
Precise Segmentation Rendering for Medical
Images Based on Maximum Entropy Processing

Tsair-Fwu Lee1,2, Ming-Yuan Cho1, Chin-Shiuh Shieh4,
Pei-Ju Chao3, and Huai-Yang Chang2

1 Department of Electrical Engineering, National Kaohsiung University of Applied
Science, Kaohsiung, Taiwan 807, ROC

2 Department of Radiation Oncology, Chang Gung Memorial Hospital-
Kaohsiung, 83305, Taiwan, ROC

3 Department of Radiation Oncology, Kaohsiung Yuan’s General
Hospital, Kaohsiung, 800, Taiwan, ROC

4 Department of Electronic Engineering, National Kaohsiung University of Applied
Science, Kaohsiung, Taiwan 807, ROC

Abstract. Precision is definitely required in medical treatments, how-
ever, most three-dimensional (3-D) renderings of medical images lack for
required precision. This study aimed at the development of a precise 3-D
image processing method to discriminate clearly the edges. Since con-
ventional Computed Tomography (CT), Positron Emission Tomography
(PET), or Magnetic Resonance Imaging (MRI) medical images are all
slice-based stacked 3-D images, one effective way to obtain precision 3-
D rendering is to process the sliced data with high precision first then
to stack them together carefully to reconstruct a desired 3-D image. A
recent two-dimensional (2-D) image processing method known as the en-
tropy maximization procedure proposed to combine both the gradient
and the region segmentation approaches to achieve a much better re-
sult than either alone seemed to be our best choice to extend it into
3-D processing. Three examples of CT scan data of medical images were
used to test the validity of our method. We found our 3-D renderings
not only achieved the precision we sought but also has many interest-
ing characteristics that shall be of significant influence to the medical
practice.

Keywords: segmentation, wavelet, edge detection, entropy maximiza-
tion.

1 Introduction

Physicians need 3-D renderings to help them to make diagnosis, conduct surgery,
and provide other treatments that 2-D images and other conventional test meth-
ods cannot offer. Without precise segmentation, renderings could lead to mis-
leading results. The aim of this study is to provide a precise 3-D rendering
method to achieve what physicians demand. Two basic approaches in existing
works on image segmentation are: the gradient-based approach and the region-
based approach. Gradient-based edge detection methods [1,2] rely on the local
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differences in the gray scale values of an image. They focus on the differences and
transitions of the intensity of an image. The disadvantage in these methods is
that they almost always result in broken and false edges. Region-based segmen-
tation techniques include region-growing, region-splitting, and region-merging
algorithms, etc. focused on the homogeneity of spatially dense localized features
and other pixel statistics. They have a common problem of over-segmented, and
hence produces poorly localized region boundaries. To resolve their weaknesses
and to combine their strengths of the gradient-based approach and the region-
based approach, Staib and Duncan proposed an idea to combine both of them
in the maximum entropy manner to achieve a better result [3,4]. And recently
Duncan et al. [5] have some successful applications in its extented works. More-
over, some authors paid more attention in this field with different methods in
progress [6].

In this study, our objective is to apply the Staib and Duncan method [3,4] to
combine various segmentation approaches with an entropy maximization proce-
dure and extended the idea into 3-D area. This allows us to utilize all available
information to achieve the most robust segmentation results for 3-D image pro-
cessing. We then apply our combined segmentation method to medical images to
test the validity of our method. We aim to show our combined 3-D segmentation
method is indeed superior in terms of required precision, also the sliced-base
approach we proposed is quite efficient, and many features generated by our 3-D
segmentation method shall be of referential values to the physicians.

