satisfies (2).
If any verification fails, ⊥ is output, otherwise si is output.

Theorem 11. Let D6(Φ) and h be as above, and let A be a chosen ciphertext
adversary against ciphertext integrity that writes and reads at most q sectors to
the disk encryptor. Then there exists a distinguisher A′ for Φ such that

SuccD6(Φ),CTXT,CCA
A ≤ AdvPRF,Φ,qmh

A′ + hq2/2l + q/2l.

Again, we note that the storage medium can easily arrange to store several
checksums in one physical sector, giving an expansion rate of less than 2. This
also reduces the number of extra reads to h + 1.

If this construction is used in conjunction with one from Sect. 5.5, we get
semantic security and non-malleability against chosen ciphertext attacks by The-
orems 3 and 4.

We also note that it is easy to replace the state σ with something that is
easier for a user to remember (or write down), such as a date.

As an example, we compute the numbers for providing one gigabyte of storage
(233 bits of storage), using 512 byte sectors (212 bits). Let l = 7 and m = 25.
We get that n1 = 221, n2 = 216, n3 = 211, n4 = 26, n5 = 2 and n6 = 1.
The expansion rate is roughly 1.03. Every read operation requires 8 reads from
the storage medium, and every write operations requires 7 reads and 8 writes.
Caching can potentially reduce the number of physical reads and writes.



470 K. Gjøsteen

6 Concluding Remarks

This paper attempts to define all useful security notions for disk encryption, and
determining what is required to achieve those notions.

One common feature of many disk encryption implementations (SISWG’s
standards work and FreeBSD’s GBDE being notable exceptions) is that the
documentation says very little about the cryptographic reasoning behind the
system, and there is little in the way of useful security analysis. This paper
provides a set of formal security notions as well as constructions, which should
provide a sound basis for evaluating disk encryption systems.

While the SISWG does an excellent job, providing solutions that are as good
as possible under the circumstances, we believe that the restrictions they have
imposed on themselves makes it impossible to reach certain worthwhile security
notions. Even though the stronger security notions like semantic security and
integrity against chosen ciphertext attacks are costly to achieve, it should be up
to the users to balance cost against security, not standards.

Also, certain applications require weaker security than some of the solutions
considered by SISWG. One example is encryption of swap space. If the disk
encryptor is initialized with a random key when the system starts, all that is
required to protect the swap space is semantic security against non-adaptive
chosen plaintext attacks. Using FreeBSD’s GBDE or SISWG’s tweakable block
ciphers is simply overkill.
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A Proofs

A.1 General Results

Proof (Theorem 1). D′ uses one extra sector of storage space. Whenever it re-
ceives a write request, it gives the write request to D. If that write returns *,
then D′ writes a random value to the extra sector. Whenever it receives a read
request, it reads the extra sector, then passes the read request to D.

An adversary that changes the extra sector in an arbitrary fashion and then
reads any sector from the disk encryptor will win the ciphertext integrity game.

The extra sector can be simulated by any adversary, so any adversary against
plaintext integrity for D′ can be used against D as well. ��

Proof (Theorem 2). If D provides N plaintext sectors using n ciphertext sectors,
D′ will provide N plaintext sectors using n + N ciphertext sectors.

The idea is that D′ keeps an unencrypted copy of the plaintext in the extra N
sectors. When reading, this unencrypted copy is ignored. The adversary against
semantic security is obvious.

In the game that defines plaintext integrity, the adversary is the only one
writing data to the disk encryptor. This means that the extra plaintext copy
can easily be simulated, and the theorem follows. ��

Proof (Theorem 3). We only consider the chosen ciphertext attack. The adver-
saries derived from the non-adaptive chosen ciphertext adversary are similar,
and we leave them to the reader.

Consider first the chosen ciphertext attack game between the adversary and
a simulator. Let E be the event that the bit output by the adversary is correct
in this game.

Now we change the game as follows: A copy of anything the disk encryptor
writes to the storage medium is kept. If the result of any read request made
by the disk encryptor differs from this copy, the disk encryptor’s output for the
operation is ignored and ⊥ is returned. Let E′ be the event that the bit output
by the adversary is correct in this modified game.

We have that

AdvD,IND,CCA
A = |Pr[E] − 1/2| ≤ |Pr[E] − Pr[E′]| + |Pr[E′] − 1/2|.

As usual in game hopping, we want to bound |Pr[E]−Pr[E′]| and |Pr[E′]−1/2|.
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The two games proceed identically until ⊥ is returned in the modified game,
but not in the original game. Let F be the event that this happens. Now we
observe that F is the event that leads to success against chosen ciphertext attack.

The adversary A′ is then simply A, augmented with parts simulating the at-
tack against semantic security. The success rate of A′ against ciphertext integrity
is Pr[F ], and as usual we have that

|Pr[E] − Pr[E′]| ≤ Pr[F ] = SuccD,CTXT,CCA
A′ .

The chosen plaintext adversary A′′ encapsulates A. It keeps a copy of the
storage medium state. Whenever a read or write request for the storage medium
is copied to A′′, A′′ fakes a corresponding read or write request for A.

When A issues a read or write request to the disk encryptor, A′′ first issues
the read queries for the simulator. (It can do this because the unknown key is
not involved in determining these reads.) If A’s answers correspond to the copy
kept by A′′, A’s request is forwarded to the simulator. Otherwise, ⊥ is returned.

A′′ provides A with the same environment as in the modified game. Hence
A’s success probability in the modified game is equal to the success probability
of A′′. Therefore,

|Pr[E′] − 1/2| = AdvD,IND,CPA
A′′ .

This concludes the proof. ��
Proof (Theorem 5). First, we note that any disk encryptor with expansion ratio
1 must be deterministic, and no matter what the storage medium contains, no
read operation will result in a decryption error.

The chosen plaintext adversary against semantic security simply picks two
distinct values x(0) and x(1) from SN , and writes x(0) to the disk encryptor. It
makes a copy of the storage medium state. Then it outputs the probability space
X over SN such that Pr[x = x(0) | x

r← X ] = Pr[x = x(1) | x
r← X ] = 1/2 and

f(x(b)) = b for b ∈ {0, 1}.
After the simulator has written x(b) to the disk encryptor, the adversary

compares the contents of the storage medium with its copy. If it matches, 0 is
output, otherwise 1 is output. This adversary has advantage 1/2.

The adversary against non-malleability writes both x(0) and x(1) to the disk
encryptor, saving the storage medium states. It then outputs the probability
space X . When the simulator writes x(b) to the disk encryptor, it replaces the
storage medium contents with the one corresponding to x(1−b), and outputs the
relation R = ((x(0), x(1)), (x(1), x(0))). This adversary has success rate 1.

Finally, the adversary against plaintext integrity writes arbitrary data to the
disk encryptor. Then it makes some arbitrary change to the storage medium,
and reads back from the disk encryptor. This adversary has success rate 1. ��
Proof (Theorem 6). The idea is that since the disk encryptor is stateless, if a
state for the storage medium results in a valid read once, that state will always
result in a valid read.

The adversary plays the role of the storage medium for the simulator. He
chooses (arbitrarily) two different values x(0) and x(1) from S, and outputs the



Security Notions for Disk Encryption 473

probability space X on S satisfying Pr[X = x(0)] = Pr[X = x(1)] = 1/2, the set
I = {0}, and a function f : S → {0, 1} such that f(x(j)) = j.

The simulator samples b and writes x(b) to the disk encryptor. At this point,
reading from the disk encryptor will return x(b).

The adversary now saves the storage medium state. Then he writes x(0) to
the disk encryptor. Since he has written to this sector, the simulator will allow
him to read it again. The adversary restores the saved storage medium state,
and reads x(b) from the disk encryptor. The adversary now knows b. ��

A.2 Concrete Constructions

Proof (Theorem 7). We play two games. In the first game, we sample fk from Φ
and run the disk encryptor as specified above. Then we simulate a non-adaptive
chosen plaintext attack on D1 for A. Let E be the event that the bit output by
A is correct.

In the second game, we sample f from Map({0, 1}l, {0, 1}l) and use it instead
of fk in the disk encryptor. Then we simulate a non-adaptive chosen plaintext
attack on D1 for A, exactly as in the first game. If E′ is the event that the bit
output by A is correct, we must have that Pr[E′] = 1/2, since the function values
r(f, i) will be independent and uniformly random.

Let A′ be the distinguisher that computes the function r by requesting func-
tion values for the points i2l0 + j, 0 ≤ j < m. Then it simulates a non-adaptive
chosen plaintext attack on D1 for A. If A guesses correctly, the simulator outputs
0, otherwise 1.

If the function A′ tries to distinguish was sampled from Φ, everything pro-
ceeds as in the first game. The probability that A′ correctly answers 0 is Pr[E].
Otherwise, everything proceeds as in the second game, and the probability that
A′ correctly answers 1 is Pr[E′] = 1/2.

We get that

AdvPRF,Φ,Nm
A′ = |Pr[E]/2 + Pr[E′]/2 − 1/2|

=
1
2
|Pr[E] − 1/2| =

1
2
AdvD,IND,naCPA

A ,

which concludes the proof. ��
Proof (Theorem 8). We play two games. The first game is the unmodified attack
game. In the second game, instead of sampling fk from Π̃, we sample f from
PermT (S) and use it instead of fk.

In the second game, two different sectors are encrypted with independent
permutations, so every ciphertext sector is independent of the plaintext sector,
and any change in the storage medium will induce a random change in the
corresponding plaintext sector.

Therefore, the adversary cannot have any advantage against semantic secu-
rity or success rate against non-malleability in the second game. The theorem
follows after a few simple calculations. ��
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Proof (Theorem 9). Again, we play two games: One where a function is sampled
from Φ, and one where it is sampled from Map(T × S, {0, 1}l).

