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Abstract. In this paper we look at the Gabidulin version of the McEliece
cryptosystem (GPT) and its variants. We propose a new polynomial time
attack, which recovers an alternative private key. Our attack is applicable
to all variants proposed so far and breaks some of them completely.
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1 Introduction

The security of cryptosystems based on error correcting codes is connected to
the hardness of the general decoding problem. In 1991 Gabidulin, Paramonov
and Tretjakov proposed a variant of the McEliece scheme (GPT) [7] using rank
distance codes instead of hamming distance codes. Smaller public-key sizes have
been proposed for GPT than for the original McEliece cryptosystem, as general
decoding algorithms are much slower for the rank metric than for the hamming-
metric.

Gibson developed two structural attacks for the GPT cryptosystem (see e.g.
[4] and [8]) and proved the parameter sets proposed in [7] and [4] to be insecure.
A drawback of Gibson’s attacks is, that they have exponential runtime if the
secret key is carefully chosen. There were several attempts to modify the GPT
cryptosystem, in order to avoid structural attacks, but most of these variants
rely on security assumptions very similar to the ones for the original proposal
(see [2] and [11]).

In this paper we build a new structural attack on the GPT cryptosystem.
Unlike Gibson’s attacks it has polynomial runtime, breaks the original GPT
cryptosystem from [7] completely and is applicable to all GPT variants proposed
so far.

The paper is structured as follows: First we give a short introduction to rank
distance codes. Then we present the GPT cryptosystem and its Niederreiter
variant. Finally we show how to attack the GPT cryptosystem.
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2 Rank Distance Codes

Rank distance codes were presented by Gabidulin in 1985. They are linear codes
over the finite field Fqm for q (a power of a) prime and m ∈ N. As their name
says they use the concept of rank distance.

Definition 1. Let x = (x1, · · · , xn) ∈ F
n
qm and b1, · · · , bm a basis of Fqm over

Fq. We can write xi =
∑m

j=1 xijbj for each i = 1, · · · , n with xij ∈ Fq. The rank
norm ‖x‖r of x is defined as the rank of the matrix (xij) ∈ F

n×m
qm .

The rank norm of a vector x ∈ F
n
qm is uniquely determined (independent of

the choice of basis) and induces a metric, called rank distance.

Definition 2. An (n, k)-code G over a finite field F is a k-dimensional subvec-
torspace of the vector space F

n. We call the code G an (n, k, d) rank distance code
if d = minx,y∈G ‖x − y‖r. The matrix G ∈ F

k×n is a generator matrix for the
(n, k) code G over F, if the rows of G span G over F. The matrix H ∈ F

n×(n−k)

is called check matrix for the code G if it is the right kernel of G. The code
generated by H� is called dual code of G and denoted by G⊥.

In [9] Ourivski and Johansson presented an algorithm which solves the general
decoding problem in O (

(md−1
2 )3q(d−3)(k+1)/2

)
operations over Fq for (n, k, d)

rank distance codes over Fqm . A special class of rank distance codes are the
Gabidulin codes for which an efficient decoding algorithm exists [4]. We will
define these codes by their generator matrix.

Definition 3. Let k ≤ n ≤ m ∈ N and g ∈ F
n
qm be a vector s.t. the components

gi, i = 1, · · · , n are linearly independent over Fq. The (n, k, d) Gabidulin code G
is the rank distance code with generator matrix

G =

⎛

⎜
⎜
⎜
⎝

g1 g2 · · · gn

gq
1 gq

2 · · · gq
n

...
. . .

