
Random Walks in Distributed Computing: A Survey

Marc Bui2,�, Thibault Bernard1, Devan Sohier1,2, and Alain Bui1
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Université de Reims Champagne Ardennes,

BP1039 F-51687 Reims cedex, France
{alain.bui,thibault.bernard,devan.sohier}@univ-reims.fr

2 LRIA – EPHE rue G. Lussac,
F-75005 Paris, France

marc.bui@univ-paris8.fr

Abstract. In this survey, we give an overview of the use of random walks as
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attractive technique by using electric network theory as a mathematical tool for
performance evaluation.
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1 Introduction

We propose to use random walks in distributed computing to provide uniform and effi-
cient solutions to distributed control of dynamic networks. Random walks have already
been successfully exploited to design basic network control algorithms: self-stabilizing
mutual exclusion by single token circulation [IJ90], gathering and dissemination of in-
formation over a network [AKL+79], random structure over a network [BIZ89].

Indeed, we show that using accidental meetings of circulating tokens1 that merges
partial information of the network at each node independently gives an efficient tra-
versal scheme for distributed control. Accidental meetings of several tokens have been
ingeniously used in [IJ90] (by merging all tokens to one), in order to insure a single
token circulation. It has been shown in [TW91] that all tokens should merge to one in
polynomial time.

Random walks are interesting by providing a scalable mechanism to insert infor-
mation into the distributed computation, for example when node insertion occurs in the
distributed system or to update topology modification (edge or node deletion). Ad-hoc
networks or pervasive distributed systems, because of their very limited communication
bandwidth for network control, can also benefit of this approach.

Because of their inherent complexity, deterministic solutions to control large distrib-
uted systems are often unsatisfactory. One solution is to design randomized algorithms
which can be simpler, especially for their correctness proof. Precise statement about their
performance are, on the other hand, an interesting challenge: by introducing electrical
networks, we present an original and elegant manner to compare solutions.
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2 Preliminaries

In this section we present the motivation for using random walk in distributed computing,
and a formal description of a random walk.

2.1 Distributed Systems

We define a distributed system to be a set of autonomous computing resources, exchang-
ing messages via communication links. The system is modeled as a graph, the nodes of
which represent the computers and the edges the communication channels.

We adopt the classical asynchronous message passing model, i.e. computers com-
municate by sending messages to their neighbors, and there is no bound on the time it
takes to a message to reach its goal.

2.2 Random Walks Characteristics

A random walk is a sequence of vertices visited by a token that starts at i and visits
other vertices according to the following transition rules: if the token is at i at time t
then at time t + 1 it will be at one of the neighbors of i, this neighbor having been
chosen according to some time-constant law. Various papers deal with random walks
e.g. [Lov93,AKL+79]. More formally, a random walk is a finite homogeneous Markov
Chain with state set V and with transition probability matrix P = (pij)(i,j)∈V 2 given
by

pij =
{ 1

deg(i) if (i, j) ∈ E

0 if (i, j) �∈ E

where deg(i) is the degree of node i (i.e. the number of its neighbors).
Let P t the tth power of P , whose entries are pt(i, j), (i, j) ∈ V 2.
Since G is connected, if it is not bipartite, the Markov Chain has only one acyclic

ergodic class of states, then limt→∞ P t exists and is a matrix Q with identical rows
π = (πi, i ∈ V ), i.e. ∀(i, j) ∈ V × V, limt→∞ pt(i, j) = πi. π is the stationary
distribution and can be computed such that π = π.P . Note that, in the particular case of
random walks, the stationary distribution satisfies

πi =
deg(i)
2|E| (1)

Some characteristic values are useful in the context of distributed computing. The mean
time to reach vertex j (state j), starting from the vertex i (state i) which may be regarded
as the conditional expectation of the random number of transitions before entering j for
the first time when starting at i, is called hitting time and denoted hij . In particular, we
have hii = 1/πi. We often use the quantity max{hij/j ∈ V }, which is an upper bound
for a random walk starting at i to hit a fixed, but unknown vertex, for example, when the
average time to look for an information owned by a unknown vertex is required. hij +hji

called the commute time, is the expected number of steps for a random walks starting
at vertex i to reach vertex j for the first time and reach i again. It can be viewed as the
average time to fetch back to i an information owned by the vertex j. The expected time
for a random walk starting at i to visit all the vertices of the graph is called the cover
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time Ci. Let C = max{Ci/i ∈ V }. Ci will be the average time needed by i to build
a spanning tree thanks to the algorithm described above. C will be an upper bound of
the average time for an unknown vertex to build a spanning tree thanks to the algorithm
described above. Results on bounds on cover time can be found in [Lov93].

