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Abstract. Developing security-critical systems is difficult and there are
many well-known examples of security weaknesses exploited in practice.
Thus a sound methodology supporting secure systems development is
urgently needed.

Our aim is to aid the difficult task of developing security-critical sys-
tems in a formally based approach using the notation of the Unified
Modeling Language. We present the extension UMLsec of UML that al-
lows one to express security-relevant information within the diagrams in
a system specification. UMLsec is defined in form of a UML profile using
the standard UML extension mechanisms. In particular, the associated
constraints give criteria to evaluate the security aspects of a system de-
sign, by referring to a formal semantics of a simplified fragment of UML.
We explain how these constraints can be formally verified against the dy-
namic behavior of the specification using automated theorem provers for
first-order logic. This formal security verification can also be extended
to C code generated from the specifications.

1 Introduction

Modern society and modern economies rely on infrastructures for communi-
cation, finance, energy distribution, and transportation. These infrastructures
depend increasingly on networked information systems. Attacks against these
systems can threaten the economical or even physical well-being of people and
organizations. Due to the widespread interconnection of information systems,
attacks can be waged anonymously and from a safe distance. Many security
incidents have been reported, sometimes with potentially quite severe conse-
quences.

Many problems with security-critical systems arise from the fact that their
developers do not always have a strong background in computer security. This is
problematic since in practice, security is compromised most often not by breaking
mechanisms such as encryption or security protocols, but by exploiting weak-
nesses in the way they are being used. Security mechanisms cannot be “blindly”
inserted into a security-critical system, but the overall system development must
take security aspects into account.
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Furthermore, sometimes security mechanisms (such as security protocols)
cannot be used off-the-shelf, but have to be designed specifically to satisfy given
requirements (see [GHJW03] for an example). Such mechanisms are notoriously
hard to design correctly, even for experts, as many examples of protocols designed
by experts that were later found to contain flaws show.

Enforcing security requirements is intrinsically subtle, because one has to
take into account the interaction of the system with motivated adversaries that
act independently. Risks are very hard to calculate because of the possibility to
quickly distribute new information to exploit vulnerabilities, for example across
the Internet.

Any support to aid secure systems development is thus dearly needed. In
particular, it would be desirable to consider security aspects already in the design
phase, before a system is actually implemented, since removing security flaws in
the design phase, as opposed to patching fielded systems, saves cost and time,
reduces security risks and increases customer confidence.

This has motivated a significant amount of successful research into using
formal methods for secure systems development. However, part of the difficulty
of security-critical systems development is that correctness is often in conflict
with cost. Where thorough methods of system design pose high cost through
personnel training and use, they are all too often avoided.

The Unified Modeling Language (UML, [UML01], the de facto
industry-standard in object-oriented modeling) offers an interesting opportu-
nity for high-quality secure systems development that is feasible in an industrial
context.

– As the de facto standard in industrial modeling, a large number of developers
is trained in UML.

– Compared to previous notations with a user community of comparable size,
UML is relatively precisely defined.

Also, because of its expressitivity and the formal foundation of the UML
fragment under consideration, UML gives an interesting theoretical basis for
research into open problems in the foundations of security, such as the compos-
ability and consistency of the various formalized security requirements. Because
our underlying formal system model is largely independent from UML specifics,
it provide a suitable platform for such investigations also independently from
UML.

To exploit this opportunity, however, some challenges remain which include
the following:

– Extending the UML to be able to conveniently express security requirements
within a UML specification.

– Defining a formal execution semantics for a sufficient simplified fragment of
UML as a basis for the formalization of behavioral security requirements.

– Providing automated tool-support for a formal security verification of UML
specifications against the security requirements.

The present work reports on research towards overcoming these challenges.
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To support using UML for secure systems development, we define the ex-
tension UMLsec of the UML. Various recurring security requirements (such as
secrecy, integrity, authenticity and others), as well as assumptions on the security
of the system environment, are offered as stereotypes and tags by the UMLsec
definition. These can be included in UML diagrams firstly to keep track of the
information. Using the associated constraints that refer to a formal semantics
of the used simplified fragment of UML, the properties can be used to evaluate
diagrams of various kinds and to indicate possible vulnerabilities. One can thus
verify that the stated security requirements, if fulfilled, enforce a given security
policy. One can also ensure that the requirements are actually met by the given
UML specification of the system. This way we can encapsulate knowledge on
prudent security engineering and thereby make it available to developers which
may not be specialized in security. One can also go further by checking whether
the constraints associated with the UMLsec stereotypes are fulfilled in a given
specification, if desired by performing an automated formal security verification
using automated theorem provers for first order logic or model-checkers.

Due to space restrictions, we can only present a partial overview on the work.
A complete acccount, with many more examples and industrial applications, and
the necessary background on distributed system security, can be found in [Jür04].

We explain how to formally evaluate UML specifications for security require-
ments in Sect. 2. We introduce a fragment of the UMLsec notation in Sect. 3
and explain the various stereotypes with examples. We describe how to use auto-
mated theorem provers for first-order logic to verify UML specifications against
seurity requirements in Sect. 4. We point to further work applying these analy-
ses to the source-code level in Sect. 5. We report on an industrial application to
biometric authentication systems in Sect. 6.

2 Security Evaluation of UML Diagrams

A UMLsec diagram is essentially a UML diagram where security properties and
requirements are inserted as stereotypes with tags and constraints, although
certain restrictions apply to enable automated formal verification. UML1 offers
three main “light-weight” language extension mechanisms: stereotypes, tagged
values, and constraints [UML01]. Stereotypes define new types of modeling el-
ements extending the semantics of existing types or classes in the UML meta-
model. Their notation consists of the name of the stereotype written in double
angle brackets 〈〈 〉〉, attached to the extended model element. This model element
is then interpreted according to the meaning ascribed to the stereotype. One way
of explicitly defining a property is by attaching a tagged value to a model ele-
ment. A tagged value is a name-value pair, where the name is referred to as the
tag. The corresponding notation is {tag = value} with the tag name tag and a
corresponding value to be assigned to the tag. If the value is of type Boolean, one
1 In the following, we consider the UML version 1.5 current at the time of writing; the

transition to the upcoming version 2.0 only has a limited impact on the things we
discuss here.
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usually omits {tag = false}, and writes {tag} instead of {tag = true}. Another
way of adding information to a model element is by attaching logical constraints
to refine its semantics (for example written in first-order predicate logic).

To construct an extension of the UML one collects the relevant definitions of
stereotypes, tagged values, and constraints into a so-called profile [UML01]. For
UMLsec, we give validation rules that evaluate a model with respect to listed
security requirements. Many security requirements are formulated regarding the
behavior of a system in interaction with its environment (in particular, with
potential adversaries). To verify these requirements, we use the formal semantics
defined in Sect. 2.1.

2.1 Outline of Formal Semantics

For some of the constraints used to define the UMLsec extensions we need to refer
to a precisely defined semantics of behavioral aspects, because verifying whether
they hold for a given UML model may be mathematically non-trivial. Firstly,
the semantics is used to define these constraints in a mathematically precise way.
Secondly, we have developed mechanical tool support for analyzing UML speci-
fications for security requirements using model-checkers and automated theorem
provers for first-order logic [JS04, JS05, Jür05a]. For this, a precise definition of
the meaning of the specifications is necessary. For security analysis, the security-
relevant information from the security-oriented stereotypes is then incorporated
(cf. Sect. 2.3).

Because of space restrictions, we cannot recall our formal semantics here
completely. Instead, we define precisely and explain the interfaces of this se-
mantics that we need here to define the UMLsec profile. More details on the
formal semantics of a simplified fragment of UML and on previous and related
work in this area can be found in [Jür02, Jür04]. The semantics is defined for-
mally using so-called UML Machines, which is an extension of Mealy automata
with UML-type communication mechanisms. It includes the following kinds of
diagrams:

Class diagrams define the static class structure of the system: classes with
attributes, operations, and signals and relationships between classes. On the
instance level, the corresponding diagrams are called object diagrams.

Statechart diagrams (or state diagrams) give the dynamic behavior of an
individual object or component: events may cause a change in state or an
execution of actions.

Sequence diagrams describe interaction between objects or system
components via message exchange.

Activity diagrams specify the control flow between several components within
the system, usually at a higher degree of abstraction than statecharts and
sequence diagrams. They can be used to put objects or components in the
context of overall system behavior or to explain use cases in more detail.

Deployment diagrams describe the physical layer on which the system is to
be implemented.
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Subsystems (a certain kind of packages) integrate the information between
the different kinds of diagrams and between different parts of the system
specification.

There is another kind of diagrams, the use case diagrams, which describe typi-
cal interactions between a user and a computer system. They are often used in an
informal way for negotiation with a customer before a system is designed. We will
not use it in the following. Additionally to sequence diagrams, there are collab-
oration diagrams, which present similar information. Also, there are component
diagrams, presenting part of the information contained in deployment diagrams.

The used fragment of UML is simplified to keep automated formal verification
that is necessary for some of the more subtle security requirements feasible. Note
that in our approach we identify system objects with UML objects, which is
suitable for our purposes. Also, as with practically all analysis methods, also
in the real-time setting [Wat02], we are mainly concerned with instance-based
models. Although, simplified, our choice of a subset of UML is reasonable for
our needs, as we have demonstrated in several industrial case-studies (some of
which are documented in [Jür04]).

