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Abstract. This paper presents the conceptual development of an innovative 
modelling framework for the transit assignment problem, structured in a multi-
agent way and inspired by a learning-based approach. The proposed framework 
is based on representing passengers and both their learning and decision-
making activities explicitly. The underlying hypothesis is that individual pas-
sengers are expected to adjust their behaviour (i.e. trip choices) according to 
their knowledge and experience with the transit system performance, and this 
decision-making process is based on a “mental model” of the transit network 
conditions. The proposed framework, with different specifications, is capable of 
representing current practices. The framework, once implemented, can be bene-
ficial in many respects. When connected with urban transportation models – 
such as ILUTE – the effect of different land use policies, which change passen-
ger demand, on the transit system performance can be evaluated and assessed. 

1   Introduction 
The problem of predicting passenger loads and levels of services on a given transit 
network that consists of a set of fixed lines is known as the Transit Assignment Prob-
lem (TAP), which is an important topic of public transport system analysis. Transit 
assignment models are widely used as an important planning tool at the strategic and 
operational levels. They are, therefore, a critical component of multimodal network 
models of urban transportation systems. Important decisions concerning investment in 
public transport infrastructure or services are normally supported by evaluation meth-
odologies based on transit assignment models. 

Assignment procedures, in general, form the core of any comprehensive transporta-
tion model. By modeling passengers’ travel behaviour on their journey from origins to 
destinations, such procedures distribute a given travel demand on a network and at-
tempt to model the interaction between the travel demand and the network supply. 
Not only does this help determine traffic volumes in roads and transit lines, but it also 
reflects the service quality of the transport network. The main differences between the 
various transit assignment models are the hypotheses made, either explicitly or im-
plicitly, on the user’s behaviour when faced with route choice decisions. As such, any 
transit assignment model includes, at its core, a path choice model that describes the 
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behaviour of transit riders with regards to their choices of transit stops and routes to 
travel between trip origins and destinations.  

Currently, mircosimulations, which allow one to model dynamically individual ob-
jects, make it possible to couple the behavioural demand generation models with 
plausible traffic dynamics allowing for logically consistent feedback. This paper pre-
sents the conceptual development of an innovative modeling framework for the transit 
assignment problem, structured in a multi-agent way and inspired by a learning-based 
approach. In the framework, it is recognized that individual passengers decide on their 
travel choices (e.g. departure time, origin/destination transit stops, route choice) for a 
transit trip on consecutive days; this decision-making process is based on the passen-
ger’s experience of the transit system performance.  

2   The Transit Assignment Problem 
Assignment procedures, in general, attempt to predict traveler flows and levels of 
services on a given transport network. Although much attention has been given to 
auto-traffic assignment models, it is well addressed in the literature that the transit 
assignment process is more complicated than auto-traffic assignment [1, 2]. This 
complexity is due to: 
• Parallel lines, with the same or different frequencies are common features of pub-

lic transport networks. In addition, how to assign weights to out-of-vehicle time 
versus in-vehicle time is not a straightforward task. 

• While car drivers may depart at any time and free to choose a route which appears 
convenient to them, transit riders are strongly restricted by the line network and 
the timetable. 

• Transfers and waiting times are significant factors for the transit assignment proc-
ess. Some passengers may prefer routes with minimum number of transfers, while 
others minimize their in-vehicle travel time. 

• In addition to that transit passengers may need to transfer, they are also faced with 
connection problems, which encompass temporal constraints such as departure 
and arrival times at all chosen stops.  

• Different sub-modes and the transit mode-chain add more complexity. Not only 
may different sub-modes have different levels of services, but they may also be 
perceived differently among passengers. 

• Choices in public transport networks are often dependent, as the choice of the next 
line at a terminal depends on the preceding choice. 

• The public transport network structure is very complicated, and the assumption 
that each passenger is aware of all feasible routes may not be feasible. 

Therefore, it has always been a practice to develop special assignment procedures 
for the transit assignment problem rather than applying variations of traffic assign-
ment algorithms.  

2.1   The Current State-of-Art 

In the early stages of development, only heuristic algorithms were proposed to solve 
the TAP, where many of them represent simple modifications of road network as-
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signment procedures; e.g. the all-or-nothing assignment. Prior to the early 1980s, 
several authors had dealt with the TAP, either as a separate problem or as a subprob-
lem of more complex models. Some important examples of procedures and algo-
rithms proposed to solve the TAP are by Dial [3], Le Clercq [4], Chriqui [5], 
Chapleau [6], Andreasson [7], and Rapp et al. [8]. Scheele [9], Mandle [10], and Has-
selstrom [11], on the other hand, considered the TAP in the context of transit network 
design models, while Florian [12] and Florian and Spiess [13] dealt with multimodal 
network equilibrium. One serious limitation of the aforementioned procedures, how-
ever, was neglecting congestion effects over the transit system. Last and Leak [14] 
was the only exception. Nonetheless, their procedure is only appropriate for very 
special radial networks, which renders the algorithm practically inapplicable to real-
world applications [15]. 

The first mathematical formulation for the TAP was proposed by Spiess [16] and 
Spiess and Florian [17]. Based on the assumption that passengers minimize “general-
ized travel times”, they proposed a linear programming model and a solution algo-
rithm for the TAP. They assume that passengers face ‘strategies’ rather than simple 
paths to make their origin-destination trips over a transit network. De Cea [18] and De 
Cea and Fernandez [19], later, formulated another linear programming model of the 
transit assignment, based on the concepts of “common lines” and “transit routes”, 
inspired by early contributions of Le Clercq [4] and Chriqui [5]. Both mathematical 
models assume flow independent travel and waiting times, and hence do not consider 
congestion effects.  