3 Random Walks and Network Structuration

In [Bro89], the author computes a random spanning tree by using a random walk in a
graph. [BIZ89], applies this method to compute a spanning tree over a network. As they
mention, a random spanning tree is more resilient to link failures: “the probability that
a bad channel will disconnect some nodes from the random tree is relatively small”.

In [IJ90], random walks have been used as the design of a self-stabilizing algorithm
for the mutual exclusion problem. In their system, a token typifies the privilege to execute
critical section code. This token moves with a random walk policy. If several tokens are
present in the network, they eventually meet on a site and the protocol will make them
merge. [TW91] shows that the protocol developed in [IJ90] stabilizes in polynomial time
(this is an average complexity).

In our works, we use random walks to structure a network. Many applications can
use this structuration: data transfer in peer-to-peer network, job dispatching in GRID
computing. . . We give here the main idea of the algorithms except in Section 3.3 where
we give full specifications of the algorithm.

3.1 Routing with Mobile Agents

In [BDDN01], mobile agents are used to update the shortest path routing table in each
site. Two protocols are presented. In the first protocol, there is no interaction between
agent. Each site dispatches a mobile agent for a random walk. Each agent carries (and
possibly updates) link state of its creator and updates routing tables of visited sites
through the network. In the second protocol (the cooperative one), agent caries not only
the links states of its creator but the routing table (updated each time the agent returns at
home). This protocol increases the convergence of routing table, but increases the size
of all agents. The aim of using random walk is to easily manage topological changes. If
a channel becomes unavailable, the agent when returning home, is updated. If a new site
get connected, it launches an agent with its links state (routing table) and thus updates
other routing tables.

3.2 Random Spanning Tree Construction
for Shortest Path Routing Computation

In [Fla01], the author presents how to collect topological informations by the use of a
random walk, and more precisely a random circulating word, and a method to deduce a
spanning tree of the network from the collected topological informations. That deduced
spanning tree is not applied to the entire network, but locally stored in each node of the
network. Then he gives original algorithms to reduce the size of the collected information
without loss of the needed information for the spanning tree construction. At last, he
gives a possible application of that “local” tree construction : the creation of shortest
paths routing tables.
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3.3 Network Design with Distributed Random Walks

In [BFG+03], we address the problem of constructing such a structure with a protocol that
tolerates faults and adapts itself to dynamic topology changes that often occur in mobile
ad hoc networks. Tolerating faults is crucial in such networks where mobile devices get
frequently out of range or powered off by users. Therefore, we introduce distributed
random walk (DRW) as a collection of random walks (RWs) that cooperate in order to
establish a computation. The technique uses a collection of RWs that are coalescing into
a final one that maintains the control structure. We apply this technique to compute a
spanning tree (ST), which is selected uniformly at random among all possible ones for
a network. To gather informations, we use a wave scheme. We can informally describe
the whole procedure as follows: several mobile devices initiate a RW, with an explorer
agent. Every mobile device, upon receiving an explorer token, marks itself visited with
the identity of the token, except if it has already been visited by another token. It then
forwards at random to one of its neighbors the received explorer token. The network is
thus, explored in parallel and decomposed into sub-regions, one per token. Each token
constructs a sub-tree of the network. When a token meets another one, or an already
visited mobile device, a wave is initiated. This wave is a backward propagation wave
that merges the two sub-trees. This process is conducted in parallel and, eventually, the
waves will cover the network, resulting in the ST definition. The protocol is ready for
termination when a single explorer token remains and all mobile devices of the network
have been visited.

Description of the self-stabilizing algorithm for spanning tree construction. We briefly
present here the specifications of the algorithm.

Each node maintains:

– color, the identity of an agent
– master, the (sub)tree root to which the node belongs
– parent, the node parent within the (sub)tree
– sons, the set of sons of the node

An agent is composed of two fields: a color and a root. When two agents are merging on
a site, the site have to decide values affected to the fields. So we need a rule to compare
agents:

– T1 > T2 if (T1.color > T2.color) ∨ (T1.color = T2.color ∧ T1.root > T2.root)
– T1 = T2 if (T1.color = T2.color) ∧ (T1.root > T2.root)

On timeout, a site flips a coin, generate an agent by a color and the node iden-
tity, sends, local state to all neighbors. Once all neighbors’ local state received, if
test validity state is not correct reset(node).

