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Abstract. The combination of multiple classifiers has been successful
in improving classification accuracy in many pattern recognition prob-
lems. For graph matching, the fusion of classifiers is normally restricted
to the decision level. In this paper we propose a novel fusion method
for graph patterns. Our method detects common parts in graphs in an
error-tolerant way using graph edit distance and constructs graphs repre-
senting the common parts only. In experiments, we demonstrate on two
datasets that the method is able to improve the classification of graphs.

1 Introduction

The key idea in multiple classifier systems is to combine several classifiers such
that the resulting combined system achieves a higher classification accuracy than
the original classifiers individually [1]. In the case of statistical patterns, that
is, patterns represented by feature vectors, a large number of methods for the
fusion of classifiers have been developed over the past few years, ranging from the
combination of individual classification results to the fusion of feature vectors.
However, for structural patterns, and attributed graph patterns in particular,
the fusion of classifiers has mainly been constrained to the decision level [2,3,4],
that is, to the combination of the individual classifiers’ results. The integration
of knowledge about the structure of graphs into a multiple classifier system has
not been considered until now.

In the present paper we propose a method to merge several graphs repre-
senting the same underlying pattern into a graph that is more robust against
noise and hence a better structural representative of the pattern. We proceed by
identifying common parts in two or more graphs and derive a graph represent-
ing the common structure. The structural matching is performed by means of
graph edit distance computation. The graph fusion method can be applied when
several graph representations of a pattern are given.

In Section 2, graph edit distance is briefly introduced. The proposed method
for the fusion of graphs is presented in Section 3. An experimental evaluation
follows in Section 4, and Section 5 offers some concluding remarks.
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2 Graph Edit Distance

Structural pattern recognition is generally performed by transforming patterns
into strings or graphs and matching the resulting structures. Using an attributed
graph representation of patterns allows for a powerful representation of complex
strucured objects that is better suited to certain pattern recognition problems
than a statistical feature-based approach. In recent years a large number of
approaches to graph matching have been proposed [5].

One of the most common error-tolerant graph matching methods is based on
graph edit distance [6]. Graph edit distance is a general dissimilarity measure on
attributed graphs. The key idea of edit distance is to define the dissimilarity of
graphs by the amount of edit operations, reflecting small structural distortions,
needed to transform one graph into another. To allow for graph distance mea-
sures that are tailored to specific applications, it is common to define for each
edit operation an edit cost reflecting the strength of the corresponding structural
distortion. From these edit costs, the edit distance of two graphs can be defined
by the minimum cost sequence of edit operations transforming one graph into
the other.

The result of an edit distance computation is a minimum cost edit path from
the first to the second graph and its associated edit costs. Nodes and edges of
the first graph that are substituted by nodes and edges of the second graph,
according to the optimal edit path, can be regarded as locally corresponding
parts of the two graphs. Conversely, inserted and deleted nodes and edges can
be seen as the non-matching parts. In traditional graph matching methods, the
edit distance value is used in the context of a nearest-neighbor classifier, while
the optimal node and edge correspondences given by the edit path are not taken
into account any further. In this paper, we propose to use the substitutions of
the optimal edit path for an error-tolerant detection of the common parts of two
or more graphs. The following section describes how several graph patterns can
be merged into a single graph by means of edit distance.

3 Data Level Fusion of Graphs

Multiple classifier systems have successfully been used to improve graph match-
ing systems [2,3,4]. Graph classifier fusion, however, is usually performed at the
decision level. That is, each single classifier votes for a single class or reports a
confidence measure for each class, and all votes or confidence measures are then
combined into an overall classification result. The fusion approach we propose
in this paper is based on graph fusion at the data level. We assume that each
pattern is initially represented by several graphs. In practice, this is the case
when several graph extraction methods have been developed based on the same
key pattern characteristics, or when the same graph extraction process is car-
ried out several times with different parameters. A crucial requirement of our
method is that all those graph representations are compatible, meaning that
the same attributes are used in all graphs. The basic idea is to detect common
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Fig. 1. Graphs from five databases (Original 0.1–0.9) and their emcs combinations
consisting of all five graphs (All 5) as well as the best matching graphs only (Best 4–2)

structures occurring in all graphs representing a single pattern, and use these
common parts in the successive matching process. The common parts typically
correspond to structures that are robust against noise and distortions and thus
allow for a more reliable classification.

