
Security and Trust Requirements Engineering�

Paolo Giorgini, Fabio Massacci, and Nicola Zannone

Department of Information and Communication Technology,
University of Trento - Italy

{giorgini, massacci, zannone}@dit.unitn.it

Abstract. Integrating security concerns throughout the whole software develop-
ment process is one of today’s challenges in software and requirements engineer-
ing research. A challenge that so far has proved difficult to meet.

The major difficulty is that providing security does not only require to solve
technical problems but also to reason on the organization as a whole. This makes
the usage of traditional software engineering methologies difficult or unsatisfac-
tory: most proposals focus on protection aspects of security and explicitly deal
with low level protection mechanisms and only an handful of them show the abil-
ity of capturing the high-level organizational security requirements, without get-
ting suddenly bogged down into security protocols or cryptography algorithms.

In this paper we critically review the state of the art in security requirements
engineering and discuss the motivations that led us to propose the Secure Tro-
pos methodology, a formal framework for modelling and analyzing security, that
enhances the agent-oriented software development methodology i*/Tropos. We
illustrate the Secure Tropos approach, a comprehensive case study, and discuss
some later refinements of the Secure Tropos methodology to address some of its
shortcomings. Finally, we introduce the ST-Tool, a CASE tool that supports our
methodology.

1 Introduction

The last decades have seen an increasing awareness that security plays a key role in sys-
tem development. Unfortunately, security modelling and policy work has been largely
independent of system requirements and system models. The usual approach towards
the inclusion of security within a system is to identify security requirements after sys-
tem design. This is a critical problem [4], mainly because security mechanisms have to
be fitted into a pre-existing design which may not be able to accommodate them [53].
Moreover, the implementation of the software system may assume security mechanisms
that are simply not necessary. Alternatively, the implementation may introduce protec-
tion mechanisms that just hinder operation in a trusted domain that was not perceived
as a trusted domain by the software engineer. Late analysis of security requirements
can also generate conflicts between security needs and functional requirements of the
system. Even with the growing interest in secure engineering, current methodologies
for software (notably, information system) development do not address security-related
problems [56], and fail to integrate successfully security concerns throughout the whole

� This article provides a survey of the research material which is described in [25,26,27,28].

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 237–272, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 P. Giorgini, F. Massacci, and N. Zannone

development process. There has also been lack of interaction between researchers work-
ing on requirements modelling and security policy. Security is compromised most often
not by breaking mechanisms such as encryption or security protocols, but by exploiting
weaknesses in the way they are being utilized. Security mechanisms cannot be blindly
inserted into a security-critical system. Instead, the overall system development process
must take security concerns into account.

One of the current research challenge is to integrate security requirements analy-
sis with the standard requirements process. A security requirements is a manifestation
of a high-level organizational policy into the detailed requirements of a specific sys-
tem. The integration of security engineering into a model-driven software development
approach has advantages. Security requirements can be formulated and integrated into
system designs at a high level of abstraction. In this way, it becomes possible to develop
security aware applications that are designed with the goal of preventing violations of
a security policy. At one side of the spectrum, the call for SE profession has been on
good coding practices to avoid errors that could compromise the software’s security
(e.g., [60]). At the other extreme, the emphasis has been on securing the organization
and its procedures (e.g., [4]).

Across the whole spectrum among these two extremes, modelling and analysis of
security requirements has become a key challenge for Software Engineering [14,16],
and it is the subject of this paper. In the next section (§2) we start a critical review of the
existing proposals for security requirements engineering. Then, we discussed the key
intuitions that lead us to propose an enhanced methodology and provide a description
of Tropos concepts and describe the basic ones that we use for modelling security (§3).
We introduce a scenario used as running example throughout the paper (§4). Then, we
present a conceptual refinement of the framework (§5). Next, we formalize the security
notions introduced in previous sections and define axioms and properties (§6). Finally,
we introduce a CASE tool supporting our methodology (§7).

2 Security Requirements Engineering: A Survey

Strictly speaking of Software Engineering, modelling requirements is one of the key
challenges that secure systems must meet (See Devanbu and Stubblebine’s paper at
ICSE [16]) and a number of researchers have been heeding the call. Proposals for Secu-
rity Requirements Engineering can be classified under one of two classes: object-level
and meta-level modelling.

The object-level modelling uses an off-the-shelves requirement framework, such
as UML, KAOS, i*/Tropos, etc. and model in that framework a number of security
requirements. The analysis features of the framework are then used to draw conclusions
about the security modelling or to derive some guidance for the implementation.

The advantage of the object-level approach is that reasoning about security is virtu-
ally cost-free from the view point of the user: no new language to learn, all (good and
bad) features of the modelling framework are immediately usable. If the framework is
equipped with a formal semantics and formal reasoning procedures they are also inher-
ited. In the formal framework the “security-notions” are indistinguishable from other
objects, i.e., other requirements. This is also the major disadvantage: the link between

Security and Trust Requirements Engineering 239

security and functional requirements is lost and must be introduced by ad-hoc predicates
or relationships by the designer. This makes particularly difficult the modelling of gen-
eral relationships or rules (such as all processing of personal data should be authorized
by the person whose data is being processed).

In the early requirement arenas we can list a number of works in the object-level
field. For instance, in [62] security is frequently considered as a vague goal to be sat-
isfied, while a precise description and enumeration of specific security properties and
behavior is still missing. The work by Liu et al. [41] uses i*/Tropos for dealing with
security and privacy requirements by introducing softgoal1, as “Security” or “Privacy”,
to model these notions, and use dependencies analysis to check if the system is secure.
In [5,6], general taxonomies for security and privacy are established. These can serve
as a general knowledge repository for a knowledge-based goal refinement process. An-
other early RE example is [55], which presents a requirements process model, based
upon reuse, together with a reusable template to organize security policies in a organi-
zation and a catalog filled with reusable personal data security requirements. Finally,
He et al. [32] present a goal-driven framework for modelling privacy requirements in
the role engineering process. The goal of this framework is to bridge the gap between
competing stakeholders’ security and privacy requirements, i.e., companies’ privacy
practices may be in conflict with user preferences. Privacy requirements are modelled
as contexts and constraints of permissions and roles.

The meta-level modelling takes a off-the-shelves requirement framework as well as
object-level modelling approach, but enhance it with linguistic constructs that capture
security requirements. The analysis feature or implementation guidance of the frame-
work must then be revised to allow for the new features.

The meta-level models trade off readiness for expressivity and compactness. The
addition of suitable constructs makes usually the model more compact and more in-
tuitive to use. This main advantage is coupled by the possibility of designing analysis
features that are tailored to the security domain. This is also the key disadvantage: un-
less the addition of new features is carefully planned, the new framework needs the
definition of analysis, semantics and reasoning procedures. To minimize this problem
most sensible approaches try to design the framework in such a way that if one doesn’t
use the new features then one can still inherit all the old framework capabilities.

The need for conceptual models of security features have brought up a number
of proposals especially in UML community. In approaches explicitly intended for secu-
rity, we find the CORAS methodology for modelling risk and vulnerability [19]. Jürjens
proposes UMLsec [35], an extension of the Unified Modelling Language (UML), for
modelling security related features, such as confidentiality and access control. He pro-
poses a concept for specifying requirements on confidentiality and integrity in analysis
models based on UML. Lodderstedt et al. [42] present a UML-based modelling lan-
guage (SecureUML). Their approach is focused on modelling access control policies
and integrating them into a model-driven software development process. SecureUML
is a modelling language designed to integrate information relevant to access control into
application models defined with UML. The language builds on the access control model
of RBAC [18,33,47,51] with additional support for specifying authorization constraints.

1 Mostly non-functional requirements was satisfaction is fuzzy.

240 P. Giorgini, F. Massacci, and N. Zannone

To address security concerns during software design, Doan et al. [17] incorporate
Mandatory Access Control (MAC) into UML. Ray et al. [49] propose to model RBAC
as a pattern by using UML diagram template. Further, they represent constraints on
RBAC model through the Object Constraint Language. One of the major limitations of
all these proposals is that they treat security in system-oriented terms, and do not sup-
port the modelling and analysis of security requirements at an organizational level. In
other words, they are targeted to model a computer system and the policies and access
control mechanisms it supports. In contrast, to understand the problem of security en-
gineering we need to model the organization and social relationships between all actors
involved in the system.

For early requirements, a preliminary modification of Tropos methodology has been
proposed in [45]. In particular, this extension use security constraints and secure capa-
bilities as basic concepts. However, [23] shows that the key missing concept is the
separation of the notions of offering a service and ownership of the very same service.
Further, it does not allow for the modelling of trust relationships.

Other approaches propose to model the behavior of attackers. Crook et al. [14] intro-
duce the notion of anti-requirements to represent the requirements of malicious attack-
ers. Anti-requirements are expressed in terms of the problem domain phenomena and
are quantified existentially: an anti-requirement is satisfied when the security threats
imposed by the attacker are realized in any one instance of the problem. Lin et al. [40]
incorporate anti-requirements into abuse frames. The purpose of abuse frames is to rep-
resents security threats and to facilitate the analysis of the conditions in the system in
which a security violation occurs. They allow the examination of a system’s vulnerabil-
ities to different kinds of security threats in a bounded context. Abuse frames share the
same notation as the normal problem frames, but each domain is now associated with a
different meaning. McDermott and Fox adapt use cases [44] to capture and analyze se-
curity requirements, and they call the adaption an abuse case model. An abuse case is an
interaction between a system and one or more actors, where the results of the interaction
are harmful to the system, or one of the stakeholders of the system. Guttorm and Opdahl
[52] propose to model security by defining misuse cases, the inverse of UML use cases,
which describe functions that the system should not allow. This new construct makes it
possible to represent actions that the system should prevent together with those actions
which it should support. Moving towards early requirements, an extension of the KAOS
framework is presented in [59] where the notion of obstacle is introduced. KAOS uses
the notion of goal as a set of desired behaviors. Likewise, an obstacle defines a set of
undesirable behaviors. Therefore, the negation of such obstacles is used to determine
preconditions for the goal to be achieved. Although obstacle are sufficient for modelling
accidental, non-intentional obstacles to security goals, they appear too limited for mod-
elling and resolving malicious, intentional obstacles. To this end, van Lamsweerde et
al. [58] introduce the notion of anti-requirements and anti-goals that are, respectively,
the requirements of malicious attackers and the intentional obstacles to security goals.

2.1 Towards a “Terra Incognita”: Why a New Methodology Is Needed

Most proposals in the literature focus on protection aspects of security and explicitly
deal with a series of security services (integrity, availability etc.) and related protec-

Security and Trust Requirements Engineering 241

tion mechanisms (such as passwords, or cryptographic mechanisms). If we look at the
requirement refinement process of many proposals, we find out that at certain stage
a leap is made: we have a system with no security features consisting of high-level
functionalities, and the next refinement shows encryption, access control and authen-
tication. The modelling process should instead makes it clear why encryption, access
control and authentication are necessary. What is missing is capturing the high-level
security requirements, without getting suddenly bogged down into security solutions or
cryptographic algorithms.

Early requirements requires to reason about trust relationships, ownership and del-
egation of authority besides the traditional notion of functional dependencies. The first
step in this direction is described the papers [25,26] which extended the i*/Tropos mod-
elling framework [10] to introduces concepts such as ownership, trust, and delegation
within a requirements modelling framework and shows how security and trust require-
ments can be derived and analyzed.

After a large case study on the compliance of an ISO-17799-like security policy [43]
with Italian privacy legislation, it was concluded that the concepts offered by Secure
Tropos are the right ones but are too coarse-grained to capture important security facets.