The formal semantics for subsystems incorporates the formal semantics of
the diagrams contained in a subsystem. It

– models actions and internal activities explicitly (rather than treating them
as atomic given events), in particular the operations and the parameters
employed in them,

– provides passing of messages with their parameters between objects or com-
ponents specified in different diagrams, including a dispatching mechanism
for events and the handling of actions, and thus

– allows in principle whole specification documents to be based on a formal
foundation.

In particular, we can compose subsystems by including them into other subsys-
tems.

Objects, and more generally system components, can communicate by ex-
changing messages. These consist of the message name, and possibly arguments
to the message (which will be assumed to be elements of the set Exp defined
in Sect. 2.2). Message names may be prefixed with object or subsystem instance
names. Each object or component may receive messages received in an input
queue and release messages to an output queue.

In our model, every object or subsystem instance O has associated multi-
sets inQuO and outQuO (event queues). Our formal semantics models sending
a message msg = op(exp1, . . . , expn) ∈ Events from an object or subsystem
instance S to an object or subsystem instance R as follows:

(1) S places the message R.msg into its multi-set outQuS .
(2) A scheduler distributes the messages from out-queues to the intended in-

queues (while removing the message head); in particular, R.msg is removed
from outQuS and msg added to inQuR.

(3) R removes msg from its in-queue and processes its content.
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In the case of operation calls, we also need to keep track of the sender to allow
sending return signals. This way of modeling communication allows for a very
flexible treatment; for example, we can modify the behavior of the scheduler to
take account of knowledge on the underlying communication layer (for example
regarding security issues, see Sect. 2.3).

At the level of single objects, behavior is modeled using statecharts, or (in
special cases such as protocols) possibly as using sequence diagrams. The internal
activities contained at states of these statecharts can again be defined each as a
statechart, or alternatively, they can be defined directly using UML Machines.

Using subsystems, one can then define the behavior of a system component
C by including the behavior of each of the objects or components directly con-
tained in C, and by including an activity diagram that coordinates the respective
activities of the various components and objects.

Thus for each object or component C of a given system, our semantics defines
a function �C�() which

– takes a multi-set I of input messages and a component state S and
– outputs a set �C�(I, S) of pairs (O, T ) where O is a multi-set of output

messages and T the new component state (it is a set of pairs because of the
non-determinism that may arise)

together with an initial state S0 of the component.
Specifically, the behavioral semantics �D�() of a statechart diagram D models

the run-to-completion semantics of UML statecharts. As a special case, this gives
us the semantics for activity diagrams. Any sequence diagram S gives us the
behavior �S.C�() of each contained component C.

Subsystems group together diagrams describing different parts of a system:
a system component C given by a subsystem S may contain subcomponents
C1, . . . , Cn. The behavioral interpretation �S�() of S is defined as follows:

(1) It takes a multi-set of input events.
(2) The events are distributed from the input multi-set and the link queues con-

necting the subcomponents and given as arguments to the functions defining
the behavior of the intended recipients in S.

(3) The output messages from these functions are distributed to the link queues
of the links connecting the sender of a message to the receiver, or given as
the output from �S�() when the receiver is not part of S.

When performing security analysis, after the last step, the adversary model may
modify the contents of the link queues in a certain way explained in Sect. 2.3.

2.2 Modeling Cryptography

We introduce some sets to be used in modeling cryptographic data in a UML
specification and its security analysis.

We assume a set Keys with a partial injective map ( )−1 : Keys → Keys.
The elements in its domain (which may be public) can be used for encryption
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and for verifying signatures, those in its range (usually assumed to be secret)
for decryption and signing. We assume that every key is either an encryption or
decryption key, or both: Any key k satisfying k−1 = k is called symmetric, the
others are called asymmetric. We assume that the numbers of symmetric and
asymmetric keys are both infinite. We fix infinite sets Var of variables and Data
of data values. We assume that Keys, Var, and Data are mutually disjoint and
that ASMNames∪MsgNm ⊆ Data. Data may also include nonces and other
secrets.

The algebra of cryptographic expressions Exp is the quotient of the term
algebra generated from the set Var ∪ Keys ∪ Data with the operations

– :: (concatenation),
– head( ) and tail( ),
– { } (encryption)
– Dec ( ) (decryption)
– Sign ( ) (signing)
– Ext ( ) (extracting from signature)
– Hash( ) (hashing)

by factoring out the equations

– DecK−1({E}K) = E (for K ∈ Keys),
– ExtK(SignK−1(E)) = E (for K ∈ Keys),
– and the usual laws regarding concatenation, head(), and tail():

• (E1 :: E2) :: E3 = E1 :: (E2 :: E3) for all E1, E2, E3 ∈ Exp,
• head(E1 :: E2) = E1 and tail(E1 :: E2) = tail(E2) for all expressions

E1, E2 ∈ Exp such that there exist no E, E′ with E1 = E :: E′.

We write fst(E) def= head(E), snd(E) def= head(tail(E)), and thd(E) def=
head(tail(tail(E))) for each E ∈ Exp.

This symbolic model for cryptographic operations implies that we assume
cryptography to be perfect, in the sense that an adversary cannot “guess” an
encrypted value without knowing the decryption key. Also, we assume that one
can detect whether an attempted decryption is successful. See for example [AJ01]
for a formal discussion of these assumptions.

Based on this formalization of cryptographical operations, important condi-
tions on security-critical data (such as freshness, secrecy, integrity) can then be
formulated at the level of UML diagrams in a mathematically precise way (see
Sect. 3).

In the following, we will often consider subalgebras of Exp. These are subsets
of Exp which are closed under the operations used to define Exp (such as
concatenation, encryption, decryption etc.). For each subset E of Exp there
exists a unique smallest (wrt. subset inclusion) Exp-subalgebra containing E,
which we call Exp-subalgebra generated by E. Intuitively, it can be constructed
from E by iteratively adding all elements in Exp reachable by applying the
operations used to define Exp above. It can be seen as the knowledge one can
obtain from a given set E of data by iteratively applying publicly available
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operations to it (such as concatenation and encryption etc.) and will be used to
model the knowledge an attacker may gain from a set E of data obtained for
example by eavesdropping on Internet connections.

2.3 Security Analysis of UML Diagrams

Our modular UML semantics allows a rather natural modeling of potential ad-
versary behavior. We can model specific types of adversaries that can attack
different parts of the system in a specified way. For example, an attacker of type
insider may be able to intercept the communication links in a company-wide
local area network. We model the actual behavior of the adversary by defining a
class of UML Machines that can access the communication links of the system
in a specified way. To evaluate the security of the system with respect to the
given type of adversary, we consider the joint execution of the system with any
UML Machine in this class. This way of reasoning allows an intuitive formulation
of many security properties. Since the actual verification is rather indirect this
way, we also give alternative intrinsic ways of defining security properties below,
which are more manageable, and show that they are equivalent to the earlier
ones.

Thus for a security analysis of a given UMLsec subsystem specification S,
we need to model potential adversary behavior. We model specific types of ad-
versaries that can attack different parts of the system in a specified way. For
this we assume a function ThreatsA(s) which takes an adversary type A and a
stereotype s and returns a subset of {delete, read, insert, access} (abstract threats).
These functions arise from the specification of the physical layer of the system
under consideration using deployment diagrams, as explained in Sect. 3. For a
link l in a deployment diagram in S, we then define the set threatsSA(l) of concrete
threats to be the smallest set satisfying the following conditions:

If each node n that l is contained in2 carries a stereotype sn with access ∈
ThreatsA(sn) then:

– If l carries a stereotype s with delete ∈ ThreatsA(s) then delete ∈ threatsSA(l).
– If l carries a stereotype s with insert ∈ ThreatsA(s) then insert ∈ threatsSA(l).
– If l carries a stereotype s with read ∈ ThreatsA(s) then read ∈

threatsSA(l).
– If l is connected to a node that carries a stereotype t with access ∈

ThreatsA(t) then {delete, insert, read} ⊆ threatsSA(l).

The idea is that threatsAA(x) specifies the threat scenario against a component
or link x in the UML Machine System A that is associated with an adversary
type A. On the one hand, the threat scenario determines, which data the ad-
versary can obtain by accessing components, on the other hand, it determines,
which actions the adversary is permitted by the threat scenario to apply to the
concerned links. delete means that the adversary may delete the messages in the

2 Note that nodes and subsystems may be nested one in another.
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corresponding link queue, read allows him to read the messages in the link queue,
and insert allows him to insert messages in the link queue.

Then we model the actual behavior of an adversary of type A as a type A
adversary machine. This is a state machine which has the following data:

– a control state control ∈ State,
– a set of current adversary knowledge K ⊆ Exp, and
– for each possible control state c ∈ State and set of knowledge K ⊆ Exp, we

have
• a set Deletec,K which may contain the name of any link l with delete ∈

threatsSA(l)
• a set Insertc,K which may contain any pair (l, E) where l is the name of

a link with insert ∈ threatsSA(l), and E ∈ K, and
• a set newStatec,k ⊆ State of states.

The machine is executed from a specified initial state control := control0 with
a specified initial knowledge K := K0 iteratively, where each iteration proceeds
according to the following steps:

(1) The contents of all link queues belonging to a link l with read ∈ threatsSA(l)
are added to K.

