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Abstract. In this article, we investigate the question of equivalent keys
for two Multivariate Quadratic public key schemes HFE and C∗−− and
improve over a previously known result, which appeared at PKC 2005.
Moreover, we show a new non-trivial extension of these results to the
classes HFE-, HFEv, HFEv-, and C∗−−, which are cryptographically
stronger variants of the original HFE and C∗ schemes. In particular, we
are able to reduce the size of the private — and hence the public — key
space by at least one order of magnitude and several orders of magnitude
on average. While the results are of independent interest themselves as
they broaden our understanding of Multivariate Quadratic schemes, we
also see applications both in cryptanalysis and in memory efficient im-
plementations.

Keywords: Multivariate Quadratic Equations, Public Key signature,
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1 Introduction

In the last 15 years, several schemes based on the problem of Multivariate
Quadratic equations have been proposed. The most important ones certainly
are C∗ [9] and Hidden Field Equations (HFE, [13]) plus their variations C∗−−,
HFE-, HFEv, and HFEv- [7,12,13]. Both have been used to construct signature
schemes, namely C∗−− in Sflash [3], and HFEv- in Quartz [2]. As for all systems
based on MQ-equations, the public key has the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear, and
quadratic terms). We write the set of all such equations as MQ(Fn, Fm). More-
over, the private key consists of the triple (S,P ′, T ) where S ∈ Aff(Fn), T ∈
Aff(Fm) are affine transformations (cf Sect. 2.2) and P ′ ∈ MQ(Fn, Fm) is a
polynomial-vector P ′ := (p′1, . . . , p′m) with m components; each component is
a polynomial in n variables x′

1, . . . , x
′
n. Throughout this paper, we will denote
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components of this private vector P ′ by a prime ′. In contrast to the public poly-
nomial vector P ∈ MQ(Fn, Fm), the private polynomial vector P ′ does allow
an efficient computation of x′

1, . . . , x
′
n for given y′

1, . . . , y
′
m. Hence, the goal of

MQ-schemes is that this inversion should be hard if the public key P alone is
given. The main difference between MQ-schemes lies in their special construc-
tion of the central equations P ′ and consequently the trapdoor they embed into
a specific class of MQ-problems.

In this paper, we investigate the question of equivalent keys for selected
MQ-schemes. Due to space limitations, we concentrate on HFE, HFE-, HFEv,
HFEv-, C∗, and C∗−−. As outlined above, they are quite important as they have
been used in constructions submitted to the NESSIE project [10]. However, we
want to point out that the techniques outlined here are quite general and can
also be applied to other schemes. The first paper on the topic of equivalent keys
is [19]. In this paper, we introduce the Frobenius sustainer and are hence able
to improve over the results from [19]. Moreover, this paper is the first to deal
with variations of MQ-schemes, cf [20] for the terminology of MQ-trapdoors.
To this aim, we needed to develop the reduction sustainer, as we would not have
been able to deal with the HFE- and the C∗−− modification otherwise.

This paper is outlined as follows: after this general introduction, we move on
to the necessary mathematical background in Sect. 2. This includes particularly
a definition of the term equivalent keys. In Sect. 3, we concentrate on a subclass
of affine transformations, denoted sustaining transformations, which can be used
to generate equivalent keys. These transformations are applied to different varia-
tions of Multivariate Quadratic equations in Sect. 4. This paper concludes with
Sect. 5, cf [19] for results on Unbalanced Oil and Vinegar schemes (UOV). A
general overview of MQ-schemes can be found in [20].

2 Mathematical Background

In this section, we outline some observations useful in the remainder of this
paper.

2.1 Basic Definitions

We start with a formal definition of the term “equivalent private keys”:

Definition 1. We call two private keys

(T,P ′, S), (T̃ , P̃ ′, S̃) ∈ Aff(Fm) ×MQ(Fn, Fm) × Aff(Fn)

“equivalent” if they lead to the same public key, i.e., if we have

T ◦ P ′ ◦ S = P = T̃ ◦ P̃ ′ ◦ S̃ .

In order to find equivalent keys, we consider the following transformations:
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Definition 2. Let (S,P ′, T ) ∈ Aff(Fm)×MQ(Fn, Fm)×Aff(Fn), and σ, σ−1 ∈
Aff(Fn) plus τ, τ−1 ∈ Aff(Fm). Moreover, let

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S (1)

We call the pair (σ, τ) ∈ Aff(Fn)×Aff(Fm) “sustaining transformations” for an
MQ-system if the “shape” of P ′ is invariant under the transformations σ and
τ . For short, we write (σ, τ) • (S,P ′, T ) for (1) and (σ, τ) sustaining transfor-
mations.

