

Lecture Notes in Computer Science 3715
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ed Dawson Serge Vaudenay (Eds.)

Progress in Cryptology –
Mycrypt 2005

First International Conference
on Cryptology in Malaysia
Kuala Lumpur, Malaysia, September 28-30, 2005
Proceedings

13

Volume Editors

Ed Dawson
Queensland University of Technology
Information Security Institute
GPO Box 2434 (Level 7, 126 Margaret Street)
Brisbane Qld 4001, Australia
E-mail: e.dawson@qut.edu.au

Serge Vaudenay
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Security and Cryptography Laboratory (LASEC)
1015 Lausanne, Switzerland
E-mail: serge.vaudenay@epfl.ch

Library of Congress Control Number: 2005932807

CR Subject Classification (1998): E.3, D.4.6, K.6.5, C.2, K.4, F.2.1-2

ISSN 0302-9743
ISBN-10 3-540-28938-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28938-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11554868 06/3142 5 4 3 2 1 0

Preface

Mycrypt 2005 was the inaugural international conference on cryptology hosted
in Malaysia. The conference was co-organized by the Information Security Re-
search Lab at Swinburne University of Technology (Sarawak Campus), NISER
(National ICT Security and Emergency Response Centre) and INSPEM (Insti-
tute for Mathematical Research) at UPM (University Putra Malaysia). Mycrypt
2005 was held in Kuala Lumpur, Malaysia during September 28–30 2005, in
conjunction with the e-Secure Malaysia 2005 convention.

There were 90 paper submissions from 23 countries covering all areas of cryp-
tologic research, from which 19 were accepted. We would like to extend our
thanks to all authors who submitted papers to Mycrypt 2005. Each paper was
sent anonymously to at least 3 members of the International Program Committee
for reviews and comments. The review comments were then followed by discus-
sions among the Program Committee. A recipient of the Best Paper Award was
also selected after voting among Program Committee members. The winning
paper was “Distinguishing Attacks on T-functions” by Simon Künzli (FH Aar-
gau, Swizerland), Pascal Junod (Nagravision SA, Switzerland) and Willi Meier
(FH Aargau, Swizerland). These proceedings contain revised versions of all the
accepted papers.

The conference program included three keynote papers: Hideki Imai (Tokyo
University) presented a paper entitled “Trends and Challenges for Securer Cryp-
tography in Practice”. Moti Yung (Columbia University) presented a paper
entitled “Efficient Secure Group Signatures with Dynamic Joins and Keeping
Anonymity Against Group Managers”. Colin Boyd (QUT) presented a paper
entitled “Security of Two-Party Identity-Based Key Agreement”.

We are extremely grateful for the time and effort of all the members of the
Program Committee in the review process. Their names may be found overleaf.
This group was assisted by an even larger group of experts. A list of names is
also provided. We hope that it is complete. We give special thanks to Thomas
Baignères and Matthieu Finiasz for handling the servers during the review pro-
cess and preparing the proceedings. The Web-based submission software was
written by Chanathip Namprempre with additions by Andre Adelsbach and
Andrew Clark. The review process and Program Committee discussions were
supported by the Web-based review software developed by Bart Preneel, Wim
Moreau and Joris Claessens.

We wish to acknowledge the excellent Mycrypt Local Organizing Committee
led by the General Chair, Raphael C.-W. Phan; and the support of MOSTI (Min-
istry of Science, Technology & Innovation), MEWC (Ministry of Energy, Water
& Communications), MCMC (Malaysia Communications & Multimedia Com-
mission), MAMPU (Malaysian Administrative Modernisation & Management
Planning Unit), SIRIM (Standards & Industrial Research Institute of Malaysia)
and the Malaysian National Computer Confederation (MNCC).

September 2005 Ed Dawson and Serge Vaudenay

Mycrypt 05
International Conference on Cryptology in Malaysia

September 28–30, 2005, Kuala Lumpur, Malaysia

General Chair
Raphael C.-W. Phan, Swinburne University of Technology

Sarawak, Malaysia

Program Chairs
Ed Dawson, Queensland University of Technology (QUT)

Brisbane, Australia

Serge Vaudenay, Ecole Polytechnique Fédérale de Lausanne
Lausanne, Switzerland

Program Committee
Feng Bao . Institute for Infocomm Research, Singapore
Jean-Sébastien Coron University of Luxembourg, Luxembourg
Ronald Cramer . Leiden University, The Netherlends
Ed Dawson Queensland University of Technology, Australia
Yvo Desmedt . University College London, UK
Juan M. González Nieto Queensland University of Technology, Australia
Helena Handschuh . Gemplus, France
Norbik Idris .Universiti Technologi Malaysia, Malaysia
Antoine JouxDGA and Université Versailles St. Quentin, France
Marc Joye .Gemplus & CIM-PACA, France
Jonathan Katz .University of Maryland, USA
Kwangjo Kim Information & Communications University, Korea
Xuejia Lai . Shanghai Jiaotong University, China
Kwok-Yan Lam . Tsinghua University, China
Arjen K. Lenstra . Lucent Technologies, USA and

Technische Universiteit Eindhoven, The Netherlands
Stefan Lucks . University of Mannheim, Germany
Wenbo Mao . Hewlett-Packard Labs, UK
Mitsuru Matsui . Mitsubishi Electric, Japan
Rushdan Md Said . University Putra Malaysia, Malaysia
Chris Mitchell . Royal Holloway, University of London, UK
Shiho Moriai . Sony Computer Entertainment, Japan
Gregory Neven . Katholieke Universiteit Leuven, Belgium
Phong Nguyen .CNRS/Ecole Normale Superieure, France
Andrew Odlyzko . University of Minnesota, USA

VIII Organization

Eiji Okamoto .University of Tsukuba, Japan
Tatsuaki Okamoto . NTT, Japan
Raphael C.-W. Phan Swinburne University of Tech., Sarawak, Malaysia
Josef Pieprzyk .University of Macquarie, Australia
Bart Preneel .Katholieke Universiteit Leuven, Belgium
Jean-Jacques Quisquater Université Catholique de Louvain, Belgium
Pandu Rangan . IIT Madras, India
Vincent Rijmen . Graz University of Technology, Austria
Mohammad Umar Siddiqi Multimedia University, Malaysia
Serge Vaudenay . EPFL, Switzerland
Sung-Ming Yen . National Central University, Taiwan

External Referees

Michel Abdalla
Masayuki Abe
Kazumaro Aoki
Frederik Armknecht
Gildas Avoine
Thomas Baignères
Chris Vanden Berghe
Olivier Billet
Wieb Bosma
Colin Boyd
An Braeken
Christophe De Cannire
Dario Catalano
Julien Cathalo
Chien-ning Chen
Benôıt Chevallier-Mames
Kuo-Zhe Chiou
JaeGwi Choi
Andrew Clark
Scott Contini
Nicolas Courtois
Christophe Doche
Serge Fehr
Matthieu Finiasz
Soichi Furuya
Praveen Gauravaram
Damien Giry
Eu-Jin Goh
Bok-Min Goi
Louis Granboulan
Robbert de Haan
Chao-Chih Hsu

Tetsu Iwata
Ellen Jochemsz
Pascal Junod
Seny Kamara
Hyun Jeong Kim
Kazukuni Kobara
Caroline Kudla
Ulrich Khn
Tanja Lange
Joe Lano
Philippe Léglise
Julie Lescut
Benoit Libert
Vo Duc Liem
Hsi-Chung Lin
Pascal Manet
Stefan Mangard
Bill Millan
Atsuko Miyaji
Havard Molland
Jean Monnerat
Peter Montgomery
Sumio Morioka
Siguna Mueller
Hirofumi Muratani
Jorge Nakahara, Jr.
Kenny Nguyen
Svetla Nikova
Elisabeth Oswald
Pascal Paillier
Olivier Pereira
Duong Hieu Phan

Christian Rechberger
Leonid Reyzin
Yasuyuki Sakai
Palash Sarkar
Taizo Shirai
Joseph Silverman
Jason Smith
Martjn Stam
François-Xavier Standaert
Dirk Stegemann
Ron Steinfeld
Hung-Min Sun
Katsuyuki Takashima
Qiang Tang
Emin Tatli
Shinobu Ushirozawa
Eric Verheul
Zhiguo Wan
Guilin Wang
Huaxiong Wang
Shiuh-Jeng Wang
Benne de Weger
Andreas Wespi
William Whyte
Christopher Wolf
Chi-Dian Wu
Yongdong Wu
Yanjiang Yang
Bo Zhu
Huafei Zhu

Table of Contents

Invited Talk I

Trends and Challenges for Securer Cryptography in Practice
Hideki Imai . 1

Stream Ciphers Analysis

Distinguishing Attacks on T-Functions
Simon Künzli, Pascal Junod, Willi Meier . 2

Introducing a New Variant of Fast Algebraic Attacks and Minimizing
Their Successive Data Complexity

Frederik Armknecht, Gwénolé Ars . 16

Cryptography Based on Combinatorics

Equivalent Keys in HFE, C∗, and Variations
Christopher Wolf, Bart Preneel . 33

A New Structural Attack for GPT and Variants
Raphael Overbeck . 50

A Family of Fast Syndrome Based Cryptographic Hash Functions
Daniel Augot, Matthieu Finiasz, Nicolas Sendrier 64

Cryptographic Protocols

Optimization of Electronic First-Bid Sealed-Bid Auction Based on
Homomorphic Secret Sharing

Kun Peng, Colin Boyd, Ed Dawson . 84

Identity Based Delegation Network
Sherman S.M. Chow, Richard W.C. Lui, Lucas C.K. Hui,
S.M. Yiu . 99

On Session Key Construction in Provably-Secure Key Establishment
Protocols

Kim-Kwang Raymond Choo, Colin Boyd, Yvonne Hitchcock 116

X Table of Contents

On the Security of Probabilistic Multisignature Schemes and Their
Optimality

Yuichi Komano, Kazuo Ohta, Atsushi Shimbo, Shinichi Kawamura . . . 132

Invited Talk II

Efficient Secure Group Signatures with Dynamic Joins and Keeping
Anonymity Against Group Managers

Aggelos Kiayias, Moti Yung . 151

Implementation Issues

An Analysis of Double Base Number Systems and a Sublinear Scalar
Multiplication Algorithm

Mathieu Ciet, Francesco Sica . 171

Power Analysis by Exploiting Chosen Message and Internal
Collisions – Vulnerability of Checking Mechanism for RSA-Decryption

Sung-Ming Yen, Wei-Chih Lien, SangJae Moon, JaeCheol Ha 183

Optimization of the MOVA Undeniable Signature Scheme
Jean Monnerat, Yvonne Anne Oswald, Serge Vaudenay 196

Unconventional Cryptography

Questionable Encryption and ts Applications
Adam Young, Moti Yung . 210

Twin RSA
Arjen K. Lenstra, Benjamin M.M. de Weger . 222

Invited Talk III

Security of Two-Party Identity-Based Key Agreement
Colin Boyd, Kim-Kwang Raymond Choo . 229

Block Cipher Cryptanalysis

Related-Key Differential Attacks on Cobra-S128, Cobra-F64a, and
Cobra-F64b

Changhoon Lee, Jongsung Kim, Seokhie Hong, Jaechul Sung,
Sangjin Lee . 244

I

Table of Contents XI

Advanced Slide Attacks Revisited: Realigning Slide on DES
Raphael C.-W. Phan . 263

New Multiset Attacks on Rijndael with Large Blocks
Jorge Nakahara Jr., Daniel Santana de Freitas,
Raphael C.-W. Phan . 277

Homomorphic Encryption

Paillier’s Cryptosystem Modulo p2q and Its Applications to Trapdoor
Commitment Schemes

Katja Schmidt-Samoa, Tsuyoshi Takagi . 296

Homomorphic Cryptosystems Based on Subgroup Membership
Problems

Kristian Gjøsteen . 314

Author Index . 329

Trends and Challenges for Securer
Cryptography in Practice

Hideki Imai

Institute of Industrial Science, The University of Tokyo,
Research Center for Information Security,

National Institute of Advanced Industrial Science and Technology

As the importance of information security is widely recognized today, devel-
opment of cryptography in practical use is rapidly taking place. On the other
hand, however, many cases have been reported, where problems are found in
the cryptographic systems already in use, or where the cryptographic systems
are broken. Causes for a cryptographic system to get corrupted can be: defects
in cryptographic algorithm designs; defects in implementation; defects in attack
models and definitions of security; progress in computers and attack algorithms;
inapplicability due to the change of environment. It is to be noted that the cryp-
tographic system that has been created in the circumstance where there can
be some kind of defects is generally vulnerable to breakdown. In the world of
cryptography, we should regard ”Anything that can happen, happens.”

In the first half of my lecture, I will show you some examples of vulnerability
in cryptography and measures against it. First, as examples of imminent crises,
I will talk about the WEP (Wired Equivalent Protocol) vulnerability, which is
a wireless LAN encryption; vulnerability in hash functions; implementation at-
tacks in IC cards; and the issue of ”quantum cryptography” Y-00. Next, as a
near-future danger, I will talk about serious attacks to a 1024-bit RSA cryp-
tosystem, and lastly, the realization of quantum computers, as an example of
future crisis. It is important to evaluate cryptographic systems systematically
and continually, in dealing with these crises. As an example of an organization
that performs such execution, I will introduce CRYPTREC of Japan.

However, even if all these dangers are prevented, cryptographic systems can
be broken, because we cannot prevent human errors and unauthorized acts inside
the cryptographic systems completely. In the second part of this lecture, I will
talk about Fail-Safe Techniques for Information Security, as a measure against
such human-related issues. First, I will discuss the fundamental concept of these
techniques. Next, I will introduce, as examples of the fundamental technology in
this field, how to construct public-key infrastructures and person authentication
systems that are robust against the leakage of secret keys and secret verification
data.

Lastly, I will introduce the Research Center for Information Security, at the
National Institute of Advanced Industrial Science and Technology, which was
established on April 1st of this year and is expected to contribute greatly, in
future, in constructing and maintaining the high-level information security of IT
systems.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distinguishing Attacks on T-Functions

Simon Künzli1, Pascal Junod2, and Willi Meier1

1 FH Aargau, 5210 Windisch, Switzerland
{s.kuenzli, w.meier}@fh-aargau.ch

2 Nagravision SA (Kudelski Group), 1033 Cheseaux, Switzerland
pascal.junod@nagra.com

Abstract. Klimov and Shamir proposed a new class of simple crypto-
graphic primitives named T-functions. For two concrete proposals based
on the squaring operation, a single word T-function and a previously
unbroken multi-word T-function with a 256-bit state, we describe an ef-
ficient distinguishing attack having a 232 data complexity. Furthermore,
Hong et al. recently proposed two fully specified stream ciphers, consist-
ing of multi-word T-functions with 128-bit states and filtering functions.
We describe distinguishing attacks having a 222 and a 234 data complex-
ity, respectively. The attacks have been implemented.

Keywords: Stream cipher, T-function, square mapping, distinguish-
ing attack, statistical cryptanalysis

1 Introduction

Binary additive stream ciphers encrypt a plaintext stream by combining it with
a key stream by means of an XOR operation (the decryption simply being the
XOR of the key stream with the ciphertext stream). The key stream consists
of a pseudo-random bit sequence usually generated by iteration of an update
function, the latter being initialized with a secret state. One expects that the
sequence generated by a cryptographically secure stream cipher is statistically
indistinguishable from a truly random sequence (and this for any adversary with
some limited computational power), and that there exists no key-recovery attack
better than brute-force.

Recently, Klimov and Shamir [7, 8, 9, 10, 6] proposed a new framework for
highly efficient mappings which could be used as primitives in stream ciphers
and other cryptographic schemes. These primitives consist of triangular func-
tions (T-functions) which are built with help of fast arithmetic and Boolean
operations widely available on high-end microprocessors or on dedicated hard-
ware implementations; these mappings come with provable properties such as
invertibility and a single-cycle structure. As an example, the mapping TF-0 is
proposed in [7], which is defined by x �→ x+(x2∨C) mod 2n for an n-bit state x
and with C ≡ 5, 7 (mod 8). As the maximal length of a cycle may be too short
for typical values of n (e.g. n = 64), and as state-recovery attacks have been de-
scribed [2,8], TF-0 is not meant to be directly used for cryptographic purposes.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 2–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Distinguishing Attacks on T-Functions 3

Considering cryptographic applications, several efficient multi-word T-functions
are proposed in [9]. Some of these proposals have been broken by Mitra and
Sarkar [13] using time-memory tradeoffs. Based on the results of Klimov and
Shamir, a new class of multi-word T-functions and two fully specified stream
ciphers have been proposed by Hong et al. [3, 4]. Their schemes TSC-1 and
TSC-2 have a transparent design and allow for some flexibility.

1.1 Contributions of This Paper

In this paper, we analyse several proposals of T-functions and exhibit substantial
weaknesses in some of these constructions. The flaws are extended to dedicated
attacks.

First we analyse the statistical properties of the pure square mapping, which
allows us to find an efficient distinguisher (with an expected 232 data complexity)
on TF-0 as well as on a previously unbroken multi-word mapping described in [9]
and labeled here as TF-0m, both based on the squaring operation. TF-0m oper-
ates on a 256-bit state and the output sequence consists of the 32 most significant
bits.

Then, we cryptanalyse the TSC-family of stream ciphers [4], which operates
on a 128-bit state and outputs 32 bits of the state using a filtering function. We
find a very efficient distinguisher for TSC-1 with an expected 222 data complexity;
for TSC-2, we describe a different distinguishing attack with an expected 234 data
complexity.

To confirm our theoretical results, the distinguishing attacks have been im-
plemented and run many times with success. Our distinguishers have a negligible
error probability and a remarkably small time complexity.

1.2 Notational Conventions

We analyse cryptographic schemes consisting of an internal state x ∈ X , an
update function f : X → X and an output function g : X → Y. In the case where
time instants are relevant, we will denote xt the state at time t (distinction of
powers will be clear from the context). Hence, the iterative scheme maps the state
xt to xt+1 = f(xt) and outputs yt = g(xt). The seed of the iteration is obtained
from the secret key with help of a key scheduling process. The keystream K
consists in the concatenation of successive outputs, namely K = y0||y1|| · · · .

We assume throughout this paper the threat model of a known-plaintext
attack, i.e., we assume to know some part of the keystream K. Our purpose
is then to distinguish K from a uniformly distributed random sequence, or to
recover the state at any time.

In the case where the state is a vector formed by some words, we will denote
a single word by xj and the state as x = (x0, x1, . . .). Adopting the common
notation, [x]i is the (i+1)-st least significant bit-slice of the state, [x]0 denoting
the rightmost bit-slice. Consequently, [xj]i is the (i + 1)-st least significant bit
of word j. The operation msbm(x) states for the m most significant bits of x.
Arithmetic operations are performed modulo 2n with typical word size n = 32
or 64 bit. Boolean operations are performed on all n bits in parallel and are

4 S. Künzli, P. Junod, and W. Meier

denoted by ∧ (AND), ∨ (OR), and by ⊕ (XOR). Finally, ≪ k denotes a cyclic left
shift by k positions.

2 Cryptanalysis of Square Mappings

Klimov and Shamir have proposed different types of T-functions based on the
squaring operation [7, 9]. After introducing the framework of this section, we
focus on the pure square mapping and derive a hypothesis about their proba-
bility distribution. This distribution is used in order to distinguish the proposed
mappings TF-0 and TF-0m with significant advantage.

Let us consider a scheme which consists of an update function f and an
output function g with the notation of Sect. 1.2. Let us further define the random
variables X and X ′ over the set X = {0, 1}n, with uniformly distributed X and
with X ′ = f(X). Equivalently, Y and Y ′ are random variables over Y = {0, 1}m

with uniformly distributed Y and with Y ′ = g(f(X)). Given PrY , PrY ′ and
some uniform random or pseudo-random output respectively, we can perform a
statistical test (e.g. a Neyman-Pearson test, see Appendix A for more details)
in order to assign the output to a distribution. We are interested in the overall
complexity of the distinguisher corresponding to some designated overall error
probability πe.

For small1 word sizes n, the distribution PrY ′ can be determined by an ex-
haustive computation of g(f(x)) for all 2n elements x, resulting in a precompu-
tation time complexity of O(2n) and a memory complexity (measured with the
number of required memory cells) of O(2m). Given both distributions and a des-
ignated overall error probability, the data complexity of an optimal distinguisher
is estimated with help of the squared Euclidean imbalance (see Appendix A). We
assume that the test is performed in real-time, hence we do not need additional
memory in order to store the data. The online time complexity is identical to
the data complexity.

However, a precomputation of PrY ′ might be infeasible for large values of
n (e.g. n = 64 bit). We perform some detailed analysis of PrY ′ for small word
sizes n and establish an analytical hypothesis for the approximated distribution
of Y ′, considering only the most biased elements. This significantly reduces the
offline time and memory complexity, but might increase the online time and
data complexity of the distinguisher, given some πe. For small word sizes n, the
hypothesis can be verified with the accurate distributions, and for large n, the
quality of the hypothesis will be directly examined by the experimental data
complexity of the distinguisher.

2.1 Distribution of the Pure Square Mapping

Let us define the pure square mapping f(x) = x2 mod 2n and g(x) = msbm(x)
with m = n/2, which we will refer as PSM. Apart from the least significant bit, f

1 The term small is used with respect to current computational possibilities, i.e. n � 40
bit for personal computers nowadays.

Distinguishing Attacks on T-Functions 5

is a T-function. Iteration produces some fixed points such as 0 or 1, hence f can
not be considered as an update function for a real application. However, we will
be able to reduce more complex single-cycle mappings to some modified square
mappings and apply the results obtained in this section; in other words, we will
consider the pure square mapping as an ideal case, resulting in distinguishers
with minimal data complexity compared to modified square mappings.

We first mention that Klimov and Shamir [7] found an analytical expression
for probabilities of single bits of the square mapping. Applying the notation
X ′ = f(X) for an uniformly distributed X , they found that Pr([X ′]0 = 0) = 1

2 ,
Pr([X ′]1 = 0) = 1 and Pr([X ′]i = 0) = 1

2 (1 + 2−
i
2) for i > 1. However, as we

will have to deal with an additional carry bit later on (which would reduce this
bias significantly), we are more interested in the distribution of words.

We explain how to derive highly biased probability distributions for X ′ =
f(X) and Y ′ = g(f(X)). As shown in the next proposition, f is not a permuta-
tion, resulting in an unbalanced distribution of X ′ (there are some predictable
elements f(x) with exceptionally large bias).

Proposition 1. Consider the function f : {0, 1}n → {0, 1}n with f(x) = x2 mod
2n. For successive elements x ∈ {0, . . . , 2n − 1}, the images f(x) have a cyclic
structure with cycle length 2n−2. Hence f is neither injective nor surjective.

Proof. As x2 −
(
2n−1 + x

)2 = 0 mod 2n, we have two cycles of length 2n−1,
and as

(
2n−2 + x

)2 −
(
2n−2 − x

)2
= 0 mod 2n, both cycles have two mirrored

sequences of length 2n−2. Hence the output of successive numbers x has the
shape abc . . . cbaabc . . . cba. 	

Due to the specified output function in PSM, the bias is transferred to the
distribution of Y ′. For a truly random scheme, any element of the output occurs
with probability π0 = 2−n/2. For the particular scheme PSM, we observed (for
small word sizes n) that there exist 4 outcomes with biased probability 2 · π0,
12 outcomes with biased probability 1.5 · π0 and so on. This property appears
to be independent of n, and we therefore can establish a hypothesis for the
most biased elements (which are explicitly known). Let Yi be the aggregate
containing elements of constant biased probability πi. The parameter si denotes
the cardinality of Yi, and ni denotes the minimal word size for a stable occurrence
of πi. The parameters ni, si and πi are summarized in Tab. 1. Then we have for
i = 0, . . . , k (limited by the condition n ≥ nk)

Y0 = {2(n−n0)/2 · j2; j = 0, . . . , s0}
Yi = {2(n−ni)/2 · (1 + 8j); j = 0, . . . , si}
Y∞ = Y −

∑
Yi .

(1)

The values in Tab. 1 are determined with empirical methods, however ni and
si are exact at least for word sizes within our computational possibilities. In the
case of PSM, πi is exact for i = 0, 1, but fluctuating for i > 1 so we have to take
an average value. A further approximation is done with the remaining elements
in Y∞, which are assigned to a constant (standardised) probability. The number

6 S. Künzli, P. Junod, and W. Meier

of aggregates k determines the accuracy of the approximation. However, k is
constrained by the condition n < nk, and as the values of πi are only accurate for
ni ≈ 40, we usually choose k = 8 for n > 40 bit. This corresponds to a memory
complexity of 217. Regarding the complexities of a distinguisher, increasing the
number of aggregates k is coupled with more time, more memory and less data.

Table 1. Parameters of the approximated distribution for the first 9 aggregates

i 0 1 2 3 4 5 6 7 8
πi2m 2.000 1.500 1.200 1.100 1.050 1.030 1.002 1.005 1.003
ni2−2 2 3 4 5 6 7 8 9 10
log2(si) 2 3 5 7 9 11 13 15 17

2.2 Attacking the Single-Word Mapping TF-0

Let us now consider the running single-word proposal TF-0 with the update
function f(x) = x + (x2 ∨ C) mod 2n where C ≡ 5, 7 (mod 8), and with the
output function g(x) = msbm(x) where 1 ≤ m ≤ n/2 as described in [7, 10]. As
the low-order bits are known to be weak, the authors of the scheme proposed
m = 1, 8, 16, 32 for the standard word size n = 64 bit. Klimov and Shamir
showed that f is an invertible T-function over an n-bit state x with a single
cycle of length 2n. The number of extracted bits m controls a tradeoff between
security and efficiency of the scheme. We give some relationship to PSM with
the next proposition.

Proposition 2. Consider the scheme TF-0. If one requires C < 2n−m, it is
g(f(x))−g(x) = g(x2)+α mod 2m for n−m > 2 and for a carry bit α ∈ {0, 1}.

Proof. As f(x) = y = x+(x2∨C) mod 2n, we conclude y−x ≡ x2∨C (mod 2n)
for C < 2n−m. Hence, g(y − x) ≡ g(x2 ∨ C) (mod 2m) and g(y − x) ≡ g(x2)
(mod 2m) for C < 2n−m. We finally have g(y)− g(x)−α ≡ g(x2) (mod 2m) for
C < 2n−m and for some carry bit α ∈ {0, 1}. 	

Proposition 2 states that the difference of two consecutive outputs of TF-0 differs
only by an additive carry bit α ∈ {0, 1} from the output of PSM. Therefore, we
may accurately approximate the distribution of the random variable g(f(X)) −
g(X) by the distribution of the random variable Y ′ of PSM (i.e., we neglect the
influence of the carry bit).

We choose standard parameters C = 5 and m = n/2. In order to perform
a test for large values of n, we approximate the distribution PrY ′ with the
hypothesis described in Sect. 2.1, using an optimal number of aggregates. The
data complexities are estimated according to (9) and verified with experiments.
We got an experimental data complexity of 232 for n = 64 bit, which turns out
to be very close to the estimated value, and somewhat larger than the lower
limit derived by extrapolation for the accurate probability distribution.

Distinguishing Attacks on T-Functions 7

If the scheme is used as a pseudo-random number generator in large computer
simulations, the output may not be considered as random after 232 iterations,
although we have a single-cycle of 264 states. This observation is consistent
with the practice nowadays, not to use more data than

√
P of a pseudo-random

number generator (PRNG) with period P . However, we also examined modified
output functions with a smaller number of extracted bits m. Experiments show
that (independently of the word size n), decreasing m by one bit increases the
data complexity by a factor of 2. We conclude that, in contradiction to previ-
ous assumptions, not only the lower bits of this T-function are weak, but also
the higher bits. This is an intrinsic property of the scheme, which will have
consequences for other square mappings and may have consequences for more
complicated output functions.

We mention that state-recovery attacks on TF-0 have been described in [2,
8]. Moreover, Mitra and Sarkar [13] described a time-memory tradeoff for the
squaring problem, which may be applied to consecutive output differences of
TF-0. The most efficient algorithms have a complexity of about 216.

2.3 Attacking the Multi-word Mapping TF-0m

Several multi-word update functions proposed in [9] have been attacked with a
time-memory tradeoff by Mitra and Sarkar [13]. We now present a distinguishing
attack against a multi-word proposal which has not been broken yet, and which
we will refer as TF-0m. The update function f corresponds to (12) in [9], it is an
invertible T-function over a 4n-bit state x = (x0, x1, x2, x3) with a single cycle
of length 24n:

f :

⎛⎜⎜⎝
x0

x1

x2

x3

⎞⎟⎟⎠ �→

⎛⎜⎜⎝
x0 + (s20 ∨ C0)
x1 + (s21 ∨ C1) + κ0

x2 + (s22 ∨ C2) + κ1

x3 + (s23 ∨ C3) + κ2

⎞⎟⎟⎠ . (2)

It is s0 = x0, s1 = s0 ⊕ x1, s2 = s1 + x2, s3 = s2 ⊕ x3. The constants are
satisfying [Ci]0 = 1 for i ∈ {0, 1, 2, 3}, and [C3]2 = 1. All operations are carried
out on n bit words and κi denotes the carry bit of xi. The output function is
g(x) = msbm(x3) with m = n/2. We choose the standard word size n = 64 bit.

The multi-word update function (2) consists of 4 approximatively indepen-
dent and identically distributed (iid) random variables similar to the single-word
update function of TF-0. We may concentrate only on the most significant vari-
able x3. The argument to be squared s3 can be approximated as uniformly
distributed, and therefore produces the same output as x2. The carry bit mod-
ifies the output with a probability of 2−33; this infrequent event will not have
a significant influence to the distinguisher. Therefore, we do not have to mod-
ify the approximate distribution used for the distinguisher. Theoretical data
complexity remains the same, and simulations result in an experimental data
complexity of 232 for a 256 bit state with 224 unknown bits. We have performed
20 experiments, observing no incorrect decision of our distinguisher. The data
complexity is very close to the complexity for TF-0, confirming our assumption
on the influence of κ and s.

8 S. Künzli, P. Junod, and W. Meier

We emphasize the practical applicability of this result and the small number
of required data, compared to the large number of unknown bits. As before, we
also considered to extract less bits m < n/2. Again, we found that decreasing m
by one bit increases the data complexity by a factor of 2. Hence reduction of m
may still not prevent practical attacks.

3 Cryptanalysis of TSC

We start this section with a description of the recent proposal of stream cipher
family TSC [4]. We find a very efficient distinguishing attack on TSC-1, as well
as a distinguishing attack on TSC-2.

3.1 Description of the Schemes

The hardware-oriented stream cipher family TSC consists of a state vector of
128 bits x = (x0, x1, x2, x3), an update T-function f and an output function g.
The update function consists of an odd 32-bit parameter α(x) and a single-cycle
S-box S, mapping a 4 bit input to a 4 bit output. If [α]i = 0, then the mapping
Se is applied on bit-slice i of the state, otherwise the mapping So is applied. e
(resp. o) is an even (resp. odd) number. This procedure is repeated for all 32
bit-slices in a single update period. With the satisfaction of these properties, f
is a single-cycle T-function, hence the period of the cipher is 2128.

The odd parameter is defined by α = (p + C) ⊕ p ⊕ 2s with a constant C,
p = x0∧x1∧x2∧x3 and s = x0+x1+x2+x3. Except for the lower few bits, each
output bit of α is equal to 1 almost half of the time. Due to the properties of an
odd parameter, one has [α]0 = 1, meaning that the least significant bit-slice is
always mapped by So. Consequently, the bits from the least significant bit-slice
of the state will be referred as irregular bits.

Let us define the specified proposals. In TSC-1, the powers of the S-box are
e = 2 and o = 1, the constant used in the odd parameter is C = 0x12488421,
and the S-box (in standard notation) and the output function are defined by

S = (3, 5, 9, 13, 1, 6, 11, 15, 4, 0, 8, 14, 10, 7, 2, 12)
g(x) = (x0≪9 + x1)≪15 + (x2≪7 + x3) .

(3)

In TSC-2, one has e = 0 (hence, the identical mapping is used), o = 1 and
C = 0x00000001. The S-box and the output function are defined by

S = (5, 2, 11, 12, 13, 4, 3, 14, 15, 8, 1, 6, 7, 10, 9, 0)
g(x) = (x0≪11 + x1)≪14 + (x0≪13 + x2)≪22 + (x0≪12 + x3) .

(4)

The output functions have a period of 2128, however, three state variables in the
output equation determine the remaining variable, hence the maximum security
of the ciphers is 96 bit. Furthermore, there are some time-memory tradeoffs on
TSC with large precomputation time complexities.

Distinguishing Attacks on T-Functions 9

3.2 Attacking the Stream Cipher TSC-1

In this section, we present a linearisation attack on TSC-1. Probabilistic linear
relations in the update function (i.e. relations between state bits at different time
instants) and in the output function (i.e. relations between state bits and output
bits) are combined, in order to obtain relations between output bits at different
time instants. Provided that the relations are biased, the output of TSC-1 can
be distinguished from a random stream.

Let us first discuss a linear approximation of the T-function. We focus on a
single bit [xt

j]i and analyse the statistical effect of Δ iterations to this bit. Let
YΔ be the indicator variable of the event [xt

j]i = [xt+Δ
j]i, implying that a fixed

bit is repeated after Δ iterations. After Δ iterations, bit-slice i (including the
bit under observation) is mapped δ times by S, with Δ ≤ δ ≤ 2Δ (the mapping
S is applied 2Δ− δ times, and the mapping S2 is applied δ −Δ times). Hence,
in order to compute Pr(YΔ = 1), we have to analyse the distribution of δ and
the bit-flip probabilities of the mappings Sδ.

Let us denote bΔ(δ) the probability that after Δ iterations, the S-box is
applied δ times. For regular bit-slices, we reasonably assume equal probabilities
for the application of S and S2 (which is, however, a simplification for some lower
bit-slices), and binomial distribution for bΔ,

bΔ(δ) =
(

Δ

δ −Δ

)
·
(

1
2

)Δ

. (5)

For the irregular bit-slice, it is bΔ(δ) = 1 for δ = Δ, and zero otherwise.
In order to describe the effect of the mappings Sδ, let us analyse the S-box.
We will denote w an uniform random number 0 ≤ w ≤ 15, and i an index
0 ≤ i ≤ 31. Let also Xδ be the indicator variable of the event [w]i = [Sδ(w)]i for
any fixed bit position i. The S-box is designed such that the bit-flip probability
for an application of S and S2 is balanced. However, there is a huge bias of the
bit-flip probability for some multiple applications of S, namely for Pr(Xδ = 1)
with δ = 0 mod 4 (this observation is of course portable to the mapping S2).
We find Pr(X4 = 1) = Pr(X12 = 1) = 1/8, Pr(X8 = 1) = 3/4 and of course
Pr(X16 = 1) = 1. These results are independent of bit-position i, other values of
δ result in balanced probabilities.

Finally, the bit-flip probability P (YΔ) of a single bit in the state for Δ iter-
ations simply becomes the weighted sum

Pr(YΔ = 1) =
2Δ∑

δ=Δ

Pr(Xδ = 1) · bΔ(δ) . (6)

We find a maximal bias for Δ = 3 with Pr(Y3 = 1) = 0.3594, and still a
large bias for many other values of Δ. The predicted probabilities are in good
agreements with experiments. In the case of irregular bits, (6) simply becomes
Pr(YΔ = 1) = Pr(XΔ = 1) with a large bias for Δ = 0 mod 4.

In the fictive case of a perfect single-cycle S-box (which, however, does not
exist) with Pr(Xδ = 1) = 1/2 for δ �= 16 and Pr(X16 = 1) = 1, (6) becomes

10 S. Künzli, P. Junod, and W. Meier

Pr(YΔ = 1) = (bΔ(16) + 1)/2 for regular bits. A maximal bias is obtained for
Δ = 11, resulting in Pr(Y11 = 1) = 0.6128.

Let us combine the relation (6) with a simple linear approximation of the
output function. The bias of YΔ strikes through the output function, such that
the loops in the state are also present in the output. We consider a single bit [yt]i
of the output and analyse the statistical effect of Δ iterations to this bit. Let ZΔ

be the indicator variable of the event [yt]i = [yt+Δ]i, implying that a fixed bit of
the output is repeated after Δ iterations. We approximate the output function
by [y]i = [x0]i+8 ⊕ [x1]i+17 ⊕ [x2]i+25 ⊕ [x3]i ⊕ c, for i = 0, . . . , 31 (additions of
indices are performed modulo 32) and a carry bit c ∈ {0, 1}. For bit-positions
i = 0, 7, 15, 24, one irregular bit is involved in the linear approximation of [y]i;
consequently, these output bits are called irregular. Neglecting the carry bit and
availing the fact that the output bits are composed of independent state bits, the
probability Pr(ZΔ = 1) is approximated using Matui’s Piling-up Lemma [12].
For regular output bits, we obtain

Pr(ZΔ = 1) =
1
2

+ 23 ·
(

Pr(YΔ = 1) − 1
2

)4

. (7)

Notice that ε = Pr(YΔ = 1)− 1
2 is the probability bias. In the case of irregular

output bits, one of the four factors ε in (7) is substituted by ε′ = Pr(XΔ =
1) − 1

2 . Let us consider the case of Δ = 3; it is Pr(Z3 = 1) = 0.5031 for regular
output bits (and a balanced probability for irregular output bits). However, as we
neglected the carry bit in this simple model, the above probability is considered
as an upper limit. Notice that the carry is also biased and inclines towards
absorbing itself. Experiments show that indeed, most of the regular output bits
are biased for Δ = 3. We emphasise that higher bits are affected equivalently
to lower bits. Due to the integer addition, the exact bias depends on the bit-
position. We find the maximum bias for bit-position i = 1 with p′ = 0.5003. A
similar result is obtained for Δ = 8 and i = 0.

This biased probability is accessible to a cryptanalyst with known plaintext
and may be used to distinguish the outcome of the cipher from a uniform random
outcome. With the uniform probability p = 1/2 and the biased probability p′ =
p(1+ q), the required data complexity becomes O(1/pq2), see Theorem 2 in [11].
Consequently, for p′ = 0.5003 we expect a data and online time complexity
of about 222 (16 MB of keystream); offline time complexity is negligible. We
performed a number of experiments (taking all biased bits into account) and
verified the predicted complexity, given a small probability of error.

As described above, a variant of this attack even works without taking into
account any specific property of the single-cycle S-box. Finally, we mention that
the bias of ZΔ can be transformed in a state-recovery attack by guess-and-
determine. In a first step, we guess the least-significant bit-slice [xt]0, which may
be iterated separately. The four corresponding bits are subtracted independently
from appropriate output bits in order to construct a modified index variable.
Considering (7), we expect the bias to significantly increase for a right guess,
and we expect a balanced output for a false guess. After recovering [xt]0, we

Distinguishing Attacks on T-Functions 11

may continue with consecutive bit-slices. Considering all available equations,
experiments showed that a single bit-slice may be accepted or rejected (with
a reasonable probability of error) using 222 iterations. Repeating this for all 24

values of a single bit-slice, and for all 25 bit-slices, we obtain an overall complexity
of about 231. A similar result has also been obtained by Peyrin and Muller [14].

3.3 Attacking the Stream Cipher TSC-2

In both versions of TSC, the 32 bits of α determine the update of the 128 bits
of the state. Hence we may wait for appropriate values of α in order to initiate
some attacks. In TSC-2, an interesting case is the minimal-weight parameter
α = 1, for which only the least significant bit-slice is modified and two similar
successive outputs may be detected. The detector is an algorithm which takes
as input the keystream z and gives out 1 if α = 1, and 0 otherwise. The detector
can make two types of errors: it can either output 1 when α �= 1 (false positives)
or 0 when α = 1 (false negatives). The error probabilities are denoted by A and
B, respectively.

The complete set of states U resulting in α(xt) = 1 is given with the con-
ditions

∑3
i=0 x

t
i ∈ {0x00000000, 0x80000000} and [xt]0 ∈ {0x0, 0x3, 0x5, 0x6,

0x9, 0xA, 0xC}. In the following, let us assume that such a state occurs at time
t = 0. Hence we have α0 = 1, and only the least significant bit-slice of the
state is changed by the mapping f : x0 → x1; consequently, we suppose that
the subsequent outputs y0 and y1 have low distance. Let us analyse the exem-
plary integer modular difference y0 − y1 for x ∈ U with [x0]0 = 0x5; we find
that [x1]0 = 0x4 and [x0]i = [x1]i for i �= 0. The output function produces
y0 = y1 +1≪25+1≪3+1≪12 and hence y0−y1 = 0x02001008. In fact, we find
that y0 − y1 = const for any x ∈ U , where the constant const depends only on
the least-significant bit-slice [x0]0 in most of the cases, see Tab. 2. For less than
1% of the states in U , the integer modular difference is not constant because an
addition in the output function may cause a carry bit, which propagates from
the msb to the lsb due to the cyclic shift. Detection of single constants only
would result in a huge amount of false alarms. However, examining Tab. 2, we
find a path for the iteration of [x0]0 with 0x6 → 0x3 → 0xC which is closed in
U , meaning that α0 = α1 = α2 = 1. Therefore, we may restrict the detector

Table 2. List of output differences for α = 1, some of which will be applied in the
attack

[x0]0 [x1]0 y0 − y1

0x0 0x5 0xFDBFEFF8

0x3 0xC 0x01C05007

0x5 0x4 0x02001008

0x6 0x3 0xFE3FEFF8

0x9 0x8 0x02001008

0xA 0x1 0xFE002FF9

0xC 0x7 0xFDFFAFF9

12 S. Künzli, P. Junod, and W. Meier

to detect only a subset of states V ⊂ U , where V is defined by the conditions∑3
i=0 x

t
i ∈ {0x00000000, 0x80000000} and [xt]0 ∈ {0x6, 0x3}. The detector

takes three successive outputs, computes two differences of consecutive outputs
and compares them with the fixed values; if there is a match of both, the de-
tector returns 1, and 0 otherwise. The probability of x ∈ V is 2−33, and a false
detection due to random outputs2 occurs with probability 2−64. As the differ-
ences are constant almost all the time, the error B (which would increase the
running time of the detector) is negligible, too. The time and data complexity
is around 233 (no precomputation and negligible memory).

The detector may be transformed in a distinguisher by feeding the detector
with a fixed amount of data n. If the detector always returns 0, then the dis-
tinguisher returns 0 (random stream); if the detector returns 1 at least once,
then the distinguisher returns 1 (keystream produced by TSC-2). The probabil-
ity of false positives may be neglected, and the probability of false negatives is
B = (1 − 2−33)n. For B = 0.05, we obtain a data complexity of about n = 234.

With a successful detection of α(xt) = 1, we obtain the information∑3
i=0 x

t
i ∈ {0x00000000, 0x80000000}, as well as the value of bit-slice [xt]0

and the output equation g(xt) = yt. This information may be used for a state-
recovery attack with a complexity smaller than 296. However, TSC-2 appears
to be seriously injured with our efficient distinguishing attack, and we did not
study the state-recovery attack in more detail.

4 Conclusions

In this paper, we examined some specific proposals of stream ciphers based on
T-functions. Two proposals by Klimov and Shamir are based on the squaring
operation, namely a single word T-function as well as a previously unbroken
multi-word T-function with a 256-bit state, both revealing some part of the state.
It turned out that the integer differences of consecutive outputs have significant
statistical deviation even in the high-order bits. Based on that deviation, we
described efficient distinguishing attacks with a 232 data complexity. We conclude
that the squaring operation has some undesirable properties when used in the
design of T-functions and possibly in other cryptographic primitives. The two
proposals by Hong et al. have a 128-bit state, which are controlled by a 32-bit
parameter and tiny S-boxes. The output function uses some integer additions
and rotations. For one of the proposals, we found small loops in the state and
in the output produced by the S-box, resulting in a distinguishing attack of
complexity 222. For the other proposal, we wait for an appropriate value of
the parameter, which produces some detectable structure in the output. This
results in a distinguisher of complexity 234. We conclude that the small size of
the parameter (and potentially also the tiny S-boxes) may be critical, and that
the integer additions and rotations in the output functions have a very limited
randomizing effect.
2 In order to increase the set V, we do not make use of the connection of the whole

path.

Distinguishing Attacks on T-Functions 13

Acknowledgments

This work is supported in part by the National Competence Center in Research
on Mobile Information and Communication Systems (NCCR-MICS), a center
of the Swiss National Science Foundation under grant number 5005-67322. The
third author also receives partial funding through Gebert Rüf Stiftung.

We would like to thank Jin Hong and Peter Hellekalek for valuable discus-
sions, and the anonymous reviewers for their helpful comments.

References

1. T. Baignères, P. Junod, and S. Vaudenay. How far can we go beyond linear crypt-
analysis ? In P. Lee, editor, Advances in Cryptology – Asiacrypt 2004: 10th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Jeju Island, Korea, December 5-9, 2004. Proceedings, volume 3329
of Lecture Notes in Computer Science, pages 432–450. Springer-Verlag, 2004.

2. V. Benony, F. Recher, E. Wegrzynowski, and C. Fontaine. Cryptanalysis of a par-
ticular case of Klimov-Shamir pseudo-random generator. In T. Helleseth, D. Sar-
wate, H.-Y. Song, and K. Yang, editors, Sequences and Their Applications – SETA
2004, Third International Conference, Seoul, Korea, October 24-28. Revised Se-
lected Papers, volume 3486 of Lecture Notes in Computer Science, pages 313–322.
Springer-Verlag, 2004.

3. J. Hong, D. Lee, Y. Yeom, and D. Han. New class of single cycle T-functions and
a stream cipher proposal. Presented at SASC – The State of the Art of Stream
Ciphers, ECRYPT Workshop, October 14-15, Brugge, Belgium, 2004.

4. J. Hong, D. Lee, Y. Yeom, and D. Han. A new class of single cycle T-functions. To
appear in H. Gilbert and H. Handschuh, editors, Fast Software Encryption 2005,
12th International Workshop, FSE 2005, Paris, France, February 21-23, 2005.
Revised Papers, volume 3557 of Lecture Notes in Computer Science. Springer-
Verlag, 2005.

5. P. Junod. On the optimality of linear, differential and sequential distinguishers.
In E. Biham, editor, Advances in Cryptology – Eurocrypt 2003: International
Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,
Poland, May 4-8, 2003. Proceedings, volume 2656 of Lecture Notes in Computer
Science, pages 17–32. Springer-Verlag, 2003.

6. A. Klimov. Applications of T-functions in cryptography. PhD thesis, Department
of Applied Mathematics and Computer Science, Weizmann Institute of Science,
Rehovot (Israel), 2004.

7. A. Klimov and A. Shamir. A new class of invertible mappings. In B. Kaliski,
Ç. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems –
CHES 2002: 4th International Workshop, Redwood Shores, CA, USA, August 13-
15, 2002. Revised Papers, volume 2523 of Lecture Notes in Computer Science,
pages 470–483. Springer-Verlag, 2002.

8. A. Klimov and A. Shamir. Cryptographic applications of T-functions. In Selected
Areas in Cryptography: 10th Annual International Workshop, SAC 2003, Ottawa,
Canada, August 2003. Revised Papers, volume 3006 of Lecture Notes in Computer
Science, pages 248–261. Springer-Verlag, 2004.

14 S. Künzli, P. Junod, and W. Meier

9. A. Klimov and A. Shamir. New cryptographic primitives based on multiword T-
functions. In B. Roy and W. Meier, editors, Fast Software Encryption, 11th Inter-
national Workshop, FSE 2004, Delhi, India, February 5-7, 2004. Revised Papers,
volume 3017 of Lecture Notes in Computer Science, pages 1–15. Springer-Verlag,
2004.

10. A. Klimov and A. Shamir. The TFi family of stream ciphers. Technical note, 2004.
11. I. Mantin and A. Shamir. A practical attack on broadcast RC4. In M. Matsui,

editor, Fast Software Encryption: 8th International Workshop, FSE 2001, Yoko-
hama, Japan, April 2-4, 2001. Revised Papers, volume 2355 of Lecture Notes in
Computer Science, pages 152–164. Springer-Verlag, 2002.

12. M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor,
Advances in Cryptology – Eurocrypt’93: Workshop on the Theory and Applica-
tion of Cryptographic Techniques, Lofthus, Norway, May 1993. Proceedings, volume
765 of Lecture Notes in Computer Science, pages 386–397. Springer-Verlag, 1993.

13. J. Mitra and P. Sarkar. Time-memory trade-off attacks on multiplications and
T-functions. In P. Lee, editor, Advances in Cryptology – Asiacrypt 2004: 10th
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Jeju Island, Korea, December 5-9, 2004. Proceedings, volume 3329
of Lecture Notes in Computer Science, pages 468–482. Springer-Verlag, 2004.

14. T. Peyrin and F. Muller. Personal communication, 2005.

A Optimal Distinguishers

In a recent paper, Baignères et al. [1] have analysed optimal algorithms (in
terms of number of samples) aiming at distinguishing two random sources whose
probability distributions are completely known to a cryptanalyst. We briefly
recall the framework of Baignères et al.

Let D0 and D1 be two probability distributions sharing the same support X .
We consider the problem of distinguishing these two distributions using ν iid
samples. A (possibly computationally unbounded) algorithm δν which takes as
input a sequence of ν realizations zν distributed according to D where either
D = D0 or D = D1, and outputs 0 or 1 according to its decision, is called a
distinguisher. It can be fully determined by an acceptance region A ⊂ X such
that δν(zν) = 1 iff zν ∈ A. The ability to distinguish a distribution from
another is usually measured in terms of the advantage of the distinguisher and
is defined by

Advδν =
∣∣∣Pr

Dν
0

[δν(Zν) = 0] − Pr
Dν

1

[δν(Zν) = 0]
∣∣∣ .

Hence, the distinguisher can make two types of errors: it can either output 0 when
D = D1 or 1 when D = D0; we will denote these respective error probabilities by
α and β, respectively, and the overall error probability is defined as πe = 1

2 (α+β).
In [5] it is shown that it is easy to define explicitly an optimal distinguisher

in this precise statistical setting. Indeed, given a fixed overall probability of
error, it is sufficient for an optimal distinguisher to count the number νx(zn)
of occurrences of all possible symbols x ∈ X in the sample zn, to compute the
log-likelihood ratio

Distinguishing Attacks on T-Functions 15

llr(zν) =
∑
x∈X

νx(zν) log
PrD0 [x]
PrD1 [x]

(8)

and to output 0 as decision iff llr(zν) > 0. If we assume that the distributions
D0 and D1 are close to each other, i.e. PrD0 [x] = πx and PrD1 [x] = πx + εx

with |εx| � πx for all x ∈ X , then the following result gives a very accurate
estimation of the necessary number of samples.

Theorem 1 (Baignères et al. [1]). Let X1, . . . , Xν be iid random variables
defined over X with probability distribution D, let D0 and D1 be two distributions
sharing the same support which are close to each other, where πx = PrD0 [x] and
πx + εx = PrD1 [x]. Let d be a real number defined by

d = ν
∑
x∈X

ε2x
πx

.

Then, the overall probability of error of an optimal distinguisher between D0 and
D1 is approximately

πe ≈
1√
2π

∫ −
√

d
2

−∞
e−

t2
2 dt .

Baignères et al., based on this result, introduced then what seems to be a natural
“measure”, named squared Euclidean imbalance and denotedΔ(D0,D1), between
a distribution D0 and a close distribution D1 defined by

Δ(D0,D1) =
∑
x∈X

ε2x
πx

, (9)

since Δ(D0,D1) is directly linked to the number of samples needed to distinguish
both probability distributions with a good success probability.

Introducing a New Variant of Fast Algebraic
Attacks and Minimizing Their Successive

Data Complexity

Frederik Armknecht1 and Gwénolé Ars2

1 Theoretische Informatik, Universität Mannheim, 68131 Mannheim, Germany
armknecht@th.informatik.uni-mannheim.de

2 IRMAR, University of Rennes, Campus de Beaulieu 35042 Rennes, France
gwenole.ars@math.univ-rennes1.fr

Abstract. Algebraic attacks have established themselves as a powerful
method for the cryptanalysis of LFSR-based keystream generators (e.g.,
E0 used in Bluetooth). The attack is based on solving an overdetermined
system of low-degree equations Rt = 0, where Rt is an expression in the
state of the LFSRs at clock t and one or several successive keystream
bits zt, . . . , zt+δ.

In fast algebraic attacks, new equations of a lower degree are con-
structed in a precomputation step. This is done by computing appro-
priate linear combinations of T successive initial equations Rt = 0. The
successive data complexity of the attack is the number T of successive
equations.

We propose a new variant of fast algebraic attacks where the same
approach is employed to eliminate some unknowns, making a divide-and-
conquer attack possible. In some cases, our variant is applicable whereas
the first one is not.

Both variants can have a high successive data complexity (e.g., T ≥
8.822.188 for E0). We describe how to keep it to a minimum and intro-
duce suitable efficient algorithms for the precomputation step.

Keywords: fast algebraic attacks, stream ciphers, linear feedback shift
registers, Bluetooth

1 Introduction

Keystream generators are designed for online encryption of secret plaintext bit-
streams M passing an insecure channel. Depending on a secret key K, they
produce a regularly clocked bitstream called the keystream Z = (z1, z2, . . .),
zi ∈ 2. M is encrypted by XORing both streams termwise. A legal receiver
decrypts by applying the same procedure.

Many keystream generators consist of combining several linear feedback shift
registers (LFSRs) and possibly some additional memory. One example is the E0

keystream generator which is part of the Bluetooth standard [6]. An LFSR is a
finite automaton which produces a bitstream of arbitrary length depending on its

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 16–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

New Variant of FAA and Minimizing Data Complexity 17

initial state. LFSRs are very efficient in hardware and can be designed such that
the produced bitstream has maximum period and good statistical properties.
Many different approaches to the cryptanalysis of LFSR-based stream ciphers
were discussed in literature (e.g., time-memory-tradeoff [5], fast correlation at-
tacks [17] or BDD-based attacks [13]). For some keystream generators, algebraic
attacks outmatched all previously known attacks [8,2,7]. They consist of finding
and solving a system of (low-degree) equations in the key bits and the known
keystream bits. More precisely, the equations are of the form Rt = 0 where Rt is
an expression in the state of the LFSRs at clock t and one or several successive
keystream bits zt, . . . , zt+δ.

If the system is overdetermined, it can be solved by linearization: each occur-
ring monomial is replaced by a new variable, giving a system of linear equations.
If all equations are of degree ≤ d and n := |K| denotes the key size, then the
number of monomials is ≈

(
n
d

)
. Thus, the time effort is ≈

(
n
d

)3 (using Gaussian
elimination), the amount of space is ≈

(
n
d

)2 and the data complexity is ≥
(
n
d

)
.

The idea of fast algebraic attack is to find linear combinations
⊕T

i=0 λiRt+i

of the initial equations to obtain a new equation of a lower degree e < d in a
precomputation step. As this reduces the number of monomials, the time for
computing the solution drops. In this paper, we focus on this precomputation
step. We propose a new variant of this approach. The difference is that the
number of unknowns in reduced instead of the degree. We present an example
where our attack is faster than all other algebraic attacks proposed so far.

Both variants work only if the attacker knows the value of the keystream
bits involved in Rt, . . . , Rt+T . We introduce the term successive data complexity
for T = T (R). We present a theory which allows to specify the exact minimum
successive data complexity for both attacks. The amount of data is only slightly
decreased indeed, but it might help to make fast algebraic attacks more prac-
tically. In particular, we give efficient algorithms to achieve the miminum data
complexity in precomputation step.

The paper is organized as follows: In Section 2, we provide some definitions
and basic results needed for the rest of the paper, and we describe fast alge-
braic attacks in Section 3. We introduce a variant of these attacks in Section
4. In Section 5, theory and methods are developed for efficient precomputation
steps having the minimum successive data complexity. Finally, we give a short
conclusion in Section 6.

2 Definitions and Basics Results

In this Section, we provide some definitions and facts, used in the paper.
For an integer α =

∑
i αi · 2i, αi ∈ {0, 1}, we define its weight wt(α) :=∑

i αi. For a vector (α(1), . . . , α(m)) of integers, we extend this definition to
wt(α(1), . . . , α(n)) =

∑
wt(α(i)).

For positive integers n1, . . . , nm, let Xi := (xi,1, . . . , xi,nm). For αi =
∑ni−1

j=0

αi,j2j , we define Xαi

i :=
∏ni

j=1 x
αi,j

i,j and for α = (α1, . . . , αm) the expression

18 F. Armknecht and G. Ars

Xα :=
∏m

j=1 X
αj

j . Each Boolean function F (X1, . . . , Xm) in n := n1 + . . .+ nm

unknowns has a unique algebraic expression
⊕

α=(α1,...,αm) cα · Xα with cα ∈
{0, 1}. The uniqueness allows to define two different types of degree:

deg(F) := max{wt(α1, . . . , αm) | c(α1,...,αm) �= 0}
degXi

(F) := max{wt(αi) | c(α1,...,αm) �= 0}

If degXi(F) = 0, then F is independent of the variables in Xi.
For ω ∈ 2n , we define its minimal polynomials mω to be the unique non-

zero polynomial m(x) ∈ 2[x] of the lowest degree such that m(ω) = 0. For a
set Ω ⊆ 2n let mΩ denote the non-zero polynomial of the lowest degree such
that mΩ(ω) = 0 for all ω ∈ Ω. The following facts are well known:

Lemma 1. Let Ω1, Ω2 ⊆ 2n . Then mΩ1∩Ω2 = gcd(mω1 ,mω2). If mΩ1 and mΩ2

are co-prime, then mΩ1∪Ω2 = mΩ1 ·mΩ2 .

Theorem 1. Let f(x) ∈ 2[x] be an irreducible polynomial of degree n and
ω, ω′ ∈ 2n be two roots. Then ω = (ω′)2

k

for an appropriate k.

The proofs for the following claims can be found in [14].
A sequence Z = (zt) over 2 is called a linear recurring sequence if coefficients

λ0, . . . , λT−1 ∈ {0, 1} (not all zero) exist such that
⊕

λizt+i = 0 is true for all
values t ≥ 1. In this case,

⊕
λix

i ∈ 2[x] is called a characteristic polynomial
of the sequence Z. Amongst all characteristic polynomials of Z there exists one
unique polynomial mZ which has the lowest degree. We will call it the minimal
polynomial of Z. A polynomial f(x) ∈ 2[x] is a characteristic polynomial of Z
if and only if mZ divides f(x).

Let p(x) =
∑n

i=0 λi · xi ∈ 2[x]. The companion matrix Lp of p(x) is defined
by

Lp :=

⎛⎜⎜⎜⎝
0 0 . . . 0 a0

1 0 . . . 0 a1

...
...

. . .
...

...
0 0 . . . 1 an−1

⎞⎟⎟⎟⎠ .

A linear feedback shift register (LFSR) is a regularly clocked finite state
machine together with a polynomial p(x) ∈ 2[x] of degree n and an internal
state S ∈ {0, 1}n. Let L := (Lp)t be the transpose of the companion matrix. At
each clock, it outputs the first Bit of S and updates S to L · S. The produced
keystream is a linear recurring sequence with minimal polynomial p(x). If p(x)
is primitive, the sequence has the maximum period 2n − 1. p is also called the
feedback polynomial of the LFSR and L the corresponding feedback matrix.

3 Fast Algebraic Attacks

In this Section, we describe (fast) algebraic attacks on LFSR-based keystream
generators. An LFSR-based keystream generator consists of m LFSRs of lengths

New Variant of FAA and Minimizing Data Complexity 19

n1, . . . , nm and � ≥ 0 additional memory bits. If � = 0, we speak of simple com-
biners, otherwise of combiners with memory. We denote by K = (K1, . . . ,Km)
with Ki ∈ {0, 1}ni the initial states of the LFSRs and by Mt ∈ {0, 1}� the con-
tent of the memory bits at clock t. Let Li be the feedback matrix of the i-th
LFSR and L := diag(L1, . . . , Lm). At each clock t, an output bit zt is produced
by zt = f(Lt ·K,Mt) and the memory is updated to Mt+1 depending on Lt ·K
and Mt. It is assumed that an attacker knows everything except K and Mt,
t ≥ 0. An algebraic attack works as follows: First find a Boolean function R �= 0
such that

Rt := R(Lt ·K, zt, . . . , zt+δ) = 0 (1)

is true for all clocks t. We will call (1) a valid equation if it is true for all K, t
and corresponding keystream bits zt, . . . , zt+δ. The case of simple combiners has
been examined in [8,16] and the case of combiners with memory in [2]. A unified
treatment of both cases is given in [4]. The adversary can use (1) to set up a
system of equations, describing K subject to of the observed keystream bits zt.
The final step is to recover K by solving this system of equations.

Although this task is difficult in general, in this special situation an attacker
can exploit that degK(Rt) ≤ degK(R0) := d for all t. Therefore, the number
μ of different monomials with unknowns coming from K is upper bounded by∑d

i=0

(
n
i

)
≈

(
n
d

)
. If enough keystream bits are known, the number of linearly

independent equations (1) equals μ. Substituting each monomial by a new vari-
able results in a system of linear equations in μ unknowns which can be solved
by Gaussian elimination or more refined methods like Strassen’s one [20]. The
computational complexity is in O

((
n
d

)ε) with ε ≤ 3, which is polynomial in the

key size n but exponential in the degree d. The amount of space is in O
((

n
d

)2
)
.

Two different strategies to accelerate this attack are straightforward. The
first one would be to find a faster method to solve this special kind of system
of equations (e.g., using Gröbner bases [10]). We will not pursue this approach
in this paper. Instead, we will focus on the second strategy, i.e. to reduce the
number μ of monomials. This idea has been used in fast algebraic attacks (FAA),
introduced in [9]. In a precomputation step, appropriate linear combinations of
the initial equations Rt = 0 are computed to get new ones of lower degree e < d.

FAA do not work in general. They require that (1) can be rewritten as

0 = R(Lt ·K, zt, . . . , zt+δ) = F (Lt ·K) ⊕G(Lt ·K, zt, . . . , zt+δ) (2)

where e := degK(G) < degK(R) = d. For example, this condition is true for the
three ciphers E0, Toyocrypt and LILI-128 [9]. Then, the attacker needs to find
coefficients λ0, . . . , λT−1 ∈ {0, 1} such that

T⊕
i=0

λi · F (Lt+i ·K) = 0 ∀t,K. (3)

In general, the coefficients λi depend on K. But if the feedback polynomials of
the m LFSRs are co-prime1, the λi are the same for all K. Actually, this is even
1 This is the case for most keystream generators.

20 F. Armknecht and G. Ars

true under weaker conditions (see [3]). Hence, for the rest of the paper we will
assume the λi’s to be independent of K.

Using (2) and (3), the equation

0 =
T⊕

i=0

λiRt+t =
T⊕

i=0

λi ·G(Lt+i ·K, zt+i, . . . , zt+i+δ)

is valid and of degree e < d. By repeating this procedure for several clocks t, the
attacker can transform the system of equations of degree d given by (1) into a
new one of degree e < d:

0 = R(K, z0, . . . , zδ)
0 = R(L ·K, z1, . . . , zδ+1)
. . .︸ ︷︷ ︸

degreed

�→
0 =

⊕T
i=0 λiG(Li ·K, zi, . . . , zi+δ)

0 =
⊕T

i=0 λiG(L1+i ·K, z1+i, . . . , z1+i+δ)
. . .︸ ︷︷ ︸

degree e

(4)

Note that this decreases the degree and hence the number of monomials, speeding
up the solving step enormously. Also the space requirements are reduced from
roughly

(
n
d

)2 to
(

n
e

)2. On the other hand, the knowledge of the keystream bits
from T successive equations is required to construct one equation of degree e.
We will call this term the successive data complexity. Observe that it depends on
the chosen function R in (1). For example, in [3] it was estimated, based on tests
with smaller LFSRs, that T = 8.822.188 for the Bluetooth keystream generator
E0, to reduce the degree from d = 4 to e = 3.

One advantage of FAA is that the precomputation needs to be done only once.
The coefficients λi can be computed with the Berlekamp-Massey algorithm [15].
In certain cases, faster and parallelizable methods exist [3]. Somewhat surprising,
the direct insertion of the observed keystream bits into the system of equations
can dominate the attack complexity but this problem has been solved in [12].

In the next section, we introduce a second method similar to FAA, which
allows a divide-and-conquer approach. Instead of reducing the degree, the new
equations are independent of one or several LFSRs. Hence, it is possible to
first reconstruct the remaining LFSRs and afterwards the ones which have been
canceled out. Cases exist where our attack works whereas other methods fail
to reduce the complexity. As same as manipulating equations (2) for FAA, we
need equations with a special structure. Applying similar methods form those
in [4,16] give us such equations, but it is not the subject of this paper.

4 A New Variant of Fast Algebraic Attacks

As explained in Section 3, fast algebraic attacks are based on processing the
system of equations in a precomputation step in order to decrease the degree
of the equations. In this section, we show that a similar approach may be used
to reduce the number of unknowns. Before we give a general description, we
motivate the attack by an example.

New Variant of FAA and Minimizing Data Complexity 21

The example uses five LFSRs of lengths n1, . . . , n5 filtered by a memory
function. Let x(i)

t denote the output of the ith LFSR at clock t and n := n1

+ . . .+ n5 the key size. The output zt for t ≥ 0 is computed as follows:

zt := x
(1)
t ⊕ x

(1)
t−1 · (σ2

t−1 ⊕ σ2
t) ⊕ σ3

t ⊕ σ2
t−1 ⊕ Ct · σ3

t−1

Ct+1 := zt

where C0 is some initial memory of the function and σd
t :=

⊕
2≤i1<...<id≤5

x
(i1)
t · . . . · x(id)

t is the d-th elementary symmetric polynomial in the outputs
x

(2)
t , x

3)
t , x

(4)
t , x

(5)
t . We have an algebraic relation independent of the function

memory, for t ≥ 1:

zt := x
(1)
t ⊕ x

(1)
t−1 · (σ2

t−1 ⊕ σ2
t) ⊕ σ3

t ⊕ σ2
t−1 ⊕ zt−1 · σ3

t−1 (5)

Equation (5) is of degree 3 in the key bits, which yields an algebraic attack
with complexity O

((
n
3

)ε). We have tested with the usual methods2 that no
quadratic relations exist over two clocks. Because of the term zt−1 · σ3

t−1, it is
not possible to split (5) as shown in (2). Therefore, a FAA as described in [9] is
not applicable in this case.

Furtheron, we checked that what we would call “local divide-and-conquer”
attack is possible (e.g., see [11]): equations exist which are independent of x(i)

t

and x(i)
t−1 for one i ∈ {2, 3, 4, 5}, but there is no equation independent of variables

x
(1)
t and x

(1)
t−1. But as the lowest degree of these equations is 4, this approach

would increase the complexity instead of lessen it. Altogether, it seems that the
naive algebraic attack is the best algebraic attack in this case.

Actually, one can do better. Similar to (2), we rewrite (5) to

0 = x
(1)
t ⊕ x

(1)
t−1 · (σ2

t−1 ⊕ σ2
t)︸ ︷︷ ︸

=:Ft

⊕ zt ⊕ σ3
t ⊕ σ2

t−1 ⊕ zt−1 · σ3
t−1︸ ︷︷ ︸

=:Gt

Gt is independent of the outputs of LFSR 1. As F0, F1, . . . is a linear re-
curring sequence, coefficients λ0, . . . , λT exist with ⊕T

i=0λiFt+i = 0 for all K
and t. Then, 0 =

⊕T
i=0 λiRt+i =

⊕T
i=0 λiGt+i is a valid equation of degree

3 which is independent of LFSR 1. This reduces the number of monomials
from O

((
n
3

))
to O

((
n−n1

3

))
and the computational complexity from O

((
n
3

)ε) to

O
((

n−n1
3

)ε
)
. If the feedback polynomials are pairwise co-prime, then the succes-

sive data complexity is T = n1+n1.
∑

2≤i<j≤5 ninj (see [14]). For (n1, . . . , n5) =
(33, 27, 26, 25, 17) and ε = 3, the time and space efforts for different algebraic
attacks are displayed in Table 1.

We give now a more general description of this approach. Required is a valid
equation (1) which can be split as shown here:

0 = F (Lt ·K) ⊕G(L̂t
j · K̂j , zt, . . . , zt+δ). (6)

2 A description can be found in [4].

22 F. Armknecht and G. Ars

Table 1. Different algebraic attacks against the given example

Attack degree #unknowns time memory
algebraic attack 3 128 ≈ 255 ≈ 237

fast algebraic attack / / / /
local divide-and-conquer 4 128-33=95 ≈ 265 ≈ 243

our attack 3 128-33=95 ≈ 252 ≈ 235

L̂j resp. K̂j denote the companion matrix resp. the key where the part belonging
to the jth LFSR is left out. More precisely, it is L̂j := diag(L1, . . . , Lj−1, Lj+1,

. . . , Lm) and K̂j := (K1, . . . ,Kj−1,Kj+1, . . . ,Km). The next step is to compute
coefficients λi such that

⊕T
i=0 λiF (Lt+i · K) = 0 for all t and K. As for fast

algebraic attacks, the Berlekamp-Massey algorithm can be used, but more re-
fined methods will be presented in Section 5.4. Observe that

⊕T
i=0 λiG(L̂t+i

j ·
K̂j, zt+i, . . . , zt+i+δ) = 0 is a valid equation and independent of Kj . Repeating
this step for several t gives a system of equations which is independent of Kj :

0 = R(K, z0, . . . , zδ)
0 = R(L ·K, z1, . . . , zδ+1)
. . .︸ ︷︷ ︸

n unknowns

�→
0 =

⊕
i λiG(L̂i

j · K̂j, . . .)
0 =

⊕
i λiG(L̂1+i

j · K̂j , . . .)
. . .︸ ︷︷ ︸

n−nj unknowns

(7)

This reduces the number of computation steps from (roughly)
(
n
d

)ε to
(
n−nj

d

)ε

and the amount of space from
(
n
d

)2 to
(n−nj

d

)2
. Afterwards, the values of Kj can

be easily reconstructed or even be guessed.

5 Minimizing the Successive Data Complexity

5.1 Preliminary Notes

Both attacks described in sections 3 and 4 are based on replacing given equations
Rt = 0 by appropriate linear combinations

⊕
i λiRt+i. Appropriate means that⊕

i λiFt+i has some desired property P where Rt = Ft ⊕ Gt. To perform the
precomputation step, it is necessary to have a (preferably efficient) method to
find such coefficients. We propose the following treatment of the problem:

1. Use Φ from Section 5.2 to compute Φ(F) = H ∈ [Y1, . . . , Ym] with an
extension field of 2.

2. Specify a set Ω = depending onH and the desired property P as described
in Section 5.3.

3. Determine a polynomial p(x) =
⊕

i λix
i such that p(ω) = 0 for all ω ∈ Ω.

In Section 5.3, we will show that for all vectors (λ0, . . . , λT) ∈ {0, 1}T+1, it is⊕
i

λiFt+i has property P ⇐⇒ p(x) =
⊕

i

λix
i : p(ω) = 0 ∀ω ∈ Ω.

New Variant of FAA and Minimizing Data Complexity 23

The degree T of p(x) determines the number of successive equations. If it is
possible to compute the minimal polynomial of Ω efficiently, then this gives
immediately the coefficients for the minimum successive data complexity.

In Section 5.4, we will describe efficient algorithms for computing these poly-
nomials. We will see that these methods do not require the computation of H
or Ω. Still, we need to specify them once to to prove the correctness of the
algorithms.

5.2 Definition of the Function Φ

In this Section, we develop a theory which will make it possible to specify the
minimum successive data complexity and to derive efficient methods for com-
puting the associated coefficients. The strategy is to describe F (Lt · K) as a
multivariate polynomial in an extension field of 2. The theory presented in this
Section is similar to that discussed in [3] but develops it further. The proofs can
be found in Appendix A.

The first step is to introduce a special bijection n
2 → 2n and extend it

to n1
2 × . . . × nm

2 → 2n1 × . . . × 2nm . Although we describe the results in
their generality, we should keep in mind that the situations are motivated by
Sections 3 and 4. The polynomials p correspond to the feedback polynomials of
the LFSRs and L to their feedback matrices.

Theorem 2. Let p(x) =
⊕n

i=0 ai · xi ∈ 2[x] be an irreducible polynomial of
degree n and with root ω. Furtheron, let L ∈ GLn(2) be the transpose of its
companion matrix and X := (x0, . . . , xn−1). There exists a 2-linear bijection
ϕL : n

2 → 2n with ϕL(Li ·X) = ωiϕL(X).

Corollary 1. Let p1(x), . . . , pm(x) ∈ 2[x] be irreducible polynomials of de-
gree n1, . . . , nm and with roots ω1, . . . , ωm respectively. Let L1, . . . , Lm be the
transposed of their companion matrices. Then there exists a linear bijection
ϕ := ϕL1,...,Lm : n1

2 × . . . × nm
2 → 2n1 × . . . × 2nm such that for all

X := (X1, . . . , Xm) ∈ n1
2 × . . .× nm

2 and (X̃1, . . . , X̃m) = ϕ(X), we have

ϕ(Li
1 ·X1, . . . , L

i
m ·Xm) := (ϕL1(X1), . . . , ϕLm(Xm)) = (ωi

1X̃1, . . . , ω
i
mX̃m).

The function ϕ allows to give an alternative description of deg(F) and degKj
(F):

Theorem 3. Let pj(x) ∈ 2[x], 1 ≤ j ≤ m, be irreducible polynomials of degrees
nj and 2n′ be their splitting field. There exists a linear injection Φ = Φp1,...,pm :

Φ : {F ∈ n1
2 × . . . × nm

2 → 2} ↪→ {H ∈ 2n′ [Y1, . . . , Ym]/〈Y 2n′
i − Yi,∀i〉|H2 = H}

F 	→
∑

0≤α1,...,αm≤2n′−1

cα1,...,αm · Y α1
1 · . . . · Y αm

m

such that

deg(F) = max{wt(α1, . . . , αm) | cα1,...,αm �= 0} and
degXj

(F) = max{wt(αj) | cα1,...,αm �= 0}.

24 F. Armknecht and G. Ars

5.3 Specifying the Minimum Successive Data Complexity

The attacks described in Sections 3 and 4 are both based on the following: given
a Boolean function F and a feedback matrix L, find coefficients λ0, . . . , λT such
that

⊕
λjF (Lt+j ·K) has a certain property. We show that this is equivalent to

finding certain Boolean functions p(x) =
⊕

λjx
i ∈ 2[x]. Because of T = deg(p),

the polynomial having the lowest possible degree determines the minimum suc-
cessive data complexity. Table 2 gives an overview of the polynomials considered
in this Section.

The polynomials mF and md belong to the fast algebraic attacks as intro-
duced in [9]. If F contains products of the outputs coming from one LFSR, then
some of the Ft have monomials of degree < d. If the degree is ≤ e, then there
is no need to cancel them out. It suffices to eliminate all monomials of degree
between e + 1 and d. Therefore, we introduce the polynomials m(e,d],F resp.
m(e,d],d. Because of deg(m(e,d],F) ≤ deg(mF) and deg(m(e,d],d) ≤ deg(md), this
can reduce the successive data complexity. A toy example illustrating this effect
can be found in Appendix B. In both cases, the complexity of solving the system
of equations is asymptotically the same.3 The polynomials mXi,F and mXi,d give
the coefficients for the divide-and-conquer attack described in Section 4.

Table 2. Description of the minimal polynomials discussed in Section 5.3

Polynomial Property of⊕T
j=0 λjx

j ⊕T
j=0 λjF (Lt+j · K)

mF equal to zero

md
equal to zero

for any F with deg(F) ≤ d

m(e,d],F no monomials of degree ∈ (e, d]

m(e,d],d
no monomials of degree ∈ (e, d]

for any F with deg(F) ≤ d

mXi,F independent of Ki

mXi,d
independent of Ki

for any F with deg(F) ≤ d

Theorem 4. Let Φ(F) = H =
∑

α cαY
α with Y α := Y α1

1 · . . . · Y αm and
α = (α1, . . . , αm). Because of Φ(F (Li · (X1, . . . , Xm)) = H(ωi

1Y1, . . . , ω
i
mYm),

Φ(F (Li · (X1, . . . , Xm)) =
∑

α cαω
i·αY α. We define

ΩF := {ωα|cα �= 0}, Ω(e,d],F := {ωα|cα �= 0, e < wt(α) ≤ deg(F)}

Then for p(x) =
⊕T ′

i=0 λjx
j, we have equivalences:⊕

λjF (Lt+j ·K) = 0 ⇐⇒ p(ω′) = 0 ∀ω′ ∈ ΩF

degK(
⊕

λjF (Lt+j ·K)) ≤ e ⇐⇒ p(ω′) = 0 ∀ω′ ∈ Ω(e,d],F
(8)

3 In the concrete case, it may happen that more different monomials occur in the
second approach. This would result in a slightly higher complexity.

New Variant of FAA and Minimizing Data Complexity 25

In particular, for the unique minimal polynomials mF resp. m(e,d],F of the sets
ΩF resp. Ω(e,d],F , the values T ′ = deg(mF) resp. T = deg(m(e,d],F) are the
minimum successive data complexity. Furtheron, this means T ≤ T ′.

The Theorem shows that the minimum successive data complexity in a fast
algebraic attack is T = deg(m(e,d],F). If F consists of products of outputs coming
from the same LFSR, m(e,d],F is different to mF (see example given in Appendix
B). The precomputation steps proposed so far compute mF , which in certain
cases results in a higher successive data complexity than necessary. A general
estimation for T ′ and T are

(
n
0

)
+ . . .+

(
n
d

)
and

(
n

e+1

)
+ . . . +

(
n
d

)
, respectively.

To solve completely the new equations with linear algebra and find the key
bits, we need

(
n
0

)
+ . . .+

(
n
e

)
equations. Then the total data complexity can be

bounded between T +
(
n
0

)
+ . . .+

(
n
e

)
and T

((
n
0

)
+ . . .+

(
n
e

))
. The lower bound

implies that we have only successive data bits, it correspond to the minimum
bits needed to achieve the algebraic attack and the second that the equations
come from independant output bits.

For example, in the case of LILI-128 [19], a conventional fast algebraic attack
would require the knowledge of T ≈ 2, 559, 195 successive keystream bits for one
degree-3-equation. Our approach shows that the same is possible with T ′ −
T ≈ 117, 569 fewer keystream bits. A more concrete example is the Bluetooth
keystream generator E0. In [3], it was stated that T ≤ 8, 822, 188 successive
keystream bits are necessary for one degree-3-equation. We computed that this
is also possible for at least 326,080 fewer bits (see Appendix C).

Inspired by the example of E0 where e = 3 and d = 4, we have implemented
some simulations to compare T with T ′ and the number of non-zero coefficients
λ′j and λj . Observe that the last values reflect how many equations have to be
summed up. The examples have been done with only one LFSR defined by L
and a fixed random F which is the sum of monomials of degree 4. The results
can be found in Table 3.

The results demonstrate that if n is not too small, T ′ and T are comparatively
close. Hence, for the asymptotic complexity of the attack, using the minimum
possible T has a rather minor influence. On the other hand, we will show in
Section 5.4 that m(e,d],F can be computed efficiently. Therefore, we see no reason
why an attacker should use more successive keystream bits than necessary.

Table 3. Comparison of Berlekamp-Massey (upper row) with our method (lower row)

Method n 8 9 10 11 12 13 14 15 16

Berlekamp-
succ. data
complexity

161,2 255 384,8 561 793 1092 1469,2 1940 2516

Massey #{λ′
j �= 0} 84,3 132,6 195,2 278,4 413,6 543 741,7 963,4 1253,5

Our
succ. data
complexity 71 126 210 330 495 715 1001 1365 1820

Method #{λj �= 0} 31 61,3 102,1 159,1 243 351,7 502,3 677,6 917

26 F. Armknecht and G. Ars

In some cases, it may be difficult to calculate the sets ΩF resp. Ω(e,d],F , or
F might be an unknown function of degree d. The following Corollary specifies
“general” polynomials

⊕
λ′jx

j and
⊕

λjx
j such that equations (8) hold for any

Boolean function F of degree ≤ d:4

Corollary 2. Let p1(x), . . . , pm(x) ∈ 2[x] be irreducible polynomials of degree
n1, . . . , nm, L the block matrix of the transposed companion matrices of all pi

and ω = (ω1, . . . , ωm) where ωi is a root of pi. Furtheron, let Ωd := {ωα|0 <

wt(α) ≤ d} resp. Ω(e,d],d := {ωα|e < wt(α) ≤ d}. Let p(X) :=
⊕T

j=0 λjx
j.

Then, for any Boolean function F of degree ≤ d, we have equivalences:⊕
j λjF (Lt+j ·K) = 0 ⇐⇒ p(ω′) = 0 ∀ω′ ∈ Ωd

deg(
⊕

j λjF (Lt+j ·K) ≤ e ⇐⇒ p(ω′) = 0 ∀ω′ ∈ Ω(e,d],d

Therefore, the minimal polynomials md and m(e,d],F of the sets Ωd and Ω(e,d],F

specify the minimum successive data complexity and the coefficients λi.

So far, we proved that optimal coefficients λi for reducing the degree can
be derived by computing certain minimal polynomials. The following Theorem
shows that the same is possible for the divide-and-conquer attack described in
Section 4.

Theorem 5. Let F ∈ 2[X1, . . . , Xm], n :=
∑m

j=1 |Xi, L ∈ GLn(2) and
Φ(F) =: H =

∑
α cαY

α. We set ΩXi,F := {ωα|cα �= 0, wt(α) ≤ deg(F), αi �= 0}.
Then for p(X) :=

⊕T
j=0 λjx

j, we have the equivalence:

degXi

⎛⎝ T⊕
j=0

λjF (Lt+j ·K)

⎞⎠ = 0 ⇐⇒ p(ω′) = 0 ∀ω′ ∈ ΩXi,F .

The left side means that
⊕T

j=0 λjF (Lt+j ·K) = 0 is a valid equation independent
of Xi.

Let p1(x), . . . , pm(x) ∈ 2[x] be irreducible polynomials of degree n1, . . . , nm,
L the block matrix of the transposed companion matrices of all pi and ω =
(ω1, . . . , ωm) where ωi is a root of pi. Furtheron, let ΩXi,d := {ωα|wt(α) ≤
d, αi �= 0}. Then for any Boolean function F ∈ 2[X1, . . . , Xm] of degree ≤ d,
we have the equivalence:

degXi

⎛⎝ T⊕
j=0

λjF (Lt+j ·K)

⎞⎠ = 0 ⇐⇒ p(ω′) = 0 ∀ω′ ∈ ΩXi,d.

Again do the minimal polynomials mXi,F resp. m(e,d],F of the sets ΩXi,F resp.
ΩXi,d specify the minimum successive data complexity and the coefficients λi.

4 Of course, it does not longer guarantee the minimality of T ′ and T , respectively.

New Variant of FAA and Minimizing Data Complexity 27

5.4 Efficient Precomputation Steps with the Minimum Successive
Data Complexity

In the previous Section, we showed that finding the appropriate linear combi-
nation for the precomputation steps is equivalent to computing certain minimal
polynomials m(e,d],F and mXi,F . Crucial for our approaches is this can be done
efficiently, which will be demonstrated in this section. First, we show how to ex-
press the polynomials by other polynomials. A proof can be found in Appendix
A.
Lemma 2. The minimal polynomials are

m(e,d],F =
mF

gcd(me,mF)
and mXi,F = gcd(mF ,mXi,d).

Now we argue why the expressions on the right side of the equations can be
computed efficiently. Let E :=

∑e
i=0

(
n
i

)
and D :=

∑d
i=0

(
n
i

)
. me can be con-

structed by the method explained in [12, Section 6] with complexity
E[n(log2 n)2 + (log2E)3]. mF can be either computed as described in [9] us-
ing Berlekamp-Massey or, in certain cases, with the faster method from [3]. In
any case, the complexity is at most the complexity for the Berlekamp-Massey
algorithm, which is at most O(D2). The complexity for gcd and division of two
polynomials of degree ≤ D over 2 are O(M(D)log(D)) and O(M(D)) respec-
tively [1]. Hereby M(D) denotes the complexity of computing the product of two
polynomials of degree D which is O(D logD log logD) [18]. Because of E ≤ D,
the overall complexity of computing m(e,d],F is

O(D2 + (D logD log logD)(1 + logD)).

For example, for n = 128 and d = 4 (as in the case of E0), the complexity is
≈ 247 which is negligible compared to the attack complexity of ≈ 254 [9].

In the case of the divide-and-conquer attack, the computation of the minimal
polynomial mXi,F is even easier. First, the algorithm from [12, Section 6] can be
easily adapted to compute mXi (just choose appropriate Ψ). Similarly to above,
we can argue that the complexity for computing mXi,F is in

O(D2 +D log2 D log logD).

Summing up, it is possible to compute efficiently the minimal polynomials
described in Section 5.3. As the coefficients of these monomials are exactly the
coefficients of the linear combinations used in the precomputation steps, both
attacks are feasible with a minimum successive data complexity.

6 Conclusions

Fast algebraic attacks are based on simplifying systems of equations in a precom-
putation step. Linear combinations of the initial equations are build to reduce the
degree. We proposed a new variant where the number of variables is decreased
instead.

For both variants, we developed efficient algorithms to find suitable linear
combinations where the number of involved equations is minimized.

28 F. Armknecht and G. Ars

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and Analysis of Computer
Algorithms. Addison-Wesley, Reading MA, 1974.

2. Frederik Armknecht, Matthias Krause: Algebraic attacks on Combiners with Mem-
ory, Proceedings of Crypto 2003, LNCS 2729, pp. 162-176, Springer, 2003.

3. Frederik Armknecht: Improving Fast Algebraic Attacks, Proceedings of Fast Soft-
ware Encryption 2004, LNCS 3017, pp. 65 - 82, Springer, 2004.

4. Frederik Armknecht: On the existence of low-degree equations, Cryptology ePrint
Archive: Report 2004/185.

5. Alex Biryukov, Adi Shamir: Cryptanalytic Time/Memory/Data tradeoffs for
Stream Ciphers, Proceedings of Asiacrypt 2000, LNCS 1976, pp. 1-13, Springer,
2000.

6. Bluetooth SIG, Specification of the Bluetooth system, Version 1.1, February 22,
2001. Available at http://www.bluetooth.com/.

7. Nicolas Courtois: Higher Order Correlation Attacks, XL Algorithm and Cryptanal-
ysis of Toyocrypt, ICISC 2002, LNCS 2587. An updated version (2002) is available
at http://eprint.iacr.org/2002/087/.

8. Nicolas Courtois, Willi Meier: Algebraic attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345-359, Springer,
2003. An extended version is available at http://www.minrnak.org/toyolili.pdf

9. Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback,
Proceedings of Crypto ’03, LNCS 2729, pp. 177-194, Springer, 2003.

10. Jean-Charles Faugère, Gwenole Ars: An algebraic cryptanalysis of nonlinear filter
generators using Gröbner bases, 2003. Available at http://www.inria.fr/rrrt/rr-
4739.html.

11. Jovan Dj. Golic: Vectorial Boolean functions and induced algebraic equations, Cryp-
tology ePrint Archive: Report 2004/225.

12. Philip Hawkes, Gregory G. Rose: Rewriting Variables: the Complexity of Fast Al-
gebraic Attacks on Stream Ciphers, Proceeding of Crypto ’04, pp. 390-406, LNCS
3152, Springer, 2004. Available at http://eprint.iacr.org/2004/081/.

13. Matthias Krause: BDD-Based Cryptanalysis of Keystream Generators; Proceedings
of Eurocrypt ’02, Springer LNCS 2332, 2002, pp. 222-237.

14. Rudolf Lidl, Harald Niederreiter: Introduction to finite fields an their applications,
Cambridge University Press, 1994.

15. J. L. Massey: Shift-register synthesis and BCH decoding, IEEE Trans. Information
Theory, IT-15 (1969), pp. 122-127, 1969.

16. Willi Meier, Enes Pasalic, Claude Carlet: Algebraic attacks and decomposition
of Boolean functions, Proceeding of Eurocrypt 2004, LNCS 3027, pp. 474-491,
Springer, 2004.

17. Willi Meier, Othmar Staffelbach: Fast Correlation Attacks on certain Stream Ci-
phers, Journal of Cryptology, pp. 159-176, 1989.

18. A. Schoenhage: Schnelle Multiplikation von Polynomen über Körpern der Charak-
teristik 2, Acta Informatica 7 (1977), pp. 395-398, 1977.

19. L. Simpson, E. Dawson, J. Golic and W. Millan: LILI Keystream Genera-
tor, Proceeding of SAC ’00, pp. 248-261, LNCS 2012, Springer, 2000. See
www.isrc.qut.edu.au/lili/.

20. Volker Strassen: Gaussian Elimination is Not Optimal ; Numerische Mathematik,
vol 13, pp 354-356, 1969.

New Variant of FAA and Minimizing Data Complexity 29

A Proofs

A.1 Proof of Theorem 2

Proof. As L is similar to LT , there exists a unique matrix S ∈ GLn(2) with
LT · S = S · L. This implies the existence of n 2-linear functions s0, . . . , sn−1

with (s0(X), . . . , sn−1(X)) = S ·X. We define ϕL(X) :=
∑n−1

i=0 si(X) ·ωi. As the
functions si are linearly independent and 1,ω,. . ., ωn−1 forms a basis of 2n , ϕL

is clearly a bijection. As ϕL is the sum of linear functions si, ϕL is linear. What
is left is to show that ϕL(Li · X) = ωi · ϕL(X). To do so we define the vector
Ω = (1, ω, . . . , ωn−1)T . Then it is ϕL(X) = 〈Ω,S · X〉 where 〈., .〉 denotes the
usual vector product. As ω is a root of p(x), it is ωn =

⊕n−1
i=0 aiω

i. This implies

ω · ϕL(X) =
n−1⊕
i=0

si(X) · ωi+1 =
n−1⊕
i=0

si(X) · ωi+1 ⊕ sn−1(X) ·
n−1⊕
i=0

aiω
i

= a0sn−1(X) ⊕ (s0(X) ⊕ a1sn−1(X))ω ⊕ . . .

⊕(sn−2(X) ⊕ an−1sn−1(
−→
X))ωn−1

= 〈Ω, (LT · S) ·X〉 = 〈Ω, (S · L) ·X〉 = 〈Ω,S · (L ·X)〉 = ϕL(L ·X).

The rest follows by induction.

A.2 Proof of Theorem 3

Proof. Let F (X1, . . . , Xm) : n1
2 × . . .× nm

2 → 2 with Xi = (x(i)
0 , . . . , x

(i)
ni−1).

we use the 2-linear bijections ϕLi from Theorem 2 to set X̃i := ϕLi(Xi). As
ϕLi and the projection are linear, there exists a linear function �

(i)
j with x

(i)
j =

�
(i)
j (X̃i). By the definition of ϕLi , it is x(i)

j = �
(i)
0 (ωj

i ·X̃i). Observe that ω1, . . . , ωm

depend only on the feedback polynomials p1, . . . , pm and are thus independent of
the choice of F . This defines a function F̃ (X̃1, . . . , X̃m) : 2n1 × . . .× 2nm → 2

by

F̃ := F (�(1)0 (X̃1), . . . , �
(1)
0 (ωn1−1

1 X̃1), . . . , �
(m)
0 (X̃m), . . . , �(m)

0 (ωnm−1
m X̃m)).

We use the fact 2ni ⊆ 2n′ for 1 ≤ i ≤ m to extend the domain from F̃ to
(2n′)m :

H(Y1, . . . , Ym) := F (�(1)0 (Y1), . . . , �
(1)
0 (ωn1−1

1 Y1), . . . , �
(m)
0 (Ym), . . . , �(m)

0 (ωnm−1
m Ym)).

Let Φ(F) := H. If Φ(F1) = Φ(F2), this implies F̃1 = F̃2 and hence F1 = F2.
Thus, Φ is an injection.

It is easy to see that Φ is linear, i.e., Φ(F1 + F2) = Φ(F1) + Φ(F2), and that
Φ(F1 · F2) = Φ(F1) · Φ(F2). Therefore, for showing the second claim it suffices
to restrict on the case m = 1 and F a monomial. We set m := 1, n := n1,
ω := ω1, Y := Y1 and F (X) = F (x0, . . . , xn−1) :=

∏
i∈I xi for I := {i1, . . . , id} ⊆

30 F. Armknecht and G. Ars

{0, . . . , n− 1}. Obviously, it is deg(F) = d. As the function �0 is 2-linear, there
exist elements λ0, . . . , λn−1 ∈ 2n such that �0(X̃) =

∑n−1
j=0 λjX̃

2j

. It is

Φ(F (X)) =
∏
i∈I

�0(ωiY) =
∏
i∈I

(
n−1∑
j=0

λjω
2jiY 2j

))

=
n−1∑

j1,...,jd=0

ω
∑d

k=1 ik2jk ·
d∏

k=1

λjk
· Y

∑d
k=1 2jk =

∑
0≤α≤2n−1
wt(α)≤d

cαY
α

This shows that max{
∑m

i=1 wt(αi) | 0 ≤ αi ≤ 2n′ − 1, cα1,...,αm �= 0} ≤ deg(F).
Now we consider Φ(F) =

∑
α cαY

α. As Φ is an injection, there exists a unique
F̃ (X̃) =

∑
α cαX̃

α. By definition, it is X̃ = ϕL(X). We use this to identify the
sets { 2n → 2n} and { n

2 → 2n}. From Theorem 2, we known that ϕL

is linear and thus coefficients μ0, . . . , μn−1 ∈ 2n exist with X̃ = ϕL(X) =
ϕL(x0, . . . , xn−1) =

∑n−1
i=0 μi · xi. As all fields have characteristic 2 and xi ∈ 2,

it is X̃2j

= ϕ2j

L (x0, . . . , xn−1) =
∑n−1

i=0 μ
2j

i · xi for all j. This implies for all
α = 2α1 + . . .+ 2αd that

X̃α =
d∏

k=1

X̃2αk =
d∏

k=1

(
n−1∑
i=0

μ2αk

i · xi)︸ ︷︷ ︸
linear in (x0,...,xn−1)

= Pα(x0, . . . , xn−1) ∈ 2n [x0, . . . , xn−1]

with degPα ≤ d = wt(α). For F̃ =
∑

α cαX̃
α this gives P (x0, . . . , xn−1) :=∑

α Pα(x0, . . . , xn−1).
For all (x0, . . . , xn−1) ∈ n

2 , it is P (x0, . . . , xn−1) = F (x0, . . . , xn−1) ∈ 2

and therefore P = F and degF = degP ≤ max{wt(α) | cα �= 0}.

A.3 Proof of Lemma 2

Proof. First, we observe that Re,F ∪ (Re ∩RF) = RF . Furtheron, we claim that
me,F and m′ := m(Re∩RF) are co-prime. Then Lemma 1 concludes the proof.

What is left is to show that me,F and m′ are co-prime. Assume, that this is
not the case. Then there exists an irreducible polynomial f �≡ 1 which divides
me,F and m′. As me,F and m′ are minimal, there exists ωα ∈ Re,F and ωβ ∈
Re ∩ RF with f(ωα) = f(ωβ) = 0 and wt(β) ≤ e < wt(α). Due to Theorem
1, this implies β = 2k · α mod (2n′ − 1) and therefore e < wt(α) = wt(2kα
mod (2n′ − 1)) = wt(β) ≤ e which is a contradiction.

The second claim is true because of ΩXi,F = ΩF ∩ΩXi,d and Lemma 1.

A.4 Proof of Theorem 4

Proof. Let p(x) =
∑T

i=0 λix
i be an arbitrary polynomial. As ΦL is linear, we

have for all t ≥ 0:

New Variant of FAA and Minimizing Data Complexity 31

ΦL(
T⊕

i=0

λiF (Lt+i · (X1, . . . , Xm))) =
T⊕

i=0

λiΦL(F (Lt+i · (X1, . . . , Xm)))

=
T⊕

i=0

λi

(⊕
α

cαω
(t+i)·αY α

)
=

∑
α

ωα·i︸︷︷︸

=0

cα (
T⊕

i=0

λi(ωα)t

︸ ︷︷ ︸
=p(ωα)

Y α

Let G :=
⊕T

i=0 λiFt+i. By Theorem 3, it is

deg(
T⊕

i=0

λiF (Lt+i · (X1, . . . , Xm)) = max{wt(α) | cαp(ωα) �= 0}.

This shows (8). The last claim follows from the fact that Ω(e,d],F ⊆ ΩF .

B A Toy Example for m(e,d],F �= mF

The general situation is
0 = Ft︸︷︷︸

deg=d

⊕ Gt︸︷︷︸
deg=e

with e < d. Let e = 1, d = 2 and Ft := xt ·xt+1 with xt being the LFSRs output
at clock t. The feedback is defined by xt+2 := xt ⊕ xt+1. The first outputs of F
are:

Clock Ft

0 x0 · x1

1 x1 · x2 = x1 · (x0 ⊕ x1) = x1 ⊕ x0 · x1

2 x2 · x3 = (x0 ⊕ x1) · x0 = x0 ⊕ x0 · x1

3 x3 · x4 = x0 · x1

.

It is easy to see that

mF = 1 + x3 ⇒ Ft ⊕ Ft+3 = 0
m(1,2],F = 1 + x ⇒ deg(Ft ⊕ Ft+1) = 1 = e

In this case, the successive data complexity can be reduced from 3 (using mF)
to 1 (using m(e,d],F).

C The Minimum Successive Data Complexity in the
Case of E0

The E0 keystream generator which is part of the Bluetooth standard, uses four
LFSRs A, B, C and D of lengths na = 25, nb = 31, na = 33, na = 39, We denote

32 F. Armknecht and G. Ars

their outputs at clock t by at, bt, ct and dt and use the equation derived in [2]. The
according F is F = σ4

t ⊕σ2
t ·σ2

t+1 where σ4
t = atbtctdt and σ2

t = atbt⊕atct⊕atdt⊕
btct⊕btdt⊕ctdt. By Lemma 2, it is deg(m(e,d],F) = deg(mF)−deg(gcd(me,mF)).
It was estimated in [3] that deg(mF) = 8, 822, 188. Furtheron, an upper bound
for deg(gcd(me,mF)) is the number of monomials of degree ≤ 3, which can
occur in the system of equations given by F . We calculated that this number
is ≈ 326, 080. This shows that the number of successive bits required for one
equation of degree 3 is ≈ 8, 496, 108.

Equivalent Keys in HFE, C∗, and Variations

Christopher Wolf and Bart Preneel

K.U.Leuven, ESAT-COSIC,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
{Christopher.Wolf, Bart.Preneel}@esat.kuleuven.ac.be,

chris@Christopher-Wolf.de

http://www.esat.kuleuven.ac.be/cosic/

Abstract. In this article, we investigate the question of equivalent keys
for two Multivariate Quadratic public key schemes HFE and C∗−− and
improve over a previously known result, which appeared at PKC 2005.
Moreover, we show a new non-trivial extension of these results to the
classes HFE-, HFEv, HFEv-, and C∗−−, which are cryptographically
stronger variants of the original HFE and C∗ schemes. In particular, we
are able to reduce the size of the private — and hence the public — key
space by at least one order of magnitude and several orders of magnitude
on average. While the results are of independent interest themselves as
they broaden our understanding of Multivariate Quadratic schemes, we
also see applications both in cryptanalysis and in memory efficient im-
plementations.

Keywords: Multivariate Quadratic Equations, Public Key signature,
Hidden Field Equations, HFE, HFE-, HFEv, HFEv-, C∗, C∗−−

1 Introduction

In the last 15 years, several schemes based on the problem of Multivariate
Quadratic equations have been proposed. The most important ones certainly
are C∗ [9] and Hidden Field Equations (HFE, [13]) plus their variations C∗−−,
HFE-, HFEv, and HFEv- [7,12,13]. Both have been used to construct signature
schemes, namely C∗−− in Sflash [3], and HFEv- in Quartz [2]. As for all systems
based on MQ-equations, the public key has the form

pi(x1, . . . , xn) :=
∑

1≤j≤k≤n

γi,j,kxjxk +
n∑

j=1

βi,jxj + αi ,

for 1 ≤ i ≤ m; 1 ≤ j ≤ k ≤ n and αi, βi,j , γi,j,k ∈ F (constant, linear, and
quadratic terms). We write the set of all such equations as MQ(Fn,Fm). More-
over, the private key consists of the triple (S,P ′, T) where S ∈ Aff(Fn), T ∈
Aff(Fm) are affine transformations (cf Sect. 2.2) and P ′ ∈ MQ(Fn,Fm) is a
polynomial-vector P ′ := (p′1, . . . , p′m) with m components; each component is
a polynomial in n variables x′1, . . . , x

′
n. Throughout this paper, we will denote

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 33–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 C. Wolf and B. Preneel

components of this private vector P ′ by a prime ′. In contrast to the public poly-
nomial vector P ∈ MQ(Fn,Fm), the private polynomial vector P ′ does allow
an efficient computation of x′1, . . . , x′n for given y′1, . . . , y′m. Hence, the goal of
MQ-schemes is that this inversion should be hard if the public key P alone is
given. The main difference between MQ-schemes lies in their special construc-
tion of the central equations P ′ and consequently the trapdoor they embed into
a specific class of MQ-problems.

In this paper, we investigate the question of equivalent keys for selected
MQ-schemes. Due to space limitations, we concentrate on HFE, HFE-, HFEv,
HFEv-, C∗, and C∗−−. As outlined above, they are quite important as they have
been used in constructions submitted to the NESSIE project [10]. However, we
want to point out that the techniques outlined here are quite general and can
also be applied to other schemes. The first paper on the topic of equivalent keys
is [19]. In this paper, we introduce the Frobenius sustainer and are hence able
to improve over the results from [19]. Moreover, this paper is the first to deal
with variations of MQ-schemes, cf [20] for the terminology of MQ-trapdoors.
To this aim, we needed to develop the reduction sustainer, as we would not have
been able to deal with the HFE- and the C∗−− modification otherwise.

This paper is outlined as follows: after this general introduction, we move on
to the necessary mathematical background in Sect. 2. This includes particularly
a definition of the term equivalent keys. In Sect. 3, we concentrate on a subclass
of affine transformations, denoted sustaining transformations, which can be used
to generate equivalent keys. These transformations are applied to different varia-
tions of Multivariate Quadratic equations in Sect. 4. This paper concludes with
Sect. 5, cf [19] for results on Unbalanced Oil and Vinegar schemes (UOV). A
general overview of MQ-schemes can be found in [20].

2 Mathematical Background

In this section, we outline some observations useful in the remainder of this
paper.

2.1 Basic Definitions

We start with a formal definition of the term “equivalent private keys”:

Definition 1. We call two private keys

(T,P ′, S), (T̃ , P̃ ′, S̃) ∈ Aff(Fm) ×MQ(Fn,Fm) × Aff(Fn)

“equivalent” if they lead to the same public key, i.e., if we have

T ◦ P ′ ◦ S = P = T̃ ◦ P̃ ′ ◦ S̃ .

In order to find equivalent keys, we consider the following transformations:

Equivalent Keys in HFE, C∗, and Variations 35

Definition 2. Let (S,P ′, T) ∈ Aff(Fm)×MQ(Fn,Fm)×Aff(Fn), and σ, σ−1 ∈
Aff(Fn) plus τ, τ−1 ∈ Aff(Fm). Moreover, let

P = T ◦ τ−1 ◦ τ ◦ P ′ ◦ σ ◦ σ−1 ◦ S (1)

We call the pair (σ, τ) ∈ Aff(Fn)×Aff(Fm) “sustaining transformations” for an
MQ-system if the “shape” of P ′ is invariant under the transformations σ and
τ . For short, we write (σ, τ) • (S,P ′, T) for (1) and (σ, τ) sustaining transfor-
mations.

Remark 1. In the above definition, the meaning of “shape” is still open. In fact,
its meaning has to be defined for each MQ-system individually. For example, in
HFE (cf Sect. 4.1), it is the bounding degree d ∈ N of the polynomial P ′(X ′).
In the case of C∗, the “shape” is the fact that we have a single monomial with
factor 1 as the central equation (cf Sect. 4.2). However, for σ, τ sustaining trans-
formations, we are now able to produce equivalent keys for a given private key by
(σ, τ) • (S,P ′, T). A trivial example of sustaining transformations is the identity
transformation, i.e., to set σ = τ = id.

Lemma 1. Let (σ, τ) be sustaining transformation. If G := (σ, ◦) and H :=
(τ, ◦) form a subgroup of the affine transformations, they produce equivalence
relations within the private key space.

Proof. We start with a proof of this statement for G := (σ, ◦). First, we have
reflexivity as the identity transformation is contained in G. Second, we have sym-
metry as subgroups are closed under inversion. Third, we also have transitivity as
subgroups are closed under composition. Therefore, the group G partitions the
private key space into equivalence classes. The proof for H := (τ, ◦) is analogous.

Remark 2. We want to point out that the above proof does not use special
properties of sustaining transformations, but the fact that these are a subgroup
of the group of affine transformations. Hence, the proof does not depend on the
term “shape” and is therefore valid even if the latter is not rigorously defined yet.
In any case, instead of proving that sustaining transformations form a subgroup
of the affine transformations, we can also consider normal forms of private keys.
As we see below, normal forms have some advantages to avoid double counts in
the private key space.

After these initial observations over equivalent keys, we concentrate on bijec-
tions between ground fields and their extension fields as both HFE and C∗ use
an extension field to define their central equations P ′. Let F be a finite field with
q := |F| elements. Using a polynomial i(t) ∈ F[t], irreducible over F, we generate
an extension field E := F[t]/i(t) of dimension n. This means we view elements
of E as polynomials in t of degree less than n. Addition and multiplication are
defined as for polynomials modulo i(t). In addition, we can view elements from
E as vectors over the vector-space Fn. We will therefore view elements a ∈ E
and b ∈ Fn as

a := αn−1t
n−1 + . . .+ α1t+ α0 and b := (β1, . . . , βn) ,

36 C. Wolf and B. Preneel

for αi−1, βi ∈ F with 1 ≤ i ≤ n. Moreover, we define the canonical bijection
between E and Fn by identifying the coefficients αi−1 ↔ βi. We use both this
bijection φ : E → Fn and its inverse φ−1 : Fn → E.

2.2 Affine Transformations

In the context of affine transformations, the following lemma proves useful:

Lemma 2. Let F be a finite field with q := |F| elements. Then we have
∏n−1

i=0

qn − qi invertible (n× n)-matrices over F.

