

Lecture Notes in Computer Science 3655
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alessandro Aldini Roberto Gorrieri
Fabio Martinelli (Eds.)

Foundations
of Security Analysis
and Design III

FOSAD 2004/2005 Tutorial Lectures

13

Volume Editors

Alessandro Aldini
Università degli Studi di Urbino “Carlo Bo”
Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy
E-mail: aldini@sti.uniurb.it

Roberto Gorrieri
Università degli Studi di Bologna
Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy
E-mail: gorrieri@cs.unibo.it

Fabio Martinelli
Istituto di Informatica e Telematica - IIT
National Research Council - C.N.R., Pisa Research Area
Via G. Moruzzi 1, 56100 Pisa, Italy
E-mail: Fabio.Martinelli@iit.cnr.it

Library of Congress Control Number: 2005931798

CR Subject Classification (1998): D.4.6, C.2, K.6.5, K.4, D.3, F.3, E.3

ISSN 0302-9743
ISBN-10 3-540-28955-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28955-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11554578 06/3142 5 4 3 2 1 0

Preface

The increasing relevance of security to real-life applications, such as electronic
commerce and Internet banking, is attested by the fast-growing number of re-
search groups, events, conferences, and summer schools that address the study
of foundations for the analysis and the design of security aspects. The “Inter-
national School on Foundations of Security Analysis and Design” (FOSAD, see
http://www.sti.uniurb.it/events/fosad/) has been one of the foremost events es-
tablished with the goal of disseminating knowledge in this critical area, especially
for young researchers approaching the field and graduate students coming from
less-favoured and non-leading countries.

The FOSAD school is held annually at the Residential Centre of Bertinoro
(http://www.ceub.it/), in the fascinating setting of a former convent and epis-
copal fortress that has been transformed into a modern conference facility with
computing services and Internet access. Since the first school, in 2000, FOSAD
has attracted more than 250 participants and 50 lecturers from all over the world.
A collection of tutorial lectures from FOSAD 2000 was published in Springer’s
LNCS volume 2171. Some of the tutorials given at the two successive schools
(FOSAD 2001 and 2002) are gathered in a second volume, LNCS 2946. To con-
tinue this tradition, the present volume collects a set of tutorials from the fourth
FOSAD, held in 2004, and from FOSAD 2005.

The opening paper by Michael Backes, Birgit Pfitzmann, and Michael Waid-
ner, reports on the integration between the classical Dolev-Yao model of security
and the computational view of cryptography. In particular, the authors present
an idealized cryptographic library that extends the applicability of the Dolev-Yao
model for automated proofs of cryptographic protocols to provably secure crypto-
graphic implementations. Jan Jürjens gives an overview of UMLsec, an extension
of the Unified Modelling Language that allows the expression of security-relevant
information within the diagrams in a system specification. François Koeune and
François-Xavier Standaert present a survey on implementation-specific attacks,
which attempt to exploit the physical constraints of any real-life cryptographic
device (running time, power consumption, . . .) to expose the device’s secrets.
The authors provide a tutorial on this subject, overviewing the main kinds of
attacks and highlighting their underlying principles. Riccardo Focardi’s paper
presents the basics of authentication protocols and illustrates a specific tech-
nique for statically analyzing protocol specifications. The technique works in the
presence of both malicious outsiders and compromized insiders, with no limita-
tion on the number of parallel sessions.

Gilles Barthe and Guillaume Dufay illustrate some applications of formal
methods to increase the reliability of smartcards and trusted personal devices,
with respect to both platform correctness and applet validation. Their paper
focuses on devices that embed Java Virtual Machines or their variants, in par-

VI Preface

ticular Java Card Virtual Machines. Elisa Bertino, Ji-Won Byun, and Ninghui
Li deal with various aspects of privacy-preserving data management systems.
In particular, they focus on database management systems that are able to en-
force privacy promises encoded in privacy languages such as P3P. Herve Debar
and Jouni Viinikka’s paper covers intrusion detection and security information
management technologies, focusing on data sources and analysis techniques. To
conclude, Fabio Massacci, Paolo Giorgini, and Nicola Zannone review the state
of the art in security requirements engineering and discuss their approach to
modelling and analyzing security, the Secure Tropos methodology.

We think that this tutorial book offers an interesting view of what is going on
worldwide at present in the security field. We would like to thank all the insti-
tutions that have promoted and founded this school and, in particular, the IFIP
Working Group on “Theoretical Foundations of Security Analysis and Design”
(http://www.dsi.unive.it/IFIPWG1 7/), which was established to promote re-
search and education in security-related issues. FOSAD 2005 was sponsored by
CNR-IIT, Create-Net, and the Università di Bologna, and has been supported
by EATCS-IT, EEF, and the ERCIM Working Group on Security and Trust
Management (http://www.iit.cnr.it/STM-WG/). Finally, we also wish to thank
the whole staff of the University Residential Centre of Bertinoro for the organi-
zational and administrative support.

June 2005 Alessandro Aldini
Roberto Gorrieri
Fabio Martinelli

Table of Contents

Part I: FOSAD 2004 (6-11 September 2004)

Justifying a Dolev-Yao Model Under Active Attacks
Michael Backes, Birgit Pfitzmann, Michael Waidner 1

Model-Based Security Engineering with UML
Jan Jürjens . 42

A Tutorial on Physical Security and Side-Channel Attacks
François Koeune, François-Xavier Standaert . 78

Static Analysis of Authentication
Riccardo Focardi . 109

Part II: FOSAD 2005 (19-24 September 2005)

Formal Methods for Smartcard Security
Gilles Barthe, Guillaume Dufay . 133

Privacy-Preserving Database Systems
Elisa Bertino, Ji-Won Byun, Ninghui Li . 178

Intrusion Detection: Introduction to Intrusion Detection and Security
Information Management

Hervé Debar, Jouni Viinikka . 207

Security and Trust Requirements Engineering
Paolo Giorgini, Fabio Massacci, Nicola Zannone 237

Author Index . 273

Justifying a Dolev-Yao Model Under Active Attacks�

Michael Backes, Birgit Pfitzmann, and Michael Waidner

IBM Zurich Research Lab
{mbc, bpf, wmi}@zurich.ibm.com

Abstract. We present the first idealized cryptographic library that can be used
like the Dolev-Yao model for automated proofs of cryptographic protocols that
use nested cryptographic operations, while coming with a cryptographic imple-
mentation that is provably secure under active attacks.

To illustrate the usefulness of the cryptographic library, we present a crypto-
graphically sound security proof of the well-known Needham-Schroeder-Lowe
public-key protocol for entity authentication. This protocol was previously only
proved over unfounded abstractions from cryptography. We show that the proto-
col is secure against arbitrary active attacks if it is implemented using standard
provably secure cryptographic primitives. Conducting the proof by means of the
idealized cryptographic library does not require us to deal with the probabilistic
aspects of cryptography, hence the proof is in the scope of current automated
proof tools. Besides establishing the cryptographic security of the Needham-
Schroeder-Lowe protocol, this exemplifies the potential of this cryptographic li-
brary and paves the way for the cryptographically sound verification of security
protocols by automated proof tools.

1 Introduction

Many practically relevant cryptographic protocols like SSL/TLS, S/MIME, IPSec, or
SET use cryptographic primitives like signature schemes or encryption in a black-box
way, while adding many non-cryptographic features. Vulnerabilities have accompanied
the design of such protocols ever since early authentication protocols like Needham-
Schroeder [59,31], over carefully designed de-facto standards like SSL and PKCS
[71,20], up to current widely deployed products like Microsoft Passport [35]. How-
ever, proving the security of such protocols has been a very unsatisfactory task for a
long time.

One possibility was to take the cryptographic approach. This means reduction
proofs between the security of the overall system and the security of the cryptographic
primitives, i.e., one shows that if one could break the overall system, one could also
break one of the underlying cryptographic primitives with respect to their cryptographic
definitions, e.g., adaptive chosen-message security for signature schemes. For authen-
tication protocols, this approach was first used in [19]. In principle, proofs in this ap-
proach are as rigorous as typical proofs in mathematics. In practice, however, human

� Parts of this work appeared in Proc. 10th ACM Conference on Computer and Communica-
tions Security [12] and Proc. 23rd Conference on Foundations of Software Technology and
Theoretical Computer Science [7].

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 1–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 M. Backes, B. Pfitzmann, and M. Waidner

beings are extremely fallible with this type of proofs. This is not due to the cryptog-
raphy, but to the distributed-systems aspects of the protocols. It is well-known from
non-cryptographic distributed systems that many wrong protocols have been published
even for very small problems. Hand-made proofs are highly error-prone because fol-
lowing all the different cases how actions of different machines interleave is extremely
tedious. Humans tend to take wrong shortcuts and do not want to proof-read such details
in proofs by others. If the protocol contains cryptography, this obstacle is even much
worse: Already a rigorous definition of the goals gets more complicated, and often not
only trace properties (integrity) have to be proven but also secrecy. Further, in principle
the complexity-theoretic reduction has to be carried out across all these cases, and it
is not at all trivial to do this rigorously. In consequence, there is almost no real crypto-
graphic proof of a larger protocol, and several times supposedly proven, relatively small
systems were later broken, e.g., [63,32].

The other possibility was to use formal methods. There one leaves the tedious parts
of proofs to machines, i.e., model checkers or automatic theorem provers. This means
to code the cryptographic protocols into the language of such tools, which may need
more or less start-up work depending on whether the tool already supports distributed
systems or whether interaction models have to be encoded first. None of these tools,
however, is currently able to deal with reduction proofs. Nobody even thought about
this for a long time, because one felt that protocol proofs could be based on simpler,
idealized abstractions from cryptographic primitives. Almost all these abstractions are
variants of the Dolev-Yao model [33], which represents all cryptographic primitives as
operators of a term algebra with cancellation rules. For instance, public-key encryption
is represented by operators E for encryption and D for decryption with one cancellation
rule, D(E(m)) = m for all m. Encrypting a message m twice in this model does not
yield another message from the basic message space but the term E(E(m)). Further, the
model assumes that two terms whose equality cannot be derived with the cancellation
rules are not equal, and every term that cannot be derived is completely secret. However,
originally there was no foundation at all for such assumptions about real cryptographic
primitives, and thus no guarantee that protocols proved with these tools were still secure
when implemented with real cryptography. Although no previously proved protocol has
been broken when implemented with standard provably secure cryptosystems, this was
clearly an unsatisfactory situation, and artificial counterexamples can be constructed.

1.1 A Dolev-Yao Model That Is Cryptographically Sound Under Active Attacks

The conference version [12] underlying this paper is the first one that offers a provably
secure variant of the Dolev-Yao model for proofs that people typically make with the
Dolev-Yao model, because for the first time we cover both active attacks and nested
cryptographic operations. While [12] addressed the soundness of asymmetric cryp-
tographic primitives such as public-key encryption and digital signatures, subsequent
papers extended the soundness result to symmetric authentication [13] and symmetric
encryption [9]. Combining security against active attacks and nesting cryptographic op-
erations arbitrarily is essential: First, most cryptographic protocols are broken by active
attacks, e.g., man-in-the-middle attacks or attacks where an adversary reuses a message
from one protocol step in a different protocol step where it suddenly gets a different

Justifying a Dolev-Yao Model Under Active Attacks 3

semantics. Such attacks are not covered by [2,1]. Secondly, the main use of the Dolev-
Yao model is to represent nested protocol messages like Epkev (signsksu

(m, N1), N2),
where m denotes an arbitrary message and N1, N2 two nonces. No previous idealization
proved in the reactive cryptographic models contains abstractions from cryptographic
primitives (here mainly encryption and signatures, but also the nonces and the list op-
eration) that can be used in such nested terms. Existing abstractions are either too high-
level, e.g., the secure channels in [65,5] combine encryption and signatures in a fixed
way. Or they need immediate interaction with the adversary [23,22], i.e., the adversary
learns the structure of every term any honest party ever builds, and even every signed
message. This abstraction is not usable for a term as above because one may want to
show that m is secret because of the outer encryption, but the abstraction gives m to
the adversary. (A similar immediate application of the model of [65] to such primitives
would avoid this problem, but instead keep all signatures and ciphertexts in the system,
so that nesting is also not possible.) Finally, there exist some semi-abstractions which
still depend on cryptographic details [49,65]. Thus they are not suitable for abstract pro-
tocol representations and proof tools, but we use such a semi-abstraction of public-key
encryption as a submodule below.

The first decision in the design of an ideal library that supports both nesting and gen-
eral active attacks was how we can represent an idealized cryptographic term and the
corresponding real message in the same way to a higher protocol. This is necessary for
using the reactive cryptographic models and their composition theorems. We do this by
handles, i.e., local names. In the ideal system, these handles essentially point to Dolev-
Yao-like terms, while in the real system they point to real cryptographic messages. Our
model for storing the terms belonging to the handles is stateful and in the ideal system
comprises the knowledge of who knows which terms. Thus our overall ideal crypto-
graphic library corresponds more to “the CSP Dolev-Yao model” or “the Strand-space
Dolev-Yao model” than the pure algebraic Dolev-Yao model. Once one has the idea of
handles, one has to consider whether one can put the exact Dolev-Yao terms under them
or how one has to or wants to deviate from them in order to allow a provably secure
cryptographic realization, based on a more or less general class of underlying primi-
tives. An overview of these deviations is given in Section 1.4, and Section 1.5 surveys
how the cryptographic primitives are augmented to give a secure implementation of the
ideal library.

The vast majority of the work was to make a credible proof that the real crypto-
graphic library securely implements the ideal one. This is a hand-made proof based
on cryptographic primitives and with many distributed-systems aspects, and thus with
all the problems mentioned above for cryptographic proofs of large protocols. Indeed
we needed a novel proof technique consisting of a probabilistic, imperfect bisimulation
with an embedded static information-flow analysis, followed by cryptographic reduc-
tions proofs for so-called error sets of traces where the bisimulation did not work. As
this proof needs to be made only once, and is intended to be the justification for later
basing many protocol proofs on the ideal cryptographic library and proving them with
higher assurance using automatic tools, we carefully worked out all the tedious details,
and we encourage some readers to double-check the 68-page full version of this pa-
per [14] and the extension to symmetric cryptographic operations [13,9]. Based on our

4 M. Backes, B. Pfitzmann, and M. Waidner

experience with making this proof and the errors we found by making it, we strongly
discourage the reader against accepting idealizations of cryptographic primitives where
a similar security property, simulatability, is claimed but only the first step of the proof,
the definition of a simulator, is made. In the following, we sketch the ideal cryptographic
library in Section 3, the concrete cryptographic realization in Section 4, and the proof
of soundness in Section 5. We restrict our attention to asymmetric cryptographic oper-
ations in this paper and refer the reader to [13,9] for the cases of symmetric encryption
and message authentication.

1.2 An Illustrating Example – A Cryptographically Sound Proof of the
Needham-Schroeder-Lowe Protocol

To illustrate the usefulness of the ideal cryptographic library, we investigate the well-
known Needham-Schroeder public-key authentication protocol [59,50], which arguably
constitutes the most prominent example demonstrating the usefulness of the formal-
methods approach after Lowe used the FDR model checker to discover a man-in-the-
middle attack against the protocol. Lowe later proposed a repaired version of the pro-
tocol [51] and used the model checker to prove that this modified protocol (henceforth
known as the Needham-Schroeder-Lowe protocol) is secure in the Dolev-Yao model.
The original and the repaired Needham-Schroeder public-key protocols are two of the
most often investigated security protocols, e.g., [69,53,68,70]. Various new approaches
and proof tools for the analysis of security protocols were validated by rediscovering
the known flaw or proving the fixed protocol in the Dolev-Yao model.

It is well-known and easy to show that the security flaw of the original protocol
in the Dolev-Yao model can be used to mount a successful attack against any crypto-
graphic implementation of the protocol. However, all previous security proofs of the
repaired protocol are in the Dolev-Yao model, and no theorem carried these results over
to the cryptographic approach with its much more comprehensive adversary. We close
this gap, i.e., we show that the Needham-Schroeder-Lowe protocol is secure in the cryp-
tographic approach. More precisely, we show that it is secure against arbitrary active
attacks, including arbitrary concurrent protocol runs and arbitrary manipulation of bit-
strings within polynomial time. The underlying assumption is that the Dolev-Yao-style
abstraction of public-key encryption is implemented using a chosen-ciphertext secure
public-key encryption scheme with small additions like ciphertext tagging. Chosen-
ciphertext security was introduced in [66] and formulated as IND-CCA2 in [17]. Effi-
cient encryption systems secure in this sense exist under reasonable assumptions [28].

Our proof is built upon the ideal cryptographic library, and a composition theo-
rem for the underlying security notion implies that protocol proofs can be made using
the ideal library, and security then carries over automatically to the cryptographic re-
alization. However, because of the extension to the Dolev-Yao model, no prior formal-
methods proof carries over directly. Our paper therefore validates this approach by the
first protocol proof over the new ideal cryptographic library, and cryptographic security
follows as a corollary. Besides its value for the Needham-Schroeder-Lowe protocol, the
proof shows that in spite of the extensions and differences in presentation with respect
to prior Dolev-Yao models, a proof can be made over the new library that seems eas-
ily accessible to current automated proof tools. In particular, the proof contains neither

Justifying a Dolev-Yao Model Under Active Attacks 5

probabilism nor computational restrictions. In the following, we express the Needham-
Schroeder-Lowe protocol based on the ideal cryptographic library in Section 6 and 7.
We formally capture the entity authentication requirement in Section 8, and we prove
in Section 9 that entity authentication based on the ideal library implies (the crypto-
graphic definition of) entity authentication based on the concrete realization of the li-
brary. Finally, we prove the entity authentication property based on the ideal library in
Section 10.

1.3 Further Related Literature

Both the cryptographic and the idealizing approach at proving cryptographic systems
started in the early 80s. Early examples of cryptographic definitions and reduction
proofs are [39,40]. Applied to protocols, these techniques are at their best for rela-
tively small protocols where there is still a certain interaction between cryptographic
primitives, e.g., [18,67]. The early methods of automating proofs based on the Dolev-
Yao model are summarized in [46]. More recently, such work concentrated on using
existing general-purpose model checkers [51,58,30] and theorem provers [34,61], and
on treating larger protocols, e.g., [16].

Work intended to bridge the gap between the cryptographic approach and the use
of automated tools started independently with [62,64] and [2]. In [2], Dolev-Yao terms,
i.e., with nested operations, are considered specifically for symmetric encryption. How-
ever, the adversary is restricted to passive eavesdropping. Consequently, it was not nec-
essary to define a reactive model of a system, its honest users, and an adversary, and the
security goals were all formulated as indistinguishability of terms. This was extended
in [1] from terms to more general programs, but the restriction to passive adversaries
remains, which is not realistic in most practical applications. Further, there are no the-
orems about composition or property preservation from the abstract to the real system.
Several papers extended this work for specific models or specific properties. For in-
stance, [41] specifically considers strand spaces and information-theoretically secure
authentication only. In [47] a deduction system for information flow is based on the
same operations as in [2], still under passive attacks only.

The approach in [62,64] was from the other end: It starts with a general reactive
system model, a general definition of cryptographically secure implementation by sim-
ulatability, and a composition theorem for this notion of secure implementation. This
work is based on definitions of secure function evaluation, i.e., the computation of one
set of outputs from one set of inputs [38,54,15,21]; earlier extensions towards reac-
tive systems were either without real abstraction [49] or for quite special cases [44].
The approach was extended from synchronous to asynchronous systems in [65,23].
All the reactive works come with more or less worked-out examples of abstractions
of cryptographic systems, and first tool-supported proofs were made based on such an
abstraction [5,4] using the theorem prover PVS [60]. However, even with a composi-
tion theorem this does not automatically give a cryptographic library in the Dolev-Yao
sense, i.e., with the possibility to nest abstract operations, as explained above. Our cryp-
tographic library overcomes these problems. It supports nested operations in the intu-
itive sense; operations that are performed locally are not visible to the adversary. It is

6 M. Backes, B. Pfitzmann, and M. Waidner

secure against arbitrary active attacks, and works in the context of arbitrary surround-
ing interactive protocols. This holds independently of the goals that one wants to prove
about the surrounding protocols; in particular, property preservation theorems for the
simulatability definition we use have been proved for integrity, secrecy, liveness, and
non-interference [4,10,11,6,8].

Concurrently to [12], an extension to asymmetric encryption, but still under passive
attacks only, has been presented in [43]. The underlying masters thesis [42] considers
asymmetric encryption under active attacks, but in the random oracle model, which is it-
self an idealization of cryptography and not justifiable [24]. Laud [48] has subsequently
presented a cryptographic underpinning for a Dolev-Yao model of symmetric encryp-
tion under active attacks. His work enjoys a direct connection with a formal proof tool,
but it is specific to certain confidentiality properties, restricts the surrounding protocols
to straight-line programs in a specific language, and does not address a connection to
the remaining primitives of the Dolev-Yao model. Herzog et al. [43] and Micciancio and
Warinschi [55] have subsequently also given a cryptographic underpinning under active
attacks. Their results are narrower than that in [12] since they are specific for public-key
encryption, but consider slightly simpler real implementations; moreover, the former
relies on a stronger assumption whereas the latter severely restricts the classes of proto-
cols and protocol properties that can be analyzed using this primitive. Section 6 of [55]
further points out several possible extensions of their work which all already exist in the
earlier work of [12]. Recently, Canetti and Herzog [25] have linked ideal functionalities
for mutual authentication and key exchange protocols to corresponding representations
in a formal language. They apply their techniques to the Needham-Schroeder-Lowepro-
tocol by considering the exchanged nonces as secret keys. Their work is restricted to
the mentioned functionalities and in contrast to the universally composable library [12]
hence does not address soundness of Dolev-Yao models in their usual generality. The
considered language does not allow loops and offers public-key encryption as the only
cryptographic operation. Moreover, their approach to define a mapping between ideal
and real traces following the ideas of [55] only captures trace-based properties (i.e., in-
tegrity properties); reasoning about secrecy properties additionally requires ad-hoc and
functionality-specific arguments.

Efforts are also under way to formulate syntactic calculi for dealing with probabil-
ism and polynomial-time considerations, in particular [56,49,57,45] and, as a second
step, to encode them into proof tools. This approach can not yet handle protocols with
any degree of automation. It is complementary to the approach of proving simple deter-
ministic abstractions of cryptography and working with those wherever cryptography is
only used in a blackbox way.

The first cryptographically sound security proofs of the Needham-Schroeder-Lowe
protocol have been presented concurrently and independently in [7] and [72]. While the
first paper conducts the proof by means of the ideal cryptographic library and hence
within a deterministic framework that is accessible for machine-assisted verification,
the proof in the second paper is done from scratch in the cryptographic approach and is
hence vulnerable to the aforementioned problems. On the other hand, the second paper
proves stronger properties; we discuss this in Section 8. It further shows that chosen-
plaintext-secure encryption is insufficient for the security of the protocol. While cer-

Justifying a Dolev-Yao Model Under Active Attacks 7

tainly no full Dolev-Yao model would be needed to model just the Needham-Schroeder-
Lowe protocol, there was no prior attempt to prove this or a similar cryptographic pro-
tocol based on a sound abstraction from cryptography in a way accessible to automated
proof tools.

1.4 Overview of the Ideal Cryptographic Library

The ideal cryptographic library offers its users abstract cryptographic operations, such
as commands to encrypt or decrypt a message, to make or test a signature, and to gen-
erate a nonce. All these commands have a simple, deterministic semantics. In a reactive
scenario, this semantics is based on state, e.g., of who already knows which terms. We
store state in a “database”. Each entry has a type, e.g., “signature”, and pointers to its
arguments, e.g., a key and a message. This corresponds to the top level of a Dolev-
Yao term; an entire term can be found by following the pointers. Further, each entry
contains handles for those participants who already know it. Thus the database index
and these handles serve as an infinite, but efficiently constructible supply of global and
local names for cryptographic objects. However, most libraries have export operations
and leave message transport to their users (“token-based”). An actual implementation
of the simulatable library might internally also be structured like this, but higher proto-
cols are only automatically secure if they do not use this export function except via the
special send operations.

The ideal cryptographic library does not allow cheating. For instance, if it receives a
command to encrypt a message m with a certain key, it simply makes an abstract entry
in a database for the ciphertext. Each entry further contains handles for those partici-
pants who already know it. Another user can only ask for decryption of this ciphertext
if he has handles to both the ciphertext and the secret key. Similarly, if a user issues a
command to sign a message, the ideal system looks up whether this user should have
the secret key. If yes, it stores that this message has been signed with this key. Later tests
are simply look-ups in this database. A send operation makes an entry known to other
participants, i.e., it adds handles to the entry. Recall that our ideal library is an entire re-
active system and therefore contains an abstract network model. We offer three types of
send commands, corresponding to three channel types {s, r, i}, meaning secure, authen-
tic (but not private), and insecure. The types could be extended. Currently, our library
contains public-key encryption and signatures, nonces, lists, and application data. We
have subsequently added symmetric authentication [13] and symmetric encryption [9]).

The main differences between our ideal cryptographic library and the standard
Dolev-Yao model are the following. Some of them already exist in prior extensions
of the Dolev-Yao model.

– Signature schemes are not “inverses” of encryption schemes.
– Secure encryption schemes are necessarily probabilistic, and so are most secure

signature schemes. Hence if the same message is signed or encrypted several times,
we distinguish the versions by making different database entries.

– Secure signature schemes often have memory. The standard definition [40] does
not even exclude that one signature divulges the entire history of messages signed
before. We have to restrict this definition, but we allow a signature to divulge

8 M. Backes, B. Pfitzmann, and M. Waidner

the number of previously signed messages, so that we include the most efficient
provably secure schemes under classical assumptions like the hardness of factoring
[40,26,27].1

– We cannot (easily) allow participants to send secret keys over the network because
then the simulation is not always possible.2 Fortunately, for public-key cryptosys-
tems this is not needed in typical protocols.

– Encryption schemes cannot keep the length of arbitrary cleartexts entirely secret.
Typically one can even see the length quite precisely because message expansion
is minimized. Hence we also allow this in the ideal system. A fixed-length version
would be an easy addition to the library, or can be implemented on top of the library
by padding to a fixed length.

– Adversaries may include incorrect messages in encrypted parts of a message which
the current recipient cannot decrypt, but may possibly forward to another recipient
who can, and will thus notice the incorrect format. Hence we also allow certain
“garbage” terms in the ideal system.

1.5 Overview of the Real Cryptographic Library

The real cryptographic library offers its users the same commands as the ideal one, i.e.,
honest users operate on cryptographic objects via handles. This is quite close to standard
APIs for existing implementations of cryptographic libraries that include key storage.
The database of the real system contains real cryptographic keys, ciphertexts, etc., and
the commands are implemented by real cryptographic algorithms. Sending a term on an
insecure channel releases the actual bitstring to the adversary, who can do with it what
he likes. The adversary can also insert arbitrary bitstrings on non-authentic channels.
The simulatability proof will show that nevertheless, everything a real adversary can
achieve can also be achieved by an adversary in the ideal system, or otherwise the
underlying cryptography can be broken.

We base the implementation of the commands on arbitrary secure encryption and
signature systems according to standard cryptographic definitions. However, we “ide-
alize” the cryptographic objects and operations by measures similar to robust protocol
design [3].

– All objects are tagged with a type field so that, e.g., signatures cannot also be ac-
ceptable ciphertexts or keys.

– Several objects are also tagged with their parameters, e.g., signatures with the pub-
lic key used.

– Randomized operations are randomized completely. For instance, as the ideal sys-
tem represents several signatures under the same message with the same key as dif-
ferent, the real system has to guarantee that they will be different, except for small
error probabilities. Even probabilistic encryptions are randomized additionally be-
cause they are not always sufficiently random for keys chosen by the adversary.

1 Memory-less schemes exist with either lower efficiency or based on stronger assumptions (e.g.,
[37,29,36]). We could add them to the library as an additional primitive.

2 The primitives become “committing”. This is well-known from individual simulation proofs.
It also explains why [2] is restricted to passive attacks.

Justifying a Dolev-Yao Model Under Active Attacks 9

The reason to tag signatures with the public key needed to verify them is that the
usual definition of a secure signature scheme does not exclude “signature stealing:” Let
(sksh , pksh) denote the key pair of a correct participant. With ordinary signatures an
adversary might be able to compute a valid key pair (sksa , pksa) such that signatures
that pass the test with pksh also pass the test with pksa . Thus, if a correct participant re-
ceives an encrypted signature on m, it might accept m as being signed by the adversary,
although the adversary never saw m. It is easy to see that this would result in protocols
that could not be simulated. Our modification prevents this anomaly.

For the additional randomization of signatures, we include a random string r in the
message to be signed. Alternatively we could replace r by a counter, and if a signature
scheme is strongly randomized already we could omit r. Ciphertexts are randomized by
including the same random string r in the message to be encrypted and in the ciphertext.
The outer r prevents collisions among ciphertexts from honest participants, the inner r
ensures continued non-malleability.

2 Preliminary Definitions

We briefly sketch the definitions from [65]. A system consists of several possible struc-
tures. A structure consists of a set M̂ of connected correct machines and a subset S of
free ports, called specified ports. A machine is a probabilistic IO automaton (extended
finite-state machine) in a slightly refined model to allow complexity considerations. For
these machines Turing-machine realizations are defined, and the complexity of those is
measured in terms of a common security parameter k, given as the initial work-tape
content of every machine. Readers only interested in using the ideal cryptographic li-
brary in larger protocols only need normal, deterministic IO automata.

In a standard real cryptographic system, the structures are derived from one in-
tended structure and a trust model consisting of an access structure ACC and a channel
model χ. Here ACC contains the possible sets H of indices of uncorrupted machines
among the intended ones, and χ designates whether each channel is secure, authentic
(but not private) or insecure. In a typical ideal system, each structure contains only one
machine TH called trusted host.

Each structure is complemented to a configuration by an arbitrary user machine H
and adversary machine A. H connects only to ports in S and A to the rest, and they may
interact. The set of configurations of a system Sys is called Conf(Sys). The general
scheduling model in [65] gives each connection c (from an output port c! to an input
port c?) a buffer, and the machine with the corresponding clock port c�! can schedule a
message there when it makes a transition. In real asynchronous cryptographic systems,
network connections are typically scheduled by A. A configuration is a runnable system,
i.e., for each k one gets a well-defined probability space of runs. The view of a machine
in a run is the restriction to all in- and outputs this machine sees and its internal states.
Formally, the view view conf (M) of a machine M in a configuration conf is a family of
random variables with one element for each security parameter value k.

10 M. Backes, B. Pfitzmann, and M. Waidner

A1

H
S

M1 A2

H

M2

S

Fig. 1. Simulatability: The two views of H must be indistinguishable

2.1 Simulatability

Simulatability is the cryptographic notion of secure implementation. For reactive sys-
tems, it means that whatever might happen to an honest user in a real system Sys real
can also happen in the given ideal system Sys id: For every structure (M̂1,S) ∈ Sys real,
every polynomial-time user H, and every polynomial-time adversary A1, there exists
a polynomial-time adversary A2 on a corresponding ideal structure (M̂2,S) ∈ Sys id
such that the view of H is computationally indistinguishable in the two configurations.
This is illustrated in Figure 1. Indistinguishability is a well-known cryptographic notion
from [73].

Definition 1. (Computational Indistinguishability) Two families (vark)k∈N and
(var′k)k∈N of random variables on common domains Dk are computationally indis-
tinguishable (“≈”) iff for every algorithm Dis (the distinguisher) that is probabilistic
polynomial-time in its first input,

|P (Dis(1k, vark) = 1) − P (Dis(1k, var′k) = 1)| ∈ NEGL,

where NEGL denotes the set of all negligible functions, i.e., g : N → R≥0 ∈ NEGL iff
for all positive polynomials Q, ∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k). ♦

Intuitively, given the security parameter and an element chosen according to either vark
or var′k, Dis tries to guess which distribution the element came from.

Definition 2. (Simulatability) Let systems Sysreal and Sys id be given. We say Sys real ≥
Sys id (at least as secure as) iff for every polynomial-time configuration conf 1 = (M̂1,S ,
H, A1) ∈ Conf(Sys real), there exists a polynomial-time configuration conf 2 = (M̂2,S ,
H, A2) ∈ Conf(Sys id) (with the same H) such that view conf 1

(H) ≈ view conf 2
(H). ♦

For the cryptographic library, we even show blackbox simulatability, i.e., A2 consists of
a simulator Sim that depends only on (M̂1,S) and uses A1 as a blackbox submachine.
An essential feature of this definition of simulatability is a composition theorem [65],
which essentially says that one can design and prove a larger system based on the ideal
system Sys id, and then securely replace Sys id by the real system Sys real.

2.2 Notation

We write “:=” for deterministic and “←” for probabilistic assignment, and “ R←” for
uniform random choice from a set. By x := y++ for integer variables x, y we mean

Justifying a Dolev-Yao Model Under Active Attacks 11

y := y + 1; x := y. The length of a message m is denoted as len(m), and ↓ is an
error element available as an addition to the domains and ranges of all functions and
algorithms. The list operation is denoted as l := (x1, . . . , xj), and the arguments are
unambiguously retrievable as l[i], with l[i] = ↓ if i > j. A database D is a set of
functions, called entries, each over a finite domain called attributes. For an entry x ∈ D,
the value at an attribute att is written x.att . For a predicate pred involving attributes,
D[pred] means the subset of entries whose attributes fulfill pred . If D[pred] contains
only one element, we use the same notation for this element. Adding an entry x to D is
abbreviated D :⇐ x.

3 Ideal Cryptographic Library

The ideal cryptographic library consists of a trusted host THH for every subset H of a
set {1, . . . , n} of users. It has a port inu? for inputs from and a port outu ! for outputs to
each user u ∈ H and for u = a, denoting the adversary.

As mentioned in Section 1.4, we do not assume encryption systems to hide the
length of the message. Furthermore, higher protocols may need to know the length of
certain terms even for honest participants. Thus the trusted host is parameterized with
certain length functions denoting the length of a corresponding value in the real system.
The tuple of these functions is contained in a system parameter L.

For simulatability by a polynomial-time real system, the ideal cryptographic library
has to be polynomial-time. It therefore contains explicit bounds on the message lengths,
the number of signatures per key, and the number of accepted inputs at each port. They
are also contained in the system parameter L. The underlying IO automata model guar-
antees that a machine can enforce such bounds without additional Turing steps even if
an adversary tries to send more data. For all details, we refer to [14].

3.1 States

The main data structure of THH is a database D. The entries of D are abstract repre-
sentations of the data produced during a system run, together with the information on
who knows these data. Each entry x ∈ D is of the form

(ind , type, arg , hndu1 , . . . , hndum , hnda, len)

where H = {u1, . . . , um} and:

– ind ∈ N0 is called the index of x. We write D[i] instead of D[ind = i].
– type ∈ typeset := {data, list, nonce, ske, pke, enc, sks, pks, sig, garbage} identi-

fies the type of x. Future extensions of the library can extend this set.
– arg = (a1, a2, . . . , aj) is a possibly empty list of arguments.
– hndu ∈ N0 ∪ {↓} for u ∈ H ∪ {a} identifies how u knows this entry. The value a

represents the adversary, and hndu = ↓ indicates that u does not know this entry. A
value hndu
= ↓ is called the handle for u to entry x. We always use a superscript
“hnd” for handles and usually denote a handle to an entry D[i] by ihnd.

12 M. Backes, B. Pfitzmann, and M. Waidner

– len ∈ N0 denotes the length of the abstract entry. It is computed by THH using the
given length functions from the system parameter L.

Initially, D is empty. THH keeps a variable size denoting the current number of el-
ements in D. New entries x always receive the index ind := size++, and x.ind is
never changed. For each u ∈ H ∪ {a}, THH maintains a counter curhndu (cur-
rent handle) over N0 initialized with 0, and each new handle for u will be chosen as
ihnd := curhndu++.

3.2 Inputs and Their Evaluation

Each input c at a port inu? with u ∈ H ∪ {a} should be a list (cmd , x1, . . . , xj). We
usually write it y ← cmd(x1, . . . , xj) with a variable y designating the result that THH
returns at outu !. The value cmd should be a command string, contained in one of the
following four command sets. Commands in the first two sets are available for both the
user and the adversary, while the last two sets model special adversary capabilities and
are only accepted for u = a. The command sets can be enlarged by future extensions of
the library.

Basic Commands. First, we have a set basic cmds of basic commands. Each basic
command represents one cryptographic operation; arbitrary terms similar to the Dolev-
Yao model are built up or decomposed by a sequence of commands. For instance there
is a command gen nonce to create a nonce, encrypt to encrypt a message, and list to
combine several messages into a list. Moreover, there are commands store and retrieve
to store real-world messages (bitstrings) in the library and to retrieve them by a handle.
Thus other commands can assume that everything is addressed by handles. We only
allow lists to be signed and transferred, because the list-operation is a convenient place
to concentrate all verifications that no secret items are put into messages. Altogether,
we have

basic cmds := {get type, get len, store, retrieve, list, list proj, gen nonce,
gen sig keypair, sign, verify, pk of sig, msg of sig, gen enc keypair, encrypt, decrypt,

pk of enc}.

The commands not yet mentioned have the following meaning: get type and get len
retrieve the type and abstract length of a message; list proj retrieves a handle to the
i-th element of a list; gen sig keypair and gen enc keypair generate key pairs for sig-
natures and encryption, respectively, initially with handles for only the user u who in-
put the command; sign, verify, and decrypt have the obvious purpose, and pk of sig,
msg of sig; and pk of enc retrieve a public key or message, respectively, from a sig-
nature or ciphertext. (Retrieving public keys will be possible in the real cryptographic
library because we tag signatures and ciphertexts with public keys as explained above.)

We only present the details of how THH evaluates such basic commands based
on its abstract state for two examples, nonce generation and encryption; see the full
version [14] for the complete definition. We assume that the command is entered at a
port inu? with u ∈ H ∪ {a}. Basic commands are local, i.e., they produce a result

Justifying a Dolev-Yao Model Under Active Attacks 13

at port outu ! and possibly update the database D, but do not produce outputs at other
ports. They also do not touch handles for participants v
= u. The functions nonce len∗,
enc len∗, and max len are length functions and the message-length bound from the
system parameter L.

For nonces, THH just creates a new entry with type nonce, no arguments, a handle
for user u, and the abstract nonce length. This models that in the real system nonces
are randomly chosen bitstrings of a certain length, which should be all different and not
guessable by anyone else than u initially. It outputs the handle to u.

– Nonce Generation: nhnd ← gen nonce().
Set nhnd := curhndu++ and

D :⇐ (ind := size++, type := nonce, arg := (),
hndu := nhnd, len := nonce len∗(k)).

The inputs for public-key encryption are handles to the public key and the plaintext
list. THH verifies the types (recall the notation D[pred]) and verifies that the ciphertext
will not exceed the maximum length. If everything is ok, it makes a new entry of type
enc, with the indices of the public key and the plaintext as arguments, a handle for user
u, and the computed length. The fact that each such entry is new models probabilistic
encryption, and the arguments model the highest layer of the corresponding Dolev-Yao
term.

– Public-Key Encryption: chnd ← encrypt(pkhnd, lhnd).
Let pk := D[hndu = pkhnd ∧ type = pke].ind and l := D[hndu = lhnd ∧ type =
list].ind and length := enc len∗(k, D[l].len). If length > max len(k) or pk = ↓
or l = ↓, then return ↓. Else set chnd := curhndu++ and

D :⇐ (ind := size++, type := enc, arg := (pk , l),
hndu := chnd, len := length).

Honest Send Commands. Secondly, we have a set send cmds := {send s, send r,
send i} of honest send commands for sending messages on channels of different degrees
of security. As an example we present the details of the most important case, insecure
channels.

– send i(v, lhnd), for v ∈ {1, . . . , n}.
Let l ind := D[hndu = lhnd ∧ type = list].ind . If l ind
= ↓, output
(u, v, i, ind2hnda(l ind)) at outa!.

The used algorithm ind2hndu retrieves the handle for user u to the entry with the
given index if there is one, otherwise it assigns a new such handle as curhndu++. Thus
this command means that the database D now stores that this message is known to the
adversary, and that the adversary learns by the output that user u wanted to send this
message to user v.

Most protocols should only use the other two send commands, i.e., secret or au-
thentic channels, for key distribution at the beginning. As the channel type is part of
the send-command name, syntactic checks can ensure that a protocol designed with the
ideal cryptographic library fulfills such requirements.

14 M. Backes, B. Pfitzmann, and M. Waidner

Local Adversary Commands. Thirdly, we have a set adv local cmds :=
{adv garbage, adv invalid ciph, adv transform sig, adv parse} of local adversary
commands. They model tolerable imperfections of the real system, i.e., actions that
may be possible in real systems but that are not required. First, an adversary may cre-
ate invalid entries of a certain length; they obtain the type garbage. Secondly, invalid
ciphertexts are a special case because participants not knowing the secret key can rea-
sonably ask for their type and query their public key, hence they cannot be of type
garbage. Thirdly, the security definition of signature schemes does not exclude that the
adversary transforms signatures by honest participants into other valid signatures on
the same message with the same public key. Finally, we allow the adversary to retrieve
all information that we do not explicitly require to be hidden, which is denoted by a
command adv parse. This command returns the type and usually all the abstract argu-
ments of a value (with indices replaced by handles), e.g., parsing a signature yields the
public key for testing this signature, the signed message, and the value of the signature
counter used for this message. Only for ciphertexts where the adversary does not know
the secret key, parsing only returns the length of the cleartext instead of the cleartext
itself.

Adversary Send Commands. Fourthly, we have a set adv send cmds :=
{adv send s, adv send r, adv send i} of adversary send commands, again modeling
different degrees of security of the channels used. In contrast to honest send commands,
the sender of a message is an additional input parameter. Thus for insecure channels the
adversary can pretend that a message is sent by an arbitrary honest user.

3.3 A Small Example

Assume that a cryptographic protocol has to perform the step

u → v : encpkev (signsksu
(m, N1), N2),

where m is an input message and N1, N2 are two fresh nonces. Given our library, this is
represented by the following sequence of commands input at port inu?. We assume that
u has already received a handle pkehnd

v to the public encryption key of v, and created
signature keys, which gave him a handle skshnd

u .

1. mhnd ← store(m).
2. Nhnd

1 ← gen nonce().
3. lhnd

1 ← list(mhnd, Nhnd
1).

4. sighnd ← sign(skshnd
u , lhnd

1).
5. Nhnd

2 ← gen nonce().

6. lhnd
2 ← list(sighnd, Nhnd

2).
7. enchnd ← encrypt(pkehnd

v , lhnd
2).

8. mhnd ← list(enchnd).
9. send i(v, mhnd)

Note that the entire term is constructed by a local interaction of user u and the ideal
library, i.e., the adversary does not learn anything about this interaction until Step 8. In
Step 9, the adversary gets an output (u, v, i, mhnd

a) with a handle mhnd
a for him to the re-

sulting entry. In the real system described below, the sequence of inputs for constructing
and sending this term is identical, but real cryptographic operations are used to build up
a bitstring m until Step 8, and m is sent to v via a real insecure channel in Step 9.

Justifying a Dolev-Yao Model Under Active Attacks 15

4 Real Cryptographic Library

The real system is parameterized by a digital signature scheme S and a public-key en-
cryption scheme E . The ranges of all functions are {0, 1}+∪{↓}. The signature scheme
has to be secure against existential forgery under adaptive chosen-message attacks [40].
This is the accepted security definition for general-purpose signing. The encryption
scheme has to fulfill that two equal-length messages are indistinguishable even in adap-
tive chosen-ciphertext attacks. Chosen-ciphertext security has been introduced in [66]
and formalized as “IND-CCA2” in [17]. It is the accepted definition for general-purpose
encryption. An efficient encryption system secure in this sense is [28]. Just like the ideal
system, the real system is parameterized by a tuple L′ of length functions and bounds.

4.1 Structures

The intended structure of the real cryptographic library consists of n machines
{M1, . . . ,Mn}. Each Mu has ports inu? and outu !, so that the same honest users can
connect to the ideal and the real library. Each Mu has three connections netu,v,x to each
Mv for x ∈ {s, r, i}. They are called network connections and the corresponding ports
network ports. Network connections are scheduled by the adversary.

The actual system is a standard cryptographic system as defined in [65] and sketched
in Section 2. Any subset of the machines may be corrupted, i.e., any set H ⊆ {1, . . . , n}
can denote the indices of correct machines. The channel model means that in an actual
structure, an honest intended recipient gets all messages output at network ports of type
s (secret) and a (authentic) and the adversary gets all messages output at ports of type a
and i (insecure). Furthermore, the adversary makes all inputs to a network port of type
i. This is shown in Figure 2.

Mu

Du

Mv

Dv
A

H

inu outu inV outV
SH

netu,v,s

netu,v,i

netu,v,a netu,v,a
a

netu,v,i
a

Fig. 2. Connections from a correct machine to another in the real system

4.2 States of a Machine

The main data structure of Mu is a database Du that contains implementation-specific
data such as ciphertexts and signatures produced during a system run, together with
the handles for u and the type as in the ideal system, and possibly additional internal
attributes. Thus each entry x ∈ Du is of the form

(hndu ,word , type, add arg).

16 M. Backes, B. Pfitzmann, and M. Waidner

– hndu ∈ N0 is the handle of x and consecutively numbers all entries in Du.
– word ∈ {0, 1}+, called word, is the real cryptographic representation of x.
– type ∈ typeset ∪ {null} is the type of x, where null denotes that the entry has not

yet been parsed.
– add arg is a list of additional arguments. Typically it is (), only for signing keys it

contains the signature counter.

Similar to the ideal system, Mu maintains a counter curhndu over N0 denoting the
current number of elements in Du. New entries x always receive hndu := curhndu++,
and x.hndu is never changed.

4.3 Inputs and Their Evaluation

Now we describe how Mu evaluates individual inputs. Inputs at port inu? should be
basic commands and honest send commands as in the ideal system, while network in-
puts can be arbitrary bitstrings. Often a bitstrings has to be parsed. This is captured by
a functional algorithm parse, which outputs a pair (type, arg) of a type ∈typeset and a
list of real arguments, i.e., of bitstrings. This corresponds to the top level of a term, sim-
ilar to the abstract arguments in the ideal database D. By “parse mhnd” we abbreviate
that Mu calls (type, arg) ← parse(Du[mhnd].word), assigns Du[mhnd].type := type if
it was still null, and may then use arg .

Basic Commands. Basic commands are again local, i.e., they do not produce outputs at
network ports. The basic commands are implemented by the underlying cryptographic
operations with the modifications motivated in Section 1.5. For general unambiguous-
ness, not only all cryptographic objects are tagged, but also data and lists. Similar to
the ideal system, we only show two examples of the evaluation of basic commands, and
additionally how ciphertexts are parsed. All other commands can be found in the full
version [14].

In nonce generation, a real nonce n is generated by tagging a random bitstring n′

of a given length with its type nonce. Further, a new handle for u is assigned and the
handle, the word n, and the type are stored without additional arguments.

– Nonce Generation: nhnd ← gen nonce().
Let n′ R← {0, 1}nonce len(k), n := (nonce, n′), nhnd := curhndu++ and Du :⇐
(nhnd, n, nonce, ()).

For the encryption command, let Epk (m) denote probabilistic encryption of a string
m with the public key pk in the underlying encryption system E . The parameters are first
parsed in case they have been received over the network, and their types are verified.
Then the second component of the (tagged) public-key word is the actual public key
pk , while the message l is used as it is. Further, a fresh random value r is generated for
additional randomization as explained in Section 1.5.

Recall that r has to be included both inside the encryption and in the final tagged
ciphertext c∗.

Justifying a Dolev-Yao Model Under Active Attacks 17

– Encryption: chnd ← encrypt(pkhnd, lhnd).
Parse pkhnd and lhnd. If Du[pkhnd].type
= pke or Du[lhnd].type
= list, return ↓.
Else set pk := Du[pkhnd].word [2], l := Du[lhnd].word , r R← {0, 1}nonce len(k),
encrypt c ← Epk((r, l)), and set c∗ := (enc, pk , c, r). If c∗ = ↓ or
len(c∗) > max len(k) then return ↓, else set chnd := curhndu++ and Du :⇐
(chnd, c∗, enc, ()).

Parsing a ciphertext verifies that the components and lengths are as in c∗ above, and
outputs the corresponding tagged public key, whereas the message is only retrieved by
a decryption command.

Send Commands and Network Inputs. Send commands simply output real messages
at the appropriate network ports. We show this for an insecure channel.

– send i(v, lhnd) for v ∈ {1, . . . , n}.
Parse lhnd if necessary. If Du[lhnd].type = list, output Du[lhnd].word at port
netu,v ,i!.

Upon receiving a bitstring l at a network port netw,u,x?, machine Mu parses it and
verifies that it is a list. If yes, and if l is new, Mu stores it in Du using a new handle lhnd,
else it retrieves the existing handle lhnd. Then it outputs (w, x, lhnd) at port outu !.

5 Security Proof

The security claim is that the real cryptographic library is as secure as the ideal cryp-
tographic library, so that protocols proved on the basis of the deterministic, Dolev-
Yao-like ideal library can be safely implemented with the real cryptographic library.
To formulate the theorem, we need additional notation: Let Syscry,id

n,L denote the ideal
cryptographic library for n participants and with length functions and bounds L, and
Syscry,real

n,S,E,L′ the real cryptographic library for n participants, based on a secure signa-
ture scheme S and a secure encryption scheme E , and with length functions and bounds
L′. Let RPar be the set of valid parameter tuples for the real system, consisting of
the number n ∈ N of participants, secure signature and encryption schemes S and E ,
and length functions and bounds L′. For (n, S, E , L′) ∈ RPar , let Syscry,real

n,S,E,L′ be the
resulting real cryptographic library. Further, let the corresponding length functions and
bounds of the ideal system be formalized by a function L := R2Ipar(S, E , L′), and let
Syscry,id

n,L be the ideal cryptographic library with parameters n and L. Using the notation
of Definition 2, we then have

Theorem 1. (Security of Cryptographic Library) For all parameters (n, S, E , L′) ∈
RPar , we have

Syscry,real
n,S,E,L′ ≥ Syscry,id

n,L ,

where L := R2Ipar(S, E , L′). �

For proving this theorem, we define a simulator SimH such that even the combina-
tion of arbitrary polynomial-time users H and an arbitrary polynomial-time adversary
A cannot distinguish the combination of the real machines Mu from the combination
THH and SimH (for all sets H indicating the correct machines). We first sketch the
simulator and then the proof of correct simulation.

18 M. Backes, B. Pfitzmann, and M. Waidner

5.1 Simulator

Basically SimH has to translate real messages from the real adversary A into handles
as THH expects them at its adversary input port ina? and vice versa; see Figure 3. In
both directions, SimH has to parse an incoming messages completely because it can
only construct the other version (abstract or real) bottom-up. This is done by recursive
algorithms. In some cases, the simulator cannot produce any corresponding message.
We collect these cases in so-called error sets and show later that they cannot occur at
all or only with negligible probability.

netu,v,x
(a)

• • •

outa

inu outu
SH

ina
A

SimH

Da

SimH(A)

H

THH

D

Msg. here:
word l

Msg. here:
(u, v, x, lhnd)

• Results of cmds
• Received msgs

• Basic cmds
• Adv cmds
• Send cmds

netu,v,x
(a)

Fig. 3. Ports and in- and output types of the simulator

The state of SimH mainly consists of a database Da, similar to the databases Du , but
storing the knowledge of the adversary. The behavior of SimH is sketched as follows.

– Inputs from THH. Assume that SimH receives an input (u, v, x, lhnd) from THH.
If a bitstring l for lhnd already exists in Da, i.e., this message is already known to
the adversary, the simulator immediately outputs l at port netu,v ,x !. Otherwise, it
first constructs such a bitstring l with a recursive algorithm id2real. This algorithm
decomposes the abstract term using basic commands and the adversary command
adv parse. At the same time, id2real builds up a corresponding real bitstring using
real cryptographic operations and enters all new message parts into Da to recognize
them when they are reused, both by THH and by A.
Mostly, the simulator can construct subterms exactly like the correct machines
would do in the real system. Only for encryptions with a public key of a correct
machine, adv parse does not yield the plaintext; thus there the simulator encrypts
a fixed message of equal length. This simulation presupposes that all new message
parts are of the standard formats, not those resulting from local adversary com-
mands; this is proven correct in the bisimulation.

– Inputs from A. Now assume that SimH receives a bitstring l from A at a port
netu,v ,x?. If l is not a valid list, SimH aborts the transition. Otherwise it trans-
lates l into a corresponding handle lhnd by an algorithm real2id, and outputs the
abstract sending command adv send x(w, u, lhnd) at port ina!.
If a handle lhnd for l already exists in Da, then real2id reuses that. Otherwise it
recursively parses a real bitstring using the functional parsing algorithm. At the

Justifying a Dolev-Yao Model Under Active Attacks 19

same time, it builds up a corresponding abstract term in the database of THH. This
finally yields the handle lhnd. Furthermore, real2id enters all new subterms into
Da. For building up the abstract term, real2id makes extensive use of the special
capabilities of the adversary modeled in THH. In the real system, the bitstring may,
e.g., contain a transformed signature, i.e., a new signature for a message for which
the correct user has already created another signature. Such a transformation of a
signature is not excluded by the definition of secure signature schemes, hence it
might occur in the real system. Therefore the simulator also has to be able to insert
such a transformed signature into the database of THH, which explains the need for
the command adv transform signature. Similarly, the adversary might send invalid
ciphertexts or simply bitstrings that do not yield a valid type when being parsed.
All these cases can be covered by using the special capabilities.
The only case for which no command exists is a forged signature under a new
message. This leads the simulator to abort. (Such runs fall into an error set which
is later shown to be negligible.)

As all the commands used by id2real and real2id are local, these algorithms give
uninterrupted dialogues between SimH and THH, which do not show up in the views
of A and H.

Two important properties have to be shown about the simulator before the bisim-
ulation. First, the simulator has to be polynomial-time. Otherwise, the joint machine
SimH(A) of SimH and A might not be a valid polynomial-time adversary on the ideal
system. Secondly, it has to be shown that the interaction between THH and SimH in the
recursive algorithms cannot fail because one of the machines reaches its runtime bound.
The proof of both properties is quite involved, using an analysis of possible recursion
depths depending on the number of existing handles (see [14]).

5.2 Proof of Correct Simulation

Given the simulator, we show that arbitrary polynomial-time users H and an arbi-
trary polynomial-time adversary A cannot distinguish the combination of the real ma-
chine Mu from the combination of THH and SimH. The standard technique in non-
cryptographic distributed systems for rigorously proving that two systems have identical
visible behaviors is a bisimulation, i.e., one defines a mapping between the respective
states and shows that identical inputs in mapped states retain the mapping and produce
identical outputs. We need a probabilistic bisimulation because the real system and the
simulator are probabilistic, i.e., identical inputs should yield mapped states with the
correct probabilities and identically distributed outputs. (For the former, we indeed use
mappings, not arbitrary relations for the bisimulation.) In the presence of cryptography
and active attacks however, a normal probabilistic bisimulation is still insufficient for
three crucial reasons. First, the adversary might succeed in attacking the real system
with a very small probability, while this is impossible in the ideal system. This means
that we have to cope with error probabilities. Secondly, encryption only gives compu-
tational indistinguishability, which cannot be captured by a bisimulation, because the
actual values in the two systems may be quite different. Thirdly, the adversary might
guess a random value, e.g., a nonce that has already been created by some machine but

20 M. Backes, B. Pfitzmann, and M. Waidner

• • •
SH

H

Mu Mv

• • •
SH

H

M'u M'v

EncH

• • •
SH

A

H

M'u M'v

Encsim,H

A

A0 A
SimH

• • •
SH

H

THH

A

• • •
SH

H

THSimH

CH

1. Rewrite

2. Idealize,
composition theorem

MH

3. Combine 4a. Bisimulation

4b. Bisimulation
5.

6.

Fig. 4. Overview of the proof of correct simulation

that the adversary has ideally not yet seen. (Formally, “ideally not yet seen” just means
that the bisimulation fails if the adversary sends a certain value which already exists
in the databases but for which there is no command to give the adversary a handle.) In
order to perform a rigorous reduction proof in this case, we have to show that no partial
information about this value has already leaked to the adversary because the value was
contained in a nested term, or because certain operations would leak partial informa-
tion. For instance, here the proof would fail if we allowed arbitrary signatures according
to the definition of [40], which might divulge previously signed messages, or if we did
not additionally randomize probabilistic ciphertexts made with keys of the adversary.

We meet these challenges by first factoring out the computational aspects by a spe-
cial treatment of ciphertexts. Then we use a new bisimulation technique that includes
a static information-flow analysis, and is followed by the remaining cryptographic re-
ductions. The rigorous proof takes 30 pages [14]; hence we can only give a very brief
overview here, see also Figure 4.

– Introducing encryption machines. We use the two encryption machines EncH and
Encsim,H from [65] to handle the encryption and decryption needs of the system.
Roughly, the first machine calculates the correct encryption of every message m,

Justifying a Dolev-Yao Model Under Active Attacks 21

whereas the second one always encrypts the fixed message msim len(m) and an-
swers decryption requests for the resulting ciphertexts by table look-up. By [65],
EncH is at least as secure as Encsim,H. We rewrite the machines Mu such that they
use EncH (Step 1 in Figure 4); this yields modified machines M′

u. We then replace
EncH by its idealized counterpart Encsim,H (Step 2 in Figure 4) and use the compo-
sition theorem to show that the original system is at least as secure as the resulting
system.

– Combined system. We now want to compare the combination MH of the machines
M′

u and Encsim,H with the combination THSimH of the machines THH and SimH.
However, there is no direct invariant mapping between the states of these two joint
machines. Hence we defining an intermediate system ĈH with a state space com-
bined from both these systems (Step 3 in Figure 4).

– Bisimulations with error sets and information-flow analysis. We show that the joint
view of H and A is equal in interaction with the combined machine ĈH and the two
machines THSimH and MH, except for certain runs, which we collect in error sets.
We show this by performing two bisimulations simultaneously (Step 4 in Figure 4).
Transitivity and symmetry of indistinguishability then yield the desired result for
THSimH and MH. Besides several normal state invariants of ĈH, we also define
and prove an information-flow invariant on the variables of ĈH.

– Reduction proofs. We show that the aggregated probability of the runs in error sets
is negligible, as we could otherwise break the underlying cryptography. I.e., we
perform reduction proofs against the security definitions of the primitives. For sig-
nature forgeries and collisions of nonces or ciphertexts, these are relatively straight-
forward proofs. For the fact that the adversary cannot guess “official” nonces as
well as additional randomizers in signatures and ciphertext, we use the information-
flow invariant on the variables of ĈH to show that the adversary has no partial in-
formation about such values in situations where correct guessing would put the run
in an error set. This proves that MH is computationally at least as secure as the ideal
system (Step 5 in Figure 4).

Finally, simulatability is transitive [65]. Hence the original real system is also as secure
as the ideal system (Step 6 in Figure 4).

6 The Needham-Schroeder-Lowe Protocol

The original Needham-Schroeder public-key protocol and Lowe’s variant consist of
seven steps. Four steps deal with key generation and public-key distribution. They are
usually omitted in a security analysis, and it is simply assumed that keys have already
been generated and distributed. We do this as well to keep the proof short. However,
the underlying cryptographic library offers commands for modeling these steps as well.
The main part of the Needham-Schroeder-Lowe public-key protocol consists of the
following three steps, expressed in the typical protocol notation, as in, e.g., [50].

1. u → v : Epkv (Nu, u)
2. v → u : Epku (Nu, Nv, v)
3. u → v : Epkv (Nv).

22 M. Backes, B. Pfitzmann, and M. Waidner

Here, user u seeks to establish a session with user v. He generates a nonce Nu and sends
it to v together with his identity, encrypted with v’s public key (first message). Upon
receiving this message, v decrypts it to obtain the nonce Nu. Then v generates a new
nonce Nv and sends both nonces and her identity back to u, encrypted with u’s public
key (second message). Upon receiving this message, u decrypts it and tests whether the
contained identity v equals the sender of the message and whether u earlier sent the first
contained nonce to user v. If yes, u sends the second nonce back to v, encrypted with
v’s public key (third message). Finally, v decrypts this message; and if v had earlier
sent the contained nonce to u, then v believes to speak with u.

7 The Needham-Schroeder-Lowe Protocol Using the
Dolev-Yao-Style Cryptographic Library

Almost all formal proof techniques for protocols such as Needham-Schroeder-Lowe
first need a reformulation of the protocol into a more detailed version than the three
steps above. These details include necessary tests on received messages, the types and
generation rules for values like u and Nu, and a surrounding framework specifying the
number of participants, the possibilities of multiple protocol runs, and the adversary
capabilities. The same is true when using the Dolev-Yao-style cryptographic library
from [12], i.e., it plays a similar role in our proof as “the CSP Dolev-Yao model” or
“the inductive-approach Dolev-Yao model” in other proofs. Our protocol formulation
in this framework is given in Algorithms 1 and 2.3 We first explain this formulation,
and then consider general aspects of the surrounding framework as far as needed in our
proofs.

7.1 Detailed Protocol Descriptions

Recall that the underlying framework is automata-based, i.e., protocols are executed by
interacting machines, and event-based, i.e., machines react on received inputs. By MNS

i

we denote the Needham-Schroeder machine for a participant i; it can act in the roles of
both u and v above.

The first type of input that MNS
i can receive is a start message (new prot, v) from

its user denoting that it should start a protocol run with user v. The number of users
is called n. User inputs are distinguished from network inputs by arriving at a port
EA inu?. The “EA” stands for entity authentication because the user interface is the
same for all entity authentication protocols. The reaction on this input, i.e., the sending
of the first message, is described in Algorithm 1.

The command gen nonce generates the nonce. MNS
u adds the result nhnd

u to a set
Nonceu,v for future comparison. The command store inputs arbitrary application data
into the cryptographic library, here the user identity u. The command list forms a list and
encrypt is encryption. The final command send i means that MNS

u attempts to send the
resulting term to v over an insecure channel. The list operation directly before sending

3 For some frameworks there are compilers to generate these detailed protocol descriptions, e.g.,
[52]. This should be possible for this framework in a similar way.

Justifying a Dolev-Yao Model Under Active Attacks 23

Algorithm 1 Evaluation of User Inputs in MNS
u

Input: (new prot, v) at EA inu? with v ∈ {1, . . . , n} \ {u}.
1: nhnd

u ← gen nonce().
2: Nonceu,v := Nonceu,v ∪ {nhnd

u }.
3: uhnd ← store(u).
4: lhnd

1 ← list(nhnd
u , uhnd).

5: chnd
1 ← encrypt(pkehnd

v,u, lhnd
1).

6: mhnd
1 ← list(chnd

1).
7: send i(v, mhnd

1).

is a technicality: recall that only lists are allowed to be sent in this library because the
list operation concentrates verifications that no secret items are put into messages.

The behavior of the Needham-Schroeder machine of participant u upon receiving a
network input is defined similarly in Algorithm 2. The input arrives at port outu? and is
of the form (v, u, i, mhnd) where v is the supposed sender, i denotes that the channel is
insecure, and mhnd is a handle to a list. The port outu? is connected to the cryptographic
library, whose two implementations represent the obtained Dolev-Yao-style term or real
bitstring, respectively, to the protocol in a unified way by a handle.

In this algorithm, the protocol machine first decrypts the list content using its secret
key; this yields a handle lhnd to an inner list. This list is parsed into at most three
components using the command list proj. If the list has two elements, i.e., it could
correspond to the first message of the protocol, and if it contains the correct identity,
the machine generates a new nonce and stores its handle in the set Nonceu,v . Then it
builds up a new list according to the protocol description, encrypts it and sends it to
user v. If the list has three elements, i.e., it could correspond to the second message
of the protocol, the machine tests whether the third list element equals v and the first
list element is contained in the set Nonceu,v. If one of these tests does not succeed,
MNS

u aborts. Otherwise, it again builds up a term according to the protocol description
and sends it to user v. Finally, if the list has only one element, i.e., it could correspond
to the third message of the protocol, the machine tests if the handle of this element is
contained in Nonceu,v . If so, MNS

u outputs (ok, v) at EA outu !. This signals to user u
that the protocol with user v has terminated successfully, i.e., u believes to speak with v.

Both algorithms should immediately abort the handling of the current input if a
cryptographic command does not yield the desired result, e.g., if a decryption fails.
For readability we omitted this in the algorithm descriptions; instead we impose the
following convention on both algorithms.

Convention 1. If MNS
u receives ↓ as the answer of the cryptographic library to a com-

mand, then MNS
u aborts the execution of the current algorithm, except for the command

types list proj or send i.

We refer to Step i of Algorithm j as Step j.i.

24 M. Backes, B. Pfitzmann, and M. Waidner

Algorithm 2 Evaluation of Network Inputs in MNS
u

Input: (v, u, i, mhnd) at outu? with v ∈ {1, . . . , n} \ {u}.
1: chnd ← list proj(mhnd, 1)
2: lhnd ← decrypt(skehnd

u , chnd)
3: xhnd

i ← list proj(lhnd, i) for i = 1, 2, 3.
4: if xhnd

1 �= ↓ ∧ xhnd
2 �= ↓ ∧ xhnd

3 = ↓ then {First Message is input}
5: x2 ← retrieve(xhnd

2).
6: if x2 �= v then
7: Abort
8: end if
9: nhnd

u ← gen nonce().
10: Nonceu,v := Nonceu,v ∪ {nhnd

u }.
11: uhnd ← store(u).
12: lhnd

2 ← list(xhnd
1 , nhnd

u , uhnd).
13: chnd

2 ← encrypt(pkehnd
v,u, lhnd

2).
14: mhnd

2 ← list(chnd
2).

15: send i(v, mhnd
2).

16: else if xhnd
1 �= ↓ ∧ xhnd

2 �= ↓ ∧ xhnd
3 �= ↓ then {Second Message is input}

17: x3 ← retrieve(xhnd
3).

18: if x3 �= v ∨ xhnd
1 �∈ Nonceu,v then

19: Abort
20: end if
21: lhnd

3 ← list(xhnd
2).

22: chnd
3 ← encrypt(pkehnd

v,u, lhnd
3).

23: mhnd
3 ← list(chnd

3).
24: send i(v, mhnd

3).
25: else if xhnd

1 ∈ Nonceu,v ∧ xhnd
2 = xhnd

3 = ↓ then {Third Message is input}
26: Output (ok, v) at EA outu !.
27: end if

7.2 Overall Framework and Adversary Model

When protocol machines such as MNS
u for certain users u ∈ {1, . . . , n} are defined,

there is no guarantee that all these machines are correct. A trust model determines for
what subsets H of {1, . . . , n} we want to guarantee anything; in our case this is es-
sentially for all subsets: We aim at entity authentication between u and v whenever
u, v ∈ H and thus whenever MNS

u and MNS
v are correct. Incorrect machines disappear

and are replaced by the adversary. Each set of potential correct machines together with
its user interface constitute a structure, and the set of these structures is called the sys-
tem, cf. Section 2.2. Recall further that when considering the security of a structure,
an arbitrary probabilistic machine H is connected to the user interface to represent all
users, and an arbitrary machine A is connected to the remaining free ports (typically the
network) and to H to represent the adversary, see Fig. 5. In polynomial-time security
proofs, H and A are polynomial-time.

This setting implies that any number of concurrent protocol runs with both honest
participants and the adversary are considered because H and A can arbitrarily interleave
protocol start inputs (new prot, v) with the delivery of network messages.

Justifying a Dolev-Yao Model Under Active Attacks 25

Ideal or real cryptographic library

MNS
u

EA_outu! EA_inu?

outu? inu!

MNS
v

EA_outv! EA_inv?

outv? inv!

H

outu! inu? outv! inv?

A
S

ys
cr

y,
{id

,re
al

}

S
ys

N
S

,{i
d,

re
al

}

Fig. 5. Overview of the Needham-Schroeder-Lowe Ideal System

For a set H of honest participants, the user interface of the ideal and real cryp-
tographic library is the port set S cry

H := {inu?, outu ! | u ∈ H}. This is where the
Needham-Schroeder machines input their cryptographic commands and obtain results
and received messages. In the ideal case this interface is served by just one machine
THH called trusted host which essentially administrates Dolev-Yao-style terms un-
der the handles. In the real case, the same interface is served by a set M̂ cry

H :=
{Mcry

u,H | u ∈ H} of real cryptographic machines. The corresponding systems are called

Syscry,id := {({THH},S cry
H) | H ⊆ {1, . . . , n}} and Syscry,real := {(M̂ cry

H ,S cry
H) | H ⊆

{1, . . . , n}}.
The user interface of the Needham-Schroeder machines or any other entity authenti-

cation protocol is SEA
H := {EA inu?, EA outu ! | u ∈ H}. The ideal and real Needham-

Schroeder-Lowe systems serving this interface differ only in the cryptographic library.
With M̂ NS

H := {MNS
u | u ∈ H}, they are SysNS,id := {(M̂ NS

H ∪ {THH},SEA
H) | H ⊆

{1, . . . , n}} and SysNS,real := {(M̂ NS
H ∪ M̂ cry

H ,SEA
H) | H ⊆ {1, . . . , n}}.

7.3 Initial State

We have assumed in the algorithms that each Needham-Schroeder machine MNS
u al-

ready has a handle skehnd
u to its own secret encryption key and handles pkehnd

v,u to the
corresponding public keys of every participant v. The cryptographic library can also
represent key generation and distribution by normal commands. Formally, this assump-
tion means that for each participant u two entries of the following form are added to D
where H = {u1, . . . , um}:

(skeu , type := ske, arg := (), hndu := skehnd
u , len := 0);

(pkeu , type := pke, arg := (), hndu1 := pkehnd
u,u1

, . . . ,

hndum := pkehnd
u,um

, hnda := pkehnd
u,a , len := pke len∗(k)).

Here skeu and pkeu are two consecutive natural numbers and pke len∗ is the length
function for public keys. Treating the secret key length as 0 is a technicality in [12] and

26 M. Backes, B. Pfitzmann, and M. Waidner

will not matter here. Further, each machine MNS
u contains the bitstring u denoting its

identity, and the family (Nonceu,v)v∈{1,...,n} of initially empty sets of (nonce) handles.

7.4 On Polynomial Runtime

In order to be valid users of the real cryptographic library, the machines MNS
u have

to be polynomial-time. We therefore define that each machine MNS
u maintains explicit

polynomial bounds on the accepted message lengths and the number of inputs accepted
at each port. As this is done exactly as in the cryptographic library, we omit the rigorous
write-up.

8 The Security Property

Our security property states that an honest participant v only successfully terminates a
protocol with an honest participant u if u has indeed started a protocol with v, i.e., an
output (ok, u) at EA outv ! can only happen if there was a prior input (new prot, v) at
EA inu?. This property and also the actual protocol does not consider replay attacks,
i.e., a user v could successfully terminate a protocol with u multiple times while u
started a protocol with v only once. However, this can easily be avoided as follows: If
MNS

u receives a message from v containing one of its own nonces, it additionally re-
moves this nonce from the corresponding set, i.e., it removes xhnd

1 from Nonceu,v after
Steps 2.20 and 2.25. Proving freshness given this change and mutual authentication is
useful future work, but better done once the proof has been automated. Warinschi proves
these properties [72]. The even stronger property of matching conversations from [19]
that he also proves makes constraints on events within the system, not only at the inter-
face. We thus regard it as an overspecification in an approach based on abstraction.

Integrity properties in the underlying model are formally sets of traces at the user
interfaces of a system, i.e., here at the port sets SEA

H . Intuitively, an integrity property
Req contains the “good” traces at these ports. A trace is a sequence of sets of events.
We write an event p?m or p!m, meaning that message m occurs at in- or output port
p. The t-th step of a trace r is written rt; we speak of the step at time t. The integrity
requirement ReqEA for the Needham-Schroeder-Lowe protocol is defined as follows,
meaning that if v believes to speak with u at time t1, then there exists a past time t0
where u started a protocol with v:

Definition 3. (Entity Authentication Requirement) A trace r is contained in ReqEA if
for all u, v ∈ H:

∀t1 ∈ N : EA outv !(ok, u) ∈ rt1

⇒ ∃t0 < t1 : EA inu?(new prot, v) ∈ rt0 . ♦

The notion of a system Sys fulfilling an integrity property Req essentially comes in
two flavors [4]. Perfect fulfillment, Sys |=perf Req , means that the integrity property
holds for all traces arising in runs of Sys (a well-defined notion from the underlying
model [65]). Computational fulfillment, Sys |=poly Req , means that the property only

Justifying a Dolev-Yao Model Under Active Attacks 27

holds for polynomially bounded users and adversaries, and that a negligible error prob-
ability is permitted. Perfect fulfillment implies computational fulfillment.

The following theorem captures the security of the Needham-Schroeder-Lowe pro-
tocol; we prove it in the rest of the paper.

Theorem 2. (Security of the Needham-Schroeder-Lowe Protocol) For the Needham-
Schroeder-Lowe systems from Section 7.2 and the integrity property of Definition 3, we
have SysNS,id |=perf ReqEA and SysNS,real |=poly ReqEA. �

9 Proof of the Cryptographic Realization from the Idealization

As discussed in the introduction, the idea of our approach is to prove Theorem 2 for
the protocol using the ideal Dolev-Yao-style cryptographic library. Then the result for
the real system follows automatically. As this paper is the first instantiation of this
argument, we describe it in detail.

The notion that a system Sys1 securely implements another system Sys2 reactive
simulatability (recall the introduction), is written Sys1 ≥poly

sec Sys2 (in the computational
case). The main result of [12] is therefore

Syscry,real ≥poly
sec Syscry,id. (1)

Since SysNS,real and SysNS,id are compositions of the same protocol with Syscry,real and
Syscry,id, respectively, the composition theorem of [65] and (1) imply

SysNS,real ≥poly
sec SysNS,id. (2)

Showing the theorem’s preconditions is easy since the machines MNS
u are polynomial-

time (see Section 7.4). Finally, the integrity preservation theorem from [4] and (2) imply
for every integrity requirement Req that

(SysNS,id |=poly Req) ⇒ (SysNS,real |=poly Req). (3)

Hence if we prove SysNS,id |=perf ReqEA, we immediately obtain SysNS,real |=poly

ReqEA.

10 Proof in the Ideal Setting

This section contains the proof of the ideal part of Theorem 2: We prove that the
Needham-Schroeder-Lowe protocol implemented with the ideal, Dolev-Yao-style cryp-
tographic library perfectly fulfills the integrity requirement ReqEA. The proof idea is to
go backwards in the protocol step by step, and to show that a specific output always
requires a specific prior input. For instance, when user v successfully terminates a pro-
tocol with user u, then u has sent the third protocol message to v; thus v has sent the
second protocol message to u; and so on. The main challenge in this proof was to find
suitable invariants on the state of the ideal Needham-Schroeder-Lowe system.

We start by formulating the invariants and then prove the overall entity authentica-
tion requirement from the invariants. Finally we prove the invariants, after describing
detailed state transitions of the ideal cryptographic library as needed in that proof.

28 M. Backes, B. Pfitzmann, and M. Waidner

10.1 Invariants

This section contains invariants of the system SysNS,id, which are used in the proof of
Theorem 2. The first invariants, correct nonce owner and unique nonce use, are easily
proved and essentially state that handles contained in a set Nonceu,v indeed point to
entries of type nonce, and that no nonce is in two such sets. The next two invariants,
nonce secrecy and nonce-list secrecy, deal with the secrecy of certain terms. They are
mainly needed to prove the last invariant, correct list owner, which establishes who
created certain terms.

– Correct Nonce Owner. For all u ∈ H, v ∈ {1, . . . , n} and xhnd ∈ Nonceu,v, we
have D[hndu = xhnd].type = nonce.

– Unique Nonce Use. For all u, v ∈ H, all w, w′ ∈ {1, . . . , n}, and all j ≤ size: If
D[j].hndu ∈ Nonceu,w and D[j].hndv ∈ Noncev,w′ , then (u, w) = (v, w′).

Nonce secrecy states that the nonces exchanged between honest users u and v remain
secret from all other users and from the adversary, i.e., that the other users and the
adversary have no handles to such a nonce:

– Nonce Secrecy. For all u, v ∈ H and all j ≤ size: If D[j].hndu ∈ Nonceu,v then
D[j].hndw = ↓ for all w ∈ (H ∪ {a}) \ {u, v}.

Similarly, the invariant nonce-list secrecy states that a list containing such a nonce can
only be known to u and v. Further, it states that the identity fields in such lists are
correct for Needham-Schroeder-Lowe messages. Moreover, if such a list is an argument
of another entry, then this entry is an encryption with the public key of u or v.

– Nonce-List Secrecy. For all u, v ∈ H and all j ≤ size with D[j].type = list: Let
x ind

i := D[j].arg [i] for i = 1, 2, 3. If D[x ind
i].hndu ∈ Nonceu,v then:

a) D[j].hndw = ↓ for all w ∈ (H ∪ {a}) \ {u, v}.
b) If D[x ind

i+1].type = data, then D[x ind
i+1].arg = (u).

c) For all k ≤ size we have j ∈ D[k].arg only if D[k].type = enc and
D[k].arg [1] ∈ {pkeu, pkev}.

The invariant correct list owner states that certain protocol messages can only be con-
structed by the “intended” users. For instance, if a database entry is structured like the
cleartext of a first protocol message, i.e., it is of type list, its first argument belongs to
the set Nonceu,v, and its second argument is non-cryptographic, i.e., of type data, then
it has been created by user u. Similar statements exist for the second and third protocol
message.

– Correct List Owner. For all u, v ∈ H and all j ≤ size with D[j].type = list: Let
x ind

i := D[j].arg [i] and xhnd
i,u := D[x ind

i].hndu for i = 1, 2.
a) If xhnd

1,u ∈ Nonceu,v and D[x ind
2].type = data, then D[j] was created by MNS

u

in Step 1.4.
b) If D[x ind

1].type = nonce and xhnd
2,u ∈ Nonceu,v, then D[j] was created by MNS

u

in Step 2.12.
c) If xhnd

1,u ∈ Nonceu,v and x ind
2 = ↓, then D[j] was created by MNS

v in Step 2.21.

Justifying a Dolev-Yao Model Under Active Attacks 29

This invariant is key for proceeding backwards in the protocol. For instance, if v ter-
minates a protocol with user u, then v must have received a third protocol message.
Correct list owner implies that this message has been generated by u. Now u only con-
structs such a message if it received a second protocol message. Applying the invariant
two more times shows that u indeed started a protocol with v. The proof described be-
low will take care of the details. Formally, the invariance of the above statements is
captured in the following lemma.

Lemma 1. The statements correct nonce owner, unique nonce use, nonce secrecy,
nonce-list secrecy, and correct list owner are invariants of SysNS,id, i.e., they hold at all
times in all runs of {MNS

u | u ∈ H} ∪ {THH} for all H ⊆ {1, . . . , n}. �

The proof is postponed to Section 10.4.

10.2 Entity Authentication Proof

To increase readability, we partition the proof into several steps with explanations in
between. Assume that u, v ∈ H and that MNS

v outputs (ok, u) to its user, i.e., a protocol
between u and v has terminated successfully. We first show that this implies that MNS

v

has received a message corresponding to the third protocol step, i.e., of the form that
allows us to apply correct list owner to show that it was created by MNS

v . The following
property of THH proven in [12] will be useful in this proof to show that properties
proven for one time also hold at another time.

Lemma 2. In the ideal cryptographic library Syscry,id, the only modifications to exist-
ing entries x in D are assignments to previously undefined attributes x.hndu (except
for counter updates in entries for signature keys, which we do not have to consider
here). �

Proof. (Ideal part of Theorem 2) Assume that MNS
v outputs (ok, u) at EA outv ! for

u, v ∈ H at time t4. By definition of Algorithms 1 and 2, this can only happen if
there was an input (u, v, i, m3 hnd

v) at outv? at a time t3 < t4. Here and in the sequel
we use the notation of Algorithm 2, but we distinguish the variables from its different
executions by a superscript indicating the number of the (claimed) received protocol
message, here 3, and give handles an additional subscript for their owner, here v.

The execution of Algorithm 2 for this input must have given l3
hnd

v
= ↓ in Step
2.2, since it would otherwise abort by Convention 1 without creating an output. Let
l3

ind := D[hndv = l3
hnd

v].ind . The algorithm further implies D[l3ind].type = list. Let

x3
i
ind := D[l3ind].arg [i] for i = 1, 2 at the time of Step 2.3. By definition of list proj

and since the condition of Step 2.25 is true immediately after Step 2.3, we have

x3 hnd

1,v = D[x3
1
ind

].hndv at time t4 (4)

and
x3 hnd

1,v ∈ Noncev,u ∧ x3
2
ind

= ↓ at time t4, (5)

since x3 hnd

2,v = ↓ after Step 2.3 implies x3
2
ind = ↓.