2 Wavelet Edge Detector

No doubt the Wavelet method is known to be one of the best gradient segmenta-
tion methods due to its multi-scale and multi-resolution capabilities. We briefly
discuss some of its property in this section. We shall name S2j [.] and D2j [.]
as the low pass signal (or the approximated signal) and the high pass signal
(or the detailed signal) of f (x) at resolution 2j, respectively. And S2j [n] is the
projection coefficient of f (x) on subspace Vj , D2j [n] is the projection coefficient
of f (x) on subspace Oj .We can define an orthogonal complement subspace of
Vj as Oj , in space Vj+1. The scaling function φ (x) and wavelet function ϕ (x)
have the orthogonal properties. From the properties of multiresolution analysis,
we can easily see that signals can always be decomposed into higher resolutions
until the desired result is obtained. A 2-D filter for edge detection is generated
by a 2-D discrete periodic wavelet transform (2-D DPWT) [4], applying separa-
ble algorithms, the 2-D DPWT can be written in a matrix form. And we now
extend the wavelet transform into two dimensional manners. So we can define
the four operators [4,7] of 2-D DPWT as follows: (Reader can refer to the detail
description in the reference [8] which proposed by Mallat in 1989.)

WLL = [h(i) · h(j)]i,j∈Z (1)
WLH = [(−1)3−jh(i) · h(3 − j)]i,j∈Z (2)
WHL = [(−1)3−jh(3 − i) · h(j)]i,j∈Z (3)
WHH = [(−1)i+jh(3 − i) · h(3 − j)]i,j∈Z (4)
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where, WLL, WLH , WHL and WHH are the four subband filters; and the ⊗
denoted a convolution operation; and h(i) =< φ2−1 (u) · φ (u − i) >. Clearly, as
the length of the coefficients of the filter is d, the operator of 2-D DPWT formed
a d × d matrix. We now use the coefficients of the four filters given by Eq. 1 to
Eq. 4 to generate a wavelet edge detector. Let fh(i, j) be the horizontal high-
pass filter function and fv(i, j) be the vertical high-pass filter function. These
two high-pass filters are obtained from the four operators of 2-D DPWT

fh(i, j) = WLL(i, j) ⊗ WLH(i, j) (5)

fv(i, j) = WLL(i, j) ⊗ WHL(i, j). (6)

We then apply the different length coefficients of Daubechies wavelet transform
to generate the multi-scale masks (filters)[4,7,8].

Therefore, let the original image pass through these masks to produce a series
of multi-scale images with different gradient strength scales. In order to avoid
distortions caused by noise and to define exact edge points, an edge thinning
technique is then used to make effective combinations of the images [9].

3 Concepts of Maximum Entropy Processing

By boundary estimation we meant to find optimum values of the boundary pa-
rameters as the information of image data were given. Let us define the optimiza-
tion of the entropy function by maximizing its a posteriori probability (MAP)
[3,10]. Assuming that Ib(x, y) is the image that depicts some object and tp̂(x, y)
is the image template corresponding to the parameter vector p̂. We maximize
P (tp̂|Ib), the conditional probability of the template given the image, to obtain
the best estimate of p̂. By Baye’s rule, the function P (tp̂|Ib) can be written as
follows:

arg max
p̂

P (tp̂|Ib) = argmax
p̂

P (Ib|tp̂)P (tp̂)
P (Ib)

(7)

where P (tp̂) is the a priori probability of the template and P (Ib|tp̂) is the condi-
tional probability of image Ib, which depicts some object with template p̂. The
denominator of Eq. 7 is not a function of p̂ and hence can be ignored. Taking
logarithm of Eq. 7 we have:

argmax
p̂

M(Ib, tp̂) = argmax
p̂

[lnP (tp̂) + lnP (Ib|tp̂)] (8)

To estimate the parameter vector p̂ we maximize the entropy function M(Ib, tp̂).
Clearly, the first term of Eq. 8 represents the a priori information and the second
term represents the data-driven likelihood term. After rearranged the equation
by Baye’s rule, we find the boundary estimation problem becomes

argmax
p̂

ln[P (p̂|Ig, Ir)] ≡ arg max
p̂

[lnP (p̂) + lnP (Ig|p̂) + lnP (Ir|(Ig, p̂)] (9)

