
T. Böhme et al. (Eds.): IICS 2004, LNCS 3473, pp. 168–177, 2006.
© Springer-Verlag Berlin Heidelberg 2006

GeDA-3D a Middleware Useful to Handle the Evolution
in Behavioral Animation-Based Virtual Worlds

with a Multi-agent Architecture

Félix F. Ramos, H. Iván Piza, and Fabiel Zúñiga

Multi-Agent Systems Development Group at CINVESTAV del IPN, Guadalajara, Jal., México
{framos,hpiza,fzuniga}@ gdl.cinvestav.mx

http://gdl.cinvestav.mx

Abstract. In this article is proposed a distributed middleware useful to handle
the evolution of deterministic virtual scenes in a 3D world. The proposed mid-
dleware allows interaction necessitated among virtual humans [1] and the envi-
ronment. This interaction allows virtual humans to get user defined goals. As
stated in the behavioral animation [3,4] paradigm, the user only tells characters
“what to do” (goals) instead of “how to do it” (actions). Every virtual human
computes dynamically by means of an intelligent algorithm, the actions to
achieve its goal based on: a) its actual state; b) the stimuli perceived from the
environment, and c) the personality of the virtual human. Main components of
the proposed middleware is part of a more complex system we call GeDA-3D
[5,6], this system includes a Declarative Virtual Editor useful to create the vir-
tual world, an Context Descriptor used to define the physic laws ruling the envi-
ronment, increment the language declarative language with definitions, con-
cepts etc. A Rendering Tool useful to display the evolution of the scene, an
Agent’s Control module to control the agents managing the different virtual life
creatures and all this is around a Geda-3D’s kernel that provides all the stuff
necessary to all these modules interact. Briefly the behavior of these middle-
ware is: The scene controller receives the actions, validates them, handles the
effect of the actions according to the natural laws of the world, resolves a set of
graphic primitives to render and launches an event for every goal achieved. The
cycle of sending local states and receiving actions loops until no goal is left to
fulfill.

1 Introduction
The development of distributed systems is well adapted to human behavior; however
it is necessitated at same time to offer better interfaces to humans. With this aim, we
propose a middleware useful to develop distributed application where a 3D interface
is useful. More of these distributed applications recreate a virtual environment o vir-
tual world. When we say a virtual world we mean all programs necessitated to repre-
sent a world with all things objects creatures interactions etc. For instance it a world
can be all the stuff necessitated in a manufacture plant or in a thermoelectric station.
The term virtual creature is typically defined as a representation of a real or fiction
creature generated and managed by a computer. Virtual creatures have gained great
popularity in the recent years, especially on the entertainment industry – to develop
animated movies and video games- and on the academic field, to recreate prehistoric

GeDA-3D a Middleware Useful to Handle the Evolution 169

environments. When dealing with real-time applications, for instance video-games, it
is not so simple to handle the behavior of the virtual humans to make them look real-
istic.

As a consequence, several researchers from around the world have led their works
toward the behavioral animation [3,4] of virtual humans in order to create virtual
scenes less predictable, where virtual humans take autonomous decisions in real-time.
The spirit of behavioral animation techniques lays in the concept of telling characters
“what to do” instead of “how to do it”. In behavioral animation, a virtual human de-
termines its own actions, at least to a certain degree. This gives the virtual human an
ability to improvise, and frees the animator from the need to specify each details of
every human’s motion. Unfortunately, it is not clear how the current works provide
means for users to: a) develop behaviors and assign them to virtual humans, b) specify
the natural laws ruling the interactions in a virtual world, and c) take advantage of
existing rendering tools in order to avoid low-level implementations.

We propose an agent-oriented middleware useful to handle the evolution of virtual
scenes based on behavioral animation. This middleware is the core of a complex sys-
tem called GeDA-3D, and introduced in [5,6]. The main goal of this first stage of
GeDA-3D concerns allowing inexpert users –scenarists, hereafter– to provide a hu-
man-like description of any scene and, as a result, a 3D-graphical representation of
such scene is rendered. This overall operation is depicted in Figure 1. During the
evolution of the scene, virtual humans [1,2], or characters, interact with each other in
order to achieve a number of goals specified formerly by the scenarist.

Fig. 1. Context-DFD of GeDA-3D

This article is organized as follows. Section 2 introduces the architecture of the
system together with a brief explanation of the components’ competencies. Section 3
depicts the internal operation of an agent in GeDA-3D. Section 4 shows the informa-
tion flow between the components of the middleware. Section 5 summarizes the con-
clusions and future work.