30 M. Backes, B. Pfitzmann, and M. Waidner

This first part of the proof shows that MNS
v has received a list corresponding to a third

protocol message. Now we apply correct list owner to the list entry D[l3ind] to show
that this entry was created by MNS

u . Then we show that MNS
u only generates such an

entry if it has received a second protocol message. To show that this message contains
a nonce from v, as needed for the next application of correct list owner, we exploit the
fact that v accepts the same value as its nonce in the third message, which we know
from the first part of the proof.

Proof (cont’d with 3rd message). Equations (4) and (5) are the preconditions for Part
c) of correct list owner. Hence the entry D[l3ind] was created by MNS

u in Step 2.21.
This algorithm execution must have started with an input (w, u, i, m2 hnd

u) at outu?
at a time t2 < t3 with w
= u. As above, we conclude l2

hnd

u
= ↓ in Step 2.2, set l2
ind :=

D[hndu = l2
hnd

u].ind , and obtain D[l2ind].type = list. Let x2
i
ind := D[l2ind].arg [i] for

i = 1, 2, 3 at the time of Step 2.3. As the condition of Step 2.16 is true immediately af-
terwards, we obtain x2 hnd

i,u
= ↓ for i ∈ {1, 2, 3}. The definition of list proj and Lemma 2
imply

x2 hnd

i,u = D[x2
i
ind

].hndu for i ∈ {1, 2, 3} at time t4. (6)

Step 2.18 ensures x2
3 = w and x2 hnd

1,u ∈ Nonceu,w. Thus correct nonce owner implies

D[x2
1
ind

].type = nonce. (7)

Now we exploit that MNS
u creates the entry D[l3ind] in Step 2.21 with the input

list(x2 hnd

2,u). With the definitions of list and list proj this implies x2
2
ind = x3

1
ind

. Thus
Equations (4) and (5) imply

D[x2
2
ind

].hndv ∈ Noncev,u at time t4. (8)

We have now shown that MNS
u has received a list corresponding to the second protocol

message. We apply correct list owner to show that MNS
v created this list, and again we

can show that this can only happen if MNS
v received a suitable first protocol message.

Further, the next part of the proof shows that w = v and thus MNS
u got the second

protocol message from MNS
v , which remained open in the previous proof part.

Proof (cont’d with 2nd message). Equations (6) to (8) are the preconditions for Part b)
of correct list owner. Thus the entry D[l2ind] was created by MNS

v in Step 2.12. The
construction of this entry in Steps 2.11 and 2.12 implies x2

3 = v and hence w = v
(using the definitions of store and retrieve, and list and list proj). With the results from
before Equation (7) and Lemma 2 we therefore obtain

x2
3 = v ∧ x2 hnd

1,u ∈ Nonceu,v at time t4. (9)

The algorithm execution where MNS
v creates the entry D[l2ind] must have started

with an input (w′, v, i, m1 hnd

v) at outv? at a time t1 < t2 with w′
= v. As above,

we conclude l1
hnd

v
= ↓ in Step 2.2, set l1
ind := D[hndv = l1

hnd

v].ind , and obtain

Justifying a Dolev-Yao Model Under Active Attacks 31

D[l1ind].type = list. Let x1
i
ind := D[l1ind].arg[i] for i = 1, 2, 3 at the time of Step

2.3. As the condition of Step 2.4 is true, we obtain x1 hnd

i,v
= ↓ for i ∈ {1, 2}. Then the
definition of list proj and Lemma 2 yield

x1 hnd

i,v = D[x1
i
ind

].hndv for i ∈ {1, 2} at time t4. (10)

When MNS
v creates the entry D[l2ind] in Step 2.12, its input is list(x1 hnd

1,v , nhnd
v , vhnd).

This implies x1
1
ind = x2

1
ind

(as above). Thus Equations (6) and (9) imply

D[x1
1
ind

].hndu ∈ Nonceu,v at time t4. (11)

The test in Step 2.6 ensures that x1
2 = w′
= ↓. This implies D[x1

2
ind].type = data by

the definition of retrieve, and therefore with Lemma 2,

D[x1
2
ind

].type = data at time t4. (12)

We finally apply correct list owner again to show that MNS
u has generated this list cor-

responding to a first protocol message. We then show that this message must have been
intended for user v, and thus user u has indeed started a protocol with user v.

Proof. (cont’d with 1st message) Equations (10) to (12) are the preconditions for Part
a) of correct list owner. Thus the entry D[l1ind] was created by MNS

u in Step 1.4. The
construction of this entry in Steps 1.3 and 1.4 implies x1

2 = u and hence w′ = u.
The execution of Algorithm 1 must have started with an input (new prot, w′′) at

EA inu? at a time t0 < t1. We have to show w′′ = v. When MNS
u creates the entry

D[l1ind] in Step 1.4, its input is list(nhnd
u , uhnd) with nhnd

u
= ↓. Hence the definition of

list proj implies D[x1
1
ind].hndu = nhnd

u ∈ Nonceu,w′′ . With Equation (11) and unique
nonce use we conclude w′′ = v.

In a nutshell, we have shown that for all times t4 where MNS
v outputs (ok, u) at

EA outv !, there exists a time t0 < t4 such that MNS
u receives an input (new prot, v) at

EA inu? at time t0. This proves Theorem 2.

10.3 Command Evaluation by the Ideal Cryptographic Library

This section contains the definition of the cryptographic commands used for modeling
the Needham-Schroeder-Lowe protocol, and the local adversary commands that model
the extended capabilities of the adversary as far as needed to prove the invariants. Recall
that we deal with top levels of Dolev-Yao-style terms, and that commands typically
create a new term with its index, type, arguments, handles, and length functions, or
parse an existing term. We present the full definitions of the commands, but the reader
can ignore the length functions, which have names x len. Note that we already defined
the commands for generating a nonce and for public-key encryption in Section 3.2,
hence we do not repeat them here.

Each input c at a port inu? with u ∈ H ∪ {a} should be a list (cmd , x1, . . . , xj)
with cmd from a fixed list of commands and certain parameter domains. We usually

32 M. Backes, B. Pfitzmann, and M. Waidner

write it y ← cmd(x1, . . . , xj) with a variable y designating the result that THH returns
at outu !. The algorithm ihnd := ind2hndu(i) (with side effect) denotes that THH de-
termines a handle ihnd for user u to an entry D[i]: If ihnd := D[i].hndu
= ↓, it returns
that, else it sets and returns ihnd := D[i].hndu := curhndu++. On non-handles, it is
the identity function. The function ind2hnd∗u applies ind2hndu to each element of a list.

In the following definitions, we assume that a cryptographic command is input at
port inu? with u ∈ H ∪{a}. First, we describe the commands for storing and retrieving
data via handles.

– Storing: mhnd ← store(m), for m ∈ {0, 1}max len(k).
If i := D[type = data ∧ arg = (m)].ind
= ↓ then return mhnd :=
ind2hndu(i). Otherwise if data len∗(len(m)) > max len(k) return ↓. Else set
mhnd := curhndu++ and

D :⇐ (ind := size++, type := data, arg := (m),
hndu := mhnd, len := data len∗(len(m))).

– Retrieval: m ← retrieve(mhnd).
m := D[hndu = mhnd ∧ type = data].arg [1].

Next we describe list creation and projection. Lists cannot include secret keys of the
public-key systems (entries of type ske, sks) because no information about those must
be given away.

– Generate a list: lhnd ← list(xhnd
1 , . . . , xhnd

j), for 0 ≤ j ≤ max len(k).
Let xi := D[hndu = xhnd

i].ind for i = 1, . . . , j. If any D[xi].type ∈ {sks, ske},
set lhnd := ↓.If l := D[type = list ∧ arg = (x1, . . . , xj)].ind
= ↓, then return
lhnd := ind2hndu(l). Otherwise, set length := list len∗(D[x1].len , . . . , D[xj].len)
and return ↓ if length > max len(k). Else set lhnd := curhndu++ and

D :⇐ (ind := size++, type := list, arg := (x1, . . . ,

xj), hndu := lhnd, len := length).

– i-th projection: xhnd ← list proj(lhnd, i), for 1 ≤ i ≤ max len(k).
If D[hndu = lhnd ∧ type = list].arg = (x1, . . . , xj) with j ≥ i, then xhnd :=
ind2hndu(xi), otherwise xhnd := ↓.

Further, we used a command for decrypting a list.

– Decryption: lhnd ← decrypt(skhnd, chnd).
Let sk := D[hndu = skhnd ∧ type = ske].ind and c := D[hndu = chnd ∧
type = enc].ind . Return ↓ if c = ↓ or sk = ↓ or pk := D[c].arg [1]
= sk + 1 or
l := D[c].arg [2] = ↓. Else return lhnd := ind2hndu(l).

From the set of local adversary commands, which capture additional commands
for the adversary at port ina?, we only describe the command adv parse. It allows the
adversary to retrieve all information that we do not explicitly require to be hidden.
This command returns the type and usually all the abstract arguments of a value (with
indices replaced by handles), except in the case of ciphertexts. About the remaining
local adversary commands, we only need to know that they do not output handles to
already existing entries of type list or nonce.

Justifying a Dolev-Yao Model Under Active Attacks 33

– Parameter retrieval: (type, arg) ← adv parse(mhnd).
Let m := D[hnda = mhnd].ind and type := D[m].type. In most cases, set
arg := ind2hnd∗a(D[m].arg). (Recall that this only transforms arguments in
INDS .) The only exception is for type = enc and D[m].arg of the form (pk , l) (a
valid ciphertext) and D[pk − 1].hnda = ↓ (the adversary does not know the secret
key); then arg := (ind2hnda(pk), D[l].len).

We finally describe the command that allows an adversary to send messages on
insecure channels. In the command, the adversary sends list l to v, pretending to be u.

– adv send i(u, v, lhnd), for u ∈ {1, . . . , n} and v ∈ H at port ina?.
Let l ind := D[hnda = lhnd ∧ type = list].ind . If l ind
= ↓, output
(u, v, i, ind2hndv(l ind)) at outv !.

10.4 Proof of the Invariants

We start with the proof of correct nonce owner.

Proof (Correct nonce owner). Let xhnd ∈ Nonceu,v for u ∈ H and v ∈ {1, . . . , n}. By
construction, xhnd has been added to Nonceu,v by MNS

u in Step 1.2 or Step 2.10. In both
cases, xhnd has been generated by the command gen nonce() at some time t, input at
port inu? of THH. Convention 1 implies xhnd
= ↓, as MNS

u would abort otherwise and
not add xhnd to the set Nonceu,v. The definition of gen nonce then implies D[hndu =
xhnd]
= ↓ and D[hndu = xhnd].type = nonce at time t. Because of Lemma 2 this also
holds at all later times t′ > t, which finishes the proof.

The following proof of unique nonce use is quite similar.

Proof (Unique Nonce Use). Assume for contradiction that both D[j].hndu ∈
Nonceu,w and D[j].hndv ∈ Noncev,w′ at some time t. Without loss of generality,
let t be the first such time and let D[j].hndv
∈ Noncev,w′ at time t − 1. By construc-
tion, D[j].hndv is thus added to Noncev,w′ at time t by Step 1.2 or Step 2.10. In both
cases, D[j].hndv has been generated by the command gen nonce() at time t − 1. The
definition of gen nonce implies that D[j] is a new entry and D[j].hndv its only handle
at time t − 1, and thus also at time t. With correct nonce owner this implies u = v.
Further, Noncev,w′ is the only set into which the new handle D[j].hndv is put at times
t − 1 and t. Thus also w = w′. This is a contradiction.

In the following, we prove correct list owner, nonce secrecy, and nonce-list secrecy
by induction. Hence we assume that all three invariants hold at a particular time t in a
run of the system, and show that they still hold at time t + 1.

Proof (Correct list owner). Let u, v ∈ H, j ≤ size with D[j].type = list. Let x ind
i :=

D[j].arg [i] and xhnd
i,u := D[x ind

i].hndu for i = 1, 2 and assume that xhnd
i,u ∈ Nonceu,v

for i = 1 or i = 2 at time t + 1.
The only possibilities to violate the invariant correct list owner are that (1) the entry

D[j] is created at time t+1 or that (2) the handle D[j].hndu is created at time t+1 for an
entry D[j] that already exists at time t or that (3) the handle xhnd

i,u is added to Nonceu,v

34 M. Backes, B. Pfitzmann, and M. Waidner

at time t + 1. In all other cases the invariant holds by the induction hypothesis and
Lemma 2.

We start with the third case. Assume that xhnd
i,u is added to Nonceu,v at time t + 1.

By construction, this only happens in a transition of MNS
u in Step 1.2 and Step 2.10.

However, here the entry D[x ind
i] has been generated by the command gen nonce input

at inu? at time t, hence x ind
i cannot be contained as an argument of an entry D[j] at time

t. Formally, this corresponds to the fact that D is well-formed, i.e., index arguments of
an entry are always smaller than the index of the entry itself; this has been shown in [12].
Since a transition of MNS

u does not modify entries in THH, this also holds at time t + 1.
For proving the remaining two cases, assume that D[j].hndu is created at time t+1

for an already existing entry D[j] or that D[j] is generated at time t + 1. Because both
can only happen in a transition of THH, this implies xhnd

i,u ∈ Nonceu,v already at time t,
since transitions of THH cannot modify the set Nonceu,v . Because of u, v ∈ H, nonce
secrecy implies D[x ind

i].hndw
= ↓ only if w ∈ {u, v}. Lists can only be constructed
by the basic command list, which requires handles to all its elements. More precisely,
if w ∈ H ∪ {a} creates an entry D[j′] with D[j′].type = list and (x′

1, . . . , x
′
k) :=

D[j].arg at time t + 1 then D[x′
i].hndw
= ↓ for i = 1, . . . , k already at time t. Applied

to the entry D[j], this implies that either u or v have created the entry D[j].
We now only have to show that the entry D[j] has been created by u in the claimed

steps. This can easily be seen by inspection of Algorithms 1 and 2. We only show it in
detail for the first part of the invariant; it can be proven similarly for the remaining two
parts.

Let xhnd
1,u ∈ Nonceu,v and D[x ind

2].type = data. By inspection of Algorithms 1
and 2 and because D[j].type = list, we see that the entry D[j] must have been created
by either MNS

u or MNS
v in Step 1.4. (The remaining list generation commands either only

have one element, which implies x ind
2 = ↓ and hence D[x ind

2].type
= data, or we have
D[x ind

2].type = nonce by construction.) Now assume for contradiction that the entry
D[j] has been generated by MNS

v . This implies that also the entry D[x ind
1] has been

newly generated by the command gen nonce input at inv?. However, only MNS
u can add

a handle to the set Nonceu,v (it is the local state of MNS
u), but every nonce that MNS

u adds
to the set Nonceu,v is newly generated by the command gen nonce input by MNS

u by
construction. This implies xhnd

1,u
∈ Nonceu,v at all times, which yields a contradiction
to xhnd

1,u ∈ Nonceu,v at time t + 1. Hence D[j] has been created by user u.

Proof (Nonce secrecy). Let u, v ∈ H, j ≤ size with D[j].hndu ∈ Nonceu,v , and
w ∈ (H ∪ {a}) \ {u, v} be given. Because of correct nonce owner, we know that
D[j].type = nonce. The invariant could only be affected if (1) the handle D[j].hndu is
put into the set Nonceu,v at time t+1 or (2) if a handle for w is added to the entry D[j]
at time t + 1.

For proving the first case, note that the set Nonceu,v is only extended by a handle
nhnd

u by MNS
u in Steps 1.2 and 2.10. In both cases, nhnd

u has been generated by THH
at time t since the command gen nonce was input at inu? at time t. The definition of
gen nonce immediately implies that D[j].hndw = ↓ at time t if w
= u. Moreover, this
also holds at time t + 1 since a transition of MNS

u does not modify handles in THH,
which finishes the claim for this case.

Justifying a Dolev-Yao Model Under Active Attacks 35

For proving the second case, we only have to consider those commands that add
handles for w to entries of type nonce. These are only the commands list proj or
adv parse input at inw?, where adv parse has to be applied to an entry of type list,
since only entries of type list can have arguments which are indices to nonce entries.
More precisely, if one of the commands violated the invariant there would exist an entry
D[i] at time t such that D[i].type = list, D[i].hndw
= ↓ and j ∈ (x ind

1 , . . . , x ind
m) :=

D[i].arg . However, both commands do not modify the set Nonceu,v, hence we have
D[j].hndu ∈ Nonceu,v already at time t. Now nonce secrecy yields D[j].hndw = ↓
at time t and hence also at all times < t because of Lemma 2. This implies that the
entry D[i] must have been created by either u or v, since generating a list presupposes
handles for all elements (cf. the previous proof). Assume without loss of generality that
D[i] has been generated by u. By inspection of Algorithms 1 and 2, this immediately
implies j ∈ (x ind

1 , x ind
2), since handles to nonces only occur as first or second element

in a list generation by u. Because of j ∈ D[i].arg [1, 2] and D[j].hndu ∈ Nonceu,v at
time t, nonce-list secrecy for the entry D[i] implies that D[i].hndw = ↓ at time t. This
yields a contradiction.

Proof (Nonce-list secrecy). Let u, v ∈ H, j ≤ size with D[j].type = list. Let x ind
i :=

D[j].arg [i] and xhnd
i,u := D[x ind

i].hndu for i = 1, 2, and w ∈ (H ∪ {a}) \ {u, v}. Let
xhnd

i,u ∈ Nonceu,v for i = 1 or i = 2.
We first show that the invariant cannot be violated by adding the handle xhnd

i,u to
Nonceu,v at time t+1. This can only happen in a transition of MNS

u in Step 1.2 or 2.10.
As shown in the proof of correct list owner, the entry D[x ind

i] has been generated by
THH at time t. Since D is well-formed, this implies that x ind

i
∈ D[j].arg for all entries
D[j] that already exist at time t. This also holds for all entries at time t + 1, since
the transition of MNS

u does not modify entries of THH. This yields a contradiction to
x ind

i = D[j].arg [i]. Hence we now know that xhnd
i,u ∈ Nonceu,v already holds at time t.

Part a) of the invariant can only be affected if a handle for w is added to an entry
D[j] that already exists at time t. (Creation of D[j] at time t with a handle for w is
impossible as above because that presupposes handles to all arguments, in contradiction
to nonce secrecy.) The only commands that add new handles for w to existing entries
of type list are list proj, decrypt, adv parse, send i, and adv send i applied to an entry
D[k] with j ∈ D[k].arg . Nonce-list secrecy for the entry D[j] at time t then yields
D[k].type = enc. Thus the commands list proj, send i, and adv send i do not have
to be considered any further. Moreover, nonce-list secrecy also yields D[k].arg [1] ∈
{pkeu, pkev}. The secret keys of u and v are not known to w
∈ {u, v}, formally
D[hndw = skehnd

u] = D[hndw = skehnd
v] = ↓; this corresponds to the invariant key

secrecy of [12]. Hence the command decrypt does not violate the invariant. Finally, the
command adv parse applied to an entry of type enc with unknown secret key also does
not give a handle to the cleartext list, i.e., to D[k].arg [2], but only outputs its length.

Part b) of the invariant can only be affected if the list entry D[j] is created at time
t + 1. (By well-formedness, the argument entry D[x ind

i+1] cannot be created after D[j].)
As in Part a), it can only be created by a party w ∈ {u, v} because other parties have no
handle to the nonce argument. Inspection of Algorithms 1 and 2 shows that this can only
happen in Steps 1.4 and 2.12, because all other commands list have only one argument,
while our preconditions imply x ind

2
= ↓.

36 M. Backes, B. Pfitzmann, and M. Waidner

– If the creation is in Step 1.4, the preceding Step 1.2 implies D[x ind
1].hndw ∈

Noncew,w′ for some w′ and Step 1.3 implies D[x ind
2].type = data. Thus the

preconditions of Part b) of the invariant can only hold for i = 1, and thus
D[x ind

1].hndu ∈ Nonceu,v. Now unique nonce use implies u = w. Thus Steps
1.3 and 1.4 yield D[x ind

2].arg = (u).
– If the creation is in Step 2.12, the preceding steps 2.10 and 2.11 imply that the pre-

conditions of Part b) of the invariant can only hold for i = 2. Then the precondition,
Step 2.10, and unique nonce use imply u = w. Finally, Steps 2.11 and 2.12 yield
D[x ind

3].arg = (u).

Part c) of the invariant can only be violated if a new entry D[k] is created at time
t + 1 with j ∈ D[k].arg (by Lemma 2 and well-formedness). As D[j] already exists
at time t, nonce-list secrecy for D[j] implies D[j].hndw = ↓ for w
∈ {u, v} at time
t. We can easily see by inspection of the commands that the new entry D[k] must
have been created by one of the commands list and encrypt (or by sign, which creates
a signature), since entries newly created by other commands cannot have arguments
that are indices of entries of type list. Since all these commands entered at a port inz?
presuppose D[j].hndz
= ↓, the entry D[k] is created by w ∈ {u, v} at time t + 1.
However, the only steps that can create an entry D[k] with j ∈ D[k].arg (with the
properties demanded for the entry D[j]) are Steps 1.5, 2.13, and 2.22. In all these cases,
we have D[k].type = enc. Further, we have D[k].arg[1] = pkew′ where w′ denotes
w’s current believed partner. We have to show that w′ ∈ {u, v}.

– Case 1: D[k] is created in Step 1.5. By inspection of Algorithm 1, we see that the
precondition of this proof can only be fulfilled for i = 1. Then D[x ind

1].hndu ∈
Nonceu,v and D[x ind

1].hndw ∈ Noncew,w′ and unique nonce use imply w′ = v.
– Case 2: D[k] is created in Step 2.13, and i = 2. Then D[x ind

2].hndu ∈ Nonceu,v

and D[x ind
2].hndw ∈ Noncew,w′ and unique nonce use imply w′ = v.

– Case 3: D[k] is created in Step 2.13, and i = 1. This execution of Algorithm 2
must give lhnd
= ↓ in Step 2.2, since it would otherwise abort by Convention 1. Let
lind := D[hndw = lhnd].ind . The algorithm further implies D[lind].type = list. Let

x0
i
ind := D[lind].arg [i] for i = 1, 2, 3 at the time of Step 2.3, and let x0 hnd

i,w be the
handles obtained in Step 2.3. As the algorithm does not abort in Steps 2.5 and 2.7,
we have D[x0

2
ind].type = data and D[x0

2
ind].arg = (w′).

Further, the reuse of x0 hnd

1,w in Step 2.12 implies x0
1
ind = x ind

1 . Together with the
precondition D[x ind

1].hndu ∈ Nonceu,v, the entry D[lind] therefore fulfills the con-

ditions of Part b) of nonce-list secrecy with i = 1. This implies D[x0
2
ind].arg = (u),

and thus w′ = u.
– Case 4: D[k] is created in Step 2.22. With Step 2.21, this implies x ind

2 = ↓ and
thus i = 1. As in Case 3, this execution of Algorithm 2 must give lhnd
= ↓ in
Step 2.2, we set lind := D[hndw = lhnd].ind , and we have D[lind].type = list.
Let x0

i
ind := D[lind].arg [i] for i = 1, 2, 3 at the time of Step 2.3, and let x0 hnd

i,w be
the handles obtained in Step 2.3. As the algorithm does not abort in Steps 2.17 and
2.19, we have D[x0

3
ind].type = data and D[x0

3
ind].arg = (w′).

Further, the reuse of x0 hnd

2,w in Step 2.21 implies x0
2
ind = x ind

1 . Together with the
precondition D[x ind

1].hndu ∈ Nonceu,v, the entry D[lind] therefore fulfills the con-

Justifying a Dolev-Yao Model Under Active Attacks 37

dition of Part b) of nonce-list secrecy with i = 2. This implies D[x0
3
ind].arg = (u),

and thus w′ = u.

Hence in all cases we obtained w′ = u, i.e., the list containing the nonce was indeed
encrypted with the key of an honest participant.

11 Conclusion

We have shown that an ideal cryptographic library, which constitutes a slightly extended
Dolev-Yao model, is sound with respect to the commonly accepted cryptographic def-
initions under arbitrary active attacks and in arbitrary protocol environments. The ab-
straction is deterministic and does not contain any cryptographic objects, hence it is
abstract in the sense needed for theorem provers. Sound means that we can implement
the abstraction securely in the cryptographic sense, so that properties proved for the ab-
straction carry over to the implementation without any further work. We provided one
possible implementation whose security is based on provably secure cryptographic sys-
tems. We already showed that the library can be extended in a modular way by adding
symmetric authentication [13] and symmetric encryption [9].

This soundness of the cryptographic library now allows for a meaningful analysis
of protocol properties on the abstract level. We demonstrated this with a proof of the
well-known Needham-Schroeder-Lowe public-key protocol. Further, the abstractness
of the library makes such an analysis accessible for formal verification techniques. As
many protocols commonly analyzed in the literature can be expressed with our library,
this enables the first formal, machine-aided verification of these protocols which is not
only meaningful for Dolev-Yao-like abstractions, but whose security guarantees are
equivalent to the security of the underlying cryptography. This bridges the up-to-now
missing link between cryptography and formal methods for arbitrary attacks.

Acknowledgments

We thank Anupam Datta, Martin Hirt, Dennis Hofheinz, Paul Karger, Ralf Küsters,
John Mitchell, Jörn Müller-Quade, Andre Scedrov, Matthias Schunter, Victor Shoup,
Michael Steiner, Rainer Steinwandt, Dominique Unruh for interesting discussions.

References

1. M. Abadi and J. Jürjens. Formal eavesdropping and its computational interpretation. In
Proc. 4th International Symposium on Theoretical Aspects of Computer Software (TACS),
pages 82–94, 2001.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography: The computational
soundness of formal encryption. In Proc. 1st IFIP International Conference on Theoret-
ical Computer Science, volume 1872 of Lecture Notes in Computer Science, pages 3–22.
Springer, 2000.

3. R. Anderson and R. Needham. Robustness principles for public key protocols. In Advances
in Cryptology: CRYPTO ’95, volume 963 of Lecture Notes in Computer Science, pages 236–
247. Springer, 1995.

38 M. Backes, B. Pfitzmann, and M. Waidner

4. M. Backes and C. Jacobi. Cryptographically sound and machine-assisted verification of secu-
rity protocols. In Proc. 20th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), volume 2607 of Lecture Notes in Computer Science, pages 675–686. Springer,
2003.

5. M. Backes, C. Jacobi, and B. Pfitzmann. Deriving cryptographically sound implementations
using composition and formally verified bisimulation. In Proc. 11th Symposium on Formal
Methods Europe (FME 2002), volume 2391 of Lecture Notes in Computer Science, pages
310–329. Springer, 2002.

6. M. Backes and B. Pfitzmann. Computational probabilistic non-interference. In Proc. 7th Eu-
ropean Symposium on Research in Computer Security (ESORICS), volume 2502 of Lecture
Notes in Computer Science, pages 1–23. Springer, 2002.

7. M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-
Schroeder-Lowe public-key protocol. In Proc. 23rd Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), pages 1–12, 2003. Full version in
IACR Cryptology ePrint Archive 2003/121, Jun. 2003, http://eprint.iacr.org/.

8. M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic purposes. In
Proc. 24th IEEE Symposium on Security & Privacy, pages 140–152, 2003.

9. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style
cryptographic library. In Proc. 17th IEEE Computer Security Foundations Workshop
(CSFW), 2004. Full version in IACR Cryptology ePrint Archive 2004/059, Feb. 2004,
http://eprint.iacr.org/.

10. M. Backes and B. Pfitzmann. Relating symbolic and cryptographic key secrecy. In Proc.
26th IEEE Symposium on Security & Privacy, 2005. Extended version in IACR Cryptology
ePrint Archive 2004/300.

11. M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner. Polynomial fairness and liveness. In
Proc. 15th IEEE Computer Security Foundations Workshop (CSFW), pages 160–174, 2002.

12. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations (extended abstract). In Proc. 10th ACM Conference on Computer and Commu-
nications Security, pages 220–230, 2003. Full version in IACR Cryptology ePrint Archive
2003/015, Jan. 2003, http://eprint.iacr.org/.

13. M. Backes, B. Pfitzmann, and M. Waidner. Symmetric authentication within a simulat-
able cryptographic library. In Proc. 8th European Symposium on Research in Computer
Security (ESORICS), volume 2808 of Lecture Notes in Computer Science, pages 271–290.
Springer, 2003. Extended version in IACR Cryptology ePrint Archive 2003/145, Jul. 2003,
http://eprint.iacr.org/.

14. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic library.
IACR Cryptology ePrint Archive 2003/015, Jan. 2003. http://eprint.iacr.org/.

15. D. Beaver. Secure multiparty protocols and zero knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, 4(2):75–122, 1991.

16. G. Bella, F. Massacci, and L. C. Paulson. The verification of an industrial payment protocol:
The SET purchase phase. In Proc. 9th ACM Conference on Computer and Communications
Security, pages 12–20, 2002.

17. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security
for public-key encryption schemes. In Advances in Cryptology: CRYPTO ’98, volume 1462
of Lecture Notes in Computer Science, pages 26–45. Springer, 1998.

18. M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in ssh: Provably fixing
the ssh binary packet protocol. In Proc. 9th ACM Conference on Computer and Communi-
cations Security, pages 1–11, 2002.

19. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in
Cryptology: CRYPTO ’93, volume 773 of Lecture Notes in Computer Science, pages 232–
249. Springer, 1994.

Justifying a Dolev-Yao Model Under Active Attacks 39

20. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS. In Advances in Cryptology: CRYPTO ’98, volume 1462 of Lecture Notes in
Computer Science, pages 1–12. Springer, 1998.

21. R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 3(1):143–202, 2000.

22. R. Canetti. A unified framework for analyzing security of protocols. IACR Cryptology ePrint
Archive 2000/067, Dec. 2000. http://eprint.iacr.org/.

23. R. Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 136–145, 2001. Extended version in Cryptology ePrint Archive, Report 2000/67,
http://eprint.iacr.org/.

24. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In Proc.
30th Annual ACM Symposium on Theory of Computing (STOC), pages 209–218, 1998.

25. R. Canetti and J. Herzog. Universally composable symbolic analysis of cryptographic pro-
tocols (the case of encryption-based mutual authentication and key exchange). Cryptology
ePrint Archive, Report 2004/334, 2004. http://eprint.iacr.org/.

26. R. Cramer and I. Damgård. Secure signature schemes based on interactive protocols. In
Advances in Cryptology: CRYPTO ’95, volume 963 of Lecture Notes in Computer Science,
pages 297–310. Springer, 1995.

27. R. Cramer and I. Damgård. New generation of secure and practical RSA-based signatures. In
Advances in Cryptology: CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science,
pages 173–185. Springer, 1996.

28. R. Cramer and V. Shoup. Practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In Advances in Cryptology: CRYPTO ’98, volume 1462 of Lecture
Notes in Computer Science, pages 13–25. Springer, 1998.

29. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In Proc.
6th ACM Conference on Computer and Communications Security, pages 46–51, 1999.

30. Z. Dang and R. Kemmerer. Using the ASTRAL model checker for cryptographic proto-
col analysis. In Proc. DIMACS Workshop on Design and Formal Verification of Security
Protocols, 1997. http://dimacs.rutgers.edu/Workshops/Security/.

31. D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Communications
of the ACM, 24(8):533–536, 1981.

32. Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new one. In
Advances in Cryptology: EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 557–572. Springer, 2000.

33. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

34. B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication
protocols. In Proc. International Conference on Theorem Proving in Higher Order Logics
(TPHOL), volume 1275 of Lecture Notes in Computer Science, pages 121–136. Springer,
1997.

35. D. Fisher. Millions of .Net Passport accounts put at risk. eWeek, May 2003. (Flaw detected
by Muhammad Faisal Rauf Danka).

36. R. Gennaro, S. Halevi, and T. Rubin. Secure hash-and-sign signatures without the random
oracle. In Advances in Cryptology: EUROCRYPT ’99, volume 1592 of Lecture Notes in
Computer Science, pages 123–139. Springer, 1999.

37. O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In
Advances in Cryptology: CRYPTO ’86, volume 263 of Lecture Notes in Computer Science,
pages 104–110. Springer, 1986.

40 M. Backes, B. Pfitzmann, and M. Waidner

38. S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral
majority. In Advances in Cryptology: CRYPTO ’90, volume 537 of Lecture Notes in Com-
puter Science, pages 77–93. Springer, 1990.

39. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

40. S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

41. J. D. Guttman, F. J. Thayer Fabrega, and L. Zuck. The faithfulness of abstract protocol
analysis: Message authentication. In Proc. 8th ACM Conference on Computer and Commu-
nications Security, pages 186–195, 2001.

42. J. Herzog. Computational Soundness of Formal Adversaries. PhD thesis, MIT, 2002.
43. J. Herzog, M. Liskov, and S. Micali. Plaintext awareness via key registration. In Advances

in Cryptology: CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages
548–564. Springer, 2003.

44. M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect multi-
party computation. Journal of Cryptology, 13(1):31–60, 2000.

45. R. Impagliazzo and B. M. Kapron. Logics for reasoning about cryptographic constructions.
In Proc. 44th IEEE Symposium on Foundations of Computer Science (FOCS), pages 372–
381, 2003.

46. R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol analysis.
Journal of Cryptology, 7(2):79–130, 1994.

47. P. Laud. Semantics and program analysis of computationally secure information flow. In
Proc. 10th European Symposium on Programming (ESOP), pages 77–91, 2001.

48. P. Laud. Symmetric encryption in automatic analyses for confidentiality against active ad-
versaries. In Proc. 25th IEEE Symposium on Security & Privacy, pages 71–85, 2004.

49. P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for
protocol analysis. In Proc. 5th ACM Conference on Computer and Communications Security,
pages 112–121, 1998.

50. G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol. Infor-
mation Processing Letters, 56(3):131–135, 1995.

51. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Proc. 2nd International Conference on Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS), volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer, 1996.

52. G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. 10th IEEE
Computer Security Foundations Workshop (CSFW), pages 18–30, 1997.

53. C. Meadows. Analyzing the Needham-Schroeder public key protocol: A comparison of
two approaches. In Proc. 4th European Symposium on Research in Computer Security (ES-
ORICS), volume 1146 of Lecture Notes in Computer Science, pages 351–364. Springer, 1996.

54. S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology: CRYPTO ’91,
volume 576 of Lecture Notes in Computer Science, pages 392–404. Springer, 1991.

55. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Proc. 1st Theory of Cryptography Conference (TCC), volume 2951 of Lecture
Notes in Computer Science, pages 133–151. Springer, 2004.

56. J. Mitchell, M. Mitchell, and A. Scedrov. A linguistic characterization of bounded oracle
computation and probabilistic polynomial time. In Proc. 39th IEEE Symposium on Founda-
tions of Computer Science (FOCS), pages 725–733, 1998.

57. J. Mitchell, M. Mitchell, A. Scedrov, and V. Teague. A probabilistic polynominal-time pro-
cess calculus for analysis of cryptographic protocols (preliminary report). Electronic Notes
in Theoretical Computer Science, 47:1–31, 2001.

Justifying a Dolev-Yao Model Under Active Attacks 41

58. J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic protocols using
murφ. In Proc. 18th IEEE Symposium on Security & Privacy, pages 141–151, 1997.

59. R. Needham and M. Schroeder. Using encryption for authentication in large networks of
computers. Communications of the ACM, 12(21):993–999, 1978.

60. S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype verification system. In Proc. 11th
International Conference on Automated Deduction (CADE), volume 607 of Lecture Notes in
Computer Science, pages 748–752. Springer, 1992.

61. L. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Cryp-
tology, 6(1):85–128, 1998.

62. B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive sys-
tems. Presented at the DERA/RHUL Workshop on Secure Architectures and Informa-
tion Flow, 1999, Electronic Notes in Theoretical Computer Science (ENTCS), March
2000. http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/
menu.htm.

63. B. Pfitzmann and M. Waidner. How to break and repair a “provably secure” untraceable
payment system. In Advances in Cryptology: CRYPTO ’91, volume 576 of Lecture Notes in
Computer Science, pages 338–350. Springer, 1992.

64. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure re-
active systems. In Proc. 7th ACM Conference on Computer and Communications Se-
curity, pages 245–254, 2000. Extended version (with Matthias Schunter) IBM Re-
search Report RZ 3206, May 2000, http://www.semper.org/sirene/publ/
PfSW1 00ReactSimulIBM.ps.gz.

65. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its applica-
tion to secure message transmission. In Proc. 22nd IEEE Symposium on Security & Privacy,
pages 184–200, 2001. Extended version of the model (with Michael Backes) IACR Cryptol-
ogy ePrint Archive 2004/082, http://eprint.iacr.org/.

66. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and cho-
sen ciphertext attack. In Advances in Cryptology: CRYPTO ’91, volume 576 of Lecture Notes
in Computer Science, pages 433–444. Springer, 1992.

67. P. Rogaway. Authenticated-encryption with associated-data. In Proc. 9th ACM Conference
on Computer and Communications Security, pages 98–107, 2002.

68. S. Schneider. Verifying authentication protocols with CSP. In Proc. 10th IEEE Computer
Security Foundations Workshop (CSFW), pages 3–17, 1997.

69. P. Syverson. A new look at an old protocol. Operation Systems Review, 30(3):1–4, 1996.
70. F. J. Thayer Fabrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security protocol

correct? In Proc. 19th IEEE Symposium on Security & Privacy, pages 160–171, 1998.
71. D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In Proc. 2nd USENIX Work-

shop on Electronic Commerce, pages 29–40, 1996.
72. B. Warinschi. A computational analysis of the Needham-Schroeder-(Lowe) protocol. In

Proc. 16th IEEE Computer Security Foundations Workshop (CSFW), pages 248–262, 2003.
73. A. C. Yao. Theory and applications of trapdoor functions. In Proc. 23rd IEEE Symposium

on Foundations of Computer Science (FOCS), pages 80–91, 1982.

Model-Based Security Engineering with UML

Jan Jürjens�

Dep. of Informatics, TU Munich, Germany
http://www4.in.tum.de/˜juerjens

Abstract. Developing security-critical systems is difficult and there are
many well-known examples of security weaknesses exploited in practice.
Thus a sound methodology supporting secure systems development is
urgently needed.

Our aim is to aid the difficult task of developing security-critical sys-
tems in a formally based approach using the notation of the Unified
Modeling Language. We present the extension UMLsec of UML that al-
lows one to express security-relevant information within the diagrams in
a system specification. UMLsec is defined in form of a UML profile using
the standard UML extension mechanisms. In particular, the associated
constraints give criteria to evaluate the security aspects of a system de-
sign, by referring to a formal semantics of a simplified fragment of UML.
We explain how these constraints can be formally verified against the dy-
namic behavior of the specification using automated theorem provers for
first-order logic. This formal security verification can also be extended
to C code generated from the specifications.

1 Introduction

Modern society and modern economies rely on infrastructures for communi-
cation, finance, energy distribution, and transportation. These infrastructures
depend increasingly on networked information systems. Attacks against these
systems can threaten the economical or even physical well-being of people and
organizations. Due to the widespread interconnection of information systems,
attacks can be waged anonymously and from a safe distance. Many security
incidents have been reported, sometimes with potentially quite severe conse-
quences.

Many problems with security-critical systems arise from the fact that their
developers do not always have a strong background in computer security. This is
problematic since in practice, security is compromised most often not by breaking
mechanisms such as encryption or security protocols, but by exploiting weak-
nesses in the way they are being used. Security mechanisms cannot be “blindly”
inserted into a security-critical system, but the overall system development must
take security aspects into account.
� This work was partially funded by the German Federal Ministry of Education, Sci-

ence, Research and Technology (BMBF) in the framework of the Verisoft project
under grant 01 IS C38. The responsibility for this article lies with the author(s).

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 42–77, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Model-Based Security Engineering with UML 43

Furthermore, sometimes security mechanisms (such as security protocols)
cannot be used off-the-shelf, but have to be designed specifically to satisfy given
requirements (see [GHJW03] for an example). Such mechanisms are notoriously
hard to design correctly, even for experts, as many examples of protocols designed
by experts that were later found to contain flaws show.

Enforcing security requirements is intrinsically subtle, because one has to
take into account the interaction of the system with motivated adversaries that
act independently. Risks are very hard to calculate because of the possibility to
quickly distribute new information to exploit vulnerabilities, for example across
the Internet.

Any support to aid secure systems development is thus dearly needed. In
particular, it would be desirable to consider security aspects already in the design
phase, before a system is actually implemented, since removing security flaws in
the design phase, as opposed to patching fielded systems, saves cost and time,
reduces security risks and increases customer confidence.

This has motivated a significant amount of successful research into using
formal methods for secure systems development. However, part of the difficulty
of security-critical systems development is that correctness is often in conflict
with cost. Where thorough methods of system design pose high cost through
personnel training and use, they are all too often avoided.

The Unified Modeling Language (UML, [UML01], the de facto
industry-standard in object-oriented modeling) offers an interesting opportu-
nity for high-quality secure systems development that is feasible in an industrial
context.

– As the de facto standard in industrial modeling, a large number of developers
is trained in UML.

– Compared to previous notations with a user community of comparable size,
UML is relatively precisely defined.

Also, because of its expressitivity and the formal foundation of the UML
fragment under consideration, UML gives an interesting theoretical basis for
research into open problems in the foundations of security, such as the compos-
ability and consistency of the various formalized security requirements. Because
our underlying formal system model is largely independent from UML specifics,
it provide a suitable platform for such investigations also independently from
UML.

To exploit this opportunity, however, some challenges remain which include
the following:

– Extending the UML to be able to conveniently express security requirements
within a UML specification.

– Defining a formal execution semantics for a sufficient simplified fragment of
UML as a basis for the formalization of behavioral security requirements.

– Providing automated tool-support for a formal security verification of UML
specifications against the security requirements.

The present work reports on research towards overcoming these challenges.

44 J. Jürjens

To support using UML for secure systems development, we define the ex-
tension UMLsec of the UML. Various recurring security requirements (such as
secrecy, integrity, authenticity and others), as well as assumptions on the security
of the system environment, are offered as stereotypes and tags by the UMLsec
definition. These can be included in UML diagrams firstly to keep track of the
information. Using the associated constraints that refer to a formal semantics
of the used simplified fragment of UML, the properties can be used to evaluate
diagrams of various kinds and to indicate possible vulnerabilities. One can thus
verify that the stated security requirements, if fulfilled, enforce a given security
policy. One can also ensure that the requirements are actually met by the given
UML specification of the system. This way we can encapsulate knowledge on
prudent security engineering and thereby make it available to developers which
may not be specialized in security. One can also go further by checking whether
the constraints associated with the UMLsec stereotypes are fulfilled in a given
specification, if desired by performing an automated formal security verification
using automated theorem provers for first order logic or model-checkers.

Due to space restrictions, we can only present a partial overview on the work.
A complete acccount, with many more examples and industrial applications, and
the necessary background on distributed system security, can be found in [Jür04].

We explain how to formally evaluate UML specifications for security require-
ments in Sect. 2. We introduce a fragment of the UMLsec notation in Sect. 3
and explain the various stereotypes with examples. We describe how to use auto-
mated theorem provers for first-order logic to verify UML specifications against
seurity requirements in Sect. 4. We point to further work applying these analy-
ses to the source-code level in Sect. 5. We report on an industrial application to
biometric authentication systems in Sect. 6.

2 Security Evaluation of UML Diagrams

A UMLsec diagram is essentially a UML diagram where security properties and
requirements are inserted as stereotypes with tags and constraints, although
certain restrictions apply to enable automated formal verification. UML1 offers
three main “light-weight” language extension mechanisms: stereotypes, tagged
values, and constraints [UML01]. Stereotypes define new types of modeling el-
ements extending the semantics of existing types or classes in the UML meta-
model. Their notation consists of the name of the stereotype written in double
angle brackets 〈〈 〉〉, attached to the extended model element. This model element
is then interpreted according to the meaning ascribed to the stereotype. One way
of explicitly defining a property is by attaching a tagged value to a model ele-
ment. A tagged value is a name-value pair, where the name is referred to as the
tag. The corresponding notation is {tag = value} with the tag name tag and a
corresponding value to be assigned to the tag. If the value is of type Boolean, one
1 In the following, we consider the UML version 1.5 current at the time of writing; the

transition to the upcoming version 2.0 only has a limited impact on the things we
discuss here.

Model-Based Security Engineering with UML 45

usually omits {tag = false}, and writes {tag} instead of {tag = true}. Another
way of adding information to a model element is by attaching logical constraints
to refine its semantics (for example written in first-order predicate logic).

To construct an extension of the UML one collects the relevant definitions of
stereotypes, tagged values, and constraints into a so-called profile [UML01]. For
UMLsec, we give validation rules that evaluate a model with respect to listed
security requirements. Many security requirements are formulated regarding the
behavior of a system in interaction with its environment (in particular, with
potential adversaries). To verify these requirements, we use the formal semantics
defined in Sect. 2.1.

2.1 Outline of Formal Semantics

For some of the constraints used to define the UMLsec extensions we need to refer
to a precisely defined semantics of behavioral aspects, because verifying whether
they hold for a given UML model may be mathematically non-trivial. Firstly,
the semantics is used to define these constraints in a mathematically precise way.
Secondly, we have developed mechanical tool support for analyzing UML speci-
fications for security requirements using model-checkers and automated theorem
provers for first-order logic [JS04, JS05, Jür05a]. For this, a precise definition of
the meaning of the specifications is necessary. For security analysis, the security-
relevant information from the security-oriented stereotypes is then incorporated
(cf. Sect. 2.3).

Because of space restrictions, we cannot recall our formal semantics here
completely. Instead, we define precisely and explain the interfaces of this se-
mantics that we need here to define the UMLsec profile. More details on the
formal semantics of a simplified fragment of UML and on previous and related
work in this area can be found in [Jür02, Jür04]. The semantics is defined for-
mally using so-called UML Machines, which is an extension of Mealy automata
with UML-type communication mechanisms. It includes the following kinds of
diagrams:

Class diagrams define the static class structure of the system: classes with
attributes, operations, and signals and relationships between classes. On the
instance level, the corresponding diagrams are called object diagrams.

Statechart diagrams (or state diagrams) give the dynamic behavior of an
individual object or component: events may cause a change in state or an
execution of actions.

Sequence diagrams describe interaction between objects or system
components via message exchange.

Activity diagrams specify the control flow between several components within
the system, usually at a higher degree of abstraction than statecharts and
sequence diagrams. They can be used to put objects or components in the
context of overall system behavior or to explain use cases in more detail.

Deployment diagrams describe the physical layer on which the system is to
be implemented.

46 J. Jürjens

Subsystems (a certain kind of packages) integrate the information between
the different kinds of diagrams and between different parts of the system
specification.

There is another kind of diagrams, the use case diagrams, which describe typi-
cal interactions between a user and a computer system. They are often used in an
informal way for negotiation with a customer before a system is designed. We will
not use it in the following. Additionally to sequence diagrams, there are collab-
oration diagrams, which present similar information. Also, there are component
diagrams, presenting part of the information contained in deployment diagrams.

The used fragment of UML is simplified to keep automated formal verification
that is necessary for some of the more subtle security requirements feasible. Note
that in our approach we identify system objects with UML objects, which is
suitable for our purposes. Also, as with practically all analysis methods, also
in the real-time setting [Wat02], we are mainly concerned with instance-based
models. Although, simplified, our choice of a subset of UML is reasonable for
our needs, as we have demonstrated in several industrial case-studies (some of
which are documented in [Jür04]).

The formal semantics for subsystems incorporates the formal semantics of
the diagrams contained in a subsystem. It

– models actions and internal activities explicitly (rather than treating them
as atomic given events), in particular the operations and the parameters
employed in them,

– provides passing of messages with their parameters between objects or com-
ponents specified in different diagrams, including a dispatching mechanism
for events and the handling of actions, and thus

– allows in principle whole specification documents to be based on a formal
foundation.

In particular, we can compose subsystems by including them into other subsys-
tems.

Objects, and more generally system components, can communicate by ex-
changing messages. These consist of the message name, and possibly arguments
to the message (which will be assumed to be elements of the set Exp defined
in Sect. 2.2). Message names may be prefixed with object or subsystem instance
names. Each object or component may receive messages received in an input
queue and release messages to an output queue.

In our model, every object or subsystem instance O has associated multi-
sets inQuO and outQuO (event queues). Our formal semantics models sending
a message msg = op(exp1, . . . , expn) ∈ Events from an object or subsystem
instance S to an object or subsystem instance R as follows:

(1) S places the message R.msg into its multi-set outQuS .
(2) A scheduler distributes the messages from out-queues to the intended in-

queues (while removing the message head); in particular, R.msg is removed
from outQuS and msg added to inQuR.

(3) R removes msg from its in-queue and processes its content.

Model-Based Security Engineering with UML 47

In the case of operation calls, we also need to keep track of the sender to allow
sending return signals. This way of modeling communication allows for a very
flexible treatment; for example, we can modify the behavior of the scheduler to
take account of knowledge on the underlying communication layer (for example
regarding security issues, see Sect. 2.3).

At the level of single objects, behavior is modeled using statecharts, or (in
special cases such as protocols) possibly as using sequence diagrams. The internal
activities contained at states of these statecharts can again be defined each as a
statechart, or alternatively, they can be defined directly using UML Machines.

Using subsystems, one can then define the behavior of a system component
C by including the behavior of each of the objects or components directly con-
tained in C, and by including an activity diagram that coordinates the respective
activities of the various components and objects.

Thus for each object or component C of a given system, our semantics defines
a function �C�() which

– takes a multi-set I of input messages and a component state S and
– outputs a set �C�(I, S) of pairs (O, T) where O is a multi-set of output

messages and T the new component state (it is a set of pairs because of the
non-determinism that may arise)

together with an initial state S0 of the component.
Specifically, the behavioral semantics �D�() of a statechart diagram D models

the run-to-completion semantics of UML statecharts. As a special case, this gives
us the semantics for activity diagrams. Any sequence diagram S gives us the
behavior �S.C�() of each contained component C.

Subsystems group together diagrams describing different parts of a system:
a system component C given by a subsystem S may contain subcomponents
C1, . . . , Cn. The behavioral interpretation �S�() of S is defined as follows:

(1) It takes a multi-set of input events.
(2) The events are distributed from the input multi-set and the link queues con-

necting the subcomponents and given as arguments to the functions defining
the behavior of the intended recipients in S.

(3) The output messages from these functions are distributed to the link queues
of the links connecting the sender of a message to the receiver, or given as
the output from �S�() when the receiver is not part of S.

When performing security analysis, after the last step, the adversary model may
modify the contents of the link queues in a certain way explained in Sect. 2.3.

2.2 Modeling Cryptography

We introduce some sets to be used in modeling cryptographic data in a UML
specification and its security analysis.

We assume a set Keys with a partial injective map ()−1 : Keys → Keys.
The elements in its domain (which may be public) can be used for encryption

48 J. Jürjens

and for verifying signatures, those in its range (usually assumed to be secret)
for decryption and signing. We assume that every key is either an encryption or
decryption key, or both: Any key k satisfying k−1 = k is called symmetric, the
others are called asymmetric. We assume that the numbers of symmetric and
asymmetric keys are both infinite. We fix infinite sets Var of variables and Data
of data values. We assume that Keys, Var, and Data are mutually disjoint and
that ASMNames∪MsgNm ⊆ Data. Data may also include nonces and other
secrets.

The algebra of cryptographic expressions Exp is the quotient of the term
algebra generated from the set Var ∪ Keys ∪ Data with the operations

– :: (concatenation),
– head() and tail(),
– { } (encryption)
– Dec () (decryption)
– Sign () (signing)
– Ext () (extracting from signature)
– Hash() (hashing)

by factoring out the equations

– DecK−1({E}K) = E (for K ∈ Keys),
– ExtK(SignK−1(E)) = E (for K ∈ Keys),
– and the usual laws regarding concatenation, head(), and tail():

• (E1 :: E2) :: E3 = E1 :: (E2 :: E3) for all E1, E2, E3 ∈ Exp,
• head(E1 :: E2) = E1 and tail(E1 :: E2) = tail(E2) for all expressions

E1, E2 ∈ Exp such that there exist no E, E′ with E1 = E :: E′.

We write fst(E) def= head(E), snd(E) def= head(tail(E)), and thd(E) def=
head(tail(tail(E))) for each E ∈ Exp.

This symbolic model for cryptographic operations implies that we assume
cryptography to be perfect, in the sense that an adversary cannot “guess” an
encrypted value without knowing the decryption key. Also, we assume that one
can detect whether an attempted decryption is successful. See for example [AJ01]
for a formal discussion of these assumptions.

Based on this formalization of cryptographical operations, important condi-
tions on security-critical data (such as freshness, secrecy, integrity) can then be
formulated at the level of UML diagrams in a mathematically precise way (see
Sect. 3).

In the following, we will often consider subalgebras of Exp. These are subsets
of Exp which are closed under the operations used to define Exp (such as
concatenation, encryption, decryption etc.). For each subset E of Exp there
exists a unique smallest (wrt. subset inclusion) Exp-subalgebra containing E,
which we call Exp-subalgebra generated by E. Intuitively, it can be constructed
from E by iteratively adding all elements in Exp reachable by applying the
operations used to define Exp above. It can be seen as the knowledge one can
obtain from a given set E of data by iteratively applying publicly available

Model-Based Security Engineering with UML 49

operations to it (such as concatenation and encryption etc.) and will be used to
model the knowledge an attacker may gain from a set E of data obtained for
example by eavesdropping on Internet connections.

2.3 Security Analysis of UML Diagrams

Our modular UML semantics allows a rather natural modeling of potential ad-
versary behavior. We can model specific types of adversaries that can attack
different parts of the system in a specified way. For example, an attacker of type
insider may be able to intercept the communication links in a company-wide
local area network. We model the actual behavior of the adversary by defining a
class of UML Machines that can access the communication links of the system
in a specified way. To evaluate the security of the system with respect to the
given type of adversary, we consider the joint execution of the system with any
UML Machine in this class. This way of reasoning allows an intuitive formulation
of many security properties. Since the actual verification is rather indirect this
way, we also give alternative intrinsic ways of defining security properties below,
which are more manageable, and show that they are equivalent to the earlier
ones.

Thus for a security analysis of a given UMLsec subsystem specification S,
we need to model potential adversary behavior. We model specific types of ad-
versaries that can attack different parts of the system in a specified way. For
this we assume a function ThreatsA(s) which takes an adversary type A and a
stereotype s and returns a subset of {delete, read, insert, access} (abstract threats).
These functions arise from the specification of the physical layer of the system
under consideration using deployment diagrams, as explained in Sect. 3. For a
link l in a deployment diagram in S, we then define the set threatsSA(l) of concrete
threats to be the smallest set satisfying the following conditions:

If each node n that l is contained in2 carries a stereotype sn with access ∈
ThreatsA(sn) then:

– If l carries a stereotype s with delete ∈ ThreatsA(s) then delete ∈ threatsSA(l).
– If l carries a stereotype s with insert ∈ ThreatsA(s) then insert ∈ threatsSA(l).
– If l carries a stereotype s with read ∈ ThreatsA(s) then read ∈

threatsSA(l).
– If l is connected to a node that carries a stereotype t with access ∈

ThreatsA(t) then {delete, insert, read} ⊆ threatsSA(l).

The idea is that threatsAA(x) specifies the threat scenario against a component
or link x in the UML Machine System A that is associated with an adversary
type A. On the one hand, the threat scenario determines, which data the ad-
versary can obtain by accessing components, on the other hand, it determines,
which actions the adversary is permitted by the threat scenario to apply to the
concerned links. delete means that the adversary may delete the messages in the

2 Note that nodes and subsystems may be nested one in another.

50 J. Jürjens

corresponding link queue, read allows him to read the messages in the link queue,
and insert allows him to insert messages in the link queue.

Then we model the actual behavior of an adversary of type A as a type A
adversary machine. This is a state machine which has the following data:

– a control state control ∈ State,
– a set of current adversary knowledge K ⊆ Exp, and
– for each possible control state c ∈ State and set of knowledge K ⊆ Exp, we

have
• a set Deletec,K which may contain the name of any link l with delete ∈

threatsSA(l)
• a set Insertc,K which may contain any pair (l, E) where l is the name of

a link with insert ∈ threatsSA(l), and E ∈ K, and
• a set newStatec,k ⊆ State of states.

The machine is executed from a specified initial state control := control0 with
a specified initial knowledge K := K0 iteratively, where each iteration proceeds
according to the following steps:

(1) The contents of all link queues belonging to a link l with read ∈ threatsSA(l)
are added to K.

(2) The content of any link queue belonging to a link l ∈ Deletecontrol,K is
mapped to ∅.

(3) The content of any link queue belonging to a link l is enlarged with all
expressions E where (l, E) ∈ Insertcontrol,K.

(4) The next control state is chosen non-deterministically from the set
newStatecontrol,K.

The set K0 of initial knowledge contains all data values v given in the UML
specification under consideration for which each node n containing v carries a
stereotype sn with access ∈ ThreatsA(sn). In a given situation, K0 may also be
specified to contain additional data (for example, public encryption keys).

Note that an adversary A able to remove all values sent over the link l (that
it, deletel ∈ threatsSA(l)) may not be able to selectively remove a value e with
known meaning from l: For example, the messages sent over the Internet within
a virtual private network are encrypted. Thus, an adversary who is unable to
break the encryption may be able to delete all messages undiscrimatorily, but
not a single message whose meaning would be known to him.

To evaluate the security of the system with respect to the given type of
adversary, we then define the execution of the subsystem S in presence of an
adversary of type A to be the function �S�A() defined from �S�() by applying
the modifications from the adversary machine to the link queues as a fourth step
in the definition of �S�() as follows:

(4) The type A adversary machine is applied to the link queues as detailed
above.

Model-Based Security Engineering with UML 51

Thus after each iteration of the system execution, the adversary may non-
deterministically change the contents of link queues in a way depending on the
level of physical security as described in the deployment diagram (see Sect. 3).

There are results which simplify the analysis of the adversary behavior de-
fined above, which are useful for developing mechanical tool support, for example
to check whether the security properties secrecy and integrity (see below) are
provided by a given specification. These are beyond the scope of the current
paper and can be found in [Jür04].

One possibility to specify security requirements is to define an idealized sys-
tem model where the required security property evidently holds (for example,
because all links and components are guaranteed to be secure by the physical
layer specified in the deployment diagram), and to prove that the system model
under consideration is behaviorally equivalent to the idealized one, using a no-
tion of behavioral equivalence of UML models. This is explained in detail in
[Jür04].

In the following subsection, we consider alternative ways of specifying the
important security properties secrecy and integrity which do not require one to
explicitly construct such an idealized system and which are used in the remaining
parts of this paper.

2.4 Important Security Properties

The formal definitions of the two main security properties secrecy and integrity
considered in this section follow the standard approach of [DY83] and are defined
in an intuitive way by incorporating the attacker model.

Secrecy. The formalization of secrecy used in the following relies on the idea
that a process specification preserves the secrecy of a piece of data d if the
process never sends out any information from which d could be derived, even in
interaction with an adversary. More precisely, d is leaked if there is an adversary
of the type arising from the given threat scenario that does not initially know d
and an input sequence to the system such that after the execution of the system
given the input in presence of the adversary, the adversary knows d (where
“knowledge”, “execution” etc. have to be formalized). Otherwise, d is said to be
kept secret.

Thus we come to the following definition.

Definition 1. We say that a subsystem S preserves the secrecy of an expression
E from adversaries of type A if E never appears in the knowledge set K of A
during execution of �S�A().

This definition is especially convenient to verify if one can give an upper
bound for the set of knowledge K, which is often possible when the security-
relevant part of the specification of the system S is given as a sequence of com-
mand schemata of the form await event e – check condition g – output event e’
(for example when using UML sequence diagrams or statecharts for specifying
security protocols, see Sect. 3).

52 J. Jürjens

Note that this formalization of secrecy is relatively “coarse” in that it may
not prevent implicit information flow, but it is comparatively easy to verify and
seems to be sufficient in practice [Aba00].

Examples

– The system that sends the expression {m}K :: K ∈ Exp over an unprotected
Internet link does not preserve the secrecy of m or K against attackers
eavesdropping on the Internet, but the system that sends {m}K (and nothing
else) does, assuming that it preserves the secrecy of K against attackers
eavesdropping on the Internet.

– The system that receives a key K encrypted with its public key over a ded-
icated communication link and sends back {m}K over the link does not
preserve the secrecy of m against attackers eavesdropping on and insert-
ing messages on the link, but does so against attackers that cannot insert
messages on the link.

Integrity. The property integrity can be formalized similarly: If during the
execution of the system, a system variable gets assigned a value intially only
known to the adversary, then the adversary must have caused this variable to
contain the value. In that sense the integrity of the variable is violated. (Note
that with this definition, integrity is also viewed as violated if the adversary
as an honest participant in the interaction is able to change the value, so the
definition may have to be adapted in certain circumstances; this is, however,
typical for formalizations of security properties.) Thus we say that a system
preserves the integrity of a variable v if there is no adversary A such that at
some point during the execution of the system with A, v has a value i0 that is
initially known only to A.

Definition 2. We say that a subsystem S preserves the integrity of an attribute
a from adversaries of type A with initial knowledge K0 if during execution of
�S�A(), the attribute a never takes on a value appearing in K0 but not in the
specification S.

The idea of this definition is that S preserves the integrity of a if no adversary
can make a take on a value initially only known to him, in interaction with A.
Intuitively, it is the “opposite” of secrecy, in the sense that secrecy prevents the
flow of information from protected sources to untrusted recipients, while integrity
prevents the flow of information in the other direction. Again, it is a relatively
simple definition, which may however not prevent implicit flows of information.

Secure Information Flow. We explain an alternative way of specifying secrecy
and integrity like requirements, which gives protection also against partial flow
of information, but can be more difficult to deal with, especially when handling
with encryption (for which further refinements of the notion are possible, but
not needed in the following).

Model-Based Security Engineering with UML 53

Given a set of messages H and a sequence m of event multi-sets, we write

– mH for the sequence of event multi-sets derived from those in m by deleting
all events the message names of which are not in H , and

– mH for the sequence of event multi-sets derived from those in m by deleting
all events the message names of which are in H .

Definition 3. Given a subsystem S and a set of high messages H, we say that

– A prevents down-flow with respect to H if for any two sequences i, j of event
multi-sets and any two output sequences o ∈ �S�A(i) and p ∈ �S�A(j),
iH = jH implies oH = pH and

– A prevents up-flow with respect to H if for any two sequences i, j of event
multi-sets and any two output sequences o ∈ �S�A(i) and p ∈ �S�A(j),
iH = jH implies oH = pH and

Intuitively, to prevent down-flow means that outputting a non-high (or low)
message does not depend on high inputs (this can be seen as a secrecy require-
ment for messages marked as high). Conversely, to prevent up-flow means that
outputting a high value does not depend on low inputs (this can be seen as an
integrity requirement for messages marked as high).

This notion of secure information flow is a generalization of the original
notion of noninterference for deterministic systems in [GM82] to system models
that are non-deterministic because of underspecification, see [Jür04] for a more
detailed discussion.

3 The UMLsec Extension

In Fig. 1 we give some of the stereotypes from UMLsec, together with their
tags and constraints. For space reasons, we can only recall part of the UMLsec
notation; a complete account can be found in [Jür04]. The constraints are only
referred to in the table and formulated (in plain mathematical language) and ex-
plained in detail in the remainder of the section. Fig. 2 gives the corresponding
tags (which are all DataTags). Note that some of the stereotypes on subsys-
tems refer to stereotypes on model elements contained in the subsystems. For
example, the constraint of the 〈〈 data security 〉〉 stereotype refers to contained ob-
jects stereotyped as 〈〈 critical 〉〉 (which in turn have tags {secrecy}). The relations
between the elements of the tables are explained below in detail.

We explain the stereotypes and tags given in Figures 1 and 2. The constraints
are parameterized over the adversary type with respect to which the security re-
quirements should hold; we thus fix an adversary type A to be used in the
following. By their nature, some of the constraints can be enforced at the level
of abstract syntax (such as 〈〈 secure links 〉〉), while others refer to the formal defi-
nitions in Sect. 2.3 (such as 〈〈 data security 〉〉). Note that even checking the latter
can be mechanized given appropriate tool-support, as explained in Sect. 4.

We give short examples for usage of the stereotypes. To keep the presentation
concise, we sometimes give only those fragments of (instances of) subsystems

54 J. Jürjens

Stereotype Base Class Tags Constraints Description
Internet link Internet connection
encrypted link encrypted connection
LAN link,node LAN connection
wire link wire
smart card node smart card node
POS device node POS device
issuer node node issuer node
secure links subsystem dependency security enforces secure

matched by links communication links
secrecy dependency assumes secrecy
integrity dependency assumes integrity
high dependency high sensitivity
secure subsystem 〈〈 call 〉〉, 〈〈 send 〉〉 respect structural interaction
dependency data security data security
critical object, secrecy, critical object

subsystem integrity,
high
fresh

no down-flow subsystem prevents down-flow information flow
no up-flow subsystem prevents up-flow information flow
data subsystem provides secrecy, basic datasec
security integrity, freshness requirements
fair exchange subsystem start,stop after start enforce fair

eventually reach stop exchange
provable subsystem action, action is non-deniable non-repudiation

cert requirement
guarded subsystem guarded objects accessed access control using
access through guards guard objects
guarded object guard guarded object

Fig. 1. UMLsec stereotypes

that are essential to the stereotype in question. Also, we omit presenting the
formal semantics and proving the stated properties formally, since the examples
are just for illustration.

Internet, encrypted, LAN, wire, smart card, POS device, issuer node These
stereotypes on links (resp. nodes) in deployment diagrams denote the correspond-
ing requirements on communication links (resp. system nodes). We require that
each link or node carries at most one of these stereotypes. For each adversary
type A, we have a function ThreatsA(s) from each stereotype

s ∈ {〈〈 wire 〉〉, 〈〈 encrypted 〉〉, 〈〈 LAN 〉〉, 〈〈 smart card 〉〉,

〈〈 POS device 〉〉, 〈〈 issuer node 〉〉, 〈〈 Internet 〉〉}
to a set of strings ThreatsA(s) ⊆ {delete, read, insert, access} under the following
conditions:

Model-Based Security Engineering with UML 55

Tag Stereotype Type Multipl. Description
secrecy critical String * secrecy of data
integrity critical String * integrity of data
high critical String * high-level message
fresh critical String * fresh data
start fair exchange String * start states
stop fair exchange String * stop states
action provable String * provable action
cert provable String * certificate
guard guarded String 1 guard object

Fig. 2. UMLsec tags

– for a node stereotype s, we have ThreatsA(s) ⊆ {access} and
– for a link stereotype s, we have ThreatsA(s) ⊆ {delete, read, insert}.

Thus ThreatsA(s) specifies which kinds of actions an adversary of type A can
apply to node or links stereotyped s. This way we can evaluate UML specifi-
cations using the approach explained in Sect. 2.1. We make use of this for the
constraints of the remaining stereotypes of the profile.

Examples for threat sets associated with some common adversary types are
given in Figures 3 and 4.

Figure 3 gives the default attacker, which represents an outsider adversary
with modest capability. This kind of attacker is able to read and delete the mes-
sages on an Internet link and to insert messages. On an encrypted Internet link
(for example a Virtual Private Network), the attacker can delete the messages
(without knowing their encrypted content), but not to read the (plaintext) mes-
sages or to insert messages (that are encrypted with the right key). Of course,
this assumes that the encryption is set up in a way such that the adversary does
not get hold of the secret key. The default attacker is assumed not to have direct
access to the Local Area Network (LAN) and therefore not be able to eavesdrop
on those connections3, nor on wires connecting security-critical devices (for ex-
ample, a smart card reader and a display in a point-of-sale (POS) device). Also,
smart cards are assumed to be tamper-resistant against default attackers (al-
though they may not be against more sophisticated attackers [And01]). Also,
the default attacker is not able to access POS devices or card issuer systems.

Figure 4 defines the insider attacker (in the context of an electronic purse
system). As an insider, the attacker may access the encrypted Internet link (the
assumption is that insiders know the corresponding key) and the local system
components.

Secure links. This stereotype, which may label (instances of) subsystems, is
used to ensure that security requirements on the communication are met by the
physical layer. More precisely, the constraint enforces that for each dependency

3 With more sophistication, even an external adversary may be able to access local
connections, but this is assumed to be beyond “default” capabilities.

56 J. Jürjens

Stereotype Threatsdefault ()
Internet {delete, read, insert}
encrypted {delete}
LAN ∅
wire ∅
smart card ∅
POS device ∅
issuer node ∅

Fig. 3. Threats from the default attacker

Stereotype Threatsinsider ()
Internet {delete, read, insert}
encrypted {delete, read, insert}
LAN {delete, read, insert}
wire {delete, read, insert}
smart card ∅
POS device {access}
issuer node {access}

Fig. 4. Threats from the insider attacker card issuer

d with stereotype s ∈ {〈〈 secrecy 〉〉, 〈〈 integrity 〉〉, 〈〈 high 〉〉} between subsystems or
objects on different nodes n, m, we have a communication link l between n and
m with stereotype t such that

– in the case of s = 〈〈 high 〉〉, we have ThreatsA(t) = ∅,
– in the case of s = 〈〈 secrecy 〉〉, we have read /∈ ThreatsA(t), and
– in the case of s = 〈〈 integrity 〉〉, we have insert /∈ ThreatsA(t).

Example. In Fig. 5, given the default adversary type, the constraint for the
stereotype 〈〈 secure links 〉〉 is violated: The model does not provide communica-
tion secrecy against the default adversary, because the Internet communication
link between web-server and client does not give the needed security level ac-
cording to the Threatsdefault (Internet) scenario. Intuitively, the reason is that
Internet connections do not provide secrecy against default adversaries. Tech-
nically, the constraint is violated, because the dependency carries the stereo-
type 〈〈 secrecy 〉〉, but for the stereotype 〈〈 Internet 〉〉 of corresponding link we have
read ∈ Threatsdefault(Internet).

Secrecy, Integrity, High. These stereotypes, which may label dependencies in
static structure or component diagrams, denote dependencies that are supposed
to provide the respective security requirement for the data that is sent along
them as arguments or return values of operations or signals. These stereotypes
are used in the constraint for the stereotype 〈〈 secure links 〉〉.
Secrecy. 〈〈 call 〉〉 or 〈〈 send 〉〉 dependencies in object or component diagrams stereo-
typed 〈〈 secrecy 〉〉 are supposed to provide secrecy for the data that is sent along

Model-Based Security Engineering with UML 57

«Internet»

«secrecy» server machineclient machine
get_password

browser
client apps

access control
web server«call»

«secure links»remote access

Fig. 5. Example secure links usage

them as arguments or return values of operations or signals. This stereotype is
used in the constraint for the stereotype 〈〈 secure links 〉〉.

Secure Dependency. This stereotype, used to label subsystems containing object
diagrams or static structure diagrams, ensures that the 〈〈 call 〉〉 and 〈〈 send 〉〉 de-
pendencies between objects or subsystems respect the security requirements on
the data that may be communicated along them, as given by the tags {secrecy},
{integrity}, and {high} of the stereotype 〈〈 critical 〉〉. More exactly, the constraint
enforced by this stereotype is that if there is a 〈〈 call 〉〉 or 〈〈 send 〉〉 dependency
from an object (or subsystem) C to an interface I of an object (or subsystem)
D then the following conditions are fulfilled.

– For any message name n in I, n appears in the tag {secrecy} (resp. {integrity}
resp. {high}) in C if and only if it does so in D.

– If a message name in I appears in the tag {secrecy} (resp. {integrity} resp.
{high}) in C then the dependency is stereotyped 〈〈 secrecy 〉〉 (resp. 〈〈 integrity 〉〉

resp. 〈〈 high 〉〉).

If the dependency goes directly to another object (or subsystem) without involv-
ing an interface, the same requirement applies to the trivial interface containing
all messages of the server object.

Example. Figure 6 shows a key generation subsystem stereotyped with the re-
quirement 〈〈 secure dependency 〉〉. The given specification violates the constraint
for this stereotype, since Random generator and the 〈〈 call 〉〉 dependency do not
provide the security levels for random() required by Key generator. More pre-
cisely, the constraint is violated, because the message random is required to be
of high level by Key generator (by the tag {high} in Key generator), but it is
not guaranteed to be high level by Random generator (in fact there are no high
messages in Random generator and so the tag {high} is missing).

Critical. This stereotype labels objects or subsystem instances containing data
that is critical in some way, which is specified in more detail using the correspond-
ing tags. These tags are {secrecy}, {integrity}, {fresh}, and {high}. The values

58 J. Jürjens

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»

Key generation
«secure dependency»

newkey(): Key

«call»

«critical»Key generator

newkey(): Key

{secret={newkey(),random()}}

Fig. 6. Key generation subsystem

of the first two are the names of expressions or variables (that is, attributes or
message arguments) of the current object the secrecy (resp. integrity) of which
is supposed to be protected. The tag {fresh} has data that should be freshly
generated as its value. These requirements are enforced by the constraint of
the stereotype 〈〈 data security 〉〉 which labels (instances of) subsystems that con-
tain 〈〈 critical 〉〉 objects (see there for an explanation). The tag {high} has the
names of messages as values that are supposed to be protected with respect to
secure information flow, as enforced by the stereotypes 〈〈 no down − flow 〉〉 and
〈〈 no up − flow 〉〉.

No Down-Flow. This stereotype of subsystems enforces secure information flow
by making use of the associated tag {high}. According to the 〈〈 no down − flow 〉〉

constraint, the stereotyped subsystem prevents down-flow with respect to the
messages and their return messages specified in {high}, as defined in Definition 3.

Example. The example in Fig. 7 shows a bank account data object that al-
lows its secret balance to be read using the operation rb() (whose return value
is also secret) and written using wb(x). If the balance is over 10000, the ob-
ject is in a state ExtraService, otherwise in NoExtraService. The state of the
object can be queried using the operation rx(). The data object is supposed
to be prevented from indirectly leaking out any partial information about high
data via non-high data, as specified by the stereotype 〈〈 no down − flow 〉〉. For
example, in a situation where government agencies can request information
about the existence of bank accounts of a given person, but not their bal-
ance, it may be important that the type of the account allows no conclusion
about its balance. The given specification violates the constraint associated
with 〈〈 no down − flow 〉〉, since partial information about the input of the high
operation wb() is leaked out via the return value of the non-high operation
rx(). To see how the underlying formalism captures the security flaw using
Definition 3, it is sufficient to exhibit sequences i, j of event multi-sets and out-
put sequences o ∈ �A�(i) and p ∈ �A�(j) of the UML Machine A giving the
behavior of the statechart, with iH = jH and oH
= pH , where H is the set

Model-Based Security Engineering with UML 59

Bank account «no down−flow»

rb(): Data
wb(x: Data)
rx(): Boolean

rx(): Boolean

rb(): Data
wb(x: Data)

balance: Integer

Account

ExtraService

/balance:=x

/balance:=x

NoExtraService

/balance:=x
wb(x)[x>=10000]

wb(x)[x>=10000]

wb(x)[x<10000]wb(x)[x<10000]
/balance:=x

/return(true)
rx()

/return(false)
rx()

rb()/return(balance)rb()/return(balance)

{high={wb,rb,balance}}

/balance:=0

Fig. 7. Bank account data object

of high messages. Consider the sequences i
def= ({{wb(0) }} , {{rx() }}) and j

def=
({{wb(10000) }} , {{rx() }}). We have iH = ({{ }} , {{rx() }}) = jH . From the defini-
tion of the behavioral semantics of statecharts sketched in Sect. 2.1, we can see
that o

def= ({{ }} , {{return(false) }}) ∈ �A�(i) and p
def= ({{ }} , {{return(true) }}) ∈

�A�(j). But then oH = ({{ }} , {{return(false) }})
= ({{ }} , {{return(true) }}) =
pH , as required.

Note that, while in the given example, it may be easy to see that the system
does not satisfy the 〈〈 no down − flow 〉〉 constraint, it is in general not simple to
establish that a system does satisfy this constraint, which is why in [Jür04] we
provide the formal semantics sketched in Sect. 2.1.

Data security. This stereotype labeling (instances of) subsystems has the follow-
ing constraint. The subsystem behavior respects the data security requirements
given by the stereotypes 〈〈 critical 〉〉 and the associated tags contained in the sub-
system, with respect to the threat scenario arising from the deployment diagram.

More precisely, the constraint is given by the following three conditions (of
which the first two use the concepts of preservation of secrecy resp. integrity
defined in Sect. 2.3).

secrecy. The subsystem preserves the secrecy of the data designated by the tag
{secrecy} against adversaries of type A.

integrity. The subsystem preserves the integrity of the data designated by the
tag {integrity} against adversaries of type A.

freshness. Within the subsystem S stereotyped 〈〈 data security 〉〉 the following
condition holds for any subsystem instance or object model D stereotyped
〈〈 critical 〉〉 for any value data of the associated tag {fresh}: data occurs within
S at most in
– the object model or subsystem instance model representing D in the

static structure diagram contained in S,
– the swim-lanes belonging to D in the activitiy diagram contained in S,

60 J. Jürjens

– the statechart diagrams contained in S that model parts of the behavior
of D, or

– D’s part of the connections in the sequence diagram contained in S.

Note that it is enough for data to be listed with a security requirement in one
of the objects or subsystem instances contained in the subsystem to be required
to fulfill the above conditions.

Thus the properties of secrecy and integrity are taken relative to the type of
adversary under consideration. In case of the default adversary, this is a prin-
cipal external to the system; one may, however, consider adversaries that are
part of the system under consideration, by giving the adversary access to the
relevant system components (by defining ThreatsA(s) to contain access for the
relevant stereotype s). For example, in an e-commerce protocol involving cus-
tomer, merchant and bank, one might want to say that the identity of the goods
being purchased is a secret known only to the customer and the merchant (and
not the bank). This can be formulated by marking the relevant data as “secret”
and by performing a security analysis relative to the adversary model “bank”
(that is, the adversary is given access to the bank component by defining the
Threats() function in a suitable way).

The secrecy and integrity tags can be used for data values as well as variable
and message names (as permitted by the definitions of secrecy and integrity in
Sect. 2.3). Note that the adversary does not always have access to the input
and output queues of the system (for example, if the system under consideration
is part of a larger system it is connected through a secure connection). There-
fore it may make sense to use the secrecy tag on variables that are assigned
values received by the system; that is, effectively, one may require values that
are received to be secret. Of course, the above condition only ensures that the
component under consideration keeps the values received by the environment
secret; additionally, one has to make sure that the environment (for example,
the rest of the system apart from the component under consideration) does not
make these values available to the adversary.

Example. The example in Fig. 8 shows the specification of a very simple secu-
rity protocol. The sender requests the public key K together with the certificate
SignKCA

(rcv :: K) certifying authenticity of the key from the receiver and sends
the data d back encrypted under K (here {M}K is the encryption of the mes-
sage M with the key K, DecK(C) is the decryption of the ciphertext C using K,
SignK(M) is the signature of the message M with K, and ExtK(S) is the extrac-
tion of the data from the signature using K). Assuming the default adversary
type and by referring to the adversary model outlined in Sect. 2.3 and by using
the formal semantics defined in [Jür04], one can establish that the secrecy of d is
preserved. (Note that the protocol only serves as a simple example for the use of
patterns, not to propose a new protocol of practical value.) Recall from Sect. 2.4
that the requirements {secrecy} and {integrity} refer to the type of adversary
under consideration. In the case of the default adversary, in this example this is
an adversary that has access to the Internet link between the two nodes only. It
does not have direct access to any of the components in the specification (this

Model-Based Security Engineering with UML 61

K
/transmit({d})

Request

Send

Wait
/request()

send(d)

return(K,C)
KCA

[Ext (C)=rcv::K]

s

Received

«data security»
SecureChannel

Sendercomp

S:Sender
«call»

Sendernode

«send»

Receivernode

Receivercomp

R:Receiver

«Internet»

WaitReq WaitTrm

request()

KCA
/return(Sign (rcv::K),K)

transmit(d)

r

receive():Data
send(d:Data)

R:Receiver

s r

S:Sender «critical»Sender «critical»

receive():Data

Receiver

request():Exp
send(d:Data)

«call»

«send»

transmit(d:Data)

{secret=d} {secret=d}

receive()

/return(Dec (d))
K

Fig. 8. Security protocol

would have to be specified explicitly using the Threats() function). In particular,
the adversary to be considered here does not have access to the components R
and S (if it would, then secrecy and integrity would fail because the adversary
could read and modify the critical values directly as attributes of R and S).

Again, verifying that a given system satisfies the 〈〈 data security 〉〉 constraint
is in general non-trivial, even for small specifications as the example above. We
therefore provided tool-support for an automated formal verification to assist this
task in Sect. 4. Note also that, while it is often possibly to use standard security
protocols (such as SSL), which may already be verified, our work in industrial
projects has shown that for a variety of reasons, self-designed protocols are still
developed and used in industry (see for example [GHJW03]).