The next development phase of TAP procedures considered the congestion effects, 
which is known as the Transit Equilibrium Assignment Problem (TEAP). Many mod-
els have been developed to consider this phenomenon, such as De Cea and Fernandez 
[20]. These models define passenger-flow-dependent generalized cost functions and 
transit riders behave according to Wardrop’s first principle [21]. Recognizing the 
potential differences between passengers’ preferences, different stochastic user equi-
librium transit assignment models have been proposed, such as Nielsen [1] and Lam 
et al. [22]. Recently, and accounting for the dynamics and the complex structure of 
the transit network, dynamic transit assignment models have been developed (such as 
[23] and [24]); most notably the schedule-based transit assignment model [25].  

Although some improvements were made to incorporate congestion effects on pas-
senger waiting time and behaviour, there still are some major limitations that question 
the applicability of the existing models.  

2.2   Limitations of Existing Models 

Most of the previously developed models have, either explicitly or implicitly, bound-
ing assumptions that sometimes limit their applicability and/or question the results to 
be realistic. For instance, some of these assumptions are necessary to speed up the 
solution algorithm to a reasonable running time, such as the assumption that waiting 
times at boarding stops or at transfer stops depend only on the headway of the follow-
ing transit line [2]. While it speeds up computation, it fails to consider the coordina-
tion of the timetables, an important feature of the transit network.  

Some assume that vehicles always operate on schedule [23, 24], a critical assump-
tion that is always not applicable to congested transit (and transport) networks. Most 
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of the models assume that all passengers are subject to the same weights in their deci-
sion-making process on route choice. This sometimes is interpreted that all passengers 
can access the same or have full information about the system (e.g. through user trav-
eler information system). This is not usually true, as passengers might still choose 
different routes for the same OD pair according to their different preferences and 
perceptions of waiting times, walking times, in-vehicle times and transfer penalty.  

Some assumptions may be violated by the dynamic nature of the transit-transport 
network. For instance, it is often assumed that taking over between transit vehicles is 
not allowed [23]. A typical situation where slow lines depart just before fast lines 
reveals a possible violation. The unlimited capacity assumption has unrealistic conse-
quences: some lines might be loaded with passengers much beyond the actual capac-
ity while other lines serving the same OD pair are greatly underutilized [22]. Rather 
than assuming that transit vehicles have unlimited capacity, it has been assumed that 
all transit vehicles have a fixed capacity [24]. Again, a typical real-sized transit net-
work may operate different vehicle capacities.  

The transit assignment process has many choice dimensions, such as departure 
time choice, origin/destination stop choices, transfer stop(s) choices and route choice. 
Normally, only one or two dimensions have been considered in previous modeling 
efforts, e.g. only route choice is considered in Poon et al. [24].  

The strategy-based approach [17] is usually criticized for the bias towards over-
assigning riders to lines with high combined frequency of transit services and under-
assigning riders to those with low combined frequency of services. In addition, with 
the introduction of Intelligent Transportation Systems (ITS) and Advanced Public 
Transport Systems (APTS) that provide pre-trip/en-route information, certain seg-
ments of the network and many transit riders may not comply with the behavioural 
assumptions of the model. Moreover, low frequency transit lines may not be assigned 
as a travel option at all. This procedure does not explicitly calculate transfer times but 
rather assumes that they depend on the headway. In other words, the coordination of 
the timetable is not considered.  

The schedule-based approach [25], which uses a “diachronic” graph to represent 
the transit network, also has some drawbacks. The diachronic graph does not repre-
sent congestion effects on travel times, unless the graph’s structure itself depends on 
the flow pattern, which will add more complexity. This is important to mention, as the 
supply variations (i.e. transit system performance) need to be modeled appropriately. 
The complexity of the assignment process increases more than linearly with the tran-
sit line frequencies, because this implies the growth of graph’s dimensions. When 
schedule-based procedures use a shortest path algorithm, they unfortunately have two 
more weaknesses [2]:  
• They may require long computing time. To determine all connections with a 

shortest path algorithm, it is necessary to perform a search for each possible depar-
ture time at the origin stop within the examined time interval. Since acceptable 
computing time may only be achieved through a significant reduction in departure 
times, this approach will usually fail to find all connections. 

• They may not find all relevant connections. In some networks, even a connection 
which departs earlier and arrives later than an alternative connection may be at-
tractive for some passengers; e.g. if it is cheaper or requires fewer transfers. 
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In order to address some of the above limitations, we propose in the next section a 
general multi-agent learning-based modeling framework for the transit assignment 
problem, using methods from Artificial Intelligence (AI), microsimulation and Geo-
graphical Information Systems (GIS). 

3   A General Multi-agent Framework 
The need for a new modeling framework for the transit assignment problem is in-
creasing. While current models try to capture congestion effects, they do not explic-
itly deal with: 
• The effect of travel time uncertainty on departure time choice. In other words, 

current transit assignment models do not consider the change in departure time as 
a response to congestion. 

• Formal models of knowledge and cognition. It is important to analyze how depar-
ture time and other trip choices take place in daily decision-making, which makes 
up the transit congestion settings. Without explicitly representing how new ex-
periences are integrated in a passenger’s cognitive model, it would be hard to pre-
dict passenger’s reactions. 

