
Intrusion Detection: Introduction to Intrusion
Detection and Security Information Management
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Abstract. This paper covers intrusion detection and security informa-
tion management technologies. It presents a primer on intrusion detec-
tion, focusing on data sources and analysis techniques. Data sources pre-
sented therein are classified according to the capture mechanism and we
include an evaluation of the accuracy of these data sources. Analysis
techniques are classified into misuse detection, using the explicit body of
knowledge about security attacks to generate alerts, and anomaly detec-
tion, where the safe or normal operation of the monitored information
system is described and alerts generated for anything that does not be-
long to that model. It then describes security information management
and alert correlation technologies that are in use today. We particularly
describe statistical modeling of alert flows and explicit correlation be-
tween alert information and vulnerability assessment information.

1 Introduction

Information systems security has been a research area for a long time. Initial
viruses and worms propagated slowly through the exchange of magnetic con-
tainers. With the development of TCP/IP, security problems have become more
frequent and taken very different forms, and have lead to the development of
new security techniques. Very early in the development of the Internet, vulnera-
bilities affecting operating systems have allowed attackers to move from system
to system. Detecting attackers has been a necessity for military environments.
Insufficient access control measures have led to the development of intrusion-
detection systems (IDS).

These IDS have been developed to detect abnormal behaviour of information
systems and networks, indicating a breach of the security policy. Two families
of techniques have been developed, misuse-detection and anomaly-detection, to
analyze a data stream representing the activity of the monitored information
system. Misuse-based analysis detects known violations of the security policy,
explicitly specified by the security officer. Anomaly-based analysis detects devi-
ations from the normal behaviour of the monitored information system.

The objective of intrusion-detection systems today is to inform operators on
the security health of information system. This mostly improves accountability
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but does not protect the information system from attacks. The development
of dependable analysis techniques, particularly reduction of false alarms and
identification of attack context, should in the future enable the migration to
efficient intrusion protection systems, merging access control at the network
layer with access control at the application layer. Distributing IDS components
onto single workstations should create an efficient multi-layered approach to
information security in the near future.

Beyond intrusion detection, security information management (SIM) plat-
forms have emerged to manage alerts created by intrusion detection / prevention
systems and other security tools, and provide a global view of the security state
of the information system. These platforms are a must-have for large organiza-
tion concerned with the security of their information systems, and are offering
facilities for alert correlation, display and threat management.

In this paper, we will first cover intrusion detection by examining sensors,
data sources and analysis techniques. We will then present security information
management and alert correlation techniques.

2 Intrusion Detection Sensors

Figure 1 presents a schematic model of an intrusion detection / intrusion pre-
vention system (IDS/IPS) according to the Intrusion Detection Working Group1

(IDWG) of the Internet Engineering Task Force (IETF). This model contains all
the important components of an intrusion detection system. The square boxes
represent software or hardware components, while the ellipses represent human
roles.
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Fig. 1. Schematic model of an intrusion detection / intrusion prevention system ac-
cording to the Intrusion Detection Working Group

An intrusion detection system observes the activity of the monitored infor-
mation system through a data source. These data sources are captured and
synthesized as events by the SENSOR component of the intrusion detection sys-
tem. While nothing prevents an intrusion detection system to incorporate several
1 http://www.ietf.org/html.charters/idwg-charter.html
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sensors simultaneously and feed heterogeneous events to the ANALYZER com-
ponent, current commercial intrusion detection systems acquire and analyze a
single data source. Data sources are detailed in section 3.

Events are processed by an ANALYZER. This analyzer decides whether the
event is malicious and should trigger the generation of an alert, or whether the
event participates in the normal activity of the monitored information system.
His decision depends both on the analysis technique and algorithms (see section
4) and on the configuration decided by the security administrator. The security
administrator decides what conditions trigger alerts, what information is sent to
the manager and what the appropriate response is. When alerts are triggered, the
analyzer sends them to the manager. Alerts are described as Intrusion Detection
Message Format[1] XML messages, transported over the IDXP[2] protocol.

When the MANAGER receives an alert, it displays its content to an operator.
It can also decide to respond to the alert by applying countermeasures on one
or several response components.

When an operator receives an alert, he is responsible for processing the alert
according to the guidelines set forth by the security policy.

The main difference between IDS and IPS lies in the response capability.
An IPS is often positioned inline, separating two networks like an application-
level firewall. Now, for each packet or session that triggers an alert, the IPS can
decide that the session needs to be terminated, the packet dropped or rejected,
or possibly other measures. The response capability existed in IDS systems, in
the sense that they were able to reconfigure other components such as firewalls
to achieve a block, or to emit TCP RST packets to cut a connection. However,
these responses depended on external devices or on luck, and they were often
inefficient, mostly because the response was too slow and the attack had already
propagated.

3 Data Sources

The first differentiator of intrusion detection technologies is the data source.
Each data source requires specific processing to obtain event information, and
allows the detection of different attacks.

3.1 Network Data Sources

IDS using network data are called Network Intrusion Detection Systems (NIDS).
These NIDS observe the network, either on a hub, the SPAN port of a switch,
or taps, collect the packets, and reconstruct an image of the activity of the
users. NIDS are probably the most deployed systems today, and IPS are mostly
NIDS. IPS have also brought in this area dedicated hardware devices capable
of analyzing several gigabits of traffic inline, what previous software-based IDS
were not able to do. There has been a large body of research related to optimizing
NIDS such as the open source snort[3], but the current trend is clearly towards
hardware-based or hardware-assisted solutions.



210 H. Debar and J. Viinikka

The network is a very attractive information source because it introduces lit-
tle disturbance on the monitored information system[4]. SPAN ports on switches
may imply bandwidth limitations on the observed traffic, but the stability prob-
lems that plagued early SPAN implementations are mostly gone. Another good
solution is the tap, with a fail-open mode that guarantees service continuity even
in the case of hardware failure. Finally, network operators are generally willing
to look at the kind of traffic that crosses their wire, and the natural aggrega-
tion of traffic allows the monitoring of large IT infrastructures with a few well
positioned boxes.

However, obtaining meaningful events from network observation is not very
easy. One needs to decompose the traffic according to the various protocol layers.
Also, experience has shown [5] that NIDS may suffer evasion, i.e. the attacker
may be able to inject traffic in the network that will either render the attack
invisible to the intrusion detection system or make it generate false alarms.
Examples of these issues are:

Address masking. Network Address Translation (NAT) does not provide the
IP address of the endpoint to the NIDS.

Encryption. Encrypted protocols defeat NIDS because most of their detection
process requires access to headers (sometimes encrypted) and to payload
(always encrypted). Popular protocols such as SSL and SSH render NIDS
unusable.

Fragmentation. IP fragmentation is a rare phenomenon normally. It can be
used to fragment the payload in such a way that the NIDS will not see the
attack in one piece.

Reliability of the source address. Many attacks can be realized while using
fictitious IP addresses (IP spoofing[5]) when no answer from the target is
necessary. An attacker can also use stepping stones [6] to mask the origin of
the attack. Finally, it can also use reflectors [7] to trick unwilling agents into
carrying out the attack on its behalf.

Transience of address information. In many organizations, and ISPs in
particular, IP addresses are handed out dynamically via DHCP. Identifi-
cation of a particular customer through the IP address requires log analysis
and can therefore be costly, or even impossible if logs have been rolled over.

The interested reader will find more detailed information in [5,8]. While these
issues are not new and are fairly well known at the network layer, evasion tech-
niques keep appearing at the application layer. Application protocols encode the
information in the packet payload. Hence, exploitation of the payload requires
that the IDS recognizes the possible encodings. The attacker can hide its actions
through the use of specific encodings that are not understood by the NIDS.