...
gqk−1

1 gqk−1

2 · · · gqk−1

n

⎞

⎟
⎟
⎟
⎠

∈ F
k×n
qm . (1)

An (n, k) Gabidulin code G corrects
⌊

n−k
2

⌋
errors and has a minimum dis-

tance of d = n − k + 1. The dual code of an (n, k) Gabidulin code is an
(n, n − k) Gabidulin code (see [4]). The vector g is said to be a generator vec-
tor of the Gabidulin code G (it is not unique). Error correction based on the
right Euclidean division algorithm takes O (

d log2
2 d + dn

)
operations over Fqm

for (n, k, d) Gabidulin codes [4].
Throughout this paper we will use the following notation. We write G = 〈G〉

if the (n, k)-code G over the field F has the generator matrix G. If the rows of a
(n− k)× n matrix M span G⊥ we write G⊥ = M . We will identify x ∈ F

n with
(x1, · · · , xn) , xi ∈ F for i = 1, · · · , n. For any (ordered) subset {j1, · · · jm} =:
J ⊆ {1, · · ·n} we denote the vector (xj1 , · · · , xjm) ∈ F

m with xJ . Similarly, for
a k × n matrix M we denote by M·J the submatrix consisting of the columns
corresponding to the indices of J and write MJ′· =

((
M�)

·J′
)� for any (ordered)

subset J ′ of {1, · · · , k}. Block matrices will be given in brackets.
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3 The GPT Cryptosystem

The GPT cryptosystem was first presented in 1991 by Gabidulin, Paramonov
and Tretjakov [7]. Here we present a more generalized version (GGPT, see [11]),
which may be used to describe the original GPT cryptosystem as well as the
variant with column scrambler from [3].

– System Parameters: q, k < n ≤ m, s ≤ t ∈ N, where t < n − k − 1.
– Key Generation: First generate the following matrices :

G ∈ F
k×n
qm generator matrix of an (n, k, d) Gabidulin code,

X ∈ F
k×t
qm random matrix of rank s over Fqm and rank t over Fq,

S ∈ F
k×k
qm random, non-singular matrix (the row scrambler) and

T ∈ F
n×n
q random, non-singular matrix (the column scrambler).

Then compute the k × n matrix

G′ = S
([

X 0
]
+ G

)
T

= S
[
G·{1,··· ,t} + X G·{t+1,··· ,n}

]
T ∈ F

k×n
qm ,

(2)

where 0 denotes the k× (n− t) zero matrix. Choose 1 ≤ e ≤ n−k−t
2 . Further

let DG be an efficient decoding algorithm for the Gabidulin code G generated
by the matrix G·{t+1,··· ,n}.

– Public Key: (G′, e)
– Private Key: (DG , S, T ) or (G, S, T ) where G is of the form in (1).
– Encryption: To encode a plaintext x ∈ F

k
qm choose a vector z ∈ F

n
qm of

rank norm e at random and compute the ciphertext c as follows:

c = xG′ + z .

– Decryption: To decode a ciphertext c apply the decoding algorithm DG for
G to c′ =

(
cT−1

)
{t+1,··· ,n}. As T is a invertible matrix over Fq, the rank

norm of a vector does not change if it is multiplied with T−1. Thus c′ has
at most rank distance n−k−t

2 to G and we obtain the codeword

xSG{t+1,··· ,n} = DG (c′) .

Now, we can compute the plaintext x.

In the original GPT cryptosystem, the parameterse and t are chosen such
that e = n−k

2 − t. If we do so, the legitimate user may recover xSGT by applying
the error correction algorithm for 〈GT 〉 (which is a Gabidulin code, too) to the
ciphertext c.

The distortion matrix X is essential to mask the structure of G. We can
recover the vector gT from SGT in O (

k3
)

operations over Fqm by employing
methods similar to the attack of Sidelnikov and Shestakov on the Niederreiter
cryptosystem using GRS codes (see [4]). If the parameter s should be larger
than t/2, as there exists a polynomial time attack on the private key [8]. In all
examples we will choose n = m and q = 2. Some parameter sets may be found
in table 3 (All of these are secure against all previously published attacks).
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3.1 The Niederreiter Variant of GPT

