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Abstract. In this article is proposed a distributed middleware useful to handle 
the evolution of deterministic virtual scenes in a 3D world. The proposed mid-
dleware allows interaction necessitated among virtual humans [1] and the envi-
ronment. This interaction allows virtual humans to get user defined goals. As 
stated in the behavioral animation [3,4] paradigm, the user only tells characters 
“what to do” (goals) instead of “how to do it” (actions). Every virtual human 
computes dynamically by means of an intelligent algorithm, the actions to 
achieve its goal based on: a) its actual state; b) the stimuli perceived from the 
environment, and c) the personality of the virtual human. Main components of 
the proposed middleware is part of a more complex system we call GeDA-3D 
[5,6], this system includes a Declarative Virtual Editor useful to create the vir-
tual world, an Context Descriptor used to define the physic laws ruling the envi-
ronment, increment the language declarative language with definitions, con-
cepts etc. A Rendering Tool useful to display the evolution of the scene, an 
Agent’s Control module to control the agents managing the different virtual life 
creatures and all this is around a Geda-3D’s kernel that provides all the stuff 
necessary to all these modules interact. Briefly the behavior of these middle-
ware is: The scene controller receives the actions, validates them, handles the 
effect of the actions according to the natural laws of the world, resolves a set of 
graphic primitives to render and launches an event for every goal achieved. The 
cycle of sending local states and receiving actions loops until no goal is left to 
fulfill. 

1   Introduction 
The development of distributed systems is well adapted to human behavior; however 
it is necessitated at same time to offer better interfaces to humans. With this aim, we 
propose a middleware useful to develop distributed application where a 3D interface 
is useful. More of these distributed applications recreate a virtual environment o vir-
tual world. When we say a virtual world we mean all programs necessitated to repre-
sent a world with all things objects creatures interactions etc. For instance it a world 
can be all the stuff necessitated in a manufacture plant or in a thermoelectric station. 
The term virtual creature is typically defined as a representation of a real or fiction 
creature generated and managed by a computer. Virtual creatures have gained great 
popularity in the recent years, especially on the entertainment industry – to develop 
animated movies and video games- and on the academic field, to recreate prehistoric 
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environments. When dealing with real-time applications, for instance video-games, it 
is not so simple to handle the behavior of the virtual humans to make them look real-
istic.  

As a consequence, several researchers from around the world have led their works 
toward the behavioral animation [3,4]  of virtual humans in order to create virtual 
scenes less predictable, where virtual humans take autonomous decisions in real-time. 
The spirit of behavioral animation techniques lays in the concept of telling characters 
“what to do” instead of “how to do it”. In behavioral animation, a virtual human de-
termines its own actions, at least to a certain degree. This gives the virtual human an 
ability to improvise, and frees the animator from the need to specify each details of 
every human’s motion. Unfortunately, it is not clear how the current works provide 
means for users to: a) develop behaviors and assign them to virtual humans, b) specify 
the natural laws ruling the interactions in a virtual world, and c) take advantage of 
existing rendering tools in order to avoid low-level implementations. 

We propose an agent-oriented middleware useful to handle the evolution of virtual 
scenes based on behavioral animation. This middleware is the core of a complex sys-
tem called GeDA-3D, and introduced in [5,6]. The main goal of this first stage of 
GeDA-3D concerns allowing inexpert users –scenarists, hereafter– to provide a hu-
man-like description of any scene and, as a result, a 3D-graphical representation of 
such scene is rendered. This overall operation is depicted in Figure 1. During the 
evolution of the scene, virtual humans [1,2], or characters, interact with each other in 
order to achieve a number of goals specified formerly by the scenarist. 

 
Fig. 1. Context-DFD of GeDA-3D 

This article is organized as follows. Section 2 introduces the architecture of the 
system together with a brief explanation of the components’ competencies. Section 3 
depicts the internal operation of an agent in GeDA-3D. Section 4 shows the informa-
tion flow between the components of the middleware. Section 5 summarizes the con-
clusions and future work. 