For example, the http protocol allows the replacement of any character by
its ascii hexadecimal code, prefixed with the % character [9]. This replacement
is mandatory for special characters, obviously % but also space, and others.
Ptacek and Newsham have shown that NIDS in 1998 did not understand this
encoding and could not detect encoded attacks [5]. This particular problem has
been solved for a long time, but others regularly appear.
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Also, NIDS can include more intelligence than simple decoding, and incorpo-
rate recognition of protocol states, referred to as protocol awareness. A protocol
aware NIDS recomposes the target protocol finite state machine and applies the
detection algorithm to only the appropriate state. A NIDS that does not un-
derstand protocol states (often referred to as network grep) applies its detection
algorithm to the payload of the packet regardless of the protocol state or his-
tory, and is much more likely to create false positives. Of course, keeping protocol
states is costly, and these NIDS include safeguard mechanisms to avoid memory
saturation, falling back to stateless detection if needed. ’

3.2 System Data Sources

The system audit trails cover all the data sources that are made available by
the operating system. The intrusion detection systems using host data sources
are named Host Intrusion Detection Systems (HIDS). Syslog on UNIX systems
and the NT event log under Microsoft windows operating systems provide to
applications a service for identifying, time-stamping and storing information.
Using this kind of facility is very easy for application developers, and they are
used by several HIDS as a tool to collect, correlate and present system-related
information.

Several operating systems also offer a so-called “C2 audit”, to conform to
the US government requirement for computer purchases. Such an audit aims
at providing a trace of all privileged operations realized on a given computer,
usually through the recording of system calls. It offers a strong user identification
capability and an extremely fine-grained action description. Unfortunately, this
C2 audit system is rarely properly documented and has a strong performance
impact, so it has been abandoned by most HIDS.

Recent HIDS have developed specific interception software, similar to anti-
virus technology. This interception software allows the HIDS to recover only the
information that can be analyzed, at lesser cost. Of course, these interception
mechanisms are operating-system dependant, which results in a smaller number
of offerings in the product space.

The main advantage of host audit data is the precision of the information. On
this basis, an HIDS is able to reduce the number of false positives, while providing
detailed information about the circumstances of the attack. In particular, actors
(both target and perpetrator) are correctly and precisely identified. As such,
the counter-measures can be appropriately tailored to the situation. Contextual
information, related to the success of the attacker’s activity, allows the operator
to evaluate the risk and determine the appropriate level of counter-measures.

The main drawback of system audit data is that the HIDS has to reside
on the same host, or a large volume of data has to be transported for remote
analysis. Performance is such degraded through consumption of either bandwidth
or processing power for security. Moreover, the behaviour of HIDS under stress
heavily relies on the capabilities of the underlying operating system, and there
is a real risk that denial-of-service attacks will either incapacitate the HIDS (if
the original application has priority) or be facilitated (if the HIDS has priority).
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Moreover, an application needs to be installed on the host. This has a strong
impact on server deployment when servers have to be qualified before being
placed in a production environment. Also, the signature updates may be prob-
lematic if software updates are also included in the signature updates.

3.3 Application Data Sources

Application logs cover all the traces maintained by the applications. The in-
trusion detection systems using application logs are considered as HIDS, even
though an application log could provide information about a distributed envi-
ronment, spanning multiple machines.

A typical example of application logs is the HTTP server log files storing
requests presented to the server (usually in the access.log file) and error mes-
sages (usually stored in the error.log file. Each line stores the request presented
to the server, and statistics about the response. The format of these log lines is
reasonably easy to parse, making the data source an attractive proposition for
developers.

Retrieval of the information generally consists of watching the file and parsing
additional information into the data structures of the HIDS. Since these logs may
ignore local information, constant information such as host names may be added
on the fly to obtain an autonomous message.

Application logs are often more precise and dense than both system audits
and network traffic, because they contain information that is atomic from the
point of view of the application, while multiple packets or several thousand
system calls may be necessary to realize the function.

Also, they provide more accurate information with the inclusion of return
codes and error messages. These return and error messages are extremely impor-
tant for the intrusion detection system, because they provide effective diagnostic
of the issue and its impact on the monitored information system.

As already mentioned with network traffic, applications may use specific
encodings. Depending on the log, decoding may also be required to normalize
the information.

The biggest issue with application logs is that they are often targeting de-
bugging and abnormal termination cases. As such, these files may not contain
enough data for the HIDS. In certain cases, it is necessary to collect the entire
transaction log, because even error-free transactions may contain attack-related
activity that needs to be analyzed.

4 Analysis Techniques

Misuse detection takes advantage of the body of knowledge related to security
vulnerabilities and penetration of information systems and networks. The IDS
contains information about these vulnerabilities and looks for attempts to take
advantage of them. When such an attempt is detected, an alert is sent to the
management console. In other words, any action that is not explicitly identified
as an inappropriate usage of the information system is considered acceptable.



Introduction to Intrusion Detection and Security Information Management 213

Note that misuse detection does cover more than known attacks and vul-
nerabilities. If a security policy explicitly bans certain activities, these activities
can be linked to alerts in an IDS. The best example would be banning IRC
activity from a network. Any connection using the IRC port would trigger an
alert. SNMP is also banned from certain environments and its inappropriate us-
age by network management tools can easily be detected. Also, recurrent attack
mechanisms have been analyzed to abstract generic attack methods, covering
not a single vulnerability but a class of them. These abstract models allow de-
tection of broad attack patterns covering even some unknown vulnerabilities, or
at least ensure that the detection mechanism does not rely on specificities of
some attack tools.

Signature Description. In a misuse-based approach, one needs to define the
trigger that, when found in the event stream, will generate an alert. This trigger
is usually referred to as an attack signature, although the terms scenario and
rule have been used to describe these triggers as well. The term signature will
be used throughout this paper.

Initially, trigger description in IDES [10] took the form of facts entered into
an expert system. User actions abstracted from the event stream were also rep-
resented as facts, while the detection process was described as production rules.
This procedure was extremely costly, because of the processing needed to ab-
stract several low level audit events into a single user action. Snapp and Smaha
found that instead of abstracting system or network events to the expert system,
it was easier to express vulnerabilities as sequences of events found in the event
stream, named signatures [11].

A signature is the expression of some sequence of events characterizing the
exploitation of a vulnerability. The detection process is thus simplified, and the
cost is transferred to the definition and test of the signature for all the possible
event stream formats that the IDS intends to support. This is sometimes a costly
trade-off, if the event stream does not contain all the data that is being looked
for, or if multiple encodings have to be taken into account.

In practice, a signature is expressed by a sequence of bytes being matched
in the event stream [12], or in more complex cases by regular expressions [13].
These expressions are easier to write than the initial sequences of bytes proposed
by [11], but it is still somewhat difficult to implement. Difficult because even for
the same event stream format and the same exploited vulnerability, attacks can
show under very different forms: attackers can mask their attempt under specific
encodings or change sequencing by introducing irrelevant events in the data
stream. Applying signatures to the data stream requires the sensor to remove
protocol-specific encodings or operating-system related dependencies. This phase
can be complex and costly performance-wise.

Misuse Detection and False Positives. The misuse detection approach
should be able to generate very few false positives, if any. This however pos-
tulates that the attack is effectively detectable from the data stream, and that
at least one signature properly characterizes the exploit.
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False positives in misuse detection mainly come from an erroneous character-
ization of the vulnerability. This erroneous characterization often occurs when
the IDS attempts to detect the execution of an application without differen-
tiating between normal usage and the actual malicious attempt. For example,
detection of CGI attacks is often based on the detection of the script name in
the HTTP request, and identically-named scripts induce false positives.

Moreover, it is often difficult to differentiate the interactions between an
attacker and a vulnerable information system from the interactions between
normal users and the same information system. It is thus important to analyze
alerts with the knowledge of the configuration of the monitored system, to ensure
proper evaluation of the severity of these alerts.