Next, we recall some basic properties of affine transformations over the finite
fields F and E.

Definition 3. Let MS ∈ Fn×n be an invertible (n × n) matrix and vs ∈ Fn a
vector and let S(x) := MSx+vs. We call this the “matrix representation” of the
affine transformation S.

Definition 4. Moreover, let s1, . . . , sn be n polynomials of degree 1 at most
over F, i.e., si(x1, . . . , xn) := βi,1x1 + . . . + βi,nxn + αi with 1 ≤ i, j ≤ n and
αi, βi,j ∈ F. Let S(x) := (s1(x), . . . , sn(x)) for x := (x1, . . . , xn) as a vector over
Fn. We call this the “multivariate representation” of the affine transformation
S.

Remark 3. The multivariate and the matrix representation of an affine transfor-
mation S are interchangeable. We only need to set the corresponding coefficients
to the same values: (MS)i,j ↔ βi,j and (vS)i ↔ αi for 1 ≤ i, j ≤ n.

In addition, we can also use the “univariate representation” over the extension
field E of the transformation S.

Definition 5. Let 0 ≤ i < n and A,Bi ∈ E. Moreover, let the polynomial
S(X) :=

∑n−1
i=0 BiX

qi

+ A be an affine transformation. We call this the “uni-
variate representation” of the affine transformation S(X).

Lemma 3. An affine transformation in univariate representation can be trans-
fered efficiently in multivariate representation and vice versa.

Proof. This lemma follows from [8, Lemmata 3.1 and 3.2] by a simple extension
from the linear to the affine case.

3 Sustaining Transformations

In this section, we discuss several examples for sustaining transformations. In
addition, we will consider their effect on the central transformation P ′. The
authors are not convinced that the transformations stated here are the only ones
possible but encourage the search for other and maybe more powerful sustaining
transformations.

Equivalent Keys in HFE, C∗, and Variations 37

3.1 Additive Sustainer

For n = m, let σ(X) := (X + A) and τ(X) := (X + A′) for some elements
A,A′ ∈ E. Moreover, as long as they keep the shape of the central equations P ′

invariant, they form sustaining transformations.
In particular, we are able to change the constant parts vs, vt ∈ Fn or VS , VT ∈

E of the two affine transformations S, T ∈ Aff(Fn) to zero, i.e., to obtain a new
key (Ŝ, P̂ ′, T̂) with Ŝ, T̂ ∈ Hom(Fn).

Remark 4. This is a very useful result for cryptanalysis as it allows us to “col-
lect” the constant terms in the central equations P ′. For cryptanalytic pur-
poses, we therefore need only to consider the case of linear transformations
S, T ∈ Hom(Fn).

The additive sustainer also works if we interpret it over the vector space Fn

rather than the extension field E. In particular, we can also handle the case
n �= m now. However, in this case it may happen that we have a′ ∈ Fm and
consequently τ : Fm → Fm. Nevertheless, we can still collect all constant terms
in the central equations P ′.

If we look at the central equations as multivariate polynomials, the additive
sustainer will affect the constants αi and βi,j ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
A similar observation is true for central equations over the extension field E:
in this case, the additive sustainer affects the additive constant A ∈ E and the
linear factors Bi ∈ E for 0 ≤ i < n.

3.2 Big Sustainer

We now consider multiplication in the (big) extension field E, i.e., we have
σ(X) := (BX) and τ(X) := (B′X) for B,B′ ∈ E∗. Again, we obtain a sustain-
ing transformation if this operation does not modify the shape of the central
equations as (BX), (B′X) ∈ Aff(Fn).

The big sustainer is useful if we consider schemes defined over extension fields
as it does not affect the overall degree of the central equations over this extension
field.

3.3 Small Sustainer

We now consider multiplications over the (small) ground field F, i.e., we have
σ(x) := Diag(b1, . . . , bn)x and τ(x) := Diag(b′1, . . . , b

′
m)x for the coefficients

b1, . . . , bn, b
′
1, . . . , b

′
m ∈ F∗ and Diag(b) the diagonal matrix on a vector b ∈ Fn

and b′ ∈ Fm, respectively.
In contrast to the big sustainer, the small sustainer is useful if we consider

schemes which define the central equations over the ground field F as it only
introduces a scalar factor in the polynomials (p′1, . . . , p

′
m).

3.4 Permutation Sustainer

For the transformation σ, this sustainer permutes input-variables of the central
equations whilefor the transformation τ , it permutes the polynomials of the cen-

38 C. Wolf and B. Preneel

tral equations themselves. As each permutation has a corresponding, invertible
permutation-matrix, both σ ∈ Sn and τ ∈ Sm are also affine transformations.
The effect of the central equations is limited to a permutation of these equations
and their input variables, respectively.

3.5 Gauss Sustainer

Here, we consider Gauss operations on matrices, i.e., row and column permu-
tations, multiplication of rows and columns by scalars from the ground field F,
and the addition of two rows/columns. As all these operations can be performed
by invertible matrices; they form a subgroup of the affine transformations and
are hence a candidate for a sustaining transformation.

The effect of the Gauss Sustainer is similar to the permutation sustainer and
the small sustainer. In addition, it allows the addition of multivariate quadratic
polynomials. This will not affect the shape of some MQ-schemes.

The sustainers given so far have been already outlined in [19]. To the knowl-
edge of the authors, the following sustainers are new and to the knowledge to
the authors have not been considered previously in the literature.

3.6 Frobenius Sustainer

Definition 6. Let F be a finite field with q := |F| elements and E its
n-dimensional extension. Moreover, let H := {i ∈ Z : 0 ≤ i < n}. For a, b ∈ H

we call σ(X) := Xqa

and τ(X) := Xqb

Frobenius transformations.

Obviously, Frobenius transformations are linear transformations with respect to
F. The following lemma establishes that they also form a group:

Lemma 4. Frobenius transformations are a subgroup in Hom(Fn).

Proof. First, Frobenius transformations are linear transformations, so associa-
tivity is inherited from them. Second, the set H from Def. 6 is not empty for
any given F and n ∈ N. Hence, the corresponding set of Frobenius transforma-
tions is not empty either. So all left to show is that for any given Frobenius
transformations σ, τ , the composition σ ◦τ−1 is also a Frobenius transformation.

Let σ(X) := Xqa

and τ(X) := Xqb

for some a, b ∈ H . Working in the
multiplicative group E∗ we observe that we need qb·B′ ≡ 1 (mod qn−1) for B′ to
obtain the inverse function of τ . We notice that B′ := qb′ for b′ := n−b (mod n)
yields the required and moreover τ−1 := Xqb′

is a Frobenius transformation as
b′ ∈ H .

So we can write σ(X)◦τ−1(X) = Xqa+b′
. If a+b′ < n we are done. Otherwise

n ≤ a+ b′ < 2n, so we can write qa+b′ = qn+s for some s ∈ H . Again, working
in the multiplicative group E∗ yields qn+s ≡ qs (mod qn − 1) and hence, we
established that σ ◦ τ−1 is also a Frobenius transformation. This completes the
proof that all Frobenius transformations form a group.

Frobenius transformations usually change the degree of the central equation
P ′. But taking τ := σ−1 cancels this effect and hence preserves the degree of P ′.

Equivalent Keys in HFE, C∗, and Variations 39

Therefore, we can speak of a Frobenius sustainer (σ, τ). So there are n Frobenius
sustainers for a given extension field E.

It is tempting to extend this result to the case of powers of the characteristic
of F. However, this is not possible as xcharF is not a linear transformation in F
for q �= p.

Remark 5. We want to point out that all six sustainers presented so far form
groups and hence partition the private key space into equivalence classes (cf
Lemma 1).

3.7 Reduction Sustainer

Reduction sustainers are quite different from the transformations studied so
far, because they are applied with a different construction of the trapdoor
of P . In this new construction, we define the public key equations as P :=
R ◦ T ◦ P ′ ◦ S where R : Fn → Fn−r denotes a reduction or projection. In ad-
dition, we have S, T ∈ Aff(Fn) and P ′ ∈ MQ(Fn,Fn). Less loosely speaking,
we consider the function R(x1, . . . , xn) := (x1, . . . , xn−r), i.e., we neglect the
last r components of the vector (x1, . . . , xn). Although this modification looks
rather easy, it proves powerful to defeat a wide class of cryptographic attacks
against several MQ-schemes, including HFE and C∗, e.g., the attack introduced
in [5].

For the corresponding sustainer, we consider the affine transformation T in
matrix representation, i.e., we have T (x) := Mx+ v for some invertible matrix
M ∈ Fm×m and a vector v ∈ Fm. We observe that any change in the last r
columns of M or v does not affect the result of R (and hence P). Hence, we
can choose these last r columns without affecting the public key. Inspecting
Lemma 2, we see that this gives us a total of

qr
n−1∏

i=n−r−1

(
qn − qi

)
choices for v and M , respectively, that do not affect the public key equations P .

When applying the reduction sustainer together with other sustainers, we
have to make sure that we do not count the same transformation twice, cf the
corresponding proofs.

4 Application to Multivariate Quadratic Schemes

In this section, we show how to apply the sustainers from the previous section to
several MQ-schemes. Due to space limitations in this paper, we will only outline
some central properties of each scheme and sketch the corresponding proofs.

4.1 Hidden Field Equations

The Hidden Field Equations (HFE) have been proposed by Patarin [13].

40 C. Wolf and B. Preneel

Definition 7. Let E be a finite field and P(X) a polynomial over E. For

P (X) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
qi+qj

+
∑

0≤k≤d

qk≤d

BkX
qk

+A

where

⎧⎨⎩
Ci,jX

qi+qj

for Ci,j ∈ E are the quadratic terms,
BkX

qk

for Bk ∈ E are the linear terms, and
A for A ∈ E is the constant term

and a degree d ∈ N, we say the central equations P ′ are in HFE-shape.

Due to the special form of P (X), we can express it as a Multivariate Quadratic
equation P ′ over F, cf [13]. Moreover, as the degree of the polynomial P is
bounded by d, this allows efficient inversion of the equation P (X) = Y for given
Y ∈ E. So the shape of HFE is in particular this degree d of the private poly-
nomial P . Moreover, we observe that there are no restrictions on its coefficients
Ci,j , Bk, A ∈ E for i, j, k ∈ N and qi, qi + qj ≤ d. Hence, we can apply both the
additive and the big sustainer (cf sect. 3.1 and 3.2) without changing the shape
of this central equation.

Theorem 1. For K := (S, P, T) ∈ Aff(Fn) × E[X] × Aff(Fn) a private key in
HFE, we have

n.q2n(qn − 1)2

equivalent keys.

Proof. To prove this lemma, we consider normal forms of private keys: let S̃ ∈
Aff(Fn) being the affine transformation we start with. First we compute Ŝ(X) :=
S̃(X)− S̃(0), i.e., we apply the additive sustainer. Obviously, we have Ŝ(0) = 0
after this transformation and hence a special fix-point. Second we define S(X) :=
Ŝ(X).Ŝ(1)−1, i.e., we apply the big sustainer. As the transformation Ŝ : E → E
is a bijection and we have Ŝ(0) = 0, we know that Ŝ(1) must be non-zero. Hence,
we have S(1) = 1, i.e., we add a new fix-point but still keep the old fix-point
as we have S(0) = Ŝ(0) = 0. Similar we can compute an affine transformation
T (X) with T (0) = 0 and T (1) = 1 as a normal form of the affine transformation
T̃ ∈ Aff(Fn). Note that both the additive sustainer and the big sustainer keep
the degree of the central polynomial P (X) so we can apply both sustainers on
both sides without changing the “shape” of P (X).

Applying the Frobenius sustainer is a little more technical. First we observe
that this sustainer keeps the fix-points S(0) = T (0) = 0 and S(1) = T (1) = 1 so
we are sure we still deal with equivalence classes, i.e., each given private key has
a unique normal form, even with the Frobenius sustainer applied. To this aim
we pick an element C ∈ E\{0, 1} with g := S(C) is a generator of E∗, i.e., we
have E∗ = {gi | 0 ≤ i < qn}. As E is a finite field we know that such an element
g exists. Given that S is injective we know that we can find the corresponding

C ∈ E\{0, 1}. Now we compute gi := S(C)
qi

for 0 ≤ i < n. Using any total
ordering “<”, we obtain gc := min{g0, . . . , gn−1} for some c ∈ N as the smallest

Equivalent Keys in HFE, C∗, and Variations 41

element of this set. One example of such a total ordering would be to use a
bijection between the sets E ↔ {0, . . . , qn − 1} and then exploiting the ordering
of the natural numbers to derive an ordering on the elements of the extension field
E. Finally, we define S(X) := [S(X)]q

c

as new affine transformation. To cancel
the effect of the Frobenius sustainer, we moreover define T (X) := [T (X)]q

n−c

.
Hence, we have now computed a unique normal form for a given private key.

Moreover, we can “reverse” these computations and derive an equivalence class
of size n.q2n.(qn − 1)2 this way as we have

(BXqc

+A,B′Xqn−c

+A′) • (S,P ′, T)

forB,B′ ∈ E∗, A,A′ ∈ E and 0 ≤ c < n .

Remark 6. To the knowledge of the authors, the additive sustainer for HFE has
first been reported in [14] and used there for reducing the affine transformations
to linear ones. In addition, a weaker version of the above theorem can be found
in [19].

For q = 2 and n = 80, the number of equivalent keys per private key is
≈ 2326. In comparison, the number of choices for S and T is ≈ 212,056. This
special choice of parameters has been used in HFE Challenge 1 [13].

HFE- The class HFE- is the original HFE-class with the reduction modification
(cf Sect. 3.7).

Theorem 2. For K := (S, P, T) ∈ Aff(Fn) × E[X] × Aff(Fn) a private key in
HFE and a reduction parameter r ∈ N we have

n.q2n(qn − 1)(qn−r − 1)
n−1∏

i=n−r−1

(qn − qi)

equivalent keys and the key-space of HFE- can be reduced by this number.

Proof. This proof uses the same ideas as the proof of Thm. 1 to obtain a normal
form of the affine transformation S, i.e., applying the additive sustainer, the big
sustainer and the Frobenius sustainer on this side. Hence, we have a reduction
by n.qn(qn − 1) keys here.

For the affine transformation T , we also have to take the reduction sustainer
into account: we use T̃ (X) : Fn → Fn−r and fix T̃ (0) = 0 by applying the addi-
tive sustainer and T̃ (1) = 1 by applying the big sustainer, which gives us qn−r

and qn−r − 1 choices, respectively. To avoid double counting with the reduction
sustainer, all computations were performed in Ẽ := GF(qn−r) rather than E.
Again, we are able to compute a normal form for a given private key and reverse
these computations to obtain the full equivalence class for any given private
key in normal form. Moreover, we observe that the resulting transformation T̃
actually allows for qr

∏n−1
i=n−r−1(q

n − qi) possible choices for the original trans-
formation T : Fn → Fn (reduction sustainer) without affecting the output of

42 C. Wolf and B. Preneel

T̃ . Hence, there are a total of qn−r.qr.(qn−r − 1).
∏n−1

i=n−r−1(q
n − qi) possibil-

ities for the transformation T without changing the output of the private key
triple (S, P ′, T). Multiplying out the intermediate results for S and T yields the
theorem.

For q = 2, r = 7 and n = 107, the number of equivalent keys for each private
key is ≈ 22129. In comparison, the number of choices for S and T is ≈ 223,108. This
special choice of parameters has been used in the repaired version Quartz-7m of
Quartz [2,17].

HFEv. The following modification, due to [7], uses a different form for the
central equations P ′.

Definition 8. Let E be a finite field with degree n′ over F, the number of vinegar
variables v ∈ N, and P(X) a polynomial over E. Moreover, let (z1, . . . , zv) :=
sn−v+1(x1, . . . , xn), . . . , sn(x1, . . . , xn) for si the polynomials of S(x) in multi-
variate representation and X ′ := φ−1(x′1, . . . , x

′
n′), using the canonical bijection

φ−1 : Fn → E and x′i := si(x1, . . . , xn) for 1 ≤ i ≤ n′ as hidden variables. Then
define the central equation as

P ′
z1,...,zv

(X ′) :=
∑

0≤i,j≤d

qi+qj≤d

Ci,jX
′qi+qj

+
∑

0≤k≤d

qk≤d

Bk(z1, . . . , zv)X ′qk

+A(z1, . . . , zv)

where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ci,jX
′qi+qj

for Ci,j ∈ E are the quadratic
terms,

Bk(z1, . . . , zv)X ′qk

for Bk(z1, . . . , zv) depending
linearly on z1, . . . , zv and

A(z1, . . . , zv) for A(z1, . . . , zv) depending
quadratically on z1, . . . , zv

and a degree d ∈ N, we say the central equations P ′ are in HFEv-shape.

The condition that the Bk(z1, . . . , zv) are affine functions (i.e., of degree 1 in
the zi at most) and A(z1, . . . , zv) is a quadratic function over F ensures that the
public key is still quadratic over F.

Theorem 3. For K := (S, P, T) ∈ Aff(Fn) × E[X] × Aff(Fm) a private key in
HFEv, v ∈ N the number of vinegar variables, E an n′-dimensional extension of
F where n′ := n− v = m we have

n′qn+n′
(qn′ − 1)2

v−1∏
i=0

(qv − qi)

equivalent keys. Hence, the key-space of HFEv can be reduced by this number.

Proof. In contrast to HFE-, the difficulty now lies in the computation of a nor-
mal form for the affine transformation S rather than the affine transformation T .

Equivalent Keys in HFE, C∗, and Variations 43

For the latter, we can still apply the big sustainer and the additive sustainer and
obtain a total of qm.(qm − 1) = qn′

.(qn′ − 1) equivalent keys for a given trans-
formation T . Moreover, the HFEv modification does not change the “absorbing
behaviour” of the central polynomial P and hence, the proof from Thm. 1 is still
applicable.

Instead, we have to concentrate on the affine transformation S here. To sim-
plify the following argument, we apply the additive sustainer on S and obtain a
linear transformation. This reduces the key-space by qn. To make sure that we
do not count the same linear transformation twice, we consider a normal form
for the now (linear) transformation S(

Em Fm
v

Gv
m Iv

)
with Em ∈ Fm×m, Fm

v ∈ Fm×v, Gv
m ∈ Fv×m

In the above definition, we also have Iv the identity matrix in Fv×v. For each
invertible matrix MS, we have a unique matrix(

Im 0
0 Hv

)
with an invertible matrix Hv ∈ Fv×v.

which transfers MS to the normal form from above. Again, Im is an identity
matrix in Fm×m. This way, we obtain

∏v−1
i=0 (qv − qi) equivalent keys in the “v”

modification alone.
For the HFE component over E, we can now apply the big sustainer to S and

obtain a factor of (qn′ − 1). In addition, we apply the Frobenius sustainer to the
HFE component, which yields an additional factor of n′. Note that the Frobenius
sustainer can be applied both to S and T , and hence, we can make sure that it
cancels out and does not affect the degree of the central polynomial Pz1,...,zv(X).
Again, we can reverse all computations and therefore, obtain equivalence classes
of equal size for each given private key in normal form.

For the case q = 2, v = 7 and n = 107, the number of equivalent keys for each
private is ≈ 2460. In comparison, the number of choices for S and T is ≈ 221,652.

HFEv- Here, we combine both the HFEv and the HFE- modification to obtain
HFEv-.

Theorem 4. For K := (S, P, T) ∈ Aff(Fn) × E[X] × Aff(Fm+v) a private key
in HFEv, v ∈ N vinegar variables, a reduction parameter r ∈ N and E an n′-
dimensional extension of F where n′ := n− v and n′ = m+ r we have

n′qrq2n′
(qn′ − 1)2

v−1∏
i=0

(qv − qi)
n−1∏

i=n−r−1

(qn − qi)

equivalent keys and the key-space of HFEv can be reduced by this number.

Proof. This proof is a combination of the two cases HFEv and HFE-. Given
that the difficulty for the HFE- modification was in the T -transformation while
the difficulty of HFEv was in the S-transformation, we can safely combine the
known sustainers without any double-counting.

44 C. Wolf and B. Preneel

For the case q = 2, r = 3, v = 4 and n = 107, n′ := 100, the number of
redundant keys is ≈ 2690. In comparison, the number of choices for S and T is
≈ 222,261. This special choice of parameters has been used in the original version
of Quartz [2], as submitted to NESSIE [10].

4.2 Class of C∗ Schemes

As HFE, the scheme C∗, due to Matsumoto and Imai [9], uses a finite field F
and an extension field E. However, the choice of the central equation is far more
restrictive than in HFE as we only have one monomial here.

Definition 9. Let E be an extension field of dimension n over the finite field F
and λ ∈ N an integer with gcd(qn−1, qλ+1) = 1. We then say that the following
central equation is of C∗-shape:

P ′(X ′) := X ′qλ+1 .

The restriction gcd(qn − 1, qλ +1) = 1 is necessary first to obtain a permutation
polynomial and second to allow efficient inversion of P ′(X ′). In this setting, we
cannot apply the additive sustainer, as this monomial does not allow any linear
or constant terms. Moreover, the monomial requires a factor of one. Hence, we
have to preserve this property. At present, the only sustainers suitable seem to
be the big sustainer (cf Sect. 3.2) and the Frobenius sustainer (cf Sect. 3.6). We
use both in the following

Theorem 5. For K := (S, P, T) ∈ Aff(Fn) × E[X] × Aff(Fn) a private key in
C∗ we have

n(qn − 1)

equivalent keys. Hence, the key-space of C∗ can be reduced by this number.

Proof. To prove this statement, we consider normal forms of keys in C∗. In
particular, we concentrate on a normal form of the affine transformation S where
S is in univariate representation. As for HFE and w.l.o.g., let B := S(1) be a non-
zero coefficient on position 1. Unlike to HFE we cannot enforce that S(0) = 0, so
we may have S(1) = 0. However, in this case set B := S(0). Applying σ−1(X) :=
B−1X will ensure a normal form for S. In order to “repair” the monomial P (X),
we have to apply an inverse transformation to T . So let τ(X) := (Bqλ+1)−1X .
This way we obtain

P = T ◦ τ−1 ◦ τ ◦ P ◦ σ ◦ σ−1 ◦ S
= T̃ ◦ (B(qλ+1).(−1).Bqλ+1.Xqλ+1) ◦ S̃
= T̃ ◦ P ◦ S̃ ,

where S̃ is in normal form. In contrast to HFE (cf Thm. 1), we cannot chose
the transformations σ and τ independently: each choice of σ implies a particular
τ and vice versa. However, the fix point 1 is still preserved by the Frobenius
sustainer and so we can apply this sustainer on the transformation S. As for

Equivalent Keys in HFE, C∗, and Variations 45

HFE, we compute a normal form for a given generator and a total ordering of
E; again, we “repair” the monomial Xqλ+1 by applying an inverse Frobenius
sustainer to T and hence have

(BXqc

, B−qλ−1Xqn−c

) • (S, P, T) where B ∈ E∗ and 0 ≤ c < n for c ∈ N

which leads to a total of n(qn−1) equivalent keys for any given private key. Since
all these keys form equivalence classes of equal size, we reduced the private key
space of C∗ by this factor.

Remark 7. Patarin observed that it is possible to derive equivalent keys by
changing the monomial P [12]. As the aim of this paper is the study of equivalent
keys by chaining the affine transformations S, T alone, we did not make use of
this property. A weaker version of the above theorem can be found in [19].

Moreover, we observed in this section that it is not possible for C∗ to change
the transformations S, T from affine to linear. In this context, we want to point
out that Geiselmann et al. showed how to reveal the constant parts of these
transformations [6]. Hence, having S, T affine instead of linear does not seem to
enhance the overall security of C∗.

For q = 128 and n = 67, we obtain ≈ 2469 equivalent private keys per class.
The number of choices for S, T is ≈ 263,784 in this case.

C∗−− We want to note that C∗ itself is insecure, due to a very efficient attack
by Patarin [11]. However, for well-chosen parameters q, r, its variation C∗−− is
actually secure: as in the case of HFE and HFE-, we use the original C∗ scheme
and apply the reduction modification from Sect. 3.7.

Theorem 6. For K := (S, P, T) ∈ Aff(Fn) × E[X] × Aff(Fn) a private key in
C∗ and a reduction number r ∈ N we have

n.(qn − 1)qr
n−1∏

i=n−r−1

(qn − qi)

equivalent keys and the key-space of C∗−− can be reduced by this number.

Proof. This proof is similar to the one of C∗, i.e., we apply both the Frobenius
and the big sustainer to S and the corresponding inverse sustainer to the trans-
formation T . This way, we “repair” the change on the central monomial Xqλ+1.
All in all, we obtain a factor of n.(qn−1) equivalent keys for a given private key.

Next we observe that the reduction sustainer applied to the transformation
T alone allows us to change the last r rows of the vector vT ∈ Fn and also
the last r rows of the matrix MT ∈ Fn×n. This yields an additional factor of
qr

∏n−1
i=n−r−1(q

n − qi) on this side.
Note that the changes on the side of the transformation S and the changes

on the side of the transformation T actually are independent: the first computes
a normal form for S while the second computes a normal form on T . Hence, we
may multiply both factors to obtain the overall number of independent keys.

46 C. Wolf and B. Preneel

For q = 128, r = 11 and n = 67, we obtain ≈ 26180 equivalent private keys
per class. The number of choices for S, T is ≈ 263,784 in this case. This particular
choice of parameters has been used in Sflashv3 [3].

5 Conclusions

In this paper, we showed through the examples of Hidden Field Equations (HFE)
and C∗ that Multivariate Quadratic systems allow many equivalent private keys
and hence have a lot of redundancy in this key space, cf Table 1 and Table 2
for numerical examples; the symbols used in Table 1 are explained in the cor-
responding sections. The MQ-scheme Unbalanced Oil and Vinegar (UOV) has
been discussed in [19, Sect. 4.3]. A general overview of MQ-schemes can be
found in [20].

Table 1. Summary of the Reduction Results of this Paper

Scheme (Section) Reduction
Hidden Field Equations (4.1) nq2n(qn − 1)2

HFE Minus (4.1) nqn(qn − 1)qn−r(qn−r − 1)
∏n−1

i=n−r−1(q
n − qi)

HFE Vinegar (4.1) n′qnqn′
(qn′ − 1)2

∏v−1
i=0 (qv − qi)

HFE Vinegar Minus (4.1) n′qrq2n′
(qn′ − 1)2

∏v−1
i=0 (qv − qi)

∏n−1
i=n−r−1(q

n − qi)

C∗ (4.2) n(qn − 1)
C∗ Minus Minus (4.2) n(qn − 1)qr ∏n−1

i=n−r−1(q
n − qi)

We see applications of our results in different contexts. First, they can be
used for memory efficient implementations of the above schemes: using the
normal forms outlined in this paper, the memory requirements for the pri-
vate key can be reduced without jeopardising the security of these schemes.
Second, they apply to cryptanalysis as they allow to concentrate on special
forms of the private key: an immediate consequence from Sect. 3.1 (additive
sustainers) is that HFE does not gain any additional strength from the use of
affine rather than linear transformations. Hence, this system should be sim-
plified accordingly. Third, the constructors of new schemes may want to keep
these sustaining transformations in mind: there is no point in having a large
private key space — if it can be reduced immediately by applying sustain-
ers.

We want to stress that the sustainers from Sect. 3 may not be the only
ones possible. We therefore invite other researchers to look for even more pow-
erful transformations. In addition, there are other multivariate schemes which
have not been discussed in this paper, due to space and time limitations. These
schemes include (non-exhaustive list) enTTS [21], STS [16]), and PMI [4]. We
also invite to apply the techniques used in this paper to these schemes to compare
the effect of these sustainers to different classes of MQ-schemes.

Equivalent Keys in HFE, C∗, and Variations 47

Table 2. Numerical Examples for the Reduction Results of this Paper

Scheme Parameters Choices for S, T Reduction
(in log2) (in log2)

HFE q = 2, n = 80 12,056 326
HFE- q = 2, r = 7, n = 107 23,108 2129
HFEv q = 2, v = 7, n = 107 21,652 460
HFEv- q = 2, n = 107 22,261 690
C∗ q = 128, n = 67 63,784 469
C∗−− q = 128, n = 67 63,784 6180

Acknowledgements

We want to thank Patrick Fitzpatrick (BCRI, University College Cork, Ireland)
for encouraging this direction of research. In addition, we want to thank An
Braeken (COSIC) who pointed out the existence of Frobenius sustainers (cf
Sect. 3.6) for fields of even characteristic; in addition we want to thank her
for helpful remarks. Moreover, we want to thank Magnus Daum (CTSC, Ruhr-
University Bochum, Germany) for comments on some early results presented in
this paper.

This work was supported in part by the Concerted Research Action (GOA)
GOA Mefisto 2000/06, GOA Ambiorix 2005/11 of the Flemish Government and
the European Commission through the IST Programme under Contract IST-
2002-507932 ECRYPT.

Disclaimer

The information in this document reflects only the authors’ views, is provided
as is and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and
liability.

References

1. An Braeken, Christopher Wolf, and Bart Preneel. A study of the security of Unbal-
anced Oil and Vinegar signature schemes. In The Cryptographer’s Track at RSA
Conference 2005, Lecture Notes in Computer Science. Alfred J. Menezes, editor,
Springer, 2005. 13 pages, cf http://eprint.iacr.org/2004/222/.

2. Nicolas Courtois, Louis Goubin, and Jacques Patarin. Quartz: Primitive specifica-
tion (second revised version), October 2001. https://www.cosic.esat.kuleuven.
ac.be/nessieSubmissions, Quartz, 18 pages.

3. Nicolas Courtois, Louis Goubin, and Jacques Patarin. SFlashv3, a fast asymmetric
signature scheme — Revised Specificatoin of SFlash, version 3.0, October 17th

2003. ePrint Report 2003/211, http://eprint.iacr.org/, 14 pages.

48 C. Wolf and B. Preneel

4. Jintai Ding. A new variant of the matsumoto-imai cryptosystem through pertur-
bation. In Public Key Cryptography — PKC 2004, volume 2947 of Lecture Notes in
Computer Science, pages 305–318. Feng Bao, Robert H. Deng, and Jianying Zhou
(editors), Springer, 2004.

5. Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of Hidden
Field Equations (HFE) using gröbner bases. In Advances in Cryptology —
CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 44–
60. Dan Boneh, editor, Springer, 2003.

6. W. Geiselmann, R. Steinwandt, and Th. Beth. Attacking the affine parts of SFlash.
In Cryptography and Coding - 8th IMA International Conference, volume 2260 of
Lecture Notes in Computer Science, pages 355–359. B. Honary, editor, Springer,
2001. Extended version: http://eprint.iacr.org/2003/220/.

7. Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar
signature schemes. In Advances in Cryptology — EUROCRYPT 1999, volume
1592 of Lecture Notes in Computer Science, pages 206–222. Jacques Stern, editor,
Springer, 1999.

8. Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryp-
tosystem. In Advances in Cryptology — CRYPTO 1999, volume 1666 of Lec-
ture Notes in Computer Science, pages 19–30. Michael Wiener, editor, Springer,
1999. http://www.minrank.org/hfesubreg.ps or http://citeseer.nj.nec.com/
kipnis99cryptanalysis.html

9. Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-tuples for
efficient signature verification and message-encryption. In Advances in Cryptology
— EUROCRYPT 1988, volume 330 of Lecture Notes in Computer Science, pages
419–545. Christoph G. Günther, editor, Springer, 1988.

10. NESSIE: New European Schemes for Signatures, Integrity, and Encryption. Infor-
mation Society Technologies programme of the European commission (IST-1999-
12324). http://www.cryptonessie.org/.

11. Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In Advances in Cryptology — CRYPTO 1995, volume 963 of Lecture
Notes in Computer Science, pages 248–261. Don Coppersmith, editor, Springer,
1995.

12. Jacques Patarin. Asymmetric cryptography with a hidden monomial. In Advances
in Cryptology — CRYPTO 1996, volume 1109 of Lecture Notes in Computer Sci-
ence, pages 45–60. Neal Koblitz, editor, Springer, 1996.

13. Jacques Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polyno-
mials (IP): two new families of asymmetric algorithms. In Advances in Cryp-
tology — EUROCRYPT 1996, volume 1070 of Lecture Notes in Computer Sci-
ence, pages 33–48. Ueli Maurer, editor, Springer, 1996. Extended Version:
http://www.minrank.org/hfe.pdf.

14. Ilia Toli. Cryptanalysis of HFE, June 2003. arXiv preprint server,
http://arxiv.org/abs/cs.CR/0305034, 7 pages.

15. Christopher Wolf. Efficient public key generation for HFE and variations. In
Cryptographic Algorithms and Their Uses 2004, pages 78–93. Dawson, Klimm,
editors, QUT University, 2004.

16. Christopher Wolf, An Braeken, and Bart Preneel. Efficient cryptanalysis of
RSE(2)PKC and RSSE(2)PKC. In Conference on Security in Communication Net-
works — SCN 2004, Lecture Notes in Computer Science, pages 145–151, September
8–10 2004. Extended version: http://eprint.iacr.org/2004/237.

Equivalent Keys in HFE, C∗, and Variations 49

17. Christopher Wolf and Bart Preneel. Asymmetric cryptography: Hidden Field Equa-
tions. In European Congress on Computational Methods in Applied Sciences and
Engineering 2004. P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux,
and D. Knörzer, editors, Jyväskylä University, 2004. 20 pages, extended version:
http://eprint.iacr.org/2004/072/ .

18. Christopher Wolf and Bart Preneel. Equivalent keys in HFE, C∗, and variations. In
Proceedings of Mycrypt 2005, Lecture Notes in Computer Science. Serge Vaudenay,
editor, Springer, 2005. Extended version http://eprint.iacr.org/2004/360/, 12
pages.

19. Christopher Wolf and Bart Preneel. Superfluous keys in Multivariate Quadratic
asymmetric systems. In Public Key Cryptography — PKC 2005, volume 3386
of Lecture Notes in Computer Science, pages 275–287. Serge Vaudenay, editor,
Springer, 2005. Extended version http://eprint.iacr.org/2004/361/.

20. Christopher Wolf and Bart Preneel. Taxonomy of public key schemes based on the
problem of multivariate quadratic equations. Cryptology ePrint Archive, Report
2005/077, 12th of May 2005. http://eprint.iacr.org/2005/077/, 64 pages.

21. Bo-Yin Yang and Jiun-Ming Chen. Rank attacks and defence in Tame-like multi-
variate PKC’s. Cryptology ePrint Archive, Report 2004/061, 29rd September 2004.
http://eprint.iacr.org/, 21 pages.

A New Structural Attack for
GPT and Variants

Raphael Overbeck

GK Electronic Commerce,
TU-Darmstadt,

Department of Computer Science,
Cryptography and Computer Algebra Group
overbeck@cdc.informatik.tu-darmstadt.de

Abstract. In this paper we look at the Gabidulin version of the McEliece
cryptosystem (GPT) and its variants. We propose a new polynomial time
attack, which recovers an alternative private key. Our attack is applicable
to all variants proposed so far and breaks some of them completely.

Keywords: public key cryptography, code based cryptography, rank dis-
tance codes, Gabidulin codes.

1 Introduction

The security of cryptosystems based on error correcting codes is connected to
the hardness of the general decoding problem. In 1991 Gabidulin, Paramonov
and Tretjakov proposed a variant of the McEliece scheme (GPT) [7] using rank
distance codes instead of hamming distance codes. Smaller public-key sizes have
been proposed for GPT than for the original McEliece cryptosystem, as general
decoding algorithms are much slower for the rank metric than for the hamming-
metric.

Gibson developed two structural attacks for the GPT cryptosystem (see e.g.
[4] and [8]) and proved the parameter sets proposed in [7] and [4] to be insecure.
A drawback of Gibson’s attacks is, that they have exponential runtime if the
secret key is carefully chosen. There were several attempts to modify the GPT
cryptosystem, in order to avoid structural attacks, but most of these variants
rely on security assumptions very similar to the ones for the original proposal
(see [2] and [11]).

In this paper we build a new structural attack on the GPT cryptosystem.
Unlike Gibson’s attacks it has polynomial runtime, breaks the original GPT
cryptosystem from [7] completely and is applicable to all GPT variants proposed
so far.

The paper is structured as follows: First we give a short introduction to rank
distance codes. Then we present the GPT cryptosystem and its Niederreiter
variant. Finally we show how to attack the GPT cryptosystem.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 50–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A New Structural Attack for GPT and Variants 51

2 Rank Distance Codes

Rank distance codes were presented by Gabidulin in 1985. They are linear codes
over the finite field Fqm for q (a power of a) prime and m ∈ N. As their name
says they use the concept of rank distance.

Definition 1. Let x = (x1, · · · , xn) ∈ Fn
qm and b1, · · · , bm a basis of Fqm over

Fq. We can write xi =
∑m

j=1 xijbj for each i = 1, · · · , n with xij ∈ Fq. The rank
norm ‖x‖r of x is defined as the rank of the matrix (xij) ∈ Fn×m

qm .

The rank norm of a vector x ∈ Fn
qm is uniquely determined (independent of

the choice of basis) and induces a metric, called rank distance.

Definition 2. An (n, k)-code G over a finite field F is a k-dimensional subvec-
torspace of the vector space Fn. We call the code G an (n, k, d) rank distance code
if d = minx,y∈G ‖x − y‖r. The matrix G ∈ Fk×n is a generator matrix for the
(n, k) code G over F, if the rows of G span G over F. The matrix H ∈ Fn×(n−k)

is called check matrix for the code G if it is the right kernel of G. The code
generated by H� is called dual code of G and denoted by G⊥.

In [9] Ourivski and Johansson presented an algorithm which solves the general
decoding problem in O

(
(md−1

2)3q(d−3)(k+1)/2
)

operations over Fq for (n, k, d)
rank distance codes over Fqm . A special class of rank distance codes are the
Gabidulin codes for which an efficient decoding algorithm exists [4]. We will
define these codes by their generator matrix.

Definition 3. Let k ≤ n ≤ m ∈ N and g ∈ Fn
qm be a vector s.t. the components

gi, i = 1, · · · , n are linearly independent over Fq. The (n, k, d) Gabidulin code G
is the rank distance code with generator matrix

G =

⎛⎜⎜⎜⎝
g1 g2 · · · gn

gq
1 gq

2 · · · gq
n

...
. . .

...
gqk−1

1 gqk−1

2 · · · gqk−1

n

⎞⎟⎟⎟⎠ ∈ Fk×n
qm . (1)

An (n, k) Gabidulin code G corrects
⌊

n−k
2

⌋
errors and has a minimum dis-

tance of d = n − k + 1. The dual code of an (n, k) Gabidulin code is an
(n, n − k) Gabidulin code (see [4]). The vector g is said to be a generator vec-
tor of the Gabidulin code G (it is not unique). Error correction based on the
right Euclidean division algorithm takes O

(
d log2

2 d+ dn
)

operations over Fqm

for (n, k, d) Gabidulin codes [4].
Throughout this paper we will use the following notation. We write G = 〈G〉

if the (n, k)-code G over the field F has the generator matrix G. If the rows of a
(n− k)× n matrix M span G⊥ we write G⊥ = M . We will identify x ∈ Fn with
(x1, · · · , xn) , xi ∈ F for i = 1, · · · , n. For any (ordered) subset {j1, · · · jm} =:
J ⊆ {1, · · ·n} we denote the vector (xj1 , · · · , xjm) ∈ Fm with xJ . Similarly, for
a k × n matrix M we denote by M·J the submatrix consisting of the columns
corresponding to the indices of J and writeMJ′· =

((
M�)

·J′
)� for any (ordered)

subset J ′ of {1, · · · , k}. Block matrices will be given in brackets.

52 R. Overbeck

3 The GPT Cryptosystem

The GPT cryptosystem was first presented in 1991 by Gabidulin, Paramonov
and Tretjakov [7]. Here we present a more generalized version (GGPT, see [11]),
which may be used to describe the original GPT cryptosystem as well as the
variant with column scrambler from [3].

– System Parameters: q, k < n ≤ m, s ≤ t ∈ N, where t < n− k − 1.
– Key Generation: First generate the following matrices :
G ∈ Fk×n

qm generator matrix of an (n, k, d) Gabidulin code,
X ∈ Fk×t

qm random matrix of rank s over Fqm and rank t over Fq,
S ∈ Fk×k

qm random, non-singular matrix (the row scrambler) and
T ∈ Fn×n

q random, non-singular matrix (the column scrambler).

Then compute the k × n matrix

G′ = S
([
X 0

]
+G

)
T

= S
[
G·{1,··· ,t} +X G·{t+1,··· ,n}

]
T ∈ Fk×n

qm ,
(2)

where 0 denotes the k× (n− t) zero matrix. Choose 1 ≤ e ≤ n−k−t
2 . Further

let DG be an efficient decoding algorithm for the Gabidulin code G generated
by the matrix G·{t+1,··· ,n}.

– Public Key: (G′, e)
– Private Key: (DG , S, T) or (G,S, T) where G is of the form in (1).
– Encryption: To encode a plaintext x ∈ Fk

qm choose a vector z ∈ Fn
qm of

rank norm e at random and compute the ciphertext c as follows:

c = xG′ + z .

– Decryption: To decode a ciphertext c apply the decoding algorithm DG for
G to c′ =

(
cT−1

)
{t+1,··· ,n}. As T is a invertible matrix over Fq, the rank

norm of a vector does not change if it is multiplied with T−1. Thus c′ has
at most rank distance n−k−t

2 to G and we obtain the codeword

xSG{t+1,··· ,n} = DG (c′) .

Now, we can compute the plaintext x.

In the original GPT cryptosystem, the parameterse and t are chosen such
that e = n−k

2 − t. If we do so, the legitimate user may recover xSGT by applying
the error correction algorithm for 〈GT 〉 (which is a Gabidulin code, too) to the
ciphertext c.

The distortion matrix X is essential to mask the structure of G. We can
recover the vector gT from SGT in O

(
k3

)
operations over Fqm by employing

methods similar to the attack of Sidelnikov and Shestakov on the Niederreiter
cryptosystem using GRS codes (see [4]). If the parameter s should be larger
than t/2, as there exists a polynomial time attack on the private key [8]. In all
examples we will choose n = m and q = 2. Some parameter sets may be found
in table 3 (All of these are secure against all previously published attacks).

A New Structural Attack for GPT and Variants 53

3.1 The Niederreiter Variant of GPT

The security of the GGPT cryptosystem is strongly connected to the one of the
Niederreiter variant, as we will see later on. We briefly introduce the Niederreiter
variant of the GPT cryptosystem from [2]. On key generation we choose a k − l
dimensional subcode of an (n, k) Gabidulin code G over Fqm . Every check matrix
of the subcode may be described as

(H ′) =
[
H A

]
S ∈ F

n×(n−k+l)
qm ,

where H is the n × (n − k) check matrix of G, A is an n × l matrix of full
rank and S is some invertible (n − k + l) × (n − k + l) matrix. The public key
(H ′, e = (n− k)/2) is published, and the pair (S,G) is taken to be the private
key. To encode a plaintext x ∈ Fn

qm of rank norm less then e, compute the
ciphertext c as follows:

c = xH ′ .

In order to decode a ciphertext c apply the syndrome decoding algorithm DG
for G to the syndrome build from the first n− k columns of cS−1. Table 1 shows
public key sizes and approximate work factors (WF = operations over Fq) for
the fastest general decoding attack. Parameters were taken from [1].

Table 1. Parameter sets for the Niederreiter GPT

Parameters Size Public WF general
m k l Key (Bytes) decoding
25 15 5 469 282

32 24 4 960 293

4 Attacking the GPT Cryptosystem

Even though there were attempts to break the GPT cryptosystem by using gen-
eral rank distance decoding algorithms, the structural attacks from Gibson (see
e.g. [4], [8]) had more impact on the cryptosystem. However, for carefully chosen
parameter sets, Gibson’s attacks have exponential running time (see appendix).
Several variants of GPT were proposed, but it was shown, that the security of
the variants from [3] and [6] is connected to the security of GGPT (see [11]).
The attempt to use Gibson’s attack to cryptanalyze these variants failed for the
variant from [6], but resulted in an attack for the variant from [3].

The main weakness of the GPT cryptosystem is, that it is difficult to hide
the structure of the generator matrix of a Gabidulin code. As already noted
by Gibson, the use of subfield subcodes (or group codes) seems much more
promising for cryptographic applications. Here, we want to use some observations
on Gabidulin codes: For a matrix M let M [j] denote the result of rising every
element of M to the power of j. If G is the generator matrix of a Gabidulin
code, then G and G[q] look quite the same. (Both define Gabidulin codes with

54 R. Overbeck

generator vectors g and g[q] respectively.) We are going to use this property to
distinguish the Gabidulin part of the public code from the random one.

LetM be an arbitrary l×nmatrix over Fqm and f ∈ N. While Gibson analyzed
matrices of the formM +M [q] (compare [8]), we look at matrices of the form

Λf (M) :=

⎡⎢⎢⎢⎢⎣
M

(M)[q]

...

(M)[q
f]

⎤⎥⎥⎥⎥⎦ ∈ F
((f+1)·l)×n
qm . (3)

Lemma 1. If M ∈ Fl×n
qm defines an (n, k) Gabidulin code with generator vector

g and f ≤ n − k − 1, then the subvectorspace spanned by the rows of Λf (M)
defines the (n, k + f) Gabidulin code with generator vector g.

Assumption 1. Let M ∈ Fl×n
qm define a random l > 1 dimensional subcode of

an (n, k) Gabidulin code over Fqm with generator vector g. Then with probability
P1 ≥ (1 − q−m), Λf (M) defines a min {k + f, (f + 1) · l} dimensional subcode
of the (n, k + f) Gabidulin code with generator vector g.

Assumption 2. Let M ∈ Fl×n
qm be a random matrix of full rank over Fqm and

of full column rank over Fq. Then Λf (M) has rank min(n, f · l) with probability
P2 ≥ (1 − q−(m−1)).

The proof for lemma 1 is obvious. For assumption 1, it is easy to see, that
Λf (M) defines a subcode of the (n, k+ f) Gabidulin code with generator vector
g, so the remaining part is to estimate P1. Assumption 2 is based on empirical
results as well as on observations from [5]. If l = 1, then because of theorem
1, the assumption is true, as P2 = 1. Experiments for parameters relevant for
our attacks showed that P1 and P2 are almost 1 (see appendix). However, not
the correctness, but only the success probability of the attacks proposed in the
following sections depends on the assumptions above.

4.1 Attacking the Niederreiter Variant

The Niederreiter variant of the GPT cryptosystem was first attacked by A.
Ourivski in [10]. Here we present a new attack, which recovers an alternative
secret key in polynomial time by using assumption 1.

Theorem 1. Let GSUB be a random k − l dimensional subcode of an (n, k)
Gabidulin code G over Fqm with generator vector g. Then we may recover g
from GSUB with probability P1 if k − l > 1 and n − k − 1 ≥ �l/ (k − l − 1)�.
Further, this may be done in O

(
n3

)
operations over Fqm .

Proof. Let G′ be the generator matrix of GSUB. To recover g from GSUB we
choose f ∈ N such that n− k − 1 ≥ f ≥ �l/ (k − l− 1)�. If assumption 1 holds,
Λf (G′) has rank k+ f with probability P1 and defines a subcode of a (n, k+ f)
Gabidulin code. Thus, with probability P1, Λf (G′) spans the (n, k+f) Gabidulin
code with generator vector g and we can recover g in O

(
(k + f)3

)
operations

over Fqm (see [4]).

A New Structural Attack for GPT and Variants 55

It follows, that if assumption 1 holds, we can recover the secret Gabidulin
code G from the public key of an instance of the Niederreiter variant of GPT as
long as n−k−1 ≥ �l/ (k − l − 1)�. Let H be the check matrix of G. To obtain an
equivalent secret key, we can choose a set J of l columns of H ′, s.t. the matrix[
H H ′

·J
]

has full rank. Now we may solve the equation

H ′ =
[
H H ′

·J
]
S̄

for S̄ and obtain the alternative secret key
(
G, S̄

)
. Note, that employing this

method, it only takes O
(
(k + f)3

)
operations over Fqm to recover an alternative

secret key.
For the parameter sets proposed e.g. in [1], the choice of f = 1 showed to

be sufficient in all our experiments. Table 2 shows modified parameter sets for
which the presented attack does not work. These parameters are not necessarily
secure (see [10]).

Table 2. Modified parameter sets for the Niederreiter GPT

Parameters Public Key WF general
m k l Size (Bytes) decoding
32 24 20 448 293

64 52 47 2360 2288

4.2 Attacking the GPT Cryptosystem

To recover an alternative secret key from the public key (G′, e) of an instance of the
GGPT cryptosystem, we want to use assumption 2. The general idea is, to observe
the behavior of the matrixΛf (G′). We assume, that if the difference of the rank of
Λf (G′) andΛf+1 (G′) is only 1 for some f , thenΛf (G′) will be strongly connected
to a Gabidulin code. The following theorem describes the connection:

Theorem 2. Let (G′, e) be the public key of an instance of the GGPT cryptosys-
tem with parameters q,m, n, k, t and s. Further, let (G,S, T) be the corresponding
secret key. Then for 0 ≤ f ≤ n− t− k− 1, there exists a dual matrix of Λf (G′)
of the form

Λf (G′)⊥ =
[

0 H�
f

B1 B2

]
·
(
T−1

)� ∈ F
(n−t−k−f+l)×n
qm , (4)

where Hf ∈ F
(n−t)×(n−t−k−f)
qm is the check matrix of a k + f dimensional

Gabidulin code Gf of length n − t, B1 is some l × t matrix with 0 ≤ l ≤ t
and B2 is some l × (n− t) matrix.

Proof. First, we assume, that T and S are the identity matrix. The proof is
analogous, if this is not the case. We may write

56 R. Overbeck

Λf (G′) =
[
Λf

(
G·{1,··· ,t} +X

)
Λf

(
G·{t+1,··· ,n}

)]
∈ F

(kf)×n
qm

By assumption 2, the last n − t columns of Λf (G′) define an (n − t, k + f)
Gabidulin code Gf . Thus the subvectorspace spanned by the rows of[

0 H�
f

]
∈ F

(n−t−k−f)×n
qm ,

where Hf ∈ F
(n−t)×(n−t−k−f)
qm is the check matrix of Gf , is in the dual space

of Λf (G′). To get a matrix which defines the whole dual space of Λf (G′), we
might have to add some more rows to

[
0 H�

f

]
. However, it is clear, that there

will be at most t rows missing, as Λf (G′) has at least rank k + f . This proves
the theorem.

Observe, that Gf is uniquely defined by the secret key and f . Thus, knowing
Hf for some f , we know all Hi for 0 ≤ i ≤ n − k − t − 1. We are going to
determine the rank of Λf (G′)⊥ in the following sections. For now, we assume,
that it will be very near its lower bound (n− t−k−f) and show, how to recover
an alternative secret key in that case (compare example in the appendix).

Theorem 3. Let (G′, e) be as in theorem 2. Given an f ≤ n− t− k− 1 s.t. the
rank of Λf (G′)⊥ is n− t− k− f , then we may recover an alternative secret key,
corresponding to G′ in O

(
n3

)
operations over Fqm .

Proof. With the conditions above, it follows from theorem 2, that there is a
matrix Λf (G′)⊥ of the form[

0 H�
f

] (
T−1

)� ∈ F
(n−t−k−f)×n
qm ,

where Hf is as in theorem 2. We can recover such a matrix in O
(
n3

)
operations

over Fqm [4]. Now we can choose a set N1 of n− t rows of G′ s.t. Λf (G′)⊥·N1
is

of column rank n − t over Fq. It follows, that TN1N2 with N2 = {t+ 1, · · · , n}
is invertible. We may assume without loss of generality that N1 = N2 and
H�

f = Λf (G′)⊥·N1
. Let T̃ ∈ F

t×(n−t)
q be the solution of the equation

Λf (G′)⊥·{1,··· ,t} = H�
f · T̃�

over Fq. We define

T̄−1 :=
[
Idt T̃
0 Idn−t

]
∈ Fn×n

q ,

where Idk denotes the k-dimensional identity matrix. We may recoverH0 fromHf ,
as both are uniquely determined by G′ and T̄ . It follows, that

[
0 H0

]
is in the

dual space ofG′T̄−1, and thus the last n− t columns ofG′T̄−1 define an (n− t, k)
Gabidulin code. Thus T̄ serves as an alternative column scrambler. Now, we may
obtain an equivalent secret key inO

(
k3

)
operations by applying the methods from

[4] to
(
G′ · T̄−1

)
·{t+1,··· ,n}, which gives us an alternative row scrambler S̄.

However, even if the rank of Λf (G′) is larger than n − t − k − f , an at-
tacker still may try to recover the secret key. He could guess a set N1 of n − t

rowss.t. (
[
0 Hf

] (
T−1

)�
)·N1

has full column rank over Fq. Again we may

A New Structural Attack for GPT and Variants 57

assume w.l.o.g. that N1 = N2 and
(
T−1

)
N1N2

= Idn−t. Then, the matrix

(Λf (G′)⊥·N1
)� corresponds to an instance of the Niederreiter version of GPT

as long as k + f − l > 1. Thus, we might apply the attacks on the Niederreiter
variant of GPT, to recover

[
Hf B

�
2

]
. If one of the attacks succeeds, an attacker

can recover a dual matrix of Λf (G′) of the form given in equation (4) and from
it an alternative column scrambler. Afterwards the attacker would be able to
construct a valid alternative private key.

4.3 Strengths of the New Attack

Given an f s.t. the conditions of theorem 3 are fulfilled, for the GGPT public key,
we can build an alternative private key in O

(
m5

)
operations over Fq. By now, we

have no idea, for which parameter sets our attack might work. To estimate the
success probability of our attack, we will have to determine the size of Λf (G′)⊥.
In the following we assume that s < k.

Theorem 4. Let (G′, e) be as in theorem 2. If assumption 2 holds for s × t
matrices over Fqm , then the rank of the dual matrix of Λf (G′) is at most R =
n− k − f − min {t, fs} with probability P2.

Proof. (Theorem 4) We have to estimate the rank of Λf (G′) for given G′ =
S
([
X 0

]
+G

)
T and f (see equation 2). To simplify notations, we define the

following matrices:

Mk :=
[

0 Id(k−1)

0 0

]
∈ Fk×k

qm , γi :=
([
X 0

]
+G

)[qi]
k· ∈ F1×n

qm and

X̃i :=
(
X [qi−1]

)
·{2,··· ,k}

+
(
X [qi]

)
·{1,··· ,k−1}

∈ Fk−1×t
qm .

To determine the rank of Λf (G′) we use the property: If G is of the form in
equation (1), then the result of adding the (j+1)-th row of G[qi] to the j-th row
of G[qi+1] is zero for 0 ≤ i ≤ f − 1 and 1 ≤ j ≤ k − 1. Thus, by removing the
influence of S from Λf (G′) and adding the rows as mentioned above by using
Mk, we get the following matrix of the same rank as Λf (G′):⎡⎢⎢⎢⎣

Idk 0 · · · 0
Mk Idk · · · 0
...

.
...

0 · · · Mk Idk

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎣
S[q0] 0 · · · 0

0 S[q1] · · · 0
...

.
...

0 · · · 0 S[qf]

⎤⎥⎥⎥⎥⎦
−1

· Λf (G′)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X +G·{1,··· ,t} G·{t+1,··· ,n}
X̃1 0

γ1

...
...

X̃f 0
γf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
· T ∈ F

((f+1)·k)×n
qm .

58 R. Overbeck

With probability P2 the part of the matrix above build from the [X̃i 0]

contains at least min {t, fs} linearly independent rows, as (X̃i)
[q] = X̃i+1 and

rank (Xi) = s. Therefore Λf (G′) has at least rank k + f + min {t, fs} with
probability P2.

Note, that for s = 1 assumption 2 is correct, and the probability in the
theorem above gets 1. Otherwise the conditions in theorem 3 are fulfilled with
probability P2. We conclude, that all parameter sets, where there exists an f ≤
n − k − t − 1, s.t. t ≤ fs are insecure. Furthermore, as s ≥ 1, we may obtain
a equivalent secret key from the public key with probability 1 for all parameter
sets where

t ≤ n− k − t− 1 ⇐⇒ 1/2 ≤ (n− k)/2 − t , (5)

even if s > 1. This is true for all instances of the original GPT cryptosystem.

4.4 Experimental Results

Table 3 shows absolute run times the attack by methods from theorem 3 in
comparison to the theoretical work factors (operations over Fq) of the previous
attacks. For all parameter sets we chose f = n− t−k−1. In our experiments our
attack did not fail for any random instance of the original GPT cryptosystem.
Operations were performed on a 500MHz Pentium III running Linux using an
implementation in Java.

Table 3. Attacking the GPT cryptosystem

Parameters average runtime WF best of WF general
m k t s of our attack Gibson’s attacks decoding
48 10 16 3 51 min 2139 2134

48 16 18 4 58 min 2200 2124

48 24 8 2 102 min 2122 2198

In our experiments we chose X as the product of a random k × s matrix
SX of rank s < k over Fqm and a random s × t matrix X̄ (of rank s over Fqm

and rank t over Fq). For such choices of X the matrix Λf (G′) almost always
had rank (k + f + (s+ 1) · min(f, s) + s · max(0, f − s)) or k+f+ t. For special
choices of SX and random X̄, we were able to create instances, where the rank
of Λf (G′) reached the bound R. However, choosing SX or X̄ of a special form
removes degrees of freedom in choosing the private key and thus does not seem
to be a good choice.

4.5 On Secure Instances of GGPT

We have seen, that instances of the GPT cryptosystem and its variants, where

t ≤ s · (n− t− k − 1)

A New Structural Attack for GPT and Variants 59

holds, are insecure if assumption 2 holds. For the GGPT variant however, we may
choose parameter sets, s.t. this equation does not hold. Even though, we might be
able recover an equivalent private key if we can choose an f s.t. k+f−t+fs > 1,
as described in section 4.2.

To get secure instances of the GGPT cryptosystem, one could try to choose
parameters in a way, such that t− fs > f +k for every possible choice of f . The
latter is the case, e.g. if

s ≤ 2t− n

n− t− k
.

A parameter set satisfying this condition would be n = m = 64, k = 8, t = 40
and s = 1 e.g. with a public key size of 3584 bytes. The attack in the given
form is not applicable for such parameter sets. However, it seems very likely
that the attack may be modified in such a way, that these parameter sets can be
attacked, too.

5 Conclusion

We conclude that the original GPT cryptosystem from [7] is broken by our
attack. Our attacks succeed with good probability for most parameter sets of
GGPT and can even be extended to other variants of the GPT cryptosystem
(compare [6], [11] and [3]). After several attacks on the GPT cryptosystem and
its variants, it seems to be difficult to name secure parameter sets for GGPT, if
there exist any. Even if we would consider the parameter set mentioned above
to be secure, the GPT cryptosystem looses much of its advantages over the
McEliece cryptosystem.

References

1. T.P. Berger and P. Loidreau. How to mask the structure of codes for a crypto-
graphic use. Designs, Codes and Cryptography, 35 (1), 2005.

2. T.P. Berger and P. Loidreau. Security of the Niederreiter form of the GPT public-
key cryptosystem. In IEEE International Symposium on Information Theory, Lau-
sanne, Suisse. IEEE, July 2002.

3. E. M. Gabidulin and A. V. Ourivski. Column scrambler for the GPT cryptosystem.
Discrete Applied Mathematics, 128(1):207–221, 2003.

4. E.M. Gabidulin. On public-key cryptosystems based on linear codes. In Proc. of
4th IMA Conference on Cryptography and Coding 1993, Codes and Ciphers. IMA
Press, 1995.

5. E.M. Gabidulin and P. Loidreau. Subfield subcodes of maximum-rank distance
codes. In Seventh International Workshop on Algebraic and Combinatorial Coding
Theory, volume 7 of ACCT, pages 151–156, 2000.

6. E.M. Gabidulin, A.V. Ourivski, B. Honary, and B. Ammar. Reducible rank codes
and their applications to cryptography. IEEE Transactions on Information Theory,
49(12):3289–3293, 2003.

7. E.M. Gabidulin, A.V. Paramonov, and O.V. Tretjakov. Ideals over a non-
commutative ring and their applications to cryptography. In Proc. Eurocrypt ’91,
volume 547 of LNCS. Springer Verlag, 1991.

60 R. Overbeck

8. K. Gibson. The security of the Gabidulin public key cryptosystem. In Proc. of
Eurocrypt’96, volume 1070 of LNCS, pages 212–223. Springer Verlag, 1996.

9. T. Johansson and A.V. Ourivski. New technique for decoding codes in the rank
metric and its cryptography applications. Problems of Information Transmission,
38, No. 3:237–246, 2002.

10. A.V. Ourivski. Recovering a parent code for subcodes of maximal rank distance
codes. In Proc. of WCC 03, pages 357–363, 2003.

11. R. Overbeck. Extending Gibson’s attacks on the GPT cryptosystem. In Proc. of
WCC 2005, pages 382–391, 2005.

A Appendix - Gibson’s Attacks

Gibson presented two structural attacks on the GPT cryptosystem. They recover
an alternative private-key from the GGPT public-key G′. On input of G′ =
S
([
X 0

]
+G

)
T , Gibson’s attacks return Ĝ, X̂ ∈ Fk×n

qm and Ŝ ∈ Fk×k
qm , s.t.

(i) Ĝ is a generator matrix of an (n, k) Gabidulin code over Fqm ,
(ii) G′ = Ŝ

(
Ĝ+ X̂

)
and

(iii) the rank of X̂ over Fq is not bigger than t.

Thus Gibson’s attacks serve well for an attack on the GGPT cryptosystem, as
an alternative column scrambler may be recovered from X̂ . Gibson’s first attack
was developed for the case that the GGPT parameter s is 1, but may be adapted
to the case where s �= 1 (see [4]). It takes

O
(
m3 (n− k)3 qms

)
(6)

operations over Fqm . In [8] Gibson presented a different attack, which is more
efficient for larger values of s. It requires that k + t+ 2 ≤ n and runs in

O
(
k3 + (k + t) f · qf(k+2) + (m− k) t · qf

)
(7)

operations over Fqm , where f ≈ max (0, t− 2s, t+ 1 − k). Note, that this attack
runs in polynomial time if f = 0. The success of both attacks is based on some
assumptions, which are claimed to be fulfilled with high probability for random
instances of the GGPT cryptosystem. Nevertheless Gibson’s attacks are not fast
enough to attack the GGPT cryptosystem for all parameter sets of practical
interest (compare Table 3).

B Appendix - On Assumption 1

Besides our experimental results, we want to give some intuition, why assumption
1 seems to be reasonable. Let G′ = S̄G, where S̄ ∈ F

(k−l)×k
qm is of full rank and

G is the generator matrix of the (n, k) Gabidulin code with generator vector g.

A New Structural Attack for GPT and Variants 61

Now G′ defines a subcode of the code generated by G. Let Ḡ be the generator
matrix of the (n, k + f) Gabidulin code with generator vector g. We may write

(G′)[q
i] = [0 · · · 0︸ ︷︷ ︸

i times

S̄[qi] 0 · · · 0︸ ︷︷ ︸
f−i times

] Ḡ ∈ F
(k−l)×n
qm ,

where 0 is the k× 1 matrix with only zero entries. Then Λf (G′) may be written
as

Λf (G′) =

⎡⎢⎢⎢⎢⎣
S̄ 0 · · · 0

0 S̄[q]
...

...
. . . 0

0 · · · 0 S̄[qf]

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

=:S

Ḡ ∈ F
(f+1)(k−l)×n
qm .

If S̄ is a random matrix, then S seems to be of full rank, with high probability.
In our experiments we did not find any counterexamples for randomly generated
matrices S̄, where we chose (n, k) Gabidulin codes with n ≥ 8, k ≥ 4 and the
dimension of the subcode to be l ≥ 2.

C Appendix - On Assumption 2

In order to estimate the probability P2 in assumption 2 we made several exper-
iments for random matrices M . In all our experiments, we build Λf (M) for all
1 ≤ f ≤ �m/l�, where m is the extension degree of the field, and l is the rank of
the matrix M . Table 4 shows the resulting probability estimates. We conclude,
that it is reasonable to assume, that 1 − P2 decreases exponentially fast with
growing m.

Table 4. Experimental results for assumption 2

rows columns field P2 estimate # experiments
2 6 Fq6 1 − 0.0289 10000
2 6 Fq8 1 − 0.0050 10000
2 6 Fq10 1 − 0.0010 10000
2 8 Fq10 1 − 0.0008 10000
2 10 Fq10 1 − 0.0018 10000
3 10 Fq10 1 − 0.0 10000
4 10 Fq10 1 − 0.0 10000
5 10 Fq10 1 − 0.0013 10000
2 8 Fq16 1 − 0.000033 30000
2 10 Fq16 1 − 0.0 30000

62 R. Overbeck

D Appendix - A Small Example

For a better understanding of the attack on the GGPT cryptosystem presented
in the previous sections, we provide an example with small parameters: q = 2,
m = n = 5, k = 2, t = s = 1. As field we choose Fq5 = F2/

(
X5 +X2 + 1

)
. We

write the elements of this field in their polynomial representation, thus X3 + 1
=̂ 01001.

Assume, that we are given a public key (G′, e) with e = 1 and

G′ =
(

10101 10011 00111 01011 01111
00010 11001 10000 10011 00011

)
.

The (unknown) secret key is (G,S, T) with

S =
(

10000 10100
01000 10000

)
and T =

⎛⎜⎜⎜⎜⎝
1 0 1 1 1
0 1 0 0 0
1 1 0 1 1
0 1 1 1 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

To recover an alternative secret key, an attacker would choose the parameter
f = n− k − t− 1 = 1 and build

Λf (G′) =

⎛⎜⎜⎝
10101 10011 00111 01011 01111
00010 11001 10000 10011 00011
11100 01000 10101 01111 11111
00100 00110 01101 01000 00101

⎞⎟⎟⎠ .

The dual of 〈Λf (G′)〉 is defined by

Λf (G′)⊥ =
(
00100 01110 01100 01001 00001

)
.

The attacker observes, that the last 4 columns of Λf (G′)⊥ are linearly indepen-
dent over F2, which is the rank of Λf (G′)⊥ over F2. The legitimate user would
be able to compute

Λf (G′)⊥ T� =
[
0 H1

]
=

(
00000 01110 00010 01011 00100

)
.

The attacker on the other hand can choose

(Λf (G′)⊥){2,··· ,5} =
(
01110 01100 01001 00001

)
to be his H1. (He could choose any other submatrix of column rank 4 over F2,
and each would lead to a different alternative secret key.) As a solution to the
equation (00100) = H1T̃

� the attacker gets T̃ =
(
0 1 1 1

)
. Now,

G′ ·
[

1 T̃
0 Id4

]−1

=
(

10101 10011 10010 11110 11010
00010 11001 10010 10001 00001

)
.

A New Structural Attack for GPT and Variants 63

The last four columns of the matrix above define a Gabidulin code with generator
vector

(
01010 01001 00100 00001

)
. Thus, the attacker gets the row scrambler

S̄ =
(

11001 00011
11110 11111

)
and obtains a working alternative secret key.

A Family of Fast Syndrome Based
Cryptographic Hash Functions

Daniel Augot1, Matthieu Finiasz1,2, and Nicolas Sendrier1

1 Projet Codes, INRIA Rocquencourt,
BP 105, 78153 Le Chesnay - Cedex, France

{Daniel.Augot,Matthieu.Finiasz,Nicolas.Sendrier}@inria.fr
2 LASEC, École Polytechnique Fédérale de Lausanne (EPFL),

Station 14, 1015 Lausanne, Switzerland

Abstract. Recently, some collisions have been exposed for a variety of
cryptographic hash functions [20,21] including some of the most widely
used today. Many other hash functions using similar constructions can
however still be considered secure. Nevertheless, this has drawn attention
on the need for new hash function designs.

In this article is presented a family of secure hash functions, whose
security is directly related to the syndrome decoding problem from the
theory of error-correcting codes.

Taking into account the analysis by Coron and Joux [4] based on
Wagner’s generalized birthday algorithm [19] we study the asymptotical
security of our functions. We demonstrate that this attack is always
exponential in terms of the length of the hash value.

We also study the work-factor of this attack, along with other attacks
from coding theory, for non asymptotic range, i.e. for practical values.
Accordingly, we propose a few sets of parameters giving a good security
and either a faster hashing or a shorter description for the function.

Keywords: cryptographic hash functions, provable security, syndrome
decoding, NP-completeness, Wagner’s generalized birthday problem.

1 Introduction

The main cryptographic hash function design in use today iterates a so called
compression function according to Merkle’s and Damg̊ard’s constructions [6,12].
Classical compression functions are very fast [13,16] but, in general, cannot be
proven secure. However, provable security may be achieved with compression
functions designed following public key principles, at the cost of being less ef-
ficient. This has been done for instance by Damg̊ard in [6], where he designed
a hash function based on the Knapsack problem. Accordingly, this function has
been broken by Granboulan and Joux [8], using lattice reduction algorithms.
The present paper contributes to the hash function family by designing functions
based on the syndrome decoding problem, which is immune to lattice reduction
based attacks.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 64–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Family of Fast Syndrome Based Cryptographic Hash Functions 65

Unlike most other public key cryptosystems, the encryption function of the
McEliece cryptosystem [10] (or of Niederreiter’s version [14]) is nearly as fast
as a symmetric cipher. Using this function with a random matrix instead of the
usual parity check matrix of a Goppa code, a provably secure one-way function
has been constructed in [1]: since there is no trapdoor, its security can be readily
related to the difficulty of syndrome decoding. For instance, there is no polyno-
mial time algorithm to decode a random code, thus there is no polynomial time
algorithm to invert the compression function and/or find a collision.

However, for the practical parameters which have been proposed in [1], there
is an efficient attack with a cost as low as 243 (or 262 depending on the set of
parameters), as demonstrated by Coron and Joux [4], using Wagner’s method
for the generalized birthday problem [19].

The purpose of this paper is to propose updated parameters for the hash
function family presented in [1]. We do not only extend the parameters to be out
of reach of the Coron-Joux attack, but we also thoroughly study the asymptotical
behavior of their attack. We shall establish that this attack is exponential, such
that the design for the hash function is sound.

The paper is organized as follows. In Section 2, we introduce the Fast Syn-
drome Based (FSB) compression function, derived from a hard problem similar
to syndrome decoding. In Section 3 we show that the security of FSB is reduced
to the average case difficulty of two new NP-complete problems. Then, in Sec-
tion 4, we show how the best known decoding techniques, and the new method
based on Wagner’s ideas, can be adapted to the cryptanalysis of our functions.
From that we can evaluate the practical security and the scalability of the sys-
tem. In Section 5, we propose some choices of parameters and, eventually, we
compare the obtained functions with other existing constructions. For clarity of
the presentation, NP-completeness proofs are postponed in the appendix.

2 The Hash Function

We present what is called the Fast Syndrome Based (FSB) hash function in [1].

2.1 General Construction of Hash Functions

We follow Merkle’s and Damg̊ard’s design principle of hash functions [6,12]:
iterating a compression function (here denoted F), which takes as input s bits
and returns r bits (with s > r). The resulting function is then chained to operate
on strings of arbitrary length (see Fig. 1). The validity of such a design has been
established [6,12], and its security is proven not worse than the security of the
compression function. Therefore we will only concentrate on the security of the
latter.

2.2 Description of the Compression Function

The core of the compression function is a random binary matrix H of size r×n.
The parameters for the hash function are:

66 D. Augot, M. Finiasz, and N. Sendrier

C
o
m
p
re
ss
io
n

Chaining

Last round

D

D
o
c
u
m
e
n
t

Last round

First round

P
a
d
d
in
g

I.
V
. Hash value

F

Fig. 1. A standard hash function construction

– n the number of columns of H;
– r the number of rows of H and the size in bits of the function output;
– w the number of columns of H added at each round.

Definition 1. A word of length n and weight w is called regular if it has exactly
one non-zero position in each of the w intervals

�
(i− 1)

n

w
; i
n

w

�
i=1..w

. We call

a block such an interval.

In order to encode a regular word of length n and Hamming weight w, s =
w log2(

n
w) bits are needed. This is the size in bits of the input of the compression

function F . When practical parameters will be chosen, it will be made in such
a manner that round figures for log2(

n
w) are obtained. That is n

w has to be a
power of 2 and ideally, for software efficiency, log2(

n
w) too.

The matrix H is split into w sub-blocks Hi, of size r× n
w , and the algorithm

describing F is:

FSB compression function
Input: s bits of data

1. split the s input bits in w parts s1, . . . , sw of log2(
n
w) bits;

2. convert each si to an integer between 1 and n
w ;

3. choose the corresponding column in each Hi;
4. add the w chosen columns to obtain a binary string of length r.

Output: r bits of hash

The speed of F is directly related to the number of XORs required at each
round: one needs to XOR w columns of r bits, that is wr binary XORs. The
number of bits read in the document at each round is w log2

n
w − r (input size

minus chaining size). Hence, the average number of binary XORs required for
each document input bit is:

NXOR =
r · w

w log2
n
w − r

.

This value will be the right measure for the global speed of the FSB hash function.

A Family of Fast Syndrome Based Cryptographic Hash Functions 67

3 Theoretical Security

As stated in [11,17], a cryptographic hash function has to be pre-image resistant,
second pre-image resistant and collision resistant. As the second pre-image resis-
tance is strictly weaker than collision resistance, we will only check that the hash
function is collision free and resistant to inversion. We show that the inversion
and collision finding are related to two problems very close to syndrome decod-
ing, which is a hard problem [3]. We describe them here and show (in appendix)
that they are also NP-complete.

3.1 Two New NP-Complete Problems

Regular Syndrome Decoding (RSD)
Input: w matrices Hi of dimension r × n

w and a bit string S of length r.
Property: there exists a set of w columns, one in each Hi, summing to S.

Definition 2. A 2-regular word is a word of weight less than or equal to 2w,
which contains either 0 or 2 non zero positions in each block. It is the sum of
two regular words.

2-Regular Null Syndrome Decoding (2-RNSD)
Input: w matrices Hi of dimension r × n

w .
Property: there exists a set of 2w′ columns (with 0 < w′ ≤ w), 0 or 2 in each
Hi, summing to 0.

Thus solving 2-Regular Null Syndrome Decoding requires to find a non
null 2-regular word of weight less than or equal to 2w.

3.2 Security Reduction

In this section we will recall how finding collisions or inverting the FSB hash
function is exactly as hard as solving an instance of one of the NP-complete
problems described in the previous section.

Let us be given an algorithm for the inversion of the compression function,
which, given a hash value S, finds an inverse m such that F(m) = S, in time
T with probability p of success. Then it is a tautology that this algorithm is
able to solve any instance of the problem Regular Syndrome Decoding, in
the same time and with the same probability of success. Similarly an algorithm
which is able to find a collision gives in fact two different regular words c1 and c2
of weight w such Hct1 = Hct2. Then c = c1 ⊕ c2 is a non null 2-regular word and
has a null syndrome. So c is directly a solution for 2-Regular Null Syndrome
Decoding.

These reductions to NP-complete problems only prove worst case difficulty.
However, following Gurevich and Levin [7,9] discussion for syndrome decoding,
we believe that both these problems are difficult on average.

3.3 Average Case Consideration

From a cryptographic point of view, knowing that some instances of a problem
are hard is not enough to consider it a hard problem. It is more important that

68 D. Augot, M. Finiasz, and N. Sendrier

the number of weak instances is small enough, that is, the probability of having
to solve such a weak instance when attacking the system is negligible.

However, defining a weak instance is not so simple as it will depend on the
algorithm used to attack the system: the instances solved with the smallest
complexity will vary when changing algorithm. A weak instance should hence
be defined as an instance which is weak for at least one algorithm: an instance
for which one algorithm yields a noticeably smaller complexity than the average
complexity of the best algorithm.

A problem should not be considered hard if the proportion of those weak
instances among the total number of possible instances is not negligible. When
trying to find collisions for FSB, each binary r × n matrix defines a different
instance. In Section 4.6, after seeing the possible attacks on the system, we will
try to estimate the proportion of these matrices defining such a weak instance.

4 Practical Security

We recall the possible practical attacks on the compression function F , and
study the minimal work-factors required to perform these attacks. There are
two kinds of algorithms: Information Set Decoding and Wagner’s Generalized
Birthday Paradox. We will survey the results on Information Set Decoding al-
gorithm, which has been studied in [1]. As for Wagner’s Generalized Birthday
Paradox [19], we will give an extended analysis: first we slightly generalize Wag-
ner’s algorithm, then we describe how its complexity is exponential when the
length of the hash value goes to infinity.

4.1 Information Set Decoding

The problem of decoding a random code has been extensively studied and many
algorithms devoted to this task have been developed (see [2] for a survey). All
these algorithms are exponential. Still, as stated by Sendrier [18], the most effi-
cient attacks all seem to be derived from Information Set Decoding (ISD).

Definition 3. An information set is a set of k = n − r (the dimension of the
code) positions among the n positions of the support.

Definition 4. Let ((Hi)1≤i≤w, w,S) be an instance of RSD. An information set
will be called valid with respect to the instance if there exists a solution to this
problem which has no 1s among the k positions of the set.

The ISD algorithm consists in picking information sets at random, until a valid
one is found. Checking whether the information set is valid or not is done in
polynomial time1, so the exponential nature of the algorithm originates from
the exponentially small probability of finding a valid information set: let V (r)
be the cost of checking the validity of an information set, and Pw the probability
1 one simply has to perform a Gaussian elimination on the matrix, using the columns

outside the chosen information set.

A Family of Fast Syndrome Based Cryptographic Hash Functions 69

for a random information set to be valid; then the complexity of this algorithm
is V (r)/Pw .

The probability Pw depends on the probability Pw,1, that a given information
set is valid for one given solution of RSD, and on the expected number Nw of
solutions to RSD. We shall consider:

Pw = 1 − (1 − Pw,1)Nw .

For simplicity, we will use the convenient approximation Pw � Pw,1 ×Nw.
In the case of RSD, one needs to find a regular word of weight w having a

given syndrome S. The number of regular solutions to RSD is, on average:

Nw =

(
n
w

)
2r

w

.

As the solutions are not random words, the attacker should first choose the
information sets which have the best chance of being valid. One can see that he
will maximize his chances when choosing the same number of positions in each
block, that is, choosing k

w positions w times. The probability of success is then:

Pw,1 =

((
n/w−1

k/w

)(n/w
k/w

))w

=

(
r
w

)w(
n
w

)w .

The final probability Pinv of choosing a valid set to invert RSD is: Pinv =

Pw,1 ×Nw = (r
w)
2r

w

. Note that it does not depend on n.
For collisions, one needs to find a 2-regular word with null syndrome. If i is

the number of non-zero blocks in this word, the number of such words is:

Ni =

(
w
i

)(
n/w

2

)i

2r
.

Using, as for inversion, an equal repartition of the information set among the
blocks, that is, k

w positions in each block, we get, for each value of i, the proba-
bility of validity:

Pi,1 =

(
w
i

)(
n/w−k/w

2

)i(
w
i

)(
n/w

2

)i
=

(
r/w
2

)i(
n/w

2

)i
.

The total probability of success for one information set is then:

Pcol total =
w∑

i=1

(
w
i

)(
r/w
2

)i

2r
=

1
2r

[(r
w

2

)
+ 1

]w

.

However the adversary may decide to use another strategy and look for spe-
cific words. He can consider words with non-zero positions only in a given set
of w0 < w blocks, take all the information set points available in the remaining

70 D. Augot, M. Finiasz, and N. Sendrier

w − w0 blocks and distribute the rest of the information set in the w0 chosen
blocks. The probability of success is then:

Pcol w0
=

1
2r

[(n
w − k0

w0

2

)
+ 1

]w0

=
1
2r

[(r
w0

2

)
+ 1

]w0

,

with k0 = k − (w − w0) × n
w = n·w0

w − r. As the attacker has the possibility to
choose the best strategy, he can choose the most suitable value for w0 (as long
as it remains smaller than w):

Pcol optimal =
1
2r

max
w0∈�1;w�

[(r
w0

2

)
+ 1

]w0

.

It is shown in [1] that this maximum is reached for w0 = α · r, where α ≈ 0.24
is a constant, and that:

Pcol optimal =
1
2r

[(1
α

2

)
+ 1

]αr

� 2
r

3.3 .

4.2 Wagner’s Generalized Birthday Problem

We now describe the attack from Coron and Joux [4], which relies on the Gen-
eralized Birthday Problem introduced by Wagner [19], who established:

Theorem 1. Let L1, L2,. . . ,L2a be 2a lists of r bits strings, each list being of
size L = 2

r
a+1 . Then a solution to the equation x1 ⊕ x2 ⊕ · · · ⊕ x2a = 0, with

xi ∈ Li, can be found in time O(2a2
r

a+1).

Let us recall the algorithm. At first step 2a lists of size L are given. Then the lists
are merged pair by pair to create a new list: for instance, the merge L1 �� L2 of
the lists L1 and L2 is made from the sum of the elements x1, x2 of L1, L2 such
that x1⊕x2 is zero on the first r

a+1 bits. One readily checks that the size L1 �� L2

is still 2
r

a+1 on average. Using sorting algorithms, this merge operation can be
done in time O(r2

r
a+1) (one can eliminate the r factor, and thus obtain Wagner’s

complexity, using hash tables, however this will require larger memory space).
Once the 2a−1 new lists are obtained, one proceeds recursively, until there are
only two remaining lists (See Fig. 2). Then a collision is found between these two
lists using the classical birthday paradox. Since there are 2a merge operations,
the total complexity is O(r2a2

r
a+1).

This algorithm translates into an attack for collisions as follows. Each list Li

is associated to w
2a blocks of the matrix, and contains the syndromes of 2-regular

words, of weight less than or equal to 2w
2a , defined over these blocks. Finding a

solution Hx1 ⊕Hx2 ⊕ · · · ⊕Hx2a = 0 gives a collision.
The adversary will try to optimize a in order to get the lowest complexity. But

the auxiliary a is subject to the following constraint: each list (of size L = 2
r

a+1)
can not be larger than the number of words of weight 2w

2a (or lower), which are

A Family of Fast Syndrome Based Cryptographic Hash Functions 71

�2
��3

...

�2¶ �2
�-1¶

�2
(-1)�

�1
(-1)�

�1¶¶

...

... ..
.

�¶¶2�-2

?

Weight /2 words.�

Weight /2 words, with 1 zeros.� � �/ +
�-2

Weight /2 words, with 2 1 zeros.� � �¢ / +
�-3

Weight , with 1 1 zeros.� � � �(-) / +¢

�-1
�1 �2

�1¶

Fig. 2. Application of Wagner’s algorithm to collision search. All the lists remain of
constant size L = 2

r
a+1 . On average, there remains a single solution at the end of the

algorithm.

part of a 2-regular word, with a given set of blocks. Since in each block there are(n
w
2

)
+ 1 words of weight 2 or 0, this gives:

r

a+ 1
≤ w

2a
log2

[(n
w

2

)
+ 1

]
,

or equivalently:
2a

a+ 1
≤ w

r
log2

[(n
w

2

)
+ 1

]
. (1)

This shows that a can not grow as desired by the adversary. In the case of
inversion search, the constraint is that the size of the list must be smaller than
the number of regular words of weight w

2a , with 1’s in some w
2a blocks. This gives,

similarly to the collision case:

2a

a+ 1
≤ w

r
log2(

n

w
). (2)

4.3 Extension of Wagner’s Algorithm to Non-fitting Cases

In general, it may be the case that the size L = 2� of the lists to be dealt with
is not exactly 2

r
a+1 .

We first deal with the case when � < r
a+1 . In that case, we apply Wagner’s

method, with the constraint of zeroing � bits of the partial sums (instead of
r

a+1) during each merge operation, hence keeping lists of constant size. So, the
two remaining lists, at the end of the recursion, will only have (a − 1)� bits
equal to zero. Then the probability to have a collision between these two lists
is 2(a+1)�

2r . If the algorithm fails and there is no collision, then the whole process
is started from the beginning, choosing another set of bits to be set to zero.
Since the complexity of building the two final lists is O(�2a2�), the total cost
is O(�2r+a−a�). Again, for this complexity to hold, the size of the list must be

72 D. Augot, M. Finiasz, and N. Sendrier

smaller than 2
r

a+1 . The contrary would correspond to having more than one
collision in the end, which won’t help improving the complexity.

Secondly, we deal with the case when � > r
a+1 . Here the strategy is to prepare

each list using a precomputation step, by zeroing a few bits in a each list. We
shall denote by α this number of bits and calculate its optimal value. After
zeroing α bits, the size of the lists is on average 2�−α. In the context of the
hash function, this precomputation step is performed by using two sublists and
merging them using the birthday paradox. Then Wagner’s algorithm is applied
to set to zero the r′ = r − α remaining bits. Ideally α is chosen to fit the new
parameters of Wagner’s algorithm: we must have �−α = r′

a+1 . Solving these two
equations gives:

α =
�(a+ 1) − r

a
and r′ =

a+ 1
a

(r − �),

and the total cost of Wagner’s algorithm is O(r′2a2
r′

a+1). Note that preparing all
the lists, with the birthday paradox, costs O(2a2

�
2), so there might be a concern

that this step becomes preponderant. Solving the inequalities tells us that this
is only the case when � > 2r

a+2 , which means that we fall in the range where a+1
could have been used for the attack (see Equations (1) and (2)).

4.4 Some Security Curves

The curves on Fig. 3 show how the different attacks described in this section
behave when applied to concrete parameters. It is clear that the attack based on
Wagner’s Generalized Birthday Paradox gives far better results than Informa-
tion Set Decoding techniques applied to regular words. This is mainly because
Information Set Decoding algorithms are efficient when applied to a problem
having a single solution. This is often the case when decoding a random code,
but here, each instance has a huge number of solutions.

It is also important to note that, for a same security level, the scope of
available parameters is much wider if one is only looking for a one-way function
(no collision resistance). For instance, with r = 400 and n = 216, for a security
of 280operations, w could be chosen anywhere in the interval �0; 145� instead of�0; 67�.
4.5 Asymptotical Behavior

We want to prove that, even though a can vary depending on the parameters,
when r goes to infinity a can not grow fast enough to make Wagner’s attack
sub-exponential. The only constraint on a is:

2a

a+ 1
≤ w

r
log2

(n
w

)
.

If we consider n and w as polynomial in r (noted Poly (r)), then n
w is also

polynomial in r and we have:
2a

a+ 1
≤ Poly (r) log2 (Poly (r)) .

A Family of Fast Syndrome Based Cryptographic Hash Functions 73

0

100

200

12040 16080

250

150

50

200

�

80

0

100

200

12040 16080

250

150

50

200

�

80

400

3.3

Fig. 3. Comparison of the costs of the different attacks as a function of w when r = 400
and n = 216. On the left when applied to inversion and on the right to collision
search. The vertical scale corresponds to the logarithm of the work-factor required
to perform Information Set Decoding (dashed line), Wagner’s Generalized Birthday
Paradox (dotted line) or Extended Wagner Paradox (plain line).

From this we deduce a = Poly (log2 r). Asymptotically, the best attack having a
cost of O(r2a2

r
a+1) remains thus exponential in r. Moreover, it should be possible

to find parameters which scale well when trying to increase the security level.
The simplest solution to achieve so is to scale the parameters linearly with

r. For instance, suppose we have two constants ω and ν such that w = ω × r
and n = ν × r. We get:

2a

a+ 1
≤ ω log2

(ν
ω

)
so a � log2 ω log2 log2

ν

ω
= κ a constant.

This means that the best a an attacker can use will remain constant whatever
the value of r. Asymptotically this construction will scale with:

– exponential security: 2
r

a+1 = 2O(r),
– constant block size: log2

n
w = log2

ν
ω = constant (n

w remains a power of 2),
– linear hash cost: NXOR = r2ω

r(ω log ν
ω −1) = O (r),

– quadratic matrix size: r × n = r2ν = O
(
r2
)
.

Using this method it is possible to convert any set of efficient parameters to
another efficient set giving any other required security, by simply scaling r.

4.6 Weak Instances

As defined in Section 3.3, a weak instance will correspond to a matrix H for which
there exists an algorithm being able to find a collision (a 2-regular word having
a null syndrome) with a complexity lower than that of the best attack: here the

74 D. Augot, M. Finiasz, and N. Sendrier

Wagner-based attack. We shall hence go over known attacks and evaluate the
number of weak instances each one will generate.

Instances for which the Wagner-based attack can have a complexity lower
than the average are those for which, when using smaller lists all along the
algorithm, there remains, on average, one solution in the end. However, this is
only possible if the matrix is not of full rank: the algorithm can then be applied
using r′ = Rank(H) instead of r. However, the probability of H not being full
rank is very small (about O (2r−n)) and these weak instances can be neglected.

Concerning the Information Set Decoding attack, instances which will have a
low complexity will also represent a negligible proportion of all possible matrices:
it requires that there is an abnormally large amount of solutions of low weight,
so that when choosing a random information set, it will have a larger probability
of being valid. This probability will be even smaller than that of H not being of
full rank.

The only remaining property which could weaken an instance against collision
search is the presence of a very low weight collision (say 2w0). This way, a brute
force search among all low weight words could find this collision with a lower
complexity. A search among all words of weight up to 2w0 will have, using the
birthday paradox, a complexity of O

(√
Nw0

)
where Nw0 denotes the number

of 2-regular words of weight 2w0. This attack will hence only be of interest for
values of w0 such that Nw0 < 2

2r
a+1 (the square of the average complexity of the

Wagner-based attack). The probability that an instance has a solution of weight
2w0 is O

(Nw0
2r

)
and thus the proportion of such weak instances can not be

larger than O
(
2(a−1) −r

a+1

)
, which, as we will see in the next section, will always

be negligible for secure parameters.
We can hence conclude that no known attack yields a non negligible propor-

tion of weak instances in our construction.

5 Proposed Parameters

Usually hash functions have a security of 2
r
2 against collisions, that is, the best

attack is based on the classical birthday paradox. In our case this would cor-
respond to a being equal to 1 at most. However, if this is the case, F will
necessarily have an input shorter than its output and this is incompatible with
the chaining method. If we want to have an input size larger than the output size
(i.e. compression), then the attacker will always have the possibility to choose
at least a = 3 (when looking for collisions). If we suppose our parameters place
us exactly at a point where an attacker can use a = 3, we have:

r =
(3 + 1)w

23
log2

[(n
w

2

)
+ 1

]
≥ w

2
log2

[(n
w

)2

× 1
2

]
= w log2

(n
w

)
− w

2
.

If this is the case we will then have:

NXOR ≥ rw
w
2

= 2r.

A Family of Fast Syndrome Based Cryptographic Hash Functions 75

For a security of 280 and with a = 3 we would need at least r = 320 and
hence at least 640 binary XORs per input document bit. This is not so huge in
practice but it would still give a relatively slow hash rate. For instance, it is just
above 10 Mbits/s, using a vanilla C implementation on a Pentium 4.

If we instead choose to limit the attacker to a = 4 we will have much more
freedom in the parameter choice. First of all, we get:

NXOR =
rw(

1 − 5
8

)
log2

(
n
w

)
+ 5

16w
.

Changing the values of n and w (which are still linked by the constraint a = 4)
will let us change the hash cost. However, as we see on Fig. 4, the lowest values
for NXOR also correspond to the largest values of n and so, to larger matrix
sizes. Table 1 collects a list of parameter sets all corresponding to a = 4 and
r = 400, that is, a security of 280. In fact, practical security will be a little higher
as we have neglected a r2a factor. The security should hence rather be around
292 operations, and an exact security of 280 would be achieved with r = 340.
However an attacker with huge memory can get rid of the r factor. We will hence
stick to the 2

r
a+1 approximation of the security.

0

10

20

12040 16080

25

30

15

5

200

log()�

�
0

100

200

12040 16080

250

300

150

50

200

N
��	

�

Fig. 4. Evolution of log2 n (on the left) and NXOR (on the right) as a function of w
for r = 400 when always staying as close as possible to the point a = 4

If we choose to use the set of parameters where log2
n
w = 8, which is very

convenient for software implementation, we will have at the same time a good
efficiency (7 times faster than when trying to force a = 3) and a reasonable
matrix size. As we have seen in Section 4.5, we can then scale these parameters.
We have ω = 85

400 = 0.2125 and ν = 256 × ω = 54.4. If we now want to hash
with a security of 2128 (equivalent to that of SHA-256) we simply need to use
r = 128 × (a+ 1) = 640 and so w = 640 × ω = 136 and n = 34816.

76 D. Augot, M. Finiasz, and N. Sendrier

Table 1. Possible parameters for r = 400 and a = 4

log2

(
n
w

)
w n NXOR matrix size

16 41 2 686 976 64.0 ∼ 1 Gbit
15 44 1 441 792 67.7 550 Mbits
14 47 770 048 72.9 293 Mbits
13 51 417 792 77.6 159 Mbits
12 55 225 280 84.6 86 Mbits
11 60 122 880 92.3 47 Mbits
10 67 68 608 99.3 26 Mbits
9 75 38 400 109.1 15 Mbits
8 85 21 760 121.4 8.3 Mbits
7 98 12 544 137.1 4.8 Mbits
6 116 7 424 156.8 2.8 Mbits
5 142 4 544 183.2 1.7 Mbits
4 185 2 960 217.6 1.1 Mbits

We propose three sets of parameters giving a security of 280 against collision
search for different output hash sizes. Each of these sets can be scaled linearly
to obtain a better security.

– Short Hash: r = 320, w = 42 and log2
n
w = 8. This solution has a hash size

of 320 bits only, but is quite slow with a throughput around 10 Mbits/s.
– Fast Hash: r = 480, w = 170 and log2

n
w = 8. This solution will be very

fast (around 90 Mbits/s) with still a reasonable matrix size (20 Mbits).
– Intermediate: r = 400, w = 85 and log2

n
w = 8. This is in our opinion the

best compromise, with reasonable hash length and matrix size and still a
good efficiency (around 70 Mbits/s).

If looking only for a one-way function (no collision resistance) then we have
the choice to either be faster, or have a smaller output.

– Short One-Way: r = 240, w = 40 and log2
n
w = 8. This solution has an

output of only 240 bits and should work at around 70 Mbits/s.
– Fast One-Way: r = 480, w = 160 and log2

n
w = 16. This solution uses a

very large matrix (4 Gbits) but should have a throughput above 200 Mbits/s.

6 Comparison to Existing Hash Functions

As stated at the beginning of Section 5, from a practical security point of view,
our functions are somehow weaker than other existing functions: we will never
be able to reach a security of O

(
2

r
2
)

against collision search. Accordingly, the
output size of our functions will always have to be above 320 bits.

The description of one of our function will also always be much larger than
that of other functions: the matrix should be included in the description and is
always quite large when looking for fast hashing. However, as long as one uses

A Family of Fast Syndrome Based Cryptographic Hash Functions 77

Table 2. Throughputs of some other hash functions, using the crypto++ library [5]

Algorithm Mbits/s
MD5 1730

RIPEMD-160 420
SHA-1 544

SHA-512 90

parameters for which the matrix isn’t of many Gigabits this shouldn’t cause any
problem.

From a speed point of view, our functions also seem much slower than exist-
ing functions. For instance, as seen in Table 2, using Wei Dai’s crypto++ library,
other hash functions are much faster than the 90 Mbits/s of Fast Hash. One
should however take into account the fact that these 90 Mbits/s are obtained us-
ing a very basic C implementation, taking no advantage of the extended Pentium
operations (MMX, SSE. . .).

The operations in FSB are however very simple: the only costly operations are
binary XORs. Hence what will slow the process will mainly be memory access
problems as the matrix H has no chance to fit in the machine’s CPU cache.
Without any fully optimized implementation of the algorithm it seems hard to
estimate the place left for improvement.

However, depending of the use made of the hash function, the flexibility in
the parameter choice of FSB can compensate this lack of speed. Imagine hashing
for a 1024 bits RSA signature: you need to output a 1024 bits hash and at the
same time do not require a security higher than 280 as it would be higher than
that of the RSA part of the signature. For such application, with r = 1024, one
could use one of the following parameter sets:

a security log2
n
w w n NXOR matrix size

11 285 8 11655 2 983 680 129 3 Gbits
8 2113 8 1942 497 152 137 485 Mbits

Still using our basic implementation this would yield throughputs around
70Mbits/s, which is not bad for a 1024 bits hash function. It seems that, for
FSB, the throughput will depend more on the required security level than on
the output hash size.

7 Conclusion

We have proposed a family of fast and provably secure hash functions. This
construction enjoys some interesting features: both the block size of the hash
function and the output size are completely scalable; the security depends di-
rectly of the output size and is truly exponential, it can hence be set to any
desired level; the number of XORs used by FSB per input bit can be decreased
to improve speed.

78 D. Augot, M. Finiasz, and N. Sendrier

However, reaching very high output rates requires the use of a large matrix.
This can be a limitation when trying to use FSB on memory constrained devices.
On classical architectures this will only fix a maximum speed.

Another important point is the presence of weak instances of this hash func-
tion: it is clear that the matrix H can be chosen with bad properties. For instance,
the all zero matrix will define a hash function with constant zero output. How-
ever, these bad instances only represent a completely negligible proportion of
all the matrices and when choosing a matrix at random there is no real risk of
choosing such a weak instance.

Also note that it is easy to introduce a trapdoor in a matrix by simply choosing
one column to be the sum of some other columns of the matrix. This will then
allow the person who generated the matrix to easily generate collisions. As stated
by Preneel in [15], it is possible to avoid this problem if the matrix generation is
reproducible by a user. The matrix could then simply be the output of a pseudo-
random generator and this would solve both the problems of trapdoors and that
of the huge matrix size. However, the security proof would no longer apply.

Finally, concerning the hash size/collision security ratio, this construction
does not allow to have the usual ratio of 2, obtained when using a classical
birthday paradox to find collisions. This can be changed by simply applying
a final output transformation to the last hash: this transformation can further
compress it to a size of twice the expected security against collision search.
Further work has then to be done to study the required properties of this final
transformation, both from a theoretical point of view, in order to keep the well
founded security of these scheme, and from the practical point of view, in order
to propose sound parameters.

References

1. D. Augot, M. Finiasz, and N. Sendrier. A fast provably secure cryptographic hash
function. Cryptology ePrint Archive, 2003. http://eprint.iacr.org/2003/230/.

2. A. Barg. Complexity issues in coding theory. In V. S. Pless and W. C. Huffman,
editors, Handbook of Coding theory, volume I, chapter 7, pages 649–754. North-
Holland, 1998.

3. E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg. On the inherent in-
tractability of certain coding problems. IEEE Transactions on Information Theory,
24(3), May 1978.

4. J.-S. Coron and A. Joux. Cryptanalysis of a provably secure cryptographic hash
function. Cryptology ePrint Archive, 2004. http://eprint.iacr.org/2004/013/.

5. Wei Dai. Crypto++ library. http://www.eskimo.com/∼weidai/.
6. I.B. Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,

CRYPTO 89, volume 435 of Lecture Notes in Computer Science, pages 416–426.
Springer-Verlag, 1989.

7. Y. Gurevich. Average case completeness. Journal of Computer and System Sci-
ences, 42(3):346–398, 1991.

8. A. Joux and L. Granboulan. A practical attack against knapsack based hash
functions. In Alfredo De Santis, editor, Advances in Cryptology - Eurocrypt ’94,
volume 950 of Lecture Notes in Computer Science, pages 58–66. Springer-Verlag,
1994.

A Family of Fast Syndrome Based Cryptographic Hash Functions 79

9. L. Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, 1986.

10. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pages 114–116,
January 1978.

11. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

12. R. C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
Advances in Cryptology - Crypto ’89, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer-Verlag, 1990.

13. National Insitute of Standards and Technology. FIPS Publication 180: Secure Hash
Standard, 1993.

14. H. Niederreiter. Knapsack-type crytosystems and algebraic coding theory. Prob.
Contr. Inform. Theory, 15(2):157–166, 1986.

15. Bart Preneel. The state of cryptographic hash functions. In Ivan Damg̊ard, editor,
Lectures on Data Security: Modern Cryptology in Theory and Practice, volume
1561 of Lecture Notes in Computer Science, pages 158–182. Springer-Verlag, 1999.

16. R. L. Rivest. The MD4 message digest algorithm. In A.J. Menezes and S.A.
Vanstone, editors, Advances in Cryptology - CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science, pages 303–311. Springer-Verlag, 1991.

17. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In Bimal Roy and Willi Meier, editors, Fast Software
Encryption 2004, volume 3017 of Lecture Notes in Computer Science, pages 371–
388, 2004.

18. N. Sendrier. On the security of the McEliece public-key cryptosystem. In M. Blaum,
P.G. Farrell, and H. van Tilborg, editors, Information, Coding and Mathemat-
ics, pages 141–163. Kluwer, 2002. Proceedings of Workshop honoring Prof. Bob
McEliece on his 60th birthday.

19. D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO
2002, volume 2442 of Lecture Notes in Computer Science, pages 288–304. Springer-
Verlag, 2002.

20. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanal-
ysis of the hash functions md4 and ripemd. In Ronald Cramer, editor, Advances in
Cryptology – Eurocrypt 2005, volume 3494 of Lecture Notes in Computer Science,
pages 1–18, Aarhus, Denmark, May 2005. Springer-Verlag.

21. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology – Eurocrypt 2005, volume 3494 of
Lecture Notes in Computer Science, pages 19–35, Aarhus, Denmark, May 2005.
Springer-Verlag.

A NP-Completeness Proofs

The most general problem we want to study concerning syndrome decoding with
regular words is:

b-regular Syndrome Decoding (b-RSD)
Input: w binary matrices Hi of dimension r × n and a bit string S of length r.
Property: there exists a set of b×w′ columns (with 0 < w′ ≤ w), 0 or b columns
in each Hi, summing to S.

80 D. Augot, M. Finiasz, and N. Sendrier

Note that, in this problem, b is not an input parameter. The fact that for any
value of b this problem is NP-complete is much stronger than simply saying that
the problem where b is an instance parameter is NP-complete. This also means
that there is not one, but an infinity of such problems (one for each value of b).
However we consider them as a single problem as the proof is the same for all
values of b.

The two following sub-problems are derived from the previous one. They
correspond more precisely to the kind of instances that an attacker on the FSB
hash function would need to solve.

Regular Syndrome Decoding (RSD)
Input: w matrices Hi of dimension r × n and a bit string S of length r.
Property: there exists a set of w columns, 1 per Hi, summing to S.

2-regular Null Syndrome Decoding (2-RNSD)
Input: w matrices Hi of dimension r × n.
Property: there exists a set of 2 × w′ columns (with 0 < w′ ≤ w), taking 0 or 2
columns in each Hi summing to 0.

It is easy to see that all of these problems are in NP. To prove that they
are NP-complete we will use a reduction similar to the one given by Berlekamp,
McEliece and van Tilborg for syndrome decoding [3]. We will use the following
known NP-complete problem.

Three-Dimensional Matching (3DM)
Input: a subset U ⊆ T × T × T where T is a finite set.
Property: there is a set V ⊆ U such that |V | = |T | and no two elements of V
agree on any coordinate.

Let’s study the following example: let T = {1, 2, 3} and |U | = 5

U1 = (1, 2, 2)
U2 = (2, 2, 3)
U3 = (1, 3, 2)
U4 = (2, 1, 3)
U5 = (3, 3, 1)

One can see that the set consisting of U1,U4 and U5 verifies the property.
However if you remove U1 from U then no solution exist. In our case it is more
convenient to represent an instance of this problem in another way: we associate
a 3|T |× |U | binary incidence matrix A to the instance. For the previous example
it would give the matrix shown in Table 3.

A solution to the problem will then be a subset of |T | columns summing to
the all-1 column. Using this representation, we will now show that any instance
of this problem can be reduced to solving an instance of RSD, hence proving
that RSD is NP-complete.

Reductions of 3DM to RSD. Given an input U ⊆ T × T × T of the 3DM
problem, let A be the 3|T | × |U | incidence matrix described above. For i from 1
to |T | we take Hi = A.

If we try to solve the RSD problem on these matrices with w = |T | and
S = (1, . . . , 1) a solution will exist if and only if we are able to add w ≤ |T |

A Family of Fast Syndrome Based Cryptographic Hash Functions 81

Table 3. Incidence matrix corresponding to an instance of 3DM

U1 U2 U3 U4 U5

122 223 132 213 331
1 1 0 1 0 0
2 0 1 0 1 0
3 0 0 0 0 1

1 0 0 0 1 0
2 1 1 0 0 0
3 0 0 1 0 1

1 0 0 0 0 1
2 1 0 1 0 0
3 0 1 0 1 0

columns of A (possibly many times the same one) and obtain a column of 1s.
As all the columns of A contain only three 1s, the only way to have 3 × |T | 1s
at the end is that during the adding no two columns have a 1 on the same line
(each time two columns have a 1 on the same line the final weight decreases by
2). Hence the |T | chosen columns will form a suitable subset V for the 3DM
problem.

This means that if we are able to give an answer to this RSD instance, we
will be able to answer the 3DM instance we wanted to solve. Thus RSD is NP-
complete.

Reduction of 3DM to b-RSD. This proof will be exactly the same as the
one above. The input is the same, but this time we build the following matrix:

B =

A

A

A

0

0

the block matrix with b times A
on the diagonal

Now we take Hi = B and use S = (1, . . . , 1). The same arguments as above
apply here and prove that for any given value of b, if we are able to give an
answer to this b-RSD instance, we will be able to answer the 3DM instance we
wanted to solve. Hence, for any b, b-RSD is NP-complete.

Reduction of 3DM to 2-RNSD. We need to construct a matrix for which
solving a 2-RNSD instance is equivalent to solving a given 3DM instance. A
difficulty is that, this time, we can’t choose S = (1, . . . , 1) as this problem is
restricted to the case S = 0. For this reason we need to construct a somehow
complicated matrix H which is the concatenation of the matrices Hi we will use.
It is constructed as shown in Fig. 5.

82 D. Augot, M. Finiasz, and N. Sendrier

H =

A 0

Id Id

0

A 0

Id Id

0

A 0

Id

Id

Id

Id

0

0

0

01

0
U

1

1T

1T()

0

Fig. 5. The matrix used to reduce 3DM to 2-RNSD

This matrix is composed of three parts: the top part with the A matrices,
the middle part with pairs of identity |U | × |U | matrices, and the bottom part
with small lines of 1s.

The aim of this construction is to ensure that a solution to 2-RNSD on this
matrix (with w = |T |+1) exists if and only if one can add |T | columns of A and
a column of 1s to obtain 0. This is then equivalent to having a solution to the
3DM problem.