2 Architecture
The middleware proposed in this paper follows an agent-oriented architecture which
allows management of distributed applications and assists the development of virtual
environments. It represents the core of GeDA-3D. The behaviors of the characters are
actually distributed applications treated as agents attached to the platform. An agent
can control the behavior of more than one character. The platform provides templates
allowing the programmer to easily develop simple or complex behaviors.

170 Félix F. Ramos, H. Iván Piza, and Fabiel Zúñiga

The core of GeDA-3D is primarily in charge of: a) sending the agents the next set
of goals their characters have to fulfill and the current local state of the world, b)
managing the interaction of the virtual entities according to the natural laws of the
world being modeled, and c) sends a set of lower-level commands to a 3D-tool to
render the scene. Every agent sends back to the core an action sequence to encourage
the fulfillment of the current goal. Figure 2 depicts a data-flow diagram of GeDA-3D
considering some components required to accomplish the main goal of the project.

Fig. 2. Level 0-DFD of GeDA-3D

The overall operation of GeDA-3D is as follows. The scenarist provides a declara-
tive [7] description of the scene using geometric constraints [8]. Such description
includes: a) creation of virtual entities, b) assignment of behavior for characters, c)
arrangement of entities in the world, and d) description of the goals to be fulfilled by
the characters. The Virtual Scene (VS) Editor translates the declarative description in
a geometric one, only if the description is errors-free and valid according to a number
of rules. The world (or context) defines a set of natural laws that rules the interaction
between the virtual entities, and includes descriptions of the actions and entities ad-
missible.

The core manages the evolution of the scene: it validates and executes actions, and
handles the effect of interactions between entities. Every agent receives the state of
the world and sends back actions to achieve the goal-specification. Finally, the ren-
derer receives low-level commands useful to display continuously the scene.

The architecture of the core is constituted primarily by two modules called scene
and agents control. The scene control addresses all the issues related to the evolution
of the scene as a result of the interaction of characters, while the agents control man-
ages the distributed issues of the platform. Figure 3 shows a more detailed data-flow
diagram depicting the architecture of the middleware proposed.

GeDA-3D a Middleware Useful to Handle the Evolution 171

Fig. 3. Middleware architecture

2.1 Scene Control

The scene control is in charge of control the interactions and evolution of the virtual
scene. It receives high-level commands to, initially, create and arrange virtual entities
in the scene and, iteratively, to request the execution of actions. As a result, the scene
control produces low-level commands to be sent to a specific renderer who translates
each command in a set of graphical primitives. A low-level command indicates either
the creation/placement of a virtual entity, or the animation of one or more entities. A
high-level command can produce zero or more low-level ones. The tasks performed
by the scene control include the following:
• Receive a sequence of high-level commands for the display of the virtual objects

in a certain position
• Receive periodically – coming from the agents – sequences of actions for the char-

acters to perform
• Validate the execution of all the actions received; it has the ability to delay or can-

cel the execution of a single action or an action succession
• Resolve a sequence of animations to execute as a result of an interaction, and send

it to the renderer; the natural laws have much influence in this task
• Whenever an action succession is finished, successfully or prematurely, the scene

control determines and sends updated local world-states to the agents through the
agents’ control. A premature finalization is usually due to unexpected contacts

172 Félix F. Ramos, H. Iván Piza, and Fabiel Zúñiga

with other moving entities or by gravity effects: the ground was not enough for all
the actions. In either case, the agents are notified right away with the new local
world-state.

• It holds a World database containing fundamental information about all the virtual
entities involved in the scene

2.2 Agents Control

The agents controlling the behavior of characters are actually distributed applications.
The agents’ control manages the connection and disconnection of the agents and all
the issues related to the transference of data between the community of agents and the
middleware. Such data include the following:
• Control assignment. Every agent controls the behavior of one or more characters

and enforces them to accomplish a goal-specification defined by the scenarist. A
character is said to be linked to an agent during the scene. More details about the
agent operation can be found in Section 3.

• Goals required. The operation of an agent is oriented to achieve one or more goals
not yet fulfilled and already enabled. A goal is enabled as soon as some precondi-
tions are given, including external events or previously-assigned goals fulfilled.
Such conditions are defined during the scene description.

• Local state of the world. Every character has a particular perception of the world
around. This perception depends on the location and orientation of the character,
and is represented as a set of entities reachable from the character’s field of view.
The information of an entity seen can be full or partial depending on how far it is
from the eyes of the character.

• Action sequences. An agent computes an action sequence as a result of the current
goal required, the personality definition and the local perception. The agents con-
trol continuously receives action sequences from all the agents and sends them to
the scene control for validation and execution.

