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Abstract. In this paper, we propose the use of Cellular Automata para-
digm to simulate an infectious disease outbreak. The simulator facilitates
the study of dynamics of epidemics of different infectious diseases, and
has been applied to study the effects of spread vaccination and ring vac-
cination strategies. Fundamentally the simulator loosely simulates SIR
(Susceptible Infected Removed) and SEIR (Susceptible Exposed Infected
Removed). The Geo-spatial model with global interaction and our ap-
proach of global stochastic cellular automata are also discussed. The
global stochastic cellular automata takes into account the demography,
culture of a region. The simulator can be used to study the dynamics of
disease epidemics over large geographic regions. We analyze the effects
of distances and interaction on the spread of various diseases.

1 Introduction

Nowadays, the problem of emergent diseases and re-emergent diseases like in-
fluenza and SARS, have caused increased attention towards public health in gen-
eral and epidemiology specifically. With the ever-increasing population and abil-
ity to travel longer distances in short time, the spread of communicable diseases
in a society has been accelerated [16,17]. Growing diversity of the population,
and globalization are leading towards increasing interaction among individuals.
Constant exposure to public health threats is raising people’s concern and neces-
sitates pro-active action towards preventing disease outbreaks. Further, greater
emphasis on infections and epidemics is rooted in the imminent threat arising
from bioterrorism. As a result, Public Health professionals have been focusing on
identifying the factors in the social, physical and epidemiological environment
which aid to faster spread of diseases.

As the significance of Public Health is being recognized, the role of epidemiol-
ogists has become more prominent. Epidemiology deals with the study of cause,
spread, and control of diseases. The goal of epidemiologists is to implement mech-
anisms for surveillance, monitoring, prevention and control of different diseases.
To accomplish the above mentioned, epidemiologists need to deal with large data
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T. Böhme et al. (Eds.): IICS 2004, LNCS 3473, pp. 198–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



An Infectious Disease Outbreak Simulator 199

sets of disease outbreaks. These data sets are often spatially and/or temporally
distributed. It is in fact ironic that, for epidemiologists to study the dynamics of
different diseases, it is vital for an outbreak to occur. Epidemiologists have been
studying and analyzing the data sets using primarily statistical tools. In the vast
variety of infectious diseases, expertise is needed in terms of epidemiologists for
every disease. Statistical tools, prove to be inadequate and fragmentary, when
focusing on large spatial domains. These tools have been deemed limited, partic-
ularly in view of an emerging global computational infrastructure that facilitates
high performance computing. Hence, it is imperative to develop new tools that
take advantage of today’s computational power, and help epidemiologists to ana-
lyze and understand the spatial spread of diseases. The computational tools also
enhance the quality of information, accelerate the generation of answers to spe-
cific questions and facilitate in prediction. Such tools will take on an important
role in surveillance, monitoring, prevention and control of different diseases.

1.1 Cellular Automata

In the domain of computational tools, the Cellular Automata paradigm has been
in use for several decades [14]. Nevertheless, in the field of modeling epidemics,
this paradigm has rarely been utilized to its full potential [1,10,14,8]. A cellu-
lar automata as defined by Lyman Hurd is a discrete dynamical system, where
space, time, and the states of the system are distinct [15]. CA has been exem-
plified as an array of similar processing units called cells. The cells arranged in
a regular manner constitute a regular spatial lattice. Figure 1 shows a regular
lattice of cells. The fundamental property of each cell is a state, where the states
of cells change based on a update rule, either local or global. The update rule
is applied synchronously throughout the lattice and the state transitions of the
cells are based on few of the close by cells, known as the neighborhood. For a
two-dimensional lattice the most common neighborhoods defined are von Neu-
mann and Moore neighborhood as shown in figure 1 [15]. In the von Neumann
neighborhood, the state of cell Ci,j depends on the states of the four neighbor-
hood cells namely Ci+1,j , Ci−1,j , Ci,j+1, Ci,j−1. In the Moore neighborhood, the
state of cell Ci,j depends on the states of the eight neighborhood cells namely
Ci+1,j , Ci−1,j , Ci,j+1, Ci,j−1,Ci+1,j+1, Ci−1,j−1, Ci−1,j+1, Ci+1,j−1.

As mentioned before, the CA’s evolution is based on a global update rule
applied uniformly to all the cells. The signature of this rule can be thought
of as a state transition from time t-1 to t. As shown in the figure 2 the state
of the center cell changes to a state, which is in majority among the cells in
the neighborhood. The update rule determines the deterministic or stochastic
behavior of a CA. Stochastic behavior is seen by probabilistic update rules in
non-deterministic state transitions.