The top part of the matrix will be the part where the link to 3DM is placed:
in the 2-RNSD problem you take 2 columns in some of the block, our aim is to
take two columns in each block, and each time, one in the A sub-block and one in
the 0 sub-block. The middle part ensures that when a solution chooses a column
in H it has to choose the only other column having a 1 on the same line so that
the final sum on this line is 0. This means that any time a column is chosen
in one of the A sub-blocks, the “same” column is chosen in the 0 sub-block.
Hence in the final 2w′ columns, w′ will be taken in the A sub-blocks (or the 1
sub-block) and w′ in the 0 sub-blocks. You will then have a set of w′ columns
of A or 1 (not necessarily distinct) summing to 0. Finally, the bottom part of
the matrix is there to ensure that if w′ > 0 (as requested in the formulation of
the problem) then w′ = w. Indeed, each time you pick a column in the block
number i, the middle part makes you have to pick one in the other half of the
block, creating two ones in the final sum. To eliminate these ones the only way
is to pick some columns in the blocks i− 1 and i+ 1 and so on, until you pick
some columns in all of the w blocks.

As a result, we see that solving an instance of 2-RNSD on H is equivalent
to choosing |T | columns in A (not necessarily different) all summing to 1. As
in the previous proof, this concludes the reduction and 2-RNSD is now proven
NP-complete.

A Family of Fast Syndrome Based Cryptographic Hash Functions 83

It is interesting to note that instead of using 3DM we could directly have used
RSD for this reduction. You simply replace the A matrices with the w blocks
of the RSD instance you need to solve and instead of a matrix of 1s you put a
matrix containing columns equal to S. Then the reduction is also possible.

Optimization of Electronic First-Bid Sealed-Bid
Auction Based on Homomorphic Secret Sharing

Kun Peng, Colin Boyd, and Ed Dawson

Information Security Institute,
Queensland University of Technology

{k.peng, c.boyd, e.dawson}@qut.edu.au
http://www.isrc.qut.edu.au

Abstract. Although secret sharing techniques have been applied to im-
plement secure electronic sealed-bid auction for a long time, problems
and attacks still exist in secret-sharing-based electronic sealed-bid auc-
tion schemes. In this paper, a new secret-sharing-based first-bid e-auction
scheme is designed to achieve satisfactory properties and efficiency. Cor-
rectness and fairness of the new auction are based on hard computation
problems and do not depend on any trust. Complete bid privacy based
on a threshold trust is achieved in the new scheme. Attacks to existing
secret-sharing-based sealed-bid e-auction schemes are prevented.

1 Introduction

The first secure electronic sealed-bid auction scheme [3] is based on threshold se-
cret sharing. Since then, more secret-sharing-based sealed-bid e-auction schemes
[4,6,5,10] have been proposed. Most of them [4,6,10] are supposed to support
first-bid sealed-bid e-auction. However as will be shown many security problems
exist in these auction schemes and they are vulnerable to various attacks. The
newest and most advanced of them, [10], pointed out lack of secret sharing ver-
ification and vulnerability to three attacks in the previous secret-sharing-based
sealed-bid e-auctions. However, the countermeasures in [10] cannot completely
prevent these three attacks. In this paper, drawbacks of the previous secret-
sharing-based sealed-bid e-auction schemes are listed and analysed. Then a new
secret-sharing-based sealed-bid auction scheme is proposed, which can imple-
ment secure and efficient first-bid sealed-bid e-auction. Several attacks in the
existing secret-sharing-based sealed-bid e-auction schemes are prevented in the
new scheme.

2 Requirements and Related Work

Auction is a useful tool to distribute resources. The principle of auction is to
sell goods at the highest possible price. Sealed-bid auction usually contains four
phases: preparation phase, bidding phase, bid opening phase and winner deter-
mination phase.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 84–98, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimization of Electronic First-Bid Sealed-Bid Auction 85

1. In the preparation phase, the auction system is set up and the auction rule
is published.

2. In the bidding phase, every bidder submits a sealed bid through a commu-
nication network.

3. In the bid opening phase, the bids are opened to determine the winning
price.

4. In the winner determination phase, the winner is identified.

The following properties are often desired in sealed-bid auction.

1. Correctness: The auction result is determined strictly according to the
auction rule. For example, if first bid auction is run, the bidder with the
highest bid wins and pays the highest bid.

2. Bid confidentiality: Each bid remains confidential to anyone other than
the bidder himself before the bid opening phase starts.

3. Fairness: No bidder can take advantage of other bidders (e.g. recover other
bids and choose or change his own bids according to other bids).

4. Unchangeability: Any bidder, especially the winner, cannot change or deny
his bid after it is submitted.

5. Public verifiability: Correctness of the auction (including validity of the
bids, correctness of bid opening and correctness of winner identification)
must be publicly verifiable.

6. Bid Privacy: Confidentiality of the losing bids must be still retained after
the auction finishes. Strictly speaking, no information about any losing bid
is revealed except what can be deduced from the auction result.

7. Robustness: The auction can still run properly in abnormal situations like
existence of invalid bid.

The commonly used auction rules in sealed-bid auctions include first bid
auction and Vickrey auction. In a first bid auction, the bidder with the highest
bid wins and pays the highest bid. In a Vickrey auction, the bidder with the
highest bid wins and pays the second highest bid. Another popular rule, the ith

bid auction [5] is a multiple-item version of first bid auction or Vickrey auction.
In a secure auction scheme, secrecy of the bid is very important. Usually, bid

confidentiality must be achieved without any trust on the auctioneers, as loss
of confidentiality is fatal to fairness of the auction. If a bidder can collude with
some auctioneers to know other bids before submitting his own bid, he can win
at a price as low as possible in a first bid auction, which violates the principle and
fairness of auction. On the other hand, bid privacy can be based on some trust,
like a threshold trust on the auctioneers as breach of a bidder’s personal privacy
is not so serious and is tolerable in some cases. Implementation of bid privacy
is rule-dependent. Although Vickery auction is preferred in many applications,
it is difficult to achieve bid privacy in Vickrey auction. As the winner’s bid and
the identity of the bidder submitting the winning bid must be kept secret as
required in bid privacy, there is no practical method to achieve bid privacy in
Vickrey auction. As bid privacy is required in this paper, we focus on first-bid
auction.

86 K. Peng, C. Boyd, and E. Dawson

Except [3], all the secret-sharing-based sealed-bid e-auction schemes employ
one-choice-per-price strategy. Under this strategy, the price space (containing all
the biddable prices) is much smaller than the input domain of the sealing function
and each bidder must make a choice (indicating willingness or unwillingness to
pay) at every biddable price to form his bidding vector. If a bidder is willing to
pay a price, he chooses a non-zero integer standing for “YES” as his choice at that
price. If a bidder is unwilling to pay a price, he chooses zero standing for “NO” as
his choice at that price. The bidders seal their bidding vectors (including choices
at all the biddable prices) and submit the sealed bidding vectors in the bidding
phase. These sealed-bid e-auction schemes also employ additive homomorphic
secret sharing and binary search. The bidders use additive homomorphic secret
sharing (e.g. Shamir’s secret sharing [12] and its variants) to seal their bidding
choices. Then a binary search for the winning price is performed along a binary
route among the biddable prices. In the search, the auctioneers exploit additive
homomorphism of the sharing function (the summed shares of all the choices at
a price can reconstruct the sum of the choices at that price) to implement bid
opening at every price on the binary searching route until finally the winning
price is met.

Among the existing secret-sharing-based first-bid e-auction schemes
[3,4,6,10], the most recent and advanced one is [10]. The auction scheme in
[3] is simple, but does not support bid privacy. Secret bid sharing in [3,4,6] is
not verifiable, so the bids are changeable and a bidder can collude with an auc-
tioneer to compromise correctness and fairness. Besides lack of verifiability [10]
points out three attacks to the previous schemes [4,6], ABC (auctioneer-bidder
collusion) attack, BBC (bidder-bidder collusion) attack and dispute attack. In an
ABC attack, some auctioneers collude with a bidder to compromise correctness
or fairness. In a BBC attack, some bidders collude to compromise correctness
or fairness. In a dispute attack, an auctioneer accuses a bidder of submitting an
invalid (encrypted) choice share and the bidder cannot prove his innocence with-
out revealing the share. However, the auction scheme in [10] cannot completely
prevent these three attacks.

The auction scheme in [10] prevented an ABC attack in [4,6]: an auctioneer
helps a bidder to change his bid after submitting it. However, [10] is vulnerable
to another ABC attack in first-bid auction. As bid sealing depends on threshold
secret sharing, any submitted sealed bid can be opened before the bid opening
phase if the number of malicious auctioneers is over the sharing threshold. These
malicious auctioneers then can reveal the opened bids to a waiting colluding
bidder, who can bid just higher than the submitted bids and win at a price as
low as possible. This attack is an ABC attack and definitely compromises fairness
of the auction. Although a threshold trust on the auctioneers is assumed in [10]
and this ABC attack does not exist under the threshold trust, this threshold
trust assumption is too strong for correctness and fairness of the auction. It is
appropriate to base less important properties like bid privacy on the threshold
trust assumption. However, as stated before, bid confidentiality must be achieved
without any trust on the auctioneers as it affects correctness and fairness of the

Optimization of Electronic First-Bid Sealed-Bid Auction 87

auction. So this ABC attack against correctness and fairness must be prevented
without any assumption on the auctioneers.

The existing secret-sharing-based sealed-bid e-auction schemes are vulnerable
to BBC attack as well. For example, three colluding bidders B1, B2 and B3 may
perform the following attack against first bid auction where in a bidding choice
no-zero integer Y and 0 stand for “YES” and “NO” respectively.

– B1, B2 and B3 estimate that the other bidders’ bids are lower than pμ while
their own evaluation is pν , which is higher than pμ. They try to win the
auction and pay as low as possible.

– B1 bids Y at prices no higher than pμ and zero at other prices; B2 bids Y
at prices no higher than pν and zero at other prices; B3 bids −Y at prices
higher than pμ but no higher than pν and zero at other prices.

– If all other bidder submits a bid lower than pμ as expected, the sum of choices
at pμ is non-zero and the sum of choices at prices higher than pμ is 0. So
pμ is the winning price and there is a tie between B1 and B2. One of them
gives up and the other wins at pμ.

– If other bidders’ highest bid, pH is no lower than pμ but lower than pν , the
sum of choices at pH is larger than zero and the sum of choices at prices
higher than pH is 0. So some other bidder wins the auction at pH together
with B2. B2 disputes the tie and publishes his bid to win the auction at pν .

– If other bidders’ highest bid is pν , the sum of choices at pν is larger than
zero and the sum of choices at prices higher than pν is 0. So some other
bidder draws with B2 at pν . B2 still has a chance to win the auction in the
following tie-breaking operation.

With this attack, either B1 or B2 win unless another bidder submits a bid higher
than the attackers’ evaluation. The attackers can pay a price lower than their
evaluation if the other bids are as low as the attackers expect.

It is pointed out in [10] that the previous secret-sharing-based e-auction
schemes [3,4,6,5] are not publicly verifiable when bid privacy must be retained.
As a result of lack of pubic verifiability, these schemes cannot deal with dispute
between bidders and auctioneers, so are vulnerable to the dispute attack. To
prevent the dispute attack, [10] suggests to use publicly verifiable secret sharing
(PVSS) to distribute the bids. A PVSS protocol based on Bao’s proof of equality
of logarithms in different cyclic groups with different orders [1] is proposed in
[10]. However, Bao’s proof is neither specially sound nor zero knowledge. Bao
only used it in a special verifiable encryption scheme, where he believes sound-
ness and ZK property of the proof is not necessary. Application of Bao’s proof in
[10] is not appropriate. The PVSS in [10] cannot prevent the dispute attack as in-
valid bid can pass its verification. Moreover, the PVSS reveals some information
about the bids.

To protect bid confidentiality and privacy when the bidding choices are in
a small set, information-theoretically hiding secret sharing scheme proposed by
Pedersen [9] is employed in [10] to share the bidding choices, whose compu-
tational and communication cost is twice as high as a computationally hiding
verifiable secret sharing scheme like [8]. However, as will be shown later in the

88 K. Peng, C. Boyd, and E. Dawson

new auction scheme in this paper a computationally hiding verifiable secret shar-
ing is enough to protect bid confidentiality and privacy if the auction protocol is
well designed. Although information-theoretically hiding property is achieved in
the bid sharing in [10] at a high cost, bids in that scheme are not information-
theoretically confidential and not even semantically confidential as Paillier en-
cryption is simplified in [10] to lose semantic security. In addition, bid privacy is
not complete in [10]. At every price on the binary searching route, the number
of “YES” choices is revealed.

In this paper, a new secret-sharing-based first-bid e-auction is designed, which
can prevent the three attacks and achieve complete bid privacy more efficiently.

3 Pedersen’s Verifiable Secret Sharing

Since Shamir proposed the first threshold secret sharing scheme [12], many
threshold secret sharing techniques have appeared. Using these techniques, a
secret holder can share a secret among multiple share holders. The secret can be
recovered if the number of cooperating share holders is over a certain threshold,
T . If the secret holder is not trusted, there must be a mechanism the share hold-
ers can use to verify that they get a set of valid shares of a unique secret. This
requirement is very important for the robustness of applications like auctions.
Secret sharing with this mechanism is called VSS (verifiable secret sharing).
Shamir’s secret sharing was extended by Pedersen to be verifiable as follows [8].

1. G is the subgroup of Z∗
p with order q where p and q are large primes such

that q divides p− 1. Integer g is a generator of G.
2. A builds a polynomial f(x) =

∑T
j=0 ajx

j where a0 = s and aj for j =
1, 2, . . . , T are random integers.

3. A publishes Ej = gaj for j = 0, 1, . . . , T .
4. A sends si = f(i) as a share to share holder Pi.
5. Pi verifies gsi =

∏T
j=0 E

ij

j . If the verification is passed, Pi can be sure that
si is the ith share of logg E0.

6. If at least T + 1 share holders get correct shares, logg E0 can be recovered
by them corporately.

In this paper, Pedersen’s verifiable secret sharing will be employed, which
has the following three properties.

– Correctness: if the secret holder follows the VSS protocol, he can share his
secret such that each share can pass the verification.

– Soundness: if the verification is passed, any share set containing more than
T shares can be used to recover secret logg E0.

– Homomorphism: if multiple secrets are shared among the same sets of share
holders, they can sum up the shares to recover the sum of the secrets.

4 The New Auction Scheme

The basic structure of a secret-sharing-based sealed-bid e-auction is inherited in
this new scheme. Like in other secret-sharing-based sealed-bid e-auction schemes,

Optimization of Electronic First-Bid Sealed-Bid Auction 89

the bidders share their bids among the auctioneers, who employ homomorphic
bid opening and binary search to determine the winning price. However, in the
new auction schemes, certain measures are taken to prevent the attacks and
overcome the drawbacks in the existing secret-sharing-based sealed-bid e-auction
schemes. Two rounds of communication are employed between the bidders and
the auctioneers, while only one round of communication is employed in the exist-
ing schemes. In the first round the bidders commit to their bids and publish the
commitments. The committing function is information-theoretically hiding, such
that it is impossible for anyone to recover any bid from the commitments. The
committing function is computationally binding, such that to find two different
ways to open the commitments is as hard as the discrete logarithm problem.
In the second round the bidders share the bid opening information among the
auctioneers through an additive homomorphic VSS mechanism, so that the auc-
tioneers can cooperate to recover sum of the bidding choices. Hiding property
of the committing function prevents ABC attack, while binding property of the
committing function guarantees unchangeability. The auctioneers randomize the
bidding choices before they are summed up, so that BBC attack is prevented.
The verifiable secret sharing in [8] is employed in the new scheme, which is addi-
tive homomorphic and efficient. A dispute-settling function based on that VSS
technique and verifiable encryption is designed to settle dispute on validity of en-
crypted shares. As the bidding choices are randomized before they are summed
up, no information about the losing bids is revealed although the sum of the
bidding choices is published at the prices on the binary searching route.

Suppose there are w biddable prices p1, p2, . . . , pw in decreasing order, n
bidders B1, B2, . . . , Bn and m auctioneers A1, A2, . . . , Am. The auction protocol
is as follows.

1. Preparation phase
A bulletin board is set up as a broadcast communication channel. Each
Aj establishes his Paillier encryption [7]) algorithm with public key Nj

(product of two secret large primes) and gj (whose order is a multiple of
Nj), message space ZNj , multiplicative modulus N2

j , encryption function
Ej(x) = gx

j r
Nj mod N2

j and a corresponding decryption function Dj(). Aj

publishes on the bulletin board his encryption function and public key for
j = 1, 2, . . . ,m. Large primes p and q are chosen such that q is a factor of
p − 1 and nq2 < Nj for j = 1, 2, . . . ,m. Cyclic group G contains all the
quadratic-residues in Z∗

p and has an order q. Random primes f , g and h
are chosen such that logg f and logh g are unknown. The bid committing
function is Com(x) = fxgr mod p where x is a bidding choice in Zq and r
is a random integer in Zq. A sharing threshold parameter T smaller than m
is chosen. System parameters p, q, f , g, h, T and Nj for j = 1, 2, . . . ,m are
published on the bulletin board.

2. Bidding phase
Each bidder Bi selects his bidding vector (bi,1, bi,2, . . . , bi,w) as his choices
at p1, p2, . . . , pw where bi,l ∈ Zq for l = 1, 2, . . . , w. If he is willing to pay
pl, bi,l is a random non-zero integer modulo q; if he is unwilling to pay pl,

90 K. Peng, C. Boyd, and E. Dawson

bi,l = 0. Then he signs and publishes ci,l = Com(bi,l) = f bi,lgri,l mod p for
l = 1, 2, . . . , w on the bulletin board where ri,l is randomly chosen from Zq.

3. Bid opening phase
(a) Bid randomization

Each auctioneer Aj publishes a commitment (e.g. one-way hash function)
of random integer Rj,i,l from Zq for i = 1, 2, . . . , n and l = 1, 2, . . . , w.
After all the commitments have been published, the auctioneers publish
Rj,i,l for j = 1, 2, . . . ,m as randomizing factors of bi,l on the bulletin
board.

(b) Secret sharing
Each Bi calculates Ri,l =

∑m
j=1 Rj,i,l mod q. Then he calculates si,l =

ri,lRi,l mod q as his secret at pl for l = 1, 2, . . . , w. Bi chooses polyno-
mials Fi,l(x) =

∑T
k=0 ai,l,kx

k mod q for l = 1, 2, . . . , w where ai,l,0 = si,l

and ai,l,k for k = 1, 2, . . . , T are randomly chosen. Bi publishes encrypted
shares Si,l,j = Ej(Fi,l(j)) = g

Fi,l(j)
j t

Nj

i,l,j mod N2
j for l = 1, 2, . . . , w and

j = 1, 2, . . . ,m on the bulletin board where ti,l,j is randomly chosen
from Z∗

Nj
. Bi publishes sharing commitments Ci,l,k = hai,l,k mod p for

l = 1, 2, . . . , w and k = 0, 1, . . . , T on the bulletin board.
(c) Binary search

The auctioneers cooperate to perform a binary search. At a price pl on
the searching route, the following operations are performed.
i. Share verification

Each Aj calculates his summed shares vj,l = Dj(
∏n

i=1 Si,l,j mod N2
j)

and the corresponding commitments ul,k =
∏n

i=1 Ci,l,k mod p for

k = 0, 1, . . . , T . He then verifies hvj,l =
∏T

k=0 u
jk

l,k mod p. If the ver-
ification is passed, he goes on to next step. Otherwise, he verifies
hDj(Si,l,j) =

∏T
k=0 C

jk

i,l,k mod p for i = 1, 2, . . . , n and will meet at
least one failed verification. If the verification fails when i = I, Aj ac-
cuses bidder BI of submitting an invalid encrypted share SI,l,j. If BI

disputes on the accusation, the following dispute settling procedure
is used. Aj publishes zI,l,j = D(SI,l,j) such that anyone can verify
hzI,l,j �=

∏T
k=0 C

jk

I,l,k mod p. If hzI,l,j �=
∏T

k=0 C
jk

I,l,k mod p, BI has to

publish tI,l,j and proves his knowledge of loggj
(SI,l,j/t

Nj

I,l,j) using the
zero knowledge proof of knowledge of logarithm in [11]1. BI asks the
auctioneers to verify his proof and SI,l,j �= g

zI,l,j

j t
Nj

I,l,j mod N2
j . If

hzI,l,j =
∏T

k=0 C
jk

I,l,k mod p ∨

(SI,l,j �= g
zI,l,j

j t
Nj

I,l,j mod N2
j ∧ BI ’s proof is correct)

1 Although the parameter setting in [11] is a little different from the parameter set-
ting in Paillier encryption (When [11] was proposed, Paillier encryption had not
appeared), the proof protocol in [11] can be applied here without compromising its
correctness, soundness or zero knowledge property.

Optimization of Electronic First-Bid Sealed-Bid Auction 91

the accusation against BI is wrong and Aj is removed. Otherwise, BI

is removed from the auction and may be punished; share verification
is run again.

ii. Homomorphic secret recovery
Each Aj publishes vj,l, whose validity can be verified by anyone
against Ci,l,k for i = 1, 2, . . . , n and k = 0, 1, . . . , T . If at least T + 1
summed shares are correct, the summed secret can be recovered. For
simplicity, suppose the first T + 1 summed shares are correct, then
the summed secret is recovered: dl =

∑n
i=1 si,l =

∑T+1
j=1 v

xj

j,l mod q
where xj =

∏
1≤k≤t+1,k
=j

k
k−j mod q.

iii. Homomorphic bid opening
Equation

∏n
i=1 c

Ri,l

i,l = gdl mod p is tested. If this equation is correct,
the sum of the randomized bidding choices at pl is zero, the binary
search at pj ends negatively and the search goes down. If this equa-
tion is incorrect, the sum of randomized bidding choices at pl is not
zero, the binary search at pj ends positively and the search goes up.

In the end of the binary search, the winning price is found.
4. Winner identification phase

Suppose the winning price is pL. Decrypted shares di,L,j = Dj(Si,L,j) for
i = 1, 2, . . . , n are published. hdi,L,j =

∏T
k=0 C

jk

i,L,k mod p is verified for i =
1, 2, . . . , n and j = 1, 2, . . . ,m. If any bidder’s secret is found to be incorrectly
shared, he is removed from the auction and may be punished. If he disputes,
the dispute can be solved like in Step 3(c)i. If at least T+1 correct shares can
be found for Bi, his secret di,L can be recovered: di,L =

∑T+1
j=1 d

xj

i,L,j mod p
(For simplicity, assume the first T + 1 shares are correct). Then equation
c
Ri,L

i,L = gdi,L mod p is tested for i = 1, 2, . . . , n. Only when cRi,L

i,L �= gdi,L mod

p, is Bi a winner. Suppose cRI,L

I,L �= gdI,L mod p. Then BI must prove that he

is really a winner by proving knowledge of logf (cRI,L

I,L /gdI,L) using the zero
knowledge proof of knowledge of logarithm in [11]. Any BI failing to give
this proof is a cheater and punished. The winner’s signature is verified and
his identity is published. If there is more than one winner, a new auction is
run among the winners.

Table 1. Comparison of homomorphic secret-sharing-based first-bid auction schemes

Operation [4,6,10] New auction
the first round share bidding choice bi,l commit bidding choice bi,l

of communication in ci,l = fbi,lgri,l

the second round non-existent randomize ri,l into si,l = ri,lRi,l

of communication and share si,l

bid opening recover
∑n

i=1 bi,l and test recover dl =
∑n

i=1 si,l and
whether

∑n
i=1 bi,l > 0 test whether

∏n
i=1 c

Ri,l

i,l = gdl

dispute settlement non-existent or vulnerable solved by VSS and
verifiable encryption

92 K. Peng, C. Boyd, and E. Dawson

In Table 1, the new secret-sharing-based first-bid auction scheme is compared
against the existing homomorphic secret-sharing-based first-bid auction schemes
[4,6,10]. It is clear that in the new scheme, two-round communication and com-
mitment prevent the ABC attack; the randomization prevents the BBC attack
and strenghens bid privacy; the dispute settling procedure prevents the dispute
attack.

5 Analysis

Security and efficiency of the new auction scheme is analysed in this section.
Readers can check that if the bidders and auctioneers follow the protocol, the
auction outputs a correct result. Note that although two different kinds of ad-
ditive modulus p and Nj are used in the protocol, no modulus conflict happens
as ri,l, Ri,l are chosen from Zq and nq2 < Nj .

5.1 Security Analysis

In the following, it is demonstrated that the auction is correct as long as at least
one auctioneer is honest.

Theorem 1. The auction protocol is correct with an overwhelmingly large prob-
ability if at least one auctioneer is honest. More precisely, the bidder with the
highest bid wins with an overwhelmingly large probability if at least one auction-
eer is honest.

To prove this theorem, the following three lemmas must be proved first.

Lemma 1. If
∑n

i=1 yisi = 0 mod q with a probability larger than 1/q for random
s1, s2, . . . , sn from Zq, then yi = 0 mod q for i = 1, 2, . . . , n.

Proof: Given any integer k in {1, 2, . . . , n}, there must exist integers s1, s2, . . . ,
sk−1, sk+1, . . . , sn in Zq and two different integers sk and ŝk in Zq such that the
following two equations are correct.

n∑
i=1

yisi = 0 mod q (1)

(
k−1∑
i=1

yisi) + ykŝk +
n∑

i=k+1

yisi = 0 mod q (2)

Otherwise, for any s1, s2, . . . , sk−1, sk+1, . . . , sn there is at most one sk to satisfy
equation

∑n
i=1 yisi = 0 mod q. This deduction implies among the qn possible

combinations of s1, s2, . . . , sn, equation
∑n

i=1 yisi = 0 mod q is correct for at
most qn−1 combinations. This conclusion leads to a contradiction: given random
integers si from Zq for i = 1, 2, . . . , n, equation

∑n
i=1 yisi = 0 mod q is correct

with a probability no larger than 1/q.

Optimization of Electronic First-Bid Sealed-Bid Auction 93

Subtracting (2) from (1) yields

yk(sk − ŝk) = 0 mod q

Note that sk − ŝk �= 0 mod q as sk �= ŝk mod q. So, yk = 0 mod q. Note that k
can be any integer in {1, 2, . . . , n}. Therefore yi = 0 mod q for i = 1, 2, . . . , n. �

Lemma 2. When the binary search at a price pl ends negatively, bi,l = 0 for
i = 1, 2, . . . , n with an overwhelmingly large probability if at least one auctioneer
is honest where bi,l is Bi’s choice at pl and committed in ci,l.

Proof: That the binary search at a price pl ends negatively implies
n∏

i=1

c
Ri,l

i,l = gdl mod p

where dl is the summed secret recovered at pl. So
n∏

i=1

(f bi,lgri,l)Ri,l = gdl mod p

Namely
f
∑n

i=1 Ri,lbi,lg
∑n

i=1 Ri,lri,l = gdl mod p

Note that bi,l is committed in ci,l = f bi,lgri,l by Bi and dl is recovered from
the shares from the bidders. So the bidders can cooperate to find

∑n
i=1 Ri,lbi,l,∑n

i=1Ri,lri,l and dl in polynomial time.
So, if

∑n
i=1 Ri,lbi,l �= 0, the bidders can cooperate to find in polynomial time

logg f = (dl −
n∑

i=1

Ri,lri,l)/
n∑

i=1

Ri,lbi,l,

which is contradictory to the assumption that logg f is unknown and the discrete
logarithm problem is hard to solve. So,

∑n
i=1Ri,lbi,l = 0. Note that Ri,l for

i = 1, 2, . . . , n are random integers in Zq as they are corporately chosen by the
auctioneers, at least one of which is honest. Therefore, according to Lemma 1.
bi,l = 0 for i = 1, 2, . . . , n with an overwhelmingly large probability. �

Lemma 3 guarantees that no bidder can change a “YES bid into a “NO bid.

Lemma 3. If the binary search at a price pl ends positively, then there exists I
in {1, 2, . . . , n} such that one of the following two statements is true: 1) bI,l �= 0;
2) bI,l = 0 but BI cannot find logf (cRI,l

I,l /gdI,l) in polynomial time.

Proof: That the binary search at a price pl ends positively implies
n∏

i=1

c
Ri,l

i,l �= gdl mod p

where dl is the summed secret recovered at pl.

94 K. Peng, C. Boyd, and E. Dawson

Soundness and homomorphism of the employed VSS [8] guarantees that

hdl = ul,0 =
n∏

i=1

Ci,l,0 mod p

So,
n∏

i=1

c
Ri,l

i,l �= glogh

∏n
i=1 Ci,l,0 mod p

Namely,
n∏

i=1

c
Ri,l

i,l �= g
∑n

i=1 logh Ci,l,0 mod p,

which implies
n∏

i=1

c
Ri,l

i,l �=
n∏

i=1

glogh Ci,l,0 mod p

So there must exists integer I such that 1 ≤ I ≤ n and

c
RI,l

I,l �= glogh CI,l,0 mod p

Suppose glogh CI,l,0/(cRI,l

I,l) = feI , then eI �= 0 mod q. So

c
RI,l

I,l = feIglogh CI,l,0 mod p

Namely
(f bI,lgrI,l)RI,l = feIglogh CI,l,0 mod p

where bi,l is Bi’s choice at pl, which is committed in ci,l.
Note that BI knows bI,l and rI,l as he committed to bI,l as cI,l = f bI,lgrI,l ;

BI can find logh CI,l,0 in polynomial time as his shares at pj enable anyone to
calculates loghCI,l,0 in polynomial time. So, if BI can find eI in polynomial
time, he can find logg f = (logh CI,l,0 − rI,lRI,l)/(bI,lRI,l − eI) in polynomial
time. So, when bI,l = 0 either a contradiction to the assumption that logg f is
unknown and the discrete logarithm problem is hard to solve is found or BI

cannot find eI = logf (cRI,l

I,l /gdI,L). Therefore, there exists I in {1, 2, . . . , n} such
that one of the following two statements is true.

– bI,l �= 0;
– bI,l = 0 but BI cannot find logf (cRI,l

I,l /gdI,l) in polynomial time. �

Proof of Theorem 1:
Lemma 2 and Lemma 3 guarantee that if there is at least one honest auctioneer

– when a bidder submits a “YES” choice at a price, he can open it as a “NO”
choice with an overwhelmingly small probability;

– when a bidder bi submits a “NO” choice at a price pl but opens it as a “YES”
choice, he cannot find logf (cRi,l

i,l /gdi,l) in polynomial time.

Optimization of Electronic First-Bid Sealed-Bid Auction 95

So the binary search guarantees that if there is at least one honest auctioneer

– when a bidder submitted a “YES” choice at a price on the searching route,
the search always go upwards at that price with an overwhelmingly large
probability;

– when a bidder bi submitted a “NO” choice at a price pl on the search-
ing route, either the search always go downwards at pl or he cannot find
logf (cRi,l

i,l /gdi,l) in polynomial time.

So when winning price pL is determined in the bid opening phase,

– there is no “YES” choice at higher prices with an overwhelmingly large
probability if there is at least one honest auctioneer;

– if there is at least one honest auctioneer, then at the winning price
• either there is at least one “YES” choice,
• or a bidder Bi submits “NO” choice at pL, open it as “YES”, but cannot

find logf (cRi,L

i,L /gdi,L) in polynomial time.
Note that in the winner identification phase, any bidder BI opening his choice
as “Yes” at the winning price must prove that he is really a winner by proving
knowledge of logf (cRI,L

I,L /gdI,L). So in the winner identification phase either
some winner or some cheating bidder is identified with an overwhelmingly
large probability if there is at least one honest auctioneer. If a winner is
found, the auction ends correctly. If only cheating bidder(s) is found, the
cheating bidder is removed and the auction runs again. Finally a correct
winner can be definitely found when all the cheating bidders have been
removed. �

If a penalty to identified cheating bidders is applied, the bidders will be
deterred from cheating and re-running can be avoided. If no strong penalty is
available and the re-running mechanism after finding a cheating bidder is not
appropriate in some special applications, the auction protocol can be slightly
modified so that the winning price found in the bid opening phase is always
correct and a real winner can always be found at the winning price. Only a
simple additional operation is needed in the modification: each bidder has to
prove that his submitted bid hidden by Com() is consistent with the secret
shares provided by him in the bid opening phase. In the proof Bi shows that at
each biddable price pl he knows two secrets bi,l and ri,l such that ci,l = f bi,lgri,l

and Ci,l,0 = hri,lRi,l without revealing bi,l or ri,l. This proof can be built on ZK
proof of knowledge of logarithm [11] and ZK proof of equality of logarithms [2].
With this modification Lemma 3 can be modified to Lemma 4, which is simpler.

Lemma 4. If the binary search at a price pl ends positively, then there exists I
in {1, 2, . . . , n} such that bI,l �= 0.

The proof of Lemma 4 is simpler than that of Lemma 3, so is not provided here.
With this modification and Lemma 4, Theorem 1 can be proved more easily,
winner identification becomes simpler and rerunning can be avoided. However,
bidding becomes less efficient with additional O(nw) ZK proof and verification

96 K. Peng, C. Boyd, and E. Dawson

operations. In most cases, we believe that punishment can deter the bidders from
cheating and rerunning can be avoided. So usually, this additional proof is not
adopted for the sake of efficiency, which is assumed in efficiency analysis later.

Table 2. Property comparison

Auction Correct- Bid confi- Fairness Unchan- Public Bid Robust-
schemes -ness -dentiality -geability verifiability privacy -ness

[3] Vulnerable Trust -de Trust -de No Yes No Yes
to attacks -pendent -pendent

[4] Vulnerable Trust de- Trust de- No No Trust de- No
[6] to attacks -pendent -pendent -pendent
[10] Vulnerable Trust de- Trust de- Yes Yes Trust de- No

to attacks -pendent -pendent -pendent
New Yes Yes Yes Yes Yes Trust de- Yes

auction -pendent

As the commitment function Com() is information-theoretically hiding, bid
confidentiality is information-theoretically achieved and the ABC attack is
information-theoretically prevented. Binding of Com() and usage of digital sig-
nature guarantees unchangeability. As the bidding choices are randomized before
they are summed up, the BBC attack can be prevented if at least one auction-
eer is honest. The employed VSS [8] and the new dispute settling procedure2 in
Step 3(c)i can solve the dispute attack. With these three attacks prevented, the
new auction protocol is fair and robust. Every operation in the auction proto-
col is publicly verifiable. If the number of malicious auctioneers is not over the
sharing threshold, bid privacy can be achieved.

A property comparison of the secret-sharing-based sealed-bid e-auction
schemes is provided in Table 2. [3] cannot achieve bid privacy and public verifia-
bility at the same time. It is assumed in Table 2 that public verifiability, a more
important property is achieved while bid privacy is sacrificed.

5.2 Efficiency Analysis

An efficiency comparison of the secret-sharing-based sealed-bid e-auction
schemes is provided in Table 3. In Table 3, full-length exponentiations are
counted, where Paillier encryption and RSA signature are assumed to be em-
ployed. It is illustrated in the two tables that compared to the previous secret-
sharing-based sealed-bid e-auction schemes, the new scheme does not compro-
mise efficiency while achieving much better properties. It is even more efficient
than [10].

2 A honest bidder can successfully settle a dispute as it is impossible to encrypt two
different messages into the same ciphertext in Paillier encryption.

Optimization of Electronic First-Bid Sealed-Bid Auction 97

Table 3. Efficiency comparison

Auction schemes bidder auctioneer
[3] 3 2n + 1

[4,6] 2mw + 1 1 + 2n + 2 log2 w

[10] (2T + 2 + 4m)w + 1 1 + 6n + 6 log2 w

New auction (T + 3 + 2m)w + 1 1 + 5n + 5 log2 w

6 Conclusion

A new secret-sharing-based first-bid e-auction scheme is proposed. It can achieve
all the desired properties for sealed-bid auctions at a reasonable cost. Moreover,
attacks existing in the current secret-sharing-based sealed-bid e-auction schemes
are prevented in the new scheme.

References

1. Feng Bao. An efficient verifiable encryption scheme for encryption of discrete
logarithms. In the Smart Card Research Conference, CARDIS’98, volume 1820 of
Lecture Notes in Computer Science, pages 213–220, Berlin, 1998. Springer-Verlag.

2. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO
’92, volume 740 of Lecture Notes in Computer Science, pages 89–105, Berlin, 1992.
Springer-Verlag.

3. Matthew K Franklin and Michael K Reiter. The design and implementation of a
secure auction service. In IEEE Transactions on Software Enginerring, volume 5,
pages 302–312, May 1996.

4. H Kikuchi, Michael Harkavy, and J D Tygar. Multi-round anonymous auction.
In Proceedings of the First IEEE Workshop on Dependable and Real-Time E-
Commerce Systems, pages 62–69, June 1998.

5. Hiroaki Kikuchi. (m+1)st-price auction. In The Fifth International Conference on
Financial Cryptography 2001, volume 2339 of Lecture Notes in Computer Science,
pages 291–298, Berlin, 2001. Springer-Verlag.

6. Hiroaki Kikuchi, Shinji Hotta, Kensuke Abe, and Shohachiro Nakanishi. Dis-
tributed auction servers resolving winner and winning bid without revealing pri-
vacy of bids. In proc. of International Workshop on Next Generation Internet
(NGITA2000), IEEE, pages 307–312, July 2000.

7. P Paillier. Public key cryptosystem based on composite degree residuosity classes.
In EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages
223–238, Berlin, 1999. Springer-Verlag.

8. Torben P. Pedersen. Distributed provers with applications to undeniable signa-
tures. In EUROCRYPT ’91, pages 221–242, Berlin, 1991. Springer-Verlag. Lecture
Notes in Computer Science 547.

9. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In EUROCRYPT ’91, pages 129–140, Berlin, 1991. Springer-Verlag.
Lecture Notes in Computer Science 547.

98 K. Peng, C. Boyd, and E. Dawson

10. Kun Peng, Colin Boyd, Ed Dawson, and Kapali Viswanathan. Robust, privacy
protecting and publicly verifiable sealed-bid auction. In 4th International Confer-
ence of Information and Communications Security, ICICS 2002, volume 2513 of
Lecture Notes in Computer Science, pages 147 – 159, Berlin, 2002. Springer.

11. C Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4, 1991, pages 161–174, 1991.

12. Adi Shamir. How to share a secret. Communication of the ACM, 22(11):612–613,
Nov 1979.

Identity Based Delegation Network

Sherman S.M. Chow�, Richard W.C. Lui, Lucas C.K. Hui, and S.M. Yiu

Department of Computer Science,
The University of Hong Kong,

Pokfulam, Hong Kong
{smchow, wclui, hui, smyiu}@cs.hku.hk

Abstract. Delegation of authorities is a common practice in various or-
ganizations. The way delegation is performed can be quite complicated.
To capture possible delegation structures, the concept of delegation net-
work is proposed, so that anyone can be convinced of who obtained del-
egation from whom in order to produce the final proxy signature. In this
paper, we consider the delegation network for identity-based (ID-based)
scenario. Since the public key is just a string denoting the user’s identity,
certificate management is simplified. Proxy signature schemes have been
devised to delegate signing authorities. We show that a trivial attempt
of extending an existing ID-based proxy signature may result in an inse-
cure scheme. After that we propose a building block of our ID-based del-
egation network, which is an ID-based proxy signature supporting batch
verifications. Our proposed ID-based delegation network is flexible in the
sense that the whole delegation network does not need to be known in
advance. Our proposal is provably secure under the random oracle model.

Keywords: Delegation network, identity-based cryptography, proxy sig-
nature, batch verification, bilinear pairings

1 Introduction

Delegation. Delegation is a process where a user (the delegator) grants some
of his/her rights (power), e.g. the signing right, to another user (the delegate),
to work on his/her behalf. It is a very common practice for users in an office to
delegate their power to subordinates when they are on leave or need assistance.
For a delegate to digitally sign on behalf of the delegator so that the receiver
of the document be convinced that the signer has the signing right from the
delegator, a straight-forward approach is to pass the delegator’s signing key to
the delegate. Obviously, this do not work well since the delegator has to change
the key frequently. It also violates the non-repudiation requirement since it is
difficult to prove who actually signed the document.

Proxy Signature. To tackle this problem, the notion of proxy signature was
proposed in [21] to deal with the delegation of signing. In a proxy signature,

� Corresponding Author

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 99–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 S.S.M. Chow et al.

the original signer creates a proxy key pair, denoted as (psk, ppk), using his/her
own signing key (and possibly the delegate’s public key). The delegate (called
the proxy signer) signs a document using psk. The verifier has to use ppk as
well as the public key of the original signer (again, and possibly the delegate’s
public key) to check the validity of the signature. Since the public key of the
original signer is involved in the checking, the delegation relationship can be
confirmed. Such schemes are very important technologies in various application
domains, examples include but not limited to grid computing [9], distributed
systems [22], distributed shared object systems [18] and a bunch of electronic
commerce applications such as offline e-cash [23], privacy preserving signature
in mobile communications [26], global distribution networks [2], and last but not
least, mobile agents for electronic commerce.

Delegation Network. Hierarchical structure, which is common in organiza-
tions nowadays, complicates the way delegation is performed. Firstly, there can
be chained delegation, in which the delegation occurs across more than two lev-
els. For example, A may delegate her job to her subordinate B and B can further
delegate the job to his subordinate C. Secondly, it is common that a signature
is constructed by a group of members. In other words, the delegator can be
a group of members instead of one single user. In this case, delegation can be
passed from one group of users to another group of users. For example, A and
B are required to sign together on a check. Now they both are on leave and so
they may delegate the signing right to C and D.

To capture possible delegation structures, the concept of delegation network
was proposed in [1]. The delegation structure of the signing group is modeled in
a directed graph so that anyone can be convinced of who obtained delegation
from whom in order to produce the final signature. An application of delegation
network can be found in the use of mobile agents in electronic commerce appli-
cation. Suppose mobile agents are ordered by a customer to search for a proper
bid presented by a server and then digitally sign the server’s bid together with
the customer’s requirement with both server’s key and customer’s key [16]. Con-
sider a scenario that a mobile agent E is ordered to search for a travel package
of lowest price (which includes both air ticket and hotel accommodation) offered
by a travel agency on behalf of a research student. On the other hand, a mobile
agent F is ordered by a travel agency to search for the prices of flight ticket
and hotel accommodation. Then, agent E will delegate the signing authority to
agent F , in which F will further delegate this signing authority to the airline
company and the hotel, who sign their corresponding bid using the delegation
received together with their respectively private key.

Identity-Based Cryptography. Most of the proxy signature schemes are
based on a public key infrastructure (PKI). As an alternative to PKI, Shamir
introduced the concept of identity-based (ID-based) signature schemes [27] and
the design of ID-based schemes have attracted a lot of attention recently
[3, 6,13, 31,19,25, 33,32,5]. For traditional PKI, the public key is a “random-
looking” string that is unrelated to the user’s identity, so a trusted-by-all party

Identity Based Delegation Network 101

called certificate authority will issue certificate that cryptographically bind the
public key string with the user’s identity, in the form of a digital signature. In
ID-based paradigm, the public key can be any string that can uniquely identify
the user. A trusted-by-all party called private key generator (PKG) will authen-
ticate the users and generates the private key corresponding to their identities on
demand. The certificates management procedures are thus simplified. ID-based
signature schemes have advantages over PKI-based counterpart since the certifi-
cate do not need to be retrieved and verified before the verification of signatures.
A delegation network typically involves a number of delegators and signers, it is
tedious to verify the digital certificate of each of them, which makes an ID-based
delegation network highly desirable.

Previous Work. There are several related works, but they are either insecure,
not general and flexible enough, or not ID-based.

The notion of delegation network was introduced in [1]; with a SPKI [8]
based solution. In [5], an ID-based multi-proxy signature scheme was proposed,
in which a single signer can delegate his/her signing authority to a group of proxy
members, and the proxy signature can be generated only by the cooperation of
all the signers in such a proxy group. It is obvious that [5] handles a very special
case of a delegation network since the original signing entity is just one person
and the delegation is of two levels only. Besides, interaction among the proxy
signers is needed and prior knowledge on who are going to sign the messages are
assumed to give the final single signature.

On the other hand, in a multi-proxy multi-signature scheme [14] or fully
distributed proxy signature [11,12], the original signing entity is not confined
to a single person but a set of members. An authorized subset of this signing
group can delegate the signing right to another group of members. And this
proxy group can generate a proxy signature on behalf of the original signing
group only if an authorized subset of members cooperate. These schemes can
be considered as a generalization of [5]. However, these schemes also handle a
special case of a delegation network having two levels only. Moreover, [14] was
shown to be insecure by [29], and [11,12] were shown to be insecure by [30].

In fact, there is another type of proxy signature schemes called threshold
proxy signature [15], that requires t out of n proxy signers’ cooperation to issue
a valid proxy signature, while any t− 1 proxy signers cannot. As pointed out by
[5], multi-proxy signature scheme can be regarded as a special case of the (t, n)
threshold proxy signature for t = n. After this work, other threshold proxy sig-
nature schemes were proposed [35,34]. However, their weaknesses were discussed
in [17] and [10].

Contribution. We show that a trivial attempt of extending an existing ID-
based proxy signature may result in an insecure scheme, what is lacking is an
ID-based proxy signature supporting batch verifications. We propose an ID-
based proxy signature supporting batch verifications and use it as a building
block to construct an ID-based delegation network. In contrast with proxy multi-
signature schemes or multi-proxy signature schemes, which possibly require co-

102 S.S.M. Chow et al.

operation among delegators or signers to perform delegation or sign the message
respectively, our scheme supports autonomous delegation and signature genera-
tion (i.e. requires neither interaction among delegators or signers nor the prior
knowledge on the whole delegation network).

2 Technical Preliminaries

2.1 Bilinear Pairings

Let (G1,+) and (G2, ·) be two cyclic groups of prime order q. The bilinear pairing
is given as ê : G1 × G1 → G2, which satisfy the following properties:

1. Bilinearity: For all P,Q,R ∈ G1, ê(P+Q,R) = ê(P,R)ê(Q,R), and ê(P,Q+
R) = ê(P,Q)ê(P,R).

2. Non-degeneracy: There exists P,Q ∈ G1 such that ê(P,Q) �= 1.

Definition 1. Given a generator P of a group G and a 2-tuple (aP, bP), the
Computational Diffie-Hellman problem (CDH problem) is to compute abP .

2.2 Review of an Existing ID-Based Proxy Signature

We review the first ID-based proxy signature scheme from bilinear pairings [33],
which can be seen as an extension to the ID-based signature scheme in [13]. Note
that we changed the verification slightly to cater for batch verifications.

– Setup: Let P be an arbitrary generator of G1, the PKG chooses s ∈ F∗
q

randomly. It sets Ppub = sP . The master-key is s, which is kept secret and
known only by itself. Let H and H1 be two cryptographic hash functions
where H : {0, 1}∗ → G1 and H1 : {0, 1}n×G2 → F∗

q . The system parameters
are {G1,G2, q, n, P, Ppub, ê(·, ·), H(·), H1(·, ·)}.

– KeyGen: The user with identity ID ∈ {0, 1}∗ submits ID to PKG. PKG sets
the user’s public key QID to be H(ID) ∈ G1, computes the user’s private
key SID by SID = sQID. Then PKG sends the private key to the user.

– Delegate: For a particular user IDA with the secret key SIDA , to delegate
his/her signing authority to IDC , a message mA,C ∈ {0, 1}∗ stating the
delegation condition will be created, then he/she follows the steps below.
1. Choose xA,C from F∗

q randomly.
2. Compute rA,C = ê(P, P)xA,C .
3. Compute hA,C = H1(mA,C , rA,C).
4. Compute UA,C = hA,CSIDA + xA,CP .
5. Send {mA,C , UA,C , rA,C} to IDC , where UA,C will be used for the gen-

eration of final proxy signature and rA,C certifies this delegation.
– VerifyDelegation: Now the delegate IDC verifies the delegation token

{mA,C , UA,C , rA,C} received from IDA by checking whether ê(P,UA,C) =
ê(Ppub, H1(mA,C , rA,C)QIDA) · rA,C holds. If so, compute the proxy signing
key SA,C by SA,C = H1(mA,C , rA,C)SIDC + UA,C .

– ProxySign: For the delegate IDC with the secret key SA,C to sign a message
m ∈ {0, 1}∗, he/she follows the steps below.

Identity Based Delegation Network 103

1. Choose xC,m from F∗
q randomly.

2. Compute rC,m = ê(P, P)xC,m .
3. Compute hC,m = H1(m, rC,m).
4. Compute UC,m = hC,mSA,C + xC,mP .
5. Send {UC,m, rC,m,mA,C , UA,C , rA,C} to the verifier, where {UC,m, rC,m}

is the signature for message m.
– VerifyProxySignature: The verifier, who got the proxy signature in the

form of {UC,m, rC,m,mA,C , UA,C , rA,C}, accepts it is a valid proxy signature
generated by IDC on the message m after received the delegation from IDA

according to the warrant mA,C , if the below equality holds:

ê(P,UC,m) = [ê(Ppub, QIDA +QIDC)H1(mA,C ,rA,C) · rA,C]H1(m,rC,m) · rC,m.

3 ID-Based Proxy Signature with Batch Verifications

We first consider the scenario that there are more than one delegator. It is well
known that proxy signatures can be trivially obtained, by asking the delegator
to issue a digital signature on the warrant stating the delegation condition to the
delegates. Similarly, the situation for two delegators can be obtained by two such
signatures. This give motivations for devising an ID-based proxy signature with
batch verifications, such that the cost in verifying n ID-based proxy signature is
less than n times the cost of verification of a single ID-based proxy signature.

3.1 Initial Attempt

We try to extend Zhang’s scheme [33] to support multiple delegators. Consider
the case for both of IDA and IDB to delegate the signing power to IDC ,
the proxy signing key is given by: SA+B,C = H1(mA,B, rA,B)SIDC + UA,B +
H1(mA,C , rA,C)SIDC +UA,C, and the equality to check in the verification of the
final proxy signature becomes:

ê(P,UC,m) = [ê(Ppub, QIDA +QIDC)H1(mA,C ,rA,C) · rA,C]H1(m,rC,m)

·[ê(Ppub, QIDB +QIDC)H1(mB,C ,rB,C) · rB,C]H1(m,rC,m) · rC,m.

However, we found that it is not necessary to ask for the help of IDB to
generate such valid looking proxy signature, the attack is as follow.

1. Create the message m, the warrants mA,C and mB,C as desired.
2. Randomly choose R from G1.
3. Randomly choose xB,C , xC,m from F∗

q .
4. Compute rB,C = ê(P, P)xB,C and rC,m = ê(P, P)xC,m .
5. Compute rA,C = ê(P,R)ê(Ppub, QIDB +QIDC)−H1(mB,C ,rB,C).
6. Compute UC,m = H1(m, rC,m)·H1(mA,C , rA,C)(SIDA +SIDC)+H1(m, rC,m)

(R+ xB,CP) + xC,mP .

104 S.S.M. Chow et al.

It is easy to see that SIDB is not involved in the above procedures and the
proxy signature produced passes the verification algorithm.

ê(P, UC,m) = ê(P, H1(m,rC,m) · H1(mA,C , rA,C)(SIDA + SIDC)

+H1(m,rC,m)(R + xB,CP) + xC,mP)

= ê(Ppub, (QIDA + QIDC))H1(mA,C ,rA,C)H1(m,rC,m)ê(P, R)H1(m,rC,m)

ê(P, P)xB,C·H1(m,rC,m)ê(P, P)xC,m · rH1(m,rC,m)

A,C /r
H1(m,rC,m)

A,C

= [ê(Ppub, QIDA + QIDC)H1(mA,C ,rA,C) · rA,C]H1(m,rC,m)rC,mr
H1(m,rC,m)

B,C

·ê(P, R)H1(m,rC,m)/r
H1(m,rC,m)

A,C

= [ê(Ppub, QIDA + QIDC)H1(mA,C ,rA,C) · rA,C]H1(m,rC,m)rC,m

·ê(Ppub, QIDB + QIDC)H1(m,rC,m)·H1(mB,C ,rB,C)r
H1(m,rC,m)

B,C

= [ê(Ppub, QIDA + QIDC)H1(mA,C ,rA,C) · rA,C]H1(m,rC,m)

·[ê(Ppub, QIDB + QIDC)H1(mB,C ,rB,C) · rB,C]H1(m,rC,m) · rC,m.

In other words, the extended scheme is not unforgeable. Careful reader will
find that the attack is relied on the fact that rA,C can be chosen according
to the value of rB,C . If the scheme requires both user IDA and user IDB to
generates rA+B,C together, and generates the delegation key using the value
hA+B,C = H1(mA+B,C , rA+B,C) then the above attack is not possible. However,
this requires the whole delegation network to be known in advance.

3.2 A New ID-Based Signature Supporting Batch Verifications

We propose a new ID-based signature (IBS) scheme supporting batch verifica-
tions, which will be extended to support proxy signature later.

– Setup: Let P be an arbitrary generator of G1, the Private Key Generator
(PKG) chooses s ∈ F∗

q randomly. It sets Ppub = sP . The master-key is s,
which is kept secret and known only by itself. Let H and H2 be two crypto-
graphic hash functions where H : {0, 1}∗ → G1 and H2 : {0, 1}n×G1 → G1.
The system parameters are {G1,G2, q, n, P, Ppub, ê(·, ·), H(·), H2(·, ·)}.

– KeyGen: The user with identity ID ∈ {0, 1}∗ submits ID to PKG. PKG sets
the user’s public key QID to be H(ID) ∈ G1, computes the user’s private
key SID by SID = sQID. Then PKG sends the private key to the user.

– Sign: For user ID to generate a signature on the message m, x is randomly
chosen from F∗

q , then the signature will be {R = xP,U = SID +xH2(m,R)}.
– BatchVerify: The verifier who got the signatures {Ri, Ui} from IDi (or

an aggregation of signatures U =
∑
Ui, together with

⋃
{Ri}) accepts

all of them are valid signatures on respective message mi if ê(P,U) =
ê(Ppub,

∑
QIDi)

∏
ê(Ri, H2(mi, Ri)) holds.

It is easy to see the signatures generated pass the verification algorithm.

Identity Based Delegation Network 105

ê(P,
∑

Ui) = ê(P,
∑

(SIDi + xiH2(mi, Ri)))

= ê(P,
∑

SIDi)ê(P,
∑

xiH2(mi, Ri))

= ê(Ppub,
∑

QIDi)
∏

ê(xiP,H2(mi, Ri))

= ê(Ppub,
∑

QIDi)
∏

ê(Ri, H2(mi, Ri))

3.3 Analysis

The comparison of our scheme with the existing batch verifications scheme [32]
is summarized in Table 1. Note that most previous ID-based signature schemes
[3,6,13,19,25] take at least 2n pairing operations in verification of n signatures.

Table 1. Comparison on the proposed scheme and the existing scheme

Tight Proxy Sign BatchVerify

Reduction Extension (Single Message) (n Signatures)
Schemes 1 2 G1 + G1× ê(·, ·) G1 + G1× ê(·, ·)
Proposed Scheme � � 1 2 0 n 0 n + 2
Scheme in [32] × × 1 3 0 n n n + 1

The above scheme can be seen as extended from the modified version of
Sakai-Ogishi-Kasahara ID-based signature [25] in [3], in which the single verifi-
cation version is proven to be existentially unforgeable against adaptive chosen-
message-and-identity attack under CDH assumption or one-more Diffie-Hellman
assumption [19]. Hence we only give the security analysis of our batch verifica-
tions against k-aggregate forger [32], which is defined as follows. Similar to [19]
and [6], our reduction does not make use of forking lemma [24] which the scheme
in [32] relied, so our scheme obtained a reduction with a tighter security bound.

Definition 2. A k-aggregate forger is defined as a forger who produces a set of
k signatures (ID1, ID2, · · · , IDk,m1,m2, · · · ,mk, σ1, σ2, · · · , σk) which pass the
batch verifications algorithm, and there exists i ∈ {1, 2, · · · , k} in which the pair
(IDi,mi) has not been presented to the signing oracle, i.e. σi does not comes
from the signing oracle.

Theorem 1. If there is a k-aggregate forger F which succeeds in producing a set
of k signatures with probability ε by launching an adaptive chosen-message-and-
identity attack, making at most qH queries for hashing the identities, qH2 queries
for hashing the messages, qE key generation queries and qS signing queries, then
the CDHP can be solved with an advantage ε′ > ε−(qS(qH2+qS)+1)/2l

e(qE) .

1 Whether a tight security bound with the underlying hard problem can be obtained.
2 Whether there exists provably secure extension supporting proxy signing.

106 S.S.M. Chow et al.

Proof. Suppose that there exists a k-aggregate forger F that has advantage ε in
attacking our IBS. We show that an algorithm C can be constructed to solve the
CDHP in G1. That is, given (P, aP, bP), algorithm C is able to compute abP ,
assuming F will ask for H(ID) before ID is used in any other query. During
the game, F will consult C for answers to the random oracles H and H2, C will
keep lists L1 and L2 to store the answers used respectively. Let Ppub = bP .
Algorithm C interacts with F in the existential unforgeability against adaptive
chosen-message-and-identity attack game as follows.

Queries on oracle H for identity: We embed part of the challenge aP in the
answer of many H queries [7]. When F asks queries on the hash value of identity
ID, C picks y1 ∈R F∗

q and repeats the process until y1 is not in the list L1. C then
flips a coin W ∈ {0, 1} that yields 0 with probability ζ and 1 with probability
1 − ζ. (ζ will be determined later.) If W = 0 then the hash value H(ID) is
defined as y1P ; else if W = 1 then returns H(ID) = y1(aP). In either case, C
stores (ID, y1,W) in the list L1.

Queries on oracle H2: When F asks queries on the hash value of (m,R), C returns
the hash value from the list L2 is it is already defined; else C picks y2 ∈R F∗

q

and repeats the process until y2 is not in the list L2. C returns y2P and stores
(m,R, y2) in the list L2.

Private key generation queries: When F asks for the private key of user ID, C
looks for (ID, y1,W) entry in L1. If W = 1 then C outputs “failure” and halts
since C does not know how to compute y1abP . Otherwise a valid private key
y1(bP) is returned.

Sign queries: When F asks for a signature of user ID on message m, C looks for
(ID, y1,W) entry in L1. If W = 0, no matter what the value H2(m) is, C output
the signature using the Sign algorithm since C knows the corresponding private
key. If W = 1, C picks x1, x2 ∈R F∗

q, computes U = x1(bP) and R = x2(bP), and
defines H2(m,R) as x2

−1(x1P − QID) (find another pair of (x1, x2) if collision
occurs). The signature to be output is (U,R).

Forgery: Algorithm F returns a forgery in the form of a set of k-signatures
(m1,m2, · · · ,mk, R1, R2, · · · , Rk, U = U1 +U2 + · · ·+Uk), where (Ri, Ui) is the
signature from the signer IDi on the message mi for i ∈ {1, 2, · · · , k}.
Probability of success: C can solve the CDHP if there exists an i ∈ {1, 2, · · · , k}
where (Ri, Ui) does not comes from the signing oracle and (IDi, y1, 1) is in the
list L1. Otherwise C cannot compute abP from the forgery made by F .

The probability that C answers to all private key generation queries is ζqE ,
and the probability that F makes a forged signature for user IDi where (IDi,
y1, 1) is in the list L1 is 1− ζ (notice that other pair of (Rj , Uj) may come from
the signing oracle). Hence the probability for all above events to occur is fqE (ζ)
where fx(ζ) = ζx(1 − ζ). Simple differentiation shows that fx(ζ) is maximized
when ζ = 1− (x+ 1)−1, and the maximized probability is 1

x(1− 1
x+1)x+1, which

is 1
qE

(1 − 1
qE+1)qE+1. For large qE , this probability is equal to 1/eqE.

Identity Based Delegation Network 107

C may also fail if a signing query conflicts with a H2 query, since L2 contains
at most qH2 + qS entries, the probability of such conflict is at most qS(qH2 +
qS)/2l. Besides, the rare case (the probability is at most 1/2l, where l is the
security parameter) that F makes a valid forgery without asking for the value of
H2(mi, Ri) for i ∈ {1, 2, · · · , k} can also make C fails. Since F succeeds in making
a forgery with probability ε, taking into accounts of all these probabilities, the
probability for C to solve the CDHP successfully is at most ε−(qS(qH2+qS)+1)/2l

e(qE) .

Solving CDHP : If F makes a forged signature on message mi for user IDi where
(IDi, y1, 1) is in the list L1, CDHP can be solved, the argument is as follows.

ê(P, U) = ê(Ppub,
∑

QIDj)
∏

ê(Rj , H2(mj , Rj))

ê(P, U) = ê(bP,
∑

QIDj)
∏

ê(Rj , y2jP)

(y2j can be obtained by looking up the listL2)

ê(P, U) = ê(bP, QIDi)ê(bP,
∑
j �=i

QIDj)
∏

ê(P, y2jRj)

ê(P, U) = ê(bP, y1i(aP))ê(bP,
∑
j �=i

y1j(P))ê(bP,
∑
k �=i

y1k(aP))
∏

ê(P, y2jRj)

(y1i and y1k can be obtained by finding (ID, y1i, 1),

y1j can be obtained by finding (ID, y1j , 0) in the listL1)

ê(P, U) = ê(P, y1i(abP))ê(P,
∑
j �=i

y1j(bP))ê(P,
∑
k �=i

y1k(abP))
∏

ê(P, y2jRj)

U = y1i(abP) +
∑
j �=i

y1j(bP) +
∑
k �=i

y1k(abP) +
∑

y2jRj(from the bilinearity)

abP = (y1i +
∑
k �=i

y1k)−1(U −
∑
j �=i

y1j(bP) −
∑

y2jRj)

	

3.4 Extension to ID-Based Proxy Signature

We can extend the above ID-based signature scheme supporting batch verifi-
cations to its proxy signature version using the same idea as Zhang’s scheme
[33]. We can first use the signing algorithm to sign on a message warrant, the
delegate verify this delegation by using the signature verification algorithm. If it
passes, then the delegate can generate the secret proxy signing key by using the
signature and his/her own private key. A realization of this idea can be found in
[31]. Due to space limitation, we do not describe this scheme explicitly, since it
can be seen as a special case for our ID-based delegation network.

4 ID-Based Delegation Network

In this section we combine our ID-based proxy signature scheme supporting
batch verifications with the provably secure ID-based proxy signature scheme
proposed in [31] to devise a scheme supporting ID-based delegation network.

108 S.S.M. Chow et al.

4.1 Notation

The delegation structure is defined similar to the signing structure in [20]. Let
ID = {ID1, · · · , IDn} be a group of co-signers. Define the delegation structure
Λ for ID as a directed graph, which contain all ui where IDi ∈ ID as real nodes
together with two dummy nodes: u0, a dummy node denotes the starting node
and u∞, a dummy node denotes the terminal node. A directed edge pointing
from ui to uj means IDi delegates the signing authority to IDj . Furthermore,
we denote prev(IDi) as the set of nodes directly precede to ui in Λ. An example
of the directed graph modeling the delegation network can be found at Figure
1. We also use the below notations to denote the set of message warrants and
“public proxy key” certifying each delegation: MD,C = MD

⋃
{mD,C}, Mi =⋃

IDD∈prev(IDi)
(MD), RD,C = RD

⋃
{RD,C}, and Ri =

⋃
IDD∈prev(IDi)

(RD),
where D and C refers to the delegator and the delegate respectively.

4.2 Construction

– Setup: Let P be an arbitrary generator of G1, the Private Key Genera-
tor (PKG) chooses s ∈ F∗

q randomly. It sets Ppub = sP . The master-
key is s, which is kept secret and known only by itself. Let H , H3 and
H4 be three cryptographic hash functions where H : {0, 1}∗ → G1, H3 :
{0, 1}∗ × G2 → G1 and H4 : {0, 1}n × G2 → F∗

q . The system parameters are
{G1,G2, q, n, P, Ppub, ê(·, ·), H(·), H3(·, ·), H4(·, ·)}.

– KeyGen: Same as the above scheme.
– Delegate: For a particular user IDD with the secret proxy signing key PSD,

to delegate his/her signing authority to IDC , a message mD,C ∈ {0, 1}∗
stating the delegation condition (with at least the delegation relationship
(D,C)) will be created, then he/she follows the steps below.
1. Randomly choose xD,C from F∗

q .
2. Compute RD,C = xD,CP .
3. Compute HD,C = H3(IDD||mD,C , RD,C).
4. Compute UD,C = PSD + xD,CHD,C (If IDD received no delegation

before, set PSD to SD).
5. Send {UD,C ,RD,C ,MD,C} to IDC , where UD,C will be used for the gen-

eration of final proxy signature and RD,C is the public proxy key cer-
tifying this delegation. We may also include n, the number of distinct
delegators involved in delegating the signing right to IDA. (e.g. n = 5
for user u6 in Figure 1). Its purpose is for an easier reconstruction of the
graph representing the delegation network.

– VerifyDelegation: Given the delegates’ identities ID, the warrants MC , the
public proxy key RC , the verifier IDC follows the steps below to verify each
delegation he/she received from the D.
1. Compute

V =
∑

IDi∈ID

[numpathIDC (IDi) · (
∑

Ri,j∈RD,C

H4(IDi||IDj ||mD,C , Ri,j))QIDi],

Identity Based Delegation Network 109

where
• numpathIDC (IDi) is defined as the number of the paths from the

node IDi to the node IDc in the delegation network. For examples,
numpathID4(IDi) = 1 for i ∈ {1, 2, 3} and numpathID6(ID2) =
numpathID6(ID3) = 2. Notice that numpath can be computed eas-
ily, e.g. by adjacency matrix multiplication.

• Ri,j ∈ RD,C means there is an edge from the node IDi to the node
IDj in the delegation network, e.g. Ri,j ∈ R4,6 = {(1, 4), (2, 3),
(3, 4)} and Ri,j ∈ R6,∞ = {(1, 4), (1, 5), (2, 3), (3, 4), (3, 5), (4, 6),
(5, 6)}.

2. Compute ρ =
∏

Ri,j∈RD,C
ê(Ri,j , H3(IDD||mi,j , Ri,j)).

3. Check whether ê(P,UD,C) = ê(Ppub, V)ρ.
If so, compute the proxy signing key PSC by

PSC =
∑

IDD∈prev(IDC)

[H4(IDD||IDC ||mD,C , RD,C)SIDC + UD,C].

– ProxySign: For the delegate IDC with the proxy signing key PSC to sign a
message mC,∞ ∈ {0, 1}∗, he/she follows the steps below.
1. Choose xC,∞ from F∗

q randomly.
2. Compute RC,∞ = xC,∞P .
3. Compute HC,∞ = H3(IDC ||mC,∞, RC,∞).
4. Compute UC,∞ = PSC + xC,∞HC,∞.
5. Send {UC,∞,RC,∞,MC,∞} to an appointed secretary, who just combines

the partial proxy signatures to generate the final proxy signature for the
whole delegation structure.

The appointed secretary combines the partial proxy signature to give the
final one: {U =

∑
IDy∈prev(ID∞) (Uy,∞),R∞,M∞}.

– VerifyProxySignature: The verifier who got the final proxy signature fol-
lows the steps below to verify the delegation network involved and the final
signatures of the delegates.
1. Compute V =

∑
IDi∈ID

[numpathID∞(IDi) ·Xi],
where Xi = (

∑
Ri,j :j
=∞,Ri,j∈R∞ H4(IDi||IDj ||mD,C , Ri,j))QIDi .

2. Compute ρ =
∏

Ri,j∈R∞ ê(Ri,j , H3(IDi||mi,j , Ri,j)).
3. Accept if ê(P,U) = ê(Ppub, V)ρ, reject otherwise.

The consistency analysis of the scheme is similar to that of the basic ver-
sion. A difference is the multiple involvement of secret key in the delegation,
which contributes to the term numpathID∞(IDi) and the summation of H4

values in verification equation. This point will become more clear in the below
example.

4.3 Examples

Consider how the proxy signature is generated from the delegation network de-
picted in Figure 1. It is easy to see what user ID4 received from users ID1 and
ID3, and also what user ID5 has received. Now we consider how the proxy sig-
nature signed by this For the sake of brevity, we start by showing what users
ID4 and ID5 will do, and omit the verification of the delegation.

110 S.S.M. Chow et al.

u0

u1

u2 u3

u4

u5

u6 u∞

Fig. 1. Signing Structure

– User ID4 does the following.
1. User ID4 receives from user ID1:

(U1,4 = S1 + x1,4H3(ID1||m1,4, x1,4P),M1,4 = {m1,4},R1,4 = {R1,4 =
x1,4P}).

2. User ID4 receives from user ID3:
(U3,4 = S2 + x2,3H3(ID2||m2,3, R2,3) + H4(ID2, ID3,m2,3, R2,3)S3 +
x3,4H3(ID3||m3,4, R3,4),
M3,4 = {m2,3,m3,4},R3,4 = {R2,3, R3,4}).

3. After verification of these delegations, compute the proxy signing key:

PS4 = H4(ID1||ID4||m1,4, R1,4)S4 + U1,4 + H4(ID3||ID4||m3,4, R3,4)S4 + U3,4.

4. Choose x4,6 from F∗
q randomly.

5. Create a warrant m4,6.
6. Compute R4,6 = x4,6P .
7. Compute H4,6 = H3(ID4||m4,6, R4,6).
8. Compute U4,6 = PS4 + x4,6H4,6.
9. Send (U4,6,M4,6 = {m1,4,m2,3,m3,4,m4,6},R4,6 = {R1,4, R2,3, R3,4,

R4,6}) to ID6.
– User ID5 performs a similar computation as that of ID4, and sends

(U5,6,M5,6 = {m1,5,m2,3,m3,5,m5,6},R5,6 = {R1,5, R2,3, R3,5, R5,6}) to
ID6, where U5,6 = H4(ID1||ID5||m1,5, R1,5)S5 +U1,5 +H4(ID3||ID5||m3,5,
R3,5)S5 + U3,5 + x5,6H5,6.

– User ID6 does the following to sign on the message m6,∞.
1. After verifying these delegations, compute the proxy signing key: PS6 =

H4(ID4||ID6||m4,6, R4,6)S6 +U4,6 +H4(ID5||ID6||m5,6, R5,6)S6 +U5,6.
2. Choose x6,∞ from F∗

q randomly.
3. Compute R6,∞ = x6,∞P .
4. Compute H6,∞ = H3(ID4||m6,∞, R6,∞).
5. Compute U6,∞ = PS6 + x6,∞H4,6.
6. Send (U6,∞, M6,∞ = {m1,4,m1,5,m2,3,m3,4,m3,5,m4,6,m5,6}, R6,∞ =

{R1,4, R1,5, R2,3, R3,4, R3,5, R4,6, R5,6}) to an arbitrary secretary .
– The final proxy signature produced by the secretary is (U,M∞,R∞), where

1. U = U6,∞,
2. M∞ = {m1,4,m1,5,m2,3,m3,4,m3,5,m4,6,m5,6,m} and
3. R∞ = {R1,4, R1,5, R2,3, R3,4, R3,5, R4,6, R5,6, R6,∞}.

Identity Based Delegation Network 111

– The verifier who got the final proxy signature follows the steps below to verify
the delegation network involved and the final signatures of the delegates.

1. Compute V =
∑

IDi∈ID
[numpathID∞(IDi) ·Xi],

where Xi = (
∑

Ri,j :j
=∞,Ri,j∈R∞ H4(IDi||IDj ||mD,C , Ri,j))QIDi .
In this example, V = 2QID1+ 2QID2+ 2H4(ID2||ID3||m2,3||R2,3)QID3

+(H4(ID1||ID4||m1,4||R1,4) +H4(ID3||ID4||m3,4||R3,4))QID4

+(H4(ID1||ID5||m1,5||R1,5) +H4(ID3||ID5||m3,5||R3,5))QID5

+(H4(ID4||ID6||m4,6||R4,6) +H4(ID5||ID6||m5,6||R5,6))QID6 .
2. Compute ρ =

∏
Ri,j∈R∞ ê(Ri,j , H3(IDi||mi,j , Ri,j)), which is

ê(R1,4, H3(ID1||m1,4, R1,4)) · ê(R1,5, H3(ID1||m1,5, R1,5))
·ê(R2,3, H3(ID2||m2,3, R2,3)) ·ê(R3,4, H3(ID3||m3,4, R3,4))
·ê(R3,5, H3(ID3||m3,5, R3,5)) ·ê(R4,6, H3(ID4||m4,6, R4,6))
·ê(R5,6, H3(ID5||m5,6, R5,6)) ·ê(R6,∞, H3(ID6||m6,∞, R6,∞)).

3. Accept if ê(P,U) = ê(Ppub, V)ρ, reject otherwise.

4.4 Analysis

We first analyze the computational efficiency of the scheme. Although the for-
mula looks complicated, the scheme is not inefficient. The delegation and signing
requires no pairing computation at all. The verification process takes N scalar-
point multiplication and E pairing operations, where N and E is the number of
nodes and the number of edges in the graph representing the delegation network
respectively. Notice that our scheme can be further optimized since the multi-
plication of a series of pairings in VerifyProxySignature can be optimized by
using the concept of “Miller lite” of Tate pairing presented in [28]. The size of
the signature is also reasonable. Without considering the warrants involved, our
signature is of size E + 1 G1 elements, where each G1 element is about 300 bits
only, for 923-bit discrete logarithm security. This analysis shows that our scheme
is obviously more efficient than the trivial solution of issuing E digital signatures
certifying the delegation conditions to the delegates or E invocations of existing
ID-based proxy signature scheme.

For the security of our scheme, we consider the same model as the security
model of proxy signature in [31] which models the extreme case that the adver-
sary is working against a single honest user (says ID1) and can get the private
keys of all other users. We found that if there is an efficient forger that can make
a forged signature or forged proxy signature, then we can use it to break our
ID-based signature scheme supporting batch verifications.

Full proof of security is omitted due to space limitation. Now we highlight
some of the key ideas. In our proof of security, the simulation of private key
generation, delegation, standard signing and the proxy signing requests can be
done in more or less the same way as those in the proof of [31]. The adversary is
considered to be a successful forger of our ID-based delegation network if either
one of the following forgeries are produced:

1. A standard signature by user ID1 for a message that was not submitted to
the standard signing oracle.

112 S.S.M. Chow et al.

2. A proxy signature from a delegation network, which involves ID1 as one of
the delegators or as one of the proxy signers.

If forgery of type (1) is produced, it implies that our ID-based signature
scheme supporting batch verifications is forgeable. If type (2) forgery is pro-
duced, with non-negligible probability (since we are considering the extreme
case that the adversary is given the private keys of all users except one) we
can generate a multi-signature signed by user ID1; by “cancelling” the “partic-
ipations” (delegation or signing) of other users by deducting the related terms
from final proxy signature U . Since we have proven the security of our underly-
ing scheme, by contradiction, our delegation network is unforgeable. Indeed, our
simulation can embed an instance of the CDHP to the identity of user ID1 and
the system parameter so that the either type of forgery can help us to solve the
CDHP. The cancellation to get the ID1’s private key or the way to solve the
CDHP are similar to the steps of solving the CDHP in the proof of Theorem 1.

4.5 Extra Features

Since our proposed ID-based delegation network is built on a signature scheme
supporting batch verifications, the delegator does not need to know who are also
delegating his/her signer power to the same delegate in advance. Similarly, to
give a proxy signature, the proxy signer does not need to know who else are
going to sign the same message too. Our scheme also supports multi-signature:
the proxy signers can sign on different messages but we can verify the signatures
on different messages in the same verification process.

5 Conclusion

We presented an ID-based proxy signature scheme, which allows efficient delega-
tion chains through batch verification. The scheme is based on a new ID-based
signature scheme with batch verification, which is of interest in itself and whose
security is proven in the paper. Our proposal for ID-based delegation network
is an improvement over the alternative of applying existing proxy signatures to
each delegate in the network, which requires interaction among the proxy signers
and prior knowledge on who are going to sign the messages.

Future research direction is to further minimize the storage or bandwidth
requirement for the delegation scenario. For example, devising an ID-based ag-
gregate signatures scheme [4], such that the signature certifying the delegation
and the signature on message can be aggregated into a small signature.

References

1. Tuomas Aura. On the Structure of Delegation Networks. In PCSFW: Proceedings
of the Eleventh Computer Security Foundations Workshop. IEEE Computer Society
Press, 1998.

Identity Based Delegation Network 113

2. Arno Bakker, Maarten van Steen, and Andrew S. Tanenbaum. A Law-Abiding
Peer-to-Peer Network for Free-Software Distribution. In IEEE International Sym-
posium on Network Computing and Applications (NCA’01), Cambridge, MA, Oc-
tober 8-10, 2001, Proceedings, 2001.

3. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security Proofs for
Identity-Based Identification and Signature Schemes. In Christian Cachin and Jan
Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Techniques, Inter-
laken, Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in
Computer Science, pages 268–286. Springer, 2004.

4. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and Verifi-
ably Encrypted Signatures from Bilinear Maps. In Eli Biham, editor, Advances in
Cryptology - EUROCRYPT 2003, International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, Proceed-
ings, volume 2656 of Lecture Notes in Computer Science, pages 416–432. Springer.

5. Xiaofeng Chen, Fangguo Zhang, and Kwangjo Kim. ID-based Multi-Proxy Signa-
ture and Blind Multisignature from Bilinear Pairings. In KIISC conference, 2003.

6. Sherman S.M. Chow. Verifiable Pairing and Its Applications. In Chae Hoon
Lim and Moti Yung, editors, Information Security Applications: 5th International
Workshop, WISA 2004, Jeju Island, Korea, August 23-25, Revised Selected Papers,
volume 3325 of Lecture Notes in Computer Science, pages 170–187. Springer.

7. Jean-Sébastien Coron. On the Exact Security of Full Domain Hash. In Mi-
hir Bellare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-24,
2000, Proceedings, volume 1880 of Lecture Notes in Computer Science, pages 229–
235. Springer, 2000.

8. Carl M. Ellison, Bill Franz, Butler Lampson, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. SPKI Certificate Theory, Simple Public Key Certificate, SPKI Ex-
amples. Internet draft, SPKI Working Group, Internet Engineering Task Force,
September 1999.

9. Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A Security Archi-
tecture for Computational Grids. In Proceedings of the Fifth ACM conference on
Computer and Communications Security, pages 83–92. ACM Press, 1998.

10. Hossein Ghodosi and Josef Pieprzyk. Repudiation of Cheating and Non-
Repudiation of Zhang’s Proxy Signature Schemes. In Josef Pieprzyk, Reihaneh
Safavi-Naini, and Jennifer Seberry, editors, Information Security and Privacy,
Fourth Australasian Conference, ACISP 1999, Wollongong, NSW, Australia, April
7-9, 1999, Proceedings, volume 1587 of Lecture Notes in Computer Science.
Springer, 1999.

11. Javier Herranz and Germán Sáez. Verifiable Secret Sharing for General Access
Structures, with Application to Fully Distributed Proxy Signatures. In Rebecca N.
Wright, editor, Financial Cryptography, 7th International Conference, FC 2003,
Guadeloupe, French West Indies, January 27-30, 2003, Revised Papers, volume
2742 of Lecture Notes in Computer Science, pages 286–302, 2003.

12. Javier Herranz and Germán Sáez. Revisiting Fully Distributed Proxy Signature
Schemes. In Anne Canteaut and Kapalee Viswanathan, editors, Progress in Cryp-
tology - INDOCRYPT 2004, 5th International Conference on Cryptology in India,
Chennai, India, December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes
in Computer Science, pages 356–370. Springer, 2004. Also available at Cryptology
ePrint Archive, Report 2003/197.

114 S.S.M. Chow et al.

13. Florian Hess. Efficient Identity Based Signature Schemes based on Pairings. In
Kaisa Nyberg and Howard M. Heys, editors, Selected Areas in Cryptography, 9th
Annual International Workshop, SAC 2002, St. John’s, Newfoundland, Canada,
August 15-16, 2002. Revised Papers, volume 2595 of Lecture Notes in Computer
Science, pages 310–324. Springer, 2003.

14. Shin-Jia Hwang and Chiu-Chin Chen. New Multi-Proxy Multi-Signature Schemes.
Applied Mathematics and Computation, 147(1):57–67, 2004.

15. Seungjoo Kim, Sangjoon Park, and Dongho Won. Proxy Signatures, Revisited. In
Yongfei Han, Tatsuaki Okamoto, and Sihan Qing, editors, Information and Com-
munication Security, First International Conference, ICICS’97, Beijing, China,
November 11-14, 1997, Proceedings, volume 1334 of Lecture Notes in Computer
Science. Springer, 1997.

16. Byoungcheon Lee, Heesun Kim, and Kwangjo Kim. Secure Mobile Agent Using
Strong Non-Designated Proxy Signature. In Vijay Varadharajan and Yi Mu, ed-
itors, Information Security and Privacy, Sixth Australasian Conference, ACISP
2001, Sydney, Australia, July 11-13, 2001, Proceedings, volume 2119 of Lecture
Notes in Computer Science. Springer, 2001.

17. Narn-Yih Lee, Tzonelih Hwang, and Chih-Hung Wang. On Zhang’s Nonrepudia-
ble Proxy Signature Schemes. In Colin Boyd and Ed Dawson, editors, Informa-
tion Security and Privacy, Third Australasian Conference, ACISP 1998, Brisbane,
Queensland, Australia, July 1998, Proceedings, volume 1438 of Lecture Notes in
Computer Science. Springer, 1998.

18. J. Leiwo, C. Hanle, P. Homburg, and A.S. Tanenbaum. Disallowing Unautho-
rized State Changes of Distributed Shared Objects. In Sihan Qing and Jan H.P.
Eloff, editors, Information Security for Global Information Infrastructures. Kluwer
Academic Publishers, 2000.

19. Benôıt Libert and Jean-Jacques Quisquater. The Exact Security of an Iden-
tity Based Signature and its Applications. Cryptology ePrint Archive, Report
2004/102, 2004. Available at http://eprint.iacr.org.

20. Chih-Yin Lin, Tzong-Chen Wu, and Fangguo Zhang. A Structured Multisignature
Scheme from the Gap Diffie-Hellman Group. Cryptology ePrint Archive, Report
2003/090, 2003. Available at http://eprint.iacr.org.

21. Masahiro Mambo, Keisuke Usuda, and Eiji Okamoto. Proxy Signature: Delegation
of the Power to Sign Messages. In IEICE Trans. Fundamentals, volume E79-A, 9,
Sep 1996.

22. B. Clifford Neuman. Proxy-Based Authorization and Accounting for Distributed
Systems. In Thirteenth International Conference on Distributed Computing Sys-
tems, pages 283–291, 1993.

23. Takeshi Okamoto, Mitsuru Tada, and Eiji Okamoto. Extended Proxy Signatures for
Smart Cards. In Masahiro Mambo and Yuliang Zheng, editors, Information Secu-
rity, Second International Workshop, ISW’99, Kuala Lumpur, Malaysia, November
1999, Proceedings, volume 1729 of Lecture Notes in Computer Science. Springer,
1999.

24. David Pointcheval and Jacques Stern. Security Arguments for Digital Signatures
and Blind Signatures. Journal of Cryptology: The Journal of the International
Association for Cryptologic Research, 13(3):361–396, 2000.

25. Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on
Pairing over Elliptic Curve. In Proceedings of Symposium on Cryptography and
Information Security (SCIS 2000) C-20, 2000.

Identity Based Delegation Network 115

26. Seung-Hyun Seo and Sang-Ho Lee. New Nominative Proxy Signature Scheme for
Mobile Communication. In Conference on Security and Protection of Information
2003, Brno, Czech Republic, April 28-30, 2003, pages 149–154, 2003.

27. Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In G. R. Blak-
ley and David Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO
1984, Santa Barbara, California, USA, August 19-22, 1984, Proceedings, volume
196 of Lecture Notes in Computer Science, pages 47–53. Springer-Verlag, 1985.

28. Jerome A. Solinas. ID-based Digital Signature Algorithms. Slide Show presented
at 7th Workshop on Elliptic Curve Cryptography (ECC 2003), August 2003.

29. Hung-Min Sun, Bin-Tsan Hsieh, and C.T. Lin. Cryptanalysis of A New Multi-
Proxy Multi-Signature Scheme. In Twelfth National Information Security Confer-
ence (ISC 2002), 2002.

30. Guilin Wang, Feng Bao, Jianying Zhou, and Robert H. Deng. Security Analysis
of Some Proxy Signatures. In Jong In Lim and Dong Hoon Lee, editors, Informa-
tion Security and Cryptology - ICISC 2003, 6th International Conference, Seoul,
Korea, November 27-28, 2003, Revised Papers, volume 2971 of Lecture Notes in
Computer Science, pages 305–319. Springer, 2004. Also available at Cryptology
ePrint Archive, Report 2003/196.

31. Jing Xu, Zhenfeng Zhang, and Dengguo Feng. ID-Based Proxy Signature Using
Bilinear Pairings. Cryptology ePrint Archive, Report 2004/206, 2004. Available
at http://eprint.iacr.org.

32. HyoJin Yoon, Jung Hee Cheon, and Yongdae Kim. Batch Verifications with ID-
Based Signatures. In Choonsik Park and Seongtaek Chee, editors, Information
Security and Cryptology - ICISC 2004, 7th International Conference, Seoul, Korea,
December 2-3, 2004, Revised Selected Papers, volume 3506 of Lecture Notes in
Computer Science, pages 233–248. Springer, 2005.

33. Fangguo Zhang and Kwangjo Kim. Efficient ID-Based Blind Signature and Proxy
Signature from Bilinear Pairings. In Reihaneh Safavi-Naini and Jennifer Seberry,
editors, Information Security and Privacy, Eighth Australasian Conference, ACISP
2003, Wollongong, Australia, July 9-11, 2003, Proceedings, volume 2727 of Lecture
Notes in Computer Science, pages 312–323. Springer, 2003.

34. Kan Zhang. Nonrepudiable Proxy Signature Schemes. Available at
http://citeseer.nj.nec.com/zhang97nonrepudiable.html.

35. Kan Zhang. Threshold Proxy Signature Schemes. In Proceedings of the First
International Information Security Workshop, pages 282–290, 1997.

On Session Key Construction in Provably-Secure
Key Establishment Protocols�

Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock

Information Security Institute,
Queensland University of Technology,

GPO Box 2434, Brisbane, QLD 4001, Australia
{k.choo, c.boyd, y.hitchcock}@qut.edu.au

Abstract. We examine the role of session key construction in provably-
secure key establishment protocols. We revisit an ID-based key establish-
ment protocol due to Chen & Kudla (2003) and an ID-based protocol
2P-IDAKA due to McCullagh & Barreto (2005). Both protocols carry
proofs of security in a weaker variant of the Bellare & Rogaway (1993)
model where the adversary is not allowed to make any Reveal query.
We advocate the importance of such a (Reveal) query as it captures
the known-key security requirement. We then demonstrate that a small
change to the way that session keys are constructed in both protocols
results in these protocols being secure without restricting the adversary
from asking the Reveal queries in most situations. We point out some
errors in the existing proof for protocol 2P-IDAKA, and provide proof
sketches for the improved Chen & Kudla’s protocol. We conclude with a
brief discussion on ways to construct session keys in key establishment
protocols.

1 Introduction

Key establishment protocols are used for distributing shared keying material in
a secure manner. For example, today’s cryptosystems, such as AES, use key es-
tablishment schemes to establish shared keying material. However, despite their
importance, the difficulties of obtaining a high level of assurance in the security
of almost any new, or even existing, protocols are well illustrated with examples
of errors found in many such protocols years after they were published [1,12,20].

The treatment of computational complexity analysis adopts a deductive rea-
soning process whereby the emphasis is placed on a proven reduction from the
problem of breaking the protocol to another problem believed to be hard. Such
an approach for key establishment protocols was made popular by Bellare &
Rogaway [4] who provided the first formal definition for a model of adversary
capabilities with an associated definition of security (which we refer to as the
BR93 model in this paper). Since then, many research efforts have been oriented

� This work was partially funded by the Australian Research Council Discovery Project
Grant DP0345775.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 116–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Session Key Construction in Provably-Secure Key Establishment Protocols 117

towards this end which have resulted in numerous protocols with accompanying
computational proofs of security proposed in the literature. In 1995, Bellare and
Rogaway analysed a three-party server-based key distribution (3PKD) proto-
col [5] using an extension to the BR93 model. A more recent revision to the
BR93 model was proposed in 2000 by Bellare, Pointcheval and Rogaway [3].
In independent yet related work, Bellare, Canetti, & Krawczyk [2] built on the
BR93 model and introduced a modular proof model. However, some drawbacks
with this formulation were discovered and this modular proof model was sub-
sequently modified by Canetti & Krawczyk [9], and will be referred to as the
CK2001 model in this paper.

The BR93 model is probably one of the most widely used proof models in
the computational complexity approach for protocol analysis. In the model, the
probabilistic polynomial-time (PPT) adversary controls all the communications
that take place between parties via a pre-defined set of oracle queries, namely:
Send, Reveal, and Corrupt. The Reveal query allows an adversary to expose session
keys for uncorrupted parties, whilst the Corrupt query allows the adversary to
corrupt any principal at will, and thereby learn the complete internal state of the
corrupted principal. We observe that several protocols proven secure in the BR93
model restrict the adversary from asking the Reveal query. However, we argue
that such a query is realistic in a real-world implementation as an adversary is
often assumed to have the capability to acquire session keys. Such a (Reveal)
query is essential as it allows us to model the scenario whereby each session
key generated in one protocol round is independent and determines whether the
particular session key will be exposed if other secret keys are compromised. In
other words, the Reveal query captures the known-key security requirement in
key establishment protocols, whereby a protocol should still achieve its goal in
the face of a malicious adversary who has learned some other session keys [7,14].
In addition, omission of the Reveal query to the owner of the Test session in the
proof model could also result in protocols vulnerable to reflection attacks being
proven secure in such a model.

We revisit an ID-based key establishment protocol due to Chen & Kudla [10]
and an ID-based protocol 2P-IDAKA due to McCullagh & Barreto [18]. Both
protocols are role-symmetric and carry proofs of security in the BR93 model.
However, the existing proofs of both protocols restrict the adversary from asking
any Reveal query. Their arguments follow on from earlier work of Blake-Wilson,
Johnson, & Menezes [6] who pointed out that it does not seem possible for
role-symmetric protocols to be secure in the BR93 model if the Reveal query is
allowed. In recent work, Jeong, Katz, & Lee [15] present two protocols T S1 and
T S2, both with proofs of security in the BR93 model. This work contradicts the
claim of Blake-Wilson et al. [6] as both protocols T S1 and T S2 are similar to
the protocols analysed by Blake-Wilson et al. [6] in the BR93 model, but without
restricting the adversary from asking the Reveal query.

We examine the existing arguments on the restriction of the Reveal query.
We then demonstrate that by making a simple change to the construction of the
session key (and not changing the protocol details), we are able to prove Chen &

118 K.-K.R. Choo, C. Boyd, and Y. Hitchcock

Kudla’s protocol secure in an intermediate variant of the BR93 model whereby
the adversary, A, is allowed to ask all the queries available in the model except
asking Reveal queries to the sessions owned by the partner of the target Test
session. Although we are unable to prove the improved protocol secure in the
BR93 model without restricting A from asking the Reveal query due to some
technicality, the improved protocol does not appear to be suffering from any
insecurities even if we allow A to ask any Reveal queries to the perceived partner
of the target Test session. Furthermore, by allowing A to ask Reveal queries
directed at the owner of the Test session in our proof, effectively means that
the improved Chen & Kudla’s protocol is secure against reflection attacks. We
reveal some errors in the existing proof of protocol 2P-IDAKA [18] as well as
the observation that the proof is in a restricted BR93 model whereby A does
not generate the input to the Test session, which is not a normal assumption in
the Bellare–Rogaway models [3,4, 5].

The Importance of Session Key Construction: We observe that there is neither a
formal definition of session key construction in the proof models nor the existence
of a rule of thumb on how session keys in key establishment protocols should be
constructed. Our case studies illustrate that the way session keys are constructed
can have an impact on the security of the protocol in the model. It appears that
certain ways of constructing a session key may contribute to the security of a
key establishment protocol.

Surprisingly, no one has pointed out the importance of session key construc-
tion despite its significance to the security of key establishment protocols. Of
course, we do not claim that session keys constructed in our proposed fashion
will necessarily result in a provably-secure protocol as the security of the protocol
is based on many other factors, such as the underlying cryptographic primitives
used. However, we do claim that having a sound construction of session keys will
reduce the number of possible attacks on the key establishment protocol.

We regard the main contributions of this paper to be of three-fold significance:

1. demonstrating that the ID-based protocols of Chen & Kudla and McCullagh
& Barreto can be proven secure in an intermediate BR93 model whereby the
restriction of the Reveal query is only on the responder partner and the owner
of the Test session respectively,

2. identifying the importance of session key constructions in key establishment
protocols and contributing towards a better understanding of how to con-
struct secure session keys in key establishment protocols, and

3. identifying errors in the existing proof of protocol 2P-IDAKA [18].

Section 2 provides an informal overview of the BR93 model. Section 3 revisits
the Chen–Kudla ID-based key establishment protocol. We present the arguments
of the existing proof on why the Reveal query is not allowed, and present an im-
proved protocol. We then explain why the Reveal query cannot be answered if
the adversary A ask any Reveal queries to the partner player of the target Test
session. We conclude this section with a sketch of the proof for the improved pro-
tocol. Section 4 revisits the McCullagh–Barreto protocol 2P-IDAKA. Similarly

Session Key Construction in Provably-Secure Key Establishment Protocols 119

to Section 3, we present the arguments of the existing proof on why the Reveal
query is not allowed. We also identify some errors in the existing proof of the
protocol. We then present an improved protocol. Section 5 presents our proposal
on how session keys should be constructed. Section 6 presents the conclusions.

2 The BR93 Model

In this section, a brief overview of the BR93 model is provided primarily for the
benefit of the reader in understanding the model [4].

2.1 Adversarial Powers

The adversary A is defined to be a probabilistic machine that is in control of all
communications between parties by interacting with two sets, Πi

U1,U2
and Ψ j

U1,U2

of oracles (Πi
U1,U2

is defined to be the ith instantiation of a principal U1 in a
specific protocol run and U2 is the principal with whom U1 wishes to establish
a secret key). The predefined oracle queries are as follows:

– Send(U1, U2, i,m) query computes a response according to the protocol spec-
ification and decision on whether to accept or reject yet, and returns them
to A.

– The client oracle, Πi
U1,U2

, upon receiving a Reveal(U1, U2, i) query, and if it
has accepted and holds some session key, will send this session key back to
A.

– Corrupt(U1,KE) query allows A to corrupt the principal U1 at will, and
thereby learn the complete internal state of the corrupted principal. Note
that such a query does not exist in the original BR93 model, but generally
added by those using this model. In the Bellare & Rogaway (1995) model [5],
the corrupt query also gives A the ability to overwrite the long-lived key of
the corrupted principal with any value of her choice (i.e. KE).

– Test(U1, U2, i) query is the only oracle query that does not correspond to any
of A’s abilities. If Πi

U1,U2
has accepted with some session key and is being

asked a Test(U1, U2, i) query, then depending on a randomly chosen bit b, A
is given either the actual session key or a session key drawn randomly from
the session key distribution.

2.2 Definition of Partnership

Partnership is defined using the notion of matching conversations, where a con-
versation is defined to be the sequence of messages sent and received by an
oracle. The sequence of messages exchanged (i.e., only the Send oracle queries)
are recorded in the transcript, T . At the end of a protocol run, T will contain
the record of the Send queries and the responses as shown in Figure 1. Defini-
tion 1 gives a simplified definition of matching conversations for the case of the
protocol shown in Figure 1.

120 K.-K.R. Choo, C. Boyd, and Y. Hitchcock

Definition 1 (BR93 Definition of Matching Conversations [4]). Let n
be the maximum number of sessions between any two parties in the protocol run.
Run the protocol shown in Figure 1 in the presence of a malicious adversary A
and consider an initiator oracle Πi

A,B and a responder oracle Πj
B,A who engage

in conversations CA and CB respectively. Πi
A,B and Πj

B,A are said to be partners
if they both have matching conversations, where

CA = (τ0,′ start′, α1), (τ2, β1, α2)
CB = (τ1, α1, β1), (τ3, α2, ∗), for τ0 < τ1 < . . .

Πi
A,B Πj

B,A

‘start’
α1

α1

β1

β1
α2

α2

*

time τ0

time τ1

time τ2

time τ3

Note that the construction of conversation
shown in Definition 1 depends on the number
of parties and the number of message flows.
Informally, both Πi

A,B and Πj
B,A are said to

be BR93 partners if each one responded to a
message that was sent unchanged by its part-
ner with the exception of perhaps the first and
last message.

Fig. 1. Matching conversation [4]

2.3 Definition of Freshness

The notion of freshness is used to identify the session keys about which A ought
not to know anything because A has not revealed any oracles that have accepted
the key and has not corrupted any principals knowing the key. Definition 2 de-
scribes freshness in the BR93 model, which depends on the notion of partnership
in Definition 1.

Definition 2 (Definition of Freshness). Oracle Πi
A,B is fresh (or it holds

a fresh session key) at the end of execution, if, and only if, oracle Πi
A,B has

accepted with or without a partner oracle Πj
B,A, both oracle Πi

A,B and its partner
oracle Πj

B,A (if such a partner oracle exists) have not been sent a Reveal query,
and the principals A and B of oracles Πi

A,B and Πj
B,A (if such a partner exists)

have not been sent a Corrupt query.

2.4 Definition of Security

Security is defined using the game G, played between a malicious adversaryA and
a collection of Πi

Ux,Uy
oracles for players Ux, Uy ∈ {U1, . . . , UNp} and instances

i ∈ {1, . . . , Ns}. The adversary A runs the game G, whose setting is explained
in Table 1.

Session Key Construction in Provably-Secure Key Establishment Protocols 121

Table 1. Setting of game G

Stage 1: A is able to send any oracle queries at will.
Stage 2: At some point during G, A will choose a fresh session on which to be tested

and send a Test query to the fresh oracle associated with the test session.
Depending on the randomly chosen bit b, A is given either the actual session
key or a session key drawn randomly from the session key distribution.

Stage 3: A continues making any oracle queries at will but cannot make Corrupt
and/or Reveal that trivially expose the test session key.

Stage 4: Eventually, A terminates the game simulation and outputs a bit b′, which
is its guess of the value of b.

Success of A in G is quantified in terms of A’s advantage in distinguishing
whether A receives the real key or a random value. A wins if, after asking a
Test(U1, U2, i) query, where Πi

U1,U2
is fresh and has accepted, A’s guess bit b′

equals the bit b selected during the Test(U1, U2, i) query. Let the advantage
function of A be denoted by AdvA(k), where AdvA(k) = 2 × Pr[b = b′] − 1. Def-
inition 3 describes security for the BR93 model.

Definition 3 (BR93 Definition of Security [4]). A protocol is secure in the
BR93 model if for all PPT adversaries A,

1. if uncorrupted oracles Πi
A,B and Πj

B,A complete with matching conversa-
tions, then the probability that there exist i, j such that Πi

A,B accepted and
there is no Πj

B,A that had engaged in a matching session is negligible.
2. AdvA(k) is negligible.

If both requirements of Definition 3 are satisfied, then Πi
A,B and Πj

B,A will also
have the same session key.

3 Chen–Kudla ID-Based Protocol

Figure 2 describes protocol 2 of Chen & Kudla [10]. There are two entities in
the protocols, namely initiator, A, and responder, B. The notation used in the
protocols is as follows: SA = sQA and SB = sQB denote the private keys of
A and B respectively, H denotes some secure hash function, QA = H(IDA),
QA = H(IDB), WA = aQA and WB = bQB where WA and WB denote the
ephemeral public keys of A and B respectively, and a and b are the ephemeral
private keys of A and B respectively. At the end of the protocol execution, both
A and B accept the session key SKAB = H(ê(SA,WB + aQB)) and SKBA =
H(ê(WA + bQA, SB)) respectively.

3.1 Existing Arguments on the Restriction of Reveal Query

In the existing proof by Chen & Kudla [10, Proof of Theorem 1], they indicated
that no Reveal query is allowed due to the description provided in Figure 3, where

122 K.-K.R. Choo, C. Boyd, and Y. Hitchcock

A B

a ∈R Z∗
q

WA = aQA−−−−−−−→ b ∈R Z∗
q

KAB = ê(SA, WB + aQB) WB = bQB←−−−−−−− KBA = ê(WA + bQA, SB)
KAB = KBA = ê(QA, QB)s(a+b)

SKAB = H(KAB) = SKBA = H(KBA)

Fig. 2. Chen–Kudla Protocol 2

A A B

a ∈R Z∗
q

WA = aQA−−−−−−−→ Intercept

c ∈R Z∗
q

WA + cQA−−−−−−−→
WB + cQB←−−−−−−− Intercept WB = bQB←−−−−−−− b ∈R Z∗

q

KAB = ê(SA, WB + cQB + aQB) KBA = ê(WA + bQA + cQA, SB)
KAB = KBA = ê(QA, QB)s(a+b+c)

SKAB = H(KAB) = SKBA = H(KBA)

Fig. 3. Execution of Chen-Kudla protocol 2 in the presence of a malicious adversary

Figure 3 describes the execution of the protocol in the presence of a malicious
adversary, A.
At the end of the protocol execution, neither A nor B are partnered since they do
not have matching conversations (as described in Definition 1 in Section 2), asA’s
transcript is (WA,WB +cQB) whilst B’s transcript is (WA+cQA,WB). However,
both A and B accept the same session key KAB = KBA = ê(QA, QB)s(a+b+c).
Therefore, A is able to trivially expose a fresh session key by asking a Reveal
query to a non-partner oracle. Therefore, the protocol will not be secure if A
is allowed access to a Reveal query. Similar arguments apply for the remaining
three protocols of Chen & Kudla [10].

3.2 Improved Chen–Kudla Protocol

Let A’s transcript be denoted by TA and B’s transcript be denoted by TB .
Consider the scenario whereby session keys of A and B (denoted as SKAB and
SKBA respectively) are constructed as

SKAB = H(KAB) = H(A||B||TA||ê(SA,WB + aQB))
= H(A||B||TA||ê(QA, QB)s(a+b)),

SKBA = H(KBA) = H(A||B||TB ||ê(WA + bQA, SB)
= H(A||B||TB ||ê(QA, QB)s(a+b)) = SKAB

Session Key Construction in Provably-Secure Key Establishment Protocols 123

instead. Evidently, the attack outlined in Figure 3 will no longer work since a
non-matching conversation (i.e., TA �= TB) will also mean that the session key is
different, as shown below:

SKAB = H(KAB) = H(A||B||aQA||(b + c)QB||ê(SA,WB + aQB)),
SKBA = H(KBA) = H(A||B||(a+ c)QA||bQB||ê(WA + bQA, SB)) �= SKAB.

Similarly, a reflection attack or an unknown key share attack would not work
against the protocol since the construction of the session key introduces role
asymmetry and the identities of the participants. In other words, session keys
will be different when the roles of the same principal switch. Therefore, A appears
to be unable to gain information about such fresh session key(s).

3.3 Sketch of New Proof

At first glance, it would seem that by fixing the attack outlined in Section 3.1, we
have addressed the reasons why no Reveal query was allowed that was outlined in
the existing proofs, and would be able to prove the improved protocol secure in
the unrestricted BR93 model. However, we demonstrate that this is not possible
unless we restrict the adversary from asking any Reveal queries to the partner of
the Test session, as explained in Figure 4. However, by allowing the adversary
to ask Reveal queries directed at the owner of the Test session (in our proof), we
effectively prove the improved protocol secure against reflection attacks.

Recall that the general notion of the proof is to assume that there exists an
adversary A who can gain a non-negligible advantage in distinguishing the test
key in the game described in Section 2.4, and use A to break the underlying
BDH problem. In other words, we build an adversary, ABDH, against the BDH
problem using A. The objective of ABDH is to compute and output the value
ê(P, P)xyz ∈ G2 when given a bilinear map ê, a generator of P of G1, and a
triple of elements xP, yP, zP ∈ G1 with x, y, z ∈ Z∗

q , where q is the prime order
of the distinct groups G1 and G2.

Let oracle Πu
A,B be the initiator associated with the target Test session,

and oracle Πv
B,A be the responder partner to Πu

A,B. ABDH needs to simulate
all responses to queries from A, including the random oracle, H. The proof
specifies that ABDH can create all public/private key pairs for all players, except
a randomly chosen player J . Let (QU , SU) denote the public/private keys of
players U other than J (where SU = xQU). ABDH is unable to compute the
private key of J because ABDH is trying to solve the BDH problem, which is
embedded in the public key of J .

Figure 4 shows a possible sequence of adversary actions and the responses
generated by ABDH. It can be seen that A will be able to distinguish between
the simulation provided by ABDH and the actual protocol if it carries out this
sequence of actions, since with overwhelming probability, v �= SKBC (recall that
v is randomly chosen). Hence, ABDH cannot answer any Reveal directed at the
partner of the target Test session.

124 K.-K.R. Choo, C. Boyd, and Y. Hitchcock

ABDH A
b ∈R Z∗

r
Send(B, C, j, cQC)←−−−−−−− c ∈R Z∗

r

bQB−−−−−−−→
Reveal(B, C, j)←−−−−−−−

ABDH is supposed to respond with H(B||C||j||ê(cQC + bQC , SB)), but ABDH does
not know SB, and thus cannot know the input for its simulation of H.
v ∈R {0, 1}k v−−−−−−−→

Corrupt(C)←−−−−−−−
ABDH returns all internal states of C, including SC = sQC .

SC−−−−−−−→ Compute SKBC = H(C||B||i||ê(SC , bQB + cQB))

Verify whether v
?= SKBC

Fig. 4. An example simulation of Chen–Kudla protocol 2

Theorem 1. The improved Chen–Kudla protocol 2 is a secure authenticated key
establishment protocol in the sense of Definition 3 if the Bilinear Diffie-Hellman
(BDH) problem is hard and the hash function, H, is a random oracle, and the
adversary A does not ask any Reveal queries to any sessions owned by the partner
player associated with the Test session.
The proof of Theorem 1 generally follows that of Chen & Kudla [10, Proof of
Theorem 1], except that we allow A to ask Reveal queries (but not to the partner

Queries Actions
Send(U1, U2, i) ABDH answers all Send queries in the same fashion as the proof

simulation presented by Chen & Kudla.
Corrupt(U, K) ABDH answers all Corrupt queries in the same fashion as the proof

simulation presented by Chen & Kudla.
Test(U1, U2, i) ABDH answers the Test query in the same fashion as the proof

simulation presented by Chen & Kudla.
H(U1||U2||i||te(m)) ABDH will return a random value, v ∈R {0, 1}k where k is the

security parameter and store m in a list of tuples.
Reveal(U1, U2, i) If oracle Πi

U1,U2 is not an oracle associated with the test session
(or partner of such an oracle), and U1 is not player J where
ABDH did not generate the contents of the Send query to Πi

U1,U2 ,
then ABDH returns the associated session key. Otherwise ABDH
terminates and halts the simulation. We observe that if ABDH
halts because U1 = J , the Test session chosen by A must be
different to that desired by ABDH, so even if the simulation had
not halted here, it would have halted later.