• Messages between agents. Very often, characters work as a team and hence need
cooperation from each other, for instance, to increase the local perception of the
environment. In such cases, agents are capable to exchange messages in order to
provide information about the scene.

3 Agent Architecture
This section introduces a generic architecture useful to develop the behaviors of the
characters. These behaviors are attached to the platform as distributed agents. The
scenarist specifies what characters must do, instead of how they have to do it. The
behavior is in charge of solving the second part. Therefore, two similar specifications
might produce different simulations. The agent relies on a Beliefs, Desires and Inten-
tions architecture, as described by Georgeff [9], so that each agent makes decisions by
itself. In general terms, the agent operation consists on iteratively receiving goals and
current states of the environment, and sending back action sequences. The local per-
ceptions received from the environment represent agent’s beliefs. Before introducing
the agent architecture, some background concepts must be defined.

GeDA-3D a Middleware Useful to Handle the Evolution 173

A skill symbolizes a non-trivial action or complex action [10,11], that a character
knows how to carry out, and involves the execution of an appropriate sequence of
primitive (trivial) actions. In order to start working on a skill, some initial conditions
about the current status (location, visual state, orientation) of the virtual entities in-
volved have to be fulfilled. Likewise, there are similar final conditions indicating a
skill was successfully carried out.

The goals symbolize the author’s requirements and an agent’s desires. All the in-
teractions occurring in a scene lead to the fulfillment of the goals submitted by the
scenarist. A simulation is finished as soon as all the goals have been achieved suc-
cessfully. A goal specification includes a character, a skill and a target. The target is
optional and represents either a zone in the environment, or a virtual entity. Some-
times, the scenarist structures the goal-description in such a way that sets of goals
enable other sets of goals. That is, goals gj1, gj2, … gjn, have to be achieved (concur-
rently, sequentially, or optionally) necessarily before start working with goals gk1, gk2,
… gkm. In this context, we call j and k goal-cycles. Whenever a goal-cycle is started,
an agent is told to fulfill a new set of goals.

Often, the fulfillment of a goal is not a straightforward process of just selecting a
series of actions and that’s all. Since we are dealing with dynamic environments, the
actions selected at a specific time may not lead us to the goal, because of unexpected
presence of new obstacles or adversary entities. Therefore, characters frequently di-
vide their current goals in tasks or subgoals, where every task lists a sequence of
actions required to solve the current trouble. The tasks are also useful to achieve the
initial conditions of the skill involved in the current goal. The tasks represent the
intentions of an agent.

A personality is defined as everything that makes a difference between the behav-
ior of two different characters sharing the same set of goals, skills and actions. The
personality resolves the best sequence of actions (within tasks) in order to achieve the
current goal of the character, according to the current state of the character inside the
environment.

Figure 4 depicts the architecture of an agent. Msgs stores all the messages received
by an agent; the purpose for the message-passing is to allow cooperation between
agents, in the cases where an agent has information useful for any other. GNF (Goals
Not Fulfilled) stores the goals left to fulfill, while GF (Goals Fulfilled) stores the
goals successfully achieved. Let A, N be, respectively, the set of all the actions and
entities valid in the current context where the scene carries out, and G be the set all
the goals specified by the scenarist.

The task-tree depends on the current skill selected and it is built up from a Process
Algebras [12] expression. The following operators are considered:
• t1 >> t2 : Prefix operator: The agent will have to perform first task t1, then task t2
• t1 [] t2 : Choice operator: The agent perform either task t1 or t2.
• t1 ||| t2 : Parallel composition operator: The agent must perform goals t1 and t2

without concerning the order of execution.
GA is a Genetic Algorithm embedded in every agent, which computes the best se-

quence of actions to perform. The objective function (OF) in GA is based on: a) the
coordinates of the target place the character is leading to through the execution of the
current task, and b) the state of the world, i.e. the presence of moving entities avoid-

174 Félix F. Ramos, H. Iván Piza, and Fabiel Zúñiga

ing straight trajectories toward the target. A chromosome represents a sequence of
actions to carry out. Two chromosomes may have different length. An allele is a pair
<orientation, action> where orientation denotes the amount of degrees to turn about
the 3-axes before carrying out the action. Two genetic operators are employed to get
the offspring: crossover and mutation. The former combines two chromosomes using
random crossover points. The mutation involves slight random changes in the orienta-
tion and action values, and the size of the chromosome. OF is in terms of: a) the dis-
tance between the character and the target, b) the trajectory length, and c) the pres-
ence of obstacles during the trajectory computed. The evaluation function computes
large fitness values if the OF is minimized.