Remark 1. In the above definition, the meaning of “shape” is still open. In fact,
its meaning has to be defined for each MQ-system individually. For example, in
HFE (cf Sect. 4.1), it is the bounding degree d ∈ N of the polynomial P ′(X ′).
In the case of C∗, the “shape” is the fact that we have a single monomial with
factor 1 as the central equation (cf Sect. 4.2). However, for σ, τ sustaining trans-
formations, we are now able to produce equivalent keys for a given private key by
(σ, τ) • (S,P ′, T ). A trivial example of sustaining transformations is the identity
transformation, i.e., to set σ = τ = id.

Lemma 1. Let (σ, τ) be sustaining transformation. If G := (σ, ◦) and H :=
(τ, ◦) form a subgroup of the affine transformations, they produce equivalence
relations within the private key space.

Proof. We start with a proof of this statement for G := (σ, ◦). First, we have
reflexivity as the identity transformation is contained in G. Second, we have sym-
metry as subgroups are closed under inversion. Third, we also have transitivity as
subgroups are closed under composition. Therefore, the group G partitions the
private key space into equivalence classes. The proof for H := (τ, ◦) is analogous.

Remark 2. We want to point out that the above proof does not use special
properties of sustaining transformations, but the fact that these are a subgroup
of the group of affine transformations. Hence, the proof does not depend on the
term “shape” and is therefore valid even if the latter is not rigorously defined yet.
In any case, instead of proving that sustaining transformations form a subgroup
of the affine transformations, we can also consider normal forms of private keys.
As we see below, normal forms have some advantages to avoid double counts in
the private key space.

After these initial observations over equivalent keys, we concentrate on bijec-
tions between ground fields and their extension fields as both HFE and C∗ use
an extension field to define their central equations P ′. Let F be a finite field with
q := |F| elements. Using a polynomial i(t) ∈ F[t], irreducible over F, we generate
an extension field E := F[t]/i(t) of dimension n. This means we view elements
of E as polynomials in t of degree less than n. Addition and multiplication are
defined as for polynomials modulo i(t). In addition, we can view elements from
E as vectors over the vector-space F

n. We will therefore view elements a ∈ E

and b ∈ F
n as

a := αn−1t
n−1 + . . . + α1t + α0 and b := (β1, . . . , βn) ,
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for αi−1, βi ∈ F with 1 ≤ i ≤ n. Moreover, we define the canonical bijection
between E and F

n by identifying the coefficients αi−1 ↔ βi. We use both this
bijection φ : E → F

n and its inverse φ−1 : F
n → E.

2.2 Affine Transformations

In the context of affine transformations, the following lemma proves useful:

Lemma 2. Let F be a finite field with q := |F| elements. Then we have
∏n−1

i=0

qn − qi invertible (n × n)-matrices over F.

Next, we recall some basic properties of affine transformations over the finite
fields F and E.

Definition 3. Let MS ∈ F
n×n be an invertible (n × n) matrix and vs ∈ F

n a
vector and let S(x) := MSx+vs. We call this the “matrix representation” of the
affine transformation S.

Definition 4. Moreover, let s1, . . . , sn be n polynomials of degree 1 at most
over F, i.e., si(x1, . . . , xn) := βi,1x1 + . . . + βi,nxn + αi with 1 ≤ i, j ≤ n and
αi, βi,j ∈ F. Let S(x) := (s1(x), . . . , sn(x)) for x := (x1, . . . , xn) as a vector over
F

n. We call this the “multivariate representation” of the affine transformation
S.

Remark 3. The multivariate and the matrix representation of an affine transfor-
mation S are interchangeable. We only need to set the corresponding coefficients
to the same values: (MS)i,j ↔ βi,j and (vS)i ↔ αi for 1 ≤ i, j ≤ n.

In addition, we can also use the “univariate representation” over the extension
field E of the transformation S.

Definition 5. Let 0 ≤ i < n and A, Bi ∈ E. Moreover, let the polynomial
S(X) :=

∑n−1
i=0 BiX

qi

+ A be an affine transformation. We call this the “uni-
variate representation” of the affine transformation S(X).

Lemma 3. An affine transformation in univariate representation can be trans-
fered efficiently in multivariate representation and vice versa.

Proof. This lemma follows from [8, Lemmata 3.1 and 3.2] by a simple extension
from the linear to the affine case.