To succeed in the latter game, the adversary A has to find a value s, an
index i, as well as the function value fk(i, s). When fk is replaced by a random
function, then for any s′ ∈ S we have that f(i, s) = s′ with probability 2−l.
It has at most N chances of getting at least one sector right, giving a success
probability of at most N/2l. This concludes the proof. ��
Proof (Theorem 10). As usual, we play two games: One where a function is
sampled from Φ, and one where it is sampled from Map({0, 1}l, {0, 1}l).

In the latter game, unless the same j is sampled for two different write op-
erations, the adversary has no advantage. The probability that one j is sampled
at least twice is at most q2/2l−l0, which concludes the proof. ��
Proof (Theorem 11). As usual, we play two games: One where a function is
sampled from Φ, and one where it is sampled from Map(T ×S, {0, 1}l). The first
game proceeds exactly as in a real attack.

In the second game, we note that the value of every checksum sector is written
using different values from T . So all checksums will be independent. Also, the
master checksum denoted by s(h+1) will never be written twice using the same
value from T .

Every time the adversary attempts a read after making a change to the
checksum tree such that s

(h)
0 changes, the probability that the read succeeds is

1/2l.
The only way the adversary can change the checksum tree without s

(h)
0 chang-

ing, is by finding a checksum collision. This means that the adversary’s success
rate in the second game is at most q2/2l + q/2l. The theorem follows. ��
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Abstract. We consider anonymous communication protocols based on onions:
each message is sent in an encrypted form through a path chosen at random by
its sender, and the message is re-coded by each server on the path. Recently, it
has been shown that if the anonymous paths are long enough, then the protocols
provide provable security for some adversary models. However, it was assumed
that all users choose intermediate servers uniformly at random from the same set
of servers.

We show that if a single user chooses only from a constrained subset of pos-
sible intermediate servers, anonymity level may dramatically decrease. A thumb
rule is that if Alice is aware of much less than 50% of possible intermediate
servers, then the anonymity set for her message becomes surprisingly small with
high probability. Moreover, for each location in the anonymity set an adversary
may compute probability that it gets a message of Alice. Since there are big dif-
ferences in these probabilities, in most cases the true destination of the message
from Alice is in a small group of locations with the highest probabilities.

Our results contradict some beliefs that the protocols mentioned guarantee
anonymity provided that the set of possible intermediate servers for each user is
large.

1 Introduction

1.1 Background

There is a growing need for anonymity in electronic communication. Many anonymity
protocols have been proposed – their aim is not only to hide the contents of messages
sent, but also who is communicating with whom.

Application area of such protocols is much broader than implementing point-to-
point anonymous communication. For instance, they are essential components of vari-
ous voting schemes [4], some auction protocols [18], anonymous browsing or even they
serve as a building block in some secure function evaluation protocols [14].

Existing solutions are generally based on two fundamental ideas - MIXes introduced
by David Chaum in [3] and onions that appeared in a number of papers [19,21,11]. In
these protocols the messages are routed through servers called MIXes or MIX-servers.
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Generally, there is a common idea behind both solutions – at the beginning we have
a batch of ciphertexts submitted by all users. Then a number of steps is executed. During
a step each message is appointed to some server, each server recodes the messages
obtained and returns them in a random order. In this way, the encoded messages become
more and more “mixed”.

The problem is that users of many anonymity systems are requested to construct
a path of randomly and independently chosen servers for each message,called in this
paper anonymity path. It concerns all onion-based protocols [19,21,11] and some MIX
network architectures. For such protocols, it is assumed that the users have the same
knowledge about the servers that can be used as intermediate servers on the path.

In a large and dynamic system it is hard to achieve that all users have the same view
of the network. The problem we address in this paper is how secure are anonymous
communication protocols, if the users choose the servers for anonymity paths from
different sets of servers.

Related Work. There are many papers concerning anonymous communication proto-
cols based on MIXes and onions. On the other hand, there are only few papers providing
rigorous proofs about immunity of such systems against an adversary. One of the first
works in this direction is due to Kesdogan et al. [15]. In this paper cardinality of so-
called anonymity set was used as an anonymity measure.

In other papers like [19,5,2,13] sophisticated and very restrictive anonymity mea-
sures were used that take into account also correlation between messages. These papers
provide rigorous proofs of anonymity in different adversary models: their goal was to
show that an anonymity measure reaches appropriate values with high probability for a
certain length of an anonymity path.

Still, these proofs use the assumption that all users have exactly the same knowledge
of the servers that may be used as intermediate servers on anonymity paths. No attempt
has been made to analyze what happens if this assumption is not satisfied. In [9], it has
been mentioned that violating this assumption might influence security of the system.
A similar suggestion is contained in [6]. However, some people believe that anonymity
of a user A is in danger only if the set of potential intermediate servers is small.

Paper Organization. In Section 2 we recall basic facts about anonymous communi-
cation protocols. In Section 3 we consider dangers that arise when a user is aware of
some extra servers and may use them for creating routing paths. Section 4 is devoted to
the case when a user is aware of only a constant fraction of servers.

2 Anonymity Protocols and Problem Statement

MIXes. MIX is a cryptographic primitive introduced in [3]: assume that users 1,2, . . . ,n
wish to publish anonymously messages m1,m2, . . . ,mn. For this purpose they submit
their messages to a MIX-server after encrypting them with MIX-server’s public key k,
that is, they submit Ek(m1),Ek(m2), . . . ,Ek(mn). The MIX-server decrypts the cipher-
texts obtained with its private key, chooses a permutation π uniformly at random, and
outputs mπ(1), mπ(2), . . . , mπ(n).
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If the MIX-server is honest (i.e. does not reveal permutation π), then for an external
observer the relation between the input and the output of the MIX-server remains hid-
den. Of course, some additional requirements must be fulfilled. For example, E has to
be a probabilistic encryption scheme – otherwise one can establish this relationship by
encrypting the output. For further details see [12].

In order to avoid full dependence on a single MIX, systems consisting of many
MIX-servers were proposed. A so-called MIX cascade was introduced together with
MIXes in [3]. In that case a message is encrypted multiple times with public keys of
consecutive MIXes. The encrypted messages are processed by the cascade of MIXes –
each MIX removes one encryption layer and permutes the results at random.

For better scalability a parallel MIX-cascades can be used: in this case each step is
executed by a number of MIXes working in parallel.

There are many mixing strategies (for further details see for instance [20]). This is
due to the fact that if a mix is working continuously, then even the best encoding scheme
does not automatically guarantee security of the scheme. For the sake of simplicity our
analysis cover only the simplest scenario when in each round mix sends all messages
from the previous round. However, even in this idealistic scenario we detect severe
security threats.

Onions. It is a core idea of various theoretical systems as well as working implemen-
tations (see e.g. [19,21,11,9]). There are many variants of this protocol. A basic one
works as follows:

We assume that a message m has to be sent from a node A to a node B. For this
purpose node A chooses at random λ intermediate nodes, say, J1,J2, . . . ,Jλ and random
strings r1,r2, . . . ,rλ+1. Then an onion O is built according to the following recursive
formula (EncX means encryption with the public key of X):

Oλ = EncB(m,rλ+1),
Oi = EncJi(Ji+1,Oi+1,ri+1) for i < λ,

O = O1.

Then O is sent by A to J1. Node J1 “peels off” the first layer by decryption and receives
onion O2, the name of the next server on the path, J2, and a random string. Then J2

becomes O2 and processes it in a similar way. This procedure is repeated until the
plaintext m appears after decryption.

Anonymity mechanism of onions is very similar to MIXes. Messages entering the
same server at the same time are recoded and permuted at random - just as for a MIX.

For the sake of simplicity of presentation, we assume that a server can send directly
a message to any other server in the network. In a real network it might be a better
strategy to send messages only to neighbours in each round, since otherwise it is much
easier to perform traffic analysis by tapping relatively few lines. Nevertheless, if we
consider the model in which a message can be sent only to a neighbor (as considered in
[10]), then the same problems arise.

We consider only the idealistic model that is resistant to attacks and traffic analysis:
all participants send onions at the same time and all onion paths have the same length.
So if the view of the network is the same for all participants, an adversary cannot gain
any significant information with high probability if anonymity paths are long enough.
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Adversary Model. There are many adversary models for anonymity protocols. We
consider a passive adversary monitoring traffic of messages in a network. The adver-
sary cannot influence the traffic (for example: insert, duplicate, remove, or modify mes-
sages).

The adversary considered in this this paper is global, in the sense that he can eaves-
drop at the same time all connections, but can neither corrupt a server nor trace its
internal work. The adversary keeps track of all network information (routing, key dis-
tribution, etc.), too.

Let us remark that the strongest anonymity results were obtained for the model
introduced by Berman et al. in [2], where only a fraction of connection is under adver-
sary’s control.

Definitions of Anonymity. There are many definitions and measures of anonymity
(see e.g. [7] or [16]). The very first definition and the weakest one is based on already
mentioned anonymity set described in [15]: We consider a single message A from the
input of a system. Then we consider the set of all output positions that, from the point
of view of the adversary, may contain recoded A with a positive probability. Cardinality
of this set divided by number of all messages processed by the system is a measure of
anonymity.

The definition based on anonymity set does not take into account that different out-
put positions can be more or less likely to be linked with a particular input. This short-
coming is solved by definition based on entropy introduced in [7]. Unfortunately even
this definition is not perfect - it does not take into account dependencies between prob-
ability distribution of different messages. The strongest definitions are based on total
variation distance between distribution of all possible permutations of input messages
on output positions and the uniform distribution or a priori distribution [2]. Then all
dependencies between different messages are taken into account.

In this paper we use the weak measure based on anonymity set. The reason is sim-
ple – we show that in some situations even according to this weak measure only a low
anonymity level is achieved.