The stereotypes 〈〈 secure links 〉〉, 〈〈 secure dependencies 〉〉, and 〈〈 data
security 〉〉 describe different conditions for ensuring secure data communication:
〈〈 secure links 〉〉 ensures that the security requirements on the communication de-
pendencies between components are supported by the physical situation, relative
to the adversary model under consideration. The stereotype 〈〈 secure dependencies 〉〉

ensures that the security requirements in different parts of a static structure di-

62 J. Jürjens

agram are consistent. Finally, 〈〈 data security 〉〉 ensures that security is enforced on
the behavior level. – One could for example merge the conditions of 〈〈 secure links 〉〉

and 〈〈 secure dependencies 〉〉 to give one stereotype; we keep them separate to facil-
itate understanding and because one might like to use the stereotype
〈〈 secure dependencies 〉〉 in situations where no implementation diagram is present.

Fair Exchange. This stereotype of subsystems has associated tags {start} and
{stop} taking names of states as values. The associated constraint requires that,
whenever a {start} state in the contained activity diagram is reached, then even-
tually a corresponding {stop} state will be reached. This allows one to formalize
the fair exchange requirement as explained in [Jür04]. This is formalized for
a given subsystem S as follows. S fulfills the constraint of 〈〈 fair exchange 〉〉 if
for every adversary adv of type A and every sequence of input event multi-sets
I1, . . . , In, the following implication holds: For any state specified by {start} that
the function associated with S reaches, it subsequently eventually reaches a state
specified by {stop}.

Provable. A subsystem instance S may be labelled 〈〈 provable 〉〉 with associated
tags {action}, and {cert}, to specify that S may output the expression E ∈ Exp
given in {cert} (which serves as a proof that the action at state {action} was
performed) only after the state having a name given in {action} is reached. Here
the certificate in {cert} is assumed to be unique for each subsystem instance.
This is formalized as follows: S fulfills the constraint if

– for each sequence of event multi-sets I1, . . . , Ik,
– for each adversary adv of type A, and
– for each sequence (O1, . . . , Ok) output by S when executed with an adversary

adv on input of (I1, . . . , Ik),
– and if (S1, . . . , Sk) is the corresponding sequence of executed states,

the following implication holds: If there exists an i such that the output Oi

equals to the expression in {certificate}, then we have j ≤ i such that the state
multi-set Sj contains the state specified by action. Again, more explanation can
be found in [Jür04].

Example. Fig. 9 gives a subsystem instance describing the following situa-
tion: a customer buys a good from a business. The semantics of the stereotype
〈〈 fair exchange 〉〉 is, intuitively, that the actions listed in the tags {start} and
{stop} should be linked in the sense that if the former is executed then eventu-
ally the latter will be. This would entail that, once the customer has paid, either
the order is delivered to him by the due date, or he is able to reclaim the pay-
ment on that date. To avoid illegitimate repayment claims, one could employ the
stereotype 〈〈 provable 〉〉 with regards to the state Pay, in order to make sure that
the Reclaim payment action checks whether the Customer can provide a proof of
payment.

Guarded Access. This stereotype of (instances of) subsystems is supposed to
mean that each object in the subsystem that is stereotyped 〈〈 guarded 〉〉 can only

Model-Based Security Engineering with UML 63

Reclaim

Deliver

«fair exchange»Purchase

Request good

BusinessCustomer

Wait until
delivery due

Pay

undelivered

Pick up

{start={Pay}} {stop={Reclaim,Pick up}}

delivered

Fig. 9. Purchase activity diagram

be accessed through the objects specified by the tag {guard} attached to the
〈〈 guarded 〉〉 object. This way, one can define access control policies, similar the
approach taken in the Java 2 security architecture. Formally, we assume that we
have name /∈ Kp

A for the adversary type A under consideration and each name
name of an instance of a 〈〈 guarded 〉〉 object (that is, a reference is not publicly
available), and that for each 〈〈 guarded 〉〉 object there is a statechart specification
of an object whose name is given in the associated tag {guard}. This way, we
model the passing of references. This is explained in detail in [Jür04].

3.1 Discussion

We shortly discuss the aspects of security covered by the UMLsec extension.

Security requirements. Formalizations of basic security requirements are pro-
vided via stereotypes, such as 〈〈 secrecy 〉〉 and 〈〈 integrity 〉〉.

Threat scenarios. Threat scenarios are incorporated using the formal seman-
tics and depending on the underlying physical layer via the sets
Threatsadv(ster) of actions available to the adversary of kind adv.

Security concepts. We have shown how to incorporate security concepts such
as tamper-resistant hardware (using threat scenarios, in this case).

Security mechanisms. As an example, we demonstrated modeling of the Java
security architecture access control mechanisms.

Security primitives. Security primitives are either built in (such as encryp-
tion) or can be treated (such as security protocols).

Underlying physical security. This can be addressed as demonstrated by the
stereotype 〈〈 secure link 〉〉 in deployment diagrams.

Security management. This can be considered in our approach by using ac-
tivity diagrams (as in Fig. 9).

64 J. Jürjens

Additional domain knowledge has been incorporated regarding Java security
and CORBA applications, as well as smart card security (see [Jür04] for more
details).

Note that when adapting a modeling language to security requirements, one
needs to make sure that the features used to express security properties on the
design level actually map to system constructs on the implementation level which
do provide these properties. Since we assume, for example, that attributes can
only be accessed through the operations of an object, and that only the explicitly
offered operations of a subsystem can be called from outside it, it is generally
security-critical that this is enforced on the implementation level.

4 Formal Security Verification of UML Models

We present some work on automated formal verification of the security require-
ments expressed in the UMLsec notation. This tool-support is embedded in a
framework supporting the construction of automated requirements analysis tools
for UML diagrams. The framework is connected to industrial CASE tools using
data integration with XMI [XMI02] and allows convenient access to this data
and to the human user. In this chapter, we will, as an example for a usage of
this framework, present verification routines to verify the constraints associated
with the stereotypes of UMLsec using automated theorem provers (ATPs).

The goal is, in particular, that advanced users of the UMLsec approach should
be able to use this framework to implement verification routines for the con-
straints of self-defined stereotypes, in a way that allows them to concentrate on
the verification logic (rather than on user interface issues).

The usage of the framework as illustrated in Fig. 10 proceeds as follows. The
developer creates a model and stores it in the UML 1.5/XMI 1.2 file format.4

The file is imported by the UML verification framework into the internal MDR
repository. MDR is an XMI-specific data-binding library which directly provides
a representation of an XMI file on the abstraction level of a UML model through
Java interfaces (JMI). This allows the developer to operate directly with UML
concepts, such as classes, statecharts, and stereotypes. It is part of the Netbeans
project [Net03]. Each plug-in accesses the model through the JMI interfaces
generated by the MDR library, they may receive additional textual input, and
they may return both a UML model and textual output. The two exemplary
analysis plug-ins proceed as follows: The static checker parses the model, verifies
its static features, and delivers the results to the error analyzer. The dynamic
checker translates the relevant fragments of the UML model into the automated
theorem prover input language. The automated theorem prover is spawned by
the UML framework as an external process; its results are delivered back to
the error analyzer. The error analyzer uses the information received from the
static checker and dynamic checker to produce a text report for the developer
describing the problems found, and a modified UML model, where the errors
4 This will be updated to UML 2.0 once the corresponding DTD has been officially

released.

Model-Based Security Engineering with UML 65

UML Editor
(UML 1.5 / XMI 1.2 - compliant)

e.g. Poseidon 1.6

UML Model
(UML 1.5 /
XMI 1.2)

Analysis engine
MDR

JMI

Model
and

Desired
properties

Result

Text Report

Static Checker

Dynamic Checker

Analysis Suite

Modified
UML
Model

Error Analyzer

“uses"

data flow

Fig. 10. UML verification framework: usage

found are visualized. Besides the automated theorem prover binding presented
in this section there are other analysis plugins including a model-checker binding
[JS04] and plugins for simulation and test-sequence generation.

The framework is designed to be extensible: advanced users can define stereo-
types, tags, and first-order logic constraints which are then automatically trans-
lated to the automated theorem prover for verification on a given UML model.
Similarly, new adversary models can be defined.

The user webinterface and the source code of the verification framework is
accessible at [UML04].

4.1 Translating UMLsec Diagrams to First-Order Logic Formulas

We explain the automated translation of UMLsec diagrams to first-order logic
(FOL) formulas which allows automated analysis of the diagrams using auto-
mated first-order logic theorem provers such as e-SETHEO [SW00, MIL+97] or
SPASS. More precisely, we assume that we are given a UML package containing
the following kinds of diagrams: A deployment diagram specifies the physical
layer of the system, such as system nodes and communication links, and the
level of security it provides, using UMLsec stereotypes, such as 〈〈 Internet 〉〉 de-
noting an Internet communication link. From this, in the security analysis, the

66 J. Jürjens

∀E1, E2. knows(E1) ∧ knows(E2)

⇒ knows(E1 :: E2) ∧ knows({E1}E2) ∧ knows(SignE2
(E1))

∧ knows(E1 :: E2) ⇒ knows(E1) ∧ knows(E2)

∧ knows({E1}E2) ∧ knows(E−1
2) ⇒ knows(E1)

∧ knows(Sign
E−1

2
(E1)) ∧ knows(E2) ⇒ knows(E1)

Fig. 11. Some structural formulas

adversary model is generated in first-order logic who is able to control certain
communication links. Secondly, a class diagram describes the data structure of
the system, including the security requirements on the system data, for example
using the UMLsec tags {secrecy}, {integrity} and {authenticity} which represent
the respective requirements. For the security analysis, from this information the
conjecture is derived that is to be checked by the automated theorem prover.
The package also contains diagrams specifying the intended behavior of the sys-
tem, which may include an activity diagram coordinating the components or
objects in the package, a sequence diagram specifying interaction between them
by message exchange (making use of cryptographic operations using the notation
from Sect. 2.2), and statecharts specifying the behavior of single components or
objects. The behavioral specifications are compiled to first-order logic axioms
giving an abstract interpretation of the system behavior suitable for security
analysis. In the following, we explain this translation for sequence diagrams. It
works similarly for statecharts and activity diagrams. The formalization auto-
matically derives an upper bound for the set of knowledge the adversary can
gain. For space restrictions, we can only present a simplified treatment and have
to omit issues such as session key generation.

The idea is to use a predicate knows(E) meaning that the adversary may get
to know E during the execution of the protocol. For any data value s supposed to
remain secret as specified in the UMLsec model, one thus has to check whether
one can derive knows(s). The set of predicates defined to hold for a given UMLsec
specification is defined as follows.

For each publicly known expression E, one defines knows(E) to hold. The fact
that the adversary may enlarge his set of knowledge by constructing new expres-
sions from the ones he knows (including the use of encryption and decryption)
is captured by the formula in Fig. 11.

For our purposes, a sequence diagram is essentially a sequence of command
schemata of the form await event e – check condition g – output event e’ rep-
resented as connections in the sequence diagrams. Connections are the arrows
from the life-line of a source object to the life-line of a target object which are
labeled with a message to be sent from the source to the target and a guard
condition that has to be fulfilled.

Suppose we are given a connection l = (source(l), guard(l), msg(l),
target(l)) in a sequence diagram with guard(l) ≡ cond(arg1, . . . , argn), and msg(l)
≡ exp(arg1 , . . . , argn), where the parameters argi of the guard and the message

Model-Based Security Engineering with UML 67

are variables which store the data values exchanged during the course of the
protocol. Suppose that the connection l′ is the next connection in the sequence
diagram with source(l′) = source(l). For each such connection l, we define a
predicate PRED(l) as in Fig. 12. If such a connection l′ does not exist, PRED(l)
is defined by substituting PRED(l′) with true in Fig. 12.

The formula formalizes the fact that, if the adversary knows expres-
sions exp1, . . . , expn validating the condition cond(exp1, . . . , expn), then he
can send them to one of the protocol participants to receive the message
exp(exp1 , . . . , expn) in exchange, and then the protocol continues. With this
formalization, a data value s is said to be kept secret if it is not possible to
derive knows(s) from the formulas defined by a protocol. This way, the adver-
sary knowledge set is approximated from above (because one abstracts away for
example from the message sender and receiver identities and the message order).
This means, that one will find all possible attacks, but one may also encounter
“false positives”, although this has not happened yet with any practical exam-
ples. The advantage is that this approach is rather efficient (see Sect. 4.3 for
some performance data).

For each object O in the sequence diagram, this gives a predicate PRED(O) =
PRED(l) where l is the first connection in the sequence diagram with source(l) =
O. The axioms in the overall first-order logic formula for a given sequence dia-
gram are then the conjunction of the formulas representing the publicly known
expressions, the formula in Fig. 11, and the conjunction of the formulas PRED(O)
for each object O in the diagram. The conjecture, for which the ATP will check
whether it is derivable from the axioms, depends on the security requirements
contained in the class diagram. For the requirement that the data value s is to
be kept secret, the conjecture is knows(s). An example is given in Sect. 4.2.

One can define a variation of the formula in Fig. 12 by joining all subformulas
PRED(l), PRED(l′), . . . for connections l, l′, . . . in the sequence diagram using the
conjunction operator ∧, instead of including the predicate PRED(l′) for next
connection l′ in the conclusion of the implication in PRED(l). The effect is that
the order of the connections in the sequence diagram is then ignored. This results
in a more coarse abstract interpretation of the sequence diagram than that in
Fig. 12, which may produce more false positives: allegedly insecure specifications
which are in fact secure in reality, because there the order of the connection is in
fact observed. However, in particular architectures the order of messages in the
sequence diagram is in fact not enforced, and then this variation is useful. For
example, this is the case for the industrial application project which we report
on in Sect. 6.

PRED(l) =

∀exp1, . . . , expn. knows(exp1) ∧ . . . ∧ knows(expn)

∧ cond(exp1, . . . , expn)

⇒ knows(exp(exp1 , . . . , expn)

∧ PRED(l′)

Fig. 12. Connection predicate

68 J. Jürjens

C:Client S:Server

init(Ni, KC,SignK−1
C

(C ::KC))

resp {SignK−1
Si

(kj ::N′)}K′
C
,

SignK−1
CA

(Si ::KSi)

xchd({si}k)

N′ ::= init1
K′

C ::= init2
cC ::= init3

[snd(ExtK′
C
(cC))

= K′
C]

ck ::= resp1
cS ::= resp2

K′
Si

::=snd(ExtKCA
(cS))

k ::= fst(ExtK′
Si
(DecK−1

C
(ck)))

[fst(ExtKCA
(cS)) = Si ∧

snd(ExtK′
Si
(DecK−1

C
(ck)))

= Ni]

Fig. 13. Variant of the TLS handshake

4.2 A Variant of the TLS Protocol

We will analyze a variant of the handshake protocol of TLS5 examined in [Jür04]
(note that this is not the variant of TLS in common use but a variant proposed
at the conference IEEE Infocom 1999). To show applicability of our approach, we
demonstrate the flaw from [Jür04], suggest a correction, and verify it. The goal
of the protocol is to let a client send a secret over an untrusted communication
link to a server in a way that provides secrecy and server authentication, by
using symmetric session keys.

The central part of the specification of this protocol is shown in Fig. 13. Parts
that have to be left out here are firstly a deployment diagram specifying that the
two protocol participants client and server are connected by an Internet connec-
tion, using the UMLsec stereotype 〈〈 Internet 〉〉. From this, in the security analysis,
the adversary model who is able to control this communication link is generated.
Secondly, there is a class diagram which includes various security requirements
on the protocol data as UMLsec tags {secrecy}, {integrity} and {authenticity}.
For the security analysis, from this information the conjecture is derived that is
to be checked by the automated theorem prover. Most importantly, the value s
which is exchanged encrypted in the last message of the protocol is required to
remain secret.

Depicted in Fig. 13, the protocol proceeds as we explain in the following. The
client C initiates the protocol by sending the message init(Ni, KC,SignK−1

C
(C :: KC))

to the server S. Suppose that the condition [snd(ExtK′
C
(cC))=K′

C] holds, where
K′

C ::= init2 and cC ::= init3, that is, the key KC contained in the signature matches
the one transmitted in the clear. Then S sends the message

5 TLS (transport layer security) is the successor of the Internet security protocol SSL
(secure sockets layer).

Model-Based Security Engineering with UML 69

input_formula(protocol,axiom,(
![Init_1, Init_2, Init_3, Resp_1, Resp_2, Xchd_1] : (
% C <-> Attacker
(((true & true)

=> knows(conc(n, conc(k_c, sign(conc(c, k_c)), inv(k_c)))))
& ((knows(Resp_1) & knows(Resp_2)
&equal(fst(ext(Resp_2,k_ca)),s)&equal(snd(ext(dec(Resp_1,inv(k_c)),

snd(ext(Resp_2, k_ca)))), n))
=>knows(symenc(s,fst(ext(dec(Resp_1,inv(k_c)),snd(ext(Resp_2,k_ca))))))
)))
& % S <-> Attacker
(((knows(Init_1) & knows(Init_2) & knows(Init_3)

& equal(snd(ext(Init_3, Init_2)), Init_2))
=> knows(conc(enc(sign(conc(kgen(Init_2),Init_1),inv(k_s)),Init_2),

sign(conc(s, k_s), inv(k_ca))))
& ((knows(Xchd_1) & true)

=> true
)))))).

Fig. 14. Protocol part of translation to TPTP

resp
({SignK−1

S
(kj :: N′)}K′

C
, SignK−1

CA
(S :: KS)

)
back to C, where N′ ::= init1. Now

suppose that the condition

[fst(ExtKCA(cS))=S ∧ snd(ExtK′
Si
(DecK−1

C
(ck)))=Ni]

holds, where cS ::= resp1, ck ::= resp2, and K′
Si

::= snd(ExtKCA(cS)), that is, the
certificate is actually for S and the correct nonce is returned. Then C sends
xchd({si}k) to S, where k ::= fst(ExtK′

Si
(DecK−1

C
(ck))). If any of the checks fail,

the respective protocol participant stops the execution of the protocol.
The main part of the result of the transformation to the e-SETHEO input

format TPTP is the protocol definition given in Fig. 14. We have to omit the
formulas representing the initial adversary knowledge and the effect of message
recombination on the intruder’s knowledge predicate knows. The TPTP notation
is the de-facto input notation for first-order logic automated theorem provers
[SS01], supported, using existing converters, by a variety of provers including
also Otter, SPASS, Vampire, and Waldmeister.

Note that in this notation, conjunction is written as &, and forall resp. ex-
ists quantification as ![X1, . . . ,Xm] resp. ?[X1, . . . ,Xm], where X1, . . . ,Xm are the
quantified variables. Also, encryption, signature, and concatenation are repre-
sented respectively as binary functions enc, sign, and conc in TPTP. The private
key belonging to the public key K is written as inv(K). Constants, such as the
nonce N, have to be written in small letters in TPTP.

The protocol itself is expressed by a forall quantification over variables repre-
senting the arguments of messages which are transferred over the communication
link. Here, the message variables Resp 1, and Resp 2 represent the messages re-
ceived by the client. The message variables Init 1, Init 2, Init 3, and Xchd 1 stand

70 J. Jürjens

C

N::KC ::Sign
K

−1
C

(C::KC)

�� A
N::KA::Sign

K
−1
A

(C::KA)

�� S

C A

{Sign
K

−1
S

(K::N)}KC
::Sign

K
−1
CA

(S::KS)

�� S

{Sign
K

−1
S

(K::N)}KA
::Sign

K
−1
CA

(S::KS)

��

C
{s}K �� A

{s}K �� S

Fig. 15. Attack Visualization: Man-in-the-middle

for the server receiving messages parts. The protocol example includes three
messages (cf. Fig. 13), of which the first and third are sent by the client and the
second by the server. Each message is expressed by a single implication in the
main formula. Therefore three implications occur in Fig. 14 (of which the second
is nested in the first). The first,

knows(n)& knows(k c)& knows(sign(conc(c, k c), inv(k c))),

is the message sent from the client to the server. It has the precondition true
because it is sent unconditionally without previous receipt of any other mes-
sage. The postconditions of the implications include the messages sent over the
communication channel.

4.3 Protocol Analysis with ATPs

We use the ATP e-SETHEO [SW00, MIL+97] for verifying security protocols as
a “black box”: A TPTP input file is presented to the ATP and an output from
the ATP is observed. No internal properties of or information from e-SETHEO
is used. This allows one to use e-SETHEO interchangingly with any other ATP
accepting TPTP as an input format (such as SPASS, Vampire and Waldmeister)
when it may seem fit.

With respect to the security analysis described in Sect. 4.1, the results of
the theorem prover have to be interpreted as follows: If the conjecture stating
for example that the adversary may get to know the secret can be derived from
the axioms which formalize the adversary model and the protocol specification,
this means that there may be an attack against the protocol. We then use an
attack generation machine programmed in Prolog to construct the attack (also
contained in the analysis tool suite [UML04]). If the conjecture cannot be derived
from the axioms, this constitutes a proof that the protocol is secure with respect
to the security requirement formalized as the negation of the conjecture, because
logical derivation is sound and complete with respect to semantic validity for
first-order logic. Note that since first-order logic in general is undecidable, it can
happen that the ATP is not able to decide whether a given conjecture can be
derived from a given set of axioms. However, experience has shown that for a

Model-Based Security Engineering with UML 71

reasonable set of protocols and security requirements, our approach is in fact
decidable.

In our example, e-SETHEO returns as an output that the conjection knows(s)
can be derived from the defined rules (within one second). For this example the at-
tack tracking tool needs a few seconds to produce the attack. The derived message
flow diagram corresponding to a man-in-the-middle attack is depicted in Fig. 15.

We can fix this problem by substituting K :: N in the second message (server
to client) by K :: N :: KC and by including a check regarding this new message
part at the client. Now the new version with the additional signature information
about the client key k c can be verified by the automated theorem prover ap-
proach. When e-SETHEO runs on the fixed version of the protocol it now gives
back the result that the conjecture knows(s) cannot be derived from the axioms
formalizing the protocol. Note that this result, which was delivered within a few
seconds, means that the actually exists no such derivation, not just that the
theorem prover is not able to find it. This means in particular that the attacker
cannot gain the secret knowledge anymore. Note that this statement of course
in itself is bound to the particular execution model and the formalizations of the
security requirements used here. The security analysis may falsely claim that
there may be an attack against the specified system, because of the optimiz-
ing abstractions used. This, however, has not so far surfaced as a limitation in
practical applications.

5 Source Code Analysis

In recent work, we have applied our analysis techniques explained in the previous
section to the security verification of cryptographic protocols implemented in C,
making use of control flow graphs generated from the source code. This way, one
can find security weaknesses which may have been introduced during the (manual
or automated) transition from specifications to code. Such security weaknesses
may be introduced not only by programming mistakes, but also because some
security-relevant details are abstracted away on the specification level. For space
restrictions, details have to be omitted but can be found in [Jür05c, Jür05b]. A
link between the specification layer and the source code layer has been estab-
lished in the context of aspect-oriented development in [JH05].

6 Industrial Case-Study: Biometric Authentication

We applied our methods and tools in an industrial application project with a
major German company. The goal of the project was the correct development of
a security-critical biometric authentication system which is supposed to control
access to a protected resource, for example by opening a door or letting someone
log into a computer system. In this system, a user carries his biometric reference
data on a personal smart-card. To gain access, he inserts the smart-card in
the card reader and delivers a fresh biometric sample at the biometric sensor,
for example a finger-print reader. Since the communication links between the

72 J. Jürjens

: Host Systemh: SmartCardOSsc

11:send("writeFBZ2"::FBZ2’:: Macskh (FBZ2’))

[thd(arg sc,6,1)= Macsksc (snd(arg sc,6,1))]

[fst(arg sc,6,1)="writeFBZ2"]

FBZ2 ::= fst(argsc,5,1)

[snd(arg sc,7,1)= Macsksc (fst(arg sc,7,1))]

[Decsksc(fst(arg sc,7,1))= "getFBZ2*"]

[snd(arg sc,5,1)= Macsksc (fst(arg sc,5,1))]

[Decsksc(fst(arg sc,5,1))= "getFBZ2"]

12:send("getFBZ2*"::{"getFBZ2*"} skh)

[snd(arg h,6,1)= Mackh(fst(arg h,6,1))]

[fst(arg h,5,1 =FBZ2’)]

[snd(arg h,5,1)= Mackh(fst(arg h,5,1))]

[fst(arg h,5,1 >0)]

FBZ2’ ::= fst(arg h,5,1) −1

9:send("getFBZ2"::{"getFBZ2"} skh)

10:return(FBZ2:: Macsksc(FBZ2))

13:return(FBZ2:: Macsksc(FBZ2))

: BioSensorb

14:send({"getData"} sksc

Fig. 16. Excerpt from biometric authentication protocol

host system (containing the bio-sensor), the card reader, and the smart-card are
physically vulnerable, the system needs to make use of a cryptographic protocol
to protect this communication. Because the correct design of such protocols and
the correct use within the surrounding system is very difficult, our method was
chosen to support the development of the biometric authentication system.

Within the project, the system was specified using UML diagrams: a de-
ployment diagram describing the architecture, a class diagram defining the data
structure, an activity diagram specifying the general workflow, and a sequence
diagram giving a detailed specification of the cryptographic protocol. A fragment
of the sequence diagram is shown in Fig. 16.

In the next step, this specification was enriched with security-relevant infor-
mation, according to the UMLsec extension. This includes specifying the level
of security provided by the physical layer of the system in the deployment dia-
gram, and formulating security goals on the execution of the system and on the
protection of particular data values in the activity and class diagrams.

Then the security of the protocol was analyzed using the automated tool
support described in the previous section. The analysis is done with respect to
the threat model which is derived from a deployment diagram of the system and
the security goals contained in the class diagram, as explained in the previous
sections. This way, it turned out that the protocol in fact contains a vital flaw.
To prevent an attack where an attacker simply repeatedly tries to match a forged
biometric sample, for example, using an artificial finger, with a forged or stolen
smart-card, the protocol contains a misuse counter which is decreased from an
initial value of 3 to 0, when the card will be disabled. The attack which was
found using our tools enables the attacker to prevent the misuse counter from
being updated, thereby enabling a brute-force attack.

The relevant part of the attack is displayed in Fig. 17. The attacker is as-
sumed to control the communication between the smart-card and the host sys-
tem, which is realistic since it is not protected by physical means. He chooses
to act as a relay between the smart-card and the host system, until the host

Model-Based Security Engineering with UML 73

: Host Systemh: SmartCardOSsc : Attackera

send("writeFBZ2"::FBZ2’:: Macskh (FBZ2’))

send("getFBZ2*"::{"getFBZ2*"} skh)

send("getFBZ2"::{"getFBZ2"} skh) send("getFBZ2"::{"getFBZ2"} skh)

return(FBZ2’:: Macsksc(FBZ2’))

return(FBZ2:: Macsksc(FBZ2)) return(FBZ2:: Macsksc(FBZ2))

send({"getData"} sksc

send({"getData"} sksc

Fig. 17. Attack against biometric authentication protocol

system signals the smart-card to decrease its misuse counter FBZ2 by sending
it the message writeFBZ2 which contains the new, decreased value FBZ2′ that
the smart-card should assign to its counter. This message is simply dropped
by the attacker. Note that it is possible to simply drop the message although
the integrity of the message is protected using a Message Authentication Code
(MAC) in its third argument Macskh(FBZ2). Here skh is a secret key of the host
system, which in a correct protocol is supposed to be equal to the secret key
sksc of the smart-card. One should note here that the smart-card does not keep
an internal state of the protocol execution history. This means that it accepts
any of the messages in the protocol at any point. Therefore, after dropping the
message telling the smart-card to decrease its misuse counter, the protocol can
simply proceed with the next message from the host system, which is again
forwarded by the adversary to the smart-card. This problem had already been
detected by our tools at an earlier version of the protocol. To fix it, the pro-
tocol was extended with the message getFBZ2 by which the host system tries
to make sure that the misuse counter has actually been decreased, as shown in
Fig. 16. The return value then expected by the host system from the smart-card
is the misuse counter FBZ2, protected in its integrity by also sending the MAC
MACsksc(FBZ2), which is supposed to be correctly decreased to give the value
FBZ′. Unfortunately, this value had already been sent in the previous message
writeFBZ2, since the keys skh and sksc are supposed to be the same, so the
adversary only needs to replay the value from that message to the host system.

Based on our findings, the protocol was corrected by using a different one of
the coding modes suggested in the specification that makes sure that the return
message from the getFBZ2 message cannot be a replay of earlier messages, us-
ing a freshly generated random value. This corrected version of the protocol is
currently subject to ongoing analysis using our tools.

Since UML was used in the development of this system anyhow, the only
extra effort needed was to extend the UML diagrams with the security-critical

74 J. Jürjens

information describing the level of physical security, and the security goals to
be achieved, as explained above. Considering the gain from using our methods,
namely detecting several mistakes in various versions of the protocol, and mak-
ing sure that the final version is correct, this modest extra effort seems to be
worthwhile. In conclusion, experiences from this industrial application have been
quite positive.

7 Related Work

So far, there seems to be no comparable approach which allows one to include
a comparable variety of security requirements in a UML specification which is
then, based on a formal semantics, formally verified for these requirements using
tools such as automated theorem provers and model-checkers, and which comes
with a transition to the source code level where automated formal verification
can also be applied.

There has, however, been a substantial amount of work regarding some of
the topics we address here (for example formal verification of security-critical
systems or secure systems development with UML). A detailed comparison with
related work has to be omitted here for space reasons, but can be found in
[Jür04]. Many related approaches can also be found in the CSDUML workshop
series [JFFuCH04].

8 Conclusion and Future Perspectives

We gave an overview over the extension UMLsec of UML for secure systems
development, in the form of a UML profile using the standard UML extension
mechanisms. Recurring security requirements are written as stereotypes, the
associated constraints ensure the security requirements on the level of the formal
semantics, by referring to the threat scenario also given as a stereotype. Thus
one may evaluate UML specifications to indicate possible vulnerabilities. One
can thus verify that the stated security requirements, if fulfilled, enforce a given
security policy.

At the hand of small examples, we demonstrated how to use UMLsec to model
security requirements, threat scenarios, security concepts, security mechanisms,
security primitives, underlying physical security, and security management.

As demonstrated, UMLsec can be used to encapsulate established rules on
prudent security engineering, also by applying security patterns, and thereby
makes them available to developers not specialized in security. While UML was
developed to model object-oriented systems, one can also use UMLsec to analyze
systems that are not object-oriented (assuming that the underlying assumptions,
such as controlled access to data, are ensured).

We also explained how to analyse the UMLsec diagrams against security
requirements with respect to their dynamic behavior, using automated theorem
provers for first-order logic. We briefly reported on further work to apply this

Model-Based Security Engineering with UML 75

formal security verification to the source code level of implementations derived
from the UMLsec specifications.

The definition and evolvement of the UMLsec notation has been based on
experiences from in industrial application projects. We reported on the use of
UMLsec and its tool-support in one such application, the formal security verifi-
cation of a biometric authentication system, where several security weaknesses
were found and corrected using our approach during its development.

For space restrictions, we could only present a brief overview over a fragment
of UMLsec. The complete notation with many more examples and applications
can be found in [Jür04].

Although there exists a solid core UMLsec notation now, together with auto-
mated formal verification tools, which has proven its usefulness in several indus-
trial application projects, there are a number of interesting open foundational
and practical questions still to consider. Because our underlying formal system
model is largely independent from UML specifics, it provide a suitable platform
for such investigations also independently from UML. For example, one could
use the UMLsec framework to formally explore . . .
– . . . which security properties are preserved under which conditions when com-

posing or decomposing systems in modular components,
– . . . the consistency of different security properties expressed as stereotypes

when appearing in combination,
– . . . which security properties are preserved under which conditions when re-

fining a specification to a more detailed specification or eventually to the
source-code,

– . . . how to achieve a coherent level of security throughout the abstraction
levels of a computing system,

– . . . how to evaluate propose standards such as secure reference architectures,
– . . . how security requirements can be achieved in the presence of other non-

functional requirements such as dependability.

Acknowledgements

The research summarized in this chapter has benefitted from the help of too
many people to include here; they are listed in [Jür04].

References

[Aba00] M. Abadi. Security protocols and their properties. In F. L. Bauer and
R. Steinbrüggen, editors, Foundations of Secure Computation, pages 39–
60. IOS Press, Amsterdam, 2000. 20th International Summer School,
Marktoberdorf, Germany.

[AJ01] M. Abadi and J. Jürjens. Formal eavesdropping and its computational
interpretation. In N. Kobayashi and B. C. Pierce, editors, Theoreti-
cal Aspects of Computer Software (4th International Symposium, TACS
2001), volume 2215 of Lecture Notes in Computer Science, pages 82–94.
Springer-Verlag, 2001.

76 J. Jürjens

[And01] R. Anderson. Security Engineering: A Guide to Building Dependable Dis-
tributed Systems. John Wiley & Sons, New York, 2001.

[DY83] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29(2):198–208, 1983.

[GHJW03] J. Grünbauer, H. Hollmann, J. Jürjens, and G. Wimmel. Modelling and
verification of layered security-protocols: A bank application. In SAFE-
COMP 2003, Lecture Notes in Computer Science. Springer-Verlag, 2003.

[GM82] J. Goguen and J. Meseguer. Security policies and security models. In
Symposium on Security and Privacy (S&P), pages 11–20. IEEE Computer
Society, 1982.

[JFFuCH04] J. Jürjens, E.B. Fernandez, R.B. France, and B. Rumpe und C. Heit-
meyer. Critical systems development using modelling languages (CS-
DUML’04): Current development and future challenges (report on the
third international workshop). In N. Jardin Nunes, B. Selic, A. Silva,
and A. Toval, editors, UML Modeling Languages and Applications. UML
2004 Satellite Activities, Lisbon, Portugal, October 11–15, 2004, Revised
Selected Papers, volume 3297 of Lecture Notes in Computer Science.
Springer-Verlag, 2004.

[JH05] J. Jürjens and S.H. Houmb. Dynamic secure aspect modeling with UML:
From models to code. In ACM / IEEE 8th International Conference
on Model Driven Engineering Languages and Systems (MoDELS / UML
2005), Lecture Notes in Computer Science. Springer-Verlag, 2005.

[JS04] J. Jürjens and P. Shabalin. Automated verification of UMLsec models for
security requirements. In J.-M. Jézéquel, H. Hußmann, and S. Cook, edi-
tors, UML 2004 – The Unified Modeling Language, volume 2460 of Lecture
Notes in Computer Science, pages 412–425. Springer-Verlag, 2004.

[JS05] J. Jürjens and P. Shabalin. Tools for secure systems development with
UML: Security analysis with ATPs. In FASE 2005, Lecture Notes in
Computer Science, Edinburgh, 2-10 April 2005. Springer-Verlag.

[Jür02] J. Jürjens. Formal semantics for interacting UML subsystems. In B. Ja-
cobs and A. Rensink, editors, 5th International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS 2002),
pages 29–44. International Federation for Information Processing (IFIP),
Kluwer Academic Publishers, 2002.

[Jür04] J. Jürjens. Secure Systems Development with UML. Springer-Verlag,
2004.

[Jür05a] J. Jürjens. Sound methods and effective tools for model-based security
engineering with UML. In 27th International Conference on Software
Engineering (ICSE 2005). IEEE Computer Society, 2005.

[Jür05b] J. Jürjens. Understanding security goals provided by crypto-protocol
implementations. In 21st International Conference on Software Mainte-
nance (ICSM 2005). IEEE Computer Society, 2005.

[Jür05c] J. Jürjens. Verification of low-level crypto-protocol implementations using
automated theorem proving. In 3rd ACM & IEEE International Confer-
ence on Formal Methods and Models for Co-Design (MEMOCODE 2005).
IEEE Computer Society, 2005.

[MIL+97] M. Moser, O. Ibens, R. Letz, J. Steinbach, C. Goller, J. Schumann, and
K. Mayr. SETHEO and E-SETHEO – The CADE-13 Systems. Journal
of Automated Reasoning (JAR), 18(2):237–246, 1997.

[Net03] Netbeans project. Open source.
Available from http://mdr.netbeans.org, 2003.

Model-Based Security Engineering with UML 77

[SS01] G. Sutcliffe and C. Suttner. The TPTP problem library for automated
theorem proving, 2001. Available at http://www.tptp.org.

[SW00] G. Stenz and A. Wolf. E-SETHEO: An automated3 theorem prover. In
R. Dyckhoff, editor, Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX 2000), volume 1847 of Lecture Notes in
Computer Science, pages 436–440. Springer-Verlag, 2000.

[UML04] UMLsec tool, 2002-04. Open-source. Accessible at
http://www.umlsec.org.

[UML01] UML Revision Task Force. OMG UML Specification v. 1.4. OMG Doc-
ument ad/01-09-67. Available at http : //www.omg.org/uml, September
2001.

[Wat02] B. Watson. The Real-time UML standard. In Real-Time and Embedded
Distributed Object Computing Workshop. OMG, July 15–18 2002.

[XMI02] Object Management Group. OMG XML Metadata Interchange (XMI)
Specification, January 2002.

A Tutorial on Physical Security and
Side-Channel Attacks

François Koeune1,2 and François-Xavier Standaert1

1 UCL Crypto Group, Place du Levant,
3. 1348 Louvain-la-Neuve, Belgium

fstandae@dice.ucl.ac.be
http://www.dice.ucl.ac.be/crypto/

2 K2Crypt, Place Verte 60 box 2,
1348 Louvain-la-Neuve, Belgium

fkoeune@k2crypt.com
http://www.k2crypt.com/

Abstract. A recent branch of cryptography focuses on the physical con-
straints that a real-life cryptographic device must face, and attempts
to exploit these constraints (running time, power consumption, . . .) to
expose the device’s secrets. This gave birth to implementation-specific
attacks, which often turned out to be much more efficient than the best
known cryptanalytic attacks against the underlying primitive as an ide-
alized object. This paper aims at providing a tutorial on the subject,
overviewing the main kinds of attacks and highlighting their underlying
principles.

1 Introduction and Objectives

A cryptographic primitive can be considered from two points of view: on the one
hand, it can be viewed as an abstract mathematical object or black box (i.e. a
transformation, possibly parameterized by a key, turning some input into some
output); on the other hand, this primitive will in fine have to be implemented in
a program that will run on a given processor, in a given environment, and will
therefore present specific characteristics.

The first point of view is that of “classical” cryptanalysis; the second one is that
of physical security. Physical attacks on cryptographic devices take advantage of
implementation-specific characteristics to recover the secret parameters involved
in the computation. They are therefore much less general – since it is specific to a
given implementation – but often much more powerful than classical cryptanaly-
sis, and are considered very seriously by cryptographic devices’ implementors.

The goal of this paper is to provide the reader with a first tutorial on physical
security. The paper will explore certain of the most important kinds of physical
attacks, from direct data probing to electromagnetic analysis. However, the in-
tention is not to make an exhaustive review of existing techniques, but rather
to highlight the philosophy underlying the main attacks. So, this is not to be
viewed a security manual, but as an introductory course in a specific branch of
cryptography.

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 78–108, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Tutorial on Physical Security and Side-Channel Attacks 79

The authors did their best to keep the paper easy to read, giving a good
understanding of the general principle of physical attacks. Strict formalism was
sometimes sacrificed to the benefit of intuition, whereas many references were
provided to guide the interested reader during his first steps in that fascinating
and emerging subject.

Physical attacks usually proceed in two steps: an interaction phase, during
which an attacker exploits some physical characteristic of a device (e.g. measures
running time or current flow, inserts faults, . . .) and an exploitation phase, an-
alyzing this information in order to recover secret information. Although we
will discuss the first phase, we will mostly focus on the second: once a “sig-
nal” has been obtained, how can we exploit this signal to expose a device’s
secrets?

1.1 Model

The context of a physical attack is the following: we consider a device capa-
ble of performing cryptographic operations (e.g. encryptions, signatures, . . .)
based on a secret key. This key is stored inside the device, and protected from
external access. We assume that an attacker has the device at his disposal,
and will be able to run it a number of times, possibly with input values of his
choice. In addition, during the device’s processing, he will be able to act on
or measure some parameters related to the environment, the exact nature of
which depends on the attack’s context. This can for example be the device’s
running time, the surrounding electromagnetic field, or some way of inducing
errors during the computation. The attacker has of course no direct access to
the secret key.

Note that the expression “at disposal” might have various meanings: in some
cases, it can be a complete gain of control, like for example by stealing an
employee’s identification badge during his lunch break, attacking it and then
putting it back in place to go unnoticed. As another example, we would like to
point out that there are situations where the owner of the device himself might
be interested in attacking it, e.g. in the case of a pay-TV decoder chip. On
the other hand, the control of the attacker on the device might be much more
limited: he could for example be hidden behind the corner of the street when the
genuine user is using his device, and monitoring electromagnetic radiations from
a distance, or interrogating the device through a web interface, and monitoring
the delay between request and answer.

Modern cryptography is driven by the well-known Kerckhoffs’ assumption,
which basically states that all the secret needed to ensure a system’s security
must be entirely gathered in the secret keys. In other words, we must assume that
an attacker has perfect knowledge of the cryptographic algorithm, implementa-
tion details, . . . The only thing that he does not know – and which is sufficient
to guarantee security – is the value of the secret keys. We will adopt this point
of view here, and consider that the attacker is familiar with the device under
attack, and that recovering the secret keys is sufficient to allow him to build a
pirated device with the same power and privileges as the original one.

80 F. Koeune and F.-X. Standaert

1.2 Principle of Divide-and-Conquer Attacks

Most of the attacks we will discuss here are divide-and-conquer attacks. As the
name says, divide and conquer attacks attempt to recover a secret key by parts.
The idea is to find an observable characteristic that can be correlated with a
partial key, small enough to make exhaustive search possible. The characteristic
is used to validate the partial key, which can be established independently of the
rest of the key. The process is then repeated with a characteristic that can be
correlated to another part of the key, and so on until the full key is found, or the
remaining unknown part is small enough to be in turn exhaustively searchable.

The word characteristic is intentionally imprecise. Such a characteristic can
for example be a power consumption profile during a given time interval, a
specific output structure after a fault, a probabilistic distribution of running
times for an input subset, . . .

Divide and conquer attacks can be iterative (that is, a part of the key must be
discovered in order to be able to attack subsequent parts) or not (in which case
all parts of the key can be guessed independently). Clearly, an iterative attack
will be much more sensible to errors, as a wrong conclusion at some point will
make subsequent guesses meaningless. This factor can sometimes be mitigated
using an error detection/correction strategy [63].

2 Targets

For the sake of concreteness, principles will be illustrated in two contexts: smart
cards (typically representing general purpose microprocessors with a fixed bus
length) and FPGAs (typically representing application specific devices with par-
allel computing opportunities).

2.1 Smart Card

One of the most typical targets of side-channel attacks (and one often chosen in
the literature) is the smart card. There are several reasons for this. First, these
are devices dedicated to performing secure operations. They are also easy to get
hold on: usually carried around in many places, small-sized, and an easy target
for a pickpocket. In addition, smart cards are pretty easy to scrutinize: as a smart
card depends on the reader it is inserted in in many ways (see below), running
time, current, . . . are easy to monitor. Finally, they are quite simple device,
typically running one process at a time, and with a much simpler processor than
a desktop PC or mainframe.

Basically, a smart card is a computer embedded in a safe. It consists of a
(typically, 8-bit or 32-bit) processor, together with ROM, EEPROM, and a small
amount of RAM, which is therefore capable of performing computations. The
main goal of a smart card is to allow the execution of cryptographic operations,
involving some secret parameter (the key), while not revealing this parameter to
the outside world.

A Tutorial on Physical Security and Side-Channel Attacks 81

Vcc GND

VPP

I/O

RST

CLK

Fig. 1. Smart card chip and its connection points: supply voltage (VCC), reset signal
(RST), clock (CLK), ground connection (GND), input/output (I/O) and external
voltage for programming (VPP , generally not used)

This processor is embedded in a chip and connected to the outside world through
eight wires, the role, use, position, . . . of which is normalized (Fig. 1). In addition
to the input/output wires, the parts we will be the most interested in are the
following.
Power supply: smart cards do not have an internal battery. The current they

need is provided by the smart card reader. This will make the smart card’s
power consumption pretty easy to measure for an attacker with a rogue
reader.

Clock: similarly, smart cards do not dispose of an internal clock either. The
clock ticks must also be provided from the outside world. As a consequence,
this will allow the attacker to measure the card’s running time with very
good precision.

Smart cards are usually equipped with protection mechanisms composed of
a shield (the passivation layer), whose goal is to hide the internal behavior of the
chip, and possibly sensors that react when the shield is removed, by destroying
all sensitive data and preventing the card from functioning properly. This will
be discussed further below.

We refer the interested reader to several very good books (e.g. [60]) for a
deeper discussion of smart cards.

2.2 FPGA

In opposition to smart cards that are typical standardized general purpose cir-
cuits, FPGAs are a good example of circuits allowing application specific imple-
mentations. Fundamentally, both smart cards and FPGAs (and most processors
and ASICs) share the same leakage sources and are consequently similar in terms
of susceptibility against physical attacks. However, it is interesting to consider
these two contexts for two reasons:

1. They are generally used for completely different applications: smart cards
have limited computational power while FPGAs and ASICs are usually re-
quired for their ability to deal with high throughput.

2. FPGAs and ASICs allow parallel computing and have a more flexible archi-
tecture (as it is under control of the designer). This may affect their resistance
against certain attacks.

More philosophically, we used these two contexts as an illustration (among oth-
ers) that physical attacks are both general and specific: general because they rely

82 F. Koeune and F.-X. Standaert

L C

SC

L

C

L C L

C

S

L

C

C L

L C L C L

SC C S C

I/O BUFFERS

I/O
 B

U
F

F
E

R
S

L

C

C L LC

C

I/O
 B

U
F

F
E

R
S

I/O BUFFERS

L : logic blocks
C : connection blocks

S : switch blocks

routing
channels

Fig. 2. FPGA: high level view

on physical principles that can be applied to any kind of device; specific because
when it comes to their practical implementation, their efficiency depends on how
well we can adapt these general principles to a particular target.

FPGAs usually contain an array of computational elements whose function-
ality is determined through multiple programmable configuration bits. These
elements, sometimes known as logic blocks, are connected using a set of routing
resources that are also programmable (see Figure 2). They can be used to imple-
ment a variety of digital processing tasks. FPGAs allow the designer to determine
the allocation and scheduling of the tasks in the circuit (e.g. to trade surface for
speed), which is typically out of control of the smart card programmer.

Compared to ASICs, FPGAs present similar design opportunities, although
some parts of reconfigurable circuits are not dedicated to the applications but to
the reconfigurability management. In brief, FPGAs trade a little bit of the ASICs
efficiency for more flexibility. Structural details on FPGAs are not necessary for
the understanding of this survey, but can be useful for mounting attacks in
practice. A good reference is [23].

2.3 Differences Between Platforms

Differences between platforms may affect the physical security at two distinct
levels. First and practically, the devices may be based on different technologies
and consequently have different physical behaviors. For example, certain side-
channel attacks require to make predictions of the leakage. The prediction model
may be different for different devices. Similarly, fault insertion techniques may
have different effects on different technologies. In order to keep our discussions
general, we will make abstraction of these possible technological differences and
assume in the following that:

A Tutorial on Physical Security and Side-Channel Attacks 83

(1) Knowing the data handled by a device, it is possible to predict its leakage1.
(2) Faults can be inserted in the device.

Second, as already mentioned, different platforms may have different archi-
tectures, leading to different computational paradigms. For example, smart cards
are small processors where the data is managed sequentially. FPGA designs (i.e.
the hardware counterpart of smart card programs) have a more flexible archi-
tecture and allow parallel computation. Such differences will be emphasized in
the following sections.

3 Physical Attacks Classification

Physical attacks can be classified in many ways. The literature usually sorts
them along two orthogonal axes.

Invasive vs. non-invasive: invasive attacks require depackaging the chip to
get direct access to its inside components; a typical example of this is the
connection of a wire on a data bus to see the data transfers. A non-invasive
attack only exploits externally available information (the emission of which is
however often unintentional) such as running time, power consumption, . . .
One can go further along this axis by distinguishing local and distant at-
tacks: a local attack requires close – but external, i.e. non-invasive – prox-
imity to the device under concern, for example by a direct connection to
its power supply. As opposed, a distant attack can operate at a larger dis-
tance, for example by measuring electromagnetic field several meters (or hun-
dreds of meters) away, or by interacting with the device through an internet
connection.

Active vs. passive: active attacks try to tamper with the device’s proper func-
tioning; for example, fault-induction attacks will try to induce errors in the
computation. As opposed, passive attacks will simply observe the device’s
behavior during its processing, without disturbing it.

Note that these two axes are well orthogonal: an invasive attack may completely
avoid disturbing the device’s behavior, and a passive attack may require a pre-
liminary depackaging for the required information to be observable.

These attacks are of course not mutually exclusive: an invasive attack may for
example serve as a preliminary step for a non-invasive one, by giving a detailed
description of the chip’s architecture that helps to find out where to put external
probes.

As said in section 2.1, smart cards are usually equipped with protection
mechanisms that are supposed to react to invasive attacks (although several
1 Remark that most present devices are CMOS-based and their leakages are relatively

simple and similar to predict. Typically, models based on the Hamming weight or
the Hamming distance of the data processed were successfully applied to target
respectively smart cards [50] and FPGAs [67]. On the other hand, technological so-
lutions may also be considered to make the attacks harder. Such possibilities will be
discussed in Section 9.

84 F. Koeune and F.-X. Standaert

invasive attacks are nonetheless capable of defeating these mechanisms). On the
other hand, it is worth pointing out that a non-invasive attack is completely
undetectable: there is for example no way for a smart card to figure out that its
running time is currently being measured. Other countermeasures will therefore
be necessary.

The attacks we will consider belong to five major groups.

Probing attacks consist in opening a device in order to directly observe its
internal parameters. These are thus invasive, passive attacks.

Fault induction attacks try to influence a device’s behavior, in a way that
will leak its secrets. The difficulty lies not so much in inducing a fault than
in being able to recover secret parameters from the faulty result, and this
is the question that will retain most of our attention. These attacks are by
essence active, and can be either invasive or non-invasive.

The three last groups are usually denoted as side-channel attacks. Their
basic idea is to passively observe some physical characteristic during the device’s
processing, and to use this “side-channel” to derive more information about the
processed secret. They are thus passive, and typically non-invasive, although
some exceptions exist.

Timing attacks exploit the device’s running time.
Power analysis attacks focus on the device’s electric consumption.
Electromagnetic analysis attacks measure the electromagnetic field

surrounding the device during its processing.

In some sense, timing, power and electromagnetic analysis attacks can be viewed
as an evolution in the dimension of the leakage space. Timing attacks exploit a
single, scalar information (the running time) for each run. Power attacks pro-
vide a one-dimensional view of the device’s behavior, namely instant power con-
sumption at each time unit. With the possibility to move the sensor around the
attacked device (or to use several sensors), electromagnetic analysis provide a 4-
dimensional view: spatial position and time. This allows for example to separate
the contributions of various components of the chip, and therefore to study them
separately. Moreover, we will see that EM emanations consist of a multiplicity
of signals, which can lead to even more information.

Finally, we believe there is a substantial difference between timing or Simple
Power Analysis attacks and subsequent side-channel attacks (this will appear
clearly in the next sections): timing attacks and Simple Power Analysis provide
an indirect access to the data processed, via the observation of the operations
performed. As opposed, power or electromagnetic analysis offer direct access to
the data processed.

3.1 About the Cost. . .

From an economical point of view, invasive attacks are usually more expensive to
deploy on a large scale, since they require individual processing of each attacked

A Tutorial on Physical Security and Side-Channel Attacks 85

device. In this sense, non-invasive attacks constitute therefore a bigger menace for
the smart card industry. According to [66], “until now, invasive attacks involved
a relatively high capital investment for lab equipment plus a moderate investment
of effort for each individual chip attacked. Non-invasive attacks require only a
moderate capital investment, plus a moderate investment of effort in designing
an attack on a particular type of device; thereafter the cost per device attacked
is low. [...] semi-invasive attacks can be carried out using very cheap and simple
equipment.”

4 Probing

One natural idea when trying to attack a security device is to attempt to depack-
age it and observe its behavior by branching wires to data buses or observing
memory cells with a microscope. These attacks are called probing attacks.

4.1 Measuring Phase

The most difficult part of probing attacks lies in managing to penetrate the de-
vice and access its internals. An useful tool for this purpose is a probing station.
Probing stations consist of microscopes with micromanipulators attached for
landing fine probes on the surface of the chip. They are widely used in the semi-
conductor manufacturing industry for manual testing of production-line samples,
and can be obtained second-hand for under US$ 10 000.

To make observation easier, the attacker may try to slow down the clock
provided to the chip, so that successive states are easily observable. An intro-
duction on probing attacks can be found in [7], and a good overview of ways to
depackage a card and probe its content is given in [44].

As we said before, smart cards are usually protected by a passivation layer,
which is basically a shield covering the chip, in order to prevent from observing
its behavior. In addition, some smart cards are equipped with detectors, for
example in the form of additional metallization layers that form a sensor mesh
above the actual circuit and that do not carry any critical signals. All paths
of this mesh need to be continuously monitored for interruptions and short-
circuits, and the smart card has to refuse processing and destroy sensitive data
when an alarm occurs. Similarly, monitoring clock frequency and refusing to
operate under abnormally low (or high) frequency should be done to protect the
chip. Additional sensors (UV, light, . . .) may also be placed.

Security is a permanent fight between attackers and countermeasure design-
ers, and these protection means are not invulnerable. According to Anderson [7],
“the appropriate tool to defeat them is the Focused Ion Beam Workstation (FIB).
This is a device similar to a scanning electron microscope, but it uses a beam
of ions instead of electrons. By varying the beam current, it is possible to use it
as a microscope or as a milling machine. By introducing a suitable gas, which
is broken down by the ion beam, it is possible to lay down either conductors
or insulators with a precision of a few tens of nanometers. Given a FIB, it is

86 F. Koeune and F.-X. Standaert

straightforward to attack a sensor mesh that is not powered up. One simply drills
a hole through the mesh to the metal line that carries the desired signal, fills it
up with insulator, drills another hole through the center of the insulator, fills it
with metal, and plates a contact on top, which is easy to contact with a needle
from the probing station”.

Better protection techniques, such as stronger passivation layers, that will
make it difficult for the attacker to remove them without damaging the chip
itself, are also developed. They complicate the attacker’s task, but do not make
it impossible yet. An interesting example, discussing how such a stronger passi-
vation layer was defeated, can be found in [56].

4.2 Exploitation Phase

The most obvious target is of course the part of memory where secret keys are
stored; similarly, in a software-based device, the attacker can also tape the data
buses connecting memory to processor, as he knows that the secret key will
of course be processed during the signature (or decryption), and hence transit
through that wire. From our pedagogical point of view, this kind of attack is not
extremely interesting: being able to access smart card internals might be a strong
technical challenge (which is out of our scope), but exploiting this information
is straightforward.

Things might get more difficult (and interesting) when only part of the in-
formation can be read (for example because technical constraints allow only to
tape a part of the data bus, providing two bits of each transferred word), or
when countermeasures are at stake, for example bus scrambling, which can be
thought as some sort of lightweight encryption used for internal transfer and
storage. However, we will not discuss these topics more in the detail here. We
refer the interested reader to [31,27,32] for further information.

5 Fault Induction Attacks

When an electronic device stops working correctly, the most natural reaction
is to get rid of it. This apparently insignificant habit may have deep impact
in cryptography, where faulty computations are sometimes the easiest way to
discover a secret key.

As a matter of fact, a recent and powerful cryptanalysis technique consists in
tampering with a device in order to have it perform some erroneous operations,
hoping that the result of that erroneous behavior will leak information about
the secret parameters involved. This is the field of fault induction attacks.

5.1 Types of Faults

The faults can be characterized from several aspects.

Permanent vs. transient: as the name says, a permanent fault damages the
cryptographic device in a permanent way, so that it will behave incorrectly

A Tutorial on Physical Security and Side-Channel Attacks 87

in all future computations; such damage includes freezing a memory cell to
a constant value, cutting a data bus wire, . . . As opposed, with a transient
fault, the device is disturbed during its processing, so that it will only per-
form fault(s) during that specific computation; examples of such disturbances
are radioactive bombing, abnormally high or low clock frequency, abnormal
voltage in power supply, . . .

Error location: some attacks require the ability to induce the fault in a very
specific location (memory cell); others allow much more flexibility;

Time of occurrence: similarly, some attacks require to be able to induce the
fault at a specific time during the computation, while others do not;

Error type: many types of error may be considered, for example:
– flip the value of some bit or some byte,
– permanently freeze a memory cell to 0 or 1,
– induce (with some probability) flips in memory, but only in one direction

(e.g. a bit can be flipped from 1 to 0, but not the opposite),
– prevent a jump from being executed,
– disable instruction decoder,
– . . .

As can be guessed, the fault model has much importance regarding the fea-
sibility of an attack. In fact, two types of papers can be found in the literature:
the first type deals with the way to induce errors of a given type in current
devices; the second basically assumes a (more or less realistic) fault model and
deals with the way this model can be exploited to break a cryptosystem, without
bothering with the way such faults can be induced in practice. These two types
are of course complementary to determine the realism of a new attack and the
potential weaknesses induced by a new fault induction method. From the view-
point we took in this tutorial, we are mostly interested in the second aspect, i.e.
how we can exploit faulty computations to recover secret parameters. However,
let us first briefly consider the other aspect: fault induction methods.

5.2 Fault Induction Techniques

Faults are induced by acting on the device’s environment and putting it in ab-
normal conditions. Many channels are available to the attacker. Let us review
some of them.

Voltage: Unappropriate voltage might of course affect a device’s behavior. For
example, smart card voltages are defined by ISO standards: a smart card
must be able to tolerate on the contact VCC a supply voltage between 4, 5V
and 5, 5V, where the standard voltage is specified at 5V. Within this range
the smart card must be able to work properly. However, a deviation of the
external power supply, called spike, of much more than the specified 10%
tolerance might cause problems for a proper functionality of the smart card.
Indeed, it will most probably lead to a wrong computation result, provided
that the smart card is still able to finish its computation completely.

88 F. Koeune and F.-X. Standaert

Clock: Similarly, standards define a reference clock frequency and a tolerance
around which a smart card must keep working correctly. Applying an abnor-
mally high or low frequency may of course induce errors in the processing.
Blömer and Seifert [10] note that “a finely tuned clock glitch is able to com-
pletely change a CPU’s execution behavior including the omitting of instruc-
tions during the executions of programs”. Note that, as opposed to the clock
slowing down described in section 4, whose goal was to make internal state
easier to observe, this clock variation may be very brief, in order to induce
a single faulty instruction or to try to fool clock change detectors.

Temperature: Having the device process in extreme temperature conditions
is also a potential way to induce faults, although it does not seem to be a
frequent choice in nowadays attacks.

Radiations: Folklore often presents fault induction attacks as “microwave at-
tacks” (the attacker puts the smart card into a microwave oven to have it
perform erroneous computations). Although this is oversimplified, it is clear
that correctly focused radiations can harm the device’s behavior.

Light: Recently, Skorobogatov and Anderson [66] observed that illumination
of a transistor causes it to conduct, thereby inducing a transient fault. By
applying an intense light source (produced using a photoflash lamp mag-
nified with a microscope), they were able to change individual bit values
in an SRAM. By the same technique, they could also interfere with jump
instructions, causing conditional branches to be taken wrongly.

Eddy current: Quisquater and Samyde [56] showed that eddy currents induced
by the magnetic field produced by an alternating current in a coil could in-
duce various effects inside a chip as for example inducing a fault in a mem-
ory cell, being RAM, EPROM, EEPROM or Flash (they could for example
change the value of a pin code in a mobile phone card).

Several papers and books address the issue of fault induction techniques. We refer
the reader to [7,5,6,29,30,46] and, for the last two techniques, to [66] and [56].

5.3 Cryptanalyses Based on Fault

Attack on RSA with CRT. Fault induction attack on RSA2 with Chinese Re-
maindering Theorem (CRT) [12,37] is probably the most exemplary instance of
fault induction attack: first, it is very easy to explain, even to a non-cryptologist;
second, it is also easy to deploy, since only one fault induction somewhere in the
computation – even with no precise knowledge of that fault’s position – is enough
to have it work; third, it is extremely powerful, as having one faulty computation
performed is sufficient to completely break a signature device.

Implementations of RSA exponentiation often make use of the Chinese Re-
maindering Theorem to improve performance. Let m be the message to sign,
n = pq the secret modulus, d and e the secret and public exponents. Exponen-
tiation process is described in Alg. 1.. Of course several values involved in this
algorithm are constant and need not be recomputed every time.
2 A short description of RSA can be found in Appendix A.

A Tutorial on Physical Security and Side-Channel Attacks 89

Algorithm 1. Chinese Remaindering Theorem
mp = m mod p
mq = m mod q
dp = d mod (p − 1)
dq = d mod (q − 1)
xp = m

dp
p mod p

xq = m
dq
q mod q

s = chinese(xp, xq) = q(q−1 mod p)xp + p(p−1 mod q)xq mod n
return s

Suppose an error occurs during the computation of either xp or xq (say xp,
to fix ideas, and denote by x′

p the incorrect result)3. It is easy to see that, with
overwhelming probability, the faulty signature s′ derived from x′

p and xq will be
such that

s′e ≡ m mod q,

s′e
≡ m mod p.

Consequently, computing

gcd(s′e − m mod n, n)

will give the secret factor q with overwhelming probability. With this factoriza-
tion of n, it is straightforward to recover the secret exponent d from e. As we
see, having the cryptographic device perform one single faulty signature (with-
out even the need to compare it to correct computations) is sufficient to be able
to forge any number of signatures. Moreover, the type of fault is very general,
and should therefore be fairly easy to induce.

Differential fault analysis. Shortly after the appearing of the fault attack
against RSA, Biham and Shamir [9] showed that such attacks could be applied
against block ciphers as well, by introducing the concept of differential fault
analysis (DFA).

They demonstrated their attack against the Data Encryption Standard4. The
fault model they assume is that of transient faults in registers, with some small
probability of occurrence for each bit, so that during each encryption/decryption
there appears a small number of faults (typically one) during the computation,
and that each such fault inverts the value of one of the bits5.
3 Note that, since these two computations are by far the most complex part of the full

signature process, inducing a transient fault at random time during the computation
has great chance to actually affect one of these.

4 A description of DES can be found in Appendix B.
5 The authors claim that their model is the same as that of [12,37] but, in our opinion,

this claim is misleading: whereas RSA’s fault induction works provided any error
occurs during the computation, DES’s DFA requires that only one (or a very small
number of) bit(s) is (are) affected by the error. This model is therefore much less
general.

90 F. Koeune and F.-X. Standaert

f

Li Ri
Ki

Ri

Expansion

Ki

S0 S1 S2 S3 S4 S5 S6 S7

Permutation

(a) DES round (b) f function

Li+1 Ri+1

Fig. 3. Data Encryption Standard

The basic principle of their attack is that of a divide and conquer attack:
suppose that we dispose of two results, one correct and one faulty, for the same
input value. Suppose further that a (unique) fault has occurred, and that that
fault affected one bit of R15 (that is, the right part of the input to the last round
of DES – see Fig. 3(a), with i = 15). This bit will follow two paths through this
last round. First, R15 will be copied into L16, which will also have exactly one
wrong bit. Second, it will be part of the input to one6 S-box (Fig. 3(b)) and,
being faulty, will induce a 4-bit error in this S-box output. This in turn will affect
4 bits of R16. Noting that all further operations (IP−1, P , . . .) are deterministic
and do not depend on unknown values, we can, from the final outputs (the right
and the wrong) of DES, identify which bit of R15 was incorrect. We can also trace
back the error as close as possible to the involved S-box. Taking the exclusive-or
of the two outputs, we end up with a relationship of the form

S(R ⊕ K) ⊕ S(R ⊕ F ⊕ K) = X,

where S denotes the S-box under concern, R the part of interest of R15 (that we
can reconstruct from the output), K the corresponding part of the key, and F
the one-bit fault. Note that we do not know the S-box output, nor, of course, the
key. The non-linearity of the S-box will help us: as a matter of fact, not all input
pairs could have produced this output difference. So, we will simply perform an
exhaustive search over all possible (that is, 26) key values, and discard all values
which do not yield the expected difference. According to Biham and Shamir,
only four possibilities remain on the average. Repeating the experiment, it is
possible to confirm the correct 6-bit value, and then to attack other key parts.

To induce an error with the expected form and location, the attacker will
repeat encryptions with device put under extreme conditions, and with same

6 In fact, due to the expansion function, a single bit could affect two S-boxes. The
argument is the same in this case, and we omit it for simplicity.

A Tutorial on Physical Security and Side-Channel Attacks 91

plaintext as input, until he observes a difference between ciphertexts with the
expected pattern (one wrong bit in the output corresponding of L16 and four
wrong bits in R16). Choosing the time at which error is triggered to target the
last rounds will of course be helpful.

Similar arguments can be used if the fault occurred in rounds 14 or 15. Using
this technique, Biham and Shamir could recover a full DES key using between
50 and 200 messages. Note that triple-DES can be attacked in the same way.

It is important to remark at this point that fault induction significantly
depends on the target device. While, due to the simplicity of the processor, it
may be relatively easy to insert of fault during a specified computation in a
smart card, large parallel designs (e.g. block ciphers implemented on FPGAs)
may be more challenging.

Other results. Others fault models have also been considered, which allow
pretty trivial attacks. Some authors, for example, consider a model in which
memory cells can be flipped from one to zero (or from zero to one), but not the
opposite. An obvious way to exploit this is to repeatedly induce faults on the
key, until all its bits have been forced to zero (and producing some ciphertexts
between each fault induction). The chain is then explored backwards, starting
from the known (null) key, and guessing at each step which bits have been
flipped; correct guesses are identified by comparison with the ciphertexts. An
even simpler attack is that of [10], that additionally assumes that it is possible
to choose the location of the flipped bit. In this case, the attack simply consists
in forcing a key bit to zero and checking if the result is different from the one
obtained without fault induction. If this is the case, conclude the key bit was 1,
otherwise conclude 0.

Finally, several obvious ways to exploit very specific faults can easily be de-
vised: for example, a fault that would affect a loop counter so that only two or
three rounds of DES are executed would of course allow to break the scheme.
Similarly, disabling the instruction decoder could have the effect that all instruc-
tions act as a NOP so the program counter cycles through the whole memory.

6 Timing Attack

6.1 Introduction

Usually the running time of a program is merely considered as a constraint,
some parameter that must be reduced as much as possible by the programmer.
More surprising is the fact that the running time of a cryptographic device can
also constitute an information channel, providing the attacker with invaluable
information on the secret parameters involved. This is the idea of timing attack.
This idea was first introduced by Kocher [42].

In a timing attack, the information at the disposal of the attacker is a set of
messages that have been processed by the cryptographic device and, for each of
them, the corresponding running time. The attacker’s goal is to recover the secret
parameters (fig. 4). Remember that, as was said in section 2.1, the clock ticks

92 F. Koeune and F.-X. Standaert

difference
Time

Protocol, smartcard, ...

Implementation
Question

Answer

Secret

Fig. 4. The timing attack principle

are provided to the smart card by the terminal. Precise timing measurements
are therefore easy to obtain.

6.2 Timing Attack Against RSA with Montgomery Reduction

The ideas suggested by Kocher were first practically applied by Dhem et al.
against the RSA algorithm, implemented using Montgomery multiplication [25].
Although this attack is not optimal, its idea is pretty intuitive, and fits our
tutorial purpose, so we will sketch it in this section.

The context is that of an RSA signature, and the goal of the attacker is
to recover the secret exponent d. A common method to perform a modular
exponentiation is the square and multiply algorithm (Alg. 2. 7). This algorithm
is mainly a sequence of modular multiplications and squares (which we will view
as simple multiplications of a value by itself). When implemented in a scholar
way, modular multiplications are time-consuming operations. Montgomery [52]
proposed a clever way to speed-up these operations, by transferring them to a
modulus which is better suited to the machine’s internal structure.

Algorithm 2. Square and multiply
x = m
for i = ω − 2 downto 0 do

x = x2 mod n
if di == 1 then

x = x · m mod n
end if

end for
return x

For simplicity, we will not describe Montgomery’s algorithm in the detail
here. For our purpose, it is sufficient to know that, for fixed modulus, the time
for a Montgomery multiplication is constant, independently of the factors, ex-
cept that, if the intermediary result of the multiplication is greater than the

7 Here, dω−1 denotes the most significant bit of d (which we assume to be equal to 1)
and d0 denotes the lsb.

A Tutorial on Physical Security and Side-Channel Attacks 93

modulus, an additional subtraction (called a reduction) has to be performed. In
other words, this means that, depending on the input, the running time of a
Montgomery multiplication can take two values, a “short one” (no final reduc-
tion) or a “long one” (final reduction needed). Of course, for given input values,
we can predict whether the multiplication will be long or short.

The attack is an iterative divide and conquer attack: we will start by attack-
ing the first unknown bit dω−2, and, at each step of the attack, assume we know
bits dω−1 . . . di+1 and recover bit di.

Let us begin by dω−2. If this bit is equal to 1, the first loop pass in Alg 2.
will involve a multiplication by m (line 5). As we have seen, this multiplication
can be either long or short and, since no secret value is involved before this step,
we can, for a given message m, determine whether this multiplication would be
long or short. What we will do is partition our set of messages according to this
criterion: all messages for which that first multiplication would be long will be
put in subset A, and all messages for which that multiplication will be short will
be put in subset B.

What is the influence of this step on the total running time? For all messages
of subset A, the first pass in the loop has taken slightly more time than for all
messages of subset B. What we expect is that this first pass will on average have
a noticeable influence on the total running time, so that actual total running
times for messages from subset A will be slightly longer. We cannot simulate
further passes in the loop, since their behavior (and hence the evolution of x)
depend on secret parameters bω−3 . . . b0. So we will simply consider them as
noise, hoping that their influence on messages from subset A will globally be the
same than on subset B.

An important point in the attack is that the simulation and partition are
based on the assumption that the first bit of the secret exponent is equal to 1. If
this is not the case, then the conditional step we are targeting is not executed.
Thus, our predictions of long or short operations will not correspond to any
reality8. Our partition in sets A and B should then be roughly random, and
there is no reason why we should observe any difference between the running
times of subset A and B.

To conduct the attack, we will simply revert that argument: assuming dω−2 =
1, we build a partition as described above, and compare the average running
times of the two subsets. If the running times are significantly different, we
conclude that our assumption that dω−2 = 1 was true, otherwise, we conclude
dω−2 = 0.

Once this bit has been determined, we have enough information to simulate
the square and multiply until the second pass, and hence attack the next bit.
Note that this does not require a new measurement set: we simply build a new
partition of the same set.

8 This argument is a bit too simplistic: in fact, the successive Montgomery multiplica-
tions of a square and multiply are not independent. Characterizing this fact allowed
to greatly improve the attack’s efficiency, but this falls outside the scope of this
tutorial.

94 F. Koeune and F.-X. Standaert

6.3 General Idea

The above argument can be generalized as follows. For a given algorithm involv-
ing a secret parameter, we view the global running time as a sum of random
variables T =

∑N
i=1 Ti corresponding to the various steps of the algorithm,

and each individual execution of the algorithm as a realization of this random
variable.

If we can – based on a key guess – simulate the computation and its asso-
ciated running time up to step k, we can filter the measured running times by
subtracting the parts corresponding to these steps. So, if input value mj yielded
a measured running time tj and a simulated computation time tEST

j , we estimate
the remaining running time as tREM

j = tj − tEST
j , corresponding to a realization

of the random variable T k =
∑N

i=k+1 Ti. If our key guess is correct, this filtering
should reduce the variance (and the correct guess corresponds to the one that
reduces variance the most).

We can generalize this further by characterizing the probabilities for an ob-
servation under the admissible hypotheses and the a priori distribution of these
hypotheses, and deriving a decision strategy. The appropriate statistical tools
for this purpose is maximum likelihood estimation or, better, optimal decision
strategy. Schindler [62,63] applied an optimal decision strategy to the above sce-
nario (square and multiply with Montgomery multiplication), and showed that
this led to a drastic improvement in the attack’s efficiency.

7 Power Analysis Attacks

In addition to its running time, the power consumption of a cryptographic device
may provide much information about the operations that take place and the in-
volved parameters. This is the idea of power analysis, first introduced by Kocher
et al. in [43], that we describe in the context of a smart card implementation.

7.1 Measuring Phase

Measuring the power consumption of a smart card is a pretty easy task: as the
clock ticks, the card’s energy is also provided by the terminal, and can there-
fore easily be obtained. Basically, to measure a circuit’s power consumption, a
small (e.g., 50 ohm) resistor is inserted in series with the power or ground input.
The voltage difference across the resistor divided by the resistance yields the
current. Well-equipped electronics labs have equipment that can digitally sam-
ple voltage differences at extraordinarily high rates (over 1GHz) with excellent
accuracy (less than 1% error). Devices capable of sampling at 20MHz or faster
and transferring the data to a PC can be bought for less than US$ 400.

7.2 Simple Power Analysis

Simple Power Analysis (SPA) attempts to interpret the power consumption of
a device and deduce information about the performed operations or involved

A Tutorial on Physical Security and Side-Channel Attacks 95

Fig. 5. SPA monitoring from a single DES operation performed by a typical smart
card [43]. The upper trace shows the entire encryption operation, including the initial
permutation, the 16 DES rounds, and the final permutation. The lower trace is a
detailed view of the second and third rounds.

parameters. This is better illustrated by an example. Fig. 5, taken from the
original description of power analysis, shows the consumption curve (named a
trace) of a device performing a DES operation. It clearly shows a pattern that
is repeated 16 times and corresponds to the 16 rounds of DES. The lower part
of the figure is a detailed view of two rounds, providing more information about
the round’s substeps.

Of course, this information is not an attack in itself. Everybody knows that
DES has 16 rounds, and knowing that a device is performing a DES encryption
does not expose its secrets at all. According to our Kerckhoffs assumption, the
cryptographic algorithm is known to the attacker anyway. However, there are
cases in which this sequence of operations can provide useful information, mainly
when the instruction flow depends on the data. For example, let us come back
to exponentiation through the square and multiply algorithm. If the square op-
eration is implemented differently than the multiply – a tempting choice, as this
will allow specific optimizations for the square operation, resulting in faster code
– and provided this difference results in different consumption patterns, then the
power trace of an exponentiator directly yields the exponent’s value. Similarly,
some hardware multipliers behave differently when one of their operands is zero,
which allows immediate return of the result, but exposes this input value. Gen-
erally speaking, all programs involving conditional branch operations depending
on secret parameters are at risk.

However, power consumption may also depend on the data manipulated. This
leads to a more general class of attacks that is investigated in the next section.
So, SPA typically targets variable instruction flow, whereas Differential Power
Analysis and its variants target data-dependence.

In practice, instruction flow exposing is a point where the security of smart
cards and FPGAs may differ. On the one hand, sequential computing in smart
cards involves that at one specific instant, only one of the operations is running,
e.g. either square or multiply in our previous example. This makes it possible
to distinguish operations by a simple visual inspection of the power traces. On

96 F. Koeune and F.-X. Standaert

the other hand, in FPGAs, parallel computation (if used in the design) prevents
this visual inspection, as the power consumption will not only be the one of the
targeted operation.

7.3 Differential Power Analysis

As we said, the idea of a divide and conquer attack is to compare some charac-
teristic to the values being manipulated. One of the simplest comparison tools
we can imagine is mean comparison, used in the original power analysis attack:
Differential Power Analysis (DPA) [43]. As it is pretty intuitive, we will begin
by studying it, in the context of DES encryption.

Here, the characteristic we will focus on is an arbitrary output bit b of an
arbitrary S-box at the 16th round (say the first bit of S1’s output), and we will
observe this characteristic through its associated power consumption. In fact,
we have no idea of when this value is actually computed by the cryptographic
device, nor do we know what its associated power consumption may look like.
The only thing we know for sure is that, at some point in time, that value will be
manipulated (computed, stored, . . .) by the cryptographic device and that the
power consumption of the device depends on this data. To expose that value, we
will use a method very similar to the one we used for timing attack: partitioning
and averaging.

Let us first summarize the idea. We will perform a large number of encryp-
tions with variable inputs and record the corresponding consumption curves.
Then, we will partition our set in two subsets: one, A, for which the target bit
was equal to 0, the other, B for which the target bit was 1. In order to do this
partitioning, we need to be able to estimate the value of bit b. We have access
to the value R15 that entered the last round function, since it is equal to L16
(Fig. 3(a)). Looking at the round function in more detail (Fig. 3(b)), we see
that six specific9 bits of R15 will be XORed with six specific bits of the key,
before entering the S-box. So, doing a guess on a 6-bit key value, we are able
to predict the value of b. This means that we actually have 26 partitions of our
measurements, one for each possible key.

We will then compute the average power consumption for messages in subset
A, and subtract it from the average power consumption for messages in subset
B (for each possible partition). Since all computations for subset A involved
manipulating a 0 at a point where all computations for subset B involved ma-
nipulating a 1, we should observe notable differences at points in time where
this value was actually manipulated, whereas we expect other points, which are
unrelated to b, to behave as noise and be cancelled in subtraction. Of course, this
will only be true provided our initial key guess is correct, and we will in fact use
our observation as an oracle to validate this key guess: only the correct key guess
(corresponding to the correct partition) should lead to significant differences.

9 By specific we mean that they are chosen according to fixed permutation functions,
so we can identify them independently of any key value.

A Tutorial on Physical Security and Side-Channel Attacks 97

Fig. 6. DPA traces from [43]

Figure 6, taken from the original paper describing DPA, shows traces corre-
sponding to correct and incorrect key guesses: the top trace is the average power
consumption among the whole sample; the curve below shows the differential
trace corresponding to the right key guess (and hence right partition), and the
two bottom curves show differential traces for wrong key guesses. The spikes are
clearly visible.

According to Messerges, such a difference of mean test is relevant because,
at some point during a software DES implementation, the microprocessor needs
to compute b. When this occurs or any time data containing this selection bit is
manipulated, there will be a slight difference in the amount of power dissipated,
depending on the values of these bits. What we just did is in fact building a
model of the smart card behavior. The model is, in this case, pretty elementary,
but this modelling phase is nonetheless an indispensable part of the attack.

Finally, once this 6-bit subkey has been determined, the attack goes on by
focusing on other S-boxes and target bits.

7.4 Correlation Attack

Looking at the previous descriptions, it is easy to see that a DPA is far from
making an optimal use of the sampled measurements. In this section, we describe
two possible improvements.

A first improvement, usually denoted as the “multiple bit” DPA, comes when
observing that the key guess performed in a DPA does not only allow to predict

98 F. Koeune and F.-X. Standaert

the bit b, but all the four output bits of S1. As a consequence, one may separate
the measurements in two sets according to these multiple bit values: one set
corresponding to “all zeroes”, the other one to “all ones”. This improves the
attack signal to noise ratio. However, as multiple bit attacks only consider the
texts that give rise to “all something” values, it is suboptimal and a lot of texts
(measurements) are actually not used. The correlation analysis allows solving
this problem and constitutes a second improvement. Correlation Power Analysis
usually hold in three steps.

– First, the attacker predicts the power consumption of the running device, at
one specific instant, in function of certain secret key bits. For example, let
us assume that the power consumption of the DES implementation depends
of the Hamming weight of the data processed10. Then, the attacker could
easily predict the value of S1’s output Hamming weight, for the 26 possible
values of the key guess and N different input texts. This gives 26 possible
predictions of the device power consumption and the result of this prediction
is stored in a prediction matrix.

– Secondly, the attacker measures the power consumption of the running de-
vice, at the specific time where it processes the same input texts as during
the prediction phase. The result of this measurement is stored in a con-
sumption vector.

– Finally, the attacker compares the different predictions with the real, mea-
sured power consumption, using the correlation coefficient11. That is, he
computes the correlation between the consumption vector and all the
columns of the prediction matrix (corresponding to all the 26 key guesses).
If the attack is successful, it is expected that only one value, corresponding
to the correct key guess, leads to a high correlation coefficient.

Such an attack has been successfully applied to a variety of algorithms and im-
plementations, e.g. in [13,55,67]. As an illustration, Figure 7 shows the result
of a correlation attack against an implementation of the DES [68]. It is clearly
observed that the correct key is distinguishable after 500 measurements.