3 Sustaining Transformations

In this section, we discuss several examples for sustaining transformations. In
addition, we will consider their effect on the central transformation P ′. The
authors are not convinced that the transformations stated here are the only ones
possible but encourage the search for other and maybe more powerful sustaining
transformations.
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3.1 Additive Sustainer

For n = m, let σ(X) := (X + A) and τ(X) := (X + A′) for some elements
A, A′ ∈ E. Moreover, as long as they keep the shape of the central equations P ′

invariant, they form sustaining transformations.
In particular, we are able to change the constant parts vs, vt ∈ F

n or VS , VT ∈
E of the two affine transformations S, T ∈ Aff(Fn) to zero, i.e., to obtain a new
key (Ŝ, P̂ ′, T̂ ) with Ŝ, T̂ ∈ Hom(Fn).

Remark 4. This is a very useful result for cryptanalysis as it allows us to “col-
lect” the constant terms in the central equations P ′. For cryptanalytic pur-
poses, we therefore need only to consider the case of linear transformations
S, T ∈ Hom(Fn).

The additive sustainer also works if we interpret it over the vector space F
n

rather than the extension field E. In particular, we can also handle the case
n �= m now. However, in this case it may happen that we have a′ ∈ F

m and
consequently τ : F

m → F
m. Nevertheless, we can still collect all constant terms

in the central equations P ′.
If we look at the central equations as multivariate polynomials, the additive

sustainer will affect the constants αi and βi,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
A similar observation is true for central equations over the extension field E:
in this case, the additive sustainer affects the additive constant A ∈ E and the
linear factors Bi ∈ E for 0 ≤ i < n.

3.2 Big Sustainer

We now consider multiplication in the (big) extension field E, i.e., we have
σ(X) := (BX) and τ(X) := (B′X) for B, B′ ∈ E

∗. Again, we obtain a sustain-
ing transformation if this operation does not modify the shape of the central
equations as (BX), (B′X) ∈ Aff(Fn).

The big sustainer is useful if we consider schemes defined over extension fields
as it does not affect the overall degree of the central equations over this extension
field.

3.3 Small Sustainer

We now consider multiplications over the (small) ground field F, i.e., we have
σ(x) := Diag(b1, . . . , bn)x and τ(x) := Diag(b′1, . . . , b

′
m)x for the coefficients

b1, . . . , bn, b′1, . . . , b
′
m ∈ F

∗ and Diag(b) the diagonal matrix on a vector b ∈ F
n

and b′ ∈ F
m, respectively.

In contrast to the big sustainer, the small sustainer is useful if we consider
schemes which define the central equations over the ground field F as it only
introduces a scalar factor in the polynomials (p′1, . . . , p

′
m).

3.4 Permutation Sustainer

For the transformation σ, this sustainer permutes input-variables of the central
equations whilefor the transformation τ , it permutes the polynomials of the cen-
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tral equations themselves. As each permutation has a corresponding, invertible
permutation-matrix, both σ ∈ Sn and τ ∈ Sm are also affine transformations.
The effect of the central equations is limited to a permutation of these equations
and their input variables, respectively.

3.5 Gauss Sustainer

Here, we consider Gauss operations on matrices, i.e., row and column permu-
tations, multiplication of rows and columns by scalars from the ground field F,
and the addition of two rows/columns. As all these operations can be performed
by invertible matrices; they form a subgroup of the affine transformations and
are hence a candidate for a sustaining transformation.

The effect of the Gauss Sustainer is similar to the permutation sustainer and
the small sustainer. In addition, it allows the addition of multivariate quadratic
polynomials. This will not affect the shape of some MQ-schemes.

The sustainers given so far have been already outlined in [19]. To the knowl-
edge of the authors, the following sustainers are new and to the knowledge to
the authors have not been considered previously in the literature.

3.6 Frobenius Sustainer

Definition 6. Let F be a finite field with q := |F| elements and E its
n-dimensional extension. Moreover, let H := {i ∈ Z : 0 ≤ i < n}. For a, b ∈ H

we call σ(X) := Xqa

and τ(X) := Xqb

Frobenius transformations.

Obviously, Frobenius transformations are linear transformations with respect to
F. The following lemma establishes that they also form a group:

Lemma 4. Frobenius transformations are a subgroup in Hom(Fn).

Proof. First, Frobenius transformations are linear transformations, so associa-
tivity is inherited from them. Second, the set H from Def. 6 is not empty for
any given F and n ∈ N. Hence, the corresponding set of Frobenius transforma-
tions is not empty either. So all left to show is that for any given Frobenius
transformations σ, τ , the composition σ ◦τ−1 is also a Frobenius transformation.