Clearly, the first term is the a priori information, the second term contains the
gradient-based information Ig, and the last term is the region-based informationIr
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conditioned on parameter vector p̂ and the gradient-based information Ig. We
argue that we shall ignore the dependence on Ig since the information of gradient-
based information is already obtained by the second term. Then Eq. 9 becomes

arg max
p̂

M(p̂, Ig, Ir) ≡ argmax
p̂

[Mprior(p̂) + Mgradient(Ig, p̂) + Mregion(Ir , p̂)]

(10)
For each slice, the input consists of the original image I and the region-

classified image Ir which is the result of region-based segmentation as discussed
above. Next a gradient-based approach is added and it uses the gradient image
Ig. As described by Staib and Duncan [3,10], we shall use the magnitude of the
gradient vector at each voxel location. Ig can be obtained from I either by con-
volving the input image I with the multiple wavelet edge detection operators
and then computing Ig to be the magnitude of the above resulting vector image.
Hence the input to the system is the gradient image Ig and the region-classified
image Ir . Only when slice processing is completed, we use linear interpolation
algorithm along the slices direction to form 3-D surfaces. We argue that, our sur-
face estimation method using both gradient and region homogeneity information
is still in the maximum a posteriori framework. We have suitably incorporated
a priori shape information when region-of-interest (ROI) is available.

4 Medical Images Applications and Results

The goal of our precise image segmentation is to partition an image into disjoint
regions of desired objects as accurate as possible. Among the proposed segmen-
tation methods, region-growing has been the most popular one due to its speed
and great flexibility. We use symmetric seeds [11] to initiate the segmentation
to avoid a single seed may fall into a noise region too easily. Then we combine
the region-growing segmentation with the gradient-based segmentations, namely
the wavelet edge detector. The following are precision 3-D renderings generated
by our combine-information segmentation applies to medical images of distinct
characteristics and medical importance.

4.1 Medical Image Experiment 1

A set of CT scan, slices of a human chest which we want to process only a
particular region of medical interests. This also demonstrated the great capability
and flexibility of our combine-information segmentation method.

We find the edges by following the boundary-finding procedure. The gradient-
based information is obtained first by using the wavelet edge detection method,
and the region-based information is obtained from the region-growing method
initialized with symmetric seeds. The entropy function Eq. 10 completes the
combination in maximum sense. As we have discussed earlier, when we process
the gradient-based information only, the first two terms are used as entropy
functions. As we process the image with the region-based information only, we
used the first and the third terms as entropy functions. Finally, all three terms
are used as entropy functions to complete the combination. We shall perform the
segmentation first slice by slice. Since we aim to extract the right lung for feature
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(a) (b) (c)

Fig. 1. (a) Segmented contour by the region-growing method. (b) Segmented contour
by the wavelet method. (c) Segmented contour by the combination method

(a) (b) (c)

Fig. 2. (a) Segmented result of the region-growing method.(b) Segmented result of the
wavelet method. (c) Segmented result of the combination method

(a) (b) (c)

Fig. 3. (a) 3-D rendering by the region-growing method. (b) 3-D rendering by wavelet
method. (c) 3-D rendering by the combination method

extraction in this case hence it becomes our natural ROI. Fig. 1 (a) shown the
region-growing contour, Fig. 1 (b) is the wavelet contour, and Fig. 1 (c) is the
combined contour. Figs. 2 (a) (b) and (c) present the segmentation results of
Figs. 1 (a) (b) and (c) respectively. On close inspection of these figures, short-
comings from either segmentation although were obvious but seemed harmless.
However, as 3-D renderings were form, they become serious errors, and shall not
be tolerated if precision renderings were sought.

Fig. 3 (a) shows the 3-D rendering from the region-growing segmentation. Fig.
3 (b) shows the 3-D rendering from the wavelet segmentation. Fig. 3 (c) shows
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the 3-D rendering from the combined segmentation. If we look at them closely,
we found that the 3-D renderings either by the region-growing segmentation, or
by the wavelet segmentations, although seemed both acceptable, but they both
have problems that at times a single slice will be very different from the others
at some particular point, perhaps due to noise and/or other disturbances, which
makes the corresponding 3-D renderings appeared with wrinkles. Clearly human
lungs should be continuous and smooth in all directions always, hence we may
conclude that both the region-growing method and the wavelet method fail to
reconstruct the object precisely.