To conclude this section, a number of points are important to notice:

– Correlation power analysis (as any power analysis attack targeting data de-
pendencies) requires a power consumption model. The quality of this model

10 As already mentioned, this is a typical model for the power consumed in smart cards.
11 Let M(i) denote the ith measurement data (i.e. the ith trace) and M the set of

traces. Let P (i) denote the prediction of the model for the ith trace and P the set
of such predictions. Then we calculate:

C(M, P) =
μ(M × P) − μ(M) × μ(P)√

σ2(M) × σ2(P)
(1)

where μ(M) denotes the mean of the set of traces M and σ2(M) its variance.

A Tutorial on Physical Security and Side-Channel Attacks 99

200 400 600 800 1000 1200 1400 1600 1800 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

number of plaintexts

co
rr

el
at

io
n

the right 6 MSBs of the key

Fig. 7. A correlation attack against the Data Encryption Standard

has a strong influence on the attack efficiency. However, this leakage model
does not mandatorily have to be known a priori by the attacker and can be
built from measurements. This is the context of template attacks.

– Next to the leakage model, the synchronization of measurements is another
typical issue in side-channel attacks. Fundamentally, the easiest synchroniza-
tion is to perform the statistical test on the complete sampled data (this is
typically done in DPA). However, when the statistical test becomes compu-
tationally intensive, such a technique may become cumbersome to deal with
in practice. Some knowledge about the design or more advanced synchro-
nization techniques (e.g. FFT-based) usually solve the problem.

– As SPA, DPA-like attacks are affected by parallel computing. This is easily
seen when observing the DES design in Appendix B. Say we observe an 8-
bit smart card implementation. When S1’s output is computed, the sampled
power consumption relates to the four predicted S-box output bits and 4
other (unknown) bits. These unknown bits basically add some algorithmic
noise to the measurements. Say we observe an FPGA implementation with all
the S-boxes computed in parallel. Then, only 4 bits are predicted out of the
32 actually computed in the device. This means that the power consumption
will be affected by more algorithmic noise. In general, as already mentioned
in the context of fault insertion attacks, parallel computing improves security
against certain physical attacks.

– Remark finally that the described correlation power analysis is still not op-
timal. Techniques based on a maximum likelihood detection of the correct
key offer even better results. However, as the power consumption models
in use (i.e. based on the Hamming weight, distance of the data processed)
have a linear dependence, correlation provides a simple and efficient tool for
attacking devices in practice.

100 F. Koeune and F.-X. Standaert

8 EMA

Any movement of electric charges is accompanied by an electromagnetic field.
Electromagnetic attacks, first introduced by Quisquater and Samyde [58], and
further developed in [59,26] exploit this side channel by placing coils in the
neighborhood of the chip and studying the measured electromagnetic field.

The information measured can be analyzed in the same way as power con-
sumption (simple and differential electromagnetic analysis – SEMA and DEMA –
or more advanced correlation attacks), but may also provide much more informa-
tion and are therefore very useful, even when power consumption is available12.
As a matter of fact, 3D positioning of coils might allow to obtain much more
information from the device’s components. Moreover, Agrawal et al. [2] showed
that EM emanations consist of a multiplicity of signals, each leaking somewhat
different information about the underlying computation. They sort the EM em-
anations in two main categories: direct emanations, i.e. emanations that result
from intentional current flow, and unintentional emanations, caused by coupling
effects between components in close proximity. According to them, unintentional
emanations can prove much more useful that direct emanations. Moreover, some
of them have substantially better propagation than direct emanations, which
enables them to be observed without resorting to invasive attacks (and even, in
some cases, to be carried out at pretty large distances - 15 feet! - which brings
it to the field of tempest-like attacks [1]).

To summarize, EMA measurement phase is much more flexible and challeng-
ing that power measurement phase, and the provided information offers a wide
spectrum of potential information. On the other hand, this information may be
exploited using the same basic or advanced techniques as for power analysis,
even if optimal decision models can be adapted to the specificities of EMA.

In essence, EMA is a non-invasive attack, as it consists in measuring the
near field. However, this attack is made much more efficient by depackaging the
chip first, to allow nearer measurements and to avoid perturbations due to the
passivation layer.

9 Countermeasures

Countermeasures against physical attacks range among a large variety of solu-
tions. However, in the present state of the art, no single technique allows to
provide perfect security, even considering a particular attack only. Protecting
implementations against physical attacks consequently intends to make the at-
tacks harder. In this context, the implementation cost of a countermeasure is
of primary importance and must be evaluated with respect to the additional
security obtained. The exhaustive list of all possible solutions to protect crypto-
graphic implementations from physical opponents would deserve a long survey
12 One can of course imagine contexts in which power consumption cannot be obtained,

but where it is possible to measure the radiated field, for example from a short
distance.

A Tutorial on Physical Security and Side-Channel Attacks 101

in itself. In this section, we will only suggest a few exemplary proposals in order
to illustrate that security can be added at different levels. We refer the reader
to [57] for a more comprehensive (although slightly outdated) review of existing
countermeasures.

The most direct way to prevent physical opponents is obviously to act at the
physical/hardware level. A typical example related to probing is the addition of
shields, conforming glues, or any process that makes the physical tempering of
a device more complex. Detectors that react to any abnormal circuit behaviors
(light detectors, supply voltage detectors, ...) may also be used to prevent probing
and fault attacks [69]. With respect to side-channel attacks, simple examples of
hardware protection are noise addition, or the use of detachable power supplies
[65]. However, as detailed in [22,47], none of these methods provide a perfect
solution.

Close to the physical level, technological solutions can also be considered.
There exist circuit technologies that offer inherently better resistance against
fault attacks (e.g. dual rail logic [72]) or side-channel attacks (e.g. any dynamic
and differential logic style [45,70]). While these solutions may be very interesting
in practice, because they can be combined with good performance, they do not
offer any theoretical guarantee of security either. For example, dynamic and
differential logic styles usually make the modelling of the power consumption
more difficult (no simple prediction, smaller data dependencies of the leakage)
but theoretically, such a model can always be obtained by the mean of template
attacks (see next section).

Finally, most of the proposed techniques aim to counteract fault and side-
channel attacks at the algorithmic level. Certain solutions, such as the random-
ization of the clock cycles, use of random process interrupts [48] or bus and
memory encryption [14,27], may be used to increase the difficulty of successfully
attacking a device, whatever physical attack is concerned. Most solutions how-
ever relate to one particular attack. With respect to faults, they mainly include
different kinds of error detection/correction methods based on the addition of
space or time redundancies [64,41,35,40]. The issue regarding these techniques is
that their cost is frequently close to naive solutions such as duplication or rep-
etition. Regarding side-channel attacks, a lot of countermeasures intend to hide
(or mask) the leakage or to make it unpredictable. One could for example think
about performing a “square and multiply always” algorithm (i.e. always perform
a multiplication and discard the result if the operation was not necessary) for
exponentiation, and using a similar “reduce always” method for Montgomery
multiplication in order to counter timing attacks13. Another countermeasure
consists in preventing the attacker from being able to make predictions about
intermediary values, a simple example of which is Kocher’s blinding [42]. Other
typical examples are in [4,19,28]. Once again, such protections are not perfect
and, in the case of block ciphers, for example, have been shown to be susceptible

13 These are of course naive methods, which have been widely improved in the litera-
ture.

102 F. Koeune and F.-X. Standaert

to higher-order side-channel attacks. Moreover, their implementation cost is also
an issue.

In general, good security may nevertheless be obtained by a sound combina-
tion of these countermeasures. However, it is more an engineering process than
a scientific derivation of provably secure schemes. Theoretical security against
physical attacks is a large scope for further research.

10 More Advanced Attacks and Further Readings

Most advanced scenarios generally aim to improve the attacks’ efficiency (i.e.
to reduce the number of physical interactions required), to make them more
general or to defeat certain countermeasures. We give here typical examples of
such improvements that are also good directions for further readings.

For power and Electromagnetic analysis: (1) Multi-channel attacks [3] basi-
cally aim to improve the attacks’ efficiency by making an optimal use of different
available leakages, based on a maximum likelihood approach. (2) Template at-
tacks [20] intend to remove the need for a leakage model and consequently make
power and electromagnetic analysis more general. For this purpose, they act in
two separate steps: (a) build a model based on sampled data, using a template of
the target device (b) use maximum likelihood to determine the key whose leak-
age profile matches the best the one of the device under attack. Remark that
templates inherently allow to defeat a large number of countermeasures. (3)
Second-order attacks [51,71] finally target implementations in which the leakage
has been masked. Contrary to first order attacks that aim to predict the power
consumption of one specific operation at one specific instant during a crypto-
graphic computations, higher-order techniques take advantage of correlations
existing between multiple operations, possibly performed at different instants.

Another research lead is to explore the feasibility of an attack in a different
context. For example, some authors demonstrated that timing attacks can also
be conducted against a classical desktop computer, or even against a server
accessed through a network connection [15,8]. Moreover, Bernstein argues that
the complexity of a general-purpose CPU (multiple cache levels, pipelining, . . .)
might make timing attacks extremely difficult to prevent on such platforms.

Elliptic curve cryptography has been the field of a large number of pub-
lications regarding physical attacks. As elliptic curve operations are basically
transpositions of classical operations in another mathematical structure, many
of the aforementioned attacks can be transposed to this context too. On the
other hand, this structure offers a degree of flexibility that allows several specific
countermeasures to be designed in an efficient way (see [36,34,33,24,21], to only
name a few).

11 Conclusion

In this paper, we presented a number of practical concerns for the security of
cryptographic devices, from an intuitive point of view. It led us to cover recently

A Tutorial on Physical Security and Side-Channel Attacks 103

proposed attacks and discuss their respective characteristics as well as possible
countermeasures. The discussion clearly underlines that probing, side-channel or
fault attacks constitute a very significant threat for actual designers. The gen-
erality of these attacks was suggested in the tutorial, as we mainly investigated
algorithmic issues. However, it must be noted that the actual implementation
of physical attacks (and more specifically, their efficiency) may be significantly
platform-dependent. Moreover, the presented techniques usually require a cer-
tain level of practical knowledge, somewhat hidden in our abstract descriptions.

From an operational point of view, the present state of the art suggests that
good actual security may be obtained by the sound combination of counter-
measures. However, significant progresses are still required both in the practical
setups for physical interactions with actual devices and in the theoretical un-
derstanding of the underlying phenomenons. The development of a theory of
provable security is therefore a long term goal.

Acknowledgements

The authors are grateful to W. Schindler for useful comments.

References

1. NSA tempest series, Available at http://cryptome.org/#NSA--TS.
2. D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi, The EM side channel, in

Kaliski et al. [38].
3. D. Agrawal, J. R. Rao, and P. Rohatgi, Multi-channel attacks, Proceedings of the

5th International Workshop on Cryptographic Hardware and Embedded Systems
(CHES) (Cologne, Germany) (C. Walter, Ç. K. Koç, and C. Paar, eds.), Lecture
Notes in Computer Science, vol. 2779, Springer-Verlag, September 7-10 2003, pp. 2–
16.

4. M.-L. Akkar and C. Giraud, An implementation of DES and AES, secure against
some attacks, in Çetin K. Koç et al. [16].

5. R. Anderson and M. Kuhn, Tamper resistance – a cautionary note, Proc. of the
second USENIX workshop on electronic commerce (Oakland, California), Nov. 18-
21 1996, pp. 1–11.

6. , Low cost attacks on tamper resistant devices, Proc. of 1997 Security Proto-
cols Workshop, Lectures Notes in Computer Science (LNCS), vol. 1361, Springer,
1997, pp. 125–136.

7. R.J. Anderson, Security engineering, Wiley & Sons, New York, 2001.
8. Daniel J. Bernstein, Cache-timing attacks on AES, Available at

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf, November 2004.
9. E. Biham and A. Shamir, Differential fault analysis of secret key cryptosystems,

Proc. of Advances in Cryptology – Crypto ’97 (Berlin) (Burt Kaliski, ed.), vol.
1294, Springer-Verlag, 1997, Lecture Notes in Computer Science Volume 1294,
pp. 513–525.

10. J. Blömer and J.P. Seifert, Fault based cryptanalysis of the advanced encryp-
tion standard (AES), Cryptology ePrint Archive: Report 2002/075. Available at
http://eprint.iacr.org.

104 F. Koeune and F.-X. Standaert

11. D. Boneh (ed.), Advances in cryptology - CRYPTO ’03, Lectures Notes in Com-
puter Science (LNCS), vol. 2729, Springer-Verlag, 2003.

12. D. Boneh, R.A. DeMillo, and R.J. Lipton, On the importance of checking crypto-
graphic protocols for faults, Advances in Cryptology - EUROCRYPT ’97, Konstanz,
Germany (W. Fumy, ed.), LNCS, vol. 1233, Springer, 1997, pp. 37–51.

13. E. Brier, C. Clavier, and F. Olivier, Correlation power analysis with a leakage
model, proceedings of CHES, Lectures Notes in Computer Science (LNCS), vol.
3156, Springer, 2004, pp. 16–29.

14. E. Brier, H. Handschuh, and C. Tymen, Fast primitives for internal data scrambling
in tamper resistant hardware, in Çetin K. Koç et al. [16], pp. 16–27.

15. B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux, Password interception in a
SSL/TLS channel, in Boneh [11].

16. Çetin K. Koç, David Naccache, and Christof Paar (eds.), Cryptographic Hardware
and Embedded Systems - CHES 2001, Lectures Notes in Computer Science (LNCS),
vol. 2162, Springer-Verlag, August 2001.

17. Çetin K. Koç and Christof Paar (eds.), Cryptographic Hardware and Embedded
Systems - CHES ’99, Lectures Notes in Computer Science (LNCS), vol. 1717,
Springer-Verlag, August 1999.

18. Çetin K. Koç and Christof Paar (eds.), Cryptographic Hardware and Embedded
Systems - CHES 2000, Lectures Notes in Computer Science (LNCS), vol. 1965,
Springer-Verlag, August 2000.

19. S. Chari, C. Jutla, J. Rao, and P. Rohatgi, Towards sound approaches to counteract
power-analysis attacks, Advances in Cryptology - CRYPTO ’99 (M. Wiener, ed.),
Lectures Notes in Computer Science (LNCS), vol. 1666, Springer-Verlag, 1999.

20. S. Chari, J.R. Rao, and P. Rohatgi, Template attacks, in Kaliski et al. [38].
21. Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye, Low-cost solutions for pre-

venting simple side-channel analysis: Side-channel atomicity, IEEE Transactions
on Computers 53 (2004), no. 6.

22. C. Clavier, J.S. Coron, and N. Dabbous, Differential power analysis in the presence
of hardware countermeasures, in Kaliski et al. [39].

23. K. Compton and S. Hauck, Reconfigurable computing: A survey of systems and
software, ACM Computing Surveys 34 (2002), no. 2.

24. J.-S. Coron, Resistance against differential power analysis for elliptic curves cryp-
tosystems, in Çetin K. Koç and Paar [17].

25. J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, and J.-
L. Willems, A practical implementation of the timing attack, Proc. CARDIS
1998, Smart Card Research and Advanced Applications (J.-J. Quisquater and
B. Schneier, eds.), LNCS, Springer, 1998.

26. K. Gandolfi, C. Mourtel, and F. Olivier, Electromagnetic analysis: Concrete results,
Proc. of Cryptographic Hardware and Embedded Systems (CHES 2001) (Çetin
Kaya Koç, David Naccache, and Christof Paar, eds.), Lecture Notes in Computer
Science, vol. 2162, Springer, 2001, pp. 251–261.

27. Jovan D. Golic, DeKaRT: A new paradigm for key-dependent reversible circuits, in
Kaliski et al. [39], pp. 98–112.

28. L. Goubin and J. Patarin, DES and differential power analysis: the duplication
method, in Çetin K. Koç and Paar [17].

29. P. Gutmann, Secure deletion of data from magnetic and solid-state memory, Proc.
of 6th USENIX Security Symposium, 1997, pp. 77–89.

30. , Data remanence in semiconductor devices, Proc. of 7th USENIX Security
Symposium, 1998.

A Tutorial on Physical Security and Side-Channel Attacks 105

31. Helena Handschuh, Pascal Paillier, and Jacques Stern, Probing attacks on tamper-
resistant devices, in Çetin K. Koç and Paar [17].

32. Yuval Ishai, Amit Sahai, and David Wagner, Private circuits: Securing hardware
against probing attacks, in Boneh [11].

33. K. Itoh, J. Yajima, M. Takenaka, and N. Torii, DPA countermeasures by improving
the window method, in Kaliski et al. [38].

34. T. Izu and T. Takagi, Fast parallel elliptic curve multiplications resistant to side
channel attacks, Proc. of PKC ’2002 (David Naccache and Pascal Paillier, eds.),
Lecture Notes in Computer Science, vol. 2274, Springer, 2002, pp. 335–345.

35. N. Joshi, K. Wu, and R. Karry, Concurrent error detection schemes for involution
ciphers, in Çetin K. Koç and Paar [18], pp. 400–412.

36. M. Joye and J.-J. Quisquater, Hessian elliptic curves and side-channel attacks, in
Çetin K. Koç et al. [16].

37. Marc Joye, Arjen K. Lenstra, and Jean-Jacques Quisquater, Chinese remaindering
based cryptosystems in the presence of faults, Journal of cryptology 12 (1999),
no. 4, 241–245.

38. Burton S. Kaliski, Çetin K. Koç, and Christof Paar (eds.), Cryptographic Hardware
and Embedded Systems - CHES 2002, Lectures Notes in Computer Science (LNCS),
vol. 2523, Springer-Verlag, August 2002.

39. Burton S. Kaliski, Çetin K. Koç, and Christof Paar (eds.), Cryptographic Hardware
and Embedded Systems - CHES 2003, Lectures Notes in Computer Science (LNCS),
vol. 2779, Springer-Verlag, September 2003.

40. M. Karpovsky, K.J. Kulikowski, and A. Taubin, Differential fault analysis attack re-
sistant architectures for the advanced encryption standard, proceedings of CARDIS
2004.

41. R. Karri, G. Kuznetsov, and M. Gössel, Parity-based concurrent error detection of
substitution-permutation network block ciphers, in Kaliski et al. [39].

42. P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems, Advances in Cryptology - CRYPTO ’96, Santa Barbara, California
(N. Koblitz, ed.), LNCS, vol. 1109, Springer, 1996, pp. 104–113.

43. P. Kocher, Jaffe J., and B. Jub, Differential power analysis, Proc. of Advances in
Cryptology – CRYPTO ’99 (M. Wiener, ed.), LNCS, vol. 1666, Springer-Verlag,
1999, pp. 388–397.

44. Olivier Kömmerling and Markus G. Kuhn, Design principles for tamper-resistant
smartcard processors, Proc. of USENIX Workshop on Smartcard Technology
(Smartcard ’99), 1999.

45. F. Mace, F.-X. Standaert, I. Hassoune, J.-D. Legat, and J.-J. Quisquater, A dy-
namic current mode logic to counteract power analysis attacks, proceedings of
DCIS, 2004.

46. D.P. Maher, Fault induction attacks, tamper resistance, and hostile reverse engi-
neering in perspective, Financial Cryptography: First International Conference (FC
’97) (R. Hirschfeld, ed.), Lectures Notes in Computer Science (LNCS), vol. 1318,
Springer-Verlag, 1997.

47. S. Mangard, Hardware countermeasures against DPA - a statistical analysis of
their effectiveness, proceedings of CT-RSA, Lecture Notes in Computer Science,
vol. 2964, Springer-Verlag, 2004, pp. 222–235.

48. D. May, H. Muller, and N. Smart, Randomized register renaming to foil DPA, in
Çetin K. Koç et al. [16].

49. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of applied cryp-
tography, CRC Press, 1997.

106 F. Koeune and F.-X. Standaert

50. T. S. Messerges, E. A. Dabbish, and R. H. Sloan, Investigations of power analysis
attacks on smartcards, Proc. USENIX Workshop on Smartcard Technology, 1999.

51. Th.S. Messerges, Using second-order power analysis to attack DPA resistant soft-
ware, in Çetin K. Koç and Paar [18].

52. P.L. Montgomery, Modular multiplication without trial division, Mathematics of
Computation 44 (1985), no. 170, 519–521.

53. National Bureau of Standards, FIPS 197, Advanced Encryption Standard, Federal
Information Processing Standard, NIST, U.S. Dept. of Commerce,November 2001.

54. , FIPS PUB 46, The Data Encryption Standard, Federal Information Pro-
cessing Standard, NIST, U.S. Dept. of Commerce, Jan 1977.

55. S.B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, Power-analysis attack on an
asic aes implementation, proceedings of ITCC, 2004.

56. J.-J. Quisquater and D. Samyde, Eddy current for magnetic analysis with active
sensor, Proc. of Esmart 2002, 2002.

57. Jean-Jacques Quisquater and François Koeune, Side-channel at-
tacks: state-of-the-art, CRYPTREC project deliverable, available at
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/doc/1047 Side Channel
report.pdf, October 2002.

58. Jean-Jacques Quisquater and David Samyde, A new tool for non-intrusive anal-
ysis of smart cards based on electro-magnetic emissions: the SEMA and DEMA
methods, Eurocrypt rump session, 2000.

59. , Electromagnetic analysis (EMA): measures and countermeasures for smart
cards, Smart cards programming and security (e-Smart 2001), Lectures Notes in
Computer Science (LNCS), vol. 2140, Springer, 2001, pp. 200–210.

60. W. Rankl and W. Effing, Smart card handbook, John Wiley & Sons, 1997.
61. R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures

and public key cryptosystems, 21 (1978).
62. W. Schindler, Optimized timing attacks against public key cryptosystems, Statistics

& Decisions (2000), to appear.
63. W. Schindler, J.-J. Quisquater, and F. Koeune, Improving divide and conquer at-

tacks against cryptosystems by better error detection correction strategies, Proc.
of 8th IMA International Conference on Cryptography and Coding (Berlin)
(B. Honary, ed.), Springer, December 2001, Lecture Notes in Computer Science
Volume 2260, pp. 245–267.

64. A. Shamir, How to check modular exponentiation, Presented at the rump session
of EUROCRYPT ’97, Konstanz, Germany.

65. A. Shamir, Protecting smart cards from passive power analysis with detached power
supplies, in Çetin K. Koç and Paar [18].

66. S. Skorobogatov and R. Anderson, Optical fault induction attacks, in Kaliski et al.
[38].

67. F.-X. Standaert, S.B. Ors, and B. Preneel, Power analysis of an fpga implementa-
tion of rijndael: is pipelining a dpa countermeasure?, proceedings of CHES, Lec-
tures Notes in Computer Science (LNCS), vol. 3156, Springer, 2004, pp. 30–44.

68. F.-X. Standaert, S.B. Ors, J.-J. Quisquater, and B. Preneel, Power analysis attacks
against FPGA implementations of the DES, proceedings of FPL, Lecture Notes in
Computer Science, vol. 3203, Springer-Verlag, 2004, pp. 84–94.

69. H. Bar-El et al., The sorcerer’s apprentice guide to fault attacks, Tech. Report
2004/100, IACR eprint archive, 2004, Available at http://eprint.iacr.org.

70. K. Tiri, M. Akmal, and I. Verbauwhede, A dynamic and differential CMOS logic
with signal independent power consumption to withstand differential power analysis
on smart cards, proceedings of ESSCIRC, 2003.

A Tutorial on Physical Security and Side-Channel Attacks 107

71. J. Waddle and D. Wagner, Towards efficient second-order power analysis, proceed-
ings of CHES, Lecture Notes in Computer Science, vol. 3156, Springer-Verlag, 2004,
pp. 1–15.

72. J.D. Waddle and D.A. Wagner, Fault attacks on dual-rail encoded systems, Tech
report UCB//CSD-04-1347, UC Berkeley, August 23, 2004.

A RSA

RSA, named after the initials of its authors, Rivest, Shamir and Adleman [61]
is probably the most famous asymmetric encryption (and signature) primitive.
It basically goes as follows:

1. Alice chooses two large prime numbers p and q and computes their product
n = pq and φ(n) = (p − 1)(q − 1).

2. She also chooses a value e that has no common factor with φ(n) and computes
d = e−1 mod φ(n).

3. Alice publishes (n, e) as her public key, and keeps d as her private key.
4. To send her a message m (with 0 ≤ m < n), Bob computes c = me mod n.
5. Alice decrypts c by computing cd mod n. By Euler’s theorem, it can easily

be shown that the result is equal to m.

We refer the reader to [49] for more information on RSA.

B The Data Encryption Standard : A Case Study

In 1977, the DES algorithm [54] was adopted as a Federal Information Processing
Standard (FIPS) for unclassified government communication. Although a new
Advanced Encryption Standard was selected in October 2000 [53], DES is still
widely used, particularly in the financial sector. DES encrypts 64-bit blocks
with a 56-bit key and processes data with permutations, substitutions and XOR
operations. It is a good example of Feistel cipher and its structure allows very
efficient hardware implementations.

Basically, the plaintext is first permuted by a fixed permutation IP. Next the
result is split into two 32-bit halves, denoted with L (left) and R (right) to which
a round function is applied 16 times. The ciphertext is calculated by applying
the inverse of the initial permutation IP to the result of the 16th round.

The secret key is expanded by the key schedule algorithm to sixteen 48-bit
round keys Ki and in each round, a 48-bit round key is XORed to the text.
The key schedule consists of known bit permutations and shift operations. As a
consequence, finding any round key bit directly involves that the secret key is
corrupted.

The round function is represented in Figure 8 (a) and is easily described by:

Li+1 = Ri

Ri+1 = Li ⊕ f(Ri, Ki)

108 F. Koeune and F.-X. Standaert

f

Li Ri
Ki

Ri

Expansion

Ki

S0 S1 S2 S3 S4 S5 S6 S7

Permutation

(a) DES round (b) f function

Li+1 Ri+1

Fig. 8. Data Encryption Standard

where f is a nonlinear function detailed in Figure 8 (b): the Ri part is first
expanded to 48 bits with the E box, by doubling some Ri bits. Then, it performs
a bitwise modulo 2 sum of the expanded Ri part and the 48-bit round key Ki.
The output of the XOR function is sent to eight non-linear S-boxes. Each of them
has six input bits and four output bits. The resulting 32 bits are permuted by
the bit permutation P.

Finally, DES decryption consists of the encryption algorithm with the same
round keys but in reversed order.

Static Analysis of Authentication�

Riccardo Focardi

Dipartimento di Informatica,
Università Ca’Foscari di Venezia

focardi@dsi.unive.it

Abstract. Authentication protocols are very simple distributed algo-
rithms whose purpose is to enable two entities to achieve mutual and
reliable agreement on some piece of information, typically the identity of
the other party, its presence, the origin of a message, its intended desti-
nation. Achieving the intended agreement guarantees is subtle because
they typically are the result of the encryption/decryption of messages
composed of different parts, with each part providing a “piece” of the
authentication guarantee. This tutorial paper presents the basics of au-
thentication protocols and illustrates a specific technique for statically
analysing protocol specifications. The technique allows us to validate
protocols in the presence of both malicious outsiders and compromised
insiders, with no limitation on the number of parallel sessions.

This paper covers the course “Static Analysis of Authentication” given
by the author at the FOSAD’04 school. The static analysis technique
described here is a joint work with Michele Bugliesi and Matteo Maffei
(Università di Venezia) [8,12].

1 Introduction

Security protocols are designed to provide diverse security guarantees in pos-
sibly hostile environments: typical guarantees include the secrecy of a mes-
sage exchange between two trusted entities, the freshness and authenticity of
a message, the authenticity of a claimed identity, . . . and more. The pres-
ence of hostile entities makes protocol design complex and often error prone,
as shown by many attacks to long standing protocols reported in the litera-
ture (see, e.g., [13,14,22,27,28]). In most cases, such attacks dwell on flaws in
the protocols’ logic, rather than on breaches in the underlying cryptosystem.
Indeed, even when cryptography is assumed as a fully reliable building-block,
an intruder can engage a number of potentially dangerous actions, notably, in-
tercepting/replaying/forging messages, to break the intended protocol invari-
ants. Formal methods have proved very successful as tools for protocol design
and validations. On the one hand, failures to model-check protocols against
formal specifications have lead to the discovery of several attacks (see, e.g.,

� Work partially supported by EU Contract IST-2001-32617 ‘MyThS’ and by MIUR
Project ‘Abstract Interpretation: Design and Applications’ (AIDA).

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 109–132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

110 R. Focardi

[26,28]). On the other hand, static techniques, based on type systems and control-
flow analyses have proved effective in providing static guarantees of correctness
[1,2,5,6,10,16,17].

Informally, authentication protocols enable two entities to achieve mutual
and reliable agreement on some piece of information, typically the identity of
the other party, its presence, the origin of a message, its intended destination.
Even if there are many formalizations of authentication and many formal tools
to verify it, not much has been done on the side of static analysis. Static analysis
techniques like, e.g., type systems and control flow, aim at proving a property of
a program, or a protocol, by only inspecting the source code. They are appealing
because (i) only the code is inspected and there is no need of generating and ex-
ploring all the possible execution sequences; (ii) by exploiting compositionality,
it becomes feasible to (even automatically) prove correctness of protocols with
unbounded number of sessions and participants. These advantages are payed by
approximating the property of interest thus loosing precision: in fact, static anal-
yses are typically sound, i.e., an incorrect protocol is never validated, but not
complete. As a consequence, there might be false-negatives, i.e., correct protocols
that cannot be validated.

This tutorial paper introduces the basics of authentication protocols in a
smooth and incremental way (Section 2), discusses how authentication is formal-
ized in terms of correspondence assertions (Section 3), illustrates a type-based
technique for statically analysing protocol specifications (Section 4) and briefly
discusses related work (Section 5). This paper covers the course “Static Analy-
sis of Authentication” given by the author at the FOSAD’04 school. The static
analysis technique described in Section 4 is a joint work with Michele Bugliesi
and Matteo Maffei (Università di Venezia). Here, we only focus on the basic
ideas and concepts of such analysis and more detail can be found in [8,12].

2 Authentication Protocols

As mentioned above, authentication protocols enable two entities to achieve mu-
tual and reliable agreement on some piece of information, typically the identity
of the other party, its presence, the origin of a message, its intended destina-
tion. Authentication is thus related to the crucial problem of reliably agreeing
on information that is spread on a (possibly untrusted) network like, e.g., the
Internet. In this section, we present the basic techniques to achieve this property,
mainly focussing on its simplest form called entity authentication or identifica-
tion, which can be informally stated as follows:

Entity authentication enable one entity, the claimant, to prove its
claimed identity to another entity, the verifier.

Entity authentication basically amounts to reliably agreeing on the claimant
identity. The application fields are extremely numerous, since identification is a
basic requirement for many applications. For example, we need entity authenti-
cation for personal accounting on a system, physical access to restricted areas,
payment for the use of resources or services, e-commerce, and so on.

Static Analysis of Authentication 111

A first important classification of authentication techniques can be done de-
pending on what they are based on [25]:

1. Something known: the claimant proves its identity by demonstrating the
knowledge of a secret like, e.g., a password, a Personal Identification Number
(PIN), a cryptographic key, . . .

2. Something possessed : the claimant proves its identity by demonstrating the
possession of a physical object like, e.g., a magnetic card, a smart card, a
palmtop or Personal Digital Assistant (PDA), . . .

3. Something inherent : the claimant proves its identity by showing a physical
characteristic or involuntary action like, e.g., a signature, a fingerprint, e
retinal pattern, the writing rate on a keyboard, . . .

It is important to notice that these techniques are often combined together in
order to simplify their use and complement their respective benefits. A very
common example is the cell-phone smart card (i.e., something possessed) which
contains a cryptographic key (i.e., something known) used to authenticate with
the service provider. The user does not need to remember the fairly long crypto-
graphic key contained in the smart card: she is just required to enter a short PIN
(i.e., something known) which enables the smart card to authenticate with the
provider. This “two-phase” authentication has the aim of simplifying the user
task without decreasing the level of security. The use of cryptographic keys to
authenticate will be treated in Section 2.2.

2.1 Password-Based Authentication

The simpler, and undoubtedly most used, authentication scheme is the password-
based one. It is a something known scheme in which the claimant and the verifier
share the knowledge of a secret password. The password is shown by the claimant
in order to authenticate herself to the verifier, as illustrated below:

A B
login?

�
Alice

�
password?

�
“wonderland”

�

Notice that this scheme is perfectly safe if Alice and Bob communication is
protected, but it becomes completely vulnerable whenever the password can be
intercepted by a malicious third party. As a matter of fact, once password secrecy
is lost, anyone knowing it can easily impersonate Alice by just re-running the
protocol above with Bob. When this happens, it is violated the basic property
every authentication protocol should provide:

Non-impersonation S should never be able to impersonate A with B,
even after observing previous protocol runs between A and B.

112 R. Focardi

This ideal property requiring the impossibility of impersonating the claimant is
typically achieved in a computational form:

Non-impersonation (computational) The probability that S imper-
sonates A with B is negligible, even after observing previous protocol
runs between A and B.

where negligible means “is so small that it is not of practical significance”. For
example, in this case, it should be small enough to guarantee that once S has
broken the protocol, A has already changed her password. This computational
version of non-impersonation is of much more practical interest, since in cryptog-
raphy every key can be broken given enough time either by “brute force”, i.e., by
trying all the possible keys, or using some more sophisticated cryptanalysis tech-
nique. Thus, it is important to guarantee that this happens with a probability
that is small enough to make the attack useless.

Even if the password-based scheme is very vulnerable on an untrusted net-
work, like the Internet, it has been used quite widely in the past and is still used
by many web-sites. The telnet protocol is a striking example: in order to con-
nect to a remote host, authentication was implemented by following the above
scheme, thus allowing an intruder to easily intercept the password sent in clear
on the network. Many web-sites are still not protected by cryptography (through,
e.g., the Secure Sockets Layer, SSL, protocol), and, similarly to what happens
with telnet, authentication is achieved by a password or a PIN which is just sent
in clear to the web server.

To develop stronger authentication protocols it is first necessary to ask our-
selves where the weakness of the password-based scheme comes from. The answer
is quite easy to give: proving the knowledge of a secret by just revealing it is very
unsafe, especially if we want to reuse such secret for further authentications! In
the next section we give the basics of challenge-response protocols, whose aim
is exactly to show the knowledge of a secret without revealing it, thus circum-
venting the weakness discussed above. We will see that, even if those protocols
are more solid that password-based ones, some subtle attacks can be yet easily
mounted if the protocols are not carefully developed.

2.2 Challenge-Response Protocols

The idea of challenge-response protocols is to prove the knowledge of a secret
without revealing it: this is done by replying to a claimant’s challenge with a
response that depends on the secret without revealing much of it. More precisely,
knowing the secret it must be easy to check if the response depends on it, but
it must be (computationally) unfeasible to derive the secret from the response.

The generation of these particular responses is based on cryptographic tech-
niques. We thus briefly review the basic notions of cryptography [29]. A cryp-
tosystem S is a quintuple (P , C, K, E, D) where P is the set of plaintext, C is the
set of ciphertexts, K is the set of keys, and E : P ×K → C and D : C×K → P are
the encryption and decryption functions, respectively. Function E, given a plain-
text and an encryption key k, returns the corresponding ciphertext, while func-
tion D, given a ciphertext and the corresponding decryption key k−1, returns

Static Analysis of Authentication 113

the corresponding plaintext. We write Ek(x) and Dk−1(y) in place of E(x, k)
and D(y, k−1), respectively. Formally, we have that Dk−1(Ek(x)) = x, meaning
that decrypting an encrypted message, using the appropriate key, gives back the
original message. When k = k−1 the cryptosystem is symmetric, otherwise it
is asymmetric. Every “good” cryptosystem should fulfill at least the following
properties:

Property 1. the probability of encrypting and decrypting without knowing the
encryption and decryption key is negligible.

Property 2. the probability of finding the encryption and decryption keys by
only observing a ciphertext is negligible.

In practice, there are no cryptosystems with an absolute proof of security in
terms of the properties above. What can be proven are statements like “a given
cryptosystem is secure if it is unfeasible to factor a large number”, i.e., the
security of cryptosystems is given in term of some well-known problem which is
difficult to solve. We are not interested in giving more detail about cryptography.
From now on we will assume the two properties above hold, and we invite the
interested reader to refer to, e.g., [29,25] for more detail about cryptography.

Replay Attacks. Let us now do a first attempt to implement challenge-response
in a very simple, unfortunately flawed, way. Let KAB be a key shared between
Alice and Bob and let E be a symmetric encryption function:

A B
Are you really Alice?

�
EKAB (Yes)

�

When Bob receives the response, he decrypts it through KAB and checks the
reply. Since only Alice and Bob know the secret key, Bob might deduce that this
reply really comes from Alice. As a matter of fact, by property 1, the probability
for an intruder to forge the right response is negligible. Moreover, property 2
guarantees that the secret key is not compromised by divulging encrypted mes-
sages. There is however a tremendous flaw in the protocol due to the fact that
the challenge is always the same and so is the expected response: the intruder
S, as done in the password scheme, just needs to intercept one Alice’s reply and
use it for later authentication.

A B
Are you really Alice?

�
EKAB (Yes)

�
�
S

114 R. Focardi

With S(A) we denote S impersonating A:

S(A) B
Are you really Alice?

�
EKAB (Yes)

�

Notice that S is not breaking cryptography, but is just replaying a message
previously sent by one of the honest parties. For this reason this kind of attacks
are typically called replay-attacks.

So far, we have seen that having a response just depending on the secret is
not of big help if it is always the same: intercepting it is equivalent to intercepting
the secret and naturally leads to replay attacks. In order to make the response
non-reusable we force it to be different at every protocol run. This is achieved
by adding a so called time-variant parameter inside the response. Typical time-
variant parameters are nonces, sequence numbers and time-stamps [25]. Here,
for the sake of simplicity, we only consider nonces, i.e., numbers used only once
that the verifier checks for avoiding replays of old messages. A simple way for
implementing nonces is to use large enough random numbers that are used for
just one session. This idea is better illustrated through an example:

A B
generates a random N

Alice, please encrypt N
�

EKAB (N)
�

decrypts and checks
that N is the same he sent

B decrypts the received message using KAB and accepts only if the result is
equal to nonce N . Let us see how this prevents replay attacks:

A B
Alice, please encrypt N
�

EKAB (N)
�

�
S
. . .

S(A) B
Alice, please encrypt N’
�

EKAB (N)
�

B refuses since N
= N’

Since the response must contain the randomly generated nonce, S cannot reuse
previously intercepted responses. To summarize, we always need that

Static Analysis of Authentication 115

– Challenge is time-variant;
– Response depends on both the challenge and the secret.

Reflection Attacks. Even with time-variant challenges and responses, there is
still a source of possible flaws due to the ambiguity of encrypted messages. Let
us assume that the protocol above can indifferently be run by Alice and Bob
to authenticate with Bob and Alice, respectively. In other words, we assume
that the protocol can also be run with Alice as verifier and Bob as claimant, as
illustrated below:

A B
Bob, please encrypt N

�
EKAB (N)

�

In this (quite realistic) setting, it might happen that the same message is inter-
preted in two different ways, leading to a security breach. Let us see a concrete
example of the so called reflection-attack :

S(A) B
Alice, please encrypt N
�
Bob, please encrypt N

�
EKAB (N)

�

⎫⎬
⎭ Run 2

EKAB (N)
�

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Run 1

The first and the last message are part of Run 1 where A should authenticate
with B. S succeeds impersonating A by starting a second run where he asks B
to authenticate himself apparently with A. To do so S “reflects” in the second
message the nonce N to B and obtains as a response the encryption EKAB (N).
This can be reflected to B to conclude the first run where B asked A to encrypt
N . There are thus two parallel sessions of the same protocol with exchanged roles.
Notice that A might be even off-line, since all the encryptions are performed by
B himself.

The flaw is based on the ambiguity of message EKAB (N) that does not clarify
whether it is a response from Alice to Bob or from Bob to Alice. The use of
symmetric key encryption contributes to this ambiguity since both Alice and
Bob could have encrypted such a message.

The easiest way to make explicit an information is just to include it inside
the encryption, e.g., indicating the claimant of the session:

A B
Alice, please encrypt N
�

EKAB (A,N)
�

116 R. Focardi

Bob now checks both the nonce and the identifier of Alice. If we try to mount
the reflection attack we obtain the following execution:

S(A) B
Alice, please encrypt N
�
Bob, please encrypt N

�
EKAB (B,N)

�

⎫⎬
⎭ Run 2

EKAB (B,N)
�

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Run 1

B refuses since he expects
A as claimant!

Thus, together with a time-variant challenge and a response that depends both
on the challenge and on the secret, we also need that ciphertexts are explicit
enough about who is the claimant and who is the verifier. In many cases, it
is sufficient to specify one of the two, since the other one is deduced by the
cryptographic key. For example, in the protocol above we have only specified the
claimant since the verifier is implicitly the other entity sharing the key with the
claimant (we are assuming that the key is shared between only two participants).
Based on this notions it is possible to develop many protocol variants depending
on which entity is specified (A or B) and, more interestingly, depending on which
messages are encrypted, as discussed below.

2.3 Three Classes of Challenge-Response Protocols

Here, we extend the discussion above to asymmetric encryption and we write
SKA and PKA to denote the private and the public key of entity A. We assume
that only A knows her private key while every entity knows everyone else’s public
key; moreover all messages encrypted with SKA and PKA can be decrypted using
PKA and SKA, respectively. As a consequence, everyone can generate ciphertext
EPKA(M) but only Alice can decrypt it; on the other hand, only Alice can gener-
ate ciphertext ESKA

(M), representing a digital signature, but every other entity
can decrypt it.

We classify nonce-based protocols into three categories depending on what
is encrypted and what is sent in clear [11,8,12].

Plain-Cipher (PC). B sends out the nonce in clear and receives it back encrypted
together with a message which is authenticated. A proves her identity to B
by showing the knowledge of the encryption key. An example is the protocol
discussed so far, that we extend by adding a message M that Alice wants to
authenticate with Bob:

A B
N

�
EKAB (A,N,M)

�

Static Analysis of Authentication 117

This protocol authenticates A sending message M to B, since only A may have
generated the ciphertext. The same effect can be achieved by using B in place
of A in the ciphertext, or, in an asymmetric cryptosystem, using private Alice’s
key SKA in place of KAB. In this latter case it is necessary to specify B in place
of A in the ciphertext, since the private key only indicates the claimant A.

Cipher-Plain (CP). B sends out the nonce encrypted and receives it back in
clear. A proves her identity to B by showing the knowledge of the decryption
key. For example:

A B
EKAB (B,N,M)

�
N

�

This protocol authenticates A receiving message M from B, since only A may
have decrypted the ciphertext. A similar effect is achieved by using A in place
of B in the ciphertext, or, with asymmetric keys, using PKA in place of the
symmetric key KAB.

Cipher-Cipher (CC). The nonce is sent out and received back encrypted. This is
useful if both entities want to exchange messages. A proves her identity to B by
showing the knowledge of either the encryption key (as in PC) or the decryption
key (as in CP). For example:

A B
EPKA

(B,MB,N)
�

EPKB
(A,MA,N)

�

This protocol authenticates A sending message MA to B and receiving message
MB from B, as only A may have decrypted the first ciphertext. Again, the
same effect may be achieved using either the private keys SKB and SKA, or a
symmetric key KAB in place of the two public keys.

Notice that the above mentioned categories are a generalization of POSH (Public
Out Secret Home), SOPH (Secret Out Public Home) and SOSH (Secret Out
Secret Home), introduced in [18]. We actually relax “Secret” into “Cipher” as
handshakes may be composed of signed messages, guaranteeing integrity rather
than secrecy. For example, as already noticed, PC includes protocols with a
cleartext challenge and a signed response, which would not “fit well” into the
POSH category since the nonce is not sent back as a secret. Notice also that PC
and CP are called incoming and outgoing tests in [19].

2.4 A Well Known Example: The Needham-Schroeder Protocol

We illustrate a very well known case study that was discovered to be flawed by
Gavin Lowe in [23]. Using the classification above it is rather easy to see how the
protocol works and where is actually flawed. The original protocol is as follows:

118 R. Focardi

A B
EPKB

(A,NA)
�

EPKA
(NA,NB)

�
EPKB

(NB)
�

The aim is to achieve mutual authentication between A and B. To understand the
protocol logic it is useful to decompose it into two (chained) challenge-response
subprotocols, each achieving unilateral authentication. The first two messages
are indeed a CC challenge-response in which Bob is authenticated to Alice:

A B
EPKB

(A,NA)
�

EPKA
(NA,NB)

�

Similarly, the second and the third message should authenticate Alice to Bob:

A B
EPKA

(NA,NB)
�

EPKB
(NB)

�

However, it is quite evident that this subprotocol does not specify B as verifier
as done for A in the first subprotocol. This lack is indeed the source of the
man-in-the-middle attack discovered in [23] and illustrated below:

A S(A) B
EPKE

(A,NA)
�

EPKB
(A,NA)

�
EPKA

(NA,NB)
�

EPKA
(NA,NB)

�
EPKE

(NB)
�

EPKB
(NB)

�

We have a correct session between A and S which is exploited by S to imper-
sonate A with B, on the right-hand side. The trick is that the response sent
by B does not contain his name and can be thus forwarded by S to A in order
to be decrypted. In the end, B is convinced that A has decrypted NB for him
but instead Alice has decrypted such a nonce for S. So, Bob authenticates Alice
but Alice has started the protocol with the enemy S. How to patch the protocol
should be clear from the discussion above, and we leave it as an exercise.

Static Analysis of Authentication 119

3 Authentication as Correspondence

In this section, we discuss how to formalize authentication as a property of
protocol behaviour. Differently from, e.g., secrecy, authentication is not easily
formulated as a property of the execution state. For example, for secrecy we
can require that we never reach a state where secret data have been learnt by
the intruder S. What about authentication? How can we formalize that S has
impersonated Alice? A very powerful idea was proposed by Woo and Lam in [31].
Let us assume that the start and the termination of a protocol session generate
two observable events, say begin(A, B) and end(B, A).

Definition 1 (Correspondence). A protocol guarantees authentication of A
with B iff every end(B, A) is matched by a previous distinguished begin(A, B).

Intuitively, every time Bob authenticates Alice, then Alice should have started
a session with Bob. We see how this formalization works by reconsidering the
previously illustrated flaws.

A reply attack is characterized by many end’s with just one begin. In fact,
messages from one session are replayed in order to impersonate Alice:

A B
Are you really Alice?

�
begin(A, B)

EKAB (Yes)
�

�
end(B, A)

S
. . .

S(A) B
Are you really Alice?

�
EKAB (Yes)

� end(B, A)

A reflection attack is instead captured since we have a end(B, A) with no match-
ing begin(A, B), but with begin(B, A) instead. As a matter of fact, A might be
even off-line during the attack, and a parallel run of B is exploited to mount the
attack:

S(A) B
Alice, please encrypt N
�
Bob, please encrypt N

� begin(B, A)
EKAB (N)

�
EKAB (N)

� end(B, A)

The man-in-the-middle attack is captured since end(B, A) is not matched by the
required begin(A, B), but by begin(A, S) instead. Alice is running with S and
this session is used to impersonate her with Bob:

120 R. Focardi

A S(A) B
begin(A, S)

EPKE
(A,NA)

�
EPKB

(A,NA)
�

EPKA
(NA,NB)

�
EPKA

(NA,NB)
�

EPKE
(NB)

�
EPKB

(NB)
� end(B, A)

In the next section we show how this dynamic correspondence property may be
proved statically, i.e., by only inspecting the protocol code.

4 Static Analysis
Developing static analyses for authentication protocols is particularly difficult
since authentication is typically provided by encrypting/decrypting messages
which are composed of different parts, each of them providing a “piece” of the
authentication guarantee. As an example, consider the following PC protocol:

A B
N

�
ESKA

(B,M,N)
�

in which Bob is sending to Alice a random nonce N which is signed by Alice
together with a message M and Bob identifier B. Let us recall how each message
component of ESKA

(B,M,N) contributes in achieving authentication: N is needed
to guarantee freshness, i.e., ESKA

(B,M,N) cannot be a replay of an old protocol
session since N is used only once; B specifies the intended receiver of M and the
signature guarantees that A is the sender.

Our approach, first introduced in [10], is based on considering a “minimal” set
of authentication patterns that allow parties to authenticate. Through suitable
tags, we make explicit in the encrypted message which pattern it correspond to.
For example message ESKA

(B,M,N) is tagged as ESKA
(Id(B),Auth(M),VerifPC(N))

to denote the fact that the nonce N is authenticating M to the verifier B in a
PC nonce handshake. When a message is decrypted, tags are recognized by the
party that may exploit them to achieve/provide authentication guarantees.

The advantages of this tag-based approach may be summarized as follows: (i)
it is extremely compositional: tags constitute a common trusted “interface” that
distributed parties may use to authenticate each other; the correct use of tags
is enforced locally (through suitable typing rules) and correctness is preserved
when communicating parties are concurrently executed; (ii) this strong form of
compositionality allows to safely mix different protocols once their sequential

Static Analysis of Authentication 121

components are type-checked; thus, our tagging discipline naturally scales to
multi-protocol settings; (iii) the fact that tags correspond to a small set of a-
priori selected patterns, makes the type system quite simple and easy to use; in
[15] we have implemented a tool that is able to automatically infer tags and types
needed to validate protocols, thus obtaining a completely automated validation
technique for protocol with unbounded number of sessions and participants; (iv)
even if the set of authentication patterns we have selected is small, it is expressive
enough to capture many of the protocols in literature; this gives also new insights
on which are the basic mechanisms for guaranteeing authentication.

In this section we give an overview of the technique. In particular, Section 4.1
presents the ρ-spi calculus, a simple language for specifying cryptographic proto-
cols, Section 4.2 illustrates the types-and-effect system and Section 4.3 discusses
the main safety results. More detail can be found in [8,12].

4.1 A Simple Calculus for Protocols

The ρ-spi calculus derives from the spi calculus [2], and inherits many of the
features of Lysa [5], a version of the spi calculus proposed for the analysis of
authentication protocols. ρ-spi differs from both calculi in several respects: it
incorporates the notion of tagged message exchange from [9], it provides new
authentication-specific constructs, and offers primitives for declaring process
identities and keys.

Table 1. The syntax of ρ-spi calculus

Notation: TAG ∈ {Id, Auth, VerifH , ClaimH |H = PC, CP, CC?, CC!}
m ∈ N ∪ V

M, K ::= Patterns
a, b, k, n names
x, y, z variables
Pub(m) public key
Priv(m) private key
TAG(M) tagged pattern
(M1, M2) pair

P, Q ::= Processes
I � S (principal)
I�!S (replication)
P |Q (composition)
let k = sym-key(I1, I2).P (symmetric-key)
let k = asym-key(I).P (asymmetric-key)

S ::= Sequential Processes
0 (nil)
new(n).S (restriction)
in(M).S (input)
out(M).S (output)
encrypt{M}K as x.S (symmetric encryption)
encrypt{|M|}K as x.S (asymmetric encryption)
decrypt x as {M}K.S (symmetric decryption)
decrypt x as {|M|}K.S (asymmetric decryption)
begin(I1, I2, M1; M2).S (begin)
end(I1, I2, M1; M2).S (end)

122 R. Focardi

The syntax is reported in Table 1 and described below. Patterns, denoted
by M, K, are recursively defined over names, variables, public and private keys,
tagged patterns and pairs We presuppose two countable sets: N of names and
V of variables. We reserve a, b, k, n for names and x, y, z for variables, with m
ranging over both names and variables. Identities ID are a subset of names
and are ranged over by I and J . Identities are further partitioned into trusted
principals IDP , ranged over A and B, and enemies IDE , ranged over by E.
The pair composed by a public key and the corresponding private one is noted
by Pub(m), Priv(m), similarly to [2]. In the rest of the paper, we will use the
following notation convention: Pub = Priv and vice-versa. Tags, denoted by TAG,
are a special category of names. They specify the role of each message component.
Specifically: all identifiers relevant to authentication are tagged by Id; messages
that should be authenticated are tagged by Auth; finally, nonces are tagged
by VerifH or ClaimH , with H ∈ {PC, CP, CC!, CC?}. Such tags specify the role
played by the entity tagged by Id (verifier or claimant) and the kind of nonce
hand-shake. Notice that in CC nonce handshakes we distinguish challenge from
response ciphertexts, denoted by CC? and CC!, respectively.

Processes (or protocols), ranged over by P, Q, are the parallel composition of
principals. Each principal is a sequential process associated with an identity I,
noted I � S. The replicated form I�!S indicates an arbitrary number of copies of
I�S. In order to allow the sharing of keys among principals, we provide ρ-spi with
let-bindings: let k = sym-key(I1, I2).P declares (and binds) the long-term key
k shared between I1 and I2 in the scope P . Similarly, let k = asym-key(I).P
declares, and binds in the scope P , the key pair Pub(k), Priv(k) associated to I.

Sequential processes may never fork into parallel components: this assump-
tion helps assign unique identities to (sequential) processes, and involves no sig-
nificant loss of expressive power as protocol principals are typically specified as
sequential processes, possibly sharing some long-term keys. The sequential pro-
cess 0 is the null process that does nothing, as usual. Process new(n).S generates
a fresh name n local to S. We presuppose a unique (anonymous) public channel,
the network, from/to which all principals, including intruders, read/send mes-
sages. Similarly to Lysa, our input primitive may (atomically) test part of the
message read, by pattern-matching. If the input message matches the pattern,
then the variables occurring in the pattern are bound to the remaining subpart
of the message; otherwise the message is not read at all. For example, process
‘in(Claim(x)).P ’ may only read messages of the form Claim(M), binding x to
M in P . Encryption just binds x to the encrypted message, while decryption
checks if the message contained in x matches the form {M}K (or {|M|}K),
i.e., the payload matches M and is encrypted with the appropriate key. Only
in this case x is decrypted and the variables in the pattern M get bound to
the decrypted messages. Similarly to the input primitive, decryption may also
test part of the decrypted messages by pattern-matching mechanism. Finally,
the begin(I1, I2, M1; M2).S and end(I2, I1, M1; M2).S primitives are used to
check the correspondence assertions [31]. The former primitive declares that I1
is beginning a protocol session with I2 for confirming the reception of message

Static Analysis of Authentication 123

M1 and authenticating message M2; the latter one indicates that I2 is ending a
protocol session with I1 getting confirmation from I1 of the reception of message
M1 and authenticating message M2.

Example 1. To illustrate the use of tags and correspondence assertions, let us
consider the protocols presented so far. The first protocol of Section 2.3 can be
decorated with tags and correspondence assertions as follows:

A B
N�

begin(A, B; M)
EKAB (Id(A), ClaimPC(N), Auth(M))�

end(B, A; M)

The tagged structure specifies that that the nonce N is used by the verifier
B for authenticating M with A in a PC nonce hand-shake. According to the
correspondence assertions, at the end of the protocol B authenticates A sending
message M .

The second protocol of Section 2.3 can be decorated as follows:

A B
EKAB (Id(B), VerifCP(N), Auth(M))

�
begin(A, B, M ;)

N
�

end(B, A, M ;)

Indeed, the nonce N is used by the verifier B for authenticating M with A in
a CP nonce handshake. According to the correspondence assertions, at the end
of the protocol B authenticates A receiving message M .
Finally, the third protocol of Section 2.3 can be decorated as follows:

A B
EPK(A)(Id(B), Auth(MB), VerifCC?(N))

�
begin(A, B, MB; MA)

EPK(B)(Id(A),Auth(MA), ClaimCC!(N))
�

end(B, A, MB ; MA)

Notice that the use of ? and ! in the nonce tag disambiguates whether the
ciphertext is used in a CC handshake as challenge or response. By an inspection
of the correspondence assertions, at the end of the protocol B authenticates A
receiving message MB and sending message MA. ��

124 R. Focardi

Table 2. PC Protocol in ρ-spi calculus

Protocol � let kA = asym-key(A) . (B � !Initiator | A � !Responder)

Initiator � new(n).out(n).in(z).
decrypt z as {|Id(B), Auth(x), VerifPC(n)|}Pub(kA).end(B, A; x).0

Responder � in(x).new(m).begin(A, B; m).
encrypt {|Id(B),Auth(m),VerifPC(x)|}Priv(kA) as z.out(z).0

Example 2. To illustrate the ρ-spi calculus syntax, let us consider the following
public key variant of the first protocol in Example 1.

A B
N

�
ESKA

(B,M,N)
�

The difference is that A signs the response instead of using symmetric cryptog-
raphy. The ρ-spi calculus specification is in Table 2. After declaring the key pair
for A, an unbounded number of instances of B as initiator and an unbounded
number of instances of A as responder are run in parallel. The Initiator B gener-
ates a fresh nonce and sends it in clear on the network. Then it reads a message
from the network and tries to decrypt it with the public key of the responder
A and checks that its own identifier tagged by Id is the first component of the
message payload and the nonce tagged by VerifPC is fresh, i.e., it is the one just
generated. If this is the case, B authenticates A sending message x, namely the
message tagged by Auth. The Responder A receives a nonce from the network,
generates a new message m, declares the start of the session with the initiator
B for authenticating message m, signs m together with the responder identifier
and the nonce (all message components are tagged) and sends the obtained ci-
phertext on the network. ��

Operational Semantics. We define the operational semantics of ρ-spi in terms
of traces, after [7]. A trace is a possible sequence of actions performed by a
process. Each process primitive has an associated action and we denote with
Act the set of all possible actions. The dynamics of the calculus is formalized
by means of a transition relation between configurations, i.e., pairs 〈s, P 〉, where
s ∈ Act∗ is a trace, P is a (closed) process. Each transition 〈s, P 〉 → 〈s :: α, P ′〉
simulates one computation step in P and records the corresponding action in
the trace.

Principals do not directly synchronize with each other. Instead, they may
receive from the unique channel an arbitrary message M known by the envi-
ronment, which models the Dolev-Yao intruder: the environment knows all the
identity labels, the messages sent on the network, the content of ciphertexts
whose decryption key is known, ciphertexts created by its knowledge and all the
keys declared as owned by E together with all the public keys. Finally, it may

Static Analysis of Authentication 125

create fresh names not appearing in the trace. The transition relation is given
in detail in [8,12].

Definition 2 (Traces). The set T (P) of traces of process P is the set of all the
traces generated by a finite sequence of transitions from the configuration 〈ε, P 〉:
T (P) = {s | ∃P ′ s.t. 〈ε, P 〉 →∗ 〈s, P ′〉}

The notion of safety extends the standard correspondence property of [24,31] by
distinguishing between received and sent messages.

Definition 3 (Safety). A trace s is safe if and only if whenever s = s1 ::
end(B, A, M1; M2) :: s2, then s1 = s′1 :: begin(A, B, M1; M2) :: s′′1 , and s′1 :: s′′1 ::
s2 is safe. A process P is safe if, ∀s ∈ T (P), s is safe.

A trace is safe if every end(B, A, M1; M2) action is preceded by a distinct
begin(A, B, M1; M2). Intuitively, this guarantees that whenever B authenticates
A receiving M1 and sending M2, then A has received M1 and has sent M2 in a
protocol session with B.

Example 3. To illustrate the semantics of the calculus and the notion of safety,
let us consider a (flawed) simplification of the protocol of Example 2, obtained
by eliminating the nonce.

A B
ESKA(B,M)

�

The ρ-spi calculus specification may be easily obtained from the one of the
original protocol in Table 2:

Initiatorf � in(z).decrypt z as {|B, x|}Pub(kA).end(B, A; x).0
Responderf � new(m).begin(A, B; m).encrypt {|B, m|}Priv(kA) as z.out(z).0

This protocol suffers of the standard replay attack where S impersonates A by
just replaying a previously intercepted message, which can be observed through
the following execution trace:

asym − key(kA, A) :: new(m) :: begin(A,B; m) ::
encrypt{|B, m|}Priv(kA) :: out({|B, m|}Priv(kA)) ::
in({|B, m|}Priv(kA)) :: decrypt{|B,m|}Priv(kA) :: end(B,A; m) ::
in({|B, m|}Priv(kA)) :: decrypt{|B,m|}Priv(kA) :: end(B,A; m)

Notice that the same message {B, m}Priv(kA) is read twice by two different
instances of the Responder. This causes two ends with just one begin, thus
making this trace unsafe. The presence of the nonce repairs the protocol avoiding
this replay attack. ��

126 R. Focardi

4.2 ρ-Spi Calculus Types and Effects: An Overview

Types in ρ-spi calculus regulate the use of terms in the authentication task and
are reported below.

T ::= SharedKey(I, J) symmetric key
Key(I) asymmetric seed
PublicKey(I) public key
PrivateKey(I) private key
Un untrusted
Nonce�(I, J) nonce
Enc(e; f) ciphertext

Key types aim at preserving key secrecy and regulating the correct use of keys:
a long-term key shared between I and J has type SharedKey(I, J) and it can
only be used by I and J ; a name used for creating a key pair owned by I
has type Key(I); the public and private keys generated by that name have type
PublicKey(I) and PrivateKey(I), respectively. While private keys can only be used
by their owners, public keys are available to every principal. Every untagged term
potentially known by the enemy has type Un.

Nonce and ciphertext types are more specifically related to authentication:
A nonce used by I and J has type Nonce�(I, J), where � ∈ {Un,Ciph ,Priv , Int}
specifies secrecy and integrity properties of the nonce: it is Un when the nonce
is sent in clear on the network (in PC challenges and CP responses), Ciph when
the nonce is sent encrypted but it is supposed to be sent back in clear (CP
challenges), Priv when the nonce secrecy is preserved by the hand-shake (CC
hand-shakes using public or symmetric keys) and Int when the integrity of the
nonce is guaranteed by signatures (CC hand-shakes using private keys). Cipher-
texts encrypted by trusted principals have type Enc(e; f), where e and f are
effects conveyed or required but such a ciphertext when it is decrypted and
encrypted. Effects have the following syntax:

t ::= fresh�(n) nonce freshness
[?|!]Chall�N(I, J, M) challenge
[?|!]Resp�

N (I, J, M) response

If the ciphertext is a challenge sent by I to J containing the nonce N and the
message M , then it will have type Enc(Chall�N(I, J, M),), Similarly, if the ci-
phertext is a response sent by I to J containing the nonce N and the message M ,
then the type will be Enc(, Resp�

N (I, J, M)). So, in Enc(e, f), e is used for chal-
lenge effects and f for response effects. The crucial point is that these ciphertext
types can be reconstructed by the tags, i.e., tagged messages convey enough in-
formation to decide whether they are challenges or responses, who are the parties
involved, which is the nonce, which are the authenticated messages and which
kind of challenge-response mechanism is used (label � ∈ {Un,Ciph ,Priv , Int}).

The intuitive meaning of the remaining effects is given below:

– The atomic effect fresh�(n) tracks the freshness of the nonce n. A nonce is
fresh if it is new and it has not yet been used for justifying an end event.

Static Analysis of Authentication 127

Table 3. The use of types and effects

A B

• new(n : Nonce�(B, A))

� fresh�(n)

• encrypt{n, MC , . . .}K as x

in(y) {n, MC , . . .}K� out(x)
decrypt y as {n, MC , . . .}K •

?Chall�n(B, A,MC)

�
begin(A,B, MC ; MR) •

!Resp�
n(A, B, MR)

�
encrypt{n, MR, . . .}K′ as z •

�

fresh�(n),
!Chall�n(B, A, MC)

out(z) {n, MR, . . .}K′� in(w)
• decrypt w as {n, MR, . . .}K′

�

fresh�(n),
!Chall�n(B, A, MC),
?Resp�

n(A, B, MR)

• end(B, A,MC ; MR)

– The atomic effect ?Chall�N (I, J, M) tracks the decryption of a ciphertext rep-
resenting a challenge, containing the nonce N and the message M , sent by
I to J . Similarly for the atomic effect ?Resp�

N (I, J, M).
– The atomic effect !Chall�N (I, J, M) tracks the generation of a challenge ci-

phertext, containing the nonce N and the message M , sent by I to J .
– The atomic effect !Resp�

N(I, J, M), instead, enables the generation of a ci-
phertext representing a response, containing the nonce N and the message
M , sent by I to J .

We illustrate, through a simple example, the use of types and effects. Let us
consider a CC handshake based on symmetric cryptography, allowing the initiator
B to authenticate the responder A receiving message MC and sending message
MR. The narration of the protocol, decorated with correspondence assertions,
types and effects, is depicted in Table 3. Protocol code is written close to •’s and
message exchanges (left/right arrows), the nonce type is declared inside the new
command, and the effects are enclosed in frame boxes placed aside down-arrows.
The exchanged messages are not completely specified, since we want to give an
idea of the general scheme adopted by the static analysis.

128 R. Focardi

The initiator B generates a fresh nonce n of type Nonce�(B, A): the atomic
effect fresh�(n) tracks the freshness of the nonce. The corresponding rule is

B; Γ, n : Nonce�(B, A) � S : e

B; Γ � new(n : Nonce�(B, A)).S : e − [fresh�(n)]

Notice that judgements have the form I; Γ � S : e meaning that “the se-
quential process S can be typed according to the typing environment Γ and the
effect e when executed by I”. So in the example above, new(n : Nonce�(B, A)).S
is typed under B; Γ if the continuation process S is typed under the same envi-
ronment enriched with nonce type n : Nonce�(B, A) and with the effect e possibly
containing fresh�(n). (Notice that writing e − [fresh�(n)] in the thesis of the rule
allows effect fresh�(n) to be in e without forcing its presence, thus allowing to
type-check protocols that declare nonces without checking them.)

The nonce is encrypted together with message MC in a challenge sent by B
to A (effect !Chall�n(B, A, MC)). This atomic effect is derived according to the
tagged structure attached to the ciphertext, and omitted here for simplicity. We
just assume that tags are such that the message can be recognized to be a chal-
lenge from B to A for authenticating message MC , i.e., the type of the message
is Enc(Chall�n(B, A, MC),). The effect Chall�n(B, A, MC) conveyed by this type
is “transferred” to the continuation process in the form !Chall�n(B, A, MC), via
the following rule:

B; Γ � M : Enc(eC ; eR)B; Γ, z : Un � S : e+!eC

B; Γ � encrypt M as z.S : e+!eR

The effect !Chall�n(B, A, MC) records the fact the challenge has been generated.
Similarly, the ciphertext is received and decrypted by the responder A producing
an effect ?Chall�n(B, A, MC).

The following begin(A, B, MC ; MR) assertion requires a challenge containing
the message MC (effect ?Chall�n(B, A, MC)) and justifies a response for authenti-
cating MR (effect !Resp�

n(A, B, MR)), as formalized by the corresponding typing
rule:

A; Γ � S : e + [!Resp�
N (A, I, M2)]Γ � N : Nonce�(I, A)Γ � M2 : T

A; Γ � begin(A, I, M1; M2).S : e + [?Chall�N (I, A, M1)]

The relation between � and � determines how the nonce may be sent out and
received back by the originator: the nonce may be sent out in clear and received
back encrypted in PC handshakes, thus Un = Ciph , or vice-versa in CP hand-
shakes, formalized as Ciph = Un. Finally, in CC handshakes the nonce may be
either sent out and received back encrypted (Priv = Priv) or signed (Int = Int).

The atomic effect !Resp�
n(A, B, MR) enables A to generate a ciphertext with

type Enc(; [Resp�
n(A, B, MR)]). Hence the ciphertext is received and decrypted

by B: such a decryption is tracked by ?Resp�
n(A, B, MR), as done before.

Notice that the effects on B’s side describe the generation of a fresh challenge
(!Chall�n(B, A, MC) and fresh�(n)) and the reception of a corresponding response

Static Analysis of Authentication 129

Table 4. Typed PC Protocol in ρ-spi calculus

Protocol � let kA = asym-key(A) . (B � !Initiator | A � !Responder)

Initiator � new(n : Un).out(n).in(z).
decrypt z as {|Id(B), Auth(x), VerifPC(n)|}Pub(kA).end(B, A; x).0

Responder � in(x).new(m : Un).begin(A, B;m).
encrypt {|Id(B),Auth(m),VerifPC(x)|}Priv(kA) as z.out(z).0

based on the same nonce (?Resp�
n(A, B, MR)). This is all we need to correctly

conclude the protocol through end(B, A, MC ; MR). This is formalized by the
typing rule for end:

B; Γ � S : e Γ � n : Nonce�(B, A)

B; Γ � end(B, A, M1; M2).S : e + [!Chall�n(B, A, M1), ?Resp�
n(A, B, M2), fresh�(n)]

This rule “consumes” the relative effects thus guaranteeing the injectivity of
authentication: every end is matched by a distinct begin.

Notice that the only human effort when typing a protocol is to provide the
correct tags and the nonce types. For example, the simple protocol of Table 2
can be type-checked by just adding types declaration inside the primitive new, as
shown in Table 4. The nonce type for this example is simply Un, representing the
fact that the challenge is sent as cleartext. This fits the general scheme explained
above because of the type equality NonceUn(I, J) = Un, i.e., an untrusted value
is also an untrusted nonce between every possible parties I and J .

4.3 Safety and Compositionality

Our main result states that if a process can be typed with empty effect and by
only assigning type Un to all the identities, then every trace generated by that
process is safe.

Theorem 1 (Safety [8,12]). Let P be a process. If I : Un � P : [], where I are
the identities in P , then P is safe.

Interestingly, our analysis is strongly compositional, as stated by the following
theorem. Let keys(k1, . . . , kn) denote a sequence of key declarations.

Theorem 2 (Strong Compositionality [8,12]). Let P be the protocol of the
form keys(k1, . . . , kn).(I1�!S1| . . . |Im�!Sm) and I1, . . . , Im be the identities in
P . Then

I1, . . . , Im : Un � P : []

iff

I1, . . . , Im : Un � keys(k1, . . . , kn).Ii�!Si : [] ∀i ∈ [1, m]

130 R. Focardi

Intuitively, a protocol is safe if so are all the protocol participants. In addition,
judging a participant safe only requires knowledge of the long-term keys it shares
with other participants. This is a fairly mild assumption as the information
conveyed by the keys is relative to identities of the parties sharing them, not to
the protocol they are running. This flexibility has a price, however, in that our
result relies critically on the run-time checks on the message tags provided by
pattern-matching.

5 Related Work

Tagging is not a new idea and it is proposed and used for verification purposes
in [3,4,16,17,22]. Typically, tagging amounts to add a different label to each en-
crypted protocol message, so that ciphertexts cannot be confused. Our tagging
is less demanding, as we do not require that every message is unambiguously
tagged since we tag only certain components. In particular, for protocols imple-
mented with stronger tagging techniques, our tags can be safely removed without
compromising the protocols’ safety.

The Strand Spaces formalism [19,20,21,30] is an interesting framework for
studying authentication. There are interesting similarities between our analysis
and the way the three kinds of nonce-handshakes are checked in Strand Spaces.
It would be interesting to explore how our type system could be applied in such
a framework, in order to provide mechanical proofs of safety.

The recent work by Bodei et al. on a control-flow analysis for message au-
thentication in Lysa [5,6] is also strongly related to our present approach. The
motivations and goals, however, are different, since message authentication con-
cerns the origin of a message while agreement provides guarantees about the
presence in the current session of the claimant and its willingness to authenti-
cate with the verifier.

Finally, [11] compares our type and effect system with the one by Gordon and
Jeffrey, drawing on a translation of tagged protocols, validated by our system,
into protocols that type check with Gordon and Jeffrey’s system. The paper
shows that tags discussed in this paper can be compiled even in the static types
of [18]. This allows the tag inference procedure of [15] to be exploited for inferring
such types.

References

1. M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theor.
Comput. Sci., 298(3):387–415, 2003.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70, 1999.

3. M. Abadi and R. Needham. Prudent engineering practice for cryptographic pro-
tocols. IEEE Transactions on Software Engineering, 22(1):6–15, 1996.

4. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging
enforces termination. In Proceedings of Foundations of Software Science and Com-
putation Structures, pages 136–152, 2003.

Static Analysis of Authentication 131

5. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. In Proceedings of the 16th IEEE Computer Secu-
rity Foundations Workshop (CSFW’03), pages 126–140. IEEE Computer Society
Press, June 2003.

6. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Control flow
analysis can find new flaws too. In Proceedings of the Workshop on Issues on the
Theory of Security (WITS’04), ENTCS. Elsevier, 2004.

7. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proceedings of
ICALP 01, volume 2076, pages 667–681. LNCS 2076, Springer Verlag, 2001.

8. M. Bugliesi, R. Focardi, and M. Maffei. Dynamic types for authentication (full
version). Submitted for Publication.

9. M. Bugliesi, R. Focardi, and M. Maffei. Principles for entity authentication. In
Proceedings of 5th International Conference Perspectives of System Informatics
(PSI 2003), volume 2890 of Lecture Notes in Computer Science, pages 294–307.
Springer-Verlag, July 2003.

10. M. Bugliesi, R. Focardi, and M. Maffei. Compositional analysis of authentica-
tion protocols. In Proceedings of European Symposium on Programming (ESOP
2004), volume 2986 of Lecture Notes in Computer Science, pages 140–154. Springer-
Verlag, 2004.

11. M. Bugliesi, R. Focardi, and M. Maffei. Analysis of typed-based analyses of authen-
tication protocols. In Proceedings of 18th IEEE Computer Security Foundations
Workshop (CSFW 2005). IEEE Press, 2005. To appear.

12. M. Bugliesi, R.Focardi, and M.Maffei. Authenticity by tagging and typing. In 2nd
ACM Workshop on Formal Methods in Security Engineering: From Specifications
to Code (FMSE 2004), ISBN 1-58113-971-3, pages 1–12. ACM press, October
2004.

13. J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0.
http://www.cs.york.ac.uk/∼jac/papers/drareview.ps.gz, November 1997.

14. R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of
cryptographic protocols. In Proceedings of ICALP’00, pages 354–372. Springer
LNCS 1853, July 2000.

15. R. Focardi, M. Maffei, and F. Placella. Inferring authentication tags. In Proceedings
of IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS Workshop on Issues on the
Theory of Security (WITS 2005). ACM Digital Library, January 2005.

16. A. Gordon and A. Jeffrey. Authenticity by typing for security protocols. In Proceed-
ings of 14th IEEE Computer Security Foundations Workshop (CSFW’01), pages
145–159. IEEE Computer Society Press, June 2001.

17. A. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic pro-
tocols. In Proceedings of 15th IEEE Computer Security Foundations Workshop
(CSFW’02), pages 77–91. IEEE Computer Society Press, 24-26 June 2002.

18. A. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic proto-
cols. Journal of Computer Security, 12(3/4):435–484, 2004.

19. J. D. Guttman and F. J. Thayer Fàbrega. Authentication tests and the structure
of bundles. Theoretical Computer Science, 283(2):333–380, 2002.

20. J. D. Guttman, F. J. Thayer, J. A. Carlson, J. C. Herzog, J. D. Ramsdell, and
B. T. Sniffen. Trust management in strand spaces: a rely-guarantee method. In
Proceedings of European Symposium on Programming (ESOP 2004), volume 2986
of Lecture Notes in Computer Science, pages 325–339. Springer-Verlag, 2004.

21. Joshua D. Guttman and F. Javier Thayer. Protocol independence through disjoint
encryption. In Proceedings of 13th IEEE Computer Security Foundations Workshop
(CSFW’00), pages 24–34. IEEE Computer Society Press, July 2000.

132 R. Focardi

22. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security
protocols. In Proceedings of 13th IEEE Computer Security Foundations Workshop
(CSFW’00), pages 255–268. IEEE Computer Society Press, July 2000.

23. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol us-
ing FDR. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer-Verlag, 1996.

24. G. Lowe. “A Hierarchy of Authentication Specification”. In Proceedings of the
10th Computer Security Foundation Workshop (CSFW’97), pages 31–44. IEEE
Computer Society Press, 1997.

25. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1996.

26. J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using murφ. In Proceedings of the 1997 IEEE Symposium on Research
in Security and Privacy, pages 141–153. IEEE Computer Society Press, 1997.

27. R. M. Needham and M. D. Schroeder. Authentication revisited. ACM SIGOPS
Operating Systems Review, 21(1):7–7, 1987.

28. L. C. Paulson. Relations between secrets: Two formal analyses of the yahalom
protocol. Journal of Computer Security, 9(3):197–216, 2001.

29. Douglas R. Stinson. Cryptography, Theory and Practice. CRC Press, 1995.
30. J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Proving security protocols

correct. Journal of Computer Security, 1999. 7(2/3).
31. T.Y.C. Woo and S.S. Lam. “A Semantic Model for Authentication Protocols”.

In Proceedings of 1993 IEEE Symposium on Security and Privacy, pages 178–194,
1993.

Formal Methods for Smartcard Security

Gilles Barthe1 and Guillaume Dufay2

1 INRIA Sophia-Antipolis, France
Gilles.Barthe@inria.fr

2 SITE, University of Ottawa, Canada
gdufay@site.uottawa.ca

Abstract. Smartcards are trusted personal devices designed to store
and process confidential data, and to act as secure tokens for providing
access to applications and services. Smartcards are widely deployed and
their usage spans over several application domains including banking,
telecommunications, and identity.

Open platform smartcards are new generation trusted personal de-
vices with increased flexibility. Such devices, which benefit of increased
connectivity and increased interoperability, can host several applets and
allow new applets to be loaded post-issuance. Such an increased flexi-
bility raises concerns about the possibility of logical attacks that could
affect a very large number of devices, and requires the development of
techniques and tools that can be used to increase the reliability of plat-
forms and applications for trusted personal devices. The objective of this
chapter is to describe some applications of formal methods to increase
the reliability of smartcards and trusted personal devices.

1 Introduction

Smart cards are trusted personal devices whose characteristics are regulated by
the ISO 7816 standard. As other trusted personal devices, smartcards are de-
signed to store and process confidential data, and can act as tokens to provide
users with a secure electronic representation in a large network. They are widely
deployed and used in application areas such as mobile telecommunications, bank-
ing, transportation, electronic identity, and digital rights management (DRM).
Further, they hold the promise to play a key role in the e-society, especially as a
means to guarantee users a personalized, global, and secure access to applications
and services.

The prominent role played by trusted personal devices in security sensitive
applications make them an ideal target for attacks. Traditionally, the main con-
cern with smartcards has been with hardware attacks in which the attacker
gains access to confidential information or disturbs the functioning of the card
through observation (e.g. of power or electro-magnetic radiations) or invasion
(e.g. overriding sensors or attaching probes).

With new generation smartcards and trusted personal devices increasingly
connected to networks and providing execution support for complex programs,
the prospect of logical attacks has urged the trusted personal devices industry

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 133–177, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

134 G. Barthe and G. Dufay

to improve the quality of their software, as logical attacks are potentially eas-
ier to launch than physical attacks (for example they do not require physical
access to the device, and are easier to replicate from one device to the other),
and may have a much wider impact. In particular, a malicious attacker spread-
ing over the network and disconnecting or disrupting devices massively could
have devastating economic and social consequences and would deeply affect end
users confidence in e-society. The Cabir virus which spread through Symbian
cell phones during summer 2004, although it did not actually do any damage,
sounded a strong warning that cell phone viruses may soon cause havoc if no
appropriate security technology is developed. With the increasing use of voice
over IP, the nightmare could also extend to all phone infrastructures.

The risk of devastating attacks on trusted personal devices justifies the de-
velopment of methodologies and tools that increase confidence in the execution
platforms that they support and in applications that are executed on-board such
devices. The need for methodologies and tools is implicitly recognized by exist-
ing standards for evaluating security-sensitive IT products, such as the Common
Criteria [31] which require the use of formal methods at its highest and most
demanding levels EAL5-EAL7, and has triggered some substantial activity in
the community of formal methods. Much activity has centered around estab-
lishing the correctness of execution platforms for smartcards, and showing that
applications are innocuous.

The purpose of this chapter is to motivate and illustrate applications of for-
mal methods to increase dependability of trusted personal devices, both with
respect to platform correctness and applet validation. For concreteness, we fo-
cus on devices that embed Java Virtual Machines (JVM) or their variants, in
particular Java Card Virtual Machines (JCVM). Java enabled devices are a nat-
ural choice for formal methods because: i) they are widely deployed in the field;
ii) they feature mechanisms that contribute to the security of the platform and
the applications that execute over it; iii) detailed informal specifications of the
Java platform are publicly available, and can be scrutinized. However, it should
be clear that the methods presented in this paper are relevant to other execution
platforms for trusted personal devices.

The remaining of this chapter is organized as follows: Section 2 begins with a
brief introduction to smartcards, then continues with an overview of the JavaC-
ard platform and a description of the software security mechanisms that it pro-
vides. Section 3 addresses the issue of platform correctness, whereas Section 4
is dedicated to application validation. We conclude in Section 5 with some per-
spective on emerging trends and directions for further work.

2 A Primer on Smartcards

Smartcards are a prime example of trusted personal devices in the sense that
smartcards belong to a single person and are used to enable trusted operations
in an information technology and communication infrastructure. Other examples
of trusted personal devices include dongles for protected softwares, and under

Formal Methods for Smartcard Security 135

a liberal interpretation of trusted personal devices, cell phones and other smart
objects such as PDAs.