Fig. 5. ABDH simulates the view of A by answering all Send, Reveal, Corrupt, and Test
oracle queries of A

Session Key Construction in Provably-Secure Key Establishment Protocols 125

player of the Test session). The details of the game simulation remain unchanged
to that presented by Chen & Kudla [10, Proof of Theorem 1], except that we
allow A to ask Reveal queries (but not to the partner player of the Test session),
as given in Figure 5.

Hence, ABDH is able to simulate the view of A perfectly by answering all
oracle queries of A as specified in Figure 5. Upon the conclusion of the game (i.e.,
A is done), ABDH chooses a random element in the list of tuples and outputs
it. The probability that ABDH did not abort at some stage and produces the
correct output remains non-negligible. This concludes the sketch of the proof of
the theorem.

4 2P-IDAKA Protocol

In recent work, McCullagh & Barreto [18] proposed a two-party ID-based au-
thenticated key agreement (2P-IDAKA) protocol with a proof of security in
a weaker variant of the BR93 model whereby the adversary is not allowed to
ask Reveal queries. Figure 6 describes the 2P-IDAKA protocol. There are two
entities in the protocol, namely an initiator player A and a responder player
B. Notation used in the protocols is as follows: (s + a)P denotes the public
key of A, Apri = ((s + a))−1P denotes the private key of A, (s + b)P de-
notes the public key of B, and Bpri = ((s + b))−1P denotes the private key
of B. At the end of the protocol execution, both A and B accept session keys
SKAB = ê(BKA, Apri)xa = ê(P, P)xaxb = SKBA.

A B

xa ∈R Z∗
r

AKA = xa(s + b)P−−−−−−−→ xb ∈R Z∗
r

ê(BKA, Apri)xa = ê(P, P)xaxb
BKA = xb(s + a)P←−−−−−−− ê(AKA, Bpri)xb = ê(P, P)xaxb

Fig. 6. McCullagh–Barreto 2P-IDAKA protocol

4.1 Why Reveal Query is Restricted

No Reveal query is allowed on the 2P-IDAKA protocol [11] due to the description
provided in Figure 7.

In the protocol execution shown in Figure 7, both A and B have accepted
the same session key (i.e., SKA = SKB). However, both A and B are non-
partners since they do not have matching conversations as A’s transcript is
(AKA, BKA · xE) whilst B’s transcript is (AKA · xE , BKA). By sending a Reveal
query to either A or B, A is able to trivially expose a fresh session key by
asking a Reveal query to either A or B. Hence, the 2P-IDAKA protocol shown
in Figure 6 is not secure since A is able to obtain the session key of a fresh oracle
of a non-partner oracle by revealing a non-partner oracle holding the same key,
in violation of the key establishment goal.

126 K.-K.R. Choo, C. Boyd, and Y. Hitchcock

A A B

xa ∈R Z∗
r

AKA = xa(s + b)P−−−−−−−→ Intercept
xE ∈E Z∗

r

Impersonate A AKA · xE−−−−−−−→ xb ∈R Z∗
r

Intercept
BKA = xb(s + a)P←−−−−−−−

BKA · xE←−−−−−−− Impersonate B

SKA = ê(xb(s + a)P · xE, Apri)xa = ê(P, P)xaxbxE = SKB

Fig. 7. Execution of 2P-IDAKA protocol in the presence of a malicious adversary

4.2 Errors in Existing Proof

The general notion of the existing proof of McCullagh & Barreto [18, Proof
of Theorem 1], to assume that there exists an adversary A who can gain a
non-negligible advantage in distinguishing the test key in the game described in
Section 2.4, and use A to break the underlying Bilinear Inverse Diffie–Hellman
Problem (BIDHP). In other words, an adversary, ABIDHP , against the BIDHP
is constructed using A. The objective of ABIDHP is to compute and output the
value ê(P, P)α−1β when given P, αP, βP for x, y, z ∈ Z∗

r .

Error 1: In the existing proof, the public and private key pairs for some player,
Ui, are selected as ((u − s)P ,u−1P), in contradiction to their description in the
protocols where ((s + u)P ,(s + u)−1P) is given instead. The adversary, A, is
then able to tell that the public and private key pairs do not match by simply
corrupting any player, as shown in Figure 8.

ABIDHP A
Return all internal state of U,

Corrupt(U)←−−−−−−−
including (u)−1P u−1P−−−−−−−→ Compute ê(uP − sP, (u)−1P)

Fig. 8. Illustration of error 1

We can check whether a public and private key pair match by computing
ê((s+ u)P, (s + u)−1P) = ê((P, P)(s+u)(s+u)−1

= ê(P, P). However, as outlined
in Figure 8, when A computes the public and private key pair of U , ê(uP −
sP, (u)−1P) = ê((u − s)P, u−1P) = ê(P, P)(u−s)u−1

= ê(P, P)1−su−1 �= ê(P, P).
A trivially knows that the public and private key pairs of U do not match. Hence,
the existing proof is invalidated.

Error 2: We observed that the parameter βP = xjαP given in the existing proof
should be βP = xj(yi − s)P instead, as explained in Figure 9. In Figure 9, we

Session Key Construction in Provably-Secure Key Establishment Protocols 127

assume that error 1 has been fixed. The public/private key pair of I (the partner
player associated with the Test session is ((yi − s)P, (yi − s)−1P), the public key
of J (the owner of the Test session) is αP , and the private key of J (i.e., α−1P))
is unknown to both ABIDHP and A. It is obvious from Figure 9 that we cannot

ABIDHP A
xi ∈R Z∗

r
Send(J, I, i,′ start′)←−−−−−−−

xiP−−−−−−−→ A is given βP = xjαP as input from j

xiP = xt(αP)
Send(I, J, j, βP)←−−−−−−−

Fig. 9. Illustration of error 2

have the values of both xiP and xjP computed using the public key of J , αP
(at least one of xiP and xjP have to be computed using the public key of I).
To check, we compute ê(P, P)xtxj = ê(P, P)xiα

−1βα−1 �= ê(P, P)α−1β , which is
what ABIDHP is trying to solve. Hence, the correct value for βP = xjαP given
in the existing proof should be βP = xj(yi − s)P instead.

Further remarks: We observe that for the existing proof to work, we would have
to assume that the inputs to the Test session originated with the simulator,
ABIDHP , and not the adversary, A. However, this is not a normal assumption
and resricts the BR93 model. In fact, if a slightly different assumption were made
in the proof of the improved Chen & Kudla’s protocol in Section 3.3, namely that
if B is the partner of the Test session, then all Send query inputs to sessions of
B that are later revealed were generated by ABDH, then the proof in Section 3.3
would not have to restrict Reveal queries to B.

Consequences of errors in security proofs: Protocol implementers (usually non-
specialists and/or industrial practitioners) will usually plug-and-use existing
provably-secure protocols without reading the formal proofs of the protocols [16].
Errors in security proofs or specifications themselves certainly will certainly un-
dermine the credibility and trustworthiness of provably-secure protocols in the
real world.

4.3 Improved 2P-IDAKA Protocol

Let A’s transcript be denoted by TA and B’s transcript be denoted by TB .
Consider the scenario whereby session keys of A and B are constructed as

SKAB = H(A||B||TA||ê(BKA, Apri)xa) = H(A||B||TA||ê(P, P)xaxb),
SKBA = H(A||B||TB ||ê(AKA, Bpri)xb) = H(A||B||TB ||ê(P, P)xaxb) = SKAB

128 K.-K.R. Choo, C. Boyd, and Y. Hitchcock

instead. Evidently, the attack outlined in Figure 7 will no longer be valid since
a non-matching conversation (i.e., TA �= TB) will also mean that the session key
is different, as shown below:

SKAB = H(A||B||xa(s+ b)P ||(xb · xE)(s+ a)P ||ê(BKA, Apri)xa),
SKBA = H(A||B||(xa · xE)(s+ b)P ||xb(s+ a)P ||ê(AKA, Bpri)xb) �= SKAB.

Therefore, A is unable to gain information about any fresh session key(s). Fig-
ure 10 illustrates why Reveal queries directed at the owner of the Test session
cannot be answered by ABDH. Note that Πj

J,C is not the target Test session.

ABIDHP A
xb ∈R Zr∗ Send(J, C, j, (xc(s + b)P))←−−−−−−− xc ∈R Zr∗

(xb(s + b)P)−−−−−−−→
Reveal(J, C, j)←−−−−−−−

ABIDHP is supposed to respond with H(J ||C||j||ê(xc(s + b)P, Jpri)), but ABIDHP
does not know Jpri, and thus cannot know the input for its simulation of H.
v ∈R {0, 1}k v−−−−−−−→

Corrupt(C)←−−−−−−−
ABIDHP returns all internal states of C, including Cpri = (s + c)−1P.

Cpri−−−−−−−→ SKBC = H(C||B||i||ê(xc(s + b)P, Cpri))

Verify if v
?= SKBC

Fig. 10. An example simulation of McCullagh–Barreto 2P-IDAKA protocol

From Figure 10, it can be seen that A will be able to distinguish between
the simulation provided by ABIDHP and the actual protocol if it carries out this
sequence of actions, since with overwhelming probability, v �= SKBC (recall that
v is randomly chosen). Hence, ABIDHP cannot answer any Reveal directed at the
owner of the target Test session, J , unless we made a similar type of assumption
in the existing proof outlined in Section 4.2 that all Send query inputs to sessions
of J that are later revealed were generated by ABIDHP .

5 A Proposal for Session Key Construction

In this section, we present our proposal on how session keys should be con-
structed. Although we do not claim that session keys constructed in this fashion
will result in a secure protocol (as the security of the protocol is based on many
other factors, such as the underlying cryptographic primitives used), we do claim

Session Key Construction in Provably-Secure Key Establishment Protocols 129

that having a sound construction of session keys may reduce the number of pos-
sible attacks on the protocol.

We propose that session keys in key establishment protocols should be con-
structed in the following fashion, as shown in Table 2. The inclusion of

– the identities of the participants and their roles provides resilience against
unknown key share attacks and reflection attacks since the inclusion of both
the identities of the participants and role asymmetry effectively ensures some
sense of direction. If the role of the participants or the identities of the (per-
ceived) partner participants change, the session keys will also be different,

– the unique session identifiers (SIDs) ensures that session keys will be fresh,
and if SIDs are defined as the concatenation of messages exchanged during
the protocol execution, messages altered during the transmission will result
in different session keys (providing data origin authentication), and

– some other ephemeral shared secrets and/or long-term (static) shared secrets
depending on individual protocols, ensures that the session key is only known
to the protocol participants.

Table 2. Construction of session key in key establishment protocols

Session key input Properties
Identities of the participants
and their roles

Resilience against unknown key share attacks [8,
Chapter 5.1.2] and reflection attacks [17].

Unique session identifiers
(SIDs)

Freshness and data origin authentication (assuming
SIDs defined to be the concatenation of exchanged
messages).

Ephemeral shared secrets
and/or long-term (static)
shared secrets

If the identities of the (perceived) partner participants
change, the session keys will also be different.

6 Conclusion

By making a small change to the way session keys are constructed in the Chen–
Kudla protocol 2 and McCullagh–Barreto protocol 2P-IDAKA, we demonstrated
that the existing attacks no longer work. In addition, both protocols’ proof were
improved to be less restrictive with regard to the Reveal queries allowed1. We
also found some errors in the McCullagh–Barreto proof, as well as observing that
it is in a restricted version of the BR93 model that assumes that the adversary
does not generate the input to the Test session.

As a result of our findings, we would recommend that all provably secure
protocols should construct session keys using materials comprising the identities
of the participants and roles, unique session identifiers (SIDs), and some other
1 Chow [13] pointed out that the technicality of not being able to answer Reveal queries

outlined in Sections 3.3 and 4.3 can be resolved using GAP assumptions [19].

130 K.-K.R. Choo, C. Boyd, and Y. Hitchcock

ephemeral shared secrets and/or long-term (static) shared secrets. We hope that
this work contributes towards a better understanding on how to construct secure
session keys in key establishment protocols.

References

1. Feng Bao. Security Analysis of a Password Authenticated Key Exchange Protocol.
In Colin Boyd and Wenbo Mao, editors, 6th Information Security Conference - ISC
2003, pages 208–217. Springer-Verlag, 2003. Volume 2851/2003 of Lecture Notes
in Computer Science.

2. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A Modular Approach to The
Design and Analysis of Authentication and Key Exchange Protocols. In Jeffrey
Vitter, editor, 30th ACM Symposium on the Theory of Computing - STOC 1998,
pages 419–428. ACM Press, 1998.

3. Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key Ex-
change Secure Against Dictionary Attacks. In Bart Preneel, editor, Advances in
Cryptology – Eurocrypt 2000, pages 139 – 155. Springer-Verlag, 2000. Volume
1807/2000 of Lecture Notes in Computer Science.

4. Mihir Bellare and Phillip Rogaway. Entity Authentication and Key Distribution. In
Douglas R. Stinson, editor, Advances in Cryptology - Crypto 1993, pages 110–125.
Springer-Verlag, 1993. Volume 773/1993 of Lecture Notes in Computer Science.

5. Mihir Bellare and Phillip Rogaway. Provably Secure Session Key Distribution:
The Three Party Case. In F. Tom Leighton and Allan Borodin, editors, 27th ACM
Symposium on the Theory of Computing - STOC 1995, pages 57–66. ACM Press,
1995.

6. Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key Agreement Protocols
and their Security Analysis. In Michael Darnell, editor, 6th IMA International Con-
ference on Cryptography and Coding, pages 30–45. Springer-Verlag, 1997. Volume
1355/1997 of Lecture Notes in Computer Science.

7. Simon Blake-Wilson and Alfred Menezes. Security Proofs for Entity Authentication
and Authenticated Key Transport Protocols Employing Asymmetric Techniques.
In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas, and Michael Roe, edi-
tors, Security Protocols Workshop, pages 137–158. Springer-Verlag, 1997. Volume
1361/1997 of Lecture Notes in Computer Science.

8. Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establish-
ment. Springer-Verlag, June 2003.

9. Ran Canetti and Hugo Krawczyk. Analysis of Key-Exchange Protocols and
Their Use for Building Secure Channels (Extended version available from
http://eprint.iacr.org/2001/040/). In Birgit Pfitzmann, editor, Advances
in Cryptology - Eurocrypt 2001, pages 453–474. Springer-Verlag, 2001. Volume
2045/2001 of Lecture Notes in Computer Science.

10. Liqun Chen and Caroline Kudla. Identity Based Authenticated
Key Agreement Protocols from Pairings (Corrected version at
http://eprint.iacr.org/2002/184/). In 16th IEEE Computer Security
Foundations Workshop - CSFW 2003, pages 219–233. IEEE Computer Society
Press, 2003.

11. Kim-Kwang Raymond Choo. Revisit Of McCullagh–Barreto Two-Party ID-Based
Authenticated Key Agreement Protocols. Cryptology ePrint Archive, Report
2004/343, 2004. http://eprint.iacr.org/2004/343/.

Session Key Construction in Provably-Secure Key Establishment Protocols 131

12. Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. The
Importance of Proofs of Security for Key Establishment Protocols: For-
mal Analysis of Jan–Chen, Yang–Shen–Shieh, Kim–Huh–Hwang–Lee,
Lin–Sun–Hwang, & Yeh–Sun Protocols (Extended version available from
http://eprints.qut.edu.au/perl/user eprints?userid=51). (To appear in)
Journal of Computer Communications - Special Issue of Internet Communications
Security, 2005.

13. Sherman S. M. Chow. Personal Communication, 29 Apr 2005.
14. Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in Key Distribution

Protocols. ACM Journal of Communications, 24(8):533–536, 1981.
15. Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee. One-Round Protocols for

Two-Party Authenticated Key Exchange. In Markus Jakobsson, Moti Yung, and
Jianying Zhou, editors, Applied Cryptography and Network Security - ACNS 2004,
pages 220–232. Springer-Verlag, 2004. Volume 3089/2004 of Lecture Notes in Com-
puter Science.

16. Neal Koblitz and Alfred Menezes. Another Look at “Provable Security”. Technical
report CORR 2004-20, Centre for Applied Cryptographic Research, University of
Waterloo, Canada, 2004.

17. Hugo Krawczyk. SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols. In Dan Boneh, editor, Advances in
Cryptology - Crypto 2003, pages 400–425. Springer-Verlag, 2003. Volume 2729/2003
of Lecture Notes in Computer Science.

18. Noel McCullagh and Paulo S. L. M. Barreto. A New Two-Party
Identity-Based Authenticated Key Agreement (Extended version available from
http://eprint.iacr.org/2004/122/). In Alfred John Menezes, editor, Cryptogra-
phers’ Track at RSA Conference - CT-RSA 2005, pages 262–274. Springer-Verlag,
2005. Volume 3376/2005 of Lecture Notes in Computer Science.

19. Tatsuaki Okamoto and David Pointcheval. The Gap-Problems: a New Class of
Problems for the Security of Cryptographic Schemes. In Kwangjo Kim, editor,
2001 International Workshop on Practice and Theory in Public Key Cryptography -
PKC 2001. Springer-Verlag, 2001. Volume 1992/2001 of Lecture Notes in Computer
Science.

20. Olivier Pereira and Jean-Jacques Quisquater. Some Attacks Upon Authenticated
Group Key Agreement Protocols. Journal of Computer Security, 11:555–580, 2003.

On the Security of Probabilistic Multisignature
Schemes and Their Optimality

Yuichi Komano1, Kazuo Ohta2, Atsushi Shimbo1, and Shinichi Kawamura1

1 Toshiba Corporation,
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan

{yuichi1.komano,atsushi.shimbo,shinichi2.kawamura}@toshiba.co.jp
2 The University of Electro-Communications,

Chofugaoka 1-5-1, Chofu-shi, Tokyo 182-8585, Japan
ota@ice.uec.ac.jp

Abstract. We first prove that the following three probabilistic mul-
tisignature schemes based on a trapdoor permutation have tight secu-
rity; PFDH (probabilistic full domain hash) based multisignature scheme
(PFDH-MSS), PSS (probabilistic signature scheme) based multisigna-
ture scheme (PSS-MSS), and short signature PSS based multisignature
scheme (S-PSS-MSS). Second, we give an optimal proof (general result)
for multisignature schemes, which derives the lower bound for the length
of random salt. We also estimate the upper bound for the length in
each scheme and derive the optimal length of a random salt. Two of the
schemes are promising in terms of security tightness and optimal signa-
ture length.

Keywords: Multisignature, Aggregate signature, Provable security, Op-
timal security, Random oracle model

1 Introduction

1.1 Background

The notion of multisignatures was derived by Itakura and Nakamura [5], and a
great deal of research has been done on this subject. In multisignature schemes,
two or more signers generate one multisignature for some message: the same
result is accomplished by concatenating each signer’s signature; however, the
multisignature scheme decreases the (total) length of the signature and/or the
signing (verification) costs.

In respect of provably secure multisignatures (in the sense of the security
model of [9]) based on a trapdoor (one-way) permutation (e.g., RSA), Mitomi
and Miyaji in Appendix A of [10] and Kawauchi and Tada [6] proposed FDH
based multisignature scheme and probabilistic multisignature scheme based on
PSS, respectively. In these schemes, the signing order is restricted by a key length
of each signer. Moreover, as the signing order proceeds, the computation cost is
enlarged (because of the increase of key length).

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 132–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Security of Probabilistic Multisignature Schemes 133

With regard to optimal security and optimal length of a random salt utilized
in probabilistic signature schemes, Coron [4] introduced the notion of “reduction”
and claimed that (1) the security of PSS is not improved if the length of a random
salt exceeds a certain value (upper bound), (2) a lower bound for the length of
a random salt, with which we guarantee the security of probabilistic signature
schemes (general result), is derived from the optimal proof utilizing the notion
of the “reduction”, and, (3) the upper bound (of PSS) derived from (1) equals
the lower bound derived from (2); which gives the optimal length of a random
salt.

1.2 Our Contribution

This paper deals with three multisignature schemes based on the trapdoor
permutation; PFDH (probabilistic full domain hash, [4]) based multisignature
scheme (PFDH-MSS, [7]), PSS (probabilistic signature scheme, [2]) based mul-
tisignature scheme (PSS-MSS), and short signature PSS based multisignature
scheme (S-PSS-MSS). The construction of PFDH-MSS and PSS-MSS is a similar
to that of the sequential signature scheme (hereafter, we call the scheme FDH-
MSS1) based on the full domain hash (FDH, [1]) constructed by Lysyanskaya et
al. [8]. For simplicity, we give a description of the schemes with the RSA function
[11] as the trapdoor permutation in section 3.

We first prove that these three multisignature schemes have tight security
under the random oracle model [1]. We then show that PFDH-MSS and S-PSS-
MSS have optimal length of signature; an increase of signature size per signer is
the same as the length of a random salt. Since the random salt is necessary for
ensuring tight security and the salt should be recovered in the verification step,
it is inevitable that the length of signature is enlarged by more than or equal to
the length of random salt per signer; namely, the signature size in each scheme
is optimal.

Second, we apply Coron’s technique (using “reduction”) to the multisignature
schemes and estimate the optimal length of a random salt utilized in the schemes.
We first show an optimal proof (general result) which derives the lower bound for
the length of a random salt with which we ensure the security of multisignature
scheme. Then, we prove the security of the schemes and derive the optimal length
of a random salt. It is of theoretical interest that the optimal length of a random
salt utilized in the multisignature schemes is equal to the optimal length of a
random salt utilized in PSS (estimated in [4]).

1.3 Related Work – Sequential Aggregate Signatures

In 2003, Boneh et al. [3] proposed an aggregate signature scheme which is recog-
nized as one of the generalizations of the multisignature scheme. The aggregate
signature scheme is a signature scheme which can unify several signatures gen-
erated by plural signers on different messages. The original aggregate signature
1 Sequential aggregate signatures are essentially the same as message flexible multisig-

nature schemes. See the section 1.3 for detail.

134 Y. Komano et al.

scheme [3] requires the restricted assumptions (GDH groups and/or bilinear
maps, e.g., Weil and Tate pairings on elliptic curves).

Recently, Lysyanskaya et al. [8] proposed a sequential aggregate signature
scheme based on a more general function, trapdoor permutation (e.g., RSA);
however, since their scheme is based on FDH, the security is not tight enough.

The difference between the definition of an original multisignature scheme
and that of a sequential aggregate signature scheme is: in multisignature schemes,
signers sign the same message, and in sequential aggregate signature schemes,
signers sign different messages. For multisignature schemes, in order to allow
a signer to sign a different message, message flexible multisignature schemes
have been invented. For aggregate signature schemes, Boneh et al. [3] claim that
the signer can sign the same message by concatenating the message with some
additional data (e.g., identification number). Namely, the sequential aggregate
signature is essentially the same as the message flexible multisignature scheme.

With regard to security model, the model described in [8], the sequential
aggregate chosen key model, is more restricted than the security model of [9], in
terms of not allowing a forger to select a victim. In this paper, we follow the
security model of [9] to ensure the security of multisignature schemes.

2 Definitions

This section formalizes the definitions of a message flexible multisignature
scheme (a sequential aggregate signature scheme) and its security model follow-
ing those of [9]. Hereafter, we assume that the total group of signers G consists
of (constant ordered) L players (signers), P1, P2, · · · , and PL who have identifi-
cation numbers, ID1, ID2, · · · , and IDL, respectively, and also assume that L′

signers Pi1 , Pi2 , · · · , and PiL′ ∈ G′ ⊆ G execute a multisigning algorithm. Note
that these L′ signers may be selected adaptively in the process of the multisigning
algorithm.

Definition 1 (Multisignature Scheme). A multisignature scheme consists
of the following three algorithms, (K,MS,V).

— Key generation algorithm K is a probabilistic algorithm which, given a security
parameter k for each signer Pij of G, outputs a key pair (public and private
keys), K(1k) = (pkij

, skij).
— Multisigning algorithm MS is performed by Pij ∈ G′. The inputs of this al-

gorithm are message mij (concatenated with the previous signer’s message
mij−1), a signature of Pij−1 σij−1 and secret key skij , and the output is a
signature σij = MSskij

(mij , σij−1). This algorithm may be probabilistic.
— Verification algorithm V takes message miL′ , multisignature σiL′ , and public

keys of signers pki1 , · · · , pkiL′ , and returns Vpki1
,··· ,pki

L′
(miL′ , σiL′) = 1 if

σiL′ is a valid signature of miL′ and G′, and otherwise, returns 0 (Reject).
This algorithm is deterministic.

Definition 2 (Security Model [9]). We assume an attack model of a forger
F of multisignature schemes as follows:

On the Security of Probabilistic Multisignature Schemes 135

1. Key generation phase attack: In a key generation phase, F can corrupt any
signer of G by his choice, i.e., F can request any signer to reveal his secret
key (we call this request a corrupt query). Moreover, F can join the group by
masquerading as a signer(s), i.e., F generates a pair (pairs) of public and
secret keys and registers the public key(s), after F receives some key pairs
(we call this request a masquerading query).

2. F receives the public keys of all signers (including the signers corrupted by
F or whom F masquerades as).

3. Signing phase attack: In a signing phase, F can also corrupt any signer of
G by his choice. Moreover, F can request any signer of his choice, except2

those legal signers whom F masquerades as, to sign on adaptively chosen
message m.

4. F outputs a forgery (m∗
iL′ , σ

∗
iL′).

Let C be a group of signers who are corrupted by F or whom F masquerades
as in the key generation phase attack or the signing phase attack. The forger’s
success probability is defined as:

ε = Pr[Vpki1
,··· ,pki

L′
(m∗

iL′ , σ
∗
iL

) = 1 ∧ ∃j ∈ {1, · · · , L} such that Pij /∈ C and

Pij is not requested by F to sign m∗
ij

].

We claim that a multisignature scheme is (τ, qΣ , qH , ε)-secure in accordance
with Existentially Un-Forgeable against Adaptive Chosen Message Attack and
Adaptive Insider Attack (EUF-ACMA&AIA) if arbitrary forger, whose running
time is bounded by τ , cannot achieve a success probability more than ε after
making at most L − 1 corrupt and masquerading queries in total, qΣi signing
queries to i-th signing oracle Σi (i = 1, 2, · · · , L, qΣ = qΣ1 + · · ·+ qΣL), and qH
hash queries to hash function H.

Also note that, in the multisignature scheme in which each signer generates
a signing key independently of other signer (including the multisignature scheme
based on RSA in which each signer utilizes her own modulus), signers can join
the signing group at any time. In the model, we allow F to make a masquerading
query at any time3 (at the key generation and signing phases).

3 Probabilistic Multisignature Schemes

In this section, we first give the description of PFDH based multisignature
scheme following [7], and then propose two PSS based multisignature schemes
based on a general trapdoor permutation. For simplicity, we utilize the RSA
function as the trapdoor permutation. Note that the security of these schemes
can be ensured under the assumption of the general trapdoor permutation.
2 F can request signing queries from signers including the signers corrupted by F in

key phase and signing phase attacks.
3 In some multisignature schemes (e.g., [9]) in which the key generation phase is ex-

ecuted for each subgroup G′, F can make a masquerading query only at the key
generation phase.

136 Y. Komano et al.

ID
ij
,M

ij

H

σ
L,ij-1

σ
R,ij-1

G

r
ij

w
ij

w’
ij

σ
L,ij-1

s
ij

f
-1

ij

σ
ij

(b) PSS-MSS

00

H

σ
L,ij-1

σ
M,ij-1

σ
R,ij-1

G

r
ij

w
ij

w’
ij

σ
M,ij-1

s
ij

f
-1

ij

σ
ij

(c) S-PSS-MSS

w
ijσ

ij−1
:

σ ’
ij-1

H

σ ’
ij-1

f
-1

ij

σ
ij

(a) PFDH-MSS

00
τ

ij-1

ID
ij
,M

ij
,r

ij
,w

ij

ID
ij
,M

ij
,r

ij
,w

ij-1

ID
ij
,M

ij

00

Fig. 1. Probabilistic Multisignature Schemes

3.1 PFDH Based Multisignature Scheme

We give the description of PFDH based multisignature scheme (PFDH-MSS).
Its security is discussed in section 5. The only difference from the original (FDH-
based) sequential aggregate signature [8] (FDH-MSS) is that a random salt is
utilized in PFDH-MSS; which ensures tight security4.

Protocol 1 (RSA-PFDH-MSS). RSA-PFDH-MSS with hash function H :
{0, 1}∗ → {0, 1}k−1 is executed as follows (Figure 1 (a)):

— Key generation algorithm K, given a security parameter k, outputs an RSA
key pair5 of each signer Pij (ij = 1, · · · , L), K(1k) = ((nij , eij), dij).

— Assume that signer Pij in G′ = {Pi1 , · · ·PiL′ } ⊆ G signs on a message mij .
Pij , given identification number IDij−1 , message Mij−1 , random salt rij−1 ,
and signatures wij−1 and σij−1 from a previous signer Pij−1 (IDi0 = Mi0 =

ri0 = wi0 = null and σi0 = 0k−1), first chooses rij

R← {0, 1}k0 and divides
σij−1 (k bits) into two parts; lower k − 1 bits, σ′

ij−1
, and the remaining part,

wij (MSB). Then, Pij sets IDij = IDij−1 ||IDij , Mij = Mij−1 ||mij , rij =
rij−1 ||rij , and wij = wij−1 ||wij , and computes τij = H(IDij ,Mij , rij ,wij) ⊕
σ′

ij−1
and σij = (0||τij)

dij (modnij). Finally, Pij gives IDij , Mij , rij , wij ,
and σij to the next signer.

— For IDiL′ , MiL′ , riL′ , wiL′ , and σiL′ , we verify the validity of the signature
by recovering σij (j = L′, · · · , 0) and checking the validity of σi0 as follows:
for IDij , Mij , rij , wij , and σij , we first compute b||τij = (σij)

eij (modnij),
where6 |b| = 1 and |τij | = k − 1. If b �= 0, we reject the signature. Otherwise,
we recover σ′

ij−1
= H(IDij ,Mij , rij ,wij)⊕ τij (the lower k− 1 bit). Then, we

divide IDij = IDij−1 ||IDij , Mij = Mij−1 ||mij , rij = rij−1 ||rij , and wij =

4 In [7], Kawauchi and Tada constructed a PFDH based multisignature scheme and
tried to give a security consideration of the scheme; however, their proof strategy
has problems in simulating the answers to oracle queries. Moreover, they did not
derive the optimal length of a random salt at all.

5 nij is a product of two (secret) large primes, and gcd(eij , φ(nij)) = 1 and eij dij ≡
1(modφ(nij)) hold. Here, φ is Euler’s phi function.

6 Here, |x| denotes the bit length of x.

On the Security of Probabilistic Multisignature Schemes 137

wij−1 ||wij , and recover σij−1 = wij ||σ′
ij−1

, and execute the verification for
ij−1-th signer’s signature.
Finally, if σi0 = 0k−1, we accept the signature. Otherwise, we reject it.

Note that (RSA-)PFDH-MSS has tight security as we will see in section 5.
The increase of length of signature per signer (including a random salt) is k0 +1
bits, where k0 denotes the length of a random salt.

3.2 PSS Based Multisignature Schemes

In this subsection, we propose two PSS based multisignature schemes; the first
one is naturally constructed from PSS (PSS-MSS), and the other one is con-
structed from PSS-MSS in order to decrease the signature size (S-PSS-MSS).
We first give the description of RSA-PSS-MSS.

Protocol 2 (RSA-PSS-MSS). RSA-PSS-MSS with hash functions G :
{0, 1}k1 → {0, 1}k−k0−k1−1, and H : {0, 1}∗ → {0, 1}k1 is executed as follows
(Figure 1 (b)):

— Key generation algorithm K is the same as that described in the Protocol 1.
— Assume that signer Pij in G′ = {Pi1 , · · ·PiL′ } ⊆ G signs on a message mij .

Pij , given identification number IDij−1 , message Mij−1 , and signature σij−1

from a previous signer Pij−1 (IDi0 = Mi0 = null and σi0 = 0k−k0−k1−1), first

chooses rij

R← {0, 1}k0 and divides σij−1 (k + (j − 1)(k0 + k1 + 1) bits) into
two parts; lower k− k0 − k1 − 1 bits, σR,ij−1 , and the remaining part, σL,ij−1 .
Then, Pij sets IDij = IDij−1 ||IDij and Mij = Mij−1 ||mij , and computes
wij = H(IDij ,Mij , σL,ij−1 , σR,ij−1 , rij) and sij = (σR,ij−1 ||rij) ⊕G(wij). Pij

generates a signature σ′
ij

= (0||sij ||wij)
dij (modnij). Finally, Pij gives IDij ,

Mij , and σij = σL,ij−1 ||σ′
ij

to the next signer.
— For IDiL′ , MiL′ , and σiL′ , we verify the validity of the signature by recovering

σij (j = L′, · · · , 0) and checking the validity of σi0 as follows: for IDij , Mij ,
and σij , we first divide σij into two parts; lower k bits, σ′

ij
, and the remaining

part, σL,ij−1 . Then, we compute b||sij ||wij = (σ′
ij

)eij (modnij), where |b| = 1,
|sij | = k− k1 − 1, and |wij | = k1. If b �= 0, we reject the signature. Otherwise,
we recover σR,ij−1 ||rij = sij ⊕ G(wij), where |σR,ij−1 | = k − k0 − k1 − 1 and
|rij | = k0. Then, we compute w′

ij
= H(IDij ,Mij , σL,ij−1 , σR,ij−1 , rij) and

reject the signature if wij �= w′
ij
. Otherwise, we divide IDij = IDij−1 ||IDij

and Mij = Mij−1 ||mij , and recover σij−1 = σL,ij−1 ||σR,ij−1 , and execute the
verification for ij−1-th signer’s signature.
Finally, if σi0 = 0k−k0−k1−1, we accept the signature. Otherwise, we reject it.

From the Protocol 2, the increase of length of signature per signer in PSS-
MSS is k0 + k1 + 1 bits, where k0 and k1 are the length of a random salt and
the output length of hash function G, respectively. The increase in PSS-MSS is
greater than that in PFDH-MSS by k1 bits per signer.

Now, we construct short signature PSS based multisignature scheme (S-PSS-
MSS) by improving PSS-MSS. Broadly speaking, the strategy of constructing

138 Y. Komano et al.

S-PSS-MSS is that we divide σL,ij−1 in PSS-MSS into two parts, σL,ij−1 and
σM,ij−1 , and exclusive-or σL,ij−1 withH(IDij ,Mij , σM,ij−1 , σR,ij−1 , rij). We give
the formal description of RSA-S-PSS-MSS.

Protocol 3 (RSA-S-PSS-MSS). RSA-S-PSS-MSS with hash functions G :
{0, 1}k1 → {0, 1}k−k0−k1−1, and H : {0, 1}∗ → {0, 1}k1 is executed as follows
(Figure 1 (c)):

— Key generation algorithm K is the same as that described in the Protocol 1.
— Assume that signer Pij in G′ = {Pi1 , · · ·PiL′ } ⊆ G signs on a message mij .

Pij , given identification number IDij−1 , message Mij−1 , and signature σij−1

from a previous signer Pij−1 (IDi0 = Mi0 = null and σi0 = 0k−k0+k1−1), first

chooses rij

R← {0, 1}k0 and divides σij−1 (k+(j−1)(k0+1) bits) into three parts;
the least significant k − k0 − k1 − 1 bits, σR,ij−1 , the most significant k1 bits,
σL,ij−1 , and the remaining part, σM,ij−1 . Then, Pij sets IDij = IDij−1 ||IDij

and Mij = Mij−1 ||mij , and computes w′
ij

= H(IDij ,Mij , σM,ij−1 , σR,ij−1 ,

rij), wij = σL,ij−1 ⊕ w′
ij

, and sij = (σR,ij−1 ||rij) ⊕ G(wij). Pij generates
a signature σ′

ij
= (0||sij ||wij)

dij (modnij). Finally, Pij gives IDij , Mij , and
σij = σM,ij−1 ||σ′

ij
to the next signer.

— For IDiL′ , MiL′ , and σiL′ , we verify the validity of the signature by recovering
σij (j = L′, · · · , 0) and checking the validity of σi0 as follows: for IDij , Mij ,
and σij , we first divide σij into two parts; lower k bits, σ′

ij
, and the remaining

part, σM,ij−1 . Then, we compute b||sij ||wij = (σ′
ij

)eij (mod nij), where |b| = 1,
|sij | = k− k1 − 1, and |wij | = k1. If b �= 0, we reject the signature. Otherwise,
we recover σR,ij−1 ||rij = sij ⊕ G(wij) and σL,ij−1 = H(IDij ,Mij , σM,ij−1 ,
σR,ij−1 , rij) ⊕ wij , where |σR,ij−1 | = k − k0 − k1 − 1 and |rij | = k0. We
then divide IDij = IDij−1 ||IDij and Mij = Mij−1 ||mij , and recover σij−1 =
σL,ij−1 ||σM,ij−1 ||σR,ij−1 , and execute the verification for ij−1-th signer’s sig-
nature.
Finally, if σi0 = 0k−k0+k1−1, we accept the signature. Otherwise, we reject it.

The increase of length of signature per signer in RSA-S-PSS-MSS is k0 + 1
bits; which is the same as that in PFDH-MSS. Note that, by embedding a part of
the message (m0) into the recovery part of the first signer7 (σi0,R), we can reduce
the bandwidth (the length of message and signature) compared to PFDH-MSS
in a general case (see section 6). As we will see in section 5, S-PSS-MSS also has
tight security.

4 Optimality for Probabilistic Multisignature Schemes

In this section, we give an optimal proof (general result) for multisignature
scheme. The optimal proof gives an upper bound for reduction efficiency (the
relation between the hardness of solving the mathematical problem and that
of breaking the signature scheme); this relation derives the security parameter

7 The verification algorithm checks if σi0,L||σiM ,0 equals 0k−1−k0 .

On the Security of Probabilistic Multisignature Schemes 139

F ′ inv. OWF R

R′ (Lem. 3)

(Lem. 2)

Fig. 2. Proof Strategy of Theorem 1

when the optimal “reduction” algorithm is utilized in the security proof. It is rea-
sonable that the more efficient the reduction in the security proof is constructed,
the shorter is the random salt sufficient for ensuring the security; namely, this
relation gives the lower bound for the security parameter (especially, the length
of random salt). We first review the definition of “reduction.”

Definition 3 (Reduction, [4]). We say that a reduction R (tR, qΣ , qH , εF ,
εR)-reduces inverting a multiplicative (homomorphic) trapdoor permutation f
(i.e., f(ab) = f(a)f(b) holds for arbitrary a and b, e.g., the RSA function) to
break a multisignature scheme if, upon input η and after running any forger that
outputs the forgery in (tF , qΣ, qH , εF), R outputs f−1(η) with probability more
than εR, within an additional running time of tR.

Utilizing the “reduction” R, we can derive the optimal proof for multisigna-
ture schemes (MSS).

Theorem 1 (Optimal Proof for Probabilistic Multisignatures). Let F
be a forger who breaks MSS containing L signers in (τF , qΣ , qH , ε) in accordance
with EUF-ACMA &AIA, in the case of being allowed to make at most L−1 corrupt
and masquerading queries in total. Let R be a reduction who reduces inverting
a multiplicative trapdoor permutation f to break MSS in (tR, qH , qΣ , εF , εR). R
can run or rewind F at most r times. From R, we can construct an inverter I
who breaks the trapdoor permutation. Here,

εI ≥ εR − rεF
2k0+2

qΣ
, tI ≤ (r + 1)tR.

holds.

Suppose that the inverting problem is hard to solve (εI ≈ 0), that there
exists an efficient reduction with εR = 1, and that there exists a forger with
constant (non-negligible) success probability (e.g., εF = 1

4) with r = 1, then we
have εI ≥ 1− 2k0/qΣ. If k0 is smaller than log2 qΣ , then εI is not negligible, and
this contradicts the assumption of εI ≈ 0. Hence, we must choose k0 more than
log2 qΣ . That is, Theorem 1 claims that the lower bound for the length of random
salt is also k0 ≈ log2 qΣ ; which is the same as the case of an ordinary probabilistic
signature scheme (PS) [4]. Namely, our aim is to construct a provably secure
probabilistic multisignature scheme in which the optimal length of the random
salt is k0 ≈ log2 qΣ (= 30 bits).

We give the intuition of proof strategy of Theorem 1.
Coron [4] proved the optimal security of PSS by reducing a forger of PSS

to one of (deterministic signature scheme) PSS0, and the reduction of PSS0

140 Y. Komano et al.

to that of PSS. In order to prove the optimal security of MSS, we give the
reduction between MSS and PS. Figure 2 explains the situation: At first, we
give the reduction from a forger F of MSS (e.g., PFDH-MSS) to a forger F ′

of PS (resp. PFDH), and then, construct a reduction R′ of PS from the forger
F and a reduction R. The relation (upper-bound) between F and R, claimed
in Theorem 1, comes from the optimal security of PS (PFDH and PSS in [4]).
The proof is described in Appendix A.

5 Security Results and Optimal Length of Random Salt

This section first proves that the probabilistic multisignature schemes described
in section 3 have tight security. The following subsection gives other security
results for the schemes, which derive the upper bound for security parameter
(the length of random salt), and find the optimal length of random salt in each
scheme. For simplicity, we only discuss the cases of PFDH-MSS and S-PSS-MSS
below. Almost the same discussion and results (tight security and optimal length
of a random salt) hold for PSS-MSS.

5.1 Security Results

In this subsection, we give the security results of PFDH-MSS and S-PSS-MSS
with multiplicative trapdoor permutation f including the RSA function. The
following results show that these schemes have tight security. Note that even if
we remove the assumption of multiplicative, the security of these schemes can
be ensured.

Theorem 2 (Security of PFDH-MSS). Let F be a forger who breaks PFDH-
MSS containing L signers in (τ, qΣ , qH , ε) in accordance with EUF-ACMA&AIA,
in the case of being allowed to make at most L − 1 corrupt and masquerading
queries in total. Then we can break the one-wayness of f within time bound τ ′

and with success probability Succow(τ ′):{
Succow(τ ′) ≥ 1

L (ε− qΣ(qH+qΣ)
2k0 − qΣ+1

2k−1 − qH+qΣ

2N)
τ ′ ≤ τ + ((qH + qΣ) + L)Tf

where Tf denotes the time complexity of f and N is a constant8.

Theorem 3 (Security of S-PSS-MSS). Let F be a forger who breaks S-PSS-
MSS containing L signers in (τ, qΣ , qG, qH , ε) in accordance with
EUF-ACMA&AIA, in the case of being allowed to make at most L − 1 corrupt

8 In simulation in the security proof, we should find zij (signature) such that the MSB

of z
eij

ij
mod nij equals 0. If we choose zij at random and the MSB is 1 for N times,

we abort the proof.

On the Security of Probabilistic Multisignature Schemes 141

and masquerading queries in total. Then we can break the one-wayness of f
within time bound τ ′ and with success probability Succow(τ ′):{

Succow(τ ′) ≥ 1
L(ε− qHqΣ

2k0 − qH((qH+qΣ)2+qG)+qΣ(qG+qH+qΣ)+1
2k1 − qH+qΣ

2N)
τ ′ ≤ τ + ((qH + qΣ)N + L)Tf

where Tf denotes the time complexity of f and N is a constant.

We will give the proofs of these theorems in the full version of this paper.
The strategy of these theorems is almost the same as the proof of Theorem 5
given in Appendix B.

5.2 Estimation of Optimal Length of Random Salt

Coron introduces the notion of “reduction” for two purposes: to prove that FDH
does not have tight security and to estimate the optimal length of a random salt
in PSS. As we described in section 4, with respect to probabilistic multisignature
schemes, the lower bound for the length of random salt can be estimated, k0 ≈
log2 qΣ . The optimal proof discussed in section 4 does not ensure the security of
the schemes at all (namely, the optimal proof only means that if the scheme is
secure and there are reduction algorithms to prove the security, we can evaluate
the upper bound for reduction efficiency); however, we have already shown that
the security of the schemes (PFDH-MSS and S-PSS-MSS) can be proven. This
now raises the question of how long a random salt is sufficient (the upper bound
for the length of a random salt) in order to ensure the security. Following the
technique of Coron [4], we obtain another security result for PFDH-MSS and
S-PSS-MSS, respectively.

Theorem 4 (Another security result for PFDH-MSS). Let F be a forger
who breaks PFDH-MSS containing L signers in (τ, qΣ , qH , ε) in accordance with
EUF-ACMA &AIA, in the case of being allowed to make at most L−1 corrupt and
masquerading queries in total. Then we can break the one-wayness of f within
time bound τ ′ and with success probability Succow(τ ′):⎧⎨⎩Succow(τ ′) ≥ 1

L

(
1 + 6qΣ

2k0

)−1(
ε− qΣ+1

2k−1 − qH+qΣ

2N

)
τ ′ ≤ τ + ((qH + qΣ)N + L)Tf

where Tf denotes the time complexity of f and N is a constant.

Theorem 5 (Another security result for S-PSS-MSS). Let F be a forger
who breaks S-PSS-MSS containing L signers in (τ, qΣ , qG, qH , ε) in accordance
with EUF-ACMA &AIA, in the case of being allowed to make at most L − 1
corrupt and masquerading queries in total. Then we can break the one-wayness
of f within time bound τ ′ and with success probability Succow(τ ′):⎧⎨⎩ Succow(τ ′) ≥ 1

L

(
1 + 6qΣ

2k0

)−1(
ε − qH ((qH+qΣ)2+qG)+qΣ(qG+qH+qΣ+1)+1

2k1
− qH+qΣ

2N

)
τ ′ ≤ τ + ((qH + qΣ)N + L)Tf

where Tf denotes the time complexity of f and N is a constant.

142 Y. Komano et al.

The proof follows the technique of that of PSS (Theorem 4 in [4]). When a
new message is queried to a hash or signing oracle, we construct a list of (at most
qΣ) random salts with probability β. We do not embed η (see the Appendix B) for
the message and salt if the salt belongs to the list, and embed η otherwise. Note
that we must estimate the optimal β carefully because, if k0 is small (≈ log2 qΣ)
and β is large (≈ 1), there are few random salts for which we embed η; which
decrease the success probability of inverting a trapdoor permutation. We give
the proof of Theorem 5 in Appendix B; Theorem 4 is proven from almost the
same (but simpler) discussion as the proof of Theorem 5.

Now, let us discuss the optimal length of a random salt in these schemes in
detail. With regard to PFDH-MSS, Theorem 4 claims that even if we enlarge
the length of a random salt k0 more than log2 qΣ(≈ 30), the security does not
improve, from the same discussion as in PSS [4]. On the other hand, as we noted,
Theorem 1 confirms that at least k0 ≈ log2 qΣ bits are required in order to ensure
the security, even if we construct the optimal (the best) reduction algorithm for
the security proof. From these two results, we conclude that k0 ≈ log2 qΣ is opti-
mal in PFDH-MSS. The same consideration can be made for the case of S-PSS-
MSS, i.e., in S-PSS-MSS, we also know that k0 ≈ log2 qΣ is optimal. This is not
only a theoretical impact. PFDH-MSS and S-PSS-MSS realize the optimal (and
minimum) length of a random salt and are promising schemes in practical use.

6 Discussion

This section compares the multisignature schemes described in section 3 with the
original sequential aggregate signature scheme proposed by Lysyanskaya et al.
[8]. The original sequential aggregate signature scheme is constructed from FDH;
the signing and verification algorithms are handled by removing the random salt
(rij and rij) from the protocol of PFDH-MSS (Protocol 1). We call the original
FDH based sequential aggregate signature scheme FDH-MSS.

With regard to security tightness, the security of FDH-MSS is not tight
enough; on the other hand, as we discussed, the probabilistic multisignature
schemes have tight security. It is a well-known fact that, in ordinary signature
schemes (signed by one signer), we can construct signature schemes which realize
tight security. Our result indicates that this principle holds for multiple user
setting, multisignature schemes.

We now proceed to discuss the length of signature in probabilistic multisig-
nature schemes. Let us consider the signature signed by L′ signers. The length
of signature signed with PFDH-MSS and PSS-MSS (utilized in the RSA permu-
tation) is clearly k + (L′ − 1)k0 and k + (L′ − 1)(k0 + k1 + 1) bits, respectively.
In respect of S-PSS-MSS, in order to ensure the security and realize the simple
construction9, we set σi0 by k − k0+k1 − 1 bits “0”. Through careful consider-
9 In our proof, it is essential σi0 = 0k−k0+k1−1. If another proof technique is invented,

the length of σi0 may be decreased; however, if the length of σi0 is less than k−k0−1
bits, the signing algorithm of the first ordered signer should be described apart from
that of other signers.

On the Security of Probabilistic Multisignature Schemes 143

ation, we can estimate the signature length by k + (L′ − 1)(k0 + 1) + k1 bits in
S-PSS-MSS.

The length of signature signed with S-PSS-MSS is greater than that with
PFDH-MSS by k1 bits; however, note that it does not depend on the number
of signers (constant). Moreover, by embedding a part of the message into the
recovery part of the first signer, σR,i0 , we can reduce the bandwidth (the length
of message and signature) compared to PFDH-MSS if k1 < k − k1 − k0 − 1.
For example, if we utilize the RSA function and SHA-256; k = 1024, k1 = 256,
k0 = 30 (assume qΣ = 230) are recommended, and the above inequality holds.

The increases of signature size in PFDH-MSS and S-PSS-MSS are (k0 + 1)
bits, respectively. From the fact that we should utilize a random salt in order
to realize tight security and that the random salt should be attached with or
recovered from a signature since it is required in the verification step, it is in-
evitable that the length of signature is enlarged by more than or equal to k0

bits per signer. To sum up, the increases of signature size in PFDH-MSS and
S-PSS-MSS are optimal.

7 Conclusion

This paper first proved that PFDH-MSS, PSS-MSS, and S-PSS-MSS have tight
security. Second, we gave the optimal proof (general result) for probabilistic
multisignature schemes, which derives the lower bound for length of random
salt. Third, we proved the schemes’ security in the other direction, which gives
the upper bound for the length of random salt, and confirmed that these bounds
are (almost) identical and give the optimal length of a random salt; the optimal
length of a random salt utilized in probabilistic multisignature schemes is the
same as that in ordinary signature schemes. Two of the schemes, PFDH-MSS and
S-PSS-MSS, are promising schemes in terms of security tightness and optimal
signature length.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols. In Proc. of the First ACM Conference on Computer and
Communications Security, pages 62–73. ACM Press, 1993.

2. M. Bellare and P. Rogaway. The exact security of digital signatures –how to sign
with RSA and Rabin. In U. Maurer, editor, Advances in Cryptology — EURO-
CRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages 399–416,
Berlin, Heidelberg, New York, 1996. Springer-Verlag.

3. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiability en-
crypted signature form bilinear maps. In E. Biham, editor, Advances in Cryptology
— EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, Berlin,
Heidelberg, New York, 2003. Springer-Verlag.

4. J. S. Coron. Optimal security proofs for PSS and other signature schemes. In
L. Knudsen, editor, Advances in Cryptology — EUROCRYPT 2002, volume 2332
of Lecture Notes in Computer Science, pages 272–287, Berlin, Heidelberg, New
York, 2002. Springer-Verlag.

144 Y. Komano et al.

5. K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital mul-
tisignatures. NEC Research & Development, (71), pages 1–8, 1983.

6. K. Kawauchi and M. Tada. On the exact security of multisignature schemes based
on RSA. In R. S. Naini and J. Seberry, editors, The Eighth Australasian Conference
on Information Security and Privacy (ACISP 2003), volume 2727 of Lecture Notes
in Computer Science, pages 336–349, Berlin, Heidelberg, New York, 2003. Springer-
Verlag.

7. K. Kawauchi and M. Tada. On the security and the efficiency of multi-signature
schemes based on a trapdoor one-way permutation. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences, E88–A(5), 2005.

8. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate sig-
natures from trapdoor permutations. In C. Cachin and J. Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 74–90, Berlin, Heidelberg, New York, 2004. Springer-
Verlag.

9. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures. In
CCS’01, Eighth ACM Conference on Computer and Communications Security,
2001.

10. S. Mitomi and A. Miyaji. A general model of multisignature schemes with message
flexibility, order flexibility, and order verifiability. IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences, E84–A(10):2488–
2499, 2001.

11. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

A Proof of Theorem 1

We first review the following lemma, which ensures the optimal length of a
random salt in (general) probabilistic signature schemes, PS.

Lemma 1 (Optimality for the random salt in PS, [4]). Let F ′ be a forger
who breaks PS in (τ ′F , q

′
Σ, q

′
G, q

′
H , ε

′
F) in accordance with EUF-ACMA, and let R′

be a reduction who reduces inverting a multiplicative trapdoor permutation f to
break PSS in (t′R, q

′
G, q

′
H , q

′
Σ , ε

′
F , ε

′
R). R′ can run or rewind F ′ at most r times.

From R′, we can construct an inverter I ′ who breaks the trapdoor permutation
within time bound t′I with probability more than ε′I . Here,

ε′I ≥ ε′R − rε′F
2k0+2

q′Σ
, t′I ≤ (r + 1)t′R.

Let F ′ be a forger against PS and R′ a reduction from inverting the trapdoor
permutation to breaking PS. The following lemmas give relation between F and
F ′, and between R and R′, respectively. Lemma 2 gives the description of a
reduction from F to F ′ and the relation of their success probability, etc., and
Lemma 3 gives the reduction from R′ to R and the relation of their success
probability, etc. (Figure 2). Lemma 1 gives the relation (upper bound) between
ε′F and ε′R; and from which we derive an upper bound of εR with respect to εF .

On the Security of Probabilistic Multisignature Schemes 145

Lemma 2 (Relation between F and F ′). Let F ′ be a forger who breaks PS
in accordance with EUF-ACMA in (t′F , q

′
Σ , q

′
G, q

′
H , ε

′
F). Then, from F ′, we can

construct a forger who breaks MSS containing L signers in accordance with
EUF-ACMA&AIA in (tF , qΣ , qG, qH , εF), where

tF = t′F , qG = q′G, qH = q′H , qΣ = q′Σ , εF = ε′F .

(Proof of Lemma 2) We construct F who breaks MSS, utilizing F ′ who
breaks PS as an oracle. F , given a set of public keys (pk1, · · · , pkL), outputs a
forgery after making signing queries10 to signing oracles. F first chooses T R←
[1, L] and inputs pkT to F ′ as a key of a signer in PS.

After receiving the key, F ′ makes hash and signing queries, and finally, out-
puts a forgery corresponding to the key in PS. When F receives the query made
by F ′, F transfers the queries to the corresponding oracle, receives an answer
and returns the answer to F ′. Finally, F ′ outputs a forgery (of PS), and then,
F outputs it as a forgery11 in MSS. Since the first ordered signer of MSS
behaves in the same manner as in PS (see Definition 1, etc.,), F wins the game
and Lemma 2 holds.

Lemma 3 (Relation between R′ and R). Let R be a reduction who utilizes
F to reduce inverting the trapdoor permutation to break MSS in (tR, qΣ , qG,
qH , εF , εR). Then, we can construct, by utilizing R as an oracle, a reduction
R′ who reduces inverting the trapdoor permutation to break PS in (t′R, q

′
Σ , q

′
G,

q′H , ε
′
F , ε

′
R), where

tR = t′R, qG = q′G, qH = q′H , qΣ = q′Σ , εF = ε′F , εR = ε′R.

(Proof of Lemma 3) We construct R′ which utilizes F ′ (a forger against PS)
to reduce inverting the trapdoor permutation to break PS. From Lemma 2, we
can construct a forger F who breaks MSS from a forger F ′ for PS. Then, from
F using R, we can invert the one-way permutation. Therefore, from R, we can
construct a reduction R′ and Lemma 3 holds.

By substituting the results of Lemmas 2 and 3 into Lemma 1, we have the
relation described in Theorem 1.

B Proof of Theorem 5

In this section, we prove Theorem 5, following the approach for PSS of Coron
(general case in proofs of Theorems 2 and 4 in [4]). The proof of Theorem
4 is derived from the slight modification of (indeed, the proof is easier than)

10 In addition, F also outputs corrupt and masquerading queries, but, for simplicity,
we only describe the action for the signing query.

11 F can query the forgery to other signing oracle (Σij , ij �= T) to acquire a multisig-
nature signed by multiple signers. Note that the forgery, output by F ′, has not been
queried to ΣT by F ′ nor F .

146 Y. Komano et al.

the following proof. Hereafter, we denote the RSA function (computation xeij

mod nij for x) by fij (x), and its inverse (resp. ydij mod nij for y) by f−1
ij

(y).
We give a security proof by conducting a contradiction; namely, if there

is a forger F against S-PSS-MSS, then we can construct an inverter I who can
invert a trapdoor one-way permutation (e.g., solving the RSA problem) by using
F as an oracle with non-negligible success probability. The following subsection
assumes that there exists a forger F who breaks S-PSS-MSS with (ε, qΣ , qH , t),
and constructs the inverter I.

B.1 Construction of Inverter I
We give the construction of inverter I that breaks the one-wayness of multiplica-
tive permutation f on η, by using forger F that (τ, qΣ , qG, qH , ε)-breaks MSS
containing L signers in accordance with EUF-ACMA&AIA, as follows: we first
guess the target signer12 PT at random, and then, we input public key pkT = f
to F , answers the queries that F asks to the random oracles, and to the signing
oracle. Finally, we receive forgery ID∗

iL′ ,M
∗
iL′ , σ

∗
iL′ (or stop F after its running

time τ is over).
In simulating random oracles G and H , we construct input/output lists,

G-List and H-List, respectively. G-List holds (wij , G(wij)), the pairing of query wij

and answer G(wij). H-List holds (b,Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 , rij , zij ,
w′

ij
), the tuple of bit13 b ∈ {−1, 0, 1}, first part14 of the previous signer’s signa-

ture σL,ij−1 , query Mij , IDij , σM,ij−1 , σR,ij−1 , and rij , guarantee zij for signing
queries, and answer w′

ij
.

Moreover, we construct list Li of at most qΣ random salts in {0, 1}k0. We
first fix probability β ∈ [0, 1] and set i = 0. When a message Mij appears for
the first time in a H or signing query with respect to IDT , we increment i and
set M(i) = Mij . Then, with probability β, we generate and add a random salt
in {0, 1}k0 into list Li. If the other case (with probability 1−β) or if Li contains
qΣ elements, we stop adding one to the list. Roughly speaking, we utilize the
salt in order to simulate the answers to signing queries (without embedding η).

In this strategy, in order for F to output valid signature, IDiL′ , M∗
iL′ , and

σ∗
L′ , F queries H on M∗

ij
, ID∗

ij
, σ∗

M,ij−1
, σ∗

R,ij−1
, and r∗ij

, where ij = T ; in this

case, if r∗ij
is not in list Li, we can find15 f−1(η) =

[σ∗
ij

]k

z∗
ij

.

12 From the definition of a forgery (Definition 2), there is at least one signer (the target
signer), who is not corrupted by forger F (nor whom F masquerades as) and is not
requested to sign on the forged message, and whose signature is in the forgery.

13 b = 1 means that η is embedded for the query m,σM,ij−1 , σR,ij−1 , rij , and b = 0
means that η is not implanted for the query. Moreover, b = −1 means that we answer
a random string in the case where m, σM,ij−1 , σR,ij−1 should be invalid signature for
all σL,ij−1 .

14 This σL,ij−1 is not included in the hash query; we recover it by locating the list.
15 Here, [a]b denotes the b most significant bits of a, while [a]b denotes the b least

significant bits of a.

On the Security of Probabilistic Multisignature Schemes 147

Hereafter, we assume that F does not (hash-)query about the same message.
Furthermore, we assume that F attacks one signer16 in G.

Initialization and answering the corrupt and masquerading queries
I runs the key generation algorithm for Pij (j = 0, · · ·L) except for PT . If F
outputs the corrupt or masquerading query to PT , we abort (fail to simulate).
For the corrupt query to Pij (ij �= T), I answers pkij

to F . For the masquerading
query to Pij (ij �= T), I receives pkij

from F and registers it.

Answering the random oracle queries to G
For query wij to G, we first locate (wij , G(wij)) ∈ G-List; if it exists, we answer
G(wij). Otherwise, we choose random string from {0, 1}k−k0−1, considers it as
G(wij), answer to F , and add (wij , G(wij)) to G-List.

Answering the random oracle queries to H
For query Mij , IDij , σM,ij−1 , σR,ij−1 , and rij to H , we first locate (∗,Mij , IDij ,
∗, σM,ij−1 , σR,ij−1 , rij , ∗, w′) ∈ H-List; if it exists, we answer w′. Otherwise, we
simulate an answer in the following way (five cases).
(Case 1): ij = T, j = 1: At first, we check if σM,ij−1 ||σR,ij−1 = 0k−k1−1; if

not, then we choose w′
ij

R← {0, 1}k1, set (−1,Mij , IDij , φ, σM,ij−1 , σR,ij−1 , rij , φ,

w′
ij

) → H-List, and return w′
ij

.
Otherwise, we set b′ = 0 if rij ∈ Li or b′ = 1 otherwise. Then, we repeatedly

choose zij

R← {0, 1}k until we have fij (zij)η
b′ = 0||sij ||wij , where |sij | = k−k1−1

and |wij | = k1. If we cannot find such zij through N times trial, we abort. Oth-
erwise, we set σL,ij−1 = 0k1 . If (wij , ∗) ∈ G-List, then we abort. Otherwise,
we simulate G(wij) = sij ⊕ (σR,ij−1 ||rij) by preserving (wij , G(wij)) in G-List,
and simulate w′

ij
= H(Mij , IDij , σM,ij−1 , σR,ij−1 , rij) = wij ⊕ 0k1 = wij by

adding (b′,Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 , rij , zij , w
′
ij

) to H-List. Finally, we
answer w′

ij
.

(Case 2): ij = T, j ≥ 2: In this case, we first count the number of elements
(b,Mij−1 , IDij−1 , ∗, σM,ij−2 , ∗, ∗, zij−1 , ∗) ∈ H-List such that
[σM,ij−2 ||zij−1]|(σM,ij−1 ||

If there is one element, satisfying both the above condition and b = 0,
i.e., if (0,Mij−1 , IDij−1 , σL,ij−2 , σM,ij−2 , σR,ij−2 , rij−1 , zij−1 , wij−1) ∈ H-List,
we set b′ = 0 if rij ∈ Li or b′ = 1 otherwise. Then, we repeatedly choose

zij

R← {0, 1}k, until we have fij (zij)ηb′ = 0||sij ||wij , where |sij | = k− l1 − 1 and
|wij | = k1. If we cannot find such zij through N times trial, we abort. Other-
wise, we set σL,ij−1 = [σM,ij−2 ||zij−1]k1 . If (wij , ∗) ∈ G-List, then we abort. Oth-
erwise, we simulate G(wij) = sij ⊕ (σR,ij−1 ||rij) by preserving (wij , G(wij)) in

16 Generally, there may be more than one target signer, e.g., PT1 , · · · , PTl . We choose

t
R← [1, l] and regard Pt as the target; this procedure does not affect the behavior

of F . Therefore, we can estimate the probability that I can guess the target signer
correctly by exactly 1

L
.

148 Y. Komano et al.

G-List, and simulate w′
ij

= H(Mij , IDij , σM,ij−1 , σR,ij−1 , rij) = wij ⊕ σL,ij−1 by
adding (b′,Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 , rij , zij , w

′
ij

) to H-List. Finally, we
answer w′

ij
.

If there is more than one element, satisfying the above condition, such that
b = 0, then we abort. The following gives the reason why we have to abort in
this case; assume there are two elements, el1 = (Mij−1 , IDij−1 , σM,ij−2 , σR,ij−2 ,
zij−1) and el2 = (M̃ij−1 , ĨDij−1 , σ̃M,ij−2 , σ̃R,ij−2 , z̃ij−1), and assume that we
embed η for el1 to simulate the answer w′

ij
. In this case, if F outputs a forgery

corresponding to el1, then we can compute f−1(η) as we will see in this proof;
however, if F outputs a forgery corresponding to el2 using w′

ij
, then we cannot

invert f even if the forgery is valid.
Otherwise, i.e., if there is no element or if there is one more element(s), sat-

isfying the above condition with b = −1, then we choose w′
ij

R← {0, 1}k1, set
(−1,Mij , IDij , φ, σM,ij−1 , σR,ij−1 , rij , φ, w

′
ij

) → H-List, and return w′
ij

.
(Case 3): ij �= T, j = 1: Almost the same as (Case 1), without embedding η.
(Case 4): ij �= T, j ≤ 2, ij−1 �= T : Almost the same as (Case 2), without
embedding η.
(Case 5): ij �= T, j ≤ 2, ij−1 = T : In this case, we first count the number of ele-
ments (b,Mij , IDij , ∗, σM,ij−2 , ∗, ∗, zij−1 , ∗) ∈ H-List which satisfies the following
condition; [σM,ij−2 ||zij−1]|(σM,ij−1 ||σR,ij−1)| = σM,ij−1 ||σR,ij−1 .

If there is one element, satisfying both the above condition and b = 0, i.e.,
if (0,Mij−1 , IDij−1 , σL,ij−2 , σM,ij−2 , σR,ij−2 , rij−1 , zij−1 , w

′
ij−1

) ∈ H-List, then we

repeatedly choose zij

R← {0, 1}k, until we have fij (zij) = 0||sij ||wij , where |sij | =
k − k1 − 1 and |wij | = k1. If we cannot find such zij through N times trial, we
abort. Otherwise, we set σL,ij−1 = [σM,ij−2 ||zij−1]k1 . If (wij , ∗) ∈ G-List, then
we abort. Otherwise, we simulate G(wij) = sij ⊕ (σR,ij−1 ||rij) by preserving
(wij , G(wij)) in G-List, and simulate w′

ij
= H(Mij , IDij , σM,ij−1 , σR,ij−1 , rij) =

wij ⊕ σL,ij−1 by adding (0,Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 , rij , zij , w
′
ij

) to
H-List. Finally, we answer w′

ij
.

If there is more than one element, satisfying the above condition, such that
b = 0, then we abort.

If there is one or more elements, satisfying both the above condition and b =
1, i.e., if (1,Mij−1 , IDij−1 , σL,ij−2 , σM,ij−2 , σR,ij−2 , rij−1 , zij−1 , w

′
ij−1

) ∈ H-List,
then we check if f([σM,ij−1 ||σR,ij−1]k) = 0||sij−1 ||wij−1 holds; if yes, then I can
compute f−1(η) = [σM,ij−1 ||σR,ij−1]k/zij−1 . If, for all tuple, the equality does

not hold, then we choose w′
ij

R← {0, 1}k1, set (−1,Mij , IDij , φ, σM,ij−1 , σR,ij−1 ,

rij , φ, w
′
ij

) → H-List, and return w′
ij

.
Otherwise, i.e., if there is no element or if there is one more element(s),

satisfying the above condition, with b = −1, then we choose w′
ij

R← {0, 1}k1, set
(−1,Mij , IDij , φ, σM,ij−1 , σR,ij−1 , rij , φ, w

′
ij

) → H-List, and return w′
ij

.

On the Security of Probabilistic Multisignature Schemes 149

Answering the signing queries to Σij (ij = T)
For query Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 to Σij , we first check if there is at
least one element in list Li; if not, we abort. Otherwise, we choose rij ← Li and
Li = Li \ {rij}, and then, locate (0,Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 , rij , zij ,
w′

ij
) ∈ H-List; if it exists, we answer σM,ij−1 ||zij .
Otherwise, we check if there exist (−1,Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 , rij ,

zij , w
′
ij

) in H-List; if yes, we answer σij−1 is invalid. Otherwise, we repeat-

edly choose zij

R← {0, 1}k, until we have fij (zij) = 0||sij ||wij , where |sij | =
k − k1 − 1 and |wij | = k1. If we cannot find such zij through N times trial,
we abort. Then, we check if (wij , ∗) ∈ G-List; if yes, we abort. Otherwise, we
simulate G(wij) = sij ⊕ (σR,ij−1 ||rij) by preserving (wij , G(wij)) in G-List, and
simulate w′

ij
= H(Mij , IDij , σM,ij−1 , σR,ij−1 , rij) = wij ⊕ σL,ij−1 by adding

(0,Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 , rij , zij , w
′
ij

) to H-List. Finally, we answer
σM,ij−1 ||zij .

Answering the signing queries to Σij (ij �= T)
For query Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 to Σij , we first choose rij

R← {0, 1}k0, and then, locate (0,Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 , rij , zij , w
′
ij

) ∈
H-List; if it exists, we answer σM,ij−1 ||zij .

Otherwise, we check if there exist (−1,Mij , IDij , σL,ij−1 , σM,ij−1 , σR,ij−1 , rij ,
zij , w

′
ij

) in H-List; if yes, we answer σij−1 is invalid. Otherwise, we repeatedly

choose zij

R← {0, 1}k, until we have fij (zij) = 0||sij ||wij , where |sij | = k−k1−1
and |wij | = k1. If we cannot find such zij through N times trial, we abort.
Otherwise, we check if (wij , ∗) ∈ G-List; if yes, we abort. Otherwise, we simulate
G(wij) = sij ⊕ (σR,ij−1 ||rij) by preserving (wij , G(wij)) in G-List, and simulate
w′

ij
= H(Mij , IDij , σM,ij−1 , σR,ij−1 , rij) = wij ⊕σL,ij−1 by adding (0,Mij , IDij ,

σL,ij−1 , σM,ij−1 , σR,ij−1 , rij , zij , w
′
ij

) to H-List. Finally, we answer σM,ij−1 ||zij .

Analysis (sketch) Let M∗
iL′ , σ

∗
iL′ be a forgery output by F ; ID∗

ij
, s∗ij

s, w′∗
ij

s,
w∗

ij
s, and r∗ij

s are the corresponding elements. Note that, for ij = T , if (M∗
ij
,

ID∗
ij
, σM,ij−1 , σR,ij−1 , r

∗
ij

) is queried to H and η is embedded for the query (i.e.,
rij /∈ Li), then I can invert f for η. Let δ1 and δ2 be the probability of the failure
in simulating an answer to H and signing queries, respectively. From the above
notations, we have the following in the same manner as PSS (proof of Theorem
4 in [4]):

Succow(τ ′) ≥ 1
L

(ε − δ1 − δ2 − 1
2k1

)βqΣ

{ qΣ∑
j=0

Pr[�Li = j](1 − 1
2k0

)j

}
(1)

Here, 1
L indicates the probability that I succeeds in guessing target signer PT ,

and 1
2k1 corresponds to the event in which F succeeds in outputting a forgery

without querying the above hash query.
δ1 is evaluated by qH((qH+qΣ)2+qG

2k1 + 1
2N). This is because the probability of

a failure in simulation of H (Case 1 to Case 5) is bounded by (qH+qΣ)2+qG

2k1 + 1
2N ;

150 Y. Komano et al.

for example in Case 2, the probability of (wij , ∗) being in G-List with universal
distributed wij is estimated by qG+qH+qΣ

2k1 , and the probability that there is more
than one element, or that there is more than one valid multisignature which
has the same lower bits is bounded by (qH+qΣ)(qH+qΣ−1)

2k1 from the discussion of
birthday paradox. With regard to finding zij , with probability 1

2N , we cannot
find zij such that the MSB of fij (zij) or fij (zij)ηb′ equals 0. Therefore, we can
estimate Pr[H′Bad|Guess] by the sum of these probabilities times the number of
H queries.

On the other hand, in the simulation of Σ, δ2 is given as the sum of qΣ × 1
2k1

which represents the probability of the event that (−1, ∗, ∗, ∗, ∗, ∗, rij , ∗, ∗) ∈
H-List happens for random string rij and we reject σij−1 whereas it is a valid
signature (by accident), qΣ(qG+qH+qΣ

2k1) which represents the probability of the
event that random string wij is contained in G-List, and 1

2N which represents the
failure in finding appropriate zij .

The remaining term, βqΣ{
∑qΣ

j=0 Pr[�Li = j](1− 1
2k0)j} is maximized by choos-

ing an optimal β in the same manner as for PSS (inequality (7) of [4]); we have

βqΣ

{ qΣ∑
j=0

Pr[�Li = j](1 − 1
2k0

)j

}
≥
(

1 +
6qΣ

2k0

)−1

. (2)

Therefore, Theorem 5 holds.

Efficient Secure Group Signatures with Dynamic
Joins and Keeping Anonymity Against

Group Managers

Aggelos Kiayias1,� and Moti Yung2

1 Computer Science and Engineering,
University of Connecticut Storrs, CT, USA

aggelos@cse.uconn.edu
2 RSA Laboratories, Bedford, MA, and Computer Science,

Columbia University New York, NY, USA
moti@cs.columbia.edu

Abstract. The demonstration of an efficient construction proven secure
in a formal model that captures all intuitive security properties of a cer-
tain primitive is an ultimate goal in cryptographic design. This work
offers the above for the case of a group signature scheme (with the tradi-
tional notion of dynamically joining users and untrusted join manager).
To this end we adapt a formal model for group signatures capturing the
state-of-the-art requirements in the area and we construct an efficient
scheme and prove its security. Our construction is based on the scheme
of Ateniese et al., which is modified appropriately so that it becomes
provably secure. This task required designing novel cryptographic con-
structs as well as investigating some basic number-theoretic techniques
for arguing security over the group of quadratic residues modulo a com-
posite when its factorization is known. Along the way, we discover that
in the basic construction, anonymity does not depend on factoring-based
assumptions, which, in turn, allows the natural separation of user join
management and anonymity revocation authorities. Anonymity can, in
turn, be shown even against an adversary controlling the join manager.

1 Introduction

The notion of group signature is a useful anonymous non-repudiable credential
primitive that was introduced by Chaum and Van Heyst [13]. This primitive
involves a group of users, each holding a membership certificate that allows a
user to issue a publicly verifiable signature which hides the identity of the signer
within the group. The public-verification procedure employs only the public-key
of the group. Furthermore, in a case of any dispute or abuse, it is possible for
the group manager (GM) to “open” an individual signature and reveal the iden-
tity of its originator. Constructing an efficient and scalable group signature has
been a research target for many years since its introduction with quite a slow

� Research partly supported by NSF Career Award CNS-0447808.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 151–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

152 A. Kiayias and M. Yung

progress, see e.g., [14,12,10,11,8,26,2,3,9,24,6]. The first construction in the lit-
erature that appeared to provide sufficient security as a general efficient scheme
where user joins are performed by a manager that is not trusted to know their
keys was the scalable scheme of Ateniese, Camenisch, Joye and Tsudik [3]. It
provided constant signature size and resistance to attacks by coalitions of users.
This scheme was based on a novel use of the DDH assumption combined with
the Strong-RSA assumption over groups of intractable order. Recently, Bellare,
Micciancio and Warinschi [4], noticing that [3] only prove a collection of indi-
vidual intuitive security properties, advocated the need for a formal model for
arguing the security of group signature. This basic observation is in line with
the development of solid security notions in modern cryptography. They also of-
fered a model of a relaxed group signature primitive and a generic construction
in that model. Generic constructions are inefficient and many times are simpler
than efficient constructions (that are based on specific number theoretic prob-
lems). This is due to the fact that generic constructions can employ (as a black
box) the available heavy and powerful machinery of general zero-knowledge pro-
tocols and general secure multi-party computations. Thus, generic constructions
typically serve only as plausibility results for the existence of a cryptographic
primitive [20]. The relaxation in the model of [4] amounts to replacing dynamic
adversarial join protocols where users get individual keys (as is the case in [3])
with a trusted party that generates and distributes keys securely.

The above state of affairs [3,4] indicates that there exists a gap in the long
progression of research efforts regarding the group signature primitive. This gap
is typical in cryptography and is formed by a difference between prohibitively ex-
pensive constructions secure in a formal sense and efficient more ad-hoc construc-
tions. In many cases, as indicated above, it is easier to come up with provably
secure generic inefficient constructions or to design efficient ad-hoc constructions.
It is often much harder to construct an efficient implementation that is proven
secure within a formal model (that convincingly captures all desired intuitive
security properties). To summarize the above, it is apparent that the following
question remained open:

Design an efficient group signature with dynamic joins (and no trusted
parties) which is provably secure within a formal model.

One of our contributions is solving the above open question by, both, adapting
a new model for group signatures (based on the model of traceable signatures
[23]), which follows the paradigm of [22] for the security of signature schemes,
as well as providing an efficient provably secure construction (in the sense of the
scheme of [3]).

This contribution reveals subtleties regarding what intractability assump-
tions are actually necessary for achieving the security properties. For example,
the anonymity property in our treatment is totally disassociated from any fac-
toring related assumption. (In order to reveal such issues a complete proof is
needed following a concrete model, and this has not been done in the realm of
(efficient) group signatures).

Efficient Secure Group Signatures 153

Our investigation also reveals delicate issues regarding the proper formal
modeling of the group signature primitive with regards to the work of [4]. For
example, the need of formalizing security against attacks by any internal or
external entity that is active in the scheme (i.e., no trusted parties). Lack of
such treatment, while proper for the relaxed notion of group signature of [4],
is insufficient for proving the security of efficient state-of-the-art schemes that
follow the line of work of [3].

Our Contributions. Below, we outline what this work achieves in more details.

1. Modeling. To model schemes like [3] with dynamic (yet sequential) joins and
no trusted parties we adapt the model of [23] which is the first formal model in
the area of group signing without added trusted parties. In particular, our model
has the three types of attacks that involve the GM and the users as in [23]. We
extend the model to allow adversarial opening of signatures (see the next item).
All the attacks are modeled as games between the adversaries and a party called
the interface. The interface represents the system in a real environment and
simulates the behavior of the system (a probabilistic polynomial time simulator)
in the security proof. The attacker gets oracle query capabilities to probe the
state of the system and is also challenged with an attack task. We note that this
follows the basic approach of [22] for modeling security of digital signatures and
while not dealing with universal composability it nevertheless captures many
natural protocol scenarios.

2. Adversarial Opening in Efficient Schemes. As mentioned above, our
formal model extends the security requirements given by the list of security
properties of [3] by allowing the adversary to request that the system opens sig-
natures of its choice. In [3] opening of signatures was implicitly assumed to be an
internal operation of the GM. We note that such stronger adversarial capability
was put forth for the first time in the formal model of [4]. For achieving an effi-
cient scheme with adversarial opening we needed to develop novel cryptographic
constructs. (Note that adversarial opening can also be applied to strengthen the
notion of traceable signatures).

3. Stronger Anonymity Property. In the scheme of [3] anonymity is argued
against an adversary that is not allowed to corrupt the GM. This is a natural
choice since in their scheme the GM holds the trapdoor which provides the
opening capability, namely an ElGamal key. The GM also holds the trapdoor
that is required to enroll users to the group, namely the factorization of an RSA-
modulus. However, pragmatically, there is no need to combine the GM function
that manages group members and allow them to join the group (which in real life
can be run by e.g., a commercial company) with the opening authority function
(which in real life can be run by a government entity). To manage members
the GM who is the “Join Manager” still needs to know the factorization. The
opening authority, on the other hand, must know the ElGamal key. This split
of functions is not a relaxation of group signatures but rather a constraining of
the primitive. In fact, now we should allow the anonymity adversary to corrupt
the GM as well.

154 A. Kiayias and M. Yung

4. Number-Theoretic Results and Cryptographic Primitives. The last
two contributions above required building cryptographic primitives over the set
of quadratic residues modulo n = pq that remain secure when the factorization
(into two strong primes) p, q is known to the adversary.

To this end, we investigate the Decisional Diffie Hellman Assumption over
the quadratic residues modulo n and we prove that it appears to be hard even if
the adversary knows the factorization. In particular, we prove that any adversary
that knows the factorization p, q and solves the DDH problem over the quadratic
residues modulo a composite n = pq, can be turned into a DDH-distinguisher for
quadratic-residues modulo a prime number. This result is of independent interest
since it suggests that the DDH over QR(n) does not depend to the factorization
problem at all.

Also, the present work requires a CCA2 encryption mechanism that operates
over the quadratic residues modulo n so that (i) encryption should not use the
factorization of n, (i.e., the factorization need not be a part of the public-key),
but on the other hand (ii) the factorization is known to the attacker. In this
work we derive such a primitive in the form of an ElGamal variant following the
general approach of twin encryption [28,16,19] which is CCA2 secure under the
DDH assumption in the Random Oracle model (note that our efficient group
signature requires the random oracle anyway since it is derived from the Fiat-
Shamir transform [18,1]).

5. Efficient Construction. We provide an efficient construction of a group
signature that is proven secure in our model. While, we would like to note that
our scheme is strongly influenced by [3] (and originally we tried to rely on it
as much as possible), our scheme, nevertheless, possesses certain subtle and im-
portant differences. These differences enable the proof of security of our scheme
whereas the scheme in [3] cannot be proven secure in our model: There are
many reasons for this, e.g., the scheme of [3] lacks an appropriate CCA2 secure
identity embedding mechanism. Moreover, our efficient construction can support
formally (if so desired), the separation of group management and opening ca-
pability something not apparent in the original scheme of [3]. Finally we note
that a syntactically degenerated version of our construction (that retains its effi-
ciency) can be proven secure in the model of [4] (and is, in fact, a relaxed group
signature scheme of the type they have suggested).

An interesting result with respect to anonymity compared to previous work
is highlighted in our investigation. Anonymity was argued in [3] to be based
on the decisional Diffie-Hellman Assumption over Quadratic Residues modulo
a composite and given that the GM was assumed to be uncorrupted, the key-
issuing trapdoor (the factorization of the modulus) was not meant to be known
to the adversary. As argued above, we prove that anonymity still holds when the
adversary is given the factorization trapdoor. Thus, we disassociate anonymity
from the factoring problem. Taking this result independently it also implies the
separability between the opening authority and the group manager in the scheme
of [3].

Efficient Secure Group Signatures 155

We note that the present work originally appeared as a technical report [25],
where complete proofs can be found.

2 Preliminaries

Notations. We will write PPT for probabilistic polynomial-time. If D1 and
D2 are two probability distributions defined over the same support that is pa-
rameterized by k we will write distA(D1,D2) to denote the distance |Probx←D1

[A(x) = 1] − Probx←D2 [A(x) = 1]|. Note that typically distA will be expressed
as a function of k. If n is an integer, we will denote by [n] the set {1, . . . , n}.
If we write a ≡n b for two integers a, b we mean that n divides a − b or equiv-
alently that a, b are the same element within Zn. A function f : IN → R will
be called negligible if for all c > 0 there exists a kc such that for all k ≥ kc,
f(k) < k−c. In this case we will write f(k) = negl(k). If �, μ ∈ IN we will write
S(2�, 2μ) for the set {2� − 2μ + 1, . . . , 2� + 2μ − 1}. PPT will stand for “prob-
abilistic polynomial time.” Throughout the paper (unless noted otherwise) we
will work over the group of quadratic residues modulo n, denoted by QR(n),
where n = pq and p = 2p′ + 1 and q = 2q′ + 1 and p, q, p′, q′ prime numbers. All
operations are to be interpreted as modulo n (unless noted otherwise). In general
we will use the letter ν to denote the security parameter (i.e., this value will be
polynomially related to the sizes of all quantities involved). Next we define the
Cryptographic Intractability Assumptions that will be relevant in proving the
security properties of our constructions.

The first assumption is the Strong-RSA assumption. It is similar in nature
to the assumption of the difficulty of finding e-th roots of arbitrary elements in
Z∗

n with the difference that the exponent e is not fixed (i.e., it is not part of the
instance).

Strong-RSA. Given a composite n (as described above), and z ∈ QR(n), it is
infeasible to find u ∈ Z∗

n and e > 1 such that ue = z(modn), in time polynomial
in ν.

Note that the variant we employ above restricts the input z to be a quadratic
residue. This variant of Strong-RSA has been discussed before [15], and by re-
stricting the exponent solutions to be only odd numbers we have that (i) it
cannot be easier than the standard unrestricted Strong-RSA problem, but also
(ii) it enjoys a random-self reducibility property (see [15]).

The second assumption that we employ is the Decisional Diffie-Hellman As-
sumption (see e.g., [5] for a survey). We state it below for a general group G and
later on in definition 1 we will specialize this definition to two specific groups.
Decisional Diffie-Hellman. Given a description of a cyclic group G that in-
cludes a generator g, a DDH distinguisher A is a polynomial in ν time PPT
that distinguishes the family of triples of the form 〈gx, gy, gz〉 from the family
of triples of the form 〈gx, gy, gxy〉, where x, y, z ∈R #G. The DDH assumption
suggests that this advantage is a negligible function in ν.

Finally, we will employ the discrete-logarithm assumption over the quadratic
residues modulo n with known factorization (note that the discrete-logarithm

156 A. Kiayias and M. Yung

problem is assumed to be hard even when the factorization is known, assuming
of course that the factors of n are large primes p, q and where p − 1 and q − 1
are non-smooth).
Discrete-Logarithm. Given two values a, b that belong to the set of quadratic
residues modulo n with known factorization, so that x ∈ [p′q′] : ax = b, find in
time polynomial in ν the integer x so that ax = b.
Conventions. (i) our proofs of knowledge will only be proven to work properly
in the honest-verifier setting. On the one hand, the honest-verifier setting is suffi-
cient for producing signatures. On the other hand, even in the general interactive
setting the honest-verifier scenario can be enforced by assuming the existence,
e.g., of a beacon, or some other mechanism that can produce trusted random-
ness; alternatively the participants may execute a coin flipping algorithm or use
methods that transform the honest verifier proofs to a regular proofs. (ii) the
public parameters employed in our various protocol designs (e.g., the composite
modulus n) will be assumed to be selected honestly.
Discrete-log Relation Sets and Signatures. Discrete-log relation sets were
introduced in [23] as a tool to describe proofs of zero-knowledge over the set
of quadratic residues modulo n and will be useful in our designs. Informally
a discrete-log relation set is specified by a (m × z)-matrix that contains rows
〈ai

1, . . . , a
i
m〉 where each ai

j is either an integer or a free variable drawn from a
set of free variables {α1, . . . , αr}. Each αw has a range restriction imposed αw ∈
S(2�w , 2μw). A sequence of m elements A1, . . . , Am are part of the description as
well. In [23] a proof of knowledge was described that allowed to an entity to prove
knowledge of a set of r witnesses that, if substituted in all rows 〈ai

1, . . . , a
i
m〉 of

the discrete-log relation matrix they would satisfy the relations
∏m

j=1 A
ai

j

i = 1
as well as the range constraints. We refer to [23] for more details. In the 3-move
protocol provided there the prover transmits z elements of QR(n) denoted by
B1, . . . , Bz in the first move, receives a challenge c ∈ {0, 1}k in the second move
and transmits r integers s1, . . . , sr in the last round.

A digital signature based on a proof of knowledge based on a discrete-log re-
lation set can be obtained by applying the Fiat-Shamir transform [18]. We recall
briefly this transformation below. Let G be a hash function with range {0, 1}k

and D the matrix of some discrete-log relation set R over the base elements
A1, . . . , Am ∈ QR(n). The proof of knowledge for discrete-log relation set can be
made into a signature as follows: the signature on a message M will be denoted
as sgnD

G (M) and computed as 〈c, s1, . . . , sr〉 where s1, . . . , sr are computed as
in the interactive proof using c equal to he hash G(M,A1, . . . , Am, B1, . . . , Bz).
The verification algorithm verD

G on a signature 〈c, s1, . . . , sr〉 for a message M

is implemented by the following check: c ?= G(M,A1, . . . , Am, B1, . . . , Bz), where
each Bi is computed according to the verification routine of the interactive proof.

The security of the Fiat-Shamir signature construction [18] was investigated
by [29] as was noted above.

Note that the proof of knowledge for discrete-log relation sets also enforces
interval constraints on the witnesses. In particular when proving knowledge
of a witness x ∈ S(2�, 2μ), the proof ensures that the witness belongs to the

Efficient Secure Group Signatures 157

range S(2�, 2ε(μ+k)+2). This constraint comes “for free” in the soundness proof.
If tighter integer ranges are needed they can also be achieved at the cost of mak-
ing the proof slightly longer by employing the techniques of [7]. Nevertheless
the tightness achieved by the proof for discrete-log relation sets itself will be
sufficient for our designs.

3 DDH over QR(n) with Known Factorization

Our constructions will require the investigation of the number-theoretic results
presented in this section that albeit entirely elementary they have not being
observed in the literature to the best of our knowledge. In particular we will
show that DDH over QR(n) does not depend on the hardness of factoring.

Let n be a composite, n = pq with p = 2p′ + 1 and q = 2q′ + 1 (p, q, p′, q′

primes). Recall that elements of Z∗
n are in a 1-1 correspondence with the set Z∗

p×
Z∗

q . Indeed, given 〈b, c〉 ∈ Z∗
p×Z∗

q, consider the system of equations x ≡ b(mod p)
and x ≡ c(modq). Using Chinese remaindering we can construct a solution of
the above system since gcd(p, q) = 1 and the solution will be unique inside Z∗

n.
Alternatively for any a ∈ Z∗

n we can find the corresponding pair 〈b, c〉 in Z∗
p×Z∗

q

by computing b = a(modp) and c = a(modq) (note that gcd(a, n) = 1 implies
that b �≡ 0(modp) and c �≡ 0(modq). The mapping ρ from Z∗

p × Z∗
q to Z∗

n is
called the Chinese remaindering mapping. Observe that ρ preserves quadratic
residuosity: ρ(QR(p) ×QR(q)) = QR(n).

The following two lemmas will be useful in the sequel. They show (1) how the
Chinese remaindering mapping behaves when given inputs expressed as powers
inside the two groups QR(p) and QR(q), and (2) how discrete-logarithms over
QR(n) can be decomposed.

Lemma 1. Let g1, g2 be generators of the groups QR(p) and QR(q) respectively,
where the groups are defined as above. Then, if β = ρ(gx1

1 , gx2
2), where ρ is

the Chinese remaindering mapping, it holds that β = αq′x1+p′x2(modn) where
α = ρ(g(q′)−1

1 , g
(p′)−1

2) is a generator of QR(n).

Lemma 2. Fix a generator α of QR(n) and an integer t ∈ IN. The mapping
τα : Zp′ × Zq′ → QR(n), with τα(x1, x2) = α(q′)tx1+(p′)tx2 is a bijection. The
inverse mapping τ−1

α is defined as τ−1
α (αx) = 〈(q′)−tx mod p′, (p′)−tx mod q′〉.

Let desc(1ν) be a PPT algorithm, called a group descriptor, that on input
1ν it outputs a description of a cyclic group G denoted by d̃G. Depending on
the group, d̃G may have many entries; in our setting it will include a generator
of G, denoted by d̃G.gen and the order of G denoted by d̃G.ord. We require
that 2ν−1 ≤ d̃G.ord < 2ν , i.e., the order of G is a ν-bit number with the first
bit set. Additionally d̃G contains the necessary information that is required to
implement multiplication over G. We will be interested in the following two
group descriptors:

– descp: Given 1ν find a ν-bit prime p′ > 2ν−1 for which it holds that p = 2p′+1
and p is also prime. Let g be any non-trivial quadratic residue modulo p. We

158 A. Kiayias and M. Yung

set QR(p) to be the group of quadratic residues modulo p (which in this case
is of order p′ and is generated by g). The descriptor descp returns 〈g, p, p′〉
and it holds that if d̃← descp(1ν), d̃.ord = p′ and d̃.gen = g.

– descc: Given ν find two distinct primes p′, q′ of bit-length ν/2 so that p′q′ is
a ν-bit number that is greater than 2ν−1 and so that there exist primes p, q
such that p = 2p′+1 and q = 2q′+1. Let g be any quadratic residue modulo
n that is a generator of the group of QR(n) (such element can be found
easily). The descriptor descc returns 〈α, n, p, q, p′, q′〉 and it holds that if
d̃← descc(1ν), d̃.ord = p′q′ and d̃.gen = α. The implementation of descc that
we will consider is the following: execute descp twice, to obtain d̃1 = 〈g1, p, p′〉
and d̃2 = 〈g2, q, q′〉 with p �= q, and set d̃ = 〈g, n = pq, p, q, p′, q′〉 where
α = ρ(g(q′)−1

1 , g
(p′)−1

2). For such a description d̃ we will call the descriptions
d̃1 and d̃2, the prime coordinates of d̃.

Definition 1. A Decisional Diffie Hellman (DDH) distinguisher for a group
descriptor desc is a PPT algorithm A with range the set {0, 1}; the advantage of
the distinguisher is defined as follows: AdvDDH

desc,A(ν) = distA(Ddesc
ν ,Rdesc

ν) where
Ddesc

ν contains elements of the form 〈d̃, gx, gy, gx·y〉 where d̃ ← desc(1ν), g =
d̃.gen and x, y ←R [d̃.ord], and Rdesc

ν contains elements of the form 〈d̃, gx, gy, gz〉
where d̃ ← desc(1ν), g = d̃.gen and x, y, z ←R [d̃.ord]. Finally we define the
overall advantage quantified over all distinguishers as follows: AdvDDH

desc (ν) =
maxPPT A AdvDDH

desc,A(ν).

The main result of this section is the theorem below that shows that the
DDH over QR(n) with known factorization is essentially no easier than the DDH
over the prime coordinates of QR(n). The proof of the theorem is based on the
construction of a mapping of DDH triples drawn from the two prime coordinate
groups of QR(n) into DDH triples of QR(n) that is shown in the following
lemma:

Lemma 3. Let d̃ ← descc(1ν) with d̃1, d̃2 ← descp(1ν/2), its two prime coordi-
nates, such that d̃1 = 〈g1, p, p′〉 and d̃2 = 〈g2, q, q′〉. The mapping ρ∗ as follows:

ρ∗(〈d̃1, A1, B1, C1〉,〈d̃2,A2, B2, C2〉)=df〈d̃,ρ(A1, A2),ρ(B1, B2),ρ((C1)q′
,(C2)p′

)〉

satisfies the properties (i) ρ∗(Ddescp

ν/2 ,Ddescp

ν/2) ∼= Ddescc
ν and (ii) ρ∗(Rdescp

ν/2 ,Rdescp

ν/2) ∼=
Rdescc

ν , where ∼= stands for statistically indistinguishable.
The mapping ρ∗ will return ⊥ in case d̃1.ord = d̃2.ord. This is a negligible

probability event when selecting d̃1, d̃2 at random from descp and is the event
that contributes the negligible statistical difference in properties (i) and (ii).

The lemma is used for the proof of the theorem below:

Theorem 1. AdvDDH
descc

(ν) ≤ 2AdvDDH
descp

(ν/2).

We proceed to state explicitly the two variants of the DDH assumption:

Efficient Secure Group Signatures 159

Definition 2. The following are two Decisional Diffie Hellman Assumptions:
• The DDH assumption over quadratic residues for groups of prime order (DDH-
Prime) asserts that: AdvDDH

descp
(ν) = negl(ν).

• The DDH assumption over quadratic residues for groups of composite order
with known Factorization (DDH-Comp-KF) asserts that: AdvDDH

descc
(ν) = negl(ν).

We conclude the section with the following theorem (where =⇒ stands for
logical implication):

Theorem 2. DDH-Prime =⇒ DDH-Comp-KF.

4 CCA2 PK-Encryption over QR(n) with Known
Factorization

Our constructions will require an identity embedding mechanism that is CCA2
secure; such a mechanism is presented in this section.

A public-key encryption scheme comprises three procedures 〈Gen, Enc, Dec〉.
The syntax of these procedures is as follows: Gen(1ν) returns a pair 〈pk, sk〉 that
constitutes the public-key and secret-key of the scheme respectively. The proba-
bilistic encryption function Enc takes as input the parameter 1ν, a public-key pk
and a message m and returns a ciphertext ψ. The decryption function Dec takes
as input a secret-key sk and a ciphertext ψ and returns either the correspond-
ing plaintext m, or the special failure symbol ⊥. The soundness of a public-key
encryption requires that for any 〈pk, sk〉, Dec(sk, Enc(1ν , pk,m)) = m with very
high probability in the security parameter ν (preferably always). There are var-
ious notions of security for public-key encryption [21,28,30,17], below we will
be interested in the so-called CPA and CCA2 security in the indistinguishability
sense.

Now consider the following cryptosystem 〈Genqr, Encqr, Decqr〉:

– The key-generator Genqr on input 1ν samples the description d̃ = 〈g, n, p, q,
p′, q′〉 ← descc(1ν), selects a value x←R [p′q′] and outputs pk=〈g, n, p, q, h=
gx〉 and sk=x.

– The encryption function Encqr operates as follows: given M ∈ QR(n), it
selects r ←R [%n/4&] and returns the pair 〈gr, hrM〉.

– The decryption operation Decqr is given 〈G,H〉 and returns G−xH(modn).

Note that this cryptosystem is an ElGamal variant over quadratic residues
modulo a composite, so that (i) the factorization is available to the adversary,
but: (ii) the factorization is not necessary for encryption.

Theorem 3. The cryptosystem 〈Genqr , Encqr , Decqr〉 described above satisfies
CPA-security under the assumption DDH-Compo-KF, and thus under the as-
sumption DDH-Prime (theorem 2).

We remark that ElGamal variants over composite order groups have been
considered before, e.g., [27]; in the setup that was considered the adversary

160 A. Kiayias and M. Yung

was denied the factorization and security properties of the cryptosystem were
associated with the factoring assumption. Our variant above, on the other hand,
shows that the semantic security (in the sense of CPA-security) of the composite
modulus ElGamal variant we define still holds under the standard prime-order
Decisional Diffie-Hellman assumption DDH-Prime.

Now let us turn our attention to achieving CCA2 security in the above setting.
To achieve this goal we will employ double encryption. Double encryption has
been employed as a tool to obtain chosen-ciphertext security originally in [28].
The so called “twin-conversion” has been formalized in [19] and transforms a
CPA-secure cryptosystem into a CCA2-cryptosystem This result applies directly
to our cryptosystem 〈Genqr, Encqr, Decqr〉 as defined above. We omit the details
for the full version.

5 Group Signatures: Model and Definitions

The parties that are involved in a group signature scheme are the Group Manager
(GM) and the users. In the definition below we give a formal syntax of the five
procedures the primitive is based on.

Our formalization is geared towards schemes as the scheme of [3] where users
are joining the system by executing a join-dialog with the GM (and not any other
trusted entity or tamper-proof element exists). Naturally, this formalization can
capture also the case where a third party creates the user signing keys privately
and distributes them through private channels and with trusted parties, however
we do not deal with this easier case in our model.

Definition 3. A group signature scheme is a digital signature scheme that com-
prises of the following five procedures;

SETUP: On input a security parameter 1ν , this probabilistic algorithm outputs
the group public key Y (including all system parameters) and the secret key S
for the GM. Note that SETUP is not supposed to output the members’ signing
keys. Moreover SETUP initializes a public-state string St with two components
Stusers = ∅ (a set data structure) and Sttrans = ε (a string data structure).

JOIN: A protocol between the GM and a user that results in the user be-
coming a new group member. The user’s output is a membership certificate and
a membership secret. We denote the i-th user’s membership certificate by certi
and the corresponding membership secret by seci. Since JOIN is a protocol, it is
made out of two interactive Turing Machines (ITM) Juser, JGM. Only Juser has a
private output tape. An execution of the protocol is denoted as [Juser(1ν ,Y), JGM

(1ν , St,Y,S)] and has two “output” components: the private output of the user,
〈i, certi, seci〉 ← U[Juser(1ν ,Y), JGM(1ν , St,Y,S)] and the public transcript, 〈i,
transcripti〉 ← T[Juser(1ν ,Y), JGM(1ν , St,Y,S)]. After a successful execution of
JOIN the following (public) updates are made to the state: Stusers = Stusers∪{i}
and Sttrans = Sttrans|| 〈i, transcripti〉. (Note: the identity of the user that gets
the i-th user’s membership certificate is assumed to be authenticated and thus
associated with i; the GM invokes the JOIN procedure one user at a time).

Efficient Secure Group Signatures 161

SIGN: A probabilistic algorithm that given a group’s public-key, a member-
ship certificate, a membership secret, and a message m outputs a signature for
the message m. We write SIGN(Y, certi, seci,m) to denote the application of the
signing algorithm.

VERIFY: An algorithm for establishing the validity of an alleged group signa-
ture of a message with respect to a group public-key. If σ is a signature on a
message m, then we have VERIFY(Y,m, σ) ∈ {(,⊥}.

OPEN: An algorithm that, given a message, a valid group signature on it,
a group public-key, the GM’s secret-key and the public-state it determines the
identity of the signer. In particular OPEN(m,σ,Y,S, St) ∈ Stusers ∪ {⊥}.
Notation. We will write 〈i, certi, seci〉 �Y 〈i, transcripti〉 to denote the relation-
ship between the private output of Juser and the public-transcript when the
protocol is executed based on the group public-key Y and a state St (note that
we omit St in the subscript for convenience). Moreover, any given cert, based on
a public-key Y, has a corresponding sec; we will also denote this relationship by
cert �Y sec (overloading the notation). We remark that �Y in both cases, will
be considered a polynomial-time relationship in the parameter ν.

Given a 〈Y,S〉 ← SETUP(1ν), a public-state St is called well-formed if it
is effectively produced by a Turing machine M that has unlimited access to a
JGM oracle (following the public state update procedures as in definition 3). A
well-formed state St′ is said to extend state St, if it is effectively produced by a
Turing machine as above but with the public-state initially set to St instead of
〈∅, ε〉.
Correctness. The correctness of a group signature scheme is broken down in
four individual properties: (i) user tagging soundness mandates that users are
assigned a unique tag (depending on order of joining) by the JOIN protocol; (ii)
join soundness mandates that the private output tape of Juser after a successful
execution of the JOIN dialog contains a valid membership certificate and mem-
bership secret; (iii) signing soundness mandates that the group signature scheme
behaves like a digital signature; (iv) opening soundness mandates that the OPEN
algorithm succeeds in identifying the originator of any signature generated ac-
cording to specifications. Formally,

Definition 4. A group signature is correct if the following statements hold with
very high probability over the coin tosses of all procedures. Let 〈Y,S〉 ←SETUP(1ν).

– User tagging soundness. In every well formed public-state St it holds that the
cardinality of the set Stusers equals the number of transcripts in the string
Sttrans.

– Join soundness. If 〈i, certi, seci〉 ← U[Juser(1ν ,Y), JGM(1ν , St,Y,S)] then it
holds that certi �Y seci.

– Signing soundness. For any cert �Y sec, and any message m, VERIFY(Y,m,
SIGN(Y, cert, sec,m)) = (.

– Opening soundness. For any certificates, transcripts and well-formed public-
state St s.t. 〈i, certi, seci〉 �Y 〈i, transcripti〉, if St′ is a well-formed public-
state that extends St with 〈i, transcripti〉 ∈ St′trans, then for any message m,
and any σ ← SIGN(Y, certi, seci,m) it holds that OPEN(m,σ,Y,S, St′) = i.

162 A. Kiayias and M. Yung

Security. Below we present the general model for security. A number of oracles
are specified. Through these oracles the adversary may interact with an Interface
that represents the system in the real world, and simulates its operation (i.e.,
a simulator) in the security proof. This allows us to model adversaries with
capabilities (modeled by subsets of the oracles) and attack goals in mind, in
the spirit of [22]. However, since we deal with a “privacy primitive” we have
to deal with a number of goals of mutually distrusting and mutually attacking
parties, thus we need more than one adversarial scenario. The interface I is
an ITM that employs a data structure called state stateI and is initialized as
〈St,Y,S〉 ← SETUP(1ν). The interface accepts the types of queries listed below.
We remark that during an attack the adversary interacts with the interface
and the oracles in a stateful fashion and the interface performs a number of
bookkeeping operations that involve stateI as explained below.

– Qpub and Qkey: the interface looks up stateI and returns the public-and
secret-key respectively.

– Qa−join: the interface initiates a protocol dialog simulating JGM. The user
created from this interaction (if it is successfuly terminated) will be entered
in Stusers and the transcript in Sttrans following the updating rules of defini-
tion 3. Additionally the user will be marked as Ua (adversarially controlled).

– Qb−join: the interface initiates a protocol dialog simulating Juser. The user
created from this interaction (if successfully terminated) will be entered in
Stusers and the transcript into Sttrans as described in the update procedure
of definition 3. Additionally, the user will be marked by U b. Upon successful
termination the resulting membership certificate and membership secret (i.e.,
the output of the user) will be appended in a private area of stateI .
Following the above we note that the adversary when executing the Qb−join

query will be effectively required by the interface to choose a unique and
properly defined tag for the current user (according to definition 3). This is
not a restriction since this can be enforced in practice by having the user
checking the public user name database during normal protocol executions
[also note: it is assumed here that the user name database Stusers is not en-
tirely adversarially controlled; indeed, if Stusers is compromised then clearly
no group signature scheme can have any form of identification robustness].

– Qread,Qwrite: these two queries allow to the adversary to read and write re-
spectively stateI . The query Qread returns the whole stateI excluding the
public and secret-key as well as the private area of stateI that is used for the
Qb−join queries. The query Qwrite is allowed to perform arbitrary changes as
long as it does not remove/corrupt elements from Stusers, Sttrans (but e.g.,
insertion to these structures is allowed).

– Qsign(i,m): given that i ∈ U b the interface simulates a signature on m by
looking up the membership certificate and membership secret available in
the private area of stateI and returns a corresponding signature.

– Qopen(σ): the interface applies the opening algorithm to the given signature
σ using the current St. If S is a set of signatures we denote by Q¬S

open the
operation of the opening oracle when queries for signatures in S are declined.

Efficient Secure Group Signatures 163

We remark that the interface I maintains a history of all queries posed to
the above oracles (if these queries accepted an input); for instance, we use the
notation histI(Qsign) to denote the history of all signature queries.

Security Modeling. We next define our security model, which involves three
attack scenarios and corresponding security definitions. These security properties
are based on our modeling of Traceable Signatures [23] and are ported from the
traceable signature setting to the group signature setting, augmenting them with
adversarial opening capability. In particular, we use the same terminology for
the attacks to facilitate the comparison between these two primitives.