(2) The content of any link queue belonging to a link l ∈ Deletecontrol,K is
mapped to ∅.

(3) The content of any link queue belonging to a link l is enlarged with all
expressions E where (l, E) ∈ Insertcontrol,K.

(4) The next control state is chosen non-deterministically from the set
newStatecontrol,K.

The set K0 of initial knowledge contains all data values v given in the UML
specification under consideration for which each node n containing v carries a
stereotype sn with access ∈ ThreatsA(sn). In a given situation, K0 may also be
specified to contain additional data (for example, public encryption keys).

Note that an adversary A able to remove all values sent over the link l (that
it, deletel ∈ threatsSA(l)) may not be able to selectively remove a value e with
known meaning from l: For example, the messages sent over the Internet within
a virtual private network are encrypted. Thus, an adversary who is unable to
break the encryption may be able to delete all messages undiscrimatorily, but
not a single message whose meaning would be known to him.

To evaluate the security of the system with respect to the given type of
adversary, we then define the execution of the subsystem S in presence of an
adversary of type A to be the function �S�A() defined from �S�() by applying
the modifications from the adversary machine to the link queues as a fourth step
in the definition of �S�() as follows:

(4) The type A adversary machine is applied to the link queues as detailed
above.
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Thus after each iteration of the system execution, the adversary may non-
deterministically change the contents of link queues in a way depending on the
level of physical security as described in the deployment diagram (see Sect. 3).

There are results which simplify the analysis of the adversary behavior de-
fined above, which are useful for developing mechanical tool support, for example
to check whether the security properties secrecy and integrity (see below) are
provided by a given specification. These are beyond the scope of the current
paper and can be found in [Jür04].

One possibility to specify security requirements is to define an idealized sys-
tem model where the required security property evidently holds (for example,
because all links and components are guaranteed to be secure by the physical
layer specified in the deployment diagram), and to prove that the system model
under consideration is behaviorally equivalent to the idealized one, using a no-
tion of behavioral equivalence of UML models. This is explained in detail in
[Jür04].

In the following subsection, we consider alternative ways of specifying the
important security properties secrecy and integrity which do not require one to
explicitly construct such an idealized system and which are used in the remaining
parts of this paper.

2.4 Important Security Properties

The formal definitions of the two main security properties secrecy and integrity
considered in this section follow the standard approach of [DY83] and are defined
in an intuitive way by incorporating the attacker model.

Secrecy. The formalization of secrecy used in the following relies on the idea
that a process specification preserves the secrecy of a piece of data d if the
process never sends out any information from which d could be derived, even in
interaction with an adversary. More precisely, d is leaked if there is an adversary
of the type arising from the given threat scenario that does not initially know d
and an input sequence to the system such that after the execution of the system
given the input in presence of the adversary, the adversary knows d (where
“knowledge”, “execution” etc. have to be formalized). Otherwise, d is said to be
kept secret.

Thus we come to the following definition.

Definition 1. We say that a subsystem S preserves the secrecy of an expression
E from adversaries of type A if E never appears in the knowledge set K of A
during execution of �S�A().

This definition is especially convenient to verify if one can give an upper
bound for the set of knowledge K, which is often possible when the security-
relevant part of the specification of the system S is given as a sequence of com-
mand schemata of the form await event e – check condition g – output event e’
(for example when using UML sequence diagrams or statecharts for specifying
security protocols, see Sect. 3).
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Note that this formalization of secrecy is relatively “coarse” in that it may
not prevent implicit information flow, but it is comparatively easy to verify and
seems to be sufficient in practice [Aba00].

Examples

– The system that sends the expression {m}K :: K ∈ Exp over an unprotected
Internet link does not preserve the secrecy of m or K against attackers
eavesdropping on the Internet, but the system that sends {m}K (and nothing
else) does, assuming that it preserves the secrecy of K against attackers
eavesdropping on the Internet.

– The system that receives a key K encrypted with its public key over a ded-
icated communication link and sends back {m}K over the link does not
preserve the secrecy of m against attackers eavesdropping on and insert-
ing messages on the link, but does so against attackers that cannot insert
messages on the link.

Integrity. The property integrity can be formalized similarly: If during the
execution of the system, a system variable gets assigned a value intially only
known to the adversary, then the adversary must have caused this variable to
contain the value. In that sense the integrity of the variable is violated. (Note
that with this definition, integrity is also viewed as violated if the adversary
as an honest participant in the interaction is able to change the value, so the
definition may have to be adapted in certain circumstances; this is, however,
typical for formalizations of security properties.) Thus we say that a system
preserves the integrity of a variable v if there is no adversary A such that at
some point during the execution of the system with A, v has a value i0 that is
initially known only to A.

Definition 2. We say that a subsystem S preserves the integrity of an attribute
a from adversaries of type A with initial knowledge K0 if during execution of
�S�A(), the attribute a never takes on a value appearing in K0 but not in the
specification S.

The idea of this definition is that S preserves the integrity of a if no adversary
can make a take on a value initially only known to him, in interaction with A.
Intuitively, it is the “opposite” of secrecy, in the sense that secrecy prevents the
flow of information from protected sources to untrusted recipients, while integrity
prevents the flow of information in the other direction. Again, it is a relatively
simple definition, which may however not prevent implicit flows of information.

Secure Information Flow. We explain an alternative way of specifying secrecy
and integrity like requirements, which gives protection also against partial flow
of information, but can be more difficult to deal with, especially when handling
with encryption (for which further refinements of the notion are possible, but
not needed in the following).
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Given a set of messages H and a sequence m of event multi-sets, we write

– mH for the sequence of event multi-sets derived from those in m by deleting
all events the message names of which are not in H , and

– mH for the sequence of event multi-sets derived from those in m by deleting
all events the message names of which are in H .

Definition 3. Given a subsystem S and a set of high messages H, we say that

– A prevents down-flow with respect to H if for any two sequences i, j of event
multi-sets and any two output sequences o ∈ �S�A(i) and p ∈ �S�A(j),
iH = jH implies oH = pH and

– A prevents up-flow with respect to H if for any two sequences i, j of event
multi-sets and any two output sequences o ∈ �S�A(i) and p ∈ �S�A(j),
iH = jH implies oH = pH and

Intuitively, to prevent down-flow means that outputting a non-high (or low)
message does not depend on high inputs (this can be seen as a secrecy require-
ment for messages marked as high). Conversely, to prevent up-flow means that
outputting a high value does not depend on low inputs (this can be seen as an
integrity requirement for messages marked as high).

This notion of secure information flow is a generalization of the original
notion of noninterference for deterministic systems in [GM82] to system models
that are non-deterministic because of underspecification, see [Jür04] for a more
detailed discussion.

3 The UMLsec Extension

In Fig. 1 we give some of the stereotypes from UMLsec, together with their
tags and constraints. For space reasons, we can only recall part of the UMLsec
notation; a complete account can be found in [Jür04]. The constraints are only
referred to in the table and formulated (in plain mathematical language) and ex-
plained in detail in the remainder of the section. Fig. 2 gives the corresponding
tags (which are all DataTags). Note that some of the stereotypes on subsys-
tems refer to stereotypes on model elements contained in the subsystems. For
example, the constraint of the 〈〈 data security 〉〉 stereotype refers to contained ob-
jects stereotyped as 〈〈 critical 〉〉 (which in turn have tags {secrecy}). The relations
between the elements of the tables are explained below in detail.

We explain the stereotypes and tags given in Figures 1 and 2. The constraints
are parameterized over the adversary type with respect to which the security re-
quirements should hold; we thus fix an adversary type A to be used in the
following. By their nature, some of the constraints can be enforced at the level
of abstract syntax (such as 〈〈 secure links 〉〉), while others refer to the formal defi-
nitions in Sect. 2.3 (such as 〈〈 data security 〉〉). Note that even checking the latter
can be mechanized given appropriate tool-support, as explained in Sect. 4.

We give short examples for usage of the stereotypes. To keep the presentation
concise, we sometimes give only those fragments of (instances of) subsystems
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Stereotype Base Class Tags Constraints Description
Internet link Internet connection
encrypted link encrypted connection
LAN link,node LAN connection
wire link wire
smart card node smart card node
POS device node POS device
issuer node node issuer node
secure links subsystem dependency security enforces secure

matched by links communication links
secrecy dependency assumes secrecy
integrity dependency assumes integrity
high dependency high sensitivity
secure subsystem 〈〈 call 〉〉, 〈〈 send 〉〉 respect structural interaction
dependency data security data security
critical object, secrecy, critical object

subsystem integrity,
high
fresh

no down-flow subsystem prevents down-flow information flow
no up-flow subsystem prevents up-flow information flow
data subsystem provides secrecy, basic datasec
security integrity, freshness requirements
fair exchange subsystem start,stop after start enforce fair

eventually reach stop exchange
provable subsystem action, action is non-deniable non-repudiation

cert requirement
guarded subsystem guarded objects accessed access control using
access through guards guard objects
guarded object guard guarded object

Fig. 1. UMLsec stereotypes

that are essential to the stereotype in question. Also, we omit presenting the
formal semantics and proving the stated properties formally, since the examples
are just for illustration.