2   Architecture 
The middleware proposed in this paper follows an agent-oriented architecture which 
allows management of distributed applications and assists the development of virtual 
environments. It represents the core of GeDA-3D. The behaviors of the characters are 
actually distributed applications treated as agents attached to the platform. An agent 
can control the behavior of more than one character. The platform provides templates 
allowing the programmer to easily develop simple or complex behaviors. 



170      Félix F. Ramos, H. Iván Piza, and Fabiel Zúñiga 

The core of GeDA-3D is primarily in charge of: a) sending the agents the next set 
of goals their characters have to fulfill and the current local state of the world, b) 
managing the interaction of the virtual entities according to the natural laws of the 
world being modeled, and c) sends a set of lower-level commands to a 3D-tool to 
render the scene. Every agent sends back to the core an action sequence to encourage 
the fulfillment of the current goal. Figure 2 depicts a data-flow diagram of GeDA-3D 
considering some components required to accomplish the main goal of the project.  

 
Fig. 2. Level 0-DFD of GeDA-3D 

The overall operation of GeDA-3D is as follows. The scenarist provides a declara-
tive [7] description of the scene using geometric constraints [8]. Such description 
includes: a) creation of virtual entities, b) assignment of behavior for characters, c) 
arrangement of entities in the world, and d) description of the goals to be fulfilled by 
the characters. The Virtual Scene (VS) Editor translates the declarative description in 
a geometric one, only if the description is errors-free and valid according to a number 
of rules. The world (or context) defines a set of natural laws that rules the interaction 
between the virtual entities, and includes descriptions of the actions and entities ad-
missible.  

The core manages the evolution of the scene: it validates and executes actions, and 
handles the effect of interactions between entities. Every agent receives the state of 
the world and sends back actions to achieve the goal-specification. Finally, the ren-
derer receives low-level commands useful to display continuously the scene.  

The architecture of the core is constituted primarily by two modules called scene 
and agents control. The scene control addresses all the issues related to the evolution 
of the scene as a result of the interaction of characters, while the agents control man-
ages the distributed issues of the platform. Figure 3 shows a more detailed data-flow 
diagram depicting the architecture of the middleware proposed. 
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Fig. 3. Middleware architecture 

2.1   Scene Control 

The scene control is in charge of control the interactions and evolution of the virtual 
scene. It receives high-level commands to, initially, create and arrange virtual entities 
in the scene and, iteratively, to request the execution of actions. As a result, the scene 
control produces low-level commands to be sent to a specific renderer who translates 
each command in a set of graphical primitives. A low-level command indicates either 
the creation/placement of a virtual entity, or the animation of one or more entities. A 
high-level command can produce zero or more low-level ones. The tasks performed 
by the scene control include the following: 
• Receive a sequence of high-level commands for the display of the virtual objects 

in a certain position 
• Receive periodically – coming from the agents – sequences of actions for the char-

acters to perform  
• Validate the execution of all the actions received; it has the ability to delay or can-

cel the execution of a single action or an action succession 
• Resolve a sequence of animations to execute as a result of an interaction, and send 

it to the renderer; the natural laws have much influence in this task 
• Whenever an action succession is finished, successfully or prematurely, the scene 

control determines and sends updated local world-states to the agents through the 
agents’ control. A premature finalization is usually due to unexpected contacts 
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with other moving entities or by gravity effects: the ground was not enough for all 
the actions. In either case, the agents are notified right away with the new local 
world-state. 

• It holds a World database containing fundamental information about all the virtual 
entities involved in the scene 

2.2   Agents Control 

The agents controlling the behavior of characters are actually distributed applications. 
The agents’ control manages the connection and disconnection of the agents and all 
the issues related to the transference of data between the community of agents and the 
middleware. Such data include the following: 
• Control assignment. Every agent controls the behavior of one or more characters 

and enforces them to accomplish a goal-specification defined by the scenarist. A 
character is said to be linked to an agent during the scene. More details about the 
agent operation can be found in Section 3. 