The purpose of this section is to provide a brief introduction to smartcards,
starting from their characteristics and applications, pursuing with a descrip-
tion of the standard architecture for the current generation of smartcards, and
concluding with security issues and mechanisms in smartcards.

2.1 Characteristics and Applications

Smartcards consist of a memory and a microprocessor, with special security
functions, usually embedded within a credit-card sized plastic card. Depending
of their type (contact or contactless cards), these cards require either a card
reader, a.k.a. Card Acceptance Device or CAD for short, or a radio frequency
signal for being powered. For interoperability, the standards ISO 7816 define the
position of the chip on the card, the physical constraints for the connectors and
the communication protocols between the chip and the reader. The CPU of the
card is usually an 8 or 32-bits CISC microprocessor running at 5 MHz or more.
It relies for execution on different types of memory:

– a ROM, up to 32 kB, that stores the operating system;
– an EEPROM (erasable but slow memory), up to 32 kB, that stores perma-

nent data of the card;
– a RAM that is usually only 256 bytes in size.

The operating system on the card is responsible for communication protocols,
internal memory management as well as a filesystem on the EEPROM. This
filesystem organizes the memory in files and folders that correspond to the vari-
ous applications loaded at the same time on the card. Accesses to the filesystem
content is read/write controlled and each directory (i.e. application) can follow
specific security policies so as to prevent information sharing with other appli-
cations on the card. For communication with the terminal, the operating system
on the card follows the Application Protocol Data Unit (APDU) protocol. Usu-
ally, only the terminal controls the communication. However applications on the
card can also use APDUs for communications with the operating system and in
some cases, the card itself can initiate the communication with the terminal.

Smartcards are widely used in telecommunications (SIM cards for GSM
phones and UICC cards for 3G phones), financial services (banking cards), iden-
tification (electronic ID), e-administration (digital signature), multimedia (pay-
TV), transportation (contact smartcards for parkings and tolls, and contactless
smartcards for public transportation) and health (electronic health records).

2.2 Open Platform Smartcards

Open platform smartcards correspond to new generation smartcards with in-
creased flexibility. Such smartcards:

136 G. Barthe and G. Dufay

– integrate with their operating system a virtual machine that abstracts away
from any hardware and operating system specifics so that smartcard appli-
cations, or applets, can be programmed in a high-level language;

– are multi-applications, in that several applets can coexist and communicate
on the same card, and support post-issuance, in that new applets may be
loaded onto already deployed smartcards.

Java Card. Launched in 1996 by Sun, Java Card [53] is a dialect of Java adapted
to the resource constraints of smartcards, and the standard programming lan-
guage for smartcard applications. Java Card applets are written in a subset of
the Java language, and using the Java Card API. They are then compiled down
to class files, and then converted to the CAP file format; conversion involves a
number of optimizations suggested by smartcard constraints, e.g. names are re-
placed by tokens and class files are merged together on a package basis. Finally,
CAP files are loaded and installed on the card, where they can be executed by
the Java Card Runtime Environment JCRE. The JCRE contains the Java Card
Virtual Machine JCVM, provides support for the Java Card API and possibly
for domain-specific API such as the GSM API for mobile phones, and invokes
the services of a native layer to perform low-level tasks such as communication
management. This Java Card architecture is summarized in Figure 1.

There are of course many similarities between Java Card and Java: in par-
ticular, Java Card programs are Java programs written in a fragment of the
language, and the JCVM is a stack-based virtual machine that is closely re-
lated to the Java Virtual Machine JVM. There are also a number of differences:
Java Card programs are not allowed to use large data types such as floats and
strings, arrays of arrays, or finalization. Besides, some features of the JVM like
dynamic class loading mechanism and multi-threading are unsupported by the

JCRE

Applet 1 Applet 2

Proprietary APIJava Card API

Exception Manager

Dispatcher

Processor Firewall

Memory

Native Layer

JCVM

Fig. 1. Java Card architecture

Formal Methods for Smartcard Security 137

JCVM (but the current version of Java Card features logical channels instead of
multi-threading). Furthermore, the Java API and the Java Card API offer differ-
ent functionalities, or in some cases such as remote method invocation different
variants of the same functionality.

Memory management in Java Card also differs from that of Java in several
aspects: in particular, garbage collection is optional and can only be performed
upon completion of the execution of an applet through an explicit call to the
Java Card API. Furthermore, Java Card offers a transaction mechanism for
atomicity, since smart cards do not include a power supply, and thus a brutal
retrieval from the terminal could interrupt a computation and bring the system
in an incoherent state. To avoid this, the Java Card specification prescribes the
use of a transaction mechanism to control synchronized updates of sensitive
data. A statement block surrounded by the methods beginTransaction and
commitTransaction can be considered atomic. If the transaction cannot be
completed due to a card tearing or a power loss or a call to abortTransaction,
the card will roll back its internal state to the state before the transaction was
begun. If the card is unpowered, this event will occur as soon as the card is
reinserted into a terminal.

Nevertheless, the essential difference from the point of view of this chapter
resides in security mechanisms: indeed, Java Card abandons the Java stack in-
spection mechanism in favor of a simpler firewall mechanism that ensures applet
isolation and that is mitigated by provisions to allow controlled communication
between applets. The mechanism is discussed in the next paragraph. Further
technical information about the current version of Java Card (Java Card 2.2)
may be found in specifications and white papers available from Sun web site. It
is likely however that Java Card will undergo a major evolution of the language
and that future versions of Java Card (or successors to Java Card) will provide
support for increased connectivity, and for multi-threading.

We conclude this section by mentioning that while Java Card is a central
focus of this chapter, there exist other operating systems for open platform
smartcards, in particular Multos, and .Net Card, as well as other dialects of
Java for trusted personal devices, in particular MIDP for mobile information
devices such as cell phones and PDAs, MHP for home multimedia, STIP for
electronic transactions.

Global Platform. Java Card does not provide standardized mechanisms for
managing applications on the card. In order to benefit from such mechanisms,
most Java Cards also implement Global Platform [80], which provides a card
management architecture for multi-application smartcards with post-issuance
facilities (and is independent of the runtime environment).

The Global Platform architecture is detailed in two distinct specifications
that respectively describe the card functional requirements and its associated
security requirements. While the security of the smartcard strongly depends on
a correct design and implementation of Global Platform, there has been little
use of formal methods to analyze Global Platform; one notable exception is the
(as yet unpublished) work of S. Zanella Béguelin, who provides a B model of

138 G. Barthe and G. Dufay

the specifications, and highlights a number of spots in the specifications where
clarifications are required. The model is available from [80].

2.3 Java Card Security

The flexibility of open platform smartcards is at the same time a major asset
and a major obstacle to their deployment. On the one hand, writing applets
in a high-level language reduces the cost and time to market new applications,
and the possibility of running several applets on a single card opens the way
for novel applications. On the other hand, such smartcards introduce the pos-
sibility to load malicious applets that exploit weaknesses of the platform, make
an improper use of the API, or simply launch denial-of-service attacks through
immoderate resource consumption. Increased connectivity and post-issuance ap-
plication loading constitute further complications from the point of view of secu-
rity and contribute to making large-scale logical attacks a frightening and likely
perspective.

Security Mechanisms. Current security architectures for smartcards feature
two central mechanisms, a.k.a. security functions, to prevent logical attacks: the
firewall, and the bytecode verifier.

Firewall. In the Java Card environment, the security model for partition be-
tween applications and between operating system and applications differs from
the sandboxing model of Java. In the firewall model of Java Card, an unique
context (Applet IDentifier or AID) is associated to each applet on the card.
Only one context can be active, the one from the current applet. The JCRE
prevents any access from one object to another object with another context,
with the exceptions of static variables, arrays declared as global or instances de-
clared as entry points. In the other cases, objects must communicate exchanging
objects implementing the javacard.framework.Shareable interface. This
procedure remains controlled by the JCRE and is the following:

– The server applet must define an interface SI extending the Shareable

interface, a class C implementing SI and create an object O of class C;
– To access the object O from applet A, the client applet B must invoke the
JCSystem.getAppletShareableInterface method;

– The JCRE uses the getShareableInterfaceObject method to send a re-
quest to Applet A. Then Applet A determines, given the AID of B, if B is
authorized to access O and if so, returns a reference to O;

– The applet B casts O to type SI into a class reference SIO;
– The firewall prevents the applet B from accessing any field or method not

defined in SI.

An example of such a procedure is given in Figure 2, where the applet Bob
want to share an object belonging to the applet Alice:

Formal Methods for Smartcard Security 139

public interface SI extends Shareable {
Secret foo(); }

public class Alice extends Applet implements SI {
private Secret ObjectSecret;

public Shareable getShareableInterfaceObject(AID Client) {
if (Client.equals(BobAID))

return(this);
return null; }

public Secret foo() {
AID Client;
Secret Response;
Client = JCSystem.getPreviousContextAID();
if (Client.equals(BobAID))

Response = ObjectSecret;
return Response; } }

public class Bob extends Applet {
public static SI AliceObj;
private static Secret AliceSecret;

public void bar() {
AliceObj = (SI) JCSystem.getAppletShareableInterface

(AliceAID);
AliceSecret = AliceObj.foo(); } }

Fig. 2. Example of the use a Shareable object

Bytecode Verification

Goals. The bytecode verifier is a key security function in the Java Card archi-
tecture. Its purpose is to check that applets are correctly formed and correctly
typed, and that they do not attempt to perform malicious operations during
their execution. It consists on a two steps process. The first one, and the sim-
plest, is a structural analysis of the consistency of the CAP file and its constant
pool. The second one requires a static analysis of the program and is meant to
ensure that:

– values are used with their correct type (to avoid forged pointers) and method
signatures are respected;

– no frame stack or operand stack underflow or overflow will occur;
– visibility of methods (private, public, or protected) is compatible with

their use;
– objects and local variables are initialized before being accessed. Together

with subroutines, which are discussed below, initialization is one of the main

140 G. Barthe and G. Dufay

difficulties from the point of view of bytecode verification, as illustrated e.g.
by S. Freund and J. Mitchell [47];

– jumps in the program code remain in legal bounds.

Ensuring such properties is an important step towards guaranteeing security,
and the failure to enforce any of these properties may be exploited for launching
attacks.

Algorithms. Bytecode verification [63] is a data-flow analysis of a typed virtual
machine which operates on the same principles that the standard JVM except
for two crucial differences: the typed virtual machine manipulates types instead
of values, and executes one method at the time.

The data-flow analysis aims at computing solutions of data-flow equations
over a lattice derived from the subtyping relation between JVM types, and uses
to this end a generic algorithm due to G. Kildall [57]. In a nutshell, the algorithm
manipulates so-called stackmaps that store for each program point an history
structure that represents the program states that have been previously reached
at this program point. The history structure is initialized to the initial state
of the method being verified for the first program point, and to a default state
for the other program points. One step of execution proceeds by iterating the
execution function of the virtual machine over the states of the history structure.
Each non-default state is chosen once and the result of the execution of the
typed virtual machine on this state is propagated to its possible successors in
the history structure.

Different history structures can be used depending on the accuracy required
from the analysis.

– In a monovariant analysis, the history structure stores one program state,
which is the least upper bound of the states that have been been previously
computed at this program point. In such an analysis, propagating a state
in an history structure amounts to taking pointwise the least upper bound
(on the type lattice of the virtual machine) of the types appearing in the
two states and storing the result back at this location. The termination of
the analysis is guaranteed since the set of states does not have an infinite
ascending chain, and the state stored in the history structure is increasing.
As noted by R. Stata and M. Abadi [93], collapsing history structures to
a single state as done in the monovariant analysis leads to a bytecode ver-
ification algorithm that does not handle subroutines as prescribed by the
informal specifications of Sun. To be more precise, monovariant bytecode
verification rejects bytecode programs that make a polymorphic use of sub-
routines. This use of subroutines can lead to two states, for a same program
point, that do not have the same number of local variables or the same num-
ber of elements in the operand stack and that would then be merged state
into an error state, although the execution is valid.

– In a polyvariant analysis, the history structure stores the set of program
states that have been previously computed at this program point. In such
an analysis, propagating a state in an history structure amounts to adding

Formal Methods for Smartcard Security 141

the newly computed state to the history structure. The termination of the
analysis is guaranteed since the set of states is finite, and the size of the
history structure is increasing.
Polyvariant bytecode verification provides an accurate treatment of subrou-
tines, and was introduced independently by P. Brisset (in unpublished work)
and by A. Coglio [27]. L. Henrio and B. Serpette [49] propose an improve-
ment of polyvariant bytecode verification in which compatible states in the
history structure can be merged so as to keep the size of history structures
reasonable. It is interesting that approaching bytecode verification through
model-checking [81,10] results in an analysis which capture a similar class of
programs as polyvariant bytecode verification.

We refer the reader to [63] for a more detailed account of algorithms for bytecode
verification.

On-Device Verification. Currently applets are verified off-card and, in case
of a successful verification, signed and loaded on-card. Such a solution is not
optimal in the sense that it leaves a crucial component of the security archi-
tecture outside of the perimeter of the smartcard. However, there are several
proposals for circumscribing the trusted computing base to the smartcard using
on-card bytecode verification. One solution adopted in the KVM [29] is to rely
on lightweight bytecode verification, initially proposed by E. Rose, in which the
program comes equipped with the solution to the dataflow equations, and the
role of the verifier is to check that the solutions are correct. Another proposal
by X. Leroy [62] is to perform an off-card transformation that allows bytecode
verification to be performed in one pass. A later work by D. Deville and G. Gri-
maud [34] does not require programs to be rewritten or annotated, but exploits
instead efficient encodings of the data structures manipulated by the bytecode
verifier.

Security Issues. The Java Card security architecture guarantees that down-
loaded applications are innocuous and comply with some basic policies related
to typing, initialization or access control. Such basic policies are the cornerstones
upon which the overall security of the smartcard will rely. Therefore it is impor-
tant to verify that the security architecture does enforce these basic policies as
intended. Thus, an important application of formal methods to smartcard secu-
rity is platform verification, which aims at providing an abstract model of the
Java Card platform and security architecture, and at proving that the security
functions play their expected role. However, it is not sufficient to show that se-
curity functions are correctly designed. In particular, one also has to ensure that
other components of the infrastructure are correctly designed: the Java Card API
and the Global Platform API constitute two prominent components of the in-
frastructure whose correct design is central to security. Thus, another important
aspect of platform verification is to show the API are correctly designed.

Platform verification is a fundamental step towards guaranteeing the secu-
rity of smartcards, and a prerequisite for Common Criteria evaluations at the

142 G. Barthe and G. Dufay

highest levels. Nevertheless, the guarantees offered by the Java Card security ar-
chitecture are limited, and further verifications must be performed to verify that
applications make a legitimate use of the infrastructure, and do not attempt any
hostile action. Thus, application validation is another important application of
formal methods to smartcard security. There are many facets to applet valida-
tion, each with its own objectives and techniques. For example, applet validation
may be performed at bytecode level prior to loading an application on card. An-
other scenario is that applet validation is performed at source level by developers
or experts in formal methods working with developers (this is an ideal situation,
often formal methods are used at posteriori). While such a scenario is not ideal
from the perspective of guaranteeing the security of a smartcard, the smartcard
industry has found such a scenario particularly useful in particular for checking
that applets respect some given security requirements.

In summary, security is a holistic property of a system, and formal methods
must therefore be employed at many different levels to provide strong guarantees
about smartcard correctness. Platform verification and application validation are
two important aspects of guaranteeing security for smartcards, and the focus of
the next sections. Other important aspects of formal methods which are not
treated in this chapter include the use of formal methods to establish a relation
between the models developed for platform verification and the actual imple-
mentations of the platform, see e.g. [23], or the use of formal methods to verify
cryptographic algorithms or protocols used by smartcards, see e.g. [67].

3 Platform Certification

Dedicated operating systems for smartcards aims at providing a secure environ-
ment for applications execution. For this purpose, special security features are
provided, and precise specifications on the platform are given. However, due to
the size of these specifications, the use of formal methods is required to ensure to
the whole specifications and the corresponding implementation are correct. For
instance, once the entire has been formalized, it is possible to give the statement
of global properties, such as type correctness or applets isolation, and prove that
the platform do not contain design flaws or implementation bugs for these prop-
erties. Although the approach was different at the time, a type-system related
security hole was indeed found in the bytecode verifier of Java 1.1 by the Kimera
project.

Several formalizations of the Java (Card) platform are now available. They
differ by the coverage of the runtime environment and virtual machine, the for-
malism they are built upon, the style of semantics used for the instruction set
and the particular aspect of security they aim at verifying. The Isabelle/HOL
formalizations of T. Nipkow and co-workers [58] and the executable specifica-
tions of the J-book [92] constitute some of the most impressive achievements
in this direction to date. The reader may refer to [48] for a not so up-to-date
survey of the various formalizations. In the following, we will focus on a another
formalization [38] not yet available at the time of the survey. This formalization,

Formal Methods for Smartcard Security 143

written within the Coq proof assistant, covers almost all the aspects of the Java
Card platform, has not be written for a specific security property and thus re-
mains general purpose. Besides, it is executable (we consider executability as an
essential point to remain as close as possible of a reference virtual machine) and
it comes with a tool to resolve constant pool of CAP files and translate them, in-
cluding the ones with native methods, into the representation of programs given
below.

3.1 Formalisms

The following formalization of the Java Card platform has been written in the
Coq [30] specification language. Nevertheless, the formalization is easily translat-
able to other programming language such as CAML, and other proof assistants
such as Isabelle and PVS, since it does not use any high level feature of Coq.
We will describe in the following the corresponding subset of the specification
language.

The keyword Inductive (resp. Mutual Inductive) introduces a inductive
(resp. mutual inductive) type. Such definitions also declare all constructors for
these types. We give below the definitions of the natural numbers nat (with the
constructors O and succ, for successor), of parameterized (polymorphic) lists
list, and of the parameterized option type commonly used to formalize non
total functions (lift monad):

Inductive nat : Set :=
| O : nat
| S : nat → nat.

Inductive list (A:Set) : Set :=
| Nil : list A
| Cons : A → list A → list A.

Inductive option (A:Set) : Set :=
| None : option A
| Some : A → option A.

The partial functions head, tail respectively return for a given list the first
element, and the list without its first element. Our formalization uses the type
list in many places as the type of ordered sets, for instances to represent stacks
or arrays. This allows to use all predefined accessors functions and lemmas of
Coq and to get a directly executable semantics. However, with the new module
system of Coq, it would also be possible to declare abstract modules for basic
datatypes and give later an executable implementation of these modules.

Records are introduced by keyword Record. Accessors of these fields are
then expressed as functions named by the corresponding fields of the record.
The construction match...with...end introduces pattern matching as in ML
languages.

144 G. Barthe and G. Dufay

3.2 Virtual Machine

The virtual machine described in the following is a defensive virtual machine,
i.e. it follows the specification of the reference virtual machine by explicitly
implementing all the pre-conditions (the must and must not clauses) stated by
the official specification. This virtual machine is based on Java Card version 2.1,
supports the full instruction set of the specification, includes the firewall, but
lacks some other features of the Runtime Environment that rely on native APIs
(such as APDUs or transactions), although a methodology to include these APIs
is given.

Java Card Programs. In this section, we outline the Coq formalization of
Java Card bytecode programs, as executed by the virtual machine. The reader
may refer to [38] for a complete description of this formalization.

Type system. The Java Card Virtual Machine distinguishes between primitive
types and reference types. Each of these types is subdivided into atomic types.
For instance, there are four kinds of reference types that are null types, array
types, instance types and interface types. Arrays are described according to the
type of their elements which must be primitive or reference. The reference of an
instance or an interface corresponds to an index in the set of classes or interfaces
of the program. Finally, the type of Java Card types is given by the following
mutual inductive definition that captures the considerations below:

Inductive vmtype : Set :=
| Prim : vmtype_prim → vmtype
| Ref : vmtype_ref → vmtype

with vmtype_ref : Set :=
| Ref_null : vmtype_ref
| Ref_array : vmtype → vmtype_ref
| Ref_instance : class_idx → vmtype_ref
| Ref_interface : interf_idx → vmtype_ref.

where vmtype_prim is a simple inductive type that gathers all primitive JCVM
types.

We notice that the constructor for arrays, Ref_array allows to form types
corresponding to arrays of arrays, which is not permitted in Java Card. However
our formalization of the operational semantics of the JCVM, and in particular
the implementation of the anewarray instruction, does not allow to form such
a type.

Programs. Our virtual machine does not work directly on the binary represen-
tation of the CAP file format but on structured representation of programs, ob-
tained by a dedicated tool. After this transformation, that resolves the constant
pool of the program, only the essential components of a typed object-oriented
language remain: types, methods, classes and interfaces. Formally, a program is
described in Coq by the following record type:

Formal Methods for Smartcard Security 145

Record jcprogram := {
interfaces : (list Interface);
classes : (list Class);
methods : (list Method);
sheap_type : (list type)

}.

where the types Interface, Class, Method and type are themselves defined as
record types. sheap_type is used for initialization purposes, to determine types
of variables declared as static in the program. For simplicity, we only deal with
closed programs hence the packages java.lang and javacard.framework are
an integral part of programs.

Methods. A method is characterized by its status (static or not), its signature
(against which one can type-check its arguments upon invocation and returned
value upon completion of the method), the number of its local variables (for
initializing its execution context), its list of instructions to be executed (the
bytecode), its exception handlers (a handler is an object that identifies the code
for managing dynamic errors), its maximum operand stack size and finally its
owning class and the indexes of the method. Formally, we use the following
structure to represent methods:

Record Method : Set := {
is_static : bool;
signature : signature_type;
nb_local : nat;
bytecode : (list Instruction);
handlers : (list handler_type);
m_max_opstack_size : nat;
owner : class_idx;
method_id : method_idx

}.

where class_idx and method_idx corresponds respectively to the type of in-
dexes to a class and to a method. Others components of a program, such as
interfaces and classes, are represented in a similar fashion.

The type Instruction enumerates with an inductive type the different byte-
codes of the Java Card language, with theirs operands:

Inductive Instruction : Set :=
| nop : Instruction
| push : vmtype_prim → Z → Instruction
| ret : locvars_idx → Instruction
| invokespecial : nat → method_idx → Instruction
| invokestatic : nat → method_idx → Instruction
| getfield : vmtype → instance_field_idx → Instruction
| inc : vmtype_prim → Z → nat → Instruction

...

where Z is the type of binary integers. Some bytecodes with similar seman-
tics have been collapsed into a single one. For instance, the bytecode inc takes

146 G. Barthe and G. Dufay

as a supplementary argument a primitive type and thus represents the byte-
codes iinc et sinc of Java Card (incrementation of a register of type Int and
Short respectively). It is possible to represent the 185 Java Card bytecodes
by only 44 bytecodes in our formalization. Also, for convenience, slight differ-
ences may appear in the operands of instructions, such as for invokestatic and
invokespecial that receive an extra parameter corresponding to the number
of arguments of the method.

Each instruction of the virtual machine is given by a small-step semantics;
more precisely, each instruction is formalized as a state transformer, i.e. a func-
tion that takes as input a state (before the instruction is executed) and returns
a new state (after the instruction has been executed).

Memory Model. Java (Card) virtual machine is stack-based. For intermedi-
ary computations, values are pushed and popped from an operand stack. Also,
execution contexts for methods, called frames, are organized in stack, each new
invoked method being pushed in top of the stack, and thus becoming the active
frame. In our formalization, the state contains all the dynamic items manipu-
lated by a Java Card program: values, an heap (for created objects) and a stack
of frames.
Values. Values constitute the main element manipulated by the virtual machine.
In a defensive virtual machine, values are typed and follow a definition similar to
the type system, with an inductive type, where we distinguish primitive and ref-
erence values. Type information is carried by the constructor and the numerical
value by the argument of the constructor. We obtain for reference values:
Inductive d_val_prim :=

| d_ReturnAddress : bytecode_idx → d_val_prim
| d_Void : Z → d_val_prim
| d_Boolean : Z → d_val_prim
| d_Byte : Z → d_val_prim
| d_Short : Z → d_val_prim
| d_Int : Z → d_val_prim.

Inductive d_val_ref : Set :=
| d_Ref_null : d_val_ref
| d_Ref_array : vmtype → heap_idx → d_val_ref
| d_Ref_instance : class_idx → heap_idx → d_val_ref.

where heap_idx indicates the location of an object in memory and class_idx

is an index into the program classes. There is no value corresponding to inter-
faces, since an interface must be implemented by a class to be used, through an
instance.

Finally, the Coq type of Java Card values is defined by:
Inductive d_val : Set :=

| d_Prim : d_val_prim → d_val
| d_Ref : d_val_ref → d_val
| d_NonInit : class_idx → bytecode_idx → heap_idx → d_val.

where d_NonInit is a specific value of non-initialized class instances.

Formal Methods for Smartcard Security 147

Objects. Objects in memory constitutes the runtime representation of classes and
arrays. The d_Ref_instance and d_Ref_array values defined in the previous
section refer to these objects. We collect in a record information needed for each
of these types.

We define an inductive type for objects:

Inductive obj : Set :=
| Instance : type_instance → obj
| Array : type_array → obj.

where type_instance and type_array are record types containing all dynamic
information related to the object, such as values of the fields of instances or
values of arrays. Finally, the memory area in which objects are stored during
the execution of a program, the heap, is naturally defined as:

Definition heap := (list obj).

Frames and Stack. Frames contains computational information for methods: an
operand stack and a set of local variables (or registers). An index records the re-
ferring method, and a program counter points to the next instruction to execute
within the method. Finally, the maximum operand stack size is duplicated within
the frame to avoid frequent lookup in the method referenced in method_loc.

Record d_frame : Set := {
d_opstack : (list d_val);
d_locvars : (list (option d_val));
d_method_loc : method_idx;
d_p_count : bytecode_idx;
d_context_ref : AID;
d_max_opstack_size : nat

}.

where AID is the type for an unique identifier of applets (for the firewall mech-
anism). The type option of the field locvars will be used to formalize non
initialized local variables.

States. The notion of states is defined by the following record:

Record d_state : Set := {
d_sfields_f : d_sfields;
d_heap_f : d_heap;
d_stack_f : (stack d_frame)

}.

where d_sfields is the type for the static fields (a list of d_val, in which will
be stored variables declared as static and shared by the whole program). Most
of the instructions will act on the top frame, i.e. the head of the stack. Other
fields might be added to the notion of states such as input/output buffers for
APDUs (see Section 2.1).

Finally, states are used for the construction of return states of instructions.
Instruction can progress normally, provoke an error or throw an exception:

148 G. Barthe and G. Dufay

Inductive d_rstate : Set :=
| d_Normal : d_state → d_rstate
| d_Abnormal : eLabel → d_state → d_rstate
| d_ThrowException : xLabel → d_state → d_rstate.

where eLabel and xLabel are inductive types that record the reason of the error
or the exception respectively.

Semantics of Instructions. Bytecode instructions update the memory of the
JCVM according to operands generated at compile time and to the representa-
tion of programs given below. Thus, the main execution function of the virtual
machine, that determines which is the next instruction to execute and calls the
corresponding function in our formalization, has the following signature:
d_exec : d_state →d_rstate

Then, most instructions have a similar execution pattern:
1. the initial state is decomposed;
2. fragments of the state are retrieved;
3. observations are made to determine the new state;
4. the final state is built on the basis of the retrieved fragments and of the

observations made.
We illustrate this pattern on the bytecode ifnull that compares the first el-

ement of the operand stack, that must be a reference value, to null and branches
accordingly to the program counter given as a parameter or to the next in-
struction. The defensive semantics of this bytecode (defensive in the sense it
enforces type verification as mentioned in Sun specification and may return a
type_error) is given by the following d_ifnull Coq function:

Definition d_ifnull (b : bytecode_idx) (s : d_state) :=
match d_stack_f s with
| Nil ⇒ d_Abnormal state_error
| Cons h lf ⇒

match head (d_opstack h) with
| Some v ⇒

match v with
| (d_Ref _) ⇒

match d_res_null v with
| True ⇒

d_update_frame (d_update_pc b
(d_update_opstack

(tail (d_opstack h)) h)) s
| False ⇒

d_update_frame (d_update_pc (succ (d_pc h))
(d_update_opstack

(tail (d_opstack h)) h)) s
end

| _ ⇒ d_Abnormal type_error
end

| None ⇒ d_Abnormal opstack_error
end

end.

Formal Methods for Smartcard Security 149

where the d_res_null checks for null pointers and d_update_frame function
takes as a parameter the current updated frame h, a state s and returns a normal
rstate which is an update of s where the topmost frame of the execution stack
has been replaced by h.

Other security checks are illustrated within the following excerpts of the
invokevirtual semantics. The function new_frame_invokevirtual is used
once the initial state has been decomposed. Formally, we set:

Definition new_frame_invokevirtual (nargs : nat) (m : Method)
(nhp : obj) (h : d_frame) (st : d_state) (cap : jcprogram) :=
(∗ Extract ion and removal of the arguments ∗)

match l_take nargs (d_opstack h), l_drop nargs (d_opstack h)with
| Some l, Some l’ ⇒

(∗ Secur ity check ∗)
if test_security_invokevirtual h nhp
then

(∗ Signature check ∗)
if (signature_verification l (signature m) cap)
(∗ Updates the current frame and pushes the new frame ∗)
then d_Normal ...
else d_AbortCode signature_error st

else d_ThrowException Security st
| _, _ ⇒ d_AbortCode opstack_error st
end.

where h is the current topmost frame, obj is the object on which the method m

should be invoked and the ellipsis stands for the resulting built state (omitted
in the excerpt). The function performs various checks, such as the verification of
the arguments of the method w.r.t its signature and the firewall mechanism with
test_security_invokevirtual, that may throws a SecurityException.
For example, in case the object nhp is an instance, the function will verify
whether (1) the active context is the Java Card Runtime Environment con-
text or; (2) the active context is also the context of the instance owner or; (3)
the instance is an entry point. If not, the function returns true to flag a security
violation. Formally:

Definition test_security_invokevirtual (h : d_frame)(nhp: obj):=
(∗ Tests i f the ac t iv e context i s the JCRE ∗)
if eqb_AID (context_ref h) jcre_AID
then true
else
match nhp with

(∗ The object i s an instance ∗)
| Instance ti ⇒

(∗ Checks f o r equal contexts or entry point ∗)
orb (eqb_AID (context_ref h) (owner_i ti)) (ptE ti)

(∗ The object i s an array ∗)
| Array ta ⇒

(∗ Checks f o r equal contexts or g loba l array ∗)

150 G. Barthe and G. Dufay

if eqb_AID (context_ref h) (owner_a ta)
then true
else eqb (statusglobal ta) is_global

end.

3.3 Javacard API

In addition to the Java Card Virtual Machine, the Java Card Runtime Environ-
ment includes an implementation of the Java Card APIs. This implementation
is required to execute those Java Card programs that appeal to the APIs.

In order to obtain a complete Java Card Runtime Environment and to be
able to execute or reason about any Java Card program, we must therefore
formalize the APIs in Coq. For the APIs that rely on standard Java Card code,
the modeling is direct since we can represent them as any Java Card program.

However, special care is required to deal with the APIs that deal with native
methods whose code is not written in Java. For such methods, we need to provide
an implementation in Coq. In our formalization, we give the implementation of
some native methods from the APIs, such as the method arrayCopy which
appears in the example of Section 4.2 and is used to copy an array. Examples
of APIs that are not treated that are not treated by our formalization include
for instance the APIs for communication with APDUs, required for instance
to select and execute a particular applet. Formalizing these APDUs could be
achieved by adding into our definition of a state two fields corresponding to an
input and an output buffer [91].

With the complete implementation of the APIs, the starting point of our
formalization for executing a program could then be the main method from the
Dispatcher class of the javacard.framework package, i.e. the standard
starting point of a Java Card smart card after any reset.

3.4 Verified Java(Card) Bytecode Verifiers

In this section, we present the general methodology that we used for verifying
bytecode verifiers [7]. In addition to the defensive virtual machine (from Sec-
tion 3.2), the methodology involves a typed virtual machine, and an offensive
virtual machine.

Typed and Offensive Virtual Machine. The bytecode verifier is built on a
variant of the defensive virtual machine, called typed (abstract) virtual machine,
that uses types as values and thus only performs type verifications. Correspond-
ing datatypes for values are given below (and prefixed with a_) and extended to
the notion of typed states a_state and typed return states a_rstate:

Inductive a_val_prim :=
| a_ReturnAddress : bytecode_idx → a_val_prim
| a_Void : a_val_prim
| a_Boolean : a_val_prim
| a_Byte : a_val_prim
| a_Short : a_val_prim
| a_Int : a_val_prim.

Formal Methods for Smartcard Security 151

Mutual Inductive a_val :=
| a_Prim : a_val_prim → a_val
| a_Ref : a_val_ref → a_val
with a_val_ref :=
| a_Ref_null : a_val_ref
| a_Ref_array : vmtype → a_val_ref
| a_Ref_instance : class_idx → a_val_ref
| a_Ref_interface : interf_idx → a_val_ref.

Numerical values of the defensive values have been removed, except for the nu-
merical value of return addresses which is a static information and is used to de-
termine the control flow for subroutines instructions. The semantics of bytecode
is modified according to these datatypes, however for some bytecodes (branching
instructions for instance), this virtual machine is non-deterministic due to the
loss of computational information. Possible resulting states are collected together
as the result of bytecode execution, and then, the main execution function has
the following signature:
a_exec : a_state →(set a_rstate)

The correctness of this virtual machine w.r.t to the defensive virtual machine
is expressed through cross-validation. Given the obvious abstraction functions
alpha_da (resp. alpha_da_rs) from defensive state to typed state (resp. return
states), the diagram from Figure 3 relating defensive execution d_exec and typed
execution a_exec must be commuting. Note that in this Figure, the curved
arrow to set a_rstate denotes set inclusion, and that this diagram excludes
invocation and return instructions that are handled differently (see [5] for more
details).

The offensive virtual machine is built on a similar basis, but uses untyped
values and do not perform type verification.

Definition o_val_prim := Z.
Definition o_val_ref := Z.
Definition o_val := Z.

This virtual machine is closer to a real implementation (faster than the defensive
virtual machine for execution, since it does not perform type verification). It has
also be proved as safe as the defensive virtual machine, provided the bytecode
verification of the executed program has been successful.

The tool Jakarta [5] has been design to generate, given abstraction functions
from one virtual machine to another, the abstracted virtual machine as well as
proofs of cross-validation. The abstraction process is guided by a script for com-

d state

alpha da

��

d exec �� d rstate� �

�alpha da rs

��
a state

a exec �� (set a rstate)

Fig. 3. Commutative diagram of defensive and typed execution

152 G. Barthe and G. Dufay

plex cases, however only 150 lines of script are needed to produce the expected
results for the typed virtual machine from the 5,000 lines long defensive virtual
machine. The offensive virtual machine can also be obtain with Jakarta and
cross validation results follow a commuting diagram similar to the typed virtual
machine. However, for this diagram, the commutation is limited to the cases
where the defensive execution does not lead to a type error, since the offensive
virtual machine assumes that such errors do not happen. It can also be written
with the following formula:

∀ (s:d_state), d_exec s
= d_Abnormal type_error →
alpha_do_rs (d_exec s) = o_exec (alpha_do s)

where alpha_do, alpha_do_rs and o_exec are similar to alpha_da,
alpha_da_rs and a_exec but for the offensive virtual machine.

Abstract Definition and Construction. The formalization of the bytecode
verifier relies on the modules system of Coq. It offers a refined model of the
various notions (transition system, fixpoint structure, bytecode verifier, abstract
virtual machine, etc.) involved to obtain the bytecode verifier for the defensive
virtual machine.

A bytecode verifier is given by a type state of states, an execution relation
exec over states, a set err of error states and a predicate check such as:

forall a:state, (check a) → ¬(bad a).

where a state is bad, if it is possible to reach from it an error state by successive
transitions of the execution relation. Thus the predicate check rejects all states
that lead by execution to an error state.

The standard way to build such a bytecode verifier is to endow the type of
states with a order that does not admit infinite ascending chains, and for which
execution is increasing (to guarantee termination), and such that error states
are upwards closed. If furthermore execution is deterministic, one can compute
for every state a, the least fixpoint b upper a. To do so, we define for every state
a the least fixpoint lfp a below it as:

lfp a =
{
a if exec a = a

lfp (exec a) otherwise

Then, we define check a as (err (gfp a)). As execution is monotone and
lfp a is the least fixpoint upper a, it is clear that such a checking is sufficient
to guarantee that a is not a bad state.

In a first step, the function exec from the above construction is instanti-
ated to the execution function from the typed virtual machine running over the
corresponding stackmap for the chosen analysis (monovariant, polyvariant de-
scribed in Section 2.3). This leads to a verification based on a single method
for the typed execution. However, this result can be extended to a result about
the defensive execution, by verifying individually each method of the program

Formal Methods for Smartcard Security 153

being verified, by using cross-validation results between typed and defensive vir-
tual machines, and by appealing to a complex invariant between the typed and
defensive virtual machine for the case of instructions that change the current
frame such as invocations, returns or instructions that raise an exception. Fi-
nally, using this bytecode verifier for the defensive virtual machine and results
of cross-validation between defensive and offensive virtual machines (including
some extras properties on method invocation), we can easily obtain the following
expected property:

forall s:d_state, (check s) →
(alpha_do_rs (d_exec s)) = (o_exec s).

If s is the initial state of a program, this property does guarantee that if the
verification of the program has been successful, than defensive and offensive exe-
cution coincide. This is captured formally by introducing functions that perform
several steps of execution, and by showing

forall s:d_state, forall n:nat, (check s) →
(alpha_do_rs (d_exec+ n s)) = (o_exec+ n s).

As summarized in Figure 4, to take advantage of the bytecode verification frame-
work, the user must provide:

– a defensive virtual machine;
– the definition of abstraction functions for Jakarta abstraction scripts, that

are used to construct the abstract virtual machine and an offensive virtual
machine. Scripts may contain some minimal amount of proof information to
carry cross-validation;

– a formal proof of the correctness w.r.t. bytecode verification of method in-
vocation and exception handling;

– a choice of an analysis and of the corresponding history structures.

Then the user obtains an offensive virtual machine, several bytecode verifiers,
and a proof that these bytecode verifiers are correct, in the sense that they will
reject programs that go wrong on the defensive virtual machine, and that the
offensive and defensive virtual machines coincide on programs that are accepted
by bytecode verification.

User Input

Abstract VM
function
Abstraction

Defensive VM

Monovariant
Analysis

Polyvariant
Analysis

BCV for
Abstract VM

BCV for
Defensive VM

Other
Analysis

Jakarta

proofs
correctness
invokation

Fig. 4. Construction of verified bytecode verifier

154 G. Barthe and G. Dufay

4 Application Validation

While the correctness of the runtime environment is an essential to guarantee
the overall security of trusted personal devices, no device can be deemed secure
without ensuring that applications do not behave maliciously, in particular with
respect to API usage.

The validation of applications against security policies can be addressed at
different levels:

– one can enhance existing security architectures to enforce security proper-
ties not addressed by current architectures, in particular confidentiality and
availability. Verification can be performed by enhanced bytecode verification
mechanisms;

– one can abandon the realm of type systems and its associated benefits and
choose develop logical methods for specifying and verifying either automat-
ically or efficiently a specific class of security properties. Verification can
be performed by (possibly efficient and hence incomplete) logic-based proof
inference mechanisms;

– one can exploit the expressive power of logical methods to require that ap-
plications, or at least sensitive fragments of applications, are subjected to
functional verification, i.e. to verifications that establish their correctness in
terms of functionality as well as security.

The different levels may be combined, e.g. by using alias type systems to improve
the modularity of functional verification [72]. For the clarity of presentation,
we never introduce these different levels separately. In Section 4.1, we discuss
possible applications of static analyses and type systems for guaranteeing the
security of applications. In Section 4.2, we consider logical verification techniques
for verifying specific security properties as well as functional correctness. The
paragraph takes the point of view of code developers who want to increase their
confidence in the code they develop, and therefore focuses on source program
verification; nevertheless we briefly discuss the point of view of the code consumer
at the end of this section.

4.1 Enhanced Type Systems and Static Analyses

Program analysis techniques such as type systems and static analysis provide a
well-established means to enforce program properties at compile-time or load-
time. In the domain of Java-enabled devices, the prime example of program
analysis based on type systems is bytecode verification, which is discussed in
Section 3.4. In addition, there are several proposals of type systems and static
analysis for JVM programs, in particular for eliminating dynamic checks that in-
cur a loss of performance at execution time, and for enforcing security properties
that are not guaranteed by the Java security mechanisms.

Static Analyses for Access Control. While the runtime penalty incurred
by dynamic access control is acceptable in practice, it is desirable to detect

Formal Methods for Smartcard Security 155

statically that an application may attempt to violate the rules of the firewall,
since such attempts will result in a security exception that may block the card.
D. Caromel, L. Henrio and B. Serpette [22] have proposed a static analysis
that detects statically whether an application may raise a security exception,
whereas M. Eluard and T. Jensen [40] have proposed a similar but finer analysis
that covers more precise sharing policies. W. Dietl, P. Müller and A. Poetzsch-
Heffter [36] manage a similar effect using a type system adapted from ownership
type systems. In order for their approach to be practical, downcasts allow to
add information to references that can belong to any context into more specific
references, e.g. the reference belongs to the currently active context, or is an entry
point (of course, such additional information must be verified). The information
provided by downcasts is used in type checking, thus the correctness of the type
system can only be achieved by combining type checking with runtime checks
that verify at that the information associated to downcasts is correct.

An example of a rejected program for these analysis can be built from the
program of Figure 2: Suppose that the applet Alice contains a public method
baz, then inside the method bar from applet Bob a call to AliceObj.baz()

would lead to a security exception since this Alice and Bob belong to different
contexts and the invoked method does not belong to the shareable interface SI.

In a series of articles, T. Jensen and his co-workers [13,14] propose a method
to check control-flow properties of Java applets. Their method relies on con-
structing a finite-state automaton that approximates of the control-flow graph
of an application, and checking the automaton against security properties ex-
pressed in temporal logic. The method is applicable to stack inspection as well
as other properties. Building up on earlier work by F. Pottier, C. Skalka and
S. Smith [82], T. Higushi and A. Ohori [50] propose a static type system for
access control in the JVM, and develop a sound inference algorithm to verify
statically that programs respect the access control policy specified by the type
system.

Static Analyses for Secure Information Flow. The firewall mechanism
provides a means to control which principals access but does not guarantee that
confidential information will not leak to unauthorized principals [71]. In order to
avoid principals (that may access information legitimately) to pass the informa-
tion unduly, it is desirable to devise security mechanisms that enforce stronger
confidentiality policies such as non-interference, a high-level security property
that guarantees the absence of illicit information flows during a program execu-
tion. Non-interference assumes that the variables in a program are either public
(low) or secret (high), and requires that the initial values of secret variables do
not influence the final values of public variables.

A. Myers [73] and A. Banerjee and D. Naumann [2] propose static enforce-
ment mechanisms for guaranteeing non-interference of Java programs, using ex-
tended programs in which methods are declared with security signatures and
fields are declared with their security level (in fact, [2] combines information
flow and access control but we gloss over the issue here). A example of class
declaration in the language of [2] is:

156 G. Barthe and G. Dufay

class PatientRecord extends Object {
name : (string, L);
hivstatus : (bool, H);
drug : (string, H);

(void, L) setDrug >-H→ (string, L) {
...
}

...
}

where the text >-H-> in the declaration of the method setDrug indicates that
the method has a high heap effect, i.e. will modify high parts of the heap that
store the values of high fields. While the type system of [2] has been proved
sound in the sense that typable programs are non-interfering, the type system
of [73], which exhibits a richer set of features, lacks a proof of soundness.

An information flow type system for a representative fragment of the JVM
that includes classes, methods, and exceptions is given in [9]; the type system
is compatible with bytecode verification, and is sound, in that it rejects non-
interfering programs. The examples below illustrate some of the illicit informa-
tion flows that can occur in a stack-based language, and that are detected by
the type system of [9]:

1 sload yH

2 if eq 6
3 spush 0
4 sstore xL

5 goto 8
6 spush 1
7 sstore xL

8 return

1 spush 3
2 spush 4
3 sload yH

4 if eq 6
5 sstore yH

6 sstore xL

7 return

These programs are example of indirect flows, since the final value of the low
variable xL depends on the initial value of the high variable yH . The problem is
caused in the first case by an assignment to xL in the scope of a branching in-
struction, and in the second case by an instruction that manipulates the operand
stack in the scope of a branching instruction.

To prevent such illicit flows, the type system of [9] manipulates typed states
that include security environments, i.e. maps that assign a security level to each
program point, and allows branching instructions to update the security envi-
ronment, e.g. if they branch over a high value.

Although the prevention of illicit information flows is an important concern
for the smartcard industry [15,66], and although there have been important
achievements in the design of static enforcement methods for information flow
security policies [87], the methods have not found substantial applications in
practice, partly because information flow policies based on non-interference are
too rigid and do not authorize information release, whereas security sensitive
applications often release deliberately some amount of sensitive information.

Formal Methods for Smartcard Security 157

Typical examples of deliberate information release include sending an encrypted
message through an untrusted network, or allowing confidential information to
be used in statistics over large databases.

In a recent survey [88], A. Sabelfeld and D. Sands provide an overview of
relaxed policies that allow for some amount of information release, and a clas-
sification along several dimensions, for example who releases the information,
and what information is released. While several information flow type systems
have been developed to accommodate some dimensions of information release,
it is likely that providing flexible static enforcement mechanisms that integrate
the different dimensions of declassification will contribute significantly towards
a wider use of information flow type systems.

Other Static Analyses and Type Systems. The paragraphs above illustrate
some prominent applications of type systems for enforcing security of JVM appli-
cations but the scope of properties enforceable by type systems is much wider: for
example, G. Schneider et al [21,90] have recently developed an efficient analysis
to estimate memory usage for Java smartcards. Advanced type systems can also
be used to enforce safety policies or to justify aggressive optimization strategies.
Existing analyses for JVM programs include array-out-of-bounds analysis [97]
using restricted dependent types [96], exception analysis [56] and escape analy-
sis [16], as well as type systems for concurrent fragments of the JVM [41,60].

Implementations. It is noticeable that advanced type systems for the JVM
have remained at the level of prototype implementations, and have not found
their way in security architectures. While the situation is partially a natural con-
sequence of the exploratory nature of some type systems, P. Fong [44] suggests
that the situation may also result from a more fundamental limitation of the
Java platform, namely that the verification architecture of the JVM is not de-
signed to support extensibility, and advocates the design of extensible protection
mechanisms that can be used to accommodate mechanisms tailored towards en-
forcing application-specific properties such as confidentiality, access control, or
resource management. Building on earlier work on proof linking [45], he proposes
an architecture that supports pluggable verification modules, and illustrates the
principles of his approach by implementing an access control type system as an
instance of a pluggable verification module.

4.2 Logical Verification of Security Properties

Logical Verification Techniques. Research into program logics has a long
history, dating back to the seminal work by Floyd [43] and Hoare [51] on program
logics and by Dijkstra [37] on weakest precondition calculi in the late 1960s and
early 1970s. There has been steady progress since these early days, resulting in
tool-supported program logics for realistic programming languages. In particular
the last 10 years have seen a burst of activity around Java program verification
which has culminated in the realization of verification environments for Java
programs. Many of these environments use as specification language the Java

158 G. Barthe and G. Dufay

Modeling Language, which we describe below, and can be used for verifying
security properties as well as functional properties of Java programs.

Java Modeling Language. The Java Modeling Language [55] (JML) is a behav-
ioral interface specification language designed for Java. It relies on the design
by contract approach [69] to guarantee that a program satisfies its specification
during runtime. These specifications are given as annotations of the Java source
file. More precisely, they are included as special Java comments, either after the
symbols //@ or enclosed between /∗@ and @∗/. For example, the general schema
for the annotation of a method is the following:

/∗@ behavior
@ r equ i r e s <precondit ion >;
@ ensures <postcondit ion i f no except ion raised >;
@ s i gna l s (E) <postcondit ion when except ion E raised >;
@ ass ignab le <modif ied f i e l d s and var iab l e s >;
@∗/

where requires specifies the conditions on variables, fields and method param-
eters at the beginning of the method call so that the conditions after ensures
hold at the end of the method call and the conditions after signals(E) hold if
an exception is raised and not caught inside the analyzed method. The under-
lying model is a an extension of Hoare-Floyd logic: if the precondition holds at
the beginning of the method call, then postconditions (with and without excep-
tions) will hold after the call. The assignable clause specifies side-effect affected
variables and is used during the weakest precondition calculus for method invo-
cations.

Preconditions and postconditions express first-order logic statements, with a
syntax following the Java syntax. Thus, they can easily be written by a pro-
grammer. The Java syntax is enriched with special keywords: \result and
\old(<expr>) to denote respectively the return value of a method, and the
value of a given expression before the execution of the considered method; and
\forall, \exists, =⇒ to denote respectively universal quantification, existen-
tial quantification and logical implication.

Besides methods specification, it is also possible to annotate a program with
class invariants (predicates on the fields of a class that hold at any time in the
class) using the keyword invariant, loop invariants (inside the code of a method
with loops) using the keyword loop_invariant, and assertions (that must hold
at the given point of the program) using the keyword assert.

Finally, when annotating a program, it might be useful to introduce new
variables to keep track of certain aspects or computations. Instead of adding
them to the program itself, thus adding new code, it is possible to define variables
that will only be used for specification. These variables, called ghost variables,
are defined in a JML annotation with the keyword ghost and assigned to a Java
expression with the keyword Set.

Styles of Specification. Due to its expressiveness and versatility, the JML speci-
fication language supports several styles of specifications; the choice of one style

Formal Methods for Smartcard Security 159

of specification over the others depends on the purpose of the verification effort.
In a nutshell, one can either opt for lightweight specifications in which one in-
troduces enough annotations to reason about some specific safety property, such
as the absence of exceptions, or heavyweight specifications where functional be-
havior is considered. There is of course a great liberty in how “lightweight”
or “heavyweight” a specification should be, and different styles can be used in
different parts of an application.

In addition, one may opt for defensive specifications, in which methods are
annotated with preconditions that prevent exceptions to occur, or offensive spec-
ifications, which use appropriate clauses to specify exceptional postconditions.

Verification Techniques and Tools. JML specifications correctness can be verified
either during runtime or statically [18]. To be verified during runtime, the source
code must have been compiled using jmlc, which is a enhanced Java compiler
for JML annotated code. This compiler adds to the generated program assertions
checking instructions corresponding to the JML specifications of the program:
preconditions, postconditions and loop or class invariants. An exception is raised
during the execution if a JML condition fails. The JML runtime assertion checker
can be used for unit testing [26].

For the static verification of Java programs, several tools are available using
(variations of) JML as specification language. These tools adopt different com-
promises between soundness and automation, and thus it is useful to use them
in combination, starting from automatic but unsound tools, and pursuing with
sound but interactive tools. Among these tools, ESC/Java2 [28] offers the higher
level of automation as it does not require any user interaction and relies on the
Simplify automatic prover. It is particularly useful for checking null pointers or
array bounds limits; however it is unsound and incomplete. Other static verifi-
cation tools such as JACK [20], Jive [70], Krakatoa [65] and Loop [11] generate
proof obligations that can be discharged using proof assistants or automatic
provers. These tools are sound but require user interaction.

Model-checking techniques provide yet another means to verify the correct-
ness of Java programs against their JML annotations. Bogor [85] exploits such
techniques to provide automatic verification of concurrent Java programs with
JML annotations.

Annotation Assistants. Program verification using logics may require substantial
amounts of annotations in programs, and the costs of annotating programs can
become prohibitively high as programs increase in size. Automated support for
annotating programs is of great benefit to allow program verification to scale to
larger programs.

There are several tools and techniques for inferring annotations. One tech-
nique consists in using weakest precondition calculi, possibly in variant form,
to generate defensive specifications that prevent run-time exceptions. Another
technique to infer annotations is abstract interpretation, which can be used for
instance to infer constraints on the range of integer fields, or loop invariants [77],
class invariants [64] or object invariants [25]. A third technique consists in in-
strumenting an existing static analysis to generate annotations related to the

160 G. Barthe and G. Dufay

property checked by the analysis. These techniques are implemented in some of
the aforementioned tools, or in separate tools. In the next paragraphs we illus-
trate how some annotation assistants can be used to specify security properties
of Java applications.

Limitations of JML Technology. Despite having shown its usefulness of a variety
of case studies, the JML technology is still under development, and many tech-
nical issues remain to be solved. For example, JML is currently not appropriate
for reasoning on complex data-structures such as linked-lists or trees because
no global property on these structures can be stated in JML. This limitation of
JML is related to the first-order logic on which JML is based and that prevents
complex quantification over structures or predicates. Also, JML does not allow
to in specifications external functions written in a back-end tool, or to use back-
end tools to reason about program termination. Another severe restriction of
current JML verification tools is the limited support they provide for reasoning
about concurrent programs. There are however some ongoing efforts to extend
JML with support for reasoning about multi-threaded programs [86].

A final drawback of the JML approach and of the weakest precondition cal-
culus is the difficulty of controlling the shape and size of generated proof obli-
gations. While some techniques have been developed to avoid the size of proof
obligations, verifying the functional correctness of some programs, even of mod-
est size, can lead to very complex and unpalatable proof obligations.

High-Level Security Properties

Security Rules. When programming applications using the Java technology, de-
velopers are required to follow security rules that pertain to the programming
idioms used for developing the applications, and that are intended to complement
the security mechanisms provided by the platform. Such security rules cover a
wide range of properties, including safety policies not guaranteed by the plat-
form, security properties related to confidentiality or resource control, as well as
properties that ensure a correct and legitimate usage of the API. Examples of
such properties are detailed below.

Exception Safety. Exception safety is an important concern when developing
applications, and guidelines for programming Java applications often consider
several forms of exception safety. For example:

– No runtime exceptions at top-level. The presence of runtime exceptions at
top-level constitutes one common form of programming errors that is unde-
tected by the JavaCard platform security mechanisms. If raised, such excep-
tions should be caught during the program execution (unlike ISO exceptions
whose presence at top-level should not be considered as a programming er-
ror).

– No uncaught exception in transactions. A first step towards well-formed
transactions, defined below, is to guarantee that exceptions do not escape
transactions (i.e. that exceptions thrown inside a transaction should be
caught inside this transaction).

Formal Methods for Smartcard Security 161

API Usage. While a careful design of the API is crucial for constraining the
interactions between applications and its environment on the card, the security of
the device can only be guaranteed if applications perform a correct and legitimate
usage of the API. Therefore, a large number of security rules focus on API usage.

– Well-formed transactions. In order to maintain the card in a coherent state,
the API provides a transaction mechanism that guarantees the atomicity of
updates performed within transactions, see Section 2.2. This rule requires
that all calls to beginTransaction are matched by exactly one call to
commitTransaction or abortTransaction, and conversely.

– Bounded retries. No authentication may happen within a transaction. The
rule is designed to deter attacks that exploit the atomicity properties of
transactions in combination with timing leaks in the implementation of the
authentication mechanisms. In a nutshell, if authentication is done within
a transaction and response times to authentication challenges are longer in
case of a negative reply (say t0 for a positive reply and t0 + t for a negative
reply), it is possible for the user to pull out the card between t0 and t0 + t
in the absence of reply from the card (and hence if authentication failed).
By pulling out the card, the user forces the card to roll back to the state
prior to starting the transaction, and in particular to reset the retry counter.
Hence the user allows himself an unbounded number of retries. Beyond its
anecdotal nature, this example illustrates that security rules can be crafted
to account for vulnerabilities that would be difficult to capture at a more
semantical level.

Security guidelines for application developers may also include more specific
security rules about API usage, including:

– legitimate and controlled use: instances of such rules include forbidding or
restricting calls to given methods, e.g. forbidding GSM applications to call
the method that trigger the sending of SMS messages, or requiring that calls
to such methods are only performed in authenticated mode;

– privacy: in case of a GSM application requiring access to some positioning
system (such as Global Positioning System GPS) to customize their services,
security rules may be set to guarantee the application does not divulge the
location of the phone and its owner to an unauthorized parties.

While falling short of providing a solid foundation to software security, such rules
provide partial guarantees for properties that are difficult to capture formally,
and are important in practice because they embody the know-how of security
experts.

Enforcing Security Rules. Verification techniques based on JML provide an ef-
fective means to enforce many security rules for Java applications. In particular,
M. Pavlova et al [79] propose a general method for guaranteeing a correct usage
of the API:

162 G. Barthe and G. Dufay

1. the developer express the security rule in some appropriate formalism. Fol-
lowing an established practice popularized by S. Schneider [89], security
properties are expressed as automata that constrain the usage of API meth-
ods. Intuitively, security automata specify at an abstract level, and indepen-
dently of any program, preconditions that must hold at certain points during
execution1;

2. JML annotations are synthesized from the automaton and attached to those
API methods whose behavior is specified by the automaton. Then JML
annotations are propagated throughout the program, and proof obligations
are generated from the annotated program. The propagation of the JML
annotations is performed by some ad-hoc propagation algorithm, and proof
obligations are generated by a verification condition generator. Currently,
the propagation of annotations and the generation of proof obligations is
performed in two different passes, although it is possible to perform both
tasks in a single task due to the similarities between the verification condition
generator and the propagation algorithm;

3. proof obligations are dispatched to automatic provers or interactive proof
assistants, where they can be discharged by decision procedures or through
user interaction. If all proof obligations can be discharged, then the applica-
tion respects the security property. As a corollary, it follows that inserting
runtime checks to monitor that the application only performs “allowed tran-
sitions” is superfluous.

The method has been implemented in the JACK verification environment and
applied to several case studies from the smartcard domain. The overall con-
clusion is that the method contributes to carrying out formal security analyses
and to improving the quality of applications, while remaining reasonably acces-
sible to developers which are not familiar with formal techniques. Nevertheless
the method is by no means complete. For example, B. Jacobs, C. Marché and
N. Rauch [52] report on an experiment that goes beyond the technique of [79]
and involves a substantial amount of work, both in terms of (non-automated)
specification and interactive verification, for checking exception safety of a com-
mercial smartcard applet.

Example. We illustrate how the method can be used to enforce atomicity proper-
ties, and in particular that transactions are well-formed. In order to specify that
transactions are well-formed, we use an automaton involving one variable TRANS
initialized to 0 and used to record whether or not there is an ongoing transac-
tion, that corresponds to the two states TRANS==0 and TRANS==1. Then the
automaton contains transitions that correspond to correct calls of the methods
for beginning, committing and aborting a transaction:

1 This first step of the method is not reported in loc cit, its implementation being
posterior to its publication.

Formal Methods for Smartcard Security 163

TRANS ==0

TRANS==1

beginTransaction abortTransaction commitTransaction

The first step towards verifying the well-formedness property is to declare the
variables that appear in the automaton with their initial values, here:

/*@ static ghost int TRANS == 0; @*/

and to generate so-called core annotations for the API methods that appear in
the automaton, which in the case of the method beginTransaction is:

/*@ requires TRANS == 0;
@ assignable TRANS;
@ ensures TRANS == 1; @*/

public static native void beginTransaction()
throws TransactionException;

while in the case of commitTransaction the core annotation is:

/*@ requires TRANS == 1;
@ assignable TRANS;
@ ensures TRANS == 0; @*/

public static native void commitTransaction()
throws TransactionException;

Then, the second step is to propagate the annotations in the application being
verified. We consider two code fragments.

In the first code fragment, we have a method m, whose only method calls are
those shown, and which does not contain any set annotations.

public static void m() { ... // some computations
JCSystem.beginTransaction();
... // some computations within transaction
JCSystem.commitTransaction(); }

The problem is to annotate m in such a way that the precondition of m guar-
antees the precondition of beginTransaction, and dually that the post-
condition of m follows from the postcondition of commitTransaction. As
we assume that TRANS is not modified by the code that precedes the call to
beginTransaction or that follows the call to commitTransaction, the
precondition of m is inherited from that of beginTransaction, and the post-
condition of m is inherited from that of commitTransaction. Our algorithm
to propagate annotations will generate exactly such a specification:

164 G. Barthe and G. Dufay

/*@ requires TRANS == 0;
@ assignable TRANS;
@ ensures TRANS == 0; @*/

public static void m() { ... // some computations
JCSystem.beginTransaction();
... // some computations within transaction
JCSystem.commitTransaction(); }

Note that one could device finer propagation algorithms that account for the
computations performed by m, but the resulting specification of m would be-
come cluttered. Upon completion of the annotation phase, one must proceed
with the verification of the annotated method. For the method above, the proof
obligations will include a proof obligation that the postcondition of m is guar-
anteed by the postcondition of commitTransaction, a proof obligation that
the precondition of m ensures the precondition of beginTransaction, and a
proof obligation that the postcondition of beginTransaction ensures the pre-
condition of commitTransaction. These proof obligations can be discharged
automatically.

The second code fragment aims at illustrating that verification environments
can also provide mechanisms to trace the potential source of violations of security
properties. If we apply our method to the code fragment:

public static void m() { ... // some computations
JCSystem.beginTransaction();
... // some computations within transaction
JCSystem.beginTransaction();
... // some computations within nested transaction
JCSystem.commitTransaction();
... // some computations within transaction
JCSystem.commitTransaction(); }

we shall obtain 5 proof obligations including a proof obligation that (in essence)
TRANS == 1 implies TRANS == 0, which corresponds to the proof obligation
that ties the postcondition of (the first call to) beginTransaction with the
precondition of (the second call to) beginTransaction. Verification environ-
ments such as Jack highlight the code fragment that corresponds to the unprov-
able proof obligation, and thus indicate the source of the violation of the proof
obligation. As pointed in [61], the verification condition generation mechanism
of Jack is particularly well suited for linking unprovable proof obligations with
problematic code fragments, but the authors of [61] show that it is possible to
achieve a similar effect for other forms of verification condition generators that
avoid generating an exponential number of proof obligations [42].

Secure Information Flow. Due to its particular nature, a major concern
of smartcards applications is to guarantee confidentiality and integrity of data.
Section 4.1 advocates to address confidentiality issues from the perspective of
non-interference, and indicates that information flow type systems can be used

Formal Methods for Smartcard Security 165

for enforcing non-interference. However, information flow type systems are ex-
tremely conservative and reject many secure programs.

Thus several works such as [32,6] suggest the use of program logics such
as dynamic logic or Hoare logic to verify non-interference. In these frameworks,
non-interference is reduced to a property about a single program execution using
self-composition: basically, a program P is non-interfering if, given two sets of
inputs that only differ by the values of secret data, the successive execution of
P for each of these set leads to observably equal public outputs.

More formally, as presented in [6], let
l and
h be the sets of respectively
public (low) and secret (high) variable of a simple (without mutable structures)
imperative program P , let
l′ (resp.
h′) be a renaming with fresh names of the
variables of
l (resp.
h), then P (
l,
h) is non-interferent if before the execution
l

and
l′ are such that
l =
l′ then after the execution of P (
l,
h); P (
l′,
h′), where ; is
the usual sequential composition, the equality
l =
l′ still holds. Or equivalently,
the following Hoare triple must be valid:

{
l =
l′}P (
l,
h); P (
l′,
h′){
l =
l′}
Although the above definition of non-interference with self-composition uses
Hoare logic, verifying this property for a given program is not possible with
standard JML tools. Indeed, specifications relate to the self-composed program,
not the original one, make use of renamed variables and special care must be
taken for method invocation. In [39], the Krakatoa tool and JML have been
extended to allow specifications for non-interference, without changing the un-
derlying weakest precondition calculus of the tool.

As mentioned in Section 4.1, non-interference is too strict since it forbids any
computation on secret variables observable on public variables, even those ex-
pected for the normal behavior of smartcards, such as PIN code verification. One
advantage of JML is that it provides a precise relationship between inputs and
outputs of the program. Thus, it becomes possible to capture information release
using JML. An example of information release, expressed with the extended ver-
sion of JML presented in [39] is given below. This example deals with PIN code
verification. The secret variable pin stores the actual PIN code, the public input
variable in represents the attempted code, and the public output variable acc

reveals whether in and pin agree. The specification of non-interference with de-
classification follows: tested with two different sets of input that are both valid
or both invalid tries, the algorithm must give identical result for the access.

/∗@ publ ic normal behavior
@ r e q u i r e s n i (\ ni1 (in)==\ni1 (pin))<=⇒(\ ni2 (in)==\ni2 (pin))
@ ensure s n i \ni1 (acc) == \ni2 (acc) ;
@∗/

void pin_verification(int in) {
if (in == pin)
acc = true;

else
acc = false;

}

166 G. Barthe and G. Dufay

In this code, \ni1(<var>) (resp. \ni2(<var>)) correspond to the renamed vari-
ables that appear in self composition, <=⇒ is logical implication, and
requires_ni (resp. ensures_ni) is a keyword to introduce pre-condition (resp.
post-condition) of the Hoare triple in self composition specifications.

Resource Consumption. Controlling resource consumption of downloaded
applications is a compulsory measure for preventing denial of service attacks
on devices with restricted resources. Yet current security architectures do not
provide any mechanism to control resource consumption. In this section, we
illustrate how JML can be used to specify and verify memory usage of Java
applications.

Principles. Verification techniques based on JML are also appropriate for per-
forming a precise analysis of resource consumption for Java programs. The basic
idea, described in [8], consists in:

1. using a ghost variable Mem that provides an upper bound for the memory
consumed by the program at any given program point;

2. attaching to each method m a postcondition that predicts its memory con-
sumption. The prediction can be express at different levels of granularity.
For example, the estimate may be global, or it may account for the value of
inputs, or it may distinguish between normal and abnormal termination, or
between the different types of memory;

3. verifying for each method that the predicted memory consumption is indeed
an upper bound of the memory consumption, by inserting immediately after
every bytecode that allocates memory a ghost assignment that increments
of Mem by the amount of memory consumed by the allocation, and verifying
the resulting annotated program.

The correctness of the approach can be derived from the correctness of logical
verification techniques. As a consequence, every run of a method will not con-
sume more than km memory units, provided the corresponding annotated method
has been proved correct. Of course, the correctness of the approach hinges on the
fact that the programmer correctly specified the amount of memory consumed
by each allocation.

The approach is practical in that it allows to specify and enforce precise
memory consumption policies for applications that may involve such features
as exceptions, subroutines, and recursive methods. Its practicality can be fur-
ther enhanced by annotation assistants which infer appropriate JML annotations
about memory consumption. Of course, such assistants are necessarily incom-
plete an user interaction may be required for exploiting the full power of JML.
In addition, user interaction can be required to discharge proof obligations gen-
erated from the annotated applet.

While our approach is purely static, L.-A. Fredlund [46] suggests to use a
runtime monitor to control the execution of JavaCard applets whereas A. Chan-
der et al [24] propose to control memory consumption with an hybrid approach
that combines static and dynamic verifications. A further difference between

Formal Methods for Smartcard Security 167

our approach and that of Chander et al is that they do not require user in-
teraction; while avoiding user interaction does in principle restrict the scope of
their method, they show the applicability and effectiveness of their tool on a
substantial example.

Example. One can specify and verify that the method m below will not use more
than km memory units

public void m(A a) {
if (a == null) {
a = new A();

}
a.b = new B();

}

by annotating the program as follows

//@ ensures Mem <= \ old (Mem) + km;
public void m(A a) {

if (a == null) {
a = new A();
//@ set Mem += ka ;

}
a.b = new B();
//@ set Mem += kb ;

}

and verifying that the annotated method is correct provided ka+kb ≤ km. Due to
the simplicity of the code (e.g. it does not contain loop nor recursive methods),
the annotation assistant is able to infer the specification of the method, once
given (over)estimates ka and kb of the memory consumed by the allocation of
an instance of class A and B respectively.

Other Quantitative Properties. Due to their constrained resources, trusted per-
sonal devices are very vulnerable to denial-of-service attacks, and it is therefore
important to control many facets of the resource usage made by applications.
In addition to memory consumption, which is discussed above, security policies
may concern such resources as library calls, communication channels, bandwidth,
and power consumption. For some resources, it is possible to adapt the technique
described above.

Verification from the Code Consumer Perspective. Throughout this sec-
tion, the problem of applet validation has been addressed from the perspective
of the application developer who wants to gain confidence in the quality of the
software it develops. Thus, we have focused on applet validation at source code
level. Such a focus has been quite common in the area of smartcards, where
currently the card issuer has control over the applications loaded on the card,
and is likely to have access to the applications source code.

The situation is somewhat different in other application areas of trusted
personal devices, and in particular in the area of telecommunications where

168 G. Barthe and G. Dufay

operators are faced with the possibility of offering their customers new services
by deploying applications originating from an untrusted software company. The
issue here is that operators, while worried about the negative impact on business
if the code is malicious or simply erroneous, do not have access to the source
code of applications both for intellectual property reasons (the software company
does not want to disclose its source code). In such a scenario, the issue arises of
verifying bytecode applications.

Fortunately, logical techniques such as those presented above are also appli-
cable to bytecode level, and can be used by the code consumer to check that
the application that he downloads is secure. For example, C. Quigley [84] con-
siders program logics for Java bytecode, as do F. Bannwart and P. Müller [3].
Further, M. Wildemoser and T. Nipkow [95] have formalized in Isabelle/HOL a
verification condition generator for a fragment of Java bytecode, and shown its
correctness w.r.t. an operational semantics. Motivated by the prospect of bring-
ing the benefits of source code verification to the code consumers, L. Burdy
and M. Pavlova [19] have also developed a verification condition generator for
Java bytecode programs. The verification condition generator, which has been
integrated in JACK, outputs proof obligations from extended class files that
can either be obtained manually by inserting annotations into user-defined at-
tributes, or by a compiler that compiles JML annotated Java programs into
extended class. In both cases, annotations are written in the Bytecode Model-
ing Language (BML), which may be considered as the counterpart of JML for
bytecode. Rather similar work for C# has taken place in the context of the
Spec# project [4], which has defined an extension of C# with annotations and
type support for nullity discrimination. Such annotated programs are then com-
piled with their specifications to extended .NET files, which can be run using
the .NET platform. Specifications are checked at run-time or verified using the
Boogie static checker.

Bringing the benefits of source code verification to code consumers not only
requires to develop logical methods to reason about bytecode programs, but
also to develop mechanisms that allow code consumers to check efficiently that
programs are correct. In their work of Proof Carrying Code, G. Necula and
P. Lee [75,74] propose a general solution to this problem by requiring that com-
ponents should come equipped with a certificate which can be used by the con-
sumer to verify statically that the components are correct. They also advocate
the idea of certifying compilation [76], where the focus is on safety properties
which can be proven automatically through an extended compiler that syn-
thesizes annotations from the information it gathers about a program, and a
checker that discharges proof obligations generated by the verification condition
generator.

Some of the security properties described above cannot be verified automat-
ically without a loss of precision, and thus as a result of favoring automatic
verification, certifying compilation does not fully exploit the flexibility and ex-
pressiveness provided by logical verification techniques. One complementary ap-
proach to certifying compilation consists in exploiting the results of source code

Formal Methods for Smartcard Security 169

verification, and constructing certificates for bytecode programs from certificates
for the corresponding source code programs. In some recent unpublished work,
G. Barthe, T. Rezk and co-workers have showed for a restricted fragment of Java
that proof obligations are almost preserved by non-optimizing compilers; thus
in this context it is possible to reuse certificates almost directly. Preservation of
proof obligations by compilation is destroyed by simple program optimizations;
nevertheless preliminary experiments suggest that it is possible to construct from
certificates for source code programs certificates for bytecode programs obtained
by optimizing compilation.

Types vs. Logics. While Section 4.1 focused on the use of type systems to
guarantee that applications respect security policies related to confidentiality
and memory consumption, this section shows that logical verification methods
can be used to enforce the same policies. The main benefits of using logical
verification techniques are: expressiveness (logics support customizable security
policies), versatility (the same logic can be used for a great variety of analyses,
thus allowing analyses to be combined), and precision (logics can be used to
provide precise statements of program behavior).

In order to improve the quality of their static analyses, several researchers
are now exploring the possibility of making a systematic use of logical verifi-
cation methods to verify program properties that are traditionally checked by
static analyses, for example ownership [35]. This line of work seems promising,
and opens the perspective for precise static analyses. However such program
analyses based on logic may require user interaction (for discharging the proof
obligations generated by the analysis of the program), especially if they seek to
exploit the full power of logic in an analysis that combines expressiveness and
precision. Unfortunately, requiring substantial user interaction is an obstacle to
the scalability of this method.

On the other hand, type systems benefit from a combination of three im-
portant features: simplicity (types can be viewed as a particularly simple form
of assertions), automation (type systems compute a decidable approximation of
the property to be enforced) and scalability (type systems are compositional and
allow to reduce the verification of a complex program into simpler verification
tasks). They are thus amenable to on-device checking. In order to get the best of
both worlds, it seems therefore relevant to gain a more systematic understanding
of the relationship between program logics and type systems, and eventually to
combine both verification methods in a single technique that remains precise
while avoiding excessive user interaction.

Application Correctness. Enforcing security properties of JVM applications
is an important step towards guaranteeing the security of trusted personal de-
vices. In most situations, verifying that applications adhere to a security policy
will provide sufficient guarantees (under the assumption that the platform is
correctly implemented). In some situations, one may however be interested in
achieving a higher degree of reliability by showing that an application, or a frag-
ment of it, has the expected functionality. As a fully fledged behavioral interface

170 G. Barthe and G. Dufay

specification language, JML offers the possibility to verify and specify the func-
tional behavior of Java applications, and many of the JML tools used for applet
validation can also be used to verify functional specifications.

The most immediate application of functional verification is to establish that
some fragment of a Java application is correct w.r.t. its intended behavior. For
example, C.B. Breunesse et al [17] show that decimal arithmetic is correctly
implemented in an electronic purse application. Below we briefly describe two
further applications, and point to some of the issues involved.

JavaCard API. Section 3.3 provides a general methodology to reason about
the Java API, for example to prove that some method from the API has some
expected functional behavior. Such a verification is valuable from the point of
view of guaranteeing the correct design of the API, but leaves open the issue of
the implementation of the API, which may not coincide with its description in the
formal model. Therefore one must ensure that the API is correctly implemented.
Since a substantial part of the API is implemented in Java, it is possible to use
JML and its associated verification techniques for this purpose.

E. Poll and its co-workers [12,68] have developed reference JML specifications
of the JavaCard API, and verified formally the correctness of some API methods
against their specification. For example, they establish the correctness of the
methods in the class AID, and in particular of the method getBytes which
is called to get the AID bytes encapsulated within AID object. The method
takes two parameters dest which represents the byte array to copy the AID
bytes, and offset which represents within dest where the AID bytes begin,
and returns the length of the AID bytes. Its code and specification are given
in Figure 5. The JML annotations aims at specifying that bytes representing
the AID are accurately copied to the right position in the given array dest

and at constraining the behavior of the method if an exception is raised (by
arrayCopy). The corresponding proof obligations will directly follow from the
specifications of arrayCompare and arrayCopy used in the annotations and in
the code.

The implementation of the method getBytes contains a call to the native
method arrayCopy; in order to reason about the correctness of the method
getBytes, one must therefore dispose of a JML specification of arrayCopy.
As native methods are not implemented in Java, we cannot use JML tools to
verify them against their specifications, and thus we must trust that the specifi-
cation of native methods is faithful to the implementation. Thus the correctness
of the method getBytes will be established under the assumption that the
specification of the native method is correct. The correctness proof is easy; it
should be pointed however that generating the verification conditions that guar-
antee the correctness of the method involves subtle semantical issues, including
the semantics of method calls in specifications [33].

Java-Based Components. Trusted personal devices are evolving from dedicated
devices with a specific usage into general purpose devices that must provide
users with a uniform access to multiple services. Such an evolution raises some

Formal Methods for Smartcard Security 171

/*@ public behavior
@ requires dest != null;
@ requires dest != theAID;
@ requires 0 <= offset;
@ requires offset+theAID.length <= dest.length ;
@
@ assignable dest[offset..offset+theAID.length-1];
@
@ ensures \result == theAID.length;
@ ensures Util.arrayCompare(theAID,(short)0,
@ dest,offset,(short)theAID.length) == 0;
@
@ ensures
@ (\forall short i; 0 <= i && i < theAID.length
@ ==> theAID[i] == dest[offset+i]);
@
@ signals (NullPointerException) dest == null;
@ signals (ArrayIndexOutOfBoundsException) dest != null;
@ signals (ArrayIndexOutOfBoundsException)
@ (0>offset || offset + theAID.length > dest.length);
@*/

public byte getBytes (byte[] dest, short offset)
throws ArrayIndexOutOfBoundsException, NullPointerException {
Util.arrayCopy(theAID, (short) 0,

dest, offset, (short) theAID.length);
return (byte) theAID.length;

}

Fig. 5. JML specification of getBytes method from AID class

technical difficulties: in particular, trusted personal devices are heterogeneous
in their computational infrastructure (operating systems, communication pro-
tocols, libraries) and resources (memory, power autonomy, connectivity), and
due to physical, technological and economical constraints, it is not possible to
install on such devices all functionalities that may be needed a priori by po-
tential applications. One promising solution to overcome this limiting factor is
to embed on devices extensible virtual machines that can be extended with the
computational infrastructure, platform or libraries, needed to execute the re-
quired services. Such a solution also enables remote system upgrades that allow
device issuers to perform maintenance over the network in situations that would
otherwise require devices to be recalled. Such remote updates are an attrac-
tive possibility (although there are some concerns about negative implications
of issuers having remote control over devices) and form an integral part of the
deployment model in application domains such as telephone networks and dig-
ital video infrastructures. The adoption of a component-based approach in the
development of runtime environments and security architectures for trusted per-
sonal devices, and the perspective of downloading such components dynamically,
raise important security issues as the security of a device might be fatally com-

172 G. Barthe and G. Dufay

promised upon installing a faulty or malicious component. In such instances,
it becomes important to be assured of the functional correctness of incoming
programs prior to their loading on device.

Many current projects to develop modular virtual machines adopt Java as
their programming language [94,54,78], making it conceivable to use JML veri-
fication tools to establish the functional correctness of key components. Prelim-
inary experiments suggest that it is feasible to prove component correctness in
toy examples, e.g. to prove the correctness of a bytecode verifier for a toy as-
sembly language. However, even dealing with toy examples involves a number of
difficulties that range from JML semantics to scalability of JML verification tech-
niques. Under such circumstances, proving formally the correctness of a realistic
component remains beyond current state of the art, and an exciting challenge
for JML verification technology.

5 Perspective

Smart cards have proved an ideal application domain for formal methods, and
the last few years have seen substantial achievements both in the area of plat-
form verification and application validation. In spite of such scientific progress,
formal methods have not gained a widespread acceptance in industry, and the
use of formal methods in the smart cards and trusted personal devices industry
is quite often confined to R&D laboratories. According to a recent roadmap [1],
cost effectiveness and scalability remain two bottlenecks for a wider use of for-
mal methods in the smartcard industry; see also [59] for another industrial per-
spective on this issue. Addressing these bottlenecks is an important engineering
challenge to be tackled by the formal methods community.

In addition, the increasing complexity and connectivity of trusted personal
devices raise new challenges and opportunities for formal methods. Some spe-
cific technical challenges have already been mentioned in this chapter: extending
platform verification and applet verification techniques to cover multi-threading,
developing a systematic encoding of security properties in interface specification
languages such as JML, integrating type systems and logical verification tech-
niques, establishing the functional correctness of system components. These spe-
cific challenges will serve as stepping stones towards the much greater challenge
of achieving a better integration of formal methods in security architectures for
trusted personal devices, and eventually security architectures for large networks
of Java-enabled devices. The forthcoming European project “MOBIUS: Mobility,
Ubiquity, and Security” [83] will aim at addressing many of these challenges and
opportunities in the context of large and distributed networks of Java-enabled
devices that aim at providing services globally, uniformly, and securely.

Acknowledgments. The authors are partially supported by the European IST
project INSPIRED, the RNTL project CASTLES and the ACI Sécurité SPOPS
and GECCOO. The work reported here has been partially funded by the Euro-

Formal Methods for Smartcard Security 173

pean IST projects PROFUNDIS and VERIFICARD, by the European thematic
network RESET, and by the INRIA research actions S-Java and MODOCOP.

The authors are grateful to Julien Forest and Tamara Rezk for their com-
ments on an earlier version of the chapter, and to the former and present mem-
bers of the EVEREST and LEMME teams at INRIA Sophia-Antipolis for stim-
ulating interactions over the years.

References

1. Roadmap for European Research on Smartcard Technologies.
http://www.ercim.org/reset

2. A. Banerjee and D. Naumann. Stack-based access control for secure information
flow. Journal of Functional Programming, 15:131–177, March 2005. Special Issue
on Language-Based Security.