Let σ(X) := Xqa

and τ(X) := Xqb

for some a, b ∈ H . Working in the
multiplicative group E

∗ we observe that we need qb·B′ ≡ 1 (mod qn−1) for B′ to
obtain the inverse function of τ . We notice that B′ := qb′ for b′ := n−b (mod n)
yields the required and moreover τ−1 := Xqb′

is a Frobenius transformation as
b′ ∈ H .

So we can write σ(X)◦τ−1(X) = Xqa+b′
. If a+b′ < n we are done. Otherwise

n ≤ a + b′ < 2n, so we can write qa+b′ = qn+s for some s ∈ H . Again, working
in the multiplicative group E∗ yields qn+s ≡ qs (mod qn − 1) and hence, we
established that σ ◦ τ−1 is also a Frobenius transformation. This completes the
proof that all Frobenius transformations form a group.

Frobenius transformations usually change the degree of the central equation
P ′. But taking τ := σ−1 cancels this effect and hence preserves the degree of P ′.
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Therefore, we can speak of a Frobenius sustainer (σ, τ). So there are n Frobenius
sustainers for a given extension field E.

It is tempting to extend this result to the case of powers of the characteristic
of F. However, this is not possible as xcharF is not a linear transformation in F

for q �= p.

Remark 5. We want to point out that all six sustainers presented so far form
groups and hence partition the private key space into equivalence classes (cf
Lemma 1).

3.7 Reduction Sustainer

Reduction sustainers are quite different from the transformations studied so
far, because they are applied with a different construction of the trapdoor
of P . In this new construction, we define the public key equations as P :=
R ◦ T ◦ P ′ ◦ S where R : F

n → F
n−r denotes a reduction or projection. In ad-

dition, we have S, T ∈ Aff(Fn) and P ′ ∈ MQ(Fn, Fn). Less loosely speaking,
we consider the function R(x1, . . . , xn) := (x1, . . . , xn−r), i.e., we neglect the
last r components of the vector (x1, . . . , xn). Although this modification looks
rather easy, it proves powerful to defeat a wide class of cryptographic attacks
against several MQ-schemes, including HFE and C∗, e.g., the attack introduced
in [5].

For the corresponding sustainer, we consider the affine transformation T in
matrix representation, i.e., we have T (x) := Mx + v for some invertible matrix
M ∈ F

m×m and a vector v ∈ F
m. We observe that any change in the last r

columns of M or v does not affect the result of R (and hence P). Hence, we
can choose these last r columns without affecting the public key. Inspecting
Lemma 2, we see that this gives us a total of

qr
n−1∏

i=n−r−1

(
qn − qi

)

choices for v and M , respectively, that do not affect the public key equations P .
When applying the reduction sustainer together with other sustainers, we

have to make sure that we do not count the same transformation twice, cf the
corresponding proofs.

4 Application to Multivariate Quadratic Schemes

In this section, we show how to apply the sustainers from the previous section to
several MQ-schemes. Due to space limitations in this paper, we will only outline
some central properties of each scheme and sketch the corresponding proofs.

4.1 Hidden Field Equations

The Hidden Field Equations (HFE) have been proposed by Patarin [13].
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Definition 7. Let E be a finite field and P(X) a polynomial over E. For

P (X) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
qi+qj

+
∑

0≤k≤d

qk≤d

BkXqk

+ A

where

⎧
⎨

⎩

Ci,jX
qi+qj

for Ci,j ∈ E are the quadratic terms,
BkXqk

for Bk ∈ E are the linear terms, and
A for A ∈ E is the constant term

and a degree d ∈ N, we say the central equations P ′ are in HFE-shape.

Due to the special form of P (X), we can express it as a Multivariate Quadratic
equation P ′ over F, cf [13]. Moreover, as the degree of the polynomial P is
bounded by d, this allows efficient inversion of the equation P (X) = Y for given
Y ∈ E. So the shape of HFE is in particular this degree d of the private poly-
nomial P . Moreover, we observe that there are no restrictions on its coefficients
Ci,j , Bk, A ∈ E for i, j, k ∈ N and qi, qi + qj ≤ d. Hence, we can apply both the
additive and the big sustainer (cf sect. 3.1 and 3.2) without changing the shape
of this central equation.

Theorem 1. For K := (S, P, T ) ∈ Aff(Fn) × E[X ] × Aff(Fn) a private key in
HFE, we have

n.q2n(qn − 1)2

equivalent keys.