Local Versus Global View. A common assumption in papers dealing with onions as
well as MIXes is that the servers on anonymity path are chosen independently uniformly
at random over the same set by all users.

It is often believed that even if the users choose from different sets of servers, it does
not impact anonymity very much provided that the number of potential servers for each
user is sufficiently large. We show that this intuition is wrong – different local views of
the network can cause degradation of anonymity in some cases, despite strong results
for the case when all local views are the same [2,13,10]. This has important practical
implications, since it is extremely difficult to provide the same view of the network in a
large dynamic system with servers joining and leaving the network.

3 Dangers of Using Extra Servers

In this section we consider a simple scenario, in which anonymity breaks completely
down or at least is strongly limited. Our considerations here serve as a kind of warm-up
before the next section with a more involved analysis for a more practical setting.
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We consider the case with n users, each of them sending a single message. The num-
ber of servers in the system that can be used as intermediate nodes is also n. However,
all users, except Alice, know only n− k of these servers, while Alice is aware of all of
them. Let k servers known only to Alice be called additional servers. (Our choice of pa-
rameters might be different, for instance each server may send more than one message,
but we fix the setting for the sake of simplicity.)

The messages are processed as onions. Each sender fixes a random path of length
λ choosing each server independently and uniformly at random. So Alice may choose
additional servers while the other servers cannot use them. We consider here a global
passive adversary who wants to detect the destination of the message sent by Alice. We
assume that for each single user the adversary knows the set of servers in the system
known by the user. So in particular, the adversary knows that if an onion is processed
through an additional server, then it must be an encoded message of Alice. If the mes-
sage of Alice does not go through an additional server, then it remains hidden inside the
crowd of other messages. However, even then its location might be limited to a small
anonymity set, when the message went recently through an additional server.

By evaluating level of anonymity provided by various systems based on onions,
the crucial question is how long must be the random path of each message (see [2],
[13]). The main idea is that anonymity improves when the length of the random path
increases. However, we shall see that it is false for the scenario considered here.

Let D be a random variable denoting the number of steps between the last moment
when the message from Alice hits an additional server and delivery of this message. We
call D effective length of anonymity path. Since each time a message hits an additional
server the adversary knows that it is a message from Alice, for providing anonymity
against a global adversary only the effective length counts and not λ. For this reason we
analyze behavior of the random variable D.

Claim 1. For each t, 0 ≤ t ≤ λ,

Pr[D > t] =
(
1− k

n

)t+1
.

Indeed, treating probability of hitting an additional server as a failure in Bernoulli
trails we obtain:

Pr[D > t] = Pr[D = t + 1]+ Pr[D = t + 2]+ . . .+ Pr[D = λ]

=
(
1− k

n

)t+1 · k
n +
(
1− k

n

)t+2 · k
n + . . .+

(
1− k

n

)λ−1 · k
n +
(
1− k

n

)λ
=
(
1− k

n

)λ
+
(
1− k

n

)t+1 ·
(

1− (1− k
n

)λ−t−1
)

=
(
1− k

n

)t+1
.

Let us note that Pr[D > t] does not depend on parameter λ, except for the maximal range
of the random variable D.

Now we can compute the expected value of D:

E[D] = ∑λ−1
t=0 Pr[D > t]

= ∑λ
t=1

(
1− k

n

)t
= ( n

k −1) · (1− (1− k
n)λ)< n

k .
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Let us discuss these estimations of D. First assume that k/n = 1
4 . Then D > 4 with

probability lower than 0.24. Hence, also anonymity set of the Alice’s message is very
small with high probability. If k = n

logn (which is a more realistic scenario), then E[D] <
logn. Moreover,

Pr[D > logn−1] <
(

1− 1
logn

)logn ≈ 1
e .

So, in majority of cases effective length of anonymity path is below logn. On the other
hand, for a global adversary model a guaranteed level of anonymity is reached for λ =
Θ(log2 n) [5] (in fact, after slight changes in the protocol are done). So it may happen
that for a given value of k it is impossible to reach a high anonymity level – increasing λ
in this case does not help at all since the effective length of anonymity path essentially
will not increase. Sad but true!

We can provide a similar analysis if the connection graph is not a full graph and
connections are dynamic. In such a scenario an adversary can keep track of a particular
user by observing some links known only to that user. Onions traversing such links
reveal their origins to an adversary (just as the onions hitting an additional server in the
analysis above).

4 Dangers of a Limited Local View

In this section we consider the case that all users except Alice are choosing intermediate
servers from a set N, while Alice is aware of only a subset of N of cardinality c · |N|,
for some c < 1. Later in this section we discuss shortly the case that each user has some
limited knowledge of the servers from N.

We consider a global passive adversary who knows N and the sets of servers known
by Alice. The goal of the adversary is to determine the destination of a message sent by
Alice based on information gained from observing the traffic.

We shall show that anonymity set of the message of Alice might be surprisingly
small and therefore the protocol offers a low level anonymity against a global adversary.
A very important point is that increasing the length of anonymity path does not help
much: after an initial phase the size of the anonymity set fluctuates around a relatively
small value.

These results are quite surprising in view of the results concerning the case when all
users choose intermediate servers uniformly at random from the same set N. Namely,
then increasing the path length improves anonymity level so that finally we get very
strong anonymity expressed by a total variation distance between the probability dis-
tribution of all permutations of messages and the stationary distribution. There are also
results suggesting that the necessary path length is relatively small [19,5] even in the
case of presence of global passive adversary. This analysis can be easily extended to a
scenario where the connection graph is sparse and Alice is aware only of a subset of
available edges.

4.1 Process Definition

N denotes the set of all servers that can be used as intermediate servers on anonymity
paths. Let W ⊂ N be the set of servers known to Alice. Let M be the set of messages
sent by all users. We assume that |M| = |N| and exactly one message is sent by Alice.
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At each step of the protocol the adversary may observe positions of M encoded
messages, but the problem is to indicate the position of the message sent by Alice – the
messages are recoded at each step in such a way that if two or more of them enter the
same server, they cannot be linked to the messages leaving this server after recoding. It
is exactly the same mechanism as in the case of a MIX-server [3].

Let a set Ni be the set consisting of all messages u after step i such that it is possible
that the message u is the recoded message sent by Alice. More precisely, there exist a
(hypothetical) linking between messages entering and leaving each server so that the
message sent by Alice at the first step leads to message u after step i. In other words,
from the adversary point of view, it cannot be excluded that u is a recoded Alice’s
message and Ni is the anonymity set of the Alice’s message after step i.

Let Si be the set of all servers where the messages of Ni occur.
At the very beginning Alice sends exactly one message. So |N0| = 1. Let us consider

step i of the protocol. Our goal is to estimate the size of Ni based on the size of Ni−1.
The set Ni consists of two kinds of messages:

The first kind: the messages that were in Ni−1 and are sent at step i to servers within
W (let us note that the set Ni−1 has at least one element, since the message sent by
Alice is there).

The second kind: the messages that were outside Ni−1, but went to some servers,
where a message of the first kind occurs after step i.

At least one message from Ni−1 that remains within W , namely, the encrypted message
of Alice. The messages from Ni−1 that go to servers in the set N \W cannot hold the
message from Alice.

In order to estimate the number of messages of the second kind we have to find
cardinality of the set Si. The random variable denoting the size of Si is given by a
combination of binomial distribution and so-called bins and balls process. Let Bin(v, p)
be a random variable denoting the number of successes in a Bernoulli process with v
trials and success probability p for a single trial. Let BiBa(v,u) be a random variable
denoting the number of non-empty bins (i.e. with at least one ball) after throwing v balls
uniformly and independently at random into u bins.

It is easy to see that the number of the messages from Ni−1 which remain within W
at step i is given by the random variable:

Bin(|Ni−1|−1, |W |/|N|)+ 1

(|Ni−1|−1 messages are not from Alice, so each of them chooses to stay within W with
probability |W |/|N|, the term “+1” corresponds to the message of Alice). So finally the
size of Si is a random variable with the same distribution as

BiBa(Bin(|Ni−1|−1, |W |/|N|)+ 1, |W |) .

A message from the set M \Ni−1 becomes a member of Ni, if at step i it hits one of
the servers of Si. So the number of messages of the second kind joining Ni is described
by a random variable with binomial distribution

Bin(|M|− |Ni−1|, |Si|/|N|) .
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Finally, we have got the following recursive formulas on random variables:

|Si| = BiBa(Bin(|Ni−1|−1, |W |/|N|)+ 1, |W |),
|Ni| = Bin(|M|− |Ni−1|, |Si|/|N|)+ Bin(|Ni−1|−1, |W |/|N|)+ 1,

|N0| = |S1| = 1 .

In fact, in the above formulas the sign “=” means that the random variables on the
left and right side have the same probability distribution.

Our goal is to estimate the size of Nλ, which is anonymity set of the message of
Alice after λ steps of processing the messages.

4.2 Analysis

Let us recall that the expected value of a random variable BiBa(v,u) equals

u(1− (1− 1
u)v) ≈ u(1− e− u

v ) .

The expected value of random variable Bin(u, p) is u · p.
Since we assume that |N| = |M|, we simplify the formulas by substituting |N| and

|M| by a single symbol n. Hence the expected sizes of the sets Si and Ni are expressed
by the following formulas:

E[|Si|] ≈ |W | ·
(

1−
(

1− 1
|W |
) (|Ni−1|−1)·|W |

n +1
)

and

E[|Ni|] ≈ (|M|− |Ni−1|)E[|Si|]+ (|Ni−1|−1)|W |
n

+ 1 .