The security of the GGPT cryptosystem is strongly connected to the one of the
Niederreiter variant, as we will see later on. We briefly introduce the Niederreiter
variant of the GPT cryptosystem from [2]. On key generation we choose a k − l
dimensional subcode of an (n, k) Gabidulin code G over Fqm . Every check matrix
of the subcode may be described as

(H ′) =
[
H A

]
S ∈ F

n×(n−k+l)
qm ,

where H is the n × (n − k) check matrix of G, A is an n × l matrix of full
rank and S is some invertible (n − k + l) × (n − k + l) matrix. The public key
(H ′, e = (n − k)/2) is published, and the pair (S,G) is taken to be the private
key. To encode a plaintext x ∈ F

n
qm of rank norm less then e, compute the

ciphertext c as follows:
c = xH ′ .

In order to decode a ciphertext c apply the syndrome decoding algorithm DG
for G to the syndrome build from the first n− k columns of cS−1. Table 1 shows
public key sizes and approximate work factors (WF = operations over Fq) for
the fastest general decoding attack. Parameters were taken from [1].

Table 1. Parameter sets for the Niederreiter GPT

Parameters Size Public WF general
m k l Key (Bytes) decoding

25 15 5 469 282

32 24 4 960 293

4 Attacking the GPT Cryptosystem

Even though there were attempts to break the GPT cryptosystem by using gen-
eral rank distance decoding algorithms, the structural attacks from Gibson (see
e.g. [4], [8]) had more impact on the cryptosystem. However, for carefully chosen
parameter sets, Gibson’s attacks have exponential running time (see appendix).
Several variants of GPT were proposed, but it was shown, that the security of
the variants from [3] and [6] is connected to the security of GGPT (see [11]).
The attempt to use Gibson’s attack to cryptanalyze these variants failed for the
variant from [6], but resulted in an attack for the variant from [3].

The main weakness of the GPT cryptosystem is, that it is difficult to hide
the structure of the generator matrix of a Gabidulin code. As already noted
by Gibson, the use of subfield subcodes (or group codes) seems much more
promising for cryptographic applications. Here, we want to use some observations
on Gabidulin codes: For a matrix M let M [j] denote the result of rising every
element of M to the power of j. If G is the generator matrix of a Gabidulin
code, then G and G[q] look quite the same. (Both define Gabidulin codes with



54 R. Overbeck

generator vectors g and g[q] respectively.) We are going to use this property to
distinguish the Gabidulin part of the public code from the random one.

Let M be an arbitrary l×n matrix over Fqm and f ∈ N. While Gibson analyzed
matrices of the form M + M [q] (compare [8]), we look at matrices of the form

Λf (M) :=

⎡

⎢
⎢
⎢
⎢
⎣

M

(M)[q]

...

(M)[q
f ]

⎤

⎥
⎥
⎥
⎥
⎦
∈ F

((f+1)·l)×n
qm . (3)

Lemma 1. If M ∈ F
l×n
qm defines an (n, k) Gabidulin code with generator vector

g and f ≤ n − k − 1, then the subvectorspace spanned by the rows of Λf (M)
defines the (n, k + f) Gabidulin code with generator vector g.

Assumption 1. Let M ∈ F
l×n
qm define a random l > 1 dimensional subcode of

an (n, k) Gabidulin code over Fqm with generator vector g. Then with probability
P1 ≥ (1 − q−m), Λf (M) defines a min {k + f, (f + 1) · l} dimensional subcode
of the (n, k + f) Gabidulin code with generator vector g.

Assumption 2. Let M ∈ F
l×n
qm be a random matrix of full rank over Fqm and

of full column rank over Fq. Then Λf (M) has rank min(n, f · l) with probability
P2 ≥ (1 − q−(m−1)).

The proof for lemma 1 is obvious. For assumption 1, it is easy to see, that
Λf (M) defines a subcode of the (n, k + f) Gabidulin code with generator vector
g, so the remaining part is to estimate P1. Assumption 2 is based on empirical
results as well as on observations from [5]. If l = 1, then because of theorem
1, the assumption is true, as P2 = 1. Experiments for parameters relevant for
our attacks showed that P1 and P2 are almost 1 (see appendix). However, not
the correctness, but only the success probability of the attacks proposed in the
following sections depends on the assumptions above.