Proof. To prove this lemma, we consider normal forms of private keys: let S̃ ∈
Aff(Fn) being the affine transformation we start with. First we compute Ŝ(X) :=
S̃(X)− S̃(0), i.e., we apply the additive sustainer. Obviously, we have Ŝ(0) = 0
after this transformation and hence a special fix-point. Second we define S(X) :=
Ŝ(X).Ŝ(1)−1, i.e., we apply the big sustainer. As the transformation Ŝ : E → E

is a bijection and we have Ŝ(0) = 0, we know that Ŝ(1) must be non-zero. Hence,
we have S(1) = 1, i.e., we add a new fix-point but still keep the old fix-point
as we have S(0) = Ŝ(0) = 0. Similar we can compute an affine transformation
T (X) with T (0) = 0 and T (1) = 1 as a normal form of the affine transformation
T̃ ∈ Aff(Fn). Note that both the additive sustainer and the big sustainer keep
the degree of the central polynomial P (X) so we can apply both sustainers on
both sides without changing the “shape” of P (X).

Applying the Frobenius sustainer is a little more technical. First we observe
that this sustainer keeps the fix-points S(0) = T (0) = 0 and S(1) = T (1) = 1 so
we are sure we still deal with equivalence classes, i.e., each given private key has
a unique normal form, even with the Frobenius sustainer applied. To this aim
we pick an element C ∈ E\{0, 1} with g := S(C) is a generator of E

∗, i.e., we
have E

∗ = {gi | 0 ≤ i < qn}. As E is a finite field we know that such an element
g exists. Given that S is injective we know that we can find the corresponding

C ∈ E\{0, 1}. Now we compute gi := S(C)
qi

for 0 ≤ i < n. Using any total
ordering “<”, we obtain gc := min{g0, . . . , gn−1} for some c ∈ N as the smallest
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element of this set. One example of such a total ordering would be to use a
bijection between the sets E ↔ {0, . . . , qn − 1} and then exploiting the ordering
of the natural numbers to derive an ordering on the elements of the extension field
E. Finally, we define S(X) := [S(X)]q

c

as new affine transformation. To cancel
the effect of the Frobenius sustainer, we moreover define T (X) := [T (X)]q

n−c

.
Hence, we have now computed a unique normal form for a given private key.

Moreover, we can “reverse” these computations and derive an equivalence class
of size n.q2n.(qn − 1)2 this way as we have

(BXqc

+ A, B′Xqn−c

+ A′) • (S,P ′, T )

forB, B′ ∈ E
∗, A, A′ ∈ E and 0 ≤ c < n .

Remark 6. To the knowledge of the authors, the additive sustainer for HFE has
first been reported in [14] and used there for reducing the affine transformations
to linear ones. In addition, a weaker version of the above theorem can be found
in [19].

For q = 2 and n = 80, the number of equivalent keys per private key is
≈ 2326. In comparison, the number of choices for S and T is ≈ 212,056. This
special choice of parameters has been used in HFE Challenge 1 [13].

HFE- The class HFE- is the original HFE-class with the reduction modification
(cf Sect. 3.7).

Theorem 2. For K := (S, P, T ) ∈ Aff(Fn) × E[X ] × Aff(Fn) a private key in
HFE and a reduction parameter r ∈ N we have

n.q2n(qn − 1)(qn−r − 1)
n−1∏

i=n−r−1

(qn − qi)

equivalent keys and the key-space of HFE- can be reduced by this number.

Proof. This proof uses the same ideas as the proof of Thm. 1 to obtain a normal
form of the affine transformation S, i.e., applying the additive sustainer, the big
sustainer and the Frobenius sustainer on this side. Hence, we have a reduction
by n.qn(qn − 1) keys here.

For the affine transformation T , we also have to take the reduction sustainer
into account: we use T̃ (X) : F

n → F
n−r and fix T̃ (0) = 0 by applying the addi-

tive sustainer and T̃ (1) = 1 by applying the big sustainer, which gives us qn−r

and qn−r − 1 choices, respectively. To avoid double counting with the reduction
sustainer, all computations were performed in Ẽ := GF(qn−r) rather than E.
Again, we are able to compute a normal form for a given private key and reverse
these computations to obtain the full equivalence class for any given private
key in normal form. Moreover, we observe that the resulting transformation T̃
actually allows for qr

∏n−1
i=n−r−1(q

n − qi) possible choices for the original trans-
formation T : F

n → F
n (reduction sustainer) without affecting the output of
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T̃ . Hence, there are a total of qn−r.qr.(qn−r − 1).
∏n−1

i=n−r−1(q
n − qi) possibil-

ities for the transformation T without changing the output of the private key
triple (S, P ′, T ). Multiplying out the intermediate results for S and T yields the
theorem.