Misuse Detection and False Negatives. Clearly, false negatives in misuse
detection occur on new attacks, when there is no signature associated to the
vulnerability. Collecting vulnerability information of sufficient quality to write
adequate signatures is a time-consuming task, and validation of this information
is often limited, due to the sheer number of attack combinations possible. Most
often than not, IDS vendors obtain sample event stream information containing
the attack and ensure that their tools can detect the occurrence of the sample
data in the event stream. This is a long and tedious task.

Let’s take a few numbers to illustrate this fact. An IDS today contains be-
tween 500 and 2000 signatures. Public vulnerability databases contain anywhere
between 6000 and 20000 different vulnerability reports. Hence, there is roughly
a one to 10 factor between what an intrusion-detection system knows about vul-
nerabilities, and what is publicly available. This ratio seems to be fairly stable;
one counts between 100 and 150 new vulnerability announcements per month,
associated with 10 to 20 new signatures announced by IDS vendors over the
same period.

This difference is the product of two factors:

– Not all vulnerabilities are of interest to IDS users, because they affect only
rare, specific environments or tools, or they do not provide the attacker with
access to the vulnerable system, only limited denial of service. In addition,
some of these vulnerabilities are old and affect very old software revisions
that are not available anymore.

– A vulnerability may only leave some tracks in specific event streams. If the
IDS does not recover this particular event stream, the vulnerability exploit
cannot be detected.

Finally, there is the possibility of generic signatures that trigger on multiple
vulnerabilities. This happens because attack code is reused from exploit script to
exploit script, or because variations resulting in multiple vulnerabilities affect the
same operating system or application and result in a single signature. Vendors are
focusing on these generic signatures, hoping to cover not only vulnerabilities but
also attack principles. Many products include generic buffer overflow detection,
hoping to catch new exploits if they fit the attack technique.
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Note that misuse-detection techniques are usually less-well suited for the
detection of internal malicious activity. Registered users have access to the in-
formation system, and are likely to possess enough privileges on this information
system to carry out most malicious activities without resorting to the exploita-
tion of known vulnerabilities.

Misuse Detection and Counter-Measures. Misuse detection allows a con-
textual analysis of the attack and its effects on the monitored information system.
This facilitates the understanding of the problem and the decision-making pro-
cess for corrective or preventive action. Current research in alert correlation in-
cludes correlation between vulnerability assessment tools and intrusion-detection
tools. Automated lookup of alert references in vulnerability reports will provide
the operator with a mean to rank alert severity not only with respect to the
attacker’s potential gain, but also with the target’s potential risk.

When target machine and target service are identified, it is reasonably easy
to detect if the attack has some probability of succeeding, and if its effects are
incompatible with the site security policy. The operator is able to evaluate the
trade-off between the reliability and business objectives of the service, and the
security policy objectives. This is fundamental in counter-measures: it could be
legitimate to let the information system provide services even if compromised.

Evolution of Misuse Detection. Misuse detection prototypes have been ini-
tially implemented using first-order logic and expert systems. Current commer-
cial products follow the so-called “signature-based” approach. There are also
Petri-nets-related implementations and state transition analysis implementa-
tions.

Signature-based intrusion-detection systems usually rely on string or regu-
lar expression matching to detect specific pieces of information occurring in the
data source. The matching mechanism is constrained further by specifying addi-
tional characteristics of the event stream, such as specific communication ports
or protocol states. Each of these characteristics describes a particular facet of
the vulnerability.

The expression of the signature depends of the level of detail available in the
data source during exploitation of the vulnerability. For example, if a web server
stops functioning during an attack before log entries can be written to disk, an
intrusion-detection system based on log file analysis will not be able to detect
the attack. Product vendors today tend to provide extremely wide signatures
that will trigger on anything from normal usage to simple scanning, encouraging
the notion that intrusion-detection systems cry wolf without cause.

4.1 Anomaly Detection

The general objective of anomaly detection is to define the correct behaviour of
the monitored information system. An alert is generated when an event cannot
be explained by the model of correct behaviour. This method assumes that
an intrusion will induce a deviation from the normal usage of the information
system.
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Description of the Correct Behaviour Model. The model of correct be-
haviour can be constructed either from past samples of observed behaviour, of
from explicit policy declarations. When an event occurs, the intrusion detection
system compares the current activity with the model. An alert corresponds to
the deviation of one or several measures between the current activity and the
model.

As such, anything that does not correspond to an explicitly-defined accept-
able activity is considered anomalous. Of course, the efficiency of such a system
strongly depends on the capability of the model to represent the activity of the
information system. For example, only using measures of CPU activity to model
the normal behaviour of an information system would not allow straightforward
detection of denial-of-service attacks filling disks or memory. It also assumes that
the measures discriminate normal activity and malicious activity, as postulated
by Denning [14,15]. Unfortunately, this postulate has not been validated theo-
retically. Experimental systems show that it is possible to detect some malicious
activity by anomaly-based techniques, but do not qualify the coverage of this
detection process.

The first models were based on learning techniques. A set of variables is
defined that represents the interesting factors of the information system. Ac-
ceptable ranges for these variables are defined through observation of past data.
A range here can be an association of average and standard deviation, or more
complex statistical measures [16]. The model is trained during an observation
period, and should converge towards stable values at the end of the observation
period.

This area is still a research subject. New models and detection methods are
regularly proposed, that improve constantly on existing technologies.

Advantages of Anomaly Detection Anomaly detection has, at least in prin-
ciple, several advantages over misuse detection. First of all, it should be able
to detect usage of unknown vulnerabilities. This is particularly important, as it
does not rely on explicit security knowledge.

It also does not rely (or only in a limited way) on operating system specific
knowledge, or application-specific knowledge. This is a great advantage when
monitoring heterogeneous systems. After measures have been collected for the
model, the intrusion detection system performs the modelling and detection
process autonomously.

Finally, it can also detect abuse of privileges and insider attacks. Insiders
usually have access to the monitored information system and do not need to
use well known vulnerabilities to compromise the system and get access to the
information they need. Misuse detection seldom detects insider attacks, whereas
anomaly detection could show deviations from normal usage patterns.

Anomaly Detection and False Positives. Anomaly detection techniques
often have a high false positive rate. This phenomenon arises from the fact
that deviations from the model are often observed for any incident occurring
on the monitored information system. Deviations also occur with configuration
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changes. Hence, the workload for processing alerts is large, and the operators
have a frequent feeling that alerts are irrelevant to security.

This feeling is aggravated by the lack of explanation coming with the alerts.
The root cause of the phenomenon is unknown, and the information provided
seldom helps in resolving the issue.

Anomaly Detection and False Negatives. False negatives in anomaly de-
tection have two main causes, corruption of the behaviour model and absence of
measurement.

Corruption of the behaviour model occurs when the model learns an intrusive
behaviour and incorporates it in its coverage. The intrusion detection system be-
comes incapable of detecting occurrences of the attack that has been accepted
as part of the normal behaviour of the information system. Learning intrusive
behaviour as normal occurs in particular in intrusion-detection systems where
the model is constructed using past samples. Such systems need to be retrained
periodically, and unfiltered training data could include malicious behaviour. Cur-
rent research is therefore going away from learning technologies, and developing
specification-based techniques to construct the model of normal behaviour.

Also, attacks sometimes do not impact the measures used by the model of
normal behaviour. Let’s take the very simple example of an intrusion-detection
system that would monitor CPU usage and not disk usage. An attack that
would fill the disk would not be detected by such a system. Of course, intrusion-
detection systems make use of much more complex measures, including dynamic
ones. As such, the exact coverage of the monitoring is difficult to establish.

Anomaly Detection and Counter-Measures. Alerts coming from an
anomaly-based intrusion-detection system are often difficult to analyze. Counter-
measures are difficult to deploy because neither target nor attack source are
clearly identified, as well as the attack principle. Without an explicitly identified
attack principle, counter-measures become extremely hazardous.