(In the first formula we have written ≈ instead of =, since we have assumed that the
number of messages from Ni−1 that remain in W equals to the expected number of
such messages. Similarly, in the second formula we have replaced |Si| by E[|Si|].) After
applying the approximation (1− 1

a)b ≈ e−b/a, we get

E[|Ni|] ≈ n−|Ni−1|
n · |W | ·

(
1− e

− |Ni−1|−1
n − 1

|W |
)

+(|Ni−1|−1) · |W |
n + 1 .

Let Δ(|Ni−1|) = E[|Ni|− |Ni−1|]. Hence

Δ(|Ni−1|) ≈ (n−|Ni−1|) · |W |
n

· (1− e
− |Ni−1|−1

n − 1
|W | ) (1)

−|Ni−1| · (1− |W |
n

)+ (1− |W |
n

).

We consider Δ(|Ni−1|) as a function of |Ni−1| and we fix the value of |W |
|N| . We see

that the first term in (1) forces Δ to be positive and its impact is bigger for small values
of |Ni−1|. The second term in (1) forces Δ to be negative and its impact grows with the
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Fig. 1. Zero points of Equality 2 as a function of |W | for n = 1000

size of |Ni−1|. So, there is a point where both tendencies have the same strength and so

the values of |Nt | oscillate around it. Of course, this equilibrium point depends on |W |
|N| .

If we put α = |W |
|N| , then we would like to find a value |Ni| such that according to (1),

Δ(|Ni−1|) = 0. So we have to solve following equation:

0 = (n− x) ·α · (1− e− x−1
n − 1

αn )− x · (1−α)+ (1−α) . (2)

We have not found any closed formula for solutions of Equality 2 (as well as some
symbolic computation systems). However, one can easily find the solutions numerically.
The results for n = 1000 and different values of |W | are plotted on Figure 1.

From the numerical results we can learn a somewhat unexpected phenomena. For
values of |W | that are significantly lower than 500 = 0.5n, the equilibrium point has
quite small values and the growth rate is quite slow. Around 0.5n there is a radical
change of the situation: the growth rate increases until the derivative reaches the value
close to 0.5. Then, the function is quite well interpolated by a single line. These results
suggest that the sizes of anonymity sets Ni remain small for values of |W | that are not
too close to 0.5n. When |W | grows above 0.5n, then the situation changes abruptly and
we should observe that the average size of Ni grows fast with |W |.

In the next subsection we compare these results with extensive simulations of the
protocol.

4.3 Simulation Results

From the previous considerations we can expect that after some number of steps at the
beginning of the protocol anonymity set |Nt | should oscillate around a certain value.
Since exact formulas describing the stochastic changes of |Nt | or even their fair approx-
imations seem to be very complex, we performed a number of direct simulations to
check these tendencies.
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We have performed the experiments for different values of |N|, but the results hardly
depend on |N|, except for small values that are not interesting from our point of view.

We have performed simulations for different values of |W |
|N| .
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The next two figures show dependency between |W | and |Ni| in subsequent steps of
the protocol. The figures correspond to the cases |N| = |M| = 1000 and different values
of |W |, for 0.3 · |N| ≤ |W | ≤ |N|.

Figure 2 is a three dimensional plot. The value plotted is the size of Ni in subsequent
steps of the protocol. Different curves correspond to different values of |W | between
30% and 100% of |N| (step 2%).

From Figure 2 one can see that for some values of |W |
|N| anonymity set remains small

for all i. Then there is a cut-off point for the value of |W |
|N| such that above this point |Ni|

grows until it reaches a stable level. This level depends on |W |
|N| , just as predicted before

(see Figure 1).
Figure 3 presents planar visualization of the same simulation for |W | = 0.4 · |N|,

0.5 · |N|, 0.6 · |N|, 0.7 · |N|, 0.8 · |N|, 0.9 · |N|. At this point our aim is to convince the
reader that there is qualitative gap between anonymity for these values of parameter
|W | and relation between sizes of |W | and the average size of Ni is not linear. For
|W | = 0.4 · |N|, 0.5 · |N| the anonymity set has a very small size even if some small
deviations occur.

4.4 Statistical Analysis

So far we were concerned with the size of Ni only, ignoring probability distribution that
for each message from Ni describes the chance that it is the message sent by Alice. It
turns out that this probability distribution is highly nonuniform. This property reduces
anonymity level offered by the protocol even more.
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We consider the case: n = 1000 and the situation after 20 steps. Figure 4 shows
the probabilities mentioned for the case when W = N, after sorting them. The dashed
line shows probability of the message from Alice. As one can expect, the probability
distribution is not completely uniform – each probability depends on the number and
location of paths leading from Alice to each position after step 20. It is not a big surprise
that the message of Alice is in a position that is hard to guess from the probability
distribution.

Figure 5 presents an example of simulation results for the same |N| = 1000, but this
time the size of W is 0.7n. In this case the anonymity set N20 is quite big (near 60%
of N), so finding N20 does not help much. However, experiments show that the actual
Alice’s message is very likely to be within 3% positions with the highest probabilities.

It is worth to say that such a reduction of the set of suspects for being the message
from Alice based on probabilities works when we speed up the computations and deter-
mine the probabilities in an incorrect way. Namely, if some message from Ni−1 leaves
W , then we do not recompute the probabilities of all members of the anonymity set
based on the routes that have occurred in the past, but simply re-scale all probabilities.

4.5 Attack Extensions

Intersection Attack. Let us assume that Alice sends many messages to the same des-
tination in a row. Then we may apply intersection attack [8,1] and reduce rapidly the
anonymity set. The attack has good chances to succeed, since in different rounds the
anonymity sets obtained are almost independent, except that the true destination is al-
ways the member of the anonymity set. For instance, assume that |Nλ| = |Sλ| = 30,
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N = 1000, and that during the next execution |Nλ| = 30. Then the size of intersection
of both anonymity sets is given by the random variable Bin(29,30/1000)+ 1 and has
expected value about 2. Of course, it does not help Alice, if she sends the messages
through different routes.

Model Extension. So far we have assumed that all servers except Alice choose the
intermediate servers uniformly at random from the whole set N. However, one can see
that essentially the same attack can be used with high probability if for each user the set
of potential intermediate servers is chosen in a way that is stochastically independent
from the set of servers known to Alice.

On the other hand, if Alice shares the same set of intermediate servers with other
users, then at least it becomes hard to distinguish between them.

5 Countermeasures and Conclusions

A common intuition is that in order to achieve a better level of anonymity each user
should use as many servers as possible for choosing intermediate servers on anonymity
paths. However, in large and dynamic networks this will lead inevitably to a situation
that different users will use different sets of servers. Some of them will stay behind
and use relatively few servers and some will be fast in changes and use a larger set of
servers. As we have shown, both cases are dangerous. The threats do not disappear even
if the sizes of the sets used by different users are the same: if a set of servers used by a
user is in some sense independent from the sets used by the other users, then the same
attack applies.

The problems disappear, if the sets of servers used by different users are the same.
However, it is hard to achieve in a dynamic, large scale network without a central
control.

Since the hosts are not always honest and there is no authority controlling basic
services, anonymous communication becomes a necessary primitive for these dynamic
information systems. Therefore the threats discovered are of real importance.

A common strategy in highly dynamic networks is to build an overlay network
consisting of a group of servers that are stable and remain in service for a long time.
This strategy, used for instance to improve certain features of P2P protocols, is also
quite useful for security reasons.

Let us mention yet another solution based on so called-navigators [17]. In this case
the anonymity paths are chosen dynamically: a skeleton is established by the user, but
subpaths are determined on-the-fly by the servers on the route, so a message sent by
Alice may leave the set of servers and our attack breaks down.
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Abstract. Currently, many industrial initiatives focus on web applications. In
this context an important requirement is often that the user should only rely on
a standard web browser. Hence the underlying security services also rely solely
on a browser for interaction with the user. Browser-based identity federation is a
prominent example of such a service. Very little is still known about the security
of browser-based protocols, and they seem at least as error-prone as standard se-
curity protocols. In particular, standard web browsers have limited cryptographic
capabilities and thus new protocols are used. Furthermore, these protocols require
certain care by the user in person, which must be modeled. In addition, browsers,
unlike normal protocol principals, cannot be assumed to do nothing but execute
the given security protocol.

In this paper, we lay the theoretical basis for the rigorous analysis and secu-
rity proofs of browser-based protocols. We formally model web browsers, secure
browser channels, and the security-relevant browsing behavior of a user as au-
tomata. As a first rigorous security proof of a browser-based protocol we prove
the security of password-based user authentication in our model. This is not only
the most common stand-alone type of browser authentication, but also a funda-
mental building block for more complex protocols like identity federation.

1 Introduction

Browser-based services have received increasing attention in the last years. The idea
is simple: users should be able to access the services by only using a standard web
browser, which offers a set of basic functionalities. Thus the users send their requests
for services as well as receive and view the results by means of the browser. This en-
ables cost-efficient deployment of applications without specific user education. The re-
quirement on such services not to need any special client software is also called zero-
footprint. Consequently, the underlying security services must also be zero-footprint.
Therefore, security services only use a standard browser for user authentication and
for retaining a secure channel with the user. They may also request additional security-
relevant attributes about the users and third-party confirmation via the browser. We first
discuss how non-browser protocols establish such security services and how their meth-
ods differ from browser-based protocols. Then we consider research on browser-based
protocols in the prominent area of identity federation and point out challenges in estab-
lishing rigorous security proofs, before summarizing our contributions.
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Establishing Secure Channels. The security services for browser-based protocols
mostly focus on establishing mutually authenticated secure channels. The typical ap-
proach in other security protocols is to perform a key exchange, based on local master
keys, master keys shared with a third party, or public-key certificates, and to subse-
quently use the exchanged key to secure the communication. A large body of liter-
ature on such protocols exists. A seminal work were the Needham-Schroeder proto-
cols [28], although a vulnerability in one protocol was later found by Lowe [20]. Tool-
supported proofs were initiated in [25,15,23], based on abstractions of cryptographic
primitives introduced in the Dolev-Yao model [6]. Recent tool-supported proofs con-
centrate on using existing general-purpose model checkers and theorem provers, first
in [21,26,4,7,31]. Cryptographic proofs of key-exchange and authentication protocols
were initiated by Bellare and Rogaway [1]. Cryptography also added interesting ad-
ditional properties to pure authentication, e.g., see [17]. Modeling secure channels by
a comparison to ideal secure channels, a technique that we will use for the underly-
ing secure channels below, was introduced in [40,35,2]. Analyses specifically for SSL
and TLS, and thus close to an underlying mechanism used in browsers, were made
in [41,27,32,18].