The first observation is that for pragmatic reasons, it is often the case that services
and permissions are delegated to actors who are not trusted. Nevertheless, the overall
system is still considered secure if there is a way to hold such delegations accountable
by monitoring their (wrong) doings.

The second observation is that trust in actors (or lack thereof) comes in different
flavors: we may trust an actor to actually deliver the services we require (taking into
account skills and/or commitment), or to honor granted permissions. In trust manage-
ment and authorization settings (e.g. [7,15,38]) one only finds delegations of permission
(through authorization). Requirements of availability are equally important, however,
and can only be captured by modelling delegation of execution (where one actor dele-
gates to another the responsibility to execute a service).

Finally, in a recent study, the majority of Information Security Administrators said
that their biggest worry is employee negligence and abuse [48]. Internal attacks can be
more harmful than external attacks since they are being performed by trusted users that
can bypass access control mechanisms. So, we need models that compare the structure
of the organization (roles and relations among them) with the concrete instance of the
organization (agents playing some roles in the organization and relations among them).
The original Tropos proposal involves two different levels of analysis: social and in-
dividual. In the organization level we analyze roles and positions of the organization,
whereas in individual level the focus is on single agents. Of course there is no explicit
separation between the two levels, and so Tropos is not able to maintain the consistency
between the social level (roles and positions) and the individual level (agent).

3 Secure Tropos: A Goal Oriented SRE Methodology

Secure Tropos [25,26] enhances the agent-oriented software development methodology
i*/Tropos [10]. The Tropos methodology is intended to support all analysis and design
activities in the software development process, from the application domain analysis

242 P. Giorgini, F. Massacci, and N. Zannone

down to the system implementation. In particular, Tropos rests on the idea of building
a model of the system-to-be and its environment, that is incrementally refined and ex-
tended, providing a common interface to the various software development activities,
as well as a basis for documentation and evolution of the software.

Tropos uses the concepts of actor, goal, plan, resource and social dependency for
defining the obligations of actors (dependees) to other actors (dependers). A goal rep-
resents the strategic interests of an actor. A plan specifies a particular course of action
that produces a desired effect, and can be executed in order to satisfy a goal. A resource
represents a physical or an informational entity. Finally, a dependency between two ac-
tors indicates that one actor depends on another to accomplish a goal, execute a plan,
or deliver a resource. Tropos is well suited to to describe both an organization and an
IT system. As we already discussed, in [23] we have argued that it lacks the ability to
capture at the same time the functional and security features of the organization, and
hence the new proposal.

In the following, we introduce Secure Tropos as an extension of the requirements
analysis phase of the Tropos Methodology. Basic concepts, relationships, and models
will be presented along the methodological approach and the modelling activities.

3.1 Requirement Analysis Phase

Requirement analysis represents the initial phase in many software engineering method-
ologies. Similarly to other software engineering approaches, in Tropos the final goal of
requirement analysis is to provide a set of functional and non-functional requirements
for the system-to-be. The requirements analysis in Tropos is split in two main phases:
Early Requirements and Late Requirements analysis. Both share the same conceptual
and methodological approach. Thus most of the ideas introduced for early requirements
analysis are used for late requirements as well.

More precisely, during the first phase, the requirements engineer identifies the do-
main stakeholders and models them as social actors, who depend on one another for
goals to be achieved, plans to be performed, and resources to be furnished. By clearly
defining these dependencies, it is then possible to state the why, beside the what and
how, of the system functionalities and, as a last result, to verify how the final imple-
mentation matches the real needs.

In the Late Requirements analysis, the conceptual model is extended including a
new actor, which represents the system, and a number of dependencies with other ac-
tors part of the environment. These dependencies define all the functional and non-
functional requirements of the system-to-be.

3.2 The Key Concepts

Models in Tropos are acquired as instances of a conceptual metamodel resting on the
following concepts/relationships:

– Actor, which models an entity that has strategic goals and intentionality within the
system or the organizational setting. An actor represents a physical or a software
agent as well as a role or position. While we assume the classical AI definition

Security and Trust Requirements Engineering 243

of software agent, that is, a software having properties such as autonomy, social
ability, reactivity, proactivity, as given, for instance in [46], in Tropos we define a
role as an abstract characterization of the behavior of a social actor within some
specialized context or domain of endeavor, and a position represents a set of roles,
typically played by one agent. An agent can occupy a position, while a position is
said to cover a role. A discussion on this issue can be found in [61].

– Goal, which represents actors’ strategic interests. We distinguish hard goals from
softgoals, the second having no clear-cut definition and/or criteria for deciding
whether they are satisfied or not. According to [12], this different nature of achieve-
ment is underlined by saying that goals are satisfied while softgoals are satisficed.
Softgoals are typically used to model non-functional requirements.

– Plan, which represents, at an abstract level, a way of doing something. The execu-
tion of plan can be a means for satisfying a goal or for satisficing a softgoal.

– Resource, which represents a physical or an informational entity. The main differ-
ence with an agent is that a resource has not intentionality.

– Dependency between two actors, which indicates that one actor depends, for some
reason, on the other in order to attain some goal, execute some plan, or deliver
a resource. The former actor is called the depender, while the latter is called the
dependee. The object around which the dependency centers is called dependum. In
general, by depending on another actor for a dependum, an actor is able to achieve
goals that it would otherwise be unable to achieve on its own, or not as easily, or not
as well. At the same time, the depender becomes vulnerable. If the dependee fails
to deliver the dependum, the depender would be adversely affected in its ability to
achieve its goals.

Four new relationships have been introduced in Secure Tropos:

– Ownership, which indicates that the actor is the legitimate owner of some goal,
some plan, or some resource. The owner has full authority concerning to achieve
his goal, execute his plan, or use his resource, and he can also delegate this authority
to other actors.

– Provisioning, which indicates that the actor has the capability to achieve some
goal, execute some plan, or deliver a resource.

– Trust, between two actors, which indicates the believe of one actor that the other
does not misuse some goal, some plan, or some resource. The former actor is called
the truster, while the latter is called the trustee. The object around which the depen-
dency centers is called trustum. In general, by trusting another actor for a trustum,
an actor is sure that the trustum is properly used. At the same time, the truster be-
comes vulnerable. If the trustee misuses the trustum, the truster cannot guarantee
to achieve some goal, execute some plan, or deliver a resource securely.

– Delegation, between two actors, which indicates that one actor delegates to the
other the permission to achieve some goal, execute some plan, or use a resource.
The former actor is called the delegater, while the latter is called the delegatee.
The object around which the dependency centers is called delegatum. In general,
delegation marks a formal passage in the domain that is currently modelled by the
requirements engineers. This would be matched by the issuance of a delegation

244 P. Giorgini, F. Massacci, and N. Zannone

certificate such as digital credential or a letter if we are delegating permission or by
a call to an external procedure if we are delegating execution.

3.3 Modelling Activities

Various activities contribute to the acquisition of a first early requirement model, to its
refinement and to its evolution into subsequent models. They are:

– Actor modelling, which consists of identifying and analyzing both the actors of the
environment and the system’s actors and agents. In particular, in the early require-
ment phase actor modelling focuses on modelling the application domain stake-
holders and their intentions as social actors which want to achieve goals. During
late requirement, actor modelling focuses on the definition of the system-to-be ac-
tor.

– Dependency modelling, which consists of identifying actors which depend on one
another for goals to be achieved, plans to be performed, and resources to be fur-
nished. In particular, in the early requirement phase, it focuses on modelling goal
dependencies between social actors of the organizational setting. New dependen-
cies are elicited and added to the model upon goal analysis performed during the
goal modelling activity discussed below. During late requirements analysis, depen-
dency modelling focuses on analyzing the dependencies of the system-to-be actor.
In the architectural design phase, data and control flows between sub-actors of the
system-to-be actors are modelled in terms of dependencies, providing the basis for
the capability modelling that will start later in architectural design together with the
mapping of system actors to agents.

A graphical representation of the model obtained following these modelling activ-
ities is given through actor diagrams, called dependency model, which describe the
actors (depicted as circles), their goals (depicted as ovals and cloud shapes) and the
network of dependency relationships among actors (two arrowed lines connected by a
graphical symbol varying according to the dependum: a goal, a plan or a resource).

– Goal and plan modelling rests on the analysis of an actor goals, conducted from
the point of view of the actor, by using three basic reasoning techniques: means-end
analysis, contribution analysis, and AND/OR decomposition. In particular, means-
end analysis aims at identifying plans, resources and softgoals that provide means
for achieving a goal. Contribution analysis identifies goals that can contribute posi-
tively or negatively in the fulfillment of the goal to be analyzed. In a sense, it can be
considered as an extension of means-end analysis, with goals as means. AND/OR
decomposition combines AND and OR decompositions of a root goal into sub-
goals, modelling a finer goal structure. Goal modelling is applied to early and late
requirement models in order to refine them and to elicit new dependencies. Dur-
ing architectural design, it contributes to motivate the first decomposition of the
system-to-be actors into a set of sub-actors.

A graphical representation of goal and plan modelling is given through goal dia-
grams, which appears as a balloon within which goals of a specific actor are analyzed

Security and Trust Requirements Engineering 245

and dependencies with other actors are established. Goals are decomposed into subgoals
and positive/negative contributions of subgoals to goals are specified. Goal decomposi-
tion can be closed through a means-end analysis aimed at identifying plans, resources
and softgoals that provide means for achieving the goal.

The revised methodology introduces new steps that replaces the old ones:

– Trust modelling which consists of identifying actors which trust other actors for
goal, plans, and resources, and actors which own goal, plans, and resources. In
particular, in the early requirement phase, it focuses on modelling trust relations
between social actors of the organizational setting. New trust relations are elicited
and added to the model upon the refinement activities discussed above. During late
requirements analysis, trust modelling focuses on analyzing the trust relations of
the system-to-be actor.

– Delegation modelling which consists of identifying actors which delegate to other
actors the permission and task of execution on goals, plans, and resources. In par-
ticular, in the early requirement phase, it focuses on modelling delegations between
social actors of the organizational setting. New delegations are elicited and added to
the model upon the refinement activities discussed above. During late requirements
analysis, delegation modelling focuses on analyzing the delegations involving the
system-to-be actor.

A graphical representation of the models obtained following these last two mod-
elling activities is given through two different kinds of actor diagrams: trust model,
and trust management implementation. Essentially, the first represents the trust network
among the actors involved in the system and the latter represents which permissions are
effectively delegated by actors and which actors receive such permissions. These mod-
els use the same notation for actors, goals, plans and resource used during dependency
modelling. The old dependency model is replaced by the delegation of execution model.

3.4 Process

The overall methodological process is an iterative process in which the above presented
modelling activities are used to produce different kinds of actor and goal diagrams.
Table 1 summarizes the process activities and the diagrams elaborated in each activity.
The diagrams produced in one activity are used as input for the other activities.

Table 1. Activities and diagrams produced during the analysis process

Activity Diagrams produced
1. Actor modelling Actor diagram: actors and their goals are elicited
2old. Dependency modelling Actor diagram: dependencies between actors are discovered
2a. Trust modelling Trust diagram: trust relationships between actors are discovered
2b. Delegation modelling Trust management implementation diagram: delegations between

actors are modelled
3. Goal modelling Goal diagram: actor goals are analyzed
4. Plan modelling Goal diagram: plans associated to goals are analyzed

246 P. Giorgini, F. Massacci, and N. Zannone

The process starts with the actor modelling activity (1) in which the relevant actors
(stackholders and existing software (sub)systems) are elicited and modelled with their
goals. The actor diagram produced after this activity is used as input for the dependency
modelling activity (2old), where the dependencies between the actors are discovered
and established. The resulting actor diagram can be either used to further revise the ini-
tial actor diagram or as input for the next activity (3). Goal modelling focus on the goals
associated to each actor of the actor diagram and it analyzes them using various forms of
analysis as described earlier. During the analysis new dependencies can be discovered
so to revise and enrich the model produced in (2). Goal diagram is also used as input
for plan modelling activity (4), where each single goal is analyzed in terms of plans
that can be used for its fulfillment. Plans are analyzed in details and new dependencies
between actor can emerge so to require a new dependency analysis (2old). In the new
model we start with the trust model (2a), which in turn can require a further goal anal-
ysis (3). Dependency can then be devised by as in step (2old) by modelling delegation
and trust (if any). This may require further goal analysis (3) as in the standard Tropos
project. The final trust model is used to develop the trust management implementation
for permission (2b), that finally can be used to revise the delegation of execution model
(2b) and the trust model (2a). The process ends when no further analysis are needed.