A new approach based on honeypot-like technology has recently been de-
veloped to improve identification of attack sources. When suspicious requests
are identified, the response provided by the intrusion-detection system con-
tains uniquely-identifiable information. When these specific tags come back, the
intrusion-detection system can clearly identify the anomaly and its source.

5 Security Information Management

Once alerts are generated, they need to be handled by operators. Due to the
volume and diversity of alert sources, security information management (SIM)
platforms have emerged in recent years as the solution for concentrating hetero-
geneous logs and providing the security officer with a homogenous view of the
security state of its information system.

The requirement for a central event and alert processing platform comes from
the fact that many devices only provide a partial view of the security state of the
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information system, coherent with their role. Offering the desired global view can
only be done by concentrating and consolidating as many information sources
as possible. Note, however, that this does not mean that there will be only one
SIM platform per organization, as SIM platforms should be able to communicate
with one another.

5.1 SIM Functions

A SIM platform should cover the following four functions today.

Event Acquisition. Event acquisition deals with gathering and transporting
events to a central point for further processing. This function covers the relia-
bility of event transport, allowing both push and pull collection models, over a
variety of protocols, to ensure that firewalls and other access control devices are
properly traversed. This function has to deal with fairly heavy data flows, and it
should be able to send hundreds to thousands of events per second to the central
platform.

Another task carried out during event acquisition is related to filtering, ag-
gregation and normalization. Given the enormous volume of event information
that needs to be inserted in the database, the acquisition process must be able
to select which events get inserted into the database. Also, for regular event
streams, it is sometimes preferable to aggregate several identical events as one,
adding the count of such aggregated events to the one tat is finally inserted in
the database.

Finally, the normalization part of the acquisition process deals with ensuring
a uniform representation of events in the database. There are differences in
the naming conventions adopted by security tools such as intrusion detection
systems or anti-virus systems. Two products tend to name the same attack with
different signatures. The normalization process aims at ensuring that two events
representing the same attack get the same name. Also, this process includes the
capability to add reference information to the signatures, to ensure that internal
references and processes are properly taken into account.

Contextual Information Management. Alert information usually includes
some identification of the victim or source of the attack, identifying users and
machines affected. This identification is often partial, including only network
addresses or host names. However, most organisations maintain inventory in-
formation or vulnerability information assessment. This information should be
attached to the host or user independentely of the host or user representation
provided in the alert.

Therefore, the role of the contextual information management function is to
ensure that all the contextual data is properly attached to hosts and users, and
managing changes in this data so that it is kept up to date and accurate. This
can be a tricky task in dynamic environments, for example with DHCP [17] or
when remote users connect via VPN connections.
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Alert Correlation. Alert correlation has as main objective to decide which
alerts should be presented first to the security officer. It is in essence a triage
and priority management system, which must ensure that the most critical alerts
will be seen first. This triage system is supported by the association of a priority
or security level with each event. Priority levels and schemes vary, but this is the
role of the acquisition process to ensure that they are normalized to the IDMEF
[1] set of values. To ensure that this triage process is successful, correlation must:

– fuse alerts that represent identical threat information together so that this
threat is handled only once. This process is made difficult by the fact that
clocks are often not exactly synchronized, and that some hypotheses must
be made as to whether the fused events have the same root cause, e.g. have
been raised by the observation of the same packet.

– relate alerts that participate in the same threat. Real attacks translate in
multiple attacker actions, translating into multiple observations and multiple
alerts being generated by the various intrusion detection and monitoring
systems.

– aggregate high-volume alerts that cannot be interpreted individually, to en-
sure that patterns of aggregate alerts conform to the usual behaviour of the
information system.

– incorporate contextual information into the evaluation of the severity of the
event, to ensure that it has the proper awareness level. The most common
representation of this process is to compare alert information and vulnerabil-
ity assessment information, to inform the security officer of attacks associated
with a security risk.

Alert correlation is an important research topic, particularly related to the
processing of large volumes of alerts and to the intelligence of the correlation
process.

Reporting and Exchanging. Finally, one needs to realize that a SIM platform
does not live in isolation, but must offer several interfaces for accessing and
pushing information. Typically, the following interfaces need to be provided :

– Operator real-time interface. This interface provides real-time alert informa-
tion to the operator, typically through a scrolling window. This is the most
common interface available in SIM consoles today, but not the most useful
one, as operators need to be constantly on watch.

– Forensics analysis console. This interface provides navigation capabilities
over the database of alerts, so that the security analyst can understand the
incident, gather all related alerts, and propose solutions for better detection
and resolution of the threat in later instances.

– Real-time incident reporting. In many cases, the threat requires counter-
measures that have an impact on the normal function and the configuration
of the monitored information system. However, if the configuration of the
information system is not handled by the SIM console, it needs to send threat
information to the system management console for proper handling.
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The reporting and exchanging modules can also be used to create the peer
relationships between SIM consoles or hierarchical relationships according to the
needs of the organization.

5.2 Alert Representation

To support these functions, we have organized our data model as a set of con-
centric circles. Our data model is inspired from the Snort relational database
schema, the IDMEF message format [1], and the M2D2 model [18]. We partic-
ipated in deploying these tools and developing these models, so they naturally
were used as a starting point for our development. However, we believe that
event and contextual information are not equivalent and this is not obvious in
the three models cited before. Hence, we choose to provide a different represen-
tation shown in figure 2.

STATISTICS

EVENT

VULNERABILITY

ASSESSM
ENT

SENSOR
SIGNATURE

HOST USER

IN
VENTORY

Fig. 2. Representation of alerts in the database

Event Information. The inner circle represents core event information, sensor,
signature and timestamp. Note that the two first bits (sensor and signature) are
in fact quite complex, comprising several tables and attributes in our database
schema. These more complex bits are stored in the second circle, and each event
links to the second circle for sensor and signature reference. This mechanism
naturally takes into account differences in volume, as there are only a few hun-
dred different sensors and a few thousand signatures for several million events.
It also naturally renders the fact that sensor and signature information evolves
on a much longer timeframe than event information.

Contextual Information. The second circle represents contextual informa-
tion. This core event information links to host and user information in the second
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circle. Signature information links to sensor configuration, to indicate whether a
sensor is able to detect an attack or not, and under which condition. Contextual
information is mostly generated by the knowledge management processes (see
5.3) and by statically entered configuration information. While this contextual
information evolves slowly over time, there is a need to track changes, as they
have an impact on the signification of the events. Signatures are tracked using
revision numbers that reflect improvements in their design. As such, events at-
tached to the same signature message but with a higher revision number are
considered more reliable than earlier events. The same process is used to track
the evolution of sensor properties, each property change being tagged with the
appropriate timestamp.

Transient Information. The third circle represents transient information that
is generated by correlation processes (see Section 6). For example, statistical
processes need to store numerical values associated with the statistical model; we
use this area for the EWMA control values that monitor signature activity [19].
This circle also links to the first two. For example, the signature trending tool
associates signature information in the second circle and event flows stored in
the first circle.

The arrows of Figure 2 represent examples of links between contextual infor-
mation and event information. A network event links to host information with
source and destination of the network connection. A system event links to local
host information indicating on which host the event occurred.

5.3 Contextual Information

Contextual information is related to the description of hosts and users. The
objective of the contextual information knowledge management module is to
ensure that the information linking alerts on one hand and hosts and users on
the other hand are kept synchronized.

Structure of Host Representation. Logs represent host by three different
keys, a host name, a host IP address and a host MAC address. The name is either
fully qualified or a simple machine name, depending on the information source.
This type of information is often provided by host-based information sources,
or by devices configured to do on-the-fly reverse DNS mapping. An IP address
is often provided by network-based IDS sensors and other network equipments.
Finally, MAC addresses are provided by low-level networking devices such as
wireless access points and switches, when specific network or wireless attacks
are detected. All three keys are frequently found in event logs.