The first security property relates to an adversary that wishes to misidentify
itself. In a misidentification-attack the adversary is allowed to join the system
through Qa−join queries and open signatures at will; finally he produces a forged
group signature (cf. an existential adaptive chosen message attack, [22]) that does
not open into one of the users he controls (actually without loss of generality the
adversary controls all users of the system; thus the adversary wins if the opening
algorithm returns ⊥).

The Misidentification-Attack Game GA
mis (denoted by GA

mis(1
ν)):

1. stateI = 〈St,Y,S〉 ← SETUP(1ν);
2. 〈m,σ〉 ← AI[Qpub,Qa−join,Qread,Qopen](1ν)
3. i = OPEN(m,σ,Y,S, St)
4. If (VERIFY(Y,m, σ) = () ∧ (i �∈ Ua) then return (else return ⊥.

Our second security property relates to a framing type of attack. Here the
whole system conspires against the user. The adversary is in control not only of
coalitions of users but of the GM itself. It is allowed to introduce “good” users
into the system by issuing Qb−join queries to the interface and obtain signatures
from them. Finally the adversary produces a signature that opens to one of the
“good” users. Note that the adversary can take advantage of Qwrite to create
dummy users if it so wishes.

The Framing-Attack Game GA
fra (denoted by GA

fra(1
ν)):

1. stateI = 〈St,Y,S〉 ← SETUP(1ν);
2. 〈m,σ〉 ← AI[Qpub,Qkey,Qb−join,Qread,Qwrite,Qsign](1ν)
3. i = OPEN(m,σ,Y,S, St)
4. If (VERIFY(Y,m, σ) = () ∧ (i ∈ U b) ∧ ((i,m) �∈ histI(Qsign)) then return

(else return ⊥.

Finally we model anonymity. In an anonymity-attack the adversary oper-
ates in two stages play and guess. In the play stage the adversary is allowed to
join the system through Qa−join queries, as well open signatures through Qopen

queries. The adversary terminates the play stage by providing a pair of member-
ship certificates/secrets (that were possibly obtained through Qa−join queries).
The adversary obtains a “challenge signature” using one of the two membership
certificate/secrets it provided at random, and then proceeds in the guess stage
that operates identically to the play stage with the exception that the adversary
is not allowed to open the challenge signature. Note that this attack is similar

164 A. Kiayias and M. Yung

to a CCA2 attack when an individual group signature is considered an identity
concealing ciphertext.

The Anonymity-attack Game GA
anon (denoted by GA

anon(1
ν)):

1. stateI = 〈St,Y,S〉 ← SETUP(1ν);
2. 〈aux,m, cert1, sec1, cert2, sec2, 〉 ← AI[Qpub,Qa−join,Qread,Qopen](play, 1ν)
3. if ¬((cert1 �Y sec1) ∧ (cert2 �Y sec2)) then terminate and return ⊥;
4. Choose b←R {1, 2};
5. σ ← SIGN(Y, certb, secb,m);
6. b∗ ← AI[Qpub,Qa−join,Qread,Q¬{σ}

open](guess, aux);
7. if b = b∗ return (else return ⊥;

Definition 5. A group signature scheme is secure if for all PPT A it holds that
(i) Prob[GA

mis(1
ν) = (] = negl(ν) (ii) Prob[GA

fra(1
ν) = (] = negl(ν) and (iii)

2Prob[GA
anon(1

ν) = (] − 1 = negl(ν).

Capturing the intuitive security properties of [3]. Given the above secu-
rity model is relatively straightforward to see that the informal security proper-
ties that were put forth in [3] are captured by the above three security properties.
In particular, (1) Unforgeability: an adversary that given the public-key forges
a signature, will either produce a signature that opens to ⊥ or a signature that
opens to one of the users; such an attack is prevented by both misidentifica-
tion and framing security above; (2) Anonymity, is captured by the anonymity
security property above, (3) Unlinkability, is also captured by the anonymity
security property, (4) Exculpability is captured by framing security (since the
secret-key of the GM is released to the adversary), (5) Traceability, is ensured
by misidentification (a signer cannot produce a signature that opens to ⊥) and
framing security (a signer cannot frame another user). (6) Coalition resistance
is built-in into our security properties since w.r.t. misidentification we allow the
adversary to adaptively build a coalition of malicious users, whereas in the case
of framing attack the adversary has the GM’s key (and as a result it can build
a coalition if it wishes it).

6 Building a Secure Group Signature

The scheme we will present will be built based on the state-of-the-art scheme
of [3]. We note again that it is impossible to prove security of the scheme of [3]
in our model (yet we insist on minimally changing it to achieve the provable
properties).

The public-parameters of the group signature are a composite modulus n of
ν bits, such that n = pq with p = 2p′ + 1 and q = 2q′ + 1 (where p, q, p′, q′ are
primes), as well as a sequence of elements inside QR(n) denoted by a0, a, g, y and
two lengths �, μ, so that S(2�, 2μ) ⊆ {1, . . . , p′q′}. The membership certificates
are of the form 〈A, e〉 so that A ∈ QR(n) and e is a prime number in S(2�, 2μ).
The membership secret is a value x such that a0a

x = Ae. Given the above

Efficient Secure Group Signatures 165

structure, the basic functions of the group signature scheme employ two hash
functions G,H and are implemented as follows:

SETUP: On input a security parameter ν, this probabilistic algorithm first
samples a group description for 〈g, n, p, q, p′, q′〉 ← descc(1ν). Then, it selects
x, x̂ ←R Z∗

p′q′ , a0, a, h ←R QR(n) and publishes the group public key Y =df

〈n, a0, a, g, h, y = gx, ŷ = gx̂〉 and the secret key is set to S =df 〈p, q, x, x̂〉. The
procedure also selects the parameters �, μ, k ∈ IN and ε > 1 as functions of ν so
that this condition is satisfied S(2�, 2ε(μ+k)+2) ⊆ {5, . . . ,min{p′, q′} − 1}.

JOIN: A protocol between the GM and a user that allows the joint computa-
tion of a membership certificate 〈A, e〉 so that only the user obtains the member-
ship secret x. First we give the functionality of the protocol using a trusted party
T : the specification of the protocol JT

user, J
T
GM using a third trusted party T is as

follows: JT
user(1

ν ,Y) sends “go” to the trusted party T , who in turn selects x←R

%n/4& and writes to the GM’s communication tape the value C = ax mod n and
writes to the user’s private tape the value x. JT

GM(1ν ,Y,S) reads C from the
communication tape with T , it selects a prime e ←R S(2�, 2μ) − {p′, q′} and
computes A = (a0a)1/e(modn); finally it writes 〈i, A, e〉 in the regular commu-
nication tape where i is the next available user tag (a counter is employed) and
terminates. JT

user reads 〈A, e〉 from the communication tape and writes 〈i, A, e, x〉
in its private output tape. As shown in the “non-adaptive drawings of random
powers” protocol of (section 6, [23]) it is possible to derive an efficient protocol
Juser, JGM that does not employ a trusted party and achieves the above ideal func-
tionality. We remark that the GM is accepting join protocols only in a sequential
fashion.

In the above description, certi = 〈A, e〉, seci = x, transcripti = 〈i, C,A, e〉. If
transcript = 〈it, Ct, At, et〉 and cert = 〈Ac, ec〉, sec = xc, the relationship cert �Y
sec is true iff Aec

c = a0a
xc(mod n), and the relationship 〈i, transcript〉 �Y 〈i, cert,

sec〉 is true iff it = i, At = Ac, et = ec and cert �Y sec.
SIGN: The signing algorithm is based on a proof of knowledge that is preceded

by the values 〈T1, T2, T̂1, T̂2, T3, T4〉 defined as follows when invoked by the i-th
user:

r, r̂ ←R %n/4& : T1 = Aiy
r, T2 = gr, T̂1 = Aiŷ

r̂, T̂2 = gr̂, T3 = geihr

T4 = nizkH[n, g, y1, y2, 〈T2, T1〉, 〈T̂2, T̂1〉]
The noninteractive proof of knowledge T4 ensures that the twin ciphertext

T1, T2, T̂1, T̂2 is properly formed (i.e., that the plaintext is the same). To complete
the description of the signature, we design a discrete-log relation set over the free
variables r, e, x, s′, s′′, to prove the following relations: T2 = gr, T3 = gehr, T e

2 =
gs′
, a0a

xys′
= T e

1 , T3 = g(g2)s′′
hr. This proof ensures that T1, T2 is the ElGamal

encryption of a value A that if raised to an odd integer e, it can be split by
the prover in the form a0a

x. The signature on a message M will be formed by
employing the Fiat-Shamir transform over the proof of knowledge in the discrete-
log relation set as described in section 2. We defer more details for the full version,
we only remark that the proof will be a tuple of the form 〈c, s1, s2, s3, s4, s5〉 (in
addition to the elements T1, T2, T̂1, T̂2, T3, T4).

166 A. Kiayias and M. Yung

VERIFY: given a signature σ = 〈T1, T2, T̂1, T̂2, T3, T4, c, s1, s2, s3, s4, s5〉 the
verification algorithm will verify the proof of knowledge for the discrete-log re-
lation set as well as verify T4.

OPEN: The opening procedure given a signature σ is as follows:

1. Verify σ using the public verification procedure VERIFY.
2. Parse σ to recover the values T1, T2.
3. Verify that the noninteractive proof of knowledge T4 is correct.
4. Compute A = T1(T x

2)−1 mod n.
5. Match A to some user’s first component of the membership certificate 〈Ai, ei〉

(as available in the database maintained during the JOIN protocols).
6. If either steps 1 or 3 or 5 fail, return ⊥, else return the user found in step 5.

Theorem 4. The group signature 〈SETUP, JOIN, SIGN, VERIFY, OPEN〉 defined
above is (i) correct,(ii) satisfies security against misidentification attacks under
the Strong-RSA assumption in the random oracle model, (iii) satisfies security
against framing attacks under the Discrete-logarithm assumption over the QR(n)
with known factorization, in the random oracle model, and (iv) satisfies secu-
rity against anonymity-attacks, under the DDH-Compo-KF in the random oracle
model.

7 Group Signatures with Authority Separability:
Anonymity Against the GM

In a group signature with separated authorities we differentiate between the GM,
who is responsible for group membership operations and an Opening Authority
(OA), who is responsible for the revocation of anonymity (opening a signature).
This separation is relevant to practice, since group management should be typ-
ically considered an ISP operation whereas revocation of anonymity must be
performed by some (possible external) third-party authority (which can even be
distributed). This authority separability is natural and is not designed to assure
that certain processes are tamper-proof; note that it is a different (weaker) no-
tion of separability compared to what [11] considered (who considered the full
disassociation of all involved parties). The extension of the present formal model
to stronger notions of separability [26] is possible. Nevertheless in this case we are
interested in what can be achieved without incurring any additional cost at our
basic construction. Stronger notions of separability can be achieved nevertheless
at additional costs (both in terms of communication and computation).

The syntax of a group signature with authority separability is similar to the
group signature syntax as presented in definition 3 with the modifications:

Definition 6. A group signature scheme with authority separability is a digital
signature scheme comprising the following six procedures; the parties involved
are the GM, the opening authority and the users.

SETUPGM: On input a security parameter 1ν , this probabilistic algorithm out-
puts the group public key YGM (including necessary system parameters) and the

Efficient Secure Group Signatures 167

secret key SGM for the GM. SETUPGM also initializes a public-state string St with
two components Stusers = ∅ and Sttrans = ε.

SETUPOA: On input a security parameter 1ν, and the public-key YGM, this
probabilistic algorithm generates the public and secret-key of the opening author-
ity denoted by YOA and SOA.

We will denote the concatenation of YOA and YGM by Y.
JOIN: The JOIN protocol is identical to that of definition 3 with the only

exception JGM requires only the secret key of the GM, SGM.
SIGN: identical to definition 3.
VERIFY: identical to definition 3.
OPEN: the opening algorithm is the same as in definition 3 with the exception

that only the opening authority’s secret-key SOA is required.

Note that above we consider that the setup procedure for the OA acts on
the public-key of the GM. While our construction below will take advantage of
this syntactic condition, it is not hard in general to avoid it at the expense of
extending the length of the signature by a constant amount (and thus separate
the GM and OA even in the setup phase).

Correctness. Given the above minor syntactic differences, the correctness of a
group-signature with separated authorities is defined in the same way as defi-
nition 4 by taking into account the above modifications that correspond to the
fact that JGM requires only SGM and OPEN requires only SOA.

Security. The security properties of a group-signature with separated author-
ities must remain the same so that any secure group signature with separated
authorities must also be a secure group signature (by collapsing the GM and
the OA into a single entity). Moreover in the separated authority setting the
anonymity-attack can be made even stronger by adding the adversarial capabil-
ity of corrupting the GM.

Regarding the security modeling, in the queries that can be posed to the
interface, the query Qkey will be substituted with two distinct queries QkeyGM

and QkeyOA with the obvious results. The definition of the three attacks will
remain unaltered with the following syntactic modifications:

(i) in a framing-attack the adversary will have at its disposal both the queries
QkeyGM and QkeyOA (i.e., the adversary can corrupt both the GM and the OA)

(ii) in the anonymity attack, the adversary will be given additional access to the
QkeyGM,Qwrite queries in both phases of the attack game.

The above two modifications are straightforward and thus we will not list the
security properties again in this section. The modified games will be denoted by
GA

fra−sep, G
A
mis−sep, G

A
anon−sep.

Definition 7. A group signature scheme with separated authorities is secure if
for all PPT A it holds that (i) Prob[GA

in−sep(1
ν) = (] = negl(ν) as well as (ii)

Prob[GA
out−sep(1ν) = (] = negl(ν) and (iii) 2Prob[GA

anon−sep(1ν) = (] − 1 =
negl(ν).

168 A. Kiayias and M. Yung

Note that any scheme secure under the above definition is also a secure group
signature under definition 5.

Construction. The design of a group signature with separated authorities can
be based directly on our construction of section 6 with the following modification:
the SETUPGM procedure will produce YGM = 〈n, a0, a, g, h〉 with SGM = 〈p, q〉,
whereas the SETUPOA will produce YOA = 〈y, ŷ〉 with SOA = 〈x, x̂〉. In all other
respects the scheme will proceed in the same fashion. It is straightforward to
split the SETUP procedure to the two authorities, with the condition (as spec-
ified in definition 6) that the GM should go first so that the value n is made
available; afterwards the OA can select the values y, ŷ ∈ QR(n) with known
logg y and logg ŷ and publish the two additional elements to form the com-
bined public key Y = 〈n, a0, a, g, y, ŷ〉. To allow the differentiation we specify
YGM = 〈n, a0, a, g, h〉, SGM = 〈p, q〉, YOA = 〈y, ŷ〉, and SOA = 〈logg y, logg ŷ〉. The
design remains unaltered otherwise. In our security proofs we took special care
to disassociate the hardness of factoring from anonymity. Taking advantage of
this, the following theorem can be easily shown:

Theorem 5. The group signature with separated authorities presented above is
correct and secure; in particular: (i) it is secure against misidentification-attacks
under the Strong-RSA assumption in the RO model. (ii) it is secure against
framing-attacks under the Discrete-Log hardness assumption over QR(n) with
known factorization and the RO model. (iii) it is secure against anonymity-
attacks under DDH-Compo-KF in the RO model.

References

1. Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From
identification to signatures via the fiat-shamir transform: Minimizing assumptions
for security and forward-security. In Lars Knudsen, editor, Advances in Cryptology
– EUROCRYPT ’ 2002, volume 2332 of Lecture Notes in Computer Science, pages
418–433, Amsterdam, The Netherlands, 2002. Springer.

2. G. Ateniese and G. Tsudik. Some open issues and new directions in group signa-
tures. In Matthew Franklin, editor, Financial cryptography: Third International
Conference, FC ’99, Anguilla, British West Indies, February 22–25, 1999: proceed-
ings, volume 1648 of Lecture Notes in Computer Science, pages 196–211. Spring-
er-Verlag, 1999.

3. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Mihir Bellare,
editor, Advances in Cryptology – CRYPTO ’ 2000, volume 1880 of Lecture Notes in
Computer Science. International Association for Cryptologic Research, Springer,
2000.

4. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group
signatures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Eli Biham, editor, Advances in Cryptology – EURO-
CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, Warsaw, Poland,
2003. Springer.

Efficient Secure Group Signatures 169

5. Dan Boneh. The decision diffie-hellman problem. In the Third Algorithmic Number
Theory Symposium, volume 1423 of Lecture Notes in Computer Science, pages 48–
63. Springer-Verlag, 1998.

6. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matthew Franklin, editor, Advances in Cryptology – CRYPTO ’ 2004, Lecture
Notes in Computer Science. International Association for Cryptologic Research,
Springer-Verlag, 2004.

7. Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 431–444. Springer-Verlag, 2000.

8. Jan Camenisch. Efficient and generalized group signatures. In Walter Fumy, ed-
itor, Advances in Cryptology - EUROCRYPT ’97, International Conference on
the Theory and Application of Cryptographic Techniques, Lecture Notes in Com-
puter Science, pages 465–479. International Association for Cryptologic Research,
Springer, 1997.

9. Jan Camenisch and Anna Lysyanskaya. An identity escrow scheme with appointed
verifiers. In Joe Kilian, editor, Advances in Cryptology – CRYPTO ’ 2001, volume
2139 of Lecture Notes in Computer Science, pages 388–407. International Associa-
tion for Cryptologic Research, Springer-Verlag, Berlin Germany, 2001.

10. Jan Camenisch and Markus Michels. A group signature scheme with improved ef-
ficiency. In Kazuo Ohta and Dingyi Pei, editors, ASIACRYPT: Advances in Cryp-
tology – ASIACRYPT: International Conference on the Theory and Application
of Cryptology, volume 1514 of Lecture Notes in Computer Science, pages 160–174.
International Association for Cryptologic Research, Springer-Verlag, 1998.

11. Jan Camenisch and Markus Michels. Separability and efficiency for generic group
signature schemes (extended abstract). In Michael j. Wiener, editor, 19th Interna-
tional Advances in Cryptology Conference – CRYPTO ’99, volume 1666 of Lecture
Notes in Computer Science, pages 413–430. Springer, 1999.

12. Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups. Lecture Notes in Computer Science, 1294:410–424, 1997.

13. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Advances
in Cryptology, Proc. of Eurocrypt ’91 (Lecture Notes in Computer Science 547),
pages 257–265. Springer-Verlag, April 1991. Brighton, U.K.

14. L. Chen and T. P. Pedersen. New group signature schemes (extended abstract).
In Alfredo De Santis, editor, Advances in Cryptology—EUROCRYPT 94, volume
950 of Lecture Notes in Computer Science, pages 171–181. Springer-Verlag, 1995,
9–12 May 1994.

15. Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA
assumption. ACM Transactions on Information and System Security, 3(3):161–
185, August 2000.

16. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (ex-
tended abstract). In Proceedings of the Twenty Third Annual ACM Symposium on
Theory of Computing, pages 542–552, New Orleans, Louisiana, 6–8 May 1991.

17. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography.
SICOMP, 30(2):391–437, 2000. A preliminary version appeared in 23rd STOC,
1991.

18. Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Iden-
tification and Signature Problems. In Proceedings of CRYPTO’86, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer Verlag, 1986.

170 A. Kiayias and M. Yung

19. Pierre-Alain Fouque and David Pointcheval. Threshold cryptosystems secure
against chosen-ciphertext attacks. In ASIACRYPT: Advances in Cryptology –
ASIACRYPT: International Conference on the Theory and Application of Cryp-
tology, volume 2248 of Lecture Notes in Computer Science, pages 351–368. Springer
Verlag, 2001.

20. Oded Goldreich. On the foundations of modern cryptography. In Proc. 17th Annual
International Cryptology Conference – CRYPTO ’97, pages 46–74, 1997.

21. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
Security, 28:270–299, 1984.

22. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical” solution
to the signature problem (extended abstract). In 25th Annual Symposium on
Foundations of Computer Science, pages 441–448, Singer Island, Florida, 24–26
October 1984. IEEE.

23. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In Chris-
tian Cachin and Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT
’ 2004, volume 3027 of Lecture Notes in Computer Science, pages 571–589, Inter-
laken, Switzerland, 2004. Springer.

24. Aggelos Kiayias and Moti Yung. Extracting group signatures from traitor tracing
schemes. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, pages 630–648, Warsaw, Poland,
2003. Springer.

25. Aggelos Kiayias and Moti Yung. Group signatures: Provable security, efficient
constructions and anonymity from trapdoor-holders. Cryptology ePrint Archive,
Report 2004/076, 2004. http://eprint.iacr.org/.

26. Joe Kilian and Erez Petrank. Identity escrow. In Hugo Krawczyk, editor, Advances
in Cryptology – CRYPTO ’ 1998, volume 1462 of Lecture Notes in Computer Sci-
ence, pages 169–185. International Association for Cryptologic Research, Springer,
1998.

27. Kevin S. McCurley. A key distribution system equivalent to factoring. Journal of
Cryptology: the journal of the International Association for Cryptologic Research,
1(2):95–105, 1988.

28. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Baruch Awerbuch, editor, Proceedings of the 22nd Annual
ACM Symposium on the Theory of Computing, pages 427–437, Baltimore, MY,
May 1990. ACM Press.

29. David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13(3):361–396, March 2000.

30. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, Advances
in Cryptology – CRYPTO ’ 91, volume 576 of Lecture Notes in Computer Sci-
ence, pages 433–444. International Association for Cryptologic Research, Springer-
Verlag, Berlin Germany, 1992.

An Analysis of Double Base Number Systems
and a Sublinear Scalar Multiplication Algorithm

Mathieu Ciet1 and Francesco Sica2, �

1 Gemplus Security Technologies Department,
La Vigie, ZI Athélia IV, Av. du Jujubier,
B.P. 100, 13705 La Ciotat Cedex, France

mathieu.ciet@gemplus.com
2 Mount Allison University – AceCrypt,

Department of Mathematics and Computer Science,
67 York Street, Sackville, NB, E4L 1E6, Canada
fsica@mta.ca − http://www.acecrypt.com

Abstract. In this paper we produce a practical and efficient algorithm
to find a decomposition of type

n =
k∑

i=1

2si3ti , si, ti ∈ N ∪ {0} with k ≤ (
c + o(1)

) log n

log log n
.

It is conjectured that one can take c = 2 above. Then this decomposition
is refined into an effective scalar multiplication algorithm to compute
nP on some supersingular elliptic curves of characteristic 3 with running
time bounded by

O

(
log n

log log n

)
and essentially no storage. To our knowledge, this is the first instance of a
scalar multiplication algorithm that requires o(log n) curve operations on
an elliptic curve over Fq with log q ≈ log n and uses comparable storage
as in the standard double-and-add algorithm.

This leads to an efficient algorithm very useful for cryptographic pro-
tocols based on supersingular curves. This is for example the case of the
well-studied (in the past four years) identity based schemes. The method
carries over to any supersingular curve of fixed characteristic.

Keywords: Integer decomposition, exponentiation algorithms.

1 Introduction

In asymmetric cryptographic algorithms, the costliest part in execution time is
most often the computation of nP , for P belonging to some group1 denoted

� This work was partially supported by a NSERC Discovery Grant
1 This operation is called exponentiation or scalar multiplication, according to the

multiplicative, respectively additive, notation of the group law.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 171–182, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

172 M. Ciet and F. Sica

additively. The standard algorithm to perform this is to decompose n in base 2
and to apply a double-and-add algorithm. If n is randomly chosen with a fixed
number of bits, then this algorithm requires on average log2 n doublings and
(log2 n)/2 additions. Hence we can say that a classical double-and-add algorithm
takes time2 ∼ c logn (asymptotic to c logn on average) for some c > 0.

In some specific groups, one can improve the constant c by taking for instance
signed binary expansions [10] or expansions to other bases [3,11]. We call linear
an algorithm with running time T satisfying c logn < T < d logn for some
c, d > 0. Similarly, we shall call it sublinear if the running time is o(log n) (little
oh) as n goes to infinity. This means that this time is strictly smaller than ε logn
for any ε > 0.

The aim of the present work is to present the first practical sublinear scalar
multiplication algorithm. The algorithm is sublinear when used on particular
supersingular elliptic curves of fixed characteristic (for instance, elliptic curves
defined over Fp). We shall deal with characteristic 3 here as an illustration of
the method and leave the easy modifications to the interested reader.

The algorithm proceeds as follows. We first decompose the multiplier n as

n =
k∑

i=1

2si3ti , si, ti ∈ N ∪ {0} (1)

with (si, ti) �= (sj , tj) for i �= j and

k ≤
(
c+ o(1)

) logn
log logn

for some proven c > 0 (conjecturally c = 2). This allows us to build a double-
and-add algorithm where the number of additions is O(log n

log log n).
Then a simple remark allows us to impose a further condition that max(si) ≤

log1−δ n for any 0 < δ < 1. This has the effect of bringing the number of
doublings down to O(log1−δ n).

We still need to worry about triplings, but on a supersingular curve these are
practically as fast a two Frobenius endomorphisms, hence they can be neglected
if normal bases are used and even in the case of polynomial bases, they are faster
than a doubling or an addition.

Therefore the total running time of our algorithm will be bounded by the
number of additions, that is O(log n

log log n).
Let us mention that the idea of using (1), called in the literature double base

number system, goes back at least to [5], where even an exponentiation algo-
rithm is given [6] with comparable running time as ours. However this algorithm
requires O(log2 n) in storage, whereas our algorithm only needs a minimal stor-
age. Also [4] develops these ideas into a generic scalar multiplication algorithm
that would have fast running time. Unfortunately, no explicit estimate is given
at the moment.
2 The time unit is an elliptic curve operation, say an addition, since a doubling takes

a positive proportion of performing an addition.

An Analysis of Double Base Number Systems 173

2 Notations and Mathematical Background

2.1 Notations

We define a s-integer as an integer whose prime factorization contains only the
first s primes. A 2-integer will also be called a binumber. An expansion such
as (1) will be called a binumber expansion of length k instead of a double base
number system, to reflect the fact that the double base is (2, 3).

We are interested in doing asymptotic analysis, at first. We will freely use
the abusive notation f(s) ≤ g(s) to indicate in fact that for any C > 1 one has
f(s) ≤ Cg(s) as s→ ∞. It must then be understood that the optimal asymptotic
result will be achieved when we let C → 1+.

In the same vein, the ε’s are not always the same from one equation to the
next, but have to be understood as an arbitrarily small constant, independent
of any other quantity.

Logarithms are taken to the base e in our theoretical analysis, however this
is irrelevant in the algorithms, since the ε in the exponents absorbs the constants
involved in changing bases.

2.2 Continued Fractions

Every real number α has an essentially unique (unique for irrationals) expression
as a sequence of “infinite quotients”, called continued fraction expansion

α = a0 +
1

a1 +
1

a2 + · · ·
where (as)s≥0 is a sequence of integers which are all positive except a0 = %α&.
We then write α = [a0, a1, . . .]. The ai’s are called partial quotients, and the
rationals

ps

qs
= [a0, a1, . . . , as]

are called the convergents to α. They provide the best rational approximation
among all fractions with denominator bounded by qs. The following recurrence
relations are satisfied

ps = asps−1 + ps−2 and qs = asqs−1 + qs−2 . (2)

It is also known that the convergents hop from one side to the other of α. In
other words,

α− p2s

q2s
> 0 and α− p2s+1

q2s+1
< 0 (3)

2.3 Measure of Irrationality

The irrationality measure μ(α) of α ∈ R − Q is defined as

μ(α) = sup
{
r ∈ R : ∃∞ (p, q) ∈ Z2 with

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1
qr

}
.

174 M. Ciet and F. Sica

It is also known that the convergents
p

q
of the continued fraction expansion of

α satisfy ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1
q2

, (4)

hence μ(α) ≥ 2. The set of reals with irrationality measure greater than 2 has
Lebesgue measure zero, even if it is equipotent to the reals. Therefore we should
expect that a “random” number α would have μ(α) = 2.

2.4 Supersingular Elliptic Curves in Characteristic 3

We refer to [9] for generalities on supersingular elliptic curves. We will focus
here on supersingular elliptic curves defined over F3p and in particular on the
examples Eb given in [1] by the Weierstraß equations

y2 = x3 − x+ b with b = ±1.

On these curves, the tripling operation sends P = (x, y) to 3P = (x9−b,−y9), so
that point tripling is essentially equivalent to two Frobenius applications and can
be done in O(p) binary operations using polynomial bases and in O(1) binary
operations (rotations) using normal bases. As well, 3tP can be computed in
O(pt) binary steps using polynomial bases and essentially O(1) using normal
bases. In any case, if t ≤ p, this cost is less than that of multiplying elements
in F3p hence is less than one elliptic curve operation. This is the reason why we
will neglect this cost henceforth.

3 Short Binumber Expansions

The goal of the present section is to provide an effective algorithm to compute
a binumber expansion of any n of length O(log n/ log logn), with an explicitly
given constant. We will give a mathematical proof with an asymptotic value
for the constant, then give a standard conjecture under which one can hope to
improve this constant (effective measurements corroborate this – see [4]).

The idea of the algorithm is the use of a more explicit tool than [12], namely
a consequence of the following more recent result [7, p.19]. For any a, b ∈ N with
(a+ b) > e1000 we have

|a log 3 − b log 2| ≥ exp
(
−153500

)
max(a, b)−40499 (5)

In particular, this implies that

μ

(
log 2
log 3

)
≤ 40500 (6)

Let us denote μ = μ(log 2
log 3) and ps

qs
the sequence of the convergents to log3 2.

Also as before, we let (ai)i≥0 be its sequence of partial quotients. Then, choosing

An Analysis of Double Base Number Systems 175

any small ε > 0, as s becomes large,

1
qμ+ε
s

≤
∣∣∣∣ log 2
log 3

− ps

qs

∣∣∣∣ < 1
as+1q2s

. (7)

This implies that as ≤ qμ−2+ε
s−1 . In view of (2) one has

qs = asqs−1 + qs−2 ≤ qμ−1+ε
s−1 (8)

Let m > 1 be a real parameter to be fixed later and let s be henceforth chosen
as the smallest even index such that qs > m.

Lemma 1. Using the above notations we have

exp
(

1
m(μ−1)3+ε

)
<

2qs

3ps
< exp

(
1

mμ−1−ε

)
. (9)

Proof. By (8) and the definition of s we deduce that

qs ≤ m(μ−1)2+ε . (10)

Together with (3) and the left-hand inequality in (7) we get

qs
log 2
log 3

− ps >
1

m(μ−1)3+ε

and so

qs log 2 − ps log 3 >
1

m(μ−1)3+ε

which is the left-hand side of (9). The right-hand side is then a consequence of
the definition of μ, since

qs
log 2
log 3

− ps ≤ 1
qμ−1−ε
s

<
1

mμ−1−ε
. 	

Remark 1. Note that in the preceding equation, the ε can be dropped by (4) in
the probable case that μ = 2.

Theorem 1. Let n be a large integer. There exists a binumber N satisfying

n− n

log
1

μ(μ−1)−ε n
≤ N ≤ n

Remark 2. It is of course possible to give a totally effective version of this the-
orem, valid for all values of n, but this would clutter the proof with useless
technicalities. In practice we see that the range of validity of such inequalities
starts at small values of n.

176 M. Ciet and F. Sica

Proof. Our idea is to start from the largest power 3ν not exceeding n and then
to multiply it by the t-th power of 2qs

3ps which by (9) is very close to 1. However
one must be careful of not dividing by too large a power of 3. We will then get
a binumber that is very close to n, provided we choose the largest t satisfying
both (

2qs

3ps

)t

≤ n

3ν
(11)

and
pst < ν . (12)

The former inequality, together with (9), implies that

t ≤ m(μ−1)3+ε (13)

since n/3ν ≤ 3. Inequality (12) can be automatically verified if m is not too
large. Note that (7) and (10) imply that

qs
2
< ps < qs < m(μ−1)2+ε . (14)

This implies that

pst ≤ m(μ−1)2+εm(μ−1)3+ε < ν =
⌊

logn
log 3

⌋
,

if we let
m =

(
log n

) 1
μ(μ−1)2

−ε
. (15)

We will henceforth fix m to this value. The choice of t is then dictated by (11)
alone and is

t =

⎢⎢⎢⎣ logn−
⌊

log n
log 3

⌋
log 3

qs log 2 − ps log 3

⎥⎥⎥⎦ =
⌊

log3 n− %log3 n&
qs log3 2 − ps

⌋
. (16)

Let N = 3ν
(

2qs

3ps

)t
. Then N is a binumber less than n and using (9) we get

n

N
< exp

(
1

mμ−1−ε

)
=⇒ N > n

(
1 − 1

mμ−1−ε

)
which in view of (15) proves the left-hand side inequality of the theorem. 	

Theorem 2. Denote the measure of irrationality of log 2/ log 3 by μ. Then every
sufficiently large number n can be written as a sum

n =
k∑

i=1

2si3ti , si, ti ∈ N ∪ {0}

with

k ≤ μ(μ− 1)
logn

log logn
+ o

(
logn

log logn

)
.

An Analysis of Double Base Number Systems 177

Proof. Apply Theorem 1 iteratively, starting from n = n, finding N and replac-
ing n with n−N . At each step, the size of n is divided by a factor log

1
μ(μ−1)−ε n.

Therefore, κ steps at most are needed to shrink the size of n from n to
√
n,

where (
log

1
μ(μ−1)−ε √n

)κ

=
√
n .

This yields

κ =
(
μ(μ− 1)

2
+ ε

)
logn

log log
√
n
.

Repeating this process, replacing n by
√
n, we see that the number of iterations

needed to get down from n to e4 is bounded by(
μ(μ− 1)

2
+ ε

) ∑
0≤u≤ log log n

log 2 −2

log 2u√
n

log log 2u+1√
n

=

(
μ(μ− 1)

2
+ ε

) ∑
0≤u≤ log log n

log 2 −2

1
2u

log n
log logn− (u+ 1) log 2

.

Upon splitting the last sum into subsums for 0 ≤ u < 3 log log log n
log 2 and 3 log log log n

log 2

≤ u ≤ log log n
log 2 − 2 we get on the former sum a bound of(

μ(μ− 1)
2

+ ε

)
logn

∞∑
u=0

1
2u

1
log log n− 4 log log logn

≤
(
μ(μ− 1) + ε

) log n
log logn

,

while on the latter a smaller bound

O

(
logn

2
3 log log log n

log 2

log logn
)

= O

(
log n

(log logn)2

)
.

This proves the theorem.
	

Remark 3. Note that in the preceding theorem one can assume 2si3ti �= 2sj 3tj

if i �= j. In fact by (12) we make sure N in Theorem 1 will not be a pure power
of 2, as soon as n is sufficiently large. Below this threshold we can represent
any number in base 2 as a sum of O(1) powers of 2, so it suffices to show that
2si+13ti+1 < 2si3ti when these numbers are large. Let n then be so large that
log

1
μ(μ−1)−ε n > 2. Following the constructive proof of the preceding theorem, we

have

2si+13ti+1 ≤ n− 2si3ti ≤ n

log
1

μ(μ−1)−ε n
< n − n

log
1

μ(μ−1)−ε n
≤ 2si3ti .

In practice n does not have to be large, since it is expected that μ = 2.

178 M. Ciet and F. Sica

Input: An integer n ≥ 1
Output: A set S = {(s1, t1), . . . , (sk, tk)} with the property that n =

∑k
i=1 2si3ti

with si, ti nonnegative integers

1. i ← 0, S = ∅
2. While n > 0 do
3. i ← i + 1
4. ν ← �log3 n�
5. m ← � 3

√
ν�

6. s ← min{2j : q2j > m}
7. q ← qs, p ← ps

8. t ←
⌊

log3 n−�log3 n	
q log3 2−p

⌋
9. N ← 2qt3ν−pt

10. S ← S ∪ {(qt, ν − pt)}, n ← n − N
11. Return S

Algorithm 1. Binumber Chain

The proofs of Theorem 1 and 2 show the workings of an algorithm that allows
us to find a binumber expansion of n, given as Algorithm 1. The choice for m
in step 5 was done to fix ideas (we also assume in implementations that μ = 2)
and because this algorithm is to be used in conjunction with Algorithm 2, where
some extra conditions, which are satisfied here, are imposed on the binumber
expansion.

Note that the storage requirement is minimal and only depends on the size of
the size of n. If storing all ps, qs with maxs(ps, qs) ≤ M , we need only O(log2M)
bits, since (2) implies 2qs−2 < qs and similarly for ps. Hence we would need only
O
(
(log logn)2

)
bits of storage.

4 Scalar Multiplication on Supersingular Elliptic Curves
in Characteristic 3

It appears that the decomposition described above leads quite naturally in some
cases to sublinear multiplication algorithms, that is to algorithms employing o(p)
elliptic curve operations to compute nP on an elliptic curve defined over Fq with
q = 2p, 3p. Of these two types, ternary curves (defined over F3p) seem to be of
some interest in conjunction with recent works on pairing-based cryptographic
protocols [2,8]. It happens that examples of supersingular curves over finite fields
of characteristic 3 exhibit the right ingredient to make our multiplication algo-
rithm run provably fast. Namely, such elliptic curves possess an extremely fast
multiplication by 3 (comparable to the Frobenius endomorphism).

An Analysis of Double Base Number Systems 179

Our previous algorithm does not immediately generalize to a fast multiplica-
tion algorithm, since the cost of the latter is expressed in terms of curve additions
and doublings/triplings. Theorem 2 results in a sublinear number of curve ad-
ditions, but, if a doubling or a tripling is performed in a non-negligible fraction
of the time cost of an addition, then the overall cost of the scalar multiplica-
tion is still comparable to log n. In the case of a supersingular elliptic curve in
characteristic 3, we will however prove the following result.

Theorem 3. Let E be a supersingular elliptic curve defined over F3 and P ∈
E(F3m). Then there exists an algorithm which, on input n < #E(F3m), will
compute nP in time

O

(
logn

log logn

)
.

Proof. Let us decompose n as in the proof of Theorem 1. Then (13) and (14)
imply that

qst ≤ log1−δ n (17)

as soon as

m =
(
logn

) 1
μ(μ−1)2

−ε

for some fixed ε > 0. Note that in Algorithm 1 our choice for m leads to (17)
with δ = 1/3. But qst defines an exponent si at each step of Algorithm 1. The
conclusion is that we can efficiently decompose

n =
I∑

i=1

2si3ti , si, ti ∈ N ∪ {0} (18)

with

I ≤ μ(μ− 1)
logn

log logn
+ o

(
logn

log logn

)
(19a)

and the additional conditions (see Remark 3)

(si, ti) �= (sj , tj) , i �= j (19b)

and

max
i
si ≤ log1−δ n . (19c)

From a decomposition with these properties, it is now easy to build a scalar
multiplication algorithm that takes asymptotically (as we take δ → 0) at most(
μ(μ − 1) + o(1)

)
log n

log log n curve operations (additions or doublings) to compute
nP , as described below.

	

180 M. Ciet and F. Sica

Note that (19b) implies that we can rewrite (18) as3

n =
I∑

i=1

2si

Ji∑
j=1

3ti,j (20)

where
I∑

i=1

Ji∑
j=1

1 = I , si > si+1 and ti,j > ti,j+1 .

This, together with (19c), implies that

I ≤ log1−δ n . (21)

Algorithm 2 describes a practical use of (20) in a scalar multiplication al-
gorithm employing two nested loops, one (internal) on the index j, another
(external) on the index i. The total cost of the algorithm is bounded by

I∑
i=1

Ji∑
j=1

additions + I doublings = O

(
logn

log logn

)
elliptic curve operations

using (19a) and (21). Note that we can neglect the cost of performing
3ti,j−ti,j+1R, following the discussion in Section 2.4: if we use normal bases,
this is clear since the cost of the triplings in steps 5 and 10 is negligible. If we
use a suitable polynomial basis then the cost of triplings from those steps is
O(pti,1 + ptI,1) = O(p2) binary operations. Since this is less than a curve opera-
tion, the total cost of triplings is, after (21), O(log1−δ n) elliptic curve operations,
so that this is negligible with respect to the total number of additions.

5 Conclusion and Ideas for Further Research

We have presented a scalar multiplication algorithm on supersingular elliptic
curves (in characteristic 3, easily extendible to other small characteristics) which
is sublinear in the length of the multiplier. Its relative speedup over double-and-
add or even triple-and-add in cryptographic algorithms making use of these
elliptic curves increases with the size of the parameters towards 100%. This
means that larger parameter size will result in comparatively more and more
advantageous performance with this sublinear algorithm.

From another viewpoint, this sheds new light on the balance between weak-
ened security on such curves and added performance: in increasing the size of the
parameters, one would still retain a high performance. In conclusion choosing
these curves (with sufficient large parameters for good security) in pairing-based
cryptography seems a viable choice that needs further investigation.

3 The si’s here are a subsequence of the original si’s.

An Analysis of Double Base Number Systems 181

Input: A point P on the supersingular elliptic curve Eb and a sequence of pairs of
exponents (si, ti,j) as in (20).
Output: The point Q on the elliptic curve such that Q = nP .

1. Q ← O
2. For i = 1 to I − 1
3. R ← P
4. For j = 1 to Ji

5. R ← 3ti,j−ti,j+1R + P
6. Q ← Q + R
7. Q ← 2si−si+1Q
8. R ← P
9. For j = 1 to JI

10. R ← 3tI,j−tI,j+1R + P
11. Q ← Q + R
12. Return Q

Algorithm2. Sublinear Multiplication

References

1. P. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-
based cryptosystems. In M. Yung, editor, Advances in Cryptology - Proceedings of
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 354–369.
Springer, 2002.

2. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, 17(4):297–319, September 2004.

3. M. Ciet, T. Lange, F. Sica, and J-J. Quisquater. Improved algorithms for effi-
cient arithmetic on elliptic curves using fast endomorphisms. In E. Biham, editor,
Advances in Cryptology - Proceedings of Eurocrypt 2003, volume 2656 of Lecture
Notes in Computer Science, pages 388–400. Springer, 2003.

4. V. S. Dimitrov, L. Imbert, and P. K. Mishra. Fast elliptic curve point multiplica-
tion using double-base chains. Cryptology ePrint Archive, Report 2005/069, 2005.
http://eprint.iacr.org/.

5. V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Theory and applications for a
double-base number system. In IEEE Symposium on Computer Arithmetic, pages
44–53, 1997.

6. V. S. Dimitrov, G. A. Jullien, and W. C. Miller. An algorithm for modular expo-
nentiation. Information Processing Letters, 66(3):155–159, 1998.

7. N. Gouillon. Minorations explicites de formes linéaires en deux logarithmes. PhD
thesis, Université de la Méditerranée Aix-Marseille II, Faculté des Sciences de Lu-
miny, 2003.

8. A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor,
Algorithmic Number Theory, 4th International Symposium, ANTS-IV, volume 1838
of Lecture Notes in Computer Science, pages 385–394. Springer, 2000.

182 M. Ciet and F. Sica

9. A.J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Pub-
lishers, 1993.

10. F. Morain and J. Olivos. Speeding up the Computations on an Elliptic Curve using
Addition-Subtraction Chains. Inform. Theor. Appl., 24:531–543, 1990.

11. J. A. Solinas. An Improved Algorithm for Arithmetic on a Family of Elliptic
Curves. In Burton S. Kaliski Jr., editor,Advances in Cryptology - Proceedings
of CRYPTO 1997, volume 1294 ofLecture Notes in Computer Science, pages 357–
371. Springer, 1997.

12. R. Tijdeman. On the maximal distance between integers composed of small primes.
Comp. Mathematica, 28:159–162, 1974.

Power Analysis by Exploiting Chosen Message
and Internal Collisions – Vulnerability of

Checking Mechanism for RSA-Decryption�

Sung-Ming Yen1, Wei-Chih Lien1, SangJae Moon2, and JaeCheol Ha3

1 Laboratory of Cryptography and Information Security (LCIS),
Dept of Computer Science and Information Engineering,

National Central University, Chung-Li, Taiwan 320, R.O.C.
{yensm, cs222058}@csie.ncu.edu.tw
http://www.csie.ncu.edu.tw/~yensm/

2 School of Electronic and Electrical Engineering,
Kyungpook National University,

Taegu, Korea 702-701
sjmoon@ee.knu.ac.kr

3 Dept of Computer and Information,
Korea Nazarene University, Choong Nam, Korea 330-718

jcha@kornu.ac.kr

Abstract. In this paper, we will point out a new side-channel vul-
nerability of cryptosystems implementation based on BRIP or square-
multiply-always algorithm by exploiting specially chosen input message
of order two. A recently published countermeasure, BRIP, against con-
ventional simple power analysis (SPA) and differential power analysis
(DPA) will be shown to be vulnerable to the proposed SPA in this paper.
Another well known SPA countermeasure, the square-multiply-always al-
gorithm, will also be shown to be vulnerable to this new attack. Further
extension of the proposed attack is possible to develop more powerful
attacks.

Keywords: Chosen-message attack, Cryptography, Side-channel attack,
Simple power analysis (SPA), Smart card.

1 Introduction

During the past few years many research results have been published on con-
sidering smart card side-channel attacks because of the popular usage of smart
cards on implementing cryptosystems. This new branch of cryptanalysis is usu-
ally called the side-channel attack (SCA).

The power analysis attack is an important category of SCA originally pub-
lished by Kocher [1] in which both simple power analysis (SPA) and differential
power analysis (DPA) were considered. SPA tries to extract the private key by

� This work was supported by University IT Research Center Project.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 183–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 S.-M. Yen et al.

observing on a single or a very few number of power consumption traces collected
from the smart card. DPA consists in performing a statistical analysis of many
power consumption traces (say a few thousands or more) of the same algorithm
with different inputs.

Exponentiation and its analogy, point scalar multiplication on elliptic curve,
are of central importance in modern cryptosystems implementation as they are of
the basic operation of almost all modern public-key cryptosystems, e.g., the RSA
system [2] and the elliptic curve cryptography [3,4]. Therefore, many side-channel
attacks and also the related countermeasures on implementing exponentiation
and point scalar multiplication have been reported in the literature.

Some recent works of power analysis attack, e.g., refined power analysis
(RPA) [5], zero-value point attack (ZPA) [6], and doubling attack [7], threaten
most existing countermeasures for implementing exponentiation and point scalar
multiplication, e.g., some countermeasures in [8]. Recently, Mamiya et al pro-
posed an enhanced countermeasure which was claimed to resist against RPA,
ZPA, classical DPA and SPA, and also doubling attack by introducing a new
random blinding technique and also exploiting a well known regular program
execution trick (say the square-multiply-always like approach) for each loop it-
eration.

The main contribution of this paper is that a new SPA by exploiting specific
chosen message is proposed in which collecting a single power trace is sufficient
to mount a successful attack. An important result obtained is that both the
well known SPA resistant countermeasure by using the square-multiply-always
algorithm [8] and also the recent and enhanced BRIP algorithm [9] are shown
to be vulnerable to this new attack. Further extension on the attack is also
pointed out by selecting more general and random input messages which makes
the detection of a specific message employed in the basic attack be infeasible
and this leads to a more powerful extended attack. Furthermore, the proposed
attack is also applicable to implementation of RSA with CRT speedup. Another
important observation is that cryptographic padding (e.g., RSA-OAEP [10,11])
is not always useful against simple power attack.

2 Preliminary and Related Works

In this paper, we consider the problem of computing modular exponentiation. In
the context of RSA private computation (for example, generating a digital signa-
ture or ciphertext decryption), we consider the computation of S = Md mod n
where M , d, and n are the input message, the private key, and the modulus
integer, respectively.

2.1 Exponentiation Algorithm

Let
∑m−1

i=0 di 2i be the binary expansion of exponent d. The computation
S = Md mod n needs efficient exponentiation algorithms to speedup its
implementation.

Power Analysis by Exploiting Chosen Message and Internal Collisions 185

Although numerous exponentiation algorithms have been developed for com-
puting Md mod n, practical solutions for devices with constraint computation
and storage capabilities (e.g., smart cards) are usually restricted to the basic
square-multiply algorithm (refer to Fig. 1 for the left-to-right/MSB-to-LSB ver-
sion) and some slightly modified ones. The exponentiation algorithm in Fig. 1
processes the bits of the exponent d from the most significant bit (MSB) towards
the least significant bit (LSB). An LSB-to-MSB counterpart of the algorithm in
Fig. 1 can be available from most related literature.

INPUT: M, d = (dm−1 · · · d0)2, n
OUTPUT: Md mod n

01 T = 1
02 for i from (m − 1) downto 0 do

03 T = T 2 mod n
04 if (di = 1) then T = T × M mod n
05 return T

Fig. 1. Classical left-to-right exponentiation algorithm

2.2 Side-Channel Attacks and Countermeasures

Side-channel attacks are developed based on the fact that in most real implemen-
tations some side-channel information (e.g., timing or power consumption) will
depend on the instructions being executed and/or the data being manipulated.
Therefore, the side-channel information may be exploited to mount a success-
ful attack to retrieve the embedded private key, e.g., the private exponent d in
Md mod n.

The classical binary exponentiation algorithm in Fig. 1 includes a condi-
tional branch (i.e., the Step (04)) that is driven by the secret data di. If the
two possible branches behave differently (or the branch decision operation it-
self behaves distinguishably), then some side-channel analysis (e.g., the simple
power analysis–SPA) may be employed to retrieve the secret data di. So, further
enhancement on the algorithm is necessary.

A novel idea of introducing dummy operations and eliminating secret data
dependent statements was proposed previously to enhance the basic algorithms
such that the improved versions behave more regularly. Some square-multiply-
always (or its counterpart called the double-add-always for point scalar multipli-
cation) based algorithms were already developed (refer to the well known one in
Fig. 2 [8] and a recent improvement in Fig. 3 [9]) by employing this observation.

2.3 Doubling Attack

The doubling attack [7] (or called squaring attack for the scenario of exponenti-
ation) is an SPA-based attack which works on the left-to-right square-multiply-
always countermeasure (see Fig. 2). The main idea is simply to choose two

186 S.-M. Yen et al.

INPUT: M, d = (dm−1 · · · d0)2, n
OUTPUT: Md mod n

01 T = 1
02 for i from (m − 1) downto 0 do

03 T0 = T 2 mod n
04 T1 = T0 × M mod n
05 T = Tdi

06 return T

Fig. 2. (SPA protected) Square-multiply-always countermeasure

INPUT: M, d = (dm−1 · · · d0)2, n
OUTPUT: Md mod n

01 select a random integer R
02 T0 = R; T1 = R−1 mod n; T2 = M × R−1 mod n
03 for i from (m − 1) downto 0 do

04 T0 = T 2
0 mod n

05 if (di = 0) then T0 = T0 × T1 mod n
06 else T0 = T0 × T2 mod n
07 return T0 × T1 mod n

Fig. 3. BRIP countermeasure for exponentiation

strongly related inputs M and M2 (so being a chosen-message attack) and to
observe the collision of two computations for M2(2x+di) mod n and M4x mod n
if di = 0. In the doubling attack, even if the attacker cannot decide whether
a computation being performed is squaring or multiplication, the attacker can
still detect collision of two operations (basically the squaring operation) within
two related computations. More precisely, for two computations A2 mod n and
B2 mod n, even if the attack cannot tell the values of A and/or B, however the
attacker can detect the collision if A = B.

The following example given in Table 1 provides the details of the doubling
attack. Let the private exponent d be 79 = (1, 0, 0, 1, 1, 1, 1)2 and the two related
input messages be M andM2, respectively. The computational process of raising
Md and (M2)d using the left-to-right square-multiply-always algorithm reveals
the fact that if di = 0, then both the first computations (both are squarings)
of iteration1 i − 1 for Md and iteration i for (M2)d will be exactly the same.
So, observing collisions within computation on two collected power consumption
traces enables the attacker to identify all private key bits of zero value.

The assumption made (was claimed in [7] to be correct experimentally) is
very reasonable since the target computations usually take many machine clock
cycles and depend greatly on the operands, so the collision is more easy to detect.

1 Here, the iteration number is denoted decreasingly from m − 1 downward toward
zero.

Power Analysis by Exploiting Chosen Message and Internal Collisions 187

Table 1. Computations of Md and (M2)d in the square-multiply-always algorithm

i di Process of Md Process of (M2)d

6 1 12 12

1 × M 1 × M2

5 0 M2 (M2)2

M2 × M M4 × M2

4 0 (M2)2 (M4)2

M4 × M M8 × M2

3 1 (M4)2 (M8)2

M8 × M M16 × M2

2 1 (M9)2 (M18)2

M18 × M M36 × M2

1 1 (M19)2 (M38)2

M38 × M M76 × M2

0 1 (M39)2 (M78)2

M78 × M M156 × M2

Return M79 M158

To protect against the above doubling attack, the random message blinding
(RMB) technique should be employed. The RMB technique blinds the original
message M to M × R mod n before being signed with a random mask R, and
removes a blinding factor (Rd)−1 mod n from the result to obtain the signature
S by computing Md = (M ×R)d × (Rd)−1 mod n.

However, it has been shown in [7] that a regular (in order to be efficient)
mask updating, e.g., by Ri = R2

i−1 mod n mentioned in [8], might be vulnerable
to the doubling attack. So, it was suggested that a real random masking can be
employed to avoid the attack.

2.4 The BRIP Countermeasure

Randomized exponentiation algorithms were recently considered as effective
countermeasures against DPA by introducing randomization onto the input mes-
sage or into the computational process of the algorithm in order to remove cor-
relation between the private key and the collected power traces. One of such
countermeasures is the BRIP algorithm [9] shown in Fig. 3 (it means binary
expansion with random initial point/value) in which the input RSA message is
blinded by multiplying with a random integer R−1 mod n.

It was claimed in [9] that the BRIP algorithm can be secure against SPA2

since there will always be two operations in each iteration, i.e., the Step (04)
and one of either the Step (05) or the Step (06).

2 Of course, the version given in Fig. 3 needs some slight modification (mostly on using
well known register indexing trick) to make it be truly SPA resistant. However, this
version is sufficient for demonstration purpose.

188 S.-M. Yen et al.

Remarks. BRIP was originally proposed for ECC context to protect against
RPA which requires an inversion for the computation. However, BRIP’s authors
say that their algorithm can also be applied in Zn for cryptosystems based on
integer factorization or discrete logarithm. In fact, BRIP can also work efficiently
for the above systems if an efficient and secure (against related side-channel
attacks, especially the doubling-like attack) random message blinding update
process for {Ri, R

−1
i } can be developed.

3 The Proposed Attack

In the following, an SPA by exploiting chosen input data will be pointed out
which is generic and can be extended to some related attacks that will be de-
scribed in this paper.

3.1 Attack Assumption

The assumption made in this paper is basically the same as what considered in
the doubling attack [7] and that in an attack reported in [12]. The validity and
practicality of the employed attack assumption was claimed in [7] to be correct
by experiment3.

The assumption is that an adversary can distinguish collision of power trace
segments (within a single or more power traces) when the smart card performs
twice the same operation even if the adversary is not able to tell which exact
computation is done.

Examples of collision instances to be distinguished include modular squaring
and modular multiplication. For example, an adversary is assumed to be able to
detect the collision of A2 mod n and B2 mod n if A = B even though A and B
are unknown.

3.2 Attack on the Square-Multiply-Always Algorithm

In the context of RSA system, given the modulus n, we observed that (n−1)2 ≡ 1
(mod n). This observation can be extended to obtain (n− 1)j ≡ 1 (mod n) for
any even integer j and (n− 1)k ≡ n− 1 (mod n) for any odd integer k.

Given M = n − 1, the square-multiply-always exponentiation algorithm in
Fig.2 will have T = (n− 1)(dm−1···di)2 mod n after the Step (05) of iteration i. If
T = 1, then (dm−1 · · · di)2 is an even integer and di = 0. Otherwise, T = n− 1
and (dm−1 · · ·di)2 is an odd integer and di = 1.

By observing on a single collected power trace of performing the algorithm
in Fig.2, the attacker can try to identify the value of T (it can only be either 1 or
n−1) at the end of each iteration and to conduct the aforementioned derivation
of each di. The approach used to identify the value of di is by SPA shown below.
Given the two possible values of T at the end of iteration i, there will be only

3 So, we did not perform another experiment.

Power Analysis by Exploiting Chosen Message and Internal Collisions 189

two possible computations of the iteration (i−1) shown below and which can be
identified by using SPA. In the following statements, the symbol x → y means
that the result of computation x will be assigned to the register y.

– if di = 0, Step (03) of the iteration (i− 1) performs:
12 mod n→ T0;

– if di = 1, Step (03) of the iteration (i− 1) performs:
(n− 1)2 mod n→ T0.

Notice that there are only two possible candidate computations of the Step
(03). So, during the attack, it does not need to know exactly which of the two
observed power consumption patterns of the Step (03) matches with the com-
putation of (n − 1)2 mod n (or 12 mod n). Only two possible private keys d’s
will be derived and a trial-and-error approach can be used to select the correct
d among the two possibilities. For example, if the MSB of d is presumed to be
one, then one of the two possible d’s can be selected easily.

All the private key bits can be derived except d0 by the above SPA. However,
d0 can be known by detecting whether the final result is T = 1. On the other
hand, in the context of RSA, d0 is always binary one. Notice that this new SPA
is much easier to mount than in the case of a conventional one (to attack the
algorithm in Fig. 1) since now the square-multiply-always algorithm performs
regularly such that each iteration has one modular squaring followed by a mod-
ular multiplication. Therefore, given a collected power trace, it would be much
easier to identify the beginning and the end4 of all iterations and this benefits
the proposed new SPA.

Interestingly, a countermeasure originally developed to be resistant to SPA
is unfortunately more vulnerable to a new SPA which is much easier to mount
compared to the conventional SPA.

3.3 Attack on the BRIP Algorithm

It is interesting to note that the randomized version of square-multiply-always
exponentiation in Fig. 3, the BRIP algorithm, is also vulnerable to the above
proposed SPA. In the BRIP countermeasure, given M = n− 1, we observe that
at the end of iteration i:

– if di = 0: after the Step (05), T0 = (n− 1)(dm−1···di)2 ×R = R mod n,
– otherwise if di = 1: after the Step (06), T0 = (n − 1)(dm−1···di)2 × R =

(n− 1) ×R mod n.

Based on the proposed chosen-message SPA, by observing on a single col-
lected power trace, the attacker can try to identify the value of T0 at the end of
each iteration i in order to derive di. Given the two possible values of T0 at the
end of iteration i, there will be only two possible computations (shown below)
of the iteration (i− 1) which can be identified by using SPA.
4 Actually, the computation of the second part (say the Step (04)) of each iteration

under the proposed chosen-message SPA are the same, i.e., 1 × (n − 1) mod n. This
collision helps to identify the end of each iteration.

190 S.-M. Yen et al.

– if di = 0, Step (04) of the iteration (i− 1) performs:
R2 mod n→ T0;

– if di = 1, Step (04) of the iteration (i− 1) performs:
((n− 1) ×R)2 mod n→ T0.

In the above approach of SPA, all the private key bits can be derived except
d0. Similarly, d0 can usually be obtained easily by some other approaches, and
for RSA the value of d0 is known to be one.

It is very important to notice that no matter what the value of R will be,
the proposed SPA is applicable. Evidently, the initial random message blinding
technique (at the Step (02)) proposed in the BRIP is not resistant against the
proposed attack.

Another approach to mount the chosen-message SPA on the BRIP is possible
and is shown below. Since there are only two possible input values of T0 (either
R or (n− 1)R mod n) at the beginning of each iteration i, it is always true that
T0 = R2 mod n when finishing the Step (04). After that, one of the two possible
modular multiplications (Step (05) or Step (06)) will be performed depending
on the value of di.

– if di = 0, Step (05) of the iteration i performs:
R2 ×R−1 mod n→ T0;

– if di = 1, Step (06) of the iteration i performs:
R2 × ((n− 1)R−1) mod n→ T0.

The same that the above attack is applicable no matter what the value of R
will be. Hence, the initial random message blinding technique at the Step (02)
is still in vain.

3.4 Applicability of the Attack

The proposed attack is applicable to the cases where element of order 2 exists
or in any case (−1)k is computed in prime-order cases. So, the proposed attack
now works against

– traditional textbook RSA decryption and signature
– RSA-OAEP decryption [10,11]
– ElGamal decryption [13]

when they are implemented based on the square-multiply-always or the BRIP
algorithms. An interesting and important point to observe is that cryptographic
padding (e.g., currently used RSA-OAEP) is not always useful against simple
power attack. However, the proposed attack does work on RSA-OAEP decryp-
tion since the ciphertext validity checking is performed after the RSA private
exponentiation computation. So, the attacker still can collect the necessary power
trace(s).

But, the proposed attack does not work against the following systems

Power Analysis by Exploiting Chosen Message and Internal Collisions 191

– most discrete logarithm based signature schemes
– elliptic curve discrete logarithm based decryption and signature (since ECC

is usually implemented on the prime-order elliptic curves and there is no
element with order 2)

– RSA signature with hash function and/or cryptographic padding.

4 Extension of the Proposed Attack

4.1 Extension to RSA with CRT

In the RSA cryptosystem, let the public modulus be n = p × q which is the
product of two secret prime integers p and q each with roughly |n|/2 bits5.
Prime factorization of the public modulus n can totally break the system.

The well known Chinese Remainder Theorem (CRT) technique [14,15] can
be used to speedup the RSA private computation extensively, e.g., the RSA
signature computation S = Md mod n. In the RSA with CRT, we compute
Sp = M

dp
p mod p and Sq = M

dq
q mod q, where Mp = M mod p, Mq = M mod q,

dp = d mod (p− 1), and dq = d mod (q − 1). Finally, the signature is computed
by using the following Gauss’s [14, p.68] (or other more efficient alternative)
recombination algorithm

S = (Sp × q × (q−1 mod p) + Sq × p× (p−1 mod q)) mod n

where both q−1 mod p and p−1 mod q can be precomputed.
Basically, RSA with CRT is about four times faster than the straightforward

approach to compute S directly in terms of bit operations. This CRT-based
speedup for RSA private computation has been widely adopted in most systems,
especially for implementations with smart card. In the following, we will show
that the proposed SPA with chosen message is generic and can be applicable to
the RSA with CRT even if the adversary does not know the secret prime integers
p and q in advance.

In the attack, the adversary tries to derive dp (or dq) during the computation
of Mdp

p mod p (or Mdq
q mod q). The adversary provides the chosen message M =

n − 1 to the smart card and observes on the computation of Sp = M
dp
p mod

p under the implementation of left-to-right square-multiply-always algorithm
where Mp = (n− 1) mod p.

We observed that (n − 1)2 ≡ 1 (mod n) leads to M2
p ≡ 1 (mod p) (and

M2
q ≡ 1 (mod q)) where Mp = (n − 1) mod p (and Mq = (n − 1) mod p). The

above observation can be extended to obtain M j
p ≡ 1 (mod p) for any even

integer j and Mk
p ≡ Mp (mod p) for any odd integer k.

The square-multiply-always algorithm in Fig.2 will have T = M
(dp,�−1···dp,i)2
p

mod p (where � = |dp|) after the Step (05) of iteration i. If T = 1, then
(dp,�−1 · · · dp,i)2 is an even integer and dp,i = 0. Otherwise, T = Mp and

5 The symbol |n| means the number of bits of binary representation of n.

192 S.-M. Yen et al.

(dp,�−1 · · · dp,i)2 is an odd integer and dp,i = 1. By observing on a single col-
lected power trace, the adversary can try to identify the value of T (in order to
derive the value of dp,i) by SPA. The analysis is summarized in the following.

– if dp,i = 0, Step (03) of the iteration (i− 1) performs:
12 mod p→ T0;

– if dp,i = 1, Step (03) of the iteration (i− 1) performs:
M2

p mod n→ T0.

Notice that in the proposed attack the adversary does not need to know the
value of Mp = (n− 1) mod p. Recall that p is unknown to the adversary. All the
private key bits of dp can be derived except dp,0 by the above SPA. However,
dp,0 is binary one in the usual case of RSA parameters selection in which d is an
odd integer and p− 1 is an even integer.

Notice also that the proposed attack is still applicable to the RSA with CRT
speedup if the BRIP exponentiation algorithm will be employed. The details of
this attack can be obtained similarly, so the analysis is omitted here.

It was already well known that given the partial private key dp (or dq) and the
public parameters n and e, both the factorization of n and also the private key d
can be available directly. The approach to factorize n is given below. Randomly
select an integer X and computes Y = Xe mod n. Evidently, Y d ≡ X (mod n)
and this leads to Y dp ≡ X (mod p) or equivalently Y dp −X ≡ 0 (mod p). With
the knowledge of dp obtained by the proposed SPA, the adversary can derive p
by computing

p = gcd(Y dp −X,n) = gcd(Y dp −X mod n, n).

With p and q, the RSA private key d can be computed. So, the adversary does
not need to analyze on the computation of Mdq

q mod q in order to derive dq.

4.2 Extension to Randomly Chosen-Message Attack

An important question to answer about the proposed attack is that whether
identification of n−1 as input message can be a sufficient countermeasure. Basi-
cally, for some cases, the answer is negative because of the following extended and
more powerful attack with slightly different assumption. In the extended attack,
two power consumption traces are necessary, but the related input messages are
far from a fixed and specific value of n− 1.

The extended attack on the square-multiply-always algorithm (refer to Fig. 2)
performs as follows. The adversary selects a pair of input messages M1 (can
be any random message) and M2 = M1 × (n − 1) mod n and collects the two
related power consumption traces of computing Md

1 mod n and Md
2 mod n. The

adversary can mount successfully an SPA by observing the collision of middle
results between these two power consumption traces in order to identify zero
bits of the private key d. The basic idea is that collision will happen when

Mk
1 ≡Mk

2 (mod n)

if the exponent k is an even integer.

Power Analysis by Exploiting Chosen Message and Internal Collisions 193

In the SPA-protected exponentiation algorithm in Fig. 2, if some key bit di is
zero, then collision on values of T among the two collected power consumption
traces can be detected at the end of iteration i since

M
(dm−1···di)2
2 ≡ M

(dm−1···di)2
1 · (n− 1)(dm−1···di)2 ≡M

(dm−1···di)2
1 (mod n).

Therefore, the Step (03) of iteration (i−1) will be a collision instance (the same
operation with same operand). This is summarized in the following.

– if di = 0, Step (03) of the iteration (i− 1) of both the two observed compu-
tations perform the same:
(M (dm−1···di)2

1)2 mod n→ T0;
– if di = 1, Step (03) of the iteration (i− 1) of both the two observed compu-

tations perform differently:
either (M (dm−1···di)2

1)2 mod n→ T0

or ((n− 1) ×M
(dm−1···di)2
1)2 mod n→ T0.

This SPA enables the adversary to derive all the private key bits of d except d0.
It is interesting to notice that the above extended attack can be considered

as a variant of the doubling attack [7]. Both attacks exploit two related cho-
sen messages (however with different forms) and collision detection by SPA on
squaring operations (the Step (03)) within two exponentiations.

There is however some difference between the two attacks. In the doubling
attack, the adversary observes on collision occurred in two “different” iterations
of two power consumption traces. On the contrary, in the proposed extended
attack, the adversary observes on collision occurred in the “same” iteration (in
fact, the exactly same timing duration) of two power consumption traces. ¿From
practical point of view for the SPA scenario, the collision detection on the same
iteration will be more or less easier than on different iterations. This is especially
the case when both attacks deal with random input messages, and try to observe
on collision of random computations that will be varying/different during the
whole process of the algorithm.

One possibility to detect the proposed extended attack is to check the rela-
tionship6 between two input messages on whether Mj = Mi × (n− 1) mod n for
every pair of i and j. It is however extremely difficult and infeasible to detect
all the relationship of input messages since Mi and Mj may not be two consec-
utive input messages to mount the attack. By the way, it is infeasible to store
all previous input messages in order to perform the detection, especially for the
applications with smart card.

5 Conclusions

It was previously believed that the BRIP algorithm can be an effective counter-
measure against SPA and DPA. However, our research reveals that the BRIP
6 In the doubling attack, similar approach is to check whether Mj = M2

i mod n for
every pair of i and j.

194 S.-M. Yen et al.

algorithm is vulnerable to a new SPA. By the way, the well known left-to-right
square-multiply-always algorithm (for SPA resistance) is also shown to be inse-
cure against the proposed attack.

Notice especially that the proposed SPA can also be applicable to the sce-
nario of RSA decryption even if RSA-OAEP padding will be considered. The
reason is that the ciphertext validity checking is performed after the private ex-
ponentiation computation. So, the attacker still can collect the power trace(s).

Some extensions of the attack are also considered in this paper which include
the application on RSA with CRT speedup and how to use randomly chosen
messages to mount a similar attack.

Acknowledgment

The authors would like to thank Dr. Atsuko Miyaji, Dr. Shiho Moriai, and several
anonymous referees for their professional and in-depth suggestions and comments
on both technical and editing issues. These suggestions improve extensively to
the final version of this paper.

References

1. P. Kocher, J. Jaffe and B. Jun, “Differential power analysis,” Advances in Cryp-
tology – CRYPTO ’99, LNCS 1666, pp. 388–397, Springer-Verlag, 1999.

2. R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystem,” Commun. of ACM, vol. 21, no. 2, pp. 120–126,
1978.

3. V. Miller, “Uses of elliptic curve in cryptography,” Advances in Cryptology –
CRYPTO ’85, LNCS 218, pp. 417-426, Springer-Verlag, 1985.

4. N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48,
no. 177, pp. 203-209, Jan. 1987.

5. L. Goubin, “A refined power-analysis attack on elliptic curve cryptosystems,” Proc.
of Public Key Cryptography – PKC ’03, LNCS 2567, pp. 199–210, Springer-Verlag,
2003.

6. T. Akishita and T. Takagi, “Zero-value point attacks on elliptic curve cryptosys-
tem,” Proc. of Information Security Conference – ISC ’03, LNCS 2851, pp. 218–
233, Springer-Verlag, 2003.

7. P.-A. Fouque and F. Valette, “The doubling attack – why upwards is better than
downwards,” Proc. of Cryptographic Hardware and Embedded Systems – CHES ’03,
LNCS 2779, pp. 269–280, Springer-Verlag, 2003.

8. J. Coron, “Resistance against differential power analysis for elliptic curve cryp-
tosystems,” Proc. of Cryptographic Hardware and Embedded Systems – CHES ’99,
LNCS 1717, pp. 292-302, Springer-Verlag, 1999.

9. H. Mamiya, A. Miyaji, and H. Morimoto, “Efficient countermeasures against
RPA, DPA, and SPA,” Proc. of Cryptographic Hardware and Embedded Systems –
CHES ’04, LNCS 3156, pp. 343–356, Springer-Verlag, 2004.

10. PKCS #1 v2.1, “RSA Cryptography Standard”, 5 January 2001.
http://www.rsasecurity.com/rsalabs/pkcs/

Power Analysis by Exploiting Chosen Message and Internal Collisions 195

11. M. Bellare and P. Rogaway, “Optimal asymmetric encryption padding – How to en-
crypt with RSA,” Advances in Cryptology – EUROCRYPT ’94, LNCS 950, pp. 92–
111, Springer-Verlag, 1995.

12. K. Schramm, T. Wollinger, and C. Paar, “A new class of collision attacks and its
application to DES,” Proc. of Fast Software Encryption – FSE ’03, LNCS 2887,
pp. 206–222, Springer-Verlag, 2003.

13. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp. 469–472, 1985.

14. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of applied cryp-
tography. CRC Press, 1997.

15. J.-J. Quisquater and C. Couvreur, “Fast decipherment algorithm for RSA public
key cryptosystem,” Electronics Letters, vol. 18, no. 21, pp. 905–907, 1982.

Optimization of the MOVA Undeniable
Signature Scheme

Jean Monnerat1,�, Yvonne Anne Oswald2, and Serge Vaudenay1

1 EPFL, Switzerland
http://lasecwww.epfl.ch
2 ETH Zürich, Switzerland

Abstract. This article presents optimization results on the MOVA un-
deniable signature scheme presented last year by Monnerat and Vaude-
nay at PKC ’04 as well as its generalization proposed at Asiacrypt ’04
which is based on a secret group homomorphism. The original MOVA
scheme uses characters on Z∗

n and some additional candidate homomor-
phisms were proposed with its generalization. We give an overview of
the expected performance of the MOVA scheme depending on the group
homomorphism. Our optimizations focus on the quartic residue symbol
and a homomorphism based on the computation of a discrete logarithm
in a hidden subgroup of Z∗

n. We demonstrate that the latter provides a
signature generation which is three times faster than RSA.

Keywords: Undeniable signatures, optimization.

1 Introduction

Undeniable signatures, which have been introduced by Chaum and van Antwer-
pen in [1], differ from classical digital signatures in the verification process.
Contrary to classical digital signatures, where anyone holding the public key of
the signer is able to verify whether a given signature is valid or not, one has to
interact with the signer to be convinced of the validity or the invalidity of the
signature. This interaction enables the signer to control the distribution of the
signature verification. An undeniable signature scheme therefore consists of a key
setup algorithm and a signature generation algorithm, as well as an interactive
verification protocol. This protocol is composed of a confirmation and a denial
protocol which allow to prove the validity resp. the invalidity of the signature.

In March 2004, a new undeniable signature scheme called MOVA was pro-
posed by Monnerat and Vaudenay [12]. More recently, the same authors gener-
alized this scheme to the more general framework of group homomorphisms [13].
Namely, the MOVA scheme can be seen as the particular case where the underly-
ing homomorphism is a character on Z∗

n. When the choice of the homomorphism
is adequate (as for MOVA), this signature scheme allows signatures to be arbi-
trarily short (typically around 20–30 bits), depending on the required security
level.
� Supported by a grant of the Swiss National Science Foundation, 200021-101453/1.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 196–209, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimization of the MOVA Undeniable Signature Scheme 197

The goal of this paper is to optimize the signature generation algorithm of
the generalized scheme based on group homomorphisms and to present a com-
parison of the signature generation efficiency between the group homomorphisms
considered as potential candidates. In particular, we focus on the optimization of
characters of order 4 which requires to deal with algorithms computing the quar-
tic residue symbol. Moreover, one quartic residue symbol variant is of particular
interest since it is the only homomorphism presenting the special property of
having two levels of secret. We propose an application of this property where a
delegate of a company needs to sign some pre-agreement of a transaction which
will be finalized later by the company using an additional level of secret. We
also analyze the case of a homomorphism proposed in [13] consisting of sending
elements of Z∗

n to a cyclic subgroup followed by the computation of a discrete
logarithm. We give details on an implementation using a precomputed table of
discrete logarithms. A comparison with practical parameters (e.g., a modulus
n of 1024 bits) with the Jacobi symbol as well as RSA using standard efficient
methods is presented at the end of this article. Our implementations are done
in C using the large numbers library GMP [6].

2 The MOVA Scheme

For the sake of simplicity, the generalized scheme [13] will be called MOVA as
well. Below we review the main ideas and the signature generation algorithm of
this undeniable signature scheme.

First, let us recall some basic definitions from [13] related to the interpolation
of group homomorphisms.

Definition 1. Let G and H be two Abelian groups.

1. Given S := {(x1, y1), . . . , (xs, ys)} ⊆ G×H, we say that the set of points S
interpolates in a group homomorphism if there exists a group homomorphism
f : G −→ H such that f(xi) = yi for i = 1, . . . , s.

2. We say that a set of points B ⊆ G×H interpolates in a group homomorphism
with another set of points A ⊆ G × H if A ∪ B interpolates in a group
homomorphism.

The central idea of the generalized MOVA scheme is to consider a secret group
homomorphism Hom between two publicly known Abelian groups Xgroup and
Ygroup as the signer’s secret key. The order of the group Ygroup is public and
is denoted as d. The signer then chooses a set Skey ⊆ Xgroup×Ygroup of Lkey
points such that Skey interpolates in a unique homomorphism, namely Hom. The
signer chooses Skey := {(Xkey1,Ykey1), . . . , (XkeyLkey,YkeyLkey)} in varying
ways depending on the choice of one of the setup variants presented in [13]. The
size of the parameter Lkey depends on the setup variant choice too. Then, to
sign a given message m the signer computes Lsig values Xsig1, . . . ,XsigLsig ∈
Xgroup from m by using a random oracle and computes Hom(Xsigi) := Ysigi

198 J. Monnerat, Y.A. Oswald, and S. Vaudenay

for 1 ≤ i ≤ Lsig. Finally, the signature of m with respect to the secret key Hom
is

σ := (Ysig1, . . . ,YsigLsig).

In the verification step, the verifier will first send the message-signature
pair (m,σ) he would like to verify. If the pair is valid, the signer launches
a confirmation protocol with the verifier in which he proves that the set of
points {(Xkey1,Ykey1), . . . , (XkeyLkey,YkeyLkey)} interpolates in a group homo-
morphism (namely Hom) with the set {(Xsig1,Ysig1), . . . , (XsigLsig,YsigLsig)}.
Otherwise, the signer launches a denial protocol in which he proves that the
set of points {(Xkey1,Ykey1), . . . , (XkeyLkey,YkeyLkey)} does not interpolate in
a group homomorphism with the set {(Xsig1,Ysig1), . . . , (XsigLsig,YsigLsig)}.
More details about the confirmation and denial protocols can be found in [13].

We state the so-called “Group Homomorphism Interpolation Problem” in-
troduced in [13].

S-GHI Problem (Group Homomorphism Interpolation Problem)
Parameters: two Abelian groups G and H , a set of s points S ⊆ G×H .
Input: x ∈ G.
Problem: find y ∈ H such that (x, y) interpolates with S in a group

homomorphism.

It is shown in [13] that the resistance of this scheme against existential forgery
under a chosen-message attack relies on the hardness of the GHI problem with
parameters G = Xgroup, H = Ygroup and S = Skey. Hence, for a homomor-
phism (more formally a family of homomorphisms) for which the Skey-GHI prob-
lem is hard, we can assume that there is no easier method to forge a signature
than performing an (online) exhaustive search. Furthermore, if the homomor-
phism is such that it is hard to find any information bit on y in the Skey-GHI
problem, the security level against an existential forgery attack depends exactly
on the signature size which is Lsig · log2(d).

3 Homomorphisms

In this section, we briefly describe some instances of the group homomorphism
Hom considered in [13] such as characters on Z∗

n [12], the RSA encryption ho-
momorphism [5,14] or the discrete logarithm in a hidden subgroup [13].

3.1 Characters on Z∗
n

Definition 2. Let n be an integer. A character χ on Z∗
n is a group homomor-

phism from Z∗
n to C− {0} i.e.,

χ(ab) = χ(a)χ(b) for all a, b ∈ Z∗
n.

Optimization of the MOVA Undeniable Signature Scheme 199

The characters on Z∗
n form a group with respect to the composition of func-

tions. The order of a character χ is its order with respect to the group of char-
acters. It is important to note that a character of order d maps any element to a
dth root of the unity. In the MOVA scheme, the study focused on the characters
of order 2, 3 and 4. In this article, we will not consider the case d = 3 since the
algorithmic issues are similar to the case d = 4.

For more details about characters, we refer to the article on the MOVA
scheme [12] and the textbook of Ireland and Rosen [7].

Jacobi Symbol We consider a public modulus n = pq where p, q are two large
secret primes. From the theory of characters, it directly follows that there exist
exactly 4 characters of order 2 on Z∗

n, namely the Jacobi symbols (·/n)2, (·/p)2,
(·/q)2 and the trivial character. Note that the Jacobi symbol (·/n)2 and the
trivial character are not suitable for our purpose since they can be efficiently
computed without the knowledge of the factorization of n.

Quartic Characters The theory of the characters of order 4 naturally occurs
in the context of Gaussian integers. We recall the required background related
to our study. Most of these results are taken from [7].

The ring of the Gaussian integers is defined as

Z[i] := {a+ bi | a, b ∈ Z}.
The norm of an element α = a+ bi is defined as N(α) = α · ᾱ = a2 + b2, where
ᾱ denotes the complex conjugate of α. Z[i] is well known to be Euclidean which
implies that we can talk about the gcd of two Gaussian integers and there is an
Euclidean division: given α, β ∈ Z[i] with β �= 0, there exists γ, δ ∈ Z[i] s.t.
α = γβ+δ and N(δ) < N(β). Note that γ and δ are not necessarily unique. The
units (invertible elements) of Z[i] are ±1, ±i. We say that two elements α, β are
associate if and only if α = uβ for a unit u. The gcd of two Gaussian integers is
uniquely defined up to an associate. Moreover, we say that two Gaussian integers
α and β are relatively prime iff the only common divisors are units, i.e., their gcd
is a unit. In this case we will use the notation gcd(α, β) ∼ 1. Any prime element
of Z[i] is of the following form or the associate of an element of this form:

1. 1 + i
2. q ≡ 3 (mod 4) a prime in Z
3. π such that N(π) ≡ 1 (mod 4) is a prime in Z

Any Gaussian integer has a unique decomposition into primes up to a unit.
For any prime σ ∈ Z[i], the quotient Z[i]/(σ) is a field with N(σ) element. This
allows to define the quartic residue symbol.
Definition 3. Let α, β ∈ Z[i] be such that (1 + i) � β and gcd(β, α) ∼ 1. The
quartic residue symbol is defined as χβ : Z[i] → {±1,±i}

χβ(α) =

⎧⎪⎨⎪⎩u such that α
N(β)−1

4 ≡ u (mod β), u ∈ {±1,±i}, if β is prime∏
i χβi(α), if β =

∏
i βi, βi prime

200 J. Monnerat, Y.A. Oswald, and S. Vaudenay

The quartic residue symbols which are considered for MOVA [12] are chosen
as follows. Let p, q be two rational primes such that p ≡ q ≡ 1 (mod 4). There
exist π, σ such that p = ππ̄ and q = σσ̄. π and σ can be computed with the
help of the algorithms of Tonelli and Cornacchia (for more details see [3]). Then,
we choose Hom = χβ with β = π or β = πσ. Moreover, we take Xgroup := Z∗

n

which is a natural choice since Z[i]/(πσ) � Zn and Z[i]/(π) � Zp.
From the properties of the quartic residue symbol and the Jacobi symbol,

we can show that (χπσ(a))2 = (a/n)2 for any a ∈ Z. Therefore, without the
knowledge of the factorization of n we can easily deduce one bit of χπσ(a). In
practice, we will compress this quartic residue symbol to one bit sending 1, i
to the bit 0 and −1,−i to the bit 1. To decompress, it suffices to compute the
Jacobi symbol to retrieve the right quartic residue symbol. Hence, with this
quartic residue symbol we have to perform two times more evaluations than
with χπ for the same level of security against an existential forgery. This shows
that the signature generation will be anyway less efficient for χπσ than for χπ.

A motivation for using χπσ is, that this character has two levels of secret,
namely the secret key πσ does not allow to factorize n. As mentioned in [13]
an expert group knowledge of the group Z∗

n is required in order to convert a
signature into an ordinary one. Here, this expert group knowledge corresponds
to the ability to factorize. Hence, we can imagine an application where a mobile
delegate of a company is able to sign some pre-agreement of some contracts or
transactions using χπσ which can be confirmed by a server of the company. Later,
the delegate sends a report to his company, which then can issue an ordinary
signature for a final agreement by converting the signature of the delegate. In
such a scenario, even if the delegate loses his key or it is stolen, he can contact
his company before a confirmation of the signature is performed. In any case,
the company never converts a signature before it is convinced that the delegate
key was not lost or stolen.

3.2 RSA

Following the long tradition of the RSA based cryptography, an undeniable sig-
nature scheme based on RSA [14] was proposed in 1997 by Gennaro et al.[5].
This scheme can be seen as a special case of the generalized MOVA scheme when
the homomorphism is the RSA encryption function defined on a modulus of safe
primes. So, the signature is generated as for the regular RSA signature scheme.

3.3 Discrete Logarithm in a Hidden Subgroup

Another homomorphism suitable for the generalized MOVA scheme is based on
the discrete logarithm in a hidden subgroup.

Let n be such that n = pq with p = rd + 1, q, d prime, gcd(q − 1, d) = 1,
gcd(r, d) = 1 and g generating a subgroup of Z∗

p. We obtain g by choosing a
random element h ∈ Z∗

n until h satisfies hr mod p �= 1 and we set g = hr mod p.
Like this we find a homomorphism by “sending” the input in a hidden cyclic

Optimization of the MOVA Undeniable Signature Scheme 201

subgroup of order d and then computing its discrete logarithm with respect to
the generator g,

φ : Z∗
n −→ Zd

x �−→ logg(x
r mod p).

4 Quartic Residue Symbol

4.1 Background

We recall some properties of the quartic residue symbol which play a crucial
role in the algorithms we will consider. To this end, we introduce the notion of
“primarity”.

We say that a Gaussian integer α = a + bi is primary if and only if either
a ≡ 1 (mod 4), b ≡ 0 (mod 4) or a ≡ 3 (mod 4), b ≡ 2 (mod 4). It can be
shown that for any nonunit α ∈ Z[i] with (1 + i) � α, there is a unique associate
of α which is primary.

Theorem 4. Let β = a + bi, α and α′ be some Gaussian integers such that
gcd(β, α) ∼ gcd(β, α′) ∼ 1 and (1 + i) � β. The following properties hold.

1. Modularity: If α ≡ α′ (mod β) then χβ(α) = χβ(α′).
2. Multiplicativity: χβ(αα′) = χβ(α)χβ(α′).
3. Quartic Reciprocity Law: If α and β are primary,

χα(β) = χβ(α) · (−1)
N(α)−1

4 ·N(β)−1
4 .

4. Complementary Reciprocity Laws: If β is primary,

χβ(i) = i
N(β)−1

4 and χβ(1 + i) = i
a−b−b2−1

4 .

4.2 Basic Algorithm

Description To compute the quartic residue symbol χβ(α) directly, one has
to know the factorization of β into primes over Z[i] and the computation con-
tains an exponentiation. To avoid this factorization as well as the costly ex-
ponentiation we apply the properties of the quartic residue symbol iteratively.
First we reduce α to an element α̂ equivalent to α modulo β and that satisfies
N(α̂) < N(β). From now on, such a reduction of an element α modulo β will
be denoted Redβ(α). Note that the obtained α̂ ← Redβ(α) is not necessarily
unique. Then, we find the unique representation α̂ = ij · (1 + i)k · α′ with α′

primary and employ the multiplicativity property and the complementary laws
of the quartic residue symbol. Next, we interchange α and β according to the
law of reciprocity and start again. Hence, the size of both α and β decrease
progressively. We stop the iteration process when α or β is a unit. The detailed
algorithm is described in Algorithm 1.

202 J. Monnerat, Y.A. Oswald, and S. Vaudenay

Algorithm 1 Basic Algorithm Quartic Residuosity in Z[i]
Require: α, β ∈ Z[i] \ {0}, gcd(α, β) ∼ 1 and (1 + i) � β
Ensure: c = χβ(α) (c = 0 ⇔ χβ(α) is not defined)
1: α ← Redβ(α)
2: if α = 0 then c = 0 end if
3: let primary α1, β1 ∈ Z[i] be defined by

α = (i)i1 · (1 + i)j1 · α1 and
β = (i)i2 · β1

4: let m, n ∈ Z be defined by β1 = m + ni

5: t ← m−n−n2−1
4

j1 + m2+n2−1
4

i1 mod 4
6: replace α with β1, β with α1

7: t ← t + (N(α)−1)(N(β)−1)
8

mod 4
8: while N(α) > 1 do
9: (LOOP INVARIANT: α, β are primary)

10: α ← Redβ(α)
11: let primary α1 be defined by α = (i)i1 · (1 + i)j1 · α1

12: let m, n ∈ Z be defined by β = m + ni

13: t ← t + m−n−n2−1
4

j1 + m2+n2−1
4

i1 mod 4
14: replace α with β, β with α1

15: t ← t + (N(α)−1)(N(β)−1)
8

mod 4
16: end while
17: if N(α) �= 1 then c ← 0 else c ← it end if

Computation of Related Subfunctions For this algorithm we have to im-
plement a few functions for calculating basic operations in the ring of Gaussian
integers (let α, β ∈ Z[i]):

1. Multiplication: α · β
2. Modular reduction: Redβ(α)
3. Norm: N(α)
4. Division by (1 + i)r

5. Primarisation: transforms α into its primary associate if possible

The multiplication and the norm are trivially implemented by performing
integer multiplications between the appropriate integer components.

The division of α by (1 + i)r can be done by first raising (1 + i) to the power
of r and then dividing α by the result. We propose a way of achieving the same
by only using shift operations, additions, and interchanging the imaginary and
real part if necessary. The following equations demonstrate our procedure. Let
α = a+ bi,

α

(1 + i)
=
a+ b

2
+
b− a

2
i,

α

(1 + i)r
=
i3k

(
a
2k + b

2k i
)

(1 + i)�
, r = 2k + �.

Optimization of the MOVA Undeniable Signature Scheme 203

If r = 2k, k ∈ N we shift the real and the imaginary parts of α by k to the
right and multiply them by −1 and/or interchange them depending on the value
of 3k. If r is odd, there is an additional subtraction and addition to perform.

The primarisation function we used consists of a few congruency tests and
it also determines the number of times we have to multiply α by i to get the
primary associate of α.

The computation of Redβ(α) is done according to [9] using an Euclidean
division and rounding appropriately.

To find the representation of α we proceed as follows. First calculate the
norm of α, N(α). Then find j maximal such that 2j | N(α). Divide α by (1+ i)j

and transform the result into its primary associate.
In the implementation of the algorithm we need to ensure (1 + i) � β and

gcd(α, β) ∼ 1. The first requirement is taken care of by applying the primarisa-
tion function on β. If we cannot find a primary associate, β is divisible by (1+ i)
and we terminate. For the second condition we check in every iteration whether
Redβ(α) → 0. This would imply gcd(α, β) �∼ 1 and we terminate.

4.3 Algorithm of Damg̊ard and Frandsen

Description The most expensive operation used in the algorithm described
above is Redβ(α). Damg̊ard and Frandsen present in [2] an efficient algorithm
for computing the cubic residue symbol in the ring of Eisenstein integers Z[ζ].
Their algorithm can be transformed into an algorithm for the quartic residue
symbol in the ring of Gaussian integers.

There are three main differences to the basic algorithm. Instead of using
Redβ(α) to reduce α, they suggest using α − β. This takes much less time but
increases the number of iterations needed. Furthermore they only interchange
α and β, if N(α) < N(β). It is not necessary to calculate N(·) exactly for
this purpose, an approximation Ñ(·) suffices. They demonstrate how one can
compute an approximate norm Ñ(α) in linear time. Instead of adding up the
squares of the real and the imaginary part of α, one replaces all but the 8 most
significant bits of the real and the imaginary part of α with zeroes and computes
the norm of the resulting Gaussian number.

Their algorithm takes O(log2N(αβ)) time to compute χβ(α).

4.4 Other Algorithms

In addition to the above, we studied papers concerning algorithms for the quartic
residue symbol by Weilert. In [17] he presents a fast gcd algorithm for Gaussian
integers. Based on this gcd algorithm and using some properties of the Hilbert
symbol he demonstrates in [18] how to construct an algorithm for the quartic
residue symbol. This algorithm involves calculating an Euclidean descent and
storing some intermediate results for later use. This algorithm presents a very
fast asymptotic complexity which is even better than that of Damg̊ard and
Frandsen.

204 J. Monnerat, Y.A. Oswald, and S. Vaudenay

Algorithm 2 Damg̊ard and Frandsen’s Algorithm Quartic Residuosity in Z[i]
Require: α, β ∈ Z[i] \ {0}, gcd(α, β) ∼ 1 and (1 + i) � β
Ensure: c = χβ(α) (c = 0 ⇔ χβ(α) is not defined)
1: let primary α1, β1 ∈ Z[i] be defined by

α = (i)i1 · (1 + i)j1 · α1 and
β = (i)i2 · β1

2: let m, n ∈ Z be defined by β1 = m + ni

3: t ← m−n−n2−1
4

j1 + m2+n2−1
4

i1 mod 4
4: replace α with α1, β with β1

5: if Ñ(α) < Ñ(β) then
6: interchange α and β and adjust t

t ← t + (N(α)−1)(N(β)−1)
8

mod 4
7: end if
8: while α �= β do
9: (LOOP INVARIANT: α, β are primary)

10: let primary α1 be defined by α − β = (i)i1 · (1 + i)j1 · α1

11: let m, n ∈ Z be defined by β = m + ni

12: t ← t + m−n−n2−1
4

j1 + m2+n2−1
4

i1 mod 4
13: replace α with α1

14: if Ñ(α) < Ñ(β) then
15: interchange α and β and adjust t

t ← t + (N(α)−1)(N(β)−1)
8

mod 4
16: end if
17: end while
18: if α �= 1 then c ← 0 else c ← it end if

However, as mentioned by Damg̊ard et al. in [2], the fastest algorithms for
practical inputs in the case of the Jacobi symbol are based on binary gcd al-
gorithms [11]. Weilert proposed a binary gcd algorithm for Gaussian integers
in [16] as well, but did not adapt it to the computation of the quartic residue
symbol. Algorithms for cubic and quartic residue symbols taking this approach
was proposed by Damg̊ard et al. in [2] arguing that this is likely to provide a
more efficient algorithm than the asymptotically fast variant of Weilert [18] in
practice. Therefore, we have chosen to implement Algorithm 2 which takes this
binary approach since we need a fast algorithm for practical inputs rather than
the best asymptotic complexity.

5 Discrete Logarithm in a Hidden Subgroup

One suitable homomorphism for the generalized MOVA scheme is the one men-
tioned in Subsection 3.3. This homomorphism φ satisfies φ(x) = logg(x

r mod p).
It consists of a modular exponentiation followed by a discrete logarithm compu-
tation. The modular exponentiation can be implemented by the classical meth-
ods such as the square-and-multiply method. For the discrete logarithm compu-
tation we consider three variants which are the use of a precomputed table of
all discrete logarithms, the Shanks baby-step giant-step (BSGS) algorithm and

Optimization of the MOVA Undeniable Signature Scheme 205

Pollard’s rho method. The choice of the algorithm will strongly depend on the
amount of memory the signer has at disposal, namely the Pollard rho method
requires almost no memory while the BSGS method is a time-memory tradeoff.
Below we discuss the method of precomputed table and we refer to [10] for a
description of the two other methods.

Given p prime, g a generator of a cyclic groupG, subgroup of Z∗
p, and d = |G|,

we construct a table with entries (gj, j) for 0 ≤ j ≤ d. Building this table is a
very time and memory consuming task, but once the table exists, finding the
discrete logarithm consists of a simple look up operation.

There are several ways of constructing such a table. One can use a two dimen-
sional array and sorting it by the first component. Finding the discrete logarithm
is then reduced to a binary search. Alternatively, one can use conventional hash-
ing on the first component to store the entries in a hash table, in which case
placing an entry and searching for an entry in the table takes constant time.
Another advantage is the fact, that we do not need space for gi. Especially when
p * d, this can save an enormous amount of memory. The only difficulties are
finding a suitable hash function and dealing with collisions without losing too
much time.

Time complexity of the construction of the table is O(d) multiplications (plus
O(d log d) comparisons to sort). Space complexity is O(d(log d + log p)) for the
sorted table, resp. O(d log d) for the hash table. The running time for the sorted
table is O(log d), for the hash table O(1).

6 Implementation

The implementation of all algorithms has been written in C using the GNU
Multiple Precision Arithmetic Library (GMP) [6]. This library provides highly
optimized arithmetic functions on large numbers. Most of the basic computations
in Z have been performed using GMP such as integer multiplication or the
modular exponentiation. For all implemented homomorphisms, we focused on
the case where the modulus n is of size of 1024 bits.

6.1 Quartic Residue Symbol

Our principal optimization effort focused on the two algorithms computing the
quartic residue symbol. In particular, we minimized the number of function calls,
used some of the more sophisticated GMP functions, reduced the number of
mpz t (C data type for a multiple precision integer) variables whenever possible
and applied general C optimization techniques such as described in [4,8]. In
addition, we used profiling and tried out different compiler optimization levels.

The basic algorithm has been implemented using the above remarks as well
as the methods for computing the subfunctions which are explained in Subsec-
tion 4.2. We proceed in the same way for the algorithm of Damg̊ard and Frand-
sen. Additionally, we tested whether the use of an approximative norm allows to
obtain effective improvements. We implemented both the standard norm and the

206 J. Monnerat, Y.A. Oswald, and S. Vaudenay

norm Damg̊ard and Frandsen suggest. The standard norm consists of only two
GMP functions: one multiplication and one combined addition/multiplication
whereas the approximate norm involves one bit scan to determine the size of the
real part, one shift operation to extract the 8 most significant bits, one multi-
plication for the squaring of these 8 bits and another shift operation to put the
result back to its correct position. We apply the same procedure on the imagi-
nary part and we add the two approximate squarings up. In short, we need four
additional operations to reduce the size of the numbers we have to multiply.

As GMP is a highly optimized library, computing the standard norm takes
little time and the additional operations of the approximate norm only amortise
if the real and the imaginary part are larger than 2048 bits. This and the fact
that the norm of α and β decreases with each iteration convinced us to use the
standard norm instead.

6.2 Discrete Logarithm

Here, we would like to present how we manage the computation of the discrete
logarithm in the case of the precomputed table.

In this suggested variant of the generic homomorphic signature scheme, p is
typically a 512 bit and d a 20 bit prime. Creating a table with d entries of size
532 bits is impossible on a usual desktop computer. Therefore we decided to use
a hash table (key 512 bits, data 20 bits, 220 entries). We found some existing
hash table data structures written in C, but they do not fulfill our requirements.
They are either too slow, support C types only, do not allow tables that large
and/or they store the key as well.

To avoid problems, we did not adapt any of the existing data structures,
but implemented a hash table ourselves providing enough storage and a collision
handling mechanism suitable for our needs. Our solution is a hash table consist-
ing of an array of unsigned integers. This array is of maximal length (224) to
reduce collisions.

An unsigned integer is 32 bits long, so it was possible to store the data for
the logarithm as well as using one of the higher order bits as a flag for collisions.
Because the key is large and we wanted to avoid any unnecessary computation,
we chose to use the 24 least significant bits of the key as the index into the hash
table, in case of collision the next 24 bits, etc. By selecting 24 bits instead of
the possible 20 bits, we minimize the occurrence of collisions. Tests have shown
that most collisions are resolved by choosing the next 24 bits. We tried out other
hash functions, but we did not achieve a gain of speed. This way, the size of the
table is 64 MB.

To find the correct discrete logarithm for y ∈ G, one has to check if the
collision flag at the corresponding array field is set, to decide if one can return
the logarithm stored in the field or if one has to continue with the next field.

The implementation of the BSGS was done in a similar way. As the table
contains much less entries, collisions hardly ever occur. The implementation of
the Pollard rho method did not require any special treatment.

Optimization of the MOVA Undeniable Signature Scheme 207

7 Results

In this section we present the results of the timing measurements we conducted
to determine how well the different algorithms perform. In order to measure the
running time precisely, we used functionalities offered by frequence cpu.h by
Victor Stinner [15]. The tests have been done on an Intel(R)4 1.4 GHz Desktop
Computer with 256 MB RAM. Our results are average values produced by test
series of 1000 tests.

7.1 Quartic Residue Symbol

We have considered the quartic residue symbol χβ(α) where α is a Gaussian
integer with real and imaginary part of 1024 bits and β = πσ a product of two
primes and of size of 512 bits in each component. In such a situation, we have to
consider a variant of the Damg̊ard and Frandsen algorithm, we call the mixed
algorithm. Namely, since α is much bigger than β it is more efficient in this case
to compute first α̂ ← Redβ(α) and apply the Damg̊ard and Frandsen algorithm
on χβ(α̂). Timed results and number of iterations are given in Table 1.

Table 1. Quartic Residue Symbol with β = πσ

time in ms iterations
Basic algorithm 32.12 248.81
Damg̊ard’s algorithm 50.63 766.12
Mixed algorithm 24.65 511.92

The mixed algorithm is then the most judicious choice for fast implementa-
tions. The same phenomenon occurs for the case β = π as well.

7.2 Signature Generation

Here, we finally compare the time required for generating a MOVA signature
with the different homomorphisms. We consider a signature size of 20 bits. We
omit the time required by the generation of the values Xsigi’s. Hence, we just
have to compare the time required for computing 20 Jacobi symbols (·/p)2 (or
(·/q)2), 20 quartic residue symbols with β = πσ, 10 quartic residue symbols with
β = π, 1 homomorphism based on the discrete logarithm in a hidden subgroup
and 1 RSA homomorphism. We recall that for all these homomorphisms, we take
a modulus n of size of 1024 bits. Results are given in Table 2.

We have implemented the Jacobi symbol using a similar algorithm as Al-
gorithm 1 and the basic GMP subroutines in order to have a fair compari-
son with our implementation of the quartic residue symbol. We note that the
highly optimized GMP implementation of the Jacobi symbol mpz jacobi pro-
vides the fastest signature generation and that the quartic residue symbol χπ

208 J. Monnerat, Y.A. Oswald, and S. Vaudenay

Table 2. Results Comparison Signature Schemes

Homomorphism time in ms
Quartic Residue Symbol (β = πσ) 493.01
Quartic Residue Symbol (β = π) 90.32
Jacobi Symbol (ordinary algorithm) 25.22
Jacobi Symbol (mpz jacobi) 2.32
Discrete Logarithm (Precomputed Table) 9.66
Discrete Logarithm (BSGS) 19.47
Discrete Logarithm (Pollard’s rho) 74.93
RSA 33.87

is about 4 times slower than our implementation of the Jacobi symbol. This is
mainly due to the fact that all operations are performed in Z[i] instead of Z.
We remark that the variant χπσ is much slower than for χπ since we have to
perform two times more quartic residue computations and that β is two times
greater. The variants of the discrete logarithm offer a very competitive homo-
morphism. In particular, except for the variant using the Pollard rho method
this homomorphism is even more efficient than RSA. Finally, we can see that a
20-bit MOVA signature can be three times faster than a regular RSA signature.

8 Conclusion

We provided an overview of the implementation of the different candidate ho-
momorphisms for the generalized MOVA scheme. Our principal case study con-
cerned the quartic residue symbol, since the literature dedicated to its imple-
mentation is poor. We showed that the signature generation of the most efficient
variant of the quartic residue symbol takes less than 4 times our implementa-
tion of the Jacobi symbol. The principal reason is that arithmetic operations
are performed in Z[i] which are more costly than in Z. We motivated the use of
another variant of quartic residue symbol with two levels of secret by showing
an application. This variant is the least efficient homomorphism of our com-
parison and requires about half a second to perform a signature generation
on a classical workstation. When the signer has at least 64 MB memory, we
demonstrated that using the homomorphism based on the discrete logarithm
gives the most efficient signature generation after the Jacobi symbol imple-
mentation of GMP. However, if we take into account the cost of the confir-
mation protocol, this homomorphism is preferable to the characters. Finally,
it is worthwhile to note that this implementation is about three times faster
than a regular RSA signature scheme. We provided a clear overview of expected
MOVA performance depending on the choice of the group homomorphism. Fu-
ture work should further consider implementations with protection against side
channels.

Optimization of the MOVA Undeniable Signature Scheme 209

References

1. D. Chaum and H. van Antwerpen, Undeniable Signatures, Advances in Cryptology
- Crypto ’89, LNCS 435, pp. 212-217, Springer, 1989.

2. I.B. Damg̊ard and G.S. Frandsen, Efficient Algorithms for GCD and Cubic Resid-
uosity in the Ring of Eisenstein Integers, FCT ’03, LNCS 2751, pp. 109-117,
Springer, 2003.

3. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts
in Mathematics 138, Springer, 2000.

4. S. Garg, How to optimize C/C++ Source - Performance Programming, 2002,
http://bdn.borland.com/article/0,1410,28278,00.html.

5. R. Gennaro, T. Rabin, and H. Krawczyk, RSA-Based Undeniable Signatures, Jour-
nal of Cryptology, 13(4), pp. 397-416, Springer, 2000.

6. The GNU Multiple Precision Arithmetic Library, http://www.swox.com/gmp/.
7. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory:

Second Edition, Graduate Texts in Mathematics 84, Springer, 1990.
8. M.E. Lee, Optimization of Computer Programs in C, 2001,

http://vision.eng.shu.ac.uk/bala/c/c/optimisation/l/optimization.html.
9. V. Lefèvre, Entiers de Gauss (sujet d’étude XM’), 1993,

http://www.vinc17.org/math/index.fr.html.
10. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,

CRC Press, 1996.
11. S.M. Meyer and J.P. Sorendson, Efficient Algorithms for Computing the Jacobi

Symbol, Journal of Symbolic Computation 26(4), pp. 509-523, 1998.
12. J. Monnerat and S. Vaudenay, Undeniable Signatures Based on Characters: How

to Sign with One Bit, PKC ’04, LNCS 2947, pp. 69-85, Springer, 2004.
13. J. Monnerat and S. Vaudenay, Generic Homomorphic Undeniable Signatures, Ad-

vances in Cryptology - Asiacrypt ’04, LNCS 3329, pp. 354-371, Springer, 2004.
14. R.L. Rivest, A. Shamir and L.M. Adleman, A Method for Obtaining Digital Sig-

natures and Public-key Cryptosystem, Communications of the ACM, vol. 21(2),
pp. 120-126, 1978.

15. V. Stinner, 2003, frequence cpu.h, frequence cpu.c,
http://www.haypocal.com/.

16. A. Weilert, (1+i)-ary GCD Computation in Z[i] is an analogue to the Binary GCD
Algorithm, Journal of Symbolic Computation 30(5), pp. 605-617, 2000.

17. A. Weilert, Asymptotically fast GCD Computation in Z[i], Algorithmic Number
Theory, LNCS 1838, pp. 595-613, Springer, 2000.