Internet, encrypted, LAN, wire, smart card, POS device, issuer node These
stereotypes on links (resp. nodes) in deployment diagrams denote the correspond-
ing requirements on communication links (resp. system nodes). We require that
each link or node carries at most one of these stereotypes. For each adversary
type A, we have a function ThreatsA(s) from each stereotype

s ∈ {〈〈 wire 〉〉, 〈〈 encrypted 〉〉, 〈〈 LAN 〉〉, 〈〈 smart card 〉〉,

〈〈 POS device 〉〉, 〈〈 issuer node 〉〉, 〈〈 Internet 〉〉}

to a set of strings ThreatsA(s) ⊆ {delete, read, insert, access} under the following
conditions:
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Tag Stereotype Type Multipl. Description
secrecy critical String * secrecy of data
integrity critical String * integrity of data
high critical String * high-level message
fresh critical String * fresh data
start fair exchange String * start states
stop fair exchange String * stop states
action provable String * provable action
cert provable String * certificate
guard guarded String 1 guard object

Fig. 2. UMLsec tags

– for a node stereotype s, we have ThreatsA(s) ⊆ {access} and
– for a link stereotype s, we have ThreatsA(s) ⊆ {delete, read, insert}.

Thus ThreatsA(s) specifies which kinds of actions an adversary of type A can
apply to node or links stereotyped s. This way we can evaluate UML specifi-
cations using the approach explained in Sect. 2.1. We make use of this for the
constraints of the remaining stereotypes of the profile.

Examples for threat sets associated with some common adversary types are
given in Figures 3 and 4.

Figure 3 gives the default attacker, which represents an outsider adversary
with modest capability. This kind of attacker is able to read and delete the mes-
sages on an Internet link and to insert messages. On an encrypted Internet link
(for example a Virtual Private Network), the attacker can delete the messages
(without knowing their encrypted content), but not to read the (plaintext) mes-
sages or to insert messages (that are encrypted with the right key). Of course,
this assumes that the encryption is set up in a way such that the adversary does
not get hold of the secret key. The default attacker is assumed not to have direct
access to the Local Area Network (LAN) and therefore not be able to eavesdrop
on those connections3, nor on wires connecting security-critical devices (for ex-
ample, a smart card reader and a display in a point-of-sale (POS) device). Also,
smart cards are assumed to be tamper-resistant against default attackers (al-
though they may not be against more sophisticated attackers [And01]). Also,
the default attacker is not able to access POS devices or card issuer systems.

Figure 4 defines the insider attacker (in the context of an electronic purse
system). As an insider, the attacker may access the encrypted Internet link (the
assumption is that insiders know the corresponding key) and the local system
components.

Secure links. This stereotype, which may label (instances of) subsystems, is
used to ensure that security requirements on the communication are met by the
physical layer. More precisely, the constraint enforces that for each dependency

3 With more sophistication, even an external adversary may be able to access local
connections, but this is assumed to be beyond “default” capabilities.
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Stereotype Threatsdefault ()
Internet {delete, read, insert}
encrypted {delete}
LAN ∅
wire ∅
smart card ∅
POS device ∅
issuer node ∅

Fig. 3. Threats from the default attacker

Stereotype Threatsinsider ()
Internet {delete, read, insert}
encrypted {delete, read, insert}
LAN {delete, read, insert}
wire {delete, read, insert}
smart card ∅
POS device {access}
issuer node {access}

Fig. 4. Threats from the insider attacker card issuer

d with stereotype s ∈ {〈〈 secrecy 〉〉, 〈〈 integrity 〉〉, 〈〈 high 〉〉} between subsystems or
objects on different nodes n, m, we have a communication link l between n and
m with stereotype t such that

– in the case of s = 〈〈 high 〉〉, we have ThreatsA(t) = ∅,
– in the case of s = 〈〈 secrecy 〉〉, we have read /∈ ThreatsA(t), and
– in the case of s = 〈〈 integrity 〉〉, we have insert /∈ ThreatsA(t).

Example. In Fig. 5, given the default adversary type, the constraint for the
stereotype 〈〈 secure links 〉〉 is violated: The model does not provide communica-
tion secrecy against the default adversary, because the Internet communication
link between web-server and client does not give the needed security level ac-
cording to the Threatsdefault (Internet) scenario. Intuitively, the reason is that
Internet connections do not provide secrecy against default adversaries. Tech-
nically, the constraint is violated, because the dependency carries the stereo-
type 〈〈 secrecy 〉〉, but for the stereotype 〈〈 Internet 〉〉 of corresponding link we have
read ∈ Threatsdefault(Internet).

Secrecy, Integrity, High. These stereotypes, which may label dependencies in
static structure or component diagrams, denote dependencies that are supposed
to provide the respective security requirement for the data that is sent along
them as arguments or return values of operations or signals. These stereotypes
are used in the constraint for the stereotype 〈〈 secure links 〉〉.
Secrecy. 〈〈 call 〉〉 or 〈〈 send 〉〉 dependencies in object or component diagrams stereo-
typed 〈〈 secrecy 〉〉 are supposed to provide secrecy for the data that is sent along
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«Internet»

«secrecy» server machineclient machine
get_password

browser
client apps

access control
web server«call»

«secure links»remote access

Fig. 5. Example secure links usage

them as arguments or return values of operations or signals. This stereotype is
used in the constraint for the stereotype 〈〈 secure links 〉〉.

Secure Dependency. This stereotype, used to label subsystems containing object
diagrams or static structure diagrams, ensures that the 〈〈 call 〉〉 and 〈〈 send 〉〉 de-
pendencies between objects or subsystems respect the security requirements on
the data that may be communicated along them, as given by the tags {secrecy},
{integrity}, and {high} of the stereotype 〈〈 critical 〉〉. More exactly, the constraint
enforced by this stereotype is that if there is a 〈〈 call 〉〉 or 〈〈 send 〉〉 dependency
from an object (or subsystem) C to an interface I of an object (or subsystem)
D then the following conditions are fulfilled.

– For any message name n in I, n appears in the tag {secrecy} (resp. {integrity}
resp. {high}) in C if and only if it does so in D.

– If a message name in I appears in the tag {secrecy} (resp. {integrity} resp.
{high}) in C then the dependency is stereotyped 〈〈 secrecy 〉〉 (resp. 〈〈 integrity 〉〉

resp. 〈〈 high 〉〉).

If the dependency goes directly to another object (or subsystem) without involv-
ing an interface, the same requirement applies to the trivial interface containing
all messages of the server object.

Example. Figure 6 shows a key generation subsystem stereotyped with the re-
quirement 〈〈 secure dependency 〉〉. The given specification violates the constraint
for this stereotype, since Random generator and the 〈〈 call 〉〉 dependency do not
provide the security levels for random() required by Key generator. More pre-
cisely, the constraint is violated, because the message random is required to be
of high level by Key generator (by the tag {high} in Key generator), but it is
not guaranteed to be high level by Random generator (in fact there are no high
messages in Random generator and so the tag {high} is missing).

Critical. This stereotype labels objects or subsystem instances containing data
that is critical in some way, which is specified in more detail using the correspond-
ing tags. These tags are {secrecy}, {integrity}, {fresh}, and {high}. The values
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Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»

Key generation
«secure dependency»

newkey(): Key

«call»

«critical»Key generator

newkey(): Key

{secret={newkey(),random()}}

Fig. 6. Key generation subsystem

of the first two are the names of expressions or variables (that is, attributes or
message arguments) of the current object the secrecy (resp. integrity) of which
is supposed to be protected. The tag {fresh} has data that should be freshly
generated as its value. These requirements are enforced by the constraint of
the stereotype 〈〈 data security 〉〉 which labels (instances of) subsystems that con-
tain 〈〈 critical 〉〉 objects (see there for an explanation). The tag {high} has the
names of messages as values that are supposed to be protected with respect to
secure information flow, as enforced by the stereotypes 〈〈 no down − flow 〉〉 and
〈〈 no up − flow 〉〉.

No Down-Flow. This stereotype of subsystems enforces secure information flow
by making use of the associated tag {high}. According to the 〈〈 no down − flow 〉〉

constraint, the stereotyped subsystem prevents down-flow with respect to the
messages and their return messages specified in {high}, as defined in Definition 3.

Example. The example in Fig. 7 shows a bank account data object that al-
lows its secret balance to be read using the operation rb() (whose return value
is also secret) and written using wb(x). If the balance is over 10000, the ob-
ject is in a state ExtraService, otherwise in NoExtraService. The state of the
object can be queried using the operation rx(). The data object is supposed
to be prevented from indirectly leaking out any partial information about high
data via non-high data, as specified by the stereotype 〈〈 no down − flow 〉〉. For
example, in a situation where government agencies can request information
about the existence of bank accounts of a given person, but not their bal-
ance, it may be important that the type of the account allows no conclusion
about its balance. The given specification violates the constraint associated
with 〈〈 no down − flow 〉〉, since partial information about the input of the high
operation wb() is leaked out via the return value of the non-high operation
rx(). To see how the underlying formalism captures the security flaw using
Definition 3, it is sufficient to exhibit sequences i, j of event multi-sets and out-
put sequences o ∈ �A�(i) and p ∈ �A�(j) of the UML Machine A giving the
behavior of the statechart, with iH = jH and oH �= pH , where H is the set
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Bank account «no down−flow»

rb(): Data
wb(x: Data)
rx(): Boolean

rx(): Boolean

rb(): Data
wb(x: Data)

balance: Integer

Account

ExtraService

/balance:=x

/balance:=x

NoExtraService

/balance:=x
wb(x)[x>=10000]

wb(x)[x>=10000]

wb(x)[x<10000]wb(x)[x<10000]
/balance:=x

/return(true)
rx()

/return(false)
rx()

rb()/return(balance)rb()/return(balance)

{high={wb,rb,balance}}

/balance:=0

Fig. 7. Bank account data object

of high messages. Consider the sequences i
def= ({{wb(0) }} , {{rx() }} ) and j

def=
({{wb(10000) }} , {{rx() }} ). We have iH = ({{ }} , {{rx() }} ) = jH . From the defini-
tion of the behavioral semantics of statecharts sketched in Sect. 2.1, we can see
that o

def= ({{ }} , {{return(false) }} ) ∈ �A�(i) and p
def= ({{ }} , {{return(true) }} ) ∈

�A�(j). But then oH = ({{ }} , {{return(false) }} ) �= ({{ }} , {{return(true) }} ) =
pH , as required.