Different information sources will describe the host using different keys. To
ensure that the same device is recognized by different sources, these three keys
are associated in the same structure. Each key is associated with a Boolean value
indicating whether this key was used by an information source or was derived
from a data enrichment process. Upon insertion of an event, the process will
first retrieve the appropriate host key with the Boolean set to TRUE, checking
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whether the same device has already been accessed. It will then re-query the
same host key with the Boolean set to FALSE, checking whether enrichment
of the host has taken place for an already existing host. If this is the case, it
means that the host was previously inserted using another key coming from
another source. For example, an IP address could be used for the first insertion,
then a reverse DNS resolution could provide the host name that could then be
encountered in host events. If such a host entry is found, the Boolean associated
with the key will be set to TRUE to facilitate future insertions, and the host
entry found will be used to insert the event. If both searches fail, it will create
a new host entry.

The knowledge management process attempt among other things to complete
the key information associated with a host in the database. If a host is identified
by an IP address, then a reverse DNS lookup is attempted to obtain the host
name. If a host is identified by a host name, a DNS lookup is also attempted.
Both operations are costly and would result in undue delays upon insertion of
a new host, hence the choice of off-loading the acquisition process and pushing
such task to a background process.

While defining the keys vas fairly straightforward, it happens that there are
a number of issues with the keys that we have designed.

Host Information Collection Point. The first remark is that we collect host
information in a different location that event information. Most if not all of our
sensors are passive devices, to limit the risk of attack against them. Therefore,
they do not have the capability of adding host information to events. As a result,
the gathered host information is from the vantage point of the application server
and not the sensor. The advantage is that all events are tagged from the same
viewpoint, thus normalizing the events. The disadvantage is that the application
server needs to be able to access all host information, and that static local
information (e.g. host names stored in /etc/hosts) will not be accessible. Even
though one could fear that the visibility from the application server and from
the sensor is different, we have not observed wrong host information as a result
of this process.

Network Address Translation. Network address translation [20] is frequently
used by private companies and internet service providers to mask the internal
structure of their environment and to lessen address space requirements. As such,
different machines may be seen as a single one by our application. When NAT
is in place, the name resolved through DNS is the name of the NAT device and
does not reflect the exact name of the target or source of the event. As a result,
our application in this configuration identifies a domain but not the exact target
or source.

This problem rarely occurs for hosts under our control. This means that we
usually can still precisely identify hosts that are within our realm.

Dynamic Host Configuration. The dynamic host configuration protocol
(DHCP [17]) allows the same machine to have multiple IP addresses over time.
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Moreover, host name information is sometimes generic as well, reusing for exam-
ple the two last bytes of the IP address. When this is the case, our application
is not able to uniquely identify a machine.

DHCP is a frequent occurrence in the environments monitored by our ap-
plication. Our tool attempts to determine whether the host is within a DHCP
environment. When this is recognized, the host is identified by its host name,
which is stored in our DNS servers during DHCP handshake and is uniquely
generated in the corporation. When such a host is identified by an IP address,
the knowledge management tool reconfigures the event-host associations a pos-
teriori, using DNS queries. This is a domain-specific solution and may not be
applicable to other environments. In particular, ISPs tend to use generic names,
as mentioned earlier. Another solution would be to use the MAC address, but
this key is very rarely available.

Mobility. Mobility is a frequent occurrence in our corporate environment. Lap-
tops and the use of DHCP facilitate remote connections, as well as the gener-
alization of VPN connectivity. However, this poses a problem when such a host
is the subject of a security problem, particularly a viral or worm infection. We
need to distinguish the case of laptops connected internally into a site that is not
their home site, and laptops using VPN connections to access the information
system.

In the case of locally-connected laptops, it is often the case that the resolution
between host name and host IP address is wrong. Let’s take the case of a virus
infection. This virus infection is logged into the NT Event Log of the laptop,
which in turns connects to a central server to deliver the infection alert. This
infection alert is based on the host name, which is a unique key in our corporate
network. As such, the event will be correctly assigned to the host. Unfortunately,
geographic information is based on the IP address. If an IP address already
exists for the host name, this information is not systematically refreshed as
this is a costly process. Therefore, getting the current geographic coordinates of
the infected laptop requires an additional DNS lookup to retrieve the current
IP address and its associated geographical location. This process is quite time
consuming and correct information may not be immediately available; if this
process takes too much time the connection is terminated.

In the case of VPN-connected laptops (which is also used for wireless con-
nections), the IP address of the laptop resolves to the IP address of the VPN
concentrator. Therefore, it is impossible to retrieve the physical location of the
infected machine and the connection is terminated.

5.4 Vulnerability Assessment

Collecting vulnerability assessment information is generally done through the
usage of a vulnerability scanner, either remotely by querying the audited host,
or locally by installing an inventory module. Local auditing us usually more
accurate, but requires software installation on the tested host, which is not al-
ways feasible. Therefore, vulnerability assessment information is often connected
through the network.
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While vulnerability assessment reports are extremely useful for the security
officer, they suffer from the following issues:

Server side only Remote vulnerability assessment report query active ser-
vices. Therefore, they do not provide information about client side vulnera-
bilities or firewalled ports. Only local software installation can provide this
information.

Audit cost and timeliness More than actual bandwidth consumption these
days, the audit cost is the time it takes to test and evaluate large numbers
of hosts. Therefore, audits may only be carried out at spaced intervals.

Audit risk and accuracy Certain tests can have undesirable side effects on
the tested host, such as leaving it vulnerable to certain attacks, or bringing
it down. The more accurate an audit report is, the riskier it generally is as
well.

To take into account some of these issues, passive network observation has
been introduced to collect information related to vulnerabilities on both clients
and servers. By collecting product names and versions from the network, either
with a dedicated tool such as ettercap or with a network intrusion detection sys-
tem equipped with a specific rule set, the passive network observation sensor can
obtain a fairly complete inventory of the information system. Using external vul-
nerability databases such as OSVDB, it is then possible to deduce vulnerability
assessment information for the information system.

6 Alert Correlation

The need to automate alert processing and to reduce the amount of alerts dis-
played to the operator by the system is a widely recognized issue and the research
community has proposed as one solution to correlate related alerts to facilitate
the diagnostics by the operator [21].

Alert correlation has three principal objectives with regard to information
displayed to the operator:

Volume reduction: Group or suppress alerts, according to common proper-
ties. E.g. several individual alerts from a scan should be grouped as one
meta alert.

Content improvement: Add to the information carried by individual alert.
E.g. the use of topology and vulnerability information of monitored system
to verify or evaluate the severity of the attack.

Activity tracking: Follow multi-alert intrusions evolving as time passes. E.g.
if attacker first scans a host, then gains remote-to-local access, and finally
obtains root access, individual alerts from these steps should be grouped
together.

We perform volume reduction eliminating redundant information by aggre-
gating alerts that are not strictly symptoms of compromise and appear in high
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volumes. Only changes in the behaviour of the aggregate flow are reported to the
user. Correlation techniques capable of detecting unknown, novel relationships
in data are said to be implicit and techniques involving some sort of definition
of searched relationships are called explicit. As the aggregation criteria are man-
ually selected, this is an explicit correlation method. Overall, we aim to save
operator resources by freeing the majority of time units that manually process-
ing the background noise would require and thus to enable him to focus on
more relevant alerts. Even though this manual processing is likely to be periodic
skimming through the accumulated noise, if there are several sources with om-
nipresent activity, the total time used can be significant. Next we discuss why
despite the large amounts of alerts background noise monitoring can be useful.