Transit assignment is a process of interactions between individual passengers and 
transit services. These interactions are in both directions: the execution of route 
choices leads to congestion, yet the expectation of congestion influences choices; and 
such interactions cannot be overlooked. In reality, this logical deadlock is typically 
approached through a feedback mechanism, usually represented by a learning process 
[26]. While the task of any transit assignment procedure is to find ‘acceptable’ routes 
for each passenger, defining ‘acceptable’ often leads to the assumption that passen-
gers employ user equilibrium (UE) principles. Nonetheless, the UE formulation pre-
sents the mathematical construct of such an assumption, not necessarily the solution 
to the original transit assignment problem. A different methodology to approach the 
original problem is using learning algorithms, in which passengers search for better 
routes based on some kind of historic information. It is arguable that learning algo-
rithms do not guarantee a UE solution. One can, however, assume that learning algo-
rithms converge to a fixed point (if every thing is deterministic) or go towards a 
steady-state density (for stochastic systems if they are Markovian) [26]. 

In the proposed framework, the underlying assumption is that individual passen-
gers decide about their choices (departure time, origin/destination stops, trans-
fer/connection stops) for a trip on consecutive days and this decision process is based 
on a “mental model1” of the transit network conditions. For a given day d, each pas-
senger has a perception of the transit network conditions as stored in his mental 
model. This perception is built up over time through experience with the transit sys-
tem. For day d, a set of choices are made by each individual passenger (e.g. departure 
time choice and route choice), with the aim to realize a Desired Arrival Time (DAT) 
at the destination. 

Each passenger has an action space – a joint set of feasible network paths and de-
parture times for a transit trip. The passenger’s action space will possibly be devel-
                                                           
1  Similar to the concept provided in Ettema et al. [27], for the dynamic traffic assignment 

problem  
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oped based on transit stops near trip origin and destination, maximum acceptable 
number of transfers and timetable information. The outcome of individuals’ choices 
constructs a stochastic process that has to be simulated using a microsimulation 
model. The specification of the stochastic process largely depends on the interaction 
between different individuals as well as the transit network performance. The mi-
crosimulation model then returns new experience information (e.g. in-vehicle travel 
time and waiting time) for each individual, which is used to update the mental model 
for the next day (d +1) decision process.  

The multi-agent framework structure is presented in Figure (1). The framework 
shows six agents that can be classified into two categories: Active Agents including a 
GIS-Agent, a Passenger-Agent and a Microsimulation-Agent; and Assistant Agents 
including a Feeder-Agent, a Loader-Agent and a Feedback-Agent. Active agents usu-
ally support the decision making process. For example, the GIS-agent decides on the 
catchment area (i.e. available/accessible transit stops) for a Passenger-agent. Assistant 
agents facilitate the interaction between active agents. For instance, the loader-agent 
dynamically establishes connections between passenger-agents and the microsimula-
tion-agent.  

The microsimulation-agent is essential to the framework, as services in a transit 
network are time-dependent. Although there may be pre-defined schedule, transit 
service performance differs by the time of day and the day of week. Therefore, the 
optimal path from an origin to a destination also varies by the time of day and among 
days. In order for passenger-agents to experience these variations, a microsimulation 
representation of the transit network is important. Representing passengers as agents 
is critical to account for the differences not only in passengers’ preferences but also 
passengers’ learning and adaptation mechanisms. Due to the complicated topology of 
the transit network, the GIS-agent appears necessary. Complicated structure, such as 
one stop serving multiple lines and asymmetry in minimal-time paths between the 
same OD pair, is easily handled using powerful capabilities currently available within 
GIS packages. Individuals are linked to the transit network simulator to create a simu-
lation system in which both individual decision-making process and system perform-
ance (and interactions between both) are adequately represented. 

The learning-based approach works as follows. For a given day, the feeder-agent is 
responsible for handling the input process. The inputs to the framework can be 
through user interface in the form of an OD trip matrix for the transit mode, or the 
framework can be integrated with a larger trip-based (or emerging activity-based) 
urban transportation model that provides the OD transit mode matrix. For each pas-
senger-agent, the GIS-agent communicates to the feeder-agent the catchment area 
(available/accessible transit stops) and expected access/egress walking times to/from 
origin/destination transit stops. The outcome of this interaction is a set of possible 
combinations of departure time and route choices for each passenger-agent – i.e. ac-
tion space. Each passenger-agent has a planner component that is responsible for 
selecting only one combination that reflects that passenger-agent’s preferences and is 
based on the mental model of previous experiences. This results in a stochastic proc-
ess of different choices for individual passengers; therefore the loader-agent’s task is 
to communicate dynamically passenger-agents’ choices to the microsimulation-agent. 
Then, the microsimulation-agent handles the dynamics of the transportation network 
according to the passengers’ choices and provides experienced measurements for  
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Fig. 1. A General Multi-Agent Transit Assignment Model 
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individual passengers. Afterwards, the feedback-agent is responsible for updating 
each passenger-agent’s memory, according to every passenger’s learning mechanism. 
The whole process repeats for many days.  

In principle, this stochastic process should be simulated over multiple runs in se-
quence, each representing a day, and the decision-making process of an individual 
passenger should be traced over time. While this sounds simple in principle, it is dif-
ficult to implement. Another challenge is that useful results are attainable only with a 
deep understanding of the learning mechanism. On the one hand, assuming UE condi-
tions has the advantage of describing the state of the system, without really caring 
how the computational system arrives at it. On the other hand, it is increasingly rec-
ognized that socio-economic (e.g. transportation) systems do not necessarily operate 
at a user equilibrium point [26, 28]. 