For q = 2, r = 7 and n = 107, the number of equivalent keys for each private
key is ≈ 22129. In comparison, the number of choices for S and T is ≈ 223,108. This
special choice of parameters has been used in the repaired version Quartz-7m of
Quartz [2,17].

HFEv. The following modification, due to [7], uses a different form for the
central equations P ′.

Definition 8. Let E be a finite field with degree n′ over F, the number of vinegar
variables v ∈ N, and P(X) a polynomial over E. Moreover, let (z1, . . . , zv) :=
sn−v+1(x1, . . . , xn), . . . , sn(x1, . . . , xn) for si the polynomials of S(x) in multi-
variate representation and X ′ := φ−1(x′

1, . . . , x
′
n′), using the canonical bijection

φ−1 : F
n → E and x′

i := si(x1, . . . , xn) for 1 ≤ i ≤ n′ as hidden variables. Then
define the central equation as

P ′
z1,...,zv

(X ′) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
′qi+qj

+
∑

0≤k≤d

qk≤d

Bk(z1, . . . , zv)X ′qk

+A(z1, . . . , zv)

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ci,jX
′qi+qj

for Ci,j ∈ E are the quadratic
terms,

Bk(z1, . . . , zv)X ′qk

for Bk(z1, . . . , zv) depending
linearly on z1, . . . , zv and

A(z1, . . . , zv) for A(z1, . . . , zv) depending
quadratically on z1, . . . , zv

and a degree d ∈ N, we say the central equations P ′ are in HFEv-shape.

The condition that the Bk(z1, . . . , zv) are affine functions (i.e., of degree 1 in
the zi at most) and A(z1, . . . , zv) is a quadratic function over F ensures that the
public key is still quadratic over F.

Theorem 3. For K := (S, P, T ) ∈ Aff(Fn) × E[X ] × Aff(Fm) a private key in
HFEv, v ∈ N the number of vinegar variables, E an n′-dimensional extension of
F where n′ := n − v = m we have

n′qn+n′
(qn′ − 1)2

v−1∏

i=0

(qv − qi)

equivalent keys. Hence, the key-space of HFEv can be reduced by this number.

Proof. In contrast to HFE-, the difficulty now lies in the computation of a nor-
mal form for the affine transformation S rather than the affine transformation T .
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For the latter, we can still apply the big sustainer and the additive sustainer and
obtain a total of qm.(qm − 1) = qn′

.(qn′ − 1) equivalent keys for a given trans-
formation T . Moreover, the HFEv modification does not change the “absorbing
behaviour” of the central polynomial P and hence, the proof from Thm. 1 is still
applicable.

Instead, we have to concentrate on the affine transformation S here. To sim-
plify the following argument, we apply the additive sustainer on S and obtain a
linear transformation. This reduces the key-space by qn. To make sure that we
do not count the same linear transformation twice, we consider a normal form
for the now (linear) transformation S

(
Em Fm

v

Gv
m Iv

)
with Em ∈ F

m×m, Fm
v ∈ F

m×v, Gv
m ∈ F

v×m

In the above definition, we also have Iv the identity matrix in F
v×v. For each

invertible matrix MS, we have a unique matrix
(

Im 0
0 Hv

)
with an invertible matrix Hv ∈ F

v×v.

which transfers MS to the normal form from above. Again, Im is an identity
matrix in F

m×m. This way, we obtain
∏v−1

i=0 (qv − qi) equivalent keys in the “v”
modification alone.

For the HFE component over E, we can now apply the big sustainer to S and
obtain a factor of (qn′ − 1). In addition, we apply the Frobenius sustainer to the
HFE component, which yields an additional factor of n′. Note that the Frobenius
sustainer can be applied both to S and T , and hence, we can make sure that it
cancels out and does not affect the degree of the central polynomial Pz1,...,zv(X).
Again, we can reverse all computations and therefore, obtain equivalence classes
of equal size for each given private key in normal form.

For the case q = 2, v = 7 and n = 107, the number of equivalent keys for each
private is ≈ 2460. In comparison, the number of choices for S and T is ≈ 221,652.

HFEv- Here, we combine both the HFEv and the HFE- modification to obtain
HFEv-.