We specify the algorithm behavior by means of overall actions driven by agents and
waves. Some sites randomly generate an agent identified by a color that is characterized
by the initiators of the agent.

Agent Annexing Mode. Whenever an agent ai(colori, raci) issued from a node q
is annexing (or generated at) node p, which belongs to a (sub)tree (i.e. an agent
aj(colorj , racj)).
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AA1 if colori < colorj , the annexing is stopped and the agent is destroyed.
AA2 else (if colori > colorj), one of the 2 conditions holds:

i One (or more) agent(s) are present on node p
– if agent is the unique biggest, it continues its traversal and all others are

destroyed. Node p marked himself with color←−colori, master←−
raci, parent ←− q

– if agent ai is the biggest but not unique (others agents aj1, . . . ,
ajd that have respectly colorj1, . . . , colorjd equal to colori, agents
ai, aj1, . . . , ajd are merged to form the unique agent of identity i + 1
rooted in p (i.e. agent a(i + 1, p) is generated).

– if agent ai is not the biggest, it is destroyed.
ii No other agent on node p. Agent continues its traversal scheme. p marks

himself with color ←− colori, master ←− raci, parent ←− q
Wave Update Mode. Whenever an agent ai(colori, raci) reaches a node p with its

variable color such that color < colori a wave is generated.
WU1 The wave is propagated applying a path reversal scheme over the domain

identified by color (the domain which p belongs to)
WU2 The wave stops itself when it reaches the p limit.

Termination of the algorithm is realized with a derivation from the Dijkstra-Scholten
scheme known as diffusing computation. This termination detection is periodically ini-
tiated by nodes that have initiated an annexing agent.

For proof of correctness and stabilization, refer to [BFG+03]

3.4 Random Self-stabilizing Structures

In [BBF04], we use a random walk for the self-stabilizing construction of a collection
of spanning tree rooted in each site. As in [Fla01] this computation is achieved using a
circulating word which collects the identity of visited site. Each time a site gets the token,
it updates its local spanning tree with the one contained in the word. To stabilize the
computation, we need to insure the stabilization of the content of the word (for stabilizing
tree construction) and the presence of only one circulating word. We correct the word
step by step in each site by processing to an internal test that detects local inconsistencies
thanks to the neighborhood of the current visited site. A site at the reception of the token,
checks the neighborhood relation declared in the word correspond to the neighborhood
of the site. The presence of a token is insured by a timeout process on each site that
eventually creates new tokens. The merger of the tokens insures the decrease of the
number of tokens to one (by the same process as described in [IJ90]). If several tokens
hold on a site at the moment, the site would merge them into one, merging topological
information. This algorithm is well adapted for unsafe dynamic networks.

3.5 Conclusion on Structuration

We have a way to construct routing tables ([BDDN01,Fla01]) and adaptative structures
([BBF04] for small scale networks. In [BFG+03], we propose another approach for
network structuration : distributed random walks. Our future intend to join the two
approaches in order to construct control structures for large scale networks.
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4 Random Walks and Electrical Networks
for the Complexity of Distributed Algorithms

Random walks offer a pleasant framework to design distributed algorithms in a dynamic
context or with self-stabilization. However, evaluating the complexity of those algorithms
requires the use of many probabilistic tools. It is important to note that, except in very
particular case, there is no hope to give hard bound to the complexity of a random walk
based distributed algorithm. Indeed, due to their probabilistic nature, there is no way to
guarantee that a walk reaches a given site in a given number of steps.

Some quantities are very useful in the evaluation of the complexity of random walk
based distributed algorithms. The hitting time hij is the average number of steps it takes
to a random walk starting at i to first reach j. The commute time is the average time for
a round-trip from i to j: κij = hij + hji. The cover time Ci is the average number of
steps for a random walk starting at i to visit all the sites in the network. The cover time
C = max{Ci/i ∈ V }.

Random walks and electrical current have in common two properties: the amount of
them that enters a node must leave it; it leaves a node through a channel, proportionally
to a time-constant quantity attached to this channel (weight or probability for random
walks; conductance for the current). This similarity entails a tight link between random
walks and resistive networks, detailed in [DS00,CRR+97], for example. In the sequel,
we focus on resistive networks.