4 Using SRE for Compliance with Data Privacy Legislation

To instantiate some of the above mentioned concepts we show some fragments of a com-
plex case study: the compliance to the Italian legislation on Privacy and Data Protection
by the University of Trento, leading to the definition and analysis of an ISO-17799-like
security management scheme (we refer to [43] for more detials). The final EU and Ital-
ian legislation systematized the norms on privacy and data protection by specifying

– the definitions of personal data, sensitive data, and data processing,
– the definitions of all entities involved in data processing, their roles and responsi-

bilities (controller, processor, operator, subject),
– the obligations relating to public and private data controllers with specific reference

to the legitimate purpose of data processing and the adoption of minimal precau-
tionary security measures to minimize the risks on data.

4.1 Modelling Actors

The first activity in the early requirements phase is actors’ modelling. In our example
we can list some of them:

Data Controller determines the purposes and means of the processing of personal
data. In the University, the data controller is identified with Chancellor (as the post-
holder is also the legal representative of the University).

Data Processor monitors personal data processing on behalf of the controller. In the
University, these are:

– Faculty Deans;
– Head of Department;

Security and Trust Requirements Engineering 247

Data
Subject

privacy
protection

guarantee
correct

data processing
execution

perform
data

processing

Chancellor

enforcement
guarantee law

perform
data

processing

compliance
with legal

requirements

comply with
internal orders
and regulation

comply with
internal orders
and regulation

Data
Processor

Data
Processing
Operator

ISA
CIO

CEO

D

DD

D D

D

D

(a) Actor Diagram

guarantee
correct

data processing
execution

perform
data

processing

Chancellor

guarantee law
enforcement

perform
data

processing

compliance
with legal

requirements

Data
Processor

comply with
internal orders
and regulation

Data
Processing
Operator

comply with
internal orders
and regulation

ISA

Dp

Dp

Dp

Dp

Dp

CEO

CIO

(b) Trust Management Implementation dia-
gram

Fig. 1. Actor Diagrams

– Central Directorate Managers, and in particular with:
• Chief Executive Officer (CEO);
• Chief Information Officer (CIO).

Data Processing Operator is appointed by the data controller or processor to perform
the operations related to the data processing or to manage and maintain the infor-
mation systems and services. At University of Trento, these are:

– Personal Data Processing Operator;
– Database Security Operator;
– Network Security Operator.

Data Subject is the natural or legal person to whom the personal data are related. In
the Secure Tropos terminology, this is the legitimate owner of the data.

4.2 Modelling Dependencies and Delegation

The analysis proceeds introducing the functional dependencies and the delegation of
permission between actors and the consequent integrated security and functional re-
quirements. Figure 1(a) and Figure 1(b) show the functional dependency model and the
trust management implementation. We use delegation of permission (Dp) to model the
actual transfer of rights in some form (e.g. a digital certificate, a signed paper, etc.), and
D for functional dependency.

In the functional dependency model, Chancellor is associated with a single relevant
goal: guarantee correct data processing execution, while CEO has an associated goal
compliance with legal requirements. Along similar lines, Data Processor and Data Pro-
cessing Operator want to comply with internal orders and regulation, while CIO, wants

248 P. Giorgini, F. Massacci, and N. Zannone

to guarantee law enforcement. Finally, the diagram includes some functional depen-
dencies: Data Subject depends on Chancellor for privacy protection goal; Chancellor
depends on Data Processor and Data Processing Operator to perform data processing;
and, in turn, Data Processor depends on Data Processing Operator for it.

In the actor diagram, Chancellor is associated with a single relevant goal: guarantee
correct data processing execution, while CEO has an associated goal compliance with
legal requirements. Along similar lines, Data Processor and Data Processing Operator
want to comply with internal orders and regulation, while CIO, wants to guarantee
law enforcement. Finally, the diagram includes some delegations of execution: Data
Subject delegates to Chancellor the goal privacy protection; Chancellor delegates to
Data Processor and Data Processing Operator the goal perform data processing; and,
in turn, Data Processor delegates it to Data Processing Operator.

In the trust management implementation diagram, Chancellor delegates permis-
sions to perform data processing to Data Processor and Data Processing Operator. In
turn, Data Processor delegates permissions to perform data processing to Data Pro-
cessing Operator.

At this stage, the analysis already reveals a number of pitfalls in the actual docu-
ment template provided by the ministry’s agency. The most notable one is the absolute
absence of functional dependencies between the Chancellor and the CEO, who is actu-
ally the one who runs the administration. Such functional dependency is present in the
Universities statutes, but not here (an apparently unrelated document).

Another missing part in the trust management implementation is the delegation of
permission from the data subject. This can be also automatically spotted with the tech-
niques developed in [26]. Somehow paradoxically (for a document template enacted in
fulfillment of a Data Protection Act) the process of acquisition of data (and the rela-
tive authorization) is neither mentioned nor forseen. In practice this gap is solved by
the University by a blanket authorization: in all the paper or electronic data collection
steps a signature is required to authorize the processing of data in compliance with the
privacy legislation.

4.3 Goal Refinement

In this paper, we present a goal analysis for Data Processor and refer to [43] for an
accurate analysis of the other actors involved in the system.

Figure 2 shows the goal analysis for Data Processor, relative to the goal comply
with internal orders and regulation. This goal is decomposed into provide for appoint-
ing data processing operators, security control and adopt security measures for which
Data Processor depends on CIO and CEO. The goal provide for appointing data pro-
cessing operators is decomposed into three goals: identify data processing operators for
which Data Processor depends on Data Processing Operator, give instructions to data
processing operators for which Data Processing Operator depends on Data Processor,
and enable access profile for which Data Processing Operator depends on Data Pro-
cessor and, in turn, Data Processor depends on CIO. The goal enable access profile is
decomposed into assign access profile, assign ID and password which Data Processor
depends on CIO, and communicate name of security operators for which CIO depends
on Data Processor. The goal security control is decomposed into monitor security mea-

Security and Trust Requirements Engineering 249

Data
Processing
Operator

Data
Processor

provide for
appointing

data processing
operators

identify data
processing
operators give

instruction

processing
operators

to data

define
allowed

data
defineaccess

procedures

assign
access
profile

assign
password

security
measures

adopt

communicate
change in

data processing
inventory

update and
communicateaccess

profile

enableaccess
profile

security
control

validate
security

measures

communicate
name of
security
operator

monitor
security
measure

application

CIO

communicate
staff

vacation

CEO
comply with
internal orders
and regulation

assign ID

D

D

D

D

D

DD

D
D

D

D

D

D

D

Fig. 2. Functional Dependency Model for Data Processor

sure application and other goals, such as communicate staff vacation and update and
communicate access profile, for which CIO depends on Data Processor, update and
communicate access profile.

Figure 3 shows the trust management implementation for Data Processor. The dia-
gram displays that Data Processor delegates mail with instructions to Data Processing
Operator. Further, Data Processor delegates the list of name of security operators, list
of employees in vacation, access profile and data processing inventory to CIO. Finally,
Data Processorreceives from CEO the list of security measures.

5 The Plot Thickens: Refining Delegation and Trust

In this section, we introduce a conceptual refinement of the delegation and trust rela-
tionships, that will allow us to capture and model important security facets [27,28].

In order to explain the conceptual refinement we will use examples based on the
case study presented in previous section. For the sake of readability we introduce here
dramatis personae 2 together with the rules they play:

Alice is an administrative officer, for example of the teaching evaluation office;
Bob, Bert, and Bill are students;
Sam is (the manager of) the student IT system;
Paul and Peter are professors.

2 This impersonation is actually closer to reality than one may think: the law requires the as-
signment of responsibility of each IT sub-system to a person.

250 P. Giorgini, F. Massacci, and N. Zannone

comply with
internal orders
and regulation

provide for
appointing

data processing
operators

identify data
processing
operators give

instructions
to data

processing
operators

enableaccess
profile

Data
Processor

security
control

assign
password assign

access
profile

defineaccess
procedures define

allowed
data

assign ID measures

validate
security

communicate
change in

data processing
inventory

communicate
staff

vacation

update and
communicateaccess

profile

monitor
security

measures
application

communicate
name of
security

operators

list of
name of
security

operators

adopt
security

measures

CEO

list of
security

measures

list of
employees
in vacation

access
profile

data
processing
inventory

CIO

mail within
instructions

Data
Processing
Operator

Dp

Dp

Dp

Dp

DpDp

Dp

Dp

Dp

Dp

Dp

Dp

Fig. 3. Trust Management Implementation for Data Processor

5.1 Execution vs Permission

Example 1. Alice is interested in gathering data on students’ performance, for which
she depends on Sam. Bob owns his sensitive personal information, such as his student
careers. Bob delegates permission to provide information about his career to Sam on
condition that his privacy is protected (i.e., his identity is not revealed).

In this scenario, there is a difference of relationship between Alice–Sam and Bob–
Sam. This difference is due to a difference in the type of delegation.

Example 2. Bob delegates permission to Sam to provide only the relevant information
and nothing else. On the other hand, Alice, who wants student data, delegates the exe-
cution of her goal to Sam. According to Alice, Sam should at least fulfill the goal she
requires. She is not interested in what Sam does with Bob’s trust, apart from getting
her information. The major worry of Alice is availability whereas Bob cares about au-
thorization. In other words, Alice’s major concerns would be that tasks are delegated to
people that can actually do them, whereas Bob would be concerned that subtasks are
given to trusted people who will not misuse the permissions they have acquired.

If we want to check functional and security requirements consistency, it is essential
to distinguish between these two notions of delegation. We use at-most delegation
when the delegater wants the delegatee at most achieves the goal, execute the plan,
or furnishes the resource. This is delegation of permission, where the delegatee thinks

Security and Trust Requirements Engineering 251

O

Provide
Personal

Information

Provide
Personal

Information

Alice

Bob

SamDe

Dp

Dp

De

Fig. 4. At-least and At-most Delegation

“I have the permission to achieve the goal (but I do not need to)”, whereas at-least
delegation means that the delegater wants the delegatee to achieve at least the goal.
This is the delegation of execution. The delegatee thinks, “Now, I have to get the goal
fulfilled (let’s start working)”. In the pictorial representation of Fig. 4 we represent these
relationship as edges respectively labeled by Dp and De.

Further, we want to separate the concepts of trust and delegation, as we might need
to model systems where some actors must delegate permission or execution to other
actors they don’t trust. Also in this case it is convenient to have a suitable distinction for
trust in managing permission and trust in managing execution. The meaning of at-most
trust is that an actor (truster) trusts that another actor (trustee) at most fulfills the goal
but will not overstep it. The meaning of at-least trust is that an actor (truster) trusts
that another actor (trustee) at least fulfills the goal.

Example 3. At-most trust is good for permissions: Bob trusts Sam to remain within
certain bounds. He may delegate Sam more permissions than actually needed because
Sam will not abuse them. At-least trust fits execution. Alice believe Sam can accomplish
her plans and possibly more.