6.1 Statistical Correlation

According to our experience (see Sect. 6.1) a relatively large portion of alerts
generated by a sensor can be considered as background noise of the operational
system. However, the division to true and false positives is not always so black
and white. The origins of problem can be coarsely divided to three. 1) Regardless
of audit source, the audit data usually does not contain all required technical
information, such as the topology and the vulnerability status for the monitored
system for correct diagnosis. 2) The non-technical contextual factors, such as op-
erator’s task and the mission of the monitored system, have an effect on which
types of alerts are of high priority and relevant. 3) Depending on the context of
the event, it can be malicious or not, and part of this information can not be ac-
quired by automated tools or inferred from the isolated events. For the first case,
think of a Snort sensor that does not know if the attack destination is running
a vulnerable version of certain OS or server and consequently can not diagnose
whether it should issue an alert with very precise prerequisites for success. An
example of the second is a comparison of on-line business and military base. At
the former the operator is likely to assign high priority on the availability of the
company web server, and he might easily discard port scans as minor nuisance.
At the latter the operator may have only minor interest towards the availability
of the base web server hosting some PR material, but reconnaissance done by
scanning can be considered as activity warranting user notification. Instead of
high priority attacks, the third case involves action considered only as potentially
harmful activity, such as ICMP and SNMP messages that indicate information
gathering or network problems, malicious as well as innocuous as part of normal
operation of the network. Here the context of the event makes the difference,
one event alone is not interesting, but having a thousand or ten events instead of
the normal average of a hundred in a time interval can be an interesting change
and this difference can not be encoded into signature used by pattern matching
sensor.

This kind of activity is in the grey area, and the resulting alerts somewhere
between false and true positive. Typically the operator can not afford to monitor
it as such because of the sheer amount of events. The current work on corre-
lation is largely focusing on how to pick out the attacks having an impact on
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monitored system and show all related events in one attack report to the oper-
ator. Depending on the approach, the rest of the alerts are assigned such a low
priority that they do not reach the alert console [22], or they can be filtered out
before entering the correlation process [23,24]. However, if the signature reacting
to grey area events is turned on, the operator has some interest towards them.
Therefore it is not always the best solution to only dismiss these less important
alerts albeit their large number. Monitoring aggregated flows can provide infor-
mation about the monitored system’s state not available in individual alerts,
and with a smaller load on operator. Our work focuses on providing this type of
contextual information to the user.

EWMA control charts were originally developed for statistical process control
(SPC) by Roberts [25], who used the term geometric moving averages instead
of EWMA, and since then the chart and especially the exponentially weighted
moving average have been used in various contexts, such as economic applications
and intrusion detection [26,27,28]. Our needs differ from those of Roberts’ quite
much, and also to a smaller degree from those of the related work in intrusion
detection. Below our variation of the technique is described, building largely
on [28], and the rationale for changes and choices is provided.

The monitored measure is the alert intensity of a flow x, the number of
alerts per time interval. One alert flow consists typically of alerts generated by
one signature, but also other flows, such as alerts generated by a whole class
of signatures, were used. Intensity x is used to form the EWMA statistic. This
statistic is called the trend at time i. It is quite impossible to define a nominal
average as the test baseline x0, since these flows evolve significantly with time.
Like Mahadik et al. [28], to accommodate the dynamic, non-stationary nature
of the flows, the test baseline is allowed to adapt to changes in alert flow.

Learning Data. The tool was developed for an IDS consisting of Snort sensors
logging alerts into a relational database. The sensors are deployed in a production
network, one closer to Internet and two others in more protected zones. This adds
to the difficulty of measuring and testing, since we do not know the true nature
of traffic that was monitored. On the other hand, we expect the real world data
to contain such background noise and operational issues that would not be easily
incorporated to simulated traffic.

The data set available to us in this phase contained over 500K alerts accumu-
lated during 42 days. Of the 315 activated signatures, only five were responsible
for 68% of alerts as indicated in Table 1 and we chose them for further scrutiny.
To give an idea of the alert flow behaviour, examples of alert generation inten-
sities for four of these signatures are depicted in Fig. 3. The relatively benign
nature of these alerts and their high volume was one of the original inspira-
tions for this work. These alerts are good examples of the problem three and
demonstrate the reason why we opt not just filter even the more deterministic
components out. For example, the alert flow in Fig. 3(c) triggered by SNMP
traffic over UDP had only few (source, destination) address pairs, and the con-
stant component could be easily filtered out. However, this would deprive the
operator being notified of behaviour such as the large peak and shift in constant
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Table 1. Five most prolific signatures in the first data set

signature name number of alerts proportion

SNMP Request UDP 176 009 30 %
ICMP PING WhatsupGold Windows 72 427 13 %
ICMP Destination Unreachable (Communi-
cation Administratively Prohibited)

57 420 10 %

LOCAL-POLICY External connexion from
HTTP server

51 674 9 %

ICMP PING Speedera 32 961 6 %
sum 390 491 68 %

component around February 15th as well or the notches in the end of February
and during March 15th. Not necessarily intrusions, but at least artefacts worth
further investigation. On the other hand, we do not want to distract the operator
with the alerts created during the hours that represent the stable situation with
constant intensity. For the others, Fig. 3(a) shows alerts from a user defined sig-
nature reacting to external connections from an HTTP server. The alerts occur
in bursts as large as several thousands during one hour and the intensity profile
resembles impulse train. As custom made, the operator has likely some interest
in this activity. In Figs. 3(b) and 3(d) we have alerts triggered by two different
ICMP Echo messages, former being remarkably more regular than latter. In the
system in question, deactivation of ICMP related signatures was not seen as a
solution by the operator as they are useful for troubleshooting problems. Con-
sequently, we had several high volume alert flows for which the suppression was
not the first option.

Effect of Flow Volume. Judging from the busy interval reduction, the method
is useful for alert flows that had created more than 10K alerts, the effectiveness
increasing with the flow volume. The busy interval reduction for flows below 10K
alerts is already more modest, and below 1K alerts the reduction is relatively
negligible. Tables 2 and 3 depict respectively the reduction as percentage from
non-zero intervals and alerts flagged anomalous, due to space constraints only
for flows of over 10K alerts. Reduction is shown with smoothing factors 0.80 and
0.92 for each of the three models, continuous, hourly, and weekday. In Table 2
also the total number of active intervals, and in Table 3 the total number of
alerts are shown for each flow.

Table 4 summarizes alert reduction results with continuous model and
smoothing factor 0.92. All 85 flows are grouped to four classes according to both
their output volume (over 100, 1 K, 10K or 100K alerts) and the achieved re-
duction in busy intervals and alerts (below 5 %, 10%, 50% or 100% of original),
respectively. These results show also the poorer performance for flows below the
10K limit. The busy intervals show more consistent relation between the volume
and reduction. On the right hand side of Table 4 in the class over 100K alerts,
ICMP Dest Unreachable (Comm Admin Proh) stands out with reduction signifi-
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Fig. 3. Hourly alert intensity for some of the most prolific signatures in learning data.
Horizontal axis is the time, and the vertical shows the number of alerts per hour

cantly smaller than others in the same class. We found two explanations for this
behaviour. First, there was one large alert impulse of approximately 17K alerts
flagged in the test data. This makes up roughly 10% of flagged alerts. Second,
the flow nature is more random compared to others, this is visible in Fig. 3(d) for
learning data and applies also for the larger data set. This randomness causes
more alert flagging, but still the reduction in busy intervals is comparable to
other flows in this volume class.