The conductance is the inverse of the resistance. The effective conductance Cij of a
network, between two of its nodes i and j is the conductance of the resistor to be placed
between i and j to ensure the same electrical properties. In other words, it is the current
that flows from i to j when a potential difference of 1V is imposed between i and j.

In [BBS03,BBBS03], we propose a method based on resistances to automatically
compute hitting times, which provides with an evaluation of the complexity of some
random walks based distributed algorithms. Our method use the relationship between
electrical resistance and random walks established in [DS00,CRR+97]. We provide an
automatic way to compute resistances on graphs modeling distributed networks.

A network topology may be viewed as an electrical network (both may be viewed
as an undirected graph). Each link (edge) (i, j) is assigned a real value: the resistance
r(i, j). Interesting results can be deduced by application of the two Kirchhoff’s law and
Ohm’s law. In particular, through the notion of effective resistance (explained below),
we present an innovative method to automatically compute bounds on cover time, exact
values of commute time and hitting times, exact values of cyclic cover time and total
hitting time for any arbitrary graph.

4.1 Review of Basic Ideas on Electricity

Relation between the potential difference between two nodes, the electrical resistance
and the electrical current are given by Ohm’s law: U = R × I . Kirchhoff’s law states
that the sum of currents entering and exiting a node must equal zero. For two resistors
(or resistive networks) R1 and R2 connected in series, we have: Rglobal = R1 + R2.
For two resistors (or resistive networks) R1 and R2 connected in parallel, we have:

1
Rglobal

= 1
R1

+ 1
R2

.
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4.2 Effective Resistance

R(i, j) is the effective resistance (resistance of the electrical network) between i and j,
if we replace each edge in the graph by a 1Ω resistor. R denotes the maximal effective
resistance between two nodes of the network i.e. R = max(i,j)∈V 2 R(i, j).

4.3 Previous Results

A tight relationship between resistances in electric networks and random walks character-
istic values such as commute times and cover time, has been established in
[CRR+97]. In particular, it has been shown that:

κij = hij + hji = 2mR(i, j) (2)

where i and j denote two distinct vertices and m, the number of vertices.
From this equation, we have:

mR < C < O(mR log n) (3)

In [Tet91], hitting time are expressed only in terms of resistances:

h(i, j) = mR(i, j) +
1
2

∑
k∈V

deg(k)[R(j, k) − R(i, k)] (4)

4.4 Millman’s Theorem

Our method uses the Millman’s theorem to compute automatically effective resistance.
As shown above, we can compute, thanks to resistances, bounds on cover time, exact
values of cyclic cover time, exact values of commute time and total hitting time for any
arbitrary graphs.

Theorem 1 (Millman’s theorem). Consider an electrical network, on any node i, we
have the following relation:

Vi =

∑k
j=0,

Vj

r(i,j)∑k
j=1

1
r(i,j)

that is
Vi − V0

r(i, 0)
+

Vi − V1

r(i, 1)
+

Vi − V2

r(i, 2)
+ · · · + Vi − Vk

r(i, k)
= 0

where 1, · · · , k are the neighbors of i, V1, · · · , Vk are the voltages on each of these
nodes.

By giving the potentials on the two nodes i and j connected to the generator, say
Vi = 0 and Vj = 1, we obtain a single solution. The matrix of the system is obtained from
the matrix of the walk by replacing the line i and j by the null line and Mii = Mjj = 1.
Then, we can compute the potential on all the nodes, and the intensity I going out of i.
The effective resistance Rij is then 1/I .

This method is not efficient, since we have to inverse n2 matrices to obtain all the
resistances and hitting times.
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Fig. 1. Example

Example. Let apply Millman theorem to the graph on fig. 1, to compute R17.
Then V1 = 1, V7 = 0.