The new Secure Tropos concepts “explain” the classical Tropos dependency be-
tween two actors in terms of trust and delegation (Fig. 5).

Indeed, the semantics associated to the Tropos dependency states that there is an
actor, the dependee, that wants to achieve a specific goal (perform a task or have a
resource) and there is another actor, the depender, that is able to satisfy the goal (perform
the task or deliver the resource). The two actors get an agreement and a goal (task or
resource) dependency is established between the two. The implicit assumption is that
after the agreement the depender will be responsible for the goal and will do the best to
achieve it.

The distinction between execution and permission allows us to define a dependency
in terms of trust and delegation. In particular, when the dependum is a goal or a plan we
have delegation and trust of execution, whereas when the dependum is a resource we
have delegation and trust of permission. In symbols:

depends(A, B, S) ⇐⇒ delegate(exec, A, B, S) ∧ trust(exec, A, B, S) (1)

252 P. Giorgini, F. Massacci, and N. Zannone

G

G

G

B

B

A

A

A B

Te

D

De De

D

Te

+

=

(a) Goal Dependency

B

B

A

A

A B

D D

Dp Dp

Tp Tp

R

R

R

=

+

(b) Resource Dependency

Fig. 5. Tropos dependency in terms of Secure Tropos

where S is a goal or a plan, and

depends(A, B, S) ⇐⇒ delegate(perm , ID , B, A)S ∧ trust(perm, B, A, S) (2)

where S is a resource. A graphical representation of these formulas is given, respec-
tively, in Fig. 5(a) and in Fig. 5(b). These diagrams use the label D for Tropos depen-
dency and labels Te and Tp, respectively for trust of execution and trust of permission.
Notice also from Fig. 5 that the same dependency is mapped into differently oriented
relations at the lower level.

5.2 Introducing Distrust

Another refinement is the introduction of negative authorizations which are needed for
some scenarios. Tropos already accommodates the notion of positive or negative contri-
bution of goals to the fulfillment of other goals. We use negative authorizations to help
the designer in shaping the perimeter of positive trust to avoid incautious delegation
certificates that may give more powers than desired.

Suppose that an actor should not be entitled to achieve a goal, perform a plan, or
delivery a resource. In situations where authorization administration is decentralized,
an actor possessing the right to achieve a goal, execute a plan, or delivery a resource,
can delegate the authorization to do that to the wrong actor.

We propose an explicit distrust relationship as an approach for handling this type of
situations. This is also sound from a cognitive point of view if we follow the definition
of trust given by [11]: trust is a mental state based on a set of beliefs. We can say that
if, on your own knowledge, you feel to trust me, then you trust me. Similarly, if you
feel like distrusting me, then you distrust me. Obviously, there are various reasons for
distrusting agents such as unskillfulness, unreliability and abuse, but these situations
are not treated here.

As we have done for trust, we also distinguish between distrust of execution and
distrust of permission. The graphical diagrams presented in this paper use the labels Se
and Sp, respectively, for distrust of execution and distrust of permission. In the case
there is no explicit trust relationship between agents, the label “?” is used.

Security and Trust Requirements Engineering 253

O

Provide
Personal

Information
Provide
Personal

Information

Provide
Personal

Information

DD

Mp

Mp

Sam

BobO

Alice

M(Sam,PPI)

De

Dp

Dp

De

(a) At-most Monitor

O

Provide
Personal

Information

Provide
Personal

Information

Provide
Personal

Information

D

D

Me

Me

Alice Sam

BobCarol

M(Sam,PPI)

De

Dp

De

Dp

(b) At-least Monitor

Fig. 6. Monitoring

5.3 Monitoring

When work needs to be delegated even when there is no trust, then monitoring can offer
a surrogate for trust. Accordingly to Gans’s et al. [21], the existence of distrust can be
tolerated with an additional overhead of monitoring the untrustworthy delegatee. Here
we refine Gans’s et al. intuition integrating it in our framework.

The goal of an actor playing the role of monitor is to check for the violation of
trust3. The act of monitoring can be done by the delegater himself4, or he can delegate
it to some other actors to get it done. Depending on the type of delegation, we have
two different kinds of monitors: at-most monitor and at-least monitor. Consider the
situation presented in Fig. 4.

Example 4. Suppose that there is no trust between Bob and Sam for the goal “maintain
privacy”, but the student must delegate permission nonetheless. In this case, he depends
(D) on the ombudsman (O) for monitoring if Sam transgresses her permissions. This is
shown in Fig. 6(a)) with an at-most monitor (monitor for permission – Mp) relationship
between the ombudsman and Sam.

Example 5. If Alice is not confident that Sam will provide updated information, she
may delegate to her secretary Carol the task of confirming with, or nagging Sam to
insert new data as soon as it becomes available. This is shown in Fig. 6(b)) with an
at-least monitor (monitor for execution – Me) relationship between Carol and Sam.

Another important distinction that emerges when we use a monitor is related to what
we have to monitor. If we are monitoring a plan (i.e., a specific sequence of actions),
the Monitor has to check if Sam executes the actions of the plan. What happens if Sam
delegates the task or some of its subtasks to other actors?

3 Indeed, monitoring could also be used for the evaluation of the fulfillment of a goal assigned
to a trusted actor.

4 Intuitively, this is like saying that fellow is unreliable, I’ll give him the job but keep an eye on
him myself”.

254 P. Giorgini, F. Massacci, and N. Zannone

Example 6. To achieve the goal delegated to him in Example 5, Sam will issue a letter
to the head of each student secretariat office so that student marks are entered into the
system within 30 days from the date that exams have taken place.

A solution to this problem is to extend the monitoring to all sublevels of delegation
until the level where the actual execution takes place. So, there will be a monitor rela-
tionship between the Monitor and all the actor involved in the execution of at least a
part of the task.

Example 7. To reach the objective of 30 days requires that professors return to the
office assigned marks. This is a further step of delegation of execution. Then, the actor
responsible at the office, beside actually monitoring his employees, may also assign the
task of reminding professors that they must return on time their mark sheets.

Notice that monitoring as such is not a primitive construct. It can be captured by
other constructs within our modelling framework. Specifically, every goal, plan and
resource will either be delegated during the design process to a trusted actor, or it will
be delegated to an untrusted one, in which case the delegatee will be monitored by a
trusted actor.

On the formal model this corresponds to a design pattern formalized in terms of
additional axioms that allow us to conclude that an actor is confident that a goal will be
executed, a plan will be performed or a resource will be furnished, or a permission will
not be abused even if existing trust relations suggest otherwise.

Once we see monitoring as a simple design solution (essentially a security pattern)
we can treat monitoring goals just as any other goal. So they can be further subject to
refinement, delegation of execution and delegation of permission. Trust relationships
linked to monitoring can then be captured with standard constructs. For example, mon-
itoring often requires having permission to access monitored data or personnel. This
itself may create problems of permission and authorization that can be model in the
framework.

5.4 Social vs Individual Trust

When we model and analyze functional trust and security relationships, it is possible
that such requirements are given only at individual level or at social level and that there
is a mismatch between the levels. Let us see why this is needed with examples drawn
from the same domain.

Example 8. According the University policy, administrative officers should trust man-
agers of IT systems to get information they need to perform their duties (Fig. 7(a)). Sam
is the new manager of the student IT system and Alice has never met him before. Still,
Alice should trust Sam for getting student personal information in order to guarantee
the availability of the goal.

Example 9. Professors should not rely on the teaching evaluation officer secretary for
providing a formal report to the University Teaching Board (Fig. 7(b)). Here, Paul and
Carol don’t know each other. Then, Paul should distrust Carol for providing a formal
report to University Teaching Board.

Security and Trust Requirements Engineering 255

Officer
Admin

provide
personal

information

provide
personal

information
IT system
Manager

? ?

TeTe

Alice Sam

(a) Trust of execution

provide
formal report

to UTB

provide
formal report

to UTB

TEO
Secretary

? ?

Se SeProfessor

Paul Carol

(b) Distrust of execution

Fig. 7. Missing (dis)trust relations at individual level

We don’t consider the case in which the relations are missing at social level because
this level represents the structure of the organization which should be described explic-
itly in the requirements. The presence of a large number of trust relations at individual
level that is not matched by a social level may be an indicator of a missing link at so-
cial level (or of a problem in the organization for distrust relations). On the contrary,
Hannoun et al. [31] propose to detect the inadequacy of an organization regarding the
relations existing among the agents involved in the system.

In [26] we have only considered when trust is explicit, and we have not distin-
guished the case where there is explicit distrust and the case where no trust relation is
given. Contrarily, in this paper we take in consideration all these three possibilities. The
presence of positive and negative authorization at the same time could generate some
conflicts on trust relationships. We define a trust conflict the situation where there are
both a positive and a negative trust relation between two actors for the same trustum.
Next, formal definitions are given.

Definition 1. A conflict on trust of execution occurs when

∃x, y ∈ Agent ∃s ∈ Goal ∪ Task ∪ Resource | trust(exec, x, y, s) ∧ distrust(exec, x, y, s)

Definition 2. A conflict on trust of permission occurs when

∃x, y ∈ Agent ∃s ∈ Goal ∪ Task ∪ Resource | trust(perm , x, y, s) ∧ distrust(perm , x, y, s)

A trust conflict may exist, for example, since system designers wrongly put both a
(implicit) trust relation and the corresponding distrust relation.

Example 10. The teaching evaluation officer depends on the manager of the student
IT system for providing update information, but the latter is distrusted for such goal
(Figure 8(a)).

When we model and analyze security requirements, it is also possible that such
requirements are specified at both individual and social levels, they could be in contrast
with each other.

256 P. Giorgini, F. Massacci, and N. Zannone

Teaching
Evaluation

Officer

provide
update

information

provide
update

information

Manager
IT system

Se Se

DD

(a) Conflict due to implicit trust

provide
personal

information

provide
personal

information

IT system
ManagerAdmin

Officer TeTe

SeSeAlice Sam

(b) Social Trust vs Individual Distrust

provide
formal report

to UTB

provide
formal report

to UTB
TEO

SecretarySe Se

Te Te CarolPaul

Professor

(c) Social Distrust vs Individual Trust

Fig. 8. Conflicts on (dis)trust relations

Example 11. Consider again Example 8. What happens if Alice had some problems
with Sam in the past and he doesn’t trust her? This scenario is presented in Fig.8(b).

Example 12. Consider again Example 9. What happen if Paul trusts Carol for providing
a formal report to University Teaching Board? This scenario is presented in Fig. 8(c).

Monitoring, which we have introduced early in thic paper, is a good solution to this
extent. So we don’t need to add anything to the system just to cope with trust conflicts.

Example 13. Referring to Example 11, we believe that Alice should monitor (or dele-
gate this task to another actor) whether Sam does what he has to do since the organiza-
tion imposes her to trust him, but it is not her own choice.

6 Automated Reasoning in SRE

We use Datalog [1] as the underlying semantic framework, also to be close to the se-
mantics of other frameworks for trust or security (e.g. [15,39,50]).