Our efforts to design and implement a Cellular Automata based simulator
has been necessitated by the need to study the dynamic of spread of a vast
number of infectious diseases. Towards this goal, this paper proposes the use of
CA paradigm to simulate an infectious disease outbreak. Specifically, this paper
focuses on the design and evaluation of EPI-SIM, a global disease outbreak sim-
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Fig. 1. von Neumann and Moore Neighborhood

Fig. 2. Cellular Automata Update from time step t-1 to t

ulator. The following section summarizes some of the research effort in modeling
disease epidemic and highlights principle approaches. The design of EPI-SIM is
discussed in Section 3. Section 4 presents the experimental analysis and results
of the simulator. Section 5 discusses the Geo-Spatial model and the approach
towards the global model to account for different demographics. Section 6 con-
cludes the paper with a summary and direction for future work in the area of
modeling infectious diseases outbreaks.

2 Related Work

Most of the work in modeling infectious disease epidemics is mathematically
inspired and based on differential equations and SIR/SEIR model [3]. Differ-
ential equation, SIR modeling rely on the assumption of constant population
and neglect the spatial effects [5,6]. They often fail to consider individual con-
tact/interaction process and assume populations are homogeneously mixed and
do not include variable susceptibility. Considerable research has been conducted
in SIR(Susceptible, Infectious, Recovered) modeling of infectious diseases using
a set of differential equations. Both partial and ordinary differential equation
models are so deterministic in nature that they neglect the stochastic or prob-
abilistic behavior [8]. Nevertheless, these approaches/models have been shown
to be effective in regions of small population [8]. Other approaches for modeling
disease epidemics have been using mean field type approximations [12]. Even
though the MFT models are similar to the differential equations, they add a
probabilistic nature by adding different probabilities for the mixing among indi-
viduals. Although, according to Boccara [5] mean field approximations tend to
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neglect spatial dependencies and correlations and assume that the probability of
the state of cell being susceptible or infective is proportional to the density of the
corresponding population. This approach relies on the quantitative measures to
predict local interaction. Boccara and Cheong [5] study the SIS model of spread
of infectious disease in a population of moving individuals, thereby introducing
non-uniform population density. In every update the cells take up a state of being
either susceptible or infectious and randomly choose a cell location to move to.

Ahmed et al [2] model variations in population density by allowing cyclic host
movement. Other approaches in modeling variable susceptibility of the popula-
tion, have been done by inducing immunity in the population. Ahmed et al [1]
introduce incubation and latency time, and suggest that the parameters have an
accelerating impact on the spread of a disease epidemic. Nevertheless, the under-
lying assumption is spontaneous infection of individuals. Boccara and Cheong [6]
concentrate on SIR epidemic models and take into consideration the fluctuation
in the population by births and deaths, exhibiting a cyclic behavior with pri-
mary emphasis on moving individuals. Di Stefano et al [8] have developed a
lattice gas cellular automata model to analyze the spread of epidemics of infec-
tious diseases. The model is based on individuals, where individuals can change
their state independent of others and can move from one cell to other. However,
this approach does not consider the infection time-line of latency, incubation
period, and recovery which have been shown to be important to model a disease
epidemic.

3 EPI-SIM Disease Outbreak Simulator

In our model the basic unit of cellular automata is a cell, which may represent
an individual or a small sub-population. For each cell we use the Moore (8)
neighborhood definition. Each cell can be characterized with its own probability
for risk of exposure, probability of contracting the disease and state. Unlike the
SIR model, every cell comes in contact with the cells in its defined neighbor-
hood. The time-line for infection that we consider is shown in figure 3. However,
the moore neighborhood is restricted in modeling population demographics and
travel patterns. The limitation is eliminated in the next version of the simulator
with a global neighborhood which will be proposed in future publications. The
following sections discuss the definitions, features and rules of the model and
simulator.
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3.1 Definitions

In order to understand the functioning of the simulator, we define definite num-
ber of states a can exists in, and define the infectious time-line. The following
section describes the different states and definitions considered in the model.

States of a Cell
State ‘S’ for Susceptible is defined as the state where, the cell is capable of
contracting a disease from its neighbors. In the infectious state, ‘I’ the cell is
capable of passing on the infection to its neighbors. In the recovery state, ‘R’
the cell is neither capable of passing on the infection, nor is capable of contracting
the infection.