V1 − V2 + V4 − V2 + V5 − V2 + V7 − V2 = 0
V1 − V3 + V4 − V3 + V6 − V3 = 0
V2 − V4 + V3 − V4 + V5 − V4 = 0
V2 − V5 + V4 − V5 + V7 − V5 = 0

V3 − V6 + V7 − V6 = 0

(5)

From (5), we obtain V6 = 2
7 , V4 = 3

7 , V5 = 2
7 , V3 = 4

7 and V2 = 3
7 . The intensity

going out of 1 is V2
1Ω + V3

1Ω = 1, and R17 = 1. Thus, h17 + h71 = 10 × 1 = 10.
We can design a more efficient method by noting that we inverse very similar ma-

trices.
Let Vk be the potential on the node k in the graph G. According to the Kirchoff’s

current law, when a 1A current flows from i to j:



∀k ∈ V \{i, j},
∑

l∈N(k) ckl(Vk − Vl) = 0∑
l∈N(i) cil(Vi − Vl) = 1∑
l∈N(j) cjl(Vj − Vl) = −1

This can be written:
∆V = v

with ∆ the matrix built from the conductance matrix by letting the entry (k; k) be
−

∑
l∈N(k) ckl, and v the vector with all entry 0 except the i-th one 1 and the j-th one -1.

However, ∆ is not inversible, since the vector (1, . . . , 1) is in its kernel: the potential
is defined up to a constant. The kernel is (1, . . . , 1)×R, for if there were other vectors,
there would be several steady states in this circuit with one given generator connected to
two given nodes, which is false according to electricity laws. Thus, the matrix ∆2 built by
replacing the first line in ∆ by (1, 0, . . . , 0) is inversible, for its electrical interpretation
is that the potential on node 1 is given and the Millman’s theorem applies on each other
node (and the network is connected). Thus, ∆−1

2 v is a solution to ∆V = v.
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Fig. 2. Example

Knowing the potential on each
node, we can compute the effec-
tive resistance of the network be-
tween i and j: Vj − Vi. The ef-
fective resistance between i and
j is ∆−1

2 (i, j) − ∆−1
2 (j, j) −

∆−1
2 (i, i) + ∆−1

2 (j, i). The hitting
times can then be computed thanks
to the above formula (4).

Thus, this method works with
only one matrix inversion, and
with no matrices multiplication,
which is much better than the
previous results we published
([BBS03]). We improved the speed of those computations with a factor of about one
hundred, making it possible to apply this on large graphs.

For the graph on figure 2, the matrix ∆2 is:



1 0 0 0 0 0 0 0
0 -14 4 7 1 2 0 0
2 4 -20 5 0 0 0 9
1 7 5 -23 10 0 0 0
3 1 0 10 -14 0 0 0
6 2 0 0 0 -8 0 0
5 0 0 0 0 0 -13 8
0 0 9 0 0 0 8 -17




∆−1
2 is:




1 0 0 0 0 0 0 0

1 − 102091
627268

− 56049
627268

− 67339
627268

− 110783
1254536

− 102091
2509072

− 6426
156817

− 41769
627268

1 − 56049
627268

− 84309
627268

− 53851
627268

− 84937
1254536

− 56049
2509072

− 9666
156817

− 62829
627268

1 − 67339
627268

− 53851
627268

− 89297
627268

− 137187
1254536

− 67339
2509072

− 6174
156817

− 40131
627268

1 − 110783
1254536

− 84937
1254536

− 137187
1254536

− 391027
2509072

− 110783
5018144

− 4869
156817

− 63297
1254536

1 − 102091
2509072

− 56049
2509072

− 67339
2509072

− 110783
5018144

− 1356627
10036288

− 3213
313634

− 41769
2509072

1 − 6426
156817

− 9666
156817

− 6174
156817

− 4869
156817

− 3213
313634

− 21413
156817

− 15194
156817

1 − 41769
627268

− 62829
627268

− 40131
627268

− 63297
1254536

− 41769
2509072

− 15194
156817

− 98761
627268




The resistance matrix is:



0 102091
627268

84309
627268

89297
627268

391027
2509072

1356627
10036288

21413
156817

98761
627268

102091
627268

0 37151
313634

28355
313634

356259
2509072

2173355
10036288

136335
627268

58657
313634

84309
627268

37151
313634

0 16476
156817

388515
2509072

2257179
10036288

92633
627268

14353
156817

89297
627268

28355
313634

16476
156817

0 199467
2509072

2246667
10036288

125557
627268

26949
156817

391027
2509072

356259
2509072

388515
2509072

199467
2509072

0 2477603
10036288

577827
2509072

532883
2509072

1356627
10036288

2173355
10036288

2257179
10036288

2246667
10036288

2477603
10036288

0 2521427
10036288

2602651
10036288

21413
156817

136335
627268

92633
627268

125557
627268

577827
2509072

2521427
10036288

0 62861
627268

98761
627268

58657
313634

14353
156817

26949
156817

532883
2509072

2602651
10036288

62861
627268

0



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and the hitting times matrix is:


0 6740527
627268

4636113
627268

5079563
627268

6844259
627268

68203479
5018144

1655067
156817

6683885
627268

6122939
627268 0 1848439

313634
679447
156817

5987869
627268

91460059
5018144

9504503
627268

3771965
313634

5986821
627268

2832587
313634 0 2140579

313634
7480049
627268

101973699
5018144

7735425
627268

1188563
156817

6171859
627268

1106918
156817

2011373
313634 0 4373337

627268
100608923
5018144

9680431
627268

3899619
313634

10946183
1254536

10468579
1254536

9516347
1254536

3819747
1254536 0 98029553

5018144
19278767
1254536

16338531
1254536

8632011
2509072

22730653
2509072

20114289
2509072

20465549
2509072

14514859
1254536 0 31874379

2509072
30104657
2509072

1042971
156817

7673707
627268

3936333
627268

6139751
627268

8562167
627268

95101143
5018144 0 3197993

627268
5760001
627268

3618817
313634

619915
156817

2891529
313634

8616549
627268

103757699
5018144

4722493
627268 0




The cover time can be expressed in terms of hitting times. To compute the cover time,
we need a criterion to determine whether every vertex has been visited by the token. So,
a state of the system will be the site the token is currently visiting, but also the set of
sites it has visited.

Consider G = (V, E, ω) the undirected connected weighted graph modeling a dis-
tributed system. To formalize the idea above, we build from G an associated graph G
such that the cover time of G may be expressed in terms of hitting times in G.

First let define G = (V , E , ω2) where V is a set of nodes and E a set of directed
edges.

– x ∈ V is defined by x = (P, i) with P ∈ P(V ) (i.e. P is a subset of nodes of G,
representing the nodes in G already visited), and i ∈ V is a node.

– any edge (x, y) ∈ E is of the form (x, y) = ((P, i), (Q, j)) with (x, y) ∈ V × V
and (i, j) ∈ E (is an edge).

Suppose that, initially, the token is at node i in G, and next the token moves to
j neighbor of i, and next moves back to i. For the associated graph G , we have the
following path (({i}, i); ({i, j}, j); ({i, j}, i)).

Note that E is a set of directed edges ((P, i), (Q, j)). Edges in E are defined by:

– ((P, i), (P, j)), where i and j are neighbors ; this case corresponds to a token trans-
mission to the node j that has already been visited by the token.

– ((P, i), (P
⋃
{j}, j)) where i and j are neighbors ; this case corresponds to a token

transmission to the node j that is holding the token for the first time.

If x = (P, i) and y = (Q, j) in G are neighbours, ω2(x, y) = ω(i, j).
The probability to obtain a given path in G is equal to the probability to obtain the

associated path in G. Indeed, for i ∈ P ⊂ V and j ∈ V , there exists some Q ⊂ V such
that the transition probability from (P, i) to (Q, j) and the transition probability from i
to j are the same: Q = P if j ∈ P , else, Q = P

⋃
{j}.

A token in G has visited every node iff the associated token in G has reached a node
(P, i) such that P = V . Then, we deduce that the cover time in G is the average time it
takes to a random walk token in G starting from a node i to reach any arbitrary node k
while having visited all vertices that is

Ci(G) = h({i},i),{(V,k)/k∈V }(G)
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The token has covered G when the associated token in G has hit any vertex in
F = {(V, k)/k ∈ V }. We do not care at which node (V, k) the token reaches in G, then
we lump all nodes F into a single one called f (in fact we obtain an absorbing Markov
Chain). Now, the cover time in G is obtained by the average number of steps needed
before entering f starting in node ({i}, i).

Indeed, let No(x) be the set of vertices that have an incoming edge from x: {y ∈
V/(x, y) ∈ E}.

Now, in any graph (even directed), since f can be reached from any vertex (if not,
some of the hxf would be undefined), with pxy = ω(x,y)∑

n∈N(x) ω(x,n) :

{
∀x ∈ V, hxf = 1 +

∑
y∈No(x) pxyhyf

hff = 0
(6)

6 is a square linear system that has a single solution (since it is square and has at least
one solution: the vector h.f , which we know to exist!): one can compute the hitting time
between all vertices and a given vertex by inverting one matrix.