• Goals required. The operation of an agent is oriented to achieve one or more goals 
not yet fulfilled and already enabled. A goal is enabled as soon as some precondi-
tions are given, including external events or previously-assigned goals fulfilled. 
Such conditions are defined during the scene description. 

• Local state of the world. Every character has a particular perception of the world 
around. This perception depends on the location and orientation of the character, 
and is represented as a set of entities reachable from the character’s field of view. 
The information of an entity seen can be full or partial depending on how far it is 
from the eyes of the character. 

• Action sequences. An agent computes an action sequence as a result of the current 
goal required, the personality definition and the local perception. The agents con-
trol continuously receives action sequences from all the agents and sends them to 
the scene control for validation and execution. 

• Messages between agents. Very often, characters work as a team and hence need 
cooperation from each other, for instance, to increase the local perception of the 
environment. In such cases, agents are capable to exchange messages in order to 
provide information about the scene. 

3   Agent Architecture 
This section introduces a generic architecture useful to develop the behaviors of the 
characters. These behaviors are attached to the platform as distributed agents. The 
scenarist specifies what characters must do, instead of how they have to do it. The 
behavior is in charge of solving the second part. Therefore, two similar specifications 
might produce different simulations. The agent relies on a Beliefs, Desires and Inten-
tions architecture, as described by Georgeff [9], so that each agent makes decisions by 
itself. In general terms, the agent operation consists on iteratively receiving goals and 
current states of the environment, and sending back action sequences. The local per-
ceptions received from the environment represent agent’s beliefs. Before introducing 
the agent architecture, some background concepts must be defined. 
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A skill symbolizes a non-trivial action or complex action [10,11], that a character 
knows how to carry out, and involves the execution of an appropriate sequence of 
primitive (trivial) actions. In order to start working on a skill, some initial conditions 
about the current status (location, visual state, orientation) of the virtual entities in-
volved have to be fulfilled. Likewise, there are similar final conditions indicating a 
skill was successfully carried out.  

The goals symbolize the author’s requirements and an agent’s desires. All the in-
teractions occurring in a scene lead to the fulfillment of the goals submitted by the 
scenarist. A simulation is finished as soon as all the goals have been achieved suc-
cessfully. A goal specification includes a character, a skill and a target. The target is 
optional and represents either a zone in the environment, or a virtual entity. Some-
times, the scenarist structures the goal-description in such a way that sets of goals 
enable other sets of goals. That is, goals gj1, gj2, … gjn, have to be achieved (concur-
rently, sequentially, or optionally) necessarily before start working with goals gk1, gk2, 
… gkm. In this context, we call j and k goal-cycles. Whenever a goal-cycle is started, 
an agent is told to fulfill a new set of goals.  

Often, the fulfillment of a goal is not a straightforward process of just selecting a 
series of actions and that’s all. Since we are dealing with dynamic environments, the 
actions selected at a specific time may not lead us to the goal, because of unexpected 
presence of new obstacles or adversary entities. Therefore, characters frequently di-
vide their current goals in tasks or subgoals, where every task lists a sequence of 
actions required to solve the current trouble. The tasks are also useful to achieve the 
initial conditions of the skill involved in the current goal. The tasks represent the 
intentions of an agent. 

A personality is defined as everything that makes a difference between the behav-
ior of two different characters sharing the same set of goals, skills and actions. The 
personality resolves the best sequence of actions (within tasks) in order to achieve the 
current goal of the character, according to the current state of the character inside the 
environment. 