4.1 Attacking the Niederreiter Variant

The Niederreiter variant of the GPT cryptosystem was first attacked by A.
Ourivski in [10]. Here we present a new attack, which recovers an alternative
secret key in polynomial time by using assumption 1.

Theorem 1. Let GSUB be a random k − l dimensional subcode of an (n, k)
Gabidulin code G over Fqm with generator vector g. Then we may recover g
from GSUB with probability P1 if k − l > 1 and n − k − 1 ≥ �l/ (k − l − 1)	.
Further, this may be done in O (

n3
)

operations over Fqm .

Proof. Let G′ be the generator matrix of GSUB. To recover g from GSUB we
choose f ∈ N such that n − k − 1 ≥ f ≥ �l/ (k − l − 1)	. If assumption 1 holds,
Λf (G′) has rank k + f with probability P1 and defines a subcode of a (n, k + f)
Gabidulin code. Thus, with probability P1, Λf (G′) spans the (n, k+f) Gabidulin
code with generator vector g and we can recover g in O (

(k + f)3
)

operations
over Fqm (see [4]).
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It follows, that if assumption 1 holds, we can recover the secret Gabidulin
code G from the public key of an instance of the Niederreiter variant of GPT as
long as n−k−1 ≥ �l/ (k − l − 1)	. Let H be the check matrix of G. To obtain an
equivalent secret key, we can choose a set J of l columns of H ′, s.t. the matrix[
H H ′

·J
]

has full rank. Now we may solve the equation

H ′ =
[
H H ′

·J
]
S̄

for S̄ and obtain the alternative secret key
(G, S̄

)
. Note, that employing this

method, it only takes O (
(k + f)3

)
operations over Fqm to recover an alternative

secret key.
For the parameter sets proposed e.g. in [1], the choice of f = 1 showed to

be sufficient in all our experiments. Table 2 shows modified parameter sets for
which the presented attack does not work. These parameters are not necessarily
secure (see [10]).

Table 2. Modified parameter sets for the Niederreiter GPT

Parameters Public Key WF general
m k l Size (Bytes) decoding

32 24 20 448 293

64 52 47 2360 2288

4.2 Attacking the GPT Cryptosystem

To recover an alternative secret key from the public key (G′, e) of an instance of the
GGPT cryptosystem, we want to use assumption 2. The general idea is, to observe
the behavior of the matrix Λf (G′). We assume, that if the difference of the rank of
Λf (G′) and Λf+1 (G′) is only 1 for some f , then Λf (G′) will be strongly connected
to a Gabidulin code. The following theorem describes the connection:

Theorem 2. Let (G′, e) be the public key of an instance of the GGPT cryptosys-
tem with parameters q, m, n, k, t and s. Further, let (G, S, T ) be the corresponding
secret key. Then for 0 ≤ f ≤ n− t− k − 1, there exists a dual matrix of Λf (G′)
of the form

Λf (G′)⊥ =
[

0 H�
f

B1 B2

]

· (T−1
)� ∈ F

(n−t−k−f+l)×n
qm , (4)

where Hf ∈ F
(n−t)×(n−t−k−f)
qm is the check matrix of a k + f dimensional

Gabidulin code Gf of length n − t, B1 is some l × t matrix with 0 ≤ l ≤ t
and B2 is some l × (n − t) matrix.