A Datalog program is a set of rules of the form L:- L1 ∧ ... ∧ Ln where L, called
head, is a positive literal and L1, ..., Ln are literals and they are called body. Intuitively,
if L1, ..., Ln are true in the model then L must be true in the model. We use the notation

Security and Trust Requirements Engineering 257

Table 2. Predicates

General predicates
goal(Goal : g)
plan(Plan : t)
resource(Resource : r)
agent(Agent : a)
position(Position : a)
role(Role : a)
play(Agent : a, Role : b)
is a(Role : a, Role : b)
depends(Actor : a, Actor : b, Service : s)
delegate(Type : t, Actor : a, Actor : b, Service : s)
delegateChain(Type : t, Actor : a, Actor : b, Service : s)
trust(Type : t, Actor : a,Actor : b, Service : s)
trustChain(Type : t, Actor : a, Actor : b, Service : s)
distrust(Type : t, Actor : a, Actor : b, Service : s)
distrustChain(Type : t, Actor : a,Actor : b, Service : s)
monitoring(Type : t, Actor : a, Actor : b, Service : s)
confident(Type : t, Actor : a, Service : s)
Specific for execution
requests(Actor : a, Service : s)
provides(Actor : a,Service : s)
should do(Actor : a,Service : s)
can satisfy(Actor : a, Service : s)
Specific for Permission
owns(Actor : a, Service : s)
has per(Actor : a,Service : s)
Goal refinement
subgoal(Service : s1, Service : s2)
OR subgoal(Service : s1, Service : s2)
AND subgoal(Service : s1, Service : s2)
AND decomp(Service : s1, Service : s2, Service : s3)

{L}:-L1, . . . , Ln to indicate that if L1, . . . , Ln are true then L may be true. Essen-
tially, L will be added to the model only if some constraints demand its inclusion. This
construction can be captured with a simple encoding in logic programs. In Datalog,
negation is treated as negation as failure: if there is no evidence that an atom is true, it
is considered to be false. Hence if an atom is not true in some model, then its negation
should be considered to be true in that model.

We start by presenting the predicates for our framework. We distinguish between
two main types of predicates: extensional and intensional. Extensional predicates are
predicates set directly with the help of ground facts and are the ones corresponding the
edge and circles drawn by the requirements engineer on the CASE tool. Intensional
predicates are implicitly determined with the help of rules. Table 2 presents the predi-
cates used to formalize the requirements. For compactness’ sake we use the first argu-
ment of the predicates to indicate the type of actions. Thus, delegate, delegateChain,
distrust, distrustChain, and monitoring have a type t ∈ {exec, perm}; trust, trustChain

258 P. Giorgini, F. Massacci, and N. Zannone

have a type t ∈ {exec, perm ,mon}; and confident has a type t ∈ {satisfy , exec,
owner ,mon}. Once again, we specify predicates for generic “services” because differ-
entiating them into goals, plans and resources is immediate5.

The unary predicates goal, plan and resource are used respectively for identifying
goals, tasks and resource. Note that type Goal, Task and Resource are sub-types of
Service. We shall use letters S, G, T and R possibly with indices as metavariables
ranging over the terms, respectively, of type Service, Goal, Task and Resource.
The intuition is that agent(a) holds if instance a is an agent, position(a) holds if in-
stance a is a position, and role(a) holds if instance a is a role. Note that type Agent,
Position and Role are sub-types of Actor. We shall use letters X , Y and Z as
metavariables ranging over the terms of type Actor, A, B and C as metavariables
ranging over the terms of type Agent, and T , Q and V as metavariables ranging over
the terms of type Role. Metalevel variables are used as a syntactic sugar to avoid to
write the predicates that type variables. For example, when the metavariable G occurs
in a rule, the predicate goal(G) should be put in the body of the rule. The predicate
play(a, b) holds if agent a is an instance of role b. The intuition is that is a(a, b) holds
if role a is a specialization of role b. The predicate depends(a, b, s) holds if actor a
depends on actor b for service s. Notice also that when a relation uses variables of type
Actor the relation can apply to both social and individual levels, but separately.

6.1 Formal Model for Execution

The predicates that we introduced correspond to the relations that the requirements
engineer can actually draw during his analysis. The predicate requests(a, s) holds if
actor a wants service s fulfilled, while provides(a, s) holds if actor a has the capability
to fulfill service s. The predicate delegate(exec, a, b, s) holds if actor a delegates6 the
execution of service s to actor b. Actor a is called delegater; actor b is called delegatee.
The predicate trust(exec, a, b, s) holds is actor a trusts that actor b at least fulfills service
s. Actor a is called truster; actor b is called trustee. The predicate trust(mon, a, b, s)
holds if actor a trusts that actor b monitors whether service s will be satisfied. The
predicate monitoring(exec, a, b, s) holds if actor a monitors if actor b at least can satisfy
service s.

Other predicates are used to define properties that will be used during formal anal-
ysis. The predicates delegateChain(exec, a, b, s) and trustChain(exec, a, b, s) hold if
there is a delegation and a trust chain respectively, between actor a and actor b. The
predicate should do(a, s) identifies actors who should directly fulfill the service. The
basic idea of the predicate can satisfy is that “for every goal I have assigned responsibil-
ities so that it can be fulfilled”. In other words, if an actor has the objective of fulfilling
a service, he can satisfy it. Thus it locates the common leaves of the delegation trees
of execution and permission. Thus, the predicate can satisfy(a, s) holds if actor a can
satisfy service s. The predicate confident(satisfy , a, s) holds if actor a is confident that

5 For resources we must replace the subgoal relation with the part-of relation.
6 For the sake of simplicity we do not deal with the question of depth here. See Li et al. [38] for

an account of delegation with depth. What has emerged from several case studies is that depth
is less important than qualifications such as “only to members of the same office”.

Security and Trust Requirements Engineering 259

Table 3. Axioms for execution

Delegation
E1 delegateChain(exec, X, Y, S) ← delegate(exec, X, Y, S)
E2 delegateChain(exec, X, Z, S) ← delegate(exec, X, Y, S) ∧ delegateChain(exec, Y,Z, S)
Trust
E3 distrustChain(exec, X, Y, S) ← distrust(exec, X, Y, S)

E4 distrustChain(exec, X, Z, S) ←
{

trustChain(exec, X, Y, S) ∧ distrust(exec, Y, Z, S) ∧
not distrustChain(exec, X, Y, S)

E5 trustChain(exec, X, Y, S) ← trust(exec, X, Y, S) ∧ not distrustChain(exec, X, Y, S)

E6 trustChain(exec, X, Z, S) ←
{

trustChain(exec, X, Y, S) ∧ trustChain(exec, Y, Z, S) ∧
not distrustChain(exec, X, Z, S)

E7 trustChain(exec, X, Z, S) ← trustChain(mon, X, Y, S) ∧ monitoring(exec, Y, Z, S)
E8 trustChain(exec, X, Y, S1) ← subgoal(S, S1) ∧ trustChain(exec, X, Y, S)
M1 trustChain(mon, X, Y, S) ← trust(mon, X, Y, S)
M2 trustChain(mon, X, Z, S) ← trust(mon, X, Y, S) ∧ trustChain(mon, Y, Z, S)
M3 trustChain(mon, X, Z, S) ← trustChain(exec, X, Y, S) ∧ trustChain(mon, Y, Z, S)
M4 trustChain(mon, X, Y, S1) ← subgoal(S, S1) ∧ trustChain(mon, X, Z, S)
Monitoring

M5 monitoring(exec, Y, Z, S1) ←
{

delegateChain(exec, X, Y, S1)∧
monitoring(exec, Z, X, S) ∧ subgoal(S1, S)

M6 confident(mon, X, Y, S) ← trust(mon, X, Z, S) ∧ monitoring(exec, Z, Y, S)
Should do
E9 should do(X, S) ← delegateChain(exec, Y, X, S) ∧ provides(X, S)
E10 should do(X, S) ← requests(X, S) ∧ provides(X, S)
Can satisfy
E11 can satisfy(X, S) ← should do(X, S)
E12 can satisfy(X, S) ← delegate(exec, X, B, S) ∧ can satisfy(B,S)
E13 can satisfy(X, S) ← OR subgoal(S1, S) ∧ can satisfy(X, S1)
E14 can satisfy(X, S) ← AND decomp(S, S1, S2) ∧ can satisfy(X, S1) ∧ can satisfy(X, S2)
Confident to can satisfy
E15 confident(satisfy , X, S) ← should do(X, S)

E16 confident(satisfy , X, S) ←
{

delegateChain(exec, X, Y, S) ∧
trustChain(exec, X, Y, S) ∧ confident(satisfy , Y, S)

E17 confident(satisfy , X, S) ← OR subgoal(S1, S) ∧ confident(satisfy , X, S1)

E18 confident(satisfy , X, S) ←
{

AND decomp(S, S1, S2) ∧ confident(satisfy , X, S1)
∧confident(satisfy , X, S2)

service s can be satisfied. Finally, we have the predicates for goal refinement. Their
semantics and axiomatization are straight-forward.

The axiomatization is more complex for modelling execution as shown in Table 3.
E1 and E2 build a delegation chain of execution. E3-8 define the intensional versions,
trustChain and distrustChain of the extensional predicates trust and distrust that are
used to build (dis)trust chains by propagating (dis)trust of execution (permission) rela-
tions. E5 and E6 (M1 and M2) build a trust chain for execution (monitoring); E5 builds
chains over monitoring steps. E8 and M4 have chains propagate to subgoals. According
to E8 execution-trust flows top-down with respect to goal refinements. The axiom for
monitoring M4 states that trustChain flows top-down with respect to goal refinements.
M5 states that if an actor under monitoring delegates a service to another, then the mon-
itor have to watch for the delegatee, that is, the monitor follows the delegation. M6

260 P. Giorgini, F. Massacci, and N. Zannone

introduces the intensional predicate confident(mon, a, b, s): actor a is confident that
there exists someone that monitors actor b for service s.

The remaining axioms describe how global properties of the model are defined. E9-
10 state that an actor has to execute the service if he provides a service and if either
some actor delegates the service to him, or he himself aims for the service. E11-12 state
an actor, who requests for a service, can satisfy the service if either he provides it or
he has delegated it to someone who can satisfy it. Goal refinements are taken care of
by using the axioms E13-14. If an actor can satisfy at least one of the or-subgoals of a
service, then he can satisfy the main service. Also, if he can satisfy all and-subgoals,
then he can satisfy the main service.

The notion of confidence is captured by axioms E15-E18. An actor is confident that
a service will be fulfilled, if he knows that all delegations have been done to trusted or
monitored agents and that the agents who will ultimately execute the service, have the
permission to do so. Goal refinements are taken care of by using axioms E17-18: if an
actor is confident that at least one of the or-subgoals of a service will be fulfilled, then
he can be confident that the service will be fulfilled. The axiom for and-decomposition
is dual.

6.2 Formal Model for Permission

In Table 2 we also have predicates for modelling permission. The first set of predi-
cates corresponds to the relations drawn by the requirements engineer. The predicate
owns(a, s) holds if actor a owns service s. The owner of a service has full authority
concerning access and usage of his services, and he can also delegate this authority to
other actors. The intuition is that delegate(perm , a, b, s) holds if actor a at most del-
egates the permission to fulfill service s to actor b. The predicate trust(perm, a, b, s)
holds is actor a trusts that actor b at most has the permission to fulfill service s. The
predicate monitoring(perm , a, b, s) is the dual of the execution counterpart.

Also in this case other predicates are used to define interesting properties for the for-
mal analysis by the requirement engineer. The predicates delegateChain(perm, a, b, s)
and trustChain(perm , a, b, s) hold if there is a delegation, resp. a trust chain of permis-
sion among actor a and actor b. The basic idea of has per sums up the possible ways
in which an actor can grab the permission on a service: either directly or by delegation.
From the point of view of the owner, confidence means that the owner is confident that
the permission that he has delegated will not be misused. Alternatively, the owner is
confident that he has delegated permission only to trusted or monitored agents. This
means that even if there is one untrusted or unmonitored delegation, then the owner
could be uneasy about the likely misuse of his permissions. So, an owner is confident,
if there is no likely misuse of his permission. It can be seen that there is an intrinsic
double negation in the statement. So we try to model it using a predicate diffident(a, s).
At any point of delegation of permission, the delegating agent is diffident, if the dele-
gation is being done to an agent who is neither trusted not monitored or if the delegatee
could be diffident himself. In this way, confident(owner , a, s) holds if the owner a is
confident to give the permission on service s only to trusted actors.