Figure 4 depicts the architecture of an agent. Msgs stores all the messages received 
by an agent; the purpose for the message-passing is to allow cooperation between 
agents, in the cases where an agent has information useful for any other. GNF (Goals 
Not Fulfilled) stores the goals left to fulfill, while GF (Goals Fulfilled) stores the 
goals successfully achieved. Let A, N be, respectively, the set of all the actions and 
entities valid in the current context where the scene carries out, and G be the set all 
the goals specified by the scenarist. 

The task-tree depends on the current skill selected and it is built up from a Process 
Algebras [12] expression. The following operators are considered: 
• t1 >> t2 : Prefix operator: The agent will have to perform first task t1, then task t2 
• t1 [] t2 : Choice operator: The agent perform either task t1 or t2. 
• t1 ||| t2 : Parallel composition operator: The agent must perform goals t1 and t2 

without concerning the order of execution. 
GA is a Genetic Algorithm embedded in every agent, which computes the best se-

quence of actions to perform. The objective function (OF) in GA is based on: a) the 
coordinates of the target place the character is leading to through the execution of the 
current task, and b) the state of the world, i.e. the presence of moving entities avoid-
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ing straight trajectories toward the target. A chromosome represents a sequence of 
actions to carry out. Two chromosomes may have different length. An allele is a pair 
<orientation, action> where orientation denotes the amount of degrees to turn about 
the 3-axes before carrying out the action. Two genetic operators are employed to get 
the offspring: crossover and mutation. The former combines two chromosomes using 
random crossover points. The mutation involves slight random changes in the orienta-
tion and action values, and the size of the chromosome. OF is in terms of: a) the dis-
tance between the character and the target, b) the trajectory length, and c) the pres-
ence of obstacles during the trajectory computed. The evaluation function computes 
large fitness values if the OF is minimized. 

The agent operation is as follows:  
1) At goal-cycle n, the sensor receives the next set of goals G to fulfill, and they be-

come GNF; a goal g is selected from GNF. If GNF was not empty at cycle n, then 
the previous goals in GNF are discarded. 

2) The underlying skill k from g is found in Skills, and a set of actions available for k 
is obtained 

3) A task-tree structure is created according to the current state of the world and the 
current skill k. 

4) The personality ρ chooses a task sequence from the tree. 
5) Having as input data: a) the current local state of the world, b) a set of actions 

available, c) the current task and d) a list of messages, GA computes a sequence of 
actions and sends it to the effector; additionally, the GA may send messages to 
other agents through the effector. 

 

Fig. 4. Agent architecture 
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6) Whenever the sensor receives a new local state of the scene, the agent checks if 
the current goal was successfully achieved; if positive, then a new goal g is ob-
tained from GNF. 

4   Information Flow 
This section introduces the information flow between the VS-Editor, the core and the 
community of agents. Figure 5 depicts a zoom-in of the architecture in Figure 3, and 
shows a more detailed interaction between the agents control, the scene control and 
the community of agents. Such interaction involves sending and processing the com-
ponents in a goal-description. 

In addition, we introduce two modules, a goals manager and an event launcher, 
which belong to the agents control and the scene control, respectively. The former is 
in charge of: a) retaining the goals that are not enabled yet because of the lack of 
events, and b) sending back to the agents control those goals required to be fulfilled at 
the current time. Then, the agents control sends every agent the goals assigned to the 
characters it controls. The event launcher is given the state of the world every time it 
is changed, as a consequence of actions, and then it determines whether an event can 
be launched or not. This decision is taken using first-order logics. The behavior of all 
the components of the middleware is specified using process algebras notation, where 
they are treated as agents. First of all, let’s define some functions and sets useful to 
resolve the set of goals an agent has to fulfill in a specific time, and hence, tu under-
stand the information flow. 

Let C be the set of characters (intelligent virtual entities) existing in the current 
scene, G be the set of goals assigned to characters, A be a set of agents available 
within a specific context, Σ is an indexing set of goal-cycles, and E be a set of events 
occurred in the scene. An event has one of two possible values: true or false. P stands 
for the power function. 