However, standard browsers simply do not execute most of these protocols. Instead,
a browser establishes a server-side authenticated secure channel leveraging a public-
key certificate of the server and provides client authentication by other means. The only
exception to this method would be SSL or TLS channels with client certificates for 2-
party authentication. However, this is not considered truly zero-footprint because the
users would have to obtain the certificates. Also, the method would not allow a user
to easily use different browsers at different times. Thus it is very rarely used, and not
used at all as a basis in larger browser-based security protocols. Hence browser-based
protocols are different from all protocols for which prior security proofs exist.

Identity Federation. A prominent area of browser-based security protocols is identity
federation, which aims at linking a user’s (otherwise) distinct identities at several lo-
cations. The benefit is that the involved organizations can reduce user management
costs, such as the cost of password helpdesks and user registration and deletion. In this
area, concrete and complex browser-based security protocols were proposed, e.g., Mi-
crosoft’s Passport [24], the Security Assertion Markup Language (SAML) standardized
by OASIS [29], the Shibboleth project for university identity federation [3], the Lib-
erty Alliance project [19], and WS-Federation [13,14]. Several papers discussed vul-
nerabilities of such protocols, in particular for Passport [16], the Liberty enabled-client
protocol [37], and a SAML profile [10]. Others discussed privacy design principles
and details [36,33,34,38]. Basic browser-based authentication without federated iden-
tity management is discussed in [9]. As far as the vulnerabilities found were removable
security problems (in contrast to fundamental limitations of the browser-based proto-
col class or matters of taste like privacy), they were removed in the next version of the
protocols. However, past experience in protocol design has shown that incorporating
countermeasures against known attacks does not guarantee to eliminate all vulnerabili-
ties. Hence it is desirable to devise security proofs.

Proving Browser-Based Protocols. It is not trivial to apply previous security proof
techniques, both cryptographic techniques and formal-methods techniques, to browser-
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based protocols. The primary reason is that a browser represents a new party with its
own, predefined behavior that impacts the security of the protocols executed across it.
In usual security protocols, principals are assumed to execute precisely the security pro-
tocol under consideration (unless they are corrupted). A browser, in contrast, reacts on a
number of predefined messages, adds information to responses automatically, and stores
information such as histories in places that cannot always be assumed secure, e.g., if the
browser is in an Internet kiosk. For instance, one of the SAML problems found in [10]
is based on the HTTP Referer tag, i.e., a browser feature that is not mentioned at all
on the level of the SAML protocol. Another usual issue is that browser-based proto-
cols use a multitude of names for a principal, while other protocols typically assume
a one-to-one mapping; for instance, there are URL addresses, identities used in SSL
certificates, and identities used in higher protocols. It is easy to forget some name com-
parisons in protocols and thus to enable man-in-the-middle attacks. All this means that
a detailed and rigorous browser model is a prerequisite for convincing security proofs
of browser-based protocols, and no such model exists so far. For the resulting model,
we currently assume that a real browser does not perform additional actions, because
for most security protocols arbitrary additional actions could destroy the security. This
could be replaced by more precise assumptions on forbidden additional actions in the
future.

Another important special aspect is that due to the limited capabilities of browsers,
the user at the browser is an active participant and certain assumptions must be made
about the user, e.g., that the user verifies that a secure channel to a trusted server is used
before entering an important password.

Our Contribution. In this paper, we lay the theoretical basis for research in this area
by modeling the major building blocks for browser-based protocols. We present a rig-
orous and abstract model for a standard web browser as a principal for browser-based
protocols. While our model is still extensible – in particular we do not model cookies
and scripting but assume a browser with these features turned off – we believe that we
have captured the major explicit and implicit browser features that play a role in typical
browser-based protocols. In addition, we model the security-relevant browsing behav-
ior of a user, i.e., a machine that implements the explicit constraints on a user that are
needed for protocol proofs, but still allows arbitrary behavior apart from that. Further-
more, we model browser channels in order to capture, in particular, the naming issues
across multiple protocol layers.

As a first security lemma for a browser-based protocol in our model, we study the
security of the initial authentication of the user behind a browser by a password. Initial
user authentication is an integral part of all browser-based protocols, and passwords are
the standard technique used in the zero-footprint scenario.

A first step in the direction of proofs of browser-based protocols was taken in [11].
There, however, we only modeled exactly those parts of the user and browser behavior
that we concretely needed for the protocol, and made assumptions that other things
would not happen. These assumptions were made top-down for the needs of the protocol
rather than bottom-up from a browser and user model. In this paper, we lay the bottom-
up groundwork for such assumptions.
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2 Notation

General Notation. We use a straight font for constants, including constant Sets and
Types, functions, and predicates, where Types are predefined constant sets. We use
italics for variables and variable Sets. Let Σ be an alphabet without the symbols {“ε”,
“!”, “?”, “	”, “[”, “]”, “//” }. Then Σ∗ is the set of strings over Σ where ε denotes
the empty string and Σ+ = Σ∗ \ {ε}. For a set S , P(S ) denotes the powerset of S
and S ∗ the set of finite sequences over S . We define S .add (x ) as S := S ∪ {x} and
S .remove (x ) as S := S \{x}. Assignment by possibly probabilistic functions is written
as ←. Assignment of a value to a tuple of variables means making correspondingly
many projections; if one of these fails the entire assignment fails. We denote the set
of URL host names, including protocol names such as “https”, by URLHost, the set
of URL path names by URLHostPath, and the set of URL host and path names by
URLHostPath. We write an address adr ∈ URLHostPath as a pair (host, path) of
a host name host ∈ URLHost and a path. The type ChType := {secure, insecure}
contains the channel types available.

Automata. We represent our machines such as the browser model as I/O automata, in
other words finite-state machines with additional variables. This is a very usual basis
for specifying participants in distributed protocols; the first specific use for security is
in [22]. Specifically we use the automata model proposed in [35], which has a well-
defined realization by probabilistic interactive Turing machines and is therefore linked
to more detailed cryptographic considerations where those become necessary in multi-
layer proofs. In the following we give a brief overview of this machine model (see also
Figure 2). Machines may have multiple fixed connections to other machines organized
by means of uni-directional ports. We define two types of simple ports for message
transmission: n? is an input port with name n and n! an output port, respectively. The
machine model connects simple ports n? and n! with the same name n and opposite
direction; these are called complement ports. We call ports without such a complement
free ports. We define a clock port p = (n,	 , d) ∈ Σ+ × {	} × {!, ?} as a port that
schedules the connection between simple ports n? and n! with same name n, or is free
itself if this connection does not exist.

A machine M is defined as a tuple M = (nameM, PortsM, VarsM, StatesM, δM,
IniM, FinM) of a name nameM ∈ Σ+, a finite sequence PortsM of ports, a finite
sequence VarsM of variables, a set StatesM ⊆ Σ∗ of major states, a probabilistic state-
transition function δM, and sets IniM,FinM ⊆ StatesM of initial and final states. The
inputs are tuples I = (Ii)i=1,...,|in(PortsM)|, where Ii ∈ Σ∗ is the input for the i-th in-
port, in(PortsM) is the input ports of the machine and |in(PortsM)| denotes the number
of the input ports. Analogously, the outputs are tuples O = (Oi)i=1,...,|out(PortsM)|.
The empty word, ε, denotes “no in- or output”, respectively. The value assignments of
variables are tuples V = (Vi)i=1,...,|VarsM|, where Vi ∈ Σ∗ is the value for the i-th
variable in the sequence VarsM. In the following, we usually say “state” for “major
state”; however, the state transition function changes the overall state consisting of the
major state and the variables.

We define the state transition function δM of a machine M using a notation anal-
ogous to UML state diagrams [30], see Figure 1. This is a concise and user-friendly
definition method that enables easy graph analysis of the command and information
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Fig. 1. Key to the state diagrams
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Fig. 2. System architecture for browser-based protocols with a browser B, a user U, servers Si,
channel abstraction secchan and their ports

flow in security proofs. We define a transition in a state diagram as an arrow from a
state s to a state s′ with label Event [Guard ]//Action , where Event is a sequence of
non-empty inputs to the input ports, Guard is a predicate over Event and the machine’s
current variable allocation V , and Action specifies the computations and outputs of the
transition.

System Overview for Browser-based Protocols. Figure 2 gives an overview of the au-
tomata in our model. We call the generic browser machine B, the user machine that
implements the minimum assumptions on secure user behavior U, and the machine
that models the behavior of secure channels as implemented within HTTPS (see [39])
by secchan. To analyze and prove browser-based security protocols one complements
these general-purpose machines with one or more server machines, here denoted by Si,
that jointly execute the browser-based protocol. Furthermore, one configures the user
machine U with suitable initial information about trusted parties.

3 Ideal Web Browser B

In this section, we describe our model of a web browser. Before the actual definitions,
we give an overview of real web browsers.

A web browser acts as the client in transactions of the Hypertext Transfer Protocol
(HTTP) [8]. A browser acts on behalf of one single user in a browsing session. However,
it may display multiple windows that render different HTTP transactions in parallel. We
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will model a window by a window identifier wid in the communication between U and
B; however, the window management of the browser machine is omitted for brevity.