Proof. First, we assume, that T and S are the identity matrix. The proof is
analogous, if this is not the case. We may write
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Λf (G′) =
[
Λf

(
G·{1,··· ,t} + X

)
Λf

(
G·{t+1,··· ,n}

) ] ∈ F
(kf)×n
qm

By assumption 2, the last n − t columns of Λf (G′) define an (n − t, k + f)
Gabidulin code Gf . Thus the subvectorspace spanned by the rows of

[
0 H�

f

] ∈ F
(n−t−k−f)×n
qm ,

where Hf ∈ F
(n−t)×(n−t−k−f)
qm is the check matrix of Gf , is in the dual space

of Λf (G′). To get a matrix which defines the whole dual space of Λf (G′), we
might have to add some more rows to

[
0 H�

f

]
. However, it is clear, that there

will be at most t rows missing, as Λf (G′) has at least rank k + f . This proves
the theorem.

Observe, that Gf is uniquely defined by the secret key and f . Thus, knowing
Hf for some f , we know all Hi for 0 ≤ i ≤ n − k − t − 1. We are going to
determine the rank of Λf (G′)⊥ in the following sections. For now, we assume,
that it will be very near its lower bound (n− t−k−f) and show, how to recover
an alternative secret key in that case (compare example in the appendix).

Theorem 3. Let (G′, e) be as in theorem 2. Given an f ≤ n− t− k − 1 s.t. the
rank of Λf (G′)⊥ is n− t− k− f , then we may recover an alternative secret key,
corresponding to G′ in O (

n3
)

operations over Fqm .

Proof. With the conditions above, it follows from theorem 2, that there is a
matrix Λf (G′)⊥ of the form

[
0 H�

f

] (
T−1

)� ∈ F
(n−t−k−f)×n
qm ,

where Hf is as in theorem 2. We can recover such a matrix in O (
n3

)
operations

over Fqm [4]. Now we can choose a set N1 of n − t rows of G′ s.t. Λf (G′)⊥·N1
is

of column rank n − t over Fq. It follows, that TN1N2 with N2 = {t + 1, · · · , n}
is invertible. We may assume without loss of generality that N1 = N2 and
H�

f = Λf (G′)⊥·N1
. Let T̃ ∈ F

t×(n−t)
q be the solution of the equation

Λf (G′)⊥·{1,··· ,t} = H�
f · T̃�

over Fq. We define

T̄−1 :=
[
Idt T̃
0 Idn−t

]

∈ F
n×n
q ,

where Idk denotes the k-dimensional identity matrix. We may recoverH0 from Hf ,
as both are uniquely determined by G′ and T̄ . It follows, that

[
0 H0

]
is in the

dual space of G′T̄−1, and thus the last n− t columns of G′T̄−1 define an (n− t, k)
Gabidulin code. Thus T̄ serves as an alternative column scrambler. Now, we may
obtain an equivalent secret key inO (

k3
)
operations by applying the methods from

[4] to
(
G′ · T̄−1

)
·{t+1,··· ,n}, which gives us an alternative row scrambler S̄.

However, even if the rank of Λf (G′) is larger than n − t − k − f , an at-
tacker still may try to recover the secret key. He could guess a set N1 of n − t

rowss.t. (
[
0 Hf

] (
T−1

)�
)·N1

has full column rank over Fq. Again we may
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assume w.l.o.g. that N1 = N2 and
(
T−1

)
N1N2

= Idn−t. Then, the matrix

( Λf (G′)⊥·N1
)� corresponds to an instance of the Niederreiter version of GPT

as long as k + f − l > 1. Thus, we might apply the attacks on the Niederreiter
variant of GPT, to recover

[
Hf B�

2

]
. If one of the attacks succeeds, an attacker

can recover a dual matrix of Λf (G′) of the form given in equation (4) and from
it an alternative column scrambler. Afterwards the attacker would be able to
construct a valid alternative private key.

4.3 Strengths of the New Attack

Given an f s.t. the conditions of theorem 3 are fulfilled, for the GGPT public key,
we can build an alternative private key in O (

m5
)

operations over Fq. By now, we
have no idea, for which parameter sets our attack might work. To estimate the
success probability of our attack, we will have to determine the size of Λf (G′)⊥.
In the following we assume that s < k.