Table 4 presents the axioms for modelling permission. P1 and P2 build a delegation
chain of permission. P3-6 define the intensional versions, trustChain and distrustChain

Security and Trust Requirements Engineering 261

Table 4. Axioms for permission

Delegation
P1 delegateChain(perm, X, Y, S) ← delegate(perm , X, Y, S)
P2 delegateChain(perm, X, Z, S) ← delegate(perm, X, Y, S)∧delegateChain(perm, Y, Z, S)
Trust
P3 distrustChain(perm, X, Y, S) ← distrust(perm , X, Y, S)

P4 distrustChain(perm, X, Z, S) ←
{

trustChain(perm , X, Y, S) ∧ distrust(perm , Y, Z, S) ∧
not distrustChain(perm , X, Y, S)

P5 trustChain(perm , X, Y, S) ← trust(perm , X, Y, S) ∧ not distrustChain(perm, A, B, S)

P6 trustChain(perm , X, Z, S) ←
{

trustChain(perm, X, Y, S) ∧ trustChain(perm , Y, Z, S) ∧
not distrustChain(perm, X, Z, S)

P7 trustChain(perm , X, Z, S) ← trustChain(mon, X, Y, S) ∧ monitoring(perm, Y,Z, S)
P8 trustChain(perm , X, Y, S) ← subgoal(S, S1) ∧ trustChain(perm , X, Y, S1)
M7 trustChain(mon, X, Z, S) ← trustChain(perm, X, Y, S) ∧ trustChain(mon, Y, Z, S)
Monitoring

M8 monitoring(perm , Z, Y, S1) ←
{

delegateChain(perm , X, Y, S1)∧
monitoring(perm , Z, X, S) ∧ subgoal(S1, S)

M9 confident(mon, X, Y, S) ← trust(mon, X, Z, S) ∧ monitoring(perm, Z, Y, S)
Has permission
P9 has per(X, S) ← owns(X, S)
P10 has per(X, S) ← delegateChain(perm, Y, X, S) ∧ has per(Y, S)
P11 has per(X, S1) ← subgoal(S1, S) ∧ has per(X, S)
Owner is confident to give the service to trusted actors
P12 confident(owner , X, S) ← owns(X, S) ∧ not diffident(X, S)
P13 diffident(X, S) ← delegateChain(perm , X, Y, S) ∧ diffident(Y, S)
P14 diffident(X, S) ← delegateChain(perm , X, Y, S) ∧ not trustChain(perm , X, Y, S)
P15 diffident(X, S) ← subgoal(S1, S) ∧ diffident(X, S1)

of the extensional predicates trust and distrust that are used to build (dis)trust chains
by propagating (dis)trust of permission relations.

P5 and P6 build a trust chain for permission; P7 builds chains over monitoring
steps. P8 has the chain propagate through subgoals. If an actor trusts that another will
not overstep the set of actions required to fulfill a subgoal of a service, then the first
can trust the last not to overstep the set of actions required to fulfill the service. The
permission trust, with respect to goal refinements, flows bottom-up. M7 is used to build
a trust chain for monitor. M8 states that if an actor under monitoring delegates a service
to another, then the monitor have to watch for the delegatee, that is, the monitor follows
the delegation. M9 is the permission counterpart of M6. The owner of a service has
full authority concerning access and disposition of it. Thus, P9 states that if an actor
owns a service, he has permission on it. P10 states that the delegatee has permission on
the service. P11 propagates permission through subgoals. The notion of confidence and
diffidence that we have sketched above is captured by the axioms P12-P16.

6.3 Combining Execution and Permission

More sophisticated properties require reasoning with both execution and permission.
To this end, we introduce some notions that put together these two notions. In Table 5

262 P. Giorgini, F. Massacci, and N. Zannone

Table 5. Axioms Involving both permission and execution

Can see the service fulfilled (can execute)
Ax1 can execute(X, S) ← should do(X, S) ∧ has per(X, S)
Ax2 can execute(X, S) ← delegateChain(exec, X, Y, S) ∧ can execute(Y, S)
Ax3 can execute(X, S) ← OR subgoal(S1, S) ∧ can execute(X, S1)

Ax4 can execute(X, S) ←
{

AND decomp(S, S1, S2) ∧ can execute(X, S1)
∧ can execute(X, S2)

Confident to see the service fulfilled (confident to execute)
Ax5 confident(exec, X, S) ← should do(X, S) ∧ has per(X, S)

Ax6 confident(exec, X, S) ←
{

delegateChain(exec, X, Y, S) ∧
trustChain(exec, X, Y, S) ∧ confident(exec, Y, S)

Ax7 confident(exec, X, S) ← OR subgoal(S1, S) ∧ confident(exec, X, S1)

Ax8 confident(exec, X, S) ←
{

AND decomp(S, S1, S2) ∧ confident(exec, X, S1)
∧ confident(exec, X, S2)

Need to know
Ax9 need to have perm(X, S) ← should do(X, S)

Ax10 need to have perm(X, S) ←
{

delegate(perm , X, Y, S) ∧ need to have perm(Y, S)
∧ not other delegater(X, Y, S)

Ax11 other delegater(X, Y, S) ←
{

delegate(perm , Z, Y, S) ∧
need to have perm(Y, S) ∧ X �= Z

we present the notions from both the point of view of the requester and the point of
view of the owner. The predicate can execute(a, s) holds if actor a can see service s
fulfilled. The predicate confident(exec, a, s) holds if actor a is confident to see service
s fulfilled. Actor a, who aims for service s, is confident that s will be fulfilled, if he
knows that all delegations have been done to trusted or monitored agents and that the
agents who will ultimately execute the service, have the permission to do so. This is
done using the axioms Ax5-6. Goal refinements are taken care of by using the axioms
Ax7-8. If a is confident that at least one of the or-subgoals of s will be fulfilled, then a
can be confident that s will be fulfilled. Also, if a is confident that all and-subgoals of s
will be fulfilled, then a can be confident that s will be fulfilled.

Owners may wish to delegate permissions to providers only if the latter actually do
need the permission. The last part of Table 5 defines the predicates that are necessary to
analyze need-to-know properties. As a result of absence of diffidence, the owner can be
confident that his permission will not be misused. But has this permission reached the
agents who actually need it? The owner might also want to ensure that there has been
not unwanted delegation of permission. This can be achieved by identifying the agents
who actually need-to-know (or rather need-to-have) the permission. This set of axioms
captures also the possibility of having alternate paths of permission delegations. In this
case the formal analysis will not yield one model but multiple models in which only
one path of delegation is labeled by the need-to-have property and the others are not.

Example 14 (Figure 9). Alice and Carol (7 and 8) have both received the consent (per-
mission) by Bob (1) for using his personal data, and both delegate it to the faculty
secretariat (3), which must have the permission to provide the data to Paul (6), the uni-
versity tutor who should provide personal counseling to Bob. In this case only one of
either Alice or Carol needs to have the permission.

Security and Trust Requirements Engineering 263

Delegation of permission

Delegation of execution

Trust of permission

Trust of execution

6

3

87

1 2

4 5

REQUESTER

PROVIDER

OWNER

Fig. 9. Need-to-Know and Multiple Permissions Paths

6.4 Other Features

In Table 6 there are the axioms to map Tropos dependency into Secure Tropos frame-
work and vice versa. Notice that ST1-2 and ST5 have also to be repeated for the case
where the dependum is a plan.

Table 6. Axioms for mapping Tropos into Secure Tropos and vive versa

From Tropos to Secure Tropos
ST1 trust(exec, X, Y, G) ← depends(X, Y, G)
ST2 delegate(exec, X, Y, G) ← depends(X, Y,G)
ST3 trust(perm , Y, X, R) ← depends(X, Y, R)
ST4 delegate(perm, Y,X, R) ← depends(X, Y, R)
From Secure Tropos to Tropos

ST5 depends(X, Y, G) ←
{

trust(exec, X, Y, G) ∧ delegate(exec, X, Y, G) ∧
not distrust(exec, X, Y, G)

ST6 depends(X, Y, R) ←
{

trust(perm, Y, X, R) ∧ delegate(perm, Y, X, R)∧
not distrust(perm , Y, X, R)

Table 7 presents the axioms for role hierarchy and for mapping relations from so-
cial level to individual level. The predicate specialize is the intensional version of is a,
whereas instance is intensional version of play. Axioms SI1-13 have to be repeated
replacing the predicate instance with specialize and predicate agent with role for com-
pleting social level with respect to role hierarchy.

6.5 Analysis and Verification

Design properties are not enforced with axioms for two reasons. At first the actual sys-
tem drawn by the requirement engineer may not satisfy them, and therefore the missing
link may be actually a bug. Second, there might be many ways in which a require-

264 P. Giorgini, F. Massacci, and N. Zannone

Table 7. Axioms for role hierarchy and for mapping social level into individual level

Role Hierarchy
RH1 specialize(T, Q) ← is a(T, Q)
RH2 specialize(T, Q) ← specialize(T, V) ∧ is a(V, Q)
RH3 instance(A,T) ← play(A, T)
RH4 instance(A,T) ← instance(A, Q) ∧ specialize(Q, T)
From social level to individual level
SI1 provides(A, S) ← provides(T, S) ∧ instance(A,T)
SI2 requests(A, S) ← requests(T, S) ∧ instance(A, T)
SI3 owns(A,S) ← owns(T, S) ∧ instance(A, T)
SI4 trust(exec, A, B, S) ← trust(exec, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI5 trust(perm, A, B, S) ← trust(perm , T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI6 distrust(exec, A,B, S) ← distrust(exec, T, Q,S) ∧ instance(A,T) ∧ instance(B, Q)
SI7 distrust(perm , A,B, S) ← distrust(perm, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI8 delegate(exec, A,B, S) ← delegate(exec, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI9 delegate(perm , A, B, S) ← delegate(perm , T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI10 monitoring(exec, A, B, S) ← monitoring(exec, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI11 monitoring(perm, A,B, S) ← monitoring(perm, T, Q,S)∧ instance(A, T)∧ instance(B, Q)
SI12 trust(mon, A,B, S) ← trust(mon, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI13 depends(A, B, S) ← depends(T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)

6

1 2 3

4 5PROVIDER

REQUESTER

(a) From requesters’ viewpoint

3

1 2

4 5

OWNER

(b) From owners’ viewpoint

Fig. 10. Design for delegation of execution and permission

ment engineer may wish to fulfill desired properties. We use the DLV system7 to verify
security properties with respect to a Secure Tropos model.

In Table 8 we use the A ⇒? B to mean that one must check that each time A holds
it is desirable that B also holds. In Datalog this can be represented as the constraint
:- A, not B. If the set of features is not consistent, i.e., they cannot all be simultaneously
satisfied, the system is inconsistent, and hence it is not secure. This also guarantee
us that our proposed axioms are consistent if we check for consistency of the model
without trying to enforce any property.

Pro1 states that if there is a delegation chain either the delegater trusts the delegatee
or there is the monitor and the delegater trust the monitor. Pro2 states that a requester
wants to can satisfy his goals, and Pro3 states that a requester wants to be confident to
satisfy the service.