A browser accepts user inputs specifying addresses and retrieves and renders the
content associated with these addresses or error messages. It also renders the status of
the channel to the server and, if a secure channel is used, the identity of the server.
Furthermore, it initiates dialogs with the user to negotiate changes of the channel state,
verify a server’s authentication or request for user authentication.

HTTP is a client-server protocol in the application layer of the TCP/IP protocol
stack. In order to initiate an HTTP transaction, a browser establishes a connection to
a server; here it may leverage various transport protocols, in particular TCP/IP, SSL
3.0, or TLS1.0 [5]. Having established a channel, the browser issues an HTTP request
to the server. Such a request specifies the resource that the browser intends to retrieve
and may contain additional parameters. The server evaluates the request and issues a
response using the same channel. We call such an interaction an HTTP transaction. In
principle, browsers do not need to hold state beyond such a single transaction. However,
real web browser do hold persistent state, e.g., a cache and a browsing history, and they
let a transaction influence the subsequent one. Our browser model reflects this behavior.

The most important types of HTTP requests are GET and POST requests, used
by the browser to retrieve and send data, respectively. Servers may not only respond
with content but also instigate a behavior change in the browser. In particular, HTTP
responses with scripted form POST and redirect messages direct the browser to another
address of the server’s choice. Another HTTP response asks for user authentication by
a username-password pair. We model these HTTP messages as abstract formats, i.e., we
do not model how the bitstrings are parsed. We focus on the mentioned subset of HTTP
messages and their core parameters, because these are the ones that are actively used in
browser-based protocols or may have impact on their security.

An important aspect of real web browsers is that they do more than browser-based
protocols typically intend. Most prominent is the problem of information flow. On the
one hand, this may occur within HTTP requests, e.g., by the HTTP Referer tag. On the
other hand, persistent state such as history, cache and password storage provide data
flow to the underlying operating system and thus potentially to other parties. Hence
the user’s log-off from a browser session that removes browser state is also security-
relevant. We dedicate Section 3.4 to information-flow aspects.

At present, we do not consider cookies and scripts as many browser-based protocols
do not use them directly and it is possible to switch them off.

In Section 3.1 we define the interface of the browser machine B, i.e., its ports and
the syntax of permitted in- and output messages. Details of the abstract HTTP mes-
sages are treated in Section 3.2. Section 3.3 defines the variables of the browser model.
In Section 3.4 we define functions governing the information-flow properties. Finally,
Section 3.5 describes the transition function.

3.1 Interface of Browser Machine B

The ports of B were already shown in Figure 2. We now discuss the messages exchanged
over these ports. We list them all in Table 3 of Appendix A. Here we only explain them
as far as it is useful to understand the upcoming state diagram.
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The ports guiU,B? and guiB,U! model the browser’s user interface. The input mes-
sages enter address, trigger address and submit form issue a request for an address to
B. Here enter address represents an input in the browser’s address field, trigger address
models clicking a link and submit form defines the submission of an HTML form. The
output messages established and error inform the user of the channel status. The mes-
sage channel change notifies the user of a change of the security level of the channel.
The browser uses request uauth and authenticate in the password-based user authen-
tication dialog. The remaining messages organize a certificate verification dialog with
the user. The security of browser-based protocols builds upon the browser machine re-
liably presenting secure channels and the server identity sid to their users. Thus, if an
HTTP transaction uses a secure channel, B includes the channel’s server identity in each
message to U. The user machine U confirms the server identity in each message to B.1

The ports channel outB? and channel inB! connect the browser to the underlying
channel abstraction secchan. We introduce the ports selfB! and selfB? to reduce the
complexity of the state diagrams. Using these ports, we allow the browser to delegate
trigger address and submit form commands to itself and to treat them on the same
command path as the user inputs. The ports inB? and outB! model information flow to
the operating system and may be connected to a higher protocol layer or the adversary.
We discuss in Section 3.4 how B explicitly leaks information about its state. Loosely
speaking, upon an input do leak at inB? the browser outputs its full persistent state to
outB!.

3.2 Abstract HTTP Messages

The interface of the secure channel abstraction secchan allows the browser to send very
general messages to other machines, but correct browsers only send HTTP messages
and only accept messages parsable according to HTTP.

We model an HTTP GET request by an abstract message with format GET(path ,
query, login , info leak). Here path ∈ URLPath denotes the path of the address to be
retrieved and query ∈ Σ∗ the query string of the URL. The parameter login ∈ Σ∗

contains the credentials of a password-based user authentication, including the account
name. The parameter info leak is a list of name-value pairs from Σ∗ × Σ∗. It models
potential additional parameters, e.g., the preceding address in the HTTP Referer tag.
We discuss them specifically under the aspect of information flow in Section 3.4. For
HTTP POST requests we define POST(path, query , login , info leak) analogously.

We now proceed to describe the HTTP responses. The abstract messages
Page(m, close ,nocache) and Error(m, close) model HTTP 200 OK responses and
HTTP 40x error responses. Both contain a page m ∈ Σ∗ as the payload and a flag
close ∈ Bool that directs the browser to close the underlying channel or to keep it alive
for further HTTP transactions. This parameter models the token close of the Connection
header of HTTP1.1 [8]. The parameter nocache ∈ Bool of Page models the cache-
response directive nostore of HTTP1.1, which forces a browser not to store any part of
this response and the request that elicited it.

1 We only model that the user sees the server identity, not a channel identifier, because he or she
will not notice if a channel is interrupted. Usually, however, a user can distinguish different
channels with one partner by different windows.
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The abstract message Redirect(adr , path, query , close) models a redirect (HTTP
302 or 303) to adr/path?querystring , where querystring is an encoding of the
abstract query ∈ Σ∗. Here adr ∈ URLHost and path ∈ URLPath. Similarly,
POSTForm(adr , path, query , close,nocache) models a form containing a script that
will POST a message whose body encodes the abstract query to the address adr/path .
The parameters close and nocache are defined as above. In consequence of both mes-
sages the browser establishes a channel to the address adr and then sends path and
query over that channel. The channel type is implied by the HTTP protocol name “http”
or “https” in adr .

The abstract message Authenticate() queries the browser for a user authentication.

3.3 Variables of Browser Machine B

We now define the browser’s variables VarsB. We distinguish volatile and persistent
variables. Volatile variables belong to one HTTP transaction and are deleted in the final
state of this transaction, while persistent variables survive individual transactions. We
describe the variables in more detail in the full version of this paper [12].

We start by describing the volatile variables. The variable adr contains the ad-
dress to be retrieved in the given HTTP transaction. It implies the value of host and
ch type. The value of ch type specifies the type of the channel the browser establishes
to the server with hostname host . The variable method contains the HTTP method
used in this HTTP transaction, and source uri ∈ Bool states whether the entity is-
suing the request for adr has a URI of its own. This implies whether a Referer Tag
is included in the request. The variable form contains a form compiled from user
inputs given by the variable form in and a form obtained in the preceding HTTP
transaction. The variable ch ∈ Channel contains the browser’s local representation
of a channel established to a server, i.e., the data the browser has acquired about the
channel. An element of Channel is a tuple (cid , host , sid , type, free) from the domain
N×URLHost×Σ∗×ChType×Bool. Here cid is a channel identifier, host contains the
hostname of the server to which the browser channel is connected, and sid names the
server’s identity in a secure channel and is ε for an insecure channel. The element type
represents the channel type (secure or insecure). The element free is used to organize
the reuse of existing channels and flags that the channel is currently not associated to a
HTTP transaction. The variable m contains the payload of an HTTP response, whereas
variable store flags the user’s decision whether to store login data in the browser’s state.
The variable auto req determines whether the browser issues the following request au-
tomatically to itself.

The first two persistent variables exist for each window: wid is the window iden-
tifier, and prev run = (ch type, adr , form) contains data about the preceding HTTP
transaction in this window: the channel type, the address retrieved, and the structure of
an HTML form together with hidden value fields already included in the form. The other
persistent variables are global for B. The sequence Channels contains representations
of type Channel of all channels the browser has established. The set UAuth contains
a user’s login information the user decided to store in the browser’s state, History is
a sequence of addresses successfully retrieved by the browser, and Cache models the
browser cache as a sequence of pairs of addresses and page contents retrieved from
these addresses.
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3.4 Information Flow Functions

Even correct browsers produce information flow beyond the core parameters of HTTP
requests and responses to both communication partners and the underlying operating
system. As this information flow may lead to vulnerabilities in browser-based security
protocols, we model it explicitly.

We already provided the parameter info leak for additional information in abstract
HTTP requests. For generating the content of this parameter, we define a function
leak2server(). It implicitly works on the current variables of the given window and
browser and computes a list of name-value pairs of information to be disclosed. A real
browser primarily sends such information in HTTP header tags such as Referer, From
or Accept Language. However, most of these tags do not contain data that we modeled.
Hence our default implementation of leak2server only includes the Referer tag, which
contains the preceding address if the request was issued by an entity that has a URI of
its own: leak2server() = (Referer, prev run.adr ) if source uri , else ε.

Another potential for information flow exists from the persistent variables, which
are stored in the underlying operating system. This introduces security and privacy risks
especially in kiosk scenarios. We already described that we model leakage of these
variables by an input do leak at port inB?. Upon this input, the browser outputs its
entire persistent state as a string info in a message leak(info) at port outB!. These ports
are free by default, so that the adversary can connect to them. Alternatively, they may
be made so-called specified ports, which define the interface to a higher protocol. This
allows for flexibility in the assumptions about the security of the persistent variables.