18. A. Weilert, Fast Computation of the Biquadratic Residue Symbol, Journal of Num-
ber Theory 96, pp. 133-151, 2002.

Questionable Encryption and Its Applications

Adam Young1 and Moti Yung2

1 LECG LLC�

ayoung@mitre.org
2 RSA Labs and Columbia University

moti@cs.columbia.edu

Abstract. In this paper we investigate a primitive called a questionable
encryption that is related to oblivious transfer. We consider a mobile
agent that asymmetrically encrypts plaintext data from the host ma-
chine that it resides on and then broadcasts the resulting ciphertext so
that it can be obtained by the creator of the agent. We formally de-
fine the notion of a questionable encryption scheme that can be used to
perform this operation. The user of a questionable encryption scheme
chooses to generate a real or fake public key. The choice is conveyed to
the key generation algorithm which then outputs a poly-sized witness
and either a real or fake key pair. If the public key is ‘real’ then it pro-
duces decipherable encryptions and the poly-sized witness proves this.
If the key is generated to be ‘fake’ then it produces indecipherable en-
cryptions (even with the private key) and the poly-sized witness proves
this. Without knowledge of the witness it is intractable to distinguish
between the two types of public keys. We present a construction for a
questionable encryption scheme based on the Paillier cryptosystem. We
prove the security of the scheme based on the difficulty of deciding nth

degree composite residuosity. When applied to this application, the cre-
ator of the agent retains the exclusive ability to reveal whether or not
the agent in fact transmits plaintexts. Our results show that agents that
appear to compute asymmetric encryptions may in fact not (in a prov-
able sense). We present other applications of questionable encryptions
as well.

Keywords: Public key cryptosystem, Paillier cryptosystem, composite
residuosity problem, decision composite residuosity problem, semantic
security, questionable encryption, deniable encryption, oblivious transfer.

1 Introduction

Mobile agents have been an active area of research and in this paper we investi-
gate a new tool that can be used to enhance the privacy of such agents. Typically,
one of two threat models are used when designing modible agents. The first is
the honest but curious model in which the host machines that the agent tra-
verses are honest enough not to interfere with the operation of the agent, but
� Author is now at MITRE Corporation.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 210–221, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Questionable Encryption and Its Applications 211

are “curious” about the data it contains and the results of the computations of
the agent. The other threat model allows the hosts to be active adversaries that
may introduce faults into the computations of the mobile agent.

In this paper we operate under the former threat model and address the
following issue. Does a mobile agent that appears to asymmetrically encrypt data
really do so? One can envision a scenario in which the system operator of a host
jumps to the conclusion that the agent encrypts data since it passes a value that
appears to be a public key to an asymmetric encryption function.

By dissecting the agent it can be determined that it uses a correct asymmetric
cipher implementation. The question then becomes whether or not the public key
is properly formed and whether or not the creator of the agent is in possession of
the corresponding private key. The creator is not likely to include non-interactive
zero-knowledge proofs in the agent for the benefit of proving that the requisite
algebraic properties of the public key hold. In this paper we observe that for
a variety of public key cryptosystems, the “public key” cannot be immediately
construed as such. This has immediate consequences for proving whether or not
the agent even transmits host data.

The integrity of public keys gives rise to the following cryptographic problem.
Can we devise a plug-in for a well known asymmetric cryptosystem that accepts
normal-looking public keys but that produces ciphertexts that provably cannot
be decrypted by anyone? The answer to this is yes. We formally define a ques-
tionable encryption scheme that accomplishes this and present an instantiation
(plug-in) for the Paillier cryptosystem.

The key generation algorithm of a questionable encryption scheme generates
a poly-sized witness and either a real or fake key pair. The user chooses whether
to create a real key pair or a fake key pair. If the public key is ‘real’ then it
produces decipherable asymmetric encryptions and the witness proves their de-
cipherability. If the key is ‘fake’ then it produces indecipherable encryptions and
the witness proves that no such ciphertext can be deciphered. Without knowledge
of the witness it is intractable to distinguish between the two types of ‘public
keys.’ We call these witnesses of encryption and non-encryption, respectively.

When a mobile agent outputs a questionable encryption it is intractable to
determine whether it outputs a valid asymmetric ciphertext or a value that to all
intents and purposes is random. This holds even when the actions of the agent
are recorded immediately after deployment, and even if the agent is reverse-
engineered by the system administrator of a host.

We present applications of questionable encryptions in Section 7. Question-
able encryptions are related to (1, 2)-oblivious transfer, all-or-nothing disclosure
of secrets, and deniable encryptions. Differences between questionable encryp-
tions and these primitives are given in Appendix A.

2 Questionable Encryptions

In this section we cover basic notation and definitions. Let PTM denote a prob-
abilistic poly-time Turing machine. We let a | b denote that integer b is evenly

212 A. Young and M. Yung

divisible by integer a. When x is a binary string, |x| denotes the number of bits
in x. When x is a positive integer it is understood that |x| is the number of bits
in the base-2 representation of the integer. A Blum integer is the product of two
prime powers pr and qs such that p, q ≡ 3 mod 4 with r and s odd. Let ZZ∗

n(+1)
denote those elements in ZZ∗

n with Jacobi symbol 1 with respect to n. Recall
that a is a pseudosquare mod n provided that a is not a quadratic residue mod
n and that a ∈ ZZ∗

n(+1).
Let p1 be a value between 0 and 1 inclusive. The probabilistic statement

below is to be read as follows. The probability that the assertion to the right of
the colon holds after the ordered execution of the operations to the left of the
colon is less than p1.

Pr[b ∈R {0, 1}, (x, y) = Gb(1K) : A(x, y) = b] < p1 (1)

The following definition is from [13].

Definition 1. v is negligible if for every constant c ≥ 0 there exists an integer
kc such that v(k) < 1

kc for all k ≥ kc.

Thus, ν is negligible in k if it vanishes faster than any inverse polynomial in k.
Let k be a security parameter. Define G0(·) to be a probabilistic poly-time

algorithm that on input 1k outputs a pair of values (x, y). Similarly, define G1(·)
to be a probabilistic poly-time algorithm that on input 1k outputs a pair of values
(x, y). The generator G1 outputs a private key x and corresponding public key y
for the encryption algorithm E and corresponding decryption algorithm D. Let
S1,k denote the set of possible outputs of G1(1k). Similarly, let S0,k denote the
set of possible outputs of G0(1k). Let M be the message space for E and let C
be the corresponding ciphertext space. Let c = E(m, y) denote the encryption
of m ∈ M under y and let m = D(c, x) denote the corresponding decryption
operation.

The notion of security for (G1, E,D) can be any well-accepted notion of
security, e.g. semantic security against known-plaintexts attacks, security against
adaptive chosen ciphertext attacks, etc. In the definition below, the notion of
security is simply preserved. That is, the questionable encryption scheme is only
required to be as secure as the underlying asymmetric cryptosystem. Thus, it is
assumed that (G1, E,D) is secure and that it produces decipherable encryptions.

Definition 2. Let (F,G0, G1, E,D) be a 5-tuple of algorithms that are public,
let S0,k ∩ S1,k = ∅, and let (G1, E,D) be a secure asymmetric cryptosystem. If
F is an efficiently computable predicate satisfying F (x, y) = b ⇔ (x, y) ∈ Sb,k

for all (x, y) ∈ S0,k ∪ S1,k and,
(1) [indecipherability] for all PTMs A, for all k, for all (x, y) ∈ S0,k, and for
every two messages m0,m1 ∈M ,

Pr[b ∈R {0, 1}, c = E(mb, y) : A(c, x, y) = b] = 1
2 ,

and,
(2) [indistinguishability] for all PTM A, for all polynomials Q, and for all large
enough k,

Questionable Encryption and Its Applications 213

|Pr(x,y) ∈R S0,k
[A(y) = 1] − Pr(x,y) ∈R S1,k

[A(y) = 1]| < 1
Q(k)

then (F,G0, G1, E,D) is a perfect questionable encryption scheme.

A variant of this is a computational questionable encryption scheme in which
requirement 1 is weakened as follows.

(1) For all PTMs A there exists a negligible function νA such that for all large
enough k, for all (x, y) ∈ S0,k, and for any two messages m0,m1 ∈ M ,

Pr[b ∈R {0, 1}, c = E(mb, y) : A(c, x, y) = b] ≤ 1
2 + νA(k),

This is reminiscent of the notion of message indistinguishability of encryp-
tions. It essentially states that no efficient algorithm A can distinguish between
the encryptions of any two messages, even when given (x, y) ∈ S0,k. This re-
quirement is critical since it implies that key pairs generated using G0 are “no
good.”

Requirement (2) states that it is intractable to decide whether y is a public
key generated usingG1 or a fake public key generated usingG0. This requirement
is critical since given requirement (1) it implies that without knowing x it is
intractable to decide if y and E produce real encryptions or not.

Observe that (x, y) serves as a witness that (x, y) ∈ S0,k or S1,k. This follows
immediately from the fact that F (x, y) = b ⇔ (x, y) ∈ Sb,k. Since y and F
are public, the user who generates the pair need only disclose x to prove or
disprove whether or not messages can be recovered from c. Hence, a questionable
encryption scheme is more general than a normal asymmetric scheme since the
user can (1) prove that it encrypts data when (x, y) ∈ S1,k, or (2) prove that it
doesn’t encrypt data when (x, y) ∈ S0,k.

3 Review of Paillier

In this section we review the Paillier public key cryptosystem [19]. Note that
λ(n) = lcm(p− 1, q− 1) where λ denotes Carmichael’s function. Key generation
utilizes the function L(u, n) = u−1

n .

PaillierKeyGeneration(1k):
1. generate random k/2-bit primes p and q
2. compute n = pq and t = lcm(p− 1, q − 1)
3. choose g ∈R ZZ∗

n2

4. if gcd(L(gt mod n2), n) �= 1 then goto step 3
5. output ((n, g), (p, q)) and halt

The order of g modulo n2 is v where v ≡ 0 mod n. To encrypt m < n, the
value r ∈R ZZ∗

n is chosen. The ciphertext is c = gmrn mod n2. We remark that
instead of choosing r < n randomly, the selection r ∈R ZZ∗

n is used.1

1 In Section 3 of the original paper [19] this value is indeed selected from ZZ∗
n to show

that Eg is bijective.

214 A. Young and M. Yung

PaillierDecrypt(c, (n, g), (p, q)):
Output: plaintext m < n
1. compute t = lcm(p− 1, q − 1)
2. output m = L(ct mod n2, n)L(gt mod n2, n)−1 mod n and halt

The Paillier public key cryptosystem is semantically secure against plaintext
attacks based on the assumed intractability of solving the decision composite
residuosity problem.

4 A Construction Based on Paillier

We will now present our construction that is based on Paillier. The Paillier key
generation is altered slightly so that it generates p and q to be safe primes. Recall
that p is a safe prime if (p−1)/2 is prime. The use of safe primes enables a simple
method to generate the fake value g that has order λ(n).

G0(1k):
1. generate random k/2-bit safe primes p and q
2. compute n = pq and t = lcm(p− 1, q − 1)
3. choose g1 ∈R ZZ∗

n2 and compute g = gn
1 mod n2

4. if the order of g is not t then goto step 3
5. output ((n, g), (p, q)) and halt

Since p and q are safe primes the order of g can be computed efficiently.

G1(1k):
1. generate random k/2-bit safe primes p and q
2. compute n = pq and t = lcm(p− 1, q − 1)
3. choose g ∈R ZZ∗

n2

4. if (gcd(L(gt mod n2), n) �= 1) then goto step 3
5. output ((n, g), (p, q)) and halt

F (p, (n, g)):
1. if |p| ≥ |n| then output failure and halt
2. if n mod p �= 0 then output failure and halt
3. compute q = n/p and t = lcm(p− 1, q − 1)
4. if p and q are not k/2-bit safe primes then output failure and halt
5. if g /∈ ZZ∗

n2 then output failure and halt
6. if (gcd(L(gt mod n2), n) = 1) then output 1 and halt
7. if g has order t then output 0 else output failure and halt

To questionably encrypt a large amount of data efficiently, a hybrid scheme
can be used. For example, the lower 128 bits of a random plaintext can be used
as a symmetric key that is used to encrypt the plaintext. This of course will
provide only computational indecipherability, not perfect indecipherability.

We implemented our questionable encryption scheme. See Appendix B for
details.

Questionable Encryption and Its Applications 215

5 Security of the Questionable Encryption Scheme

Fact 1: If n = pq where p and q are primes of equal bit length, then by cycling
through all of the values y ∈ ZZ∗

n and computing yn mod n2 all of the nth

residues modulo n2 are generated.

Fact 1 follows implicity from Lemma 1 in [19] that shows that the function
Eg(x, y) = gxyn mod n2 is bijective since the nth residues are definable as the
image by this function of all pairs (0, y < n).

Theorem 1. Let m < n be any plaintext message and let (n, g) ∈ S0,k. Then
c = E(m,n, g) is unconditionally secure.

Proof. Consider a computationally unbounded adversary that tries to learn m
from c. Recall that the adversary is given p and q (we want to show indecipher-
ability even for the owner of the encryption key pair). From the definition of
Paillier encryption it follows that,

(1) c = gmrn mod n2 where r ∈R ZZ∗
n

Since (n, g) ∈ S0,k it follows from the definition of G0(1k) that,

(2) g has order λ(n)

It follows that gm is an nth residue in (1). Since r ∈R ZZ∗
n and since |p| = |q|

(i.e., p does not divide q − 1 evenly and vice-versa) it follows from Fact 1 that
rn mod n2 is an nth residue selected uniformly at random from the set of all nth

residues modulo n2. Therefore c is uniformly distributed among the nth residues
modulo n2. ,

We will now show what will happen in practice when one tries to decipher
c with (p, q) and the fake g. From the definition of Paillier encryption it follows
that cλ(n) ≡ (gλ(n))mrnλ(n) mod n2. But Euler’s generalization of Fermat’s lit-
tle theorem implies that cλ(n) ≡ (gλ(n))m mod n2 since λ(n2) = nλ(n). Since
(n, g) ∈ S0,k it follows from the definition of G0(1k) that g has order λ(n). It
follows that cλ(n) mod n2 = 1. From the definition of Paillier decryption it fol-
lows that L(cλ(n) mod n2, n) is zero. Therefore, the numerator in the decryption
equation is zero and leaves the group entirely.

Theorem 2. For all PTM A, for all polynomials Q, and for all large enough k,

|Pr(p,(n,g)) ∈R S0,k
[A((n, g)) = 1] −

Pr(p,(n,g)) ∈R S1,k
[A((n, g)) = 1]| < 1

Q(k)

Proof. Note that the composite n is selected in the same fashion in G0 and G1.
It remains to consider g. The theorem follows immediately from the definition
of computationally indistinguishable probability distributions and the presumed
intractability of distinguishing nth residues modulo n2 from non-residues. ,

Theorem 3. If the Paillier asymmetric cryptosystem is secure then the 5-tuple
(F,G0, G1, E,D) is a perfect questionable encryption scheme.

216 A. Young and M. Yung

6 Other Constructions

Due to space limitations we cannot formally introduce other constructions. How-
ever, we give the basic approach for other constructions below.

6.1 Computational Indecipherability

The questionable encryption scheme for RSA [21] uses a public exponent e that
is a 160-bit prime. It utilizes primes p and q such that gcd(e, p − 1) = e and
gcd(e, q − 1) = e. When given (n, e), deciding whether or not e | φ(n) is closely
related to the Phi-Hiding problem [9]. When e divides p − 1 and q − 1 it is
intractable to perform decryption. This follows from the fact that to date, there
is no known algorithm for efficiently computing eth roots mod p with such a
large prime e. For details see [1]. In addition there are too many roots to check.
It follows that the “ciphertexts” that are produced using the fake (p, q) cannot
be effectively deciphered.

The ElGamal [12] scheme is as follows. Define S1,k = {(x, y) : y = gx mod p
and x ∈ ZZq}. The value x is the witness of encryption. Define S0,k = {(x, y) :
y = H(x) and x ∈ ZZq}. Here H is a random function with the same range as
the space of public keys. The value x serves as a witness of non-encryption. The
intractability assumption is that it is intractable to compute logg(H(x)) mod p
for a randomly chosen x. This approach extends to Cramer-Shoup [11].

A construction for Blum-Goldwasser [2] is as follows. Recall that Blum-
Goldwasser (BG) is based on Blum-Blum-Shub [3]. In normal BG, the primes
satisfy p ≡ q ≡ 3 mod 4. The fake key pair uses p ≡ q ≡ 1 mod 4. The basic
idea is that for a given bit position in the ciphertext, these “bad” primes make
it intractable to disambiguate the correct square root that is a quadratic residue
mod pq. The ciphertext is made to be twice as long as normal to ensure that a
computationally bounded adversary cannot recover the first half of the Blum-
Blum-Shub (BBS) stream. In a forthcomming paper we show that it is infeasible
to accurately recover a bit in the first half of the BBS pseudorandom bit stream.

All three of these constructions provide only computational indecipherability.
Consider RSA in which the message is padded with a large amount of redun-
dancy. A computationally unbounded adversary could factor n, compute all eth

roots and recover the plaintext.

6.2 Perfect Indecipherability

In Goldwasser-Micali (GM) [14] the public key is (n, u) where n = pq is a Blum
integer and u is a pseudosquare mod n. The creator of the mobile agent can set
u to be a quadratic residue mod n. The fake public key (n, u) is indistinguish-
able from a real GM public key under the assumed difficulty of distinguishing
quadratic residues from pseudosquares mod pq.

The use of a quadratic residue u in GM guarantees that no one can decrypt
ciphertexts computed using (n, u). This follows from the fact that the encryption
of a binary 1 is unconditionally indistinguishable from the encryption of a binary

Questionable Encryption and Its Applications 217

0 (both ciphertexts are randomly chosen quadratic residues). With a “fake” u, it
follows that private plaintext data is not transmitted outside the host of the mobile
agent.

6.3 Why Paillier is Unique

Note that it is possible, theoretically that an algorithm exists that can decrypt a
questionable encryption produced using one of the schemes in Subsection 6.1.
When the GM or Paillier based questionable encryption schemes are used, this ar-
gument cannot be made.

The GM based scheme produces large ciphertexts whereas Paillier produces
small ciphertexts. This, combined with the fact that Paillier produces perfectly
indecipherable ciphertexts is the reason why we chose to focus on the Paillier based
scheme.

7 Applications

We present a few applications of questionable encryptions. The primitive is likely
to be useful for many problems in which oblivious transfer is already used.

7.1 Application 1: Oblivious Transfers

An application is an agent that conducts a “1-out-of-2” (or n) oblivious transfer.
In the case that the encryption scheme is homomorphic and multiplying the en-
cryptions sums up the cleartext, the questionable encryption scheme enables a dis-
tributed agent to move around and do the encrypt-and-multiply of the ciphertext
which will return the 1 out of 2 sum of a value and nothing about the other value(s).
The values can be viewed as a distributed vector. This is applicable in conducting
oblivious surveys. In case the vector is of length one this is the usual ”1-out-of-2”
Oblivious Transfer, whereas for larger vectors that return the accumulated value
it may be called “SUM 1-out-of-2” (or 1-out-of-n) Oblivious Transfer.

Questionable encryptions can also be used in a variant of the above in the area
of (distributed) database applications that exhibit a form of private information
retrieval. The agent contains within it n − 1 fake public keys and one real public
key. This is proven non-interactively in the code without showing which keys are
real or fake. The agent traverses the network and accumulates plaintexts. Whether
or not a given plaintext (or an accumulation of a row of values in relational database
terminology) has been acquired is then an uncertainty.

In the above applications, the fact that the means of achieving the Oblivious
Transfer is a (homomorphic) encryption schemes is crucial in achieving the dis-
tributed accumulation variants.

7.2 Application 2: Agent Privacy

The questionable encryption scheme can be used to ensure the privacy of the agent
operation (with respect to whether or not the agent even performs asymmetric en-

218 A. Young and M. Yung

cryption). This application is carried out as follows. The creator of a given agent
chooses to perform one of the following when designing the agent.

1. (private information transmission) (x, y) is generated usingG1 and y is placed
in the agent. The agent is deployed. The agent obtains host data and asymmet-
rically “encrypts” it using y. The resulting “ciphertexts” are then broadcast
(e.g., using an approach in [23]). The creator decrypts the messages that are
broadcast by the agent.

2. (non-transmission agent) (x, y) is generated using G0 and y is placed in the
agent. The agent is deployed. The agent obtains host data and asymmetrically
“encrypts” it using y. The resulting “ciphertexts” are then broadcast The cre-
ator cannot use x to decrypt the messages that are broadcast by the agent. The
creator can at any time post the witness ofnon-encryptionx to a public bulletin
board after the agent has been studied. It will then be clear that F (x, y) = 0.

Consider the possibility that multiple creators create multiple mobile agents.
When some agents perform private information transmission and some are non-
transmission agents, then there is no way to tell the difference between the cases
unless one or more witnesses are revealed. Furthermore, if a few witnesses of non-
encryption are revealed, then this will set a concrete precedent that mobile agents
do not necessarily transmit host data outside the host, even though they might
appear to.

A direct use of a deniable encryption scheme cannot be used to construct such
an agent. To see this consider the following attempt to use a deniable encryption
scheme for this.

Recall that a deniable encryption scheme requires that the sender and receiver
share a secret key so that the receiver can identify which of the possible plaintexts
is the correct one. The creator places this key within the mobile agent. The agent
is deployed and it broadcasts deniable encryptions. If the creator retains the secret
key, then the creator can correctly decrypt the deniable encryptions. If the creator
simply deletes the secret key, then the creator cannot decrypt the deniable encryp-
tions; the deniable encryptions will effectively be random data with respect to the
creator. This approach fails since there is no way for the creator to prove that the
secret key was erased. In contrast, in a questionable encryption scheme the creator
can prove that the he/she never had and never will have the ability to decipher the
questionable encryptions.

8 Conclusion

The notion of a questionable encryption was defined and an instantiation based
on the Paillier public key cryptosystem was given. Questionable encryptions were
shown tobe relatedyet distinct fromvarious forms of oblivious transfer.We showed
how to use questionable encryptions to build a stronger case in practice that mobile
agents that appear to transmit host data using asymmetric cryptography may not
in fact do so. This enhances the privacy of the operation of mobile agents.

Questionable Encryption and Its Applications 219

References

1. E. Bach, J. Shallit. Algorithmic Number Theory - Volume I: Efficient Algorithms.
Chapter 7 - Solving Equations over Finite Fields, MIT Press, 1996.

2. M. Blum, S. Goldwasser. An efficient probabilistic public-key encryption scheme
which hides all partial information. In Advances in Cryptology—Crypto ’84, pages
289–302, 1985.

3. L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. In SIAM Journal on Computing, v. 15, no. 2, pages 364–383, 1986.

4. G. Brassard, C. Crépeau, J. M. Robert. All-or-nothing disclosure of secrets. In Ad-
vances in Cryptology—Crypto ’86, pages 234–238, 1986.

5. G. Brassard, C. Crépeau, J. M. Robert. Information Theoretic Reductions among
Disclosure Problems. In IEEE Symposium on Foundations of Computer Science,
pages 168–173, 1986.

6. R. Berger, R. Peralta, T. Tedrick. A Provably Secure Oblivious Transfer Protocol.
In Advances in Cryptology—Eurocrypt ’84, pages 379–386, 1985.

7. M. Blum. Three applications of the oblivious transfer: Part I: Coin flipping by tele-
phone; Part II: How to exchange secrets; Part III: How to send certified electronic
mail. UC Berkeley, 1981.

8. D. Boneh. The Decision Diffie-Hellman Problem. In proceedings of the Third Algo-
rithmic Number Theory Symposium, pages 48-63, 1998.

9. C. Cachin, S. Micali, M. Stadler. Computationally Private Information Retrieval
with Polylogarithmic Communication. In Advances in Cryptology—Eurocrypt ’99,
pages 402-414, 1999.

10. R. Canetti, C. Dwork, M. Naor, R. Ostrovsky. Deniable Encryption. In Advances in
Cryptology—Crypto ’97, pages 90–104, 1997.

11. R. Cramer, V. Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In Advances in Cryptology—Crypto ’98, pages
13–25, 1998.

12. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In IEEE Trans. Inform. Theory. v. 31, pages 469–472, 1985.

13. S. Goldwasser, M. Bellare. Lecture Notes on Cryptography. Manuscript, July 10,
1996.

14. S. Goldwasser, S. Micali. Probabilistic Encryption. JCSS, v. 28, n. 2, pages 270–299,
1984.

15. J. Kilian. Founding cryptography on oblivious transfer. In ACM STOC, pages 20–31,
1988.

16. J. Kilian. Uses of randomness in algorithms and protocols. MIT Press, 1990.

17. E. Kushilevitz, R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In IEEE Foundations of Computer
Science, pages 364–373, 1997.

18. PKCS #1-RSA Cryptography Standard, version 2.1, available from
www.rsa.com/rsalabs/pkcs.

19. P. Paillier. Public-Key Cryptosystems based on Composite Degree Residue Classes.
In Advances in Cryptology—Eurocrypt ’99, pages 223–238, 1999.

220 A. Young and M. Yung

20. M. Rabin. How to exchange secrets by oblivious transfer. Harvard Aiken Comp. Lab,
TR-81, 1981.

21. R. Rivest, A. Shamir, L. Adleman. A method for obtaining Digital Signatures and
Public-Key Cryptosystems. In Communications of the ACM, v. 21, n. 2, pages 120–
126, 1978.

22. Y. Tsiounis, M. Yung. On the security of ElGamal-based encryption. International
Workshop on Practice and Theory in Public Key Cryptography, pages 117-134, 1998.

23. A. Young, M. Yung. Deniable Password Snatching: On the Possibility of Evasive
Electronic Espionage. IEEE Symposium on Security and Privacy, pages 224–235,
1997.

A Related Primitives for Privacy

A (1,2)-oblivious transfer is a way for Alice to give Bob one out of two possible
messages such that Alice has no way of knowing which of the two was received
[7,20,6,15,16]. Bobhas no control overwhich of the messages he receives,but knows
that he will receive one. A questionable encryption scheme implements a form of
oblivious transfer inwhich the recipient has complete control overwhether themes-
sage is received. Such variants are called all-or-nothing disclosure [4,5]. This is the
same as in a questionable encryption, so a questionable encryption scheme can be
viewed as an all-or-nothing disclosure variant.

However, a critical difference between these two notions is as follows. A ques-
tionable encryption scheme is a “cipher” that can be applied repeatedly and inde-
pendently to many pieces of data, not data defined within a scope of a single proto-
col as in all-or-nothing disclosure. In a questionable encryption scheme, the sender
need only obtain the “public key” of the receiver once, and from then on messages
(i.e., “encryptions”) are sent in a one-way fashion from the sender to the receiver in
an all-or-nothing disclosure. A questionable encryption scheme allowsBob toprove
whether everything was received or nothing was received by revealing the witness.

Our use of witnesses is different but related to the use of witnesses in deniable
encryptions [10]. In our scheme, Bob has a witness that the value is an encryption
or non-encryption under a particular asymmetric encryption function. In a deni-
able encryption, Bob can present a witness for each possible interpretation of the
plaintext. Another difference lies in the operational setting. In a deniable encryp-
tion scheme, Alice and Bob share a secret key that allowsBob to identify the correct
plaintext among the possible plaintexts and deniability is a stronger requirement
that allows the receiver to claim any message to an observer (thus it requires spe-
cialized implementations and less efficient ones, and it is essentially a symmetric
key encryption due to the shared key). In our scheme Alice only knows the ‘public
key’ of Bob and her own secret plaintexts.

B Efficient Implementation

We implemented our questionable encryption scheme in Cygwin using the
OpenSSL-0.9.7e-1 cryptographic library. Our improvements are based on Section
7 of [19]. However, we digress from Section 7 by using a more efficient version of

Questionable Encryption and Its Applications 221

the Chinese Remaindering algorithm. We utilize the fast Chinese Remaindering
method in RSA’s PKCS #1 standard [18] (i.e., the use of gInv). Our computa-
tion of m during Paillier decryption therefore utilizes zero calls to the Extended
Euclidean Algorithm instead of two calls.

FastEncryption: The public key data structure consists of (n, g, n2). This avoids
having to square n during encryption. It is possible to store the array (g, g2, g4, ...)
as part of the public key. This speeds up the computation of gm mod n2. However,
we opted not to do this type of optimization.

Fast Decryption: The private key data structure consists of the tuple,

(p, q, p2, q2, pinvmod2tow, qinvmod2tow, hp, hq, qInv)

We have that,

pinvmod2tow = p−1 mod 2|p|

qinvmod2tow = q−1 mod 2|q|

hp = L(gp−1 mod p2, p)−1 mod p

hq = L(gq−1 mod q2, q)−1 mod q

Adopting the variable name from PKCS #1, we have that qInv = q−1 mod p.
Instead of using L as previously defined, we use the speedup mentioned by Pail-
lier that performs operations modulo a power of 2. More specifically, we use LFast
(u,n,ninv) = (u − 1)∗ninv mod 2|n|. The efficient Paillier decryption algorithm is
given below.

1. compute mp = LFast(cp−1 mod p2, p, pinvmod2tow) hp mod p
2. compute mq = LFast(cq−1 mod q2, q, qinvmod2tow) hq mod q
3. compute h = (mp −mq)qInv mod p
4. output m = mq + qh and halt

Fast G1: To generate g in G1 we generate gp ∈ ZZ∗
p2 to be a random element with

order divisible by p and gq ∈ ZZ∗
q2 to be a random element with order divisible by q.

These are then Chinese Remaindered to compute the public key parameter g. We
use LFast to compute hp and hq.

FastG0:Let p = 2p1+1 and q = 2q1+1. In an analagous improvement, to generate
g in G0 we generate gp ∈ ZZ∗

p2 to be a random element having order 2p1 or p1. We
generate gq ∈ ZZ∗

q2 to be a random element having order 2q1 or q1. It is required
that at least one of these orders be even. gp and gq are then Chinese Remaindered
to compute the public key parameter g. We use LFast to compute hp and hq.

Fast F : The function F can be implemented efficiently by analyzing g efficiently.
This canbe accomplished by computing gp = gmod p2 and gq = gmod q2 and then
determining the order of gp and gq. This reveals the order of g. Note that the order
of gp can be found at about the cost of computing three exponentiations modulo
p2 in which the exponent is approximately |p| bits in length.

Twin RSA

Arjen K. Lenstra1,2 and Benjamin M.M. de Weger2

1 Lucent Technologies, Bell Laboratories, Room 2T-504,
600 Mountain Avenue, P.O.Box 636, Murray Hill, NJ 07974-0636, USA

2 Technische Universiteit Eindhoven,
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. We introduce Twin RSA, pairs of RSA moduli (n, n + 2),
and formulate several questions related to it. Our main questions are: is
Twin RSA secure, and what is it good for?

Keywords: recreational cryptography.

1 Introduction

Regular RSA moduli are constructed by multiplying two more or less randomly
selected primes of appropriate sizes. As a result, representation of a regular 2N -
bit RSA modulus requires about 2N bits. To save on the representation size of
RSA moduli, several methods were proposed in [8], some of which were broken
in [1]. An often reinvented folklore approach to generate 2N -bit RSA moduli that
can be represented using just N bits, published in [5] along with several simple
variants, still seems to be unbroken. This simple method works as follows. For
an N -bit number x that is known from the context, repeatedly select an N -bit
prime p at random until the integer part q of the quotient (x+ 1)2N/p is prime,
then the most significant N bits of the RSA modulus n = pq are given by x.
Faster variants add some slack to x and replace q by q + 1 until it is prime, but
the principle remains the same. Since x is known from the context—or can for
instance be chosen as 2N−1—the N least significant bits suffice to represent the
2N -bit RSA modulus n. If one is willing to also consider moduli of unbalanced
factor sizes, e.g. a product of primes of sizes 1

2N and 3
2N , respectively, then, as

was shown in [5], a 2N -bit modulus can even be represented using 1
2N bits. In

particular this shows that pairs of RSA moduli can be generated in such a way
that the pair can be represented using the space of a single regular or even a
half unbalanced RSA modulus.

In this note we present a method that achieves the same ‘compression ratio’
for pairs of RSA moduli, in a different and esthetically more pleasing way. Our
method is implicit in one of the methods described in [6] and thus not new. The
reason we present this particular case of the method from [6] is the fact that
the possibility of the construction is usually met first with amazement, quickly
followed by skepticism about the security, and finally with puzzled resignation
that the resulting moduli indeed look hard to break. Thus, we would like to

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 222–228, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Twin RSA 223

offer it as a challenge to a wider audience, hoping for either a better security
argument than what can be found in [6], or a more effective cryptanalysis.

Another question we want to pose with this note is: are there any applications
of Twin RSA that are more interesting than the ones we have been able to offer
so far? We realize that it is by no means good marketing policy to present a new
cryptographic method without convincing evidence of its practical potential or
cryptographic significance. On the other hand, publishing the method despite
the fact that we cannot think of a sensible application ourselves, at least has the
potential to uncover new possibilities by bringing it to the attention of members
of the practical cryptographic community who may never have realized that such
remarkable pairs of RSA moduli were possible—or secure.

The remainder of this note is organized as follows. Our method to generate
RSA moduli with a fixed prescribed difference is described and discussed in
Section 2. A few generalizations are offered in Section 3, and Section 4 concludes
this note with two factoring challenges.

2 Twin RSA

Generation of RSA moduli with any prescribed even integer difference d is an
easy application of the Chinese Remainder Theorem. The details are described
in Algorithm 1 below.

Algorithm 1. Let d �= 0 be a small fixed even integer and let 2N be the
bitlength of the RSA moduli to be generated.

1. Select two random N -bit primes p and q.
2. Use the Chinese Remainder Theorem to calculate the least positive integer n

such that n ≡ 0 mod p and n ≡ −d mod q and let r = n/p and s = (n+d)/q.
3. If n or n + d does not have bitlength 2N , or if r or s is composite, then

return to Step 1.
4. Output the pair of RSA moduli (n, n + d) with factorizations n = pr and

n+ d = qs.

For actual RSA applications of the resulting moduli, co-primality requirements
with respect to one’s favorite public exponent(s) and p−1, q−1, r−1, and s−1
have to be included in the above description.

Twin RSA. We introduce the term Twin RSA for the pair of moduli that
results from Algorithm 1 when d = ±2.

Abundance. A single moment of reflection learns that it is most likely the case
that Twin RSA moduli are abundant. The Prime Number Theorem combined
with the assumption that the factorizations of n and n+2 are independent leads
to the conjecture that the number of Twin RSA moduli up to x is asymptotically
equal to cx/(log x)4, for some positive constant c. The same argument applies
to the general case (n, n+ d) for odd d.

Runtime of Algorithm 1. Based on the Prime Number Theorem and the
runtime of a single probabilistic compositeness test (using standard arithmetic),

224 A.K. Lenstra and B.M.M. de Weger

one may expect that each execution of Step 1 of Algorithm 1 takes expected
runtime O(N × N3 + N × N3) = O(N4). Assuming that r and s behave as
independent random N -bit numbers, they will simultaneously be prime with
probability proportional to 1/N2, again based on the Prime Number Theorem.
Using standard arithmetic, the computation in Step 3 of Algorithm 1 can be
expected to take runtime O(N3 + (1/N) × N3) = O(N3) (where the factor
1/N accounts for the probability that r is not found to be composite, in which
case compositeness of s has to be tested as well) and dominates the runtime of
the computation in Step 2. Overall, we find that the expected runtime becomes
O(N2(N4 +N3)) = O(N6).

Practical considerations. A practical speed-up can be obtained by generat-
ing the sequence of candidate p’s in Step 1 of Algorithm 1 using sieving based
methods, independently from the similarly generated sequence of candidate q’s.
Also, upon return to Step 1, one may decide to generate a new p or a new q, but
not both.

A more substantial speed-up is obtained by allowing more candidate quo-
tients per prime pair (p, q): in Step 3 of Algorithm 1, add some slack to the
lengths and find the smallest positive integer k such that the quotients (n+kpq)/p
and (n+ kpq+ d)/q are both prime. The resulting method can be made to work
in expected time O(N5), but results in RSA moduli pairs that are somewhat
less ‘elegant’ because their factors will have slightly different sizes. The more
time one is willing to invest in the generation of RSA moduli pairs with fixed
prescribed difference, the closer factor sizes one will be able to obtain.

Independent generation of n and n+ d? Given d, the moduli n and n+ d
are generated simultaneously by the single party that executes Algorithm 1. As
a result, that same party knows the factorizations of both moduli. We are not
aware of a simple variant of our approach where a first party generates p, a second
party generates q, and the two parties engage in a straightforward protocol that
results in RSA modulus n for the first party and n + 2 for the second party,
without either party knowing the factorization of the other party’s modulus. We
pose the challenge of developing such a protocol because it may lead to more
interesting applications of Twin RSA.

Security? With variable d, and as argued in [6], it seems impossible to distin-
guish an RSA moduli pair (n, n + d) generated using our method from a pair
of regular RSA moduli that happens to have difference d. This suggests that
‘our’ pairs (n, n+ d) are as secure as ‘regular’ pairs: being able to do the private
RSA operation for either modulus is independent of whether the private RSA
operation can be carried out for the other modulus or not.

But what about a fixed choice of d, such as d = 2? Most certainly, and
intuitively, Twin RSA looks highly suspicious. A more subtle security argument
is required in this case, which is one of the challenges we pose with this note.
All we can present at this point in support of our belief in the security of Twin
RSA—if one is willing to believe in the hardness of factoring to begin with—
is the circumstantial evidence that generations of factorers who contributed to

Twin RSA 225

the Cunningham factoring project (cf. [3]), where factorizations of bk ± 1 are
collected for 2 ≤ b ≤ 12 up to high powers k, have never been able to profit from
the factorization of a certain bk ± 1 to factor the corresponding bk ∓ 1.

We also believe that, even when the two moduli share the same public expo-
nent e (such as in practice often happens, e.g. e = 65537), the two corresponding
private exponents will be completely different and independent for all practical
purposes. So, here we do not see any reason for additional suspicion either.

Applications? As mentioned in the Introduction, one of our reasons to publish
this note is that we are curious to know if there are any interesting applications
of Twin RSA. Here the ‘application’ may either wear a white or a black hat,
as long as it enables us to do something we were unable to do before. Some
rather unconvincing white hat applications use the twin modulus as backup in
case the other one is believed to be compromised, or use one for encryption
and the other for signature purposes—conveniently avoiding the cost of two
different certificates for the two different keys. In situations where the size of two
standard X.509 certificates is too costly, e.g. because of memory or bandwidth
restrictions such as in the mobile telephony world, Twin RSA can be useful. We
can envisage one certificate, in which one Certificate Authority (CA) signature
is used to bind the owner’s identity information to two RSA key pairs (a Twin
RSA pair), which is represented by just one of the two moduli and a common
(usually very small) public exponent. This will save almost half of the space
needed to represent the public key (and when predetermined bits are used, as
explained in the next section, a reduction to 25% even becomes possible). One of
the conditions that has to be posed is that there must be a standardized way of
interpreting this public key representation, of how to extract both public keys,
and of establishing the allowed key usages for both keys. It should be possible
to do this with only minor adaptations to existing certificate standards such as
X.509. Another condition is that the CA should explicitly guarantee that it has
seen proof that the certificate owner is in possession of both private keys.

Are there applications with more cryptographic significance? And are there
any applications with ‘interesting’ cryptanalytic potential?

3 Generalizations

Multiple RSA. With a proper choice of even differences di for 0 ≤ i < t and
d0 = 0, our method allows construction of t-tuples of RSA moduli (n + di)t−1

i=0 ,
if one is willing to accept moduli where the size of the largest of the two factors
is t − 1 times the size of the smallest one. For large modulus sizes this may be
acceptable, and possibly even desirable (cf. [7]). Note that, for instance, d1 = 2,
d2 = 4 will not work: the set {di mod 3 : i = 0, 1, 2} equals the full residue
set {0, 1, 2} modulo the prime 3, so that for any integer n there will always
be an i ∈ {0, 1, 2} such that n + di is divisible by 3. More in general, the set
consisting of the di’s, for 0 ≤ i < t, should not contain a full residue system
modulo any prime ≤ t. The latter condition is obviously necessary, but also
sufficient. This can easily be seen as follows: for each prime q ≤ t there exists an

226 A.K. Lenstra and B.M.M. de Weger

aq ∈ {0, 1, . . . , q−1} such that dj �≡ aq mod q for all j. We now restrict ourselves
to n that are equal to −aq mod q for all q ≤ t, which can be obtained by Chinese
Remaindering. Then q does not divide n+ dj for all q ≤ t and all j.

Algorithm 2. Let t ≥ 2, let (di)t−1
i=0 with d0 = 0 be a set of small even integers

that does not contain a full residue system modulo any prime ≤ t, and let tN
be the bitlength of the RSA moduli to be generated.

1. Select t random N -bit primes pi, 0 ≤ i < t.
2. Use the Chinese Remainder Theorem to calculate the least positive integer n

of bitlength at most tN such that n ≡ −di mod pi for 0 ≤ i < t, and let
ni = n+ di and ri = ni/pi for 0 ≤ i < t.

3. If ni does not have bitlength tN for an i ∈ {0, 1, . . . , t− 1} or if there is an
i ∈ {0, 1, . . . , t− 1} such that ri is composite, then return to Step 1.

4. Output the t-tuple of RSA moduli (ni)t−1
i=0 with factorizations ni = piri.

As before, Algorithm 2 can be seen to have expected runtime O(N t+4).

Twin RSA with predetermined bits. Our methods can simply be com-
bined with the methods from [5], again at the cost of severely unbalancing the
factor sizes (cf. [6]), in a way similar to the construction of the colliding X.509
certificates that were reported in [2]. For instance, for any N -bit number x and
assuming that N is even, a pair of 2N -bit RSA moduli (n, n + d) can be con-
structed such that the leading N bits of n are given by x, and such that both n
and n + d are the products of a 3N/2-bit prime and an N/2-bit prime. In the
interest of space we elaborate.

Algorithm 3. Let d �= 0 be a small fixed even integer, let x be an integer with
2N−1 ≤ x < 2N for some even positive integer N such that 2N is the bitlength
of the RSA moduli to be generated.

1. Select two random N/2-bit primes p and q.
2. Use the Chinese Remainder Theorem to calculate the least positive inte-

ger b < pq such that b ≡ −x2N mod p and b ≡ −x2N − d mod q, let
n = x2N + b, and let r = n/p and s = (n+ d)/q.

3. If r or s is composite, then return to Step 1.
4. Output the pair of RSA moduli (n, n + d) with factorizations n = pr and

n+ d = qs. The most significant N bits of n and n+ d are the same and are
given by x.

Remarks. None of the approaches mentioned in this or the previous section
yields a representation saving that is larger than what can be obtained by using
just the methods from [5].

The practical speed-up tricks that applied to Algorithm 1 can, with the
obvious changes, be applied to Algorithms 2 and 3 as well. Furthermore, Algo-
rithm 3 allows a similar generalization to t-tuples—Multiple RSA with prede-
termined bits—as was presented for Algorithm 1 in Algorithm 2. The restriction
to even N in Algorithm 3 is not crucial and just for ease of exposition. Different
sized predetermined parts can be handled in essentially the same way. Putting

Twin RSA 227

the predermined part in the least significant bits, or spreading it over most and
significant bits, is possible too. The underlying idea of all these generalization
is the same: combine any of the methods described in [5] with the Chinese Re-
mainder Theorem.

We gladly leave other variants of our idea, namely Twin Discrete Log, or
subvariants such as Twin (Hyper)Elliptic Discrete Log, for others to pursue.
This could take the not so challenging form of twin prime fields (Fp,Fp+2), of
equally uninteresting generators (g, g + 1) (no need to jump by 2 this time!)
of the same full multiplicative group, or, the sole interesting case (cf. [6]), of
generators g, g + 1 of a relative small prime order subgroup of a multiplicative
group of a prime field—actually, the range of possibilities is only limited by one’s
imagination. What it would be good for is an entirely different matter.

4 Factoring Challenges

Below the n is given of a Twin RSA pair (n, n + 2) consisting of two 1024-bit
RSA moduli that each have one 256-bit prime factor, along with the 256-bit
factor p of n. Note that the Twin RSA pair (n, n+ 2) can be represented using
just 512 bits. Finding the 256-bit factor of n + 2 should be borderline possible
using the elliptic curve factoring method (ECM), now that a 219-bit (66-digit)
factor found using ECM has been announced [4]. Can anyone factor n+2 faster,
if at all possible using the known factorization of n?

n = 80000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

11B9E917 7E937E9D 6AAB2AB0 28940F89 BEEC962C 286F28A9 DB965A18 688EE789

ACF43457 0E44D41B F837B4EF 9E435CFB 56C2E2F7 00EE8DDD 2A3ECF9F B2EA360D

p = EF0650E4 304D1242 F3DBAF45 80BFB645 77527C60 3C1E3006 BCDE98FB 5F97E507.

Obviously, with the fixed prefix this size cannot be recommended for practical
purposes. A more substantial factoring challenge is given by the Twin RSA pair
(m,m+2), for which the 2048-bitm is given below along with its 512-bit factor q.
Finding the 512-bit prime factor ofm+2 using ECM can be expected to be about
as hard as factoring m+ 2 using the Number Field Sieve. Can m+ 2 be factored
in an easier way, possibly using the known factorization of m?

m = 80000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

396099A3 5F9D2B49 E7BB729E 9542A7B0 A1FAD34B EE884199 E29A5DB4 E49DE1C8

279682F4 2A92FBFF 4F0F891F 65638997 B28D26DA 10B7529A 40CFA534 8BB95BE8

ADF4A21B 7DC562D4 93590D53 6B6124C5 6DB5D693 1004A7B4 C031C401 A4B6E1E8

EA5C8362 E7B2DB3F BFDEF87D 75311FEA 7D9BF1C3 9E3E64DF 9163E468 6D5D2711

q = C1A25EAE FF7A187A 6F793972 199F192B 3D2912DF BD4586CF 4D1CE614 6D75992F

AB3A7E2A 2149CD3C 4FE9F8A4 8DF3B515 74660F13 696BC4BD 4808E475 69E414B9.

228 A.K. Lenstra and B.M.M. de Weger

As far as we know this last Twin RSA size can be recommended for practical
purposes, either with or without a fixed 1024-bit prefix. With the prefix it allows
representation of two 2048-bit moduli at the cost of representing 1024 bits.

References

1. D. Coppersmith, Finding a small root of a bivariate integer equation; factoring with
high bits known, Eurocrypt’96, LNCS 1070, Springer-Verlag 1996, 178–189.

2. Colliding X.509 Certificates, see
http://www.win.tue.nl/~bdeweger/CollidingCertificates/.

3. Cunningham project, see http://www.cerias.purdue.edu/homes/ssw/cun/.
4. B. Dodson, email announcement of the ECM factorization of M963, April 6, 2005.
5. A.K. Lenstra, Generating RSA moduli with a predetermined portion, Asiacrypt’98,

LNCS 1514, Springer-Verlag 1998, 1–10.
6. A.K. Lenstra, B.M.M. de Weger, On the possibility of constructing meaningful hash

collisions for public keys, ACISP 2005, LNCS 3574, Springer-Verlag 2005, 267–279.
7. A. Shamir, RSA for paranoids, RSA Laboratories’ Cryptobytes, v. 1, no. 3 (1995)

1–4.
8. S.A. Vanstone, R.J. Zuccherato, Short RSA keys and their generation, J. Cryptology,

8 (1995) 101–114.

Security of Two-Party Identity-Based
Key Agreement

Colin Boyd and Kim-Kwang Raymond Choo

Information Security Institute,
Queensland University of Technology,

GPO Box 2434, Brisbane Q4001, Australia
boyd@isrc.qut.edu.au, k.choo@qut.edu.au

Abstract. Identity-based cryptography has become extremely fashion-
able in the last few years. As a consequence many proposals for identity-
based key establishment have emerged, the majority in the two party
case. We survey the currently proposed protocols of this type, examining
their security and efficiency. Problems with some published protocols are
noted.

1 Introduction

One of the main purposes of using public-key cryptography, in comparison to
shared-key cryptography, is to make key distribution easier. Public keys by their
nature need not be kept confidential. On the other hand, integrity of public keys
is critical for security and therefore public key certificates have been used for
many years. Management of public key certificates has proven to be a harder
task than was initially realised and so new directions have been sought. Identity-
based cryptography removes the need for certificates since the identity of the
owner is the public key. Such public keys can include any descriptive information
including temporal information.

Public key cryptography (and identity-based cryptography in particular) only
addresses management of long-term public keys which are not suitable for bulk
cryptographic processing. For such purposes symmetric keys are usually required
which are established freshly for each individual session. Protocols for establish-
ing such session keys come in many different types and have a reputation for
being difficult to design correctly. One of the simplest and most common types
of key establishment protocols are key agreement protocols in which the session
key is defined by inputs from the protocol participants.

In the past few years there has been extreme interest in the use of identity-
based cryptography, mainly due to the use of elliptic curve pairings to realise
cryptographic structures that did not seem possible before. Amongst the many
resulting new tools that have been proposed have been a large number of key
agreement protocols based on pairings. In the rush to exploit the new ideas
many of these protocols have been published without a careful security analysis
or a systematic comparison with alternatives. The situation is somewhat like

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 229–243, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

230 C. Boyd and K.-K.R. Choo

that 20 years ago when key establishment protocols for conventional public key
cryptography were routinely published without a proper security analysis.

The purpose of this paper is to make a critical appraisal of the current sta-
tus of identity-based key agreement protocols, limited to the two-party case.
We examine the security properties and efficiency achieved in a large number
of published protocols. We emphasise the importance of precise security models
and note deficiencies in several protocols.

The rest of this paper is structured as follows. The following section de-
fines the subject matter in more detail by discussing relevant background on
identity-based cryptography and key agreement protocols. Section 3 surveys the
field of existing published protocols and analyses their comparitive security and
efficiency. The conclusion speculates where subsequent progress may be likely.

2 Identity-Based Cryptography and Key Agreement

The original idea for identity-based cryptography goes back to Shamir [30] over
20 years ago. Identity-based cryptography does away with public keys altogether
so no certificates are required (although the authenticity of public parameters
needs to be assured). This is of great benefit in simplifying key management.
However, a drawback of all true identity-based schemes is that users cannot be
allowed to generate their own private keys (otherwise anyone could find any
user’s private key) and therefore key escrow is inevitable.

Shamir gave an algorithm for identity-based signatures but was unable to ob-
tain an identity-based encryption algorithm. However, in 1987 Okamoto [24,25]
published the first identity-based key agreement protocol. It uses a composite
modulus n whose factorisation is known only to a trusted authority. The author-
ity chooses values e and d as in the RSA algorithm, so that ed mod φ(n) = 1,
and an element g that is primitive in both the integers mod p and the integers
mod q. The values g and e are made public.

Before engaging in the key agreement protocol each user must register with
the authority to obtain a private key. Party Pi’s identification string, IDi,
is treated as an integer modulo n. The authority calculates the value si =
ID−d

i mod n and distributes si securely to user I. Once this registration is com-
pleted users may agree fresh session keys without recourse to any other infor-
mation other than the fixed parameters e and n and the identity of the partner
with which the key is to be shared.

Protocol 1 shows the key agreement message flows. The shared secret is de-
fined as ZAB = gerArB . On the assumption that it is necessary to know either
sA or sB in order to find ZAB, the scheme prevents an adversary from learning
the session key.

Mambo and Shizuya [22] and later Kim et al. [18] provided a security proof
against active attacks. They showed a reduction of attacks on the protocol to
the Diffie–Hellman problem or to the RSA problem. Their model is similar to
the Bellare–Rogaway security model [3,4] discussed below.

Security of Two-Party Identity-Based Key Agreement 231

A B

rA ∈R Zn

tA = grA sAtA−−−−−−−→ rB ∈R Zn

sBtB←−−−−−−− tB = grB

ZAB = ((sBtB)eIDB)rA ZAB = ((sAtA)eIDA)rB

Protocol 1: Okamoto’s identity-based protocol

Interest in identity-based cryptography was resurrected when Boneh and
Franklin [6] presented the first identity-based encryption scheme using the idea
of a bilinear map based on elliptic curve pairings. However, even before this
the applications of pairings to identity-based key agreement were recognised by
Sakai et al. [29]. Before looking at the SOK protocol we have to introduce some
notation and concepts about pairings and bilinear maps. Except where noted
otherwise, the following notation is used for all protocols in this paper.

Using the notation of Boneh and Franklin [6], we let G1 be an additive group
of prime order q and G2 be a multiplicative group of the same order q. We
assume the existence of a map ê from G1 × G1 to G2. Typically, G1 will be a
subgroup of the group of points on an elliptic curve over a finite field, G2 will
be a subgroup of the multiplicative group of a related finite field and the map
ê will be derived from either the Weil or Tate pairing on the elliptic curve. The
mapping ê must be efficiently computable and has the following properties.

Bilinear: for Q,W,Z ∈ G1, both

ê(Q,W + Z) = ê(Q,W) · ê(Q,Z) and ê(Q+W,Z) = ê(Q,Z) · ê(W,Z).

Non-degenerate: for some element P ∈ G1, we have ê(P, P) �= 1G2 .

When a ∈ Zq and Q ∈ G1, we write aQ for scalar multiplication of Q by a. Due
to bilinearity, for any Q,W ∈ G1 and a, b ∈ Zq we have:

ê(aQ, bW) = ê(Q,W)ab = ê(abQ,W).

Recent literature [1, 2, 6, 15] provides a more comprehensive description of how
these groups, pairings and other parameters should be selected in practice for
efficiency and security.

A random value s ∈ Zq plays the role of the master secret of the Key
Generation Centre (KGC) in the ID-based system. The KGC distributes to
each party Pi with identity IDi a long-term key pair consisting of public key
Qi = H1(IDi) and private key Si = sQi. Here H1 is a hash function mapping
identities IDi ∈ {0, 1}∗ onto G1. The KGC also publishes the system param-
eters which include descriptions of the two groups G1 and G2, a point P that
generates G1, and a master public key sP .

232 C. Boyd and K.-K.R. Choo

SOK Protocol [29]. With the above parameters, any two principals Pi, Pj with
identities IDi, IDj can efficiently calculate a shared key:

Fij = ê(Qi, Qj)s = ê(Si, Qj) = ê(Sj , Qi).

This protocol for identity-based, non-interactive key distribution is analogous to
static Diffie–Hellman but does not require certificates. Dupont and Enge [14]
analysed the security of the protocol. Like many identity-based protocols, the
security of SOK relies on the difficulty of the Bilinear Diffie-Hellman Problem
(BDHP). Given G1, G2 and ê as above, the BDHP is to compute ê(P, P)xyz ∈ G2

given 〈P, xP, yP, zP 〉 with P ∈ G1 and x, y, z ∈ Zq.
At this point it is reasonable to ask what advantage there is in identity-

based key agreement based on pairings in comparison with older identity-based
protocols such as Okamoto’s (Protocol 1 above). Generally the answer may be
expected to be the same advantages as using elliptic curves over older public key
technology, namely a saving in computation and key size. This is certainly true
with regard to savings in bandwidth since message exchanges can be considerably
shorter. However, it may not necessarily be the case in terms of computation
because the pairing operation can be quite costly. Research is still quite active
in deciding how to implement pairings most efficiently. In Section 3.2 we compare
the efficiency of many pairings-based key agreement protocols. Another reason
for choosing pairings-based key agreement is to exploit the infrastructure for
identity-based cryptography with its many other benefits. In the remainder of
this paper we look only at pairings-based key agreement.

2.1 Security Properties for Key Agreement

There are many properties that are required for security of any key agreement
protocol. These have been discussed by many authors and we refer to the paper of
Blake-Wilson and Menezes [5] for an excellent overview. The most basic property
is that a passive adversary eavesdropping on the protocol should be unable to
obtain the session key. In a modern context we usually require that, far from
obtaining the whole key, the adversary cannot even reliably distinguish between
the session key and a randomly chosen string of the expected length. We also
generally expect the adversary to be an active one, not only able to see all
messages sent, but also able to alter, delete and fabricate messages – in short
the adversary is in control of the communications on the network. A number of
typical attacks lead to additional security properties as follows.

Known key security. It is often reasonable to assume that the adversary will
be able to obtain session keys from any session different from the one under
attack. A protocol has known-key security if it is secure under this assump-
tion. This is generally regarded as a standard requirement for key establish-
ment protocols.

Unknown key-share security. Sometimes the adversary may be unable to
obtain any useful information about a session key, but can deceive the pro-
tocol principals about the identity of the peer entity. This can result in

Security of Two-Party Identity-Based Key Agreement 233

principals giving away information to the wrong party or accepting data
as coming from the wrong party. Consequently security against unknown
key-share attacks is regarded as a standard requirement.

Forward secrecy. When the long-term key of an entity is compromised the
adversary will be able to masquerade as that entity in any future protocol
runs. However, the situation will be even worse if the adversary can also use
the compromised long-term key to obtain session keys that were accepted be-
fore the compromise. Protocols that prevent this are said to provide forward
secrecy. Since there is usually a computational cost in providing forward se-
crecy it is sometimes sacrificed in the interest of efficiency. Forward secrecy
for identity-based protocols is similar to conventional public key cryptog-
raphy. However, there is an additional concern since the master key of the
KGC is another secret that could become compromised. When this happens
it is clear that the long-term keys of all users will be compromised, but it is
possible that a protocol can provide forward secrecy in the usual sense but
still give away old session keys if the master key becomes known. We will
say that a protocol that retains confidentiality of session keys even when the
master key is known provides KGC forward secrecy.

Key Compromise Impersonation Resistance. Another problem that
may occur when the long-term key of an entity A is compromised is that
the adversary may be able to masquerade not only as A but also to A as
another party B. Such a protocol is said to allow key compromise imperson-
ation. Resistance to such attacks is often seen as desirable. Another property
that is sometimes desired is deniability, which ensures that the protocol does
not permit a proof that any particular principal took part. Resistance to key
compromise impersonation seems to conflict with deniability [7].

Although the informal security properties just discussed are useful concepts in
assessing protocols, the modern view is that a formal analysis is a more reliable
way to obtain confidence in the security of a protocol. The computational ap-
proach to proofs of protocols for key establishment was established by Bellare
and Rogaway [3,4]. Several variants and extensions of the model have been used.
Here we outline the basic method. The adversary A is a probabilistic polynomial
time algorithm that controls all the communications that take place between all
protocol principals. It does this by interacting with a set of oracles, each of which
represents an instance of a principal in a specific protocol run. Each principal
has an identifier U and oracle Πs

U represents the actions of principal U in the
protocol run indexed by integer s. Interactions with the adversary are called
oracle queries. We now describe each one informally.

Send(U, s,m). This query allows the adversary to make the principal U run the
protocol normally. The oracle Πs

U will return to the adversary the same next
message that an honest principal U would if sent message m according to the
conversation so far.
Reveal(U, s). This query models known key security. If a session key Ks has
previously been accepted by Πs

U then it is returned to the adversary. An oracle
is called opened if it has been the object of a Reveal query.

234 C. Boyd and K.-K.R. Choo

Corrupt(U,K). This query models insider attacks and unknown key share at-
tacks by the adversary. The query returns the oracle’s internal state and sets the
long-term key of U to be the value K chosen by the adversary. The adversary
can then control the behaviour of U with Send queries. A principal is called
corrupted if it has been the object of a Corrupt query.
Test(U, s). Once the oracle Πs

U has accepted a session key Ks the adversary
can attempt to distinguish it from a random key as the basis of determining
security of the protocol. A random bit b is chosen; if b = 0 then Ks is returned
while if b = 1 a random string is returned from the same distribution as session
keys. This query is only asked once by the adversary.

The security of the protocol is defined by a game played between the adversary
and a collection of user oracles. The adversary will interact with the oracles
through the queries defined above. At some stage during the execution a Test
query is performed by the adversary. The target oracle for the test query (and
any partner it has) must not have been the subject of a Reveal or Corrupt query.
Eventually the adversary outputs its guess (a bit) indicating whether the input
to the Test query was the real key or not. Success of the adversary A is measured
in terms of its success in getting this guess correct.

Definition 1. A protocol P is a secure key establishment protocol if:

– in the presence of a benign adversary partner oracles accept the same key.
– no probabilistic polynomial time adversary can win the above game with prob-

ability significantly more than 1
2 .

Security of a protocol is typically proved by finding a reduction to some well
known computational problem whose intractability is assumed. The formal def-
inition of security in the computational models captures most of the attacks
mentioned above. Some model variants do not consider forward secrecy, while
resistance to key compromise impersonation is usually not modelled.

2.2 An Example

In this section we look at a specific protocol due to Ryu, Yoon and Yoo [27]. This
should help to understand the typical structure of identity-based key agreement
and illustrate some of the important properties. Figure 2 describes the protocol.
Parties A and B choose random values a and b and exchange ephemeral public
keys TA and TB which are used to form the ephemeral Diffie–Hellman key abP in
group G1. They are also assumed to know each other’s identity and can therefore
both form the long-term shared key ê(QA, QB)s exactly as in the SOK protocol.
At the end of the protocol execution, both A and B will compute session keys
of the same value:

KAB = H(A,B,KA, VA) = H(A,B, a · TB, ê(SA, QB))
= H(A,B, abP, ê(QA, QB)s)
= H(A,B,KB, VB) = H(A,B, b · TA, ê(SB, QA))

Security of Two-Party Identity-Based Key Agreement 235

A B

a ∈R Z∗
q

TA = aP−−−−−−−→ b ∈R Z∗
q

KA = a · TB
TB = bP←−−−−−−− KB = b · TA

VA = ê(SA, QB) VB = ê(SB , QA)

Protocol 2: Ryu–Yoon–Yoo ID-based authenticated key agreement protocol

= H(A,B, abP, ê(QA, QB)s)
= KBA

A Key Replicating Attack. We now describe a new attack in which the ad-
versary succeeds in forcing the establishment of a session, S, (other than the
Test session or its matching session) that has the same key as the Test ses-
sion. In this case the adversary can distinguish whether the Test-session key is
real or random by asking a Reveal query to the oracle associated with S. Such
an attack has been dubbed a key replicating attack by Krawczyk [19]. The at-
tack succeeds if the adversary is allowed to ask a Reveal query, as shown in
Figure 1. Both A and B have non-matching conversations at the end of the

A A B

a ∈R Z∗
q

TA = aP−−−−−−−→ Intercept

e ∈R Z∗
q

e · TA−−−−−−−→ b ∈R Z∗
q

KA′ = a · e · TB
e · TB←−−−−−−− Intercept TB = bP←−−−−−−− KB′ = b · e · TA

VA = ê(SA, QB) VB = ê(SB, QA)
KAB = H(A, B, abeP, ê(QA, QB)s) = KBA

Fig. 1. Execution of Protocol 2 in the presence of a malicious adversary

protocol execution, but have accepted the same session key. This session key
is KAB = H(A,B, abeP, ê(QA, QB)s) = KBA, depends on e, an input from A.
This is a violation of the “key integrity” property [16] which states that any
accepted session key should depend only on inputs from the protocol principals.
Since both A and B do not have any matching conversations (they are not part-
ners since their protocol views are different), A is able to trivially expose a fresh
session key by revealing either A or B.

Key Compromise Impersonation. In order to demonstrate that the Ryu–Yoon–
Yoo protocol does not achieve key compromise impersonation resilience (as

236 C. Boyd and K.-K.R. Choo

claimed), we assume that the adversary, A, has corrupted player A (using a
Corrupt query) and has knowledge of the long-term secret key of A, sQA.

A impersonates B and starts a new protocol execution with A. At the end of
this protocol execution, A is able to compute the session key of A as per protocol
specification, as shown below:

KAB = H(A,B,KE , VA) = H(A,B, e · TA, ê(SA, QB))
= H(A,B, aeP, ê(QA, QB)s)
= H(A,B, a · TE , ê(QA, QB)s)

3 Comparing Identity-Based Key Agreement Protocols

In this section we survey a large number of protocols that have been published in
the recent literature and assess their security and efficiency. Most of the proto-
cols are defined using two message flows, one in each direction between principals
A and B. There have been some one-way protocols proposed [26] but we will
not look at these in this survey. Many protocols are also defined in a three mes-
sage version, typically by adding a “handshake” between the parties to provide
confidence that they both hold the same key.

We note that there are many similarities between identity-based key agree-
ment and key agreement using standard public key cryptography. Arguably the
aim in designing a good ID-based key agreement protocols is to achieve all the
properties of the best conventional key agreement protocols but without the need
for certified public key, and at the same time trying to maximise efficiency.

3.1 Protocol Definitions

Tables 1 and 2 summarise the definition of each of the protocols. Those in Ta-
ble 1 use unauthenticated messages, which means that private keys are not used
in their construction. In contrast protocols in Table 2 include some direct au-
thentication information, which is checked by the recipient before proceeding.
There are three ingredients which essentially define most of these protocols.

Private key. Most protocols use the private key construction used in the first
protocol of Sakai et al. which we denote Type I. There are to date a few
examples of protocols using an alternative key first suggested by Sakai and
Kasahara [28] which we denote Type II.
– Type I: SU = sQI

– Type II: SU = (s+ qU)−1P

Note that Type I private keys are members of the elliptic curve group G1

defined by mapping the identity string IDI of entity I to the value QI

using a suitable hash function. Boneh and Franklin [6] suggest an explicit
function for a particular elliptic curve which costs one exponentiation in the

Security of Two-Party Identity-Based Key Agreement 237

underlying field. This mapping must also be applied to find the public key
QI . In contrast Type II private keys use a value qU which is a hash of IDU

whose output is a scalar in Zq. The corresponding public key for the Type II
private key is (s+ qU)P which can be calculated as sP + qUP . Finally there
is a variant of Type II which we denote II’. Type II’ keys are defined using
a different pairing and use two different public generators P and Q for the
inputs of the pairing.

Message structure. In order to obtain the best efficiency most protocols send
only one message block typically consisting of one elliptic curve point. Some
protocols add a second value which can typically be considered as a signature
value which is checked by the recipient before the session key is computed.

Session key construction. There are many different ways that the exchanged
messages can be combined in order to derive the session key. Each party uses
the received message together with its private long-term key and its short-
term random input.

Table 1. Summary of unauthenticated two-message ID-based protocols

Protocol Private key Message Session key

Smart [32] Type I TA = aP ê(SA, TB) · ê(SB , TA)
CK [9] #1’ Type I TA H(ê(SA, TB) · ê(SB, TA) ‖ abP)
RYY [27] Type I TA H(A ‖ B ‖ ê(QA, QB)s ‖ abP)
Shim [31] Type I TA H(A ‖ B ‖ ê(P, P)abs · ê(QA, P)bs ·

ê(P, QB)as · ê(QA, QB)s)
CK [9] #2 Type I WA = aQA ê(QA, QB)s(a+b)

CK [9] # 2’ Type I TA, WA H(ê(QA, QB)s(a+b) ‖ abP)
Yi [36] Type I WA ê((a + (WA)x)QA, (b + (WB)x)QB)s

CJL [12] #2 Type I TA H(ê(P, P)abs ‖ QA ‖ QB)
Wang [34] Type I WA ê((ψB + b)QB, ψA + a)QA)sh

MB [23] #1 Type II RA = aQB ê(P, P)ab

MB [23] #2 Type II’ RA ê(P, Q)ab

Xie [35] #1 Type II RA ê(P, P)ab+b+a

Xie [35] #2 Type II’ RA ê(P, Q)ab+b+a

Protocols in Table 1 are simple enough that it is possible to reconstruct each one
from the summary information. In each protocol the message shown is that sent
by A. The corresponding message sent by B is symmetrical. In each protocol A
computes a random ephemeral private key a which is a scalar in Zq. In protocols
which use a Type I key exchange, messages are either of the form TA = aP , or
of the form WA = aQA, or both. Protocols with keys of Type II or II’ exchange
messages of the form RA = aQB where B is the other party. The session key is
shown in the table in symmetrical format which does not show directly how it
is constructed. H denotes some secure hash function; ‖ denote concatenation of
two messages. In Wang’s protocol ψA = π(WA,WB), where π : G1 ×G1 → Z∗

q is

238 C. Boyd and K.-K.R. Choo

Table 2. Summary of authenticated two-party, two-message ID-based protocols

Protocol Private key Messages Session key

KRY [17] Type I TA,H(TA)SA + a · sP ê(P, P)abs

CJL [12] #1 Type I asP, aSA H(absP ‖ QA ‖ QB)
BMP [7] Type I aP (authenticated) H(abP)

CHLS [11] Type II See text H(ga, b, . . .)

a special hash function, and h is the co-factor of the elliptic curve defining G1.
In Yi’s protocol, (WA)x denotes the x-coordinate of point WA.

Protocols in Table 2 include direct authentication information as a signa-
ture of some sort. The first two protocols in this table are symmetrical and
use messages as shown. The BMP protocol [7] is the only protocol shown that
exists only in a 3-move version. This protocol provides direct authentication
of the ephemeral keys aP and bP . The CHLS protocol [11] is specially de-
signed for use by a client of low computational power and consequently its
structure is very different from the other protocols listed. Essentially the client
sends an encrypted and signed secret value ga which can be recovered and au-
thenticated by the server. The server sends its input b in cleartext and both
parties can then compute the session key as a hash of ga, b and other val-
ues.

There are some interesting comparisons possible between the protocols seen
in Table 1 and various protocols using conventional Diffie–Hellman in finite fields.
For example, the RYY protocol has strong similarities to the so called Unified
Model protocol which is included in the IEEE P1363 standard. There is a close
similarity also between the Yi protocol and the MQV protocol. Finally the CK
protocol is closely related to MTI A(0) protocol. (Blake-Wilson and Menezes [5]
include descriptions of each of these protocols.) These similarities may extend
to the security properties of these protocols, though this is currently unproven.

Some protocols include versions that can work with different domains in
which separate KGCs use different master keys. These include the CK, MB,
and Xie protocols. A protocol of Lee et al. [20] (not included in the table) is
essentially the same as the CK protocol extended to domains in which different
groups are used.

3.2 Protocol Efficiency

Table 3 summarises the computation of each party. We only record multiplica-
tions and pairings in group G1, and exponentiations from G2. For simplicity we
equate exponentiations in G2 with multiplications in G1 and add them to the
total for M , while the pairings are denoted P .

Computational requirements are divided into two parts, online and offline.
The offline computations are those that can be computed before the protocol run
starts. We have counted as offline those computations that require knowledge of
the identity of the peer. This may not always be realistic. Some computations are

Security of Two-Party Identity-Based Key Agreement 239

Table 3. Computational requirements for two-party, two-message ID-based protocols

Protocol Computation Computation
On-line Off-line

Smart [32] 1P 2M + 1P

CK [9] #1’ 1M + 1P 2M + 1P

CK [9] #2 1P 2M

CK [9] #2’ 1M + 1P 2M

Wang [34] 2M + 1P 1M

Yi [36] 2M 1M + 1P

RYY [27] 1M 1M + 1P

KRY [17] 2M + 3P 3M

CJL [12] #1 2M + 3P 2M

CJL [12] #2 1M + 2P 1M

Shim [31] 1P 2M

Xie [35] #1 1M + 1P 2M + 1P

Xie [35] #2 1M + 1P 2M + 1P

MB [23] #1 1M + 1P 1M

MB [23] #2 1M + 1P 1M

BMP [7] 1M 2M + 1P

CHLS [11] 0/(2P + 2M) 4M/0

also independent of the peer’s identity. For the CHLM protocol the computation
is different for the client (shown first) and the server (shown second).

The amount of communication bandwidth required in each protocol can be
estimated by looking at the messages sent in Tables 1 and 2. Well known tech-
niques for elliptic curve point compression allow points to be expressed as an
element in the underlying field plus a single bit. The bandwidth used is consid-
erably less than the RSA-based Protocol 1 if only one point is sent. Protocols
that require online pairings computation may be rather inefficient since a pair-
ing requires several times the computation of an elliptic curve multiplication.
However, the exact computation required varies considerably depending on the
choice of curve and various implementation details. Research is continuing in
this area [1].

Most protocol descriptions ignore the cofactor that may be required to ensure
that the point sent is a member of the prime order subgroup. Such a check may
be important for security reasons (to avoid small subgroup attacks such as those
by Lim and Lee [21]). However, when the received point is used in a pairing the
effort required to check that the point is in G1 is only a small part of the overall
computation required.

3.3 Protocol Security

We now look at the security of these protocols. Table 4 notes whether each proto-
col provides forward secrecy, key compromise impersonation resistance (KCIR)
and has a security proof. Most proofs have been attempted in the Bellare–

240 C. Boyd and K.-K.R. Choo

Rogaway (1993) model [3]. However, some of the original proofs have run into
trouble and the table shows that many protocols have proofs only in a restricted
form in which the adversary is prevented from asking any Reveal queries.

The CHLS and Wang protocols have proofs in the (full) Bellare & Rogaway
(1993) model [3] while the BMP protocol has a proof in the Canetti–Krawczyk
model [8]. The CK and BMP protocols are proven secure based on the Bilin-
ear Diffie–Hellman (BDH) assumption while the Wang protocol is proven secure
using a stronger decisional version of BDH (i.e., DBDH). The security of the
Xie and MB protocols assumes the intractability of the Bilinear Inverse Diffie–
Hellman (BIDH) problem, which has been proven to be polynomial time equiva-
lent to the BDH problem [37]. The CHLS protocol is based on two assumptions:
the modified BIDH with k values (k-mBIDH) and the Collusion Attack Algo-
rithm with k traitors (k-CAA), which are stronger than the BDH assumption.

Table 4. Security properties for two-party, two-message ID-based protocols

Protocol Fwd. Secrecy KCIR Security proof

Smart [32] No Yes No
CK #1’ [9] Yes Yes No
CK #2 [9] No Yes Restricted (BDH)
CK #2’ [9] No Yes Restricted (BDH)
Wang [34] No Yes Yes (DBDH)
Yi [36] Yes Yes No
RYY [27] No No No (See Sec. 2.2.)
KRY [17] Yes (No KGC − FS) Yes No
CJL [12] #1 Yes Yes No (Key replicating attack)
CJL [12] #2 Yes (KGC − FS) Yes No (Key replicating attack)
Shim [31] No No Broken by Sun and Hsieh [33]
Xie [35] #1 Yes (No KGC − FS) Yes Restricted (BIDH) [10]
Xie [35] #2 Yes Yes Restricted (BIDH) [10]
MB [23] #1 Yes (No KGC − FS) No Restricted (BIDH) [10], [13]
MB [23] #2 Yes No Restricted (BIDH) [10], [13]
BMP [7] Yes No Yes (BDH)
CHLS [11] No Yes Yes (k-mBIDH & k-CAA)

Krawczyk [19] has pointed out that there is a generic attack against forward
secrecy on any two-party two-flow protocol for which the messages are not ex-
plicitly authenticated. In this attack the adversary first masquerades as A, gen-
erates the first protocol flow, and records the reply of B. Later, the adversary
can corrupt A and compute the old key in the same way as A would have. The
existence of such an attack means that none of the protocols in Table 1 can
provide forward secrecy. We have taken a more relaxed view of this (as have
most authors) and assume that key confirmation will follow which prevents this
attack. Note, however, that in most cases there is no proof of forward secrecy.

The key replicating attacks noted for CJL protocols 1 and 2 are similar to that
on the RYY protocol described in Section 2.2. As in that case, it is possible to fix

Security of Two-Party Identity-Based Key Agreement 241

this problem by adding a session identifier (the concatenation of the exchanged
messages) into the definition of the session key [13].

It is clear from Table 4 that there is a significant lack of ID-based proto-
cols with a full security proof. Understanding of the pitfalls and problems has
advanced recently and progress in this area can be anticipated soon.

4 Conclusion

Our survey of two-party identity-based key agreement has shown that there
are many protocols which have not received adequate scrutiny. Most published
protocols do not carry a security proof so that we cannot be sure what their
security properties are – our examples show that they may not be as secure as
we may like. We urge caution when proposing new protocols, particularly to
ensure that a formal security statement is provided with adequate proof, and
also that comparison with the many existing protocols is made. Analogies with
previously published protocols with well-proven properties may prove useful.

It is still not clear which is the best protocol for a particular application,
nor what are the limitations against further improvement. Some of the protocols
that look best from the performance and informal analysis are currently lacking
a security proof. Another trend to look out for is proofs in the standard model
– currently all the proofs that exist rely on random oracles.

In addition to two-party protocols, tripartite and multi-party identity-based
key agreement protocols are currently being widely proposed. The correct secu-
rity model in these cases is even more uncertain but we can expect useful progress
in this area in line with the recent advances in security proofs for multi-party
key agreement with conventional public key cryptogaphy.

Acknowledgements. This work was supported by the Australian Research Coun-
cil through Discovery Project DP0345775.

References

1. P. S. L. M. Barreto, S. Galbraith, C. O. hEigeartaigh, and M. Scott. Efficient
pairing computation on supersingular abelian varieties. Cryptology ePrint Archive,
Report 2004/375, 2004. http://eprint.iacr.org/2004/375/.

2. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms
for pairing-based cryptosystems. In Advances in Cryptology - Crypto 2002, Vol.
2442/2002 of LNCS, pages 354–368. Springer-Verlag, 2002.

3. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In
Advances in Cryptology - Crypto 1993, pages 110–125. Springer-Verlag, 1993. Vol.
773/1993 of LNCS.

4. M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three
Party Case. In 27th ACM Symposium on the Theory of Computing - STOC 1995,
pages 57–66. ACM Press, 1995.

5. S. Blake-Wilson and A. Menezes. Authenticated Diffie-Hellman Key Agreement
Protocols. In Selected Areas in Cryptography - SAC 1998, pages 339–361. Springer-
Verlag, 1998. Vol. 1556/1998 of LNCS.

242 C. Boyd and K.-K.R. Choo

6. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):585–615, 2003.

7. C. Boyd, W. Mao, and K. Paterson. Key Agreement using Statically Keyed Au-
thenticators. In Applied Cryptography and Network Security - ACNS 2004, pages
248–262. Springer-Verlag, 2004. Vol. 3089/2004 of LNCS.

8. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Advances in Cryptology – Eurocrypt 2001, Vol.
2045/2001 of LNCS, pages 453–474. Springer-Verlag.

9. L. Chen and C. Kudla. Identity Based Authenticated Key Agreement Protocols
from Pairings (Corrected version at http://eprint.iacr.org/2002/184/). In 16th
IEEE Computer Security Foundations Workshop - CSFW 2003, pages 219–233.
IEEE Computer Society Press, 2003.

10. Z. Cheng and L. Chen. On Security Proof of McCullagh-Barreto’s Key Agreement
Protocol and its Variants. Cryptology ePrint Archive, Report 2005/201, 2005.
http://eprint.iacr.org/2005/201/ .

11. K. Y. Choi, J. Y. Hwang, D. H. Lee, and I. S. Seo. ID-based Authenticated Key
Agreement for Low-Power Mobile Devices. In 10th Australasian Conference on
Information Security and Privacy - ACISP 2005, pages 494–505. Springer-Verlag,
2005. Vol. 3574/2005 LNCS.

12. Y. J. Choie, E. Jeong, and E. Lee. Efficient Identity-based Authenticated Key
Agreement Protocol from Pairings. Journal of Applied Mathematics and Compu-
tation, pages 179–188, 2005.

13. K.-K. R. Choo, C. Boyd, and Y. Hitchcock. On Session Key Con-
struction in Provably Secure Protocols (Extended version available from
http://eprint.iacr.org/2005/206). In 1st International Conference on Cryp-
tology in Malaysia - Mycrypt 2005. Springer-Verlag, 2005. LNCS.

14. R. Dupont and A. Enge. Practical Non-Interactive Key Distribution
Based on Pairings. Cryptology ePrint Archive, Report 2002/136, 2002.
http://eprint.iacr.org/2002/136/ .

15. S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In
Algorithmic Number Theory – ANTS-V, Vol. 2369/2002 of LNCS, pages 324–337.
Springer-Verlag, 2002.

16. P. Janson and G. Tsudik. Secure and Minimal Protocols for Authenticated Key
Distribution. Computer Communications, pages 645–653, 1995.

17. K.-W. Kim, E.-K. Ryu, and K.-Y. Yoo. ID-Based Authenticated Multiple-Key
Agreement Protocol from Pairings. In International Conference On Computational
Science And Its Applications - ICCSA 2004, pages 672–680. Springer-Verlag, 2004.
Vol. 3046/2004 of LNCS.

18. S. Kim, M. Mambo, T. Okamoto, H. Shizuya, M. Tada, and D. Won. On the
Security of the Okamoto-Tanaka ID-based Key Exchange Scheme against Active
Attacks. IEICE Transactions Fundamentals, E84-A(1):231–238, January 2001.
http://search.ieice.or.jp/2001/files/e000a01.htm#e84-a,1,231.

19. H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol (Ex-
tended version available from http://eprint.iacr.org/2005/176/). In Advances
in Cryptology - Crypto 2005. Springer-Verlag, 2005. LNCS.

20. H. Lee, D. Kim, S. Kim, and H. Oh. Identity-based Key Agreement Protocols
in a Multiple PKG Environment. In International Conference On Computational
Science And Its Applications - ICCSA 2005, pages 877–886. Springer-Verlag, 2005.
Vol. 3483/2005 of LNCS.

Security of Two-Party Identity-Based Key Agreement 243

21. C. H. Lim and P. J. Lee. A Key Recovery Attack on Discrete Log-based Schemes
Using a Prime Order Subgroup. In Advances in Cryptology – Crypto 1997, pages
249–263. Springer-Verlag, 1997. Vol. 1294 of LNCS.

22. M. Mambo and H. Shizuya. A Note on the Complexity of Breaking Okamoto-
Tanaka ID-based Key Exchange Scheme. IEICE Transactions Fundamentals, E82-
A(1):77–80, January 1999.

23. N. McCullagh and P. S. L. M. Barreto. A New Two-Party Identity-
Based Authenticated Key Agreement (Extended version available from
http://eprint.iacr.org/2004/122/). In Cryptographers’ Track at RSA Confer-
ence - CT-RSA 2005, pages 262–274. Springer-Verlag, 2005. Vol. 3376/2005 of
LNCS.

24. E. Okamoto. Key Distribution Systems Based on Identification Information. In
Advances in Cryptology – Crypto 1987, pages 194–202. Springer-Verlag, 1987. Vol.
293/1988 of LNCS.

25. E. Okamoto and K. Tanaka. Key Distribution System Based on Identification
Information. IEEE Journal on Selected Areas in Communications, 7(4):481–485,
May 1989.

26. T. Okamoto, R. Tso, and E. Okamoto. One-Way and Two-Party ID-based Key
Agreement Protocols using Pairing. In MDAI 2005, Vol. 2005/2001 of LNCS, pages
122–133. Springer-Verlag, 2001.

27. E.-K. Ryu, E.-J. Yoon, and K.-Y. Yoo. An Efficient ID-Based Authenticated Key
Agreement Protocol from Pairings. In 3rd International IFIP-TC6 Networking
Conference on Networking Technologies, Services, and Protocols - NETWORKING
2004, pages 1464–1469. Springer-Verlag, 2004. Vol. 3042/2004 of LNCS.

28. R. Sakai and M. Kasahara. ID based cryptosystems with pairing
on elliptic curve. Cryptology ePrint Archive, Report 2003/054, 2003.
http://eprint.iacr.org/2003/054/ .

29. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems Based on Pairing. In The
2000 Sympoium on Cryptography and Information Security - SCIS 2000, 2000.

30. A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Advances in
Cryptology - Crypto 1984, pages 47–53. Springer-Verlag, 1984. Vol. 196/1985 of
LNCS.

31. K. Shim. Efficient ID-based Authenticated Key Agreement Protocol based on Weil
Pairing. IEE Electronics Letters, 39(8):653–654, 2002.

32. N. Smart. An Identity based Authenticated Key Agreement Protocol based on the
Weil Pairing. Electronics Letters, pages 630–632, 2002.

33. H.-M. Sun and B.-T. Hsieh. Security Analysis of Shim’s Authenticated Key Agree-
ment Protocols from Pairings. Cryptology ePrint Archive, Report 2003/113, 2003.
http://eprint.iacr.org/2003/113.

34. Y. Wang. Efficient Identity-Based and Authenticated Key Agree-
ment Protocol. Cryptology ePrint Archive, Report 2005/108, 2005.
http://eprint.iacr.org/2005/108/ .

35. G. Xie. An ID-Based Key Agreement Scheme from Pairing. Cryptology ePrint
Archive, Report 2005/093, 2005. http://eprint.iacr.org/2005/093/.

36. X. Yi. An Identity-Based Signature Scheme from the Weil Pairing. IEEE Com-
munications Letters, 7(2):76–78, 2003.

37. F. Zhang, R. Safavi-Naini, and W. Susilo. An Efficient Signature Scheme from
Bilinear Pairings and Its Applications. In Public Key Cryptography - PKC 2004,
pages 277–290. Springer-Verlag, 2004. Vol. 2947/2004 of LNCS.

Related-Key Differential Attacks on Cobra-S128,
Cobra-F64a, and Cobra-F64b�

Changhoon Lee1, Jongsung Kim2,��, Seokhie Hong1,
Jaechul Sung3, and Sangjin Lee1

1 Center for Information Security Technologies(CIST),
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea

{crypto77, hsh, sangjin}@cist.korea.ac.kr
2 Katholieke Universiteit Leuven, ESAT/SCD-COSIC, Belgium

Kim.Jongsung@esat.kuleuven.be
3 Department of Mathematics, University of Seoul,

90 Cheonnong Dong, Dongdaemun Gu, Seoul, Korea
jcsung@uos.ac.kr

Abstract. Data-dependent permutations (DDPs) which are very suit-
able for cheap hardware implementations have been introduced as a cryp-
tographic primitive. Cobra-S128 and Cobra-F64 (which is a generic name
for Cobra-F64a and Cobra-F64b) are 128-bit and 64-bit iterated block ci-
phers with a 128-bit key size based on such DDPs, respectively. Unlike the
predecessor DDP-based ciphers [16,5], Cobra-S128 is a software-oriented
cipher and Cobra-F64 is a firmware-suitable cipher. In this paper, we de-
rive several structural properties of Cobra-S128 and Cobra-F64 and then
use them to devise key recovery attacks on Cobra-S128 and Cobra-F64.
These works are the first known attacks on Cobra-S128 and Cobra-F64.

Keywords: Cobra-S128, Cobra-F64, Block Cipher, Related-Key Attack,
Data-Dependent Permutation.

1 Introduction

Recently, data-dependent permutations(DDPs) have been proposed as a cryp-
tographic primitive suitable for cheap hardware implementation. For examples,
CIKS-1 [16], SPECTR-H64 [5], and CIKS-128 [2] have been designed based on
such DDPs. These ciphers use very simple key scheduling in order to have no
time consuming key preprocessing. So, they are suitable for the applications of
many network requiring high speed encryption in the case of frequent change of
� This research was supported by the MIC(Ministry of Information and Communi-

cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

�� The second author was financed by Ph.D. grants of the Katholieke Universiteit
Leuven and of CIST, Korea University and supported by the Concerted Research
Action (GOA) Ambiorics 2005/11 of the Flemish Government and by the European
Commission through the IST Programme under Contract IST2002507932 ECRYPT

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 244–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Related-Key Differential Attacks 245

Table 1. Summary of our related-key differential attacks

Block Number of Complexity Recovered
Cipher Rounds Data / Time Key Bits

Cobra-S128 12 274RK-CP / 274 6
(12 rounds) 12 274RK-CP / 2122 128(master key)

12 283RK-CP / 283 21
12 283RK-CP / 2107 128(master key)

Cobra-F64a 11 259RK-CP / 2107 128(master key)
(16 rounds)

Cobra-F64b 18 258RK-CP / 2122 128(master key)
(20 rounds)

RK-CP: Related-Key Chosen Plaintexts, Time: Encryption units

keys. Up to now, these ciphers seem to be secure against well known attack
methods such as differential cryptanalysis(DC) and linear cryptanalysis(LC)
[1,15,14,11,3]. However, some researchers showed that some DDP-based ciphers
with simple key schedules are vulnerable to the related-key attack [12,13].

Cobra-S128 and Cobra-F64 [4], which use a new DDP and a switchable oper-
ation, were proposed to improve the existing DDP-based ciphers. In contrast to
the existing DDP-based ciphers which are based on hardware implementation,
Cobra-S128 [4] is a 128-bit software-oriented cipher, and Cobra-F64 is a 64-bit
firmware-suitable cipher. Note that Cobra-F64 is a generic name for Cobra-F64a
and Cobra-F64b.

In this paper, we introduce structural properties for DDP-boxes used in the
round function of Cobra-S128 and Cobra-F64, which allow us to make desired
related-key differential characteristics. Then, we show how to exploit related-key
differential characteristics to devise key recovery attacks on full-round Cobra-
S128, 11-round Cobra-F64a and 18-round Cobra-F64b. See Table 1 for our re-
sults.

This paper is organized as follows; In Sect. 2, we mention some notations used
in this paper and introduce several properties of DDP-boxes. Section 3 briefly
describes the Cobra-S128, Cobra-F64 algorithms, and their structural properties,
and Section 4 shows our related-key differential characteristics of Cobra-S128,
Cobra-F64. We present key recovery attacks of Cobra-S128 and Cobra-F64 in
Sect. 5. Section 6 concludes the paper.

2 Preliminaries

2.1 Notations

For convenience, we use the same notations used in [4]. Bits will be numbered
from left to right, starting with bit 1. If P = (p1, p2, · · · , pn) then p1 is the most
significant bit and pn is the least significant bit.

– ei : A binary string in which the i-th bit is one and the others are zeroes,
e.g., e1 = (1, 0, · · ·, 0).

246 C. Lee et al.

– ⊕ : Bitwise-XOR operation
– �(�) Modulo 232 addition(subtraction)
– ≫ : Right cyclic rotation
– Hw(A) : Hamming weight of any binary string A

2.2 DDP-Boxes

In general, DDP-box used in DDP-based ciphers is defined as follows;

Definition 1. Let F (X,V) be the two-variable function such that F : {0, 1}n ×
{0, 1}m → {0, 1}n. The function F (X,V) is called a DDP-box, if for each fixed
V function F (X,V) is a bijective mapping defined as bit permutation.

We denote the above DDP-box F (X,V) by Pn/m (See Fig. 1). The Pn/m-
box is constructed by using elementary switching elements P2/1 as elementary
building blocks performing controlled transposition of two input bits x1 and x2.
Here, P2/1-box is controlled with one bit v and outputs two bits y1 and y2, where
y1 = x1+v and y2 = x2−v, i.e., if v = 1, it swaps two input bits otherwise (if
v = 0), does not.

In other words, Pn/m-box can be represented as a superposition of the oper-
ations performed on bit sets :

Pn/m = LV1 ◦ π1 ◦ LV2 ◦ π2 ◦ · · · ◦ πs−1 ◦ LVs

where L is an active layer composed of n/2 P2/1 parallel elementary boxes,
V1, V2, · · ·Vs are control vectors of the active layers from 1 to s = 2m/n, and
π1, π2, · · ·, πs−1 are fixed permutations (See Fig. 1). Fig. 2 shows structure of
the P32/96 and P−1

32/96 used in Cobra-S128 and Cobra-F64. Due to the symmetric
structure, the mutual inverses, P32/96 and P−1

32/96, differ only with the distribution

of controlling bits over the boxes P2/1, i.e., PV
32/96 and PV ′

32/96 are mutually inverse
when V = (V1, V2, · · ·, V6) and V ′ = (V6, V5, · · ·, V1).

Now, we introduce some properties of DDP-boxes. We let x1x2 be a two-bit
input string of P2/1 and v be an one-bit control vector.

Property 1. [12,13] P2/1(v=0)(x1x2) = P2/1(v=1)(x1x2) with probability 2−1.

The equation in the above property holds only when x1 = x2.

Property 2. [12,13] Let an input and control vector differences of P2/1-box be
ΔX = X⊕X ′ and ΔV = V ⊕V ′ respectively, where X and X ′ are two-bit input
vectors, and V and V ′ are one-bit control vectors. Then we have the following
equations.

a) If ΔX = 10 or 01, and ΔV = 0 then the corresponding output difference of
P2/1-box, ΔY , is 10 with probability 2−1 or 01 with probability 2−1.

b) If ΔX = 10 or 01 and ΔV = 1 then the corresponding output difference of
P2/1-box, ΔY , is 10 with probability 2−1 or 01 with probability 2−1.

Related-Key Differential Attacks 247

(d)

(c)

y3 y4y1 y2

x3 x4x1 x2

v4v3

v2v1

y3 y4y1 y2

x3 x4x1 x2

v2

(e)

v1

v4v3

(f)

P2/1 P2/1

P2/1 P2/1

P2/1 P2/1

P2/1 P2/1

X=(x1 , x2 , ... , x8)

P2/1P2/1 P2/1P2/1

P4/4 P4/4

Y=(y1 , y2 , ... , y8)

X=(x1 , x2 , ... , x8)

P4/4 P4/4

P2/1P2/1 P2/1P2/1

Y=(y1 , y2 , ... , y8)

V1

V2

V3

V3

V2

V1

x1 x2

y1 y2

P2/1
v

m

V=(v1 , v2 , ... , vm)

Y= Pn/m(V) (X) =(y1 , y2 , ... , yn)

(a)X=(x1 , x2 , ... , xn)

n

n

Pn/m

(b)

Fig. 1. CP -boxes : (a) Pn/m, (b) P2/1, (c) P4/4, (d) P−1
4/4, (e) P8/12, (f) P−1

8/12

c) If ΔX = 00 and ΔV = 1 such that X = X ′ = 10 or 01 then the corre-
sponding output difference of P2/1-box is ΔY = 11. Thus, if ΔX = 00 and
ΔV = 1 then the corresponding output difference of P2/1-box is ΔY = 11
with probability 2−1.

The above properties are also expanded into the following properties.

Property 3. [12,13] Let V and V ′ be m-bit control vectors for Pn/m-box such that
V ⊕ V ′ = ei (1 ≤ i ≤ m). Then Pn/m(V)(X) = Pn/m(V ′)(X) with a probability
of 2−1 where X ∈ {0, 1}n. It also holds in P−1

n/m-box.

V
3

X=(x
1

, x
2
, ... , x

32
)

Y=(y
1

, y
2
, ... , y

32
)

V
1

V
5

V
4

P8/12

(a)

P8/12 P8/12 P8/12
V

2

V
6

P8/12
-1 P8/12

-1 P8/12
-1 P8/12

-1

(b)

V
5

V
4

V
6

V
3

V
1

V
2

Fig. 2. CP -boxes : (a) P32/96, (b) P−1
32/96

248 C. Lee et al.

P4/4

1

P
4/4

0
P 2/1

P
2/1

P
2/1

P2/1

P2/1
P

2/1 P 2/1P 2/1

0 10 00 0 0 0

0 10 00 0 0 0

0

Fig. 3. An example of the difference route when the input and output differences of
P−1

8/12
-box are fixed as e4 and e6, respectively

Property 4. [12,13] If X ⊕X ′ = ei (1 ≤ i ≤ m) then P8/12(V)(X) ⊕ P8/12(V)(X ′)
= ej for some j (1 ≤ j ≤ m). In addition, if i and j are fixed then the exact
difference route from i to j via three P2/1-boxes is also fixed. It also holds in
P−1

8/12-box.

For example, consider i = 4 and j = 6 in the Property 4. Then, we can
exactly know the 3 bits of control vectors (0,0,1) corresponding to three elements
P2/1-boxes of P−1

8/12-box with probability 1. See Fig. 3. In Fig. 3, the bold line
denotes the difference route when the input and output differences of P−1

8/12-box
are fixed as e4 and e6, respectively.

Property 5. [12,13] Let Y = Pn/m(V)(X) and Y ′ = Pn/m(V)(X ′). Then Hw(X⊕
X ′) = Hw(Y ⊕ Y ′). It also holds in P−1

n/m-box.

3 Cobra-S128 and Cobra-F64

In this section, we briefly describe the block cipher Cobra-S128, Cobra-F64a,
and Cobra-F64b [4] and derive their several properties used in our attacks.

3.1 Description of Cobra-S128 Cipher

Cobra-S128 is a 128-bit iterated block cipher with a 128-bit key size and 12
rounds. This cipher is composed of the initial transformation, e-dependent round
function Crypt(e), and the final transformation where e = 0(e = 1) denotes
encryption(decryption). The data encryption procedure is performed as follows.
See Fig. 6 in Appendix A.

1. An 128-bit input data block is divided into four 32-bit subblocksA, B, C, D.
2. Perform initial transformation :

(A,B,C,D) := (A⊕Q
(1,e)
1 , B ⊕Q

(1,e)
2 , C ⊕Q

(1,e)
3 , D ⊕Q

(1,e)
4)

Related-Key Differential Attacks 249

V2

P
(e)

2×16/1
.......� P

(e)

2×16/1P
(e)

2×16/1
�

�
�

�� � � �

V1 V3 V4 V5 V6

� � ��� �
V ′

2V ′
1 V ′

3 V ′
4 V ′

5 V ′
6

e e e

16

P
(e)
96/1

(a)

P32/96E�...........�V V ′

.........� �

�

96 96
...........�

X

Y

e

L
32

.......

(b)
1 32

32

1 1 1

Fig. 4. (a) P
(e)
96/1, (b) P

(e)
32/32

3. For j = 1 to 11 do :
(A,B,C,D) := Crypt(e)(A,B,C,D,Q(1,e)

j , Q
(2,e)
j); (A,B,C,D) := (B,A,

D,C)
4. j = 12 do :

(A,B,C,D) := Crypt(e)(A,B,C,D,Q(1,e)
12 , Q

(2,e)
12);

5. Perform final transformation :
(A,B,C,D) := (A⊕Q

(2,e)
12 , B ⊕Q

(2,e)
11 , C ⊕Q

(2,e)
10 , D ⊕Q

(2,e)
9)

6. Output (A,B,C,D)

The Crypt(e) function is composed of the basic arithmetical operations
(⊕,�,�) and DDP-box P32/32 which is made up of a extension box E, a simple
transposition box P

(e)
96/1, and P32/96 (See Fig. 4). The extension box E pro-

vides the following relation between its input L = (l1, · · · , l32) and output
V = (V1, · · · , V6):

V1 = Ll, V2 = L≫6
l , V3 = L≫12

l , V4 = Lr, V5 = L≫6
r , V6 = L≫12

r

where Ll = (l1, · · · , l16), Lr = (l17, · · · , l32), |li| = 1 (1 ≤ i ≤ 32) and |Vi| =
16 (1 ≤ i ≤ 6). The transposition box P (e)

96/1 is implemented as some single layer

controlled permutation box consisting of three parallel single layer boxes P (e)
2×16/1

(See Fig. 4). An input of each P
(e)
2×16/1-box is divided into 16-bit left and 16-bit

right inputs, and contains 16 parallel P (e)
2/1-boxes controlled with the same bit e.

So, if the input vector of the box P (e)
96/1 is V = (V1, ···, V6) then the corresponding

output vector is V ′ = (V1, · · ·, V6) when e = 0 or V ′ = (V6, · · ·, V1) when e = 1.

250 C. Lee et al.

Table 2. Key schedule of Cobra-S128, Cobra-F64a, and Cobra-F64b

j

Q
j
(1,0)

1

K
1

K4

2

K
2

K3

3

K
3

K1

4

K
4

K2

5

K
2

K3

6

K
1

K2

7

K
4

K1

8

K
3

K4

9

K
1

K2

10

K
2

K3

11

K
4

K1
Q

j
(2,0)

j

Q
j
(1,0)

12

K
3

K2

13

K
1

K3

14

K
4

K1

15

K
2

K3

16

K
3

K4

17

K
2

K3

18

K
4

K1

19

K
3

K4

20

K
1

K2

21

K
2

K3

.

.

.Q
j
(2,0)

The key schedule of Cobra-S128 is very simple. An 128-bit master key K is
split into four 32-bit blocks ,i.e., K = (K1,K2,K3,K4). Then, in order to gen-
erate the subkey sequences (Q(1,0)

j , Q
(2,0)
j), K1,K2,K3 and K4 are rearranged as

specified in Table 2 in which (Q(1,0)
j , Q

(2,0)
j) denotes the j-th round key sequence

(1 ≤ j ≤ 12), and Q
(1,0)
j , Q

(2,0)
j ∈ {0, 1}32.

3.2 Description of Cobra-F64 Ciphers

Cobra-F64a and Cobra-F64b, which are suitable for firmware implementation,
are 64-bit iterated block ciphers with a 128-bit key size and 16 and 20 rounds,
respectively. These ciphers perform data encryption procedure as follows;

1. 64-bit input data block is divided into two 32-bit subblocks A, B.
2. For j = 1 to R− 1 do :

(A,B) := Crypt(e)(A,B,Q(1,e)
j , Q

(2,e)
j); (A,B) := (B,A)

3. j = R do :
(A,B) := Crypt(e)(A,B,Q(1,e)

j , Q
(2,e)
j);

4. Perform final transformation :
(A,B) := (A ⊕ Q

(1,e)
R+1, B ⊕ Q

(2,e)
R+1) for Cobra-F64b and (A,B) := (A �

Q
(1,e)
R+1, B �Q

(2,e)
R+1) for Cobra-F64a

5. Output (A ‖ B)

The detailed description for Crypt(e) is presented in Fig. 7 in Appendix A.
Cobra-F64a and Cobra-F64b also use Table. 2 as key schedule.

3.3 Properties of Cobra-S128 and Cobra-F64

In this subsection, we derive some properties of operations used in round function
Cobra-S128 and Cobra-F64 which are useful to construct related-key differential
characteristics.

Property 6. Let ΔX and ΔV be differences of input and control vector of P32/96,
respectively. Then we can get the following properties of P32/96 from the defini-
tion of P32/96 and the previous properties (Property 1,2,3,5).

Related-Key Differential Attacks 251

a) ΔP32/96(ΔV =0)(ΔX = 0) = 0 with a probability of 1.
b) ΔP32/96(ΔV =e1)(ΔX = 0) = 0 with a probability of 2−1.
c) ΔP32/96(ΔV =0)(ΔX = e1) = e1 with a probability of 2−6 because P32/96

consists of 6 active layers.
d) ΔP32/96(ΔV =e1)(ΔX = e1) = e1 with a probability of 2−6 because P32/96

consists of 6 active layers.

Similarly, we can also derive the difference property for P32/32 as follows.

Property 7. Let ΔX and ΔV be differences of input and control vector of P32/32,
respectively. Then the following equations are obtained from the definition of
extension box E used in P32/32 and the above Property 6.

a) ΔP32/32(ΔL=0)(ΔX = 0) = 0 with probability 1.
b) ΔP32/32(ΔL=e1)(ΔX = 0) = 0 with probability 2−3.
c) ΔP32/32(ΔL=0)(ΔX = e1) = e1 with probability 2−6.
d) ΔP32/32(ΔL=e1)(ΔX = e1) = e1 with probability 2−8.
e) ΔP32/32(ΔL=e9)(ΔX = e1) = e1 with probability 2−9.
f) ΔP32/32(ΔL=e1,9)(ΔX = e1) = e1 with probability 2−11.
g) HW (ΔP32/32(ΔL=e1)(ΔX = 0)) = 0, 2, 4, 6 by Property 2, 5.

4 Related-Key Differential Characteristics of Cobra-S128
and Cobra-F64

In this section, we construct related-key differential characteristics for Cobra-
S128 and Cobra-F64 using the properties mentioned in the previous subsection.

As stated earlier, the key schedules of the Cobra-S128 and Cobra-F64 are
very simple, i.e., the round keys are only 32-bit parts of the 128-bit master key,
and there are many properties due to the structural feature of P32/32-box. They
allow us to construct good related-key differential characteristics even though it
uses an P32/32-box.

In order to find good related-key differential characteristics, we performed
a series of simulations (in which we used a number of plaintext and key differ-
ences whose hamming weights are one in each 32-bit word). As our simulation
results, we obtained a full-round (12 rounds) related-key differential character-
istic (0, 0, e1, e1) → (0, 0, 0, t) of Cobra-S128 with probability 2−72, a 12-round
related-key differential characteristic (e1, e1) → (e1, t) of Cobra-F64a with prob-
ability 2−62, and a full-round (20 rounds) related-key differential characteristic
(0, e1) → (e1 ⊕ t≫8, t) of Cobra-F64b with probability 2−62, where t represents
any 32-bit word of which the first byte have hamming weight 1 and the sec-
ond byte has also hamming weight 1 and the other two bytes has hamming
weight 0. Note that these related-key differential characteristics of Cobra-S128,
Cobra-F64a, and Cobra-F64b include their final transformations(FT) and use
key differences (0, 0, e1, 0), (0, 0, 0, e1), and (e1, e1, e1, e1), respectively. Subsec-
tion 4.1 describes our full-round related-key differential characteristic of Cobra-
S128 in more detail. See appendix B for the complete forms of characteristics of

252 C. Lee et al.

Cobra-F64a and Cobra-F64b (which can be constructed by the same arguments
as in the below subsection). But, in our attacks, we use 11-round related-key
differential characteristic of Cobra-F64a and 18-round related-key differential
characteristic of Cobra-F64b because the attacks over 11-round Cobra-F64a and
18-round Cobra-F64b lead more complexities than exhaustive search.

4.1 How to Construct the Full-Round Related-Key Differential
Characteristic of Cobra-S128

In Table 3, ΔRIIT and ΔRKIT denote the plaintext and initial key differ-
ences, respectively. ΔRIi and ΔRKi are the input and key differences of ith
round, respectively, and (P1,P2,P3,P4,P5,P6) are the respective probabilities
that for given input and control vector differences of (PB,e

32/32, P
C,1
32/32, P

C,e
32/32,

PC′,e
32/32, P

B,0
32/32, P

B′,e
32/32) boxes used in Cobra-S128, their corresponding output

differences satisfy a specific output difference, e1 or 0. These probabilities are
obtained from Property 6, 7.

Specifically, since the plaintext and initial key differences of Cobra-S128 are
(0, 0, e1, e1) and (0, 0, e1, 0) respectively, the input difference of the first round
is to be (0, 0, 0, e1). Thus the output differences of PB,e

32 and PC,1
32 are 0 because

the input and control vector differences of PB,e
32/32 and PC,1

32/32 are 0. Also, since

the input and control vector differences of PC,e
32/32 are e1 and 0, respectively, the

corresponding output difference of PC,e
32/32 is to be e1 with probability 2−6 by

Property 6, 7. Similarly, the output differences of PB,0
32 and PC′,e

32 are 0 with
the probability of 1 because the input and control vector differences of PB,0

32/32

and PC′,e
32/32 are 0. Furthermore, since the input and control vector differences of

PB′,e
32/32 are e1 and 0 in the first round, respectively, the corresponding output

difference of PB′,e
32/32 is to be e1 with a probability of 2−6 by Property 6, 7. So,

the output difference of the first round is (0, 0, 0, e1) with a probability of 2−12,
i.e., the input difference of the second round is (0, 0, e1, 0) as mentioned in Table
3. Repeating this manner for the rest of the rounds, we can obtain an output
difference (0, 0, 0, 0) after 11 rounds with probability 2−66 as presented in Table
3.