The agent operation is as follows:
1) At goal-cycle n, the sensor receives the next set of goals G to fulfill, and they be-

come GNF; a goal g is selected from GNF. If GNF was not empty at cycle n, then
the previous goals in GNF are discarded.

2) The underlying skill k from g is found in Skills, and a set of actions available for k
is obtained

3) A task-tree structure is created according to the current state of the world and the
current skill k.

4) The personality ρ chooses a task sequence from the tree.
5) Having as input data: a) the current local state of the world, b) a set of actions

available, c) the current task and d) a list of messages, GA computes a sequence of
actions and sends it to the effector; additionally, the GA may send messages to
other agents through the effector.

Fig. 4. Agent architecture

GeDA-3D a Middleware Useful to Handle the Evolution 175

6) Whenever the sensor receives a new local state of the scene, the agent checks if
the current goal was successfully achieved; if positive, then a new goal g is ob-
tained from GNF.

4 Information Flow
This section introduces the information flow between the VS-Editor, the core and the
community of agents. Figure 5 depicts a zoom-in of the architecture in Figure 3, and
shows a more detailed interaction between the agents control, the scene control and
the community of agents. Such interaction involves sending and processing the com-
ponents in a goal-description.

In addition, we introduce two modules, a goals manager and an event launcher,
which belong to the agents control and the scene control, respectively. The former is
in charge of: a) retaining the goals that are not enabled yet because of the lack of
events, and b) sending back to the agents control those goals required to be fulfilled at
the current time. Then, the agents control sends every agent the goals assigned to the
characters it controls. The event launcher is given the state of the world every time it
is changed, as a consequence of actions, and then it determines whether an event can
be launched or not. This decision is taken using first-order logics. The behavior of all
the components of the middleware is specified using process algebras notation, where
they are treated as agents. First of all, let’s define some functions and sets useful to
resolve the set of goals an agent has to fulfill in a specific time, and hence, tu under-
stand the information flow.

Let C be the set of characters (intelligent virtual entities) existing in the current
scene, G be the set of goals assigned to characters, A be a set of agents available
within a specific context, Σ is an indexing set of goal-cycles, and E be a set of events
occurred in the scene. An event has one of two possible values: true or false. P stands
for the power function.

Let δσ : C → P (2E × G) be a function that assigns goals to a character, to be ful-
filled during goal-cycle σ. Each goal will be enabled as soon as all the events associ-
ated are set to true. Let ϕσ be a logical expression that, if true, indicates the fulfillment
of the required goals, and so, the finalization of a goal-cycle. This expression is built
up with events. The logic operators employed are: ∧, ∨, ⇒. ∆, Φ denote, respectively,
sets of δ and ϕ. More details about computing (Σ, E, G, Φ, ∆) from the goal-
specification will be included in a further paper.

Let λ: A → 2C be a mapping from agents to characters, and having the following
constraint: two different agents are not allowed to control the same character. For-
mally, ∀c ∈ C, if c ∈ λ(a1), then c ∉ λ(a2), having a1, a2 ∈ A and a1 ≠ a2.

Let FIL: P (2E × G) → 2G be a filtering function that resolves a set of goals enabled
and not fulfilled yet, according to the events associated to each goal. Formally:

 Let D stand for the domain of the FIL function, e1,…,en ∈ E, gk ∈ G
 ∀<{e1, …, en}, gk> ∈ D, if v(e1 ∧ … ∧ en) = true and v(ek) = false
 then gk ∈ FIL(D).
Finally, let δ’: A → P (C × 2G) be a goal-assignment relation for agents ∋ ∀a ∈ A, if

c = λ(a), then <c, FIL(δσ(c))> ∈ δ’(a), having c ∈ C, σ ∈ Σ. This relation tells an

176 Félix F. Ramos, H. Iván Piza, and Fabiel Zúñiga

agent which goals are currently enabled and required to be fulfilled by the different
characters the agent controls.

AC def in1(Σ, Φ, ∆,G, E).out1(Σ, Φ, ∆).out2(G) +
 in2(δ’).outi(δ’(ai))…outk(δ’(ak))
 + ini(actionsi).out3(actions) + in3(e).out4(e)
GM def (in4(Σ, Φ, ∆) + in5(e)).getδ’().out5(δ’)
getδ’() def if v(ϕσ) is true then σ = next_σ()
 if σ is not null then compute δ’ as follows:
 ∀a ∈ A, ∀c ∈ λ(a): δ’(a) = <c, FIL(δσ(c))>
SC def in6(actions).perform(actions).out6(world)
EL def (in7(G, E) +in8(world)).event()
event() def if a new event e is launched then out7(e)
AGi def in9(δ’(ai)).action().out8(actionsi)
action() def run the underlying intelligent algorithm to compute the next set of
 actions for every character controlled
Notice that the agent control has a pair of ports <in1, outi> (input and output) for

every different agenti available in the current context. A further work will introduce
the formal description of the actions assigned to characters, the virtual world and the
event handling. The last one involves declaring a number of logic-based rules allow-
ing an event to be launched.