Fig. 3. Channel establishment phase of an HTTP transaction
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Request sending Channel close
if required

Response handling

HTTP_redirect

Authentication_request

Active_FormPOST

Transaction_finished

Failure: data
retrieval failed

Proceed:
transaction
successful

Channel_established

Await_response

channel_outB?(receive, cid’, authenticate())
[cid’ = ch.cid] // History.add(adr);

guiB,U!(request_uauth, wid, ch.host, ch.sid,
ch.type); guiB,U !()

channel_outB?(receive, cid’,
POSTForm(radr, rpath, rquery, close,

nocache)) [cid’ = ch.cid] // prev_run.adr :=
adr; prev_run.form := rquery; ra := (radr,

rpath); auto_req := true; History.add(adr);
selfB!(submit_form, wid, e, ra)

[nocache]

channel_outB?(con_error, cid’) [cid’
= ch.cid] // Channels.remove(ch);
guiB,U!(error, wid, con); guiB,U !()

channel_outB?(receive, cid’,
Redirect(radr, rpath, rquery, close))

[cid’ = ch.cid] // History.add(adr);

channel_outB?(receive, cid’, Page(m, close,
nocache)) [cid’ = ch.cid] // prev_run.adr := adr;
prev_run.form := fparse(m); auto_req := false;

History.add(adr);

channel_outB?(receive, cid’, Error(m, close))
[cid’ = ch.cid] // prev_run.adr := adr; prev_run.form

:= false; auto_req := false; History.add(adr);
guiB,U!(show_page, wid, m, ch.sid)

channel_outB?(receive, cid’, m)
[cid’ = ch.cid parsable(m)] //

guiB,U!(error, wid, res); guiB,U !()

[close] // cid := ch.cid;
Channels.remove(ch);

channel_inB!(close, cid)

[ close] //
ch.free :=  true

// prev_run.adr := adr; prev_run.form :=
false; ra := (radr, rpath, rquery); auto_req
:= true; selfB!(trigger_address, wid, ra)

[method = POST] //
channel_inB!(send, ch.cid,
POST(path(adr), form, e,

leak2server())); channel_inB !()

[method = GET] // channel_inB!(send,
ch.cid, GET(path(adr), query(adr), login,

leak2server())); channel_inB !()

[method = POST] //
channel_inB!(send, ch.cid,

POST(path(adr), query(adr), login,
leak2server())); channel_inB !()

[store] //
UAuth.add((ch.sid, login)) [ store]

[auto_req] //
selfB !()

Failure: authentication
canceled

[ nocache] // Cache.add(adr, m);
guiB,U!(show_page, wid, m, ch.sid)

[nocache] // guiB,U!(show_page,
wid, m, ch.sid)

[ nocache] //
Cache.add(adr, m)

[ auto_req]
// guiB,U !()

[method = GET] // channel_inB!(send,
ch.cid, GET(path(adr), query(adr), e,

leak2server())); channel_inB !()

guiU,B?(authenticate, wid, login,
sid’, *) [sid’ ch.sid login = e]

guiU,B?(Authenticate, wid, login,
sid’, store) [sid’ = ch.sid]

Fig. 4. Request handling phase of an HTTP transaction

3.5 State-Transition Function

We now define the browser’s state transition function δB. A browser handles sev-
eral classes of user actions asynchronously, such as enter address and log off. Upon
enter address, trigger address or submit form the window with the corresponding win-
dow identifier wid starts a new HTTP transaction. If there exists an ongoing HTTP
transaction, that one’s state flow is exited. Upon a log off command, the browser B ex-
its all state diagrams of HTTP transactions and starts a log-off flow, which closes all
channels and deletes the browser state. Figures 3 and 4 contain the main parts of the
state diagram of a single HTTP transaction, i.e., an HTTP request-response pair. The
start state typically corresponds to the inactive state of the browser window where the
user views a page; the transaction is then triggered by the user selecting a link or di-
rectly inputting a new URL. The start state can also correspond to a user filling a form
or to the middle of a redirect.

The browser begins with a local negotiation phase where it notifies its user U about
the establishment of a new channel if the desired channel is of a different type than
the previous one, e.g., insecure HTTP after secure HTTPS. If the user consents to the
channel change, the browser procures a suitable channel. We allow the browser to reuse
free channels, i.e., opened but not associated to an ongoing HTTP transaction, with the
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correct host and security level; this is the channel reuse phase. The channel establish-
ment phase shown in Figure 3 contains the case that a new channel is needed. It first
distinguishes whether the desired channel should be secure or insecure. Establishing an
insecure channel is straightforward. Establishing a secure channel involves a certificate
test and potential user interaction if the browser is in doubt about a certificate.

Figure 4 starts at State Channel established from Figure 3 and handles an HTTP
request and response. In the request sending phase, B issues an HTTP request as a
GET or POST according to the method of the initial user input and enters State
Await response, where it expects an HTTP response from the server. In the re-
sponse handling phase, B handles different abstract response types: a normal answer
Page, an Error, a Redirect, a scripted POST FormPOST, or an authentication request
Authenticate. The latter leads to a user interaction in State Authentication request and
finally to the resending of the HTTP request with the login information from the user.
The response types Redirect and FormPOST specify an address the browser will send
an HTTP request to in the following HTTP transaction. This next HTTP request is
treated by the next iteration of the entire state-transition diagram, but to trigger it the
browser sends a message to its own port selfB?, with the format accepted in the start
state.

4 Ideal User Browsing Behavior U

In browser-based protocols, the browser’s user has an important role because the
browser itself only provides rudimentary trust management. The user also controls most
of the browser behavior and has the final say about the browser’s actions. Thus we con-
sider the user as an active protocol participant and model it by a machine U. In general,
U is transparent; however, it enforces the general requirements for browser-based pro-
tocols. In particular, it stores data about trust relationships to other parties, performs
user authentication including the crucial verification of the server’s identity, tests cer-
tificates, observes the status of secure channels, and logs off from the browser in error
cases.

As shown in Figure 2, the machine U works as a proxy between the browser and
the protocol interface. Above the protocol interface, one has to imagine the remaining,
protocol- or application-dependent actions of the human user, which we sometimes
call the “real user”. The machine U forwards normal browser communication from the
real user to B and the browser’s pages back. In contrast, it handles typical trust tasks
solely in interaction with the browser, without involving the real user. With the message
compromised, it notifies the real user that the browser behaved against U’s expectations
and that U aborted the interaction with it.

As in Section 3.3, we distinguish persistent and volatile variables of U. As these
variables contain confidential data like passwords, they are also important in an infor-
mation flow analysis.

The persistent variables of U model its trust relationships. The sequence TU contains
a tuple (host , sid , login , sec) for each server that U has a special relationship with. The
tuples have the type Server = URLHost×Σ∗×Σ∗×P(ChType). Here host contains the
server’s hostname, sid its identity in a secure channel and login the login information
for user U. The set sec contains the channel types allowed for user authentication with
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Fig. 5. The ideal user browsing behavior represented by machine U

that server. The pairs (host , sid) within this table must be unique. The set uauth sec
models the general policy of U for allowed channel types for user authentication and
contains the channel types that are acceptable.

For the volatile variables, we use similar names as in the browser machine: the
address adr and channel type ch type refer to the address the browser established a
channel to. For secure channels the server identity sid additionally contains the identity
according to the server’s certificate. The variable P is an instance of the type Server.

We define the state transition function δU by the state diagram in Figure 5. The Start
state models the user machine being idle, waiting for an input from the real user with an
address adr to retrieve or for a browser event. After having issued an address request
to the browser, the machine observes the browser’s behavior and reacts to events gen-
erated by B. The state machine models transparent behavior on the left side (around
State Honest user event), where it only forwards messages between protocol interface
and browser. This transparent part handles the messages enter address, trigger address,
submit form, and show page. The user tracks channel status changes and channels es-
tablished in the States Channel status changed and Channel established, verifies cer-
tificates that B doubts in State Cert verify requested, and forwards errors and pages
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to the protocol interface. The user also handles the user authentication process in
State Authentication request.

5 Channel Machine Secchan

Our browser model comes with a channel abstraction secchan for secure and insecure
browser channels. For space reasons, we describe this machine only partially here.

As shown in Figure 2, each machine M with network access has two ports
channel inM! and channel outM? to connect to secchan. The channel machine con-
nects to the adversary by two means. The ports net outM! and net inM? are for insecure
channels and not needed here. The ports channel outA! and channel inA? modeling the
imperfections of secure channels. The adversary also controls the network scheduling
and decides which messages are delivered.

The machine secchan chooses channel identifiers uniquely and keeps track of chan-
nels. To model insecure DNS, it queries the adversary for ports corresponding to host-
names. It has a table CA of tuples binding = (port , sid , host) ∈ Σ+ ×Σ∗×URLHost
linking a certified identity sid and a base hostname host to the port index of a commu-
nication partner of secchan. The setup of this table enforces that the identities sid are
nonambigously bound to one unique machine M, i.e., if an honest party M controls an
identity sid no other machine may act under this identity. We define security domains as
tree of URIs covered by a server identity sid , for which no other party M∗ can control
a server identity sid∗. More formally we define such domains as follows:

Definition 1 (Channel Security Domain). For a binding (M, sidM, hostM), we call a
URIM with host(URIM ) ⊆ hostM ⊆ sidM a channel security domain of machine M if
CA does not contain another entry (M∗, sid∗, host∗) with M∗ �= M and host∗ ⊇ host
for any host ⊆ host(URIM ). �

For handling a concrete channel instance, secchan dispatches the communication to a
sub-machine. Such an instance contains the channel identifier cid , the port indices of
the initiator and responder , the server’s actual address host , the server’s identity rid
and the security level, here server auth secure. We depict the most important steps of
a secure channel instance in Figure 6 and discuss the establishment of a secure channel
in the following.