Theorem 4. Let (G′, e) be as in theorem 2. If assumption 2 holds for s × t
matrices over Fqm , then the rank of the dual matrix of Λf (G′) is at most R =
n − k − f − min {t, fs} with probability P2.

Proof. (Theorem 4) We have to estimate the rank of Λf (G′) for given G′ =
S

([
X 0

]
+ G

)
T and f (see equation 2). To simplify notations, we define the

following matrices:

Mk :=
[

0 Id(k−1)

0 0

]

∈ F
k×k
qm , γi :=

([
X 0

]
+ G

)[qi]
k· ∈ F

1×n
qm and

X̃i :=
(
X [qi−1]

)

·{2,··· ,k}
+

(
X [qi]

)

·{1,··· ,k−1}
∈ F

k−1×t
qm .

To determine the rank of Λf (G′) we use the property: If G is of the form in
equation (1), then the result of adding the (j +1)-th row of G[qi] to the j-th row
of G[qi+1] is zero for 0 ≤ i ≤ f − 1 and 1 ≤ j ≤ k − 1. Thus, by removing the
influence of S from Λf (G′) and adding the rows as mentioned above by using
Mk, we get the following matrix of the same rank as Λf (G′):

⎡

⎢
⎢
⎢
⎣

Idk 0 · · · 0
Mk Idk · · · 0
...

. . . . . .
...

0 · · · Mk Idk

⎤

⎥
⎥
⎥
⎦
·

⎡

⎢
⎢
⎢
⎢
⎣

S[q0] 0 · · · 0
0 S[q1] · · · 0
...

. . . . . .
...

0 · · · 0 S[qf ]

⎤

⎥
⎥
⎥
⎥
⎦

−1

· Λf (G′)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X + G·{1,··· ,t} G·{t+1,··· ,n}
X̃1 0

γ1

...
...

X̃f 0
γf

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

· T ∈ F
((f+1)·k)×n
qm .
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With probability P2 the part of the matrix above build from the [ X̃i 0 ]

contains at least min {t, fs} linearly independent rows, as (X̃i )
[q] = X̃i+1 and

rank (Xi) = s. Therefore Λf (G′) has at least rank k + f + min {t, fs} with
probability P2.

Note, that for s = 1 assumption 2 is correct, and the probability in the
theorem above gets 1. Otherwise the conditions in theorem 3 are fulfilled with
probability P2. We conclude, that all parameter sets, where there exists an f ≤
n − k − t − 1, s.t. t ≤ fs are insecure. Furthermore, as s ≥ 1, we may obtain
a equivalent secret key from the public key with probability 1 for all parameter
sets where

t ≤ n − k − t − 1 ⇐⇒ 1/2 ≤ (n − k)/2 − t , (5)

even if s > 1. This is true for all instances of the original GPT cryptosystem.

4.4 Experimental Results

Table 3 shows absolute run times the attack by methods from theorem 3 in
comparison to the theoretical work factors (operations over Fq) of the previous
attacks. For all parameter sets we chose f = n− t−k−1. In our experiments our
attack did not fail for any random instance of the original GPT cryptosystem.
Operations were performed on a 500MHz Pentium III running Linux using an
implementation in Java.

Table 3. Attacking the GPT cryptosystem

Parameters average runtime WF best of WF general
m k t s of our attack Gibson’s attacks decoding

48 10 16 3 51 min 2139 2134

48 16 18 4 58 min 2200 2124

48 24 8 2 102 min 2122 2198

In our experiments we chose X as the product of a random k × s matrix
SX of rank s < k over Fqm and a random s × t matrix X̄ (of rank s over Fqm

and rank t over Fq). For such choices of X the matrix Λf (G′) almost always
had rank (k + f + (s + 1) · min(f, s) + s · max(0, f − s)) or k+f + t. For special
choices of SX and random X̄, we were able to create instances, where the rank
of Λf (G′) reached the bound R. However, choosing SX or X̄ of a special form
removes degrees of freedom in choosing the private key and thus does not seem
to be a good choice.