Compared with the stochastic user equilibrium approach, the passenger-agent ap-
proach seems to be more robust. In the stochastic UE approach, there is some external 
module that calculates the utility of all options for each passenger and then makes a 
random weighted draw between these options (e.g. discrete choice theory). When not 
all options have been previously tried out, the external module needs to make 
assumptions about the option’s performance. This might lead to inconsistencies [26]. 
Agents collect information about their environment as they interact with it, and use it 
to develop anticipatory models of the environment. The decision process arises from 
an adaptive learning process driven by the agent’s desire to maximize some payoff 
through its actions over time. The proposed approach is well suited to test and evalu-
ate a broad range of policies that consider, for example, situations with pre-trip and/or 
en-route information being available to users. For instance, en-route choices occur at 
stops and are relative to the decision to board a particular run or to wait for another 
run of the attractive set. The choice of boarding stops is considered to be made before 
starting the trip, since it is not influenced by unknown events. The agent-based repre-
sentation allows for different passenger types to be accommodated, for example fre-
quent users (who travel frequently and know routes and scheduled timetables, as well 
as real system functionality based on previous experience, fully-informed users) and 
occasional users (who sometimes use transit services, so they only know some line 
routes, the most important routes and their scheduled timetable, but no information 
about the real system functionality, ill-informed users). 

In the proposed framework, it is assumed that trip generation and mode choice are 
constant, and that learning and adaptation takes place only with respect to the transit 
assignment choice dimensions (departure time choice, origin/destination stops 
choices, route choice). Therefore, passenger-agents should well represent the popula-
tion not only in preferences such as DAT and value of travel and waiting times, but 
also in cognitive parameters such as speed of learning and learning strategies.  

It is recognized that the proposed framework may be challenging to implement. 
However, there is always an unavoidable trade-off between simplicity and elegance 
on the one hand, and accuracy on the other. Where real life applications are impor-
tant, as in transportation systems, the accuracy is much more important if the con-
tributions of the research are judged with regard to their relevance to real-world 
systems [28].  
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4   The Passenger-Agent 

The proposed framework is based on representing passengers and both their learning 
and decision-making activities explicitly. The underlying hypothesis is that individual 
passengers are expected to adjust their behaviour (i.e. trip choices) according to their 
experience with the system and the information provided to them. Individual passen-
gers base their daily travel decisions on the accumulated experience gathered from 
repetitively traveling through the transit network on consecutive days and the infor-
mation they receive on the day of the trip through, for instance, traveler information 
systems. It is important to note that all transit passengers may have full knowledge 
about the transit system (through ITS, APTS), but they might still use different routes 
for the same OD pair according to their preferences.  

Building on this, it is concluded that without explicit proper representation of how 
new experiences are integrated in a passenger’s cognitive system, it would be hard to 
predict passenger’s reaction to the experience with the transit system. Therefore, indi-
vidual behaviour should be modeled as a cyclic process of repetitively making deci-
sions and updating the perception, according to a learning process. Every passenger 
has a memory, where he stores previous experiences, and it reflects the passenger’s 
perception (i.e. knowledge) about the transit network conditions. At the end of day d, 
the passenger’s memory is updated with the new experience; the updating process is 
governed by a learning mechanism. The updated passenger’s memory, coupled with 
his decision-making component, is the base for trip decisions at day d+1. The deci-
sion-making component directs trip decisions to reflect the passenger’s preferences 
(e.g. more preference towards less number of transfers).  

It is well established in psychology sciences that alternatives are generated after 
heuristic search in a solution space, evaluated according to designated criteria, then 
selected and implemented [28]. The practice has always been to use the random utility 
choice theory, from the microeconomic field. There are, however, two critical issues 
about using random utility theory: 
• The definition of utility is not clear; which leads to this circular situation: A per-

son chooses an alternative X over Y because s/he prefers it; X is preferred over Y 
because the person chooses it [29]. Apart from curve fitting to hypothetical vari-
ables that lack theoretical foundation and may have logical meanings, the utility 
definition is still vague. 

• By specifying some variables that are believed to affect choices, it is usually as-
sumed that persons have the information about these variables or have the ability 
to correctly predict their values. In a situation of incomplete information (or even 
misinformed person), the previous assumption should be relaxed. 

In the agent-based framework, there is an underlying assumption that each passen-
ger decides on his travel choices rather than an external utility function that decides 
for all passengers. The benefit is believed to be twofold. First, while it may yield the 
same results when sensitivity coefficients attached to the different components of the 
generalized cost function are randomly generated from a known density function, it 
gives the flexibility to represent different population characteristics that may not fol-
low a certain distribution. The current practice is to use the error term in the utility 
function to account for the differences between individuals; this requires some as-
sumptions which are usually not satisfied in the transit assignment problem (e.g. the 
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independence of alternative choices). Second, the assumption, that all individuals are 
optimizers and they want to maximize their utility, may not hold for the whole popu-
lation. Optimizers as well as acceptors (and others) behaviour should be represented. 
Moreover, representing different types of passengers, such as frequent users who have 
full knowledge about the system and occasional users who have little or no informa-
tion about the system, is now possible.  

The passenger-agent representation means that passengers are treated as agents, 
who have a memory of previously tried strategies and their respective performance. In 
general, they choose the strategy with an ‘acceptable’ performance according to des-
ignated criteria, but from time to time they re-try one of the other strategies just to 
check if its performance is still unchanged. For example, other individual choices to 
not travel on a specific route may turn this route ‘acceptable’ for another passenger. 
Meanwhile, new strategies may be generated and added to the memory.  