In order to detect common structures, we use the concept of maximum com-
mon subgraph. The maximum common subgraph of two graphs is defined as the
largest parts of two graphs that are isomorphic to each other [7]. To detect the
common parts of two graphs in an error-tolerant way, we first compute the edit
distance of the two graphs and use the substitutions of the optimal edit path
as a description of the common parts. We then proceed by merging the nodes
and edges of the common parts to obtain a new graph representing the structure
existing in both graphs. We call this graph the error-tolerant maximum com-
mon subgraph (emcs graph) of the two graphs. Note that maximum common
subgraph, as described in [7], is a special case of emcs under the condition that
only identical substitutions occur.

If more than two graphs are to be merged, we compute all mutual distances
and merge the two graphs with the smallest distance first. We then proceed by
merging the current emcs graph and the remaining graphs until all graphs have
been merged into a single emcs graph. The motivation for this procedure arises
from the observation that two very different graphs will most likely lead to a
small or even an empty emcs graph, while two very similar graphs will lead to
a large graph that represents the common parts of the graphs very well. This
merging procedure also has the advantage that the emcs graph computation
can be stopped at different stages of the merging process, for instance using
the emcs graph of the two most similar graphs only instead of the emcs graph
of all graphs, therefore eliminating the effect of outlier graphs. The result of
emcs merging is illustrated in Fig. 1. First, five graph instances of a letter A
line drawing with various degrees of distortion are given. The next graph shows
the complete emcs graph consisting of all five graphs, and the remaining graphs
correspond to the emcs graph of the four, three, and two most similar graphs.
The original graphs (see the upper row of Fig. 1) exhibit quite a significant
amount of distortion in terms of added and displaced nodes and edges, while the
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Fig. 2. a) Individual classifier, b) decision level classifier fusion, c) data level pattern
fusion, and d) combination of data level and decision level fusion

emcs graphs (see the lower row of Fig. 1) constitute an intuitively less distorted
and hence better representation of letter A. The emcs graphs indicate that it
may be advantegeous to merge more than only the two best fitting graphs (Best
2), but less than all five (All 5) to benefit from a robust representation while
eliminating the influence of outlier graphs. Generally, if too many graphs are
taken into account in the emcs computation, there may be a severe influence of
outliers. On the other hand, if too few graphs are considered, the variation of
the underlying population may not be covered well enough.

The strategies for the fusion of graph classifiers employed in this paper are
illustrated in Fig. 2b–d. To explain our notation, we first give an illustration of
a single classifier of the nearest-neighbor type in Fig. 2a, consisting of a set of
labeled prototype graphs P1. In a first step, the original patterns are converted
into graphs. The set of graphs to be classified, or test set, is denoted by T1.
Each graph from test set T1 is classified according to the class of its nearest-
neighbor prototype in P1. In Fig. 2b, the fusion of classifiers at the decision level
is illustrated. Here, three different graph extraction procedures are used, which
means that every original pattern is represented by three different graphs, one
graph in T1, one in T2, and one in T3. For each of the three test sets T1, T2, and
T3, a corresponding set of prototype graphs is developed, denoted by P1, P2, and
P3, respectively. Each one of the three graphs a pattern is represented by is first
individually classified with the respective nearest-neighbor classifier. To obtain
an overall classification, the individual results are combined at the class level.

In Fig. 2c, the fusion is performed at the data level. Before classification,
the three graphs representing the same pattern — one from T1, one from T2,
and one from T3 — are merged into one emcs graph. The module denoted by
EMCS represents the error-tolerant maximum common subgraph computation,
and the test set Temcs represents the new set of emcs graphs. In this scenario,
one unmodified set of prototypes, say Pi, is chosen for the nearest-neighbor clas-
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sification; i ∈ {1, 2, 3}. That is, every emcs graph in Temcs is classified according
to the class of its nearest-neighbor prototype graph in Pi. Finally, in Fig. 2d, a
combination of data level fusion and decision level fusion is shown. Again, the
three test sets T1, T2, and T3 are merged into a single test set Temcs. Every emcs
graph is then individually classified according to the original prototypes, that is,
once according to P1, once according to P2, and once according to P3. The final
classification is obtained by combining the results of the individual classifiers.