Parameters for the Simulator
Infectivity ψ, at any given time is defined as the probability of an susceptible
individual to become infectious, if it has an infectious cell as a neighbor. Latency
λ, is defined as the time period between, the cell becoming infected and it be-
coming infectious. Infectious period θ , is the period of time, when the infected
cell is capable of spreading the disease to other cells. Recovery period ρ is de-
fined as the time period, the cell takes to recover, wherein it is neither capable
of passing on the infection, nor is capable of catching the infection.

3.2 Rules for Spread of Disease

The following rules are applied to the CA for simulating the spread of the disease.
The rules describe the state transitions of individual cells.

1. A cell’s state changes from susceptible S to Latent L when it comes in contact
with an infected cell in its defined neighborhood. The cell acquires the disease
from the infected neighbor based on the probability of given by the parameter
of infectivity ψ. The cell remains in the latent state for the number of time
steps (updates) as defined by the parameter latency λ.

2. The state of the cell changes from latent L to infectious I after being in state
L for the given λ. In this model we assume for simplicity, that every cell
exposed to the pathogen, will become infectious. In the state I, the cells are
capable of passing on the infection to neighborhood cells. For example if for
a disease D, λ= 2 units, then after two time steps the cell will enter the
infectious state I.

3. After a time period, defined by the infectious period θ, the state of the cell
changes from infectious I to recovered or removed R. Once the cells enter
the state R, the cell is no more capable of passing on the infection.

4. From the state R, the cell’s state changes back to either susceptible S or it
remain in state R, signifying complete immunity. The ‘healing mode’ turned
on determines the transition from state R to state S and vice versa.
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3.3 Features

While modeling a disease epidemic, few parameters that are considered impor-
tant are neighborhood radius, contact between individuals, infection probability
(variable susceptibility), immunity, latency, infectious period and recovery pe-
riod. The simulator is highly parameterized to let the user change and modify
the above parameters. The neighborhood of every cell can be changed from a 8
neighborhood to 4 neighborhood depending on the region being simulated and
the contacts among the individuals of the region. As mentioned, the infection
probability represented as infectivity ψ is a significant parameter for the spread
of a disease. In the case of our model, ψ is based on the virulence of the disease
and contact rate among individuals. For some diseases individuals attain lifetime
immunity, after being infected, while for disease like common cold, individuals at-
tain temporary immunity. Thus, to take this fact into consideration, the simula-
tor has a feature of healing mode. With the healing mode enabled the simulation
is executed in a mode that forces cells to turn into susceptible after the recovery
state and with healing turned off, the cell attains complete lifetime immunity.

As mentioned above, the infection time-line is also an important factor in
modeling a disease epidemic. Thus the time periods of latency λ, infectious θ,
and recovery ρ are all expressed as time units, for example, latency of two days,
can be represented as λ=2 units. The simulator allows the user step through the
simulation at each time step, or execute it continuously. We will see in the next
section, how changing these parameters, can change the dynamics of spread of
diseases.

4 Experiments and Results

An epidemic is a severe outbreak of an infectious disease which spreads rapidly to
many people. For example, the occurrence of Influenza in a region is considered as
an epidemic. When a disease spreads to larger geographic regions or throughout
the world it is known as pandemic.

Moving along the same direction an endemic is defined as a disease that is
always present in certain group of the population. Using our model we show
both an epidemic and endemic. An epidemic is characterized by an exponential
growth of the infected individuals in a population. In the case of an endemic the
number of infected individuals fluctuates around a mean, there is no exponential
growth.

Experiments were conducted on a 140 by 140 grid cellular automata with
different values of ψ, λ and θ. The results in this section represent the mean over
multiple random experiments and different random graphs of the same type.
The analysis of results in this section have been conducted with reference to the
above definitions.

4.1 Analysis of Variation in Infectivity ψ

As mentioned earlier, ψ is an important factor in the analysis of spread of a
disease. Figure 4(a) and 4(b) show the results of executing the simulation of a
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(a) The growth of number of infected individuals
per time step is represented for ψ = 7.
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(b) The growth of number of infected individuals
per time step is represented for ψ = 15.

Fig. 4. Variation in spread for different ψ’s

disease D with ψ of 7 and 15 respectively. Figure 4(a) depicts that the number
of infected reached around 500 in 300 time steps, whereas in figure 4(b) with ψ
of 15 the number of infected reached around 10000 in 300 updates. Thus, this
depicts that the growth is rapid with ψ of 15 as compared to ψ of 7. Figure
5(a), shows the comparison of the different values ψ

′
s, which are 7,10,12,15.