Note that, while in the given example, it may be easy to see that the system
does not satisfy the 〈〈 no down − flow 〉〉 constraint, it is in general not simple to
establish that a system does satisfy this constraint, which is why in [Jür04] we
provide the formal semantics sketched in Sect. 2.1.

Data security. This stereotype labeling (instances of) subsystems has the follow-
ing constraint. The subsystem behavior respects the data security requirements
given by the stereotypes 〈〈 critical 〉〉 and the associated tags contained in the sub-
system, with respect to the threat scenario arising from the deployment diagram.

More precisely, the constraint is given by the following three conditions (of
which the first two use the concepts of preservation of secrecy resp. integrity
defined in Sect. 2.3).

secrecy. The subsystem preserves the secrecy of the data designated by the tag
{secrecy} against adversaries of type A.

integrity. The subsystem preserves the integrity of the data designated by the
tag {integrity} against adversaries of type A.

freshness. Within the subsystem S stereotyped 〈〈 data security 〉〉 the following
condition holds for any subsystem instance or object model D stereotyped
〈〈 critical 〉〉 for any value data of the associated tag {fresh}: data occurs within
S at most in
– the object model or subsystem instance model representing D in the

static structure diagram contained in S,
– the swim-lanes belonging to D in the activitiy diagram contained in S,
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– the statechart diagrams contained in S that model parts of the behavior
of D, or

– D’s part of the connections in the sequence diagram contained in S.

Note that it is enough for data to be listed with a security requirement in one
of the objects or subsystem instances contained in the subsystem to be required
to fulfill the above conditions.

Thus the properties of secrecy and integrity are taken relative to the type of
adversary under consideration. In case of the default adversary, this is a prin-
cipal external to the system; one may, however, consider adversaries that are
part of the system under consideration, by giving the adversary access to the
relevant system components (by defining ThreatsA(s) to contain access for the
relevant stereotype s). For example, in an e-commerce protocol involving cus-
tomer, merchant and bank, one might want to say that the identity of the goods
being purchased is a secret known only to the customer and the merchant (and
not the bank). This can be formulated by marking the relevant data as “secret”
and by performing a security analysis relative to the adversary model “bank”
(that is, the adversary is given access to the bank component by defining the
Threats() function in a suitable way).

The secrecy and integrity tags can be used for data values as well as variable
and message names (as permitted by the definitions of secrecy and integrity in
Sect. 2.3). Note that the adversary does not always have access to the input
and output queues of the system (for example, if the system under consideration
is part of a larger system it is connected through a secure connection). There-
fore it may make sense to use the secrecy tag on variables that are assigned
values received by the system; that is, effectively, one may require values that
are received to be secret. Of course, the above condition only ensures that the
component under consideration keeps the values received by the environment
secret; additionally, one has to make sure that the environment (for example,
the rest of the system apart from the component under consideration) does not
make these values available to the adversary.

Example. The example in Fig. 8 shows the specification of a very simple secu-
rity protocol. The sender requests the public key K together with the certificate
SignKCA

(rcv :: K) certifying authenticity of the key from the receiver and sends
the data d back encrypted under K (here {M}K is the encryption of the mes-
sage M with the key K, DecK(C) is the decryption of the ciphertext C using K,
SignK(M) is the signature of the message M with K, and ExtK(S) is the extrac-
tion of the data from the signature using K). Assuming the default adversary
type and by referring to the adversary model outlined in Sect. 2.3 and by using
the formal semantics defined in [Jür04], one can establish that the secrecy of d is
preserved. (Note that the protocol only serves as a simple example for the use of
patterns, not to propose a new protocol of practical value.) Recall from Sect. 2.4
that the requirements {secrecy} and {integrity} refer to the type of adversary
under consideration. In the case of the default adversary, in this example this is
an adversary that has access to the Internet link between the two nodes only. It
does not have direct access to any of the components in the specification (this
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K
/transmit({d}  )

Request

Send

Wait
/request()

send(d)

return(K,C)
KCA

[Ext    (C)=rcv::K]
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Received

«data security»
SecureChannel

Sendercomp

S:Sender
«call»

Sendernode

«send»

Receivernode

Receivercomp
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WaitReq WaitTrm
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KCA
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send(d:Data)
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S:Sender «critical»Sender «critical»

receive():Data

Receiver

request():Exp
send(d:Data)

«call»

«send»

transmit(d:Data)

{secret=d} {secret=d}

receive()

/return(Dec   (d))
K

Fig. 8. Security protocol

would have to be specified explicitly using the Threats() function). In particular,
the adversary to be considered here does not have access to the components R
and S (if it would, then secrecy and integrity would fail because the adversary
could read and modify the critical values directly as attributes of R and S).

Again, verifying that a given system satisfies the 〈〈 data security 〉〉 constraint
is in general non-trivial, even for small specifications as the example above. We
therefore provided tool-support for an automated formal verification to assist this
task in Sect. 4. Note also that, while it is often possibly to use standard security
protocols (such as SSL), which may already be verified, our work in industrial
projects has shown that for a variety of reasons, self-designed protocols are still
developed and used in industry (see for example [GHJW03]).

The stereotypes 〈〈 secure links 〉〉, 〈〈 secure dependencies 〉〉, and 〈〈 data
security 〉〉 describe different conditions for ensuring secure data communication:
〈〈 secure links 〉〉 ensures that the security requirements on the communication de-
pendencies between components are supported by the physical situation, relative
to the adversary model under consideration. The stereotype 〈〈 secure dependencies 〉〉

ensures that the security requirements in different parts of a static structure di-
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agram are consistent. Finally, 〈〈 data security 〉〉 ensures that security is enforced on
the behavior level. – One could for example merge the conditions of 〈〈 secure links 〉〉

and 〈〈 secure dependencies 〉〉 to give one stereotype; we keep them separate to facil-
itate understanding and because one might like to use the stereotype
〈〈 secure dependencies 〉〉 in situations where no implementation diagram is present.

Fair Exchange. This stereotype of subsystems has associated tags {start} and
{stop} taking names of states as values. The associated constraint requires that,
whenever a {start} state in the contained activity diagram is reached, then even-
tually a corresponding {stop} state will be reached. This allows one to formalize
the fair exchange requirement as explained in [Jür04]. This is formalized for
a given subsystem S as follows. S fulfills the constraint of 〈〈 fair exchange 〉〉 if
for every adversary adv of type A and every sequence of input event multi-sets
I1, . . . , In, the following implication holds: For any state specified by {start} that
the function associated with S reaches, it subsequently eventually reaches a state
specified by {stop}.

Provable. A subsystem instance S may be labelled 〈〈 provable 〉〉 with associated
tags {action}, and {cert}, to specify that S may output the expression E ∈ Exp
given in {cert} (which serves as a proof that the action at state {action} was
performed) only after the state having a name given in {action} is reached. Here
the certificate in {cert} is assumed to be unique for each subsystem instance.
This is formalized as follows: S fulfills the constraint if

– for each sequence of event multi-sets I1, . . . , Ik,
– for each adversary adv of type A, and
– for each sequence (O1, . . . , Ok) output by S when executed with an adversary

adv on input of (I1, . . . , Ik),
– and if (S1, . . . , Sk) is the corresponding sequence of executed states,

the following implication holds: If there exists an i such that the output Oi

equals to the expression in {certificate}, then we have j ≤ i such that the state
multi-set Sj contains the state specified by action. Again, more explanation can
be found in [Jür04].

Example. Fig. 9 gives a subsystem instance describing the following situa-
tion: a customer buys a good from a business. The semantics of the stereotype
〈〈 fair exchange 〉〉 is, intuitively, that the actions listed in the tags {start} and
{stop} should be linked in the sense that if the former is executed then eventu-
ally the latter will be. This would entail that, once the customer has paid, either
the order is delivered to him by the due date, or he is able to reclaim the pay-
ment on that date. To avoid illegitimate repayment claims, one could employ the
stereotype 〈〈 provable 〉〉 with regards to the state Pay, in order to make sure that
the Reclaim payment action checks whether the Customer can provide a proof of
payment.