4 Experimental Results

In our first experiment we focus on the data level fusion of graphs (see Fig. 2c)
using an artificially created database of letter drawings. An experimental evalu-
ation of all fusion strategies illustrated in Fig. 2, applied to the difficult problem
of fingerprint classification using real-world data, is described subsequently.

In the first experiment, a clean prototype drawing is manually constructed
for 15 capital letters consisting of straight lines only. These prototype drawings
are then repeatedly distorted to obtain sample drawings. To control the strength
of applied distortions, a distortion parameter is used. By means of this proce-
dure, we create five databases containing 1,500 distorted drawings each, with
the distortion parameter ranging from 0.1 to 0.9. A sample drawing of a letter A
from each database is shown in Fig. 1 (Original 0.1-0.9). The letter drawings are
finally transformed into attributed graphs by representing line endings by nodes
(containing a position attribute) and lines by edges (without attributes), result-
ing in graph datasets L1, L2, L3, L4, and L5. Each dataset Li, i ∈ {1, . . . , 5},
is split into two subsets. The test set Ti is defined as the first half of dataset
Li, and the prototype set Pi is defined as the second half of dataset Li. Using
the previously described procedure, we obtain a merged test set Temcs consist-
ing of emcs graphs, each of which results from merging five graphs. Similarly, a
merged prototype set Pemcs is obtained from the prototype sets P1, . . . , P5. The
results obtained with a nearest-neighbor classifier on each test set T1, . . . , T5 in-
dividually according to Fig. 2a are shown in the first five rows of Table 1. Using
the emcs method according to Fig. 2c with prototype set Pemcs results in an
improvement of the classification rate of almost 10% compared to the best indi-

Table 1. Performance of a nearest-neighbor classifier on five letter graph datasets
(T1–T5) and the corresponding combined emcs dataset (Temcs)

Test set Prototype set Classification rate
T1 P1 54.8
T2 P2 54.933
T3 P3 51.733
T4 P4 70.0
T5 P5 76.0
Temcs Pemcs 85.067
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Table 2. Performance of five individual fingerprint classifiers and classifier combina-
tions using a) majority voting, b) maximum confidence, and c) confidence voting

Test set Prototype set Classification rate
T1 P1 80.85
T2 P2 74.6
T3 P3 73.4
T4 P4 75.5
T5 P5 74.625
T1, . . . , T5 P1, . . . , P5 77.35 a)
T1, . . . , T5 P1, . . . , P5 86.8 b)
T1, . . . , T5 P1, . . . , P5 83.2 c)

vidual classifier. In this particular case, we find that the emcs graphs constitute
a representation of the line drawing patterns that is more robust against noise
than the original patterns.

We proceed by investigating the applicability of the emcs method to fin-
gerprint classification [8]. The method we use extracts graphs from fingerprint
images by detecting characteristic signatures in fingerprints and converting these
into attributed graphs [9]. Our experiments are based on five graph fingerprint
classifiers using similar graph extraction procedures with different parameters.
Hence, by employing five slightly different graph extraction procedures, we ob-
tain five different graph representations for each fingerprint image. The five graph
datasets T1, . . . , T5 have been constructed from the NIST-4 database of finger-
prints consisting of 4,000 fingerprint images classified according to the Henry
system [8]. In a manual construction process, typically around 30 graph proto-
types have been developed for each of the five datasets. The set of graph proto-
types belonging to test set Ti is denoted by Pi. The fingerprint graphs from Ti

are then classified according to the nearest-neighbor among all prototypes in Pi.
To obtain a measure of the reliability of each classification result, we intro-

duce a confidence measure for distance based nearest-neighbor classifiers. The
confidence measure is defined as the ratio of the distance to the nearest neighbor
in relation to the distance to the nearest neighbor of the second-closest class. For
a single input fingerprint, we thus obtain per classifier the resulting class along
with a confidence measure. The results of the five classifiers can then be com-
bined with majority voting (in this case the confidence values are not needed), by
selecting the result of the maximum confidence classifier, or another combination
rule [10].