The curves represent the growth rate. The curve is much steeper for ψ of 15 as
compared to others. The experiment was conducted with the λ= 2 units, θ= 3
units and ρ= 2 units. Healing option was turned off. This shows the sensitivity
of the parameter ψ.

4.2 Effects of Vaccination

Vaccination has contributed significantly towards the eradication and reduction
of effect of many infectious diseases [7]. The following experiments were con-
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(b) Comparison of Random Vaccination (5% of pop-
ulation was vaccinated) and no Vaccination

Fig. 5. Comparison of ψ
′
s and Comparison of Random Vaccination and no Vaccination

ducted on the simulator by vaccinating about 5% of the population at random
and infecting few cells. Figure 5(b), shows the growth of infected individuals
in a vaccinated and non vaccinated population. Figure 5(b) depicts that the
growth of infected individuals in a population with only 5% of the population
vaccinated, is considerably less as compared to the growth in a non-vaccinated
population.

We study the effects of spatial distribution of population, by vaccinating a
part of the population using the random vaccination and ring vaccination. Every
time a new vaccine is discovered, the question arises as to how should the vaccine
be distributed to minimize the spread of a disease and maximize the effect of
vaccination. Thus, in this experiment we compare the random vaccination, which
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available for both strategies

is also known as uniform strategy [9], and ring vaccination. The doses of vaccine
available at our disposal is often limited, thus for the purpose of experiment we
consider N doses of vaccine to be available to vaccinate the population, where
N is about 5% of the population. In random vaccination, the N vaccines, are
randomly distributed to individuals in a population, independent of the other.
In the ring vaccination, individuals are vaccinated in a ring surrounding an area.
The thickness and circumference of the ring depends on N. As Figure 6 shows,
using random vaccination many more individuals are infected as compared to
the ring vaccination. This experiment validates the result shown by Fukś and
Lawniczak in [9].

4.3 Conclusion from Experiments
The previous model described poses a limitation of neighborhood. The model
considers a neighborhood of 8 cells, because of which after a time period the
number of susceptibles reduce and saturate the neighborhood . In such a situation
the variance of infectivity parameter plays no role and has the same effect on
the spread of the disease. Also, the need to simulate a disease, where an infective
can spread the disease to twelve other individuals in one time step, will not be
possible to simulate. Another important issue to note is the movement of people,
migration, or travel is not considered. Some models, we saw in the previous
section deal with movement of individuals from one cell to another in the defined
neighborhood, where again the neighborhood is restricted. The saturation of
neighborhood occurs due to overlapping of neighborhood, when more than one
cell is infected in a neighborhood. Cells in a neighborhood may get infected more
than once in one time unit.

5 Geo-spatial Model

The Geo-spatial model is designed for simulating global outbreak of a disease in
a environment with global interaction. Even for this model the basic unit of CA
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is a cell, which represents an individual. The neighborhood as defined for this
model is global, where in a region of n cells every cell has n-1 neighbors.

For the functioning of this model, the definitions for the states of cell, pa-
rameters for simulation are same as the ones for SIR model discussed earlier.
This model has an additional parameter of contact rate and the definition is as
follows.

Contact rate parameter defines the number of contacts made by an individ-
ual per time unit. Instead of having the same contact rate parameter for every
cell in the lattice, for simulation purposes this parameter has a Poisson distrib-
ution over the cells. The simulation of spread of disease is discussed further.

1. In a time step a cell chooses k cells at random from the pool of n-1 neighbors,
where k is the contact rate defined for that cell. Thus the cell has now
established contacts with k cells.

2. Once a contact has been established between cell ‘a’ and cell ‘b’, depending
on the virulence of the disease defined by the infectivity parameter, cell ‘a’
can pass the infection to cell ‘b’ if cell ‘b’ is in a susceptible state S. If cell
‘a’ is not infected currently and cell ‘b’ is infected then cell ‘a’ can acquire
the infection from ‘b’. Thus the infection can pass on in both directions.

5.1 Experiments on Geo-spatial Model

The Geo-spatial model is different from the SIR type model in terms of the
neighborhood. The neighborhood saturation problem posed by SIR type model is
overcome by this model. However, this model is restricted in modeling population
demographics and travel patterns. The choice of cells for contact, is random and
is not based on distance from the cell or any other parameter.

To study the effects of position of index case on spread of a disease, the
simulation was run with different initial positions. After a certain time unit it
is seen that locations of new infected cases are not very different for the two
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Fig. 8. Analysis of contact rate and infectivity

simulations. This shows that the position of index case does not matter. In the
SIR type model the same experiment was done and the locations of new infected
cases were different for different positions of index cases. The new cases were
closer to the index case. In the Geo-spatial model because of global neighborhood
and global interaction the positioning of index case does not matter.