Theorem 4. For K := (S, P, T ) ∈ Aff(Fn) × E[X ] × Aff(Fm+v) a private key
in HFEv, v ∈ N vinegar variables, a reduction parameter r ∈ N and E an n′-
dimensional extension of F where n′ := n − v and n′ = m + r we have

n′qrq2n′
(qn′ − 1)2

v−1∏

i=0

(qv − qi)
n−1∏

i=n−r−1

(qn − qi)

equivalent keys and the key-space of HFEv can be reduced by this number.

Proof. This proof is a combination of the two cases HFEv and HFE-. Given
that the difficulty for the HFE- modification was in the T -transformation while
the difficulty of HFEv was in the S-transformation, we can safely combine the
known sustainers without any double-counting.
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For the case q = 2, r = 3, v = 4 and n = 107, n′ := 100, the number of
redundant keys is ≈ 2690. In comparison, the number of choices for S and T is
≈ 222,261. This special choice of parameters has been used in the original version
of Quartz [2], as submitted to NESSIE [10].

4.2 Class of C∗ Schemes

As HFE, the scheme C∗, due to Matsumoto and Imai [9], uses a finite field F

and an extension field E. However, the choice of the central equation is far more
restrictive than in HFE as we only have one monomial here.

Definition 9. Let E be an extension field of dimension n over the finite field F

and λ ∈ N an integer with gcd(qn−1, qλ+1) = 1. We then say that the following
central equation is of C∗-shape:

P ′(X ′) := X ′qλ+1 .

The restriction gcd(qn − 1, qλ +1) = 1 is necessary first to obtain a permutation
polynomial and second to allow efficient inversion of P ′(X ′). In this setting, we
cannot apply the additive sustainer, as this monomial does not allow any linear
or constant terms. Moreover, the monomial requires a factor of one. Hence, we
have to preserve this property. At present, the only sustainers suitable seem to
be the big sustainer (cf Sect. 3.2) and the Frobenius sustainer (cf Sect. 3.6). We
use both in the following

Theorem 5. For K := (S, P, T ) ∈ Aff(Fn) × E[X ] × Aff(Fn) a private key in
C∗ we have

n(qn − 1)

equivalent keys. Hence, the key-space of C∗ can be reduced by this number.

Proof. To prove this statement, we consider normal forms of keys in C∗. In
particular, we concentrate on a normal form of the affine transformation S where
S is in univariate representation. As for HFE and w.l.o.g., let B := S(1) be a non-
zero coefficient on position 1. Unlike to HFE we cannot enforce that S(0) = 0, so
we may have S(1) = 0. However, in this case set B := S(0). Applying σ−1(X) :=
B−1X will ensure a normal form for S. In order to “repair” the monomial P (X),
we have to apply an inverse transformation to T . So let τ(X) := (Bqλ+1)−1X .
This way we obtain

P = T ◦ τ−1 ◦ τ ◦ P ◦ σ ◦ σ−1 ◦ S

= T̃ ◦ (B(qλ+1).(−1).Bqλ+1.Xqλ+1) ◦ S̃

= T̃ ◦ P ◦ S̃ ,

where S̃ is in normal form. In contrast to HFE (cf Thm. 1), we cannot chose
the transformations σ and τ independently: each choice of σ implies a particular
τ and vice versa. However, the fix point 1 is still preserved by the Frobenius
sustainer and so we can apply this sustainer on the transformation S. As for
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HFE, we compute a normal form for a given generator and a total ordering of
E; again, we “repair” the monomial Xqλ+1 by applying an inverse Frobenius
sustainer to T and hence have

(BXqc

, B−qλ−1Xqn−c

) • (S, P, T ) where B ∈ E
∗ and 0 ≤ c < n for c ∈ N

which leads to a total of n(qn−1) equivalent keys for any given private key. Since
all these keys form equivalence classes of equal size, we reduced the private key
space of C∗ by this factor.

Remark 7. Patarin observed that it is possible to derive equivalent keys by
changing the monomial P [12]. As the aim of this paper is the study of equivalent
keys by chaining the affine transformations S, T alone, we did not make use of
this property. A weaker version of the above theorem can be found in [19].

Moreover, we observed in this section that it is not possible for C∗ to change
the transformations S, T from affine to linear. In this context, we want to point
out that Geiselmann et al. showed how to reveal the constant parts of these
transformations [6]. Hence, having S, T affine instead of linear does not seem to
enhance the overall security of C∗.

For q = 128 and n = 67, we obtain ≈ 2469 equivalent private keys per class.
The number of choices for S, T is ≈ 263,784 in this case.