4.5 On Secure Instances of GGPT

We have seen, that instances of the GPT cryptosystem and its variants, where

t ≤ s · (n − t − k − 1)
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holds, are insecure if assumption 2 holds. For the GGPT variant however, we may
choose parameter sets, s.t. this equation does not hold. Even though, we might be
able recover an equivalent private key if we can choose an f s.t. k+f−t+fs > 1,
as described in section 4.2.

To get secure instances of the GGPT cryptosystem, one could try to choose
parameters in a way, such that t− fs > f +k for every possible choice of f . The
latter is the case, e.g. if

s ≤ 2t − n

n − t − k
.

A parameter set satisfying this condition would be n = m = 64, k = 8, t = 40
and s = 1 e.g. with a public key size of 3584 bytes. The attack in the given
form is not applicable for such parameter sets. However, it seems very likely
that the attack may be modified in such a way, that these parameter sets can be
attacked, too.

5 Conclusion

We conclude that the original GPT cryptosystem from [7] is broken by our
attack. Our attacks succeed with good probability for most parameter sets of
GGPT and can even be extended to other variants of the GPT cryptosystem
(compare [6], [11] and [3]). After several attacks on the GPT cryptosystem and
its variants, it seems to be difficult to name secure parameter sets for GGPT, if
there exist any. Even if we would consider the parameter set mentioned above
to be secure, the GPT cryptosystem looses much of its advantages over the
McEliece cryptosystem.
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A Appendix - Gibson’s Attacks

Gibson presented two structural attacks on the GPT cryptosystem. They recover
an alternative private-key from the GGPT public-key G′. On input of G′ =
S

([
X 0

]
+ G

)
T , Gibson’s attacks return Ĝ, X̂ ∈ F

k×n
qm and Ŝ ∈ F

k×k
qm , s.t.

(i) Ĝ is a generator matrix of an (n, k) Gabidulin code over Fqm ,
(ii) G′ = Ŝ

(
Ĝ + X̂

)
and

(iii) the rank of X̂ over Fq is not bigger than t.

Thus Gibson’s attacks serve well for an attack on the GGPT cryptosystem, as
an alternative column scrambler may be recovered from X̂ . Gibson’s first attack
was developed for the case that the GGPT parameter s is 1, but may be adapted
to the case where s �= 1 (see [4]). It takes

O
(
m3 (n − k)3 qms

)
(6)

operations over Fqm . In [8] Gibson presented a different attack, which is more
efficient for larger values of s. It requires that k + t + 2 ≤ n and runs in

O
(
k3 + (k + t) f · qf(k+2) + (m − k) t · qf

)
(7)

operations over Fqm , where f ≈ max (0, t − 2s, t + 1 − k). Note, that this attack
runs in polynomial time if f = 0. The success of both attacks is based on some
assumptions, which are claimed to be fulfilled with high probability for random
instances of the GGPT cryptosystem. Nevertheless Gibson’s attacks are not fast
enough to attack the GGPT cryptosystem for all parameter sets of practical
interest (compare Table 3).

B Appendix - On Assumption 1

Besides our experimental results, we want to give some intuition, why assumption
1 seems to be reasonable. Let G′ = S̄G, where S̄ ∈ F

(k−l)×k
qm is of full rank and

G is the generator matrix of the (n, k) Gabidulin code with generator vector g.
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Now G′ defines a subcode of the code generated by G. Let Ḡ be the generator
matrix of the (n, k + f) Gabidulin code with generator vector g. We may write

(G′)[q
i] = [ 0 · · · 0

︸ ︷︷ ︸
i times

S̄[qi] 0 · · · 0
︸ ︷︷ ︸
f−i times

] Ḡ ∈ F
(k−l)×n
qm ,

where 0 is the k× 1 matrix with only zero entries. Then Λf (G′) may be written
as

Λf (G′) =

⎡

⎢
⎢
⎢
⎢
⎣

S̄ 0 · · · 0

0 S̄[q]
...

...
. . . 0

0 · · · 0 S̄[qf ]

⎤

⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
=:S

Ḡ ∈ F
(f+1)(k−l)×n
qm .