3. F. Bannwart and P. Müller. A program logic for bytecode. In F. Spoto, editor,
Proceedings of Bytecode’05, Electronic Notes in Theoretical Computer Science. El-
sevier Publishing, 2005.

4. M. Barnett, K.R.M. Leino, and W. Schulte. The spec# programming system: An
overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes in Computer
Science, pages 50–71. Springer-Verlag, 2005.

5. G. Barthe, P. Courtieu, G. Dufay, and S. Melo de Sousa. Jakarta: tool-assisted
specification and verification of the JavaCard Platform. Journal of Automated
Reasoning, 2006. To appear.

6. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-
Composition. In R. Foccardi, editor, Proceedings of CSFW’04, pages 100–114.
IEEE Press, 2004.

7. G. Barthe and G. Dufay. A Tool-Assisted Framework for Certified Bytecode Ver-
ification. In Proceedings of FASE’04, volume 2984 of Lecture Notes in Computer
Science, pages 99–113. Springer-Verlag, 2004.

8. G. Barthe, M. Pavlova, and G. Schneider. Precise analysis of memory consumption
using program logics. In B. Aichernig and B. Beckert, editors, Proceedings of
SEFM’05. IEEE Press, 2005.

9. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In M. Fähndrich,
editor, Proceedings of TLDI’05, pages 103–112. ACM Press, 2005.

10. D. Basin, S. Friedrich, and M. Gawkowski. Bytecode Verification by Model Check-
ing. Journal of Automated Reasoning, 30(3-4):399–444, December 2003.

11. J. van den Berg and B. Jacobs. The LOOP Compiler for Java and JML. In
T. Margaria and W. Yi, editors, Proceedings of TACAS’01, volume 2031 of Lecture
Notes in Computer Science, pages 299–312, 2001.

12. J. van den Berg, B. Jacobs, and E. Poll. Formal Specification and Verification
of JavaCard’s Application Identifier Class. In I. Attali and T. Jensen, editors,
Proceedings of e-SMART’00, volume 2041 of Lecture Notes in Computer Science,
pages 137–150. Springer Verlag, 2001.

13. F. Besson, T. Grenier de Latour, and T. Jensen. Secure calling contexts for stack
inspection. In Proceedings of PPDP’02, pages 76–87. ACM Press, 2002.

14. F. Besson, T. Jensen, D. Le Métayer, and T.Thorn. Model checking security prop-
erties of control flow graphs. Journal of Computer Security, 9:217–250, 2001.

174 G. Barthe and G. Dufay

15. P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Girard, and J.-L. Lanet. Checking
Secure Interactions of Smart Card Applets: Extended version. Journal of Computer
Security, 10:369–398, 2002.

16. B. Blanchet. Escape analysis for java: Theory and practice. ACM Transactions on
Programming Languages and Systems, 25(6):713–775, November 2003.

17. C. Breunesse, B. Jacobs, and J. van den Berg. Specifying and Verifying a Decimal
Representation in Java for Smart Cards. In H. Kirchner and C. Ringeissen, editors,
Proceedings of AMAST’02, volume 2422 of Lecture Notes in Computer Science,
pages 304–318. Springer-Verlag, 2002.

18. L. Burdy, Y. Cheon, D.R. Cok, M.D. Ernst, J. Kiniry, G.T. Leavens, K.R.M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer, 2005. To appear.

19. L. Burdy and M. Pavlova. Annotation carrying code. Manuscript, 2005.
20. L. Burdy, A. Requet, and J.-L. Lanet. Java Applet Correctness: a Developer-

Oriented Approach. In K. Araki, S. Gnesi, and D. Mandrioli, editors, Proceedings
of FME’03, volume 2805 of Lecture Notes in Computer Science, pages 422–439.
Springer-Verlag, 2003.

21. D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified Memory Usage
Analysis. In J. Fitzgerald, I. Hayes, and A. Tarlecki, editors, Proceedings of FM’05,
volume 3xxx of Lecture Notes in Computer Science. Springer-Verlag, 2005.

22. D. Caromel, L. Henrio, and B. Serpette. Context inference for static analysis
of Java card object sharing. In I. Attali and T. Jensen, editors, Proceedings of
e-SMART’01, volume 2140 of Lecture Notes in Computer Science, pages 43–57.
Springer-Verlag, 2001.

23. L. Casset, L. Burdy, and A. Requet. Formal Development of an Embedded Verifier
for JavaCard ByteCode. In Proceedings of DSN’02. IEEE Computer Society, 2002.

24. A. Chander, D. Espinosa, N. Islam, P. Lee, and G. Necula. Enforcing Resource
Bounds via Static Verification of Dynamic Checks. In S. Sagiv, editor, Proceedings
of ESOP’05, volume 3444 of Lecture Notes in Computer Science, pages 311–325.
Springer-Verlag, 2005.

25. B.-Y.E. Chang and K.R.M. Leino. Inferring object invariants. In A. Cortesi and
F. Logozzo, editors, Proceedings of AIOOL’05, Electronic Notes in Theoretical
Computer Science. Elsevier Publishing, 2005. To appear.

26. Y. Cheon and G. T. Leavens. A Simple and Practical Approach to Unit Testing:
The JML and JUnit Way. In B. Magnusson, editor, Proceedings of ECOOP’02,
volume 2374 of Lecture Notes in Computer Science, pages 231–255, 2002.

27. A. Coglio. Simple verification technique for complex Java bytecode subroutines.
Concurrency and Computation: Practice and Experience, 16(7):647–670, 2004.

28. D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML — progress
and issues in building and using ESC/Java2, including a case study involving the
use of the tool to verify portions of an Internet voting tally system. In G. Barthe,
L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Proceedings of
CASSIS’04, volume 3362 of Lecture Notes in Computer Science, pages 108–128.
Springer-Verlag, 2005.

29. Connected Limited Device Configuration (CLDC) and the K Virtual Machine
(KVM). http://java.sun.com/products/cldc

30. Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0,
January 2004.

31. Common Criteria. http://www.commoncriteria.org
32. A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of

secure information flow. In Informal proceedings of WITS’03, 2003.

Formal Methods for Smartcard Security 175

33. A. Darvas and P. Müller. Reasoning About Method Calls in JML Specifications.
Manuscript, 2005.

34. D. Deville and G. Grimaud. Building an “impossible” verifier on a Java Card. In
Proceedings of WIESS’02. Usenix Association, 2002.

35. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of
Object Technology (JOT), 2005. To appear.

36. W. Dietl, P. Müller, and A. Poetzsch-Heffter. A type system for checking applet
isolation in Java Card. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and
T. Muntean, editors, Proceedings of CASSIS’04, volume 3362 of Lecture Notes in
Computer Science, pages 129–150. Springer-Verlag, 2005.

37. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
38. G. Dufay. Vérification formelle de la plateforme JavaCard. PhD thesis, Université

de Nice Sophia-Antipolis, 2003.
39. G. Dufay, A. Felty, and S. Matwin. Privacy-Sensitive Information Flow with JML.

In R. Nieuwenhuis, editor, Proceedings of CADE’05, volume 3xxx of Lecture Notes
in Computer Science. Springer-Verlag, 2005. To appear.

40. M. Eluard and T. Jensen. Secure object flow analysis for java card. In Proceedings
of CARDIS’02, pages 97–110. USENIX Association, 2002.

41. C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Proceedings
of PLDI’03, volume 38 of ACM SIGPLAN Notices, pages 338–349. ACM Press,
May 2003.

42. C. Flanagan and J.B. Saxe. Avoiding exponential explosion: generating compact
verification conditions. In Proceedings of POPL’01, pages 193–205. ACM Press,
2001.

43. R.W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Com-
puter Science, Proceedings of Symposia in Applied Mathematics, pages 19–32.
American Mathematical Society, 1967.

44. P. Fong. Pluggable verification modules: An extensible protection mechanism for
the JVM. In Proceedings of OOPSLA’04, pages 404–418. ACM Press, 2004.

45. P. Fong and R. Cameron. Proof linking: modular verification of mobile programs in
the presence of lazy, dynamic linking. ACM Transactions on Software Engineering
and Methodology, 9(4):379–409, October 2000.

46. L.-A. Fredlund. Guaranteeing correctness properties of a java card applet. In
K. Havelund and G. Rosu, editors, Proceedings of RV’04, volume 113 of Electronic
Notes in Theoretical Computer Science, pages 217–233. Elsevier Publishing, 2004.

47. S. N. Freund and J. C. Mitchell. A Type System for the Java Bytecode Language
and Verifier. Journal of Automated Reasoning, 30(3-4):271–321, December 2003.

48. P. Hartel and L. Moreau. Formalizing the Safety of Java, the Java Virtual Machine
and Java Card. ACM Computing Surveys, 33(4):517–558, December 2001.

49. L. Henrio and B. Serpette. A parameterized polyvariant bytecode verifier. In J.-C.
Filliatre, editor, Proceedings of JFLA’03, 2003.

50. T. Higuchi and A. Ohori. A static type system for JVM access control. In Pro-
ceedings of ICFP’03, pages 227–237. ACM Press, 2003.

51. C. A. R. Hoare. An axiomatic basis for computer programming. Commununications
of ACM, 12(10):576–580, 1969.

52. B. Jacobs, C. Marché, and N. Rauch. Formal verification of a commercial smart
card applet with multiple tools. In C. Rattray, S. Maharaj, and C. Shankland,
editors, Proceedings of AMAST’04, volume 3116 of Lecture Notes in Computer
Science, pages 241–257. Springer-Verlag, 2004.

53. JavaCard Technology. http://java.sun.com/products/javacard

176 G. Barthe and G. Dufay

54. Jikes Research Virtual Machine. http://jikesrvm.sourceforge.net/
55. JML Specification Language. http://www.jmlspecs.org.
56. J.W. Jo, B.M. Chang, K. Yi, and K.M. Choe. An uncaught exception analysis for

Java. Journal of systems and software, 72(1):59–69, 2004.
57. G. A. Kildall. A unified approach to global program optimization. In Proceedings

of POPL’73, pages 194–206. ACM Press, 1973.
58. G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer Science,

298(3):583–626, April 2002.
59. J.-L. Lanet. Are smart cards the ideal domain for applying formal methods? In

J.P. Bowen, S. Dunne, A. Galloway, and S. King, editors, Proceedings of ZB’2000,
volume 1878 of Lecture Notes in Computer Science, pages 363–374, 2000.

60. C. Laneve. A Type System for JVM Threads. Theoretical Computer Science,
290(1):741–778, October 2002.

61. K.R.M. Leino, T. Millstein, and J.B. Saxe. Generating error traces from
verification-condition counterexamples. Science of Computer Programming,
55:209–226, March 2005.

62. X. Leroy. On-card bytecode verification for Java card. In I. Attali and T. Jensen,
editors, Proceedings of e-SMART’01, volume 2140 of Lecture Notes in Computer
Science, pages 150–164. Springer-Verlag, 2001.

63. X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of
Automated Reasoning, 30(3-4):235–269, December 2003.

64. F. Logozzo. Automatic inference of class invariants. In G. Levi and B. Steffen,
editors, Proceedings of VMCAI’04, volume 2937 of Lecture Notes in Computer
Science, pages 211–222. Springer-Verlag, 2004.

65. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certification
of Java/JavaCard Programs annotated with JML Annotations. Journal of Logic
and Algebraic Programming, 58:89–106, 2004.

66. R. Marlet and D. Le Métayer. Security properties and java card specificities to be
studied in the secsafe project. Technical Report SECSAFE-TL-006, Trusted Logic
S.A., August 2001.

67. C. Meadows. Open issues in formal methods for cryptographic protocol analy-
sis. In V.I. Gorodetski, V.A. Skormin, and L.J. Popyack, editors, Proceedings of
MMMACNS, volume 2052 of Lecture Notes in Computer Science. Springer-Verlag,
2001.

68. H. Meijer and E. Poll. Towards a full formal specification of the java card. In I. At-
tali and T. Jensen, editors, Proceedings of e-SMART’01, volume 2140 of Lecture
Notes in Computer Science, pages 165–178. Springer-Verlag, 2001.

69. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2 edition, 1997.
70. J. Meyer, P. Müller, and A. Poetzsch-Heffter. The jive system—implementation

description. Available from sct.inf.ethz.ch/publications, 2000.
71. M. Montgomery and K. Krishna. Secure Object Sharing in Java Card. In Proceed-

ings of Usenix workshop on Smart Card Technology, (Smartcard’99), 1999.
72. P. Müller. Modular Specification and Verification of Object-Oriented Programs,

volume 2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002.
73. A.C. Myers. Jflow: Practical mostly-static information flow control. In Proceedings

of POPL’99, pages 228–241. ACM Press, 1999.
74. G.C. Necula. Proof-Carrying Code. In Proceedings of POPL’97, pages 106–119.

ACM Press, 1997.
75. G.C. Necula and P. Lee. Safe kernel extensions without run-time checking. In

Proceedings of OSDI’96, pages 229–243. Usenix, 1996.

Formal Methods for Smartcard Security 177

76. G.C. Necula and P. Lee. The Design and Implementation of a Certifying Compiler.
In Proceedings of PLDI’98, pages 333–344, 1998.

77. J.W. Nimmer and M.D. Ernst. Automatic generation of program specifications.
In Proceedings of ISSTA’02, volume 27, 4 of Software Engineering Notes, pages
232–242. ACM Press, 2002.

78. OVM project. http://www.ovmj.org/
79. M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and J.-L. Lanet. Enforcing high-

level security properties for applets. In P. Paradinas and J.-J. Quisquater, editors,
Proceedings of CARDIS’04. Kluwer, 2004.

80. Global Platform. See http://www.globalplatform.org
81. J. Posegga and H. Vogt. Byte Code Verification for Java Smart Cards Based on

Model Checking. In J.-J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann,
editors, Proceedings of ESORICS’98, volume 1485 of Lecture Notes in Computer
Science, pages 175–190. Springer-Verlag, 1998.

82. F. Pottier, C. Skalka, and S. Smith. A systematic approach to static access control.
ACM Transactions on Programming Languages and Systems, 27(2):344–382, March
2005.

83. Mobius Project. http://mobius.inria.fr
84. C.L. Quigley. A Programming Logic for Java Bytecode Programs. In D. Basin

and B. Wolff, editors, Proceedings of TPHOLs’03, volume 2758 of Lecture Notes in
Computer Science, pages 41–54. Springer-Verlag, 2003.

85. Robby, E. Rodŕıguez, M.B. Dwyer, and J. Hatcliff. Checking strong specifications
using an extensible software model-checking framework. In K. Jensen and A. Podel-
ski, editors, Proceedings of TACAS’04, volume 2988 of Lecture Notes in Computer
Science, pages 404–420, 2004.

86. E. Rodriguez, M.B. Dwyer, C. Flanagan, J. Hatcliff, G.T. Leavens, and Robby. Ex-
tending jml for modular specification and verification of multi-threaded programs.
In Proceedings of ECOOP’05, volume 3586 of Lecture Notes in Computer Science.
Springer-Verlag, 2005.

87. A. Sabelfeld and A. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Comunications, 21:5–19, January 2003.

88. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Pro-
ceedings of CSFW’05. IEEE Press, 2005.

89. F. B. Schneider. Enforceable security policies. ACM Transactions on Information
and System Security, 3(1):30–50, February 2000.

90. G. Schneider. A constraint-based algorithm for analysing memory usage on java
cards. Technical Report RR-5440, INRIA, 2004.

91. I. A. Siveroni. Operational semantics of the Java Card Virtual Machine. Journal
of Logic and Algebraic Programming, 58(1–2):3–25, 2004.

92. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine - Defini-
tion, Verification, Validation. Springer-Verlag, 2001.

93. R. Stata and M. Abadi. A type system for Java bytecode subroutines. ACM Trans-
actions on Programming Languages and Systems, 21(1):90–137, January 1999.

94. Java In the Small Project. http://www.lifl.fr/rd2p/jits/
95. M. Wildmoser and T. Nipkow. Asserting bytecode safety. In S. Sagiv, editor,

Proceedings of ESOP’05, volume 3444 of Lecture Notes in Computer Science, pages
326–341. Springer-Verlag, 2005.

96. H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings
of POPL’99, pages 214–227. ACM Press, 1999.

97. H. Xi and S. Xia. Towards Array Bound Check Elimination in Java Virtual Machine
Language. In Proceedings of CASCOON’99, pages 110–125, November 1999.

Privacy-Preserving Database Systems

Elisa Bertino, Ji-Won Byun, and Ninghui Li

Department of Computer Science and Cerias,
Purdue University,

656 Oval Drive, West Lafayette, IN 47907
{bertino, byunj, ninghui}@cs.purdue.edu

Abstract. Privacy is today an important concern for both users and en-
terprises. Therefore, intense research is today being carried out on various
aspects of privacy-preserving data management systems. In this paper,
we focus on database management systems (DBMS) able to enforce pri-
vacy promises encoded in privacy languages such as P3P. In particular,
in the paper, we first present an overview of the P3P language and out-
lines some of its critical aspects. We then outline the main requirements
for a privacy-preserving DBMS and we discuss solutions related to the
management of privacy-related meta-data, focusing on special category
of meta-data information, that is, purpose information. Purpose informa-
tion represents an important component of privacy statements and thus
their effective management is crucial. We then discuss current solutions
to to fine-grained access control in the context of relational database
systems and identify relevant issues.

1 Introduction

Data represent today an important asset. We see an increasing number of or-
ganizations that collect data, very often concerning individuals, and use them
for various purposes, ranging from scientific research, as in the case of medical
data, to demographic trend analysis and marketing purposes. Organizations may
also give access to the data they own or even release such data to third parties.
The number of increased data sets that are thus available poses serious threats
against the privacy of individuals and organizations. Because privacy is today an
important concern, several research efforts have been devoted to address issues
related to the development of privacy-preserving data management techniques.

A first important class of techniques deals with privacy-preservation when
data are to be released to third parties. In this case, data once are released are not
any longer under the control of the organizations owning them. Therefore, the
organizations owners of the data are not able to control the way data are used.
The most common approach to address the privacy of released data is to modify
the data by removing all information that can directly link data items with
individuals; such a process is referred to as data anonymization. It is important
to note that simply removing identity information, like names or social-security-
numbers, from the released data may not be enough to anonymize the data.
There are many examples showing that even when such information is removed

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 178–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Privacy-Preserving Database Systems 179

from the released data, the remaining data combined with other information
sources may still link the information to the individuals it refers to. To overcome
this problem, approaches based on generalization techniques have been proposed,
the most well known of which is based on the notion of k-anonymity [27,28].

A second class of techniques deals specifically with privacy-preservation in
the context of data mining. Data mining techniques are today very effective.
Thus even though a database is sanitized by removing private information, the
use of data mining techniques may allow one to recover the removed information.
Several approaches have been proposed, some of which are specialized for specific
data mining techniques, for example tools for association rule mining or classi-
fication systems, whereas other are independent from the specific data mining
technique. In general all approaches are based on modifying or perturbing the
data in some way; for example, techniques specialized for privacy preserving min-
ing of association rules modify the data so to reduce the confidence of sensitive
association rules. A problem common to most of those techniques is represented
by the quality of the resulting database; if data undergo too many modifications,
they may not be any longer useful. To address this problem, techniques have been
developed to estimate the errors introduced by the modifications; such estimate
can be used to drive the data modification process. A different technique in this
context is based on data sampling [7]. The idea is to release a subset of the data,
chosen in such a way that any inference made from the data has a low degree of
confidence. Finally, still in the area of data mining, techniques have been devel-
oped, mainly based on commutative encryption techniques, the goal of which is
to support distributed data mining processes on encrypted data [8]. In particu-
lar, the addressed problem deals with situations in which the data to be mined
is contained at multiple sites, but the sites are unable to release the data. The
solutions involve algorithms that share some information to calculate correct
results, where the shared information can be shown not to disclose private data.

Finally, some efforts have been reported dealing with database management
systems (DBMS) specifically tailored to support privacy policies, like the poli-
cies that can be expressed by using the well known P3P standard [29]. In par-
ticular, Agrawal et al. [1] have recently introduced the concept of Hippocratic
databases, incorporating privacy protection in relational database systems. In
their paper, Agrawal et al. introduce the fundamental principles underlying
Hippocratic databases and then propose a reference architecture. An important
feature of such architecture is that it uses some privacy metadata, consisting
of privacy policies and privacy authorizations stored in privacy-policies tables
and privacy-authorizations table respectively. There is strong need for develop-
ment of privacy-preserving DBMS driven by the demand organizations have of
complying with various privacy laws and requirements and of increasing user
trusts [19]. The development of database technology entails however addressing
many challenging issues, ranging from modeling to architectures, and may lead
to the next-generation of DBMS.

In this paper we focus on the development of privacy-preserving DBMS be-
cause it poses several challenges with respect to both theory and architectures.

180 E. Bertino, J.-W. Byun, and N. Li

It is important to notice, however, that privacy-preserving DBMS may be com-
bined with tools for data anonymization and privacy-preserving data mining in
order to provide comprehensive platforms for supporting flexible and articulated
privacy-preserving information management.

The remainder of this paper is organized as follows. In Section 2, we pro-
vide an overview of P3P; this standard, even though has several limitations [19],
is an important reference in the current privacy practices. Thus, it represens
one of the starting points for development of privacy-preserving DBMS. In Sec-
tion 3 we then discuss relevant requirements towards the development of privacy-
preserving DBMS; in particular, we elaborate on some of the requirements arising
from the support of P3P policies. We then survey some existing solutions and
elaborate on some of those requirements in Section 4. We review some techniques
of fine-grained access control and discuss some key challenges in Section 5, and
we conclude the paper in Section 6.

2 Platform for Privacy Preferences (P3P)

The W3C’s Platform for Privacy Preferences Project (P3P) [29] is one major
effort to improve today’s online privacy practices. P3P enables websites to en-
code their data-collection and data-use practices in a machine-readable XML
format, known as P3P policies [12]. The W3C has also designed APPEL (A P3P
Preference Exchange Language) [16], which allows users to specify their privacy
preferences. Ideally, through the use of P3P and APPEL, a user’s agent should
be able to check a website’s privacy policy against the user’s privacy prefer-
ences, and automatically determine when the user’s private information can be
disclosed. In short, P3P and APPEL are designed to enable users to play an
active role in controlling their private information. In this section, we provide a
brief overview of P3P and APPEL and discuss some related issues.

2.1 Overview of P3P

Each P3P policy is specified by one POLICY element that includes the following
major elements.

– One ENTITY element: identifies the legal entity making the representation of
privacy practices contained in the policy.

– One ACCESS element: indicates whether the site allows users to access the
various kind of information collected about them.

– One DISPUTES-GROUP element: contains one or more DISPUTES elements that
describe dispute resolution procedures to be followed when disputes arise
about a service’s privacy practices.

– Zero or more EXTENSION elements: contain a website’s self-defined extensions
to the P3P specification.

– And one or more STATEMENT elements: describe data collection, use and
storage. A STATEMENT element specifies the data (e.g. user’s name) and the
data categories (e.g. user’s demographic data) being collected by the site, as
well as the purposes, recipients and retention of that data.

Privacy-Preserving Database Systems 181

<STATEMENT> stmt(
<PURPOSE><admin required="opt-in"/></PURPOSE> purpose: {admin(opt-in)}
<RECIPIENT><public/></RECIPIENT> recipient: {public}
<RETENTION><indefinitely/></RETENTION> retention: {indefinitely}
<DATA-GROUP> data: {#user.home-info.postal}
<DATA ref="#user.home-info.postal"></DATA>)

</DATA-GROUP>
</STATEMENT>

Fig. 1. An Example P3P Statement. The XML representation appears on the left side
and a more succinct representation on the right side.

There are two kinds of P3P statements. The first kind contains the
NON-IDENTIFIABLE element, which is used to indicate that either no information
will be collected or information will be anonymized during collection. The sec-
ond kind does not contain the NON-IDENTIFIABLE element; this is the commonly
used one. For now, we will focus on the latter. A brief discussion of statements
with NON-IDENTIFIABLE element is given later in this section.

Figure 1 provides an example of a P3P statement. Each such statement
contains the following:

– One PURPOSE element, which describes for which purpose(s) the information
will be used. It contains one or more pre-defined values such as current, ad-
min, individual-analysis and historical. A purpose value can have an optional
attribute ‘required’, which takes one of the following values: opt-in, opt-out,
and always. The value ‘opt-in’ means that data may be used for this pur-
pose only when the user affirmatively requests this use. The value ‘opt-out’
means that data may be used for this purpose unless the user requests that
it not be used in this way. The value ‘always’ means that users cannot opt-in
or opt-out of this use of their data. Therefore; in terms of strength of data
usage, ‘always’ > ‘opt-out’ > ‘opt-in’. In Figure 1, PURPOSE is admin and
the attribute ‘required’ takes the value opt-in.

– One RECIPIENT element, which describes with whom the collected informa-
tion will be shared. It contains one or more pre-defined values such as ours,
delivery and public. A recipient value can have an optional attribute ‘re-
quired’, which is similar to that of a PURPOSE element. In Figure 1, RECIPIENT
is public.

– One RETENTION element, which describes for how long the collected informa-
tion will be kept. It contains exactly one of the following pre-defined values:
no-retention, stated-purpose, legal-requirement, business-practices and in-
definitely. In Figure 1, the RETENTION value is indefinite.

– One or more DATA-GROUP elements, which specify what information will be
collected and used. Each DATA-GROUP element contains one or more DATA ele-
ments. Each DATA element has two attributes. The mandatory attribute ‘ref’
identifies the data being collected. For example, ‘#user.home-info.telecom.
telephone’ identifies a user’s home telephone number. The ‘optional’ at-
tribute indicates whether or not the data collection is optional. A DATA

182 E. Bertino, J.-W. Byun, and N. Li

element may also contain a CATEGORIES element, which describes the kind
of information this data item is, e.g., financial, demographic and health. In
Figure 1, DATA is postal info.

– Zero or one CONSEQUENCE element, which contains human-readable contents
that can be shown to users to explain the data usage practice’s ramifications
and why the usage is useful.

2.2 Issues in P3P

Since proposed, P3P has received broad attention from both industry and the re-
search community, and has been gradually adopted by companies. On the other
hand, the full deployment of P3P in enterprise information systems has raised
many challenging questions. For example, P3P represents an enterprise’s promise
to users about its privacy practice. How can we ensure that an organization and
its customers have a common understanding of these promises? P3P promises
must be fulfilled in the services provided by enterprises. How can a company
guarantee that its P3P policy is correctly enforced in those applications? We
discuss some of the issues regarding the former question (privacy policy specifi-
cation) in this section. The issues regarding the latter question (privacy policy
enforcement) are discussed in the subsequent section.

The Lack of Formal Semantics in P3P. One major problem that hinders
P3P adoption is that a P3P policy may be interpreted and represented differently
by different user agents. Companies are thus reluctant to provide P3P policies on
their websites, fearing that the policies may be misrepresented [11,25]. Quoting
from CitiGroup’s position paper [25], “The same P3P policy could be represented
to users in ways that may be counter to each other as well as to the intent of the
site.” “... This results in legal and media risk for companies implementing P3P
that needs to be addressed and resolved if P3P is to fulfill a very important need.”

For instance, consider the statement in Figure 1. In the statement, the three
components (purpose, recipient and retention) all refer to the same data item
‘#user.home-info.postal’; however, for the statement to have a precise meaning,
one must also determine how these components interact. We consider two inter-
pretations. In the first interpretation, all three components are related, i.e., the
purpose, the recipient and the retention are about one data usage. In Figure 1,
the postal information will be used for the admin purpose (technical support
of the website and its computer system); the information will be shared with
the public and will be stored indefinitely. For this statement, this interpretation
seems counterintuitive, because there is no need to share the data with the pub-
lic for the admin purpose. Furthermore, it is not clear whether this data usage
is required or optional, since the ‘required’ attribute has the ‘opt-in’ value for
purpose but the default ‘always’ value for recipient. The explanation for this
statement, provided by one of the P3P architects [10], is that the data item
‘#user.home-info.postal’ will always be collected and shared with the public.
Additionally, if the user chooses to opt-in, their postal information will be used

Privacy-Preserving Database Systems 183

for the admin purpose. In other words, whether the individual’s postal informa-
tion will be shared with the public does not depend upon whether or not the
information is used for the admin purpose.

This leads us to the second interpretation, in which purpose, recipient and
retention are considered orthogonal. In this interpretation, a P3P statement
specifies three relations: the purposes for which a data item will be used, the
recipients with whom a data item will be shared, and how long the data item
will be stored. Even though these relations are specified in the same statement,
they are not necessarily about a single data usage. Given this data-centric in-
terpretation, the following three P3P policies will have the same meaning in the
sense that all relations contain a data component:

Example 1. Three P3P policies that have the same meaning.

Policy 1:
stmt(data: {#user.home-info.telecom,

#user.bdate(optional)},
purpose: {individual-analysis,

telemarketing(opt-in)},
recipient: {ours},
retention: {stated-purpose})

Policy 2:
stmt(data: {#user.home-info.telecom,

#user.bdate(optional)},
purpose: {individual-analysis},
recipient: {ours},
retention: {stated-purpose})

stmt(data: {#user.home-info.telecom,
#user.bdate(optional)},

purpose: {telemarketing(opt-in)},
recipient: {ours},
retention: {stated-purpose})

Policy 3:
stmt(data: {#user.home-info.telecom},

purpose: {individual-analysis,
telemarketing(opt-in)},

recipient: {ours},
retention: {stated-purpose})

stmt(data: {#user.bdate(optional)},
purpose: {individual-analysis,

telemarketing(opt-in)},
recipient: {ours},
retention: {stated-purpose})

Part of this problem is caused by overlooking the need for a semantics in the
initial design of P3P, leaving too much freedom for P3P policies to be misinter-
preted and misrepresented by user agents. The fact that the same meaning may
be encoded in several different ways makes it very difficult to correctly express
privacy preferences in a syntax-based preference language such as APPEL. One

184 E. Bertino, J.-W. Byun, and N. Li

representation can be accepted by a preference, but another representation could
be rejected by the same preference.

Potential Semantic Inconsistencies in P3P Policies. In general, any com-
binations of the values for purpose, recipient and retention are allowed in P3P.
However, in a practical setting, semantic dependencies arise naturally between
these values, making some of the combinations invalid. A P3P policy using in-
valid combinations is thus semantically inconsistent. This problem has been rec-
ognized [9,24], and P3P’s designers are beginning to address some of these con-
flicts [9]. Nonetheless, many places where potential conflicts may occur have not
been previously identified. We now identify some additional classes of potential
semantic inconsistencies in P3P.

– A P3P policy may be inconsistent because multiple retention values apply to
one data item.
P3P allows one data item to appear in multiple statements, which introduces
a semantic problem. Recall that in each P3P statement, only one retention
value can be specified, even though multiple purposes and recipients can
be used. The rationale behind this is that retention values are mutually
exclusive, i.e., two retention values conflict with each other. For instance,
no-retention means that “Information is not retained for more than a brief
period of time necessary to make use of it during the course of a single online
interaction”[12]. And indefinitely means that “Information is retained for an
indeterminate period of time”[12]. One data item cannot have both retention
values. However, allowing one data item to appear in multiple statements
makes it possible for multiple retention values to apply to one data item.

– A statement may have conflicting purposes and retention values.
Consider a statement in a P3P policy that collects users’ postal information
for the purpose historical with retention no-retention. Clearly, if the postal
information is going to be “... archived or stored for the purpose of preserving
social history ...”, as described by the historical purpose, it will conflict with
no-retention, which requires that the collected information “... MUST NOT
be logged, archived or otherwise stored”[12].

– A statement may have conflicting purposes and recipients.
Consider a statement that includes all the purpose values (e.g., history, ad-
min, telemarketing, individual-analysis, etc.) but only the recipient value
delivery (delivery services). This does not make sense as one would expect
that at least ours should be included in the recipients.

– A statement may have conflicting purposes and data items.
Certain purposes imply the collection and usage of some data items. This
has been recognized by the P3P designers and reflected in the guidelines for
designing P3P user agents [9]. For example, suppose a statement contains
purpose contact but does not collect any information from the categories
physical and online. Then the statement is inconsistent because, in order to
contact a user, “the initiator of the contact would possess a data element
identifying the individual This would presuppose elements contained by
one of the above categories”[9].

Privacy-Preserving Database Systems 185

All semantic inconsistency instances must be identified and specified in the
P3P specification. Completion of this work requires a detailed analysis of the
vocabulary, ideally by the individuals who design and use these vocabularies.

Dealing with P3P Statements Having the NON-IDENTIFIABLE Ele-
ment. A STATEMENT element in a P3P policy may optionally contain the
NON-IDENTIFIABLE element, which “signifies that either no data is collected (in-
cluding Web logs), or that the organization collecting the data will anonymize
the data referenced in the enclosing STATEMENT” [12]. We call such statements
non-identifiable statements.

From the above description, we see that the NON-IDENTIFIABLE ele-
ment is used for two unrelated purposes in P3P. We argue that using the
NON-IDENTIFIABLE element to signify that no data is collected is inappropri-
ate. Intuitively, if a statement with the NON-IDENTIFIABLE element contains
the DATA-GROUP element, it means that the data collected in this statement
is anonymized. If such a statement does not have the DATA-GROUP element, it
means that no data is collected. However, this statement is meaningless when
the policy contains other statements that collect and use data. In general, the
fact that a policy does not collect any data should not be specified at the level
of a STATEMENT element; instead, it should be specified at the level of a POLICY
statement. For instance, it seems more appropriate to use a separate sub-element
(or an attribute) for the POLICY element to denote that a policy collects no data.

Another issue that arises from having the NON-IDENTIFIABLE element is that
a data item may appear both in normal statements and in non-identifiable state-
ments. In this situation, it is not clear whether the data item is anonymized upon
collection. According to Cranor [10], it may be possible that: “a company keeps
two different unlinkable databases and the data is anonymized in one but not
the other.”

The most straightforward way seems to annotate an anonymized data item so
that it is different from a normal data item, e.g., one may use ‘#user.home-info’
to denote a normal data item and ‘#@.user.home-info’ to denote an anonymized
version of the same data.

2.3 An Overview of APPEL

Privacy preferences are expressed as a ruleset in APPEL. A ruleset is an ordered
set of rules. An APPEL evaluator evaluates a ruleset against a P3P policy.1 A
rule includes the following two parts:

– A behavior, which specifies the action to be taken if the rule fires. It can
be request, implying that a P3P policy conforms to preferences specified in
the rule body and should be accepted. We call this an accept rule. It can be

1 The APPEL specification allows arbitrary XML elements not related to P3P to be
included together with the P3P policy for evaluation. Since the users may not even
know about them, it is not clear how they write preferences dealing with them. In
this paper, we assume that only a P3P policy is evaluated against a ruleset.

186 E. Bertino, J.-W. Byun, and N. Li

block, implying that a P3P policy violates the user’s privacy preferences and
should be rejected. We call this a reject rule. It can also be limit, which can
be interpreted as accept with warning.

– A number of expressions, which follow the XML structure in P3P policies.
An expression may contain subexpressions. An expression is evaluated to
TRUE or FALSE by matching (recursively) against a target XML element.
A rule fires if the expressions in the rule evaluate to TRUE.

Every APPEL expression has a connective attribute that defines the logical
operators between its subexpressions and subelements of the target XML ele-
ment to be matched against. A connective can be: or, and, non-or, non-and,
or-exact and and-exact. The default connective is and, which means that all
subexpressions must match against some subelements in the target XML ele-
ment, but the target element may contain subelements that do not match any
subexpression. The connective and-exact further requires that any subelement
in the target match one subexpression. The or connective means that at least
one subexpression matches a subelement of the target. The or-exact connective
further requires that all subelements in the target matches some subexpressions.

When evaluating a ruleset against a P3P policy, each rule in a ruleset is
evaluated in the order in which it appears. Once a rule evaluates to true, the
corresponding behavior is returned.

2.4 Issues in EPPAL

Many authors have noted that APPEL is complex and problematic [2,13,14,30].
In this section, we analyze APPEL’s pitfalls and the rationales for some of the
design decisions embedded in APPEL. The main objective for our analysis is
to ensure we design a preference language that avoids the APPEL’s pitfalls
but preserves the desirable functionalities in APPEL. The following subsections
examine the pitfalls and limitations of APPEL.

Semantic Inconsistencies of APPEL. Because of APPEL’s syntax-based
design, two P3P policies that have the same semantic meanings but are expressed
in syntactically different ways may be treated differently by one APPEL ruleset.
This deficiency in APPEL has been identified before [15]. We now show an
example APPEL rule.

01 <appel:RULE behavior="block">
02 <p3p:POLICY>
03 <p3p:STATEMENT>
04 <p3p:DATA-GROUP>
05 <p3p:DATA ref=
06 "#user.home-info.telecom"/>
07 <p3p:DATA ref="#user.bdate"/>
08 </p3p:DATA-GROUP>
09 </p3p:STATEMENT>
10 </p3p:POLICY>
11 </appel:RULE>

Privacy-Preserving Database Systems 187

This is a reject rule, since the behavior (on line 1) is “block”. The body
of this rule has one expression (lines 2-10) for matching a P3P policy. This
expression contains one subexpression (lines 3-9), which in turns contain one
subexpression (lines 4-8). The outmost expression (lines 2-10) uses the default
and directive; therefore, it matches a P3P policy only if the policy contains at
least one statement that matches the enclosed expression (lines 3-9). Overall, this
APPEL rule says that a P3P policy will be rejected if it contains a STATEMENT
element that mentions both the user’s birthday and the user’s home telephone
number.

This rule rejects Policies 1 and 2 in Example 2, but not Policy 3. In Policy
3, the two data items are mentioned in different statements and no statement
mentions both data items. This is clearly undesirable, as the three statements
have the same semantics. This problem is a direct consequence of that fact
that APPEL is designed to query the representation of a P3P policy, rather the
semantics of the policy.

The same problem exists in XPref [2], since it is also syntax-based.

The Subtlety of APPEL’s Connectives. The meaning of an APPEL rule
depends very much on the connective used in the expressions. However, the con-
nectives are difficult to understand and use. The APPEL designers made mis-
takes using them in the first example in the APPEL specification [16]. Consider
the following example taken from [16].

Example 2. The user does not mind revealing click-stream and user agent infor-
mation to sites that collect no other information. However, she insists that the
service provides some form of assurance.

The APPEL rule used in [16] for the above example is as follows:

01 <appel:RULE behavior="request"
02 description="clickstream okay">
03 <p3p:POLICY>
04 <p3p:STATEMENT>
05 <p3p:DATA-GROUP
06 appel:connective="or-exact">
07 <p3p:DATA
08 ref="#dynamic.http.useragent"/>
09 <p3p:DATA
10 ref="#dynamic.clickstream.server"/>
11 </p3p:DATA-GROUP>
12 </p3p:STATEMENT>
13 <p3p:DISPUTES-GROUP>
14 <p3p:DISPUTES service="*"/>
15 </p3p:DISPUTES-GROUP>
16 </p3p:POLICY>
17 </appel:RULE>

The above APPEL rule is an accept rule; its body has one outmost expres-
sion (lines 3-16) to match a P3P policy. The expression contains two subexpres-
sions, matching different elements in a policy. The expression denoted by the

188 E. Bertino, J.-W. Byun, and N. Li

p3p:POLICY element (lines 3–16) does not have the ‘connective’ attribute; there-
fore, the default and connective is used, which means that as long as the two
included expressions, i.e., p3p:STATEMENT (lines 4-12) and p3p:DISPUTES-GROUP
(lines 13-15), match some parts in the P3P policy, the rule accepts the policy.
The expression denoted by p3p:DATA-GROUP uses the or-exact connective, it
matches a DATA-GROUP element if the DATA elements contained in the element is a
non-empty subset of {#dynamic.http.useragent, #dynamic.clickstream.server}.

Overall, this rule means that a P3P policy will be accepted if it contains
a STATEMENT element that mentions only the two specified data items and a
DISPUTES-GROUP element.

Observe that this rule does not express the preference, as it does not take
into consideration the fact that a P3P policy can have multiple statements.
Subsequently, a policy that only mentions “#dynamic.http.useragent” in the
first statement can be accepted by the rule, even if the next statement collects
and uses other user data.

One may try to fix this problem by using the and-exact connective on line
2, which means that each element contained in the P3P policy must match
one of the expressions within the APPEL rule. For such a rule to work as in-
tended, the p3p:POLICY expression (lines 3–16) must contain two additional
sub-expressions: p3p:ENTITY and p3p:ACCESS. Otherwise, no P3P policy will
be accepted because of the existence of ENTITY and ACCESS elements. However,
this fix still does not work. A P3P policy may optionally contain an EXTENSION
element. Even when such a policy collects only ‘#dynamic.http.useragent’ and
‘#dynamic.clickstream.server’, it will not be accepted by the above rule, due
to the semantics of and-exact. On the other hand, including a sub-expression
p3p:EXTENTION cannot fix the problem, as a policy without extensions will not
be accepted in this case.

Another approach to fix the problem is to use the or-exact connective
on line 3 and to include subexpressions for p3p:ENTITY, p3p:ACCESS and
p3p:EXTENSION. Recall that the or-exact connective means that all elements
in the policy must match some subexpressions, but not every subexpression is
required to match some element in the policy. However, this means that the
p3p:DISPUTES-GROUP element also becomes optional. A P3P policy that does
not have the DISPUTES-GROUP element will also be accepted. This is not the
preference described in Example 2.

In fact, as far as we can see, there is no way to correctly specify the preference
in Example 2 in APPEL. One source of difficulty is that one has to intermingle
statements and other aspects (e.g., dispute procedures) of a P3P policy in a
preference rule. This is caused by APPEL’s syntactic nature and the fact that
statements and dispute procedures are all immediate children of a POLICY el-
ement. If conditions about data usages and other aspects of P3P policies may
be specified separately, it is possible to specify the conditions on data usage in
Example 2 using the or-exact connective.

Privacy-Preserving Database Systems 189

3 Requirements Towards the Development of
Privacy-Preserving DBMS

Languages for specification of privacy promises, such as P3P, represent only
one of the components in a comprehensive solution to privacy [3]. It is crucial
that once data are collected, privacy promises be enforced by the information
systems managing them. Because in today information systems, data are in
most cases managed by DBMS, the development of DBMS properly equipped
for the enforcement of privacy promises and of other privacy policies is crucial.
Here we discuss a set of requirements towards the development of such DBMS.
Some of those requirements, as the support for purpose meta-data and privacy
obligations, derive directly from P3P. Other requirements are not directly related
to P3P; however, they are crucial for the development of DBMS able to support
a wide range of privacy policies, going beyond the ones strictly related to P3P.
In the discussion, we use the terms subject to denote the active entities, trying
to gain accesses to the data, and subjects to denote the passive entities, that are
to be protected.

Support for Rich Privacy Related Meta-data. An important characteristic
of P3P is that very often privacy promises, that is, statements specifying the
use of the data by the party collecting them, include the specification of the
intended use of the data by the collecting party as well as other information.
Examples of this additional information are how long the data will be kept and
possible actions that are to be executed whenever a subject accesses the data.
Supporting this additional information calls for the need of privacy-specific meta-
data that should be associated with the data, stored in the database together
with the data, and send with the data whenever the data flow to other parties in
the system. Metadata should be associated with the data according to a range
of possible granularities. For example in a relational database, one should be
able to associate specific metadata with an entire table, with a single tuple, or
even with a column within a single tuple. Such flexibility should not however
affect the performance; thus we need to develop highly efficient techniques for
managing these metadata in particular when dealing with query executions.
Query executions may need to take into account the contents of such metadata
in order to filter out from the data to be returned, the data that cannot be
accessed because of privacy constraints.

Support for Expressive Attribute-Based Descriptions of Subjects. We
see an increasing trend towards the development of access control models that
relies on information concerning subjects. Examples of such models are repre-
sented by trust negotiation systems [4,18], that use credentials certifying relevant
properties of subjects. Such access control models are crucial in the context of
privacy because they provide a high-level mechanism able to support a very
detailed specification of the conditions that subjects must verify in order to ac-
cess data. As such, fine-grained privacy-preserving access control policies can be
supported. They also make it easy to formulate and maintain privacy policies

190 E. Bertino, J.-W. Byun, and N. Li

and verify their correctness. Moreover, such high-level models can provide bet-
ter support for interoperability because they can, for example, easily integrate
with SAML assertions. However, current database technology is very poor in the
representation of subjects. At the best current DBMS provide support for roles
in the context of the well-known role-based access control (RBAC) model [3].
However, apart from this, DBMS do not provide the possibility of specifying
application-dependent user profiles for use in access control and privacy enforce-
ment. It can be argued that such profiles should perhaps be built on top of the
DBMS or even be supported externally. However, in such a case, it is not clear
how efficient access control and privacy enforcement could be supported. It also
important to notice that RBAC does not support subject attributes. Extensions
of RBAC models supporting such a feature should be devised.

Support for Obligations. Obligations specify privacy-related actions that are
to be executed upon data accesses for certain purposes. There is a large va-
riety of actions that can be undertaken, including modifications to the data,
deletion of the data, notifications of data access to the individual to whom the
data are related or to other individuals, insertion of records into privacy logs.
These obligations should be possibly executed, or at least initiated by, the DBMS
because their execution is tightly coupled with data accesses. An important is-
sue here is the development of expressive languages supporting the specification
obligations, and analysis tools to verify the correctness and consistency of obli-
gations. A viable technology to support obligations is represented by trigger
mechanisms, currently available in all commercial DBMS. The main question is
however whether current trigger languages are adequate to support the specifi-
cation of obligations.

Fine-Grained Access Control to Data. The availability of a fine-grained
access control mechanism is an important requirement of a comprehensive so-
lution to privacy. Conventional view mechanisms, the only available mechanism
able to support in some ways a very fine granularity in access control, have sev-
eral shortcomings. A naive solution to enforce fine-grained authorizations would
require specifying a view for each tuple or subset of a tuple that are to be pro-
tected. Moreover, because access control policies are often different for different
users, the number of views would further increase. Furthermore, applications
programs would have to code different interfaces for each user, or group of users,
because queries and other data management commands would need to use for
each user, or group of users, the correct view. Modifications to access control
policies would also require creation of new views with consequent modifications
to application programs. Alternative approaches that address some of those is-
sues have been proposed that are based on the idea that queries are written
against base tables and then automatically re-written by the system against the
view available to the user. These approaches do not require to code different
interfaces for different users, and thus address on of the main problems in the
use of conventional view mechanisms. However, they introduce other problems,
such as inconsistencies between what the user expects to see and what the sys-

Privacy-Preserving Database Systems 191

tems returns; in some cases, they return incorrect results to queries rather than
rejecting them as unauthorized. Different solutions thus need to be investigated.
These solutions must not only address the specification of fine-grained access
control policies but also their efficient implementation in current DBMS.

Privacy-Preserving Information Flow. In many organizations, data flow
across different domains. It is thus important that privacy policies related to
data “stick” with the data when these data move within an organization or
across organizations. This is crucial to assure that if data have been collected
under a given privacy promise from an individual, this promise is enforced also
when data are passed to parties different from the party that have initially
collected them. Information flow has been extensively investigated in the past
in the area of multi-level secure databases. An important issue is to revisit such
theory and possibly extend it for application in the context of privacy.

Protection from Insider Threats. An important problem that so far has not
received much attention is related to the misuse of privileges by legitimate sub-
jects. Most research in the past has been devoted to protection from intrusions
by subjects external to the systems, against which technologies like firewalls can
provide a certain degree of protection. However, such approaches are not effec-
tive against users that are inside the firewalls. A possible technique that can be
employed to start addressing such problem is based on the use of subject access
profiling techniques. Once the profile of the legitimate accesses has been defined,
such profile can be used to detect behavior that is different. Developing such
an approach requires however investigating several issues, such as specific ma-
chine learning techniques to use, efficiency and scalability. Also, the collection of
user profiles may in turn introduce more privacy problems, because users of the
system may be sensible to the fact that all their actions are being monitored.

In the rest of this paper, we elaborate on some of those requirements and
discuss possible solutions.

4 Purpose Management and Access Control

In this section, we present three privacy-centric access control models from recent
literatures. Prior to proceed, we note that privacy protection cannot be easily
achieved by traditional access control models. The key difficulty comes from
the fact that privacy-oriented access control models are mainly concerned with
which data object is used for which purpose(s) (i.e., the intent(s) of data usage),
rather than which user is performing which action on which data object as in
traditional access control models. Another difficulty of privacy protection is that
the comfort level of privacy varies from individual to individual, which requires
access control be fine-grained. Thus, the main challenge of privacy protecting
access control is to provide access control based on the notion of purpose, incor-
porating data subjects’ preferences if necessary, at the most fine-grained level.
In the remainder of this section we discuss two approaches to the management
of purpose information and their use in access control.

192 E. Bertino, J.-W. Byun, and N. Li

4.1 Purpose Based Access Control

Our work in [5,6] presents a comprehensive approach to purpose management,
which is the fundamental building block on which purpose-based access control
can be developed. Our approach is based on intended purposes, which specify
the intended usage of data, and access purposes, which specify the purposes for
which a given data element is accessed. We also introduce the notion of purpose
compliance, which is the basis for verifying that the purpose of a data access
with the intended purposes of the data.

Another important issue addressed in this work is the data labeling scheme;
that is, how data are associated with intended purposes. We address this issue
in the context of relational data model. The main issue here is the granularity
of data labeling. We propose four different labeling schemes, each providing a
different granularity. We also exploit query modification techniques to support
data filtering based on purpose information.

Evidently, how the system determines the purpose of an access request is also
crucial as the access decision is made directly based on the access purpose. To
address this issue, we present a possible method for determining access purposes.
In our approach, users are required to state their access purposes along with the
data access requests, and the system validates the stated access purposes by
ensuring that the users are indeed allowed to access data for the particular
purposes.

Definition of Purposes. In privacy protecting access control models, the no-
tion of purpose plays a central role as the purpose is the basic concept on which
access decisions are made. In order to simplify the management, purposes are
organized according to a hierarchical structure based on the principles of gener-
alization and specialization, which is appropriate in common business environ-
ments. Figure 2 gives an example of purpose tree, where each node is represented
with the conceptual name of a purpose.

Intuitively, an access to a specific data item is allowed if the purposes allowed
by privacy policies for the data include or imply the purpose for accessing the
data. We refer to purposes associated with data and thus regulating data accesses
as Intended Purposes, and to purposes for accessing data as Access Purposes.

General-Purpose

Profiling

Admin Marketing

Direct Third-Party

D-Email

Special-Offers Service-Updates

Analysis

Purchase

 T-Postal T-Email D-Phone

Shipping

Fig. 2. Purpose Tree (From [5])

Privacy-Preserving Database Systems 193

Intended purposes can be viewed as brief summaries of privacy policies for data,
stating for which purposes data can be accessed. When an access to data is
requested, the access purpose is checked against the intended purposes for the
data.

In our model intended purposes support both positive and negative privacy
policies. An intended purpose consists of two components: Allowed Intended Pur-
poses and Prohibited Intended Purposes. This structure provides greater flexi-
bility to the access control model. Moreover, by using prohibited intended pur-
poses, one can guarantee that data accesses for particular purposes are never
allowed. Conflicts between the allowed intended purposes and the prohibited
intended purposes for the same data item are resolved by applying the denial-
takes-precedence policy where prohibited intended purposes override allowed
intended purposes.

An access purpose is the purpose of a particular data access, which is
determined or validated by the system when the data access is requested. Thus,
an access decision can be made based on the relationship between the access pur-
pose and the intended purposes of data. That is, an access is granted if the access
purpose is entailed by the allowed intended purposes and not entailed by the
prohibited intended purposes; in this case we say the access purpose is compliant
to the intended purpose. The access is denied if any of these two conditions fails;
we then say that the access purpose is not compliant to the intended purpose.

Data Labeling Model. In order to build an access control model based on
the notion of purpose, we must consider a specific data model and based on this
model devise a proper labeling scheme. A major question here is at what level
of granularity intended purposes are associated with data.

It is clear that in order to make the best use of data while at the same time
ensure that data providers feel comfortable, the labeling model should allow the
assignments of intended purposes with data at the most fine-grained level. That
is, we should be able to assign an intended purpose to each data element in every
tuple; e.g., for each attribute and for each data provider. It is also possible that
a data provider allows or prohibits access to his/her entire record (i.e., address),
not to individual sub-elements (i.e., street, city, state, etc.). This means that it is
not always necessary to associate each data element with an intended purpose.
However, intended purpose for the address information can vary depending on
each individual. To address these concerns, the labeling model should allow the
assignment of intended purpose to each tuple of a relation.

However, this most fine-grained approach is not efficient in terms of storage
and is not always necessary. For instance, it is possible that there exists some
information for which corresponding privacy policies are mandated by enter-
prises or by laws; i.e., data providers do not have a choice to opt-out from the
required intended purposes. In such cases, the data elements in each column in
the relation have the identical intended purpose. Thus, in order to avoid any
redundant labeling, intended purposes should be assigned to each attribute of
a relation using an auxiliary table, e.g., privacy policy table. Furthermore, it is
possible that the intended purposes of every attribute in a relation be identical.

194 E. Bertino, J.-W. Byun, and N. Li

Such cases occur when information in a relation is meaningful as a whole tuple,
but individual elements or tuples do not have any usefulness. In this case, the
intended purposes are assigned to the entire relation by using a single entry in
the privacy policy table.

In summary, in order to provide privacy protection in a storage efficient way,
intended purpose should be assigned to every relation, to every tuple in every rela-
tion, to every attribute in every relation, or to every data element in every relation.

Access Control Using Query Modification. Privacy-preserving access con-
trol mechanisms must ensure that a query result contains only the data items
that are allowed for the access purpose of the query. In other words, the system
must check the intended purpose of each data element accessed by the query
and filter out its value if the access purpose is not compliant with the intended
purpose of the data element. In our approach, this fine-grained access control
is achieved using query modification [26]. Our query modification algorithm is
outlined in Figure 3. Note that this method is invoked only if the access purpose
of the query is verified to be acceptable by the validate function. If the access
purpose is not acceptable, then the query is rejected without further being pro-
cessed.

In Lines 7 and 9 the compliance checks for relations with the relation- or
attribute-based labeling schemes are executed statically by the query modifica-
tion method. On the other hand, the compliance checks for relations with the
tuple- or element-based labeling schemes are performed during query processing
by the predicates which are added by the query modification algorithm (Lines
15 and 17).

The query modification algorithm checks both the attributes referenced in
the projection list and the attributes referenced in predicates (Line 3). As the
attributes in the projection list determine what data items will be included in
the result relation of a query, it may seem enough to enforce privacy policy
based only on the attributes in the projection list. However, the result of a
query also depends on the predicates, and not enforcing privacy constraints
on the predicates may introduce inference channels. For example, consider the
following query:

SELECT name
FROM Customer
WHERE income > 100000
FOR Third-Party.

Suppose that according to the established privacy policies, name can be ac-
cessed for the purpose of Third-Party, but income is prohibited for this purpose.
If the privacy constraint is not enforced on the predicates, this query will re-
turn a record containing the names of customers whose income is greater than
100,000. This is highly undesirable as this result implicitly conveys information
about the customers’ income. Note that if the privacy policy is enforced at the
predicate level, such inference channels cannot be created.

Privacy-Preserving Database Systems 195

Comp_Check (Number ap, Number aip, Number pip)
Returns Boolean
1. if (ap & pip) ≠ 0 then
2. return False;
3. else if (ap & aip) = 0 then
4. return False;
5. end if;
6. return True;

Modifying_Query (Query Q)
Returns a modified privacy-preserving query Q’
1. Let R1, ..., Rn be the relations referenced by Q
2. Let P be the predicates in WHERE clause of Q
3. Let a1, ..., am be the attributes referenced in both the projection list and P
4. Let AP be the access purpose encoding of Q
5. for each Ri where i = 1, ..., n do
6. if (Ri is relation-based labeling AND Comp_Check (AP, Ri.aip, Ri.pip) = False) then
7. return ILLEGAL-QUERY;
8. else if Ri is attribute-based labeling then
9. for each aj which belongs to Ri do
10. if Comp_Check (AP, aj.aip, aj.pip) = False then
11. return ILLEGAL-QUERY;
12. end if;
13. end for;
14. else if Ri is tuple-based labeling then
15. add ‘ AND Comp_Check (AP, Ri_aip, Ri_pip)’ to P ;
16. else if Ri is element-based labeling then
17. for each aj which belongs to Ri do
18. add ‘ AND Comp_Check (AP, aj_aip, aj_pip)’ to P;
19. end for;
20. else // Ri is a relation without labeling
21. do nothing;
22. end if;
23. end for;
24. return Q with modified P;

Fig. 3. Query Modification Algorithm (From [5])

Notice that the provided algorithm filters out a tuple if any of its elements
that are accessed is prohibited with respect to the given access purpose. For
instance, consider the following query:

SELECT name, phone
FROM Customer
FOR Marketing.

Suppose there is a customer record of which the name is allowed for market-
ing, but the phone is prohibited for this purpose. Then our algorithm excludes
the record from the query result. We note that in the environments where par-
tially incomplete information is acceptable, the query modification algorithm
can be easily modified to mask prohibited values with null values using the case
expression in SQL.

Access Purpose Determination. An access purpose is the reason for access-
ing a data item, and it must be determined by the system when a data access
is requested. Evidently, how the system determines the purpose of an access
request is crucial as the access decision is made directly based on the access pur-

196 E. Bertino, J.-W. Byun, and N. Li

pose. There are many possible methods for determining access purposes. First,
the users can be required to state their access purpose(s) along with the re-
quests for data access. Even though this method is simple, it requires complete
trust on the users and the overall privacy that the system is able to provide en-
tirely relies on the users’ trustworthiness. Another possible method is to register
each application or stored-procedure with an access purpose. As applications or
stored-procedures have limited capabilities and can perform only specific tasks,
it can be ensured that data users use them to carry out only certain actions
with the associated access purpose. This method, however, cannot be used for
complex stored-procedures or applications as they may access various data for
multiple purposes. Lastly, the access purposes can be dynamically determined,
based on the current context of the system. For example, suppose an employee
in the shipping department is requesting to access the address of a customer by
using a particular application in a normal business hour. From this context (i.e.,
the job function, the nature of data to be accessed, the application identification,
and the time of the request), the system can reasonably infer that the purpose
of the data access must be shipping.

In our work [6], users are required to state their access purposes along
with the data access requests, and the system validates the stated access
purposes by ensuring that the users are indeed allowed to access data for
the particular purposes. To facilitate the validation process, each user is
granted authorizations for a set of access purposes, and an authorization
for an access purpose permits users to access data with the particular pur-
pose. To ease the management of access purpose authorizations, users are
granted authorizations through their roles. This method has a great de-
ployment advantage as many systems are already using RBAC mechanisms
for the management of access permissions. This approach is also reason-
able as access purposes can be granted to the tasks or functionalities over
which roles are defined within an organization. However, using an RBAC
mechanism for the management of both access permissions and access pur-
poses may increase the complexity of the role engineering tasks. To ad-
dress this problem, we introduce a simple extension to RBAC. An impor-
tant feature of our approach is that by integrating RBAC with attribute-
based control, our extension simplifies the role administration and also pro-
vides increased flexibility. For more detailed information, users are directed
to [6].

4.2 Limiting Disclosure in Hippocratic Databases

LeFevre et al. [17] presented a database architecture for enforcing limited dis-
closure 2 expressed by privacy polices, which is illustrated by Figure 4. In this
section, we briefly review each component of their architecture.

2 Limited disclosure is one of data privacy principles, which states that data subjects
have control over who is allowed to see their personal information and for what
purpose [1].

Privacy-Preserving Database Systems 197

 Privacy
Meta-Data

 Application
 Context

 Data
Tables

 Choice
 Data

Modify Query

Policy Language
 Translator

 Install Policy
(P3P or EPAL)

 Issue Query
 (SQL)

 Individual
 Choices

Modified Query

Fig. 4. Implementation architecture overview (From [17])

Privacy Policy Meta-language. A privacy policy, 〈data, purpose-recipient
pair, condition〉 3, describes to whom the data may be disclosed (i.e., recip-
ients), how the data may be used (i.e., the purposes), and in what specific
circumstances the data may be disclosed (i.e., conditions). For instance, a
rule 〈address, solicitation-charity, optin=yes〉 requires that a data subject’s
address information can be accessed to a charity organization for the solicitation
purpose if the subject has explicitly consented to this disclosure. Note that a
condition predicate may refer to the data table T as well as any other data
tables and the context environment variables (e.g., $USERID). For example,
a condition to govern the disclosure of patient data to nurses such that, for
treatment, nurses may only see the medical history of patients assigned to the
same floor can be expressed as follows:

EXISTS (SELECT NurseID
FROM Nurses
WHERE Patients.floor = Nurses.floor
AND $USERID = Nurses.NurseID)

Limited Disclosure Models. For enforcing cell-level limited disclosure, two
models are introduced: table semantics and query semantics [17]. The table
semantics model conceptually defines a view of each data table for each purpose-
recipient pair, based on privacy policies. Then queries are evaluated against
these views. On the other hand, the query semantics model takes the query into
account when enforcing disclosure. Despite this subtle difference, the effect of
them is the same in that both models mask prohibited values using null value.
Below we provide the definitions of these two models, taken verbatim from [17].

– (Table Semantics) Let T be a table with n data columns, and let K be the
set of columns that constitute the primary key of T . For a given purpose-
recipient par Pj , the table T , seen as TPj , is defined as follows:

3 It is assumed that privacy policies in P3P or EPAL are translated to this form and
stored, prior to access control.

198 E. Bertino, J.-W. Byun, and N. Li

{r | ∃ t ∈ T ∧ ∀ i, 1 ≤ i ≤ n
(r[i] = t[i] if eval(t[i, j]) = true, 4

r[i]= null otherwise)
∧ r[K] nonenull}

– (Query Semantics) Consider a query Q that is issued on behalf of some
purpose-recipient pair Pj and that refers to table T . Query Semantics is
enforced as follows:
1. Every table T in the FROM clause is replaced by TPj , defined as follows:

{r | ∃ t ∈ T ∧ ∀ i, 1 ≤ i ≤ n
(r[i] = t[i] if eval(t[i, j]) = true,
r[i]= null otherwise)}

2. Result tuples that are null in all columns of Q are discarded.

Privacy Policy Storage. The privacy policies (i.e., disclosure rules) are stored
in the database as the privacy meta-data. These meta-data consists of policy rules
table and conditions table. The policy rules table stores a policy rule as a tuple of
〈RuleID, PolicyID, Purpose, Recipient, Table, Column, CondID〉. The condition
table stores conditional predicates each of which is identified by a CondID. For
instance, a tuple 〈r1, p1, p, r, t, d, c〉 in the policy rules table means that the
data in d of t is available to the user r for the purpose of p if the predicate
identified by c in the conditions table satisfies.

Query Modification. Incoming queries are augmented with case statements 5

to enforce the disclosure rules and conditions specified by the privacy meta-data.
For instance, consider the previous example, where nurses may only see the
medical history of patients assigned to the same floor for treatment. Suppose a
nurse issues a query

SELECT history FROM Patients

for the purpose of treatment. Then the query is rewritten to enforce the
disclosure rules as follows:

SELECT
CASE WHEN EXIST

(SELECT NurseID
FROM Nurses
WHERE Patients.floor = Nurses.floor

AND $USERID = Nurses.NurseID)
THEN history ELSE null END
FROM Patients

4 eval(t[i, j]) denotes the boolean result of evaluating the condition that governs the
disclosure of data column i in the current row of T to the purpose-recipient pair j.

5 In [17], a query modification algorithm using outer-joins is also presented.

Privacy-Preserving Database Systems 199

Observe that the modified query replaces the prohibited history data with
null values. Note also that the modified query accesses an additional patient data
(i.e, “floor”). If this information is governed by another disclosure rule, then such
a rule must be also enforced by checking the rule and adding the corresponding
condition to the modified query.

5 Generalized Fine-Grained Access Control Models for
Database Systems

In recent years, because of privacy requirements, we have seen a growing interest
in fine-grained access control in databases; e.g., the VPD in Oracle, parameter-
ized views in DB2 and the Hippocratic databases work. A motivation for fine-
grained access control is to move access control from applications to databases,
so that they cannot be bypassed and therefore high-assurance privacy can be
achieved.

Fine-grained access control policies may be specified according to two differ-
ent approaches. One approach, that we call view-based approach, uses views or
parameterized views. In this approach, what a user is authorized to see is given
by a set of views. Unlike in standard SQL, where the user is given access only
to the views, the user is given access to the base table; however, the user is lim-
ited to access only those parts of the table that is authorized by the views. The
other approach uses labeling, where each data element (e.g., a cell or a record)
is labeled with information determining whether this element is authorized for a
particular user (or a particular query). Purpose based access control discussed in
Section 4 is an example of this latter approach. In this section, we review some
existing works of the view-based approach and discuss the key challenges posed
by fine-grained access control.

5.1 View-Based Approach

In the view-based approach, a user is given a set of views which then represents
the parts of the database that are accessible to the user. This differs from the
view mechanism in SQL in that users issue their queries against the base tables
directly, not using the given views. In this section, we briefly review two works
that exemplify the view-based approach.

Access Control in INGRES. Stonebraker and Wong [26] introduced query
modification as a part of the access control system in INGRES. The basic
idea of query modification is that before being processed, user queries are
modified transparently to ensure that users do not see more than what they are
authorized to see. In their scheme, an access permission for a user is specified
and stored as a view. Thus, each user is associated with a set of views which
defines a permitted view of database for the user. When the user issues a query,
the query modification algorithm searches for the views that are related to the
query; i.e., the views whose attributes contain the attributes addressed by the

200 E. Bertino, J.-W. Byun, and N. Li

query 6. Then the qualifications (i.e., conditions in the WHERE clause) of such
views are conjuncted with the qualification of the original query. For instance,
consider a table Employee with attributes name, department, salary. Suppose a
user Smith is allowed to see only information on himself in the Employee table.
This restrictions is expressed 7 as:

SELECT name, department, salary
FROM Employee
WHERE name = ‘Smith’

Now suppose Smith wants to find out the salary information on the
employees in the Accounting department and issues the following query:

SELECT name, salary
FROM Employee
WHERE department = ‘Accounting’

As the attributes of the given view contain the attributes of the query, the
restriction is applied to the query and the query is automatically modified into:

SELECT name, salary
FROM Employee
WHERE department = ‘Accounting’ AND name = ‘Smith’

Thus, the modified query effectively limits the query result to the information
of Smith only. Note that once a query is modified, the modified query can be pro-
cessed without further access control; that is, the modified query is guaranteed
never to violate any access restriction placed on the query issuer.

Motro’s Approach. In [21], Motro points out some limitations of the query
modification algorithm in INGRES. The main drawback pointed out is that in
some cases the algorithm returns less than what the user is actually allowed to
see. For instance, consider a relation A with attributes a1, a2 and a3, and assume
that a user is given a view permitting her to access the tuples of a1 and a2 as
long as a condition C is satisfied. Then if the user tries to retrieve the tuples
of a1, a2, or a1 and a2, the access restriction is applied to the query, and only
the tuples that satisfy the condition C will be returned. However, when the user
tries to retrieve the tuples of all a1, a2 and a3, then the query will be denied
as the view given to the user does not contain the all attributes of the query.
To address this problem, Motro proposed an alternative technique. Similar to
the scheme used in INGRES, views are used to represent statements of access

6 Note that the attributes of a query include the attributes in both the SELECT clause
and the WHERE clause.

7 While QUEL [20] is used as the query language in the original paper, we use SQL
for the convenience of readers.

Privacy-Preserving Database Systems 201

permissions. However, the main difference is that granting a user permission to
access a set of views V = {v1, . . . , vm} in Motro’s scheme implies that permission
is also granted to access any view derived from V . Thus, when the user issues a
query Q, which is also a view, the system accepts Q if Q is a view that can be
derived from V . In addition, if Q is not a view of V , but any subview of Q is, then
the subview is accepted; that is, in the previous example where the user tries to
access all a1, a2 and a3, the tuples of a1 and a2 that satisfy C will be returned.
In [21], this is accomplished as follows. The views that permit access are stored
as “meta-relations” in the database. When a query is presented to the database,
the query is performed both on the meta-relations and the actual relations. As
applying the query on the meta-relations results in a view that is accessible to
the user, this result is then applied to the actual query result, yielding the final
result. For complete description and examples, readers are referred to [21].

Although the approach of Motro provides more flexibility to access control,
his technique also poses some subtle problems. First, his algorithm may result
in accepting multiple disjoint subviews of a query. However, it is not trivial
how these subviews are presented to users. Another shortcoming of his approach
is that the logical structure of actual query result may be different from the
expected structure; that is, a query retrieving three attributes may return tuples
with only two attributes. This is highly undesirable or unacceptable to most
database applications.

5.2 Virtual Private Database (VPD) in Oracle

Since the release of Oracle8i, the Virtual Private Database (VPD) has been in-
cluded as one of major access control components in Oracle database systems.
The VPD, defined as “the aggregation of server-enforced, fine-grained access
control” [22], provides a way to limit data access at the row level. Surely, it is
possible to support row level access control using the view mechanism. How-
ever, the view mechanism has several limitations as fine-grained access control
mechanism. First, it is not scalable. For instance, consider a table Employees,
and suppose each employee can only access her own information. In order to
enforce such policy using views, administrators have to create a view for each
employee and grant each employee a permission to access the personal view.
Clearly, this task is not efficient when there are a large number of employees.
Also, this approach is cumbersome to support when policies frequently change.
Another drawback of using views for access control is that view security becomes
useless if users have direct access to base tables.

The VPD overcomes such limitations of views by dynamically modifying user
queries. The basic idea of the VPD is as follows. A table (or a view) that needs
protection is associated with a policy function which returns various predicates
depending on the system context (e.g., current user, current time, etc.). Then
when a query is issued against the table, the system dynamically modifies the
query by adding the predicate returned by the policy function. Thus, the VPD
provides an efficient mechanism to control data access at the row level based on
both the system context and the data content.

202 E. Bertino, J.-W. Byun, and N. Li

It is possible to use VPD at the column level; i.e., associate policy functions
with a column, not an entire table. In the case of column level VPD, one can
also change the behavior of the VPD so that instead of filtering out inaccessible
tuples, just the prohibited values are masked with nulls. The VPD also allows
one to associate multiple policy functions with the same table. In such case, all
policies are enforced with AND syntax.

5.3 Truman Model vs. Non-Truman Model

As previously mentioned, query-modification has been widely accepted as an ef-
fective technique for implementing access control in relational database systems.
With this technique, when a subject issues a query, a modified query is executed
against the database. As the modification of queries is transparent to users,
this approach is equivalent to providing each user with a view of the complete
database restricted by access control considerations and executing her queries
only on this view. For this reason, this approach is called the “Truman model”
for access control in relational database systems [23].

Although the Truman model can effectively support fine-grained access con-
trol, it has a major drawback; there may be significant inconsistencies between
what the user expects to see and what the system returns [23]. For instance,
consider a relation Grades which contains the grades of multiple students, and
suppose each student is allowed to access only the grade of herself. Then when a
student issues a query SELECT * FROM Grades, the Truman model returns only
the grade of the student. However, suppose that a student wants to know the av-
erage grade and issues a query SELECT AVG(grade) FROM Grades. The Truman
model effectively filters out the tuples inaccessible to the student. However, the
system ends up returning the grade of the student, which is obviously incorrect.
However, as such filtering is transparent to the student, the student may falsely
believe that her grade is the same as the average grade.

Due to the inadequacy of the Truman model described above, Rizvi et al. [23]
argue that query modification is inherently inapplicable as a mechanism for
access control in database systems. As an alternative, they propose that every
user be associated with a set of authorized views. Then when a user issues a
query, the system assesses whether the query can be answered based on the
authorized views associated with the user. If the answer is positive, then the
query is processed without any modification. If the answer is negative, the query
is rejected with a proper notification given to the user. For instance, if the user
issues a query that asks for the average grade of all students, and the user’s
authorized views do not include every student’s grade, then the system does not
process the query and informs the user that the query cannot be answered.

5.4 Challenges in Fine-Grained Access Control

In general, a query processing algorithm A that enforces fine-grained access
control policy takes as input a database D, a policy P , and a query Q, and
outputs a result R = A(D, P, Q). We argue that a “correct” query processing
algorithm A should have the following three properties.

Privacy-Preserving Database Systems 203

Soundness. A(D, P, Q) should be “consistent” with S(D, Q), where S is the
standard relational query answering procedure. What do we mean by con-
sistent will be formally defined later.
The intuition is as follows. When the policy P allows complete access to D,
then A(D, P, Q) should be the same as S(D, Q). When P restricts access
to D, A(D, P, Q) may return less information than S(D, Q) does, but it
shouldn’t return wrong information.

Security. A(D, P, Q) should be using only information allowed by P ; in other
words, A(D, P, Q) should not depend on any information not allowed by P .
To formalize this, we require that for any D′, P ′ such that if the portion of D
allowed by P is the same as the portion of D′ allowed by P ′, A(D, P, Q) =
A(D′, P ′, Q). Precise definition of “the portion of D allowed by P” will
depend on how P is specified, and will be given later.
This security property is inspired by the notion of “indistinguishability”
security requirement for encryption schemes [?]. It says that if the algorithm
A is used for query processing, then no matter what queries one issue, one
cannot tell whether the database is in state D, P or in D′, P ′.

Maximality. While satisfying the above two conditions, A should return as
much information as possible. To appreciate the importance of this property,
observe that a query processing algorithm that always returns no information
would satisfy the sound and secure property; however this is clearly .

We argue that our list of the three properties is intuitive and natural. In par-
ticular, it is declarative in that it does not define any procedure for answering
queries. We illustrate the importance of having a definition of “correct query pro-
cessing with fine-grained access control policy” by showing that two approaches
previously discussed violate the above properties. For illustration, we consider
the following example.

Example 3. We have a relation Employee, with four attributes: id, name, age,
and salary, where id is the primary key.

id Name Age Income
1 Alice 22 30000
2 Bob 45 65000
3 Carl 34 40000
4 Diane 28 55000

A policy for a user Alice consists of the following views:

– V1: Alice can see all information about herself.
– V2: Alice can see id, name, and income information for anyone whose income

is less than $60000.
– V3: Alice can see id, name, and age for anyone whose age is less than 30.

204 E. Bertino, J.-W. Byun, and N. Li

Suppose Alice issues a query:

SELECT name, age, income FROM Employee (Q1)

Using the algorithm in [26], only the tuple about Alice is returned, because
neither V2 nor V3 includes all three attributes in the query. However, if Alice
issues two queries:

SELECT id, name, income FROM Employee (Q2)
SELECT id, name, age FROM Employee (Q3)

and does a natural join, then Alice would also be able to see Diane’s in-
formation. In other words, Diane’s information is indeed allowed by the views;
however, the query rewriting algorithm in [26] does not use this information.
Thus, the maximal property is violated.

In [17], an access control policy specifies which cells are allowed and which
cells are not, and the approach for enforcing such a policy is to effectively
replace each cell that is not allowed with the special value null. The soundness
property is however violated using the standard SQL approach for handling
null values; the standard SQL evaluates any operation involving a null as its
operand to false. For instance, suppose that Alice issues a query:

SELECT name FROM Employee WHERE age < 25 (Q4).
Observe that Q4 is equivalent to the following query

(SELECT name FROM Employee) EXCEPT
(SELECT name FROM Employee WHERE age ≥ 25) (Q5)

However, using the algorithm in [17], Q3 returns {Alice} while Q4 returns
{Alice, Bob, Carl}.

Although our correctness criteria seems trivial, to the best of our knowledge,
no fine-grained access control algorithm exists that is correct with respect to our
definition. Also, devising a “correct” algorithm is not trivial. It seems that this
problem of fine-grained access control still remains open.

6 Concluding Remarks

In this paper we have discussed some important requirements towards the devel-
opment of privacy-preserving DBMS and we have identified initial approaches
to address some of these requirements. In particular, we have presented two ap-
proaches dealing with purpose meta-data and their use in access control. These
approaches represent initial solutions, that need to be extended in various di-
rections. Relevant extensions are represented by efficient storage techniques and
the introduction of obligations. We have also discussed current approaches to
fine-grained access control and we have outlined the major drawbacks of these
approaches. We have also identified three important properties that fine-grained
access control models should satisfy. To date, however, no such model exist and
its development is an important challenge.

Privacy-Preserving Database Systems 205

Acknowledgement

The work reported in this paper has been partially supported by NSF under the
project “Collaborative Research: A Comprehensive Policy-Driven Framework
for Online Privacy Protection: Integrating IT, Human, Legal and Economic Per-
spectives”.

References

1. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In The
28th International Conference on Very Large Databases (VLDB), 2002.

2. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. An XPath-based preference lan-
guage for P3P. In Proceedings of the Twelfth International World Wide Web Con-
ference (WWW2003), pages 629–639. ACM Press, May 2003.

3. A. I. Anton, E. Bertino, N. Li, and T. Yu. A roadmap for comprehensive online
privacy policy. Technical Report TR 2004-47, Purdue University, 2004.

4. E. Bertino, E. Ferari, and A. Squicciarini. Trust negotation: Concepts, systems and
languages. IEEE Computing in Science and Engineering, 6(4):27–34, Jul 2004.

5. J. Byun, E. Bertino, and N. Li. Purpose based access control for privacy protection
in relational database systems. Technical Report 2004-52, Purdue University, 2004.

6. J. Byun, E. Bertino, and N. Li. Purpose based access control of complex data
for privacy protection. In Symposium on Access Control Model And Technologies
(SACMAT), 2005. To appear.

7. C. Clifton. Using sample size to limit exposure to data mining. Journal of Computer
Security, 8(4):281–308, 2000.

8. C. Clifton and J. Vaidya. Privacy-preserving data mining: Why, how, and when.
IEEE Security and Privacy, 2(6):19–27, Nov 2004.

9. L. Cranor. P3P user agent guidlines, May 2003. P3P User Agent Task Force
Report 23.

10. L. F. Cranor. Personal communication.
11. L. F. Cranor and J. R. Reidenberg. Can user agents acurately represent privacy

notices?, Aug. 2002. Discussion draft 1.0.
12. M. M. et al. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, Apr.

2002. W3C Recommendation.
13. G. Hogben. A technical analysis of problems with P3P v1.0 and possible solutions,

Nov. 2002. Position paper for W3C Workshop on the Future of P3P. Available at
http://www.w3.org/2002/p3p-ws/pp/jrc.html.

14. G. Hogben. Suggestions for long term changes to P3P, June 2003. Posi-
tion paper for W3C Workshop on the Long Term Future of P3P. Available at
http://www.w3.org/2003/p3p-ws/pp/jrc.pdf.

15. G. Hogben, T. Jackson, and M. Wilikens. A fully compliant research implementa-
tion of the P3P standard for privacy protection: Experiences and recommendations.
In Proceedings of the 7th European Symposium on Research in Computer Security
(ESORICS 2002), volume 2502 of LNCS, pages 104–125. Springer, Oct. 2002.

16. M. Langheinrich. A P3P Preference Exchange Language 1.0 (APPEL1.0). W3C
Working Draft, Apr. 2002.

17. K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt.
Limiting disclosure in hippocratic databases, Aug. 2004. In 30th International
Conference on Very Large Data Bases (VLDB), Toronto, Canada.

206 E. Bertino, J.-W. Byun, and N. Li

18. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust man-
agement framework. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pages 114–130. IEEE Computer Society Press, May 2002.

19. N. Li, T. Yu, and A. I. Antón. A semantics-based approach to privacy languages.
Technical Report TR 2003-28, CERIAS, Nov. 2003.

20. N. McDonald, M. Stonbraker, and E. Wong. Preliminary specification of ingres.
Technical Report 435-436, University of California, Berkeley, May 1974.

21. A. Motro. An access authorization model for relational databases based on alge-
braic manipulation of view definitions. In The Fifth International Conference on
Data Engineering (ICDE), pages 339–347, Feb. 1989.

22. Oracle Coperation. Oracle Database: Security Guide, December 2003. Available
at www.oracle.com.

23. S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting tech-
niques for fine-grained access control. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pages 551–562, Paris, France,
2004. ACM Press.

24. M. Schunter, E. V. Herreweghen, and M. Waidner. Expressive privacy promises
— how to improve the platform for privacy preferences (P3P). Position paper for
W3C Workshop on the Future of P3P. Available at http://www.w3.org/2002/p3p-
ws/pp/ibm-zuerich.pdf.

25. D. M. Schutzer. Citigroup P3P position paper. Position paper for W3C Work-
shop on the Future of P3P. Available at http://www.w3.org/2002/p3p-ws/pp/ibm-
zuerich.pdf.

26. M. Stonebraker and E. Wong. Access control in a relational database manage-
ment system by query modification. In Proceedings of the 1974 Annual Conference
(ACM/CSC-ER), pages 180–186. ACM Press, 1974.