To analyse the contact rate the experiment was done with three different
contact rates for cells. The result shows that as average contact rate increases,
the number of infected individuals also grows. For this model the contact rate is
directly proportional to number of infected individuals. It is important to note
that the contacts made by cells are random. Figure 8(a) shows the comparison.

As seen before in the other model, as infectivity parameter ψ increases
the number of infected individuals increases. The average contact rate was fixed
for this experiment. Figure 8(b) shows the comparison.
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5.2 Accounting for Different Demographics

The models described above may be used for simulating diseases over small re-
gions with local interaction and global interaction respectively. As mentioned
before, these models do not take into account the demographics of the region
and may not be accurate for simulating disease spread over large geographic re-
gions because of the neighborhood constriction posed by them. Thus the global
stochastic cellular automata with demographics will facilitate to understand the
effects of different demographics, the population density, socio-economics of a
region and culture. It can also be used effectively for investigating different vac-
cination strategies and understanding the effects of travel.

5.3 Global Outbreak Simulator

In the following section we discuss the design of a global outbreak simulator
with a global interaction and demography. Even for this model the basic unit
of CA is a cell, which represents an individual or a small sub-population. The
neighborhood as defined for this model is global, where in a region of n cells
every cell has n-1 neighbors.
The neighborhood for a global SCA is defined using a fuzzy set neighborhood.
The definition of Fuzzy set neighborhood is as follows.

The set F ⊂ S where S is a set of all the cells
F : {〈s, p〉|s ∈ S, 0 ≤ p ≤ 1}

〈 s,1 〉 : Total/Complete membership
〈 s,0 〉 : No membership

The variable p maintains the state of infection, 1 if infected else 0.

5.4 Characteristics of a Cell

State of infection δ is defined as any number between 0 and 1, indicating the
level of infection present in the cell. 0 indicates not infected, 1 indicates fully
infected.

Interaction Coefficient i for a particular cell is defined as the interaction
between that cell and every other cell in the lattice space. It is calculated as
the reciprocal of the euclidean distance between the cells. Euclidean distance as
derived from the GIS gravity model.

iCi,j,Ck,l
= 1√〈i−k〉2+〈j−l〉2

Global interaction coefficient Γ of cell Ci,j is the summation of all the
individual (n-1) interaction coefficients of the cell. Every cell has one global
interaction coefficient and n-1 interaction coefficients.

The infection factor I is calculated as a fraction of the interaction coefficient
to the global interaction coefficient Γ , for every cell to cell interaction. It is also
based on the virulence of the disease and the state of infection of the infecting
agent.

ICi,j =
∑

∀Ck,l �=Ci,j

iCi,j ,Ck,l

ΓCi,j×δCk,l
×ψ
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5.5 Simulation Based on Population

The global interaction coefficient and the interaction coefficients are calculated
based on the distance. As the distance in between the cells reduce, the interaction
coefficients increase which indicates more chances of interaction between them.

ΓCi,j =
∑

∀Ck,l �=Ci,j

1√〈i−k〉2+〈j−l〉2

5.6 Simulation Based on Population and Distance

The global interaction coefficient and the interaction coefficients are calculated
based on the distance and population. The distance between the cells and the
populations of the cells are considered. For better understanding, the cells are
considered to be small regions having certain populations. The product of the
populations of the two cells, acts as a factor for the interaction coefficients.
The population factor is directly proportional to the interaction coefficient and
the distance between them is inversely proportional to the interaction coeffi-
cient.Thus two cells with high populations are assumed to interact more than
two cells with low populations, when the distance between them is same.

ΓCi,j =
∑

∀Ck,l �=Ci,j

1√〈i−k〉2+〈j−l〉2 × PCi,j × PCi,j

6 Conclusion and Future Work

This paper describes a disease outbreak simulator using the cellular automata
paradigm. The results show the variation in the spread of the disease for differ-
ent parameters of infectivity ψ. The simulator has also facilitated the study of
different vaccination strategies. Geo-spatial model helps us in simulating disease
spread in an environment with global interaction including travel and migration.
In the same direction the global model can be used to simulate disease spread
over large geographic regions. It deals with global interaction and the demo-
graphics of the region. While still working on the development of computational
tools to facilitate surveillance, monitoring, prevention and control of dynamics
of different diseases, the current simulators prove as valuable tools to study the
dynamics of different diseases. Global stochastic versions of the CA are currently
being developed.
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