7 http://www.dbai.tuwien.ac.at/proj/dlv

Security and Trust Requirements Engineering 265

Table 8. Desirable Properties of a Design

Execution
Pro1 delegateChain(exec, X, Y, S) ⇒? trustChain(exec, X, Y, S)
Pro2 requests(X, S) ⇒?can satisfy(X, S)
Pro3 requests(X, S) ⇒?confident(satisfy , X, S)
Pro4 should do(X, S) ⇒?not delegateChain(exec, X, Y, S)
Permission
Pro5 delegateChain(perm, X, Y, S) ⇒? trustChain(perm , X, Y, S)
Pro6 owns(X, S) ⇒? confident(owner , X, S)
Pro7 owns(X, S) ⇒? not delegateChain(perm, Y, X, S) ∧ X �= Y

Execution & Permission
Pro8 requests(X, S) ⇒?can execute(X, S)
Pro9 requests(X, S) ⇒?confident(exec, X, S)
Pro10 owns(X, S) ⇒?need to have perm(X, S)
Pro11 owns(X, S) ⇒?need to have perm(X, S) ∧ confident(owner , X, S)

Example 15 (Figure 10(a)). Bob and Bert (1 and 2) need counseling. They can receive
it (formal relation can satisfy) because they delegate the execution to Paul and Peter (4
and 5), while Bill (3) cannot receives all necessary advices because he requested some
of them only to Alice (6) which is not able to provide counseling on faculty matters.

Bob is also confident to receive all counseling he needs since he delegates the exe-
cution to Paul and Peter (4 and 5) whom he trusts, while Bert is not confident since he
delegates to Paul (4) that he does not trust.

Pro4 states that if an actor provides a service, then, if either some actor delegates the
service to him, or if he himself requests the service, then he has to execute the service
without further delegation. Pro5 states that if there is a delegation chain, either the
delegater trusts the delegatee or there is the monitor. Pro6 states that the owner of the
service has to be confident to give the service to trusted actors, and Pro7 states that a
service cannot come back to the owner.

Example 16 (Figure 10(b)). Bob and Bert (1 and 2) need to provide their personal data
for receiving accurate counseling. Bob is confident on his personal data since he dele-
gates the permission on it to two Paul and Peter (4 and 5) who he trusts to use the data
at most for counseling. On the other hand, Bert is not confident on her data since she
delegates it to Paul (4) whom she does not trust to keep her information confidential.

This example is very close to the example that we have previously seen on misplaced
delegation (Example 15). What changes is what can be obtained by poor Bert. In the
former case he is afraid to receive a bad advice (delegation of execution), in the latter
that her information can be used for other things than providing counseling.

The last part of Table 8 shows properties to verify at-most model and at-least model
at the same time. Pro8 states that the requester has to can see the service fulfilled. Pro9
states that the requester has to be confident to see the service fulfilled.

Table 9 presents the properties used to identifying conflicts that occur when both a
trust and a distrust relations exist among two actors for the same service. Pro1-2 are used
to identify generic conflicts and correspond to Definition 1 and 2. These properties apply

266 P. Giorgini, F. Massacci, and N. Zannone

Table 9. Properties for identifying conflicts

TC1 trustChain(exec, X, Y, S) ⇒?not distrustChain(exec, X, Y, S)
TC2 trustChain(perm , X, Y, S) ⇒?not distrustChain(perm, X, Y, S)

TC3 trustChain(exec, A,B, S) ⇒?
{

not distrustChain(exec, T, Q, S) ∧
instance(A, T) ∧ instance(B, Q)

TC4 trustChain(perm , A,B, S) ⇒?
{

not distrustChain(perm , T, Q, S) ∧
instance(A, T) ∧ instance(B, Q)

TC5 distrustChain(exec, A, B, S) ⇒?
{

not trustChain(exec, T, Q,S) ∧
instance(A, T) ∧ instance(B, Q)

TC6 distrustChain(perm , A, B, S) ⇒?
{

not trustChain(perm, T, Q, S)∧
instance(A, T) ∧ instance(B, Q)

Table 10. Axioms for solving conflicts

C1 {monitoring(exec, M, B, S)} ←

⎧⎪⎪⎨
⎪⎪⎩

distrustChain(exec, A, B, S) ∧
trustChain(exec, T, Q,S) ∧

instance(A,T) ∧ instance(B, Q)∧
trustChain(mon, A, M, S)

C2 {monitoring(perm , M, B, S)} ←

⎧⎪⎪⎨
⎪⎪⎩

distrustChain(perm, A, B, S) ∧
trustChain(perm, T, Q, S)∧

instance(A,T) ∧ instance(B, Q)∧
trustChain(mon, A, M, S)

Table 11. Axioms in order to support monitoring

E4′ distrust(exec, A,B, S) ←
{

distrust(exec, T, Q,S) ∧ instance(A,T)∧
instance(B, Q) ∧ not confident(mon, A,B, S)

P4′ distrust(perm , A,B, S) ←
{

distrust(perm, T, Q,S) ∧ instance(A,T) ∧
instance(B, Q) ∧ not confident(mon, A,B, S)

to both social level and individual level, independently and so A and B have to be typed
as role for the social level and as agents for the individual level. Pro1-2 can be refined in
order to identify conflicts of the form of Fig. 8(c) (Pro3-4) and Fig. 8(b) (Pro5-6).

Table 10 formalizes the proposal for solving conflicts when there is a trust relation
at social level and a distrust relation at individual level. In order to accommodate C1-2
in our framework we have to modify axioms Ax6-7 in Table 7. The new version of these
axioms is given in Table 11.

7 Computer Aided SRE

ST-Tool [24,29] is a CASE tool for design and verification of functional and secu-
rity requirements, and has been designed to support the Secure Tropos methodology.
It provides a user interface for drawing Secure Tropos models, support for translating
automatically graphical models into formal specifications and a front-end with external
tools for model checking.

Security and Trust Requirements Engineering 267

Graphical−layer
Manager

Data−layer
Manager

Integrity
Checker

FormalTropos

Datalog
Front−end

GUI

Editor

Data Model

Datalog

Formal Languages & Analysis

Solvers

ST−Tool

Fig. 11. The Architecture Overview

Fig. 12. ST-Tool screenshot

ST-Tool is mainly composed of two parts: the ST-Tool kernel and external solvers.
ST-Tool kernel has an architecture comprised of three major parts, each of which is
comprised of modules. Next, we will discuss these modules and their interconnections.
In Fig. 11, the modules of ST-Tool are shown, their interrelations are also indicated.

The tool provides a graphical user interface (GUI), through which system design-
ers can manage all the components and functionalities of the tool. A screenshot of the
interface is shown in Fig. 12. To manage visual editing features and data management
consistency at the same time, we have adopted a two-layer solution: a graphical layer
and a data layer. In graphical layer, models are shown as graphs where actors and ser-
vices are nodes, and relations are arcs. Each visual object refers to a data object. The
collection of data objects is the data layer. The GUI’s key component is the Editor Mod-

268 P. Giorgini, F. Massacci, and N. Zannone

ule. This module allows the user to visually insert, edit or remove graphical objects in
the graphical layer and object properties in the data layer. A second GUI component is
the Graphical-layer Manager (GM) Module that manages graphical objects and their
visualization. It supports goal refinement by associating a goal diagram with each actor
and then allows to collapse actors and services in order to maintain readable diagrams.
Further, GM permits to display one or more views of a diagram at the same time, namely
dependency model (aka Tropos model), delegation models, and trust models.

The Data-layer Manager (DM) Module is responsible for building and maintain-
ing data corresponding to graphical objects. For example, DM manages misalignments
between social relations and their graphical representation. Actually, GM uses arcs to
connect two nodes to each other, while many Secure Tropos relations are ternary. DM
rebuilds these relations by linking two appropriate graphical objects (the two arcs) to
the same data object (the relation). ST-Tool allows users to save models through the
DM module that stores a neutral description of the entire model in .xml format files.
A support for detecting errors and warnings during the design phase is provided by
the Integrity Checker Module. This module analyzes models stored in the DM module
and reports errors such as “orphan relations” (i.e. relations where an arc is missing)
and “isolated nodes” (i.e. services not involved in any relations). Warnings are different
from errors: they are failure of integrity constraints, like errors, but the designer may
be perfectly happy with a design that does not satisfy them. Integrity Checker reports
warnings, for example, when more than one service have the same name.8

After drawing so many nice diagrams, system designers may want to check whether
the models derived so far satisfy some general desirable properties. To support for-
mal analysis, ST-Tool allows automatic transformations from the .xml file stored by
DM into Formal Tropos [20] and Datalog specifications. These transformations are per-
formed, respectively, by two different modules: Formal Tropos Module and Datalog
Module. The resulting specifications are displayed by selecting the corresponding panel.

The process for completing and checking models is controlled by the Datalog Front-
end (DF) Module. Through this module, requirement engineers can choose the axioms
to complete the model and the properties to be verified on it. Properties are grouped into
Authorization, Availability, Integrity and Need-to-know categories, so that engineers
only need to specify the categories they wants to verify to include the corresponding
rule set. Once designers are confident with the model, the resulting Datalog specifica-
tion is given in input to some external solvers that verify the consistency of the model
corresponding to the specifications. Then, the solver output is parsed by the DF module
in order to present in a more user-readable format. A scheme of the entire process for
modelling and analyzing security requirements is given in Fig. 13.

We use different ASP solvers for the requirements analysis, namely ASSAT,9 Cmod-
els,10 Smodels,11 and DLV.12 ASSAT, Cmodels, and Smodels work with grounded logic
programs generated by Lparse [54]. In particular, Cmodels and ASSAT use SAT solvers

8 More than one service with the same name are needed to represent delegation and trust chains.
9 http://assat.cs.ust.hk/

10 http://www.cs.utexas.edu/users/tag/cmodels.html
11 http://www.tcs.hut.fi/Software/smodels/
12 http://www.dbai.tuwien.ac.at/proj/dlv/

Security and Trust Requirements Engineering 269

Fig. 13. ST-Tool: the analysis cycle

Table 12. Experimental Result

Solver cmodels-1 cmodels-2 smodels assat dlv
N. Ins. R Wall CPU R Wall CPU R Wall CPU R Wall CPU R Wall CPU

0 0 0m13.32s 0m0.25s 0 0m13.53s 0m0.13s 0 0m14.83s 0m0.13s 0 0m14.82s 0m0.13s 0 0m0.12s 0m0.01s
24 0 0m59.08s 0m0.61s 0 0m58.99s 0m0.57s 0 1m5.15s 0m0.56s 0 1m4.92s 0m0.59s 0 0m0.31s 0m0.00s
45 0 2m33.69s 0m2.06s 0 2m33.77s 0m1.73s 0 2m50.51s 0m1.68s 0 2m50.18s 0m1.75s 0 0m0.67s 0m0.02s
62 1 0m41.19s 0m1.80s 1 0m41.04s 0m1.74s 1 0m46.28s 0m1.66s 1 0m46.72s 0m1.60s 0 0m0.95s 0m0.01s

113 1 0m47.94s 0m1.72s 1 0m47.70s 0m1.76s 1 0m54.34s 0m1.63s 1 0m54.27s 0m1.71s 0 0m2.42s 0m0.02s
166 1 0m27.73s 0m1.58s 1 0m27.77s 0m1.55s 1 0m32.71s 0m1.75s 1 0m33.74s 0m1.86s 0 0m5.05s 0m0.08s

as research engine for determining the solution, while Smodels uses general-purpose
answer set solvers. Finally, DLV is developed as a deductive database system.

In order to compare the different solvers, we have tested them on a pool of bench-
marks based on a comprehensive case study on the compliance to the Italian security
and privacy legislation of public administrations such as universities, local governments
and health care authorities [43]. Benchmarks are defined from the structure of the orga-
nization (base case) by adding a growing number of agents (instances) playing the roles
occurring in the model.