4.1   The Learning Process 

It should be mentioned that the generalized cost of the transit trip is what the passen-
ger learning and adaptation is about. Trip generation and mode choice are assumed to 
be constant. The generalized transit trip cost usually consists of four components (a) 
in-vehicle time (b) waiting time (c) penalty of transfer (d) access/egress walking time. 
The in-vehicle time represents the time spent during the whole trip in a transit run (or 
sequence of runs). The waiting time consists of three sub-components: waiting time at 
the origin stop, waiting time at the transfer stop(s), and hidden waiting time where 
passengers arrive too early/late (i.e. schedule delay) at the destination [1]. The transfer 
penalty may consist of a fixed cost for making a transfer and a variable cost for the 
number of transfers. The access/egress walking times depend on the choice of the 
origin/destination stops, and accordingly will affect the route choice (and the transfer 
choice as well).  

By weighting the trip generalized cost function components, it is permissible for an 
acceptable path to be slower than others in real time provided that it is more attractive in 
other aspects, such as less number of transfers. With optimizer behaviour, passengers 
are assumed to travel on a path with a minimum generalized cost; while with satisfying 
behaviour, passengers are assumed to select the first path that satisfies certain criteria. A 
certain path with specific values for the four generalized cost components may be per-
ceived differently by different passengers due to different preferences.  

The proposed approach assumes that passenger-agents have the ability to make 
predictions about the transportation network conditions, which have been gained 
through past experience. Passengers interpret each new experience in the context of 
previous knowledge to assess whether behaviour should be adjusted. The day-to-day 
evolution of attributes that make up the generalized cost function, hence, can be ex-
plicitly considered through a learning process. It is also assumed that passengers base 
their perception on the events stored in memory. Individuals will not store informa-
tion for all possible conditions, but only distinguish between conditions of states that 
are significantly different in terms of outcome of the event. In other words, passengers 
classify their experience to differentiate between travel conditions for which expecta-
tions of generalized cost function is relatively comparable. In this context, different 
learning mechanisms can be implemented and tested.  
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The learning process is concerned with the complete specification of the generalized 
cost function components, according to which passengers consider their choices on day 
d. This requires explicit treatment of how experience and information about those com-
ponents on previous days influence the choice on the current day. The proposed ap-
proach assumes that learning occurs both with the evolution of within-day and the evo-
lution of day-to-day. The generalized cost function has some fixed components that do 
not change from day-to-day or within-day, such as the number of transfers for a certain 
path; no learning is required for these components. Some components change due to 
within-day dynamics; these attributes are direct functions of service features, such as 
waiting time and comfort levels. Passenger-agents learn how to estimate these compo-
nents, or, in the case of available ITS and ATIS, this information is supplied by the 
system. Other components, which passenger-agents should learn about, include in-
vehicle time and transfer time – the learning process involves the estimation of such 
components. It is important to mention that the existence of ITS or ATIS will not re-
place the learning process, since information supplied by the system does not totally 
overwrite passengers’ memory. Passengers consider new information in the context of 
past experience; they base their perception on the events stored in memory. Hickman 
and Wilson [30] developed a framework to evaluate path choices in public transit sys-
tems where passengers receive information in real time regarding projected in-vehicle 
travel times. They reached the conclusion, based on a case study corridor at the Massa-
chusetts Bay Transportation Authority (MBTA), that real time information yields only 
very modest improvements in passenger service measures (e.g. origin-destination travel 
times). This reflects that passengers rely more on their expectations.  

4.2   The Planning Process 
Individual passengers are decision makers, who choose a departure time, an origin 
stop, a destination stop and a route between a given origin and a destination each day. 
As rational individuals, their aim is to maximize their perceived outcome of their trip 
by minimizing the generalized cost in relation to some DAT (e.g. work start time). 
The decision process is based on a cognitive system (i.e. mental model) of the gener-
alized cost of the transit trip, which is updated each day, after the outcome of the trip 
decision is known. The passengers’ knowledge of the transit network will have an 
effect on the decision making process; simply, unknown routes will not be tried. In 
this context, different levels of knowledge can be represented, such as frequent users 
and occasional users. Even when full information is assumed for all passengers, dif-
ferent passengers’ preferences will result in different evaluations for the ‘acceptable’ 
path for each passenger. 

The proposed path choice model considers the home departure time choice, the stop 
choice and the run (or sequence of runs) choice. The home departure time and stop 
choices are assumed to be at-home choices (i.e. pre-trip), in which passenger-agents 
consider available information obtained from previous days and the information avail-
able from the system (if applicable). The cost associated with a stop includes stop-
specific components, such as presence of shops, and components that represent the 
average cost associated with all runs available at this stop (i.e. effectiveness of a stop). 
Once a passenger-agent arrives at a stop, a specific run choice is considered an adaptive 
choice, in which, besides previous information, the passenger considers situations that 
occur during the trip, for example waiting time. The existence of information, through 



A General Multi-agent Modelling Framework for the Transit Assignment Problem      287 

ITS and APTS, will influence the passenger-agent adaptive choice behaviour at stops. It 
is important to mention that, because of the dynamic representation of the transportation 
network (i.e. a microsimulation model), the adaptive choice is relative not only to the 
transit line, as in static models, but also to the specific run of each line. In other words, 
the proposed approach considers the path choice as time-dependent.  