Let δσ : C → P (2E × G)  be a function that assigns goals to a character, to be ful-
filled during goal-cycle σ. Each goal will be enabled as soon as all the events associ-
ated are set to true. Let ϕσ be a logical expression that, if true, indicates the fulfillment 
of the required goals, and so, the finalization of a goal-cycle. This expression is built 
up with events. The logic operators employed are: ∧, ∨, ⇒. ∆, Φ denote, respectively, 
sets of δ and ϕ. More details about computing (Σ, E, G, Φ, ∆) from the goal-
specification will be included in a further paper. 

Let λ: A → 2C be a mapping from agents to characters, and having the following 
constraint: two different agents are not allowed to control the same character. For-
mally, ∀c ∈ C, if c ∈ λ(a1), then c ∉ λ(a2), having a1, a2 ∈ A and a1 ≠ a2. 

Let FIL: P (2E × G) → 2G be a filtering function that resolves a set of goals enabled 
and not fulfilled yet, according to the events associated to each goal. Formally: 

    Let D stand for the domain of the FIL function, e1,…,en ∈ E, gk ∈ G 
   ∀<{e1, …, en}, gk> ∈ D, if v(e1 ∧ … ∧ en) = true and v(ek) = false   
                                       then gk ∈ FIL(D). 
Finally, let δ’: A → P (C × 2G) be a goal-assignment relation for agents ∋ ∀a ∈ A, if 

c = λ(a), then <c, FIL(δσ(c))> ∈ δ’(a), having c ∈ C, σ ∈ Σ. This relation tells an 
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agent which goals are currently enabled and required to be fulfilled by the different 
characters the agent controls. 

AC def in1(Σ, Φ, ∆,G, E).out1(Σ, Φ, ∆).out2(G)  +  
  in2(δ’).outi(δ’(ai))…outk(δ’(ak))    
                   + ini(actionsi).out3(actions)   +  in3(e).out4(e) 
GM def (in4(Σ, Φ, ∆) + in5(e)).getδ’().out5(δ’) 
getδ’() def if v(ϕσ) is true then σ = next_σ() 
  if σ is not null then compute δ’ as follows: 
  ∀a ∈ A, ∀c ∈ λ(a):  δ’(a) = <c, FIL(δσ(c))> 
SC def in6(actions).perform(actions).out6(world) 
EL def (in7(G, E) +in8(world)).event() 
event() def if a new event e is launched then out7(e) 
AGi def in9(δ’(ai)).action().out8(actionsi) 
action() def run the underlying intelligent algorithm to compute the next set of  
  actions for every character controlled 
Notice that the agent control has a pair of ports <in1, outi> (input and output) for 

every different agenti available in the current context. A further work will introduce 
the formal description of the actions assigned to characters, the virtual world and the 
event handling. The last one involves declaring a number of logic-based rules allow-
ing an event to be launched. 

 
Fig. 5. Information-flow across the middleware 

5   Conclusions and Future Work 
In this paper we present our work regarding the development of a middleware useful 
to develop distributed applications where a 3D interface is useful. The design of this 
middleware is based on agents. Main characteristic of our middleware is that it hides 
from final user. Till now our middleware allows interactions completely specified. 
This is useful for applications where user specify all interactions goals to be achieved. 
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For instance, in entertainment industry this is useful to in the development of a theater 
scene or a chapter of a film. In industry, the construction of a product must be com-
pletely specified. We have work with some very simple examples for instance the 
simulation of a soccer game, a small piece of theater.  

Our future work is addressed in two directions first to provide formal specification 
of our middleware and second more applicative: to improve our middleware to sup-
port interactions not specified; to allow user interact with applications, for instance 
allowing the control of objects;  to evolve our character agent architecture to support 
in case of virtual human some characteristics like mood, and personality. Also we are 
developing infrastructure to support several real time engines for rendering the 3D 
results. In parallel we are developing some applications for final users.  
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