As expected, the maximum entropy combination results in a 3-D rendering
with much better quality. Hence we can conclude that the combined method is
indeed superior to each individual processing alone, and our purpose of seeking
precision has been achieved.

4.2 Medical Image Experiment 2

Next we shall test the accuracy of localization of our method. By the use of
coloring and a so-called transparency technique, not only we can identify the
problem area precisely, but also its relative position to other critical organs. The
test data were the CT scan of a female patient with a pituitary tumor in her
brain. The pituitary gland is about the size of a pea in the center of our brain
just at the back of our nose. The choice of treatment uniquely depends on the
position of the tumor.

Fig. 4. 3-D renderings of the tumor and the head in two colors, four angles, and
transparent effect

Here we emphasize the importance of precision. With a target so small and
so vital, only position of the tumors can be pin down with the highest precision,
treatments can then be effective, and ordinary brain cells shall not be damage.

In order to identify the tumor clearly, we first segmented it out with great
precision and then 3-D renderings of the pituitary tumor are then constructed.
The tumor can now be clearly inspected by checking the Fig.4. The figures
clearly demonstrated the power of our segmentation, capable of providing an
outstanding positioning of the tumor, which has not been achieved by other 3-D
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renderings previously. The size and shape of the tumor, its orientation with the
brain, and the position relative to the head are all now clearly seen.Its various
angles are shown in the Figs. These 3-D renderings can be rotated to any angle
and with different colors for physicians to inspect closely. Transparency effect is
now introduced which shall be most useful for radiation therapies.

4.3 Medical Image Experiment 3

Finally we shall present the 3-D renderings for a common orthopedic decease
happens to both genders for senior citizens. Human stands on two feet and the
joint between our legs and our pelvis solely supports our weight. In medical
terms, it is the femur connecting to the acetabulum supporting our weight. Over
years of overly use, the joint becomes rough and causes pain. If it is not taken
care of properly, fragment shall occur. How were the joint over used, what are
the damages, in present days orthopedic surgeon either depends on CT scan or
inspect by endoscopes. However, endoscopes inspection is time consuming; CT
slices although were the best X-ray scan able to provide, really did not fully
expose the problem.

(a) (b) (c) (d)

Fig. 5. (a) 3-D rendering of the pelvis. (b) (c) 3-D renderings of the right joint in
different angle. (d) The pelvis with transparent effect in different angle

(a) (b) (c) (d)

Fig. 6. (a) 3-D rendering of the acetabulum in pelvis. (b) The acetabulum in pelvis in
a different angle. (c) (d) 3-D renderings of the femur in different angles

With the reconstruction techniques we have developed, precision 3-D render-
ings of all angles, enlargements, distinct part of the joint, can all be visualize
much clearly allowing physicians to make correct decisions. Fig. 5 (a) shows the
pelvis only for physicians to inspect in detail. Fig. 5 (b) (c) shows the complete
right joint of the pelvis in different angles. Figs. 5 (d) showed its different angle
with transparent effect to simulate various movements of the joint. Figs. 6 (a)
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and (b) are the close look of the acetabulum. Fig. 6 (c) (d) shows the different
angle of the femur. With the help of these 3-D renderings, physicians shall be
able to make diagnosis more efficiently and effectively.

5 Conclusion

On all examples of medical images we processed, not only desired precision had
been achieved, we are also able to create rotation of the objects to obtain its 3-D
images of different angles. The 3-D renderings we created will allow physicians
to conduct surgery or treatment much more accurately and effectively. Many
images of interest that physicians unable to visualize, but have to compose a
3-D image by their imaginations, all become possible after our 3-D processing.
Features are now clearly identified, locations pinned down exactly, and relative
orientations are now well understood. These are all vital for medical treatments.

Therefore we may conclude that our 3-D rendering method that combines the
gradient-based and the region-based information in the maximum entropy sense,
not only proved to be a superb image processing techniques but also very useful
in practice for medical images. We believe that our precision 3-D renderings shall
play its role in future medical applications.
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