Guarded Access. This stereotype of (instances of) subsystems is supposed to
mean that each object in the subsystem that is stereotyped 〈〈 guarded 〉〉 can only
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Fig. 9. Purchase activity diagram

be accessed through the objects specified by the tag {guard} attached to the
〈〈 guarded 〉〉 object. This way, one can define access control policies, similar the
approach taken in the Java 2 security architecture. Formally, we assume that we
have name /∈ Kp

A for the adversary type A under consideration and each name
name of an instance of a 〈〈 guarded 〉〉 object (that is, a reference is not publicly
available), and that for each 〈〈 guarded 〉〉 object there is a statechart specification
of an object whose name is given in the associated tag {guard}. This way, we
model the passing of references. This is explained in detail in [Jür04].

3.1 Discussion

We shortly discuss the aspects of security covered by the UMLsec extension.

Security requirements. Formalizations of basic security requirements are pro-
vided via stereotypes, such as 〈〈 secrecy 〉〉 and 〈〈 integrity 〉〉.

Threat scenarios. Threat scenarios are incorporated using the formal seman-
tics and depending on the underlying physical layer via the sets
Threatsadv(ster) of actions available to the adversary of kind adv.

Security concepts. We have shown how to incorporate security concepts such
as tamper-resistant hardware (using threat scenarios, in this case).

Security mechanisms. As an example, we demonstrated modeling of the Java
security architecture access control mechanisms.

Security primitives. Security primitives are either built in (such as encryp-
tion) or can be treated (such as security protocols).

Underlying physical security. This can be addressed as demonstrated by the
stereotype 〈〈 secure link 〉〉 in deployment diagrams.

Security management. This can be considered in our approach by using ac-
tivity diagrams (as in Fig. 9).
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Additional domain knowledge has been incorporated regarding Java security
and CORBA applications, as well as smart card security (see [Jür04] for more
details).

Note that when adapting a modeling language to security requirements, one
needs to make sure that the features used to express security properties on the
design level actually map to system constructs on the implementation level which
do provide these properties. Since we assume, for example, that attributes can
only be accessed through the operations of an object, and that only the explicitly
offered operations of a subsystem can be called from outside it, it is generally
security-critical that this is enforced on the implementation level.

4 Formal Security Verification of UML Models

We present some work on automated formal verification of the security require-
ments expressed in the UMLsec notation. This tool-support is embedded in a
framework supporting the construction of automated requirements analysis tools
for UML diagrams. The framework is connected to industrial CASE tools using
data integration with XMI [XMI02] and allows convenient access to this data
and to the human user. In this chapter, we will, as an example for a usage of
this framework, present verification routines to verify the constraints associated
with the stereotypes of UMLsec using automated theorem provers (ATPs).

The goal is, in particular, that advanced users of the UMLsec approach should
be able to use this framework to implement verification routines for the con-
straints of self-defined stereotypes, in a way that allows them to concentrate on
the verification logic (rather than on user interface issues).

The usage of the framework as illustrated in Fig. 10 proceeds as follows. The
developer creates a model and stores it in the UML 1.5/XMI 1.2 file format.4

The file is imported by the UML verification framework into the internal MDR
repository. MDR is an XMI-specific data-binding library which directly provides
a representation of an XMI file on the abstraction level of a UML model through
Java interfaces (JMI). This allows the developer to operate directly with UML
concepts, such as classes, statecharts, and stereotypes. It is part of the Netbeans
project [Net03]. Each plug-in accesses the model through the JMI interfaces
generated by the MDR library, they may receive additional textual input, and
they may return both a UML model and textual output. The two exemplary
analysis plug-ins proceed as follows: The static checker parses the model, verifies
its static features, and delivers the results to the error analyzer. The dynamic
checker translates the relevant fragments of the UML model into the automated
theorem prover input language. The automated theorem prover is spawned by
the UML framework as an external process; its results are delivered back to
the error analyzer. The error analyzer uses the information received from the
static checker and dynamic checker to produce a text report for the developer
describing the problems found, and a modified UML model, where the errors
4 This will be updated to UML 2.0 once the corresponding DTD has been officially

released.
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Fig. 10. UML verification framework: usage

found are visualized. Besides the automated theorem prover binding presented
in this section there are other analysis plugins including a model-checker binding
[JS04] and plugins for simulation and test-sequence generation.

The framework is designed to be extensible: advanced users can define stereo-
types, tags, and first-order logic constraints which are then automatically trans-
lated to the automated theorem prover for verification on a given UML model.
Similarly, new adversary models can be defined.

The user webinterface and the source code of the verification framework is
accessible at [UML04].

4.1 Translating UMLsec Diagrams to First-Order Logic Formulas

We explain the automated translation of UMLsec diagrams to first-order logic
(FOL) formulas which allows automated analysis of the diagrams using auto-
mated first-order logic theorem provers such as e-SETHEO [SW00, MIL+97] or
SPASS. More precisely, we assume that we are given a UML package containing
the following kinds of diagrams: A deployment diagram specifies the physical
layer of the system, such as system nodes and communication links, and the
level of security it provides, using UMLsec stereotypes, such as 〈〈 Internet 〉〉 de-
noting an Internet communication link. From this, in the security analysis, the
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Fig. 11. Some structural formulas

adversary model is generated in first-order logic who is able to control certain
communication links. Secondly, a class diagram describes the data structure of
the system, including the security requirements on the system data, for example
using the UMLsec tags {secrecy}, {integrity} and {authenticity} which represent
the respective requirements. For the security analysis, from this information the
conjecture is derived that is to be checked by the automated theorem prover.
The package also contains diagrams specifying the intended behavior of the sys-
tem, which may include an activity diagram coordinating the components or
objects in the package, a sequence diagram specifying interaction between them
by message exchange (making use of cryptographic operations using the notation
from Sect. 2.2), and statecharts specifying the behavior of single components or
objects. The behavioral specifications are compiled to first-order logic axioms
giving an abstract interpretation of the system behavior suitable for security
analysis. In the following, we explain this translation for sequence diagrams. It
works similarly for statecharts and activity diagrams. The formalization auto-
matically derives an upper bound for the set of knowledge the adversary can
gain. For space restrictions, we can only present a simplified treatment and have
to omit issues such as session key generation.

The idea is to use a predicate knows(E) meaning that the adversary may get
to know E during the execution of the protocol. For any data value s supposed to
remain secret as specified in the UMLsec model, one thus has to check whether
one can derive knows(s). The set of predicates defined to hold for a given UMLsec
specification is defined as follows.

For each publicly known expression E, one defines knows(E) to hold. The fact
that the adversary may enlarge his set of knowledge by constructing new expres-
sions from the ones he knows (including the use of encryption and decryption)
is captured by the formula in Fig. 11.

For our purposes, a sequence diagram is essentially a sequence of command
schemata of the form await event e – check condition g – output event e’ rep-
resented as connections in the sequence diagrams. Connections are the arrows
from the life-line of a source object to the life-line of a target object which are
labeled with a message to be sent from the source to the target and a guard
condition that has to be fulfilled.

Suppose we are given a connection l = (source(l), guard(l), msg(l),
target(l)) in a sequence diagram with guard(l) ≡ cond(arg1, . . . , argn), and msg(l)
≡ exp(arg1 , . . . , argn), where the parameters argi of the guard and the message
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are variables which store the data values exchanged during the course of the
protocol. Suppose that the connection l′ is the next connection in the sequence
diagram with source(l′) = source(l). For each such connection l, we define a
predicate PRED(l) as in Fig. 12. If such a connection l′ does not exist, PRED(l)
is defined by substituting PRED(l′) with true in Fig. 12.

The formula formalizes the fact that, if the adversary knows expres-
sions exp1, . . . , expn validating the condition cond(exp1, . . . , expn), then he
can send them to one of the protocol participants to receive the message
exp(exp1 , . . . , expn) in exchange, and then the protocol continues. With this
formalization, a data value s is said to be kept secret if it is not possible to
derive knows(s) from the formulas defined by a protocol. This way, the adver-
sary knowledge set is approximated from above (because one abstracts away for
example from the message sender and receiver identities and the message order).
This means, that one will find all possible attacks, but one may also encounter
“false positives”, although this has not happened yet with any practical exam-
ples. The advantage is that this approach is rather efficient (see Sect. 4.3 for
some performance data).

For each object O in the sequence diagram, this gives a predicate PRED(O) =
PRED(l) where l is the first connection in the sequence diagram with source(l) =
O. The axioms in the overall first-order logic formula for a given sequence dia-
gram are then the conjunction of the formulas representing the publicly known
expressions, the formula in Fig. 11, and the conjunction of the formulas PRED(O)
for each object O in the diagram. The conjecture, for which the ATP will check
whether it is derivable from the axioms, depends on the security requirements
contained in the class diagram. For the requirement that the data value s is to
be kept secret, the conjecture is knows(s). An example is given in Sect. 4.2.

One can define a variation of the formula in Fig. 12 by joining all subformulas
PRED(l), PRED(l′), . . . for connections l, l′, . . . in the sequence diagram using the
conjunction operator ∧, instead of including the predicate PRED(l′) for next
connection l′ in the conclusion of the implication in PRED(l). The effect is that
the order of the connections in the sequence diagram is then ignored. This results
in a more coarse abstract interpretation of the sequence diagram than that in
Fig. 12, which may produce more false positives: allegedly insecure specifications
which are in fact secure in reality, because there the order of the connection is in
fact observed. However, in particular architectures the order of messages in the
sequence diagram is in fact not enforced, and then this variation is useful. For
example, this is the case for the industrial application project which we report
on in Sect. 6.