The benchmarks evaluation results of the experiments carried out are reported in
Table 12. The experiments were executed on a bi-processor XEON, 3.2 GHz, 1 MB
of Chache, 4GB of RAM, running Linux. For each problem we report the time used to
complete the analysis (Wall) and by CPU. However, Wall and CPU reported in Table 12
do not take into account the time spent by Lparse that Cmodels, Smodels and Assat use
for grounding. Further, with “0” we mark the experiments that complete successfully,
while with “1” we mark those experiments that fail for some reason such as memory
limits exceeded. The experiments show that DLV system is more efficient than the other
solvers. Further, Cmodels, Smodels and ASSAT are not able to find a solution after a
certain number of instances since Lparse exceeds memory limit.

8 Conclusions

Security Requirements Engineering is one of the challenging field for computer security
research. Here we have sketched the overall methodological issues that underpins the
design of a novel methodology for security design.

270 P. Giorgini, F. Massacci, and N. Zannone

Looking back at our proposed classification, this work is well placed within the
meta-level modelling field. To avoid some of the disadvantages of the approach we
have focused on a modular addition so that dropping all newly proposed features makes
us return to Tropos/i* original methodology.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic Databases. In Proc. of VLDB’02,

pages 143–154. Morgan Kaufmann, 2002.
3. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. An Implementation of P3P Using Database

Technology. In Proc. of EDBT’04, LNCS 2992, pages 845–847. Springer-Verlag, 2004.
4. R. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems.

Wiley Computer Publishing, 2001.
5. A. I. Antòn and J. B. Earp. A requirements taxonomy for reducing Web site privacy vulner-

abilities. Requirements Eng., 9(3):169–185, 2004.
6. A. I. Antòn, J. B. Earp, and A. Reese. Analyzing Website privacy requirements using a

privacy goal taxonomy. In Proc. of RE’02, pages 23–31. IEEE Press, 2002.
7. T. Aura. On the Structure of Delegation Networks. In Proc. of 1998 CSFW, pages 14–26.

IEEE Press, 1998.
8. M. Backes, G. Karjoth, W. Bagga, and M. Schunter. Efficient comparison of enterprise

privacy policies. In Proc. of SAC’04, 2004.
9. M. Backes, B. Pfitzmann, and M. Schunter. A Toolkit for Managing Enterprise Privacy

Policies. In Proc. of ESORICS’03, LNCS 2808, pages 162–180. Springer-Verlag, 2003.
10. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS: An Agent-

Oriented Software Development Methodology. JAAMAS, 8(3):203–236, 2004.
11. C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy, social

importance and quantification. In Proc. of ICMAS’98, pages 72–79. IEEE Press, 1998.
12. L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in

Software Engineering. Kluwer Publishing, 2000.
13. L. Cranor, M. Langheinrich, M. Marchiori, and J. Reagle. The Platform for Privacy Prefer-

ences 1.0 (P3P1.0) Specification. W3C Recommendation, Apr. 2002.
14. R. Crook, D. Ince, L. Lin, and B. Nuseibeh. Security Requirements Engineering: When

Anti-requirements Hit the Fan. In Proc. of RE’02, pages 203–205. IEEE Press, 2002.
15. J. DeTreville. Binder, a logic-based security language. In Proc. of 2002 IEEE Symp. on Sec.

and Privacy, pages 95–103. IEEE Press, 2002.
16. P. T. Devanbu and S. G. Stubblebine. Software engineering for security: a roadmap. In Proc.

of ICSE’00, pages 227–239, 2000.
17. T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl. MAC and UML for secure software

design. In Proc. of FMSE’04, pages 75–85. ACM Press, 2004.
18. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed nist

standard for role-based access control. TISSEC, 4(3):224–274, 2001.
19. R. Fredriksen, M. Kristiansenand, B. A. G. K. Stølen, T. A. Opperud, and T. Dimitrakos.

The CORAS framework for a model-based risk management process. In Proc. of SAFE-
COMP’02, LNCS 2434, pages 94–105, 2002.

20. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos. Specifying and analyzing
early requirements: Some experimental results. In Proc. of RE’03. IEEE Press, 2003.

21. G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Modeling the Impact of Trust and Distrust
in Agent Networks. In Proc. of AOIS’01, pages 45–58, 2001.

Security and Trust Requirements Engineering 271

22. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
of the 5th Int. Conf. on Log. Prog., pages 1070–1080. MIT Press, 1988.

23. P. Giorgini, F. Massacci, and J. Mylopoulos. Requirement Engineering meets Security: A
Case Study on Modelling Secure Electronic Transactions by VISA and Mastercard. In Proc.
of ER’03, LNCS 2813, pages 263–276. Springer-Verlag, 2003.

24. P. Giorgini, F. Massacci, J. Mylopoulos, A. Siena, and N. Zannone. ST-Tool: A CASE Tool
for Modeling and Analyzing Trust Requirements. In Proc. of iTrust’05, LNCS 3477, pages
415–419. Springer-Verlag, 2005.

25. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Filling the gap between Re-
quirements Engineering and Public Key/Trust Management Infrastructures. In Proc. of Eu-
roPKI’04, LNCS 3093, pages 98–111. Springer-Verlag, 2004.

26. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements Engineering meets
Trust Management: Model, Methodology, and Reasoning. In Proc. of iTrust’04, LNCS 2995,
pages 176–190. Springer-Verlag, 2004.

27. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling Security Requirements
Through Ownership, Permission and Delegation. In Proc. of RE’05, 2005. To appear.

28. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modelling Social and Individual
Trust in Requirements Engineering Methodologies. In Proc. of iTrust’05, LNCS 3477, pages
161–176. Springer-Verlag, 2005.

29. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. ST-Tool: A CASE Tool for Security
Requirements Engineering. In Proc. of RE’05, 2005. To appear.

30. Z. Guessoum, M. Ziane, and N. Faci. Monitoring and Organizational-Level Adaptation of
Multi-Agent Systems. In Proc. of AAMAS’04, pages 514–521. ACM Press, 2004.

31. M. Hannoun, J. S. Sichman, O. Boissier, and C. Sayettat. Dependence Relations between
Roles in a Multi-Agent System: Towards the Detection of Inconsistencies in Organization.
In Proc. of MABS’98, LNCS 1534, pages 169–182. Springer-Verlag, 1998.

32. Q. He and A. I. Antón. A Framework for Modeling Privacy Requirements in Role Engineer-
ing. In Proc. of the 9th Int. Workshop on Requirements Eng. : Found. for Software Quality,
pages 137–146, 2003.

33. T. Jaeger and A. Prakash. Requirements of role-based access control for collaborative sys-
tems. In Proc. of 1st ACM Workshop on Role-Based Access Control, pages 53–64. ACM
Press, 1995.

34. A. J. I. Jones and M. J. Sergot. A Formal Characterisation of Institutionalised Power. J. of
the Interest Group in Pure and Appl. Log., 4(3):429–445, 1996.

35. J. Jürjens. Secure Systems Development with UML. Springer-Verlag, 2004.
36. G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring Teams by Overhearing: A

Multi-Agent Plan-Recognition Approach. JAIR, 17:83–135, 2002.
37. G. Karjoth, M. Schunter, and M. Waidner. Platform for Enterprise Privacy Practices: Privacy-

enabled Management of Customer Data. In Proc. of PET’02. Springer-Verlag, 2002.
38. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based approach to dis-

tributed authorization. TISSEC, 6(1):128–171, 2003.
39. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of A Role-based Trust-management

Framework. In Proc. of 2002 IEEE Symp. on Sec. and Privacy, pages 114–130. IEEE Press,
2002.

40. L.-C. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Analysing Security Threats and
Vulnerabilities Using Abuse Frames. Technical Report 2003/10, The Open University, 2003.

41. L. Liu, E. S. K. Yu, and J. Mylopoulos. Security and Privacy Requirements Analysis within
a Social Setting. In Proc. of RE’03, pages 151–161. IEEE Press, 2003.

42. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In Proc. of UML’02, LNCS 2460, pages 426–441. Springer-Verlag,
2002.

272 P. Giorgini, F. Massacci, and N. Zannone

43. F. Massacci, M. Prest, and N. Zannone. Using a Security Requirements Engineering Method-
ology in Practice: The compliance with the Italian Data Protection Legislation. Comp. Stan-
dards & Interfaces, 27(5):445–455, 2005. An extended version is available as Technical
report DIT-04-103 at eprints.biblio.unitn.it.

44. J. McDermott and C. Fox. Using Abuse Case Models for Security Requirements Analysis.
In Proc. of ACSAC’99, pages 55–66. IEEE Press, 1999.

45. H. Mouratidis, P. Giorgini, and G. Manson. Modelling secure multiagent systems. In Proc.
of AAMAS’03, pages 859–866. ACM Press, 2003.

46. H. Nwana. Software agents: An overview. Knowledge Engineering Review J. , 11(3), 1996.
47. S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to enforce

mandatory and discretionary access control policies. TISSEC, 3(2):85–106, 2000.
48. L. Ponemon. What Keeps Security Professionals Up At Night?, April 2003. URL:

http://www.darwinmag.com/read/040103/threats.html.
49. I. Ray, N. Li, R. France, and D.-K. Kim. Using UML to visualize role-based access control

constraints. In Proc. of SACMAT’04, pages 115–124. ACM Press, 2004.
50. P. Samarati and S. D. C. di Vimercati. Access Control: Policies, Models, and Mechanisms.

In FOSAD 2001/2002, LNCS 2946, pages 137–196. Springer-Verlag, 2001.
51. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control

models. IEEE Comp., 29(2):38–47, 1996.
52. G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse cases. Requirements

Eng., 10(1):34–44, 2005.
53. W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice-Hall,

Englewood Cliffs, New Jersey, 1999.
54. T. Syrjänen. Lparse 1.0: User’s Manual. Helsinki University of Technology, 2000.
55. A. Toval, A. Olmos, and M. Piattini. Legal requirements reuse: a critical success factor for

requirements quality and personal data protection. In Proc. of RE’02, pages 95 –103. IEEE
Press, 2002.

56. T. Tryfonas, E. Kiountouzis, and A. Poulymenakou. Embedding security practices in con-
temporary information systems development approaches. Inform. Management and Comp.
Sec., 9:183–197, 2001.

57. A. van Gelder. The alternating fixpoint of logic programs with negation. In Proc. of
PODS’89, pages 1–10. ACM Press, 1989.

58. A. van Lamsweerde, S. Brohez, R. De Landtsheer, and D. Janssens. From System Goals to
Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engineer-
ing. In Proc. of RHAS’03, pages 49–56, 2003.

59. A. van Lamsweerde and E. Letier. Handling Obstacles in Goal-Oriented Requirements En-
gineering. TSE, 26(10):978–1005, 2000.

60. J. Viega and G. McGraw. Building Secure Software. Addison-Wesley, 2001.
61. E. S. K. Yu. Agent-Oriented Modelling: Software versus the World. In Proc. of AOSE’01,

LNCS 2222, pages 206–225. Springer-Verlag, 2001.
62. P. Zave. Classification of research efforts in requirements engineering. CSUR, 29(4):315–

321, 1997.

	Introduction
	Security Requirements Engineering: A Survey
	Towards a ``Terra Incognita'': Why a New Methodology Is Needed

	Secure Tropos: A Goal Oriented SRE Methodology
	Requirement Analysis Phase
	The Key Concepts
	Modelling Activities
	Process

	Using SRE for Compliance with Data Privacy Legislation
	Modelling Actors
	Modelling Dependencies and Delegation
	Goal Refinement

	The Plot Thickens: Refining Delegation and Trust
	Execution vs Permission
	Introducing Distrust
	Monitoring
	Social vs Individual Trust

	Automated Reasoning in SRE
	Formal Model for Execution
	Formal Model for Permission
	Combining Execution and Permission
	Other Features
	Analysis and Verification

	Computer Aided SRE
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