The mental model reflects the outcome of the new trip as well as the outcome of 
previous trips, all stored in memory. Each passenger has a memory, in which relevant 
aspects of previous trips are stored, but not all are retrievable. This may be because 
some experiences are too old or not considered as representative. Using the mental 
model and accessing resources in the memory, each passenger plans his transit trip 
decisions each day; i.e. a departure time, an origin stop, a destination stop and a route. 
There could be an assumption that there is no en-route replanning, so that passengers 
are committed to their plans for the whole trip duration; or they can have adaptive 
choice behaviour throughout the trip; for example, a passenger may have a master 
plan, and in case of difficulties pursuing it s/he switches to a backup plan. Where ITS 
and APTS exist, en-route re-planning can take place.  

The UE assumption considers that no passenger believes that he can improve his 
perceived trip utility with unilaterally action. This, in fact, means conducting a search 
process for all available paths and selecting the best one. Where a path has not been 
tried before, a utility value is to be assigned to that path, and it does not necessarily 
have to be consistent with the actual performance. The decision-making activity has a 
mechanism of selecting remembered plans that are stored in the memory. For each 
plan, there is a generalized cost value, which measures the plan performance. This 
also can be called the score of the plan, so that agents can compare scores of different 
plans stored in memory and choose based on the performance. The generalized func-
tion can include other performance criteria, which can be agent-specific in some cases 
to reflect different preferences between passengers. Other selecting mechanisms can 
be easily implemented. For example, a stress-based2 mechanism which reflects the 
reluctance of passengers to change their preferred routes (i.e. routes that have been 
used more frequently), even they are no longer the optimal ones, can be easily imple-
mented. In this way, one can test different policies that address the stress-threshold of 
passengers in order to promote different service characteristics or introducing new 
services (e.g. BRT systems). Also note that transit riders do not usually change their 
choices frequently, even after a bad experience. Each individual, therefore, may have 
an exploration period, during which the passenger does not change his transit option. 

The main idea is that it is never the case that passengers choosing among alterna-
tives are informed about probabilities of the outcomes. They normally support their 
own expectations about the outcomes in evaluating different alternatives, based on 
their previous experience. The existence of information about the expected perform-
ance of the transit system (e.g. ITS, APTS) will affect the passenger choices. This 
information, when provided to the passenger, can be interpreted as a recent experi-
ence, added to the memory, and then combined with previous experiences for the 
usage in the decision-making process. Planning requires that passengers can anticipate 
the consequences of their choices, presumably by developing an internal model of the 
environment through experience. 

                                                           
2  The idea of stress-based mechanism is illustrated in Salvini  [32] 
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5   The Microsimulation-Agent 

The microsimulation component is important for modeling transit system networks, in 
which both line service frequency and OD trip demand are time varying. The transit 
network is highly dynamic because service characteristics change constantly during 
the day and among days. Moreover, schedule coordination is essential for path finding 
within the transit network, and the optimal path is very sensitive to the time of the 
trip. Transit networks need to be treated dynamically, as active traversals and transfer 
nodes of the network are dynamic [31]. To capture the dynamics of the transit system, 
a time-dependent self-updated representation is needed, i.e. a microsimulation model. 

In previously developed approaches, all transfers between lines are described by 
timetables. Accordingly, different routes will be optimal based on given criteria dur-
ing the day, thus different assignment models can be used (usually called determinis-
tic time-dependent models). Current assignment models do not consider properly the 
interaction between transit vehicles and other general traffic sharing the same road, 
although transit vehicles are usually delayed by other general traffic. In principle, to 
describe these delays, auto and transit assignment models should interact at the link-
level. The argument that these delays are usually reflected by the timetables does not 
hold for long-term forecasting, where it might be easier to model delays instead of 
specifying in-vehicle time manually for each planned scenario [1].  

A typical dynamic problem with network graph representation instead of a mi-
crosimulation model is illustrated by this simple situation. When a passenger leaves a 
transit vehicle and arrives at a boarding link for a transfer, the network loading proc-
ess for this passenger has to be suspended at this moment in time until the movements 
of all other passengers have been simulated at least up to this moment, in order to 
calculate, for example, the correct dwell time at the current boarding link [24]. Such 
situation is likely to occur in any transit network. The difficulties in dealing with such 
dynamics in a network graph representation raise the need for microsimulation mod-
els as a potential candidate that it is structured to take care of this kind of dynamics.  

Other dynamics of the transit system include congestion effects and asymmetric in-
teractions between individual passengers. For a congested transit network with bottle-
necks, only a portion of passengers may get the first arriving vehicle at some sta-
tions/stops. The residual passengers will be served by the next coming vehicles or 
transfer to alternative routes. Hence, the passenger overload delay at a station/stop 
should be determined endogenously to the system. This can be done according to the 
equilibrium characteristics of the congested transit network, such as in Lam et al. 
[22]; this, however, is based on the equilibrium conditions that may not apply. The 
asymmetric interactions can be of two kinds [24]: 
• The costs of users in successive time periods influence each other: the cost of ar-

riving passengers at stops is influenced by earlier passengers boarding the transit 
vehicle, but not the reverse way. 

• The cost of boarding passengers is influenced by the number of passengers occu-
pying the transit vehicle, but not the reverse way. 

In addition to the aforementioned dynamics of the transit network, the current prac-
tice of using nominal frequencies to determine the set of attractive lines for a given 
pair of nodes is no longer correct. Nominal frequencies should be replaced by effec-
tive frequencies, which depend on the flows over the transit network. This means that 
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attractive transit links cannot be defined in advance. In other words, the trip assign-
ment process and defining attractive sets cannot be separated.  