27. L. Sweeney. Achieving k-anonymity privacy protection using generalization and
suppression. In International Journal on Uncertainty, Fuzziness and Knowledge-
based Systems, 2002.

28. L. Sweeney. K-anonymity: A model for protecting privacy. In International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems, 2002.

29. W3C. Platform for privacy preferences (P3P) project. http://www.w3.org/P3P/.
30. R. Wenning. Minutes of the P3P 2.0 workshop, July 2003. Available at

http://www.w3.org/2003/p3p-ws/minutes.html.

Intrusion Detection: Introduction to Intrusion
Detection and Security Information Management

Hervé Debar and Jouni Viinikka

France Télécom Division R&D,
42 rue des Coutures,

F-14066 Caen Cedex 4
{herve.debar, jouni.viinikka}@francetelecom.com

Abstract. This paper covers intrusion detection and security informa-
tion management technologies. It presents a primer on intrusion detec-
tion, focusing on data sources and analysis techniques. Data sources pre-
sented therein are classified according to the capture mechanism and we
include an evaluation of the accuracy of these data sources. Analysis
techniques are classified into misuse detection, using the explicit body of
knowledge about security attacks to generate alerts, and anomaly detec-
tion, where the safe or normal operation of the monitored information
system is described and alerts generated for anything that does not be-
long to that model. It then describes security information management
and alert correlation technologies that are in use today. We particularly
describe statistical modeling of alert flows and explicit correlation be-
tween alert information and vulnerability assessment information.

1 Introduction

Information systems security has been a research area for a long time. Initial
viruses and worms propagated slowly through the exchange of magnetic con-
tainers. With the development of TCP/IP, security problems have become more
frequent and taken very different forms, and have lead to the development of
new security techniques. Very early in the development of the Internet, vulnera-
bilities affecting operating systems have allowed attackers to move from system
to system. Detecting attackers has been a necessity for military environments.
Insufficient access control measures have led to the development of intrusion-
detection systems (IDS).

These IDS have been developed to detect abnormal behaviour of information
systems and networks, indicating a breach of the security policy. Two families
of techniques have been developed, misuse-detection and anomaly-detection, to
analyze a data stream representing the activity of the monitored information
system. Misuse-based analysis detects known violations of the security policy,
explicitly specified by the security officer. Anomaly-based analysis detects devi-
ations from the normal behaviour of the monitored information system.

The objective of intrusion-detection systems today is to inform operators on
the security health of information system. This mostly improves accountability

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 207–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

208 H. Debar and J. Viinikka

but does not protect the information system from attacks. The development
of dependable analysis techniques, particularly reduction of false alarms and
identification of attack context, should in the future enable the migration to
efficient intrusion protection systems, merging access control at the network
layer with access control at the application layer. Distributing IDS components
onto single workstations should create an efficient multi-layered approach to
information security in the near future.

Beyond intrusion detection, security information management (SIM) plat-
forms have emerged to manage alerts created by intrusion detection / prevention
systems and other security tools, and provide a global view of the security state
of the information system. These platforms are a must-have for large organiza-
tion concerned with the security of their information systems, and are offering
facilities for alert correlation, display and threat management.

In this paper, we will first cover intrusion detection by examining sensors,
data sources and analysis techniques. We will then present security information
management and alert correlation techniques.

2 Intrusion Detection Sensors

Figure 1 presents a schematic model of an intrusion detection / intrusion pre-
vention system (IDS/IPS) according to the Intrusion Detection Working Group1

(IDWG) of the Internet Engineering Task Force (IETF). This model contains all
the important components of an intrusion detection system. The square boxes
represent software or hardware components, while the ellipses represent human
roles.

MANAGER

RESPONSE

SECURITY
ADMINISTRATOR

SENSOR

OPERATOR

Events

Activity

AlertsSecurity policy

INTRUSION DETECTION SYSTEM

INTRUSION PREVENTION SYSTEM

ANALYZER

DATA
SOURCE

Fig. 1. Schematic model of an intrusion detection / intrusion prevention system ac-
cording to the Intrusion Detection Working Group

An intrusion detection system observes the activity of the monitored infor-
mation system through a data source. These data sources are captured and
synthesized as events by the SENSOR component of the intrusion detection sys-
tem. While nothing prevents an intrusion detection system to incorporate several
1 http://www.ietf.org/html.charters/idwg-charter.html

Introduction to Intrusion Detection and Security Information Management 209

sensors simultaneously and feed heterogeneous events to the ANALYZER com-
ponent, current commercial intrusion detection systems acquire and analyze a
single data source. Data sources are detailed in section 3.

Events are processed by an ANALYZER. This analyzer decides whether the
event is malicious and should trigger the generation of an alert, or whether the
event participates in the normal activity of the monitored information system.
His decision depends both on the analysis technique and algorithms (see section
4) and on the configuration decided by the security administrator. The security
administrator decides what conditions trigger alerts, what information is sent to
the manager and what the appropriate response is. When alerts are triggered, the
analyzer sends them to the manager. Alerts are described as Intrusion Detection
Message Format[1] XML messages, transported over the IDXP[2] protocol.

When the MANAGER receives an alert, it displays its content to an operator.
It can also decide to respond to the alert by applying countermeasures on one
or several response components.

When an operator receives an alert, he is responsible for processing the alert
according to the guidelines set forth by the security policy.

The main difference between IDS and IPS lies in the response capability.
An IPS is often positioned inline, separating two networks like an application-
level firewall. Now, for each packet or session that triggers an alert, the IPS can
decide that the session needs to be terminated, the packet dropped or rejected,
or possibly other measures. The response capability existed in IDS systems, in
the sense that they were able to reconfigure other components such as firewalls
to achieve a block, or to emit TCP RST packets to cut a connection. However,
these responses depended on external devices or on luck, and they were often
inefficient, mostly because the response was too slow and the attack had already
propagated.

3 Data Sources

The first differentiator of intrusion detection technologies is the data source.
Each data source requires specific processing to obtain event information, and
allows the detection of different attacks.

3.1 Network Data Sources

IDS using network data are called Network Intrusion Detection Systems (NIDS).
These NIDS observe the network, either on a hub, the SPAN port of a switch,
or taps, collect the packets, and reconstruct an image of the activity of the
users. NIDS are probably the most deployed systems today, and IPS are mostly
NIDS. IPS have also brought in this area dedicated hardware devices capable
of analyzing several gigabits of traffic inline, what previous software-based IDS
were not able to do. There has been a large body of research related to optimizing
NIDS such as the open source snort[3], but the current trend is clearly towards
hardware-based or hardware-assisted solutions.

210 H. Debar and J. Viinikka

The network is a very attractive information source because it introduces lit-
tle disturbance on the monitored information system[4]. SPAN ports on switches
may imply bandwidth limitations on the observed traffic, but the stability prob-
lems that plagued early SPAN implementations are mostly gone. Another good
solution is the tap, with a fail-open mode that guarantees service continuity even
in the case of hardware failure. Finally, network operators are generally willing
to look at the kind of traffic that crosses their wire, and the natural aggrega-
tion of traffic allows the monitoring of large IT infrastructures with a few well
positioned boxes.

However, obtaining meaningful events from network observation is not very
easy. One needs to decompose the traffic according to the various protocol layers.
Also, experience has shown [5] that NIDS may suffer evasion, i.e. the attacker
may be able to inject traffic in the network that will either render the attack
invisible to the intrusion detection system or make it generate false alarms.
Examples of these issues are:

Address masking. Network Address Translation (NAT) does not provide the
IP address of the endpoint to the NIDS.

Encryption. Encrypted protocols defeat NIDS because most of their detection
process requires access to headers (sometimes encrypted) and to payload
(always encrypted). Popular protocols such as SSL and SSH render NIDS
unusable.

Fragmentation. IP fragmentation is a rare phenomenon normally. It can be
used to fragment the payload in such a way that the NIDS will not see the
attack in one piece.

Reliability of the source address. Many attacks can be realized while using
fictitious IP addresses (IP spoofing[5]) when no answer from the target is
necessary. An attacker can also use stepping stones [6] to mask the origin of
the attack. Finally, it can also use reflectors [7] to trick unwilling agents into
carrying out the attack on its behalf.

Transience of address information. In many organizations, and ISPs in
particular, IP addresses are handed out dynamically via DHCP. Identifi-
cation of a particular customer through the IP address requires log analysis
and can therefore be costly, or even impossible if logs have been rolled over.

The interested reader will find more detailed information in [5,8]. While these
issues are not new and are fairly well known at the network layer, evasion tech-
niques keep appearing at the application layer. Application protocols encode the
information in the packet payload. Hence, exploitation of the payload requires
that the IDS recognizes the possible encodings. The attacker can hide its actions
through the use of specific encodings that are not understood by the NIDS.

For example, the http protocol allows the replacement of any character by
its ascii hexadecimal code, prefixed with the % character [9]. This replacement
is mandatory for special characters, obviously % but also space, and others.
Ptacek and Newsham have shown that NIDS in 1998 did not understand this
encoding and could not detect encoded attacks [5]. This particular problem has
been solved for a long time, but others regularly appear.

Introduction to Intrusion Detection and Security Information Management 211

Also, NIDS can include more intelligence than simple decoding, and incorpo-
rate recognition of protocol states, referred to as protocol awareness. A protocol
aware NIDS recomposes the target protocol finite state machine and applies the
detection algorithm to only the appropriate state. A NIDS that does not un-
derstand protocol states (often referred to as network grep) applies its detection
algorithm to the payload of the packet regardless of the protocol state or his-
tory, and is much more likely to create false positives. Of course, keeping protocol
states is costly, and these NIDS include safeguard mechanisms to avoid memory
saturation, falling back to stateless detection if needed. ’

3.2 System Data Sources

The system audit trails cover all the data sources that are made available by
the operating system. The intrusion detection systems using host data sources
are named Host Intrusion Detection Systems (HIDS). Syslog on UNIX systems
and the NT event log under Microsoft windows operating systems provide to
applications a service for identifying, time-stamping and storing information.
Using this kind of facility is very easy for application developers, and they are
used by several HIDS as a tool to collect, correlate and present system-related
information.

Several operating systems also offer a so-called “C2 audit”, to conform to
the US government requirement for computer purchases. Such an audit aims
at providing a trace of all privileged operations realized on a given computer,
usually through the recording of system calls. It offers a strong user identification
capability and an extremely fine-grained action description. Unfortunately, this
C2 audit system is rarely properly documented and has a strong performance
impact, so it has been abandoned by most HIDS.

Recent HIDS have developed specific interception software, similar to anti-
virus technology. This interception software allows the HIDS to recover only the
information that can be analyzed, at lesser cost. Of course, these interception
mechanisms are operating-system dependant, which results in a smaller number
of offerings in the product space.

The main advantage of host audit data is the precision of the information. On
this basis, an HIDS is able to reduce the number of false positives, while providing
detailed information about the circumstances of the attack. In particular, actors
(both target and perpetrator) are correctly and precisely identified. As such,
the counter-measures can be appropriately tailored to the situation. Contextual
information, related to the success of the attacker’s activity, allows the operator
to evaluate the risk and determine the appropriate level of counter-measures.

The main drawback of system audit data is that the HIDS has to reside
on the same host, or a large volume of data has to be transported for remote
analysis. Performance is such degraded through consumption of either bandwidth
or processing power for security. Moreover, the behaviour of HIDS under stress
heavily relies on the capabilities of the underlying operating system, and there
is a real risk that denial-of-service attacks will either incapacitate the HIDS (if
the original application has priority) or be facilitated (if the HIDS has priority).

212 H. Debar and J. Viinikka

Moreover, an application needs to be installed on the host. This has a strong
impact on server deployment when servers have to be qualified before being
placed in a production environment. Also, the signature updates may be prob-
lematic if software updates are also included in the signature updates.

3.3 Application Data Sources

Application logs cover all the traces maintained by the applications. The in-
trusion detection systems using application logs are considered as HIDS, even
though an application log could provide information about a distributed envi-
ronment, spanning multiple machines.

A typical example of application logs is the HTTP server log files storing
requests presented to the server (usually in the access.log file) and error mes-
sages (usually stored in the error.log file. Each line stores the request presented
to the server, and statistics about the response. The format of these log lines is
reasonably easy to parse, making the data source an attractive proposition for
developers.

Retrieval of the information generally consists of watching the file and parsing
additional information into the data structures of the HIDS. Since these logs may
ignore local information, constant information such as host names may be added
on the fly to obtain an autonomous message.

Application logs are often more precise and dense than both system audits
and network traffic, because they contain information that is atomic from the
point of view of the application, while multiple packets or several thousand
system calls may be necessary to realize the function.

Also, they provide more accurate information with the inclusion of return
codes and error messages. These return and error messages are extremely impor-
tant for the intrusion detection system, because they provide effective diagnostic
of the issue and its impact on the monitored information system.

As already mentioned with network traffic, applications may use specific
encodings. Depending on the log, decoding may also be required to normalize
the information.

The biggest issue with application logs is that they are often targeting de-
bugging and abnormal termination cases. As such, these files may not contain
enough data for the HIDS. In certain cases, it is necessary to collect the entire
transaction log, because even error-free transactions may contain attack-related
activity that needs to be analyzed.

4 Analysis Techniques

Misuse detection takes advantage of the body of knowledge related to security
vulnerabilities and penetration of information systems and networks. The IDS
contains information about these vulnerabilities and looks for attempts to take
advantage of them. When such an attempt is detected, an alert is sent to the
management console. In other words, any action that is not explicitly identified
as an inappropriate usage of the information system is considered acceptable.

Introduction to Intrusion Detection and Security Information Management 213

Note that misuse detection does cover more than known attacks and vul-
nerabilities. If a security policy explicitly bans certain activities, these activities
can be linked to alerts in an IDS. The best example would be banning IRC
activity from a network. Any connection using the IRC port would trigger an
alert. SNMP is also banned from certain environments and its inappropriate us-
age by network management tools can easily be detected. Also, recurrent attack
mechanisms have been analyzed to abstract generic attack methods, covering
not a single vulnerability but a class of them. These abstract models allow de-
tection of broad attack patterns covering even some unknown vulnerabilities, or
at least ensure that the detection mechanism does not rely on specificities of
some attack tools.

Signature Description. In a misuse-based approach, one needs to define the
trigger that, when found in the event stream, will generate an alert. This trigger
is usually referred to as an attack signature, although the terms scenario and
rule have been used to describe these triggers as well. The term signature will
be used throughout this paper.

Initially, trigger description in IDES [10] took the form of facts entered into
an expert system. User actions abstracted from the event stream were also rep-
resented as facts, while the detection process was described as production rules.
This procedure was extremely costly, because of the processing needed to ab-
stract several low level audit events into a single user action. Snapp and Smaha
found that instead of abstracting system or network events to the expert system,
it was easier to express vulnerabilities as sequences of events found in the event
stream, named signatures [11].

A signature is the expression of some sequence of events characterizing the
exploitation of a vulnerability. The detection process is thus simplified, and the
cost is transferred to the definition and test of the signature for all the possible
event stream formats that the IDS intends to support. This is sometimes a costly
trade-off, if the event stream does not contain all the data that is being looked
for, or if multiple encodings have to be taken into account.

In practice, a signature is expressed by a sequence of bytes being matched
in the event stream [12], or in more complex cases by regular expressions [13].
These expressions are easier to write than the initial sequences of bytes proposed
by [11], but it is still somewhat difficult to implement. Difficult because even for
the same event stream format and the same exploited vulnerability, attacks can
show under very different forms: attackers can mask their attempt under specific
encodings or change sequencing by introducing irrelevant events in the data
stream. Applying signatures to the data stream requires the sensor to remove
protocol-specific encodings or operating-system related dependencies. This phase
can be complex and costly performance-wise.

Misuse Detection and False Positives. The misuse detection approach
should be able to generate very few false positives, if any. This however pos-
tulates that the attack is effectively detectable from the data stream, and that
at least one signature properly characterizes the exploit.

214 H. Debar and J. Viinikka

False positives in misuse detection mainly come from an erroneous character-
ization of the vulnerability. This erroneous characterization often occurs when
the IDS attempts to detect the execution of an application without differen-
tiating between normal usage and the actual malicious attempt. For example,
detection of CGI attacks is often based on the detection of the script name in
the HTTP request, and identically-named scripts induce false positives.

Moreover, it is often difficult to differentiate the interactions between an
attacker and a vulnerable information system from the interactions between
normal users and the same information system. It is thus important to analyze
alerts with the knowledge of the configuration of the monitored system, to ensure
proper evaluation of the severity of these alerts.

Misuse Detection and False Negatives. Clearly, false negatives in misuse
detection occur on new attacks, when there is no signature associated to the
vulnerability. Collecting vulnerability information of sufficient quality to write
adequate signatures is a time-consuming task, and validation of this information
is often limited, due to the sheer number of attack combinations possible. Most
often than not, IDS vendors obtain sample event stream information containing
the attack and ensure that their tools can detect the occurrence of the sample
data in the event stream. This is a long and tedious task.

Let’s take a few numbers to illustrate this fact. An IDS today contains be-
tween 500 and 2000 signatures. Public vulnerability databases contain anywhere
between 6000 and 20000 different vulnerability reports. Hence, there is roughly
a one to 10 factor between what an intrusion-detection system knows about vul-
nerabilities, and what is publicly available. This ratio seems to be fairly stable;
one counts between 100 and 150 new vulnerability announcements per month,
associated with 10 to 20 new signatures announced by IDS vendors over the
same period.

This difference is the product of two factors:

– Not all vulnerabilities are of interest to IDS users, because they affect only
rare, specific environments or tools, or they do not provide the attacker with
access to the vulnerable system, only limited denial of service. In addition,
some of these vulnerabilities are old and affect very old software revisions
that are not available anymore.

– A vulnerability may only leave some tracks in specific event streams. If the
IDS does not recover this particular event stream, the vulnerability exploit
cannot be detected.

Finally, there is the possibility of generic signatures that trigger on multiple
vulnerabilities. This happens because attack code is reused from exploit script to
exploit script, or because variations resulting in multiple vulnerabilities affect the
same operating system or application and result in a single signature. Vendors are
focusing on these generic signatures, hoping to cover not only vulnerabilities but
also attack principles. Many products include generic buffer overflow detection,
hoping to catch new exploits if they fit the attack technique.

Introduction to Intrusion Detection and Security Information Management 215

Note that misuse-detection techniques are usually less-well suited for the
detection of internal malicious activity. Registered users have access to the in-
formation system, and are likely to possess enough privileges on this information
system to carry out most malicious activities without resorting to the exploita-
tion of known vulnerabilities.

Misuse Detection and Counter-Measures. Misuse detection allows a con-
textual analysis of the attack and its effects on the monitored information system.
This facilitates the understanding of the problem and the decision-making pro-
cess for corrective or preventive action. Current research in alert correlation in-
cludes correlation between vulnerability assessment tools and intrusion-detection
tools. Automated lookup of alert references in vulnerability reports will provide
the operator with a mean to rank alert severity not only with respect to the
attacker’s potential gain, but also with the target’s potential risk.

When target machine and target service are identified, it is reasonably easy
to detect if the attack has some probability of succeeding, and if its effects are
incompatible with the site security policy. The operator is able to evaluate the
trade-off between the reliability and business objectives of the service, and the
security policy objectives. This is fundamental in counter-measures: it could be
legitimate to let the information system provide services even if compromised.

Evolution of Misuse Detection. Misuse detection prototypes have been ini-
tially implemented using first-order logic and expert systems. Current commer-
cial products follow the so-called “signature-based” approach. There are also
Petri-nets-related implementations and state transition analysis implementa-
tions.

Signature-based intrusion-detection systems usually rely on string or regu-
lar expression matching to detect specific pieces of information occurring in the
data source. The matching mechanism is constrained further by specifying addi-
tional characteristics of the event stream, such as specific communication ports
or protocol states. Each of these characteristics describes a particular facet of
the vulnerability.

The expression of the signature depends of the level of detail available in the
data source during exploitation of the vulnerability. For example, if a web server
stops functioning during an attack before log entries can be written to disk, an
intrusion-detection system based on log file analysis will not be able to detect
the attack. Product vendors today tend to provide extremely wide signatures
that will trigger on anything from normal usage to simple scanning, encouraging
the notion that intrusion-detection systems cry wolf without cause.

4.1 Anomaly Detection

The general objective of anomaly detection is to define the correct behaviour of
the monitored information system. An alert is generated when an event cannot
be explained by the model of correct behaviour. This method assumes that
an intrusion will induce a deviation from the normal usage of the information
system.

216 H. Debar and J. Viinikka

Description of the Correct Behaviour Model. The model of correct be-
haviour can be constructed either from past samples of observed behaviour, of
from explicit policy declarations. When an event occurs, the intrusion detection
system compares the current activity with the model. An alert corresponds to
the deviation of one or several measures between the current activity and the
model.

As such, anything that does not correspond to an explicitly-defined accept-
able activity is considered anomalous. Of course, the efficiency of such a system
strongly depends on the capability of the model to represent the activity of the
information system. For example, only using measures of CPU activity to model
the normal behaviour of an information system would not allow straightforward
detection of denial-of-service attacks filling disks or memory. It also assumes that
the measures discriminate normal activity and malicious activity, as postulated
by Denning [14,15]. Unfortunately, this postulate has not been validated theo-
retically. Experimental systems show that it is possible to detect some malicious
activity by anomaly-based techniques, but do not qualify the coverage of this
detection process.

The first models were based on learning techniques. A set of variables is
defined that represents the interesting factors of the information system. Ac-
ceptable ranges for these variables are defined through observation of past data.
A range here can be an association of average and standard deviation, or more
complex statistical measures [16]. The model is trained during an observation
period, and should converge towards stable values at the end of the observation
period.

This area is still a research subject. New models and detection methods are
regularly proposed, that improve constantly on existing technologies.

Advantages of Anomaly Detection Anomaly detection has, at least in prin-
ciple, several advantages over misuse detection. First of all, it should be able
to detect usage of unknown vulnerabilities. This is particularly important, as it
does not rely on explicit security knowledge.

It also does not rely (or only in a limited way) on operating system specific
knowledge, or application-specific knowledge. This is a great advantage when
monitoring heterogeneous systems. After measures have been collected for the
model, the intrusion detection system performs the modelling and detection
process autonomously.

Finally, it can also detect abuse of privileges and insider attacks. Insiders
usually have access to the monitored information system and do not need to
use well known vulnerabilities to compromise the system and get access to the
information they need. Misuse detection seldom detects insider attacks, whereas
anomaly detection could show deviations from normal usage patterns.

Anomaly Detection and False Positives. Anomaly detection techniques
often have a high false positive rate. This phenomenon arises from the fact
that deviations from the model are often observed for any incident occurring
on the monitored information system. Deviations also occur with configuration

Introduction to Intrusion Detection and Security Information Management 217

changes. Hence, the workload for processing alerts is large, and the operators
have a frequent feeling that alerts are irrelevant to security.

This feeling is aggravated by the lack of explanation coming with the alerts.
The root cause of the phenomenon is unknown, and the information provided
seldom helps in resolving the issue.

Anomaly Detection and False Negatives. False negatives in anomaly de-
tection have two main causes, corruption of the behaviour model and absence of
measurement.

Corruption of the behaviour model occurs when the model learns an intrusive
behaviour and incorporates it in its coverage. The intrusion detection system be-
comes incapable of detecting occurrences of the attack that has been accepted
as part of the normal behaviour of the information system. Learning intrusive
behaviour as normal occurs in particular in intrusion-detection systems where
the model is constructed using past samples. Such systems need to be retrained
periodically, and unfiltered training data could include malicious behaviour. Cur-
rent research is therefore going away from learning technologies, and developing
specification-based techniques to construct the model of normal behaviour.

Also, attacks sometimes do not impact the measures used by the model of
normal behaviour. Let’s take the very simple example of an intrusion-detection
system that would monitor CPU usage and not disk usage. An attack that
would fill the disk would not be detected by such a system. Of course, intrusion-
detection systems make use of much more complex measures, including dynamic
ones. As such, the exact coverage of the monitoring is difficult to establish.

Anomaly Detection and Counter-Measures. Alerts coming from an
anomaly-based intrusion-detection system are often difficult to analyze. Counter-
measures are difficult to deploy because neither target nor attack source are
clearly identified, as well as the attack principle. Without an explicitly identified
attack principle, counter-measures become extremely hazardous.

A new approach based on honeypot-like technology has recently been de-
veloped to improve identification of attack sources. When suspicious requests
are identified, the response provided by the intrusion-detection system con-
tains uniquely-identifiable information. When these specific tags come back, the
intrusion-detection system can clearly identify the anomaly and its source.

5 Security Information Management

Once alerts are generated, they need to be handled by operators. Due to the
volume and diversity of alert sources, security information management (SIM)
platforms have emerged in recent years as the solution for concentrating hetero-
geneous logs and providing the security officer with a homogenous view of the
security state of its information system.

The requirement for a central event and alert processing platform comes from
the fact that many devices only provide a partial view of the security state of the

218 H. Debar and J. Viinikka

information system, coherent with their role. Offering the desired global view can
only be done by concentrating and consolidating as many information sources
as possible. Note, however, that this does not mean that there will be only one
SIM platform per organization, as SIM platforms should be able to communicate
with one another.

5.1 SIM Functions

A SIM platform should cover the following four functions today.

Event Acquisition. Event acquisition deals with gathering and transporting
events to a central point for further processing. This function covers the relia-
bility of event transport, allowing both push and pull collection models, over a
variety of protocols, to ensure that firewalls and other access control devices are
properly traversed. This function has to deal with fairly heavy data flows, and it
should be able to send hundreds to thousands of events per second to the central
platform.

Another task carried out during event acquisition is related to filtering, ag-
gregation and normalization. Given the enormous volume of event information
that needs to be inserted in the database, the acquisition process must be able
to select which events get inserted into the database. Also, for regular event
streams, it is sometimes preferable to aggregate several identical events as one,
adding the count of such aggregated events to the one tat is finally inserted in
the database.

Finally, the normalization part of the acquisition process deals with ensuring
a uniform representation of events in the database. There are differences in
the naming conventions adopted by security tools such as intrusion detection
systems or anti-virus systems. Two products tend to name the same attack with
different signatures. The normalization process aims at ensuring that two events
representing the same attack get the same name. Also, this process includes the
capability to add reference information to the signatures, to ensure that internal
references and processes are properly taken into account.

Contextual Information Management. Alert information usually includes
some identification of the victim or source of the attack, identifying users and
machines affected. This identification is often partial, including only network
addresses or host names. However, most organisations maintain inventory in-
formation or vulnerability information assessment. This information should be
attached to the host or user independentely of the host or user representation
provided in the alert.

Therefore, the role of the contextual information management function is to
ensure that all the contextual data is properly attached to hosts and users, and
managing changes in this data so that it is kept up to date and accurate. This
can be a tricky task in dynamic environments, for example with DHCP [17] or
when remote users connect via VPN connections.

Introduction to Intrusion Detection and Security Information Management 219

Alert Correlation. Alert correlation has as main objective to decide which
alerts should be presented first to the security officer. It is in essence a triage
and priority management system, which must ensure that the most critical alerts
will be seen first. This triage system is supported by the association of a priority
or security level with each event. Priority levels and schemes vary, but this is the
role of the acquisition process to ensure that they are normalized to the IDMEF
[1] set of values. To ensure that this triage process is successful, correlation must:

– fuse alerts that represent identical threat information together so that this
threat is handled only once. This process is made difficult by the fact that
clocks are often not exactly synchronized, and that some hypotheses must
be made as to whether the fused events have the same root cause, e.g. have
been raised by the observation of the same packet.

– relate alerts that participate in the same threat. Real attacks translate in
multiple attacker actions, translating into multiple observations and multiple
alerts being generated by the various intrusion detection and monitoring
systems.

– aggregate high-volume alerts that cannot be interpreted individually, to en-
sure that patterns of aggregate alerts conform to the usual behaviour of the
information system.

– incorporate contextual information into the evaluation of the severity of the
event, to ensure that it has the proper awareness level. The most common
representation of this process is to compare alert information and vulnerabil-
ity assessment information, to inform the security officer of attacks associated
with a security risk.

Alert correlation is an important research topic, particularly related to the
processing of large volumes of alerts and to the intelligence of the correlation
process.

Reporting and Exchanging. Finally, one needs to realize that a SIM platform
does not live in isolation, but must offer several interfaces for accessing and
pushing information. Typically, the following interfaces need to be provided :

– Operator real-time interface. This interface provides real-time alert informa-
tion to the operator, typically through a scrolling window. This is the most
common interface available in SIM consoles today, but not the most useful
one, as operators need to be constantly on watch.

– Forensics analysis console. This interface provides navigation capabilities
over the database of alerts, so that the security analyst can understand the
incident, gather all related alerts, and propose solutions for better detection
and resolution of the threat in later instances.

– Real-time incident reporting. In many cases, the threat requires counter-
measures that have an impact on the normal function and the configuration
of the monitored information system. However, if the configuration of the
information system is not handled by the SIM console, it needs to send threat
information to the system management console for proper handling.

220 H. Debar and J. Viinikka

The reporting and exchanging modules can also be used to create the peer
relationships between SIM consoles or hierarchical relationships according to the
needs of the organization.

5.2 Alert Representation

To support these functions, we have organized our data model as a set of con-
centric circles. Our data model is inspired from the Snort relational database
schema, the IDMEF message format [1], and the M2D2 model [18]. We partic-
ipated in deploying these tools and developing these models, so they naturally
were used as a starting point for our development. However, we believe that
event and contextual information are not equivalent and this is not obvious in
the three models cited before. Hence, we choose to provide a different represen-
tation shown in figure 2.

STATISTICS

EVENT

VULNERABILITY

ASSESSM
ENT

SENSOR
SIGNATURE

HOST USER

IN
VENTORY

Fig. 2. Representation of alerts in the database

Event Information. The inner circle represents core event information, sensor,
signature and timestamp. Note that the two first bits (sensor and signature) are
in fact quite complex, comprising several tables and attributes in our database
schema. These more complex bits are stored in the second circle, and each event
links to the second circle for sensor and signature reference. This mechanism
naturally takes into account differences in volume, as there are only a few hun-
dred different sensors and a few thousand signatures for several million events.
It also naturally renders the fact that sensor and signature information evolves
on a much longer timeframe than event information.

Contextual Information. The second circle represents contextual informa-
tion. This core event information links to host and user information in the second

Introduction to Intrusion Detection and Security Information Management 221

circle. Signature information links to sensor configuration, to indicate whether a
sensor is able to detect an attack or not, and under which condition. Contextual
information is mostly generated by the knowledge management processes (see
5.3) and by statically entered configuration information. While this contextual
information evolves slowly over time, there is a need to track changes, as they
have an impact on the signification of the events. Signatures are tracked using
revision numbers that reflect improvements in their design. As such, events at-
tached to the same signature message but with a higher revision number are
considered more reliable than earlier events. The same process is used to track
the evolution of sensor properties, each property change being tagged with the
appropriate timestamp.

Transient Information. The third circle represents transient information that
is generated by correlation processes (see Section 6). For example, statistical
processes need to store numerical values associated with the statistical model; we
use this area for the EWMA control values that monitor signature activity [19].
This circle also links to the first two. For example, the signature trending tool
associates signature information in the second circle and event flows stored in
the first circle.

The arrows of Figure 2 represent examples of links between contextual infor-
mation and event information. A network event links to host information with
source and destination of the network connection. A system event links to local
host information indicating on which host the event occurred.

5.3 Contextual Information

Contextual information is related to the description of hosts and users. The
objective of the contextual information knowledge management module is to
ensure that the information linking alerts on one hand and hosts and users on
the other hand are kept synchronized.

Structure of Host Representation. Logs represent host by three different
keys, a host name, a host IP address and a host MAC address. The name is either
fully qualified or a simple machine name, depending on the information source.
This type of information is often provided by host-based information sources,
or by devices configured to do on-the-fly reverse DNS mapping. An IP address
is often provided by network-based IDS sensors and other network equipments.
Finally, MAC addresses are provided by low-level networking devices such as
wireless access points and switches, when specific network or wireless attacks
are detected. All three keys are frequently found in event logs.

Different information sources will describe the host using different keys. To
ensure that the same device is recognized by different sources, these three keys
are associated in the same structure. Each key is associated with a Boolean value
indicating whether this key was used by an information source or was derived
from a data enrichment process. Upon insertion of an event, the process will
first retrieve the appropriate host key with the Boolean set to TRUE, checking

222 H. Debar and J. Viinikka

whether the same device has already been accessed. It will then re-query the
same host key with the Boolean set to FALSE, checking whether enrichment
of the host has taken place for an already existing host. If this is the case, it
means that the host was previously inserted using another key coming from
another source. For example, an IP address could be used for the first insertion,
then a reverse DNS resolution could provide the host name that could then be
encountered in host events. If such a host entry is found, the Boolean associated
with the key will be set to TRUE to facilitate future insertions, and the host
entry found will be used to insert the event. If both searches fail, it will create
a new host entry.

The knowledge management process attempt among other things to complete
the key information associated with a host in the database. If a host is identified
by an IP address, then a reverse DNS lookup is attempted to obtain the host
name. If a host is identified by a host name, a DNS lookup is also attempted.
Both operations are costly and would result in undue delays upon insertion of
a new host, hence the choice of off-loading the acquisition process and pushing
such task to a background process.

While defining the keys vas fairly straightforward, it happens that there are
a number of issues with the keys that we have designed.

Host Information Collection Point. The first remark is that we collect host
information in a different location that event information. Most if not all of our
sensors are passive devices, to limit the risk of attack against them. Therefore,
they do not have the capability of adding host information to events. As a result,
the gathered host information is from the vantage point of the application server
and not the sensor. The advantage is that all events are tagged from the same
viewpoint, thus normalizing the events. The disadvantage is that the application
server needs to be able to access all host information, and that static local
information (e.g. host names stored in /etc/hosts) will not be accessible. Even
though one could fear that the visibility from the application server and from
the sensor is different, we have not observed wrong host information as a result
of this process.

Network Address Translation. Network address translation [20] is frequently
used by private companies and internet service providers to mask the internal
structure of their environment and to lessen address space requirements. As such,
different machines may be seen as a single one by our application. When NAT
is in place, the name resolved through DNS is the name of the NAT device and
does not reflect the exact name of the target or source of the event. As a result,
our application in this configuration identifies a domain but not the exact target
or source.

This problem rarely occurs for hosts under our control. This means that we
usually can still precisely identify hosts that are within our realm.

Dynamic Host Configuration. The dynamic host configuration protocol
(DHCP [17]) allows the same machine to have multiple IP addresses over time.

Introduction to Intrusion Detection and Security Information Management 223

Moreover, host name information is sometimes generic as well, reusing for exam-
ple the two last bytes of the IP address. When this is the case, our application
is not able to uniquely identify a machine.

DHCP is a frequent occurrence in the environments monitored by our ap-
plication. Our tool attempts to determine whether the host is within a DHCP
environment. When this is recognized, the host is identified by its host name,
which is stored in our DNS servers during DHCP handshake and is uniquely
generated in the corporation. When such a host is identified by an IP address,
the knowledge management tool reconfigures the event-host associations a pos-
teriori, using DNS queries. This is a domain-specific solution and may not be
applicable to other environments. In particular, ISPs tend to use generic names,
as mentioned earlier. Another solution would be to use the MAC address, but
this key is very rarely available.

Mobility. Mobility is a frequent occurrence in our corporate environment. Lap-
tops and the use of DHCP facilitate remote connections, as well as the gener-
alization of VPN connectivity. However, this poses a problem when such a host
is the subject of a security problem, particularly a viral or worm infection. We
need to distinguish the case of laptops connected internally into a site that is not
their home site, and laptops using VPN connections to access the information
system.

In the case of locally-connected laptops, it is often the case that the resolution
between host name and host IP address is wrong. Let’s take the case of a virus
infection. This virus infection is logged into the NT Event Log of the laptop,
which in turns connects to a central server to deliver the infection alert. This
infection alert is based on the host name, which is a unique key in our corporate
network. As such, the event will be correctly assigned to the host. Unfortunately,
geographic information is based on the IP address. If an IP address already
exists for the host name, this information is not systematically refreshed as
this is a costly process. Therefore, getting the current geographic coordinates of
the infected laptop requires an additional DNS lookup to retrieve the current
IP address and its associated geographical location. This process is quite time
consuming and correct information may not be immediately available; if this
process takes too much time the connection is terminated.

In the case of VPN-connected laptops (which is also used for wireless con-
nections), the IP address of the laptop resolves to the IP address of the VPN
concentrator. Therefore, it is impossible to retrieve the physical location of the
infected machine and the connection is terminated.

5.4 Vulnerability Assessment

Collecting vulnerability assessment information is generally done through the
usage of a vulnerability scanner, either remotely by querying the audited host,
or locally by installing an inventory module. Local auditing us usually more
accurate, but requires software installation on the tested host, which is not al-
ways feasible. Therefore, vulnerability assessment information is often connected
through the network.

224 H. Debar and J. Viinikka

While vulnerability assessment reports are extremely useful for the security
officer, they suffer from the following issues:

Server side only Remote vulnerability assessment report query active ser-
vices. Therefore, they do not provide information about client side vulnera-
bilities or firewalled ports. Only local software installation can provide this
information.

Audit cost and timeliness More than actual bandwidth consumption these
days, the audit cost is the time it takes to test and evaluate large numbers
of hosts. Therefore, audits may only be carried out at spaced intervals.

Audit risk and accuracy Certain tests can have undesirable side effects on
the tested host, such as leaving it vulnerable to certain attacks, or bringing
it down. The more accurate an audit report is, the riskier it generally is as
well.

To take into account some of these issues, passive network observation has
been introduced to collect information related to vulnerabilities on both clients
and servers. By collecting product names and versions from the network, either
with a dedicated tool such as ettercap or with a network intrusion detection sys-
tem equipped with a specific rule set, the passive network observation sensor can
obtain a fairly complete inventory of the information system. Using external vul-
nerability databases such as OSVDB, it is then possible to deduce vulnerability
assessment information for the information system.

6 Alert Correlation

The need to automate alert processing and to reduce the amount of alerts dis-
played to the operator by the system is a widely recognized issue and the research
community has proposed as one solution to correlate related alerts to facilitate
the diagnostics by the operator [21].

Alert correlation has three principal objectives with regard to information
displayed to the operator:

Volume reduction: Group or suppress alerts, according to common proper-
ties. E.g. several individual alerts from a scan should be grouped as one
meta alert.

Content improvement: Add to the information carried by individual alert.
E.g. the use of topology and vulnerability information of monitored system
to verify or evaluate the severity of the attack.

Activity tracking: Follow multi-alert intrusions evolving as time passes. E.g.
if attacker first scans a host, then gains remote-to-local access, and finally
obtains root access, individual alerts from these steps should be grouped
together.

We perform volume reduction eliminating redundant information by aggre-
gating alerts that are not strictly symptoms of compromise and appear in high

Introduction to Intrusion Detection and Security Information Management 225

volumes. Only changes in the behaviour of the aggregate flow are reported to the
user. Correlation techniques capable of detecting unknown, novel relationships
in data are said to be implicit and techniques involving some sort of definition
of searched relationships are called explicit. As the aggregation criteria are man-
ually selected, this is an explicit correlation method. Overall, we aim to save
operator resources by freeing the majority of time units that manually process-
ing the background noise would require and thus to enable him to focus on
more relevant alerts. Even though this manual processing is likely to be periodic
skimming through the accumulated noise, if there are several sources with om-
nipresent activity, the total time used can be significant. Next we discuss why
despite the large amounts of alerts background noise monitoring can be useful.

6.1 Statistical Correlation

According to our experience (see Sect. 6.1) a relatively large portion of alerts
generated by a sensor can be considered as background noise of the operational
system. However, the division to true and false positives is not always so black
and white. The origins of problem can be coarsely divided to three. 1) Regardless
of audit source, the audit data usually does not contain all required technical
information, such as the topology and the vulnerability status for the monitored
system for correct diagnosis. 2) The non-technical contextual factors, such as op-
erator’s task and the mission of the monitored system, have an effect on which
types of alerts are of high priority and relevant. 3) Depending on the context of
the event, it can be malicious or not, and part of this information can not be ac-
quired by automated tools or inferred from the isolated events. For the first case,
think of a Snort sensor that does not know if the attack destination is running
a vulnerable version of certain OS or server and consequently can not diagnose
whether it should issue an alert with very precise prerequisites for success. An
example of the second is a comparison of on-line business and military base. At
the former the operator is likely to assign high priority on the availability of the
company web server, and he might easily discard port scans as minor nuisance.
At the latter the operator may have only minor interest towards the availability
of the base web server hosting some PR material, but reconnaissance done by
scanning can be considered as activity warranting user notification. Instead of
high priority attacks, the third case involves action considered only as potentially
harmful activity, such as ICMP and SNMP messages that indicate information
gathering or network problems, malicious as well as innocuous as part of normal
operation of the network. Here the context of the event makes the difference,
one event alone is not interesting, but having a thousand or ten events instead of
the normal average of a hundred in a time interval can be an interesting change
and this difference can not be encoded into signature used by pattern matching
sensor.

This kind of activity is in the grey area, and the resulting alerts somewhere
between false and true positive. Typically the operator can not afford to monitor
it as such because of the sheer amount of events. The current work on corre-
lation is largely focusing on how to pick out the attacks having an impact on

226 H. Debar and J. Viinikka

monitored system and show all related events in one attack report to the oper-
ator. Depending on the approach, the rest of the alerts are assigned such a low
priority that they do not reach the alert console [22], or they can be filtered out
before entering the correlation process [23,24]. However, if the signature reacting
to grey area events is turned on, the operator has some interest towards them.
Therefore it is not always the best solution to only dismiss these less important
alerts albeit their large number. Monitoring aggregated flows can provide infor-
mation about the monitored system’s state not available in individual alerts,
and with a smaller load on operator. Our work focuses on providing this type of
contextual information to the user.

EWMA control charts were originally developed for statistical process control
(SPC) by Roberts [25], who used the term geometric moving averages instead
of EWMA, and since then the chart and especially the exponentially weighted
moving average have been used in various contexts, such as economic applications
and intrusion detection [26,27,28]. Our needs differ from those of Roberts’ quite
much, and also to a smaller degree from those of the related work in intrusion
detection. Below our variation of the technique is described, building largely
on [28], and the rationale for changes and choices is provided.

The monitored measure is the alert intensity of a flow x, the number of
alerts per time interval. One alert flow consists typically of alerts generated by
one signature, but also other flows, such as alerts generated by a whole class
of signatures, were used. Intensity x is used to form the EWMA statistic. This
statistic is called the trend at time i. It is quite impossible to define a nominal
average as the test baseline x0, since these flows evolve significantly with time.
Like Mahadik et al. [28], to accommodate the dynamic, non-stationary nature
of the flows, the test baseline is allowed to adapt to changes in alert flow.

Learning Data. The tool was developed for an IDS consisting of Snort sensors
logging alerts into a relational database. The sensors are deployed in a production
network, one closer to Internet and two others in more protected zones. This adds
to the difficulty of measuring and testing, since we do not know the true nature
of traffic that was monitored. On the other hand, we expect the real world data
to contain such background noise and operational issues that would not be easily
incorporated to simulated traffic.

The data set available to us in this phase contained over 500K alerts accumu-
lated during 42 days. Of the 315 activated signatures, only five were responsible
for 68% of alerts as indicated in Table 1 and we chose them for further scrutiny.
To give an idea of the alert flow behaviour, examples of alert generation inten-
sities for four of these signatures are depicted in Fig. 3. The relatively benign
nature of these alerts and their high volume was one of the original inspira-
tions for this work. These alerts are good examples of the problem three and
demonstrate the reason why we opt not just filter even the more deterministic
components out. For example, the alert flow in Fig. 3(c) triggered by SNMP
traffic over UDP had only few (source, destination) address pairs, and the con-
stant component could be easily filtered out. However, this would deprive the
operator being notified of behaviour such as the large peak and shift in constant

Introduction to Intrusion Detection and Security Information Management 227

Table 1. Five most prolific signatures in the first data set

signature name number of alerts proportion

SNMP Request UDP 176 009 30 %
ICMP PING WhatsupGold Windows 72 427 13 %
ICMP Destination Unreachable (Communi-
cation Administratively Prohibited)

57 420 10 %

LOCAL-POLICY External connexion from
HTTP server

51 674 9 %

ICMP PING Speedera 32 961 6 %
sum 390 491 68 %

component around February 15th as well or the notches in the end of February
and during March 15th. Not necessarily intrusions, but at least artefacts worth
further investigation. On the other hand, we do not want to distract the operator
with the alerts created during the hours that represent the stable situation with
constant intensity. For the others, Fig. 3(a) shows alerts from a user defined sig-
nature reacting to external connections from an HTTP server. The alerts occur
in bursts as large as several thousands during one hour and the intensity profile
resembles impulse train. As custom made, the operator has likely some interest
in this activity. In Figs. 3(b) and 3(d) we have alerts triggered by two different
ICMP Echo messages, former being remarkably more regular than latter. In the
system in question, deactivation of ICMP related signatures was not seen as a
solution by the operator as they are useful for troubleshooting problems. Con-
sequently, we had several high volume alert flows for which the suppression was
not the first option.

Effect of Flow Volume. Judging from the busy interval reduction, the method
is useful for alert flows that had created more than 10K alerts, the effectiveness
increasing with the flow volume. The busy interval reduction for flows below 10K
alerts is already more modest, and below 1K alerts the reduction is relatively
negligible. Tables 2 and 3 depict respectively the reduction as percentage from
non-zero intervals and alerts flagged anomalous, due to space constraints only
for flows of over 10K alerts. Reduction is shown with smoothing factors 0.80 and
0.92 for each of the three models, continuous, hourly, and weekday. In Table 2
also the total number of active intervals, and in Table 3 the total number of
alerts are shown for each flow.

Table 4 summarizes alert reduction results with continuous model and
smoothing factor 0.92. All 85 flows are grouped to four classes according to both
their output volume (over 100, 1 K, 10K or 100K alerts) and the achieved re-
duction in busy intervals and alerts (below 5 %, 10%, 50% or 100% of original),
respectively. These results show also the poorer performance for flows below the
10K limit. The busy intervals show more consistent relation between the volume
and reduction. On the right hand side of Table 4 in the class over 100K alerts,
ICMP Dest Unreachable (Comm Admin Proh) stands out with reduction signifi-

228 H. Debar and J. Viinikka

 1

 10

 100

 1000

 10000

Feb-08 Feb-15 Feb-22 Mar-01 Mar-08 Mar-15

A
le

rt
s

pe
r

ho
ur

Date

(a) LOCAL-POLICY

 1

 10

 100

 1000

Feb-08 Feb-15 Feb-22 Mar-01 Mar-08 Mar-15

A
le

rt
s

pe
r

ho
ur

Date

(b) Speedera

 10

 100

 1000

Feb-08 Feb-15 Feb-22 Mar-01 Mar-08 Mar-15

A
le

rt
s

pe
r

ho
ur

Date

(c) SNMP Request UDP

 1

 10

 100

 1000

Feb-08 Feb-15 Feb-22 Mar-01 Mar-08 Mar-15

A
le

rt
s

pe
r

ho
ur

Date

(d) Dest. Unreachable

Fig. 3. Hourly alert intensity for some of the most prolific signatures in learning data.
Horizontal axis is the time, and the vertical shows the number of alerts per hour

cantly smaller than others in the same class. We found two explanations for this
behaviour. First, there was one large alert impulse of approximately 17K alerts
flagged in the test data. This makes up roughly 10% of flagged alerts. Second,
the flow nature is more random compared to others, this is visible in Fig. 3(d) for
learning data and applies also for the larger data set. This randomness causes
more alert flagging, but still the reduction in busy intervals is comparable to
other flows in this volume class.

Reasons for Poor Summarization. There seems to be two main reasons for
poorer performance. 1) Many flows had few huge alert peaks that increase the
alert flagging significantly. 2) The intensity profile has the form of impulse train
that has negative impact both on reduction of alerts and busy intervals. As the
first cause does not increase remarkably the number of reported anomalous in-
tervals i.e. the number of times the user is disturbed, this is smaller problem.
However, the second cause renders our approach rather impractical for monitor-
ing such a flow, as the operator is notified on most intervals showing activity.

Introduction to Intrusion Detection and Security Information Management 229

Table 2. The proportion of flagged intervals from intervals showing activity for the
flow with different models and smoothing factors

cont. daily weekd.
flow int. .80 .92 .80 .92 .80 .92

Known DDOS Stacheldraht infection 563 1.6 1.8 8.9 8.5 2.0 2.5
SNMP request UDP 2311 4.3 2.9 5.8 4.6 4.2 3.0
ICMP PING WhatsupGold Windows 2069 5.1 3.3 5.8 2.6 5.1 3.2
DDOS Stacheldraht agent→handler (skillz) 512 1.2 1.6 12 16 1.8 2.1
ICMP Dst Unreachable (Comm Adm Proh) 2578 5.4 3.5 6.7 5.8 5.4 3.4
ICMP PING speedera 2456 3.3 1.7 4.2 2.9 3.3 0.9
WEB-IIS view source via translate header 2548 5.2 3.8 6.4 5.7 5.1 4.0
WEB-PHP content-disposition 2287 6.8 4.3 7.7 5.2 6.7 4.0
SQL Sapphire Worm (incoming) 1721 2.2 1.2 4.9 3.5 2.4 1.6
(spp rpc decode) Frag RPC Records 421 13 7.8 20 20 12 9.0
(spp rpc decode) Incompl RPC segment 276 21 13 27 27 22 13
BAD TRAFFIC bad frag bits 432 34 23 37 33 35 22
LOCAL-WEB-IIS Nimda.A attempt 537 24 16 30 25 24 16
LOCAL-WEB-IIS CodeRed II attempt 1229 6.3 4.6 14 14 6.9 5.3
DNS zone transfer 855 9.7 6.7 13 10 9.8 6.5
ICMP L3retriever Ping 107 29 26 71 70 28 23
WEB-MISC http directory traversal 708 12 9.3 15 13 12 9.5
(spp stream4)STLTH ACT(SYN FIN scan) 29 65 58 82 79 62 62

Table 3. The percentage of flagged alerts with different models and smoothing factors

cont. daily weekd.
flow alerts .80 .92 .80 .92 .80 .92

Known DDOS Stacheldraht infection 308548 1.2 1.2 4.4 8.4 1.4 1.5
SNMP request UDP 303201 4.4 3.0 4.9 4.4 4.2 3.2
ICMP PING WhatsupGold Windows 297437 5.4 4.0 4.5 2.9 5.2 3.1
DDOS Stacheldraht agent→handler (skillz) 280685 0.8 1.0 7.3 7.0 1.2 1.2
ICMP Dst Unreachable (Comm Adm Proh) 183020 32 28 39 37 32 28
ICMP PING speedera 95850 5.5 3.1 2.5 2.3 5.3 1.4
WEB-IIS view source via translate header 58600 25 21 12 11 24 22
WEB-PHP content-disposition 48423 18 14 15 13 18 14
SQL Sapphire Worm (incoming) 38905 3.0 1.9 11 9.1 3.1 2.5
(spp rpc decode) Frag RPC Records 38804 63 62 94 93 63 62
(spp rpc decode) Incompl RPC segment 28715 64 62 93 93 64 62
BAD TRAFFIC bad frag bits 27203 51 42 57 54 53 42
LOCAL-WEB-IIS Nimda.A attempt 25038 65 61 69 64 64 62
LOCAL-WEB-IIS CodeRed II attempt 20418 11 7.5 17 22 11 7.1
DNS zone transfer 15575 32 35 55 55 32 36
ICMP L3retriever Ping 12908 11 12 90 90 11 12
WEB-MISC http directory traversal 10620 41 38 46 45 41 38
(spp stream4)STLTH ACT(SYN FIN scan) 10182 96 90 93 93 96 96

230 H. Debar and J. Viinikka

Table 4. All 85 flows grouped by the number of alerts created and the percentage level
below which busy intervals or alerts were flagged

busy interval reduction

alerts 5% 10% 50% 100%

> 100 K 5 0 0 0
> 10K 5 3 4 1
> 1K 0 4 19 7
> 100 0 1 12 24
sum 10 8 35 32

alert reduction

alerts 5% 10% 50% 100%

> 100 K 4 0 1 0
> 10 K 2 1 6 4
> 1 K 0 1 15 14
> 100 0 0 8 29
sum 6 2 30 47

The flow (spp_stream4) on the last row of Tables 2 and 3 is a typical example,
as its alert profile consisted only from impulses. In such situation a large major-
ity of active intervals are flagged as anomalous. A closer look on alert impulses
revealed that they were usually generated in such a short time interval that
increasing the sampling frequency would not help much. Instead, other means
should be considered to process them.

Represented Alert Types. Amongst the most prolific signatures, we can
identify three main types of activity, hostile, information gathering and alerts
that can be seen to reflect the dynamics of networks.

Hostile activity is represented by DDoS tool traffic and worms with five
signatures. The two DDoS signatures are actually the same, different names were
used by the operator for alert management reasons. If busy interval reduction
below 5% with continuous model and (1 − λ) = 0.92 is used to define EWMA
monitoring applicable for a flow, then we have three fourths in feasible range for
the hostile activity.

In the system in question, possible information gathering is the most com-
mon culprit for numerous alerts. This category can be further divided to informa-
tion gathering on applications (web related signatures) and network architecture
(ICMP, SNMP and DNS traffic). In both categories, there are both suitable and
unsuitable flows for this type monitoring.

The ICMP Destination Unreachable (Communication Administratively Pro-
hibited) message is an example of the activity that describes the dynamics of the
network. It reflects the network state in terms of connectivity, and the origins
and causes of these events are generally out of operators control.

Signatures firing on protocol anomalies can be considered as an orthogo-
nal classification, since they can present any of the three types above. ((spp
rpc decode), (spp stream4) and BAD TRAFFIC) were all poorly handled by the
method. Another common factor is the smaller degree of presence in the data
set in terms of non-zero intervals. As the (spp_stream4) means possible re-
connaissance, and being present only on 29 intervals, it is less likely to be just
background noise.

The nature of these alerts and their volumes in general support the claim
that large proportion of generated alerts can be considered as noise. Even in the

Introduction to Intrusion Detection and Security Information Management 231

Table 5. The omnipresence of signatures and their types. Presence measured in active
intervals

signature type < 5% active present

ICMP Dst Unreachable (Comm Adm Proh) network ok 2578 95 %
WEB-IIS view source via translate header info web ok 2548 93 %
ICMP PING speedera info net ok 2456 90 %
SNMP request UDP info net ok 2311 85 %
WEB-PHP content-disposition info web ok 2287 84 %
ICMP PING WhatsupGold Windows info net ok 2069 76 %
SQL Sapphire Worm (incoming) hostile ok 1721 63 %
LOCAL-WEB-IIS CodeRed II attempt hostile ok 1229 45 %
DNS zone transfer info net no 855 31 %
WEB-MISC http directory traversal info web no 708 26 %
Known DDOS Stacheldraht infection hostile ok 563 20 %
LOCAL-WEB-IIS Nimda.A attempt hostile no 537 19 %
DDOS Stacheldraht agent-¿handler (skillz) hostile ok 512 18 %
BAD TRAFFIC bad frag bits proto no 432 15 %
(spp rpc decode) Frag RPC Records proto no 421 15 %
(spp rpc decode) Incompl RPC segment proto no 276 10 %
ICMP L3retriever Ping info net no 107 3%
(spp stream4)STLTH ACT(SYN FIN scan) proto no 29 1%

case of hostile activity the originating events warrant aggregation. This applies
in our case, but the situation may vary with different operating environments.

Table 5 shows the signature flows ordered by their omnipresence giving the
number of active intervals and the percentage this makes out of the whole testing
interval. A rough division according to the 5 % watershed is made and type of
signature according to above discussion is assigned. We can see that for all
signatures showing activity on more than 45% of the intervals the number of
alerts issued to operator can be significantly reduced in this system.

It would seem that the omnipresence of alerts would be better criteria than
the alert type for determining whether EWMA monitoring would be useful
or not.

Impact of Time Slot Choice. According to these metrics the usefulness
of daily and weekday models was limited to a few exceptions, generally the
continuous model was performing as well as the others. We just happened to
have one of the exceptions that really profited from hourly approach in our early
experimentations, and made the erroneous hypothesis of their commonness. The
metrics are however limited for this kind of comparisons. It is especially difficult
to say if the hourly approach just marks more intervals as anomalous or is
it actually capturing interesting artefacts differently. On many occasions the
smaller reduction was at least partly due to abrupt intensity shifts. As several
different statistics making up the hourly model signal an anomaly whereas the
continuously updated statistic does this only once. The two DDoS flows had

232 H. Debar and J. Viinikka

intensity profiles resembling a step function, which caused the hourly model to
flag significantly more alerts than the continuous.

Another factor encumbering the comparisons is the difference in efficient
lengths of model memories. As the time slot statistics of hourly and weekday
models are updated with only the corresponding intensity measures the values
averaged have longer span in real time. For example the hourly model’s statistics
are affected by 8 or 24 days old measurements.

Class Flows. Grouping signature classes together increased the flagging per-
centage. Table 6 shows obtained reductions with continuous model and (1−λ) =
0.92 for class aggregates with more than 1000 alerts. In fact, almost every class
contains one or more voluminous signatures that were problematic statistically
already by themselves, and this affects the behaviour of class aggregate. The
increased flagging could also indicate that anomalies in signature based flows
with smaller volume are detected to some degree. The levels of busy intervals
are reduced relatively well and again generally the flagging increases as alert
volume decreases. The aggregation by class might be used to gain even more
abstraction and higher level summaries in alert saturated situations. However,
there are likely to be better criteria for aggregation than the alert classes.

Table 6. The reduction in alerts and busy intervals when aggregating according to
signature classes. Results for continuous model with 1 − λ = 0.92

raw anomalous
flow int. alerts int. alerts

misc-activity 2678 618273 1.9 % 8.9 %
class none 1429 380568 4.8 % 18.3 %
attempted-recon 2635 360613 3.7 % 7.0 %
known-issue 563 308548 1.7 % 1.1 %
web-application-activity 2569 88554 3.3 % 16.3 %
bad-unknown 2559 65883 3.7 % 20.9 %
known-trojan 1511 46014 5.4 % 34.9 %
misc-attack 1727 39070 1.3 % 2.1 %
web-application-attack 1017 9587 9.1 % 40.5 %
attempted-user 272 3694 19.4 % 40.6 %
attempted-dos 361 2782 24.3 % 67.8 %
attempted-admin 444 1760 20.2 % 33.1 %

Flow Stability. To give an idea of the stability of flow profiles, Table 7 com-
pares the alert and busy interval reduction obtained for four signatures used in
the learning phase against the reduction in testing data. In general the flagging
is slightly higher in the training data set. The most notable exception is sig-
nature ICMP Destination Unreachable (Communication Adm Prohibited),
where a significant number of alerts is marked anomalous in the test set. The
large alert impulse in this flow, mentioned earlier, accounts for approximately

Introduction to Intrusion Detection and Security Information Management 233

Table 7. A comparison of results obtained during learning and testing phases. (1−λ) =
0.92

alerts intervals
flow learn. test learn. test

SNMP request UDP 2.7 3.5 2.2 3.5
ICMP PING WhatsupGold Windows 4.6 3.6 2.9 3.6
ICMP Dst Unreachable (Comm Adm Proh) 12 36 3.2 3.7
ICMP PING speedera 2.8 3.2 1.3 2.0

14% units of this increase in test data. Even if those alerts were removed, the
increase would be large. Still, the reduction in busy intervals is quite similar,
suggesting higher peaks in the test set. The fifth signature enforcing a local pol-
icy, also viewed in the learning phase, did not exist anymore in the testing data
set. This signature created alert impulses (see LOCAL-POLICY in Fig. 3(a))
and the alert reduction was marginal in learning data.

It seems like with the used parameters the reduction performance stays almost
constant. This would suggest that after setting parameters meeting the operators
needs, our approach is able to adapt to lesser changes in alert flow behaviour with-
out further adjustment. At least during this test period, none of the originally
nicely-enough-behaving flows changed to more problematic impulse-like nor vice
versa. Also signatures having a constant alert flow or more random process type
behaviour, both feasible for the method, kept to their original profile.

To wrap up the results, it seems possible to use this approach to summarize and
monitor the levels of high volume background noise seen by an IDS. Up to 95% of
the one hour time slots showing activity from such an alert flow can be unburdened
from the distraction. For the remaining intervals, instead of a barrage of alerts,
only one alert would be outputted in the end of the interval. As both data sets
came from the same system, the generality of these observations is rather limited,
and more comprehensive testing would be required for further validation.

If the user is worried that aggregation at signature level loses too much data,
it is possible to use additional criteria, such as source and destination addresses
and/or ports to have more focused alert streams. The reduction in aggregation is
likely to create more flagged intervals, and this is a tradeoff that the user needs
to consider according to his needs and the operating environment. Determining
if the summarization masked important events in the test set was not possible,
as we do not possess records of actual detected intrusions and problems in the
monitored system against which we could compare our results.

6.2 Correlation with Vulnerability Information

Correlation between alerts and vulnerability information aims at assessing the
risk that the monitored information system incurs from the attacker’s actions.
The actions of the attacker are deemed potentially successful and high risk if the
vulnerability exists on the information system.

234 H. Debar and J. Viinikka

PROVID
ED B

Y
NESS

US
REPORT

REFERENCE

WEB: PHF ATTACK

SIGNATURE

2005−01−01 01:02:03 +04

EVENT

192.168.1.3

TARGET HOST

BID−629

REFERENCE

CVE−1999−0069

REFERENCE

OSVDB−136

Fig. 4. Explicit correlation between event
and vulnerability information, using vul-
nerability assessment reports.

REFERENCE

WEB: PHF ATTACK

SIGNATURE

2005−01−01 01:02:03 +04

EVENT

192.168.1.3

TARGET HOST

BID−629

REFERENCE

CVE−1999−0069

REFERENCE

PRODUCT
Perl 5.05

PRODUCT
Apache 1.0.3

PRODUCT
Linux RedHat

PROVIDED BY
EXTERNAL VULNERABILITY
DATABASE

INVENTORY
PROVIDED BY

OSVDB−136

Fig. 5. Explicit correlation between event
and vulnerability information, using in-
ventory information.

The easiest way to realize this correlation mechanism is shown in Figure
4. An event contains information about the attack mechanism and the target
host of the attack. The attack mechanism is associated with references, often to
public external databases, that constitute an open dictionary for all intrusion
detection and SIM vendors. The vulnerability assessment information provides
the link between hosts and vulnerability references. When a loop can be found
in the graph, the alert represents an attack for which the information system
was vulnerable, hence a more serious risk.

The difficulty with this kind of correlation is that we may not have a vulnera-
bility assessment report for the host. When this is the case, we may use inventory
information, either created externally or through passive network observation as
mentioned in Section 5.4. As shown in Figure 5, the association between hosts
and vulnerability references goes through product information.

Note that this procedure also offers another advantage, which is the possibil-
ity to correlate alerts with non-existent vulnerabilities. Vulnerability assessment
tools rarely indicate explicitly when a server is not vulnerable to a given attack.
This lack of information can be attributed to the absence of the vulnerability,
but there could be other factors that make the test fail or not complete, while
the vulnerability would still exist. However, vulnerability databases often include
non-vulnerable information related to the product versions. If the product ver-
sions are comparable, then it is also possible to lower the severity of an alert
when the risk does not exist in the information system.

This correlation mechanism is largely in use in SIM consoles. We are currently
studying the efficiency of this mechanism, to precisely evaluate what it can and
cannot provide.

7 Conclusion

In this paper, we have presented intrusion detection and security information
management as two important and active research domains for information sys-
tems security. While intrusion detection offers mature technologies for deploy-

Introduction to Intrusion Detection and Security Information Management 235

ment, security information management remains an interesting research subject
from which we can expect new advances.

Related to intrusion detection, we expect that research will focus on
application-level attacks and on much more accurate sensors and detection algo-
rithms than are currently available. The sheer number of uninteresting intrusion
detection alerts generated by these tools will require continuous tuning and de-
velopment, until systems become more secure.

Security information management will continue to foster research in alert
correlation, leading to more complex scenarios that actually provide reliable
threat information to the security officer. Once this stage is reached, we will
see a large body of research taking place on automated countermeasures, i.e.
ensuring that attacks are dealt with efficiently and accurately, with as little
human intervention as possible.

References

1. Debar, H., Curry, D., Fenstein, B.: Intrusion Detection Message Exchange For-
mat Data Model and Extensible Markup Language (XML) Document Type Def-
inition. Internet Draft (work in progress) (2005) http://search.ietf.org/internet-
drafts/draft-ietf-idwg-idmef-xml-14.txt.

2. Feinstein, B., Matthews, G., White, J.: The intrusion detection exchange protocol
(idxp). Internet Draft (work in progress), expires April 22nd, 2003 (2002)

3. Roesch, M.: Snort - Lightweight Intrusion Detection for Networks. In: Proceedings
of LISA’99, Seattle, Washington, USA (1999)

4. Northcutt, S., Novak, J.: Network Intrusion Detection. 3 edn. QUE (2003) ISBN
0735712654.

5. Ptacek, T.H., Newsham, T.N.: Insertion, Evasion, and Denial of Service : Eluding
Network Intrusion Detection. Secure Networks, Inc (1998)

6. Zhang, Y., Paxson, V.: Detecting stepping stones. In: Proceedings of the 9th
USENIX Security Symposium, Denver, CO (2000)

7. Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.
Computer Communication Review 31 (2001)

8. Handley, M., Kreibich, C., Paxson, V.: Network Intrusion Detection: Evasion,
Traffic Normalization, and End-to-End Protocol Semantics. In: Proceedings of the
10th USENIX Security Symposium, Washington, DC (2001)

9. Fieldings, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (1999)

10. Denning, D.E., Edwards, D.L., Jagannathan, R., Lunt, T.F., Neumann, P.G.: A
prototype IDES — A Real-Time Intrusion Detection Expert System. Technical
report, Computer Science Laboratory, SRI International (1987)

11. Snapp, S.R., Smaha, S.E.: Signature Analysis Model Definition and Formalism.
In: Proc. Fourth Workshop on Computer Security Incident Handling, Denver, CO
(1992)

12. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of
the ACM 20 (1977) 762–772

13. Thomson, K.: Regular expression search algorithm. Communications of the ACM
11 (1968) 419 – 422

236 H. Debar and J. Viinikka

14. Denning, D.E., Neumann, P.G.: Requirements and model for IDES - a real-time
intrusion detection expert system. Technical report, Computer Science Laboratory,
SRI International, Menlo Park, CA (1985)

15. Denning, D.: An Intrusion-Detection Model. IEEE Transactions on Software En-
gineering 13 (1987) 222–232

16. Javitz, H.S., Valdez, A., Lunt, T.F., Tamaru, A., Tyson, M., Lowrance, J.: Next
generation intrusion detection expert system (NIDES) - 1. statistical algorithms
rationale - 2. rationale for proposed resolver. Technical Report A016–Rationales,
SRI International, 333 Ravenswood Avenue, Menlo Park, CA (1993)

17. Droms, R.: Dynamic host configuration protocol. RFC 2131 (1997)
18. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2D2 : A Formal Data Model for

IDS Alert Correlation. In: Proceedings of the Fifth International Symposium on
Recent Advances in Intrusion Detection (RAID). (2002)

19. Viinikka, J., Debar, H.: Monitoring ids background noise using ewma control charts
and alert information. In: Proceedings of the 7th International Symposium on
Recent Advances in Intrusion Detection (RAID 2004). Lecture Notes in Computer
Science, Springer-Verlag (2004)

20. Egevang, K., Francis, P.: The ip network address translator (nat). RFC 1631
(1994)

21. Debar, H., Morin, B.: Evaluation of the Diagnostic Capabilities of Commercial
Intrusion Detection Systems. In: Proceedings of RAID 2002. (2002)

22. Porras, P.A., Fong, M.W., Valdes, A.: A Mission-Impact-Based Approach to IN-
FOSEC Alarm Correlation. In: Proceedings of RAID 2002. (2002) 95–114

23. Julisch, K.: Mining Alarm Clusters to Improve Alarm Handling Efficiency. In:
Proceedings of the 17th Annual Computer Security Applications Conference (AC-
SAC). (2001)

24. Morin, B., Debar, H.: Correlation of Intrusion Symptoms: an Application of Chron-
icles. In: Proceedings of RAID 2003. (2003) 94–112

25. Roberts, S.W.: Control Chart Tests Based On Geometric Moving Averages. Tech-
nometrics 1 (1959) 230–250

26. Ye, N., Vilbert, S., Chen, Q.: Computer Intrusion Detection Through EWMA
for Autocorrelated and Uncorrelated Data. IEEE Transactions on Reliability 52
(2003) 75–82

27. Ye, N., Borror, C., Chang, Y.: EWMA Techniques for Computer Intrusion De-
tection Through Anomalous Changes In Event Intensity. Quality and Reliability
Engineering International 18 (2002) 443–451

28. Mahadik, V.A., Wu, X., Reeves, D.S.: Detection of Denial of QoS At-
tacks Based on χ2 Statistic and EWMA Control Chart. Online document,
http://arqos.csc.ncsu.edu/papers.htm (2002) Submitted for Usenix 2002.

Security and Trust Requirements Engineering�

Paolo Giorgini, Fabio Massacci, and Nicola Zannone

Department of Information and Communication Technology,
University of Trento - Italy

{giorgini, massacci, zannone}@dit.unitn.it

Abstract. Integrating security concerns throughout the whole software develop-
ment process is one of today’s challenges in software and requirements engineer-
ing research. A challenge that so far has proved difficult to meet.

The major difficulty is that providing security does not only require to solve
technical problems but also to reason on the organization as a whole. This makes
the usage of traditional software engineering methologies difficult or unsatisfac-
tory: most proposals focus on protection aspects of security and explicitly deal
with low level protection mechanisms and only an handful of them show the abil-
ity of capturing the high-level organizational security requirements, without get-
ting suddenly bogged down into security protocols or cryptography algorithms.

In this paper we critically review the state of the art in security requirements
engineering and discuss the motivations that led us to propose the Secure Tro-
pos methodology, a formal framework for modelling and analyzing security, that
enhances the agent-oriented software development methodology i*/Tropos. We
illustrate the Secure Tropos approach, a comprehensive case study, and discuss
some later refinements of the Secure Tropos methodology to address some of its
shortcomings. Finally, we introduce the ST-Tool, a CASE tool that supports our
methodology.

1 Introduction

The last decades have seen an increasing awareness that security plays a key role in sys-
tem development. Unfortunately, security modelling and policy work has been largely
independent of system requirements and system models. The usual approach towards
the inclusion of security within a system is to identify security requirements after sys-
tem design. This is a critical problem [4], mainly because security mechanisms have to
be fitted into a pre-existing design which may not be able to accommodate them [53].
Moreover, the implementation of the software system may assume security mechanisms
that are simply not necessary. Alternatively, the implementation may introduce protec-
tion mechanisms that just hinder operation in a trusted domain that was not perceived
as a trusted domain by the software engineer. Late analysis of security requirements
can also generate conflicts between security needs and functional requirements of the
system. Even with the growing interest in secure engineering, current methodologies
for software (notably, information system) development do not address security-related
problems [56], and fail to integrate successfully security concerns throughout the whole

� This article provides a survey of the research material which is described in [25,26,27,28].

A. Aldini, R. Gorrieri, and F. Martinelli (Eds.): FOSAD 2004/2005, LNCS 3655, pp. 237–272, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 P. Giorgini, F. Massacci, and N. Zannone

development process. There has also been lack of interaction between researchers work-
ing on requirements modelling and security policy. Security is compromised most often
not by breaking mechanisms such as encryption or security protocols, but by exploiting
weaknesses in the way they are being utilized. Security mechanisms cannot be blindly
inserted into a security-critical system. Instead, the overall system development process
must take security concerns into account.

One of the current research challenge is to integrate security requirements analy-
sis with the standard requirements process. A security requirements is a manifestation
of a high-level organizational policy into the detailed requirements of a specific sys-
tem. The integration of security engineering into a model-driven software development
approach has advantages. Security requirements can be formulated and integrated into
system designs at a high level of abstraction. In this way, it becomes possible to develop
security aware applications that are designed with the goal of preventing violations of
a security policy. At one side of the spectrum, the call for SE profession has been on
good coding practices to avoid errors that could compromise the software’s security
(e.g., [60]). At the other extreme, the emphasis has been on securing the organization
and its procedures (e.g., [4]).

Across the whole spectrum among these two extremes, modelling and analysis of
security requirements has become a key challenge for Software Engineering [14,16],
and it is the subject of this paper. In the next section (§2) we start a critical review of the
existing proposals for security requirements engineering. Then, we discussed the key
intuitions that lead us to propose an enhanced methodology and provide a description
of Tropos concepts and describe the basic ones that we use for modelling security (§3).
We introduce a scenario used as running example throughout the paper (§4). Then, we
present a conceptual refinement of the framework (§5). Next, we formalize the security
notions introduced in previous sections and define axioms and properties (§6). Finally,
we introduce a CASE tool supporting our methodology (§7).

2 Security Requirements Engineering: A Survey

Strictly speaking of Software Engineering, modelling requirements is one of the key
challenges that secure systems must meet (See Devanbu and Stubblebine’s paper at
ICSE [16]) and a number of researchers have been heeding the call. Proposals for Secu-
rity Requirements Engineering can be classified under one of two classes: object-level
and meta-level modelling.

The object-level modelling uses an off-the-shelves requirement framework, such
as UML, KAOS, i*/Tropos, etc. and model in that framework a number of security
requirements. The analysis features of the framework are then used to draw conclusions
about the security modelling or to derive some guidance for the implementation.

The advantage of the object-level approach is that reasoning about security is virtu-
ally cost-free from the view point of the user: no new language to learn, all (good and
bad) features of the modelling framework are immediately usable. If the framework is
equipped with a formal semantics and formal reasoning procedures they are also inher-
ited. In the formal framework the “security-notions” are indistinguishable from other
objects, i.e., other requirements. This is also the major disadvantage: the link between

Security and Trust Requirements Engineering 239

security and functional requirements is lost and must be introduced by ad-hoc predicates
or relationships by the designer. This makes particularly difficult the modelling of gen-
eral relationships or rules (such as all processing of personal data should be authorized
by the person whose data is being processed).

In the early requirement arenas we can list a number of works in the object-level
field. For instance, in [62] security is frequently considered as a vague goal to be sat-
isfied, while a precise description and enumeration of specific security properties and
behavior is still missing. The work by Liu et al. [41] uses i*/Tropos for dealing with
security and privacy requirements by introducing softgoal1, as “Security” or “Privacy”,
to model these notions, and use dependencies analysis to check if the system is secure.
In [5,6], general taxonomies for security and privacy are established. These can serve
as a general knowledge repository for a knowledge-based goal refinement process. An-
other early RE example is [55], which presents a requirements process model, based
upon reuse, together with a reusable template to organize security policies in a organi-
zation and a catalog filled with reusable personal data security requirements. Finally,
He et al. [32] present a goal-driven framework for modelling privacy requirements in
the role engineering process. The goal of this framework is to bridge the gap between
competing stakeholders’ security and privacy requirements, i.e., companies’ privacy
practices may be in conflict with user preferences. Privacy requirements are modelled
as contexts and constraints of permissions and roles.

The meta-level modelling takes a off-the-shelves requirement framework as well as
object-level modelling approach, but enhance it with linguistic constructs that capture
security requirements. The analysis feature or implementation guidance of the frame-
work must then be revised to allow for the new features.

The meta-level models trade off readiness for expressivity and compactness. The
addition of suitable constructs makes usually the model more compact and more in-
tuitive to use. This main advantage is coupled by the possibility of designing analysis
features that are tailored to the security domain. This is also the key disadvantage: un-
less the addition of new features is carefully planned, the new framework needs the
definition of analysis, semantics and reasoning procedures. To minimize this problem
most sensible approaches try to design the framework in such a way that if one doesn’t
use the new features then one can still inherit all the old framework capabilities.

The need for conceptual models of security features have brought up a number
of proposals especially in UML community. In approaches explicitly intended for secu-
rity, we find the CORAS methodology for modelling risk and vulnerability [19]. Jürjens
proposes UMLsec [35], an extension of the Unified Modelling Language (UML), for
modelling security related features, such as confidentiality and access control. He pro-
poses a concept for specifying requirements on confidentiality and integrity in analysis
models based on UML. Lodderstedt et al. [42] present a UML-based modelling lan-
guage (SecureUML). Their approach is focused on modelling access control policies
and integrating them into a model-driven software development process. SecureUML
is a modelling language designed to integrate information relevant to access control into
application models defined with UML. The language builds on the access control model
of RBAC [18,33,47,51] with additional support for specifying authorization constraints.

1 Mostly non-functional requirements was satisfaction is fuzzy.

240 P. Giorgini, F. Massacci, and N. Zannone

To address security concerns during software design, Doan et al. [17] incorporate
Mandatory Access Control (MAC) into UML. Ray et al. [49] propose to model RBAC
as a pattern by using UML diagram template. Further, they represent constraints on
RBAC model through the Object Constraint Language. One of the major limitations of
all these proposals is that they treat security in system-oriented terms, and do not sup-
port the modelling and analysis of security requirements at an organizational level. In
other words, they are targeted to model a computer system and the policies and access
control mechanisms it supports. In contrast, to understand the problem of security en-
gineering we need to model the organization and social relationships between all actors
involved in the system.

For early requirements, a preliminary modification of Tropos methodology has been
proposed in [45]. In particular, this extension use security constraints and secure capa-
bilities as basic concepts. However, [23] shows that the key missing concept is the
separation of the notions of offering a service and ownership of the very same service.
Further, it does not allow for the modelling of trust relationships.

Other approaches propose to model the behavior of attackers. Crook et al. [14] intro-
duce the notion of anti-requirements to represent the requirements of malicious attack-
ers. Anti-requirements are expressed in terms of the problem domain phenomena and
are quantified existentially: an anti-requirement is satisfied when the security threats
imposed by the attacker are realized in any one instance of the problem. Lin et al. [40]
incorporate anti-requirements into abuse frames. The purpose of abuse frames is to rep-
resents security threats and to facilitate the analysis of the conditions in the system in
which a security violation occurs. They allow the examination of a system’s vulnerabil-
ities to different kinds of security threats in a bounded context. Abuse frames share the
same notation as the normal problem frames, but each domain is now associated with a
different meaning. McDermott and Fox adapt use cases [44] to capture and analyze se-
curity requirements, and they call the adaption an abuse case model. An abuse case is an
interaction between a system and one or more actors, where the results of the interaction
are harmful to the system, or one of the stakeholders of the system. Guttorm and Opdahl
[52] propose to model security by defining misuse cases, the inverse of UML use cases,
which describe functions that the system should not allow. This new construct makes it
possible to represent actions that the system should prevent together with those actions
which it should support. Moving towards early requirements, an extension of the KAOS
framework is presented in [59] where the notion of obstacle is introduced. KAOS uses
the notion of goal as a set of desired behaviors. Likewise, an obstacle defines a set of
undesirable behaviors. Therefore, the negation of such obstacles is used to determine
preconditions for the goal to be achieved. Although obstacle are sufficient for modelling
accidental, non-intentional obstacles to security goals, they appear too limited for mod-
elling and resolving malicious, intentional obstacles. To this end, van Lamsweerde et
al. [58] introduce the notion of anti-requirements and anti-goals that are, respectively,
the requirements of malicious attackers and the intentional obstacles to security goals.

2.1 Towards a “Terra Incognita”: Why a New Methodology Is Needed

Most proposals in the literature focus on protection aspects of security and explicitly
deal with a series of security services (integrity, availability etc.) and related protec-

Security and Trust Requirements Engineering 241

tion mechanisms (such as passwords, or cryptographic mechanisms). If we look at the
requirement refinement process of many proposals, we find out that at certain stage
a leap is made: we have a system with no security features consisting of high-level
functionalities, and the next refinement shows encryption, access control and authen-
tication. The modelling process should instead makes it clear why encryption, access
control and authentication are necessary. What is missing is capturing the high-level
security requirements, without getting suddenly bogged down into security solutions or
cryptographic algorithms.

Early requirements requires to reason about trust relationships, ownership and del-
egation of authority besides the traditional notion of functional dependencies. The first
step in this direction is described the papers [25,26] which extended the i*/Tropos mod-
elling framework [10] to introduces concepts such as ownership, trust, and delegation
within a requirements modelling framework and shows how security and trust require-
ments can be derived and analyzed.

After a large case study on the compliance of an ISO-17799-like security policy [43]
with Italian privacy legislation, it was concluded that the concepts offered by Secure
Tropos are the right ones but are too coarse-grained to capture important security facets.