Proceeding to the last round, since the input and key difference are (0, 0, 0, 0)
and (e1, 0), respectively, the input and control vector differences of P (B,0)

32/32 are

0 and e1, respectively, and thus the corresponding output difference of P (B,0)
32/32

is to be 0 with probability 2−3. So, the input and control vector differences of
P

(B′,e)
32/32 are 0 and e1, respectively. Here, we consider the hamming weight of the

output difference of P (B′,e)
32/32 in the last round in order to construct a related-key

differential characteristic suitable for our attack scenario. The hamming weight
of the output difference of P (B′,e)

32/32 depends on an input form of P32/96 in PB′,e
32/32.

Let the control vector of P32/96 in PB′,e
32/32 be V ′ = (V ′

1 , V
′
2 , V

′
3 , V

′
4 , V

′
5 , V

′
6). Since

Related-Key Differential Attacks 253

Table 3. Related-Key Differential Characteristic of Cobra-S128

Round (i) ΔRIi ΔRKi P1/P2/P3/P4/P5/P6 Prob.
IT (0, 0, e1, e1) (0, 0, e1, 0) · 1
1 (0, 0, 0, e1) (0, 0) 1/1/2−6/1/1/2−6 2−12

2 (0, 0, e1, 0) (0, e1) 1/2−3/2−3/1/1/1 2−6

3 (0, 0, 0, 0) (e1, 0) 1/1/1/1/2−3/2−3 2−6

4 (0, 0, 0, e1) (0, 0) 1/1/2−6/1/1/2−6 2−12

5 (0, 0, e1, 0) (0, e1) 1/2−3/2−3/1/1/1 2−6

6 (0, 0, 0, 0) (0, 0) 1/1/1/1/1/1 1
7 (0, 0, 0, 0) (0, 0) 1/1/1/1/1/1 1
8 (0, 0, 0, 0) (e1, 0) 1/1/1/2−3/2−3 2−6

9 (0, 0, 0, e1) (0, 0) 1/1/2−6/1/1/2−6 2−12

10 (0, 0, e1, 0) (0, e1) 1/2−3/2−3/1/1/1 2−6

11 (0, 0, 0, 0) (0, 0) 1/1/1/1/1/1 1
12 (0, 0, 0, 0) (e1, 0) 1/1/1/1/2−3/2−3 2−6

FT (0, 0, e1, t) (0, 0, e1, 0) · 1
Output (0, 0, 0, t) · · ·
Total · · · 2−72

the control vector difference of PB′,e
32/32 is e1, it is propagated via E into the first

bit of V ′
1 , the seventh bit of V ′

2 , and 13th bit of V ′
3 of P32/96. For convenience,

we denote three P2/1-boxes corresponding to the first bit of V ′
1 , the seventh

bit of V ′
2 , and 13th bit of V ′

3 P
V ′
11

2/1 , P
V ′
27

2/1 , and P
V ′
313

2/1 , respectively (See Fig. 5).

Note that an input difference of P32/96 in PB′,e
32/32 is 0. Then we can classify the

input forms of these P2/1-boxes corresponding to the above 3 controlled bits
into 8 cases. However, in our attack, we consider the hamming weight of the
output difference of P (B′,e)

32/32 in the last round is to be 2 under the condition that

the form of input pair (x1x2, x
′
1x

′
2) of P

V ′
313

2/1 has (10, 10) or (01, 01), and the

input pair of P
V ′
11

2/1 and P
V ′
27

2/1 has any value (x1x2, x
′
1x

′
2) whose difference is zero.

Then the output difference of P
V ′
313

2/1 has 11 with probability 2−1 by Property

2-c), and the output differences of P
V ′
11

2/1 and P
V ′
27

2/1 have 00 with a probability
of 2−1 by Property 1, respectively. In more detail, one-bit of two-bit active

output differences of P
V ′
313

2/1 is propagated into the fourth-bit of the first P−1
8/12

in P32/96 and the other one-bit is propagated into the fourth-bit of the second
P−1

8/12 in P32/96 (Refer to Fig. 5). So the resultant probability is 2−3(= P6) that
satisfies the first and second output bytes of P32/32 having hamming weight 1
and the other bytes having hamming weight 0 by Property 5, 7. Hence a full-
round related-key differential characteristic (0, 0, e1, e1) → (0, 0, 0, t) holds with
probability 2−72 when K ⊕K ′ = (0, 0, e1, 0).

254 C. Lee et al.

P8/12

P8/12
-1

P 2/1 P2/1 P2/1 P 2/1

P 2/1 P2/1 P2/1 P 2/1

P 2/1 P 2/1 P2/1 P 2/1

P2/1 P 2/1 P 2/1 P2/1

P2/1 P 2/1 P 2/1 P2/1

P2/1 P 2/1 P 2/1 P2/1

P2/1 P 2/1 P2/1 P2/1

P2/1 P 2/1 P2/1 P2/1

P2/1 P2/1 P2/1 P2/1

P 2/1 P2/1 P2/1 P 2/1

P 2/1 P 2/1 P2/1 P 2/1

P 2/1 P2/1 P2/1 P 2/1

P2/1 P 2/1 P 2/1 P2/1

P2/1 P 2/1 P 2/1 P2/1

P2/1 P 2/1 P 2/1 P2/1

P8/12
-1

0

jie ,

11'V

133'V

72'V

50v 54v

Fig. 5. The possible routes of the output difference of P
V ′
313

2/1 -box in P32/96

5 Related-Key Differential Attacks on Cobra-S128 and
Cobra-F64

We now present key recovery attacks on Cobra-S128 and Cobra-F64 using our
related-key differential characteristics.

5.1 Attack Procedure on Cobra-S128

We first show how to search for a master key pair of Cobra-S128 by using the full-
round related-key differential characteristic presented in Section 4. Note that,
from the previous full-round related-key differential characteristic, we know that
the hamming weight of output difference of PB′,e

32/32 in the last round is 2 (one is
in the first P−1

8/12 and the other is in the second P−1
8/12) with probability 2−72.

To begin with, we encrypt 273 plaintext pairs P = (PLL, PLR, PRL, PRR) and
P ′ =(PLL, PLR ,PRL⊕e1,PRR⊕e1) under an unknown keyK = (K1,K2,K3,K4)
and an unknown related-key K ′ = (K1,K2,K3 ⊕ e1,K4), respectively, and
then get the 273 corresponding ciphertext pairs C = (CLL, CLR, CRL, CRR) and
C′ =(C′

LL,C′
LR ,C′

RL,C′
RR), i.e., EK(P) = C and EK′(P) = C′, where E is the

block cipher Cobra-S128. Since our full-round related-key differential characteris-
tic of Cobra-S128 has a probability of 2−72, we expect at least one ciphertext pair
(C,C′) such that C⊕C′ = (0, 0, 0, t) with a probability of 1−(1−2−72)2

73 ≈ 0.87.

Related-Key Differential Attacks 255

According to our differential trail described in Table 3, we can deduce that the
two difference bits in such (C,C′) are derived from V ′

313
of the last P32/96 (Refer

to Fig 5). That is, we can expect that there are two exact routes: One is from the
4th bit in input difference of the first P−1

8/12 to the ith bit of the output difference
of the first P−1

8/12 (1 ≤ i ≤ 8) and the other is from the 12th bit in input difference
of the second P−1

8/12 to the ith bit of the output difference of the second P−1
8/12

(9 ≤ i ≤ 16). Note that the control vectors and key bits corresponding to the
above routes are uniquely determined by Property 4. See Figs. 3 and 5.

Table 4. Classes of the control vectors and key bits corresponding to the possible
routes when the fourth bit of the first P−1

8/12 and output difference ei in P32/96-box are
fixed

Class ei Control vectors Key bits
CL1 e1 v50 = C19

RL ⊕ K19
3 = 1, v65 = C27

RL ⊕ K27
3 = 1, v81 = C21

RL ⊕ K21
3 = 0 K19

3 , K27
3 , K21

3

e2 v50 = C19
RL ⊕ K19

3 = 1, v65 = C27
RL ⊕ K27

3 = 1, v81 = C21
RL ⊕ K21

3 = 1

CL2 e3 v50 = C19
RL ⊕ K19

3 = 1, v65 = C27
RL ⊕ K27

3 = 0, v82 = C22
RL ⊕ K22

3 = 0 K19
3 , K27

3 , K22
3

e4 v50 = C19
RL ⊕ K19

3 = 1, v65 = C27
RL ⊕ K27

3 = 0, v82 = C22
RL ⊕ K22

3 = 1

CL3 e5 v50 = C19
RL ⊕ K19

3 = 0, v66 = C28
RL ⊕ K28

3 = 1, v83 = C23
RL ⊕ K23

3 = 0 K19
3 , K28

3 , K23
3

e6 v50 = C19
RL ⊕ K19

3 = 0, v66 = C28
RL ⊕ K28

3 = 1, v83 = C23
RL ⊕ K23

3 = 1

CL4 e7 v50 = C19
RL ⊕ K19

3 = 0, v66 = C28
RL ⊕ K28

3 = 0, v84 = C24
RL ⊕ K24

3 = 0 K19
3 , K28

3 , K24
3

e8 v50 = C19
RL ⊕ K19

3 = 0, v66 = C28
RL ⊕ K28

3 = 0, v84 = C24
RL ⊕ K24

3 = 1

Table 5. Classes of the control vectors and key bits corresponding to the possible
routes when the fourth bit of the second P−1

8/12 and output difference ei in P32/96-box
are fixed

Class ei Control vectors Key bits
CL5 e9 v54 = C23

RL ⊕ K23
3 = 1, v69 = C31

RL ⊕ K31
3 = 1, v85 = C25

RL ⊕ K25
3 = 0 K23

3 , K31
3 , K25

3

e10 v54 = C23
RL ⊕ K23

3 = 1, v69 = C31
RL ⊕ K31

3 = 1, v85 = C25
RL ⊕ K25

3 = 1

CL6 e11 v54 = C23
RL ⊕ K23

3 = 1, v69 = C31
RL ⊕ K31

3 = 0, v86 = C26
RL ⊕ K26

3 = 0 K23
3 , K31

3 , K26
3

e12 v54 = C23
RL ⊕ K23

3 = 1, v69 = C31
RL ⊕ K31

3 = 0, v86 = C26
RL ⊕ K26

3 = 1

CL7 e13 v54 = C23
RL ⊕ K23

3 = 0, v70 = C32
RL ⊕ K32

3 = 1, v87 = C27
RL ⊕ K27

3 = 0 K23
3 , K32

3 , K27
3

e14 v54 = C23
RL ⊕ K23

3 = 0, v70 = C32
RL ⊕ K32

3 = 1, v87 = C27
RL ⊕ K27

3 = 1

CL8 e15 v54 = C23
RL ⊕ K23

3 = 0, v70 = C32
RL ⊕ K32

3 = 0, v88 = C28
RL ⊕ K28

3 = 0 K23
3 , K32

3 , K28
3

e16 v54 = C23
RL ⊕ K23

3 = 0, v70 = C32
RL ⊕ K32

3 = 0, v88 = C28
RL ⊕ K28

3 = 1

Fig. 5 represents the possible routes of the output difference of P
V ′
313

2/1 -box in
P32/96 and the bold line denotes a trace of non-zero difference. Tables 4 and 5
represent classes of the control vectors and key bits corresponding to the possible
routes when i is fixed. For example, assume that output difference is e1,9. Then
since the control vectors of three P2/1 corresponding to route from the fourth bit
of input difference of the first P−1

8/12 to the first bit of output difference of the first

256 C. Lee et al.

P−1
8/12 are v50 = C19

RL⊕K19
3 = 1, v65 = C27

RL⊕K27
3 = 1, and v81 = C21

RL⊕K21
3 = 0

where Cj andKj mean the j−th bits ofC andK, respectively, we can know three
key bits K19

3 , K27
3 , and K21

3 . Similarly, since the control vectors of three P2/1

corresponding to route from the fourth bit of input difference of the second P−1
8/12

to the first bit of output difference of the second P−1
8/12 are v54 = C23

RL⊕K23
3 = 1,

v69 = C31
RL ⊕K31

3 = 1, and v85 = C25
RL ⊕K25

3 = 0, we can know three key bits
K23

3 , K31
3 , and K25

3 . Based on this idea we can devise a related-key differential
attack on full-round Cobra-S128 as follows.

1. Prepare 273 plaintext pairs (Pi, P
′
i), i = 1, · · · , 273, which have the (0, 0, e1,

e1) difference. All Pi are encrypted using a master key K and all P ′
i are

encrypted using a master key K ′ where K and K ′ have the (0, 0, e1, 0) differ-
ence. Encrypt each plaintext pair (Pi, P

′
i) to get the corresponding ciphertext

pair (Ci, C
′
i).

2. Check that Ci ⊕ C′
i = (0, 0, 0, t) for each i. We call the bit positions of t

whose values are 1 BOP(Bit One Position). Note that there are two BOPs.
3. For each ciphertext pair (Ci, C

′
i) passing Step 2, extract some bits of control

vector by chasing a difference route between the first BOP and the position
of the fourth input bit in the first P−1

8/12 and by chasing a difference route
between the second BOP and the position of the fourth input bit of the
second P−1

8/12. Find the corresponding bits of K3 and K ′
3 by using Tables 4

and 5.

The data complexity of this attack is 274 related-key chosen plaintexts. Step
1 is the data collection step and thus this step requires a time complexity of
274 encryptions. By our related-key differential characteristic each ciphertext
pair can pass Step 2 with probability at least 2−72 and thus the expectation of
ciphertext pairs that pass this test is at least 2. Step 2 can be done efficiently
by checking ciphertext differences in byte unit and Step 3 also requires a small
amount of time complexity. Furthermore, for each ciphertext pair that passes

this test the probability that its difference is derived from the P
V ′
11

2/1 or P
V ′
27

2/1 not

P
V ′
313

2/1 is less than 2−74. Hence we can retrieve some portion (at least 6 bits)
of subkey matrials by performing Step 3 with high probability. Moreover, if we
perform an exhaustive search of the remaining key bits we can find the whole
of master key pair (K,K ′) with a data complexity of 274 related-key chosen
plaintexts and a time complexity of at most 2122 encryptions.

From now on, we introduce improved procedure to search for a master key
pair, which has a trade-off in data and time complexities. Unlike the above
attack, this attack simultaneously consider three types of ciphertext pairs whose
differences have hamming weight 2: the first type is associated with V ′

313
as like

the above attack, the second type is associated with V ′
27

and the third type is
associated with V ′

11
. In this attack, we classify these three types of ciphertext

pairs into Cases 1, 2, and 3, respectively.

Related-Key Differential Attacks 257

1. Prepare 282 plaintext pairs (Pi, P
′
i), i = 1, · · · , 282, which have the same

conditions as the above Step 1. Encrypt each plaintext pair (Pi, P
′
i) to get

the corresponding ciphertext pair (Ci, C
′
i).

2. Check that Ci⊕C′
i = (0, 0, 0, t′) for each i, where t′ is any 32-bit word which

has hamming weight 2 such that one is in the first byte and the other is in
the second byte (Case 1), or one is in the first byte and the other is in the
third byte (Case 2), or one is in the third byte and the other is in the fourth
byte (Case 3). We call the bit position which has 1 in t′ BOP′.

3. For each ciphertext pair (Ci, C
′
i) in Case 1, extract the corresponding 3 bits

of control vector by chasing a difference route between the first BOP′ and
the position of the fourth input bit in the first P−1

8/12 and also extract the
corresponding 3 bits of control vector by making a difference route between
the second BOP′ and the position of the fourth input bit of the second P−1

8/12.
Compute candidates of the corresponding bits of K3 and K ′

3 by using Tables
4 and 5. Output each 3-bit subkey pair with maximal number of hits (each
3-bit subkey pair corresponds to each difference route).

4. The same arguments can be applied to the Cases 2 and 3. For each ciphertext
pair (Ci, C

′
i) in Case 2 (resp., Case 3), extract the corresponding 4 (resp., 5)

bits of control vector by making a difference route between the first BOP′

and the position of the sixth input bit in the first P−1
8/12 (resp., the position

of the first input bit in the third P−1
8/12) and also extract the corresponding

4 (resp., 5) bits of control vector by making a difference route between the
second BOP′ and the position of the sixth input bit of the third P−1

8/12 (resp.,
the position of the fifth input bit in the fourth P−1

8/12). Compute candidates of
the corresponding bits of K3 and K ′

3 by using Ci, C′
i, and extracted control

vectors (in Case 2 (resp., Case 3), we can extract some bits of control vectors
by making difference routes from the P2/1 of V ′

27
(resp., V ′

11
) to BOP′s).

Output each 4-bit (resp., 5-bit) subkey pair with maximal number of hits in
Case 2 (resp., in Case 3).

The data complexity of this attack is 283 related-key chosen plaintexts. The
probability that a fixed two-bit difference in Case 1 is connected with the P2/1

of V ′
313

is 2−6 (this probability is derived from Property 2-a) and Property 4)
and thus the total probability is 2−72−6 = 2−78. It follows that the expected
number of hits for each right 3-bit subkey is about (2−78 · 282)2 · 16 = 212.
On the other hands, the probability that a fixed two-bit difference in Case 1 is
connected with the P2/1 of V ′

11
or V ′

27
is 2−10 · 2 = 2−9 and thus the expected

number of hits for each wrong 3-bit subkey is about (2−72−9 ·282)2 ·16 ·2−3 = 23.
This argument can be also applied to Cases 2 and 3. In Case 2, the expected
number of hits for each right 4-bit subkey is about (2−72−8 · 282)2 · 16 = 28

and in Case 3, the expected number of hits for each right 5-bit subkey is
about (2−72−10 · 282)2 · 16 = 24. Indeed, during the above procedure, subkey
candidates can be checked by the overlapped control vectors (this fact makes
easy to find the right subkey material). Taking into account these overlapped
values, we retrieve 21 bits of the key by this attack. This attack can also re-

258 C. Lee et al.

trieve the whole of master key pair (K,K ′) by performing an exhaustive search
for the remaining keys and thus we can find the master key pair with a data
complexity of 283 related-key chosen plaintexts and a time complexity of 2107

encryptions.

5.2 Attack Procedure on Cobra-F64

Using two attack algorithms presented in previous subsection, we can similarly
devise key recovery attacks on 11-round Cobra-F64a and 18-round Cobra-F64b.
As for 11 rounds of Cobra-F64a, the above second attack scenario can be effi-
ciently applied with some modifications, and as for 18 rounds of Cobra-F64b, the
above first attack scenario can be efficiently applied with some modifications.

Let us first consider 11-round Cobra-F64a. In the second attack scenario,
Step 2 collects ciphertext pairs whose differences satisfy (e1, t′) where plaintext
pairs have the (e1, e1) difference and the master key pair has the (0, 0, 0, e1)
difference. In Steps 3 and 4, for each 32-bit subkey K2 we check the number of
ciphertext pairs satisfying Ci +K2, C

′
i +K2 ∈ S(V), where S(V) is a set of all

32-bit control vectors such that the control bits extracted by ciphertext pairs
(Ci, C

′
i) in Cases 1, 2, or 3 are fixed. In this way, we find out a group of 32-bit

subkeys K2 with maximal number of hits. With this group, we do an exhaustive
search for the remaining 96-bit keys.

In this attack, we use a 11-round related-key differential characteristic (e1, e1)
→ (e1, t′) of Cobra-F64a which includes the FT. This characteristic can be de-
rived from Table 6 by cutting off the 12-th round. The probability that t′ is
in Case 1 whose two BOP′s are specified is about 2−48 · 2−6 = 2−54, and the
probability that t′ is in Case 2 (resp., Case 3) whose two BOP′s are specified is
about 2−48 · 2−8 = 2−56 (resp., 2−48 · 2−10 = 2−58). Thus, if we use 258 plaintext
pairs, the expected number of hits for the right subkey K2 follows the number
of summing over the three expectations of Cobra-S128, i.e., 212 + 28 + 24, but
the expected number of hits for a wrong subkey is much less than this value.
Since the total number of control bits extracted in this attack is 21, the expected
number of subkeys in the group is 211. Hence we can retrieve the whole of master
key pair with a data complexity of 259 related-key chosen plaintexts and a time
complexity of 2107 encryptions.

We now consider 18-round Cobra-F64b. In the first attack scenario, we use a
18-round related-key differential characteristic (0, e1) → (e1 ⊕ t≫8, t) of Cobra-
F64b with probability 2−56 (which includes the FT). This characteristic can be
derived from Table 7 by cutting off the last two rounds, i.e., rounds 19 and
20. Thus if we use 257 desired plaintext pairs (the filtering rate in Step 2 is
2−64·26 = 2−58), we can extract at least 6 bits of the control vector V by the same
analysis as Cobra-S128. It follows that equation V = CL ⊕K2 − (CR ⊕K3)≫8

enables us to get 6 bits of key information, where CL is the left 32 bits of
ciphertext and CR is the right 32 bits of ciphertext. Hence we can retrieve
the whole of master key pair with a data complexity of 258 related-key chosen
plaintexts and a time complexity of 2128−6 = 2122 encryptions.

Related-Key Differential Attacks 259

6 Conclusion

Three Cobra ciphers (Cobra-S128, Cobra-F64a, and Cobra-F64b) are consid-
erably resistant against conventional attacks, e.g., the differential attack, the
linear attack, and so on because they use data-dependent permutaions which
are composed of the basic CP-boxes, P2/1 (bit-controlled transpositons of two
input bits). However, the very simple key schedule (i.e., the part of secret key
is directly used in each round) and low diffusion of CP-boxes allow us to devise
the related-key differential attacks on three Cobra ciphers.

In this paper, we presented the related-key attacks on Cobra-S128, Cobra-
F64a and, Cobra-F64b. In the case of Cobra-S128, we can successfully recover
128-bit master keys of full-round Cobra-S128 with 283 related-key chosen plain-
texts and 2107 encryption units. In the cases of Cobra-F64a and Cobra-F64b, we
can retrieve 128-bit master keys of 11-round Cobra-F64a and 18-round Cobra-
F64b using 259 and 258 related-key chosen plaintexts, and 2107 and 2122 encryp-
tion units, respectively.

Acknowledgments

We would like to thank an anonymous reviewer for useful and interesting com-
ments about this work.

References

1. E. Biham and A. Shamir, “Differential Cryptanalysis of the Data Encryption Stan-
dard”, Springer-Verlag, 1993.

2. N. D. Goots, B. V. Izotov, A. A. Moldovyan, and N. A. Moldovyan, “Modern cryp-
tography: Protect Your Data with Fast Block Ciphers”, Wayne, A-LIST Publish.,
2003.

3. N. D. Goots, B. V. Izotov, A. A. Moldovyan, and N. A. Moldovyan, “Fast Ciphers
for Cheap Hardware : Differential Analysis of SPECTR-H64”, MMM-ACNS’03,
LNCS 2776, Springer-Verlag, 2003, pp. 449-452.

4. N. D. Goots, N. A. Moldovyan, P. A. Moldovyanu and D. H. Summerville, “Fast
DDP-Based Ciphers: From Hardware to Software”, 46th IEEE Midwest Interna-
tional Symposium on Circuits and Systems, 2003.

5. N. D. Goots, A. A. Moldovyan, N. A. Moldovyan, “Fast Encryption ALgorithm
Spectr-H64”, MMM-ACNS’01, LNCS 2052, Springer-Verlag, 2001, pp. 275-286.

6. S. Kavut and M. D. Yücel, “Slide Attack on Spectr-H64”, INDOCRYPT’02, LNCS
2551, Springer-Verlag, 2002, pp. 34-47.

7. J. Kelsey, B. Schneier, and D. Wagner, “Key Schedule Cryptanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES”, Advances in Cryptology - CRYPTO ’96,
LNCS 1109, Springer-Verlag, 1996, pp. 237-251.

8. J. Kelsey, B. Schneier, and D. Wagner, “Related-Key Cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2, and TEA”, ICICS’97, LNCS 1334,
Springer-Verlag, 1997, pp. 233-246.

260 C. Lee et al.

9. J. Kim, G. Kim, S. Hong, S. Lee and D. Hong, “The Related-Key Rectangle Attack
- Application to SHACAL-1”, ACISP 2004, LNCS 3108, Springer-Verlag, 2004, pp.
123-136.

10. J. Kim, G. Kim, S. Lee, J. Lim and J. Song, “Related-Key Attacks on Reduced
Rounds of SHACAL-2”, INDOCRYPT 2004, LNCS 3348, Springer-Verlag, 2004,
pp. 175-190.

11. Y. Ko, D. Hong, S. Hong, S. Lee, and J. Lim, “Linear Cryptanalysis on SPECTR-
H64 with Higher Order Differential Property”, MMM-ACNS03, LNCS 2776,
Springer-Verlag, 2003, pp. 298-307.

12. Y. Ko, C. Lee, S. Hong and S. Lee, “Related Key Differential Cryptanalysis of Full-
Round SPECTR-H64 and CIKS-1 ”, ACISP 2004, LNCS 3108, 2004, pp. 137-148.

13. Y. Ko, C. Lee, S. Hong, J. Sung and S. Lee, “Related-Key Attacks on DDP based
Ciphers: CIKS-128 and CIKS-128H ”, Indocrypt 2004, LNCS 3348, Springer-Verlag,
2004, pp. 191-205.

14. C. Lee, D. Hong, S. Lee, S. Lee, H. Yang, and J. Lim, “A Chosen Plaintext Linear
Attack on Block Cipher CIKS-1”, ICICS 2002, LNCS 2513, Springer-Verlag, 2002,
pp. 456-468.

15. M. Matsui, “Linear cryptanalysis method for DES cipher”, Advances in Cryptology
- EUROCRYPTO’93, LNCS 765, Springer-Verlag, 1993, pp. 386-397.

16. A. A. Moldovyan and N. A. Moldovyan, “A cipher Based on Data-Dependent
Permutations”, Journal of Cryptology, volume 15, no. 1 (2002), pp. 61-72

17. R. C.-W Phan and H. Handschuh, “On Related-Key and Collision Attacks: The
case for the IBM 4758 Cryptoprocessor”, ISC 2004, LNCS 3225, Springer-Verlag,
2004, pp. 111-122.

Related-Key Differential Attacks 261

A The Round Function Crypt(e) Used in Cobra-S128 and
Cobra-F64

Fig. 6 represents the round function of Cobra-S128 and Fig. 7 represents the
round function of Cobra-S64.

�

���

�

P
(B,0)

32/32

�

�

�..................... ...

�

P
(B,e)
32/32

P
(C,1)

32/32

�

�
P

(C,e)

32/32

�

�
.....................�

.....................�

�

�

�

��

�P
(C′,e)
32/32

�
...�

P
(B′,e)
32/32

�
...�

� �

A B C D

�

Q
(2,e)
j

Q
(1,e)
j

Fig. 6. Round function Crypt(e) of Cobra-S128

P
(A,e)
32/32

...............................�

P
(A,e)
32/32

�

�

�

� �

...............................�

A AB B

(a)

�

(b)

� �Q1,e
j Q2,e

j

P
(A,e)
32/32

�

�

>>> 8

...............................�

>>> 8 ��

�

� �

�

��

� �Q1,e
j Q2,e

j

Fig. 7. (a) Crypt(e) of Cobra-F64a, (b) Crypt(e) of Cobra-F64b

262 C. Lee et al.

B Related-Key Differential Characteristics of Cobra-F64a
and Cobra-F64b

Note that the probability 2−2 in the FT line of Table 6 is derived from the last
� operation. Also note that the probability 2−5 in the line of the 20th round of
Table 7 is derived from P1 and the last � operation.

Table 6. Related-Key Differential Characteristic of Cobra-F64a

Round (i) ΔRIi ΔRKi P1/P2 Prob.
1 (e1, e1) (0, e1) 2−3/2−3 2−6

2 (0, e1) (0, 0) 2−6/2−8 2−14

3 (e1, e1) (0, 0) 2−8/2−6 2−14

4 (e1, 0) (e1, 0) 1/1 1
5 (0, 0) (0, 0) 1/1 1
6 (0, 0) (0, 0) 1/1 1
7 (0, 0) (e1, 0) 2−3/2−3 2−6

8 (0, e1) (0, e1) 1/1 1
9 (0, 0) (0, 0) 1/1 1
10 (0, 0) (0, 0) 1/1 1
11 (0, 0) (e1, 0) 2−3/2−3 2−6

12 (0, e1) (0, 0) 2−6/2−8 2−14

FT (e1, t) (0, 0) · 2−2

Output (e1, t) · · ·
Total · · · 2−62

Table 7. Related-Key Differential Characteristic of Cobra-F64b

Round (i) ΔRIi ΔRKi P1 Prob.
1 (0, e1) (e1, e1) 2−3 2−3

2 (0, e1) (e1, e1) 2−3 2−3

3 (0, e1) (e1, e1) 2−3 2−3

4 (0, e1) (e1, e1) 2−3 2−3

5 (0, e1) (e1, e1) 2−3 2−3

· · · · ·
· · · · ·
· · · · ·

17 (0, e1) (e1, e1) 2−3 2−3

18 (0, e1) (e1, e1) 2−3 2−3

19 (0, e1) (e1, e1) 2−3 2−3

20 (0, e1) (e1, e1) 2−3 2−5

FT (e1 ⊕ t≫8, t) (e1, e1) · ·
Output (e1 ⊕ t≫8, t) · · ·
Total · · · 2−62

Advanced Slide Attacks Revisited:
Realigning Slide on DES

Raphael C.-W. Phan

Information Security Research (iSECURES) Lab,
Swinburne University of Technology (Sarawak Campus),

93576 Kuching, Sarawak, Malaysia
rphan@swinburne.edu.my

Abstract. Slide attacks are powerful tools that enable the cryptanalyst
to break ciphers with up to 4-round self-similarity. This paper introduces
an advanced sliding technique that breaks ciphers with self-similarity
more than 4 rounds, and even allows for sliding encryptions with dis-
similar rounds in the middle of the slide. In particular, we present the
realigning slide attack on variants of 14-, 15- and full 16-round DES. We
hope our results will spur more effort into ways to extend the slide attacks
to apply to larger classes of block ciphers with complex key schedules.

1 Introduction

The slide attack was introduced by Biryukov and Wagner in 1999 as a means to
attack block ciphers by exploiting slight weaknesses in their key schedules [5].
A year later, the same authors presented advanced slide attacks [6], namely the
complementation slide and sliding with a twist that could attack ciphers with
slightly more complex key schedules. Now that 5 years have passed since then,
it is natural to wonder if there are other ways to extend these slide attacks.

The DES’ linear key schedule surprisingly resists all previously known slide
and related-key [2,11,12] attacks, thus it is of major interest to show how it can
be susceptible to slide attacks. Note however that linearity itself does not au-
tomatically imply weakness against such attacks. However, linear key schedules
mean that relationships between round keys are much simpler both to exploit
and possibly control, thus may have a higher chance of causing self-similarities.
But DES has so far proven this wrong.

We introduce an advanced slide attack, the realigning slide attack by using a
novel sliding technique that allows for sliding encryptions with dissimilar rounds
in middle of the slide. Previously known sliding techniques would fail under
this circumstance. We illustrate this new approach on DES variants, including
the full 16 rounds with the original key schedule for a fraction of all keys, and
slightly tweaked key schedules for almost all keys. Although our attack on full
DES has a higher complexity than the best known attack, i.e. standard linear
cryptanalysis [17] and is more of theoretical interest, our results indicate the
irregular structure of the DES key schedule still has some exploitable degree of
self-similarity that is susceptible to more subtle forms of slide attacks.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 263–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

264 R.C.-W. Phan

This paper is organized as follows: In Section 2, we briefly describe con-
ventional and previous advanced slide attacks. We develop an advanced sliding
technique in Section 3, the realigning slide which is demonstrated on DES vari-
ants. We discuss some related work in Section 4. We conclude in Section 5 and
outline some interesting open problems in relation to extending the slide attacks.

2 The Slide Attacks

The basic slide attack [5] considers ciphers where each round is identical to
the other. The cryptanalyst is interested to find a plaintext pair, P, P ′ with
corresponding ciphertexts, C,C′ such that he gets two slid equations of the form:

P ′ = F (P) (1)

C′ = F (C), (2)

where F (·) is the round function. To do so, he obtains a pool of 2n/2 known
plaintexts (KP s) and corresponding ciphertexts (n is the block size), and uses
this to form 2n pairs. He then either directly checks if each pair satisfies the slid
equations or has to make guesses of the keys in F while doing the checking. By
the birthday paradox, he expects one slid pair satisfying the equations, upon
which the key used in the F is recovered.

The limitation of this conventional technique is that it applies only to a small
class of ciphers, particularly those whose key schedules cause identical round keys
for each round, thus making each round identical to the other. This technique is
basically a clever adaptation of the rotating subkey related-key attack1 [2] to the
non-related-key context, i.e. the requirement for related keys that cause identical
or self-similar (repeating) round keys is eliminated by using ciphers with weak
key schedules that themselves cause identical or self-similar round keys.

2.1 Advanced Sliding Techniques

The basic slide attack works on one-round self-similar ciphers, i.e. all round
keys are identical, but when the self-similarity consists of more complex rounds,
then further advanced sliding techniques have to be used. Two such techniques:
complementation slide and twisting slide, were presented in [6].

The complementation slide applies particularly well to Feistel-like ciphers
and amplifies their two-round self-similarity into one-round self-similarity. The
basic concept is to slide two encryptions such that the slid rounds, rather than
being exactly identical to each other, have a constant difference due to dissimilar
round keys that propagates with probability one from one end of the slid rounds
to the other. In this way, the plaintexts and ciphertexts forming a slid pair
are still related by one unslid round and the slid equations are similar to (1)
and (2). The restriction is that the round keys must be inserted via the same

1 In modern day terms, this is more suitably known as related-key slide attack.

Advanced Slide Attacks Revisited: Realigning Slide on DES 265

operation as that used to combine the two Feistel halves, and that there be no
nonlinear operation between the round key insertion operation and the Feistel
half combining operation. For more details of why this is so, see [6,3].

The sliding with a twist (twisting slide) technique slides an encryption with
a decryption and is equally applicable to ciphers with two-round self-similarity,
and even much complex ciphers such as DESX proposed by Rivest [13,14].

The two above-mentioned techniques can also be combined into the com-
plementation sliding with a twist to attack ciphers with up to four-round self-
similarity. But this has restrictions similar to the complementation slide and
only applies to Feistel-like ciphers.

The basic and advanced slide attacks are powerful tools in that they are
applicable to ciphers independent of the number of rounds. Other slide-style
attacks are in [19,7,10,20]. However, current slide attacks are only applicable
to cipher key schedules with self-similarity up to 4 rounds, and if there are no
unslid rounds in the middle of a slid sequence. In the next section, we show how
the slide attacks can be made to overcome these two limitations.

3 The Realigning Slide Attack

We introduce a new advanced sliding technique: the realigning slide, and show
how it slides in a way that previous sliding techniques were unable to.

We describe how to slide two encryptions even with unslid rounds in the
middle of the slide. In essence, the technique allows the encryptions to realign
themselves with each other even after a misalignment caused by the middle
unslid rounds. To illustrate this concept, we apply it to the DES key schedule
with up to its full 16 rounds, but we emphasize that these attacks presented here
apply to ciphers with DES-like key schedules with an infinite number of rounds.

DES is a Feistel cipher with 64-bit blocks and a 56-bit key. The 64-bit plain-
text block goes through a 16-round Feistel structure to obtain the ciphertext2.
Denote the plaintext block as two halves, L0||R0, where || denotes concatenation;
then iterate 15 rounds (for i = 1, 2, . . . , 15):

Li ← Ri−1 (3)
Ri ← Li−1 ⊕ F (Ri−1,Ki), (4)

where F (·,Ki) denotes the F function keyed by round key Ki. Finally, do:

L16 ← L15 ⊕ F (R15,K16) (5)
R16 ← R15, (6)

i.e. there is no swap in the final (16th) round.
The key schedule of DES takes a 64-bit secret key which is passed through a

permutation, PC1 that removes the parity bits, causing a resultant 56-bit key,
2 Our DES description here is kept concise, and neglects details that do not contribute

to its security, i.e. initial and final permutations, etc. For these and further details
of DES, we refer the reader to [18].

266 R.C.-W. Phan

K. Since this permutation is of no cryptographic importance, the secret key of
DES is normally assumed to be 56 bits in length. The 56-bit key, K is divided
into two halves, C0 and D0, each of 28 bits, hence we have K = C0||D0. The
round keys, Ki where i ∈ {1, . . . , 16} are defined as Ki = PC2(Ci||Di) where
Ci = LSi(Ci−1), Di = LSi(Di−1), PC2 is a permutation and where LSi is a left
circular shift by the number of positions according to Table 1.

Table 1. Circular shifts in the key schedule of DES

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LSi 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
a[i] 1 2 4 6 8 10 12 14 15 17 19 21 23 25 27 28

In this paper, we will use the alternative representation introduced by Knud-
sen in [15,16], and define La[i](C0||D0) = LSa[i](C0)||LSa[i](D0) where a[i] is the
accumulated number of shifts given in Table 1. Hence, the round keys are then
Ki = PC2(La[i](C0||D0)) = PC2(La[i](K)).

The DES key schedule has undergone years of analysis, and despite being
linear, has remained strong against attacks that exploit key schedules such as
related-key attacks and slide attacks. Thus, it has defied the popular belief among
cryptographers that strong key schedules should be nonlinear.

An attempt to attack the DES key schedule with related-key cryptanalysis
was made by Biham in 1994 [2], but was only applicable to a very much weakened
version where the number of shifts in each round is constant (and regular).
This version is really not in line with the original DES design: that of having
irregularity in the key schedule. Also, past research has shown that key schedules
with some form of regularity [2,5,6] fall to related-key and slide attacks.

In this section, we show how to slide the original unmodified DES key sched-
ule despite its irregularity. For this purpose, we exploit results by Knudsen [15].
Denote the secret key as K and the ith round key generated from K as Ki. Then

Theorem 1 (Knudsen [15]). For every key K, there exists a key K ′, s.t.

Ki+1 = K ′
i; i ∈ {2, . . . , 7} ∪ {9, . . . , 14}

i.e. K and K ′ have 12 common round keys.

Theorem 2 (Knudsen [15]). There exist 28 pairs of keys K and K ′, s.t.

Ki+1 = K ′
i; i ∈ {2, . . . , 14}

i.e. K and K ′ have 13 common round keys.

We first exploit Theorem 1 here to motivate the intuition behind the realign-
ing slide. Theorem 2 will be used later in Section 3.1 to demonstrate (as an

Advanced Slide Attacks Revisited: Realigning Slide on DES 267

initial step towards developing the realigning slide,) a conventional related-key
slide attack on a variant of the DES for the class of 28 key-pairs of Theorem 2.

Consider two encryptions keyed by K and K ′ respectively (of Theorem 1).
Then the rounds 3 to 8, 10 to 15 of the first encryption (we denote round i by ri)
share common round keys with rounds 2 to 7, 9 to 14 of the second encryption
(denote round i by r′i). This naively suggests a possible slide of the encryptions
such that they are out of phase by 1 round, denoted below, where bold round
numbers indicate the slid rounds:

X Y Z
P → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C

P ′ → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C′

X ′ Y ′ Z′

The first slid sequence is (r3 ∼ r8, r′2 ∼ r′7), while the second slid sequence is
(r10 ∼ r15, r′9 ∼ r′14). Nevertheless, the conventional and advanced slide attacks
are not applicable in this case since we have an unslid round in the middle of
the slide, namely in (r9, r′8). Due to this unslid round, even though the first slid
sequence has been aligned properly, a misalignment occurs and hence impedes
the second slid sequence from being aligned as well.

We propose to force the slide of the second sequence probabilistically. Denote
the outputs of the middle unslid round (r9, r′8) by Y and Y ′; the outputs of
(r2, r′1) by X and X ′, and the outputs of (r15, r′14) by Z and Z’, respectively. The
intuition is that once we have a pair such that X = X ′, we have Y = Y ′ with a
certain probability p, and hence Z = Z’ is obtained for free.

Such a pair is a slid pair that satisfies the following slid equations:

E1,2(P) = E1(P ′) (7)

E−1
16 (C) = E−1

15,16(C
′) (8)

where Ei1,i2,...,ix (respectively E−1
i1,i2,...,ix

) denotes x rounds of the encryption
(respectively decryption) keyed by the corresponding round keys of the rounds
i1, i2, ..., ix. From these slid equations, we extract the relations3:

P ′
R = PL ⊕ F (PR,K1) (9)

C′
L = CR ⊕ F (C′

R,K
′
16) (10)

where P = PL||PR, etc.
Essentially, we have realigned the misalignment caused by the middle unslid

round, and we call this the realigning slide. This technique allows for sliding
encryptions with unslid middle rounds.

The next question: What is the probability, p such that Y ′ = Y ? At the input
to (r9, r′8), the text inputs are equal due to the sliding condition of the first se-
quence, but the round keys (K9,K

′
8) are different, so feeding in the key difference

to the round function, what is the chance to have a zero output difference?
3 Recall there is no swap in the final round of DES.

268 R.C.-W. Phan

For this, we recall the round function of DES. In each round, the 32-bit text
input is expanded to 48 bits before being XORed to a 48-bit round key. This
result is then passed through 8 Sboxes to produce a 32-bit output which is then
put through a bit permutation. This forms the round function output. In our
case, the 32-bit text input from both encryptions is the same, and hence their
difference cancels out to zero. Thus, the input difference to the Sboxes comes
only from the round key difference. Referring to the difference distribution table
(DDT) [1] for each Sbox, we note that out of 64 possible input differences, around
34 to 38 (except for Sbox 4 which has 25) may cause a zero output difference,
so with probability on average 34.25/64 ≈ 2−1 for each Sbox we get an input
difference that may cause a zero output difference, and thus 2−8 for all 8 Sboxes.
This means out of all possible key pairs (K,K ′) of Theorem 1, we have roughly
256×2−8 = 248 pairs [15] whose round keys input to (r9, r′8) would have an input
difference that may cause a zero output difference and thus Y ′ = Y .

Based on this discussion, we outline attacks on variants of DES that use the
original DES key schedule, or with slight tweaks to 1 or 2 rounds but where the
irregular structure is still preserved.

3.1 Sliding the Middle 14 DES Rounds

Consider the middle 14 rounds of the DES, namely from round 2 to round 15,
using the original key schedule 4, namely with the shift pattern 12222221222222.
Then this variant is susceptible to the realigning slide as outlined above, where
sliding by one round we obtain

P → 2 3 4 5 6 7 8 9 10 11 12 13 14 15 → C

P ′ → 2 3 4 5 6 7 8 9 10 11 12 13 14 15 → C′

Before we discuss this realigning slide, we first consider a class of 28 key-pairs
(Theorem 2) such that their round keys input to the (r9, r′8) rounds are the same
thus no middle unslid round, and hence we can attack this middle 14 rounds of
the DES with a conventional related-key slide attack. We will then explain how
to convert this into a realigning slide that applies for all DES keys.

Conventional Related-key Slide. For the class of 28 key-pairs of Theorem
2, we have that the two encryption sequences:

P → 2 3 4 5 6 7 8 9 10 11 12 13 14 15 → C

P ′ → 2 3 4 5 6 7 8 9 10 11 12 13 14 15 → C′

In more detail, this class of key-pairs is where we have restrictions (fixed values)
on 48 bits of K to be equal to 48 other bits of K ′ such that K9 = K ′

8.
So the two sequences will be slid on the rounds (r3 ∼ r15, r′2 ∼ r′14) and no

middle unslid round, thus we have the slid equations:

P ′ = r2(P) (11)
4 Note that the original shift pattern for the full 16 rounds is 1122222212222221.

Advanced Slide Attacks Revisited: Realigning Slide on DES 269

C′ = r′15(C). (12)

Since DES has a Feistel structure, the slid equations can be simplified to:

P ′
L = PR (13)

P ′
R = PL ⊕ F (PR,K2). (14)

C′
R = CL (15)

C′
L = CR ⊕ F (C′

R,K
′
15). (16)

Equation (13) can be exploited in forming chosen plaintext queries with much
less text complexity, namely we form 216 chosen plaintexts P and another 216

chosen plaintexts P ′ such that P ′
L = PR, and obtain their encryptions keyed by

K and K ′, respectively. These form 232 pairs P, P ′ from which we expect to get
1 slid pair such that X = X ′ and thus Z = Z ′.

Out of these 232 pairs, we have a 32-bit filtering condition (equation 15) on
the ciphertexts namely C′

R = CL so from the total 232 pairs only one or two
pairs would pass through to the next phase of analysis. For these few remaining
pairs, equations (14,16) are each used to obtain 216 possible values5 of each for
48-bit K2 and 48-bit K ′

15, or in total 232 values for (K2, K ′
15). Since 40 bits6

of K2 and K ′
15 are in common, each pair on average suggests 232 × 2−40 = 2−8

candidates, so only the right value of (K2, K ′
15) remains.

In all, this requires 217 related-key chosen plaintexts (RK-CP s) and neg-
ligible effort since processing each remaining slid pair on equations (14,16) is
equivalent to just 2 DES rounds.

Realigning Slide. We extend this to apply for almost all key-pairs (248). For
any key, K of the DES, and a corresponding related key, K ′ (of Theorem 1),
the two encryption sequences keyed by them respectively would be slid on round
sequences (r3 ∼ r8, r′2 ∼ r′7) and (r10 ∼ r15, r′9 ∼ r′14), thus we have an unslid
round (r9, r′8) in the middle, causing our previous related-key slide attack to fail.

However, recall from our discussion before Section 3.1 that there are 248 pairs
of keys such that a non-zero input difference to (r9, r′8) may cause a zero output
difference and thus Y = Y ′.

In the general case, if the probability of getting a zero output difference of
(r9, r′8) is p, then obtain the encryptions of

√
(1/p) × 216 chosen plaintexts P

and another
√

(1/p)×216 chosen plaintexts P ′, keyed by K and K ′ respectively
such that P ′

L = PR. These form (1/p)× 232 pairs, (P, P ′) from which we expect
to get 1/p potential slid pairs such that X = X ′. Out of these, we further expect
with a probability p that Y = Y ′ and hence Z = Z ′, so one slid pair exists which
satisfies the slid equations (11,12).
5 Consider equation (14). Work inwards with known P ′

R, PL, PR values, including
traversing each of 8 DES Sboxes in reverse which suggests 22 inputs until we can
calculate the bits of K2, thus 22 possible values for each 6-bit subset of K2 that
influences each Sbox input, so 22×8 = 216 in total. Similarly for equation (16) for
K′

15.
6 This has been experimentally verified by a C program on the DES key schedule.

270 R.C.-W. Phan

From equation (15) we have a 32-bit filtering condition on the ciphertexts
namely C′

R = CL, so out of the total (1/p) × 232 pairs only 1/p pairs would
pass through to the next phase of analysis. Each remaining pair suggests 216

candidates for K2 via slid equation (14) and another 216 candidates for K ′
15 via

slid equation (16), thus a total of 232 for (K2,K
′
15). Since they are common in

40 bits, on average each pair suggests 232 × 2−40 = 2−8 candidates. As there are
1/p such pairs, the total number of candidates is 1/p× 2−8.

This gives a realigning slide on the middle 14 rounds of DES that applies
for almost all keys, requiring

√
(1/p) × 217 related-key chosen plaintexts. Since

checking each pair is equivalent to 2 one-round DES encryptions, the time re-
quired by the analysis phase is 1/p× 1/7 DES encryptions.

We discuss as a concrete example how this works for any related key-pair,
K and K ′ having round keys to (r9, r′8) with difference 03 3B 22 2E 26 22 2B
28 (each difference is arranged in 8 groups of 6 bits each, in hex) as input to
the 8 Sboxes. Each 6-bit difference has the highest probability7 of causing a zero
output difference for its corresponding Sbox, namely the resultant probability, p
of 14/64×16/64×12/64×16/64×14/64×16/64×16/64×10/64≈ 232.5/248 =
2−15.5 (These are trivially obtained from the DDT of DES’ Sboxes [1]).

Thus, for such a key-pair, a realigning slide on the middle 14 DES rounds
requires

√
(1/p)× 217 =

√
215.5 × 217 = 224.75 related-key chosen plaintexts and

time of 1/p× 1/7 = 215.5 × 1/7 ≈ 212.5 DES encryptions in the best case.
Besides key-pairs of this difference, there are other similar key-pairs that

cause a zero output difference after (r9, r′8) with the same probability p, including
those with the round key differences to (r9, r′8) as (03 3B 22 2E 27 22 2B 28),
(03 3B 22 2F 26 22 2B 28) and (03 3B 22 2F 27 22 2B 28). These are just
a few examples out of the 248 key-pairs of DES that cause a zero output difference
after (r9, r′8) with probability p which ranges from 2−15.5 to 2/64×2/64×2/64×
4/64 × 2/64 × 2/64 × 2/64 × 2/64 = 29/248 = 2−39. If we did not restrict on
a specific round key difference to (r9, r′8), then p is 2−28 by averaging for each
Sbox over all non-zero input differences that cause a zero output difference, thus
the text and attack complexities from the best to average case would increase
by a factor of 26.25 and 212.5, respectively.

3.2 The First 15 DES Rounds

We now consider two variants of the first 15 rounds of the DES, namely with a
slightly tweaked key schedule, and with the original key schedule.

Attack 1: Slightly Tweaked Key Schedule (Tweak in Round 2). The
realigning attack in Section 3.1 equally applies to the DES-variant reduced to the
first 15 rounds with a slightly tweaked key schedule, where only the shift in round
2 is modified to 2 instead of 1, i.e. the shift pattern becomes 1222222212222222
as compared to 1122222212222222 originally. Sliding by one round:

7 The relation in these bits between the related key-pair can be chosen to this difference
to maximize its probability.

Advanced Slide Attacks Revisited: Realigning Slide on DES 271

P → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 → C

P ′ → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 → C′

hence we get a realigning slide with the same complexity as in Section 3.1.

Attack 2: Original Key Schedule for 28 Key-Pairs. Is the attack equally
applicable to the first 15 rounds of DES using the original key schedule? Our
answer is yes, for a certain class of DES key-pairs. At first glance, the analysis
phase is harder due to the absence of the slid round (r2, r′1). Nevertheless, for
a class of 28 key-pairs (formalized in Theorem 3) such that the two round keys
K2 and K ′

1 generated from K and K ′ are the same, then the attack works as
described previously for the middle 14 DES rounds. Note though that this is
only of theoretical interest as we are attacking the 28 weak key-pairs with effort
more than going through this weak-key sub-space.

Theorem 3. There exist 28 pairs of keys K and K ′, s.t.

Ki+1 = K ′
i; i ∈ {1, . . . , 7} ∪ {9, . . . , 14}

i.e. K and K ′ have 13 common round keys.
Proof: From Theorem 1, we have that there is a related key, K ′ for every DES
key, K such that they have 12 rounds in common. When we restrict on the 48
bits of K2 to be identical to K ′

1, we have 8 bits of freedom and hence a class
of 28 key-pairs K and K ′ such that in addition to the 12 common rounds, an
additional (13th) round (r2, r′1) is also in common. 	

3.3 The Last 15 DES Rounds

Attack 1: Slightly Tweaked Key Schedule (Tweak in Round 16). Sup-
pose we only tweak the shift in round 16, in that we modify the shift value from
1 to 2, we get the shift pattern 122222212222222. Sliding the two encryptions:

P → 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C

P ′ → 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C′

and the realigning slide attack in Section 3.1 applies directly.

Attack 2: Original Key Schedule for 28 Key-Pairs. For the last 15 rounds
with the original key schedule, we no longer have the round keys to (r16, r′15)
being the same, hence this is not a slid round. However, for a class of 28 key-pairs
(formalized in Theorem 4) such that the two round keys K16 and K ′

15 generated
from K and K ′ are the same, the attack as in Section 3.1 can be applied. Again
though, this is only of theoretical interest since the effort is greater than going
through the weak-key sub-space.

272 R.C.-W. Phan

Theorem 4. There exist 28 pairs of keys K and K ′, s.t.

Ki+1 = K ′
i; i ∈ {2, . . . , 7} ∪ {9, . . . , 15}

i.e. K and K ′ have 13 common round keys.
Proof: From Theorem 1, we have that there is a related key, K ′ for every DES
key, K such that they have 12 rounds in common. When we restrict on the 48
bits of K16 to be identical to K ′

15, we have 8 bits of freedom and thus a class
of 28 key-pairs K and K ′ such that in addition to the 12 common rounds, an
additional (13th) round (r16, r′15) is also in common. 	

Attack 3: Original Key Schedule. The last 15 DES rounds with the original
key schedule can be attacked with the realigning slide even for the case where
we do not have equal round keys for the round (r16, r′15), thus this applies for
almost all (recall this is 248 out of 256) the key-pairs. In such a case, we have:

P → 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C

P ′ → 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C′

i.e. there is no longer any filtering condition on the ciphertexts, so although the
slid equations (13,14) still apply, slid equations equations (15,16) are replaced
with slid equation (10). The plus side with this situation is that we are aiming to
recoverK2 andK ′

16 which are the same! Thus we have a 48-bit filtering condition
on the keys suggested by equations (14,10) instead of just 40 bits.

We check the slid equations (14,10) on all the (1/p)×232 pairs instead of just
1/p had there been a filtering condition. Each pair suggests 232 × 2−48 = 2−16

key candidates, thus with (1/p) × 232 pairs, the total number of suggested key
candidates is (1/p) × 232 × 2−16 = (1/p) × 216.

As a concrete example, for the related key-pair, K and K ′ with round keys
to (r9, r′8) having the difference 03 3B 22 2E 26 22 2B 28 given in Section 3.1,
the total number of suggested candidates for (K2,K

′
16) is (1/p) × 216 = 215.5 ×

216 = 231.5, reduced from the keyspace of 248.
This needs the same number of texts as before, but due to more pairs checked,

the time complexity is (1/p) × 232 × 1/7 DES encryptions, or considering the
above example 215.5 × 232 × 1/7 ≈ 244.5 such encryptions in the best case.

3.4 The Full 16 DES Rounds

We can extend the attack further to several variants of the full 16 DES rounds,
even with the original key schedule.

Attack 1: Tweaked Key Schedule (Tweak in Round 2 and Round 16).
If we modify the shift in round 2 and round 16, from 1 to 2, we get the shift
pattern 1222222212222222. We then have:

P → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C

P ′ → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C′

and the realigning slide attack in Section 3.1 applies directly.

Advanced Slide Attacks Revisited: Realigning Slide on DES 273

Attack 2: Tweaked Key Schedule (Tweak in Round 16). If we tweak the
key schedule even less, namely we only modify the shift in round 16 from 1 to
2, we get the shift pattern 1122222212222222. Sliding two such encryptions by
one round, we get:

P → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C

P ′ → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C′

This situation is similar to Attack 2 in Section 3.2, where for a class of 28 key-
pairs of Theorem 3, we get K2 = K ′

1 and we can then apply the attack in Section
3.1. Nevertheless, the effort is greater than brute-forcing the weak-key sub-space.

Attack 3: Tweaked Key Schedule (Tweak in Round 2). Similarly if
we only modify the shift in round 2 from 1 to 2, we get the shift pattern
1222222212222221, and thus:

P → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C

P ′ → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C′

This is similar to Attack 2 and Attack 3 in Section 3.3, namely it applies for a
class of 28 key-pairs as per Theorem 4 (with the addition of an extra 14th round
(r2, r′1)), and for almost all key-pairs of the DES, respectively.

Attack 4: Original Key Schedule for 28 Key-Pairs. Finally, we look at
the full 16-round DES with its original key schedule, where the shift pattern is
1122222212222221. This gives:

P → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C

P ′ → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 → C′

Notice there is no filtering condition on the ciphertexts. For a class of 28 key-
pairs as per Theorem 3, the situation becomes similar to Attack 3 in Section
3.3 (also with no filtering condition), thus this can be attacked with similar
texts and time complexity. Fortunately for the full DES, the effort is more than
brute-forcing the weak-key sub-space.

4 Discussion and Related Work

Wagner [22] has independently presented concepts similar to our realigning slide
in the context of hash functions, i.e. in producing pseudo-collisions on 40 rounds
of the SHA-1 hash function. SHA-1 has the Davies-Meyer (DM) construction:

Hi = E(Mi, Hi−1) ⊕Hi−1, (17)

where E(·) is a compression round function, M = M1, . . . ,Mi, . . . ,Mn is the
input message, Hi is the chaining variable, H0 is a fixed initialization vector

274 R.C.-W. Phan

(IV) and Hn is the hash output. Wagner proposes to overcome the misalignment
(he calls them “defects in sliding”) by collecting enough IV s and input texts so
as to “bypass the defect” with high probability.

Saarinen [21] extended this to the full 80 rounds of SHA-1. It was also dis-
cussed how this may potentially be turned into a related-key attack on the
SHACAL-1 block cipher [8,9], which is derived from SHA-1 by peeling off the
DM final chaining (via ⊕), taking the IV as plaintext, the message blocks Mi

as the round keys and thus the output Hn becomes the ciphertext. However,
this uses a very restrictive model in that the cryptanalyst has to choose specific
values for 16 consecutive round key words; thus destroying the motivation for
key-recovery attacks.

5 Conclusion and Open Problems

We give in Table 2 a comparison of our best and average case realigning slide
results on the DES with its original key schedule or with very minor tweaks in
just 1 or 2 rounds. We also list Biham’s [2] related-key slide attack on a very much
weakened DES key schedule where all 16 rounds are tweaked such that they have
the same shift amounts. Note that Biham’s tweak destroys the original irregular
structure of the DES key schedule, in contrast to the DES versions we attack
where the irregular structure is preserved and thus better model the original
DES design.

Though adapting this realigning slide to other cipher key schedules will need
a detailed analysis of the specific individual key schedules, this is the first time
that slide attacks can overcome unslid middle rounds, and that DES with its
original key schedule is shown susceptible to slide attacks (thus highlighting
that even irregular key schedules can be slid). Fortunately for the full 16-round
DES with its original key schedule, this only applies for 28 key-pairs but we view

Table 2. Comparison of attacks on DES variants

Variant Key Number of Texts Encryptions Source
Schedule Key-Pairs (Best/Average) (Best/Average)

middle 14 Original 28 217RK-CP - Sec 3.1: Attack 1

middle 14 Original 248 224.75/231RK-CP 212.5/225 Sec 3.1: Attack 2

first 15 Tweak round 2 248 224.75/231RK-CP 212.5/225 Sec 3.2: Attack 1

first 15 Original 28 224.75/231RK-CP 212.5/225 Sec 3.2: Attack 2

last 15 Tweak round 16 248 224.75/231RK-CP 212.5/225 Sec 3.3: Attack 1

last 15 Original 28 224.75/231RK-CP 212.5/225 Sec 3.3: Attack 2

last 15 Original 248 224.75/231RK-CP 244.5/� Sec 3.3: Attack 3

full 16 Tweak round 2 & 16 248 224.75/231RK-CP 212.5/225 Sec 3.4: Attack 1

full 16 Tweak round 16 28 224.75/231RK-CP 212.5/225 Sec 3.4: Attack 2

full 16 Tweak round 2 28 224.75/231RK-CP 212.5/225 Sec 3.4: Attack 3

full 16 Tweak round 2 248 224.75/231RK-CP 244.5/� Sec 3.4: Attack 3

full 16 Original 28 224.75/231RK-CP 244.5/� Sec 3.4: Attack 4

full 16 Tweak all rounds 255 217RK-CP - [2]

full 16 Tweak all rounds 255 233RK-KP 232 [2]

� Worse than exhaustive search.

Advanced Slide Attacks Revisited: Realigning Slide on DES 275

this as an important turning point towards efforts to break down its resistance
against the slide attacks. A direct countermeasure is to add more irregularity to
DES key schedule by having different shift values (not just 1 and 2) such that
the Theorems 1 to 4 would no longer hold.

The realigning slide is another way to extend the slide attacks. Possible
extensions could involve more complex techniques of sliding in order to pene-
trate key schedules with more subtle self-similarities, plus studying how the slide
attacks can overcome the commonly-used slide attack countermeasure: round-
dependence [5,6].

Acknowledgement

We thank the anonymous referees and Jongsung Kim for helpful comments and
suggestions. This work is an extension of basic ideas sketched in [4]. We thank
Alex Biryukov for stimulating discussions, David Wagner for providing a copy
of his manuscript [22]; and to both Alex and David for their slide attacks [5,6]
without which this paper would not have come into existence. We thank God
for His many blessings (Dt 8:13). Part of this work was done while on vacation
with wife and in-laws in coastal town of Bintulu, Sarawak.

References

1. E. Biham and A. Shamir: Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, Vol. 4, No. 1 (1991) 3–72

2. E. Biham: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology, Vol. 7 (1994) 229–246

3. A. Biryukov: Methods of Cryptanalysis. Ph.D. Dissertation, Technion, Israel (1999)
4. A. Biryukov and R.C.-W. Phan: Extended Slide Attacks − Double and Realigning

Slides. Unpublished manuscript, 2002
5. A. Biryukov and D. Wagner: Slide Attacks. Proceedings of Fast Software Encryp-

tion ’99, LNCS 1636, Springer-Verlag (1999) 245–259
6. A. Biryukov and D. Wagner: Advanced Slide Attacks. Proceedings of Eurocrypt

’00, LNCS 1807, Springer-Verlag (2000) 589–606
7. S. Furuya: Slide Attacks with a Known-Plaintext Cryptanalysis. Proceedings of

ICISC ’01, LNCS 2288, Springer-Verlag (2002) 214–225
8. H. Handschuh and D. Naccache: SHACAL. Submission to the NESSIE project

(2000) Available from http://www.cryptonessie.org

9. H. Handschuh and D. Naccache: SHACAL: A Family of Block Ciphers. Submission
to the NESSIE project (2002) Available from http://www.cryptonessie.org

10. S. Kavut, M.D. Yücel: Slide Attack on Spectr-H64. Proceedings of Indocrypt ’02,
LNCS 2551, Springer-Verlag (2002) 34–47

11. J. Kelsey, B. Schneier and D. Wagner: Key-Schedule Cryptanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES. Proceedings of Crypto ’96, LNCS 1109,
Springer-Verlag (1996) 237–251

12. J. Kelsey, B. Schneier and D. Wagner: Related-Key Cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2 and TEA. Proceedings of ICICS ’97,
LNCS 1334, Springer-Verlag (1997) 233–246

276 R.C.-W. Phan

13. J. Kilian and P. Rogaway: How to Protect DES Against Exhaustive Key Search.
Proceedings of Crypto ’96, LNCS 1109, Springer-Verlag (1994) 252–267

14. J. Kilian and P. Rogaway: How to Protect DES Against Exhaustive Key Search
(an Analysis of DESX). Journal of Cryptology, Vol. 14, No. 1 (2001) 17–35

15. L.R. Knudsen: New Potentially ‘Weak’ Keys for DES and LOKI (Extended ab-
stract). Proceedings of Eurocrypt ’94, LNCS 950, Springer-Verlag (1994) 419–424

16. L.R. Knudsen: Block Ciphers − Analysis, Design and Applications. PhD Thesis,
Aarhus University, Denmark (1994)

17. M. Matsui: Linear Cryptanalysis Method for DES Cipher. Proceedings of Euro-
crypt ’93, LNCS 765, Springer-Verlag (1993) 386–397

18. NBS: Data Encryption Standard, Federal Information Processing Standard (FIPS),
Publication 46, U.S. Dept. of Commerce, Washington D.C., January 1977

19. P. Onions: On the Strength of Simply-Iterated Feistel Ciphers with Whitening
Keys. Proceedings of CT-RSA ’01, LNCS 2020, Springer-Verlag (2001) 63–69

20. R.C.-W. Phan, S. Furuya: Sliding Properties of the DES Key Schedule and Po-
tential Extensions to the Slide Attacks. Proceedings of ICISC ’02, LNCS 2587,
Springer-Verlag (2003) 138–148

21. M.-J.O. Saarinen: Cryptanalysis of Block Ciphers Based on SHA-1 and MD5. Pro-
ceedings of Fast Software Encryption ’03, LNCS 2887, Springer-Verlag (2003) 36–44

22. D. Wagner: A Slide Attack on SHA-1. Unpublished manuscript, June 4, 2001

New Multiset Attacks on Rijndael with
Large Blocks

Jorge Nakahara Jr.1 Daniel Santana de Freitas2,
and Raphael C.-W. Phan3

1 UniSantos, Brazil
jorge nakahara@yahoo.com.br

2 LabSEC, INE, Federal University of Santa Catarina, Brazil
santana@inf.ufsc.br

3 iSECURES Lab, Swinburne University of Technology (Sarawak Campus), Malaysia
rphan@swinburne.edu.my

Abstract. This paper presents the first security evaluation of the Ri-
jndael cipher with block sizes larger than 128 bits. We describe
new higher-order multiset distinguishers for such large-block instances
of Rijndael. Both Rijndael and the AES were designed to resist differen-
tial and linear cryptanalysis, which is indicated by the number of active
S-boxes (minimum of 25 for 4-round AES) for the best differential and
linear distinguishers, for which the probability and correlation values are
estimated as 2−150 and 2−75. All of these Rijndael variants have been
formally defined by their designers as extensions of the AES. We describe
new 5-round distinguishers for Rijndael with 160 up to 256-bit blocks,
all holding with certainty, and with many more than 25 active S-boxes.

Keywords: Rijndael, higher-order multiset attacks, cryptanalysis.

1 Introduction
Rijndael is an SPN-type cipher designed by J. Daemen and V. Rijmen for the
AES Development Process [17]. Both the block and key sizes can range from 128
up to 256 bits in steps of 32 bits [6, p.42]. The number of rounds is variable,
depending on the block and key lengths. There are 25 instances of Rijndael
formally defined by their designers [6,13] for all possible combinations of key
and block sizes (Table 1). The 128-bit block version of Rijndael is officially known
as the AES [17]. The other variants will be denoted Rijndael-160, Rijndael-192,
Rijndael-224 and Rijndael-256, with the suffix indicating the block size in bits.
The text and key blocks are usually represented by a 4× t state matrix of bytes,
4 ≤ t ≤ 8. For instance, the state matrix for a 4t-byte (32t-bit) text block,
A = (a0, a1, a2, a3, a4, . . . , a4t−1), is

State =

⎛⎜⎜⎝
a0 a4 . . . a4t−4

a1 a5 . . . a4t−3

a2 a6 . . . a4t−2

a3 a7 . . . a4t−1

⎞⎟⎟⎠ , (1)

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 277–295, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

,

278 J. Nakahara Jr., D.S. de Freitas, and R.C.-W. Phan

namely, with the bytes filled columnwise. The AES has been extensively analyzed
since 1997 but the same cannot be said of the other variants, most probably
because they were not standardized as the AES. Rijndael-256, with a 256-bit
key, had its software performance evaluated in the NESSIE Project [16], but
there was no security analysis. However, analysis of these sisters of the AES
may shed further light into the design of the AES and its structure as well as
resistance against cryptanalysis.

This paper describes higher-order multiset distinguishers that consist, and
therefore trace, the status of 128-bit words, instead of bytes as in [5]. Since our
attacks require sets of 2128 chosen plaintexts at a time, the attacks do not apply
to the AES, whose codebook size is 2128. Nonetheless, this paper presents the
first security evaluation of Rijndael with block sizes larger than 128 bits.

Table 1. Parameters of the Rijndael block cipher [6]

Cipher
AES Rijndael-160 Rijndael-192 Rijndael-224 Rijndael-256

Nr (# rounds) Nb (# 32-bit words)
4 5 6 7 8

4 10 11 12 13 14
Nk 5 11 11 12 13 14

(# 32-bit 6 12 12 12 13 14
words) 7 13 13 13 13 14

8 14 14 14 14 14
ShiftRows C1 1 1 1 1 1

Offsets C2 2 2 2 2 3
C3 3 3 3 4 4

There are four layers in a full round transformation in Rijndael: AddRound-
Key (AKi), SubBytes (SBi), ShiftRows (SRi) and MixColumns (MCi), all of
which will be referred to as quarters of a round, or 0.25-round, so that distinguish-
ers and attacks can be described more precisely. The subscripts i indicate the
round number. One full round of Rijndael consists of AKi◦MCi◦SRi◦SBi(X) =
AKi(MCi(SRi(SBi(X)))), namely instantiation is in right-to-left order. There is
an input transformation, AK0 prior to the first round, and the last round does
not include MCi. For further details about Rijndael components refer to [6].

The paper is organized as follows: Sect. 2 gives basic definitions for the multi-
set attack. Sect. 3.1 describes attacks on Rijndael-160. Sect. 3.2 describes attacks
on Rijndael-192. Sect. 3.3 describes attacks on Rijndael-224. Sect. 3.4 describes
attacks on Rijndael-256. Sect. 4 concludes the paper.

2 Preliminaries

The multiset technique [2] has similarities with the Square attack [5], the satu-
ration attack [14] and with integral cryptanalysis [10,12]. All of these techniques

New Multiset Attacks on Rijndael with Large Blocks 279

operate in a chosen-plaintext (CP) setting, and the first published one was a
dedicated attack on the Square block cipher [5]. Nonetheless, this technique has
already been applied to several ciphers, with or without wordwise operations
[7,11,12,14]. A fundamental concept in a multiset attack is the Λ-set [5], which
is a multiset [2] (a set with multiplicities) containing b full n-bit text block el-
ements, where n is the block size and b is typically a power of 2. These n-bit
text blocks are analysed by tracing fixed (but not necessarily contiguous) w bits,
w < n, of all the text block elements. For example,

{(0|1|2|3), (1|2|2|1), (3|1|2|2), (2|2|2|1), (7|5|2|0), (4|5|2|7), (5|5|2|4), (6|5|2|4)}, (2)

is a multiset with 2w = 8 elements, each of which is a 12-bit text block
(n = 12). We further consider each of these 2w elements as a concatenation of
four w-bit words (w = 3), and thus, keep track of particular patterns in these w-
bit words for each of the 2w elements. When we focus only on certain fixed w bits
of each element of the multiset, then we have w-bit sets having the same number
of elements as the original multiset, but whose elements are formed by taking w
bits at fixed positions in each text block of the original multiset. Often times,
the w bits are composed of contiguous bits that respect word boundaries, hence
the more common term word. The possible patterns in words are the following:

– if the w-bit elements of a word in a multiset assume each of the values 0
to 2w − 1, then the word is called a permutation or an active word [5], and
is denoted ’P’, e.g., the word formed by the first 3 bits in the multiset (2),
which contains {0, 1, 3, 2, 7, 4, 5, 6};

– if all w-bit elements of a word in a multiset assume an arbitrary constant
value, it is called passive or constant [5], and is denoted ’C’, e.g., the third
set of 3 bits in (2), which is {2, 2, 2, 2, 2, 2, 2, 2};

– if all w-bit elements of a word in a multiset occur an even number of times
(each element has even multiplicity), it is called even, and is denoted ’E’,
e.g., the second set of 3 bits in (2), which is {1, 2, 1, 2, 5, 5, 5, 5};

– w-bit words which are either ’P’ or ’E’ are called dual, and are denoted ’D’;
– if the sum of all w-bit values in a given word of a multiset, under some

operator 	, results in a predictable amount, then this word is called balanced,
and is denoted ’B’;

– otherwise, if the 	-sum results in an unpredictable value, the word is called
unbalanced, and is denoted ’?’, e.g., the fourth set of 3 bits in (2), which is
{3, 1, 2, 1, 0, 7, 4, 4}, with 	 = ⊕ i.e. exclusive-or.

The rationale behind the multiset technique is to use balanced sets of bits to
attack permutation mappings (cipher rounds and its bijective components). Thus,
multiset attacks exploit the bijective nature of internal cipher components. In
particular, ciphers that operate on neatly partitioned words are the main targets.
A typical multiset attack starts with multisets in which all words are balanced
(usually only ’P’ and ’C’) and the propagation of balanced words in the mul-
tisets across multiple rounds of a cipher is traced up to the point in which the
multiset is composed only of unbalanced bits. Rijndael uses basically three op-
erations: bitwise exclusive-or, an 8 × 8 S-box, and multiplication in GF(28) =

280 J. Nakahara Jr., D.S. de Freitas, and R.C.-W. Phan

GF(2)[x]/(x8 +x4 +x3 +x+1) called xtime. All of these operations are bijective.
Since the exclusive-or (⊕) operator is used to combine round subkeys with in-
termediate cipher data, it is natural to use ⊕ = 	 as the operator for computing
the sum, because this value becomes independent of the round subkeys. There-
fore, this sum is key-invariant, and thus also called an invariant. The expected
exclusive-or sum for balanced words is zero. All multiset attacks reported in the
literature have used either the ⊕ or the modular additive sum [10,18] as the
operator in distinguishers. From initially checking all bits [5] for the ’B’ pattern,
other researchers have proposed to consider just one bit [14] or some (truncated)
set of bits [12]. Other forms of sums have also been considered, depending on
the particular cipher, such as 	 = (⊕,�,�,⊕,⊕,�,�,⊕,⊕,�,�,⊕,⊕,�,�,⊕)
in [10], where � is addition modulo 256. One may also check for internal col-
lisions, as considered by [9]. Essentially, we remark that the sums we check for
depend on how many rounds a predictable pattern (’C’, ’P’, ’E’, ’B’, ’D’) survives
before becoming unpredictable (’?’). The multiset distinguishers in this paper
all hold with certainty (probability one). The search for probabilistic multiset
distinguishers is left as an open problem.

An interesting aspect about a multiset distinguisher is the number of ac-
tive S-boxes1, a concept inherited from differential and linear cryptanalysis [4].
An active S-box in a multiset distinguisher has both its input and output ei-
ther ’D’ or ’B’, which are associated with non-zero (non-trivial) differences and
masks in the case of differential and linear cryptanalysis. The ’C’ and ’?’ words
are associated with zero (or trivial) differences and linear masks. Similar to
the differential and linear cases, the S-box is the main component that hin-
ders the propagation of balanced words, in the sense that ’B’ (but not ’D’)
words at the input to an S-box do not necessarily result in ’B’ words at the
output. Moreover, the S-box is often the only non-linear cipher component.
It is interesting to observe that the number of active S-boxes in multiset dis-
tinguishers is relatively high compared to differential and linear distinguish-
ers (Tables 7 and 8). Moreover, the former hold with certainty while the lat-
ter hold with much lower probability. All of these facts motivated our anal-
ysis of multiset distinguishers. Multisets containing 2w text blocks, where w
is ’typical’ word size of the cipher (e.g. w = 8 for Rijndael), are designated
1st-order multisets. Further, multisets consisting of 2mw text blocks each of
which has m w-bit words, with some patterns, are designated mth-order mul-
tisets [12].

The following lemma and theorem will support the description of our multiset
distinguishers:

Lemma 1. For any w-bit ’P’ word X, any subset of (not necessarily consecu-
tive) y bits (0 < y ≤ w) of X contains each y-bit value repeated 2w−y times.

Theorem 1. For any w-bit dual word X, any subset of (not necessarily consec-
utive) y bits (0 < y ≤ w) of X is even.

1 Do not confuse it with an active word.

New Multiset Attacks on Rijndael with Large Blocks 281

Proof. Let X be ’E’ i.e. every value in X repeats an even number of times. Pick
all repetitions of one such value, say x = x0|x1| . . . |xw−1. Thus, x occurs in X
2y times, for some y ≥ 0. Select any subset of bits xi1 , xi2 , . . ., xiy of x. Since x
repeats an even number of times, xi1 |xi2 | . . . |xiy also repeats an even number of
times, from the even number of occurrences of x. Now, let X be ’P’. According
to Lemma 1, any y bits of X contain each y-bit value repeated 2w−y times, which
is an even number. That concludes the proof.

3 Multiset Attacks on Rijndael with Blocks Larger Than
128 Bits

The propagation of multisets in higher-order distinguishers for Rijndael can be
interpreted as the evolution of multisets across internal cipher components, either
taken bytewise, or w-bitwise for w > 8. The existence of 1st-order distinguishers
for Rijndael with blocks larger than 128 bits is not surprising at all, and can be
explained exactly as for the AES. Thus, we describe the multisets and related
attacks, but leave them without proof (further discussion will be in the full paper
version [15]). We refer to [6] for further details. We have also considered 4th-
order distinguishers that use 32-bit words instead of bytes as the next (intuitive)
extension of the 1st-order distinguishers. The motivation for the latter is the
MC matrix that has a 32-bit input. They are new for Rijndael variants, but
were already described for the AES by Ferguson et al. in [8] so we present
them without proof, and leave details to the full version [15]. Therefore, we
focus primarily on new 16th-order distinguishers, that are motivated by the
combination of SRi and MCi (two diffusion components): while MCi operates
on four bytes at a time, MCi◦ SRi collects four bytes from a set of sixteen bytes
(a 128-bit word). The 16th-order multiset distinguishers reach 5.25 rounds, allowing
us to cross the 4-round barrier, as dictated by the cipher countermeasures against
conventional differential and linear attacks. Moreover, another unique approach in
the 16th-order distinguishers is that the multisets overlap, namely, they share
columns of the state matrix.

Concerning the terminology, key-recovery attacks on r rounds of a cipher
using an (r-j)-round distinguisher are denoted jR attacks, because subkeys of j
rounds not covered by the distinguisher are recovered. In the key-recovery attacks
described on Rijndael, we assume, as is common, that the MCi layer is absent from
the last round, even though we do not attack the full cipher. Even if MCi were
present, it could be undone efficiently in all chosen ciphertexts, because it is a
fixed and key-independent transformation. Moreover, MCi is linear with respect
to AKi, so it can be swapped with AKi.

3.1 Rijndael-160

Multiset Distinguishers. For Rijndael-160, 3.25-round 1st-order distinguish-
ers exist similar to the ones for the AES. One such distinguisher is detailed in
the 2nd column of Table 3, where the multisets stand for the output multisets,

282 J. Nakahara Jr., D.S. de Freitas, and R.C.-W. Phan

namely after each 0.25-round. There are
(
20
1

)
= 20 such distinguishers, each one

starting with a single ’P’ plaintext byte (in a fixed byte position) and nineteen
’C’ bytes.

A 4th-order distinguisher can start with a multiset in which the four plaintext
bytes a0, a5, a10, a15 (state matrix (1) with t = 5 columns) form a 32-bit ’P’ word,
while the remaining bytes are ’C’. There are

(
5
4

)
= 5 possible such distinguishers.

The multisets in each quarter round are listed in the 3rd column of Table 3. Each
multiset consists of five 32-bit words (each column of the state).

The new 16th-order multiset distinguisher is described in the 4th column of
Table 3. There are

(
5
4

)
= 5 different such distinguishers, and in each of which

there is a 128-bit ’P’ word consisting of four columns as input to MC1. With-
out loss of generality, we use one with a multiset in which the plaintext bytes
a0, a2, a3, a4, a5, a7, a8, a9, a10, a12, a13, a14, a15, a17, a18 and a19 form a
128-bit ’P’ word, while the remaining bytes are ’C’. Thus, this distinguisher
consists of a 5-tuple of overlapping words, each tracing the behavior of four con-
secutive columns of the state (in a circular fashion): a0|a1| . . . |a15, a4|a5| . . . |a19,
a8|a9| . . . |a3, a12|a13| . . . |a7 and a16|a17| . . . |a11. This approach is unique to the
16th-order distinguisher, and allows us to trace 5-tuples of 128-bit words at
once, showing patterns that would not be evident otherwise. We believe it makes
sense to trace the status of overlapping words because 128 is not a factor of 160.
Without the overlapping-word approach we would have to report the status of
a 128-bit and a 32-bit word (160 bits in total). The plaintext multiset, as well
as the one after AK0, has the form (E E E E E), where each E stands for the
status of a 128-bit word consisting of four consecutive columns of the state. That
is because each word contains at least one ’C’ byte. The same multiset remains
after SB1. After SR1, the multiset becomes (P E E E E), as expected, due
to the choice of the plaintext multiset. After MC1, AK1 and SB2 the multiset
remains (P E E E E) since parallel MC matrices, xor with a fixed subkey, and
parallel application of a fixed S-box are bijective mappings. SR2 permutes the
bytes of the 128-bit ’P’ word such that each four consecutive columns of the
state contain at least three ’C’ bytes (while the remaining bytes are even). Thus,
the output after SR2 becomes (E E E E E). This same multiset remains after
MC2, after AK2, and after SB3, since they are bijective mappings, either byte-
wise or 128-bitwise. SR3 splits the even bytes to different columns of the state.
It is proved algebraically in Appendix that the multiset after SR3 has the form
(E E P E E). Next, since the parallel application of four MC matrices, the xor
with a fixed subkey, and the parallel application of a fixed S-box are all bijective
mappings, the multiset (E E P E E) remains after MC3, AK3, and SB4. SR4

splits the even bytes to different columns of the state, resulting in the multiset
(B B B B B). The reasoning is that the bytes that constitute four consecutive
columns of the state are not necessarily ’E’, because they come from different
128-bit ’D’ words. Nonetheless, using Theorem 1, the 32-bit inputs to each MC
matrix in MC4 come from the same 128-bit ’D’ word (due to the SR offsets),
and are thus even. Since the inputs to each MC in MC4 are even, the 32-bit
outputs (each column) of each MC in MC4 are also even. This explains why the

B

New Multiset Attacks on Rijndael with Large Blocks 283

multiset (B B B B B) can propagate across AK4 and SB5 (128-bit words are
’B’, but 32-bit words are ’E’). SR5 splits the even bytes output from SB5 to
different MC matrices in MC5. The combination MC5◦ SR5 causes the patterns
at the byte level to deteriorate in the sense that the individual bytes are not ’E’
anymore, but simply ’B’. The resulting multiset after MC5 as well as after AK5,
then has the form (B B B B B) both wordwise and bytewise. Thus, after SB6,
the resulting multiset becomes (? ? ? ? ?) because ’B’ bytes cannot generally
propagate across SB6. Thus, the distinguisher reaches 5.25 rounds, from AK0

until AK5.

Multiset Attacks. The 3.25-round 1st-order distinguisher described in the 2nd
column of Table 3 allows a 1R attack on 4-round Rijndael-160. We guess subkey
K4 bytewise, decrypt SB4◦ SR4 and check the zero xor sum after AK3 bytewise.
The attack complexity is 2 · 28 = 29 CP (to avoid false alarms because the xor
sum is tested on 8-bit values), and 28 · 28 = 216 S-box computations per K4

byte, or 20 · 216/(2 · 4) ≈ 217 4-round computations (because SB4◦ SR4 accounts
for 1/2 of a round) for the full 20-byte K4. A 1st-order distinguisher can also
be used in a 2R attack on 5-round Rijndael-160. In this case, one recovers four
bytes from K5 and one byte from K4 at once, by partially decrypting SB4◦ SR4◦
MC4◦ AK4◦ SB5◦ SR5◦ AK5 until after AK3, and checking for the zero xor
sum bytewise. The attack complexity is 6 · 28 CP (to avoid false alarms) and
28 · 240 + 28 · 232 + 28 · 224 + 28 · 216 + 28 · 2 + 28 · 1 ≈ 248 S-box computations
to recover five subkey bytes, or 5 · 248/(7 · 5) ≈ 245 5-round computations to
recover the full K5 and five bytes from K4. Other attack extensions to 6-round
Rijndael-160 could simply guess the full AK0, decrypt the first round and apply
the previous attack on 5 rounds, but the effort increases to 2160 · 245 = 2205

6-round computations.
The 4.25-round 4th-order distinguisher described in the 3rd column of Ta-

ble 3 allows a 1R attack on 5-round Rijndael-160. We guess subkey K5 bytewise,
partially decrypt SB5◦ SR5 and check the zero xor sum after AK4 for the correct
subkey value. The attack complexity is 2 · 232 = 233 CP (to avoid false alarms),
and 232 · 28 = 240 S-box computations per K5 byte, or 20 · 240/(2 · 5) = 241 5-
round computations (because SB5◦ SR5 accounts for 1/2 of a round) for the full
20-byte K5. A 4th-order distinguisher can also be used in a 2R attack on 6-round
Rijndael-160. In this case , one recovers four bytes from K6 and one byte from
K5 at once by partially decrypting SB5◦ SR5◦ MC5◦ AK5◦ SB6◦ SR6◦ AK6

until right after AK4, and checking for the zero xor sum. The attack complexity
is 6 ·232 CP and 232 ·240 +232 ·232 +232 ·224 +232 ·216 +232 ·28 +232 ≈ 272 S-box
computations, to recover five subkey bytes, or 5 · 272 · 1/7 · 1/6 ≈ 269 6-round
computations, to recover the full K6 and five bytes from K5. Further, a 3R at-
tack on 7-round Rijndael-160 could simply guess AK0, for instance, and apply
the previous attack on the resulting 6 rounds. The attack complexity becomes
2160 · 269 = 2229 7-round computations, and 6 · 232 CP.

The 5.25-round 16th-order distinguisher in the 4th column of Table 3 allows
a 1R attack on 6-round Rijndael-160. One guesses subkey K6 bytewise, decrypts
SB6◦ SR6, and checks the zero xor sum after AK5 for the correct subkey value.

284 J. Nakahara Jr., D.S. de Freitas, and R.C.-W. Phan

The attack complexity is 2 · 2128 = 2129 CP (to avoid false alarms) and 2128 ·
28 = 2136 S-box computations per K6 byte, or 20 · 2128/(2 · 6) ≈ 2129 6-round
computations for the full K6. A 16th-order distinguisher can also be used in a
2R attack on 7-round Rijndael-160. In this case, one recovers four bytes from
K7 and one byte from K6 at once by partially decrypting SB6◦ SR6◦ MC6◦
AK6◦ SB7◦ SR7◦ AK7, until after AK5, and checking for the zero xor sum.
The attack complexity is 6 · 2128 CP (to avoid false alarms) and 2128 · 240 +
2128 · 232 + 2128 · 224 + 2128 · 216 + 2128 · 28 + 2128 ≈ 2168 S-box computations
to recover five subkey bytes. These computations, though, can be grouped more
efficiently, reducing the complexity significantly, using Ferguson et al. partial-
sum technique [8]. This technique reduces the complexity to 4 · 2128 · 216 = 2146

S-box computations to recover five subkey bytes, or 5 ·2146/(4 ·7) ≈ 2144 7-round
computations, to recover the full K7 and four byte from K6. This attack works
similarly to the one of Ferguson et al. on the AES. We refer to [8] for further
details.

3.2 Rijndael-192

Multiset Distinguishers. The 2nd column of Table 4 details the propagation
of multisets in a 1st-order distinguisher for which the plaintext byte a0 is ’P’,
while the remaining bytes are ’C’ (state matrix (1) with t = 7). The 3rd column
of Table 4 details the propagation of multisets in a 4th-order multiset distin-
guisher in which plaintext bytes a0, a5, a10, and a15 form a 32-bit ’P’ word,
while the other bytes are ’C’. Each symbol in this multiset stands for a 32-bit
word (one column of the state). The propagation of multisets can be explained
similarly to that of the AES [8,12], but taking into account the 192-bit block size.
The 3rd column of Table 4 details the propagation of multisets in a 16th-order
distinguisher in which the plaintext bytes a0, a3, a4, a5, a8, a9, a10, a12, a13, a14,
a15, a17, a18, a19, a22 and a23 form a 128-bit ’P’ word, while the remaining bytes
are ’C’. This distinguisher consists of 6-tuples of overlapping 128-bit words that
traces the behaviour of four consecutive columns of the state (in a circular fash-
ion): a0|a1| . . . |a15, a4|a5| . . . |a19, a8|a9| . . . |a23, a12|a13| . . . |a3, a16|a17| . . . |a7,
and a20|a21| . . . |a11. The propagation of multisets can be explained similarly to
the one on Rijndael-160.

Multiset Attacks. The 3.25-round 1st-order distinguisher described in the 2nd
column of Table 4 allows a 1R attack on 4-round Rijndael-192. We guess subkey
K4 bytewise, decrypt SB4◦ SR4 and check the zero xor sum after AK3. The
attack complexity is 2 · 28 = 29 CP (to avoid false alarms), and 28 · 28 = 216

S-box computations per K4 byte, or 24 · 216/(2 · 4) ≈ 217 4-round computations
(because SB4◦ SR4 accounts for 1/2 of a round). Further, a 2R attack on 5-round
Rijndael-192 can recover four bytes from K5 and one byte from K4 at once. Again,
the attack partially decrypts SB4◦ SR4◦ MC4◦ AK4◦ SB5◦ SR5◦ AK5 until after
AK3, and checks for the zero xor sum. The attack complexity is 6 · 28 CP (to
avoid false alarms) and 28 · 240 + 28 · 232 + 28 · 224 + 28 · 216 + 28 · 2 + 28 · 1 ≈ 248

S-box computations to recover five subkey bytes, or 6 · 248/(7 · 5) ≈ 246 5-round

New Multiset Attacks on Rijndael with Large Blocks 285

computations to recover K5 and six bytes from K4. Finally, a 3R attack on 6-
round Rijndael-192 can simply guess one full subkey and apply the previous
attack on 5 rounds. The attack complexity is 6 · 28 CP, and 2192 · 246 = 2238

6-round computations.
The 4th-order distinguisher in the 3rd column of Table 4 allows a 1R attack

on 5-round Rijndael-192. We guess subkey bytes Ki
5 for i ∈ {0, 1, 2, 3, 4, 5,

6, 8, 9, 12, 15, 18, 19, 21, 22, 23} and check for the zero xor sum after AK4.
The remaining subkeys cannot be recovered using this distinguisher, because of
the rightmost (E E) at the end of the distinguisher. It requires another 4th-
order distinguisher e.g. one for which plaintext bytes a8, a13, a18, and a23 form
a 32-bit ’P’ word, and the remaining bytes are ’C’. The attack complexity is
2 · 232 = 233 CP and 28 · 232 = 240 S-box computations per subkey byte, or
24 · 240/(2 · 5) = 241 5-round computations. Further, a 4th-order distinguisher
can be used in 2R attacks on 6-round Rijndael-192. In this case, one recovers
four bytes from K6 and one byte from K5 at once. This attack partially decrypts
SR5◦ MC5◦ AK5◦ SB6◦ SR6◦ AK6 until the rightmost 64-bit output of SB5 in
the distinguisher which has the form (E E). The attack complexity is 6 · 232

CP and 232 · 240 + 232 · 232 + 232 · 224 + 232 · 216 + 232 · 28 + 232 ≈ 272 S-box
computations. Using Ferguson et al. partial-sum technique [8] can reduce this
complexity to 4 ·232 ·216 = 250 S-box computations to recover five subkey bytes.
Or, 5 · 250/(6 · 6) ≈ 247 6-round computations (partial SR5◦ MC5◦ AK5◦ SB6◦
SR6◦ AK6 computation account for 1/6 of a round). Finally, a 3R attack on
7-round Rijndael-192 can simply guess one full subkey, and apply the previous
attack on 6 rounds, at the cost of 6 · 232 CP, and 2192 · 247 = 2239 7-round
computations.

The 5.25-round 16th-order distinguisher in the 4th column of Table 4 allows a
1R attack on 6-round Rijndael-192. Guess subkey K6 bytewise, partially decrypt
SB6◦ SR6, and check for the zero xor sum after AK5, for the correct subkey
value. The attack complexity is 2 · 2128 = 2129 CP, and 2128 · 28 = 2136 S-box
computations per K6 byte, or 24 · 2136/(2 · 6) = 2137 6-round computations.
Further, a 2R attack on 7-round Rijndael-192 works similar to the same attack
on Rijndael-160. Using the partial-sum optimization technique in [8] results in
6 · 2128 CP and 4 · 2128 · 216 = 2146 S-box computations to recover five subkey
bytes. Or, 6 · 2146 · 1/4 · 1/7 ≈ 2144 7-round computations.

3.3 Rijndael-224

Multiset Distinguishers. The 2nd column of Table 5 details the propagation
of multisets in a 1st-order multiset distinguisher for which the plaintext byte
a0 is ’P’ while the remaining bytes are ’C’. The 3rd column of Table 5 details
the propagation of multisets in a 4th-order multiset distinguisher in which the
plaintext bytes a0, a5, a10, and a19 form a 32-bit ’P’ word, while the remaining
bytes are ’C’. The multisets consist of seven 32-bit words (seven columns of the
state). The propagation of multisets can be explained similarly to that of the
AES [8,12], but taking into account the larger block size, and the different SR
offsets (Table 1). The 4th column of Table 5 details the propagation of multisets

286 J. Nakahara Jr., D.S. de Freitas, and R.C.-W. Phan

in a 16th-order distinguisher in which the plaintext bytes a0, a4, a5, a7, a8,
a9, a10, a13, a14, a16, a18, a19, a21, a23, a26, and a27 form a 128-bit ’P’ word.
The propagation of multisets can be explained similarly to Rijndael-160 and
Rijndael-192, but taking into account the larger block size, and the different SR
offsets (Table 1).

Multiset Attacks. The 3.75-round 1st-order distinguisher in the 2nd column
of Table 5 allows a 1R attack on 4-round Rijndael-224. Subkey bytes K0

4, K15
4 ,

K22
4 , and K25

4 cannot be determined using this distinguisher, because the out-
put of SR4 is ’P’ for these subkey bytes. To recover them, another 1st-order
distinguisher has to be used, e.g. one in which plaintext byte a1 is ’P’ while
the remaining bytes are ’C’. It does not affect the overall complexity. We guess
a subkey byte Ki

4, i ∈ ZZ28 − {0, 15, 22, 25}, decrypt SB4◦ SR4, and check the
zero xor sum for the correct guess. The attack complexity is 2 · 28 = 29 CP and
28·28 = 216 S-box computations per subkey byte recovered, or 28·216/(2·4) ≈ 218

4-round computations for the full 28-byte K4. Additionally, a 2R attack on 5-
round Rijndael-224 can recover four bytes from K5 and one byte from K4 at
once. The attack partially decrypts SR4◦ MC4◦ AK4◦ SB5◦ SR5◦ AK5 until the
leftmost 32-bit output from SB4, where the correct subkey value can be checked.
The attack complexity is 6 · 28 CP and about 28 · 240 = 248 S-box computa-
tions, or 7 · 248/(6 · 5) ≈ 246 5-round computations to recover the full K5 and
seven bytes from K4. A 3R attack could guess one full subkey and apply the
previous attack on 5 rounds, at the cost of 6 · 28 CP and 246+192 = 2238 6-round
computations.

The 4.25-round 4th-order distinguisher in the 3rd column of Table 5 allows
a 1R attack on 5-round Rijndael-224. Guess K5 bytewise, decrypt SB5◦ SR5

and check the zero xor sum after AK4 for the correct subkey value. The attack
complexity is 2 · 232 = 233 CP (to avoid false alarms), and 232 · 28 = 240 S-
box computations per K5 byte, or 28 · 240/(2 · 5) ≈ 242 5-round computations
(because SB5◦ SR5 accounts for 1/2 of a round) for the full 28-byte K5. This
distinguisher can also be used in a 2R attack on 6-round Rijndael-192. In this
cases, one recovers four bytes from K6 and one byte from K5 at once. This
attack partially decrypts SB5◦ SR5◦ MC5◦ AK5◦ SB6◦ SR6◦ AK6 until after
AK4, and checks for the zero xor sum. The attack complexity is 6 · 232 CP and
232 · 240 + 232 · 232 + 232 · 224 + 232 · 216 + 232 · 28 + 232 ≈ 272 S-box computations,
to recover five subkey bytes, or 7 · 272/(7 · 6) ≈ 270 6-round computations, to
recover the full K6 and seven bytes from K5.

The 5.25-round 16th-order distinguisher in the 4th column of Table 5 allows
a 1R attack on 6-round Rijndael-224. Guess K6 bytewise, decrypt SB6◦ SR6 and
check the zero xor sum after AK5. The attack complexity is 2·2128 = 2129 CP, and
2128 ·28 = 2136 S-box computations per K6 byte, or 28·2136/(2·6) ≈ 2137 6-round
computations. Further, a 2R attack on 7-round Rijndael-224 works similarly to
the same attack on Rijndael-160. Using the partial-sum technique in [8] results
in 6 · 2128 CP and 2146 S-box computations to recover five subkey bytes, or
7 · 2146/(4 · 7) = 2144 7-round computations to recover the full K7, and seven
bytes from K6.

New Multiset Attacks on Rijndael with Large Blocks 287

3.4 Rijndael-256

Multiset Distinguishers. The 2nd column of Table 6 details the propagation
of multisets in a 1st-order multiset distinguisher in which the plaintext byte a0

is ’P’, while the other bytes are ’C’. The 3rd column of Table 6 details the prop-
agation of multisets in a 4th-order distinguisher in which the plaintext bytes
a0, a5, a14, a19 form a 32-bit ’P’ word, while the remaining bytes are ’C’. Each
symbol in these multisets consists of a 32-bit word (a column of the state), and
their propagation can be explained similarly to those of the AES [8,12], but
taking into account the larger block size, and the different SR offsets (Table 1).
The 4th column of Table 6 details the propagation of multisets in a 16th-order
distinguisher in which the plaintext bytes a0, a3, a4, a5, a9, a12, a14, a16, a17,
a18, a19, a21, a23, a26, a30, and a31 form a 32-bit ’P’ word, while the remaining
bytes are ’C’.

Multiset Attacks. The 3.75-round 1st-order distinguisher in the 2nd column
of Table 6 allows a 1R attack on 4-round Rijndael-256. The attack is similar
to the one on Rijndael-224. The attack complexities are 2 · 28 = 29 CP and
28 ·28 = 216 S-box computations per subkey byte, or 32 ·216/(2 ·4) = 218 4-round
computations. Additionally, a 2R attack on 5-round Rijndael-256 can recover
four bytes from K5 and one byte from K4 at once, similar to the same attack
on Rijndael-224. The attack complexities are 6 · 28 CP and about 28 · 240 = 248

S-box computations, or 8 · 248/(6 · 5) ≈ 246 5-round computations to recover the
full K5 and seven bytes from K4.

The 4.25-round 4th-order distinguisher in the 3rd column of Table 6 allows a
1R attack on 5-round Rijndael-256, similar to the same attack on Rijndael-224.
The attack complexity is 2 ·232 = 233 CP, and 232 ·28 = 240 S-box computations,
or 32 · 240/(2 · 5) ≈ 241 5-round computations (SB5◦ SR5 accounts for 1/2 of a
round). A 4th-order distinguisher can also be used in a 2R attack on 6-round
Rijndael-256, similar to the same attack on Rijndael-224. The attack complexity
is 6 · 232 CP and 232 · 240 + 232 · 232 + 232 · 224 + 232 · 216 + 232 · 28 + 232 ≈ 272

S-box computations, or 8 · 272/(7 · 6) ≈ 270 6-round computations.
The 5.25-round 16th-order distinguisher in the 4th column of Table 6 allows

a 1R attack on 6-round Rijndael-256, similar to the same attack on Rijndael-
224. The attack complexity is 2 · 2128 = 2129 CP, and 2128 · 28 = 2136 S-box
computations per K6 byte, or 32 · 2136/(2 · 6) ≈ 2137 6-round computations
for the full 32-byte K6. Further, a 2R attack on 7-round Rijndael-256 works
similar to the same attack on Rijndael-160. Using the partial-sum technique in
[8] results in 6 · 2128 CP and 2146 S-box computations to recover five subkey
bytes, or 8 · 2146/(4 · 8) = 2144 7-round computations to recover the full K7, and
seven bytes from K6.

4 Conclusions and Open Problems

The multiset attacks described in this paper considered higher-order multisets,
i.e., using n-bit words, for n ∈ {8, 32, 128}, instead of bytes as in [5] (the latter is

288 J. Nakahara Jr., D.S. de Freitas, and R.C.-W. Phan

known as a 1st-order attack). The nth-order multisets were chosen because of the
MCi and the MCi◦ SRi transformations. Our main finding is that higher-order
multiset distinguishers become 1-round longer as we increase the attack order in
powers of four (Table 8). Moreover, the distinguishers also become slightly longer
for larger block sizes, because of the slower diffusion due to MC and the different
SR offsets (Table 1). For comparison purposes, Table 7 lists the corresponding
minimum number of active S-boxes in differential and linear distinguishers for
Rijndael for the same number of rounds as the multiset distinguishers in Table 8.
The slight difference in the size of 4th-order distinguishers for Rijndael-192 (4.50
rounds) compared to the other variants (4.25 rounds) is due to the SR offsets.
Recall from Table 1 that Rijndael-32t, 4 ≤ t ≤ 6, have the same SR offsets, but
Rijndael-224 and Rijndael-256 have different offsets. Our attacks do not apply
to the AES, since we require one or more sets of 2128 CP.

Table 2. Multiset attack complexities for Rijndael with blocks larger than 128 bits

Cipher # Rounds Key Sizes Data (CP) Memory Time Attack
Rijndael-160 4 all 29 28 217 1st-order Multiset

5 all 233 232 241 4th-order Multiset
(160-bit 5 all 6 · 28 28 245 1st-order Multiset
block) 6 all 6 · 232 232 269 4th-order Multiset

6 > 128 2129 2128 2129 16th-order Multiset
6 224; 256 6 · 28 28 2205 1st-order Multiset
7 > 128 6 · 2128 2128 2144 16th-order Multiset
7 256 6 · 232 232 2229 4th-order Multiset

Rijndael-192 4 all 29 28 217 1st-order Multiset
5 all 233 232 241 4th-order Multiset

(192-bit 5 all 6 · 28 28 246 1st-order Multiset
block) 6 all 6 · 232 232 247 4th-order Multiset

6 > 128 2129 2128 2137 16th-order Multiset
7 > 128 6 · 2128 2128 2144 16th-order Multiset
7 256 6 · 28 28 2238 1st-order Multiset
7 256 6 · 232 232 2239 4th-order Multiset

Rijndael-224 4 all 29 28 218 1st-order Multiset
5 all 233 232 242 4th-order Multiset

(224-bit 5 all 6 · 28 28 246 1st-order Multiset
block) 6 all 6 · 232 232 270 4th-order Multiset

6 > 128 2129 2128 2137 16th-order Multiset
6 256 6 · 28 28 2238 1st-order Multiset
7 > 128 6 · 2128 2128 2144 16th-order Multiset

Rijndael-256 4 all 29 28 218 1st-order Multiset
5 all 233 232 241 4th-order Multiset

(256-bit 5 all 6 · 28 28 246 1st-order Multiset
block) 6 all 6 · 232 232 270 4th-order Multiset

6 > 128 2129 2128 2137 16th-order Multiset
7 > 128 6 · 2128 2128 2144 16th-order Multiset

New Multiset Attacks on Rijndael with Large Blocks 289

Notable properties of higher-order multiset distinguishers are: the relatively
large number of active S-boxes compared to their differential and linear coun-
terparts, and the size of the distinguishers themselves, which are longer than
1st-order ones (Table 8). This may be an evidence of as yet unknown mul-
tiset cryptanalytic properties worth further study. Table 2 compares the at-
tack complexities on reduced-round Rijndael for block sizes larger than 128
bits. The distinguishers in Tables 3, 4, 5 and 6 are independent of the key
and subkey values (no weak-key assumption), and of the key schedule
algorithms.

Acknowledgements

The first author thanks Siang W. Song and Bart Preneel for the continued
encouragement along all of this research. The third author thanks Lars Knudsen
for general inspiration and for introducing the first ever multiset-style attack [5].
We thank the anonymous referees (past and present) for their comments and
interest in this work.

References

1. E. Biham, N. Keller, ”Cryptanalysis of Reduced Variants of Rijndael,”
3rd AES Conference, New York, USA, 2000, http://csrc.nist.gov/encryption/
aes/round2/conf3/aes3papers.html

2. A. Biryukov, A. Shamir, ”Structural Cryptanalysis of SASAS,” Advances in Cryp-
tology, Eurocrypt’01, B. Pfitzmann, Ed., Springer-Verlag, LNCS 2045, 2001, 394–
405.

3. J.H. Cheon, M. Kim, K. Kim, J.-Y. Lee, S.W. Kang, ”Improved Impossible Differ-
ential Cryptanalysis of Rijndael and Crypton,” Proceedings of ICISC 2001, K. Kim,
Ed., Springer Verlag, LNCS 2288, 2001, 39–49.

4. D. Coppersmith, ”The Data Encryption Algorithm and its Strength Against At-
tacks,” IBM Journal on Research and Development (38):3, 1994, 243–250.

5. J. Daemen, L.R. Knudsen, V. Rijmen, ”The Block Cipher SQUARE,”4th Fast
Software Encryption Workshop, E. Biham, Ed., Springer-Verlag, LNCS 1267, 1997,
149–165.

6. J. Daemen, V. Rijmen, ”The Design of Rijndael – AES – The Advanced Encryption
Standard,” Springer-Verlag, 2002.

7. H. Demirci, ”Square-like Attacks on Reduced Rounds of IDEA,” 9th Selected Areas
in Cryptography Workshop, SAC’02, K. Nyberg, H. Heys, Eds., Springer-Verlag,
LNCS 2595, Aug, 2002, 147–159.

8. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, D. Whiting,
”Improved Cryptanalysis of Rijndael,” 7th Fast Software Encryption Workshop,
B. Schneier, Ed., Springer-Verlag, LNCS 1978, 2000, 213–230.

9. H. Gilbert, M. Minier, ”A Collision Attack on Seven Rounds of Rijndael,” 3rd AES
Conference, New York, USA, 2000, http://csrc.nist.gov/encryption/aes/

290 J. Nakahara Jr., D.S. de Freitas, and R.C.-W. Phan

10. Y. Hu, Y. Zhang, G. Xiao, ”Integral Cryptanalysis of SAFER+,” Electronic Let-
ters, vol. 35, number 17, Aug. 1999, 1458–1459.

11. I. Kim, Y. Yeom, H. Kim, ”Square Attacks on the Reduced-Round MISTY1,”
SCIS, Symposium on Cryptography and Information Security, Jan, 2002, 921–924.

12. L.R. Knudsen, D. Wagner, ”Integral Cryptanalysis,” 9th Fast Software Encryption
Workshop, J. Daemen and V. Rijmen, Eds., Springer-Verlag, LNCS 2365, 2002,
112–127.

13. H.W. Lenstra, ”Rijndael for Algebraists,” Apr. 8, 2002, http://math.berkeley.
edu/ hwl/papers/rijndael0.pdf

14. S. Lucks, ”The Saturation Attack – a Bait for Twofish,” 8th Fast Software En-
cryption Workshop, M. Matsui, Ed., Springer-Verlag, LNCS 2355, 2001, 1–15.

15. J. Nakahara Jr., D.S. de Freitas, R.C.-W. Phan, ”New Multiset Attacks on Rijndael
with Large Blocks,” Full version of this paper, 2005.