The transit network is dynamic in nature, as available services of the network keep 
changing through time. In order to account for all the transit network dynamics, the 
microsimulation-agent is introduced. Simulation, in general, is an appropriate tool 
when analytical methods have little predictive power. Not only do microsimulation 
models describe the behaviour of individual decision makers, but they also capture the 
interaction between the system level and the individual level, due for instance to limi-
tations of system capacity. Interactions between individuals and with the system level 
affect the assignment process; for example, the trip duration is influenced by the oc-
currence of congestion that is determined by interaction between transit supply and 
decisions of other individuals to use the transit network at particular times on particu-
lar routes. The microsimulation-agent is expected to handle the transit network dy-
namics and asymmetric costs involved in the transit assignment process. 
Microsimulation models have recently been considered as an essential component in 
urban transportation planning models, such as ILUTE [33].  

6   The GIS-Agent 
The purpose of the GIS-agent is to store the geocoded data of transit trips (origin and 
destination of each trip), to define for each transit trip access/egress walking times 
between any trip origin/destination and a particular transit stop. It is also used to de-
fine the catchment area for individual passengers, in order to determine the avail-
able/accessible transit stops for each passenger-agent. The GIS-agent is essential to 
define for each passenger-agent the initial set of possible/eligible transit paths, where 
temporal and/or spatial constraints may apply (e.g. catchment area of 300 meters).  

Not only does the access walking time to an origin transit stop affect the route choice, 
but also the egress walking time and/or accessibility from the destination transit stop. 
While it has always been overlooked, the stop choice is very critical to the transit as-
signment process and may affect considerably the loads on all routes; changing a stop 
most probably results in changing the route (and hence the transfer connection).  

It is acknowledged that the topology of the transit network is very complex. In the 
transit network, one stop may serve multiple transit routes and many routes may be 
run on the same street. In addition, the minimal-time path in the transit network is not 
symmetric in terms of origin and destination pairs [34]. Recently, some transit appli-
cations have included a GIS model as an essential component to treat the complex 
nature of the transit network, with different public transport modes, lines and transfer 
points [31]. The GIS-agent is important to test and evaluate land-use policies, espe-
cially when spatial analysis is required. 

7   Assistant-Agents 
There are three assistant-agents: the feeder-agent, the loader-agent and the feedback-
agent. The purpose of the assistant-agents is to build modularity into the framework and 
separate the major three active-agents via ‘bridges’. These bridges enable all the combi-
nations of different technologies and/or architectures of the active-agents implementa-
tions. Besides, each assistant-agent has another task for the transit assignment process.  
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The feeder-agent is responsible for communicating either with users or other large-
scale land-use and transportation models for the input process. The feeder-agent holds 
information about passenger’s initial (or preferred) departure time and other constraints 
that may restrict departure time changes (these constraints can be agent-specific). In 
addition, the feeder-agent is the bridge between the GIS-agent and each passenger-agent 
to supply each passenger with a list of feasible plans for the transit trip. These plans are 
generated based on the available/accessible transit stops to that passenger supplied by 
the GIS and the preferred departure time obtained by the feeder-agent. This list can be 
supplied once, that contains all possible plans for a given trip origin-destination, or can 
be dynamically updated every time the departure time is changed.  

The chosen plans by different individual passengers are output to the microsimula-
tion-agent; this connection is made using the loader-agent. The loader-agent keeps 
track of each stop time-dependent demand and dynamically loads and establishes 
connections between passenger-agents and the microsimulation model. When the 
simulation is finished, its output is processed by the feedback-agent. The feedback-
agent is responsible for collecting information about each passenger’s trip cost com-
ponents (i.e. waiting times, in-vehicle times, transfer times3). It is also in charge of 
updating each passenger’s memory with the new experience according to every pas-
senger’s learning mechanism; this can be governed, for example by Reinforcement 
Learning principles [35]. 

8   Connectivity with Activity-Based Urban Transportation Models 
The evolution of travel demand modeling is now leading to the new activity-based 
models, as the core of the next generation of transportation forecasting models. This 
evolution has been driven by the need for greater sensitivity to policies that affect 
more than just the broad characteristics of urban form, and target the mechanisms that 
produce human travel behaviour. 

Transit assignment is a key component of activity-based land-use and transporta-
tion models. Activity-based microsimulation models require transit assignment mod-
els to be sensitive to dynamic variations in travel demand, and have the ability to 
provide feedback on average transit travel times in a way that is consistent with traffic 
congestion and service interruptions. Both requirements are included in the proposed 
multi-agent learning-based approach, by its very nature.  

The proposed framework structure is formulated in a way that is compatible with 
the recently developed activity-based models for urban transportation systems. The 
agent-based concept implemented here facilitates direct connectivity with agent-based 
activity-based urban transportation models, such as ILUTE [33]. Within ILUTE, each 
person is represented as a distinct entity that makes detailed travel plans in both time 
and space. With specific manipulation of the feeder-agent, passenger-agents can rep-
resent the same individuals modeled in the activity-based models that happen to 
choose transit as the primary mode of travel (and even borrow the same characteris-
tics to maintain consistency, such as waiting time preference) – see Figure (2). Be-
sides, the introduction of the GIS-based component allows for appropriate handling of 
spatial land-use issues that are difficult to be addressed by a transportation 
microsimulation model alone. 