The first observation is that for pragmatic reasons, it is often the case that services
and permissions are delegated to actors who are not trusted. Nevertheless, the overall
system is still considered secure if there is a way to hold such delegations accountable
by monitoring their (wrong) doings.

The second observation is that trust in actors (or lack thereof) comes in different
flavors: we may trust an actor to actually deliver the services we require (taking into
account skills and/or commitment), or to honor granted permissions. In trust manage-
ment and authorization settings (e.g. [7,15,38]) one only finds delegations of permission
(through authorization). Requirements of availability are equally important, however,
and can only be captured by modelling delegation of execution (where one actor dele-
gates to another the responsibility to execute a service).

Finally, in a recent study, the majority of Information Security Administrators said
that their biggest worry is employee negligence and abuse [48]. Internal attacks can be
more harmful than external attacks since they are being performed by trusted users that
can bypass access control mechanisms. So, we need models that compare the structure
of the organization (roles and relations among them) with the concrete instance of the
organization (agents playing some roles in the organization and relations among them).
The original Tropos proposal involves two different levels of analysis: social and in-
dividual. In the organization level we analyze roles and positions of the organization,
whereas in individual level the focus is on single agents. Of course there is no explicit
separation between the two levels, and so Tropos is not able to maintain the consistency
between the social level (roles and positions) and the individual level (agent).

3 Secure Tropos: A Goal Oriented SRE Methodology

Secure Tropos [25,26] enhances the agent-oriented software development methodology
i*/Tropos [10]. The Tropos methodology is intended to support all analysis and design
activities in the software development process, from the application domain analysis

242 P. Giorgini, F. Massacci, and N. Zannone

down to the system implementation. In particular, Tropos rests on the idea of building
a model of the system-to-be and its environment, that is incrementally refined and ex-
tended, providing a common interface to the various software development activities,
as well as a basis for documentation and evolution of the software.

Tropos uses the concepts of actor, goal, plan, resource and social dependency for
defining the obligations of actors (dependees) to other actors (dependers). A goal rep-
resents the strategic interests of an actor. A plan specifies a particular course of action
that produces a desired effect, and can be executed in order to satisfy a goal. A resource
represents a physical or an informational entity. Finally, a dependency between two ac-
tors indicates that one actor depends on another to accomplish a goal, execute a plan,
or deliver a resource. Tropos is well suited to to describe both an organization and an
IT system. As we already discussed, in [23] we have argued that it lacks the ability to
capture at the same time the functional and security features of the organization, and
hence the new proposal.

In the following, we introduce Secure Tropos as an extension of the requirements
analysis phase of the Tropos Methodology. Basic concepts, relationships, and models
will be presented along the methodological approach and the modelling activities.

3.1 Requirement Analysis Phase

Requirement analysis represents the initial phase in many software engineering method-
ologies. Similarly to other software engineering approaches, in Tropos the final goal of
requirement analysis is to provide a set of functional and non-functional requirements
for the system-to-be. The requirements analysis in Tropos is split in two main phases:
Early Requirements and Late Requirements analysis. Both share the same conceptual
and methodological approach. Thus most of the ideas introduced for early requirements
analysis are used for late requirements as well.

More precisely, during the first phase, the requirements engineer identifies the do-
main stakeholders and models them as social actors, who depend on one another for
goals to be achieved, plans to be performed, and resources to be furnished. By clearly
defining these dependencies, it is then possible to state the why, beside the what and
how, of the system functionalities and, as a last result, to verify how the final imple-
mentation matches the real needs.

In the Late Requirements analysis, the conceptual model is extended including a
new actor, which represents the system, and a number of dependencies with other ac-
tors part of the environment. These dependencies define all the functional and non-
functional requirements of the system-to-be.

3.2 The Key Concepts

Models in Tropos are acquired as instances of a conceptual metamodel resting on the
following concepts/relationships:

– Actor, which models an entity that has strategic goals and intentionality within the
system or the organizational setting. An actor represents a physical or a software
agent as well as a role or position. While we assume the classical AI definition

Security and Trust Requirements Engineering 243

of software agent, that is, a software having properties such as autonomy, social
ability, reactivity, proactivity, as given, for instance in [46], in Tropos we define a
role as an abstract characterization of the behavior of a social actor within some
specialized context or domain of endeavor, and a position represents a set of roles,
typically played by one agent. An agent can occupy a position, while a position is
said to cover a role. A discussion on this issue can be found in [61].

– Goal, which represents actors’ strategic interests. We distinguish hard goals from
softgoals, the second having no clear-cut definition and/or criteria for deciding
whether they are satisfied or not. According to [12], this different nature of achieve-
ment is underlined by saying that goals are satisfied while softgoals are satisficed.
Softgoals are typically used to model non-functional requirements.

– Plan, which represents, at an abstract level, a way of doing something. The execu-
tion of plan can be a means for satisfying a goal or for satisficing a softgoal.

– Resource, which represents a physical or an informational entity. The main differ-
ence with an agent is that a resource has not intentionality.

– Dependency between two actors, which indicates that one actor depends, for some
reason, on the other in order to attain some goal, execute some plan, or deliver
a resource. The former actor is called the depender, while the latter is called the
dependee. The object around which the dependency centers is called dependum. In
general, by depending on another actor for a dependum, an actor is able to achieve
goals that it would otherwise be unable to achieve on its own, or not as easily, or not
as well. At the same time, the depender becomes vulnerable. If the dependee fails
to deliver the dependum, the depender would be adversely affected in its ability to
achieve its goals.

Four new relationships have been introduced in Secure Tropos:

– Ownership, which indicates that the actor is the legitimate owner of some goal,
some plan, or some resource. The owner has full authority concerning to achieve
his goal, execute his plan, or use his resource, and he can also delegate this authority
to other actors.

– Provisioning, which indicates that the actor has the capability to achieve some
goal, execute some plan, or deliver a resource.

– Trust, between two actors, which indicates the believe of one actor that the other
does not misuse some goal, some plan, or some resource. The former actor is called
the truster, while the latter is called the trustee. The object around which the depen-
dency centers is called trustum. In general, by trusting another actor for a trustum,
an actor is sure that the trustum is properly used. At the same time, the truster be-
comes vulnerable. If the trustee misuses the trustum, the truster cannot guarantee
to achieve some goal, execute some plan, or deliver a resource securely.

– Delegation, between two actors, which indicates that one actor delegates to the
other the permission to achieve some goal, execute some plan, or use a resource.
The former actor is called the delegater, while the latter is called the delegatee.
The object around which the dependency centers is called delegatum. In general,
delegation marks a formal passage in the domain that is currently modelled by the
requirements engineers. This would be matched by the issuance of a delegation

244 P. Giorgini, F. Massacci, and N. Zannone

certificate such as digital credential or a letter if we are delegating permission or by
a call to an external procedure if we are delegating execution.

3.3 Modelling Activities

Various activities contribute to the acquisition of a first early requirement model, to its
refinement and to its evolution into subsequent models. They are:

– Actor modelling, which consists of identifying and analyzing both the actors of the
environment and the system’s actors and agents. In particular, in the early require-
ment phase actor modelling focuses on modelling the application domain stake-
holders and their intentions as social actors which want to achieve goals. During
late requirement, actor modelling focuses on the definition of the system-to-be ac-
tor.

– Dependency modelling, which consists of identifying actors which depend on one
another for goals to be achieved, plans to be performed, and resources to be fur-
nished. In particular, in the early requirement phase, it focuses on modelling goal
dependencies between social actors of the organizational setting. New dependen-
cies are elicited and added to the model upon goal analysis performed during the
goal modelling activity discussed below. During late requirements analysis, depen-
dency modelling focuses on analyzing the dependencies of the system-to-be actor.
In the architectural design phase, data and control flows between sub-actors of the
system-to-be actors are modelled in terms of dependencies, providing the basis for
the capability modelling that will start later in architectural design together with the
mapping of system actors to agents.

A graphical representation of the model obtained following these modelling activ-
ities is given through actor diagrams, called dependency model, which describe the
actors (depicted as circles), their goals (depicted as ovals and cloud shapes) and the
network of dependency relationships among actors (two arrowed lines connected by a
graphical symbol varying according to the dependum: a goal, a plan or a resource).

– Goal and plan modelling rests on the analysis of an actor goals, conducted from
the point of view of the actor, by using three basic reasoning techniques: means-end
analysis, contribution analysis, and AND/OR decomposition. In particular, means-
end analysis aims at identifying plans, resources and softgoals that provide means
for achieving a goal. Contribution analysis identifies goals that can contribute posi-
tively or negatively in the fulfillment of the goal to be analyzed. In a sense, it can be
considered as an extension of means-end analysis, with goals as means. AND/OR
decomposition combines AND and OR decompositions of a root goal into sub-
goals, modelling a finer goal structure. Goal modelling is applied to early and late
requirement models in order to refine them and to elicit new dependencies. Dur-
ing architectural design, it contributes to motivate the first decomposition of the
system-to-be actors into a set of sub-actors.

A graphical representation of goal and plan modelling is given through goal dia-
grams, which appears as a balloon within which goals of a specific actor are analyzed

Security and Trust Requirements Engineering 245

and dependencies with other actors are established. Goals are decomposed into subgoals
and positive/negative contributions of subgoals to goals are specified. Goal decomposi-
tion can be closed through a means-end analysis aimed at identifying plans, resources
and softgoals that provide means for achieving the goal.

The revised methodology introduces new steps that replaces the old ones:

– Trust modelling which consists of identifying actors which trust other actors for
goal, plans, and resources, and actors which own goal, plans, and resources. In
particular, in the early requirement phase, it focuses on modelling trust relations
between social actors of the organizational setting. New trust relations are elicited
and added to the model upon the refinement activities discussed above. During late
requirements analysis, trust modelling focuses on analyzing the trust relations of
the system-to-be actor.

– Delegation modelling which consists of identifying actors which delegate to other
actors the permission and task of execution on goals, plans, and resources. In par-
ticular, in the early requirement phase, it focuses on modelling delegations between
social actors of the organizational setting. New delegations are elicited and added to
the model upon the refinement activities discussed above. During late requirements
analysis, delegation modelling focuses on analyzing the delegations involving the
system-to-be actor.

A graphical representation of the models obtained following these last two mod-
elling activities is given through two different kinds of actor diagrams: trust model,
and trust management implementation. Essentially, the first represents the trust network
among the actors involved in the system and the latter represents which permissions are
effectively delegated by actors and which actors receive such permissions. These mod-
els use the same notation for actors, goals, plans and resource used during dependency
modelling. The old dependency model is replaced by the delegation of execution model.

3.4 Process

The overall methodological process is an iterative process in which the above presented
modelling activities are used to produce different kinds of actor and goal diagrams.
Table 1 summarizes the process activities and the diagrams elaborated in each activity.
The diagrams produced in one activity are used as input for the other activities.

Table 1. Activities and diagrams produced during the analysis process

Activity Diagrams produced
1. Actor modelling Actor diagram: actors and their goals are elicited
2old. Dependency modelling Actor diagram: dependencies between actors are discovered
2a. Trust modelling Trust diagram: trust relationships between actors are discovered
2b. Delegation modelling Trust management implementation diagram: delegations between

actors are modelled
3. Goal modelling Goal diagram: actor goals are analyzed
4. Plan modelling Goal diagram: plans associated to goals are analyzed

246 P. Giorgini, F. Massacci, and N. Zannone

The process starts with the actor modelling activity (1) in which the relevant actors
(stackholders and existing software (sub)systems) are elicited and modelled with their
goals. The actor diagram produced after this activity is used as input for the dependency
modelling activity (2old), where the dependencies between the actors are discovered
and established. The resulting actor diagram can be either used to further revise the ini-
tial actor diagram or as input for the next activity (3). Goal modelling focus on the goals
associated to each actor of the actor diagram and it analyzes them using various forms of
analysis as described earlier. During the analysis new dependencies can be discovered
so to revise and enrich the model produced in (2). Goal diagram is also used as input
for plan modelling activity (4), where each single goal is analyzed in terms of plans
that can be used for its fulfillment. Plans are analyzed in details and new dependencies
between actor can emerge so to require a new dependency analysis (2old). In the new
model we start with the trust model (2a), which in turn can require a further goal anal-
ysis (3). Dependency can then be devised by as in step (2old) by modelling delegation
and trust (if any). This may require further goal analysis (3) as in the standard Tropos
project. The final trust model is used to develop the trust management implementation
for permission (2b), that finally can be used to revise the delegation of execution model
(2b) and the trust model (2a). The process ends when no further analysis are needed.

4 Using SRE for Compliance with Data Privacy Legislation

To instantiate some of the above mentioned concepts we show some fragments of a com-
plex case study: the compliance to the Italian legislation on Privacy and Data Protection
by the University of Trento, leading to the definition and analysis of an ISO-17799-like
security management scheme (we refer to [43] for more detials). The final EU and Ital-
ian legislation systematized the norms on privacy and data protection by specifying

– the definitions of personal data, sensitive data, and data processing,
– the definitions of all entities involved in data processing, their roles and responsi-

bilities (controller, processor, operator, subject),
– the obligations relating to public and private data controllers with specific reference

to the legitimate purpose of data processing and the adoption of minimal precau-
tionary security measures to minimize the risks on data.

4.1 Modelling Actors

The first activity in the early requirements phase is actors’ modelling. In our example
we can list some of them:

Data Controller determines the purposes and means of the processing of personal
data. In the University, the data controller is identified with Chancellor (as the post-
holder is also the legal representative of the University).

Data Processor monitors personal data processing on behalf of the controller. In the
University, these are:

– Faculty Deans;
– Head of Department;

Security and Trust Requirements Engineering 247

Data
Subject

privacy
protection

guarantee
correct

data processing
execution

perform
data

processing

Chancellor

enforcement
guarantee law

perform
data

processing

compliance
with legal

requirements

comply with
internal orders
and regulation

comply with
internal orders
and regulation

Data
Processor

Data
Processing
Operator

ISA
CIO

CEO

D

DD

D D

D

D

(a) Actor Diagram

guarantee
correct

data processing
execution

perform
data

processing

Chancellor

guarantee law
enforcement

perform
data

processing

compliance
with legal

requirements

Data
Processor

comply with
internal orders
and regulation

Data
Processing
Operator

comply with
internal orders
and regulation

ISA

Dp

Dp

Dp

Dp

Dp

CEO

CIO

(b) Trust Management Implementation dia-
gram

Fig. 1. Actor Diagrams

– Central Directorate Managers, and in particular with:
• Chief Executive Officer (CEO);
• Chief Information Officer (CIO).

Data Processing Operator is appointed by the data controller or processor to perform
the operations related to the data processing or to manage and maintain the infor-
mation systems and services. At University of Trento, these are:

– Personal Data Processing Operator;
– Database Security Operator;
– Network Security Operator.

Data Subject is the natural or legal person to whom the personal data are related. In
the Secure Tropos terminology, this is the legitimate owner of the data.

4.2 Modelling Dependencies and Delegation

The analysis proceeds introducing the functional dependencies and the delegation of
permission between actors and the consequent integrated security and functional re-
quirements. Figure 1(a) and Figure 1(b) show the functional dependency model and the
trust management implementation. We use delegation of permission (Dp) to model the
actual transfer of rights in some form (e.g. a digital certificate, a signed paper, etc.), and
D for functional dependency.

In the functional dependency model, Chancellor is associated with a single relevant
goal: guarantee correct data processing execution, while CEO has an associated goal
compliance with legal requirements. Along similar lines, Data Processor and Data Pro-
cessing Operator want to comply with internal orders and regulation, while CIO, wants

248 P. Giorgini, F. Massacci, and N. Zannone

to guarantee law enforcement. Finally, the diagram includes some functional depen-
dencies: Data Subject depends on Chancellor for privacy protection goal; Chancellor
depends on Data Processor and Data Processing Operator to perform data processing;
and, in turn, Data Processor depends on Data Processing Operator for it.

In the actor diagram, Chancellor is associated with a single relevant goal: guarantee
correct data processing execution, while CEO has an associated goal compliance with
legal requirements. Along similar lines, Data Processor and Data Processing Operator
want to comply with internal orders and regulation, while CIO, wants to guarantee
law enforcement. Finally, the diagram includes some delegations of execution: Data
Subject delegates to Chancellor the goal privacy protection; Chancellor delegates to
Data Processor and Data Processing Operator the goal perform data processing; and,
in turn, Data Processor delegates it to Data Processing Operator.

In the trust management implementation diagram, Chancellor delegates permis-
sions to perform data processing to Data Processor and Data Processing Operator. In
turn, Data Processor delegates permissions to perform data processing to Data Pro-
cessing Operator.

At this stage, the analysis already reveals a number of pitfalls in the actual docu-
ment template provided by the ministry’s agency. The most notable one is the absolute
absence of functional dependencies between the Chancellor and the CEO, who is actu-
ally the one who runs the administration. Such functional dependency is present in the
Universities statutes, but not here (an apparently unrelated document).

Another missing part in the trust management implementation is the delegation of
permission from the data subject. This can be also automatically spotted with the tech-
niques developed in [26]. Somehow paradoxically (for a document template enacted in
fulfillment of a Data Protection Act) the process of acquisition of data (and the rela-
tive authorization) is neither mentioned nor forseen. In practice this gap is solved by
the University by a blanket authorization: in all the paper or electronic data collection
steps a signature is required to authorize the processing of data in compliance with the
privacy legislation.

4.3 Goal Refinement

In this paper, we present a goal analysis for Data Processor and refer to [43] for an
accurate analysis of the other actors involved in the system.

Figure 2 shows the goal analysis for Data Processor, relative to the goal comply
with internal orders and regulation. This goal is decomposed into provide for appoint-
ing data processing operators, security control and adopt security measures for which
Data Processor depends on CIO and CEO. The goal provide for appointing data pro-
cessing operators is decomposed into three goals: identify data processing operators for
which Data Processor depends on Data Processing Operator, give instructions to data
processing operators for which Data Processing Operator depends on Data Processor,
and enable access profile for which Data Processing Operator depends on Data Pro-
cessor and, in turn, Data Processor depends on CIO. The goal enable access profile is
decomposed into assign access profile, assign ID and password which Data Processor
depends on CIO, and communicate name of security operators for which CIO depends
on Data Processor. The goal security control is decomposed into monitor security mea-

Security and Trust Requirements Engineering 249

Data
Processing
Operator

Data
Processor

provide for
appointing

data processing
operators

identify data
processing
operators give

instruction

processing
operators

to data

define
allowed

data
defineaccess

procedures

assign
access
profile

assign
password

security
measures

adopt

communicate
change in

data processing
inventory

update and
communicateaccess

profile

enableaccess
profile

security
control

validate
security

measures

communicate
name of
security
operator

monitor
security
measure

application

CIO

communicate
staff

vacation

CEO
comply with

internal orders
and regulation

assign ID

D

D

D

D

D

DD

D
D

D

D

D

D

D

Fig. 2. Functional Dependency Model for Data Processor

sure application and other goals, such as communicate staff vacation and update and
communicate access profile, for which CIO depends on Data Processor, update and
communicate access profile.

Figure 3 shows the trust management implementation for Data Processor. The dia-
gram displays that Data Processor delegates mail with instructions to Data Processing
Operator. Further, Data Processor delegates the list of name of security operators, list
of employees in vacation, access profile and data processing inventory to CIO. Finally,
Data Processorreceives from CEO the list of security measures.

5 The Plot Thickens: Refining Delegation and Trust

In this section, we introduce a conceptual refinement of the delegation and trust rela-
tionships, that will allow us to capture and model important security facets [27,28].

In order to explain the conceptual refinement we will use examples based on the
case study presented in previous section. For the sake of readability we introduce here
dramatis personae 2 together with the rules they play:

Alice is an administrative officer, for example of the teaching evaluation office;
Bob, Bert, and Bill are students;
Sam is (the manager of) the student IT system;
Paul and Peter are professors.

2 This impersonation is actually closer to reality than one may think: the law requires the as-
signment of responsibility of each IT sub-system to a person.

250 P. Giorgini, F. Massacci, and N. Zannone

comply with
internal orders
and regulation

provide for
appointing

data processing
operators

identify data
processing
operators give

instructions
to data

processing
operators

enableaccess
profile

Data
Processor

security
control

assign
password assign

access
profile

defineaccess
procedures define

allowed
data

assign ID measures

validate
security

communicate
change in

data processing
inventory

communicate
staff

vacation

update and
communicateaccess

profile

monitor
security

measures
application

communicate
name of
security

operators

list of
name of
security

operators

adopt
security

measures

CEO

list of
security

measures

list of
employees
in vacation

access
profile

data
processing
inventory

CIO

mail within
instructions

Data
Processing
Operator

Dp

Dp

Dp

Dp

DpDp

Dp

Dp

Dp

Dp

Dp

Dp

Fig. 3. Trust Management Implementation for Data Processor

5.1 Execution vs Permission

Example 1. Alice is interested in gathering data on students’ performance, for which
she depends on Sam. Bob owns his sensitive personal information, such as his student
careers. Bob delegates permission to provide information about his career to Sam on
condition that his privacy is protected (i.e., his identity is not revealed).

In this scenario, there is a difference of relationship between Alice–Sam and Bob–
Sam. This difference is due to a difference in the type of delegation.

Example 2. Bob delegates permission to Sam to provide only the relevant information
and nothing else. On the other hand, Alice, who wants student data, delegates the exe-
cution of her goal to Sam. According to Alice, Sam should at least fulfill the goal she
requires. She is not interested in what Sam does with Bob’s trust, apart from getting
her information. The major worry of Alice is availability whereas Bob cares about au-
thorization. In other words, Alice’s major concerns would be that tasks are delegated to
people that can actually do them, whereas Bob would be concerned that subtasks are
given to trusted people who will not misuse the permissions they have acquired.

If we want to check functional and security requirements consistency, it is essential
to distinguish between these two notions of delegation. We use at-most delegation
when the delegater wants the delegatee at most achieves the goal, execute the plan,
or furnishes the resource. This is delegation of permission, where the delegatee thinks

Security and Trust Requirements Engineering 251

O

Provide
Personal

Information

Provide
Personal

Information

Alice

Bob

SamDe

Dp

Dp

De

Fig. 4. At-least and At-most Delegation

“I have the permission to achieve the goal (but I do not need to)”, whereas at-least
delegation means that the delegater wants the delegatee to achieve at least the goal.
This is the delegation of execution. The delegatee thinks, “Now, I have to get the goal
fulfilled (let’s start working)”. In the pictorial representation of Fig. 4 we represent these
relationship as edges respectively labeled by Dp and De.

Further, we want to separate the concepts of trust and delegation, as we might need
to model systems where some actors must delegate permission or execution to other
actors they don’t trust. Also in this case it is convenient to have a suitable distinction for
trust in managing permission and trust in managing execution. The meaning of at-most
trust is that an actor (truster) trusts that another actor (trustee) at most fulfills the goal
but will not overstep it. The meaning of at-least trust is that an actor (truster) trusts
that another actor (trustee) at least fulfills the goal.

Example 3. At-most trust is good for permissions: Bob trusts Sam to remain within
certain bounds. He may delegate Sam more permissions than actually needed because
Sam will not abuse them. At-least trust fits execution. Alice believe Sam can accomplish
her plans and possibly more.

The new Secure Tropos concepts “explain” the classical Tropos dependency be-
tween two actors in terms of trust and delegation (Fig. 5).

Indeed, the semantics associated to the Tropos dependency states that there is an
actor, the dependee, that wants to achieve a specific goal (perform a task or have a
resource) and there is another actor, the depender, that is able to satisfy the goal (perform
the task or deliver the resource). The two actors get an agreement and a goal (task or
resource) dependency is established between the two. The implicit assumption is that
after the agreement the depender will be responsible for the goal and will do the best to
achieve it.

The distinction between execution and permission allows us to define a dependency
in terms of trust and delegation. In particular, when the dependum is a goal or a plan we
have delegation and trust of execution, whereas when the dependum is a resource we
have delegation and trust of permission. In symbols:

depends(A, B, S) ⇐⇒ delegate(exec, A, B, S) ∧ trust(exec, A, B, S) (1)

252 P. Giorgini, F. Massacci, and N. Zannone

G

G

G

B

B

A

A

A B

Te

D

De De

D

Te

+

=

(a) Goal Dependency

B

B

A

A

A B

D D

Dp Dp

Tp Tp

R

R

R

=

+

(b) Resource Dependency

Fig. 5. Tropos dependency in terms of Secure Tropos

where S is a goal or a plan, and

depends(A, B, S) ⇐⇒ delegate(perm , ID , B, A)S ∧ trust(perm, B, A, S) (2)

where S is a resource. A graphical representation of these formulas is given, respec-
tively, in Fig. 5(a) and in Fig. 5(b). These diagrams use the label D for Tropos depen-
dency and labels Te and Tp, respectively for trust of execution and trust of permission.
Notice also from Fig. 5 that the same dependency is mapped into differently oriented
relations at the lower level.

5.2 Introducing Distrust

Another refinement is the introduction of negative authorizations which are needed for
some scenarios. Tropos already accommodates the notion of positive or negative contri-
bution of goals to the fulfillment of other goals. We use negative authorizations to help
the designer in shaping the perimeter of positive trust to avoid incautious delegation
certificates that may give more powers than desired.

Suppose that an actor should not be entitled to achieve a goal, perform a plan, or
delivery a resource. In situations where authorization administration is decentralized,
an actor possessing the right to achieve a goal, execute a plan, or delivery a resource,
can delegate the authorization to do that to the wrong actor.

We propose an explicit distrust relationship as an approach for handling this type of
situations. This is also sound from a cognitive point of view if we follow the definition
of trust given by [11]: trust is a mental state based on a set of beliefs. We can say that
if, on your own knowledge, you feel to trust me, then you trust me. Similarly, if you
feel like distrusting me, then you distrust me. Obviously, there are various reasons for
distrusting agents such as unskillfulness, unreliability and abuse, but these situations
are not treated here.

As we have done for trust, we also distinguish between distrust of execution and
distrust of permission. The graphical diagrams presented in this paper use the labels Se
and Sp, respectively, for distrust of execution and distrust of permission. In the case
there is no explicit trust relationship between agents, the label “?” is used.

Security and Trust Requirements Engineering 253

O

Provide
Personal

Information
Provide
Personal

Information

Provide
Personal

Information

DD

Mp

Mp

Sam

BobO

Alice

M(Sam,PPI)

De

Dp

Dp

De

(a) At-most Monitor

O

Provide
Personal

Information

Provide
Personal

Information

Provide
Personal

Information

D

D

Me

Me

Alice Sam

BobCarol

M(Sam,PPI)

De

Dp

De

Dp

(b) At-least Monitor

Fig. 6. Monitoring

5.3 Monitoring

When work needs to be delegated even when there is no trust, then monitoring can offer
a surrogate for trust. Accordingly to Gans’s et al. [21], the existence of distrust can be
tolerated with an additional overhead of monitoring the untrustworthy delegatee. Here
we refine Gans’s et al. intuition integrating it in our framework.

The goal of an actor playing the role of monitor is to check for the violation of
trust3. The act of monitoring can be done by the delegater himself4, or he can delegate
it to some other actors to get it done. Depending on the type of delegation, we have
two different kinds of monitors: at-most monitor and at-least monitor. Consider the
situation presented in Fig. 4.

Example 4. Suppose that there is no trust between Bob and Sam for the goal “maintain
privacy”, but the student must delegate permission nonetheless. In this case, he depends
(D) on the ombudsman (O) for monitoring if Sam transgresses her permissions. This is
shown in Fig. 6(a)) with an at-most monitor (monitor for permission – Mp) relationship
between the ombudsman and Sam.

Example 5. If Alice is not confident that Sam will provide updated information, she
may delegate to her secretary Carol the task of confirming with, or nagging Sam to
insert new data as soon as it becomes available. This is shown in Fig. 6(b)) with an
at-least monitor (monitor for execution – Me) relationship between Carol and Sam.

Another important distinction that emerges when we use a monitor is related to what
we have to monitor. If we are monitoring a plan (i.e., a specific sequence of actions),
the Monitor has to check if Sam executes the actions of the plan. What happens if Sam
delegates the task or some of its subtasks to other actors?

3 Indeed, monitoring could also be used for the evaluation of the fulfillment of a goal assigned
to a trusted actor.

4 Intuitively, this is like saying that fellow is unreliable, I’ll give him the job but keep an eye on
him myself”.

254 P. Giorgini, F. Massacci, and N. Zannone

Example 6. To achieve the goal delegated to him in Example 5, Sam will issue a letter
to the head of each student secretariat office so that student marks are entered into the
system within 30 days from the date that exams have taken place.

A solution to this problem is to extend the monitoring to all sublevels of delegation
until the level where the actual execution takes place. So, there will be a monitor rela-
tionship between the Monitor and all the actor involved in the execution of at least a
part of the task.

Example 7. To reach the objective of 30 days requires that professors return to the
office assigned marks. This is a further step of delegation of execution. Then, the actor
responsible at the office, beside actually monitoring his employees, may also assign the
task of reminding professors that they must return on time their mark sheets.

Notice that monitoring as such is not a primitive construct. It can be captured by
other constructs within our modelling framework. Specifically, every goal, plan and
resource will either be delegated during the design process to a trusted actor, or it will
be delegated to an untrusted one, in which case the delegatee will be monitored by a
trusted actor.

On the formal model this corresponds to a design pattern formalized in terms of
additional axioms that allow us to conclude that an actor is confident that a goal will be
executed, a plan will be performed or a resource will be furnished, or a permission will
not be abused even if existing trust relations suggest otherwise.

Once we see monitoring as a simple design solution (essentially a security pattern)
we can treat monitoring goals just as any other goal. So they can be further subject to
refinement, delegation of execution and delegation of permission. Trust relationships
linked to monitoring can then be captured with standard constructs. For example, mon-
itoring often requires having permission to access monitored data or personnel. This
itself may create problems of permission and authorization that can be model in the
framework.

5.4 Social vs Individual Trust

When we model and analyze functional trust and security relationships, it is possible
that such requirements are given only at individual level or at social level and that there
is a mismatch between the levels. Let us see why this is needed with examples drawn
from the same domain.

Example 8. According the University policy, administrative officers should trust man-
agers of IT systems to get information they need to perform their duties (Fig. 7(a)). Sam
is the new manager of the student IT system and Alice has never met him before. Still,
Alice should trust Sam for getting student personal information in order to guarantee
the availability of the goal.

Example 9. Professors should not rely on the teaching evaluation officer secretary for
providing a formal report to the University Teaching Board (Fig. 7(b)). Here, Paul and
Carol don’t know each other. Then, Paul should distrust Carol for providing a formal
report to University Teaching Board.

Security and Trust Requirements Engineering 255

Officer
Admin

provide
personal

information

provide
personal

information
IT system
Manager

? ?

TeTe

Alice Sam

(a) Trust of execution

provide
formal report

to UTB

provide
formal report

to UTB

TEO
Secretary

? ?

Se SeProfessor

Paul Carol

(b) Distrust of execution

Fig. 7. Missing (dis)trust relations at individual level

We don’t consider the case in which the relations are missing at social level because
this level represents the structure of the organization which should be described explic-
itly in the requirements. The presence of a large number of trust relations at individual
level that is not matched by a social level may be an indicator of a missing link at so-
cial level (or of a problem in the organization for distrust relations). On the contrary,
Hannoun et al. [31] propose to detect the inadequacy of an organization regarding the
relations existing among the agents involved in the system.

In [26] we have only considered when trust is explicit, and we have not distin-
guished the case where there is explicit distrust and the case where no trust relation is
given. Contrarily, in this paper we take in consideration all these three possibilities. The
presence of positive and negative authorization at the same time could generate some
conflicts on trust relationships. We define a trust conflict the situation where there are
both a positive and a negative trust relation between two actors for the same trustum.
Next, formal definitions are given.

Definition 1. A conflict on trust of execution occurs when

∃x, y ∈ Agent ∃s ∈ Goal ∪ Task ∪ Resource | trust(exec, x, y, s) ∧ distrust(exec, x, y, s)

Definition 2. A conflict on trust of permission occurs when

∃x, y ∈ Agent ∃s ∈ Goal ∪ Task ∪ Resource | trust(perm , x, y, s) ∧ distrust(perm , x, y, s)

A trust conflict may exist, for example, since system designers wrongly put both a
(implicit) trust relation and the corresponding distrust relation.

Example 10. The teaching evaluation officer depends on the manager of the student
IT system for providing update information, but the latter is distrusted for such goal
(Figure 8(a)).

When we model and analyze security requirements, it is also possible that such
requirements are specified at both individual and social levels, they could be in contrast
with each other.

256 P. Giorgini, F. Massacci, and N. Zannone

Teaching
Evaluation

Officer

provide
update

information

provide
update

information

Manager
IT system

Se Se

DD

(a) Conflict due to implicit trust

provide
personal

information

provide
personal

information

IT system
ManagerAdmin

Officer TeTe

SeSeAlice Sam

(b) Social Trust vs Individual Distrust

provide
formal report

to UTB

provide
formal report

to UTB
TEO

SecretarySe Se

Te Te CarolPaul

Professor

(c) Social Distrust vs Individual Trust

Fig. 8. Conflicts on (dis)trust relations

Example 11. Consider again Example 8. What happens if Alice had some problems
with Sam in the past and he doesn’t trust her? This scenario is presented in Fig.8(b).

Example 12. Consider again Example 9. What happen if Paul trusts Carol for providing
a formal report to University Teaching Board? This scenario is presented in Fig. 8(c).

Monitoring, which we have introduced early in thic paper, is a good solution to this
extent. So we don’t need to add anything to the system just to cope with trust conflicts.

Example 13. Referring to Example 11, we believe that Alice should monitor (or dele-
gate this task to another actor) whether Sam does what he has to do since the organiza-
tion imposes her to trust him, but it is not her own choice.

6 Automated Reasoning in SRE

We use Datalog [1] as the underlying semantic framework, also to be close to the se-
mantics of other frameworks for trust or security (e.g. [15,39,50]).

A Datalog program is a set of rules of the form L:- L1 ∧ ... ∧ Ln where L, called
head, is a positive literal and L1, ..., Ln are literals and they are called body. Intuitively,
if L1, ..., Ln are true in the model then L must be true in the model. We use the notation

Security and Trust Requirements Engineering 257

Table 2. Predicates

General predicates
goal(Goal : g)
plan(Plan : t)
resource(Resource : r)
agent(Agent : a)
position(Position : a)
role(Role : a)
play(Agent : a, Role : b)
is a(Role : a, Role : b)
depends(Actor : a, Actor : b, Service : s)
delegate(Type : t, Actor : a, Actor : b, Service : s)
delegateChain(Type : t, Actor : a, Actor : b, Service : s)
trust(Type : t, Actor : a, Actor : b, Service : s)
trustChain(Type : t, Actor : a, Actor : b, Service : s)
distrust(Type : t, Actor : a, Actor : b, Service : s)
distrustChain(Type : t, Actor : a, Actor : b, Service : s)
monitoring(Type : t, Actor : a, Actor : b, Service : s)
confident(Type : t, Actor : a, Service : s)
Specific for execution
requests(Actor : a, Service : s)
provides(Actor : a, Service : s)
should do(Actor : a, Service : s)
can satisfy(Actor : a, Service : s)
Specific for Permission
owns(Actor : a, Service : s)
has per(Actor : a, Service : s)
Goal refinement
subgoal(Service : s1, Service : s2)
OR subgoal(Service : s1, Service : s2)
AND subgoal(Service : s1, Service : s2)
AND decomp(Service : s1, Service : s2, Service : s3)

{L}:-L1, . . . , Ln to indicate that if L1, . . . , Ln are true then L may be true. Essen-
tially, L will be added to the model only if some constraints demand its inclusion. This
construction can be captured with a simple encoding in logic programs. In Datalog,
negation is treated as negation as failure: if there is no evidence that an atom is true, it
is considered to be false. Hence if an atom is not true in some model, then its negation
should be considered to be true in that model.

We start by presenting the predicates for our framework. We distinguish between
two main types of predicates: extensional and intensional. Extensional predicates are
predicates set directly with the help of ground facts and are the ones corresponding the
edge and circles drawn by the requirements engineer on the CASE tool. Intensional
predicates are implicitly determined with the help of rules. Table 2 presents the predi-
cates used to formalize the requirements. For compactness’ sake we use the first argu-
ment of the predicates to indicate the type of actions. Thus, delegate, delegateChain,
distrust, distrustChain, and monitoring have a type t ∈ {exec, perm}; trust, trustChain

258 P. Giorgini, F. Massacci, and N. Zannone

have a type t ∈ {exec, perm ,mon}; and confident has a type t ∈ {satisfy , exec,
owner ,mon}. Once again, we specify predicates for generic “services” because differ-
entiating them into goals, plans and resources is immediate5.

The unary predicates goal, plan and resource are used respectively for identifying
goals, tasks and resource. Note that type Goal, Task and Resource are sub-types of
Service. We shall use letters S, G, T and R possibly with indices as metavariables
ranging over the terms, respectively, of type Service, Goal, Task and Resource.
The intuition is that agent(a) holds if instance a is an agent, position(a) holds if in-
stance a is a position, and role(a) holds if instance a is a role. Note that type Agent,
Position and Role are sub-types of Actor. We shall use letters X , Y and Z as
metavariables ranging over the terms of type Actor, A, B and C as metavariables
ranging over the terms of type Agent, and T , Q and V as metavariables ranging over
the terms of type Role. Metalevel variables are used as a syntactic sugar to avoid to
write the predicates that type variables. For example, when the metavariable G occurs
in a rule, the predicate goal(G) should be put in the body of the rule. The predicate
play(a, b) holds if agent a is an instance of role b. The intuition is that is a(a, b) holds
if role a is a specialization of role b. The predicate depends(a, b, s) holds if actor a
depends on actor b for service s. Notice also that when a relation uses variables of type
Actor the relation can apply to both social and individual levels, but separately.

6.1 Formal Model for Execution

The predicates that we introduced correspond to the relations that the requirements
engineer can actually draw during his analysis. The predicate requests(a, s) holds if
actor a wants service s fulfilled, while provides(a, s) holds if actor a has the capability
to fulfill service s. The predicate delegate(exec, a, b, s) holds if actor a delegates6 the
execution of service s to actor b. Actor a is called delegater; actor b is called delegatee.
The predicate trust(exec, a, b, s) holds is actor a trusts that actor b at least fulfills service
s. Actor a is called truster; actor b is called trustee. The predicate trust(mon, a, b, s)
holds if actor a trusts that actor b monitors whether service s will be satisfied. The
predicate monitoring(exec, a, b, s) holds if actor a monitors if actor b at least can satisfy
service s.

Other predicates are used to define properties that will be used during formal anal-
ysis. The predicates delegateChain(exec, a, b, s) and trustChain(exec, a, b, s) hold if
there is a delegation and a trust chain respectively, between actor a and actor b. The
predicate should do(a, s) identifies actors who should directly fulfill the service. The
basic idea of the predicate can satisfy is that “for every goal I have assigned responsibil-
ities so that it can be fulfilled”. In other words, if an actor has the objective of fulfilling
a service, he can satisfy it. Thus it locates the common leaves of the delegation trees
of execution and permission. Thus, the predicate can satisfy(a, s) holds if actor a can
satisfy service s. The predicate confident(satisfy , a, s) holds if actor a is confident that

5 For resources we must replace the subgoal relation with the part-of relation.
6 For the sake of simplicity we do not deal with the question of depth here. See Li et al. [38] for

an account of delegation with depth. What has emerged from several case studies is that depth
is less important than qualifications such as “only to members of the same office”.

Security and Trust Requirements Engineering 259

Table 3. Axioms for execution

Delegation
E1 delegateChain(exec, X, Y, S) ← delegate(exec, X, Y, S)
E2 delegateChain(exec, X, Z, S) ← delegate(exec, X, Y, S) ∧ delegateChain(exec, Y,Z, S)
Trust
E3 distrustChain(exec, X, Y, S) ← distrust(exec, X, Y, S)

E4 distrustChain(exec, X, Z, S) ←
{

trustChain(exec, X, Y, S) ∧ distrust(exec, Y, Z, S) ∧
not distrustChain(exec, X, Y, S)

E5 trustChain(exec, X, Y, S) ← trust(exec, X, Y, S) ∧ not distrustChain(exec, X, Y, S)

E6 trustChain(exec, X, Z, S) ←
{

trustChain(exec, X, Y, S) ∧ trustChain(exec, Y, Z, S) ∧
not distrustChain(exec, X, Z, S)

E7 trustChain(exec, X, Z, S) ← trustChain(mon, X, Y, S) ∧ monitoring(exec, Y, Z, S)
E8 trustChain(exec, X, Y, S1) ← subgoal(S, S1) ∧ trustChain(exec, X, Y, S)
M1 trustChain(mon, X, Y, S) ← trust(mon, X, Y, S)
M2 trustChain(mon, X, Z, S) ← trust(mon, X, Y, S) ∧ trustChain(mon, Y, Z, S)
M3 trustChain(mon, X, Z, S) ← trustChain(exec, X, Y, S) ∧ trustChain(mon, Y, Z, S)
M4 trustChain(mon, X, Y, S1) ← subgoal(S, S1) ∧ trustChain(mon, X, Z, S)
Monitoring

M5 monitoring(exec, Y, Z, S1) ←
{

delegateChain(exec, X, Y, S1)∧
monitoring(exec, Z, X, S) ∧ subgoal(S1, S)

M6 confident(mon, X, Y, S) ← trust(mon, X, Z, S) ∧ monitoring(exec, Z, Y, S)
Should do
E9 should do(X, S) ← delegateChain(exec, Y, X, S) ∧ provides(X, S)
E10 should do(X, S) ← requests(X, S) ∧ provides(X, S)
Can satisfy
E11 can satisfy(X, S) ← should do(X, S)
E12 can satisfy(X, S) ← delegate(exec, X, B, S) ∧ can satisfy(B,S)
E13 can satisfy(X, S) ← OR subgoal(S1, S) ∧ can satisfy(X, S1)
E14 can satisfy(X, S) ← AND decomp(S, S1, S2) ∧ can satisfy(X, S1) ∧ can satisfy(X, S2)
Confident to can satisfy
E15 confident(satisfy , X, S) ← should do(X, S)

E16 confident(satisfy , X, S) ←
{

delegateChain(exec, X, Y, S) ∧
trustChain(exec, X, Y, S) ∧ confident(satisfy , Y, S)

E17 confident(satisfy , X, S) ← OR subgoal(S1, S) ∧ confident(satisfy , X, S1)

E18 confident(satisfy , X, S) ←
{

AND decomp(S, S1, S2) ∧ confident(satisfy , X, S1)
∧confident(satisfy , X, S2)

service s can be satisfied. Finally, we have the predicates for goal refinement. Their
semantics and axiomatization are straight-forward.

The axiomatization is more complex for modelling execution as shown in Table 3.
E1 and E2 build a delegation chain of execution. E3-8 define the intensional versions,
trustChain and distrustChain of the extensional predicates trust and distrust that are
used to build (dis)trust chains by propagating (dis)trust of execution (permission) rela-
tions. E5 and E6 (M1 and M2) build a trust chain for execution (monitoring); E5 builds
chains over monitoring steps. E8 and M4 have chains propagate to subgoals. According
to E8 execution-trust flows top-down with respect to goal refinements. The axiom for
monitoring M4 states that trustChain flows top-down with respect to goal refinements.
M5 states that if an actor under monitoring delegates a service to another, then the mon-
itor have to watch for the delegatee, that is, the monitor follows the delegation. M6

260 P. Giorgini, F. Massacci, and N. Zannone

introduces the intensional predicate confident(mon, a, b, s): actor a is confident that
there exists someone that monitors actor b for service s.

The remaining axioms describe how global properties of the model are defined. E9-
10 state that an actor has to execute the service if he provides a service and if either
some actor delegates the service to him, or he himself aims for the service. E11-12 state
an actor, who requests for a service, can satisfy the service if either he provides it or
he has delegated it to someone who can satisfy it. Goal refinements are taken care of
by using the axioms E13-14. If an actor can satisfy at least one of the or-subgoals of a
service, then he can satisfy the main service. Also, if he can satisfy all and-subgoals,
then he can satisfy the main service.

The notion of confidence is captured by axioms E15-E18. An actor is confident that
a service will be fulfilled, if he knows that all delegations have been done to trusted or
monitored agents and that the agents who will ultimately execute the service, have the
permission to do so. Goal refinements are taken care of by using axioms E17-18: if an
actor is confident that at least one of the or-subgoals of a service will be fulfilled, then
he can be confident that the service will be fulfilled. The axiom for and-decomposition
is dual.

6.2 Formal Model for Permission

In Table 2 we also have predicates for modelling permission. The first set of predi-
cates corresponds to the relations drawn by the requirements engineer. The predicate
owns(a, s) holds if actor a owns service s. The owner of a service has full authority
concerning access and usage of his services, and he can also delegate this authority to
other actors. The intuition is that delegate(perm , a, b, s) holds if actor a at most del-
egates the permission to fulfill service s to actor b. The predicate trust(perm, a, b, s)
holds is actor a trusts that actor b at most has the permission to fulfill service s. The
predicate monitoring(perm , a, b, s) is the dual of the execution counterpart.

Also in this case other predicates are used to define interesting properties for the for-
mal analysis by the requirement engineer. The predicates delegateChain(perm, a, b, s)
and trustChain(perm , a, b, s) hold if there is a delegation, resp. a trust chain of permis-
sion among actor a and actor b. The basic idea of has per sums up the possible ways
in which an actor can grab the permission on a service: either directly or by delegation.
From the point of view of the owner, confidence means that the owner is confident that
the permission that he has delegated will not be misused. Alternatively, the owner is
confident that he has delegated permission only to trusted or monitored agents. This
means that even if there is one untrusted or unmonitored delegation, then the owner
could be uneasy about the likely misuse of his permissions. So, an owner is confident,
if there is no likely misuse of his permission. It can be seen that there is an intrinsic
double negation in the statement. So we try to model it using a predicate diffident(a, s).
At any point of delegation of permission, the delegating agent is diffident, if the dele-
gation is being done to an agent who is neither trusted not monitored or if the delegatee
could be diffident himself. In this way, confident(owner , a, s) holds if the owner a is
confident to give the permission on service s only to trusted actors.

Table 4 presents the axioms for modelling permission. P1 and P2 build a delegation
chain of permission. P3-6 define the intensional versions, trustChain and distrustChain

Security and Trust Requirements Engineering 261

Table 4. Axioms for permission

Delegation
P1 delegateChain(perm, X, Y, S) ← delegate(perm , X, Y, S)
P2 delegateChain(perm, X, Z, S) ← delegate(perm, X, Y, S)∧delegateChain(perm, Y, Z, S)
Trust
P3 distrustChain(perm, X, Y, S) ← distrust(perm , X, Y, S)

P4 distrustChain(perm, X, Z, S) ←
{

trustChain(perm , X, Y, S) ∧ distrust(perm , Y, Z, S) ∧
not distrustChain(perm , X, Y, S)

P5 trustChain(perm , X, Y, S) ← trust(perm , X, Y, S) ∧ not distrustChain(perm, A, B, S)

P6 trustChain(perm , X, Z, S) ←
{

trustChain(perm, X, Y, S) ∧ trustChain(perm , Y, Z, S) ∧
not distrustChain(perm, X, Z, S)

P7 trustChain(perm , X, Z, S) ← trustChain(mon, X, Y, S) ∧ monitoring(perm, Y,Z, S)
P8 trustChain(perm , X, Y, S) ← subgoal(S, S1) ∧ trustChain(perm , X, Y, S1)
M7 trustChain(mon, X, Z, S) ← trustChain(perm, X, Y, S) ∧ trustChain(mon, Y, Z, S)
Monitoring

M8 monitoring(perm , Z, Y, S1) ←
{

delegateChain(perm , X, Y, S1)∧
monitoring(perm , Z, X, S) ∧ subgoal(S1, S)

M9 confident(mon, X, Y, S) ← trust(mon, X, Z, S) ∧ monitoring(perm, Z, Y, S)
Has permission
P9 has per(X, S) ← owns(X, S)
P10 has per(X, S) ← delegateChain(perm, Y, X, S) ∧ has per(Y, S)
P11 has per(X, S1) ← subgoal(S1, S) ∧ has per(X, S)
Owner is confident to give the service to trusted actors
P12 confident(owner , X, S) ← owns(X, S) ∧ not diffident(X, S)
P13 diffident(X, S) ← delegateChain(perm , X, Y, S) ∧ diffident(Y, S)
P14 diffident(X, S) ← delegateChain(perm , X, Y, S) ∧ not trustChain(perm , X, Y, S)
P15 diffident(X, S) ← subgoal(S1, S) ∧ diffident(X, S1)

of the extensional predicates trust and distrust that are used to build (dis)trust chains
by propagating (dis)trust of permission relations.

P5 and P6 build a trust chain for permission; P7 builds chains over monitoring
steps. P8 has the chain propagate through subgoals. If an actor trusts that another will
not overstep the set of actions required to fulfill a subgoal of a service, then the first
can trust the last not to overstep the set of actions required to fulfill the service. The
permission trust, with respect to goal refinements, flows bottom-up. M7 is used to build
a trust chain for monitor. M8 states that if an actor under monitoring delegates a service
to another, then the monitor have to watch for the delegatee, that is, the monitor follows
the delegation. M9 is the permission counterpart of M6. The owner of a service has
full authority concerning access and disposition of it. Thus, P9 states that if an actor
owns a service, he has permission on it. P10 states that the delegatee has permission on
the service. P11 propagates permission through subgoals. The notion of confidence and
diffidence that we have sketched above is captured by the axioms P12-P16.

6.3 Combining Execution and Permission

More sophisticated properties require reasoning with both execution and permission.
To this end, we introduce some notions that put together these two notions. In Table 5

262 P. Giorgini, F. Massacci, and N. Zannone

Table 5. Axioms Involving both permission and execution

Can see the service fulfilled (can execute)
Ax1 can execute(X, S) ← should do(X, S) ∧ has per(X, S)
Ax2 can execute(X, S) ← delegateChain(exec, X, Y, S) ∧ can execute(Y, S)
Ax3 can execute(X, S) ← OR subgoal(S1, S) ∧ can execute(X, S1)

Ax4 can execute(X, S) ←
{

AND decomp(S, S1, S2) ∧ can execute(X, S1)
∧ can execute(X, S2)

Confident to see the service fulfilled (confident to execute)
Ax5 confident(exec, X, S) ← should do(X, S) ∧ has per(X, S)

Ax6 confident(exec, X, S) ←
{

delegateChain(exec, X, Y, S) ∧
trustChain(exec, X, Y, S) ∧ confident(exec, Y, S)

Ax7 confident(exec, X, S) ← OR subgoal(S1, S) ∧ confident(exec, X, S1)

Ax8 confident(exec, X, S) ←
{

AND decomp(S, S1, S2) ∧ confident(exec, X, S1)
∧ confident(exec, X, S2)

Need to know
Ax9 need to have perm(X, S) ← should do(X, S)

Ax10 need to have perm(X, S) ←
{

delegate(perm , X, Y, S) ∧ need to have perm(Y, S)
∧ not other delegater(X, Y, S)

Ax11 other delegater(X, Y, S) ←
{

delegate(perm , Z, Y, S) ∧
need to have perm(Y, S) ∧ X �= Z

we present the notions from both the point of view of the requester and the point of
view of the owner. The predicate can execute(a, s) holds if actor a can see service s
fulfilled. The predicate confident(exec, a, s) holds if actor a is confident to see service
s fulfilled. Actor a, who aims for service s, is confident that s will be fulfilled, if he
knows that all delegations have been done to trusted or monitored agents and that the
agents who will ultimately execute the service, have the permission to do so. This is
done using the axioms Ax5-6. Goal refinements are taken care of by using the axioms
Ax7-8. If a is confident that at least one of the or-subgoals of s will be fulfilled, then a
can be confident that s will be fulfilled. Also, if a is confident that all and-subgoals of s
will be fulfilled, then a can be confident that s will be fulfilled.

Owners may wish to delegate permissions to providers only if the latter actually do
need the permission. The last part of Table 5 defines the predicates that are necessary to
analyze need-to-know properties. As a result of absence of diffidence, the owner can be
confident that his permission will not be misused. But has this permission reached the
agents who actually need it? The owner might also want to ensure that there has been
not unwanted delegation of permission. This can be achieved by identifying the agents
who actually need-to-know (or rather need-to-have) the permission. This set of axioms
captures also the possibility of having alternate paths of permission delegations. In this
case the formal analysis will not yield one model but multiple models in which only
one path of delegation is labeled by the need-to-have property and the others are not.

Example 14 (Figure 9). Alice and Carol (7 and 8) have both received the consent (per-
mission) by Bob (1) for using his personal data, and both delegate it to the faculty
secretariat (3), which must have the permission to provide the data to Paul (6), the uni-
versity tutor who should provide personal counseling to Bob. In this case only one of
either Alice or Carol needs to have the permission.

Security and Trust Requirements Engineering 263

Delegation of permission

Delegation of execution

Trust of permission

Trust of execution

6

3

87

1 2

4 5

REQUESTER

PROVIDER

OWNER

Fig. 9. Need-to-Know and Multiple Permissions Paths

6.4 Other Features

In Table 6 there are the axioms to map Tropos dependency into Secure Tropos frame-
work and vice versa. Notice that ST1-2 and ST5 have also to be repeated for the case
where the dependum is a plan.

Table 6. Axioms for mapping Tropos into Secure Tropos and vive versa

From Tropos to Secure Tropos
ST1 trust(exec, X, Y, G) ← depends(X, Y, G)
ST2 delegate(exec, X, Y, G) ← depends(X, Y,G)
ST3 trust(perm , Y, X, R) ← depends(X, Y, R)
ST4 delegate(perm, Y,X, R) ← depends(X, Y, R)
From Secure Tropos to Tropos

ST5 depends(X, Y, G) ←
{

trust(exec, X, Y, G) ∧ delegate(exec, X, Y, G) ∧
not distrust(exec, X, Y, G)

ST6 depends(X, Y, R) ←
{

trust(perm, Y, X, R) ∧ delegate(perm, Y, X, R)∧
not distrust(perm , Y, X, R)

Table 7 presents the axioms for role hierarchy and for mapping relations from so-
cial level to individual level. The predicate specialize is the intensional version of is a,
whereas instance is intensional version of play. Axioms SI1-13 have to be repeated
replacing the predicate instance with specialize and predicate agent with role for com-
pleting social level with respect to role hierarchy.

6.5 Analysis and Verification

Design properties are not enforced with axioms for two reasons. At first the actual sys-
tem drawn by the requirement engineer may not satisfy them, and therefore the missing
link may be actually a bug. Second, there might be many ways in which a require-

264 P. Giorgini, F. Massacci, and N. Zannone

Table 7. Axioms for role hierarchy and for mapping social level into individual level

Role Hierarchy
RH1 specialize(T, Q) ← is a(T, Q)
RH2 specialize(T, Q) ← specialize(T, V) ∧ is a(V, Q)
RH3 instance(A,T) ← play(A, T)
RH4 instance(A,T) ← instance(A, Q) ∧ specialize(Q, T)
From social level to individual level
SI1 provides(A, S) ← provides(T, S) ∧ instance(A,T)
SI2 requests(A, S) ← requests(T, S) ∧ instance(A, T)
SI3 owns(A,S) ← owns(T, S) ∧ instance(A, T)
SI4 trust(exec, A, B, S) ← trust(exec, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI5 trust(perm, A, B, S) ← trust(perm , T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI6 distrust(exec, A,B, S) ← distrust(exec, T, Q,S) ∧ instance(A,T) ∧ instance(B, Q)
SI7 distrust(perm , A,B, S) ← distrust(perm, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI8 delegate(exec, A,B, S) ← delegate(exec, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI9 delegate(perm , A, B, S) ← delegate(perm , T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI10 monitoring(exec, A, B, S) ← monitoring(exec, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI11 monitoring(perm, A,B, S) ← monitoring(perm, T, Q,S)∧ instance(A, T)∧ instance(B, Q)
SI12 trust(mon, A,B, S) ← trust(mon, T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)
SI13 depends(A, B, S) ← depends(T, Q, S) ∧ instance(A, T) ∧ instance(B, Q)

6

1 2 3

4 5PROVIDER

REQUESTER

(a) From requesters’ viewpoint

3

1 2

4 5

OWNER

(b) From owners’ viewpoint

Fig. 10. Design for delegation of execution and permission

ment engineer may wish to fulfill desired properties. We use the DLV system7 to verify
security properties with respect to a Secure Tropos model.

In Table 8 we use the A ⇒? B to mean that one must check that each time A holds
it is desirable that B also holds. In Datalog this can be represented as the constraint
:- A, not B. If the set of features is not consistent, i.e., they cannot all be simultaneously
satisfied, the system is inconsistent, and hence it is not secure. This also guarantee
us that our proposed axioms are consistent if we check for consistency of the model
without trying to enforce any property.

Pro1 states that if there is a delegation chain either the delegater trusts the delegatee
or there is the monitor and the delegater trust the monitor. Pro2 states that a requester
wants to can satisfy his goals, and Pro3 states that a requester wants to be confident to
satisfy the service.

7 http://www.dbai.tuwien.ac.at/proj/dlv

Security and Trust Requirements Engineering 265

Table 8. Desirable Properties of a Design

Execution
Pro1 delegateChain(exec, X, Y, S) ⇒? trustChain(exec, X, Y, S)
Pro2 requests(X, S) ⇒?can satisfy(X, S)
Pro3 requests(X, S) ⇒?confident(satisfy , X, S)
Pro4 should do(X, S) ⇒?not delegateChain(exec, X, Y, S)
Permission
Pro5 delegateChain(perm, X, Y, S) ⇒? trustChain(perm , X, Y, S)
Pro6 owns(X, S) ⇒? confident(owner , X, S)
Pro7 owns(X, S) ⇒? not delegateChain(perm, Y, X, S) ∧ X �= Y

Execution & Permission
Pro8 requests(X, S) ⇒?can execute(X, S)
Pro9 requests(X, S) ⇒?confident(exec, X, S)
Pro10 owns(X, S) ⇒?need to have perm(X, S)
Pro11 owns(X, S) ⇒?need to have perm(X, S) ∧ confident(owner , X, S)

Example 15 (Figure 10(a)). Bob and Bert (1 and 2) need counseling. They can receive
it (formal relation can satisfy) because they delegate the execution to Paul and Peter (4
and 5), while Bill (3) cannot receives all necessary advices because he requested some
of them only to Alice (6) which is not able to provide counseling on faculty matters.

Bob is also confident to receive all counseling he needs since he delegates the exe-
cution to Paul and Peter (4 and 5) whom he trusts, while Bert is not confident since he
delegates to Paul (4) that he does not trust.

Pro4 states that if an actor provides a service, then, if either some actor delegates the
service to him, or if he himself requests the service, then he has to execute the service
without further delegation. Pro5 states that if there is a delegation chain, either the
delegater trusts the delegatee or there is the monitor. Pro6 states that the owner of the
service has to be confident to give the service to trusted actors, and Pro7 states that a
service cannot come back to the owner.

Example 16 (Figure 10(b)). Bob and Bert (1 and 2) need to provide their personal data
for receiving accurate counseling. Bob is confident on his personal data since he dele-
gates the permission on it to two Paul and Peter (4 and 5) who he trusts to use the data
at most for counseling. On the other hand, Bert is not confident on her data since she
delegates it to Paul (4) whom she does not trust to keep her information confidential.

This example is very close to the example that we have previously seen on misplaced
delegation (Example 15). What changes is what can be obtained by poor Bert. In the
former case he is afraid to receive a bad advice (delegation of execution), in the latter
that her information can be used for other things than providing counseling.

The last part of Table 8 shows properties to verify at-most model and at-least model
at the same time. Pro8 states that the requester has to can see the service fulfilled. Pro9
states that the requester has to be confident to see the service fulfilled.

Table 9 presents the properties used to identifying conflicts that occur when both a
trust and a distrust relations exist among two actors for the same service. Pro1-2 are used
to identify generic conflicts and correspond to Definition 1 and 2. These properties apply

266 P. Giorgini, F. Massacci, and N. Zannone

Table 9. Properties for identifying conflicts

TC1 trustChain(exec, X, Y, S) ⇒?not distrustChain(exec, X, Y, S)
TC2 trustChain(perm , X, Y, S) ⇒?not distrustChain(perm, X, Y, S)

TC3 trustChain(exec, A,B, S) ⇒?
{

not distrustChain(exec, T, Q, S) ∧
instance(A, T) ∧ instance(B, Q)

TC4 trustChain(perm , A,B, S) ⇒?
{

not distrustChain(perm , T, Q, S) ∧
instance(A, T) ∧ instance(B, Q)

TC5 distrustChain(exec, A, B, S) ⇒?
{

not trustChain(exec, T, Q,S) ∧
instance(A, T) ∧ instance(B, Q)

TC6 distrustChain(perm , A, B, S) ⇒?
{

not trustChain(perm, T, Q, S)∧
instance(A, T) ∧ instance(B, Q)

Table 10. Axioms for solving conflicts

C1 {monitoring(exec, M, B, S)} ←

⎧⎪⎪⎨
⎪⎪⎩

distrustChain(exec, A, B, S) ∧
trustChain(exec, T, Q,S) ∧

instance(A,T) ∧ instance(B, Q)∧
trustChain(mon, A, M, S)

C2 {monitoring(perm , M, B, S)} ←

⎧⎪⎪⎨
⎪⎪⎩

distrustChain(perm, A, B, S) ∧
trustChain(perm, T, Q, S)∧

instance(A,T) ∧ instance(B, Q)∧
trustChain(mon, A, M, S)

Table 11. Axioms in order to support monitoring

E4′ distrust(exec, A,B, S) ←
{

distrust(exec, T, Q,S) ∧ instance(A,T)∧
instance(B, Q) ∧ not confident(mon, A,B, S)

P4′ distrust(perm , A,B, S) ←
{

distrust(perm, T, Q,S) ∧ instance(A,T) ∧
instance(B, Q) ∧ not confident(mon, A,B, S)

to both social level and individual level, independently and so A and B have to be typed
as role for the social level and as agents for the individual level. Pro1-2 can be refined in
order to identify conflicts of the form of Fig. 8(c) (Pro3-4) and Fig. 8(b) (Pro5-6).

Table 10 formalizes the proposal for solving conflicts when there is a trust relation
at social level and a distrust relation at individual level. In order to accommodate C1-2
in our framework we have to modify axioms Ax6-7 in Table 7. The new version of these
axioms is given in Table 11.

7 Computer Aided SRE

ST-Tool [24,29] is a CASE tool for design and verification of functional and secu-
rity requirements, and has been designed to support the Secure Tropos methodology.
It provides a user interface for drawing Secure Tropos models, support for translating
automatically graphical models into formal specifications and a front-end with external
tools for model checking.

Security and Trust Requirements Engineering 267

Graphical−layer
Manager

Data−layer
Manager

Integrity
Checker

FormalTropos

Datalog
Front−end

GUI

Editor

Data Model

Datalog

Formal Languages & Analysis

Solvers

ST−Tool

Fig. 11. The Architecture Overview

Fig. 12. ST-Tool screenshot

ST-Tool is mainly composed of two parts: the ST-Tool kernel and external solvers.
ST-Tool kernel has an architecture comprised of three major parts, each of which is
comprised of modules. Next, we will discuss these modules and their interconnections.
In Fig. 11, the modules of ST-Tool are shown, their interrelations are also indicated.

The tool provides a graphical user interface (GUI), through which system design-
ers can manage all the components and functionalities of the tool. A screenshot of the
interface is shown in Fig. 12. To manage visual editing features and data management
consistency at the same time, we have adopted a two-layer solution: a graphical layer
and a data layer. In graphical layer, models are shown as graphs where actors and ser-
vices are nodes, and relations are arcs. Each visual object refers to a data object. The
collection of data objects is the data layer. The GUI’s key component is the Editor Mod-

268 P. Giorgini, F. Massacci, and N. Zannone

ule. This module allows the user to visually insert, edit or remove graphical objects in
the graphical layer and object properties in the data layer. A second GUI component is
the Graphical-layer Manager (GM) Module that manages graphical objects and their
visualization. It supports goal refinement by associating a goal diagram with each actor
and then allows to collapse actors and services in order to maintain readable diagrams.
Further, GM permits to display one or more views of a diagram at the same time, namely
dependency model (aka Tropos model), delegation models, and trust models.

The Data-layer Manager (DM) Module is responsible for building and maintain-
ing data corresponding to graphical objects. For example, DM manages misalignments
between social relations and their graphical representation. Actually, GM uses arcs to
connect two nodes to each other, while many Secure Tropos relations are ternary. DM
rebuilds these relations by linking two appropriate graphical objects (the two arcs) to
the same data object (the relation). ST-Tool allows users to save models through the
DM module that stores a neutral description of the entire model in .xml format files.
A support for detecting errors and warnings during the design phase is provided by
the Integrity Checker Module. This module analyzes models stored in the DM module
and reports errors such as “orphan relations” (i.e. relations where an arc is missing)
and “isolated nodes” (i.e. services not involved in any relations). Warnings are different
from errors: they are failure of integrity constraints, like errors, but the designer may
be perfectly happy with a design that does not satisfy them. Integrity Checker reports
warnings, for example, when more than one service have the same name.8

After drawing so many nice diagrams, system designers may want to check whether
the models derived so far satisfy some general desirable properties. To support for-
mal analysis, ST-Tool allows automatic transformations from the .xml file stored by
DM into Formal Tropos [20] and Datalog specifications. These transformations are per-
formed, respectively, by two different modules: Formal Tropos Module and Datalog
Module. The resulting specifications are displayed by selecting the corresponding panel.

The process for completing and checking models is controlled by the Datalog Front-
end (DF) Module. Through this module, requirement engineers can choose the axioms
to complete the model and the properties to be verified on it. Properties are grouped into
Authorization, Availability, Integrity and Need-to-know categories, so that engineers
only need to specify the categories they wants to verify to include the corresponding
rule set. Once designers are confident with the model, the resulting Datalog specifica-
tion is given in input to some external solvers that verify the consistency of the model
corresponding to the specifications. Then, the solver output is parsed by the DF module
in order to present in a more user-readable format. A scheme of the entire process for
modelling and analyzing security requirements is given in Fig. 13.

We use different ASP solvers for the requirements analysis, namely ASSAT,9 Cmod-
els,10 Smodels,11 and DLV.12 ASSAT, Cmodels, and Smodels work with grounded logic
programs generated by Lparse [54]. In particular, Cmodels and ASSAT use SAT solvers

8 More than one service with the same name are needed to represent delegation and trust chains.
9 http://assat.cs.ust.hk/

10 http://www.cs.utexas.edu/users/tag/cmodels.html
11 http://www.tcs.hut.fi/Software/smodels/
12 http://www.dbai.tuwien.ac.at/proj/dlv/

Security and Trust Requirements Engineering 269

Fig. 13. ST-Tool: the analysis cycle

Table 12. Experimental Result

Solver cmodels-1 cmodels-2 smodels assat dlv
N. Ins. R Wall CPU R Wall CPU R Wall CPU R Wall CPU R Wall CPU

0 0 0m13.32s 0m0.25s 0 0m13.53s 0m0.13s 0 0m14.83s 0m0.13s 0 0m14.82s 0m0.13s 0 0m0.12s 0m0.01s
24 0 0m59.08s 0m0.61s 0 0m58.99s 0m0.57s 0 1m5.15s 0m0.56s 0 1m4.92s 0m0.59s 0 0m0.31s 0m0.00s
45 0 2m33.69s 0m2.06s 0 2m33.77s 0m1.73s 0 2m50.51s 0m1.68s 0 2m50.18s 0m1.75s 0 0m0.67s 0m0.02s
62 1 0m41.19s 0m1.80s 1 0m41.04s 0m1.74s 1 0m46.28s 0m1.66s 1 0m46.72s 0m1.60s 0 0m0.95s 0m0.01s

113 1 0m47.94s 0m1.72s 1 0m47.70s 0m1.76s 1 0m54.34s 0m1.63s 1 0m54.27s 0m1.71s 0 0m2.42s 0m0.02s
166 1 0m27.73s 0m1.58s 1 0m27.77s 0m1.55s 1 0m32.71s 0m1.75s 1 0m33.74s 0m1.86s 0 0m5.05s 0m0.08s

as research engine for determining the solution, while Smodels uses general-purpose
answer set solvers. Finally, DLV is developed as a deductive database system.

In order to compare the different solvers, we have tested them on a pool of bench-
marks based on a comprehensive case study on the compliance to the Italian security
and privacy legislation of public administrations such as universities, local governments
and health care authorities [43]. Benchmarks are defined from the structure of the orga-
nization (base case) by adding a growing number of agents (instances) playing the roles
occurring in the model.

The benchmarks evaluation results of the experiments carried out are reported in
Table 12. The experiments were executed on a bi-processor XEON, 3.2 GHz, 1 MB
of Chache, 4GB of RAM, running Linux. For each problem we report the time used to
complete the analysis (Wall) and by CPU. However, Wall and CPU reported in Table 12
do not take into account the time spent by Lparse that Cmodels, Smodels and Assat use
for grounding. Further, with “0” we mark the experiments that complete successfully,
while with “1” we mark those experiments that fail for some reason such as memory
limits exceeded. The experiments show that DLV system is more efficient than the other
solvers. Further, Cmodels, Smodels and ASSAT are not able to find a solution after a
certain number of instances since Lparse exceeds memory limit.

8 Conclusions

Security Requirements Engineering is one of the challenging field for computer security
research. Here we have sketched the overall methodological issues that underpins the
design of a novel methodology for security design.

270 P. Giorgini, F. Massacci, and N. Zannone

Looking back at our proposed classification, this work is well placed within the
meta-level modelling field. To avoid some of the disadvantages of the approach we
have focused on a modular addition so that dropping all newly proposed features makes
us return to Tropos/i* original methodology.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic Databases. In Proc. of VLDB’02,

pages 143–154. Morgan Kaufmann, 2002.
3. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. An Implementation of P3P Using Database

Technology. In Proc. of EDBT’04, LNCS 2992, pages 845–847. Springer-Verlag, 2004.
4. R. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems.

Wiley Computer Publishing, 2001.
5. A. I. Antòn and J. B. Earp. A requirements taxonomy for reducing Web site privacy vulner-

abilities. Requirements Eng., 9(3):169–185, 2004.
6. A. I. Antòn, J. B. Earp, and A. Reese. Analyzing Website privacy requirements using a

privacy goal taxonomy. In Proc. of RE’02, pages 23–31. IEEE Press, 2002.
7. T. Aura. On the Structure of Delegation Networks. In Proc. of 1998 CSFW, pages 14–26.

IEEE Press, 1998.
8. M. Backes, G. Karjoth, W. Bagga, and M. Schunter. Efficient comparison of enterprise

privacy policies. In Proc. of SAC’04, 2004.
9. M. Backes, B. Pfitzmann, and M. Schunter. A Toolkit for Managing Enterprise Privacy

Policies. In Proc. of ESORICS’03, LNCS 2808, pages 162–180. Springer-Verlag, 2003.
10. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS: An Agent-

Oriented Software Development Methodology. JAAMAS, 8(3):203–236, 2004.
11. C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cognitive anatomy, social

importance and quantification. In Proc. of ICMAS’98, pages 72–79. IEEE Press, 1998.
12. L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in

Software Engineering. Kluwer Publishing, 2000.
13. L. Cranor, M. Langheinrich, M. Marchiori, and J. Reagle. The Platform for Privacy Prefer-

ences 1.0 (P3P1.0) Specification. W3C Recommendation, Apr. 2002.
14. R. Crook, D. Ince, L. Lin, and B. Nuseibeh. Security Requirements Engineering: When

Anti-requirements Hit the Fan. In Proc. of RE’02, pages 203–205. IEEE Press, 2002.
15. J. DeTreville. Binder, a logic-based security language. In Proc. of 2002 IEEE Symp. on Sec.

and Privacy, pages 95–103. IEEE Press, 2002.
16. P. T. Devanbu and S. G. Stubblebine. Software engineering for security: a roadmap. In Proc.

of ICSE’00, pages 227–239, 2000.
17. T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl. MAC and UML for secure software

design. In Proc. of FMSE’04, pages 75–85. ACM Press, 2004.
18. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli. Proposed nist

standard for role-based access control. TISSEC, 4(3):224–274, 2001.
19. R. Fredriksen, M. Kristiansenand, B. A. G. K. Stølen, T. A. Opperud, and T. Dimitrakos.

The CORAS framework for a model-based risk management process. In Proc. of SAFE-
COMP’02, LNCS 2434, pages 94–105, 2002.

20. A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopoulos. Specifying and analyzing
early requirements: Some experimental results. In Proc. of RE’03. IEEE Press, 2003.

21. G. Gans, M. Jarke, S. Kethers, and G. Lakemeyer. Modeling the Impact of Trust and Distrust
in Agent Networks. In Proc. of AOIS’01, pages 45–58, 2001.

Security and Trust Requirements Engineering 271

22. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
of the 5th Int. Conf. on Log. Prog., pages 1070–1080. MIT Press, 1988.

23. P. Giorgini, F. Massacci, and J. Mylopoulos. Requirement Engineering meets Security: A
Case Study on Modelling Secure Electronic Transactions by VISA and Mastercard. In Proc.
of ER’03, LNCS 2813, pages 263–276. Springer-Verlag, 2003.

24. P. Giorgini, F. Massacci, J. Mylopoulos, A. Siena, and N. Zannone. ST-Tool: A CASE Tool
for Modeling and Analyzing Trust Requirements. In Proc. of iTrust’05, LNCS 3477, pages
415–419. Springer-Verlag, 2005.

25. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Filling the gap between Re-
quirements Engineering and Public Key/Trust Management Infrastructures. In Proc. of Eu-
roPKI’04, LNCS 3093, pages 98–111. Springer-Verlag, 2004.

26. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements Engineering meets
Trust Management: Model, Methodology, and Reasoning. In Proc. of iTrust’04, LNCS 2995,
pages 176–190. Springer-Verlag, 2004.

27. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling Security Requirements
Through Ownership, Permission and Delegation. In Proc. of RE’05, 2005. To appear.

28. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modelling Social and Individual
Trust in Requirements Engineering Methodologies. In Proc. of iTrust’05, LNCS 3477, pages
161–176. Springer-Verlag, 2005.

29. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. ST-Tool: A CASE Tool for Security
Requirements Engineering. In Proc. of RE’05, 2005. To appear.

30. Z. Guessoum, M. Ziane, and N. Faci. Monitoring and Organizational-Level Adaptation of
Multi-Agent Systems. In Proc. of AAMAS’04, pages 514–521. ACM Press, 2004.

31. M. Hannoun, J. S. Sichman, O. Boissier, and C. Sayettat. Dependence Relations between
Roles in a Multi-Agent System: Towards the Detection of Inconsistencies in Organization.
In Proc. of MABS’98, LNCS 1534, pages 169–182. Springer-Verlag, 1998.

32. Q. He and A. I. Antón. A Framework for Modeling Privacy Requirements in Role Engineer-
ing. In Proc. of the 9th Int. Workshop on Requirements Eng. : Found. for Software Quality,
pages 137–146, 2003.

33. T. Jaeger and A. Prakash. Requirements of role-based access control for collaborative sys-
tems. In Proc. of 1st ACM Workshop on Role-Based Access Control, pages 53–64. ACM
Press, 1995.

34. A. J. I. Jones and M. J. Sergot. A Formal Characterisation of Institutionalised Power. J. of
the Interest Group in Pure and Appl. Log., 4(3):429–445, 1996.

35. J. Jürjens. Secure Systems Development with UML. Springer-Verlag, 2004.
36. G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring Teams by Overhearing: A

Multi-Agent Plan-Recognition Approach. JAIR, 17:83–135, 2002.
37. G. Karjoth, M. Schunter, and M. Waidner. Platform for Enterprise Privacy Practices: Privacy-

enabled Management of Customer Data. In Proc. of PET’02. Springer-Verlag, 2002.
38. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation logic: A logic-based approach to dis-

tributed authorization. TISSEC, 6(1):128–171, 2003.
39. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of A Role-based Trust-management

Framework. In Proc. of 2002 IEEE Symp. on Sec. and Privacy, pages 114–130. IEEE Press,
2002.

40. L.-C. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Analysing Security Threats and
Vulnerabilities Using Abuse Frames. Technical Report 2003/10, The Open University, 2003.

41. L. Liu, E. S. K. Yu, and J. Mylopoulos. Security and Privacy Requirements Analysis within
a Social Setting. In Proc. of RE’03, pages 151–161. IEEE Press, 2003.

42. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based Modeling Language for
Model-Driven Security. In Proc. of UML’02, LNCS 2460, pages 426–441. Springer-Verlag,
2002.

272 P. Giorgini, F. Massacci, and N. Zannone

43. F. Massacci, M. Prest, and N. Zannone. Using a Security Requirements Engineering Method-
ology in Practice: The compliance with the Italian Data Protection Legislation. Comp. Stan-
dards & Interfaces, 27(5):445–455, 2005. An extended version is available as Technical
report DIT-04-103 at eprints.biblio.unitn.it.

44. J. McDermott and C. Fox. Using Abuse Case Models for Security Requirements Analysis.
In Proc. of ACSAC’99, pages 55–66. IEEE Press, 1999.

45. H. Mouratidis, P. Giorgini, and G. Manson. Modelling secure multiagent systems. In Proc.
of AAMAS’03, pages 859–866. ACM Press, 2003.

46. H. Nwana. Software agents: An overview. Knowledge Engineering Review J. , 11(3), 1996.
47. S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to enforce

mandatory and discretionary access control policies. TISSEC, 3(2):85–106, 2000.
48. L. Ponemon. What Keeps Security Professionals Up At Night?, April 2003. URL:

http://www.darwinmag.com/read/040103/threats.html.
49. I. Ray, N. Li, R. France, and D.-K. Kim. Using UML to visualize role-based access control

constraints. In Proc. of SACMAT’04, pages 115–124. ACM Press, 2004.
50. P. Samarati and S. D. C. di Vimercati. Access Control: Policies, Models, and Mechanisms.

In FOSAD 2001/2002, LNCS 2946, pages 137–196. Springer-Verlag, 2001.
51. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control

models. IEEE Comp., 29(2):38–47, 1996.
52. G. Sindre and A. L. Opdahl. Eliciting security requirements with misuse cases. Requirements

Eng., 10(1):34–44, 2005.
53. W. Stallings. Cryptography and Network Security: Principles and Practice. Prentice-Hall,

Englewood Cliffs, New Jersey, 1999.
54. T. Syrjänen. Lparse 1.0: User’s Manual. Helsinki University of Technology, 2000.
55. A. Toval, A. Olmos, and M. Piattini. Legal requirements reuse: a critical success factor for

requirements quality and personal data protection. In Proc. of RE’02, pages 95 –103. IEEE
Press, 2002.

56. T. Tryfonas, E. Kiountouzis, and A. Poulymenakou. Embedding security practices in con-
temporary information systems development approaches. Inform. Management and Comp.
Sec., 9:183–197, 2001.

57. A. van Gelder. The alternating fixpoint of logic programs with negation. In Proc. of
PODS’89, pages 1–10. ACM Press, 1989.

58. A. van Lamsweerde, S. Brohez, R. De Landtsheer, and D. Janssens. From System Goals to
Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engineer-
ing. In Proc. of RHAS’03, pages 49–56, 2003.

59. A. van Lamsweerde and E. Letier. Handling Obstacles in Goal-Oriented Requirements En-
gineering. TSE, 26(10):978–1005, 2000.

60. J. Viega and G. McGraw. Building Secure Software. Addison-Wesley, 2001.
61. E. S. K. Yu. Agent-Oriented Modelling: Software versus the World. In Proc. of AOSE’01,

LNCS 2222, pages 206–225. Springer-Verlag, 2001.
62. P. Zave. Classification of research efforts in requirements engineering. CSUR, 29(4):315–

321, 1997.

Author Index

Backes, Michael 1
Barthe, Gilles 133
Bertino, Elisa 178
Byun, Ji-Won 178

Debar, Hervé 207
Dufay, Guillaume 133

Focardi, Riccardo 109

Giorgini, Paolo 237

Jürjens, Jan 42

Koeune, François 78

Li, Ninghui 178

Massacci, Fabio 237

Pfitzmann, Birgit 1

Standaert, François-Xavier 78

Viinikka, Jouni 207

Waidner, Michael 1

Zannone, Nicola 237

	Frontmatter
	FOSAD 2004 (6-11 September 2004)
	Justifying a Dolev-Yao Model Under Active Attacks
	Model-Based Security Engineering with UML
	A Tutorial on Physical Security and Side-Channel Attacks
	Static Analysis of Authentication

	FOSAD 2005 (19-24 September 2005)
	Formal Methods for Smartcard Security
	Privacy-Preserving Database Systems
	Intrusion Detection: Introduction to Intrusion Detection and Security Information Management
	Security and Trust Requirements Engineering

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