16. NESSIE, ”New European Schemes for Signatures, Integrity and Encryption,” Jan.
2000, http://cryptonessie.org.

17. NIST, ”Advanced Encryption Standard AES,” FIPS PUB 197 Federal Informa-
tion Processing Standard Publication 197, U.S. Department of Commerce, Nov,
2001.

18. G. Piret, J.-J. Quisquater, ”Integral Cryptanalysis on Reduced-round Safer++: A
way to extend the attack?”, NESSIE Public Report, NES/DOC/UCL/WP5/002/1,
2003.

AAppendix

This appendix details the distinguishers for Rijndael ciphers with blocks larger
than 128 bits, in Tables 3 to 6.

Table 3. Multiset distinguishers for Rijndael-160

Layer 1st-order 4th-order 16th-order
multisets multisets multisets

AK0 (P C C C C C C C C C C C C C C C C C C C) (E E E E C) (E E E E E)
SB1 (P C C C C C C C C C C C C C C C C C C C) (E E E E C) (E E E E E)
SR1 (P C C C C C C C C C C C C C C C C C C C) (P C C C C) (P E E E E)
MC1 (P P P P C C C C C C C C C C C C C C C C) (P C C C C) (P E E E E)
AK1 (P P P P C C C C C C C C C C C C C C C C) (P C C C C) (P E E E E)
SB2 (P P P P C C C C C C C C C C C C C C C C) (P C C C C) (P E E E E)
SR2 (P C C C C C C C C C C P C C P C C P C C) (E C E E E) (E E E E E)
MC2 (P P P P C C C C P P P P P P P P P P P P) (E C E E E) (E E E E E)
AK2 (P P P P C C C C P P P P P P P P P P P P) (E C E E E) (E E E E E)
SB3 (P P P P C C C C P P P P P P P P P P P P) (E C E E E) (E E E E E)
SR3 (P C P P C P P P P P P P P P P C P P C P) (E E P E E) (E E P E E)
MC3 (B B B B B B B B B B B B B B B B B B B B) (E E P E E) (E E P E E)
AK3 (B B B B B B B B B B B B B B B B B B B B) (E E P E E) (E E P E E)
SB4 (? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?) (E E P E E) (E E P E E)
SR4 (? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?) (B B B B B) (B B B B B)
MC4 (? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?) (B B B B B) (B B B B B)
AK4 (? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?) (B B B B B) (B B B B B)
SB5 (? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?) (? ? ? ? ?) (B B B B B)
SR5 (? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?) (? ? ? ? ?) (B B B B B)
MC5 (? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?) (? ? ? ? ?) (B B B B B)
AK5 (? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?) (? ? ? ? ?) (B B B B B)
SB6 (? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?) (? ? ? ? ?) (? ? ? ? ?)

New Multiset Attacks on Rijndael with Large Blocks 291

Table 4. Multiset distinguishers for Rijndael-192
Layer 1st-order 4th-order 16th-order

multisets multisets multisets

AK0 (P C) (E E E E C C) (E E E E E E)
SB1 (P C) (E E E E C C) (E E E E E E)
SR1 (P C) (P C C C C C) (P E E E E E)
MC1 (P P P P C) (P C C C C C) (P E E E E E)
AK1 (P P P P C) (P C C C C C) (P E E E E E)
SB2 (P P P P C) (P C C C C C) (P E E E E E)
SR2 (P C C C C C C C C C C C C C C P C C P C C P C C) (E C C E E E) (E E E E E E)
MC2 (P P P P C C C C C C C C P P P P P P P P P P P P) (E C C E E E) (E E E E E E)
AK2 (P P P P C C C C C C C C P P P P P P P P P P P P) (E C C E E E) (E E E E E E)
SB3 (P P P P C C C C C C C C P P P P P P P P P P P P) (E C C E E E) (E E E E E E)
SR3 (P C C P C C P P C P P P P P P P P P P C P P C C) (E E E P E E) (E E E P E E)
MC3 (B B) (E E E P E E) (E E E P E E)
AK3 (B B) (E E E P E E) (E E E P E E)
SB4 (? ?) (E E E P E E) (E E E P E E)
SR4 (? ?) (B B B B E E) (B B B B B B)
MC4 (? ?) (B B B B E E) (B B B B B B)
AK4 (? ?) (B B B B E E) (B B B B B B)
SB5 (? ?) (? ? ? ? E E) (B B B B B B)
SR5 (? ?) (? ? ? ? ? ?) (B B B B B B)
MC5 (? ?) (? ? ? ? ? ?) (B B B B B B)
AK5 (? ?) (? ? ? ? ? ?) (B B B B B B)
SB6 (? ?) (? ? ? ? ? ?) (? ? ? ? ? ?)

Table 5. Multiset distinguishers for Rijndael-224

Layer 1st-order 4th-order 16th-order
multisets multisets multisets

AK0 (P C) (E E E C E C C) (E E E E E E E)
SB1 (P C) (E E E C E C C) (E E E E E E E)
SR1 (P C) (P C C C C C C) (P E E E E E E)
MC1 (P P P P C) (P C C C C C C) (P E E E E E E)
AK1 (P P P P C) (P C C C C C C) (P E E E E E E)
SB2 (P P P P C) (P C C C C C C) (P E E E E E E)
SR2 (P C C C C C C C C C C C C C C P C C C C C C P C C P C C) (E C C E C E E) (E E E E E E E)
MC2 (P P P P C C C C C C C C P P P P C C C C P P P P P P P P) (E C C E C E E) (E E E E E E E)
AK2 (P P P P C C C C C C C C P P P P C C C C P P P P P P P P) (E C C E C E E) (E E E E E E E)
SB3 (P P P P C C C C C C C C P P P P C C C C P P P P P P P P) (E C C E C E E) (E E E E E E E)
SR3 (P C C C C C P P C P C P P C P P C P P C P P P C P P C P) (E E E E E E E) (E E E E E E E)
MC3 (P P P P B) (E E E E E E E) (E E E E E E E)
AK3 (P P P P B) (E E E E E E E) (E E E E E E E)
SB4 (P P P P ?) (E E E E E E E) (E E E E E E E)
SR4 (P ? ? ? ? ? ? ? ? ? ? ? ? ? ? P ? ? ? ? ? ? P ? ? P ? ?) (B B B B B B B) (B B B B B B B)
MC4 (? ?) (B B B B B B B) (B B B B B B B)
AK4 (? ?) (B B B B B B B) (B B B B B B B)
SB5 (? ?) (? ? ? ? ? ? ?) (B B B B B B B)
SR5 (? ?) (? ? ? ? ? ? ?) (B B B B B B B)
MC5 (? ?) (? ? ? ? ? ? ?) (B B B B B B B)
AK5 (? ?) (? ? ? ? ? ? ?) (B B B B B B B)
SB6 (? ?) (? ? ? ? ? ? ?) (? ? ? ? ? ? ?)

Table 6. Multiset distinguishers for Rijndael-256

Layer 1st-order 4th-order 16th-order
multisets multisets multisets

AK0 (P C) (E E C E E C C C) (E E E E E E E E)
SB1 (P C) (E E C E E C C C) (E E E E E E E E)
SR1 (P C) (P C C C C C C C) (P E E E E E E E)
MC1 (P P P P C) (P C C C C C C C) (P E E E E E E E)
AK1 (P P P P C) (P C C C C C C C) (P E E E E E E E)
SB2 (P P P P C) (P C C C C C C C) (P E E E E E E E)
SR2 (P C C C C C C C C C C C C C C C C C C P C C P C C C C C C P C C) (E C C C E E C E) (E E E E E E E E)
MC2 (P P P P C C C C C C C C C C C C P P P P P P P P C C C C P P P P) (E C C C E E C E) (E E E E E E E E)
AK2 (P P P P C C C C C C C C C C C C P P P P P P P P C C C C P P P P) (E C C C E E C E) (E E E E E E E E)
SB3 (P P P P C C C C C C C C C C C C P P P P P P P P C C C C P P P P) (E C C C E E C E) (E E E E E E E E)
SR3 (P C C P C C P P C C P C C P C P P P P P P C P C C P C C P P C C) (E E E E P E E E) (E E E E P E E E)
MC3 (B B B B B B B B P P P P B B B B B B B B B B B B P P P P B B B B) (E E E E P E E E) (E E E E P E E E)
AK3 (B B B B B B B B P P P P B B B B B B B B B B B B P P P P B B B B) (E E E E P E E E) (E E E E P E E E)
SB4 (? ? ? ? ? ? ? ? P P P P ? ? ? ? ? ? ? ? ? ? ? ? P P P P ? ? ? ?) (E E E E P E E E) (E E E E P E E E)
SR4 (? ? ? ? ? P ? ? P ? ? P ? ? P ? ? ? ? ? ? P ? ? P ? ? P ? ? P ?) (B B B B B B B B) (B B B B B B B B)
MC4 (? ?) (B B B B B B B B) (B B B B B B B B)
AK4 (? ?) (B B B B B B B B) (B B B B B B B B)
SB5 (? ?) (? ? ? ? ? ? ? ?) (B B B B B B B B)
SR5 (? ?) (? ? ? ? ? ? ? ?) (B B B B B B B B)
MC5 (? ?) (? ? ? ? ? ? ? ?) (B B B B B B B B)
AK5 (? ?) (? ? ? ? ? ? ? ?) (B B B B B B B B)
SB6 (? ?) (? ? ? ? ? ? ? ?) (? ? ? ? ? ? ? ?)

292 J. Nakahara Jr., D.S. de Freitas, and R.C.-W. Phan

BAppendix

This appendix details a proof of the propagation of the 16th-order multisets
across the 1.25-round transformation T = SR3 ◦ SB3 ◦ AK2 ◦ MC2 ◦ SR2 in
Rijndael-160, in Sect. 3.1. In this case, the input multiset to T has the form (P E
E E E). More precisely, let the input to T be denoted A = (a0, a1, . . . , a18, a19).
Thus, a0|a1| . . . |a14|a15 is a 128-bit ’P’ word, while a16|a17|a18|a19 is a 32-bit
’C’ word. The SRi transformation can be represented as a multiplication of all
bytes (a0, . . . , a19) of the input state A with a 20 × 20 permutation matrix:

SR =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

The intermediate value, U = (u0, u1, . . . , u19) = MC2 ◦ SR2(A), consists of a
further multiplication with:

MC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 3 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 3 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 3 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 2 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 1 1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 1 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

resulting in

U = (2a0 ⊕ 3a5 ⊕ a10 ⊕ a15, a0 ⊕ 2a5 ⊕ 3a10 ⊕ a15, a0 ⊕ a5 ⊕ 2a10 ⊕ 3a15, 3a0 ⊕ a5 ⊕ a10 ⊕ 2a15,

2a4 ⊕ 3a9 ⊕ a14 ⊕ a19, a4 ⊕ 2a9 ⊕ 3a14 ⊕ a19, a4 ⊕ a9 ⊕ 2a14 ⊕ 3a19, 3a4 ⊕ a9 ⊕ a14 ⊕ 2a19
2a8 ⊕ 3a13 ⊕ a18 ⊕ a3, a8 ⊕ 2a13 ⊕ 3a18 ⊕ a3, a8 ⊕ a13 ⊕ 2a18 ⊕ 3a3, 3a8 ⊕ a13 ⊕ a18 ⊕ 2a3,

2a12 ⊕ 3a17 ⊕ a2 ⊕ a7, a12 ⊕ 2a17 ⊕ 3a2 ⊕ a7, a12 ⊕ a17 ⊕ 2a2 ⊕ 3a7, 3a12 ⊕ a17 ⊕ a2 ⊕ 2a7
2a16 ⊕ 3a1 ⊕ a6 ⊕ a11, a16 ⊕ 2a1 ⊕ 3a6 ⊕ a11, a16 ⊕ a1 ⊕ 2a6 ⊕ 3a11, 3a16 ⊕ a1 ⊕ a6 ⊕ 2a11) .

(5)

Finally, T (A) = SR3 ◦ SB3 ◦AK2(U) can be represented as

New Multiset Attacks on Rijndael with Large Blocks 293

T (A) = (S[2a0 ⊕ 3a5 ⊕ a10 ⊕ a15 ⊕K0
2], S[a4 ⊕ 2a9 ⊕ 3a14 ⊕ a19 ⊕K5

2],
S[a8 ⊕ a13 ⊕ 2a18 ⊕ 3a3 ⊕K10

2], S[3a12 ⊕ a17 ⊕ a2 ⊕ 2a7 ⊕K15
2],

S[2a4 ⊕ 3a9 ⊕ a14 ⊕ a19 ⊕K4
2], S[a8 ⊕ 2a13 ⊕ 3a18 ⊕ a3 ⊕K9

2],
S[a12 ⊕ a17 ⊕ 2a2 ⊕ 3a7 ⊕K14

2], S[3a16 ⊕ a1 ⊕ a6 ⊕ 2a11 ⊕K19
2],

S[2a8 ⊕ 3a13 ⊕ a18 ⊕ a3 ⊕K8
2], S[a12 ⊕ 2a17 ⊕ 3a2 ⊕ a7 ⊕K13

2],
(6)

S[a16 ⊕ a1 ⊕ 2a6 ⊕ 3a11 ⊕K18
2], S[3a0 ⊕ a5 ⊕ a10 ⊕ 2a15 ⊕K3

2],
S[2a12 ⊕ 3a17 ⊕ a2 ⊕ a7 ⊕K12

2], S[a16 ⊕ 2a1 ⊕ 3a6 ⊕ a11 ⊕K17
2],

S[a0 ⊕ a5 ⊕ 2a10 ⊕ 3a15 ⊕K2
2], S[3a4 ⊕ a9 ⊕ a14 ⊕ 2a19 ⊕K7

2],
S[2a16 ⊕ 3a1 ⊕ a6 ⊕ a11 ⊕K16

2], S[a0 ⊕ 2a5 ⊕ 3a10 ⊕ a15 ⊕K1
2],

S[a4 ⊕ a9 ⊕ 2a14 ⊕ 3a19 ⊕K6
2], S[3a8 ⊕ a13 ⊕ a18 ⊕ 2a3 ⊕K11

2]) . (7)

We prove by contradiction that for the input multiset A of the form (P E
E E E), the output multiset of T (A) has the form (E E P E E). The main
contention might be the sole 128-bit ’P’ word in the middle of the multiset. The
’E’ words can be justified similarly. Suppose otherwise, that is, the middle word
is not ’P’. Then, some value in T (A), wordwise, might repeat if it is not actually
a permutation of all 128-bit values. Without loss of generality, consider just two
128-bit values, t, t′ ∈ T (A), corresponding to the ’P’ word, namely the 1st, 3rd,
4th and 5th columns of the state matrix, and such that t = t′ for distinct text
inputs a and a′ from A. Thus,

t = (S[2a8 ⊕ 3a13 ⊕ a18 ⊕ a3 ⊕K8
2], S[a12 ⊕ 2a17 ⊕ 3a2 ⊕ a7 ⊕K13

2],
S[a16 ⊕ a1 ⊕ 2a6 ⊕ 3a11 ⊕K18

2], S[3a0 ⊕ a5 ⊕ a10 ⊕ 2a15 ⊕K3
2],

S[2a12 ⊕ 3a17 ⊕ a2 ⊕ a7 ⊕K12
2], S[a16 ⊕ 2a1 ⊕ 3a6 ⊕ a11 ⊕K17

2],
S[a0 ⊕ a5 ⊕ 2a10 ⊕ 3a15 ⊕K2

2], S[3a4 ⊕ a9 ⊕ a14 ⊕ 2a19 ⊕K7
2],

S[2a16 ⊕ 3a1 ⊕ a6 ⊕ a11 ⊕K16
2], S[a0 ⊕ 2a5 ⊕ 3a10 ⊕ a15 ⊕K1

2],
S[a4 ⊕ a9 ⊕ 2a14 ⊕ 3a19 ⊕K6

2], S[3a8 ⊕ a13 ⊕ a18 ⊕ 2a3 ⊕K11
2],

S[2a0 ⊕ 3a5 ⊕ a10 ⊕ a15 ⊕K0
2], S[a4 ⊕ 2a9 ⊕ 3a14 ⊕ a19 ⊕K5

2],
S[a8 ⊕ a13 ⊕ 2a18 ⊕ 3a3 ⊕K10

2], S[3a12 ⊕ a17 ⊕ a2 ⊕ 2a7 ⊕K15
2]),

and

t′ = (S[2a′8 ⊕ 3a′13 ⊕ a′18 ⊕ a′3 ⊕K8
2], S[a′12 ⊕ 2a′17 ⊕ 3a′2 ⊕ a′7 ⊕K13

2],
S[a′16 ⊕ a′1 ⊕ 2a′6 ⊕ 3a′11 ⊕K18

2], S[3a′0 ⊕ a′5 ⊕ a′10 ⊕ 2a′15 ⊕K3
2],

S[2a′12 ⊕ 3a′17 ⊕ a′2 ⊕ a′7 ⊕K12
2], S[a′16 ⊕ 2a′1 ⊕ 3a′6 ⊕ a′11 ⊕K17

2],
S[a′0 ⊕ a′5 ⊕ 2a′10 ⊕ 3a′15 ⊕K2

2], S[3a′4 ⊕ a′9 ⊕ a′14 ⊕ 2a′19 ⊕K7
2],

S[2a′16 ⊕ 3a′1 ⊕ a′6 ⊕ a′11 ⊕K16
2], S[a′0 ⊕ 2a′5 ⊕ 3a′10 ⊕ a′15 ⊕K1

2],
S[a′4 ⊕ a′9 ⊕ 2a′14 ⊕ 3a′19 ⊕K6

2], S[3a′8 ⊕ a′13 ⊕ a′18 ⊕ 2a′3 ⊕K11
2],

S[2a′0 ⊕ 3a′5 ⊕ a′10 ⊕ a′15 ⊕K0
2], S[a′4 ⊕ 2a′9 ⊕ 3a′14 ⊕ a′19 ⊕K5

2],
S[a′8 ⊕ a′13 ⊕ 2a′18 ⊕ 3a′3 ⊕K10

2], S[3a′12 ⊕ a′17 ⊕ a′2 ⊕ 2a′7 ⊕K15
2]).

294 J. Nakahara Jr., D.S. de Freitas, and R.C.-W. Phan

In particular, equality holds bytewise, that is, S[2a0 ⊕ 3a5 ⊕ a10 ⊕ a15 ⊕K0
2] =

S[2a′0⊕3a′5⊕a′10⊕a′15⊕K0
2], and similarly for the other fifteen byte values. Since

a0|a1| . . . |a14|a15 in A is a 128-bit ‘P’ word, and a16|a17|a18|a19 is a ‘C’ word, and
the subkeys are fixed, these equalities can be expressed asS[2a0⊕3a5⊕a10⊕a15⊕
c0] = S[2a′0⊕ 3a′5⊕ a′10 ⊕ a′15 ⊕ c′0], and similarly for the other 15 bytes, where ci
and c′i, 0 ≤ i ≤ 15 are constants. But, ci = c′i because they depend on the same
subkeys. Therefore, S[2a0⊕ 3a5⊕ a10 ⊕ a15 ⊕ c0] = S[2a′0⊕ 3a′5 ⊕ a′10 ⊕ a′15 ⊕ c0],
or 2a0 ⊕ 3a5 ⊕ a10 ⊕ a15 = 2a′0 ⊕ 3a′5 ⊕ a′10 ⊕ a′15, and similarly for the other 15
bytes, namely, a4⊕2a9⊕3a14 = a′4⊕2a′9⊕3a′14, a8⊕a13⊕3a3 = a′8⊕a′13⊕3a′3,
3a12⊕a2⊕2a7 = 3a′12⊕a′2⊕2a′7, 2a8⊕3a13⊕a3 = 2a′8⊕3a′13⊕a′3, a12⊕3a2⊕a7 =
a′12 ⊕ 3a′2 ⊕ a′7, a1 ⊕ 2a6 ⊕ 3a11 = a′1 ⊕ 2a′6 ⊕ 3a′11, 3a0 ⊕ a5 ⊕ a10 ⊕ 2a15 =
3a′0⊕a′5⊕a′10⊕2a15, 2a12⊕a2⊕a7 = 2a′12⊕a′2⊕a′7, 2a1⊕3a6⊕a11 = 2a′1⊕3a′6⊕a′11,
a0 ⊕ a5 ⊕ 2a10 ⊕ 3a15 = a′0 ⊕ a′5 ⊕ 2a′10 ⊕ 3a′15, 3a4 ⊕ a9 ⊕ a14 = 3a′4 ⊕ a′9 ⊕ a′14,
3a1 ⊕ a6 ⊕ a11 = 3a′1 ⊕ a′6 ⊕ a′11, a0 ⊕ 2a5 ⊕ 3a10 ⊕ a15 = a′0 ⊕ 2a′5 ⊕ 3a′10 ⊕ a′15,
a4 ⊕ a9 ⊕ 2a14 = a′4 ⊕ a′9 ⊕ 2a′14, 3a8 ⊕ a13 ⊕ 2a3 = 3a′8 ⊕ a′13 ⊕ 2a′3. Solving
a1 ⊕ 2a6 ⊕ 3a11 = a′1 ⊕ 2a′6 ⊕ 3a′11, 2a1 ⊕ 3a6 ⊕ a11 = 2a′1 ⊕ 3a′6 ⊕ a′11 and
3a1 ⊕ a6 ⊕ a11 = 3a′1 ⊕ a′6 ⊕ a′11 via Gaussian elimination, results in a1 = a′1,
a6 = a′6, and a11 = a′11. Similarly, from a4 ⊕ 2a9 ⊕ 3a14 = a′4 ⊕ 2a′9 ⊕ 3a′14,
a4 ⊕ a9 ⊕ 2a14 = a′4 ⊕ a′9 ⊕ 2a′14 and 3a4 ⊕ a9 ⊕ a14 = 3a′4 ⊕ a′9 ⊕ a′14 results in
a4 = a′4, a9 = a′9, and a14 = a′14. Similarly, from a8 ⊕ a13 ⊕ 3a3 = a′8 ⊕ a′13 ⊕ 3a′3,
2a8 ⊕ 3a13 ⊕ a3 = 2a′8 ⊕ 3a′13 ⊕ a′3, and 3a8 ⊕ a13 ⊕ 2a3 = 3a′8 ⊕ a′13 ⊕ 2a′3
results in a8 = a′8, a13 = a′13, and a3 = a′3. Finally, from 2a0 ⊕ 3a5 ⊕ a10 ⊕
a15 = 2a′0 ⊕ 3a′5 ⊕ a′10 ⊕ a′15, 3a0 ⊕ a5 ⊕ a10 ⊕ 2a15 = 3a′0 ⊕ a′5 ⊕ a′10 ⊕ 2a15,
a0 ⊕ a5 ⊕ 2a10 ⊕ 3a15 = a′0 ⊕ a′5 ⊕ 2a′10 ⊕ 3a′15, and a0 ⊕ 2a5 ⊕ 3a10 ⊕ a15 =
a′0 ⊕ 2a′5 ⊕ 3a′10 ⊕ a′15, results in a0 = a′0, a5 = a′5, a10 = a′10, and a15 = a′15.
In total ai = a′i, for 0 ≤ i ≤ 15, but at least one of these equalities should not
hold because a0|a1| . . . |a15 is a ’P’ word. It is a contradiction. The justification
for the ’E’ words in A is that the equalities with the four variables a0, a5, a10,
and a15 involve only three equalities, which form an indeterminate system that
can be solved uniquely by Gaussian elimination. Thus, the output of 1.25-round
transformation T is the multiset (E E P E E).

CAppendix

This appendix shows Table 7 and 8, comparing the size of distinguishers and the
number of active S-boxes in differential/linear attacks and the corresponding
figures for multiset attacks.

Table 7. Number of active S-boxes in differential and linear distinguishers for Rijndael
ciphers

Cipher # Rounds # Act. # Rounds # Act. # Rounds # Act.
S-boxes S-boxes S-boxes

AES 3.25 9 4.25 25 — —
Rijndael-160 3.25 9 4.25 25 5.25 45
Rijndael-192 3.25 9 4.50 49 5.25 49
Rijndael-224 3.75 25 4.25 53 5.25 53
Rijndael-256 3.75 25 4.25 57 5.25 67

New Multiset Attacks on Rijndael with Large Blocks 295

Table 8. Number of active S-boxes in multiset distinguishers for Rijndael ciphers

Cipher 1st-order # Act. 4th-order # Act. 16th-order # Act.
(# Rounds) S-boxes (# Rounds) S-boxes (# Rounds) S-boxes

AES 3.25 21 4.25 40 — —
Rijndael-160 3.25 21 4.25 44 5.25 92
Rijndael-192 3.25 21 4.50 56 5.25 104
Rijndael-224 3.75 25 4.25 52 5.25 106
Rijndael-256 3.75 29 4.25 56 5.25 128

Paillier’s Cryptosystem Modulo p2q and Its
Applications to Trapdoor Commitment Schemes

Katja Schmidt-Samoa1 and Tsuyoshi Takagi2

1 Technische Universität Darmstadt, Fachbereich Informatik,
Hochschulstr. 10, D-64289 Darmstadt, Germany

samoa@informatik.tu-darmstadt.de
2 Future University – Hakodate, School of Systems Information Science,

116-2 Kamedanakano-cho Hakodate, Hokkaido, 041-8655, Japan
takagi@fun.ac.jp

Abstract. In 1998/99, T. Okamoto and S. Uchiyama on the one hand
and P. Paillier on the other hand introduced homomorphic encryption
schemes semantically secure against passive adversaries (IND-CPA).
Both schemes follow in the footsteps of Goldwasser-Micali, Benaloh-
Fischer and Naccache-Stern cryptosystems, and yield their improvements
above the latter by changing the group structure. Paillier’s scheme works
in the group Z×

n2 where n is an RSA modulus, whilst Okamoto-Uchiyama
is located in the group Z×

n for n of p2q type. The new schemes attracted
much attention because of their rich mathematical structure. It is notable
that Okamoto-Uchiyama is one-way under the p2q factoring assumption,
whilst there is no reduction known from the one-wayness of Paillier’s
scheme to a standard computational assumption.

In this paper we point out that the combination of both techniques
yields a new scheme that inherits all the nice properties of Paillier’s
scheme and that is one-way under the p2q factoring assumption. The
one-wayness is based on a new trapdoor one-way function which might
be of independent interest. In addition, we show how to construct trap-
door commitment schemes with practical applications based on our new
scheme and on the trapdoor function. Among other things, we propose a
trapdoor commitment scheme that perfectly meets the requirements to
construct Shamir-Tauman on-line/off-line signatures.

Keywords: homomorphic encryption, trapdoor commitments, trapdoor
hash families, on-line/off-line signatures, chameleon signatures

1 Introduction

In their seminal paper from 1984 Goldwasser and Micali introduced the notion
of semantic security and presented the first cryptosystem meeting this require-
ments [GM84]. Their proposed cryptosystem is additively homomorphic and
probabilistic but suffers from a very limited bandwidth (the encryption is per-
formed bit-wise). Over the intervening years this scheme has been improved
several times, where the most notable ameliorations came from Benaloh-Fischer

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 296–313, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Paillier’s Cryptosystem Modulo p2q and Trapdoor Commitment Schemes 297

[CF85] and Naccache-Stern [NS98]. However, the actual breakthrough in the
field of semantically secure additive homomorphic encryption has been achieved
by Okamoto-Uchiyama and Paillier with a different approach. Namely, their idea
was to change the group structure from Z×

n with a RSA modulus n to Z×
n with

n = p2q (Okamoto-Uchiyama [OU98]), resp. Z×
n2 (Paillier [Pai99]). Both works

gained recognition not only for presenting practical solutions to homomorphic
encryption, but also for pointing out the rich mathematical structure of the
groups Z×

n with n = p2q resp. Z×
n2 , n = pq. Whilst the assumptions on which

semantic security relies seems to be comparable for both schemes (p-subgroup
assumption versus decisional composite residuosity assumption), this is not the
case for one-wayness: Okamoto-Uchiyama’s cryptosystem can be proven one-
way if factoring integers p2q is hard, but for Paillier’s scheme no reduction to a
standard intractability assumption has been observed yet1.

Our Contributions. Our first contribution is the development of a factori-
zation-based variant of Paillier’s homomorphic encryption scheme. Our concept
is to study Paillier’s original encryption function in a different group, i.e. instead
of Z×

n2 with an RSA modulus n we consider the group Z×
n2 with the Okamoto-

Uchiyama modulus n = p2q. Based on the analysis of a new trapdoor one-way
function which we introduce in Sect. 2.2, we are able to show that the proposed
cryptosystem is one-way under the p2q factorization assumption. Moreover, the
new scheme inherits all the nice properties of Paillier’s original one, such as se-
mantic security, additively homomorphic property and efficiency. Unfortunately,
the new scheme inherits the most serious drawback of Okamoto-Uchiyama’s cryp-
tosystem, too, namely it is vulnerable to a simple chosen ciphertext attack (in
general this seems to be the flip-side of the coin regarding factorization-based
one-wayness, see e.g. textbook Rabin). Of course, there are standard techniques
to overcome this problem, for instance the clever use of hash functions, but all
in all we feel that this part of the paper is predominantly of theoretical value.

In the rest of the paper we develop practical applications of our novel scheme
and the underlying one-way function. More precisely, we introduce two new trap-
door commitments intended as building blocks for Shamir-Tauman on-line/off-
line signatures [ST01] and chameleon signatures [KR00]. In the case of on-
line/off-line signatures our proposed trapdoor commitment scheme to the best
of our knowledge is the first one to yield a highly efficient and perfectly powerful
construction at the same time. In addition, we propose the first factorization-
based trapdoor commitment that can be used to construct on-line/off-line
chameleon signatures, therefore improving the RSA(n, n)-based construction
from [CGHGN01]. For a more detailed motivation and comparison see Sect. 4.
As the first part of the paper is indeed of theoretical interest, but achieves no sig-
nificant improvement in homomorphic encryption, we regard our new trapdoor
commitment schemes as our main contribution.

1 In [Pai99], Paillier based the one-wayness of his scheme on the composite resid-
uosity assumption, but this assumption is merely a paraphrase of the designated
one-wayness property.

298 K. Schmidt-Samoa and T. Takagi

2 Preliminaries

2.1 Notations

Let n be a positive integer. We write Zn for the ring of residue classes modulo
n, and Z×

n for its multiplicative group.
We denote the image of a function f with im(f).
As usual, a probability Pr(k) is called negligible if Pr(k) decreases faster

than the inverse of any polynomial in k, i.e. ∀c∃kc(k > kc ⇒ Pr(k) < k−c
c). In

contrast, a probability Pr(k) is called overwhelming, if 1 − Pr(k) is negligible.
We abbreviate probabilistic polynomial time algorithm by PPA.
Finally, |n|2 denotes the bit-length of the integer n, and we write [n]k for the

integer corresponding to the k most significant bits of n.

2.2 Mathematical Foundations

Throughout this section, let p, q be primes with p � q− 1 and q � p− 1 and define
n = p2q. In the following, some facts about the group structure of Z×

n resp. Z×
n2

are developed.
First, we define an equivalence relation on Z×

n :

Definition 1 (The equivalence relation ∼). We define ∼ on Z×
n as follows:

x ∼ y ⇐⇒ xn = yn mod n.

It is easy to see that ∼ indeed defines an equivalence relation on Z×
n . We can

proof the following theorem:

Theorem 1. For x, y ∈ Z×
n we have

x ∼ y ⇐⇒ x = y mod pq.

Proof. “⇐”: (x+ kpq)n =
∑n

i=0

(
n
i

)
xn−i(kpq)i = xn + nxn−1kpq = xn mod n.

“⇒”: xn = yn mod n ⇒ xn = yn mod pq ⇒ x = y mod pq, because n and
ϕ(pq) are coprime.

	

Now we can easily describe the equivalence class of x ∈ Z×
n :

Corollary 1. Let us denote with [x] the equivalence class to which x ∈ Z×
n

belongs. Then we have:

[x] = {x+ ipq mod n|0 ≤ i < p}.

Thus there is exactly one element in [x] which is smaller than pq, namely x mod pq.

In the subsequent sections, we exploit the fact that the problem of determin-
ing this element for arbitrary x ∈ Z×

n is as hard as factoring n. In Appendix B,
we discuss the hardness of factoring integers of the special form n = p2q.

Next, we define the quotient group Z×
n /∼

Paillier’s Cryptosystem Modulo p2q and Trapdoor Commitment Schemes 299

Definition 2 (N-R(n)). Let N-R(n) = {x ∈ Z×
n |x = yn mod n for a y ∈ Z×

n }
denote the set of the nth residues modulo n.

N-R(n) is a subgroup of Z×
n of order (p − 1)(q − 1) (due to the fact that

there are exactly ϕ(pq) = (p− 1)(q − 1) pairwise different nth residues modulo
n, namely the elements {xn mod n|x ∈ Z×

pq}).

Corollary 2. If factoring integers n = p2q is hard, the map fpq : Z×
pq → N-R(n),

x �→ xn mod n is a trapdoor one-way function.

Proof. See Appendix A.1.

We now turn to the group Z×
n2 and analyze a Paillier-like function.

Theorem 2. Let n �= 0 mod 3.
The map f : Z×

n × Zn → Z×
n2 , (r,m) �→ rn(1 + mn) mod n2 has the following

properties:

1. f is well-defined, i.e. if r = r′ mod n and m = m′ mod n holds, then it
follows that rn(1 +mn) = r′n(1 +m′n) mod n2 is true.

2. f is homomorphic in r and m, i.e. f(r1r2,m1 +m2) = f(r1,m1)f(r2,m2).
3. f(r,m) = f(r + ipq,m− ir−1pq) for i ∈ Z, hence f is p-to-one.
4. im(f) = {x = x0 + nx1 ∈ Z×

n2 |x0 ∈ N-R(n), x1 ∈ Zn}.
5. The restrictions fm = f |

Z
×
n ×Zpq

and fr = f |
Z
×
pq×Zn

are one-to-one.
6. fr : Z×

pq × Zn → Z×
n2 is a group homomorphism with respect to the group

operation ◦r:

(r1,m1) ◦r (r2,m2) = (r1r2 mod pq︸ ︷︷ ︸
=:rpq

,m1 +m2 + lr−1
pq pq mod n),

where 0 ≤ l < p is defined via r1r2 = rpq + lpq mod n.
7. fm : Z×

n × Zpq → Z×
n2 is a group homomorphism with respect to the group

operation ◦m:

(r1,m1) ◦m (r2,m2) = (r1r2 − lpq mod n,m1 +m2 mod pq︸ ︷︷ ︸
=:mpq

),

where 0 ≤ l < p is defined via m1 +m2 = mpq − r−1
pq lpq mod n.

Proof. See Appendix A.2.

3 Homomorphic Encryption

In this section, we propose a new homomorphic encryption scheme based on
the one-way function analyzed in Sect. 2.2. At Eurocrypt 1999, Pascal Paillier
introduced a homomorphic encryption scheme that is IND-CPA secure in the
standard model under an appropriate decisional assumption [Pai99]. Unfortu-
nately, no proof is known that reduces the one-wayness of this scheme to a

300 K. Schmidt-Samoa and T. Takagi

standard computational assumption2. In the following, several variants of Pail-
lier’s original scheme have been described, e.g. RSA-Paillier [CGHGN01], that
significantly reduces the encryption costs and that is one-way under the standard
RSA-assumption. However, the one-way reduction is not tight and the scheme
is not homomorphic any more.

Next, we show that by replacing the modulus n = pq with n = p2q in Paillier’s
scheme one obtains an encryption scheme with the following properties:

– The proposed scheme is one-way under a weak standard assumption (namely
factoring n = p2q).

– The security reduction is tight.
– The proposed scheme is IND-CPA under the same security assumption as

Paillier’s original one.
– The proposed scheme is still homomorphic.
– The only drawback of the new scheme is that it is vulnerable to a simple

chosen ciphertext attack.

3.1 The Proposed Encryption Scheme

Key Generation: Let k be a security parameter. Choose two primes p,q of
the same length such that both p − 1 and q − 1 have a large prime factor,
p � q − 1, q � p − 1, and the product n = p2q is a k bit number. Compute
d = n−1 mod (p− 1)(q − 1) and let l be chosen such that 2l < pq < 2l+1.
The public key is pk = (n, l), and the secret key is sk = (d, p, q).

Encryption: To encrypt a message m ∈ {0, 1}l, choose r ∈ Z×
n at random and

compute
Epk(m, r) = rn(1 +mn) mod n2

Decryption: To decrypt a ciphertext c ∈ Z×
n2 , first compute r = cd mod pq.

Then
Dsk(c) = Ln(r−nc mod n2) mod pq,

where the L-function is defined as Ln(x) = x−1
n .

We can prove the following theorem:

Theorem 3. 1. The proposed encryption scheme is correct.
2. The proposed encryption scheme is homomorphic, i.e. we have

Epk(r1,m1)Epk(r2,m2) = Epk((r1,m1) ◦ (r2,m2)),

where ◦ is the group operation on Z×
n × Zpq as defined in Theorem 2(7).

3. The proposed encryption scheme is one-way if factoring integers n = p2q is
hard.

Proof. See Appendix A.3.
2 The composite residuosity assumption, under which Paillier proved his scheme to be

one-way, actually is just a paraphrase of the one-wayness property.

Paillier’s Cryptosystem Modulo p2q and Trapdoor Commitment Schemes 301

Remark 1. Although the group operation that makes the scheme homomor-
phic is non-standard, we want to point out that for almost all applications the
following relaxed homomorphic property of the proposed scheme is sufficient:
Epk(r1,m1)Epk(r2,m2) = Epk(r,m1 +m2) for some r ∈ Z×

n .

We now show that the proposed scheme is semantically secure against passive
adversaries under almost the same assumption as Paillier’s original scheme. First,
we review this assumption:

Definition 3 (Decisional Composite Residuosity Assumption). Let n =
p2q for two large primes p, q with p � q−1, q � p−1. Then the Decisional Compos-
ite Residuosity Assumption (DCRA) states that for any polynomial time distin-
guisher ADCRA the following quantity (called ADCRA’s advantage) is negligible
in log(n):

|Pr[x ← Z×
n2 : ADCRA(x) = 1] − Pr[x ← Z×

n : ADCRA(xn mod n2) = 1]|.

The only difference to Paillier’s Decisional Composite Residuosity Assump-
tion is the choice of n = p2q instead of n = pq. As long as factoring integers of
p2q type is supposed to be as hard as factoring integers of pq type, there is no
reason to believe that the tractability of DCR problem depends on the type of
the modulus.

Semantic Security is defined as follows:

Definition 4 (Semantic Security). A cryptosystem with key generator G and
randomized encryption function E is semantically secure against passive adver-
saries (IND-CPA) if for any PPA A = (A1,A2) the following quantity (called
A’s advantage) is negligible in the security parameter k:

|2 Pr[(pk, sk) ← G(k),A1(pk) = (m0,m1, st), b← {0, 1}, c← E(pk,mb) :
A2(m0,m1, c, st) = b] − 1|

Theorem 4. The proposed scheme is IND-CPA if and only if the Decisional
Composite Residuosity Assumption holds.

Proof. See Appendix A.4.

4 Trapdoor Commitments in Digital Signature Schemes

In this section, we develop new trapdoor commitment schemes as applications
of the one-way functions introduced in Sect. 2.2. Commitment schemes are an
important primitive in public key cryptography. Among these, trapdoor com-
mitment schemes play a leading role, especially in the context of zero-knowledge
protocols.

Recently, trapdoor commitment schemes found new applications in a different
setting, namely in designing digital signature schemes with additional properties,
e.g. on-line/off-line signatures, chameleon signatures and signcryption [ST01,
KR00, ADR02].

302 K. Schmidt-Samoa and T. Takagi

In this new context, trapdoor commitment schemes are not longer described
as a protocol between the commiter and the receiver, but a functional oriented
definition is more convenient, and the term trapdoor commitment scheme is
replaced by trapdoor hash family, aka chameleon hash family. As pointed out by
Krawczyk and Rabin [KR00], both definitions are equivalent (for non-interactive
trapdoor commitment schemes).

Definition 5 (Trapdoor Hash Family). A trapdoor hash family is a pair
(KeyGen,H) of key generation algorithm and a family of polynomial time hash
functions such that the following holds:

Key Generation: On input a security parameter k, the randomized algorithm
KeyGen outputs a pair (hk, tk) of hash and trapdoor key, where the sizes of
hk and tk are polynomially related to k. The hash key hk uniquely specifies
an element hashhk of the family H.

Hash: The algorithm hashhk : R × M → H computes the hash value, where
M and R are the message space and the space of randomness.

Weak Altering: For each trapdoor key tk there is a polynomial time algorithm
wAlttk : M×R×M → R that given a message m, randomness r, and a tar-
get message m′ computes randomness r′ with hashhk(r,m) = hashhk(r′,m′).
The pair ((r,m), (r′,m′)) is called a trapdoor collision.

The algorithm wAlttk enables the owner of the trapdoor key to compute a
hash value hashhk(r,m) = h and “alter” the meaning of h in any desired way
(i.e. he can claim that h is the hash value of an arbitrary message m′ ∈ M by
presenting the randomness r′ with hashhk(r′,m′) = h as a proof). However, for
some applications a strictly stronger property turns out to be useful, namely the
owner of the trapdoor key should be able to alter a hash value arbitrarily even
without knowledge of the pre-image values r,m. We call this property strong
altering3:

Definition 6 (Strong Altering). A trapdoor hash family (KeyGen,H) provides
strong altering, if for each key (hk, tk) ← KeyGen(k) there is a polynomial time
algorithm sAlttk : H×M → R with the following property: Given a hash value
h ∈ H and a target message m ∈ M, the algorithm sAlttk computes randomness
r ∈ R with h = hashhk(r,m).

The security of a trapdoor hash family requires that without knowledge of
the trapdoor key it should be hard to find collisions. Moreover, the hash pairs
obtained by invoking the altering algorithm should be indistinguishable from
“real” hash pairs.

Definition 7 (Security of Trapdoor Hash Families). The trapdoor hash
family (KeyGen,H) is secure if the following properties hold:

3 In [ST01], this property is referred to as inversion property.

Paillier’s Cryptosystem Modulo p2q and Trapdoor Commitment Schemes 303

Collision resistance: For any PPA A the following probability is negligible
in k:

Pr[(hk, tk) ← KeyGen(k),A(hk) = (r,m, r′,m′) :
(r,m) �= (r′,m′), hashhk(r,m) = hashhk(r′,m′)]

Uniformity: The outcome of s/wAlttk is uniformly distributed in R provided
that the randomness input is also uniformly distributed in R.

4.1 Recent Applications for Trapdoor Hash Families

On-line/Off-line Signatures. A digital signature scheme possesses the on-
line/off-line property if the signer is able to perform the bulk of the computa-
tion off-line, i.e. before receiving the message that has to be signed. In [ST01],
Shamir and Tauman proposed a generic construction for transforming a weak se-
cure signature scheme into a strong on-line/off-line signature scheme improving
an early proposal of Even, Goldreich and Micali [EGM96]. Informally, their idea
is the following: The signer runs two key generation algorithms, for an ordinary
signature scheme and for a trapdoor hash family (in particular, the signer holds
the hash trapdoor). In the off-line phase, the signer randomly selects r′ and m′

and constructs the dummy hash value h = hashhk(r′,m′). She signs h and keeps
the obtained signature sig and the values r′,m′, h in memory. In the on-line
phase, when the message m that has to be signed is known, the signer invokes
the altering algorithm to obtain randomness r with hashhk(r,m) = h. The tuple
(r, sig) then defines the signature of m. Signature verification is straight-forward,
as by construction sig is a valid hash-then-sign signature of m. Note that only for
executing the protocol weak altering is sufficient. The strong altering property,
however, leads to more powerful constructions: instantiated with a signature
scheme that is existentially unforgeable under a generic chosen message attacks,
the above construction (with a weak hash family) is secure against adaptive cho-
sen message attacks (EF-CMA). If strong altering is possible, the same result
can be proven for weaker input signature schemes (only security against random
message attacks is required). To sum up, we are looking for a trapdoor hash
family where strong altering is possible and weak altering is fast. Some previous
constructions of trapdoor hash families provide strong altering algorithms, but
the weak altering is not particularly efficient [Gen04, FF02, KR00]. In contrast,
Shamir and Tauman constructed a new trapdoor hash family with a very fast
weak altering mechanism, but lacking the strong altering property. In the follow-
ing, we will give the first trapdoor hash family that combines both properties:
extremely fast weak altering and the possibility of strong altering.

Signcryption. In [ADR02] An et al. give a formal treatment of securely carry-
ing out joint encryption and signature in the public-key setting. Roughly speak-
ing, the security goals here are to protect the sender’s authenticity and the
receiver’s privacy. In addition to examining the classical “encrypt-then-sign”
and “sign-then-encrypt” paradigms, An et al. propose a new variant which they

304 K. Schmidt-Samoa and T. Takagi

call “commit-then-encrypt-and-sign”. In this setting, it is possible to perform
the costly public-key operations (encrypt and sign) in parallel, therefore saving
computation time4. For the sake of uniformity, we describe the basic proce-
dure in hash-terminology: The sender hashes the message, then in parallel he
signs the hash and encrypts the message. Finally he transmits the hash data,
the signature and the ciphertext to the receiver. Until now, the trapdoor has
not been exploited. The benefit of a trapdoor hash family arises if for sign-
ing Shamir-Tauman on-line/off-line signatures are used. Indeed, combined with
an on-line/off-line encryption scheme (e.g. hybrid encryption), a complete on-
line/off-line signcryption scheme can be obtained as follows: In the off-line phase,
the sender creates a fake hash h(r′,m′), builds the signature sig of h(r′,m′) and
performs the off-line encryption operations (e.g. constructing and encapsulating
a session key). Once the message m is known, the sender invokes the alter-
ing algorithm to obtain randomness r′ with h(r′,m′) = h(r,m), completes the
encryption (e.g. encrypting m symmetrically with the session key) and finally
transmits r, sig and the obtained ciphertext c. The receiver encrypts c, gets m
and verifies if sig is a valid signature of h(r,m). It has not been pointed out by
An et al. that this procedure even enhances the security of the original signa-
ture scheme. But along the lines of Shamir-Tauman’s security proof it can be
easily shown that a signature scheme secure against generic message attacks is
sufficient to receive an EF-CMA secure conversion. If the trapdoor hash family
provides strong altering, even security against random message attacks suffices.

Chameleon Signatures. The concept of chameleon signatures was introduced
by Krawczyk and Rabin to simplify undeniable signatures [KR00]. The aim of
chameleon signatures is to distract the receiver of a signature from revealing
the signed message to any third party. To realize this, the well-known hash-
then-sign paradigm is used, but the conventional hash function is replaced by a
trapdoor hash. Here, only the receiver holds the secret trapdoor and is therefore
able to forge valid signatures for messages of his choice by invoking the altering
algorithm. Consequently, no third party will be convinced of the validity of any
signature, because the receiver could have created it himself. On the other hand,
the signer is protected against an unhonest receiver who creates a fake valid
signature, because in this case the legitimate signer is able to present a collision
of the trapdoor hash function with overwhelming probability. This enables the
signer to deny the forged signature. In [CGHGN01], Catalano et al. pointed
out that on-line/off-line chameleon signatures can be constructed when using an
on-line/off-line trapdoor hash family.

4.2 Our New Trapdoor Hash Families

The Proposed Strong Trapdoor Hash Family with Fast Altering. The
following trapdoor hash family with fast altering can be compared to Shamir-
4 Note that the naive approach of just signing and encrypting a message in parallel and

sending the signature along with the ciphertext may violate the receiver’s privacy,
because the signature may reveal information about the message.

Paillier’s Cryptosystem Modulo p2q and Trapdoor Commitment Schemes 305

Tauman’s fast altering trapdoor hash family from [ST01]. Shamir and Tauman
use the homomorphic one-way function x �→ gx mod n, where n is a safe RSA
modulus and g is an element of maximal order λ(n) in Z×

n . We will use the one-
way homomorphism x �→ xn mod n for n = p2q. In both cases, the idea is that
a non-trivial element of the function’s kernel reveals the factorization of n (by
providing a multiple of λ(n), resp. pq), which implies collision resistance. The
main difference is that only in our case the function is trapdoor, which provides
the strong altering property.

Key Generation: Let k be a security parameter. Choose two primes p,q of
the same length such that both p − 1 and q − 1 have a large prime factor,
p � q − 1, q � p− 1, and the product n = p2q is a k bit number. Define l such
that 2l < pq < 2l+1 holds.
The hash key is hk = (n, l), and the trapdoor key is tk = (p, q).

Hash: To hash a message m ∈ {0, . . . , [n]k−l−1 − 1}, a value r ∈ Zpq is chosen
uniformly at random and hashhk(r,m) = (m||r)n mod n is computed, where
m||r denotes the concatenation of m and r.

In Appendix A.5, we prove the following theorem:

Theorem 5. Under the p2q factorization assumption the above construction is
a secure trapdoor hash family with extremely fast weak altering and the strong
altering property.

Remark 2. In terminology of commitment schemes the above construction is a
perfectly hiding and computationally binding trapdoor commitment scheme. We
further want to point out that for the applications in on-line/off-line signature
scheme resp. signcryption, the sender is also the trapdoor holder. Therefore it is
not a problem for him to choose elements of Zpq uniformly at random. For more
general applications, the randomness has to be taken from the set {0, 1}l instead.
However, in this case the proposed scheme is not longer perfectly binding. We
assume that binding holds at least computationally.

The Proposed Strong Trapdoor Hash Family with On-Line/Off-Line
Property.

Key Generation: Let k be a security parameter. Choose two primes p,q of
the same length such that both p − 1 and q − 1 have a large prime factor,
p � q − 1, q � p− 1, and the product n = p2q is a k bit number. Define l such
that 2l < pq < 2l+1 holds.
The hash key is hk = (n, l), and the trapdoor is the factorization of n.

Hash: To hash a message m ∈ {0, . . . , [n]k−l−1 − 1}, one chooses two random
values s ∈ Zpq, r ∈ Z×

n and computes hashhk(r, s,m) = (1 + (m||s)n)rn mod
n2, where m||s denotes the concatenation of m and s.

In Appendix A.6, we prove the following theorem:

Theorem 6. Under the p2q factorization assumption the above construction is
a secure trapdoor hash family with strong altering and on-line/off-line property.

306 K. Schmidt-Samoa and T. Takagi

However, we still have to resolve a last problem: For sound execution the
secret trapdoor has to be known to the user of the hash function, because he
must choose s uniformly at random from Zpq. The same problem occurs in
the factorization-based scheme from [BCP03], where the randomness has to be
sampled from Z×

nλ(n)/2. But unfortunately, in a chameleon hash signature scheme
the trapdoor must be unknown to the signer/hasher, as otherwise the signer is
able obtain hash collisions and thus to deny her signatures. This difficulty could
be overcome by providing the user an upper bound of the secret numbers pq resp.
nλ(n)/2, but is has to be pointed out that proceeding in that way usually leads
to a loss of uniformity. But luckily, it turns out that in our case the problem can
be solved nevertheless: if the randomness s is sampled from the publicly known
set {0, 1}l+1 instead of Zpq, we can prove that the alleviated scheme fulfills
the following relaxed uniformity requirement, which fortunately is enough for
designing secure chameleon signature schemes (see [KR00]).

Definition 8 (Relaxed Uniformity for Trapdoor Hash Families). For
any PPA A = (A1,A2) the following is negligible in k:

|2 Pr[(hk, tk) ← KeyGen(k),A1(hk) = (m0,m1, st), b← {0, 1}, r ← R,
c← hashhk(r,mb) : A2(m0,m1, c, st) = b] − 1|

Lemma 1. Relaxed Uniformity holds for the alleviated scheme under the deci-
sional composite residuosity assumption.

Proof. For any two messages m0,m1, the distributions of hashhk(r, s,m0) and
hashhk(r, s,m1) are computationally indistinguishable if s ∈ {0, 1}l+1, r ∈ Z×

n

are chosen uniformly at random. This is an immediate consequence of the se-
mantic security of the encryption scheme described in Sect. 3 (Theorem 4). 	

Remark 3. In terminology of commitment schemes the above construction is a
perfectly hiding and computationally binding trapdoor commitment scheme. For
the alleviated scheme both hiding and binding holds computationally.

4.3 Comparison with Previous Work

In this section, we compare previously known trapdoor hash families with our
new constructions. In Table 1, we focus on schemes that are intended to be used
in Shamir-Tauman on-line/off-line signature schemes. Here, the most important
property is efficient weak altering. Furthermore, schemes allowing strong alter-
ing are preferable because they lead to more powerful conversions. In the last
column, we note if the secret trapdoor has to be known to the sender. This is no
problem in the suggested applications (on-line/off-line signatures, on-line/off-
line signcryption), but for more general applications those schemes might be
improper.

In Table 2, we compare different constructions for on-line/off-line trapdoor
hash families. Here, it is notable that the need for the user to know the secret
trapdoor excludes the application chameleon signatures, therefore we designate

Paillier’s Cryptosystem Modulo p2q and Trapdoor Commitment Schemes 307

Table 1. Comparison of trapdoor hash families suitable for [ST01]

Scheme Assumption strong hash weak alt. user needs tk
[BK90] Discrete log NO ≈ 1 exp. ≈ 1 mult. NO
[KR00] Factoring YES ≈ |m|2 mult. ≈ 5 mult. NO
[ST01] Factoring NO 1 exp. 1 add. + bit shift YES

[BCP03] Factoring NO ≈ 1 exp. ≈ 1 mult. YES
1. proposed Factoring YES 1 exp. 1 add. + bit shift YES

Table 2. Comparison of on-line/off-line trapdoor hash families

Scheme Assumption strong hash user needs tk
[CGHGN01] RSA(n,n) YES ≈ 1 exp. NO

[BCP03] Factoring NO ≈ 1 exp. YES
2. proposed Factoring YES ≈ 1 exp. NO

the alleviated version of our second scheme (where the randomness is sampled
from {0, 1}l+1).

In both tables, the assumption factoring refers to integers of p2q-type for the
proposed schemes and to RSA moduli, resp. Blum integers [KR00], else.

5 Conclusion

In this paper we pointed out that combining Paillier’s homomorphic encryption
scheme with the Okamoto-Uchiyama modulus n = p2q yields theoretical bene-
fits as well as practical applications. First we developed a semantically secure,
additively homomorphic variant of Paillier’s encryption scheme that is one-way
under the factoring assumption. We based the one-wayness proof on the analysis
of new trapdoor one-way functions, which may be of independent interest. As a
practical application, we constructed two new factorization-based trapdoor hash
families. The first one provides as fast weak altering as Shamir-Tauman’s pro-
posal, but in addition allows strong altering too, yet leading to more powerful
generic constructions of on-line/off-line signature schemes. The second one is the
first factorization-based trapdoor hash family that enables the construction of
on-line/off-line chameleon signatures (a previous construction exists based on
the hardness of inverting RSA(n, n)).

Acknowledgements

The authors wish to thank anonymous referees and Benoit Chevallier-Mames for
useful comments.

308 K. Schmidt-Samoa and T. Takagi

References

[ADR02] J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and
encryption. In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of
Lecture Notes in Computer Science, pages 83–107. Springer, 2002.

[AM94] L. M. Adleman and K. S. McCurley. Open problems in number theoretic
complexity, ii. In Leonard M. Adleman and Ming-Deh A. Huang, editors,
ANTS, volume 877 of Lecture Notes in Computer Science, pages 291–
322. Springer, 1994.

[BCP03] E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryp-
tosystem with a double trapdoor decryption mechanism and its applica-
tions. In Chi-Sung Laih, editor, ASIACRYPT, volume 2894 of Lecture
Notes in Computer Science, pages 37–54. Springer, 2003.

[BDHG99] D. Boneh, G. Durfee, and N. Howgrave-Graham. Factoring N = prq
for large r. In Michael J. Wiener, editor, Advances in Cryptology – Pro-
ceedings of CRYPTO 1999, volume 1666 of Lecture Notes in Computer
Science, pages 326–337, Berlin, 1999. Springer-Verlag.

[BK90] J. F. Boyar and S. A. Kurtz. A discrete logarithm implementation of
perfect zero-knowledge blobs. Journal of Cryptology, 2(2):63–76, 1990.

[CF85] J. D. Cohen and M. J. Fischer. A robust and verifiable cryptographi-
cally secure election scheme. In Symposium on Foundations of Computer
Science – Proceedings of FOCS 1986, pages 372–382, 1985.

[CGHGN01] D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Nguyen. Pail-
lier’s cryptosystem revisited. In Proceedings of the 8th ACM Conference
on Computer and Communications Security (CCS-2001), pages 206–214,
2001.

[EGM96] S. Even, O. Goldreich, and S. Micali. On-line/off-line digital signatures.
Journal of Cryptology, 9(1):35–67, 1996.

[FF02] M. Fischlin and R. Fischlin. The representation problem based on fac-
toring. In Bart Preneel, editor, CT-RSA, volume 2271 of Lecture Notes
in Computer Science, pages 96–113. Springer, 2002.

[FKM+] E. Fujisaki, T. Kobayashi, H. Morita, H. Oguro, T. Okamoto, S. Okazaki,
D. Pointcheval, and S. Uchiyama. EPOC: Efficient probabilistic public-
key encryption. Submitted to ISO and NESSIE.

[FOM91] A. Fujioka, T. Okamoto, and S. Miyaguchi. ESIGN: An efficient digital
signature implementation for smart cards. In Donald W. Davies, editor,
Advances in Cryptology – Proceedings of EUROCRYPT 1991, volume
547 of Lecture Notes in Computer Science, pages 446–457, Berlin, 1991.
Springer-Verlag.

[Gen04] R. Gennaro. Multi-trapdoor commitments and their applications to
proofs of knowledge secure under concurrent man-in-the-middle attacks.
In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes
in Computer Science, pages 220–236. Springer, 2004.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28:270–299, 1984.

[KR00] H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS. The
Internet Society, 2000.

[Len87] H.W. Lenstra, Jr.. Factoring integers with elliptic curves. Annals of
Mathematics, 126:649–673, 1987.

Paillier’s Cryptosystem Modulo p2q and Trapdoor Commitment Schemes 309

[LL93] A.K. Lenstra and H.W. Lenstra, Jr., editors. The Development of the
Number Field Sieve, volume 1554 of Lecture Notes in Mathematics.
Springer-Verlag, 1993.

[NS98] D. Naccache and J. Stern. A new public key cryptosystem based on
higher residues. In Proceedings of the 5th ACM Conference on Computer
and Communications Security (CCS-1998), pages 59–66, New York,
1998. ACM Press.

[OP00] T. Okamoto and D. Pointcheval. EPOC-3 - efficient probabilistic public-
key encryption, 2000. Submitted to IEEE P1363.

[OU98] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure
as factoring. In Kaisa Nyberg, editor, Advances in Cryptology – Proceed-
ings of EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer
Science, pages 308–318. Springer-Verlag, 1998.

[Pai99] P. Paillier. Public key cryptosystems based on composite degree residu-
osity classes. In Jacques Stern, editor, Advances in Cryptology – Proceed-
ings of EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer
Science, pages 223 – 238. Springer-Verlag, 1999.

[PO96] R. Peralta and E. Okamoto. Faster factoring of integers of
a special form. TIEICE: IEICE Transactions on Communica-
tions/Electronics/Information and Systems, E79-A(4):489–493, 1996.

[ST01] A. Shamir and Y. Tauman. Improved online/offline signature schemes.
In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Com-
puter Science, pages 355–367. Springer, 2001.

[Tak98] T. Takagi. Fast RSA-type cryptosystem modulo pkq. In Hugo Krawczyk,
editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science,
pages 318–326. Springer, 1998.

[Tak04] T. Takagi. A fast RSA-type public-key primitive modulo pkq using
Hensel lifting. IEICE Transactions, Vol.E87-A(1):94–101, 2004.

A Some Proofs

A.1 Proof of Corollary 2

Define d = n−1 mod ϕ(pq) (note that gcd(n, ϕ(pq)) = 1). Then d can be used
as a trapdoor to invert fpq, because the pre-image of y ∈ N-R(n) is computed
as f−1

pq (y) = yd mod pq. The one-wayness is a consequence of Theorem 1: To
factor n with access to an oracle that inverts fpq, we choose an element x ∈ Z×

n

at random and query the oracle on xn mod n (note that the distributions of
{xn mod n|x ∈ Z×

n } and {xn mod n|x ∈ Z×
pq} are identical). With probability

1 − 1/p we have x > pq and the oracle will answer x′ ∈ Z×
pq with x ∼ x′, x �=

x′ mod n. Thus gcd(x− x′, n) = pq reveals the factorization of n. 	

A.2 Proof of Theorem 2

1. Straightforward (use (r + in)n =
∑n

j=0

(
n
j

)
rn−j(in)j = rn mod n2).

2. Straightforward computation.

310 K. Schmidt-Samoa and T. Takagi

3. We have

f(r + ipq,m− ir−1pq) = (r + ipq)n(1 + (m− ir−1pq)n)

=

⎛⎝ 3∑
j=0

(
n

j

)
rn−j(ipq)j

⎞⎠ (1 + (m− ir−1pq)n)

=
(
rn + nrn−1ipq +

n(n− 1)
2

rn−2(ipq)2 +
n(n− 1)(n− 2)

6
rn−3(ipq)3

)
(1 + (m− ir−1pq)n)

= (rn + nrn−1ipq)(1 + (m− ir−1pq)n)

= rn + n(rn−1ipq + rnm− rnir−1pq) = rn(1 +mn) = f(r,m) mod n2

Note that the second step is true, because n2 = p4q2 is an integer divisor
of (ipq)j for j > 3. The fourth step holds because n divides n(n− 1)/2 and
n(n−1)(n−2)

6 as n is odd and either n− 1 or n− 2 is a multiple of 3.

4. - 7. are more or less immediate consequences of 3. and 2.
	

A.3 Proof of Theorem 3

1. See Theorem 2(5).
2. See Theorem 2(7).
3. Let OOW be an oracle that answers m ∈ {0, 1}l on the input c = rn(1 +

mn) mod n2 for a r ∈ Z×
n with a non-negligible advantage ε. We show how

to factor n with access to that oracle. First, we choose m′ ∈ Zn and r ∈
Z×

n at random and build the fake ciphertext c′ = rn(1 + m′n) mod n2. We
distinguish two cases:
Case 1: We have |m′ mod pq|2 ≤ l. From Theorem 2(3), we conclude that in

this case the distribution of c′ is exactly the same as the distribution of
the original ciphertexts. Moreover, we conclude that c′ = Epk(r′,m′ mod
pq) for an appropriate r′ ∈ Z×

n with r = r′ mod pq. Thus, OOW (c′) will
answer m′

pq := m′ mod pq. With probability 1 − 1/p, we have m′ > pq
and thus we factor n via gcd(n,m′ −m′

pq) = pq.
From the definition of l, we conclude that this case holds with probability
greater than 1/2.

Case 2: We have |m′ mod pq|2 > l. In this case, c′ is not an element of the
regular ciphertext space and we cannot predict the oracle’s behavior.

Therefore, we factor the modulus with advantage at least ε
2 (1 − 1/p).

	

A.4 Proof of Theorem 4

To prove that the proposed scheme is IND-CPA under the DCRA, we construct a
distinguisher D that breaks DCRA using the adversaryASS against the semantic

Paillier’s Cryptosystem Modulo p2q and Trapdoor Commitment Schemes 311

security of the proposed scheme as a subroutine. Let x be an instance of the
DCR problem. First, D runs ASS

1 on the pubic key and obtains two different
messages m0,m1 ∈ Z×

pq. Then, D chooses a bit b ∈ {0, 1} at random, computes
c = x(1 + mbn) mod n2, and runs ASS

2 on the triple (c,m0,m1). D returns 1
(indicating that x is a n-th residue) if ASS

2 answers b, otherwise, D returns 0.
If x is an n-th residue, than c is a valid cipher of m0 (distributed as original
ciphertexts), otherwise c is a random element of Z×

n2 . Thus, the advantage of D
equals ε/2, where ε is the advantage of ASS .
To prove the opposite direction, we sketch how a distinguisher D of DCRA
with non-negligible advantage ε can be used to break the semantic security of
the proposed scheme. The adversary ASS works as follows: ASS

1 chooses two
different messages m0,m1 ∈ Z×

pq and a bit b ∈ {0, 1} at random. Given the
challenge c ∈ Z×

n2 , ASS
2 queries D on c(1 − mbn) mod n2 and returns b if the

answer is 1, 1− b otherwise. With a similar argumentation as above we conclude
that the advantage of ASS equals ε/2. 	

A.5 Proof of Theorem 5

1. Extremely fast weak altering: From Theorem 1, we conclude that m′||r′ =
m||r mod pq is equivalent to hashhk(m′, r′) = hashhk(m, r), thus r = 2l+1

(m′−m)+ r′ mod pq yields the desired result. r can be computed extremely
fast as multiplication with 2l+1 is just a bit shift operation.

2. Strong altering: Let h be a possible hash value and let m be the target
message. From Corollary 2, we conclude that r = h1/n−2l+1m mod pq leads
to h = hashhk(r,m) = (m||r)n = (2l+1m+ r)n mod n.

3. Uniformity of altering: The considerations above show that for any hash
value h and any message m there is a unique r ∈ Zpq with h = hashhk(r,m).
Consequently, uniformity holds for both altering algorithms.

4. Collision resistance under the p2q factorization assumption: As
hashhk(r,m) = hashhk(r′,m′) is equivalent to (2l+1m + r)n = (2l+1m′ +
r′)n mod n, we have 2l+1m+ r = 2l+1m′ + r′ mod pq using Theorem 1. Due
to the length-restrictions of m and r, it is impossible that this equality holds
modulo n, thus we must have gcd(m||r −m′||r′, n) = pq.

	

A.6 Proof of Theorem 6

1. Strong altering: Let h be a possible hash value and let m be the target
message. We show how to construct randomness s ∈ Zpq, r ∈ Z×

n with h =
hashhk(r, s,m) = (1 + (m||s)n)rn = (1 + n(2l+1m + s))rn mod n. From
Theorem 2(3), we know that there are rpq ∈ Z×

pq,mpq ∈ Zpq, 0 ≤ i < p with
h = (1 + (mpq − ir−1

pq pq)n)(rpq + ipq)n mod n2. The values rpq and mpq can
be computed from h: rpq = h1/n mod pq,mpq = Ln(r−n

pq h mod n2) mod pq.
Thus, to achieve h = hashhk(s, r,m), we have to find r ∈ Z×

n , s ∈ Zpq, 0 ≤
i < p with

312 K. Schmidt-Samoa and T. Takagi

2l+1m+ s = mpq − ir−1
pq pq mod n (1)

r = rpq + ipq mod n (2)

The first equation uniquely determines s mod pq and i. From (2), one im-
mediately computes r mod n.

2. Weak altering: It is immediate from the considerations above that the follow-
ing procedure is correct: Given m,m′ ∈ {0, . . . , [n]k−l−1−1}, r ∈ Z×

n , s ∈ Zpq

the weak altering algorithm computes r′ ∈ Z×
n , s

′ ∈ {0, 1}l+1 by solving the
following system of modular equations:

2l+1m+ s = 2l+1m′ + s′ − ir−1pq mod n
r = r′ + ipq mod n

3. Collision resistance under the p2q factorization assumption: First note that
hashhk(r, s,m) = hashhk(r′, s′,m′) is equivalent to (1 + n(2l+1m + s))rn =
(1 + n(2l+1m′ + s′))r′n mod n2. From Theorem 2(3), we therefore conclude

2l+1m+ s = 2l+1m′ + s′ − ijpq mod n for some 0 ≤ i, j < p and
r = r′ + ipq mod n

From the length restrictions of m,m′, s and s′, we conclude that i = 0 is
impossible. Thus we can factor n by computing gcd(r − r′, n) = pq.

4. Uniformity of altering: From the consideration about strong altering we con-
clude that for each message m and each hash value h there is exactly one
s ∈ Zpq and one r ∈ Z×

n satisfying hashhk(r, s,m) = h. Thus the uniformity
property trivially holds for both altering algorithms.

5. The proposed scheme possesses the on-line/off-line property: After the mes-
sage m is retrieved, only one modular multiplication has to be performed,
as the computation of rnn mod n2 can be done in advance.

	

B The Hardness of the p2q Factoring Problem

Recently, the use of p2q type moduli (or more general pkq) attracted much at-
tention in cryptography. For example, the modulus p2q is used in the famous
family of EPOC cryptosystems (based on Okamoto-Uchiyama homomorphic en-
cryption) [FKM+, OU98, OP00] and in the signature scheme ESIGN [FOM91],
whereas moduli pkq can be utilized to enhance the decryption speed in RSA-type
encryption schemes [Tak98, Tak04].

Numerous researchers tried to exploit the special form of those integers to find
faster factorization methods [AM94, PO96, BDHG99]. But unless the exponent
k in pkq is not too large, the most efficient methods for factoring n = pkq are still
Lenstra’s elliptic curve method (ECM) [Len87], its improvements [PO96], and
the number field sieve (NFS) [LL93]. More precisely, if the size of the smallest
prime factor of n exceeds some bound (about 200 bits), the NFS is the method

Paillier’s Cryptosystem Modulo p2q and Trapdoor Commitment Schemes 313

of choice. Consequently, if n is sufficiently large (i.e. 1024 bits), the special form
n = p2q causes no problem, because in contrast to ECM the runtime of the NFS
only depends on the size of n, not on the size of the smallest prime factor of n.
Concluding, although it is not known if factoring n = p2q is more tractable than
factoring n = pq or not, the p2q factorization assumption is well-investigated
and therefore can be regarded as fairly weak.

Homomorphic Cryptosystems Based on
Subgroup Membership Problems

Kristian Gjøsteen

Department of Telematics,
Norwegian University of Science and Technology, 7491 Trondheim, Norway

kristian.gjosteen@item.ntnu.no

Abstract. We define an abstract subgroup membership problem, and
derive a number of general results for subgroup membership problems.
We define an homomorphic public key cryptosystem based essentially on
a subgroup membership problem, and show that this abstract construc-
tion gives a uniform description of many famous cryptosystems, such
as ElGamal, Goldwasser-Micali and Paillier. We show that the abstract
theory gives new insights into older results, and allows us to derive new
results.

Keywords: public key encryption, homomorphic cryptosystems, sub-
group membership problem.

1 Introduction

A cryptosystem is homomorphic with respect to some operation ∗ on the message
space if there is a corresponding operation ∗′ on the ciphertext space such that
for encryptions c, c′ of messages m,m′, c ∗′ c′ is an encryption of m ∗m′.

Goldwasser and Micali [9] introduced the concept of semantic security and
described a semantically secure cryptosystem based on the quadratic residue as-
sumption. It was later remarked that this cryptosystem really was homomorphic
with respect to addition in Z2.

ElGamal [8] introduced an homomorphic cryptosystem based on the Diffie-
Hellman key exchange protocol [7]. It has later been remarked that this cryp-
tosystem is semantically secure under the Decision Diffie-Hellman assumption.

Naccache and Stern [11] introduced an homomorphic cryptosystem based on
“higher residues” in Z∗

n, where n was a product of two primes of a special form.
Okamoto and Uchiyama [13] described an homomorphic cryptosystem over Z∗

n

using a modulus of the form n = p2q. Paillier [14] introduced an homomorphic
cryptosystem based on the ring Zn2 , where n was simply an RSA modulus.

It turns out that all of these cryptosystems are simply special cases of a
cryptosystem based on a general subgroup membership problem [5]. We discuss
some general theory for subgroup membership problems in Sect. 2, then we
describe the cryptosystem in Sect. 3. We give a catalogue of known subgroup
membership problems in Sect. 4, and describe some new results in Sect. 5.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 314–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Homomorphic Cryptosystems Based on Subgroup Membership Problems 315

The main achievement in this paper is an abstract construction for a homo-
morphic cryptosystem. From this construction, we derive as special cases many
famous cryptosystems. The use of abstract descriptions to focus on the interest-
ing points of a cryptosystem is a common technique, see for example [3]. The
novel arguments in Sect. 2.1 and in Sect. 5 show that our abstract construc-
tions gives us new insights into old results, and can reduce the analysis of new
constructions to the analysis of older, simpler constructions.

2 Subgroup Membership Problems

A subgroup membership problem consists of a finite abelian group G along with
a proper, non-trivial subgroup K. The problem is to decide if a group element
x ∈ G is in K or in G \K. We denote this subgroup membership problem by
SM(G,K), and the advantage of an adversary A is

AdvSM(G,K)
A = |Pr[A(G,K, x) = 1 | x r← K] − Pr[A(G,K, x) = 1 | x r← G \K]|.

When we leave out the adversary, we consider the maximal advantage of all
algorithms using less than some fixed amount of resources.

An alternative description of the subgroup membership problem is that given
a representative x of a residue class in the factor group G/K, the adversary must
decide if this residue class is the neutral element in G/K. (Note that the residue
class xK = 1K if and only if x ∈ K.)

We note some general facts about subgroup membership problems.
Let SM(G,K) be such that the factor group G/K is cyclic. If |G/K| is a

known prime �, sampling a uniformly from {1, . . . , � − 1} gives us a random
automorphism x �→ xa on G/K.

If |G/K| contains no small primes, then an element chosen uniformly at
random from G/K is, except with negligible probability, a generator. Sampling
a uniformly from {1, . . . , 2N} (for some sufficiently large N) therefore gives us,
except with negligible probability, a representative xa for a residue class in G/K
chosen uniformly at random.

If we are given an element x, we sample a as above and x′ uniformly from
K to get xax′. If x is in K, then xax′ is an element of K chosen uniformly at
random. If x is in G\K, then xax′ is (except with at most negligible probability)
a random representative of a random non-neutral element in G/K, that is, xax′

is a random element in G \K.
Therefore, SM(G,K) is random self-reducible.
Note the following useful extension of this idea. Let SM(G,K) and SM(G′,K′)

be subgroup membership problems. If there is a probabilistic algorithm that on
input of x sampled uniformly from K outputs an element of K ′, and on input of
x sampled uniformly from G \K outputs an element of G′ \K, with the output
distribution in both cases uniform, then

AdvSM(G′,K′) ≤ AdvSM(G,K) .

The following theorem will be useful for the analysis in Sect. 4 and 5.

316 K. Gjøsteen

Theorem 1. Let SM(G,K) be a subgroup membership problem, and let K ′ be a
proper, non-trivial subgroup of K. Then

AdvSM(G,K′) ≤ |G| − |K|
|G| − |K ′|AdvSM(G,K) +

|G|(|K| − |K ′|)
|K|(|G| − |K ′|)AdvSM(K,K′) .

Proof. Any adversaryA against SM(G,K′) is also an adversary against SM(G,K)

and SM(K,K′). Define wt(S) = Pr[A(G,K, x) = 1|x ← S]. A tedious calculation
shows that

wt(G \K ′) − wt(K ′) =
|G| − |K|
|G| − |K ′| (wt(G \K) − wt(K)) +

|G|(|K| − |K ′|)
(|G| − |K ′|)|K| (wt(K \K ′) − wt(K ′)).

Taking absolute values, the theorem follows. 	

A problem related to the subgroup membership problem is the splitting prob-

lem. A splitting problem consists of a finite abelian group G along with two
proper, non-trivial subgroups K and H with trivial intersection, and such that
G = KH .

It is easy to show that the map from K × H to G given by (x, y) �→ xy
is a group isomorphism. Denote the inverse isomorphism by σ : G → K × H .
The splitting problem is, given z ∈ G, compute σ(z). We often say that x is the
projection of z on K, and y is the projection of z on H . We denote the splitting
problem by SP(G,K,H).

If gcd(|K|, |H |) = 1, anyone who knows |K| and |H | can compute σ by first
computing d ≡ |H |−1 (mod |K|) and then σ(z) = (zd|H|, z1−d|H|).

If algorithms are available for sampling K and H uniformly at random, the
splitting problem is self-reducible, since the splitting of z can be recovered from
the splitting of zxy, where (x, y) ∈ K ×H .

The splitting problem SP(G,K,H) is hard if one of the subgroup membership
problems SM(G,K) and SM(G,H) are hard. There exists group structures where
the splitting problem is believed to be hard, while the subgroup membership
problem is easy [10].

Let SP (G,K,H) be a splitting problem such that H is cyclic, and let g be a
group element such that its residue class generates G/K. Let λ : G → Z|H|
be the group homomorphism defined by λ(g) = 1, and kerλ = K. Sometimes,
it will be convenient to regard λ as a map G → Z, with the requirement that
0 ≤ λ(z) < |H | for all z ∈ G.

The subgroup discrete logarithm problem is then, given z ∈ G, compute λ(z).
We denote this problem by SDL(G,K,H,g). An alternative point of view is to con-
sider the subgroup discrete logarithm problem as the discrete logarithm problem
in the factor group G/K. We shall return to that in Sect. 2.1.

If g ∈ H , the subgroup discrete logarithm problem is at least as hard as
the splitting problem, since the splitting can be recovered from the subgroup
discrete logarithm via (zg−λ(z), gλ(z)).

Homomorphic Cryptosystems Based on Subgroup Membership Problems 317

For a given splitting problem SP(G,K,H) with H cyclic, if there is some
efficient algorithm for computing discrete logarithms in the subgroup H , the
splitting problem is at least as hard as the subgroup discrete logarithm problem.

2.1 Complexity Theoretic Results

We discuss some complexity-theoretic results for the subgroup discrete logarithm
problem. To simplify the exposition, we shall simply assume that the problem
instance SDL(G,K,H,g) has been chosen according to a parameter τ , and when
we say polynomial, we really mean polynomial in τ . The words significant and
negligible have their usual meanings in this context and relate to τ .

The main idea in this section is to observe that the subgroup discrete log-
arithm problem is the same as the discrete logarithm problem in the factor
group G/K.

The main obstacle to computing discrete logarithms in the factor group,
is that testing two residue class representatives for equality is equivalent to the
subgroup membership problem. If there is an algorithm for testing residue classes
for equality, we can apply several standard discrete logartihm algorithms to the
subgroup discrete logarithm problem.

We note that some discrete logarithm algorithms, such as Shank’s Baby-step
Giant-step, requires a canonical representative for the residue classes. These
algorithms cannot be used.

Theorem 2. Let SDL(G,K,H,g) be a subgroup discrete logarithm problem such
that |H | = �k for some prime �, where � is polynomial. Let H ′ be the unique
subgroup of H of order �. If there is a polynomial-time algorithm for solving
the subgroup membership problem SM(KH′,K) with significant advantage, then
there is a polynomial-time algorithm for solving SDL(G,K,H,g) with significant
advantage.

Proof. The basic idea is that of �-adic computation, as in the Pohlig-Hellman
algorithm for computing discrete logarithms.

Let z ∈ G. Note that z�k−1
g−�k−1m0 is an instance of SM(KH′,K) for all

integer m0. By the self-reducibility of the subgroup membership problem, we can
solve this problem with an advantage arbitrarily close to 1 (using a majority-
vote algorithm). Therefore, we can decide if z�k−1

g−�k−1m0 ∈ K = kerλ, for
m0 = 0, . . . , �− 1. This will give us m0 such that λ(z) ≡ m0 (mod �)

Now we know that zg−m0 has order at most �k−1 in G/K, so we test
z�k−2

g−�k−2(m0+m1�) for m1 = 0, . . . , � − 1. This gives us m1 such that λ(z) ≡
m0 +m1� (mod �). In this way we recover λ(z).

It is easy to show that parameters for the above algorithm can be selected
to get a polynomial-time algorithm with significant advantage. 	

We can also use Pollard’s ρ-algorithm to compute discrete logarithms in
the factor group. Combined with the above algorithm, we get a more efficient
algorithm.

318 K. Gjøsteen

Next, we note that hard core bit results for the discrete logarithm problem
also translate into hard core bit results for the subgroup discrete logarithm
problems.

Theorem 3. Let SDL(G,K,H,g) be a subgroup discrete logarithm problem, let
d > 1 be an integer relatively prime to |H |, and let D be a publicly known
integer such that d ≡ D−1 (mod |H |). If there is a polynomial-time algorithm for
computing λ modulo d with a significant advantage, then there is a polynomial-
time algorithm for solving SDL(G,K,H,g) with significant advantage.

This theorem was proved in [4] for the special case when d = 2. In the
abstract setting, the standard proof that the least significant bit of the discrete
logarithm problem is hard core suffices.

When d > 2, one must use a multinomial distribution instead of binomial,
which somewhat complicates the proof and weakens the bounds, but the essential
method is the same. We therefore omit the proof also in this case.

We also make the (novel) observation that any inverse to d is acceptable, so
one does not need to know |H | to apply this theorem, only a number n such that
|H | divides n and d does not. In this case, one must guess |H | approximately
which weakens the result somewhat.

Finally, we remark that polynomial-time algorithms for computing the ith
d-adic digit of λ gives polynomial-time algorithms for computing λ when the
answer is known to be less than d�logd |H|�−i. For d = 2, it can be shown that
this implies the simultaneous security of all the binary digits up to the ith. It is
reasonable to look upon this as a limiting process, where the limit is the subgroup
membership problem. There, it is hard to compute λ(z) (ie. producing evidence
for a given value of λ(z)), even when λ(z) = 0.

Unfortunately, the bounds in these bit security results are not sharp. Even if
there are no algorithms for solving the underlying hard problem with a significant
probability using a fixed amount of resources, there may be algorithms that
compute the bits with significant probability using the same fixed amount of
resources.

3 Cryptosystems

A public key cryptosystem consists of three algorithms: a key generation algo-
rithm that outputs a public and a private key; an encryption algorithm that takes
a public key and a message as input and outputs a ciphertext; and a decryption
algorithm that takes a ciphertext and a private key as input and outputs a mes-
sage. We require that encryptions of any message always decrypt to the same
message.

The real-or-random game is played between a simulator and an adversary
against the cryptosystem. First, the simulator generates a public key and gives it
to the adversary. The adversary produces a single message. The simulator either
encrypts this message, or a different message chosen uniformly at random. The

Homomorphic Cryptosystems Based on Subgroup Membership Problems 319

adversary receives the resulting ciphertext, and must guess whether or not it
decrypts to the message he chose.

A public key cryptosystem is said to be semantically secure if no compu-
tationally bounded adversary can learn anything about the decryption from a
ciphertext that he did not already know before he saw the ciphertext. It can be
shown that this notion is equivalent to saying that no computationally bounded
adversary can win the real-or-random game with probability significantly differ-
ent from 1/2.

A weaker notion of security is one-way. The adversary is given a public key
and an encryption of a random message, and must recover that message.

Let SP(G,K,H) be a splitting problem, and let SM(G,K) be the corresponding
subgroup membership problem. Let H ′ be a group isomorphic to H . The basic
idea for this cryptosystem is that H should hold the message, and K should hold
noise that conceals the message.

We need three maps, π : G → H , f : H ′ → G and f ′ : H → G. The map
π is the projection on H : if σ(z) = (x, y), then π(z) = y. This means that π
is a group homomorphism. It is also an endomorphism on G and induces the
identity map on the factor group G/K.

The map f ′ should be a group isomorphism. Note that H is isomorphic to
the factor group G/K (the isomorphism is simply x �→ xK), so f ′ induces an
isomorphism f̄ ′ : G/K → H ′.

The map f need not be a group homomorphism, but it induces a map f̄ :
H ′ → G/K. The induced map should be a group isomorphism, and it should be
the inverse of f̄ ′. Given a description of SP(G,K,H) and H ′, it should be easy to
find a description of f .

We describe a cryptosystem based on the group structure and corresponding
maps. The key generation algorithm is a probabilistic polynomial-time algorithm
that selects a group structure SP(G,K,H), group H ′, along with a description of
the splitting map σ : G → K ×H , and maps f : H ′ → G and f ′ : H → H ′. The
public key is (SP (G,K,H), f), the private key is (SP(G,K,H), f

′, σ).
The encryption algorithm takes as input the public key and a message m ∈

H ′. It then uses the subgroup membership problem’s sampling algorithms to
sample a random element r of K and outputs the ciphertext rf(m).

The decryption algorithm takes as input the private key and a ciphertext
c ∈ G. It uses the splitting map to find σ(c) = (x, y), and outputs the message
f ′(y) (alternatively, f ′(π(c))).

Consider the following diagrams, where E denotes encryption:

G

π

G/K

idH ′

E

⇒ H ′

f̄

H
f ′

G/K
f̄ ′

To see that encryptions of m ∈ H ′ always decrypt to m, we look at the factor
group. The encryption algorithm just computes the induced map f̄ : H ′ → G/K,

320 K. Gjøsteen

randomising the residue class representative. The map π is simply the identity
on G/K, so π◦ f̄ = f̄ . Finally, f̄ ′ : G/K → H ′ is an isomorphism and the inverse
of f̄ , so f̄ ′ ◦ π ◦ f̄ is the identity on H ′.

By the same argument, it is clear that the cryptosystem is homomorphic. The
operation on messages is the group operation in H ′, the operation on ciphertexts
is the group operation in G.

Theorem 4. The above cryptosystem is semantically secure if and only if the
subgroup membership problem SM(G,K) is hard.

Proof. We show that adversaries who win the real-or-random game can be turned
into algorithms that distinguish K, and vice versa.

Suppose we have an adversary that attacks the cryptosystem, and that we
are given a subgroup membership problem SM(G,K) along with a group element
z. We simulate the public key by finding (some) f and H ′ (which we can do by
assumption) and give the resulting public key to the adversary. The adversary
gives us a message m. We then give the adversary the ciphertext zf(m). If
z ∈ K, this will be an encryption of m. If z �∈ K, then the ciphertext will be an
encryption of a random message. Therefore, the adversary’s answer gives us the
answer to the subgroup membership problem, whenever the adversary is correct.

Second, suppose we have an adversary against the subgroup membership
problem. Our adversary outputs the identity (in H ′) as the message, and receives
a ciphertext z. If z decrypts to the identity, then z ∈ K, otherwise z �∈ K, and
in both cases, the distribution of z is the correct uniform distribution. The
adversary against the subgroup membership problem then decides if z decrypts
to the identity or not. 	

Theorem 5. If the map f in the above cryptosystem satisfies f(H ′) = H, then
the cryptosystem is one-way if and only if the splitting problem SP(G,K,H) is
hard.

Suppose we have a subgroup discrete logarithm problem SDL(G,K,H,g), along
with an algorithm for computing discrete logarithms in H . We can then specify
an instantiation of the above cryptosystem. The message group H ′ is simply
Z|H|. The map f : Z|H| → G is given by f([m]) = gm, where the representative
for the residue class [m] is chosen according to some (arbitrary) rule. The map
f ′ : H → Z|H| is simply the discrete logarithm map.

The following theorem holds.

Theorem 6. The above cryptosystem instantiated as above with a subgroup dis-
crete logarithm problem SDL(G,K,H,g) is one-way if and only if the subgroup
discrete logarithm problem is hard.

Note that sometimes, |H | is not known. This is not a problem.

Homomorphic Cryptosystems Based on Subgroup Membership Problems 321

4 Catalogue

We shall discuss several concrete subgroup membership problems, discuss the
related splitting problems or subgroup discrete logarithm problems. When nec-
essary, we also discuss the sampling algorithms, the splitting map σ, the genera-
tor g, the maps f , f ′ and the group H ′ required to instantiate the cryptosystem
described in Sect. 3.

Except for a variant of the higher residue problem, all of the group structures
described in this section have previously appeared in the literature.

There are other interesting subgroup membership problems, but since they
do not fit the framework in Sect. 3, we do not include them.

Diffie-Hellman. Let L be a prime-ordered group with generator g, and let w be
an integer relatively prime to the group order. Let G = L × L. The subgroup
K of G is generated by the element (g, gw) The subgroup H is generated by
(1, g). The subgroup membership problem is called Decision Diffie-Hellman, the
splitting problem is called Computational Diffie-Hellman.

The splitting map σ is given by σ(x, y) = ((x, xw), (1, yx−w)). The group H ′

is simply L, with the obvious maps f and f ′. The resulting cryptosystem was
proposed by ElGamal [8].

It is worth noting that the Diffie-Hellman problems have an additional self-
reducibility property, in that the subgroup K can be changed. This means that
all such subgroups are equally hard to distinguish. See [7,2] for further details.

Quadratic Residues. Let p and q be primes congruent to 3 modulo 4, and let
n = pq. Let Jn be the subgroup of Z∗

n with Jacobi symbol 1, and let Qn be
the subgroup of quadratic residues of Jn. Then we have a subgroup member-
ship problem SM(Jn,Qn) and a splitting problem SP(Jn,Qn,〈−1〉). This is the
Quadratic Residue problem, which first appeared in [9].

Since 〈−1〉 has order 2, the subgroup membership problem and the splitting
problem are equivalent.

The splitting map can be computed using the Legendre symbol modulo either
p or q. Since H = {1,−1}, we can either choose H ′ = H or H ′ = Z2, with the
obvious maps.

Higher Residues. Let p and q be primes congruent to 3 modulo 4, and let n = pq.
Let Qn be the subgroup of Z∗

n of quadratic residues. If c is an odd prime such
that c divides p−1, but not q−1, we get, in an analogue of the quadratic residue
problem, the higher residue problem, where H is a subgroup of Qn of order c.
This was first investigated by Cohen Benaloh for non-prime but smooth c ([1]
and the references therein). We get a subgroup membership problem, a splitting
problem and a natural subgroup discrete logarithm problem (discrete logarithms
are computed using Pohlig-Hellman).

The natural generalisation is to let p = 2ac+ 1, q = 2bd+ 1 and n = pq, a, b
prime, c, d smooth, such that gcd(ac, bd) = gcd(ab, cd) = 1. This was investigated
by Naccache and Stern [11]. We let G = Qn, K be the unique subgroup of order

322 K. Gjøsteen

ab and H be the subgroup of order cd. It is natural to assume that cd is publicly
known.

Non-trivial elements of H immediately lead to a factorisation of the modulus
n, so the element g should be a generator for Qn.

Under the assumption that c and d are known (not only cd), Naccache and
Stern [11] proposed an attack that required approximately

O(n1/2/(cd)2) (1)

work. This means that if cd is too large, there are better algorithms for factoring
the modulus than the general factoring algorithms.

The basic idea of the attack is as follows. We have that n = 4abcd+ 2(ac+
bd) + 1. Then we get that

n− 1 ≡ 2ac (mod d) and n− 1 ≡ 2bd (mod c).

In other words, knowledge of c and d gives us some knowledge about a and b
that speeds up a search. If c and d are sufficiently small, factoring n seems to be
the best attack on the subgroup membership problem SM(G,K).

We sketch a variant of this problem in Appendix A.

Okamoto-Uchiyama. Let p and q be primes such that gcd(pq, φ(pq)) = 1, and
let n = p2q. It is easy to see that Z∗

n � Z∗
p × Z∗

q × Zp, where Zp is taken to be
an additive group. The group G is Z∗

n. The subgroup isomorphic to Z∗
p × Z∗

q is
K and the subgroup isomorphic to Zp is H .

Considering the modulus p2, we find that

(1 + p)a ≡ 1 +
(
a

1

)
p+

(
a

2

)
p2 · · · ≡ 1 + ap (mod p2),

so (1 + p) has order p modulo p2, and computing discrete logarithms in H is
easy.

Sampling elements from K can be done by sampling uniformly from G, and
then raising to the nth power.

Anyone who can solve the subgroup discrete logarithm problem, can recover
the order of H , which is p, so he can factor n. It is not known if solving the
subgroup membership problem is equivalent to factoring.

This group structure and the resulting cryptosystem was first proposed by
Okamoto and Uchiyama [13].

Composite Residuosity. This subgroup membership problem was first proposed
by Paillier [14], who improved on the previous work by Okamoto and Uchiyama.
Our description also incorporates several later simplifications [6].

Let n = pq be such that gcd(n, φ(n)) = 1. Let G = Z∗
n2 . It is clear that

|G| = φ(n)n. Let K be the subgroup of order φ(n), and let H be the subgroup
of order n.

As above,

(1 + n)a ≡ 1 +
(
a

1

)
n+

(
a

2

)
n2 · · · ≡ 1 + an (mod n2).

Homomorphic Cryptosystems Based on Subgroup Membership Problems 323

From this, we see that discrete logarithms are easy to compute in H , and that
1 + n generates H .

The subgroup membership problem SM(G,K) and the subgroup discrete log-
arithm problem SDL(G,K,H,1+n) are called the Decision and Computational
Composite Residuosity problems.

Damg̊ard and Jurik [6] describe a generalised group structure, using G = Z∗
ns+1

for some s ≥ 1. As above, K is the subgroup of order φ(n) and H is the subgroup
of order ns. They get a subgroup membership problem SM(G,K), and they show
that it does not get much easier as s increases. We sketch the proof.

Let Ks and Hs be the subgroups of Z∗
ns+1 isomorphic to Z∗

n and Zns , respec-
tively. We shall proceed by induction, using the following diagram:

KsHs

Ks−1Hs−1 KsH
ns−1

s K1H1

Ks−1 Ks K1

It is easy to see that there exists a group homomorphism K1H1 → KsH
ns−1

s

that takes K1 into Ks. Therefore, any distinguisher for SM(KsHns−1
s ,Ks)

can be
applied to SM(K1H1,K1).

Likewise, there exists an algorithm that takes Ks−1Hs−1 into KsHs such
that Ks−1 goes to KsH

ns−1

s . Again, this allows us to apply any distinguisher for
SM(KsHs,KsHns−1

s) to SM(Ks−1Hs−1,Ks−1).
Theorem 1 says that if we can solve SM(KsHs,Ks), then we can solve either

SM(KsHs,KsHns−1
s) or SM(KsHns−1

s ,Ks).
Now we consider only distinguishing algorithms up to a certain fixed cost.

Let εi be the maximal advantage of these algorithms against the subgroup mem-
bership problem SM(KiHi,Ki). By Theorem 1 and the above discussion, we get
that (ignoring some coefficients negligibly different from 1) εi ≤ εi−1 + ε1, or
εs ≤ (s − 1)ε1. In other words, the advantage increases at most linearly as s
increases.

5 New Results

Let p = 2ac+ 1, q = 2bd+ 1 and n = pq, p, q, a and b prime, c and d smooth,
such that gcd(ac, bd) = gcd(ab, cd) = gcd(n, φ(n)) = 1. Let G be the subgroup
of Z∗

n2 with Jacobi symbol 1. Let K be the unique subgroup of order 2ab, and
H be the unique subgroup of order cdn.

Let g′ be an element in Z∗
n of order abcd. Then g = −(g′)n(1 + n) computed

in Z∗
n2 is an element of order 2abcdn, that is, it generates G. We also note that

324 K. Gjøsteen

it is easy to compute discrete logarithms in H , using a combination of Pohlig-
Hellman and the Paillier method. This gives us a natural subgroup discrete
logarithm problem SDL(G,K,H,g).

Since |H | = cdn, this subgroup membership problem gives us a cryptosystem
with higher bandwidth (message length divided by ciphertext length) than the
Paillier cryptosystem. What can we say about the security of the cryptosystem?
By Theorem 4, it is sufficient to consider the subgroup membership problem.

Theorem 7. The above subgroup membership problem is hard if the Decision
Composite Residuosity problem and the higher residue problem are both hard.

Proof. Let H ′ be the subgroup of order cd, and let H ′′ be the subgroup of order
n. By Theorem 1, SM(G,K) is hard if SM(G,KH′) and SM(KH′,K) both are
hard.

The former is the Decision Composite Residuosity problem. It is easy to see
that the map x �→ xn mod n2 takes the higher residue problem to SM(KH′,K).
Reduction modulo n takes SM(KH′,K) to the higher residue problem. Therefore,
SM(G,K) is hard if and only if both the Decision Composite Residuosity problem
and the higher residue problem are hard. 	

Alternatively, if we are wary of trusting either problem fully, we can secret-
share our message between the two subgroups H ′ and H ′′. An adversary must
then solve both the Decision Composite Residuosity problem and the higher
residue problem to break the cryptosystem. This variant is no longer homomor-
phic, however.

Paillier [14] also proposed a variant of his cryptosystem using (essentially) a
subgroup of Z∗

n. Let p = 2ac + 1, q = 2bd + 1 and n = pq, p, q, a, b, c and d
prime, such that gcd(ac, bd) = gcd(ab, cd) = gcd(n, φ(n)) = 1. In this case, Z∗

n2

has unique subgroups of order ab and cd. Let G be the unique subgroup of Z∗
n2

of order abn, K be the subgroup of order ab and H be the subgroup of order n.
Consider G′ to be the subgroup of quadratic residues of Z∗

n. Let K ′ be the
unique subgroup of order ab and H ′ be the subgroup of order cd. This group
structure is similar to the higher residue group structure discussed in the previous
section. Given a generator g for K ′, we get a subgroup membership problem
SM(G′,K′).

We claim that if the subgroup variant of Paillier’s cryptosystem is weaker
than the normal variant, then there exists a distinguisher for SM(G′,K′).

First we note that the Decision Composite Residuosity problem is just as hard
if restricted to the quadratic residues (since we can easily produce quadratic non-
residues for the modulus n2). Let G′′ be the quadratic residues of Z∗

n2 , let K ′′

be the subgroup of order abcd.
So we suppose that there is a distinguisher A for SM(G,K) that fails on

SM(G′′,K′′). From A we shall produce a distinguisher for SM(G′,K′).
Our distinguisher takes as input G′ and z ∈ G′. It then samples b uniformly

at random from {0, 1}, and computes z′ = zn(1 + n)br in Zn2 , for some random
element r ∈ {1, . . . , n− 1}. It gives A the element z′, and A outputs a bit b′. If
b′ = b, we conclude that z ∈ K ′, otherwise that z �∈ K ′.

Homomorphic Cryptosystems Based on Subgroup Membership Problems 325

It is clear that our distinguisher will work, since if z ∈ K ′, z′ will be in G′′

and A will decide correctly significantly more often than not. If z �∈ K ′, then
z′ will not be in G′′ and A will decide correctly roughly as often as it decides
incorrectly. This means that our distinguisher will identify K ′ correctly more
often than by guessing, and it will essentially be guessing when asked to identify
G′ \K ′.

We have proved the following result.

Theorem 8. The subgroup variant is semantically secure if Paillier’s cryptosys-
tem is semantically secure, and the subgroup membership problem SM(G′,K′) is
hard.

This allows us to transfer the trust we have in the subgroup membership
problem SM(G′,K′) to the subgroup variant of Paillier’s cryptosystem, and we
can concentrate our analysis on problems that are perhaps easier to deal with.

6 Concluding Remarks

We have given an abstract construction for a homomorphic public key cryptosys-
tem, that has as special cases several famous homomorphic public key cryptosys-
tems, including ElGamal, Goldwasser-Micali and Paillier. We have also formu-
lated several general properties of subgroup membership problems, and shown
how these general results aids in the analysis of new constructions.

Many useful and interesting results in cryptography essentially depend on
subgroup membership problems as discussed in this paper. It is clear that the
uniform treatment we have developed here can be extended to many of these
results. Such work would clarify the thinking behind many schemes, and perhaps
allow interesting generalisations to be made.

References

1. Josh Benaloh. Dense probabilistic encryption. In Proceedings of the Workshop on
Selected Areas of Cryptography, pages 129–128, 1994.

2. D. Boneh. The Decision Diffie-Hellman problem. In Proceedings of the Third Algo-
rithmic Number Theory Symposium, volume 1423 of LNCS, pages 48–63. Springer-
Verlag, 1998.

3. Mike Burmester, Yvo Desmedt, Fred Piper, and Michael Walker. A General Zero-
Knowledge Scheme (Extended Abstract). In Jean-Jacques Quisquater and Joos
Vandewalle, editors, Proceedings of EUROCRYPT ’89, volume 434 og LNCS, pages
122–133. Springer-Verlag, 1990.

4. Dario Catalano, Rosario Gennaro, and Nich Howgrave-Graham. The bit security
of Paillier’s encryption scheme and its applications. In Birgit Pfitzmann, edi-
tor, Proceedings of EUROCRYPT 2001, volume 2045 of LNCS, pages 229–243.
Springer-Verlag, 2001.

5. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen,
editor, Proceedings of EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64.
Springer-Verlag, 2002.

326 K. Gjøsteen

6. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor, Proceedings
of Public Key Cryptography 2001, volume 1992 of LNCS, pages 119–136. Springer-
Verlag, 2001.

7. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644–654, 1976.

8. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

9. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28:270–299, April 1984.

10. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. In Proceedings
of ANTS IV, volume 1838 of LNCS, pages 385–394. Springer-Verlag, 2000.

11. D. Naccache and J. Stern. A new public key cryptosystem based on higher residues.
In Nyberg [12], pages 308–318.

12. Kaisa Nyberg, editor. Advances in Cryptology - EUROCRYPT ’98, volume 1403
of LNCS. Springer-Verlag, 1998.

13. T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as factor-
ing. In Nyberg [12], pages 308–318.

14. P. Paillier. Public-key cryptosystems based on composite degree residue classes.
In Jacques Stern, editor, Proceedings of EUROCRYPT ’99, volume 1592 of LNCS,
pages 223–238. Springer-Verlag, 1999.

A A Naccache-Stern Variant

Having a generator for H is sometimes desirable, motivating the following. In-
stead of having c and d be relatively prime, as above, we can let c = d, so that
p = 2ac+ 1, q = 2bc+ 1, and n = 4abc2 + 2c(a+ b) + 1. Note that c|(n− 1), so
we may as well assume that c is known.

The interesting thing about the subgroup of order c2 is that it is non-cyclic.
If an element x of H is made public, and x �= 1 (mod p) and x �= 1 (mod q),
then no matter what group operations are performed on x, the result will never
yield a factor of n. It therefore seems safe to make elements of order c public.

Every element of order c generates a subgroup. If we have two elements x
and y that generate distinct subgroups, we can use a Pollard ρ-type attack to
generate a collision modulo p and not modulo q. This means that we should not
publish elements from more than one subgroup.

In general, we will be interested in the modified group structure where K
is the subgroup of order ab, H is a cyclic subgroup of order c generated by an
element g, and G = KH . Note that we can sample elements from K by sampling
elements uniformly from Z∗

n and raising them to the 2cth power.
If we can recover the product ab, then we can factor n given any element m

with Jacobi symbol −1 modulo n, because mabc is congruent to 1 modulo one of
the prime factors, and −1 modulo the other. Therefore, gcd(mabc − 1, n) gives
the factorisation of n.

First of all, n−1 ≡ 0 (mod c), so the attack of Naccache and Stern described
above does not work. We get that

n− 1
4c2

= ab+
a+ b

2c
.

Homomorphic Cryptosystems Based on Subgroup Membership Problems 327

This means that ab is relatively close to (n− 1)/(4c2). Note that ac ≈ bc ≈ √
n.

We can use a Baby-step Giant-step type algorithm to recover ab in

O(
√

(a+ b)/c) = O(
√√

n/c2) = O(n1/4/c)

steps. This is not bad compared with (1). If c is kept sufficiently small, factoring
n seems to be the best attack on the subgroup membership problem SM(G,K).

Author Index

Armknecht, Frederik 16
Ars, Gwénolé 16
Augot, Daniel 64

Boyd, Colin 84, 116, 229

Choo, Kim-Kwang Raymond 116, 229
Chow, Sherman S.M. 99
Ciet, Mathieu 171

Dawson, Ed 84
de Freitas, Daniel Santana 277
de Weger, Benjamin M.M. 222

Finiasz, Matthieu 64

Gjøsteen, Kristian 314

Ha, JaeCheol 183
Hitchcock, Yvonne 116
Hong, Seokhie 244
Hui, Lucas C.K. 99

Imai, Hideki 1

Junod, Pascal 2

Kawamura, Shinichi 132
Kiayias, Aggelos 151
Kim, Jongsung 244
Komano, Yuichi 132
Künzli, Simon 2

Lee, Changhoon 244
Lee, Sangjin 244

Lenstra, Arjen K. 222
Lien, Wei-Chih 183
Lui, Richard W.C. 99

Meier, Willi 2
Monnerat, Jean 196
Moon, SangJae 183

Nakahara Jr., Jorge 277

Ohta, Kazuo 132
Oswald, Yvonne Anne 196
Overbeck, Raphael 50

Peng, Kun 84
Phan, Raphael C.-W. 263, 277
Preneel, Bart 33

Schmidt-Samoa, Katja 296
Sendrier, Nicolas 64
Shimbo, Atsushi 132
Sica, Francesco 171
Sung, Jaechul 244

Takagi, Tsuyoshi 296

Vaudenay, Serge 196

Wolf, Christopher 33

Yen, Sung-Ming 183
Yiu, S.M. 99
Young, Adam 210
Yung, Moti 151, 210

	Frontmatter
	Invited Talk I
	Trends and Challenges for Securer Cryptography in Practice

	Stream Ciphers Analysis
	Distinguishing Attacks on T-Functions
	Introducing a New Variant of Fast Algebraic Attacks and Minimizing Their Successive Data Complexity

	Cryptography Based on Combinatorics
	Equivalent Keys in HFE, C<Superscript>*</Superscript>, and Variations
	A New Structural Attack for GPT and Variants
	A Family of Fast Syndrome Based Cryptographic Hash Functions

	Cryptographic Protocols
	Optimization of Electronic First-Bid Sealed-Bid Auction Based on Homomorphic Secret Sharing
	Identity Based Delegation Network
	On Session Key Construction in Provably-Secure Key Establishment Protocols
	On the Security of Probabilistic Multisignature Schemes and Their Optimality

	Invited Talk II
	Efficient Secure Group Signatures with Dynamic Joins and Keeping Anonymity Against Group Managers

	Implementation Issues
	An Analysis of Double Base Number Systems and a Sublinear Scalar Multiplication Algorithm
	Power Analysis by Exploiting Chosen Message and Internal Collisions -- Vulnerability of Checking Mechanism for RSA-Decryption
	Optimization of the MOVA Undeniable Signature Scheme

	Unconventional Cryptography
	Questionable Encryption and Its Applications
	Twin RSA

	Invited Talk III
	Security of Two-Party Identity-Based Key Agreement

	Block Cipher Cryptanalysis
	Related-Key Differential Attacks on Cobra-S128, Cobra-F64a, and Cobra-F64b
	Advanced Slide Attacks Revisited: Realigning Slide on DES
	New Multiset Attacks on Rijndael with Large Blocks

	Homomorphic Encryption
	Paillier's Cryptosystem Modulo {\itshape p}<Superscript>2</Superscript>{\itshape q} and Its Applications to Trapdoor Commitment Schemes
	Homomorphic Cryptosystems Based on Subgroup Membership Problems

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