Clients initiate secure channels to an address host by the command new with the pa-
rameter ch type = server auth secure. Then secchan queries the adversary for the re-
cipient port index R corresponding to host , chooses a unique channel identifier cid , and
dispatches to a sub-machine for a secure channel (Figure 6) with R, host , and cid as pa-
rameters. The sub-machine contains the channel type ch type = server auth secure as
constant variable. This sub-machine handles further communication. First it notifies the
server with the channel identifier cid . The server may accept the channel and identify
itself under an identity rid ∈ URLHost. The secure channel instance verifies the server
identity in State accept request: It tests whether it has a tuple (S, rid , host ′) ∈ CA
such that the current address host lies under the base address host ′. If yes, it notifies
the client that the channel was accepted. From now on, the port indices of client and
server are non-ambiguously bound to the channel identifier cid . Thus client and server
are the fixed channel partners of this channel. Both partners may send messages refer-
ring to cid .
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Fig. 6. State diagram of a single instance of a secure channel

6 Security of User Authentication

In this section, we present the first protocol proof based on a detailed browser model:
We show the security of typical password-based user authentication by one server. Such
user authentication is an important building block for most other security protocols
based on browsers, e.g., in federated identity management.

6.1 Authentication Server

The overall system is a special case of the architecture shown in Figure 2. We con-
sider the definition of one server S; of course there can be several such servers and also
servers of different types interacting with the same browsers and users. We only rename
the free ports of this server from inS? and outS! into uauth inS? and uauth outS! to in-
dicate that it offers a user authentication service. Further, we specialize the architecture
by allowing the adversary full access to the browser’s cache and history, i.e., we show
that user authentication (in contrast to some other protocols) is not vulnerable to such
attacks. This means that the adversary connects to all free ports in Figure 2 that are not
defined to belong to the protocol interface.

The inputs at the ports that S does not share with a prior machine and its persistent
variables are shown in Tables 1 and 2. We refer to the two parts of an entry e in the
user metadata table MetaU S as e.id and e.login . We require that both id and login are
unique within the table MetaU S of a correct server S at all times.

Table 1. Protocol in- and outputs of the authentication server S

Port Type Parameters Description
uauth inS? Input to authentication server S

start cid : Σ∗ Start authentication of channel cid
uauth outS! Output of authentication server S

done cid : Σ∗, idu : Σ∗ Authentication for channel cid finished with
identity idu , where ε means failure.
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Table 2. Persistent variables of the authentication server S

Name Domain Description Init.
hostS URLHost Hostname of this server See setup
sidS Σ∗ Identity of this server for secure channels See setup
MetaU S P(Σ+ × Σ∗) Pairs of known user identities and login information. ∅

Fig. 7. State machine of the user authentication server S

The state machine for one authentication protocol run of server S is shown in Fig-
ure 7. The server user (typically a higher protocol) starts authentication for some chan-
nel with identifier cid . The server sends an authentication request over the channel cid .
Upon receipt of an authentication message, it looks up whether the included login in-
formation is present in its user metadata. If yes, it outputs the corresponding identity as
the main part of the authentication result, else ε.

6.2 Setup Assumptions
As set-up for a particular user machine U and authentication server S, they exchange
login information loginU,S �= ε such that U and S are the only parties that obtain in-
formation about it. Further, U must know a valid certificate identity of S so that it can
verify later that it has a secure channel to S. Formally, the result of the set-up is this:

Definition 2 (UAuth Setup Assumptions). For a user U and an authentication server
S we assume:
a. The set TU of U’s trusted servers contains an entry (hostS , sidS , loginU,S,

{secure}) where hostS = hostS and sidS = sidS for the hostname and identity
variables of S.

b. The authentication server’s user table MetaU S contains an entry (idU, loginU,S),
where the user’s identity idU is unique in MetaU S.

c. No other variables contain information about loginU,S.
d. The binding table CA of the secure channel abstraction secchan contains a triple

(S, sidS, hostS) where host(URIS) ⊆ hostS ⊆ sidS and URIS defines a channel
security domain of S. �



504 T. Groß, B. Pfitzmann, and A.-R. Sadeghi

6.3 Security of User Authentication

We now show that user authentication as defined by the general user machine U and the
specific authentication server S is secure. Essentially, security means that when S has
performed a successful protocol run of the user authentication protocol, indicated by
the output (done, cid , idU), then it is indeed connected with the user with identity idU.
More precisely, we show in Lemma 1 that such an output implies that S holds a secure
channel with channel identifier cid where the communication partner is the browser B
of the user U who has this identity idU. We make a relatively strong statement: We have
not required that S only makes its requests on secure channels, nor that the user cor-
rectly logs out of browser sessions or otherwise protects caches and histories. Extended
protocols, e.g., the continued secure use of the channel for which the authentication is
made, may need additional assumptions.

Lemma 1 (User Authentication). Let a correct user machine U and authentication
server S be given that have performed setup according to Definition 2 at some time
with the user identity idU, and let the user’s browser B be correct. Then the following
statement holds unless an adversary can guess loginU,S based on a priori knowledge
of its distribution, its length, and the results of previous guessing attempts, which each
exclude one potential value: If S outputs (done, cid , idU) at uauth outS! then there
exists a secure channel instance SChbs in secchan with

SChbs.cid = cid ∧ SChbs.state = established

∧ SChbs.ch type = server auth secure ∧ SChbs.Partner = {B, S}.

�We present the full proof of Lemma 1 in the long version of this paper [12].

7 Conclusion

In prior art, browser-based protocols only came with vulnerability analyses and infor-
mal security considerations. However, those methods do not guarantee the protocols’
security and do not meet the requirements of industry embracing browser-based proto-
cols in complex scenarios. We designed the first model for the rigorous security analysis
of browser-based protocols. Our model encompasses generic machines for browsers,
user browsing behavior and channel abstraction that allow precise protocol proofs. We
have also proven the security of the initial password-based user authentication, a very
common protocol on its own and a key ingredient of browser-based protocols. In future
work, we will use this model to analyze and prove the security of POST- and artifact-
based protocols in the prominent area of identity federation.
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A Details of Browser B

Table 3 contains the interface of B, i.e., its ports and the messages sent or expected
there. We now describe the additional functions and predicates used by the state-
transition function: The function ctype(adr ) with ctype : URLHostPath −→ ChType
determines the channel type corresponding to the argument adr . If the address is
HTTPS the channel type is server auth secure, in other cases insecure. The functions
path(adr ) : URLHostPath −→ URLHost, path(adr ) : URLHostPath −→ URLPath,
and query(adr ) : URLHostPath −→ Σ∗ return parts of an URL argument adr . We
use several predicated for handling of HTML forms: fparse(Σ∗) : Σ∗ −→ Σ∗ ex-
tracts a from from a HTML document. The predicate fmatch(form , form in) with
fmatch : Σ∗ × Σ∗ −→ Bool checks whether the parameter names of form and the
user inputs form in match. The function fmerge(form , form in) : Σ∗ × Σ∗ −→ Σ∗

merges a given form with the user inputs form in to a new form. The predicate
parsable(m) : Σ∗ −→ Bool checks whether message m is parsable according to the
HTTP specification for HTTP responses.
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Table 3. Input and output types of browser machine B

Port Type Parameters Description
inB? do leak Leak command from OS
outB! leak info : Σ∗ Info leakage of B to OS
guiU,B? Inputs from user U

enter address wid : Σ∗, adr : URLHostPath Input in address line
trigger address wid : Σ∗, adr : URLHostPath Clicking of a link
submit form wid : Σ∗, m : Σ∗,

adr : URLHostPath Submission of a form
channel change wid : Σ∗, d : {accept, reject} Consent to sec level
server cert wid : Σ∗, d : {accept, reject}, Result of cert verify

sid : Σ∗

authenticate wid : Σ∗, login : Σ∗, User authentication
sid : Σ∗, store : Bool

log off User logs off from B
guiB,U! Outputs to user U

error wid : Σ∗, type : {con, res} Error notification
established wid : Σ∗, host : URLHost, A channel was established

sid : Σ∗, ch type : ChType
channel change wid : Σ∗, host : URLHost, Channel sec level changed

ch type : ChType
verify server cert wid : Σ∗, host : URLHost, Request to verify cert

sid : Σ∗

request uauth wid : Σ∗, host : URLHost, Request for user auth
sid : Σ∗, ch type : ChType

show page wid : Σ∗, m : Σ∗, sid : Σ∗ Rendering a payload page
selfB!, selfB? Selfdelegation of B

trigger address adr : URLHostPath Triggers a redirect
submit form m : Σ∗, adr : URLHostPath Scripted form submission

channel outB? Inputs from secchan
accepted cid : Σ∗, host : URLHost, Server accepted channel

sid : Σ∗

receive cid : Σ∗, m : Σ∗ Received a message
closed cid : Σ∗ Server closed channel
con error cid : Σ∗ Connection error notify
ca untrusted sid : Σ∗ Browser does not trust CA
inval cert sid : Σ∗ Cert was fully invalid

channel inB! Outputs to secchan
new host : URLHost, Establish a new channel

type : ChType
send cid : Σ∗, m : Σ∗ Send message to channel
close cid : Σ∗ Close channel
accept server cert sid : Σ∗ User accepted server cert



Author Index

Adão, Pedro 374
Ahn, Gail-Joon 64
Anderson, Ross 305
Askarov, Aslan 197
Ateniese, Giuseppe 159
Atluri, Vijayalakshmi 80

Backes, Michael 178, 336
Bana, Gergei 374
Bao, Feng 222
Basin, David 98
Bauer, Lujo 355
Bhide, Manish 44

Chaum, David 118
Chou, Daniel H. 159

Danezis, George 305
de Albuquerque, João Porto 287
de Geus, Paulo Ĺıcio 287
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