If S̄ is a random matrix, then S seems to be of full rank, with high probability.
In our experiments we did not find any counterexamples for randomly generated
matrices S̄, where we chose (n, k) Gabidulin codes with n ≥ 8, k ≥ 4 and the
dimension of the subcode to be l ≥ 2.

C Appendix - On Assumption 2

In order to estimate the probability P2 in assumption 2 we made several exper-
iments for random matrices M . In all our experiments, we build Λf (M) for all
1 ≤ f ≤ �m/l	, where m is the extension degree of the field, and l is the rank of
the matrix M . Table 4 shows the resulting probability estimates. We conclude,
that it is reasonable to assume, that 1 − P2 decreases exponentially fast with
growing m.

Table 4. Experimental results for assumption 2

rows columns field P2 estimate # experiments

2 6 Fq6 1 − 0.0289 10000
2 6 Fq8 1 − 0.0050 10000
2 6 Fq10 1 − 0.0010 10000

2 8 Fq10 1 − 0.0008 10000

2 10 Fq10 1 − 0.0018 10000
3 10 Fq10 1 − 0.0 10000
4 10 Fq10 1 − 0.0 10000
5 10 Fq10 1 − 0.0013 10000

2 8 Fq16 1 − 0.000033 30000
2 10 Fq16 1 − 0.0 30000
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D Appendix - A Small Example

For a better understanding of the attack on the GGPT cryptosystem presented
in the previous sections, we provide an example with small parameters: q = 2,
m = n = 5, k = 2, t = s = 1. As field we choose Fq5 = F2/

(
X5 + X2 + 1

)
. We

write the elements of this field in their polynomial representation, thus X3 + 1
=̂ 01001.

Assume, that we are given a public key (G′, e) with e = 1 and

G′ =
(

10101 10011 00111 01011 01111
00010 11001 10000 10011 00011

)

.

The (unknown) secret key is (G, S, T ) with

S =
(

10000 10100
01000 10000

)

and T =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 1 1 1
0 1 0 0 0
1 1 0 1 1
0 1 1 1 0
1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

To recover an alternative secret key, an attacker would choose the parameter
f = n − k − t − 1 = 1 and build

Λf (G′) =

⎛

⎜
⎜
⎝

10101 10011 00111 01011 01111
00010 11001 10000 10011 00011
11100 01000 10101 01111 11111
00100 00110 01101 01000 00101

⎞

⎟
⎟
⎠ .

The dual of 〈Λf (G′)〉 is defined by

Λf (G′)⊥ =
(
00100 01110 01100 01001 00001

)
.

The attacker observes, that the last 4 columns of Λf (G′)⊥ are linearly indepen-
dent over F2, which is the rank of Λf (G′)⊥ over F2. The legitimate user would
be able to compute

Λf (G′)⊥ T� =
[
0 H1

]
=

(
00000 01110 00010 01011 00100

)
.

The attacker on the other hand can choose

( Λf (G′)⊥ ){2,··· ,5} =
(
01110 01100 01001 00001

)

to be his H1. (He could choose any other submatrix of column rank 4 over F2,
and each would lead to a different alternative secret key.) As a solution to the
equation (00100) = H1T̃

� the attacker gets T̃ =
(
0 1 1 1

)
. Now,

G′ ·
[

1 T̃
0 Id4

]−1

=
(

10101 10011 10010 11110 11010
00010 11001 10010 10001 00001

)

.
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The last four columns of the matrix above define a Gabidulin code with generator
vector

(
01010 01001 00100 00001

)
. Thus, the attacker gets the row scrambler

S̄ =
(

11001 00011
11110 11111

)

and obtains a working alternative secret key.
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