Thus, we can compute the cover time of any graph G by building G and computing
h(i,{i}),f (G), which requires the inversion of an approximatively 2n × 2n matrix.

Let G be the graph on figure 3. Then G is the graph on figure 4.

Fig. 3. G Fig. 4. G

In figure 4 we named sites by giving the set of known vertices, the last mentionned
being the current one. We only built the part of G that corresponds to situations where
the token started on vertex 1. We did no write the states in which all vertices are visited:
for the sake of legibility, we circled the sites that lead to such a state. Thus, in state 134,
the token will reach 2 and finish to cover the graph with probability 1

3 , reach 3 (the state
being 143) or 1 (341) also with probability 1

3 .
Since we merge all the states in which the token has covered the graph, every circled

state leads to the new site f with an unweighted directed vertex.
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The matrix of G is then:




1 12 14 13 21 124 41 142 143 31 134 123 132 241 341 231 f

1 0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 2 4 5 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 3 5 0 0 0 0 0 0

21 0 1 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0

124 0 0 0 0 0 0 0 4 0 0 0 0 0 2 0 0 5

41 0 0 2 0 0 0 0 1 3 0 0 0 0 0 0 0 0

142 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0

143 0 0 0 0 0 0 0 0 0 0 5 0 0 0 3 0 0

31 0 0 0 3 0 0 0 0 0 0 2 0 1 0 0 0 0

134 0 0 0 0 0 0 0 0 5 0 0 0 0 0 2 0 4

123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 5

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4

241 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 3

341 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 1

231 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 2

f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




To obtain the cover time, we have to multiply the inverse of the below matrix by
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0):




1 − 1
6
− 1

3
− 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 − 1
5
− 4

5
0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 − 2
11

− 4
11

− 5
11

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 − 3
8
− 5

8
0 0 0 0 0 0

0 − 1
6

0 0 1 − 1
3

0 0 0 0 0 − 1
2

0 0 0 0 0

0 0 0 0 0 1 0 − 4
11

0 0 0 0 0 − 2
11

0 0 − 5
11

0 0 − 1
3

0 0 0 1 − 1
6

− 1
2

0 0 0 0 0 0 0 0

0 0 0 0 0 − 4
5

0 1 0 0 0 0 0 − 1
5

0 0 0

0 0 0 0 0 0 0 0 1 0 − 5
8

0 0 0 − 3
8

0 0

0 0 0 − 1
2

0 0 0 0 0 1 − 1
3

0 − 1
6

0 0 0 0

0 0 0 0 0 0 0 0 − 5
11

0 1 0 0 0 − 2
11

0 − 4
11

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 − 3
8

− 5
8

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 − 1
5

− 4
5

0 0 0 0 0 − 1
3

0 − 1
6

0 0 0 0 0 1 0 0 − 1
2

0 0 0 0 0 0 0 0 − 1
2

0 − 1
3

0 0 0 1 0 − 1
6

0 0 0 0 0 0 0 0 0 0 0 − 1
2
− 1

6
0 0 1 − 1

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



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By solving this system, we obtain that:

h.f(G) =
(

15154068
2185469

,
21601
5423

,
37223
5797

,
15217
2431

,
19062
5423

,
533
187

,
39698
5797

,

710
187

,
1150
187

,
1321
221

,
903
187

,
337
187

,
267
187

,
483
187

,
1063
187

,
400
187

, 0
)

Since the first entry is the average time it takes to the token to first reach any state in
which all vertices are known, starting from the state in which no site is known and the
token is on vertex 1, the cover time is

C1 = h1f (G) =
15154068
2185469

that is to say about 7.

5 Conclusion

Peer-to-peer protocols and wireless connections are two important and widespread ex-
amples of dynamic distributed systems. In such systems, the lack of knowledge of the
topology of the system is the main problem. Current solutions are based on a control
layer, that oversees the connections and disconnections, and updates the the routing tables
and all the required topological information accordingly. Such a control layer consumes
an important amount of bandwidth, which is problem in systems the bandwidth of which
is limited.

Random walks offer an interesting alternative to deterministic control layers. Ran-
dom walks based deterministic algorithms can provide a completely distributed frame-
work to handle the dynamicity of networks, with a lesser consumption of bandwidth.
However, the complexity of those solutions, being based on randomized procedures, is
difficult to estimate. The main quantities can now be computed, which allows to compare
random walk based algorithms to deterministic ones.
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