The results of the five individual classifiers and combinations at the deci-
sion level are given in Table 2. Note that the first five rows correspond to the
individual classifier scheme illustrated in Fig. 2a, and the last three rows cor-
respond to the decision level fusion scenario illustrated in Fig. 2b. From the
results, we find that among the traditional decision level combination schemes
the maximum confidence rule is very effective in improving the classification ac-
curacy. Next, we merge the five databases T1, T2, T3, T4, and T5 into an emcs
database Temcs . The performance of the individual classifiers and the decision
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Table 3. Performance of fingerprint classifier combinations using emcs data fusion and
a) majority voting, b) maximum confidence, and c) confidence voting

Test set Prototype set All 5 Best 4 Best 3 Best 2
Temcs P1 79.625 79.925 80.75 80.45
Temcs P2 79.325 79.6 80.375 79.925
Temcs P3 78.15 78.575 79.225 78.825
Temcs P4 63.2 63.25 63.75 63.55
Temcs P5 64.725 65.15 65.625 65.925
Temcs , . . . , Temcs P1, . . . , P5 73.275 74.725 74.85 75.2 a)
Temcs , . . . , Temcs P1, . . . , P5 81.45 87.3 88.275 87.8 b)
Temcs , . . . , Temcs P1, . . . , P5 81.35 82.35 82.575 82.8 c)

level fusion using Temcs is presented in Table 3. Note that the first five rows
correspond to the data level fusion illustrated in Fig. 2c, and the last three rows
correspond to the combination of data level and decision level fusion illustrated
in Fig. 2d. Comparing the first five rows in Table 3 with the first five rows in
Table 2, we observe that the individual classifiers on Temcs do not generally
lead to an improvement compared to the original classifiers. Using a fusion at
the decision level, however, outperforms all other classification rates, as can be
seen in rows six to eight in Table 3. Merging only two or three graphs instead
of all five graphs leads to an additional gain in recognition accuracy. Again,
the maximum confidence rule turns out to be the most reliable combination
method.

For the sake of convenience, a summary of the experimental results is pro-
vided in Table 4. Since many fingerprint classification systems are evaluated
on the second half of the NIST-4 database only instead of the full database,
the recognition accuracy on the second half of NIST-4 is also given. The emcs
data level fusion is particularly suitable in conjunction with the decision level
fusion using the maximum confidence rule (see Fig. 2d). This fusion strategy
is significantly better (α = 0.01) than all individual classifiers and all other
fusion strategies. We conclude that the emcs fusion of graph structures can im-
prove nearest-neighbor based graph classifiers and outperform traditional fusion
methods.

Table 4. Summary of classification rates obtained on NIST-4 database

Fingerprint classifier NIST-4 Second half Method
of NIST-4

Best individual classifier 80.85 80.25 Fig. 2a
Best decision level fusion 86.8 86.95 Fig. 2b
Best data level fusion 80.75 80.55 Fig. 2c
Best data and decision level fusion 88.275 88.8 Fig. 2d
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5 Conclusions

In the present paper we propose a method for data level fusion of graph patterns.
Given two graphs to be merged, we first identify corresponding substructures in
both graphs in an error-tolerant manner using graph edit distance. These local
correspondences can then be used to construct a graph representing the common
parts of the two original graphs. The merged graphs constitute robust represen-
tatives of the original graphs that are less prone to noise. By generalizing the
concept to more than two graphs, we can use the graph fusion method to com-
bine several datasets of the same underlying data into a single graph dataset.
To demonstrate the usefulness of the proposed method, we apply the fusion
method to artifically created line drawing graphs and the difficult problem of
fingerprint classification. In both cases a significant improvement of the perfor-
mance is obtained. In the future, we would like to investigate in greater detail
what properties cost functions need to exhibit to be suitable for the graph fusion
process.
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