Fig. 5. Information-flow across the middleware

5 Conclusions and Future Work
In this paper we present our work regarding the development of a middleware useful
to develop distributed applications where a 3D interface is useful. The design of this
middleware is based on agents. Main characteristic of our middleware is that it hides
from final user. Till now our middleware allows interactions completely specified.
This is useful for applications where user specify all interactions goals to be achieved.

GeDA-3D a Middleware Useful to Handle the Evolution 177

For instance, in entertainment industry this is useful to in the development of a theater
scene or a chapter of a film. In industry, the construction of a product must be com-
pletely specified. We have work with some very simple examples for instance the
simulation of a soccer game, a small piece of theater.

Our future work is addressed in two directions first to provide formal specification
of our middleware and second more applicative: to improve our middleware to sup-
port interactions not specified; to allow user interact with applications, for instance
allowing the control of objects; to evolve our character agent architecture to support
in case of virtual human some characteristics like mood, and personality. Also we are
developing infrastructure to support several real time engines for rendering the 3D
results. In parallel we are developing some applications for final users.

References
1. Badler, N. Real-Time Virtual Humans. Pacific Graphics (1997)
2. Musse, S., Garat, F., Thalmann, D. Guiding and Interacting with Virtual Crowds in Real-

Time. In Proceedings of EUROGRAPHICS Workshop on Animation and Simulation. Mi-
lan, Italy (1999) 23-34

3. Thalmann, D. Monzani, J.S. Behavioural Animation of Virtual Humans: What Kind of
Laws and Rules? In Proc. Computer Animation 2002, IEEE Computer Society Press (2002)
154-163

4. Reynolds, C.W. Flocks, herds, and schools: A distributed behavioral model. Proceedings of
SIGGRAPH 87 (1987) 25–34

5. Ramos, F., Zúñiga, F. Piza, I. A 3D-Space Platform for Distributed Applications Manage-
ment. International Symposium and School on Advanced Distributed Systems 2002. Gua-
dalajara, México. ISBN 970-27-0358-1 (2002)

6. Piza, I., Zúñiga, F., Ramos, F. A Platform to Design and Run Dynamic Virtual Environ-
ments. CyberWorlds. Tokyo, Japan. ISBN 0-76952140-1 (2004) 78-85

7. Kwaiter, G., Gaildrat, V., Caubet, R. DEM²ONS: A High Level Declarative Modeler for
3D Graphics Applications. In Proceedings of the International Conference on Imaging Sci-
ence Systems and Technology, CISST’97. Las Vegas (1997) 149-154

8. Le Roux O., Gaildrat V., Caubet R. Design of a New Constraint Solver for 3D Declarative
Modeling: JACADI. 3IA: Infographie Interactive et Intelligence Artificielle, Limoges
(2000)

9. Rao, A.S., Georgeff, M.P. Modeling rational agents within a BDI architecture. In J. Allen,
R. Fikes, and E. Sandewall, editors, Proceedings of the Third Internacional Conference on
Principles of Knowledge Representation and Reasoning. Morgan Kaufmann (1991)

10. Bindiganavale R., Schuler W., Allbeck J., Badler N., Joshi A., Palmer P. Dynamically
altering agent behaviors using natural language instructions. In Autonomous Agents
Proceedings (2000)

11. Badler N., Bindiganavale R., Allbeck J., Schuler W., Zhao L, Palmer M. Parameterized Ac-
tion Representation for Virtual Human Agents, in Embodied Conversational Agents, J.
Cassell, J. Sullivan, S. Prevost, and E. Churchill, Eds. Cambridge, MA: MIT Press (2000)
256-284

12. Katoen J., Langerak R., Latella D. Modeling Systems by Probabilistic Process Algebra: An
Event Structures Approach. Proc. on the IFIP TC6/WG6.1 Sixth International Conference
on Formal Description Techniques, VI (1993) 253-268

	Introduction
	Architecture
	Scene Control
	Agents Control

	Agent Architecture
	Information Flow
	Conclusions and Future Work
	References