C∗−− We want to note that C∗ itself is insecure, due to a very efficient attack
by Patarin [11]. However, for well-chosen parameters q, r, its variation C∗−− is
actually secure: as in the case of HFE and HFE-, we use the original C∗ scheme
and apply the reduction modification from Sect. 3.7.

Theorem 6. For K := (S, P, T ) ∈ Aff(Fn) × E[X ] × Aff(Fn) a private key in
C∗ and a reduction number r ∈ N we have

n.(qn − 1)qr
n−1∏

i=n−r−1

(qn − qi)

equivalent keys and the key-space of C∗−− can be reduced by this number.

Proof. This proof is similar to the one of C∗, i.e., we apply both the Frobenius
and the big sustainer to S and the corresponding inverse sustainer to the trans-
formation T . This way, we “repair” the change on the central monomial Xqλ+1.
All in all, we obtain a factor of n.(qn−1) equivalent keys for a given private key.

Next we observe that the reduction sustainer applied to the transformation
T alone allows us to change the last r rows of the vector vT ∈ F

n and also
the last r rows of the matrix MT ∈ F

n×n. This yields an additional factor of
qr

∏n−1
i=n−r−1(q

n − qi) on this side.
Note that the changes on the side of the transformation S and the changes

on the side of the transformation T actually are independent: the first computes
a normal form for S while the second computes a normal form on T . Hence, we
may multiply both factors to obtain the overall number of independent keys.
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For q = 128, r = 11 and n = 67, we obtain ≈ 26180 equivalent private keys
per class. The number of choices for S, T is ≈ 263,784 in this case. This particular
choice of parameters has been used in Sflashv3 [3].

5 Conclusions

In this paper, we showed through the examples of Hidden Field Equations (HFE)
and C∗ that Multivariate Quadratic systems allow many equivalent private keys
and hence have a lot of redundancy in this key space, cf Table 1 and Table 2
for numerical examples; the symbols used in Table 1 are explained in the cor-
responding sections. The MQ-scheme Unbalanced Oil and Vinegar (UOV) has
been discussed in [19, Sect. 4.3]. A general overview of MQ-schemes can be
found in [20].

Table 1. Summary of the Reduction Results of this Paper

Scheme (Section) Reduction

Hidden Field Equations (4.1) nq2n(qn − 1)2

HFE Minus (4.1) nqn(qn − 1)qn−r(qn−r − 1)
∏n−1

i=n−r−1(q
n − qi)

HFE Vinegar (4.1) n′qnqn′
(qn′ − 1)2

∏v−1
i=0 (qv − qi)

HFE Vinegar Minus (4.1) n′qrq2n′
(qn′ − 1)2

∏v−1
i=0 (qv − qi)

∏n−1
i=n−r−1(q

n − qi)

C∗ (4.2) n(qn − 1)

C∗ Minus Minus (4.2) n(qn − 1)qr ∏n−1
i=n−r−1(q

n − qi)

We see applications of our results in different contexts. First, they can be
used for memory efficient implementations of the above schemes: using the
normal forms outlined in this paper, the memory requirements for the pri-
vate key can be reduced without jeopardising the security of these schemes.
Second, they apply to cryptanalysis as they allow to concentrate on special
forms of the private key: an immediate consequence from Sect. 3.1 (additive
sustainers) is that HFE does not gain any additional strength from the use of
affine rather than linear transformations. Hence, this system should be sim-
plified accordingly. Third, the constructors of new schemes may want to keep
these sustaining transformations in mind: there is no point in having a large
private key space — if it can be reduced immediately by applying sustain-
ers.

We want to stress that the sustainers from Sect. 3 may not be the only
ones possible. We therefore invite other researchers to look for even more pow-
erful transformations. In addition, there are other multivariate schemes which
have not been discussed in this paper, due to space and time limitations. These
schemes include (non-exhaustive list) enTTS [21], STS [16]), and PMI [4]. We
also invite to apply the techniques used in this paper to these schemes to compare
the effect of these sustainers to different classes of MQ-schemes.
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Table 2. Numerical Examples for the Reduction Results of this Paper

Scheme Parameters Choices for S, T Reduction
(in log2) (in log2)

HFE q = 2, n = 80 12,056 326

HFE- q = 2, r = 7, n = 107 23,108 2129

HFEv q = 2, v = 7, n = 107 21,652 460

HFEv- q = 2, n = 107 22,261 690

C∗ q = 128, n = 67 63,784 469

C∗−− q = 128, n = 67 63,784 6180
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