PRED(l) =

∀exp1, . . . , expn.
�
knows(exp1) ∧ . . . ∧ knows(expn)

∧ cond(exp1, . . . , expn)

⇒ knows(exp(exp1 , . . . , expn )

∧ PRED(l′)
�

Fig. 12. Connection predicate
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C:Client S:Server

init(Ni, KC,SignK−1
C

(C ::KC))

resp � {SignK−1
Si

(kj ::N′)}K′
C
,

SignK−1
CA

(Si ::KSi ) �

xchd({si}k)

N′ ::= init1
K′

C ::= init2
cC ::= init3

[snd(ExtK′
C
(cC))

= K′
C]

ck ::= resp1
cS ::= resp2

K′
Si

::=snd(ExtKCA
(cS))

k ::= fst(ExtK′
Si
(DecK−1

C
(ck)))

[fst(ExtKCA
(cS)) = Si ∧

snd(ExtK′
Si
(DecK−1

C
(ck)))

= Ni]

Fig. 13. Variant of the TLS handshake

4.2 A Variant of the TLS Protocol

We will analyze a variant of the handshake protocol of TLS5 examined in [Jür04]
(note that this is not the variant of TLS in common use but a variant proposed
at the conference IEEE Infocom 1999). To show applicability of our approach, we
demonstrate the flaw from [Jür04], suggest a correction, and verify it. The goal
of the protocol is to let a client send a secret over an untrusted communication
link to a server in a way that provides secrecy and server authentication, by
using symmetric session keys.

The central part of the specification of this protocol is shown in Fig. 13. Parts
that have to be left out here are firstly a deployment diagram specifying that the
two protocol participants client and server are connected by an Internet connec-
tion, using the UMLsec stereotype 〈〈 Internet 〉〉. From this, in the security analysis,
the adversary model who is able to control this communication link is generated.
Secondly, there is a class diagram which includes various security requirements
on the protocol data as UMLsec tags {secrecy}, {integrity} and {authenticity}.
For the security analysis, from this information the conjecture is derived that is
to be checked by the automated theorem prover. Most importantly, the value s
which is exchanged encrypted in the last message of the protocol is required to
remain secret.

Depicted in Fig. 13, the protocol proceeds as we explain in the following. The
client C initiates the protocol by sending the message init(Ni, KC,SignK−1

C
(C :: KC))

to the server S. Suppose that the condition [snd(ExtK′
C
(cC))=K′

C] holds, where
K′

C ::= init2 and cC ::= init3, that is, the key KC contained in the signature matches
the one transmitted in the clear. Then S sends the message

5 TLS (transport layer security) is the successor of the Internet security protocol SSL
(secure sockets layer).
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input_formula(protocol,axiom,(
![Init_1, Init_2, Init_3, Resp_1, Resp_2, Xchd_1] : (
% C <-> Attacker
( ( ( true & true )

=> knows(conc( n, conc( k_c, sign(conc(c, k_c)), inv(k_c)) ) ))
& ( ( knows(Resp_1) & knows(Resp_2)
&equal(fst(ext(Resp_2,k_ca)),s)&equal(snd(ext(dec(Resp_1,inv(k_c)),

snd(ext(Resp_2, k_ca)))), n ) )
=>knows(symenc(s,fst(ext(dec(Resp_1,inv(k_c)),snd(ext(Resp_2,k_ca))))))
)))
& % S <-> Attacker
( ( ( knows(Init_1) & knows(Init_2) & knows(Init_3)

& equal( snd(ext(Init_3, Init_2)), Init_2 ) )
=> knows(conc(enc(sign(conc(kgen(Init_2),Init_1),inv(k_s)),Init_2),

sign(conc(s, k_s), inv(k_ca) ) ))
& ( ( knows(Xchd_1) & true )

=> true
)) ) ) )).

Fig. 14. Protocol part of translation to TPTP

resp
(
{SignK−1

S
(kj :: N′)}K′

C
, SignK−1

CA
(S :: KS)

)
back to C, where N′ ::= init1. Now

suppose that the condition

[fst(ExtKCA(cS))=S ∧ snd(ExtK′
Si
(DecK−1

C
(ck)))=Ni]

holds, where cS ::= resp1, ck ::= resp2, and K′
Si

::= snd(ExtKCA(cS)), that is, the
certificate is actually for S and the correct nonce is returned. Then C sends
xchd({si}k) to S, where k ::= fst(ExtK′

Si
(DecK−1

C
(ck))). If any of the checks fail,

the respective protocol participant stops the execution of the protocol.
The main part of the result of the transformation to the e-SETHEO input

format TPTP is the protocol definition given in Fig. 14. We have to omit the
formulas representing the initial adversary knowledge and the effect of message
recombination on the intruder’s knowledge predicate knows. The TPTP notation
is the de-facto input notation for first-order logic automated theorem provers
[SS01], supported, using existing converters, by a variety of provers including
also Otter, SPASS, Vampire, and Waldmeister.

Note that in this notation, conjunction is written as &, and forall resp. ex-
ists quantification as ![X1, . . . , Xm] resp. ?[X1, . . . , Xm], where X1, . . . ,Xm are the
quantified variables. Also, encryption, signature, and concatenation are repre-
sented respectively as binary functions enc, sign, and conc in TPTP. The private
key belonging to the public key K is written as inv(K). Constants, such as the
nonce N, have to be written in small letters in TPTP.

The protocol itself is expressed by a forall quantification over variables repre-
senting the arguments of messages which are transferred over the communication
link. Here, the message variables Resp 1, and Resp 2 represent the messages re-
ceived by the client. The message variables Init 1, Init 2, Init 3, and Xchd 1 stand
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Fig. 15. Attack Visualization: Man-in-the-middle

for the server receiving messages parts. The protocol example includes three
messages (cf. Fig. 13), of which the first and third are sent by the client and the
second by the server. Each message is expressed by a single implication in the
main formula. Therefore three implications occur in Fig. 14 (of which the second
is nested in the first). The first,

knows(n)& knows(k c)& knows(sign(conc(c, k c), inv(k c))),

is the message sent from the client to the server. It has the precondition true
because it is sent unconditionally without previous receipt of any other mes-
sage. The postconditions of the implications include the messages sent over the
communication channel.

4.3 Protocol Analysis with ATPs

We use the ATP e-SETHEO [SW00, MIL+97] for verifying security protocols as
a “black box”: A TPTP input file is presented to the ATP and an output from
the ATP is observed. No internal properties of or information from e-SETHEO
is used. This allows one to use e-SETHEO interchangingly with any other ATP
accepting TPTP as an input format (such as SPASS, Vampire and Waldmeister)
when it may seem fit.

With respect to the security analysis described in Sect. 4.1, the results of
the theorem prover have to be interpreted as follows: If the conjecture stating
for example that the adversary may get to know the secret can be derived from
the axioms which formalize the adversary model and the protocol specification,
this means that there may be an attack against the protocol. We then use an
attack generation machine programmed in Prolog to construct the attack (also
contained in the analysis tool suite [UML04]). If the conjecture cannot be derived
from the axioms, this constitutes a proof that the protocol is secure with respect
to the security requirement formalized as the negation of the conjecture, because
logical derivation is sound and complete with respect to semantic validity for
first-order logic. Note that since first-order logic in general is undecidable, it can
happen that the ATP is not able to decide whether a given conjecture can be
derived from a given set of axioms. However, experience has shown that for a
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reasonable set of protocols and security requirements, our approach is in fact
decidable.

In our example, e-SETHEO returns as an output that the conjection knows(s)
can be derived from the defined rules (within one second). For this example the at-
tack tracking tool needs a few seconds to produce the attack. The derived message
flow diagram corresponding to a man-in-the-middle attack is depicted in Fig. 15.

We can fix this problem by substituting K :: N in the second message (server
to client) by K :: N :: KC and by including a check regarding this new message
part at the client. Now the new version with the additional signature information
about the client key k c can be verified by the automated theorem prover ap-
proach. When e-SETHEO runs on the fixed version of the protocol it now gives
back the result that the conjecture knows(s) cannot be derived from the axioms
formalizing the protocol. Note that this result, which was delivered within a few
seconds, means that the actually exists no such derivation, not just that the
theorem prover is not able to find it. This means in particular that the attacker
cannot gain the secret knowledge anymore. Note that this statement of course
in itself is bound to the particular execution model and the formalizations of the
security requirements used here. The security analysis may falsely claim that
there may be an attack against the specified system, because of the optimiz-
ing abstractions used. This, however, has not so far surfaced as a limitation in
practical applications.

5 Source Code Analysis

In recent work, we have applied our analysis techniques explained in the previous
section to the security verification of cryptographic protocols implemented in C,
making use of control flow graphs generated from the source code. This way, one
can find security weaknesses which may have been introduced during the (manual
or automated) transition from specifications to code. Such security weaknesses
may be introduced not only by programming mistakes, but also because some
security-relevant details are abstracted away on the specification level. For space
restrictions, details have to be omitted but can be found in [Jür05c, Jür05b]. A
link between the specification layer and the source code layer has been estab-
lished in the context of aspect-oriented development in [JH05].