Reasons for Poor Summarization. There seems to be two main reasons for
poorer performance. 1) Many flows had few huge alert peaks that increase the
alert flagging significantly. 2) The intensity profile has the form of impulse train
that has negative impact both on reduction of alerts and busy intervals. As the
first cause does not increase remarkably the number of reported anomalous in-
tervals i.e. the number of times the user is disturbed, this is smaller problem.
However, the second cause renders our approach rather impractical for monitor-
ing such a flow, as the operator is notified on most intervals showing activity.
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Table 2. The proportion of flagged intervals from intervals showing activity for the
flow with different models and smoothing factors

cont. daily weekd.
flow int. .80 .92 .80 .92 .80 .92

Known DDOS Stacheldraht infection 563 1.6 1.8 8.9 8.5 2.0 2.5
SNMP request UDP 2311 4.3 2.9 5.8 4.6 4.2 3.0
ICMP PING WhatsupGold Windows 2069 5.1 3.3 5.8 2.6 5.1 3.2
DDOS Stacheldraht agent→handler (skillz) 512 1.2 1.6 12 16 1.8 2.1
ICMP Dst Unreachable (Comm Adm Proh) 2578 5.4 3.5 6.7 5.8 5.4 3.4
ICMP PING speedera 2456 3.3 1.7 4.2 2.9 3.3 0.9
WEB-IIS view source via translate header 2548 5.2 3.8 6.4 5.7 5.1 4.0
WEB-PHP content-disposition 2287 6.8 4.3 7.7 5.2 6.7 4.0
SQL Sapphire Worm (incoming) 1721 2.2 1.2 4.9 3.5 2.4 1.6
(spp rpc decode) Frag RPC Records 421 13 7.8 20 20 12 9.0
(spp rpc decode) Incompl RPC segment 276 21 13 27 27 22 13
BAD TRAFFIC bad frag bits 432 34 23 37 33 35 22
LOCAL-WEB-IIS Nimda.A attempt 537 24 16 30 25 24 16
LOCAL-WEB-IIS CodeRed II attempt 1229 6.3 4.6 14 14 6.9 5.3
DNS zone transfer 855 9.7 6.7 13 10 9.8 6.5
ICMP L3retriever Ping 107 29 26 71 70 28 23
WEB-MISC http directory traversal 708 12 9.3 15 13 12 9.5
(spp stream4)STLTH ACT(SYN FIN scan) 29 65 58 82 79 62 62

Table 3. The percentage of flagged alerts with different models and smoothing factors

cont. daily weekd.
flow alerts .80 .92 .80 .92 .80 .92

Known DDOS Stacheldraht infection 308548 1.2 1.2 4.4 8.4 1.4 1.5
SNMP request UDP 303201 4.4 3.0 4.9 4.4 4.2 3.2
ICMP PING WhatsupGold Windows 297437 5.4 4.0 4.5 2.9 5.2 3.1
DDOS Stacheldraht agent→handler (skillz) 280685 0.8 1.0 7.3 7.0 1.2 1.2
ICMP Dst Unreachable (Comm Adm Proh) 183020 32 28 39 37 32 28
ICMP PING speedera 95850 5.5 3.1 2.5 2.3 5.3 1.4
WEB-IIS view source via translate header 58600 25 21 12 11 24 22
WEB-PHP content-disposition 48423 18 14 15 13 18 14
SQL Sapphire Worm (incoming) 38905 3.0 1.9 11 9.1 3.1 2.5
(spp rpc decode) Frag RPC Records 38804 63 62 94 93 63 62
(spp rpc decode) Incompl RPC segment 28715 64 62 93 93 64 62
BAD TRAFFIC bad frag bits 27203 51 42 57 54 53 42
LOCAL-WEB-IIS Nimda.A attempt 25038 65 61 69 64 64 62
LOCAL-WEB-IIS CodeRed II attempt 20418 11 7.5 17 22 11 7.1
DNS zone transfer 15575 32 35 55 55 32 36
ICMP L3retriever Ping 12908 11 12 90 90 11 12
WEB-MISC http directory traversal 10620 41 38 46 45 41 38
(spp stream4)STLTH ACT(SYN FIN scan) 10182 96 90 93 93 96 96
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Table 4. All 85 flows grouped by the number of alerts created and the percentage level
below which busy intervals or alerts were flagged

busy interval reduction

alerts 5% 10% 50% 100%

> 100 K 5 0 0 0
> 10K 5 3 4 1
> 1K 0 4 19 7
> 100 0 1 12 24
sum 10 8 35 32

alert reduction

alerts 5% 10% 50% 100%

> 100 K 4 0 1 0
> 10 K 2 1 6 4
> 1 K 0 1 15 14
> 100 0 0 8 29
sum 6 2 30 47

The flow (spp_stream4) on the last row of Tables 2 and 3 is a typical example,
as its alert profile consisted only from impulses. In such situation a large major-
ity of active intervals are flagged as anomalous. A closer look on alert impulses
revealed that they were usually generated in such a short time interval that
increasing the sampling frequency would not help much. Instead, other means
should be considered to process them.

Represented Alert Types. Amongst the most prolific signatures, we can
identify three main types of activity, hostile, information gathering and alerts
that can be seen to reflect the dynamics of networks.

Hostile activity is represented by DDoS tool traffic and worms with five
signatures. The two DDoS signatures are actually the same, different names were
used by the operator for alert management reasons. If busy interval reduction
below 5% with continuous model and (1 − λ) = 0.92 is used to define EWMA
monitoring applicable for a flow, then we have three fourths in feasible range for
the hostile activity.

In the system in question, possible information gathering is the most com-
mon culprit for numerous alerts. This category can be further divided to informa-
tion gathering on applications (web related signatures) and network architecture
(ICMP, SNMP and DNS traffic). In both categories, there are both suitable and
unsuitable flows for this type monitoring.

The ICMP Destination Unreachable (Communication Administratively Pro-
hibited) message is an example of the activity that describes the dynamics of the
network. It reflects the network state in terms of connectivity, and the origins
and causes of these events are generally out of operators control.

Signatures firing on protocol anomalies can be considered as an orthogo-
nal classification, since they can present any of the three types above. ((spp
rpc decode), (spp stream4) and BAD TRAFFIC) were all poorly handled by the
method. Another common factor is the smaller degree of presence in the data
set in terms of non-zero intervals. As the (spp_stream4) means possible re-
connaissance, and being present only on 29 intervals, it is less likely to be just
background noise.

The nature of these alerts and their volumes in general support the claim
that large proportion of generated alerts can be considered as noise. Even in the
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Table 5. The omnipresence of signatures and their types. Presence measured in active
intervals

signature type < 5% active present

ICMP Dst Unreachable (Comm Adm Proh) network ok 2578 95 %
WEB-IIS view source via translate header info web ok 2548 93 %
ICMP PING speedera info net ok 2456 90 %
SNMP request UDP info net ok 2311 85 %
WEB-PHP content-disposition info web ok 2287 84 %
ICMP PING WhatsupGold Windows info net ok 2069 76 %
SQL Sapphire Worm (incoming) hostile ok 1721 63 %
LOCAL-WEB-IIS CodeRed II attempt hostile ok 1229 45 %
DNS zone transfer info net no 855 31 %
WEB-MISC http directory traversal info web no 708 26 %
Known DDOS Stacheldraht infection hostile ok 563 20 %
LOCAL-WEB-IIS Nimda.A attempt hostile no 537 19 %
DDOS Stacheldraht agent-¿handler (skillz) hostile ok 512 18 %
BAD TRAFFIC bad frag bits proto no 432 15 %
(spp rpc decode) Frag RPC Records proto no 421 15 %
(spp rpc decode) Incompl RPC segment proto no 276 10 %
ICMP L3retriever Ping info net no 107 3%
(spp stream4)STLTH ACT(SYN FIN scan) proto no 29 1%

case of hostile activity the originating events warrant aggregation. This applies
in our case, but the situation may vary with different operating environments.