                                                           
3  Access/egress walking times are assumed to be fixed and pre-determined by the GIS-agent 
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Fig. 2. Connectivity with Activity-Based Urban Transportation Model 
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By connecting with emerging activity-based microsimulation urban transportation 
models, the multi-agent learning-based approach becomes suitable for operational 
planning of transit services as well as for long-range strategic planning. It has usually 
been conceived that highly detailed, dynamic transit assignment models are not ade-
quate for strategic planning as they require precise input data for detailed network 
planning, which are not generally available for long future scenarios; or that precise 
forecasts are not necessary for strategic planning. ILUTE, for example as a mi-
crosimulation model for long-range transportation planning, is likely to be capable of 
providing inputs for long-range scenarios at a fairly accurate level of detail. 

9   Comments and Future Research 

The proposed multi-agent learning-based transit assignment approach could accom-
modate all the different views of the transit assignment problem, as well as tries to 
resolve many of the limitations of existing approaches. The framework, inspired by a 
learning-based approach, is able to represent different behavioural hypotheses, such 
as user equilibrium as well as others. It has been shown that learning and adaptation 
methodology is a powerful tool in modeling the dynamics in responses over time. The 
transportation system, in particular the transit system, is complicated, and given the 
systems’ path dependencies and the time-varying factors, system equilibrium is often 
not achieved. This represents a great challenge to equilibrium-based models. There-
fore, in the absence of explicit equilibrium conditions, a future state of the transporta-
tion system can only be estimated by explicitly tracing the evolutionary path of the 
system over time, beginning with current knowledge conditions [36]. The multi-
agent-based representation increases the possibility of emergent behaviour to be pre-
dicted, which is not hardwired into the model. 

As already indicated, the proposed multi-agent framework, with different 
specifications, is capable of representing current practices. For example, a simple 
network graph representation may replace the microsimulation model and acts as the 
microsimulation-agent. While this is not desirable for the previously mentioned 
reasons, this is still possible because of the modular approach.  

The proposed approach can simultaneously predict how passengers will choose 
their routes and estimate the total passenger travel cost in a congested network, as 
well as run loads on different transit routes. It results in a dynamic network manipula-
tion (through the microsimulation model), time-dependent trip choices, and a dynamic 
network loading procedure. The framework, once fully implemented, can be benefi-
cial in many respects. It can be used to model long-term planning activities (e.g. the 
introduction of BRT services), as well as short-term (temporary) planning activities 
(e.g. construction site scenario). It can be used to simulate the performance of an 
existing transit system operating on pre-announced schedules under variable passen-
ger demand conditions, or to evaluate the effects of changes in schedules, routes or 
passenger demand on the system performance. In cases of congested transit networks, 
it can be used to test different alternative methods of relieving congestion. New ser-
vices and modifications to existing service characteristics can be evaluated and as-
sessed under different passenger behavioural patterns. The model can also be used to 
evaluate the impact of different situations on the transit assignment process, even if 
they are not directly related to the transit service. It reflects the impacts of non-related 
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transit activities on the transit service conditions, and consequently passenger travel 
behaviour – e.g. construction site (temporary) impact on the transit assignment proc-
ess. When connected with urban transportation models – such as ILUTE – the effect 
of different land use policies, which change passenger demand, on the transit system 
performance can be evaluated and assessed.  

The proposed framework emphasises the importance of representing the supply 
side and the demand side simultaneously. The change of the transit service affects 
passenger’s travel behaviour, yet passenger’s travel behaviour affects the transit ser-
vice. When connected to trip-based (or activity-based) models, the model can be used 
to test the impact of the implementation of measures, such as new BRT systems, on 
mode choice. The multi-agent approach provides the most consistent way of combin-
ing traffic and transit in a simultaneous modeling framework; therefore it is able to 
represent the impact of roadway congestion on transit service and vice versa. This 
approach explicitly accounts for different preferences and characteristics of the transit 
population. By adding more factors to the transit option generalized cost function, one 
can model behavioural situations where, for example, passengers may walk a further 
distance to get a seat on the bus or may choose transit options with higher travel times 
to avoid overcrowding. These factors can be general such as comfort level or transit 
route reliability, or agent-specific such as preferences for stops with shopping malls.  

The proposed approach acknowledges the importance of maintaining explicit rep-
resentation of information available to passengers, so that it allows for explicit model-
ing and evaluations of operational impacts of investing in new technologies for trav-
eler information systems (e.g. ITS and APTS). It is also possible to analyze and 
evaluate different planning polices at the operational level, such as Transit Signal 
Priority (TSP) and control operation strategies that address reliability issues (e.g. 
holding policy), as well as at the strategic level, such as the introduction of a new 
BRT line or schedule changes.  

An operational prototype of the proposed modelling framework has been devel-
oped and tested. The purpose of this prototype is to demonstrate the feasibility and 
applicability of the new framework. A hypothetical transit network has been devel-
oped in the ParamicsTM microsimulation platform. A population of transit riders has 
been synthesized and the multi-agent learning-based algorithm has been coded. Rein-
forcement Learning principles are used to represent passenger’s adaptation and learn-
ing process – for more details, refer to Wahba and Shalaby [37]. The implementation 
of the prototype raised many issues that need to be addressed in future research, refer 
to Wahba [38] for a detailed discussion. The prototype is intended to reflect the pro-
posed structure with all connections, but possibly with simple implementation of sub-
components. In the near future, a full implementation, possibly using medium-size 
real transit system, will be conducted. 
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