6 Industrial Case-Study: Biometric Authentication

We applied our methods and tools in an industrial application project with a
major German company. The goal of the project was the correct development of
a security-critical biometric authentication system which is supposed to control
access to a protected resource, for example by opening a door or letting someone
log into a computer system. In this system, a user carries his biometric reference
data on a personal smart-card. To gain access, he inserts the smart-card in
the card reader and delivers a fresh biometric sample at the biometric sensor,
for example a finger-print reader. Since the communication links between the
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: Host Systemh: SmartCardOSsc

11:send("writeFBZ2"::FBZ2’:: Macskh (FBZ2’))

[thd(arg sc,6,1 )= Macsksc (snd(arg  sc,6,1 ))]

[fst(arg sc,6,1 )="writeFBZ2"]

FBZ2 ::= fst(argsc,5,1)

[snd(arg sc,7,1 )= Macsksc (fst(arg  sc,7,1 ))]

[Decsksc(fst(arg  sc,7,1 ))= "getFBZ2*"]

[snd(arg sc,5,1 )= Macsksc (fst(arg  sc,5,1 ))]

[Decsksc(fst(arg  sc,5,1 ))= "getFBZ2"]

12:send("getFBZ2*"::{"getFBZ2*"}  skh  )

[snd(arg h,6,1 )= Mackh(fst(arg h,6,1 ))] 

[fst(arg  h,5,1 =FBZ2’) ] 

[snd(arg h,5,1 )= Mackh(fst(arg h,5,1 ))] 

[fst(arg  h,5,1 >0) ] 

FBZ2’ ::= fst(arg h,5,1 ) −1

9:send("getFBZ2"::{"getFBZ2"} skh )

10:return(FBZ2:: Macsksc(FBZ2))

13:return(FBZ2:: Macsksc(FBZ2))

: BioSensorb

14:send({"getData"} sksc

Fig. 16. Excerpt from biometric authentication protocol

host system (containing the bio-sensor), the card reader, and the smart-card are
physically vulnerable, the system needs to make use of a cryptographic protocol
to protect this communication. Because the correct design of such protocols and
the correct use within the surrounding system is very difficult, our method was
chosen to support the development of the biometric authentication system.

Within the project, the system was specified using UML diagrams: a de-
ployment diagram describing the architecture, a class diagram defining the data
structure, an activity diagram specifying the general workflow, and a sequence
diagram giving a detailed specification of the cryptographic protocol. A fragment
of the sequence diagram is shown in Fig. 16.

In the next step, this specification was enriched with security-relevant infor-
mation, according to the UMLsec extension. This includes specifying the level
of security provided by the physical layer of the system in the deployment dia-
gram, and formulating security goals on the execution of the system and on the
protection of particular data values in the activity and class diagrams.

Then the security of the protocol was analyzed using the automated tool
support described in the previous section. The analysis is done with respect to
the threat model which is derived from a deployment diagram of the system and
the security goals contained in the class diagram, as explained in the previous
sections. This way, it turned out that the protocol in fact contains a vital flaw.
To prevent an attack where an attacker simply repeatedly tries to match a forged
biometric sample, for example, using an artificial finger, with a forged or stolen
smart-card, the protocol contains a misuse counter which is decreased from an
initial value of 3 to 0, when the card will be disabled. The attack which was
found using our tools enables the attacker to prevent the misuse counter from
being updated, thereby enabling a brute-force attack.

The relevant part of the attack is displayed in Fig. 17. The attacker is as-
sumed to control the communication between the smart-card and the host sys-
tem, which is realistic since it is not protected by physical means. He chooses
to act as a relay between the smart-card and the host system, until the host
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: Host Systemh: SmartCardOSsc : Attackera

send("writeFBZ2"::FBZ2’:: Macskh (FBZ2’))

send("getFBZ2*"::{"getFBZ2*"} skh )

send("getFBZ2"::{"getFBZ2"} skh ) send("getFBZ2"::{"getFBZ2"} skh )

return(FBZ2’:: Macsksc(FBZ2’))

return(FBZ2:: Macsksc(FBZ2)) return(FBZ2:: Macsksc(FBZ2))

send({"getData"} sksc

send({"getData"} sksc

Fig. 17. Attack against biometric authentication protocol

system signals the smart-card to decrease its misuse counter FBZ2 by sending
it the message writeFBZ2 which contains the new, decreased value FBZ2′ that
the smart-card should assign to its counter. This message is simply dropped
by the attacker. Note that it is possible to simply drop the message although
the integrity of the message is protected using a Message Authentication Code
(MAC) in its third argument Macskh(FBZ2). Here skh is a secret key of the host
system, which in a correct protocol is supposed to be equal to the secret key
sksc of the smart-card. One should note here that the smart-card does not keep
an internal state of the protocol execution history. This means that it accepts
any of the messages in the protocol at any point. Therefore, after dropping the
message telling the smart-card to decrease its misuse counter, the protocol can
simply proceed with the next message from the host system, which is again
forwarded by the adversary to the smart-card. This problem had already been
detected by our tools at an earlier version of the protocol. To fix it, the pro-
tocol was extended with the message getFBZ2 by which the host system tries
to make sure that the misuse counter has actually been decreased, as shown in
Fig. 16. The return value then expected by the host system from the smart-card
is the misuse counter FBZ2, protected in its integrity by also sending the MAC
MACsksc(FBZ2), which is supposed to be correctly decreased to give the value
FBZ′. Unfortunately, this value had already been sent in the previous message
writeFBZ2, since the keys skh and sksc are supposed to be the same, so the
adversary only needs to replay the value from that message to the host system.

Based on our findings, the protocol was corrected by using a different one of
the coding modes suggested in the specification that makes sure that the return
message from the getFBZ2 message cannot be a replay of earlier messages, us-
ing a freshly generated random value. This corrected version of the protocol is
currently subject to ongoing analysis using our tools.

Since UML was used in the development of this system anyhow, the only
extra effort needed was to extend the UML diagrams with the security-critical
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information describing the level of physical security, and the security goals to
be achieved, as explained above. Considering the gain from using our methods,
namely detecting several mistakes in various versions of the protocol, and mak-
ing sure that the final version is correct, this modest extra effort seems to be
worthwhile. In conclusion, experiences from this industrial application have been
quite positive.

7 Related Work

So far, there seems to be no comparable approach which allows one to include
a comparable variety of security requirements in a UML specification which is
then, based on a formal semantics, formally verified for these requirements using
tools such as automated theorem provers and model-checkers, and which comes
with a transition to the source code level where automated formal verification
can also be applied.

There has, however, been a substantial amount of work regarding some of
the topics we address here (for example formal verification of security-critical
systems or secure systems development with UML). A detailed comparison with
related work has to be omitted here for space reasons, but can be found in
[Jür04]. Many related approaches can also be found in the CSDUML workshop
series [JFFuCH04].

8 Conclusion and Future Perspectives

We gave an overview over the extension UMLsec of UML for secure systems
development, in the form of a UML profile using the standard UML extension
mechanisms. Recurring security requirements are written as stereotypes, the
associated constraints ensure the security requirements on the level of the formal
semantics, by referring to the threat scenario also given as a stereotype. Thus
one may evaluate UML specifications to indicate possible vulnerabilities. One
can thus verify that the stated security requirements, if fulfilled, enforce a given
security policy.

At the hand of small examples, we demonstrated how to use UMLsec to model
security requirements, threat scenarios, security concepts, security mechanisms,
security primitives, underlying physical security, and security management.

As demonstrated, UMLsec can be used to encapsulate established rules on
prudent security engineering, also by applying security patterns, and thereby
makes them available to developers not specialized in security. While UML was
developed to model object-oriented systems, one can also use UMLsec to analyze
systems that are not object-oriented (assuming that the underlying assumptions,
such as controlled access to data, are ensured).

We also explained how to analyse the UMLsec diagrams against security
requirements with respect to their dynamic behavior, using automated theorem
provers for first-order logic. We briefly reported on further work to apply this
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formal security verification to the source code level of implementations derived
from the UMLsec specifications.

The definition and evolvement of the UMLsec notation has been based on
experiences from in industrial application projects. We reported on the use of
UMLsec and its tool-support in one such application, the formal security verifi-
cation of a biometric authentication system, where several security weaknesses
were found and corrected using our approach during its development.

For space restrictions, we could only present a brief overview over a fragment
of UMLsec. The complete notation with many more examples and applications
can be found in [Jür04].

Although there exists a solid core UMLsec notation now, together with auto-
mated formal verification tools, which has proven its usefulness in several indus-
trial application projects, there are a number of interesting open foundational
and practical questions still to consider. Because our underlying formal system
model is largely independent from UML specifics, it provide a suitable platform
for such investigations also independently from UML. For example, one could
use the UMLsec framework to formally explore . . .
– . . . which security properties are preserved under which conditions when com-

posing or decomposing systems in modular components,
– . . . the consistency of different security properties expressed as stereotypes

when appearing in combination,
– . . . which security properties are preserved under which conditions when re-

fining a specification to a more detailed specification or eventually to the
source-code,

– . . . how to achieve a coherent level of security throughout the abstraction
levels of a computing system,

– . . . how to evaluate propose standards such as secure reference architectures,
– . . . how security requirements can be achieved in the presence of other non-

functional requirements such as dependability.
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