Table 5 shows the signature flows ordered by their omnipresence giving the
number of active intervals and the percentage this makes out of the whole testing
interval. A rough division according to the 5 % watershed is made and type of
signature according to above discussion is assigned. We can see that for all
signatures showing activity on more than 45% of the intervals the number of
alerts issued to operator can be significantly reduced in this system.

It would seem that the omnipresence of alerts would be better criteria than
the alert type for determining whether EWMA monitoring would be useful
or not.

Impact of Time Slot Choice. According to these metrics the usefulness
of daily and weekday models was limited to a few exceptions, generally the
continuous model was performing as well as the others. We just happened to
have one of the exceptions that really profited from hourly approach in our early
experimentations, and made the erroneous hypothesis of their commonness. The
metrics are however limited for this kind of comparisons. It is especially difficult
to say if the hourly approach just marks more intervals as anomalous or is
it actually capturing interesting artefacts differently. On many occasions the
smaller reduction was at least partly due to abrupt intensity shifts. As several
different statistics making up the hourly model signal an anomaly whereas the
continuously updated statistic does this only once. The two DDoS flows had
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intensity profiles resembling a step function, which caused the hourly model to
flag significantly more alerts than the continuous.

Another factor encumbering the comparisons is the difference in efficient
lengths of model memories. As the time slot statistics of hourly and weekday
models are updated with only the corresponding intensity measures the values
averaged have longer span in real time. For example the hourly model’s statistics
are affected by 8 or 24 days old measurements.

Class Flows. Grouping signature classes together increased the flagging per-
centage. Table 6 shows obtained reductions with continuous model and (1−λ) =
0.92 for class aggregates with more than 1000 alerts. In fact, almost every class
contains one or more voluminous signatures that were problematic statistically
already by themselves, and this affects the behaviour of class aggregate. The
increased flagging could also indicate that anomalies in signature based flows
with smaller volume are detected to some degree. The levels of busy intervals
are reduced relatively well and again generally the flagging increases as alert
volume decreases. The aggregation by class might be used to gain even more
abstraction and higher level summaries in alert saturated situations. However,
there are likely to be better criteria for aggregation than the alert classes.

Table 6. The reduction in alerts and busy intervals when aggregating according to
signature classes. Results for continuous model with 1 − λ = 0.92

raw anomalous
flow int. alerts int. alerts

misc-activity 2678 618273 1.9 % 8.9 %
class none 1429 380568 4.8 % 18.3 %
attempted-recon 2635 360613 3.7 % 7.0 %
known-issue 563 308548 1.7 % 1.1 %
web-application-activity 2569 88554 3.3 % 16.3 %
bad-unknown 2559 65883 3.7 % 20.9 %
known-trojan 1511 46014 5.4 % 34.9 %
misc-attack 1727 39070 1.3 % 2.1 %
web-application-attack 1017 9587 9.1 % 40.5 %
attempted-user 272 3694 19.4 % 40.6 %
attempted-dos 361 2782 24.3 % 67.8 %
attempted-admin 444 1760 20.2 % 33.1 %

Flow Stability. To give an idea of the stability of flow profiles, Table 7 com-
pares the alert and busy interval reduction obtained for four signatures used in
the learning phase against the reduction in testing data. In general the flagging
is slightly higher in the training data set. The most notable exception is sig-
nature ICMP Destination Unreachable (Communication Adm Prohibited),
where a significant number of alerts is marked anomalous in the test set. The
large alert impulse in this flow, mentioned earlier, accounts for approximately
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Table 7. A comparison of results obtained during learning and testing phases. (1−λ) =
0.92

alerts intervals
flow learn. test learn. test

SNMP request UDP 2.7 3.5 2.2 3.5
ICMP PING WhatsupGold Windows 4.6 3.6 2.9 3.6
ICMP Dst Unreachable (Comm Adm Proh) 12 36 3.2 3.7
ICMP PING speedera 2.8 3.2 1.3 2.0

14% units of this increase in test data. Even if those alerts were removed, the
increase would be large. Still, the reduction in busy intervals is quite similar,
suggesting higher peaks in the test set. The fifth signature enforcing a local pol-
icy, also viewed in the learning phase, did not exist anymore in the testing data
set. This signature created alert impulses (see LOCAL-POLICY in Fig. 3(a))
and the alert reduction was marginal in learning data.

It seems like with the used parameters the reduction performance stays almost
constant. This would suggest that after setting parameters meeting the operators
needs, our approach is able to adapt to lesser changes in alert flow behaviour with-
out further adjustment. At least during this test period, none of the originally
nicely-enough-behaving flows changed to more problematic impulse-like nor vice
versa. Also signatures having a constant alert flow or more random process type
behaviour, both feasible for the method, kept to their original profile.

To wrap up the results, it seems possible to use this approach to summarize and
monitor the levels of high volume background noise seen by an IDS. Up to 95% of
the one hour time slots showing activity from such an alert flow can be unburdened
from the distraction. For the remaining intervals, instead of a barrage of alerts,
only one alert would be outputted in the end of the interval. As both data sets
came from the same system, the generality of these observations is rather limited,
and more comprehensive testing would be required for further validation.

If the user is worried that aggregation at signature level loses too much data,
it is possible to use additional criteria, such as source and destination addresses
and/or ports to have more focused alert streams. The reduction in aggregation is
likely to create more flagged intervals, and this is a tradeoff that the user needs
to consider according to his needs and the operating environment. Determining
if the summarization masked important events in the test set was not possible,
as we do not possess records of actual detected intrusions and problems in the
monitored system against which we could compare our results.

6.2 Correlation with Vulnerability Information

Correlation between alerts and vulnerability information aims at assessing the
risk that the monitored information system incurs from the attacker’s actions.
The actions of the attacker are deemed potentially successful and high risk if the
vulnerability exists on the information system.
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The easiest way to realize this correlation mechanism is shown in Figure
4. An event contains information about the attack mechanism and the target
host of the attack. The attack mechanism is associated with references, often to
public external databases, that constitute an open dictionary for all intrusion
detection and SIM vendors. The vulnerability assessment information provides
the link between hosts and vulnerability references. When a loop can be found
in the graph, the alert represents an attack for which the information system
was vulnerable, hence a more serious risk.

The difficulty with this kind of correlation is that we may not have a vulnera-
bility assessment report for the host. When this is the case, we may use inventory
information, either created externally or through passive network observation as
mentioned in Section 5.4. As shown in Figure 5, the association between hosts
and vulnerability references goes through product information.

Note that this procedure also offers another advantage, which is the possibil-
ity to correlate alerts with non-existent vulnerabilities. Vulnerability assessment
tools rarely indicate explicitly when a server is not vulnerable to a given attack.
This lack of information can be attributed to the absence of the vulnerability,
but there could be other factors that make the test fail or not complete, while
the vulnerability would still exist. However, vulnerability databases often include
non-vulnerable information related to the product versions. If the product ver-
sions are comparable, then it is also possible to lower the severity of an alert
when the risk does not exist in the information system.

This correlation mechanism is largely in use in SIM consoles. We are currently
studying the efficiency of this mechanism, to precisely evaluate what it can and
cannot provide.

7 Conclusion

In this paper, we have presented intrusion detection and security information
management as two important and active research domains for information sys-
tems security. While intrusion detection offers mature technologies for deploy-
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ment, security information management remains an interesting research subject
from which we can expect new advances.

Related to intrusion detection, we expect that research will focus on
application-level attacks and on much more accurate sensors and detection algo-
rithms than are currently available. The sheer number of uninteresting intrusion
detection alerts generated by these tools will require continuous tuning and de-
velopment, until systems become more secure.

Security information management will continue to foster research in alert
correlation, leading to more complex scenarios that actually provide reliable
threat information to the security officer. Once this stage is reached, we will
see a large body of research taking place on automated countermeasures, i.e.
ensuring that attacks are dealt with efficiently and accurately, with as little
human intervention as possible.
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